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Design of Uncertain Prestressed Space Structures:

An Info-Gap Approach

Aurélien Hot, Scott Cogan, Emmanuel Foltête, Gaetan Kerschen,

Fabrice Buffe, Jérôme Buffe, and Stéphanie Behar

Abstract Uncertainty quantification is an integral part of the model validation process and is important to take into account

during the design of mechanical systems. Sources of uncertainty are diverse but generally fall into two categories: aleatory

uncertainties due to randomprocesses and epistemic uncertainty resulting from a lack of knowledge or erroneous assumptions.

This work focuses on the impact of uncertain levels of prestress on the behavior of solar arrays in their stowed configuration.

In this context, snubbers are inserted between two adjacent panels to maintain contact and absorb vibrations during launch.

However, under high excitation loads, a loss of contact between the two panels may occur. This results in impacts that

can cause extensive damages to fragile elements.

In practice, the specific load configuration for which the separation of the two panels occurs is difficult to determine

precisely since the exact level of prestress applied to the structure is unknown. An info-gap robustness analysis is applied to

study the impact of this lack of knowledge on the prestress safety factor required to avoid loss of contact. The proposed

methodology is illustrated using a simplified model of a solar array.

2.1 Introduction

In the field of structural dynamics, the mathematical model must not only be validated against tests, it must also be validated

with respect to its final performance goal in the presence of uncertain parameters. Indeed, the required performance may be

drastically affected even by a slight perturbation. Moreover, real environmental conditions and loads on a structure are

sometimes unknown or can not be reproduced during tests. It is thus important to take these uncertainties into account in the

design process.

One can distinguish two sources of uncertainty. The first class of uncertainties, called aleatory uncertainty, is due to the

intrinsic randomness of the structure parameters such as variability of its physical properties, of the assembling process, of

its service conditions (temperature, hydrometry, etc.), or again the variability of the measuring process. The second class

pertains to epistemic uncertainties. They result from a lack of knowledge or erroneous assumptions, such as unknown values

of stiffnesses, linearity assumptions, omission of contact elements or other nonlinear elements, unknown probability

distributions, among others.
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Dealing with aleatory uncertainties, it is common practice to use probabilistic methodologies [1, 2] to quantify and

propagate them through the system model. A classical approach consists in using a deterministic finite element model for the

mechanical system and then adding the uncertainty through either parametric or non-parametric methods. When using the

parametric approach, the uncertain physical parameters, e.g. Young’s modulus or plate thickness, are characterized by their

mean value, their standard deviation or by probability density functions, e.g. Gaussian or uniform distribution. However, the

difficulty in quantifying the level of stochastic uncertainty in physical parameters has motivated the development of

alternative non-parametric approaches. Soize proposes in [3] an overview of these methodologies, for which the

uncertainties are no longer applied to physical parameters but directly introduced in the global randomized matrices through

dispersion parameters.

However, using a stochastic approach for all types of problems would be too restrictive and inappropriate. Indeed, for

epistemic uncertainties, where a large amount of information is missing, the probabilistic approach is unsuitable. Thus, to

study these cases, one can use a second class of uncertainty models, based on non-probabilistic methods such as the interval

arithmetic theory [4], the Fuzzy sets approach [5] or the Transformation method [6]. Moreover, to deal with problems

subject to severe uncertainty, Ben-Haim proposed in [7] the Info-gap theory. The basic idea of this theory is to investigate the

degree of lack of knowledge that can be tolerated while satisfying a critical level of performance.

In this paper, only the case of epistemic uncertainty due to lack of knowledge is tackled using the Info-gap theory. This

method will be first briefly described and then applied to an uncertain prestressed structure.

2.2 The Info-Gap Theory

The Info-gap theory proposed by Ben-Haim [7] helps to quantify the robustness of model-based decisions to lack of

knowledge in the system model. This approach provides a useful tool since the trade-off between performance and

robustness can be investigated and different design configurations can be compared. The methodology has already been

applied in many different fields. In structural dynamics analysis, studies concerning model updating [8], reliability [9],

optimal sensors and exciters positioning [10] and design of civil structures in seismically active regions [11] have already

been carried out. Moreover, applications of the Info-gap theory can also be found in medical [12] and management [13]

applications, as well as elsewhere.

An Info-gap model quantifies the difference—the gap—between the information that is known, for example the nominal

value of a parameter, and the information that has to be known in order to insure a critical level of performance. This non-

probabilistic approach to uncertainty quantification is briefly described in the following sections.

An Info-gap robustness analysis is composed of four components:

• The system model defines the relation between the system inputs and outputs. In the case of structural dynamics, the

system model consists in the equation of motion that links the inputs, the excitation force, to the outputs, displacement,

velocity and acceleration, through the finite element model. The system model is denoted S(n) and depends on various

unknown parameters n.
• The uncertainty model U represents the uncertainty in the variables n. It consists in a collection of nested sets of uncertain

events whose size is controlled by a horizon of uncertainty h. The larger this horizon, the more inclusive is the uncertainty

model. A simple model could be an interval within which n varies around a nominal value n0:

Uðn0; hÞ ¼ fn : jn� n0j � hg; h � 0 (2.1)

• The performance requirement is a specification of a critical level, denoted Pcrit, of the system performance P(S(n)), e.g. a
maximum tolerable displacement or stress in the structure:

PðSðnÞÞ � Pcrit (2.2)

• The robustness to uncertainty ĥ is defined as the greatest value of the uncertainty parameter h for which the critical

performance requirement is still insured. This can be expressed by:

ĥ ¼ max h : max
n2Uðn0;aÞ

PðSðnÞÞ � Pcrit

� �
(2.3)
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2.3 Application to a Simplified Solar Array System

2.3.1 Presentation

A specific difficulty encountered on solar arrays concerns the impacts that occurs between two adjacent panels. In order to

limit this phenomenon, which can lead to significant damage, dedicated snubbers are inserted between the panels.

The presence of the snubbers has two consequences. First, they lead to an increase in the local stiffness, thus limiting the

relative displacements. Second, the induced prestress forces insures that contact is maintained between the two panels.

However, for high input levels, loss of contact between the snubbers and the panels may arise and impacts still occur.

The Info-gap approach is used here to assess the robustness of the solar array system performance to epistemic

uncertainties due to lack of knowledge in the induced prestress forces. The performance criterion here is the non-separation

of two adjacent panels that will guarantee the integrity of the structure. The four components of an Info-gap analysis

described above are presented in the following paragraphs, namely:

• System model: Simplified solar array system prestressed due to the presence of snubbers

• Performance requirement: Non-separation of the two panels in order to avoid impacts

• Uncertainty model associated with uncertain prestress values

• Robustness: What maximum level of uncertainty in the prestress can be tolerated while insuring that the panels do not

impact one another?

2.3.2 System Model

The finite element model of the simplified solar array is depicted in Fig. 2.1a. The two plates are meshed with 3072

NASTRAN CQUAD4 elements. The stacking points are modeled using three CBAR beams that are linked to the plates

through rigid elements RBE2. Only the masses of the two hinges are taken into account in this model by concentrated masses

CONM2, also linked to the plates with rigid elements. The element properties are listed in Table 2.1, where E, n, r, T, d and
m are the Young’s modulus, the density, the Poisson’s ratio, the plates thickness, the beams cross section dimension and the
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Fig. 2.1 System model. (a)

Simplified solar array model

FEM; (b) Frequency response

of the system at node 1

Table 2.1 Element property

of solar array model
CQUAD4 E ¼ 6. 52e10 Pa r ¼ 2,761 kg.m � 3 n¼0.34 T¼ 5 mm

CBAR E ¼ 5. 18e10 Pa r ¼ 3,453 kg.m � 3 n¼0.34 d¼ 16 mm

CONM2 m ¼ 191 g
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concentrated masses value, respectively. The whole model contains 19,548 dofs. Two linear springs that model the snubbers

behavior are inserted between 1 and 2 and 3 and 4 whose stiffnesses are denoted ks. In a first step, ks ¼ 1e5 N/m.

A 1 N sine excitation Fd is applied at node 5 in the z-direction. The corresponding displacement frequency response of

node 1 is plotted in Fig. 2.1b.

2.3.3 Performance Requirement

The performance requirement in this study consists in avoiding the separation of the two panels. Indeed this requirement

insures that no impact can occur between the panels, so that the system integrity is preserved. This statement is expressed as

a condition on local forces: separation occurs when the reaction force Fr of the snubber on the panel exceeds the applied

static prestress load Fps:

Fr � sf Fps (2.4)

where sf is a safety factor that enables to allow variations on the separation condition. A small safety factor guaranties a safe

behavior but has very strict requirements, whereas a large value is easier to realize but is dangerous regarding the

performance requirement. Unless otherwise mentioned, this sf value remains equal to 1.

Figure 2.2a plots the reaction force Fr at node 1 obtained using the MPCF NASTRAN card, as well as three given

threshold prestress force values. One remarks that two modes are liable to lead to the performance failure. We will focus on

the one around 80 Hz, the highest amplitude one. However, the extension to a frequency band containing several modes can

be readily made.

With the performance requirement defined, one can seek all realizable configurations (frequency, dynamic input force,

prestress loads) that lead to failure. The set Vðo;FdÞ, expressed in (2.5), corresponds to the points that bounds the

performance. In other words, all the configuration points inside the parabola do not satisfy the performance requirement.

Figure 2.2b shows these sets for the three prestress loads. For a given prestress load, the lowest dynamic force Fd for which

the panels separate occurs for the resonance frequency. Indeed, with the increasing relative displacement of the two corners

of the panels, the reaction force increases and exceeds the prestress threshold value. Moreover, one can also remark that, as

expected, the higher the prestress load, the narrower the Vðo;FdÞ set and thus the smaller the opportunity of failure.

Vðo;FdÞ ¼ ffo;Fdg : jFrðoÞj ¼ sf Fpsg (2.5)
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Fig. 2.2 Model performance. (a) Reaction force Fr at node 1 — Fps ¼ 2 N, - - - Fps ¼ 4 N, � � � Fps ¼ 6 N; (b) Separation zone Vðo;FdÞ
for prestress values — Fps ¼ 2 N, - - - Fps ¼ 4 N, � � � Fps ¼ 6 N
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2.3.4 Uncertainty Model

As mentioned in the presentation paragraph, the source of epistemic uncertainty in this example is the prestress load value

Fps. Indeed, it is assumed here that the level of prestress introduced by the snubbers is difficult to assess due to structural

uncertainties (geometric defects, interface stiffness, etc).

Let fFps be the best estimate of Fps. This fFps quantity is a known but perhaps unreliable estimate of the corresponding

coefficient. In fact, we do not know by how much the estimated value is wrong. The uncertainties on Fps are modeled here

using an fractional-error Info-gap model:

UðhÞ ¼ Fps :
jFps � fFpsjfFps

� h

( )
; h � 0 (2.6)

The inequality states that the fractional error of the estimate
jFps� eFpsjeFps

is bounded by the horizon of uncertainty h. Since we

do not know the magnitude of error, no realistic worst case is known, h is unbounded. When h ¼ 0, there is no uncertainty

and the estimation is correct. Whereas, as h increases the uncertainty set UðhÞ is more and more inclusive. Thus the Info-gap

model is an unbounded family of sets of possible realizations of Fps.

Figure 2.3 plots the evolution of the failure point in an uncertainty vs dynamic force diagram. For each curve, the first

decreasing part corresponds to the worst case of performance failure, and the second increasing branch corresponds to the

best case. As engineering structures are usually designed in the worst case, the study focuses on the curves left hand part.

For a null uncertainty h, the Fps value is the nominal one and the failure point corresponds to the one seen in Fig. 2.2b.

Regarding the nominal value of 2 N prestress load example, the separation occurs for a dynamic force of 0.17 N, which

actually corresponds to the minimum of the corresponding curve in Fig. 2.2b. Then, the more the amount of uncertainty

increases, the lower the dynamic force required for failure.

These curves also enable to evaluate the allowed uncertainty that still avoids failure. For example, if the system is excited

with a dynamic force of 0.17 N, no uncertainty is tolerable if the prestress load is equal to 2 N. Thus, the prestressed force value

must be exactly known. However, if Fps ¼ 0. 4 N, a 0.51 uncertainty value is now tolerable, and even 0.68 in the last case.

2.3.5 Robustness

We now define the robustness of the system model to uncertainty in the prestress load value. The robustness ĥ is the greatest
horizon of uncertainty h up to which the performance requirement is satisfied for all realizations of the uncertain quantity:

ĥ ¼ max h : max
Fps2UðhÞ

½Fr � sf Fps�
� �

� 0

� �
(2.7)
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Figure 2.4 displays the robustness ĥ vs the safety factor sf, that remained equal to 1 up till now. Several conclusions can be

drawn from these curves.

First, for low safety factors, the robustness remains null. This means that, in these cases, what ever the prestress

configuration, failure of the performance requirement is certain.

Then, for the 6 N prestressed configuration, the robustness curve presents two different behaviors. For a safety factor

below 0.8, the slope is quite steep, which means that for a small effort in increasing the safety factor the gain in robustness is

important. Whereas, for safety factors above 0.8, the slope is now flat: a large variation of sf only leads to a small profit of the

robustness.

Finally comparing the three curves, one can note that, for all safety factor values, the higher the prestress load value, the

greater the robustness to the sought performance, that is to say, avoiding separation between the panels.

2.3.6 Comparison of Different Snubber Stiffnesses

The previous paragraph compared the robustness of the system for different prestress loads and safety factor values. Now a

third parameter is introduced: the snubber stiffness ks. The previous results were obtained using a unique value: ks ¼ 1e5 N/m.

Let us now assess the influence of ks on the robustness function.
The reaction forces on the snubbers nodes are first recomputed for four different ks values: 1e4, 1e5, 1e6 and 1e7 N/m.

These results are plotted in Fig. 2.5 and one can observe, as expected, a softening or stiffening effect depending on the

snubber stiffness value.
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 Fig. 2.4 Robustness

evaluation for three different

prestress loads — Fps ¼ 2 N,

- - - Fps ¼ 4 N, � � � Fps ¼ 6 N

40 60 80 100 120 140

102

101

100

10−1

10−2

10−3

Frequency (Hz)

R
ea

ct
io

n 
F

or
ce

 F
r 

(N
)

 

 Fig. 2.5 Reaction force Fr at

node 1 for different snubber

stiffnesses values —

ks ¼ 1e4 N/m, —

ks ¼ 1e5 N/m, —

ks ¼ 1e6 N/m, —

ks ¼ 1e7 N/m - � - Fps ¼ 2 N,

- � - Fps ¼ 4 N, - � - Fps ¼ 6 N
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The same procedure as above is then followed to estimate the robustness of the different designs. The corresponding

results are displayed in Fig. 2.6. For all ks values, the obtained curves present the same shape, which enables to directly

compare the different robustness levels. It appears that, in this specific example, the case ks ¼ 1e7 N/m leads to the most

robust design. However, the greater stiffness does not always means the more robust. Indeed, here the ks ¼ 1e4 N/m

configuration is more robust than the ks ¼ 1e5 N/m one.

2.4 Conclusions

The objective of this work was to develop a model-based decision indicator for designing the prestress level required

between the panels of a stowed solar generator in order to avoid damage due to impacts during launch. Given the presence of

severe uncertainty in the prestress values induced by the introduction of dedicated snubbers, an info-gap approach was used

to study the robustness of the critical design performance, namely the absence of separation, to lack of knowledge in the

prestress states at each snubber location. Moreover, the impact of snubber stiffness on the robustness function was also

investigated and the existence of an optimal value was demonstrated. The proposed methodology was illustrated using a

simplified solar array model.

Before applying this methodology to an industrial structure, several limitations in the current approach must be addressed.

Future work will consist in building a more accurate nonlinear model of the contact phenomena between the snubbers and the

panels. Moreover, an estimation of how much prestress uncertainty must be tolerated in practice would be very useful for

design purposes. This question will be examined by studying the impact of lack of knowledge in the mechanical properties of

the structure on the prestress forces. Finally, an experimental validation of the methodology will be carried out on a simplified

prototype structure.
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