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    Abstract     A growing body of research shows that deeper understanding of complex 
systems can be achieved when students construct causal maps to articulate, explore, 
and refi ne their understanding. However, to what extent are students’ maps an actual 
measure of their causal understanding versus the effi cacy of different processes 
used by students to construct causal maps? To address this question, a set of meth-
ods was developed and implemented in this study to mine data from the causal map-
ping tool, jMAP; sequentially analyze the mined data; and construct transitional 
state diagrams to visualize, model, and compare students’ causal mapping behav-
iors to identify differences in action sequences performed by students that created 
maps of high versus low accuracy. The causal maps of 17 graduate students enrolled 
in an online course on collaborative learning at Florida State University (USA) were 
sequentially analyzed and used to illustrate how the proposed methods can be 
implemented to capture, analyze, model, and identify causal mapping and reasoning 
processes that produce deeper causal understanding. Identifying and validating the 
most effective processes will enable software developers to create causal mapping 
software that can standardize the map construction process, control for individual 
differences in mapping skills, enable students to produce causal maps that accu-
rately refl ect their causal understanding (and/or help students to produce more accu-
rate causal maps), and thus enable instructors to use such mapping tools to conduct 
automated large-scale assessments of students’ causal understanding and systems 
thinking skills.  

  Keywords     Sequential analysis   •   Causal understanding   •   Learner analytics  

    Chapter 13   
 Sequentially Analyzing and Modeling Causal 
Mapping Processes that Support Causal 
Understanding and Systems Thinking 

             Allan     Jeong    

        A.   Jeong      (*) 
  Department of Educational Psychology and Learning Systems , 
 Florida State University ,   3205E Stone Building ,  Tallahassee ,  FL ,  USA   
 e-mail: ajeong@fsu.edu  



240

1         Introduction 

 Causal maps, a network of nodes and links that defi ne the causal relationships 
between nodes, have been used in science education as a tool for teaching and 
assessing learners’ systemic understanding of complex problems and phenomena 
(Kali & Linn,  2007 ; Ruiz-Primo & Shavelson,  1996 ). Given that causal maps in 
theory represent learner’s cognitive structures, their complex reasoning, and con-
ceptual development (   Jonassen & Ionas,  2008 ), causal maps can be and have been 
used to elicit, articulate, refi ne, assess, and improve analysis, identifi cation, and 
understanding of the causes and causal mechanism underlying complex problems. 
The greatest improvements in students’ understanding have been observed when 
students construct (either individually or collaboratively) their own maps as opposed 
to simply presenting students the instructor or expert maps (Nesbit & Adesope, 
 2006 ). Maps can be used to support collaborative learning when students compare 
their maps to identify, trigger, and focus group discussions around key differences 
in viewpoints and understanding (Jeong,  2009 ,  2010a ). 

 To fi nd new ways to help students construct better causal maps and improve 
learning, a growing number of studies have formulated various metrics to measure 
the accuracy and structural attributes of students’ maps (parsimony, temporal fl ow, 
total links, connectedness). The goal is to identify the metrics and attributes that are 
correlated with map accuracy and therefore can be emphasized and presented to 
students as general guidelines to help them create more accurate maps (Ifenthaler, 
Masdsuki, & Seel,  2011 ; Jeong,  2009 ; Plate,  2010 ; Scavarda, Bouzdine-Chameeva, 
Goldstein, Hays, & Hill,  2006 ). For example, studies have been conducted to deter-
mine how different constraints imposed on the map construction process affect stu-
dent’s maps and learning—constraints like imposing hierarchical order by allowing 
students to move and reposition nodes (Ruiz-Primo, Shavelson, & Schulz,  1997 ; 
Wilson,  1994 ), providing terms for nodes (Barenholz & Tamir,  1992 ), providing 
labels for links (McClure & Bell,  1990 ), and allowing more than one link between 
nodes (Fisher,  1990 ). Among these studies, software tools have been developed to 
automate and reliably measure both the accuracy and the structural attributes of 
maps. Software programs like HIMATT (Ifenthaler,  2010 ) and jMAP (Jeong, 
 2010 b) have been developed to address issues of rater reliability and validity by 
using the software to measure and test the correlation between different structural 
attributes and accuracy (Ifenthaler et al.,  2011 ), as well as to measure how maps 
change over time and how these changes over time contribute to convergence in 
shared understanding between learners (Jeong,  2010 ). 

 However, measuring the  structural attributes  of students’ causal maps does not 
appear to provide useful guidelines that will help students construct more accurate 
causal maps because (a) the many if not most of the structural attributes examined 
in prior research (Ifenthaler et al.,  2011 ) have not been found to correlate with map 
accuracy and (b) structural attributes may be largely dependent on the nature or 
complexity of the problem, domain, or system. Furthermore, Jeong and Lee ( 2012 ) 
found that the effects of an attribute can differ depending on how or when they are 
implemented during the instructional task and what particular outcome one is trying 
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to achieve. For example, the study’s fi ndings suggest that (a) causal understanding 
during initial map construction can be adversely affected if students are instructed 
to temporally sequence nodes to fl ow from left to right and position the outcome 
node farther away from the left edge of the map relative to other nodes in the map, 
(b) causal understanding achieved during the later process of map construction fol-
lowing class discussions on proposed causal links can be increased by instructing 
students to minimize the number of causal links and create a map with left-to-right 
temporal fl ow, (c) temporal fl ow can make the greatest impact among the three attri-
butes on the ratio of root causes correctly/incorrectly identifi ed, and (d) minimizing 
number of links can make the greatest impact on understanding how root causes 
directly/indirectly impact outcomes. 

 At the same time, students’ maps will vary widely in accuracy when maps are com-
pared to expert maps regardless of what interventions are used to help improve the 
quality and accuracy of students’ maps (Ruiz-Primo & Shavelson,  1996 ; Scavarda 
et al.,  2006 ). Based on their review of the empirical research, Ruiz-Primo and Shavelson 
( 1996 ) concluded that maps should not be used in the classroom for large-scale assess-
ments until students’ facility, prior knowledge, skills, and processes used to create 
the maps, as well as training techniques, are thoroughly examined. As a result, the 
alternative approach to fi nding ways to help students construct more accurate causal 
map is to fi rst identify the  processes  or action sequences that produce more accurate 
maps. These types of action sequences can include actions at both the local level 
(e.g., move node→link node to affected node→redirect existing link to point to 
mediating node→specifi c causal link strength) and global level (work forward ver-
sus backward from outcome node using inductive versus deductive approach, work 
breadth versus depth fi rst to identify multiple contingent causes versus causal 
chains). However, no prior research has been found at this time that has empirically 
identifi ed, tested, and validated specifi c action sequences that lead to increased accu-
racy despite the variety of guidelines and logic rules that have been developed to sup-
port causal mapping, root cause analysis, and systems thinking (Bryson, Ackerman, 
Eden, & Finn,  2004 ; Clarkson & Hodgkinson,  2005 ; Decision  Systems & Inc.,  2012 ; 
Jonassen & Ionas,  2008 ; Scavarda et al.,  2006 ). The purpose of this study was to 
develop and apply a set of methods that can address the following questions:

    1.    What patterns exist in the action sequences performed by students that produce 
causal maps of high versus low in accuracy?   

   2.    Which sequences of actions help students create more accurate causal maps?     

2       Methodology 

2.1     Procedure 

 To identify the action sequences that produce more accurate causal maps, seventeen 
graduate students in an online course on collaborative learning at Florida State 
University, USA were presented with an activity to articulate and formulate their 
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personal theory as to how certain variables affect team effectiveness in collaborative 
learning projects. Students were instructed to use jMAP (Jeong,  2010 ) to individu-
ally create a causal map containing seven predefi ned variables believed to infl uence 
team effectiveness in collaborative learning groups (Fig.  13.1 ). Each student’s goal 
was to construct a map to convey his/her personal theory as to how the seven vari-
ables might be causally interrelated and how they either directly or indirectly affect 
team effectiveness. The maps they produced were included and presented later in a 
graded written paper worth 20 % of the course grade. To help students produce 
theories that were not overly complex, easier to interpret, and hence more parsimo-
nious, the total number of outward pointing arrows stemming from any one node in 
the maps was limited to a maximum of two. When a given node possessed two 
outward pointing arrows (and was believed to simultaneously affect two other vari-
ables), students were instructed to distinguish which of the two affected variables 
was most impacted by setting one arrow at “high” impact level and the other arrow 
at “moderate” impact level. Students were presented a video and practice activity to 
learn how to move and reposition nodes, insert links between nodes and affected 
nodes, change the density of the link to convey relative level of impact (high, mod-
erate, low), and change direction of the causal relationship (positive = black, 
inverse = red). Students were required to log into a designated video conferencing 
room in Elluminate™ to video record the entire map construction session (limited 
to 45 min maximum). At the same time, the jMAP software logged each action 
students performed on their map from start to fi nish.

  Fig. 13.1    Instructor’s map used as criterion for assessing the accuracy of students’ maps       
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2.2        Data Analysis 

 A total of 14 causal maps were submitted by the students. The maps were imported 
into jMAP and assessed in relation to the instructor’s map (Fig.  13.2 ). The instruc-
tor’s map was based on an empirical study that used path analysis to determine the 
relationships between the variables (Bossche, Gijselaers, Mien, & Kirschner,  2006 ). 
Scores from six criterion measures were each multiplied by 10 and summed to 
determine each students’ total score (Fig.  13.3 ). The maps produced by students that 

  Fig. 13.2    jMAP’s visual and quantitative assessment of student1’s map       

  Fig. 13.3    jMAP’s ranking of students based on scores across six criterion measures.  Note : Names 
have been blurred to maintain anonymity. First order = link stemming directly out of root cause 
(node with no inward-pointing links). Second order = link from node one link removed from root 
cause. Third order = link from node two links removed from root cause       
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achieved the top fi ve and bottom fi ve scores were selected for analysis. The jMAP 
software captured 26 mechanical actions that students performed while construct-
ing their maps (Table  13.1 ). These 26 actions were collapsed and reduced to six fi nal 
codes to facilitate the process of identifying overall patterns in students’ action 
sequences.

     Next, the code sequences produced by low performers were compiled into a single 
column in an Excel spreadsheet. The numeral 1 was placed in the cell immediately 
to the right of the fi rst action performed by a given student to mark the fi rst of a 
sequence of actions performed by each individual student. The six fi nal codes and 
the sequence data were entered into the Discussion Analysis Tool (DAT) software 
(Jeong,  2012 ) to (a) compute the transitional probabilities between action pairs 
(Fig.  13.4 ), (b) compute  z -scores at  p  < 0.01 to identify behavior “patterns”—transi-
tional probabilities found to be signifi cantly higher than expected (bottom of 
Fig.  13.4 ), and (c) generate a transitional state diagram to reveal the behavioral 
patterns exhibited by low scorers (left diagram in Fig.  13.5 ). This procedure was 
repeated using code sequences produced by the high performers to produce the 
transitional state diagram to the right in Fig.  13.5 .

   Table 13.1    Codes assigned to each action students perform in jMAP software   

 Final codes  Code  Defi nition 

 LINK  ADDR  Added new link pointing to the right 
 ADDL  Added new link pointing to the left 
 ADDU  Added new link pointing up 
 ADDD  Added new link pointing down 
 LK2  Attached link to the affected node 

 RELINK  RLK1  Redirected the existing link to a new causal node 
 RLK2  Redirected the existing link to a new affected node 
 ULK1  Detached the beginning tail of the link 
 ULK2  Detached the end of the link 

 ATTR  ATT-  Changed link to color red to convey a negative or inverse relationship 
 ATT+  Changed link to the color black to convey a positive relationship 
 ATT2L  Changed link to low level of impact 
 ATT2M  Changed link to moderate level of impact 
 ATT2H  Changed link to high level of impact 

 DEL  DEL  Deleted the link 
 MOVE  MS  Moved a node (which was the same node as the last moved node) 

 MDn  Moved node to the north of the previously moved node 
 MDne  Moved node to the NE of the previously moved node 
 MDe  Moved node to the East of the previously moved node 
 MDse  Moved node to the SE of the previously moved node 
 MDse  Moved node to the South of the previously moved node 
 MDsw  Moved node to the SW of the previously moved node 
 MDw  Moved node to the West of the previously moved node 
 MDnw  Moved node to the NW of the previously moved node 

 COMM  COM  Added comment to link to explain how node infl uences affected node 
 CREV  Revised the existing comment on the given link 
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    The DAT software (Jeong,  2012 ) is a Microsoft™ Excel-based application that 
sequentially analyzes temporal events to identify sequential patterns between events 
using techniques developed by Bakeman and Gottman ( 1997 ). The software was 

  Fig. 13.4    Screenshot of the DAT software output presenting the frequency, transitional probability, 
and  z -score matrices.  Note :  Bold  values = transitions signifi cantly higher than expected ( p  < 0.01). 
 Bold underlined  values = transitions signifi cantly below expected value       
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used to tally the number of times a particular action was performed, the total number 
of actions that immediately followed the given action, and the number of times 
each type of action immediately followed any one given action. For example, the 
frequency matrix in Fig.  13.4  shows that students in the high-scoring group moved 
or repositioned the nodes in their maps a total of 321 times (listed in MOVE row and 
GIVEN column). The number of actions that immediately followed each MOVE 
was 321 (listed under REPLIES column). When these students moved a node, this 
action was followed with more moving of nodes by a total of 259 times and adding 
of links by a total of 32 times. Next, the DAT software and spreadsheet converted 
the observed frequencies into transitional probabilities to convey how likely one 
event was to follow another given event (as displayed in the transitional probability 
matrix in Fig.  13.5 ). For example, the transitional probability between 
MOVE→MOVE was 81 % (or 259 divided by 321) given that 259 out of the 321 
actions following a MOVE was another MOVE. In contrast, the transitional proba-
bility between MOVE→LINK was only 10 % (32 divided by 321). 

 To determine whether or not the transitional probability between any two actions 
was a behavioral pattern,  z -scores were computed for each transitional probability 
and reported in the  z -score matrix presented in Fig.  13.4 . Each  z -score determined 
whether a given transitional probability was signifi cantly higher or lower than the 
expected transitional probability based on chance alone. A  z -score that was signifi -
cantly less than the critical  z -score of −2.32 at alpha <0.01 identifi ed a transitional 
probability that was signifi cantly lower than the expected probability. These  z -scores 
(and their associated frequencies and transitional probabilities presented in the 

  Fig. 13.5    Transitional state diagrams of action sequences performed by low versus high perform-
ers.  Notes :  Black  and  gray arrows  identify probabilities that are and are not signifi cantly greater 
than expected.  Arrows  are weighted in direct proportion to the observed transitional probability. 
The fi rst and second numerical value displayed in each node identifi es the number of times the 
given action was performed and the number of events that followed the given action. The size of 
the glow emanating from each node conveys the number of times the given action was performed       
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frequency and transitional probability matrices) were underlined and highlighted in 
bold red-colored font. A  z -score that was signifi cantly greater than the critical  z -score 
of 2.32 at alpha <0.01 identifi ed a transitional probability that was signifi cantly 
higher than the expected probability (values highlighted in bold green- colored font). 
The  z -score statistic (Bakeman & Gottman,  1997 ) takes into account not only the 
observed total number of responses following each given behavior but also the 
marginal totals of each response observed across all behaviors. One important note 
is that paired actions with signifi cant  z -scores but with observed frequencies of less 
than 4 should not be identifi ed as a behavioral pattern because the low cell frequen-
cies are not suffi cient in size to compute a reliable  z -score. 

 Finally, DAT software was used to convert the observed transitional probabilities 
into two transitional state diagrams (a network of nodes used to represent each 
action linked or interconnected by lines/arrows that depict their sequential order) to 
provide a graphical and Gestalt view of the behavioral patterns produced collec-
tively by the high- versus the low-scoring students (Fig.  13.5 ). The density or thick-
nesses of the arrows are directly proportional to the observed transitional probabilities 
between given nodes/behaviors so that high probabilities are identifi ed with large 
thick arrows and low probabilities are identifi ed with thin arrows. Arrows were 
either presented in solid black, to convey a transitional probability with a signifi cant 
 z -score, or in light gray, to present a transitional probability with a nonsignifi cant 
 z -score. The relative size of the glow emanating from each node in the state dia-
grams conveys the relative frequencies in which each particular action was observed. 
For example, the left state diagram in Fig.  13.5  shows that students in the low- 
scoring group moved nodes a total of 101 times but commented on the links only 37 
times. As a result, the size of the glow emanating from the MOVE node is 2.7 times 
larger (101 divided by 37) than the glow emanating from the COMM node. Finally, 
the fi rst and second numerical value displayed in each node identifi es the number of 
times the given action was performed and the number of events that followed the 
given action. These features of the transitional diagrams enable one to visually com-
pare the state diagrams of the low- versus high-scoring students when placed side 
by side and, by doing so, identify the similarities and differences in behavior pat-
terns produced by each group. The patterns that distinguish the high- from the low- 
scoring students help to identify processes that produce and/or explain how and 
when students produce more accurate causal maps.   

3     Discussion 

3.1     Low Performers 

 The transitional state diagram for low performers (Fig.  13.5 ) reveals four behavioral 
patterns. The patterns reveal their tendency to construct each component of 
their causal maps in separate discrete stages. These students tended to start fi rst 
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by moving multiple nodes into their respective positions. Once multiple nodes 
were positioned, they inserted links between the nodes one after another. Once links 
were added, these students specifi ed the attributes of each causal link. In addition, 
once links were inserted, these students tended to insert their comments into one 
link (one link after another) to explain the causal mechanism underlying the 
inserted link.  

3.2     High Performers 

 The state diagram for high performers in Fig.  13.5  also revealed the same four behav-
ioral patterns exhibited by low performers. However, high performers exhibited four 
additional patterns. These additional patterns were attributed in part to how the 
higher performers relinked and deleted links more often than low performers. These 
patterns may help to explain how students can produce more accurate maps. The 
high performers exhibited the tendency to (1) specify the attributes of a causal link 
that is inserted between two nodes, (2) add a new link immediately after they redi-
rect an existing link, (3) add a new link immediately after they deleted a link, and 
(4) delete another link immediately after deleting a link. These patterns serve as 
possible indicators that show that high-scoring students produced more accurate 
maps because they engaged more frequently in the process of iteratively revising 
their causal maps (DEL→AddLink; Relink→AddLink; DeleteLink→Delete
AnotherLink). The observed patterns might also serve to demonstrate that high-
scoring students applied rules of logic or reasoning like those embedded in the 
REASON software (Decision  Systems & Inc.,  2012 ). For example, a logical rea-
soning process can lead a student to realize that both A and B do not exert direct 
effects on C (when realizing that C can occur without A), but instead, A directly 
effects B, which in turn directly effects C. This line of reasoning involves the pro-
cess of inserting links between A and C, and B and C, then deleting the link between 
A and C followed by adding the link from A to B or redirecting the existing A→C 
link that points to C so that it now points instead to node B. 

 The unique behavioral patterns observed among the high performers suggest that 
redirecting and deleting links are a critical part of the mapping process. To deter-
mine what prior actions tend to trigger Relink and Delete actions, the historical state 
diagram (Fig.  13.6 ) shows that (a) the event that was most likely to precede the 
Relink action was the Move action (62 % of all preceding events) and Link action 
(100 %) among the high and low performers, respectively, and (b) the event most 
likely to precede the Delete action was the Link action (45 % of all preceding 
events) and Move action (37 %) among the high and low performers, respectively. 
In general, the historical diagrams like the ones presented in Fig.  13.6  can be used 
to identify the triggers and/or prior actions that are most likely to initiate specifi c 
action sequences that are of key interest.

A. Jeong



249

4         Conclusion 

 The fi ndings from this study illustrate how the presented methods can be used to 
identify specifi c action sequences that can be prescribed to help students produce 
more accurate causal maps and to achieve deeper causal understanding of complex 
systems. One way to improve on the methodology presented above is to include a 
pretest that measures students’ prior understanding of the causal relationships to 
tease out the effects of prior understanding from the effects of individual differences 
in processes used by students on students’ causal understanding. Because the num-
ber of causal maps examined in this study was too small in number to produce any 
conclusive fi ndings, larger samples are needed to determine if the reported fi ndings 
can be replicated. In order to identify and examine the logic rules and reasoning 
processes/strategies used by high-scoring students, the coding scheme will need to 
be refi ned in a way that can verify, for example, when a Relink is or is not redirected 
to a mediating node (where A→C and B→C is changed to A→B→C). 

 Furthermore, a more detailed breakdown and analysis of the mined data will be 
necessary to determine to what extent students use backward/deductive versus forward/
inductive approach and/or depth versus breadth-fi rst approach (work in progress), 
and ultimately to determine which approach is most effective. For example, the seg-
ment of data presented in Fig.  13.7  shows that the student linked node 7 to node 4. 
Immediately following this action, the student linked node 1 to node 7 to perform a 
backward or deductive reasoning process to produce the 1→7→4 causal chain. 
Immediately after linking 1→7, the student linked 7 to 5 to produce the 1→7→5 
causal chain—an action sequence that illustrates a forward/inductive reasoning 
process. Both of these two behaviors serve to illustrate a depth-fi rst approach to 

  Fig. 13.6    Historical state diagrams of actions most likely to elicit given action performed by low 
versus high performers       
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identifying the causal chains. The data in Fig.  13.7  also shows that the student 
linked 7→5 and then linked 7→4 to produce two parallel causal chains that stem 
from node 7. These behaviors are indications that the student also used a breadth- 
fi rst reasoning process.

   Once the described method and tools have been refi ned and validated over time, 
further research and developments in the instructional application of knowledge 
mapping can be conducted by (a) integrating the target action sequences directly 
into causal mapping software interface to conduct controlled experimental tests to 
determine if the target processes increases map accuracy regardless of students’ 
prior knowledge/understanding, (b) examining to what extent the target processes 
are effective across different topics that are and are not temporal in nature, and (c) 
revisiting and retesting criterion measures identifi ed in prior research for assessing 
the accuracy or quality of knowledge maps while controlling for the specifi c pro-
cesses students use while constructing their causal maps.     
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