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Chapter 20
Modeling Retinal Dystrophies Using  
Patient-Derived Induced Pluripotent Stem Cells
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Abstract Retinal degenerative disease involving photoreceptor (PR) cell loss 
results in permanent vision loss and often blindness. Generation of induced pluripo-
tent stem cell (iPSC)-derived retinal cells and tissues from individuals with retinal 
dystrophies is a relatively new and promising method for studying retinal degenera-
tion mechanisms in vitro. Recent advancements in strategies to differentiate human 
iPSCs (hiPSCs) into 3D retinal eyecups with a strong resemblance to the mature 
retina raise the possibility that this system could offer a reliable model for transla-
tional drug studies. However, despite the potential benefits, there are challenges that 
remain to be overcome before stem-cell-derived retinal eyecups can be routinely 
used to model human retinal diseases. This chapter will discuss both the potential of 
these 3D eyecup approaches and the nature of some of the challenges that remain.
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20.1  Introduction

Retinal degenerative diseases include Mendelian orphan diseases such as retinitis 
pigmentosa (RP) and the complex genetics disease age-related macular degenera-
tion (AMD), which is the second most common cause of irreversible blindness in 
the western world. Vision loss in these diseases results from the dysfunction and 
death of photoreceptor (PR) cells and/or adjacent retinal pigment epithelial (RPE) 
cells. While both environmental and genetic causes have been implicated in retinal 
degeneration, in many cases the particular gene(s) and/or risk factor(s) involved are 
unknown, making it difficult to develop targeted therapies [1]. Even when the muta-
tion is known, FDA-approved therapies are in general not yet available. Pluripotent 
stem cells (PSCs) of human origin offer exciting new approaches to study human 
“diseases in a dish,” offering a new means to explore mechanisms of retinal disease 
and opening the possibility of novel cell-based therapeutic approaches (Fig. 20.1). 
PSC-derived retinal cells could also facilitate high-content screening of human dis-
ease-based cells for neuroprotective and other therapeutic compounds.

Fig. 20.1  A strategy to utilize human-induced pluripotent stem cell ( hiPSC)-derived PR or retinal 
pigment epithelial ( RPE) cells for cell replacement therapies or to generate retinal eyecups to be 
used to model human eye disease and for high-content drug screening
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One approach for such studies is to use dissociated cell cultures. Another ap-
proach, which has the advantage of better modeling the in vivo situation, is the use 
of 3D retinal cultures in the form of retinal eyecups that preserve the stereotypical 
laminar pattern of the mature neural retina, complete with a thin RPE layer [2].

20.2  Retinal Dystrophies Can Arise from Mutations  
in Genes Predominantly Expressed  
in Photoreceptors or the RPE

The Retinal Information Network, or Retnet (https://sph.uth.edu/RetNet/), which 
maintains a curated list of genes causing retinal disease, lists well over 200 retinal 
disease-associated genes and loci. Rhodopsin gene mutations are the most common 
causes of autosomal dominant RP (adRP), with the P23H mutation being the most 
common opsin mutation. Rhodopsin mutations can result in protein mis-folding and 
trafficking defects, and eventually result in PR death [3]. Defects in cells other than 
PRs can also result in PR degeneration. For example, defects in the Mer tyrosine 
kinase ( MERTK) can result in a childhood onset rod-cone dystrophy by altering the 
normal phagocytic functions of RPE cells, which disrupts the normal cycling of vi-
sual pigments that are shed on a daily basis from PR outer segments [4]. Similarly, 
mutations in the RPE-65 gene, which encodes a retinoid isomerase that is predomi-
nantly expressed in the RPE, can result in Leber congenital amaurosis (LCA), a 
severe early onset form of childhood retinal degeneration [5].

20.3  Existing Models of Retinal Degeneration  
Using hiPSCs

Although mouse models of human RP exist and are being used for mechanism 
and drug development purposes, mice and humans are not equivalent, and species-
specific differences have been an issue in translational studies. In a mouse model of 
Usher 3 syndrome, a form of RP with hearing loss, the causal mutation in clarin-1 
expressed in mice, leads to auditory deficits but no detectable retinal degeneration 
phenotypes [6]. It is hoped that by generating models of human eye disease in a dish 
through the use of human-induced pluripotent stem cells (hiPSCs) some of these 
species-related issues can be avoided.

Several studies of human retinal disease have used hiPSCs to study RP and gy-
rate atrophy (GA) [7, 8]. GA of the retina can arise from a defect in the metabolism 
of ornithine-δ-aminotransferase (OAT) and begins in childhood, often resulting in 
total vision loss in 30–40-year olds [9, 10]. From an individual with a form of GA 
that is responsive to dietary supplementation with pyridoxine (vitamin B6), hiPSCs 
were generated by Meyers et al. who then directed them to become RPE cells, a cell 
type affected by this disease [8]. Restoration of OAT activity was observed upon 
treatment with high doses of vitamin B6. Furthermore, showing the power of hiPSC 
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technology, it was shown that mutant cells could be restored to normal function by 
genetically correcting the OAT gene mutation via bacterial artificial chromosome 
(BAC)-mediated homologous recombination.

In another recent report, whole exome sequencing of stem-cell-derived retinal 
cells from a single patient with RP was used to identify a homozygous Alu insertion 
in exon 9 of Male germ cell Associated kinase (MAK) [11]. In hiPSCs from healthy 
unaffected donors, a transcript-lacking exon9 was found in undifferentiated cells, 
whereas a transcript-bearing exon 9 and a previously unrecognized exon 12 were 
seen in differentiated retinal precursors. In the RP-based hiPSCs with the Alu inser-
tion, this splicing switch never occurred, suggesting a defect in alternative splicing. 
For retinal disorders in which the basis for disease is not yet known, this strategy 
demonstrates the usefulness of exome sequencing to uncover differences in altered 
gene expression and/or alternatively spliced variants due to retinal degeneration.

Another important study involved a model for RP in which Jin et al. generated 
hiPSCs from RP patients with early (RP9) or late onset (RP1, PRPH2, or RHO) 
retinal degeneration [7]. Compared with unaffected controls, stem-cell-derived 
rod PRs from disease backgrounds decreased over time, and markers for oxidative 
and/or ER stress became elevated. These observations bode well for retinal disease 
modeling—a major concern has been that since many retinal dystrophies occur only 
after many decades of life, they would not demonstrate a detectable phenotype in 
relatively short-term cell culture. There is mounting evidence that some neurode-
generative disorders with later-stage onset can also be modeled in vitro [12].

20.4  Generating hiPSCs and PRs

Lineage-specific variation can affect hiPSC generation, maintenance, and PR dif-
ferentiation. Numerous studies suggest that not all stem cell lines are created equal; 
stem cells created by different labs, by different reprogramming methods, and even 
different cell lines derived from the same patient with the same methods can show 
variable differentiation potential [13]. To reduce this inherent variation, it is impor-
tant that microenvironmental, epigenetic, and other factors that contribute to retinal 
differentiation be better understood.

Studies of stem-cell-derived retinal cells have traditionally been carried out with 
mouse PSCs [14–19]. In the past few years, however, newer protocols for generat-
ing retinal and RPE cells of human origin have also been developed. These new 
methodologies include improvements in microenvironment, extracellular matrices, 
timing, and cell purity [2, 8, 20–23]. One of the most noteworthy improvements 
has focused on self-organized pseudostratified optic cup structures bearing all the 
retinal cell types in their proper orientation (Fig. 20.2, unpublished data) [2, 8]. Rax 
positive neural retina can be distinguished after 2–3 weeks while early PR markers 
can be distinguished by 30–45 days in vitro. With a brief treatment with the small 
molecule Wnt agonist, CHIR99021, these cultures can even be coaxed to develop 
a thin layer of pigmented RPE cells. The advanced morphology and mature gene 
expression in 3D systems demonstrate the importance of cell–cell interactions; such 
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retinal progenitors injected in vivo have been observed to have elevated expres-
sion of visual pigment and other PR-specific genes and bear outer segment-like 
structures that do not normally develop in simple monolayer cultures in vitro [2, 18, 
21]. Collectively, these features should make it easier to develop in vitro assays for 
studying retinal degenerative disorders.

20.5  Limitations to Using hiPSC for Modeling  
Human Disease

When a disease source can be isolated to a single primary cell with a single gene mu-
tation identified, the disease can be studied rather successfully, as exemplified in the 
case of the defective RPE cells in GA. When a disease affects PRs directly, purified PR 
progenitors can be grown in monolayer culture or as more complex optic cup struc-
tures. Unfortunately many retinal diseases result from a complex interplay between 
distinct cell and tissue types. Additionally, systemic factors can play a role, and these 
complex interactions can be difficult or impossible to adequately model in vitro.

There are also technical reasons why a disease phenotype might not be easily 
observed, especially when dealing with a subtle disease phenotype. Human iPSC-
derived embryoid bodies and neurospheres can vary considerably in terms of cell 
type composition, number and size of optic cups, and demonstrate differences in 
the timing of differentiation (Wahlin et al., unpublished observations). Parameters 
such as oxygen tension, cell medium composition, and feeding frequency can also 
adversely affect cell culture variability and can act as additional sources of experi-
mental variability. As stem cell and retinal differentiation protocols become better 
refined, such issues will hopefully become less problematic.

Fig. 20.2  A representative RPE monolayer (a) and pseudo-stratified optic cup-like structure (b) 
from human iPS cells. Arrows indicate retinal eyecup structures in 18-day-old human stem-cell-
derived retinas
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20.6  Exciting New Tools to Study Disease-Specific  
Cell Lines

Major sources of variation are the stem cells themselves, and this poses challenging 
problems when studying diseases with subtle phenotypes [13]. Variation in hiPSC-
derived retinal cells from different individuals, which could result from genetic and 
epigenetic differences, might mask any retinal degeneration phenotype induced by 
an actual disease-causing mutation. Using new genome editing tools including zinc 
fingers nucleases (ZFNs), TALE effector nucleases (TALENs), or the type II bacte-
rial CRISPR RNA-guided nucleases, one can now generate mutant cell lines with 
congenic controls rather than relying on genetically unmatched controls [24–26]. 
Due to decreased variability, these controls could greatly simplify interpretation of 
experimental findings. This technology could also be used to repair genetic muta-
tions for the purpose of replacing defective retinal cells by transplantation.

20.7  Small Molecule Screens for Neuroprotective 
Compounds

Platforms for identifying neuroprotective small molecule chemicals are being in-
vestigated for many neurodegenerative models and have proven successful in some 
cases. For instance, a screen for proneurogenic compounds has uncovered mol-
ecules that protect against animal models of ALS and Parkinson’s disease [27, 28]. 
For retinal survival assays, there are ongoing small molecule screens to protect pri-
mary rodent retinal ganglion and PR cell cultures (unpublished data). The recently 
developed eyecup methods should offer a new and powerful tool for investigating 
PR development and neuroprotection in a more in vivo-like environment.

Although much work remains, hiPSCs show great potential to contribute to the 
development of personalized medicine approaches and will likely help in the study 
of diseases for which no working model exists. Future studies should shed light on a 
plethora of retinal diseases, leading to greater understanding of disease mechanisms 
and hopefully also to advances in therapy.
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