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   Introduction    

 Model-based learning is both a new and old paradigm of 
psychology and education. In education this idea has been 
around for decades (cf. Chapanis,  1961  ) , and a variety of 
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conceptions of model-based learning aimed at guided 
discovery and exploratory learning have been developed in 
the  fi elds of mathematics, physics, and geography educa-
tion (cf. Hodgson,  1995 ; Lesh & Doerr,  2000 ; Penner, 
 2001  ) . These conceptions correspond to a large extent to 
functional and pragmatic approaches of model-based learn-
ing, whereas the construct of mental models as it emerged 
in cognitive science in the 1980s corresponds to a construc-
tivist view on model-based learning (Johnson-Laird,  1983 ; 
Seel,  1991  ) . 

 Although the two movements differ with regard to their 
epistemological and theoretical foundations, they share a 
strong instructional impetus insofar as the suggestion has 
been made that models are constructed from the signi fi cant 
properties of external situations, such as school settings, and 
the subject’s interactions with well-designed learning envi-
ronments (cf. Lehrer & Schauble,  2010 ; Norman,  1983  ) . 
Indeed, learning environments can be designed in such a way 
that students may be involved in a process of discovery and 
exploratory learning in which they extract facts from infor-
mation sources, look for similarities and differences between 
these facts, and thus develop new concepts (cf. Carlson, 
 1991  ) . In this context, instruction is oriented toward facilitat-
ing model-based learning and providing the students with 
opportunities to create their own models for solving tasks 
and problems. Advocates of this approach argue that learn-
ing occurs as a multistep process of model building and revi-
sion (Lehrer,  2009 ; Penner,  2001  ) . Similarly, proponents of 
the mental model approach argue that learning occurs when 
people actively construct meaningful mental representations, 
such as schemas and coherent mental models that communi-
cate subjective experiences, ideas, thoughts, and feelings (cf. 
Seel,  1991  ) . Although these conceptions obviously overlap 
to a great extent with regard to the impact of instruction on 
model-based learning and performance, they approach this 
topic from different theoretical perspectives and research 
interests, as described in the following sections. 

   Major Lines of Research on Model-Based 
Learning 

 The intentional construction of models has played an important 
role in mathematics (Schichl,  2004  ) , the philosophy of sci-
ence (Bailer-Jones,  2009  ) , and psychometrics (Borsboom, 
 2005  )  for a long time. However, in this chapter the focus is 
on model-based learning and performance in various subject 
matter domains, such as physics and mathematics, where 
models serve explanatory functions. These conceptions can 
be classi fi ed as functional-pragmatic approaches that go 
“beyond constructivism” (Lesh & Doerr,  2003  ) . In addition, 
the chapter also describes the impact of the mental model 
approach on learning and reasoning. Clearly, this approach goes 

“beyond pragmatism” and aims at creating epistemological 
plausibility with regard to the “cognized world” as well as 
reasoning (Seel,  1991  ) .   

   Pragmatic Approaches of Model-Based 
Learning 

 Pragmatic and functional approaches of model-based learning 
and performance have played an important role within the 
realm of instructional psychology since the 1980s, but their 
origins can be dated back further. The concept of models 
already played a central role in information science in the 
1950s and 1960s, where one can  fi nd the idea that the learning 
consists of the procedures people use to construct  internal 
models  of their environments (e.g., Steinbuch,  1961  ) . At the 
same time, Chapanis  (  1961  )  classi fi ed models into two broad 
categories:  reproduction models , such as architects’ models 
that operate with physical objects and diagrams, and  symbolic 
models  aiming at the representation of knowledge about the 
world. The various approaches of the 1960s culminated in 
the advent of a “general model theory” applied to issues of 
representation and scienti fi c understanding (Stachowiak, 
 1973 ; Wartofsky,  1979  ) . 

 From a pragmatic point of view, talking about  models  
always implies asking for the  original  to be modeled. Globes 
are models of the earth. Naturally, a globe is not a reduced 
earth but rather it is designed to give answers to questions 
about the locations of different places or the distances 
between places. With regard to the chemical composition of 
the earth, a globe is not relevant. This example illustrates a 
basic property of models: Every model is constructed in 
accordance with speci fi c intentions in order to simplify its 
original in several respects. By virtue of its nature as an ideal-
ized reduction to relevant characteristics of its original,  a 
model may be understood as a concrete ,  comprehensible ,  and 
feasible representation of nonobvious or abstract objects  of 
consideration. The representation of the objects’ attributes 
and components comes second to the representation of struc-
tural relationships. Evidently, the functions of a model—and 
in consequence, also the requirements for its structural 
features—are de fi ned on the basis of the intentions of the 
model-constructing person. Therefore, in physics as in other 
disciplines the term  model  is principally used in accordance 
with functional intentionality:

   Models may serve as means of  • simplifying  an investigation 
to particular and relevant phenomena in a domain.  
  Models may serve to help the user  • envision  that which is 
being modeled and make the invisible visible.  
  Models are constructed as analogies that identify relation-• 
ships within an unknown domain to be explained (e.g., 
quantum mechanisms) with the help of the relationships 
within a known domain. (e.g., Rutherford’s atomic model). 
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Such models are heuristic hypotheses about structural 
similarities of different domains. Usually, they are called 
 analogy models .    
 These characteristics of models are also emphasized in 

various areas of instructional psychology with the aim of 
improving learning and problem solving in subject matter 
domains such as physics or mathematics. Stewart, Hafner, 
Johnson, and Finkel  (  1992  ) , for example, have summarized 
the central idea of these instructional approaches by stating 
that “a science education should do more than instruct stu-
dents with respect to the conclusions reached by scientists; it 
should also encourage students to develop insights about 
science as an intellectual activity” (p. 318). Accordingly, 
advocates of this approach argue that “given that we wish to 
involve students in the practices of scientists, we focus pri-
marily on model building” (Penner, Lehrer, & Schauble, 
 1998 , p. 430). In science, an important goal of instruction is 
to help students develop powerful models for making sense 
of their daily experiences involving light, gravity, electricity, 
and magnetism. These models respond to the partial and 
incomplete models that students are likely to build with 
regard to phenomena of everyday physics (Clement,  1979, 
  2000  ) . In order for these preconceptions or misconceptions 
to be changed, model-based learning in the classroom must 
correspond to the conceptual models and the constructs of 
the respective scienti fi c discipline in the curriculum (Etkina, 
Warren, & Gentile,  2005  ) . 

 A similar argumentation can be found with regard to the 
learning of mathematics in the classroom. Mathematizing is 
considered as a form of modeling and requires the use of 
specialized formal languages, symbols, graphs, pictures, 
concrete materials, and other notation systems to develop 
mathematical descriptions and explanations that often make 
great demands on students’ representation capabilities. 
Therefore, Hodgson  (  1995  ) , Lesh and Doerr  (  2000  ) , and 
other authors argue that helping students to develop powerful 
mathematical models should be among the most important 
goals of math instruction, helping them to understand not 
only mathematics but also how it can be applied to phenom-
ena of the real world that involve mathematical entities such 
as directed quantities (negatives), multivalued quantities 
(vectors), ratios of quantities, changing or accumulating 
quantities, or locations in space (coordinates). Actually, the 
“big idea” of those who advocate model-based learning in 
the math and science classroom is to provide students “with 
the skills they will need to accomplish this in the real world. 
This is the objective of mathematical modeling” (Hodgson, 
 1995 , p. 353). 

 Comparable argumentations concerning the importance 
of model-based learning, and especially the use of mathe-
matical models, can also be found in the areas of geography 
(e.g., Guermond,  2008  ) , biology (e.g., Laubichler & Müller, 
 2007  ) , and chemistry (Heyworth & Briggs,  2007  ) .  

   Constructivist Approaches of Model-Based 
Learning 

 In the 1980s, the theory of mental models emerged and 
introduced a constructivist approach to modeling into cog-
nitive science and related  fi elds of interest (Gentner & 
Stevens,  1983 ; Johnson-Laird,  1983  ) . The theory of mental 
models is based on the assumption that cognition takes place 
in the use of mental representations in which individuals 
organize symbols of experience or thought in such a way that 
they effect a systematic representation of this experience or 
thought, as a means of understanding it or explaining it to 
others (Seel,  1991  ) . 

 In a historical review, Johnson-Laird  (  2004  )  traced the 
theory of mental models back to    Peirce’s  (  1883  )  early semi-
otics as well as to Wittgenstein  (  1922  ) , and the Gestalt psy-
chologists, such as Wolfgang Köhler  (  1947  ) , who argued 
that vision creates an isomorphism between the force  fi elds 
of the brain and the cognized world. Similarly, information 
theorists of the 1950s (e.g., Steinbuch,  1961  )  argued that 
learning consists in constructing  internal models  that are 
conceived as a cognitive isomorphism of structured domains 
or elements of the environment. This isomorphism is consid-
ered to be a threshold value, which can be approached by the 
internal models of a subject but not reached. 

 In accordance with Peirce’s semiotics and the distinction 
between index, icon, and symbol, cognitive psychology dif-
ferentiates at the very least between images (picture-like) 
and propositions (language-like) as forms of mental repre-
sentation. Johnson-Laird  (  1983  )  added mental models as a 
particular form of representation that mediates between 
images and propositions. Markman  (  1998  )  has illustrated 
this idea with the following example: “Imagine a situation in 
which a boy stands at the top of a hill, makes a snowball, and 
rolls it down the snow-covered side of the hill. A person may 
never have witnessed an event like this, but one can con-
struct the event and talk about it. One can imagine that the 
snowball rolls down the hill and gets larger and larger as it 
rolls, because snow sticks to it. A mental image of this event 
occurring might be formed … but this situation goes beyond 
a mere mental image; it requires reasoning about the physics 
of the situation to determine how the image changes over 
time” (Markman,  1998 , p. 248). 

 In addition to the argumentation that mental models are a 
particular form of mental representation, Johnson-Laird 
 (  1983,   2004  )  also referred to the work of Craik  (  1943  ) , who 
argued that an individual who intends to give a rational 
explanation for something must develop practicable methods 
in order to generate adequate explanations from the available 
knowledge of the world and his or her limited information 
processing capacity (Khemlani & Johnson-Laird,  2011  ) .
Thus, in order to create plausibility the individual constructs 
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an internal model that both integrates the relevant semantic 
knowledge and meets the requirements of the situation to be 
mastered. Accordingly, this model “works” when it  fi ts the 
subject’s knowledge as well as the explanatory need with 
regard to the concrete situation to be mastered cognitively. 
More generally, Craik pointed out:

  If the organism carries a ‘small-scale model’ of external reality 
and of its own possible actions within its head, it is able to try 
out various alternatives, conclude which is the best of them, 
react to future situations before they arise, utilize the knowledge 
of past events in dealing with the present and the future, and in 
every way to react in a much fuller, safer, and competent manner 
to the emergencies which face it (Craik,  1943 , p. 61).   

 By means of an internal or mental model, an individual is 
able to simulate real actions in the imagination. This means 
that a “mental simulation runs” envisioning in the imagina-
tion the events that would take place in the world if a particu-
lar action were to be performed. Thus, mental models allow 
one to perform actions entirely internally and to judge the 
consequences of actions, interpret them, and draw appropri-
ate conclusions. Accordingly, model-based reasoning occurs 
when an individual interacts with the objects involved in a 
situation in order to mentally manipulate them so that the 
cognitive operations simulate speci fi c transformations of 
these objects which may occur in real-life situations. This 
means that these  simulation models  operate like thought 
experiments to produce qualitative inferences with respect to 
the situation to be mastered. Although there were some 
authors before the advent of the mental model approach 
(such as Hacker,  1977 ; Veldhuyzen & Stassen,  1977  )  who 
emphasized the importance of internal models in operating 
with complex technical or physical systems, the idea of con-
ducting simulations with mental models is probably the most 
important characteristic of the mental model theory. It con-
stitutes the fundamental basis for qualitative reasoning as 
well (Forbus & Gentner,  1997 ; Greeno,  1989  ) . Mental mod-
els “run in the mind’s eye” to produce qualitative inferences 
with respect to the situation to be mastered cognitively. 

 The essence of the mental model theory can be described 
in the words of Johnson-Laird, who proclaimed that “mental 
models play a central and unifying role in representing 
objects, states of affairs, sequences of events, the way the 
world is. … They enable individuals to make inferences and 
predictions, to understand phenomena, to decide what action 
to take and to control its execution, and, above all, to experi-
ence events by proxy” (Johnson-Laird,  1983 , p. 397). 
However, the question remains of how mental models are 
constructed. 

 Another question that repeatedly appears in the literature 
concerns the distinctiveness of mental models in relation to 
schemas. Ever since the concept of mental models was intro-
duced into cognitive science it has been criticized by propo-
nents of schema theories, who consider mental models to be 

mere instantiations of local schemas rather than a discrete 
theoretical construct (e.g., Brewer,  1987 ; Rips,  1987  ) . In 
contrast, the schema concept is not popular in the  fi eld of 
cognitive science. For example, Anderson  (  1983  )  and 
Johnson-Laird  (  1983  )  did not operate with the schema con-
cept, and other researchers, such as Brown  (  1979  )  and Prinz 
 (  1983  ) , have rejected “schemas” as an unnecessary and 
insuf fi ciently de fi ned construct of cognitive psychology. 
This is not the place to expound on the arguments of this 
controversial debate about schemas and mental models and 
their cognitive functions. Basically, cognitive scientists agree 
on the point that schemas and mental models serve different 
cognitive functions: Schemas represent the generic and 
abstract knowledge acquired on the basis of manifold indi-
vidual experiences with objects, persons, situations, and 
behaviors (Mandler,  1984  ) . As soon as a schema is fully 
developed it can be applied immediately to assimilate infor-
mation about new experiences. But how do people operate 
cognitively in the case of novel problems for which no 
schema can be retrieved from memory? The answer for those 
who advocate modeling activities is that people construct a 
mental model of the situation or problem to be mastered. In 
accordance with this argumentation, the next section of this 
chapter describes a theoretical model that integrates schemas 
and mental models into a more comprehensive architecture 
of cognition with the aim of explaining their mutually com-
pensating cognitive functions. 

   A Cognitive Architecture of Model-Based 
Learning and Reasoning 

 According to Rumelhart, Smolensky, McClelland, and Hinton 
 (  1986  ) , people have three essential abilities for processing 
information and acting successfully in various environments. 
First of all, people are very good at  pattern matching . They 
are obviously able to quickly “settle” on an interpretation of 
an input pattern. This ability is central to perceiving, remem-
bering, and comprehending. It is probably  the  essential com-
ponent of most cognitive behavior—and it is based on the 
activation and instantiation of schemas. Secondly, people are 
very good at  modeling  their worlds due to their ability to 
anticipate new states of affairs resulting from actions in the 
world or from an event they might observe. Both pattern 
matching and modeling are grounded on building up expecta-
tions by “internalizing” experiences and are crucial for mak-
ing inferences (Seel,  1991  ) . Thirdly, people are good at 
 manipulating  their environments. This can be considered as a 
version of man-the-tool-user, which is perhaps the crucial 
skill for building a culture. Especially important here is the 
ability to manipulate the environment and to create artifacts 
as external representations which can be manipulated in simple 
ways to get answers to very dif fi cult and abstract problems. 
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As people gain experience with the world created by their 
actions they internalize their experiences with external rep-
resentations to develop mental models.   

   Schemas and Models: Two Sides 
of the Same Coin? 

 In order to explain the aforementioned basic capabilities, 
Rumelhart et al.  (  1986  )  divide the cognitive system into two 
modules or sets of units. One module—called an  interpretation 
network —is concerned with producing appropriate responses 
to any input from the external world, while the other module is 
concerned with constructing a  model of the world  and produc-
ing an interpretation of “what would happen if we did that” 
with a particular external representation. The modeling part of 
the cognitive architecture is concerned with generating expec-
tations about possible changes to the world as a result of imag-
ining an external representation and operating on it. The 
interpretation network receives input from the world and 
reaches a relaxed mental state by producing relevant cognitive 
responses, whereas the “model of the world” predicts how the 
input would change in accordance with these responses. 

 From a psychological point of view, it can be argued that 
the interpretation network operates with  schemas , which help 
the learner to assimilate new information into cognitive struc-
tures and constitute the fundamental basis for the  construc-
tion of mental models  of the world as well. In cognitive 
psychology as well as in PDP models, schemas are character-
ized asslot- fi ller structures used to organize concepts, rela-
tions between them, and operations with them semantically. 
However, PDP models do not consider schemas as stored 
structures of the semantic memory that can be activated when 
necessary but rather as representations of complex constraint 
satisfaction networks that trigger the interpretation of input 
information. Schemas emerge at the moment they are needed 
to interpret new information. Each schema results from the 
interaction between a large number of simpler units, which all 
work together to come to an interpretation of input informa-
tion. Schemas are implicit in people’s knowledge and are trig-
gered by the events that they have to interpret. Clearly, this 
conception contradicts the conventional belief that schemas 
are stored in memory. From the point of view of the PDP 
approach,  nothing stored actually corresponds directly to a 
schema ; rather, “what is stored is a set of connection strengths 
which, when activated, have implicitly in them the ability to 
generate states that correspond to instantiated schemata” 
(Rumelhart et al.,  1986 , p. 21). Schemas are active processes 
but not products. They can be understood as recognition 
devices which aim at the evaluation of their goodness-of- fi t 
to the data being processed. 

 Basically, Rumelhart et al.  (  1986  )  see the emergence of 
“models of the world” or  mental models  in the same way. 

A mental model also consists of a network which does not 
take its input from the external world but rather from the 
interpretation network, with the aim of specifying the actions 
that can be carried out in pure imagination. Its product con-
sists of an interpretation of what can happen when actions are 
performed. Accordingly, the function of the mental model is to 
simulate actions in the mind, to assess their consequences, to 
interpret them, and to use these interpretations for making 
inferences. While the interpretation network takes its inputs 
from the world, the model-based network takes its inputs from 
actions of the interpretation network and predicts what changes 
they will bring about. Therefore, the model-based network can 
also be considered as an “action network” and constitutes the 
space for mental simulations. The two networks are related 
closely to one another and constitute the fundamental basis 
for mental operations (Seel,  1991  ) .  

   Schemas and Mental Models as Modes 
of Assimilation and Accommodation 

 According to Seel  (  1991  ) , the cognitive architecture pro-
posed by Rumelhart et al.  (  1986  )  corresponds to Piaget’s 
(e.g.,  1976  )  idea that cognition is regulated by the interaction 
between assimilation and accommodation, which aims at 
adjusting the mind to meet the necessities of the external 
world. Assimilation can be considered as the fundamental 
basis of the interpretation network and is dependent on the 
activation of cognitive schemas, which allow new information 
to be integrated into existing cognitive structures. In cogni-
tive psychology, schemas are understood as slot- fi ller struc-
tures that serve central cognitive functions, such as integrating 
information into cognitive structures, regulating attention, 
making inferences in the process of acquiring knowledge, 
and reconstructing it from memory. As soon as learners have 
consolidated schemas to a suf fi cient extent through learning 
and development, they provide them with the cognitive 
framework for “matching” information from stimuli with 
content from knowledge memory, thus allowing them to 
select the information that is consistent with a schema. 
Anderson  (  1984 , p. 5) captures the essence of these functions 
of schemas when he remarks: “ Without a schema to which an 
event can be assimilated ,  learning is slow and uncertain .” 
Schemas represent the  generic  knowledge a person has 
acquired in the course of numerous individual experiences 
with objects, people, situations, and actions. As soon as a 
schema can be activated, it is automatically “played” and 
regulates the assimilation of new information in a “top-down” 
procedure. This allows information to be processed very 
quickly, a function which is vital for humans as it enables 
them to adapt to their environment more quickly. 

 Assimilation is a basic form of cognitive processing, but 
certainly not the only one. Another basic form consists in 
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accommodation aiming at restructuring knowledge. 
Accommodation aims,  fi rst of all, at a modi fi cation of a 
schema by means of accretion, tuning, or the reorganization 
of its structures and content (Norman & Rumelhart,  1978  ) . 
This kind of accommodation presupposes an adjustment of 
existing schemas to new but familiar input information. 
However, if this adjustment of a schema is not possible, i.e., 
if the accretion, tuning, and/or reorganization of a schema 
fails—or if there is no schema to be activated at all—the 
learner either can abandon the cognitive processing or invest 
mental effort to develop a mental model as a more elaborated 
form of accommodation. Accordingly, mental models must 
be seen as products of accommodation (as discussed in 
Piaget’s epistemology) that aim at adjustments of cognitive 
structures to the environment whenever the subject is not 
able to activate and modify an appropriate schema (Seel, 
 1991,   2006  ) . In contrast to schemas, mental models operate 
from the “bottom up” under the continuous control of con-
sciousness. As long as the information being processed can 
be assimilated promptly into cognitive structures and as long 
as schemas can be modi fi ed by means of accretion, tuning, 
and reorganization, there is no need to construct a mental 
model. This theoretical conception can be illustrated as in 
Fig.  37.1 .  

 Mental models constitute the fundamental basis for devel-
oping “models of the world,” discussed here in accordance 
with Rumelhart et al.  (  1986  ) , and they may serve as  models 
for reasoning  as well as  models for understanding  (Mayer, 
 1989  ) . In both cases, mental models are constructed to meet 
the speci fi c requirements of situations and tasks the subject 
is faced with for which the activation and/or modi fi cation of 
a schema fails. While a schema is a slot- fi ller structure, a 
mental model contains a set of assumptions that must be 
justi fi ed by observations. This justi fi cation of assumptions is 

closely connected with a  reduction to absurdity  (Seel,  1991  ) , 
which is a process of testing continuously whether a model 
can be replaced with a better model. As long as this is not 
possible, the model is considered suitable. 

 Models for understanding have their starting point in the 
tentative integration of relevant simple structures or even 
single bits of domain-speci fi c knowledge step by step into 
the coherent design of a working model in order to meet the 
requirements of the task to be accomplished. Johnson-Laird 
 (  1983  )  considers this process of a stepwise enrichment of 
models as a “ fl eshing out” that also refers to the learning-
dependent progression of mental models. Mental models for 
understanding represent the structure of world knowledge 
because they are generated to structure it and not to repro-
duce or copy a given external structure. Models for under-
standing correspond to pragmatic conceptions of modeling. 
They can be externalized by means of particular symbol 
systems and generate subjective plausibility with regard to 
complex phenomena to be understood and explained. 
However, in contrast to the pragmatic approach of modeling, 
proponents of the mental model theory agree on the point 
that mental models are cognitive artifacts which correspond 
only more or less to the external world since people can also 
construct pure thought models which bear no direct corre-
spondence to the external world but rather only to world 
knowledge. This corresponds to the idea of coherence episte-
mology (Seel,  1991  ) . In general, models for understanding 
have the following characteristics: (a) They are incomplete 
and constantly evolving; (b) they are usually not an accurate 
representation of a phenomenon but typically may contain 
errors and contradictions; (c) they are parsimonious and 
provide simpli fi ed explanations of complex phenomena; and 
(d) they often contain measures of uncertainty about their 
validity that allow them to be used even if incorrect.  

  Fig. 37.1    Cognitive functions of assimilation and accommodation       
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   Modeling and Reciprocal Emotions 

 Since its introduction into cognitive science, mental model 
theory has clearly placed emphasis on cognitive aspects of 
modeling. However, the integration of schemas and mental 
models into a cognitive architecture that adapts Piaget’s 
epistemology also allows for the inclusion of emotional 
aspects of schema activation and model-based learning 
(Ifenthaler & Seel,  2011  ) . 

 Emotions are mental responses that arise spontaneously. 
According to Goetz, Preckel, Pekrun, and Hall  (  2007  ) , emo-
tions can be divided into  stateemotions  (e.g., “I am anxious 
while taking this math exam”) and  traitemotions  that occur 
consistently in various situations (e.g., “I am generally anx-
ious”). Kuhl  (  1983  )  has introduced a model of emotional 
emergence in which cognition, emotions and operations 
reciprocally affect each other. Accordingly, cognitive pro-
cesses and the reciprocal interactions with emotional states 
are the basis for goal-directed actions, which are particularly 
important for mental models. 

 Naturally, the construction of a mental model and schema 
modi fi cation both presuppose an  assimilation resistance  that 
provokes not only a cognitive dissonance but also emotional 
responses that interact reciprocally with cognitive processes. 
Kuhl (  1983  )  has introduced a model of emotional emergence 
in which cognition, emotions, and operations reciprocally 
affect each other. In this model, cognitive processes and 
the reciprocal interactions with emotional states are the 

fundamental basis for goal-directed actions (Gross,  1998  ) —
which are particularly important for mental models. 
Whenever assimilation in a schema fails and corrective 
attempts are not immediately successful, this schema enters 
a state of  disequilibrium , which in turn evokes arousal 
(Eckblad,  1981 ; Piaget,  1945  ) . This  assimilation resistance  
may have various causes due to the complex, novel, and 
incongruous objects to be processed, but it always results in 
varying degrees of disequilibrium and arousal of the cogni-
tive system. The amount of arousal may vary from one point 
in time to another and from person to person, but according to 
Berlyne  (  1971  )  it always stimulates epistemic curiosity and 
active stimulus seeking. The role of arousal may be formulated 
as follows: (1) Arousal is assumed to increase with the degree 
of incongruity in schemas. (2) High levels of incongruity are 
innately aversive and associated with negative feelings. (3) It is 
assumed that the stronger a schema is, the larger will be the 
effect of incongruity in that schema and the more arousal will 
be generated. (4) Incongruity occupies processing capacity and 
stimulates bottom-up processing of information. (5) Arousal 
and incongruity are to be regarded foremost as two facets of 
a unitary process, the activation of a schema. 

 In accordance with this argumentation, Eckblad  (  1981  )  
has proposed a cognitive theory of affect that integrates assimi-
lation resistance and emotional responses (see Fig.  37.2 ).  

 Eckblad’s theory contends that affects are mediated by 
cognitive schemas which match input information. 
Performance is intimately linked to the moving edges of 
assimilated variation and assimilated complexity along two 

  Fig. 37.2    Eckblad’s  (  1981  )  
cognitive theory of affect 
(Eckblad,  1981 , p. 39)       
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dimensions, namely the development of schemas and the 
degree of experienced incongruity. With regard to the  fi rst 
dimension, inattention results if there is no schema available 
or if a schema corresponds to a consolidated habit. Between 
these poles, the development of schemas is associated with 
building standards as well as with extending and consolidat-
ing the standards (discussed in terms of slot- fi ller structures). 
Depending on the degree of assimilated variation of the input 
to be processed, attention moves to recognition and then to 
mastery. According to Eckblad, recognition is connected 
with pleasure. Varying degrees of incongruity between the 
input and schemas may result in different emotions as the 
schemas develop. While incongruity in the phase of building 
standards may result in fear, it may evoke interest in the 
phase of consolidation. However, when incongruity becomes 
stronger during the consolidation phase, the interests move 
to confusion and anxiety. 

 From Eckblad’s theory one can conclude that assimila-
tion in general goes along with pleasure and interest, whereas 
assimilation resistance and the need for accommodation 
goes along with confusion and anxiety. Accordingly, it can 
be argued that the successful activation of schemas is 
accompanied by positive emotions whereas the construction 
of a mental model starts with negative emotions. Positive 
emotions may increase the learner’s optimism and con fi dence 
and thus facilitate the application of available schemas. 
Indeed, recent experimental research has consistently shown 
that  positive state emotions  are more likely associated with the 
productive use of schemas as generic knowledge structures 
and related with top-down processing. In contrast,  negative 
state emotions  are more likely associated with bottom-up 
processing and a more systematic gathering of information, 
as well as with paying more attention to the details of the 
tasks to be mastered (e.g., Fiedler,  2001 ; Schwarz,  2000  ) . 
According to the schema- and model-based approach as 
discussed in this article, positive emotions seem to promote 
the activation of schemas whereas negative emotions seem 
to promote the construction of mental models. According to 
the  mood repair hypothesis  (Krohne, Pieper, Knoll, & 
Breimer,  2002  ) , people with negative emotions spend more 
time collecting information in a systematic manner in order 
to cope effectively with situational demands, which are 
considered to be a cause for negative emotions. Similarly, 
Fiedler’s  (  2001  )   affect - cognition theory  postulates that posi-
tive and negative emotions have a strong impact on the 
modality of information processing and motivation: “While 
negative mood supports the conservative function of stick-
ing to the … facts and avoiding mistakes, positive mood 
supports the creative function of active generation, or 
enriching the stimulus input with inferences based on prior 
knowledge” (Fiedler,  2001 , p. 3). Interestingly, Fiedler also 
refers to the Piagetian terms  accommodation  and  assimilation . 
In his view, negative emotions facilitate accommodation and 

can be related with model-based learning, whereas positive 
emotions support assimilation and can be related with 
schema-based learning. 

   Fields of Application of Model-Based Learning 
and Performance 

 Although the idea of model-based learning and performance 
has a long past, it has a short history. Schichl  (  2004  )  and 
Johnson-Laird  (  2004  )  have traced the roots of modeling back 
to the cultures of the Ancient Near East (Babylon, Egypt) 
and Ancient Greek philosophy. These authors delineate the 
two major lines of argumentation. Schichl focuses on the use 
of mathematical models to represent the real world through 
mathematical objects (or a formalized mathematical lan-
guage), whereas Johnson-Laird emphasizes the concept of 
internal models as a particular format of mental representa-
tion. Clearly, there has been a continuous tradition of model-
ing in physics, biology, chemistry, geography, economy, 
architecture, and other disciplines throughout the centuries. 
However, modeling seems to have been taken for granted in 
these sciences and did not become a matter of educational 
concern until the 1950s and later. Since this time, modeling 
has been increasingly recognized as a powerful tool for 
promoting students’ understanding of a wide range of math-
ematical and scienti fi c constructs. Today, teaching students 
to develop powerful models is regarded as among the most 
signi fi cant goals of mathematics and science education 
(Clement,  2008 ; Lesh & Sriraman,  2005  ) . 

 The theory of mental models struck a chord in the 1980s 
independently of this movement and became one of the most 
prospering  fi elds of research in cognitive science. Due to the 
particular emphasis on language and reasoning in Johnson-
Laird’s  (  1983  )  seminal textbook, the theory of mental models 
and related research focused on text and discourse process-
ing (Rickheit & Habel,  1999  )  and deductive reasoning (Evans 
& Over,  1996  )  for over two decades. Furthermore, the theory 
of mental models became prominent in the areas of human–
computer interaction, system dynamics and simulation, 
spatial cognition, developmental and cultural psychology, 
and educational psychology. 

 Generally, both approaches to model-based learning and 
performances center on several basic functions of models, 
such as explaining complex phenomena of the physical and 
social world, making predictions and decisions, and com-
municating knowledge. Accordingly, we can distinguish the 
following  fi elds of application of model-based learning 
(Seel,  2003  ) .

   Models for understanding complex phenomena  • 
  Models for reasoning  • 
  Models for making predictions and decisions  • 
  Models for communicating knowledge      • 
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   Models for Understanding Complex 
Phenomena 

 How does the immune system respond to constantly changing 
bacterial and viral invaders? How do birds achieve their 
 fl ocking formations? Can a butter fl y in fl uence the weather? 
Why do traf fi c jams form and how can traf fi c  fl ow be 
improved? How do galaxies form? These questions asked by 
Jacobson  (  2000  )  focus on phenomena that may be regarded 
as complex systems. Jacobson  (  2000  )  and other authors, such 
as Seel  (  2006  )  or Clement and Rea-Ramirez  (  2008  ) , have 
pointed out that unusual or complex phenomena like the 
structure of the lungs or cells, molecular structures and reac-
tion mechanisms in chemistry, or causes of current  fl ow in 
electricity are notoriously dif fi cult to learn and can only be 
made sense of through the construction and application of a 
(mental) model. Thus, a mental model can be seen as an ad 
hoc construction a person uses to explain something and to 
create subjective plausibility with regard to complex world 
phenomena. 

 According to Schichl  (  2004  ) , most of the theories devel-
oped in physics have started with models for understanding: 
Newton’s mechanics, thermodynamics, Einstein’s theory of 
relativity, quantum mechanics, the Standard Model of particle 
physics, and many more. However, models for understanding 
also play an important role in biology (e.g., predator–prey 
models or epidemiological models), geography (e.g., ava-
lanche models), and economics (e.g., in fl ation models). 
Indeed, it seems that most people can cope effectively with a 
complex phenomenon or system by constructing and main-
taining a mental model that provides them with enough 
understanding of the system to control it. In this sense, the 
notion of mental models is not only interrelated with the 
explanation of complex phenomena but also with complex 
problem solving, which usually provides a unique challenge 
for learning and instruction (cf. Seel,  2006  ) .  

   Models for Reasoning 

 From the very beginning, one of the major  fi elds for the 
application of mental models has been logic, i.e., deductive 
and inductive reasoning. Coming from a syntactical approach, 
Johnson-Laird  (  1983  )  emphasized the speci fi c role of mental 
models especially for deductive reasoning. Although this 
approach did not remain uncriticized and was contrasted 
with schema-based approaches of deductive reasoning, the 
application of mental models can be considered as one of the 
most complete theories of human reasoning, as Evans and 
Over  (  1996  )  and Wilhelm  (  2004  )  have stated. Schema-based 
reasoning and the application of pragmatic judgment 
schemas are considered as the fundamental basis of  semantic 

or pragmatic approaches  that constitute mental logic theories. 
Proponents of mental logic theories (e.g., Braine,  1990 ; 
Cheng & Holyoak,  1985 ; Evans,  1982  )  argue that individuals 
apply schemas of inference when they reason. Errors in rea-
soning occur when pragmatic reasoning schemas are not 
retrievable or cannot be applied successfully. 

 The theory of mental models, on the other hand, argues 
that reasoning is primarily a matter of constructing mental 
models of the premises (for instance, of a syllogism) that 
enable mental “leaps” in the establishment of truth values 
and operate only with the premises which are consistent with 
the conclusion. Thus, mental models make it possible for 
people with minimal information to reach correct conclu-
sions since they test the truth value of only premises which 
are subjectively plausible and do not contradict the conclu-
sion when combined with one another. Comparing the 
schema-based and model-based approach of reasoning, 
Wilhelm  (  2004  )  concludes that the mental model theory cov-
ers a broader range of phenomena than mental logic theories 
do. According to the  mental model theory  of logical think-
ing, humans are capable of making deductive inferences of a 
certain degree of complexity without having knowledge of or 
applying the rules of logical reasoning. The theory of mental 
models states that a person who goes about solving a syllo-
gism  fi rst “translates” the propositions included in the prem-
ises into an internal analogous representation on the basis of 
his or her semantic knowledge, then tests whether various 
possibilities of interpreting the premises are consistent with 
a conclusion, and  fi nally modi fi es, if necessary, the model he 
or she constructed at the outset until the premises and the 
conclusion are “suited” to each other. 

 As with deductive reasoning, some authors (e.g., Holyoak 
& Thagard,  1995 ; Johnson-Laird,  1994 ; Seel,  1991  )  also 
emphasize the importance of mental models for inductive 
reasoning. Induction enables cognitive systems, on the basis 
of only a few examples, to progress from given evidence to 
more general propositions. According to Holland, Holyoak, 
Nisbett, and Thagard  (  1986  ) , creating analogies (or analogy 
models) is an especially effective inductive mechanism. 
In order to understand or explain an unknown phenomenon 
(target domain) a person refers to available knowledge about 
similar phenomena (base domain) and creates an analogy 
model for both. On the basis of the structural similarities 
between the models of the base and target domain, the per-
son reaches a conclusion by analogy, integrates both models 
into a uni fi ed solution model under the assumption that they 
are similar, and tests whether it is possible to create an alter-
native solution model which then could replace the former 
model. Holyoak and Thagard  (  1995  )  have exempli fi ed this 
mechanism of inductive reasoning as follows: Our general 
knowledge about water enables us to create a mental model 
of how water moves. In the same way, our knowledge about 
sounds enables us to create a mental model of how sound is 
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transmitted through the air. Each of these mental models 
links a representation with a phenomenon in the physical 
world. Now, when we create an analogy between waves in 
the water and the spreading of sound through the air, we 
build an  isomorphism  (i.e., a structurally compatible map) 
 between two mental models . This means that we assume we 
can use our model of water to progressively modify and 
improve our model of sound. In the end, we must validate 
this explanation by testing whether the analogy between the 
two analogy models has helped us to achieve a better under-
standing of the transmission of sound in the physical world. 
Thus, analogy models may be understood as heuristic 
hypotheses of a structural similarity between different 
domains. Another way of making inferences through induc-
tive reasoning is by constructing and applying what 
Gigerenzer, Hoffrage, and Kleinbölting  (  1991  )  refer to as a 
 probabilistic mental model . This type of mental model is not 
the product of long contemplation, but rather of the sponta-
neous creation of plausibility. Probabilistic mental models 
generate inductive inferences by associating the speci fi c 
structure of a problem with a probable structure of the natu-
ral surroundings one is familiar with. Although the theory of 
probabilistic mental models has had an important in fl uence 
on research on probability judgment (e.g., Betsch & Fiedler, 
 1999  )  it has also been criticized as psychologically implau-
sible (Dougherty, Franco-Watkins, & Thomas,  2008  ) .  

   Models for Making Predictions and Decisions 

 One of the most intriguing features of mental models is that 
they can be used for mental simulations. In addition to the 
practice of making inferences, there are two major  fi elds of 
mental simulations: (1) making predictions about the future 
development of a phenomenon and (2) making decisions. 

 The predictive power of mental models has been investi-
gated since the 1980s (e.g., Kurland & Pea,  1985  )  and is cur-
rently one of the most promising  fi elds of research in various 
 fi elds of interest, such as dynamic systems forecasting 
(Wang,  2007  ) , the forecasting of the effects of global climate 
changes (Stott et al.,  2006  ) , and the prediction of water avail-
ablity and water quality by means of watershed modeling 
(Chaplot, Saleh, & Jaynes,  2005  ) . It is noteworthy that the 
current research on model-based predictions goes beyond 
the mental model approach, operating instead with mathe-
matical models and algorithms (e.g., Hu, Si, & Yang,  2010  ) . 

 Another important application of model-based simula-
tions is  decision making , especially under risk. This is closely 
related with the  fi eld of naturalistic decision making in every-
day situations. Decision making under risk (e.g., in  fi re 
 fi ghting, military, rescue) is in general characterized by 
dynamically changing conditions, the challenge to respond 
immediately to these changes, ill-de fi ned tasks, time pressure, 

and far-reaching personal consequences in the case of 
mistakes. Several analytical methods of decision making, 
such as the Expected Utility Theory or the Prospect Theory 
(Kahneman & Tversky,  1979  ) , have traditionally been 
referred to in the literature, but Klein and Calderwood  (  1991  ) , 
Stewart, Chater, Stott, and Reimers  (  2003  ) , and others argue 
that analytical methods of decision making under risk even-
tually fail because they take too much time and lack the 
 fl exibility to allow the decision maker to respond to rapidly 
changing conditions of situations. In accordance with the 
idea of schema theory, it can be argued that the activation of 
a schema brings about enormous time advantages for the 
mastery of challenging situations if they are similar and 
belong to the same category (Falzer,  2004 ; Marshall,  1995  ) .
However, in the case of novel phenomena and problems, the 
available schemas are usually inappropriate and must be 
replaced by mental models. Indeed, the theoretical approach 
of mental models emphasizes cognitive processes of gener-
ating plausibility and of probabilistic reasoning (Gigerenzer 
et al.,  1991  )  that are involved in decision making under risk. 
Therefore, natural decision making on the basis of mental 
models can be considered as an effective alternative to 
schema-based decision making. 

 This kind of natural decision making is at the core of 
Klein’s  (  1989  )   Recognition Primed Decision  (RPD) model, 
which contains aspects of problem solving and decision 
making for natural decisions. The fundamental basis of this 
model consists in an action of the decision maker that is 
based on the identi fi cation of a situation as known or proto-
typical. The decision maker apprehends a situation in terms 
of familiarity with former experiences. The evaluation of 
familiarity with a set of known cases results in the recogni-
tion of accessible objectives, relevant evidence, expecta-
tions, and plausible behaviors. The decision maker creates a 
possible option and evaluates it by means of a mental simu-
lation in order to check whether there are any pitfalls which 
could prevent it from being realized. If it is possible to avoid 
these pitfalls the option will be strengthened. Otherwise, it 
will be rejected. If there are no barriers or pitfalls the option 
will be realized. This argumentation corresponds to the the-
ory of mental models (Kieras,  1985  ) —especially with 
regard to its emphasis on mental simulations of options for 
action. In addition, the RPD model includes the concept of 
 situation awareness , which has been popular in the areas of 
military and rescue since the 1980s (e.g., Craig,  2001 ; Klein, 
Calderwood, & Clinton-Cirocco,  1986 ; Sparkes & Huf, 
 2003  ) . Situation awareness “is the perception of the ele-
ments in the environment within a volume of time and space, 
the comprehension of their meaning and projection of their 
status in the near future” (Endsley,  1995  ) . Due to obvious 
similarities in argumentation, situation awareness and men-
tal models have been integrated into the theoretical concept 
of the  situation model  (Endsley,  2000  ) , which is a mental 



47537 Model-Based Learning

model enriched by situation awareness. This is illustrated in 
Fig.  37.3 .  

 Basically, the concept of situation models corresponds 
to a large extent to the theory of mental models, which are 
situation-dependent ad hoc constructions of the mind that 
can be used to create subjective plausibility with regard to 
problems to be solved by means of probabilistic reasoning.  

   Models for Communicating Knowledge 

 An important aspect of models is that they can be used to 
communicate knowledge. In math education, for example, 
modeling activities may help students to externalize their 
understanding of situations by helping them to develop mod-
els to conceptualize mathematical ideas and processes (Lesh 
& Doerr,  2000  ) . In terms of Rumelhart et al.  (  1986  )  models 
for communicating are the same as  external representations  
(of mental models). External representations play an impor-
tant role in human learning in general. Hiebert and Carpenter 
 (  1992  )  have pointed out that there are close relationships 
between external and internal representations of knowledge. 
More speci fi cally, the form of external representation with 
which students interact affects how their knowledge is repre-
sented internally, and in turn, the form of an external repre-
sentation is dependent on the internal representation of 
knowledge and its structures. 

 Norman’s  (  1983  )  comments on mental modeling have led 
theorists to make a distinction between mental models and 
conceptual models. A  conceptual model  is an external repre-
sentation (of a mental model) created by teachers or scien-
tists in order to facilitate the comprehension of something to 
be learned or to communicate the scienti fi c knowledge shared 
by a community. These external representations can be math-
ematical formulations, analogies, graphs, or physical objects. 

An example of an object could be a water pump, which is 
sometimes used to model a battery in an electric circuit. 
Conceptual models express and communicate the shared 
knowledge of a discipline. Nevertheless, like all models they 
are simpli fi ed and idealized representations of real objects, 
phenomena, or situations. 

 The idea that conceptual models represent the shared 
knowledge of a scienti fi c community externally has occasion-
ally been modi fi ed to form the concept of so-called  shared 
mental models , which are created in teams (Mathieu, Heffner, 
Goodwin, Salas, & Cannon-Bowers,  2000  ) . Shared mental 
models are designed to enable teammates to perform their 
tasks better by combining their shared knowledge, skills, atti-
tudes, and facilities (Cannon-Bowers, Salas, & Converse, 
 1993 ; Druskat & Pescosolido,  2002  ) . Although it seems 
plausible to assume a close relationship between a shared 
mental model and successful team performance, it remains 
unclear how a shared mental model can be generated from 
multiple external representations of the teammates’ individual 
mental models (Mohammed, Klimoski, & Rentsch,  2000  ) . 
Furthermore, there has not been much consideration of the 
factors of shared mental models that can show a causal rela-
tionship between them and team performance. 

 As the case may be, the communication of professional 
knowledge is generally considered to be a key activity for 
today’s specialized workforce, where knowledge communi-
cation problems between experts and nonexpert decision 
makers (Eppler,  2007  )  often occur. In order to master these 
problems, some authors suggest the application of  mental 
models interviewing  for more effective communication, 
aiming at the detection and mutual understanding of the 
mental models of specialists and nonspecialists (Cone & 
Winters,  2011  ) . Accordingly, mental models interviewing is 
concerned with the generation of shared mental models 
between specialists in a particular subject (e.g., teachers) 

  Fig. 37.3    Situation models 
as a combination of mental 
models and situation 
awareness (Endsley,  2000 , 
p. 2)       
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and individuals who are not specialists in that subject (e.g., 
students). The technique of mental models interviewing has 
been successfully applied in the area of risk communication 
(Morgan, Fischhoff, Bostrom, & Atman,  2002  ) . However, 
not only can communication between experts and nonexperts 
be dif fi cult but also that between people with comparable 
knowledge and levels of expertise. Haig, Sutton and 
Whittington  (  2006  )  have proposed the application of a tech-
nique called SBAR (Situation, Background, Assessment, and 
Recommendation) which aims at generating shared mental 
models for improving communication between clinicians. 
These approaches all agree on the point that the key to success 
in communication is learning all one can about others’ models 
and thinking just by listening to them. Accordingly, the 
intended externalizations of mental models are based on 
verbal or written communications that can be more or less 
structured, for example by semi-structured interviews. 
This emphasis on language-based forms of externalizations 
in mental models corresponds to Seel’s  (  1991  )  view that 
language may be considered the most important “medium” 
for expressing thoughts, ideas, and feelings. However, 
language-based external representations can be enriched with 
illustrations and graphs visualizing a phenomenon. Indeed, 
 visualization  is the graphical display of information that 
provides the individual a visual means of information 
processing—often in combination with texts aiming at suc-
cessful dual-code processing (Mandl & Levin,  1989 ; Schnotz, 
 2002  ) . Due to the basic assumption of cognitive psycholo-
gists that representations of knowledge are connected to form 
(graph-like) networks of knowledge (Hiebert & Carpenter, 
 1992  ) , external representations of mental models often appear 
as causal diagrams, concept maps, or semantic networks. 
Jonassen  (  2000  )  calls these forms of external representation 
 mindtools  and describes them assemantic organization tools 
which help learners to analyze and organize what they know 
or what they are learning. Mindtools are computer applica-
tions that assist learners in representing what they know and 
how they think. Certainly, semantic organization tools are 
helpful devices for externalizing mental models, but maybe 
more relevant are dynamic modeling tools (such as Stella or 
Model-It) that help learners to represent the dynamic relation-
ships among ideas (Jonassen & Cho,  2008  ) . In principle, two 
broad categories of dynamic modeling mindtools can be 
distinguished: (a) tools which help with the exploration of a 
model and (b) tools which can be used for the construction of 
models (Clariana & Strobel,  2008  ) . Both categories have been 
disseminated widely in education and instruction. 

   Empirical Research on Model-Based Learning 
and Performance 

 Since the emergence of the mental model approach in the 
1980s, an abundance of research articles and book chapters 

(possibly more than 2,000) emphasizing model-based learning 
and performance has been published. In addition to the 
pragmatic approach of modeling, the constructivist approach 
of mental models has also proved to be one of the most pro-
ductive  fi elds of basic and applied research in cognitive sci-
ence and education. From the 1980s until the present, 
research on model-based learning has focused particularly 
on the functions of mental models in narrative comprehen-
sion (Bower & Morrow,  1990  ) , language and text processing 
(e.g., Garnham,  2001  ) , text and picture processing as well as 
learning from multiple representations (Schnotz & Bannert, 
 2003  ) . Another area of extensive research on mental models 
is human–computer interaction and system dynamics 
(Groesser,  2012  ) . In view of the multitude of research on 
model-based learning it is nearly impossible to describe all 
of the lines of research and their results in detail here. 
Therefore, I’ll focus in the next sections on what we have 
learned from past research and what we still have to learn 
from future research.   

   Lessons Learned from Research 
on Model-Based Learning 

 With regard to the aforementioned  fi elds of application of 
model-based learning and performance one can state that 
each  fi eld has been studied extensively in the past. However, 
whereas pragmatic approaches have focused primarily but 
not exclusively on models for understanding and the use of 
external representations, the mental model approach has 
focused additionally on deductive reasoning in particular and 
the predictive power of mental simulations in general. 
Clearly, the mental model approach has attracted many more 
scientists from various disciplines than the more pragmatic 
approach with its emphasis on subject-matter oriented mod-
el-based learning. Nevertheless, both approaches have con-
tributed signi fi cant  fi ndings on the impact of models on 
understanding and problem solving, but they differ with 
regard to their theoretical foundations and preferred research 
methodologies. 

   Some Methodological Considerations 

 The pragmatic line of research is characterized by the refer-
ence to the traditional use of models in subject-matter 
domains such as mathematics, physics, chemistry, and others 
(e.g., Lesh & Doerr,  2003 ; McClary & Talanquer,  2011 ; 
Pearson et al.,  2006  ) . Typically, this line of research situates 
model-based learning in the classroom and aims at system-
atically observing the emergence of students’ qualitative 
models of phenomena to be explained. In sum, this research 
provides really impressive examples of modeling activities in 
the classroom (e.g., Penner, Giles, Lehrer, & Schauble,  1997 ; 
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Lehrer, Kim, & Schauble,  2007 ; Lehrer & Pritchard,  2002  ) , 
and it shows that even young students invent models of their 
own, which, however, often prove to be partial, incomplete, 
and false (Clement,  2000 ; English & Watters,  2005  ) . 
Changing these students’ ways of thinking about mathemati-
cal and scienti fi c concepts demands strong instructional 
efforts to challenge and test these qualitative models. 
Research on subject-matter oriented model-based learning is 
regularly, but not exclusively, related to a clear preference of 
qualitative research methods, such as collecting verbal data 
from think-aloud protocols, observational data, and video-
tape analyses (e.g., Lehrer et al.,  2007  ) . In addition, some 
researchers feel obliged to do design-based research and 
consider model-building in the classroom as a testing ground 
for design experiments (e.g., Cobb et al.,  2003 ; Lehrer & 
Pritchard,  2002 ; Schorr & Koellner-Clarke,  2003  ) . This is 
not the place to describe the methodology of design experi-
ments in detail. What can be said is that it provides strong 
ecological and external validity but poor internal validity 
(Seel,  2009 ; Shavelson, Phillips, Towne, & Feuer,  2003  )  and 
that it is not suitable for causal inferences concerning treat-
ments or instructional interventions. Finally, it is noteworthy 
that proponents of the model-building approach in subject-
matter domains often avoid the theoretical term of mental 
models (Lehrer & Schauble,  2003  ) , and sometimes they even 
attack the underlying constructivist paradigm (e.g.,    English, 
 1997  ) . However, there are examples that show how meaning-
ful and fruitful it can be to adapt the concept of mental mod-
els to reach a theoretically sound foundation of model-building 
activities in the classroom (e.g., Clement,  2008  ) . 

 Unlike pragmatic approaches of model building, the 
approach of mental models seems to be more dedicated to 
experimental (and quasi-experimental) research and to the 
application of quantitative methods of data collection. Of 
course, there are also numerous examples of operating with 
qualitative methods (e.g., Clement & Steinberg,  2002  ) , but 
most mental model research, especially in the area of deduc-
tive reasoning, is of a quantitative nature and aims at testing 
hypotheses derived from the theory of mental models. This 
also holds true for mental model research within the realm 
of educational research, where model-based learning is 
involved primarily with understanding and problem solving 
(Seel,  2006  ) . As with the pragmatic line of research, the 
instructionally motivated research on mental models con-
ducted in the past 30 years has resulted in a comprehensive 
and unique view on model-building activities under the con-
dition of instruction.  

   Lessons Learned from Research on Models 
for Understanding and Problem Solving 

 In the article “Models for understanding,” Mayer  (  1989  )  
hypothesized that students given model instruction might be 

more likely to build mental models of the systems they are 
studying and to use these models to generate creative solu-
tions to transfer problems. Similarly, Johnson-Laird  (  1989  )  
argued that “what is at issue is … whether there is any peda-
gogical advantage in providing people with models of tasks 
they are trying to learn” (p. 485). 

 Hundreds of studies indicate that it is effective and 
ef fi cient to provide students with model-relevant information 
before or during learning in order to help them to construct 
adequate models for understanding (Mayer,  1989 ; Seel & 
Dinter,  1995  ) . Clearly, mental models are not  fi xed structures 
that can be retrieved from memory but are constructed when 
needed to master the speci fi c demands of a new learning 
situation. Students dynamically modify and restructure their 
initial mental models when they evaluate externally provided 
information as being more plausible and convincing than 
their prior knowledge. This can be interpreted as an indicator 
of the learners’ semantic sensitivity with regard to relevant 
information from the environment (Seel,  2012  ) . Thus, the 
learning environment serves as an information resource from 
which the learners extract the information they need to con-
struct an explanatory model. Model-based learning evidently 
depends on the learner’s retrievable domain-speci fi c knowl-
edge structures, the nature of the material to be learned, and 
the modality in which the content to be learned is presented 
by media (Seel,  1986  ) . Actually, it is often easier, especially 
for a novice learner, to assimilate an explanation provided 
through a conceptual model than to develop a model of one’s 
own. The provided conceptual model can easily be incorpo-
rated into cognitive structures, and related information can 
be progressively integrated into the adapted model. In con-
trast, self-organized  discovery learning  aimed at helping stu-
dents to invent their own models is practicable only if the 
learner possesses adequate meta cognitive skills to guide the 
model-building process. As a matter of fact, this approach 
can be a rather challenging affair which even an expert might 
sweat over sometimes (Kirschner, Sweller, & Clark,  2006  ) . 
For most novice students, self-organized discovery learning 
is often closely associated with learning by trial and error 
and increases the probability of producing false models 
(Briggs,  1990 ; Seel & Dinter,  1995  ) . A substantial concep-
tual change does not occur, and relatively stable intermediate 
states of understanding often precede the intended concep-
tual mastery. 

 From an instructional point of view, providing students 
with relevant information in order to help them to construct 
adequate models might be an ef fi cient method, but most 
probably it is not appropriate for problem solving or for 
investigating individual processes of model building and 
revision. Although research within the realm of the prag-
matic approach of model building provides some excellent 
examples of discovery-based modeling in the math and sci-
ence classroom (e.g., Doerr,  2006 ; English & Watters,  2005 ; 
Lehrer et al.,  2007 ; Lesh,  2006 ; Penner et al.,  1997  ) , this line 
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of instructional research on model building is still in its 
infancy. Accordingly, the question of how discovery-based 
model building can be facilitated by means of particular 
instructional support has not yet been investigated 
suf fi ciently either.  

   Lessons Learned from Research on the Learning-
Dependent Progression of Models 

 Model-based learning focuses on the construction of mental 
models of the phenomena under study. In accordance with 
the aforementioned cognitive architecture of model-based 
learning, it can be argued that when a mental model is used 
successfully, it is reinforced and may eventually become a 
precompiled, stable conceptual model, or even, after many 
repetitions, a schema (Halford, Bain, Maybery, & Andrews, 
 1998  ) . If the model is not satisfactory, it will be revised or 
rejected in the further progression of learning. Changing 
mental models constructed by students to make them more 
complete, complex, and dynamic is one of the primary goals 
of instructional interventions. Or as Johnson-Laird  (  1989  )  
says: “What is at issue is how such models develop as an 
individual progresses from novice to expert” (p. 485). 

    Ifenthaler and Seel  (  2005  )  identi fi ed the learning-dependent 
progression of mental models as a speci fi c kind of transition 
that mediates between preconceptions or misconceptions, 
which describe the initial states of the learning process, and 
causal explanations, which are considered as the desired end 
states of learning. Alternatively, it can be argued that model 
building consists in progressing through a series of tentative 
models that will be tested and revised until a model issuf fi ciently 
stableto function—at least temporarily—as a “conceptual 
model” (Schaffernicht,  2006  ) . According to this conception, 
the process of modeling begins when assimilation resistance 
occurs and ends with a conceptual model or even with a 
schema. If learning was what caused the model to change, 
then the differences between the various versions of the model 
in progress are considered to be the result of the learning 
(Schaffernicht & Groesser,  2011  ) . 

 In addition to early studies that focused on the develop-
ment of children’s and students’ mental models (e.g., 
Clement & Steinberg,  2002 ; Halford,  1993 ; Kurland & Pea, 
 1985 ; Oliver & Hanna fi n,  2001 ;    Vosniadou & Brewer, 
 1992  ) , the investigation of the learning-dependent progres-
sion of mental models has also been at the core of my own 
research for the past twenty years (e.g., Darabi, Nelson, & 
Seel,  2009 ; Ifenthaler & Seel,  2005,   2011  ) . According to 
Seel and Ifenthaler  (  2012  ) , the learning-dependent progres-
sion of a mental model is a dynamic process with changes 
at discrete points in time. Learning can be represented as a 
sequence of events where each event occurs at an instant in 
time and marks a change of state in the cognitive or  behavioral 
system. The process of learning can be expressed in the 

form  y ( k ) =  fy ( k  − 1), …,  y ( k  −  ny ),  u ( k  −  d ), …,  u ( k  − d −  nu ), 
 e ( k  − 1), …,  e ( k  −  ne )) +  e ( k ), where  y ( k ) is the system output, 
 u ( k ) the input,  e ( k ) is a zero-mean disturbance term,  d  is the 
relative degree, and  f () is some nonlinear function. This 
model allows the process of learning to be seen as a stochas-
tic process that moves in a sequence of phases through a set 
of states. Although the probability of entering a certain state 
in a certain phase is not necessarily independent of previous 
phases, it depends at most on the state occupied in the previ-
ous phase. This is known as the  Markov property . Accordingly, 
the change of mental models is conceived as a discrete learn-
ing process with the Markov property. The whole process 
involves the following steps: construction of an initial work-
ing model which relies upon the individual’s generic seman-
tic knowledge, interpretation of the model in terms of 
plausibility, revision of the initial model, generation of a sec-
ond model which is again tested with regard to plausibility, 
followed by a revision of the model that leads to the next test 
and revision, and so on. Based on this continuous sequence 
of constructing, testing, and revising models, the learning 
process will  fi nally reach a state of equilibrium at which the 
mental model merges into a stable model or even a schema 
(Halford et al.,  1998 ; Seel,  1991  ) . From that point on, there 
should only be a slight variation in performance. 

 The results of the various studies show a relatively con-
sistent and coherent picture. There is no evidence for a tran-
sition of a mental model to a schema in any of them, even if 
there were ten or more tasks to be accomplished and corre-
sponding points of measurement during the learning process 
(Ifenthaler & Seel,  2011  ) . Although a tendency towards a 
stabilization of mental models was observable insofar as 
they were not constructed independently of each other at 
various points of measurement, their structures were regu-
larly different. Obviously, it was cognitively less demanding 
for the students to construct a new model at each point of 
measurement than to remember and stabilize previously con-
structed models. Across the various studies, mental models 
proved not only to be highly situation- and task-dependent 
but also relatively independent of each other, and they 
showed only a minor tendency to become stabilized as gen-
eral models. From this observation one can conclude that 
mental models are, to a large extent, singular formats of rep-
resentation and usually do not form schemas, although they 
have a tendency to stabilize increasingly during extended 
learning. However, more research is necessary to  fi nd out 
how many tasks or situations are necessary for the emer-
gence of a stable conceptual model or even a schema.  

   Assessment of Model Building 
and Mental Models 

 The research on mental models in the 1980s and 1990s high-
lighted several complexities and consistencies. One consistency 
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was concerned with the development of a new methodology 
for assessing the construction and learning-dependent pro-
gression of mental models. The principles of this methodol-
ogy include embedding the diagnosis of mental models in a 
complex problem situation, collecting data in a longitudinal 
design, providing valid and reliable quantitative data, and 
enabling a methodologically straightforward analysis and 
interpretation of the data collected (Seel,  1999  ) . 

 From its very beginnings, research on model building was 
concerned with the problem of an appropriate assessment of 
models and their learning-dependent change. Language is of 
great importance for human communication about thoughts, 
and various methods of overt verbalizations have thus always 
played a central role in the diagnosis of mental models. Many 
studies have used think-aloud protocols, verbal explanations, 
speculations, and justi fi cation as means to assess knowledge 
and cognitive artifacts like mental models (Halford,  1993  ) . 
Some authors (e.g., Garrod & Anderson,  1987 ; Sasse,  1991  )  
have emphasized the method of  constructive dialogue  
between individuals communicating their mental models at 
comparable levels of expertise (Cone & Winters,  2011  ) . 
However, methods of verbalization have been criticized by 
several authors due to their psychometric weaknesses. As a 
consequence, researchers have applied traditional tests for 
assessing model-based performances, questionnaires and 
rating scales, the time needed for learning or the accomplish-
ment of model building, drawings, and other measurements 
(e.g., eye  fi xations during task accomplishment) (Seel,  1999  ) . 
However, these methods for organizing, representing, and 
mapping mental models were designed,  fi rst of all, to assess 
stable states of mental models and to localize their errors 
rather than to measure changes in them. It was therefore nec-
essary to develop new methodologies for measuring change 
in mental models (   Doyle, Radzicki, & Trees,  2008 ; Ifenthaler, 
Masduki, & Seel,  2011  ) . 

 Over the past  fi fteen years, there has been some discussion 
of several possible methods for the diagnosis of mental mod-
els, most of them technology-based, that can be characterized 
as graphical and language-based approaches. Graphical 
approaches include the structure formation technique 
(Scheele & Groeben,  1984  ) , causal diagrams (Al-Diban, 
 2008  ) , path fi nder networks (Schvaneveldt,  1990  ) , and mind-
tools (Jonassen & Cho,  2008  ) . Language-based approaches 
include verbal data from thinking-aloud protocols, “mental 
model interviewing” (Cone & Winters,  2011  ) , cognitive task 
analyses (Kirwan & Ainsworth,  1992  ) , and several computer 
linguistic techniques (Seel, Ifenthaler & Pirnay-Dummer, 
 2009  ) . In view of the rapid progress in the area of knowledge 
diagnosis, one can conclude that the problem of the diagno-
sis of mental models and their change has been solved 
(Ifenthaler, Pirnay-Dummer, & Seel,  2010  ) . Indeed, one can 
choose from among a variety of assessment methods which 
meet psychometric standards. Interestingly, there are also 
some technology-based approaches which integrate various 

assessment practices and tools into a comprehensive meth-
odology, such as HIMATT (Pirnay-Dummer, Ifenthaler & 
Spector,  2010  ) . They can be applied to measure changes in 
the structure of external representations of mental models as 
well as similarities between models.   

   Fields of Interest for Future Research 

 Model-based learning and performance is probably one of 
the best and most extensively investigated  fi elds across sev-
eral disciplines, especially due to the efforts in the area of 
mental model research. Nevertheless, there are still some 
issues that demand more research. 

 One area of future research is the use of models for rea-
soning, even though an abundance of studies have investi-
gated the role of mental models in deductive reasoning. 
According to the theory of mental models, individuals are 
capable of making deductive inferences of a certain degree 
of complexity without having knowledge of or applying the 
rules of logical reasoning. Rather, most people make infer-
ences on the basis of mental models (Johnson-Laird,  1983  ) . 
Although this theoretical approach has been contrasted with 
schema-based approaches of deductive reasoning, the the-
ory of mental models can be considered as the most 
in fl uential and pervasive theory in the area of logical think-
ing. As with deductive reasoning, numerous authors also 
emphasize the importance of mental model theory for induc-
tive reasoning (Johnson-Laird,  1983 ; Seel,  1991  )  as well as 
for abductive reasoning (Magnani,  2009  ) . Up to now, how-
ever, only little empirical research has been conducted on 
the function of mental models for inductive and abductive 
reasoning. In accordance with the concept of the learning-
dependent progression of mental models, solving inductive 
or abductive reasoning tasks can be understood as a process 
of sequential interpretation and integration of task-relevant 
information and hypotheses for solutions into a mental 
model of the situation. This “situation model” serves as the 
context for interpreting new observations, generating new 
hypotheses, and drawing inductive or abductive inferences. 
This prediction was con fi rmed in a series of experiments by 
Johnson and Krems  (  2001  )  and Ifenthaler and Seel (Ifenthaler 
et al.,  2011 ; Ifenthaler & Seel,  2011  ) . Nevertheless, in com-
parison with the abundance of empirical research on model-
based deductive reasoning, the research on model-based 
inductive and abductive reasoning is still in its infancy. This 
also holds true with regard to model-based reasoning by 
means of analogy models, as several authors (e.g., Lehrer & 
Schauble,  2006  )  have shown for subject matter learning in 
the classroom. 

 A second  fi eld of future research on model-based learning 
and performance is related to  model - based decision making . 
There are two major  fi elds of application: (1) the role of 
mental models for decision-making within the realm of 



480 N.M. Seel

management and organization and (2) the role of mental 
models for decision making under risk, necessary in the 
 fi elds of  fi re  fi ghting, military, and rescue. The importance of 
mental models for organizational issues was stressed by 
Senge  (  1990  )  and has been adopted in studies on so-called 
team mental models (e.g., Christensen & Olson,  2002 ; 
Mohammed et al.,  2000 ; Steiger & Steiger,  2009  )  but more 
systematic research on this issue is still needed. Basically, 
this also holds true for decision-making under risk by means 
of situation models, de fi ned as a combination of mental mod-
els and situation awareness. 

 A third promising  fi eld of future research on model-based 
learning and performance is the area of  system dynamics 
research . Dynamic modeling presupposes functional inten-
tionality in the construction and use of mental models for 
simulating transformations of states of a system. These sim-
ulation models allow a learner to explore a dynamic system 
in a controlled way to understand how the system’s compo-
nents interact and how alternate decisions can affect desired 
outcomes. Mental models provide a rationale for operating 
effectively with the complexity of dynamic systems. 
Accordingly, one can  fi nd more and more studies in the area of 
system dynamics research that work on the basis of mental 
model theory (Groesser,  2012 ; Schaffernicht & Groesser, 
 2011  ) . However, dynamic modeling provides a new perspec-
tive called learning by system modeling and an extension to 
approaches of simulations: When students are involved in 
learning by modeling, they build their own models and engage 
at a much deeper conceptual level of understanding of the 
content, processes, and problem solving of the domain. There 
are also indications that operating with models of dynamic 
systems and simulations can be considered as an important 
future  fi eld of instructional research on understanding and 
problem solving in complex domains (Blumschein, Hung, 
Jonassen, & Strobel,  2009  ) . 

 Finally, a new  fi eld of research on model-based learning 
focuses on reciprocal emotions in the process of model 
building. As mentioned above, model-based learning has 
attracted many scientists from different disciplines and the 
idea of mental models has been examined in various  fi elds, 
such as management, marketing, information systems, con-
sumer behavior, psychology, education, and neuroscience. 
However, most scientists have limited their focus to cogni-
tive processes, neglecting the interactions of these processes 
with emotions and feelings. Only very little research has 
explicitly taken into account both cognitive and emotional 
aspects of mental models. However, there is some empiri-
cal evidence that there are reciprocal interactions between 
emotions and model building and related cognitive pro-
cesses (Ifenthaler & Seel,  2012  ) , but this line of research on 
mental models and model-based learning is only beginning 
to be explored.  

   Conclusion 

 In comparison with other  fi elds of research, model-based 
learning and performance can be seen as one of the most 
prospering areas of research across several disciplines, such 
as cognitive science and education. In view of many hun-
dreds of studies it is nearly impossible to give justice to the 
variety of research issues and results. Therefore, this chapter’s 
focus was on what we have learned from previous research 
and what not. 

 Traditional views on model building activities in the 
classroom have been contrasted with the mental model the-
ory that emerged in the 1980s as a central theoretical con-
struct to capture situated cognition and pragmatic reasoning. 
Actually, the metacognitive psychologists who consider 
mental models to be the best organized representations 
among declarative learning results (Glaser,  1990 ). More 
speci fi cally, it has been argued that comprehension and rea-
soning in speci fi c situations (e.g., in schools and real-life 
situations) necessarily involve the use of mental models of 
different qualities (Greeno,  1989  ) . Most people can cope 
effectively with a complex phenomenon or system by con-
structing and maintaining a mental model that provides them 
with enough understanding of phenomenon or the system to 
control it. In this sense, the notion of mental models is inter-
related with the investigation of problem solving in complex 
systems, which provides a unique challenge for research in 
the  fi eld of learning and instruction. In consequence, mental 
models in particular and model building activities in general 
are closely related with the discussion on higher-order 
instructional objectives concerning problem-solving and dis-
covery learning in the classroom. Several scholars, such as 
Lesh and Doerr  (  2003  )  encourage the pursuit of higher-order 
objectives and argue that helping students to develop their 
own “explanatory models” should be among the most impor-
tant goals of math and science education. A recommendation 
often made in recent learning theory and research is to 
involve students, either individually or in groups, in actively 
working on challenging problems. If it is true that knowledge 
about complex systems poses a special learning challenge 
for students, it seems likely that students should experience 
dif fi culties when given problem-solving tasks involving 
phenomena in complex systems. 

 When we take the major  fi elds of research on model-based 
learning and performance into closer consideration, we  fi nd 
a tension between strong theoretical assumptions that lead to 
precise conclusions and weak assumptions that lead to less 
precise conclusions. Strong assumptions are helpful when 
the assumptions apply, but they often do not apply, which 
then invalidates the conclusions prescribed by the theory. 
Weak assumptions are less helpful in creating speci fi c 
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instructional systems and learning activities, but they are 
more generally applicable and less likely to be invalidated. 
Finding the right balance is the challenge for professional 
practitioners. They can learn a lot from experimental research 
on mental models as it is based on strong theoretical 
assumptions.      
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