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Preface

Topics in Model Validation and Uncertainty Quantification represents one of six volumes of technical papers presented at the

30th IMAC, AConference and Exposition on Structural Dynamics, 2012 organized by the Society for ExperimentalMechanics,

and held in Jacksonville, Florida, January 30–February 2, 2012. The full proceedings also include volumes onDynamics of Civil

Structures; Substructuring and Wind Turbine Dynamics; Nonlinear Dynamics; and Modal Analysis, I & II.

Each collection presents early findings from experimental and computational investigations on an important area within

Structural Dynamics. This volume focuses on the importance of Model Validation and Uncertainty Quantification.

In keeping with the goals of encouraging advancement and application of model Verification and Validation (V&V) and

uncertainty quantification methods in Structural Dynamics, this volume includes tutorials on the use of the Bayesian and

Markov Chain Monte Carlo Methods. The Bayesian paradigm is of great interest to the engineering community as

it provides a principled framework for handling uncertainties in complex systems. The Markov Chain Monte Carlo method

is, in turn, a useful tool for practical implementation of the Bayesian paradigm.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in

this track.

Albuquerque, NM, USA T. Simmermacher

Besançon, France S. Cogan

Hampton, VA, USA L.G. Horta

Sheffield, UK R. Barthorpe
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Chapter 1

On Assessing the Robustness of Structural

Health Monitoring Technologies

Christopher J. Stull, François M. Hemez, and Charles R. Farrar

Abstract As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for

use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the

engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to

choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such

decisions, and offering little in the way of justification for a particular decision. The present paper offers a framework that

aims to provide the engineer with a qualitative approach for choosing from among a suite of candidate SHM technologies.

The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and is then

demonstrated on a problem commonly encountered when developing SHM systems: selection of a damage classifier, where

the engineer must select from among a suite of candidate classifiers, the one most appropriate for the task at hand. The data

employed for these problems are taken from a preliminary study that examined the feasibility of applying SHM technologies

to the RAPid Telescopes for Optical Response observatory network. (Approved for unlimited public release on September
20, 2011, LA-UR 11-05398, Unclassified)

Keywords Structural health monitoring • Info-gap decision theory • Decision making • Model selection • Uncertainty

• Autoregressive model

1.1 Introduction

At the most general level, Structural Health Monitoring (SHM) often employs a model to approximate the changes in

behavior of a physical system that result from damage. An increased interest in SHM by the civil, aerospace and mechanical

engineering communities has led to a relative explosion of technologies proposed to both improve upon and extend the

application of these research fields. As these technologies are brought online, the engineer tasked with developing a SHM

system is not only faced with the difficulty of choosing from among these technologies, but must also do so defensibly.

Offering such defensible approaches, two recent research efforts [1, 2] adopted Bayesian model selection frameworks to

select from among a family of models, the model that most probably represented a system for which data exist. Whereas [1]

focused more generally on the problem of selecting a model that approximates a physical system, [2] focused more

specifically on the determining the most probable order of an autoregressive model with exogenous inputs (ARX).

In general, these approaches employ Bayes’ theorem as [3]

P MijDð Þ / P DjMið ÞP Mið Þ: (1.1)
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Here, P Mið Þ is the prior probability assigned to the model Mi, or the probability that the model Mi is the true

model before observing the data. P DjMið Þ is the model evidence, or the probability that the data D will be observed

given the model Mi. P DjMið Þ is also referred to as the marginal likelihood, as it is essentially a likelihood function

associated with model Mi, where the effects of the model parameters are removed by randomly sampling from the

prior probabilities associated with the model parameters [3]. Lastly, the term P MijDð Þ is the posterior probability of

the modelMi, or the probability that modelMi is the true model after observing the dataD. With respect to the work of [1],

the Mi in (1.1) corresponded to different model classes employed to approximate the dynamic behavior of

structures subjected to seismic excitations. For [2], the Mi corresponded to the parameters that define different orders

of an ARX model.

When solving Bayesian model comparison problems, models are typically assigned equal prior probabilities to represent
the analyst’s ignorance as to which model is the true model for the data at hand. Once the posterior probabilities associated

with the models are estimated, these estimations may be used to compute information criteria (e.g. Akaike, Schwartz [3]) as

a means of evaluating the relative merit of each model. While this framework offers a principled treatment of the analyst’s

uncertainty about the model selection problem, it is conditioned on data D. As such, concern arises when it is admitted that

these data are subject to variability (aleatoric and epistemic), as such changes have the potential to introduce additional

uncertainties into the model selection problem.

1.1.1 Overview of Proposed Framework

The present paper offers an alternative framework with which to address the model selection problem within the context of

SHM. Anchored in Information-Gap Decision Theory (IGDT) [4], this framework assumes a non-probabilistic description
of the engineer’s lack of knowledge about the data. Using this as a point of departure, the proposed framework aims to

inform the engineer as to the robustness, or insensitivity to this ignorance, of a particular decision (i.e. SHM technology).

IGDT has been applied in a number of research topics, and the reader is directed to [5] for an exhaustive list of references.

A recent application of IGDT to SHM is found in [6] where the authors assessed the robustness of an artificial neural

network’s ability to detect damage, given variability in the in the network inputs. While a similar strategy is adopted herein,

an attempt has been made by the authors to generalize the approach in order to tackle broader classes of problems within

SHM. To this end, the four-part statistical pattern recognition paradigm discussed in [7] is presented:

(i) Operational Evaluation;

(ii) Data Acquisition, Normalization, and Cleansing;

(iii) Feature Selection and Information Condensation; and

(iv) Statistical Model Development for Feature Discrimination.

The focus herein will be on decisions related to Part (iv) of this paradigm, and as such, it will be assumed for the purposes

of this paper that the technologies, data, etc. associated with Parts (i), (ii), and (iii) have been defined and are fixed at this

point in the SHM system design process. It is noted however, that the proposed framework is general, in that it could also be

applied to decisions associated with Parts (i), (ii), and (iii).

1.1.2 Paper Organization

The remainder of this paper is organized around two main sections. Section 1.2 is devoted to formulating the problem of how

to assess SHM technologies, in support of designing SHM systems that are robust to variability in the data and hence, the

damage-sensitive features extracted from these data. First, the problem is cast within the context of IGDT. Then, important

quantities relevant to this application of IGDT are defined, which feed into the definitions of the info-gap models of

uncertainty and the robustness function. Section 1.3 then demonstrates the application of IGDT to an aspect of an SHM

design, related to Part (iv) of the paradigm outlined above. The paper concludes with a summary of the work performed,

improvements to the SHM development process, and ideas for future directions of research.

2 C.J. Stull et al.



1.2 Problem Formulation

1.2.1 Overview

IGDT aims to facilitate decision-making in the face of uncertainty, particularly when there is little information available

about this uncertainty a priori, rendering a probabilistic definition difficult to employ. To begin the discussion of the problem

formulation, three questions that are central to any IGDT analysis are asked: (1) “What is the decision that needs to be

made?” (2) “What is the uncertainty that affects the quality of this decision?” (3) “How is the quality of this decision

quantified?” Coincidentally, these questions also arise when adopting a supervised learning approach to SHM. While there

are many decisions that need to be made when adopting such an approach, the focus herein relates to choosing an appropriate

classifier that employs these features for damage detection. Engineers faced with this question typically offer little in the way

of objective reasoning for choosing one classifier over another, relying instead on a “tried-and-true” classifier. This

statement is not meant to imply that expert opinion is invalid. Indeed, reliance on such tried-and-true solutions is often a

robust decision, as the engineer does not expect to be surprised by the results associated with such a decision (or else that

decision would not be made). However, the proposed methodology goes beyond this subjective approach and offers a

principled and hence, defensible manner of assessing the robustness of decisions (tried-and-true and otherwise) to

uncertainties affecting those decisions.

As for the second question, an important concern related to the supervised learning approach to SHM is addressed: data

that initially represent the undamaged (or damaged) structural system can and often do change, with the potential to do so in

an unexpected manner. That is, the structural condition information offered by damage-sensitive features may not be

consistent over a long time-frame, potentially rendering the damage classifier obsolete. An adaptive SHM system offers a

means of addressing this concern, but such approaches can be difficult to develop, implement, and maintain. The proposed

methodology offers an alternative by assuming little about the future form of the damage-sensitive features, other than that it

will vary due to environmental and/or operational variability. The robustness of the damage classifier then relates to its

sensitivity to these variations.

The focus of the third question lies in the quantification of this robustness. While generally the most subjective question

of the three, for the particular case of SHM, the answer to this question should relate to the effectiveness of the damage

classifier to accurately assess the state of the structure. That is, as the future form of the damage-sensitive features undergoes

more and more variability, a damage classifier will be assessed as robust to this variability if it is able to meet a minimum

performance criterion related to the accuracy of its assessments.

1.2.2 Definitions

Having answered the above questions, the problem may now be formulated in mathematical terms. Prior to continuing, the

reader is reminded that the focus of the present paper is on Part (iv) of the four-part statistical pattern recognition paradigm

outlined above. Thus, the formulation begins with the assumption that there exist two sets of time-histories containing

the measured responses of a structural system in its undamaged and damaged configurations. (This assumption implies
the completion of Parts (i) and (ii) of the paradigm.) These sets are denoted X u ¼ X u

i : 8i ¼ 1; 2; . . . ;R
� �

and X d ¼ X d
i : 8i ¼ 1; 2; . . . ; S

� �
, where the right superscripts u and d refer to the undamaged and damaged configurations,

respectively, and R and S refer to the number of time-histories collected for the undamaged and damaged con-

figurations, respectively. For typical applications of the supervised learning approach to SHM, R will be much greater

than S, resulting in a well-characterized definition of the undamaged configuration. It would then be assumed that data

exhibiting characteristics that deviate from this well-characterized, undamaged configuration would indicate the presence of

damage in the structural system. It is further assumed that damage-sensitive features have been selected from each of the

time-histories within Xu and X d, and collected in the sets Fu ¼ wu
i : 8i ¼ 1; 2; . . . ;R

� �
and Fd ¼ wd

i : 8i ¼ 1; 2; . . . ; S
� �

.

(This assumption implies the completion of Part (iii) of the paradigm.) In this study, the damage-sensitive features are the

coefficients of the autoregressive models employed to approximate the time-histories within X u and X d.

1 On Assessing the Robustness of Structural Health Monitoring Technologies 3



With these definitions, the means of the features associated with the undamaged and damaged configurations may be

computed as in (1.2) and (1.3), respectively, where it is noted that the dimensions of these quantities are consistentwith those of

the features. That is, for scalar-based representations, themeans are also scalars, and likewise for vector-based representations.

mu Pð Þ ¼ 1

R

XR
i¼1

wu
i Pð Þ (1.2)

md Pð Þ ¼ 1

S

XS
i¼1

wd
i Pð Þ (1.3)

Note that for the discussion below, the terms “undamaged features” and “damaged features” are used. This terminology

implies that the features extracted from the data are acquired from the structural system in its undamaged or damaged

configuration, respectively, and not that the features themselves are undamaged or damaged.

1.2.3 Info-Gap Models of Uncertainty and the Robustness Function

Using the definitions provided in Sect. 1.2.2, the info-gap models of uncertainty Bu and Bd., are now formulated. These are

given as

Bu a; muð Þ ¼ bu :
bui � mui

mui

����
���� � a; 8i

� �
; a � 0 (1.4)

and

Bd a; md
� � ¼ bd :

bdi � mdi
mdi

����
���� � a; 8i

� �
; a � 0 (1.5)

for the structural system in its undamaged and damaged configurations, respectively, where it is noted that the functional

dependencies on P have been omitted for clarity. Referred to as an “envelope-bound” info-gap model [4], (1.4) represents

the set of all undamaged features bui having elements centered about means mui , and uniformly distributed throughout the

ranges � a� mui
� �

. Analogously, (1.5) represents the set of all damaged features bdi having elements centered about means

mdi , and uniformly distributed throughout the ranges � a� mdi
� �

. a is referred to as the “horizon of uncertainty” and for the

present discussion, represents the engineer’s lack of knowledge about the damage-sensitive features associated with the data.

Thus, as a grows, the assumption that the features are clustered about the mean values mui and m
d
i , becomes more invalid. Note

that the formulation outlined above takes into account variability associated with the characterization of the undamaged

configuration and the damaged configuration.

As stated previously, the robustness of a damage classifier is measured as its insensitivity to variability in the damage-

sensitive features, while still providing adequate damage detection performance. Thus, a metric of performance must be

defined against which the robustness of each damage classifier will be measured. While the performance of a damage

classifier may be measured in variety of ways, a common metric involves the Receiver Operating Characteristic (ROC) [8],
or more specifically, the ROC curve. ROC curves are constructed by computing the ordered pair TPRðtÞ;FPRðtÞð Þ, where
TPRðtÞ and FPRðtÞ are the true positive and false positive rates, respectively, for a given decision threshold t. In words, the

TPRðtÞ is the probability that a damage classifier correctly detects damage in the system, and correspondingly, the FPRðtÞ is
the probability that a damage classifier produces a false alarm or Type I error. Given the preference for a high TPRðtÞ paired
with a low FPRðtÞ, the Area Under the ROC Curve (AUC) has been proposed and employed as a global measure of

performance for diagnostic tests [9, 10]. It is this measure, paired with the qualitative guidelines given in [11] that will be

employed to assess the robustness curves in Sect. 1.3.2.

With a metric of performance against which to measure the robustness of damage classifiers, the corresponding

robustness function is defined as

â Cð Þ ¼ max
a

min
Bu�Bu a;muð Þ;Bd�Bd a;mdð Þ

AUC>AUCcritical

( )
: (1.6)

4 C.J. Stull et al.



The functional dependency C in (1.6) refers to a particular damage classifier, which is chosen by the analyst. Literally

translated, the robustness function seeks the maximum horizon of uncertainty a, for which the minimum AUC or worst-case

performance, is greater than the minimum performance requirement AUCcritical. Equation 1.6 is thus evaluated for various

C’s, providing the analyst with a principled way in which to compare and contrast the relative merits of the chosen C’s.
Before presenting a conceptual example, the practical problem of computing the inner minimum of (1.6) is discussed.

Oftentimes, there exists an analytical expression for the performance of a model that permits the derivation of an explicit

expression for the robustness function. Consider for example, a cantilevered beam under the influence of uncertain loading

with respect to the assumed info-gap model of uncertainty, whose performance is measured by the magnitude of the tip

deflection. In this situation, an expression for the tip deflection may be derived that takes into account the uncertainty in the

loading, and the robustness function may subsequently be derived using elementary calculus. In cases for which such closed-

form solutions are intractable, as in the present case, the info-gap model(s) of uncertainty may instead be sampled. For each

sample, the performance is computed and for the case of (1.6), the minimum performance from among the samples is stored.

If the info-gap model(s) of uncertainty are sufficiently sampled for a fixed value of a, it is reasonable to assume that the

robustness curves are well-approximated, and the IGDT analysis may proceed. Particular to robustness function presented in

(1.6), the performance metric is derived from a ROC curve, the construction of which requires multiple classified instances

of the uncertain feature vector. Thus, the robustness actually depends upon a sampled subset of the info-gap models given in

(1.4) and (1.5); these subsets are denoted Bu and Bd in (1.6). As above, the performance of each sampled subset is computed

and the minimum performance from among these subsets is stored. Alternately, an optimization scheme (e.g. genetic

algorithm) may be employed to determine the minimum performance. (While not a focus of the present paper, this issue is

noted here for the sake of completeness.)

1.3 Demonstration Problem

1.3.1 Experimental Data and Analysis Procedure

The data employed for the following demonstration problems are taken from a preliminary study that examined the

feasibility of applying SHM technologies to the RAPid Telescopes for Optical Response (RAPTOR) observatory network

[12]. The RAPTOR observatory network consists of several autonomous, robotic, astronomical observatories designed to

search for astrophysical transients, with specific focus on gamma ray bursts [13]. The high duty cycles and remote locations

of these observatories present significant difficulties with respect to planning maintenance schedules, making them ideal

candidates for SHM.

At issue in this study is the wear of a component of the drive mechanism that controls the right ascension axis of the

telescope (see Fig. 1.1). This component, referred to as a “capstan,” is a stainless steel rod with a urethane coating that

provides the friction interface between the motor that drives the telescope mount and the drive wheel. The urethane coating

is known to experience wear with use, resulting in irregular travel of the drive wheel and the eventual inability to actuate the

drive wheel. Figure 1.2 provides examples of both undamaged and damaged capstans, where these qualitative assessments

were provided by an expert familiar with the RAPTOR observatories.

Fig. 1.1 Telescope system

with mount and drive

mechanisms

1 On Assessing the Robustness of Structural Health Monitoring Technologies 5



Data for the study are collected using a PCB Piezotronics model 352A24 accelerometer with a data sampling rate of

640 Hz over a time of 6.4 s, giving a total record length of 4,096 samples, for each of the ten tests executed, and for each of

the six capstans illustrated in Fig. 1.2. This gives a total of 60 acceleration time-histories that were then divided into equal-

size records, each having a length of 256 time points. Referencing the sets Xu ¼ xui : 8i ¼ 1; 2; . . . ;R
� �

and

X d ¼ xdi : 8i ¼ 1; 2; . . . ; S
� �

, X u
i and X d

i contain 256 time-points for all i, and R ¼ S ¼ 480. The reader is reminded that

typical SHM applications present situations where R � S. However, in this application, access to both undamaged and
damaged capstans and an out-of-service RAPTOR observatory with which to test the capstans was readily available,

presenting a unique case where R ¼ S.
Relating this problem to the robustness function in (1.6), the sets Fu and Fd are composed of vectors of the AR model

coefficients associated with the structural system in its undamaged and damaged configurations, respectively. AR models

provide a relatively straightforward means of accurately describing time-history data, and because the ARmodel coefficients

represent the poles of the structural response, they are sensitive to changes in the dynamic response of the structure. The use

of AR models is widespread in the SHM literature (see e.g. [14, 15]). However, a survey of the literature also indicates that

the problem of selecting an appropriate AR model order remains a topic of importance in the SHM community [2, 16].

For the time-histories considered herein, having discretely sampled components x1; x2; . . . ; x256, the corresponding AR

models are computed as

xi ¼
Xp
j¼1

’jxi�j þ ei; (1.7)

where p is the order of the AR model, ’j .s the jth AR model coefficient, and ei is a white-noise random error at time i. The
coefficients ’j are computed using a least-squares technique or the Yule-Walker equations [17], with the number of

coefficients being equal to the order of the AR model: a number that is typically several orders of magnitude smaller than

the number of samples within the time-history.

To conduct the info-gap analysis, AR model coefficients are computed for each of the acceleration time-histories in the

sets X u and X d, and their respective means are computed as in (1.2) and (1.3). A damage classifier is then “trained” using

the features contained in the set Fu. Thereafter, multiple subsets of samples (i.e. multiple Bu’s and Bd’s) are assembled from

the info-gap models in (1.4) and (1.5) at monotonically increasing values of the horizon of uncertainty a. The samples within

these subsets are classified as undamaged or damaged, using the aforementioned damage classifier, and ROC curves are

constructed for each of the subsets. Then, for each value of a, the worst-case performance (i.e. minimum AUC) of the
damage classifier is stored. This process is repeated for each of three damage classifiers C ¼ {Mahalanobis Squared

Distance, Principal Component Analysis, Singular Value Decomposition} (a discussion of these damage classifiers follows).

1.3.2 Robust Selection of Damage Classifier

This demonstration problem is centered on Part (iv) of the SHM paradigm presented in Sect. 1.1.1, Statistical Model

Development for Feature Discrimination. The model employed to discern the state of the structural system can rely on a

purely mathematical representation of the data as in [18] or instead rely on a high-fidelity, physics-based model as in [19].

For the present case, three mathematical representations employed as damage classifiers are examined: Mahalanobis

Squared Distance, Principal Component Analysis, and Singular Value Decomposition. Brief explanations of each are

given in the following sections, followed by a presentation of the results from the info-gap analyses of each.

Fig. 1.2 Capstans for which the sets of acceleration time-histories, Xu and Xd , were obtained
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For reference in the following sections, (1.8) defines the p� Rð Þ matrix Yu that contains the standardized AR model

coefficients associated with the undamaged system state, where mu is as defined in (1.2). Equation 1.9 is then the p� pð Þ
covariance matrix of Yu, where it is noted that E½	
 is the expected value operator. Lastly, p is the selected order of the AR

model employed to represent the time-history data (see (1.7)).

Yu ¼ wu
1 � mu; . . . ;wu

R � mu
� �

(1.8)

Su ¼ E Yuð Þ Yuð ÞT
h i

(1.9)

1.3.2.1 Mahalanobis Squared Distance

The most straightforward of the four damage classifiers employs the Mahalanobis Squared Distance (MSD) metric to

quantify the similarity between a training data set and a data set of features obtained from an unknown system state.

The formula for computing this metric is given as

DM ¼ wuknown � mu
� �T

Suð Þ�1
wuknown � mu
� �

; (1.10)

where wuknown is the feature vector being classified and mu and Su
are as defined in (1.2) and (1.9), respectively. In this way,

the classification problem reduces to one of scoring individual feature vectors, where the scores represent the deviation of

each feature vector from the mean behavior of the setFu. Thus, higher MSDs are assumed to be associated with the damaged

system state.

1.3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) operates by projecting multi-dimensional feature vectors onto a lower-dimensional

subspace. This is accomplished by operating on Yu with an p� nð Þ transformation matrix T as

X ¼ TTYu; (1.11)

where n is less than p, which yields a reduced set of R vectors in n-dimensional feature space. If T is orthogonal (i.e. if

TTT ¼ I), then Yu. can be reconstructed as

Ŷ ¼ TX ¼ TTTYu: (1.12)

The error in this reconstruction can be expressed as the Euclidian norm Yu � Ŷ2, and the columns of T that minimize this

error for a projection onto a subspace of dimension n, are the eigenvectors corresponding to the largest n eigenvalues of the

covariance matrix of Yu [20]. The classification then employs the transformation matrix T to operate on wuknown as in (1.12),

where large residual error in the reconstruction indicates that wuknown is associated with the damaged system state.

1.3.2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) is a method that has been proposed to discern whether a feature vector from an

unknown system state should be assessed as damaged or undamaged [21]. To begin, consider the matrix

Z ¼ wu
1; . . . ;w

u
R;w

unknown
� �

; (1.13)

where the quantities are as previously defined and linear independence among the wu
i is assumed. If it is assumed that linear

independence between the wu
i and wunknown is indicative of damage, then the state from which wunknown emanates may be

assessed by simply computing rank Zð Þ. Thus, if rank Zð Þ ¼ Rþ 1, then ’unknown is likely to be associated with the damaged
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condition and the converse is true for rank Zð Þ ¼ R. However, due for example to noise-contaminated data, assessing

’unknown is rarely as simple as computing rank Zð Þ. This difficulty is typically overcome by comparing the singular values of

the matricesYu and Z. up to a certain threshold, where large residual differences between the singular values of Yu and Z are

assumed to indicate damage.

1.4 Results

The robustness curves given in the left panel of Fig. 1.3 present the worst-case performances associated with the robust-

optimal AR model orders, for each of the three damage classifiers. For each damage classifier, the robust-optimal AR model

order is chosen by first examining the performance levels of all AR model orders at a horizon of uncertainty a ¼ 1:0. The AR
model order that exhibits the most robust performance at this horizon of uncertainty (i.e. the highest AUC value at a ¼ 1:0) is
then selected as the robust-optimal AR model order. (For brevity, the details of this analysis are not included in the present
document.) For the MSD, PCA, and SVD damage classifiers, the robust-optimal AR model order is 20. Shifting focus to the

right panel of Fig. 1.3, a limit of AUCcritical ¼ 0:9 has been set (see (1.6)). Imposition of this limit means that when the

performance of any damage classifier falls below AUC ¼ AUCcritical, the corresponding value of its robustness becomes

zero. Put another way, there is no permissible horizon of uncertainty a, for which this damage classifier is able to meet the

minimum performance requirement AUCcritical. Conversely, when a damage classifier meets this minimum performance

requirement, it is said to satisfice the minimum performance requirement [4].

It is noted that the value assigned to AUCcritical uld ultimately need to take into account many aspects of the SHM system

design (e.g. life-safety concerns, equipment costs). In the case of the RAPTOR observatories, there are no life-safety

concerns, and equipment failures that could damage high-cost equipment are readily detected. According to the quantitative

assessment provided by [11], AUC ¼ 0:9 corresponds to a “highly accurate” diagnostic test, which is assumed herein to be

adequate for this application.

For the present case, the most robust of the four algorithms is clearly the PCA damage classifier. Examination of Fig. 1.3

also highlights two central properties or axioms of IGDT. The first relates to the nesting property common to info-gap

models of uncertainty in that as the horizon of uncertainty a, increases, the sets defined by info-gap models become more

inclusive. It is noted that this property requires that the constructed info-gap models be convex in nature, which is the case

for (1.4) and (1.5), but it is also a property typical to the types of uncertainties handled in IGDT [4]. As an example, consider

Fig. 1.4 where it is seen that at a ¼ a2, the range of values that bui may assume also includes that defined at a ¼ a1. .
Likewise, the range of values that bui may assume at a ¼ a3, includes that defined at a ¼ a2 (which also includes that defined
at a ¼ a1). The implication of this property is that as the horizon of uncertainty increases, the worst-case performance of a

model, which emanates from this nested set of model parameters, does not and moreover, cannot improve (but it can stay the

same), producing the monotonically increasing robustness curves given in Fig. 1.3.

The second property is that of contraction [4], in that as a approaches a value of zero, the info-gap models reduce to a

single set of parameters that describe “nominal models;” these nominal models have zero robustness to uncertainty. For the

present case, the nominal models of the undamaged and damaged configurations are represented by the mean values of the

Fig. 1.3 Robustness curves for damage classifiers associated with robust-optimal AR model orders. The scale of the right figure is magnified 5X

over that of the left, in the x-axis direction
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AR model coefficients mu and md, built from the time-histories contained in Xu and Xd , respectively (given in Sect. 1.3.1).

The contraction property is demonstrated in Fig. 1.3, in that the robustness curves reduce to a constant value of AUC ¼ 1:0 at
a value of a ¼ 0. While representing the best information available to the engineer, these nominal models also represent a

precariously optimistic point-of-view in that no variability in the data may be tolerated without the potential of negatively

affecting the quality of the model, represented as a reduction in the value of AUC.

1.4.1 Hypothetical Example

As a benefit to the readers, the authors propose the following hypothetical example derived from the info-gap analyses

conducted in Sect. 1.3.2. An engineer is presented with the time-history data described in Sect. 1.3.1 and asked to assess the

robustness of the MSD, PCA, and SVD damage classifiers against variability in the data. The engineer conducts a similar

analysis as given in Sect. 1.3.2, but instead analyzes a subset of randomly selected AR model orders. A plot of the robustness

curves from one of these subsets is given in Fig. 1.5, where the randomly selected AR model orders are P ¼ 20; 50; 25f g for
C ¼ {MSD,PCA,SVD}, respectively.

While the authors are quick to admit that this is a contrived example, the results of this example demonstrate an important

characteristic common to info-gap analyses, namely that of preference reversal. Upon examination of Fig. 1.5, it can be seen

that the robustness curves associated with three damage classifiers cross at various points throughout the space. The crossing

of these curves represents a point where the preference for one algorithm over another changes due to the engineer’s

Fig. 1.4 Nesting property of

info-gap models of

uncertainty

Fig. 1.5 Robustness curves

for damage classifiers

associated with hypothetically

chosen AR model orders (for

illustration purposes)
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increasing lack of knowledge about the data. In the present example, the robustness curves cross at three points within the

horizon of uncertainty examined. This presents four regions in which damage classifier preferences may be specified (see

Table 1.1), where it is noted that when a<0:2, there appears to be no preference of one classifier over another. That is, when
a<0:2, the engineer may choose a classifier without worrying about negative consequences of variability in the data.

This example illustrates one of the considerable strengths of IGDT in that the engineer can, in a defensible manner, state
his preference for one damage classifier over another by assessing the robustnesses of these damage classifiers to variability

in the data. However, it must be noted that the question of what the appropriate horizon of uncertainty is remains a judgment

call that is heavily influenced by the engineer’s, policy-maker’s, or regulatory body’s aversion to risk.

An important result that can be seen in both Fig. 1.5 and Table 1.1 is that the PCA damage classifier, which starts out as

the most robust algorithm (as evidenced by its high AUC as compared to the MSD and SVD damage classifiers), becomes the

least robust algorithm as the horizon of uncertainty increases. Put another way, the optimal damage classifier becomes sub-
optimal in the face of uncertainty about the data. This result is of paramount importance if the engineer suspects that the data

may be, or may become subject to environmental and/or operational variability in the future.

1.5 Conclusions

A framework for assessing robustness of various Structural Health Monitoring (SHM) technologies is presented. This

framework, anchored in Information-Gap Decision Theory (IGDT), offers a means of accounting for the engineer’s lack of

knowledge affecting the decision at hand, while not requiring a probabilistic treatment of said lack of knowledge. For the

demonstration problems outlined above, this lack of knowledge corresponds to environmental and/or operational variability

affecting data collected from a structure to be monitored by a SHM system; the engineer is tasked with designing a SHM

system robust to this variability. Traditionally, accounting for this variability would require the engineer to collect enough

data to formulate probabilistic descriptions (e.g. probability density functions) about these data. In the present case, the

variability is treated non-probabilistically, and the worst-case performance for a given level of variability is determined. The

results of Sect. 1.3.2 highlight properties typical to IGDT problems, providing the reader with a reasonable overview of

IGDT and its application to SHM. While the applications demonstrated (i.e. selection of robust, damage-sensitive features

and a robust damage classifier) are of a rather specific nature, the framework outlined above is general enough that its

applicability could be extended to other problems within SHM.

The limitations of this framework stem from the fact that it is a tool that analyzes the robustness of one or more decisions,

but does not actually make a decision. Such decisions are certainly better informed vis-à-vis IGDT analyses but ultimately

rest with the engineer. Furthermore, if a closed-form, analytical expression for the robustness function cannot be derived, its

evaluation either requires sampling of the info-gap models or the implementation of an optimization procedure to “search”

for the worst-case performance, at every horizon of uncertainty desired. For the demonstration problems outlined above, this

is a trivial concern as building AR models and constructing ROC-curves are relatively inexpensive operations. If instead the

evaluation of the robustness function requires calls to a high-fidelity, physics-based model, this concern is no longer trivial.

It can, however, be mitigated by employing surrogate or reduced-order models, keeping in mind that such models may

introduced modeling inaccuracies that affect the evaluation of the robustness function.

Future research directions include applying this framework to simple laboratory structures that can be monitored in a

controlled environment, where variability in the data can be introduced in a controlled manner (i.e. the horizon of

uncertainty can be quantified). These laboratory tests would serve to validate the claim that a robust SHM system design

should be preferred over an optimal (or nominal) SHM system design when faced with environmental and/or operational

variability, paving the way for applications of this framework to real-world SHM system designs.

Table 1.1 Damage

classifier preferences

for robustness curves

given in Fig. 1.5

Horizon of uncertainty range Damage classifier preferencea

a<0:2 No preference

0:2<a<0:67 PCA, SVD, MSD

0:67<a<0:78 PCA, MSD, SVD

0:78<a<0:85 MSD, PCA, SVD

0:85<a<1:0 MSD, SVD, PCA
aOrdered left to right, with the more preferred approach to the left
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Chapter 2

Design of Uncertain Prestressed Space Structures:

An Info-Gap Approach

Aurélien Hot, Scott Cogan, Emmanuel Foltête, Gaetan Kerschen,

Fabrice Buffe, Jérôme Buffe, and Stéphanie Behar

Abstract Uncertainty quantification is an integral part of the model validation process and is important to take into account

during the design of mechanical systems. Sources of uncertainty are diverse but generally fall into two categories: aleatory

uncertainties due to randomprocesses and epistemic uncertainty resulting from a lack of knowledge or erroneous assumptions.

This work focuses on the impact of uncertain levels of prestress on the behavior of solar arrays in their stowed configuration.

In this context, snubbers are inserted between two adjacent panels to maintain contact and absorb vibrations during launch.

However, under high excitation loads, a loss of contact between the two panels may occur. This results in impacts that

can cause extensive damages to fragile elements.

In practice, the specific load configuration for which the separation of the two panels occurs is difficult to determine

precisely since the exact level of prestress applied to the structure is unknown. An info-gap robustness analysis is applied to

study the impact of this lack of knowledge on the prestress safety factor required to avoid loss of contact. The proposed

methodology is illustrated using a simplified model of a solar array.

2.1 Introduction

In the field of structural dynamics, the mathematical model must not only be validated against tests, it must also be validated

with respect to its final performance goal in the presence of uncertain parameters. Indeed, the required performance may be

drastically affected even by a slight perturbation. Moreover, real environmental conditions and loads on a structure are

sometimes unknown or can not be reproduced during tests. It is thus important to take these uncertainties into account in the

design process.

One can distinguish two sources of uncertainty. The first class of uncertainties, called aleatory uncertainty, is due to the

intrinsic randomness of the structure parameters such as variability of its physical properties, of the assembling process, of

its service conditions (temperature, hydrometry, etc.), or again the variability of the measuring process. The second class

pertains to epistemic uncertainties. They result from a lack of knowledge or erroneous assumptions, such as unknown values

of stiffnesses, linearity assumptions, omission of contact elements or other nonlinear elements, unknown probability

distributions, among others.
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Dealing with aleatory uncertainties, it is common practice to use probabilistic methodologies [1, 2] to quantify and

propagate them through the system model. A classical approach consists in using a deterministic finite element model for the

mechanical system and then adding the uncertainty through either parametric or non-parametric methods. When using the

parametric approach, the uncertain physical parameters, e.g. Young’s modulus or plate thickness, are characterized by their

mean value, their standard deviation or by probability density functions, e.g. Gaussian or uniform distribution. However, the

difficulty in quantifying the level of stochastic uncertainty in physical parameters has motivated the development of

alternative non-parametric approaches. Soize proposes in [3] an overview of these methodologies, for which the

uncertainties are no longer applied to physical parameters but directly introduced in the global randomized matrices through

dispersion parameters.

However, using a stochastic approach for all types of problems would be too restrictive and inappropriate. Indeed, for

epistemic uncertainties, where a large amount of information is missing, the probabilistic approach is unsuitable. Thus, to

study these cases, one can use a second class of uncertainty models, based on non-probabilistic methods such as the interval

arithmetic theory [4], the Fuzzy sets approach [5] or the Transformation method [6]. Moreover, to deal with problems

subject to severe uncertainty, Ben-Haim proposed in [7] the Info-gap theory. The basic idea of this theory is to investigate the

degree of lack of knowledge that can be tolerated while satisfying a critical level of performance.

In this paper, only the case of epistemic uncertainty due to lack of knowledge is tackled using the Info-gap theory. This

method will be first briefly described and then applied to an uncertain prestressed structure.

2.2 The Info-Gap Theory

The Info-gap theory proposed by Ben-Haim [7] helps to quantify the robustness of model-based decisions to lack of

knowledge in the system model. This approach provides a useful tool since the trade-off between performance and

robustness can be investigated and different design configurations can be compared. The methodology has already been

applied in many different fields. In structural dynamics analysis, studies concerning model updating [8], reliability [9],

optimal sensors and exciters positioning [10] and design of civil structures in seismically active regions [11] have already

been carried out. Moreover, applications of the Info-gap theory can also be found in medical [12] and management [13]

applications, as well as elsewhere.

An Info-gap model quantifies the difference—the gap—between the information that is known, for example the nominal

value of a parameter, and the information that has to be known in order to insure a critical level of performance. This non-

probabilistic approach to uncertainty quantification is briefly described in the following sections.

An Info-gap robustness analysis is composed of four components:

• The system model defines the relation between the system inputs and outputs. In the case of structural dynamics, the

system model consists in the equation of motion that links the inputs, the excitation force, to the outputs, displacement,

velocity and acceleration, through the finite element model. The system model is denoted S(n) and depends on various

unknown parameters n.
• The uncertainty model U represents the uncertainty in the variables n. It consists in a collection of nested sets of uncertain

events whose size is controlled by a horizon of uncertainty h. The larger this horizon, the more inclusive is the uncertainty

model. A simple model could be an interval within which n varies around a nominal value n0:

Uðn0; hÞ ¼ fn : jn� n0j � hg; h � 0 (2.1)

• The performance requirement is a specification of a critical level, denoted Pcrit, of the system performance P(S(n)), e.g. a
maximum tolerable displacement or stress in the structure:

PðSðnÞÞ � Pcrit (2.2)

• The robustness to uncertainty ĥ is defined as the greatest value of the uncertainty parameter h for which the critical

performance requirement is still insured. This can be expressed by:

ĥ ¼ max h : max
n2Uðn0;aÞ

PðSðnÞÞ � Pcrit

� �
(2.3)
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2.3 Application to a Simplified Solar Array System

2.3.1 Presentation

A specific difficulty encountered on solar arrays concerns the impacts that occurs between two adjacent panels. In order to

limit this phenomenon, which can lead to significant damage, dedicated snubbers are inserted between the panels.

The presence of the snubbers has two consequences. First, they lead to an increase in the local stiffness, thus limiting the

relative displacements. Second, the induced prestress forces insures that contact is maintained between the two panels.

However, for high input levels, loss of contact between the snubbers and the panels may arise and impacts still occur.

The Info-gap approach is used here to assess the robustness of the solar array system performance to epistemic

uncertainties due to lack of knowledge in the induced prestress forces. The performance criterion here is the non-separation

of two adjacent panels that will guarantee the integrity of the structure. The four components of an Info-gap analysis

described above are presented in the following paragraphs, namely:

• System model: Simplified solar array system prestressed due to the presence of snubbers

• Performance requirement: Non-separation of the two panels in order to avoid impacts

• Uncertainty model associated with uncertain prestress values

• Robustness: What maximum level of uncertainty in the prestress can be tolerated while insuring that the panels do not

impact one another?

2.3.2 System Model

The finite element model of the simplified solar array is depicted in Fig. 2.1a. The two plates are meshed with 3072

NASTRAN CQUAD4 elements. The stacking points are modeled using three CBAR beams that are linked to the plates

through rigid elements RBE2. Only the masses of the two hinges are taken into account in this model by concentrated masses

CONM2, also linked to the plates with rigid elements. The element properties are listed in Table 2.1, where E, n, r, T, d and
m are the Young’s modulus, the density, the Poisson’s ratio, the plates thickness, the beams cross section dimension and the
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Fig. 2.1 System model. (a)

Simplified solar array model

FEM; (b) Frequency response

of the system at node 1

Table 2.1 Element property

of solar array model
CQUAD4 E ¼ 6. 52e10 Pa r ¼ 2,761 kg.m � 3 n¼0.34 T¼ 5 mm

CBAR E ¼ 5. 18e10 Pa r ¼ 3,453 kg.m � 3 n¼0.34 d¼ 16 mm

CONM2 m ¼ 191 g
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concentrated masses value, respectively. The whole model contains 19,548 dofs. Two linear springs that model the snubbers

behavior are inserted between 1 and 2 and 3 and 4 whose stiffnesses are denoted ks. In a first step, ks ¼ 1e5 N/m.

A 1 N sine excitation Fd is applied at node 5 in the z-direction. The corresponding displacement frequency response of

node 1 is plotted in Fig. 2.1b.

2.3.3 Performance Requirement

The performance requirement in this study consists in avoiding the separation of the two panels. Indeed this requirement

insures that no impact can occur between the panels, so that the system integrity is preserved. This statement is expressed as

a condition on local forces: separation occurs when the reaction force Fr of the snubber on the panel exceeds the applied

static prestress load Fps:

Fr � sf Fps (2.4)

where sf is a safety factor that enables to allow variations on the separation condition. A small safety factor guaranties a safe

behavior but has very strict requirements, whereas a large value is easier to realize but is dangerous regarding the

performance requirement. Unless otherwise mentioned, this sf value remains equal to 1.

Figure 2.2a plots the reaction force Fr at node 1 obtained using the MPCF NASTRAN card, as well as three given

threshold prestress force values. One remarks that two modes are liable to lead to the performance failure. We will focus on

the one around 80 Hz, the highest amplitude one. However, the extension to a frequency band containing several modes can

be readily made.

With the performance requirement defined, one can seek all realizable configurations (frequency, dynamic input force,

prestress loads) that lead to failure. The set Vðo;FdÞ, expressed in (2.5), corresponds to the points that bounds the

performance. In other words, all the configuration points inside the parabola do not satisfy the performance requirement.

Figure 2.2b shows these sets for the three prestress loads. For a given prestress load, the lowest dynamic force Fd for which

the panels separate occurs for the resonance frequency. Indeed, with the increasing relative displacement of the two corners

of the panels, the reaction force increases and exceeds the prestress threshold value. Moreover, one can also remark that, as

expected, the higher the prestress load, the narrower the Vðo;FdÞ set and thus the smaller the opportunity of failure.

Vðo;FdÞ ¼ ffo;Fdg : jFrðoÞj ¼ sf Fpsg (2.5)
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2.3.4 Uncertainty Model

As mentioned in the presentation paragraph, the source of epistemic uncertainty in this example is the prestress load value

Fps. Indeed, it is assumed here that the level of prestress introduced by the snubbers is difficult to assess due to structural

uncertainties (geometric defects, interface stiffness, etc).

Let fFps be the best estimate of Fps. This fFps quantity is a known but perhaps unreliable estimate of the corresponding

coefficient. In fact, we do not know by how much the estimated value is wrong. The uncertainties on Fps are modeled here

using an fractional-error Info-gap model:

UðhÞ ¼ Fps :
jFps � fFpsjfFps

� h

( )
; h � 0 (2.6)

The inequality states that the fractional error of the estimate
jFps� eFpsjeFps

is bounded by the horizon of uncertainty h. Since we

do not know the magnitude of error, no realistic worst case is known, h is unbounded. When h ¼ 0, there is no uncertainty

and the estimation is correct. Whereas, as h increases the uncertainty set UðhÞ is more and more inclusive. Thus the Info-gap

model is an unbounded family of sets of possible realizations of Fps.

Figure 2.3 plots the evolution of the failure point in an uncertainty vs dynamic force diagram. For each curve, the first

decreasing part corresponds to the worst case of performance failure, and the second increasing branch corresponds to the

best case. As engineering structures are usually designed in the worst case, the study focuses on the curves left hand part.

For a null uncertainty h, the Fps value is the nominal one and the failure point corresponds to the one seen in Fig. 2.2b.

Regarding the nominal value of 2 N prestress load example, the separation occurs for a dynamic force of 0.17 N, which

actually corresponds to the minimum of the corresponding curve in Fig. 2.2b. Then, the more the amount of uncertainty

increases, the lower the dynamic force required for failure.

These curves also enable to evaluate the allowed uncertainty that still avoids failure. For example, if the system is excited

with a dynamic force of 0.17 N, no uncertainty is tolerable if the prestress load is equal to 2 N. Thus, the prestressed force value

must be exactly known. However, if Fps ¼ 0. 4 N, a 0.51 uncertainty value is now tolerable, and even 0.68 in the last case.

2.3.5 Robustness

We now define the robustness of the system model to uncertainty in the prestress load value. The robustness ĥ is the greatest
horizon of uncertainty h up to which the performance requirement is satisfied for all realizations of the uncertain quantity:

ĥ ¼ max h : max
Fps2UðhÞ

½Fr � sf Fps�
� �

� 0

� �
(2.7)
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Figure 2.4 displays the robustness ĥ vs the safety factor sf, that remained equal to 1 up till now. Several conclusions can be

drawn from these curves.

First, for low safety factors, the robustness remains null. This means that, in these cases, what ever the prestress

configuration, failure of the performance requirement is certain.

Then, for the 6 N prestressed configuration, the robustness curve presents two different behaviors. For a safety factor

below 0.8, the slope is quite steep, which means that for a small effort in increasing the safety factor the gain in robustness is

important. Whereas, for safety factors above 0.8, the slope is now flat: a large variation of sf only leads to a small profit of the

robustness.

Finally comparing the three curves, one can note that, for all safety factor values, the higher the prestress load value, the

greater the robustness to the sought performance, that is to say, avoiding separation between the panels.

2.3.6 Comparison of Different Snubber Stiffnesses

The previous paragraph compared the robustness of the system for different prestress loads and safety factor values. Now a

third parameter is introduced: the snubber stiffness ks. The previous results were obtained using a unique value: ks ¼ 1e5 N/m.

Let us now assess the influence of ks on the robustness function.
The reaction forces on the snubbers nodes are first recomputed for four different ks values: 1e4, 1e5, 1e6 and 1e7 N/m.

These results are plotted in Fig. 2.5 and one can observe, as expected, a softening or stiffening effect depending on the

snubber stiffness value.
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The same procedure as above is then followed to estimate the robustness of the different designs. The corresponding

results are displayed in Fig. 2.6. For all ks values, the obtained curves present the same shape, which enables to directly

compare the different robustness levels. It appears that, in this specific example, the case ks ¼ 1e7 N/m leads to the most

robust design. However, the greater stiffness does not always means the more robust. Indeed, here the ks ¼ 1e4 N/m

configuration is more robust than the ks ¼ 1e5 N/m one.

2.4 Conclusions

The objective of this work was to develop a model-based decision indicator for designing the prestress level required

between the panels of a stowed solar generator in order to avoid damage due to impacts during launch. Given the presence of

severe uncertainty in the prestress values induced by the introduction of dedicated snubbers, an info-gap approach was used

to study the robustness of the critical design performance, namely the absence of separation, to lack of knowledge in the

prestress states at each snubber location. Moreover, the impact of snubber stiffness on the robustness function was also

investigated and the existence of an optimal value was demonstrated. The proposed methodology was illustrated using a

simplified solar array model.

Before applying this methodology to an industrial structure, several limitations in the current approach must be addressed.

Future work will consist in building a more accurate nonlinear model of the contact phenomena between the snubbers and the

panels. Moreover, an estimation of how much prestress uncertainty must be tolerated in practice would be very useful for

design purposes. This question will be examined by studying the impact of lack of knowledge in the mechanical properties of

the structure on the prestress forces. Finally, an experimental validation of the methodology will be carried out on a simplified

prototype structure.
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10. Vinot P, Cogan S, Cipolla V (2005) A robust model-based test planning procedure. J Sound Vib 288(3):571–585

11. Takewaki I, Ben-Haim Y (2005) Info-gap robust design with load and model uncertianties. J Sound Vib 288:551–570

12. Ben-Haim Y, Zacksenhouse M, Keren C, Dacso CC (2009) Do we know how to set decision thresholds for diabetes. Med Hypotheses

73:189–193

13. Ben-Haim Y, Laufer A (1998) Robust reliability of projects with activity-duration uncertainty. ASCE J Constr Eng Manag 124:125–132

20 A. Hot et al.



Chapter 3

Robust Control Design for Uncertain Nonlinear Dynamic Systems

Sean P. Kenny, Luis G. Crespo, Lindsey Andrews, and Daniel Giesy

Abstract Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at

the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control

design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have

acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents

an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric

uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is

realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect

of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability

to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor

parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and

transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the

theory behind the robust control design methodology and the experimental results.

Keywords Robust design • Uncertainty quantification • Nonlinear control

3.1 Introduction

This paper presents an application of a control design and analysis methodology for arbitrary dynamic systems in the

presence of parametric uncertainty. The specific classes of uncertainty considered here include multidimensional sets and

probability density functions (PDFs). In the context of this paper, multidimensional sets are simply regions in parameter

space where the stability and performance of the dynamic system are to be assessed. A bounding set in two dimensions, for

example, could be a rectangle that is defined by its center and semi-diagonal. Other bounding sets are permitted, e.g.,

circular, and elliptical, with no restrictions on the dimensionality of the uncertain parameter space. Bounding set models are

typically used when little is known about the true variability of the uncertain parameters, or when the stability and

performance of the system need to be certified over a specific range of uncertainties. The other form of uncertainty used

in this work is the PDF that describes the relative likelihood for a random variable to occur at a given point. Uncertainty

models based upon PDFs require more information to create, but yield likelihood information of stability and performance of

the controlled system. Despite the fundamental differences in these two forms of uncertainty, a unified framework [1] has

been developed to accommodate both simultaneously.
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The primary objective of this paper is to apply the methods outlined in [1] to a hardware realization of the classic inverted

pendulum on a cart. This objective was broken into two tasks, one for pure analysis of both stability and performance, and

one that focused on controller design for the nonlinear pendulum system. The analysis task was to assess the robustness of

the system to parametric uncertainty in two parameters, whereas the design task was to synthesize an optimally robust fixed-

architecture controller for the nonlinear system.

3.2 Inverted Pendulum System

Figure 3.1 illustrates the experimental apparatus used in this work. The system features a cart driven by a rack and pinion

mechanism using a DC motor. The cart position is measured using an optical encoder coupled to the rack via an additional

pinion. A pendulum mounted on the cart is free to rotate and its angle is measured via an optical encoder. The pendulum

arrangement has been modified to accommodate the needs of this research. The primary modification is the addition of a

rigid coupling connected to the pivot point to allow an additional link to be added. The modified system consists of two

collinear links, the original upper link with length 2L1, and a new lower link with length 2L2. The lower link has been

designed to permit the addition of a movable point mass, Mp, whose distance from the pivot point, Lp, is considered as one

of the uncertain parameters. A total of two uncertain parameters were considered in this study and were distinct in that one

was physically realizable by changing the location of a movable mass on the pendulum, and one was a simulation model

parameter corresponding to the relationship of current input to torque output of the DC motor used to actuate the system.

Both uncertain parameters have a profound effect on the stability, performance, and controllability of the dynamic

system. For example, the movable mass degrades controllability of the system by requiring larger control signals to maintain

stability and achieve adequate performance as the mass moves away from the pivot point.

3.2.1 Model of the Dynamic System

The classic inverted pendulum is well-studied and the equations of motion can be found in many references, e.g., [2].

However, the configuration used in this work departs slightly from the conventional inverted pendulum, so the equations of

motion are stated here for completeness.

The input force to the system is generated by applying a voltage to a DCmotor to move the cart. The relationship between

voltage, V , and applied force, F, can be represented as:

V ¼ ImRm þ KmKgog ¼ ImRm þ KmKg

_Xc

r
T ¼ KmKgIm

F ¼ KmKgV

Rmr
� K2

mK
2
g
_Xc

Rmr2
(3.1)

Fig. 3.1 Inverted pendulum with movable mass
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where Km is the DC motor torque constant, Kg is the planetary gearbox gear ratio, og is the angular velocity of the pinion

gear, Rm is the motor armature resistance, Im is the motor armature current, r is the motor pinion diameter, and V is the

applied voltage. Using the relationships given in (3.1) together with the fundamental physics results in the following

nonlinear equations of motion:

€Xc ¼ V NW � _XcNW
2 þ cos Yð Þg sin Yð ÞRm P2 þ _Y

2
sin Yð ÞRm NP

Rm NM� cos2ðYÞP2
� � (3.2)

€Y ¼ �
P g sin Yð ÞRm M þ cos Yð Þ _Y2

sin Yð ÞRm Pþ cos Yð ÞVW � cos Yð Þ _Xc W
2

� �
Rm NM� cos2ðYÞP2

� � (3.3)

where

W ¼ Kg Km

r
(3.4)

P ¼ M2 L2 þMp Lp �M1 L1 (3.5)

N ¼ 4

3
ðM2 L2

2 þM1 L1
2Þ þMp Lp

2 (3.6)

M ¼ Mc þMp þM1 þM2 (3.7)

Xc is the position of the cart and Y is the angle of the pendulum. The angle Y is measured counter-clockwise with zero

defined when link one is pointing vertically up. Note that with this definition of Y, the angular displacement shown in

Fig. 3.1 is actually negative. The remaining parameters above are defined as follows: Mc is the mass of the cart, M1 is the

mass of link one, M2 is the mass of link two, L1 is the half-length of link one, L2 is the half-length of link two, and g is the

gravitational acceleration. The MKS system of units are used throughout the paper. Furthermore, it should be noted that

equations given in (3.2) and (3.3) neglect damping.

3.2.2 Linear System Model

A general representation of the nonlinear equations given in (3.2) and (3.3) can be given as

_X ¼ ℱ ðX;U; pÞ (3.8)

where ℱ is a nonlinear function of the state vector X, the control input U, and the vector of uncertain parametersp. In this

system, the vector of uncertain parameters is p ¼ [Lp, Km].

For control design purposes, this nonlinear plant is linearized about the equilibrium point ð�x; �uÞ satisfyingℱ ð�x; �u; pÞ ¼ 0.

Deviations from the equilibrium values �xðpÞ and �uðpÞ are written as lowercase letters hereafter, e.g., X ¼ �xþ x and

U ¼ �uþ u. Linearization of (3.8) about this equilibrium point leads to the system

_x ¼ AðpÞxþ BðpÞuþ �ðx; u; pÞ (3.9)

where

AðpÞ ¼ @ℱ
@X

����
�xðpÞ;�uðpÞ

BðpÞ ¼ @ℱ
@U

����
�xðpÞ;�uðpÞ

(3.10)
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and Z(x, u, p) contains higher-order terms. Note that A, B and the high-order terms depend on p. In a sufficiently small

neighborhood of the equilibrium point the effect of the higher-order terms is negligible. The Linear Time Invariant (LTI)

representation of the plant results from dropping the higher-order terms in (3.9). This LTI system can be written as

_x ¼ AðpÞxþ BðpÞu
y ¼ Cx (3.11)

where A(p) is the system matrix, B(p) is the input matrix, C is the output matrix, x is the state vector, and u is the input. This is
applied to the inverted pendulum by choosing the state vector to be x ¼ ½xc; y; _xc; _y�> and the control input to be the applied

voltage; i.e., u ¼ V. The equilibrium point about which we linearize is �xðpÞ ¼ ½0; 0; 0; 0�> and �uðpÞ ¼ 0. With these choices,

the LTI representation matrices are:

AðpÞ ¼

0 0 1 0

0 0 0 1

0 gP2

NM�P2 � NW2

Rm NM�P2ð Þ 0

0 � gPM

NM�P2
PW2

Rm NM�P2ð Þ 0

2
6666666664

3
7777777775

(3.12)

BðpÞ ¼

0

0

NW
Rm NM�P2ð Þ
� PW

Rm NM�P2ð Þ

2
6666666664

3
7777777775

(3.13)

and

C ¼
1 0 0 0

0 1 0 0

2
4

3
5 (3.14)

3.3 Control Architecture

There have been numerous control architectures developed and successfully implemented on similar inverted pendulum

systems. The objective of this work is not to introduce a new control architecture, but instead use one that is familiar to many

with control design experience and then demonstrate methods to optimally robustify this fixed architecture controller to

parametric uncertainties. The mathematical framework for robustness analysis and control tuning, covered in Sect. 3.4, is

capable of handling a wide array of control architectures and plant models, linear or nonlinear, with arbitrary parameter

dependence. The primary objective of the control system is for the cart to track a periodic reference signal while maintaining

stability and adequate performance. One period of the commanded reference signal is given in Fig. 3.2. See Sect. 3.4.3 for a

detailed description of performance requirements.

3.3.1 Linear Quadratic Regulator Control with State Estimation

A Linear Quadratic Regulator (LQR) control together with state estimation constitute the control architecture. The estimator

was necessary since only the two positional states (cart position and pendulum angle) of the four states were measured
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outputs. Conventional steady-state implementations of LQR control works by multiplying the states by a constant gain

matrix, K, to produce the plant control signal. The gain matrix is generated by minimizing the following cost function:

J ¼
Z 1

0

½x>Qxþ u>Ru� dt (3.15)

In this cost function, weighting matrices Q � 0 and R > 0 are used to penalize deviation of the states from zero and

penalize control energy. Choosing these weighting matrices is the fundamental task of the control designer. In the results to

follow, these weighting matrices were chosen using a numerical optimization strategy.

Two additional features were added to the control architecture to achieve better tracking and steady state error

performance. The first was the addition of a feed-forward control term using the known reference command, and the second

was an integral error feedback term on cart position error. The feed-forward command was added to regulate the system

about the reference command instead of regulating it about x(t) ¼ 0. This resulted in the following control signal:

uðtÞ ¼ �Kðx� xref Þ ¼ �Kxþ Kxref (3.16)

where xref is the four-element state reference vector. The second feature is an integral error feedback, which is added by

augmenting the nominal state vector with an additional element. This additional element is an error between the cart’s actual

position and its commanded position. The total control signal is:

uðtÞ ¼ �Kðx� xref Þ � Kie (3.17)

where e is defined as:

e ¼
Z t

0

ðxcref ðtÞ � xcðtÞÞ dt (3.18)

with xcref defined as: xcref ¼ ½1; 0; 0; 0�xref . Note that integral action is only added to the cart error signal and not to the full

measurement vector. The scalar gain term, Ki, is the last element in the gain vector obtained by solving an LQR problem on

an augmented system that includes the error state.

The remaining element of the control system is the state estimator which is a standard implementation of the Kalman

filter. As is standard, the state estimate, x̂, is used to replace x in (3.17) for implementation on the inverted pendulum

hardware. In the design and analysis that follows, the state estimator parameters are fixed. This is consistent with current

practices, since the true values of the parameters are not known prior to implementation. The Kalman filter gains in this work

were computed according to the system performance when the uncertainties assume their nominal values.

Fig. 3.2 Cart position reference signal
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A Simulink1; implementation of the control architecture is shown in Fig. 3.3. A linear representation of this system is

as follows:

_̂x
_x
_e

2
4

3
5 ¼

A� LC� BK LC �BKi

�BK A �BKi

0 �C1 0

2
66664

3
77775

x̂
x
e

2
4

3
5þ

BK
BK
C1

2
4

3
5xref (3.19)

where L is the Kalman gain matrix, and C1 ¼ [1, 0, 0, 0].

3.4 Mathematical Framework for Robustness Analysis and Control Tuning

3.4.1 Robustness Analysis

A brief introduction to the methodology proposed in [1] is presented next. Consider the closed-loop dynamic system

_X ¼ ℱ ðX;U; p; rÞ (3.20)

where r is a generic representation of a reference signal, with xref in (3.19) as a specific realization of the reference signal.

The control input can be represented as

U ¼ UðX; r;KÞ (3.21)

where the function U refers to a particular control structure and K ∈ ℝdim(K) is the set of free parameters, to be chosen by the

control engineer (e.g., control gains), that fully prescribe the controller. The controller is deemed acceptable if the closed-

loop response satisfies a set of requirements. These requirements, which are represented by a set of inequality constraints on

selected output metrics, depend on the uncertain parameter vector p. The control system is deemed acceptable for a given

realization, p, of the uncertain parameters if all inequalities are satisfied. Specifically, the satisfaction of the vector inequality

gðp; r;KÞ<0 (3.22)

implies the satisfaction of all the requirements,1 and where g ∈ ℝdim(g). These constraints partition the uncertain parameter

space into two sets, the failure domain F ¼ { p : gi(p) � 0, for some i}, where at least one requirement is violated, and the

safe domain S ¼ { p : g(p) < 0}, where all requirements are satisfied. The term “satisfactory performance”, which is to be

xref

xpos

Xc ref

xref

xref

error

y

y 1

Cart Position

1
s

Terminator

Linear Observer

Volt
u u

Nonlinear Pendulum
Model

Cart Position
Pendulum Angle

2

Integrator
3

+−

4

reference_state

Fig. 3.3 Simulink model of the control architecture

1 For the reminder of the paper is assumed that vector inequalities hold component-wise, vector and set super-indices denote a particular

realization, and vector sub-indices denote a particular component, e.g., pi
j is the ith component of pj ∈ ℝdim(p).
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captured in g, is broad in scope and refers to acceptable ranges of variation in metrics of interest. These metrics may

correspond to specific performance specifications as well as to basic notions of goodness. For instance, if y(p, t) is the system
output to a step-input and tas is the admissible settling time, the corresponding requirement function is gsettling ¼ ts � tas
where ts is the minimal time for which y(p, t) � y(p, 1) � 0. 99 for all t > ts.

The parameter realization �p 2 RdimðpÞ, called the nominal operating conditions point, denotes our best estimate of the

actual value of p. The objective of this robustness analysis is to determine the largest deviation of p from �p for which all

the requirements are met. In this paper, such a deviation is prescribed as a hyper-rectangular set of fixed proportions. Note

that the hyper-rectangle centered at �p with semi-diagonal vector m > 0 is given by

Rð�p;mÞ ¼ p : �p� m � p � �pþ mf g (3.23)

The notions required to calculate this deviation are introduced next.

A homothetic deformation results from a uniform, radial expansion or contraction of the space about a fixed point.

The distance from any point in the space to the fixed point changes by a factor a after the deformation. This factor is called

the similitude ratio of the homothetic deformation. Note that if a is greater than 1, the deformation is an expansion, while if a
is less than 1, the deformation is a contraction. A reference set, denoted as O � ℝdim(p), is deformed with respect to its

geometric center �p. Intuitively, one can imagine that O is being deformed with respect to �p until its boundary just touches the
failure domain boundary ∂F. This deformation is called the maximal deformation. The set resulting from this deformation,

denoted asM � ℝdim(p), is themaximal set. A critical parameter value (CPV), denoted as ~p 2 RdimðpÞ, is (one of) the point(s)
where the maximal set touches ∂F. This point is a worst-case uncertainty combination associated with O. The critical
similitude ratio (CSR), denoted by ~a 2 R, is the similitude ratio of that deformation and is a non-dimensional metric

proportional to the separation between the point �p and the failure domain. The parametric safety margin (PSM), denoted as

r ∈ ℝ is its dimensional equivalent. The values taken on by the CSR and the magnitude of the PSM are proportional to the

size of the maximal set and measure the separation between �p and ∂F. The PSM is assigned a negative value if the controller

does not even satisfy the requirements at �p. If the PSM is zero, the controller exhibits no robustness because there is an

arbitrarily small deviation from �p leading to a requirement violation. If the PSM is positive, the requirements are satisfied at

�p and in its vicinity. The larger the PSM, the larger the O-shaped vicinity.

Figure 3.4 illustrates some of these variables when two requirements are present. The CPV, ~p, the nominal parameter

point, �p, the reference set (region within dashed line) and the maximal set corresponding to deformations in the safe (blue)

and failure (red) domains are shown. Note that by construction, the maximal set is fully contained in the safe or failure

domains.

The formulation enabling sizing the maximal deformation is as follows. If O ¼ Rð�p;mÞ, the CPV, CSR, PSM and

maximal sets corresponding to the ith requirement are

~pi ¼ argmin
p

kp� �pk1m : sigiðp; r;KÞ � 0; pmin � p � pmax

� �
(3.24)

~ai ¼ k~pi � �pk1m
kmk (3.25)

p2

p1

p

p

−

p−

∼

p

S

∼

Fig. 3.4 Maximal deformations in the safe and failure domains
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ri ¼ si~aikmk (3.26)

Mi ¼ Rð�p; ~aimÞ (3.27)

where kxk1m ¼ maxifjxij=mig, pmin and pmax bound the region of interest, andsi ¼ 1 if gið�pÞ<0, otherwise si ¼ �1. Note that

si can reverse the inequality sign of the constraint. This is needed since deformations centered at a nominal point in the safe

domain require a different formulation than those where the nominal point is in the failure domain (See Fig. 3.4). While in the

former case all points within the maximal set must satisfy all constraints, in the latter case all points must violate at least one

constraint. The value of the controller’s parametersK and the commands in r are set a priori and kept fixed during the analysis.
While K can be prescribed according to any control design practice, r is prescribed to achieve the ultimate goal of the system.

The CPV, CSR, PSM and maximal sets associated with all requirements are given by (3.24)–(3.27) after replacing giwith
maxi(gi). The resulting values are qualified as aggregate since they take all requirements into account. If �p 2 F, these
aggregate values coincide with those corresponding to the individual requirement attaining the smallest PSM, e.g., ~a ¼ ~aj
where j ¼ argmin(ri). Therefore, for a maximal safe set, the aggregate PSM is the worst-case individual PSM.

The calculation of the maximal deformation requires solving an standard optimization problem. In this work, a gradient-

based nonlinear constrained optimization was used. This problem class is, in general, non-convex when the dependency of

the vector gi of requirement functions on the uncertainty p is nonlinear. In any non-convex optimization problem there is

always the possibility of convergence to a non-global optimum. When this occurs, the CPV resulting from the numerical

optimization is mistaken and the corresponding maximal set intrudes into the failure region. This intrusion yields to a

spuriously larger PSM. Absolute guarantees are not possible, but a variety of algorithmic safeguards can be used to deal with

this deficiency. For instance, g can be evaluated at a few sample points in the maximal set and if one happens to fall into the

failure domain, it can be used as an initial condition in a subsequent optimization. Requirements functions with a polynomial

parameter dependency can be handled using the methods in [3]. These methods, which are based on linear matrix

inequalities and Bernstein expansions, do not suffer from this potential drawback and guarantee convergence to actual

maximal deformation. Notice however, that in most practical applications the explicit functional form of g is unknown. This
intrinsic feature of the problem precludes the usage of convexity conditions from the outset.

3.4.2 Control Tuning

Ultimately, a good controller should satisfy the stability and performance requirements imposed upon the closed-loop

system with sufficiently large robustness margins. The PSM and CSR introduced above are examples of such margins.

A computational framework, also used in [4], enables searching for the set of controller gains that maximize these

margins. This framework is introduced next.

Equation 3.22 indicates that the geometry of the failure domain, thus the CSR and the PSM, is a function of the control

parameter K. Recall that this parameter is kept fixed when a robustness analysis is performed. A control design challenge is

to find the value of K for which the closed-loop system exhibits satisfactory robustness characteristics. Specifically, an

optimal design will be one that has the largest overall PSM for the given control structure. This entails maximizing the

separation between the nominal operating condition point �p and the failure domain F, so the largest maximal set is attained.

Since the resulting controllers tolerate the largest deviations from nominal operating conditions before violating any

requirement, they are called optimally robust. In the presence of conflicting design objectives, an optimally robust controller

trades off the PSMs of all individual requirements to attain the largest aggregate PSM.

Two optimization-based formulations for pursuing the optimally robust design point ~K are presented next. The first one

evaluates robustness via the exact CSR. The second one uses an approximation to the CSR rooted in a multi-point

approximation to the maximal set. The approximate nature of this formulation may not lead to controllers with the intended

features. However, its relaxed computational demands may justify the potential drawbacks associated with it.

3.4.2.1 Enlarging the Maximal Set

A formulation based on the exact overall CSR is given by

~K ¼ argmin
K

~aðKÞ : hð�p;KÞ>0f g (3.28)
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where the vector constraint hðK; �pÞ>0 is used to enforce additional characteristics to the controller based on standard control

metrics. For instance, h ¼ PMðK; �pÞ � 60�>0 ensures that the feedback loop corresponding to the plant under nominal

operating conditions has a phase margin of more than 60∘. Examples of other performance/stability metrics are time delay,

settling time, disturbance rejection, noise attenuation, reference tracking, and control energy. These metrics can be extracted

from the time and/or frequency domains and may correspond to linear and nonlinear representations of the plant dynamics.

Recall that calculating the CSR ~a entails solving an optimization problem. Therefore, this formulation has an optimiza-

tion in the outer loop and another one in the inner loop. While the outer loop searches for the robustly optimal gains ~K, the
inner one searches for the CSR corresponding to the design point under consideration. Nested optimizations, such as (3.28)

and those resulting from worst-case-based design policies, impose stringent computational demands. Such demands can be

substantially mitigated by using multi-point approximations.

3.4.2.2 Enlarging an Approximation to the Maximal Set

The variables K̂ and â, which are estimates of ~K and ~að ~KÞ respectively, are given by

hK̂; âi ¼ argmin
K;a

a: max
i�dimðgÞ;j�n

gi �pþ aðpj � �pÞ; r;K� �� �
<0; a � 0; hð�p;KÞ>0

	 

; (3.29)

where {p1, p2, . . ., pn} are parameter-points on the surface of Rð�p;mÞ. These points should be uniformly distributed over the

surface. Note that this formulation replaces the inner optimization loop in (3.28) with a multi-point constraint over parameter

points lying on the surface of a maximal set estimate. Equation 3.29 may lead to suboptimal designs, for which â> ~að ~KÞ and
MðK̂Þ � Mð ~KÞ, because the satisfaction of the multi-point constraint does not guarantee the containment of the maximal set

estimate by the safe domain. The formulation of Sect. 3.4.1 can be used to determine if this anomaly has occurred.

Since the robustness analysis and tuning procedures above identify the critical combination of uncertainties and/or

failures (i.e., the CPV) the particular control architecture is more sensitive to, we expect the resulting controllers to be safer
than those validated by brute force Monte Carlo simulations.

3.4.3 Application to the Inverted Pendulum

The components of the uncertain parameter p are the distance, Lp, of the mass Mp to the pivot point, and the motor torque

constant Km. These parameters are free to assume any non-negative value, i.e., pmin ¼ [0, 0] ⊤ , pmax ¼ [0. 330 m, 1] ⊤ .

The nominal operating condition point is �p ¼ ½0:165 m; 0:00767 N-m/Amp�>. The robustness of the controller to uncer-

tainty in the value of these two parameters is evaluated and improved using the methods above. The reference command is

given by r ¼ ½xref ; _xref ; 0; 0�>, where xref is the periodic signal shown in Fig. 3.2. The design parameters K are diagonal

elements of the Q and R matrices of the LQR formulation of Sect. 3.3. Denote by Kbase the gains of a baseline controller

attaining satisfactory performance at p ¼ �p, and tf the final simulation time. The closed-loop requirements defining the

constraint function g are as follows:

1. Command tracking: the requirement g1 < 0, where

g1 ¼
Z tf

0

xcref ðtÞ � xcðp; r;K; tÞ
� �2

dt� g1

Z tf

0

xcref ðtÞ � xcð�p; r;Kbase; tÞ
� �2

dt (3.30)

and g1 > 1 ensures satisfactory tracking of the reference command.

2. Actuation: the requirement g2 < 0, where

g2 ¼
Z tf

0

u2ðp; r;K; tÞ � g2u
2ð�p; r;Kbase; tÞdt (3.31)

and g2 > 1 avoids over actuation.
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3. Peak overshoot: the requirement g3 < 0, where

g3 ¼ max
t

xcðp; r;K; tÞ : t0 � t � tf
� �� g3 max

t
xcð�p; r;Kbase; tÞ : t0 � t � tf

� �
(3.32)

and g3 > 1 bounds the peak overshoot of the response.

4. Settling time: the requirement g4 < 0, where

g4 ¼ tsðp; r;KÞ � g4tsð�p; r;KbaseÞ (3.33)

tsðp; r;KÞ ¼ min
t

jxcðp; r;K; tÞ � 0:1j<e for all t satisfying ts<t<5 sf g (3.34)

and g4 > 1 imposes an upper bound to the settling time.

5. Local Stability: the requirement g5 < 0, where

g5 ¼ max RealfEigenvaluesfAðp;KÞggf g (3.35)

and A is the closed-loop system matrix of the LTI system, ensures that the up-right position of the pendulum is locally

stable.

The constraint functions corresponding to the first two requirements are evaluated using the L2 norm, and therefore, they

are a function of the transient response. Notice that the dependency of g on p assumes an unknown and implicit functional

form. Also notice that evaluating g for a particular realization of p requires simulating the closed-loop response and

calculating the five constraint functions comprising g. Further notice that while the notions of goodness supporting the

requirement functions are fairly universal, their particular functional form is not.

3.5 Results

3.5.1 Baseline Controller

This controller, to be denoted as Kbase, was designed using the structure presented in (3.17) based on the closed-loop

performance at p ¼ �p. The parameters determining K are the LQR matrices Q ¼ diag{[40, 0, 0, 0, 50] ⊤} and R ¼ 10�3.

This controller performed well in both the simulation and experimental settings. Figure 3.5 shows the number of requirement

violations in the parameter space and the maximal set when the time responses, thus the constraint function g, are evaluated
using a linear simulation. Note that the safe domain, where all requirements are satisfied, corresponds to the green region.

The color scale indicates the number of constraints violated, with black corresponding to all five constraints violated. The

colored lines correspond to constraint boundaries for each of the five constraints. The corresponding PSM is r ¼ 6:4	 10�3.

This figure, as some that follow, was generated by simulating the closed-loop response at the points of an uniformly spaced

grid, calculating the constraint function g at each point, and counting the number of non-negative components of each g. This
large number of simulations (over 8,000), which are not required to calculate the maximal deformation, has only been made

for illustrative purposes.

Figure 3.6 shows the number of requirement violations and the maximal set for Kbase when evaluated using the nonlinear

simulation. The corresponding PSM is r ¼ 1:6	 10�2. This larger PSM obtained from the nonlinear evaluation model is

consistent with the design practice used for determining Kbase. The process was an iterative technique of modifying Q and R
in the laboratory and evaluating the closed-loop performance on hardware.

By definition, the CPV is a point on the surface of the maximal set that touches the boundary of the failure domain. Some

of the figures may misleadingly show that the CPV is at the interior of the safe domain. This is a mere consequence of the
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manner in which the figures are generated: they show a piecewise constant function over a uniform partition of the parameter

space. The same value/color is assigned to all parameter realizations constituting an element of the partition. That value

corresponds to the center of the box. The actual function, which is used when calculating the maximal deformation, may

vary across any given uncertain parameter range.

Fig. 3.6 Number of requirement violations in the parameter space and maximal set for Kbase using nonlinear simulation

Fig. 3.5 Number of requirement violations in the parameter space and maximal set for Kbase using linear simulation
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Fig. 3.7 Number of requirement violations in the parameter space for Ktuned-1 according to the linear simulation

Fig. 3.8 Time responses for controller Ktuned-1 at p ¼ ½0:2; 4	 10�3�
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3.5.2 Tuned Controller 1: Designed Based on Linear Simulation

The application of the control tuning procedure above using time responses of the linearized model yields controller Ktuned-1.

The design parameters used throughout this study are the Q and R parameters of the LQR controller. The controller

parameters for this linearized system model are Q ¼ diagf½7:67; 0:28; 7:62; 1:4	 10�3; 79:94�>g and R ¼ 3:2	 10�3.

Figure 3.7 shows the corresponding uncertain parameter space. The corresponding PSM, which is equal to

r ¼ 3:965	 10�2, is more than six times larger than that of the baseline. This illustrates the effectiveness of the control

tuning procedure. Figure 3.8 shows the linear and nonlinear time responses of Ktuned-1 for p ¼ ½0:2; 4	 10�3�>. Note that the
more oscillatory nature of the nonlinear response makes the controller unacceptable.

A robustness analysis of Ktuned-1 based on the nonlinear response leads to r ¼ 6	 10�3. This PSM is 6. 5 times smaller

than that of the linear response. Figure 3.9 shows the corresponding uncertain parameter space. Major differences between

the linear analysis of Fig. 3.7 and the nonlinear analysis of Fig. 3.9 are apparent. The requirements based on the L2 norms,

whose satisfaction depend upon the transient response, are the most affected.

3.5.3 Tuned Controller 2: Designed Based on Nonlinear Simulation

The application of the control tuning procedure above using time responses of the nonlinear model equations, as given in

(3.2) and (3.3), yields controller Ktuned-2. This controller parameters are Q ¼ diagf½8:20; 10:63; 0:19; 10�4; 42:46�>g and

R ¼ 1:04	 10�4. Figure 3.10 shows the corresponding uncertain parameter space. The corresponding PSM is equal to

r ¼ 2:34	 10�2. As expected, this controller is more robust than Ktuned-1 according to the nonlinear response. Note the

transition between the safe domain (green area) and the region where the system is unstable (black area) may occur without a

progressive and noticeable degradation in the transient response, i.e., the violation of g5 < 0 resulting from a small drift in

p may not be preceded by any other requirement violation.

The robustness analysis of Ktuned-2 according to the linear response leads to r ¼ 3:7	 10�3. Figure 3.11 shows the

corresponding number of requirement violations in uncertain parameter space. As before, significant differences between

the linear and nonlinear analyses are present. These differences, which are the result of model-form uncertainty, highlight the

need for assessing the dependence of the high order terms in (3.9) on the uncertain parameters.

Fig. 3.9 Number of requirement violations in the parameter space and maximal set for Ktuned-1 according to the nonlinear simulation
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Experimental results for tuned controller 2 are shown in Figs 3.12 and 3.13. Figure 3.12 shows two cycles of the cart

tracking response for the uncertain parameter point p ¼ ½0:165; 7:67	 10�3�. This point is well within the maximal set (see

point A in Fig. 3.10) and therefore we should expect a reasonable system response. Qualitatively the system response is

good, however, due to additional unmodeled effects, such as: cart and pendulum damping, drive pinion eccentricity, drive

rack flexibility, data and power cable frictional effects, etc., the true system response slightly differs from the simulated

Fig. 3.10 Number of requirement violations in the parameter space and maximal set for Ktuned-2 according to the nonlinear simulation

Fig. 3.11 Number of requirement violations in the parameter space and maximal set for Ktuned-2 according to the linear simulation
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response. Figure 3.13 shows the cart tracking response for the uncertain parameter point p ¼ ½0:20; 7:67	 10�3�. This point
is outside of the maximal set where all five requirements fail (see point B in Fig. 3.10) and therefore we should expect an

unacceptable system response. Indeed this is the case as the system tracking response is unacceptably poor. It should be

noted that if the system was perfectly linear then the response would be unstable yielding unbounded output. Instead a limit

cycle oscillation is observed, which is consistent with the nonlinear system.

3.5.4 Probabilistic Analysis

This section assesses the probabilistic performance of all of the control designs previously presented. The unified framework

in [1] provides explicit methods on how to use maximal sets to compute bounds to failure probabilities. To proceed with

failure probability computations, one must first prescribe a PDF for the uncertain parameters. Independent generalized

beta distributions were chosen to represent the uncertainty in both Lp and Km. Generalized beta distributions are

Fig. 3.12 Experimental time responses for controller Ktuned-2 at p ¼ ½0:165; 7:67	 10�3�

Fig. 3.13 Experimental time responses for controller Ktuned-2 at p ¼ ½0:20; 7:67	 10�3�

3 Robust Control Design for Uncertain Nonlinear Dynamic Systems 35



parameterized by four values, [a, b, xmin, xmax], two shaping parameters, a lower limit, and an upper limit, respectively.

The specific parameters used in this paper were for Lp: [5, 5, 0. 12, 0. 21], and for Km: [5, 5, 0. 003, 0. 012]. Plots of the

probability density functions are given in Fig. 3.14. The probabilistic assessments performed in this work were based

upon probability bounds computed using maximal sets, and estimates of failure probability using sampling. A robustness

comparison of the three controllers is given in Table 3.1. There are several things to note from these results. In terms of

robustness, the baseline controller, Kbase, shows good robustness when evaluated on the nonlinear system, but very poor

robustness when evaluated on the linear system. As stated earlier, this is consistent with the design practice used to generate

Kbase. The controller Ktuned-1 had good robustness when evaluated using the linear design model, but suffered greatly when

deployed on the nonlinear model. The best choice of controller isKtuned-2 because it has good robustness margins, as indicated

by the 46.3% improvement in the PSM overKbase. These results reinforce two important principles. The first is that parametric

uncertainty must be explicitly considered to achieve good robustness, and the second is that model nonlinearities can have a

dramatic impact on system robustness. These results clearly demonstrate that controllers designed using linear models may

have very poor robustness when evaluated on nonlinear models.

Most of the prior state-of-the-art techniques (e.g., m-synthesis, H1, linear parameter varying, etc.) for the analysis and

control design in the presence of parametric uncertainty require linear plants and a particular structure of parameter

dependencies (affine dependencies, or limited polynomial dependencies). Furthermore, explicitly incorporating time domain

specifications into conventional robust control design techniques can be very cumbersome. In contrast, the strategies

proposed in this work do not require linear system dynamics or a specific functional form of the uncertainty and can easily

accommodate a variety of time or frequency domain requirements. However, one of the greatest advantages is the ease at

which the methods used here interface with arbitrary simulation models and the ability to incorporate probabilistic

definitions of parametric uncertainty models and therefore represents an advancement in the state of practice for control

analysis and design.

Fig. 3.14 Probability density functions

Table 3.1 Robustness assessment results

Controller Test model PSM Failure probability upper bound Failure probability using sampling

Kbase Linear 6.4	10�3 0.8847 0.3146

Kbase Nonlinear 1.6	10�2 0.4538 0.1236

Ktuned�1 Linear 3.9	10�2 5.22	10�4 1.5455	10�7

Ktuned�1 Nonlinear 6.0	10�3 0.8989 0.5035

Ktuned�2 Linear 3.7	10�3 0.9604 0.3990

Ktuned�2 Nonlinear 2.34	10�2 0.1653 0.0441
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3.6 Conclusions

This paper presents a control design and analysis methodology for arbitrary dynamic systems in the presence of parametric

uncertainty. A brief overview of techniques to compute maximal multidimensional bounding sets and associated probability

of failure bounds for parametric uncertainties was given. The classic inverted pendulum was used to demonstrate these

techniques for control system design and analysis on a realistic nonlinear system. Generic requirements in the form of

command tracking, control actuation, peak overshoot, settling time, and local stability were used to demonstrate the

versatility of the method. One of the key results from this work was that the methods are equally applicable to either linear

or nonlinear system models, and therefore represent an advancement in the state of practice for control system design and

analysis. This technique allows one to use the nonlinear model explicitly in the design process, something many conven-

tional robust control analysis and design methods simply cannot accommodate. Using the nonlinear model in the design

process was shown to result in a controller with better robustness properties when applied to the nonlinear system than a

controller based on the linear model.
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Chapter 4

Bayesian Damage Localisation at Higher Frequencies

with Gaussian Process Error

Christophe Lecomte, J.J. Forster, B.R. Mace, and N.S. Ferguson

Abstract This paper concerns the estimation of the location (and properties) of damage in structures using Bayesian

methods and Markov Chain Monte Carlo (MCMC). It is widely recognised that the consideration of uncertainty in structural

dynamic systems may be essential, for example from an economic point of view (“Does is make sense to add expensive

damping if it will only affect a small proportion of the vehicles we produce?”) or for critical safety purposes (“What is the

risk of failure of an airplane engine due to bladed disk mistuning?”). The use of Bayesian methods appears to be a viable

approach to obtain inferences about the parameters of such uncertain systems. Here we report on numerical experiments on

the use of MCMC to locate a frequency dependent damage in a one-dimensional structure. Transfer function measurements

subject to a Gaussian process measurement error are available. The particular structure of the resulting system matrices is

then seen to have a special form which results in a semi-analytic solution method being available and a much reduced

computational cost. We discuss the characteristics and efficiency of the Bayesian model and MCMC computation and

highlight features in the analysis of structural dynamic systems such as higher-frequency multimodality.

Keywords Bayesian damage identification • Mid-frequency and high-frequency • Frequency dependent damage • Markov

Chain Monte Carlo (MCMC) • Gaussian process • Analytic conditional posterior • Tridiagonal matrix • Tempering

4.1 Introduction

Identification of parameters of dynamic systems is a critical aspect for understanding, control and health monitoring of

dynamic structures. Uncertainty is always present in this process. The system itself may be inherently random due to

changing conditions such as temperature or uncertain components such as a damping material with properties varying from

one sample to another. In particular, any damage occurring during the life of the structure is in essence uncertain both in

terms of its location and extent. Since perfect modelling of a system is not possible, there is also uncertainty in the choice and

quality of the model itself and in the value of its parameters. Finally, measurement errors add to the randomness.
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Bayesian analysis is a natural framework for identifying the parameters of (necessarily random) dynamic systems.

It allows the consideration of as many or as few random parameters as judged useful or necessary and the consideration of

engineering “common sense” as prior knowledge. It also provides estimates of full probability density functions of the

parameters that can further be used to infer statistics of derived functions and properties.

Application of Bayesian methods in structural dynamics have indeed started showing success during the recent decades,

for example in updating of structural models [1], model identification [2] and selection [3], or damage detection [4, 5]. While

most methods are based on time domain measurements or estimation of the resonance frequencies and mode shapes [6],

the work presented here and in [4, 7] makes use of measurements of whole frequency response transfer functions. The goal

here is to identify a damage location and magnitude when both damage magnitude and measurement errors at discrete

frequencies are a Gaussian process.

In the next section, the structure, the randomness and their parameters are introduced. The Bayesian framework is then

presented and a Metropolis MCMC scheme is described. Simulations are then reported and discussed.

4.2 Response of Nominal and Damaged Structures

In this section, the studied structure is described and expressions of its nominal and damaged transfer functions are given.

4.2.1 Description of the Structure

In this paper, a regular spring-mass system is subjected to damage at a random location. This homogeneous collinear

structure is a model for various damaged structures such as rods or other continuous systems as illustrated in Fig. 4.1.

A choice of normalised unit masses and springs can be made without loss of generality about the presence of damping or

not, and about the value of the masses or spring stiffness (the transformation of a general homogeneous system into its

normalised form is discussed in [8]). The equations of the response vector x ¼ [x1,. . ., xN]
T of the system to a force vector

f ¼ [f1,. . ., fN]
Tat circular frequency o are then

½Kð1þ i�Þ � o2M� sDk�xðo; k; sÞ ¼ f: (4.1)

The structure is free at one end and fixed at the other so that the mass matrix M is the identity matrix while the stiffness

matrixK has [1, 2, . . ., 2] on itsmain diagonal and�1 on its two neighbouring diagonals. Structural damping can be considered

through the introduction of a non-zero hysteretic loss factor, �. Damage produces a change in the dynamic stiffness matrix

in the form of a damage matrix Dk multiplied by a scalar damage magnitude s. Both Dk and s can in general depend

on frequency. Here the damage occurs at a single k-th location so that DK ¼ ek ek
T is the outer product of the k-th unit vector

ek. The damage magnitude s(o) is random and its probability density function (pdf) p(s) will be discussed later. Usually, only
a transfer function g(o, k, s) ¼ cT x(o, k, s) (i.e. part of the response vector) is of interest for some output vector c.

a

b
Fig. 4.1 Illustration of the

damaged structure with

random damage at a specific

location. (a) Discrete case of

the spring-mass system;

(b) continuous case of a rod as

a limit of N ! 1
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It is now shown that the transfer functions of the damaged structure can be obtained cheaply by an update of the transfer

functions of the nominal (undamaged, s ¼ 0) structure.

4.2.2 Transfer Functions of the Nominal and Damaged Structures

The (nominal) response of the nominal structure is x(o, k, 0) ¼ (K�o2 M)�1f, from which the nominal transfer function

g(o, k, 0) ¼ cT x(o, k, 0) is directly available. The transfer function of the damaged structure can then be obtained through

the rank-one update [9, 10],

gðo; k; sÞ ¼ gðo; k; 0Þ þ b1ðo; kÞ s1ðo; kÞ
s1ðo; kÞ � s

� 1

� �
(4.2)

where the functions s1 and b1 only depend on nominal transfer functions, s1ðo; kÞ ¼ ½ekTðK� o2MÞ�1
ek��1

and

b1ðo; kÞ ¼ s1ðo; kÞcTðK� o2MÞ�1
ekek

TðK� o2MÞ�1
f. This update expression allows rapid and efficient evaluation of

the damaged transfer functions for various values of the damage magnitude s and location k, from only four nominal transfer

functions.

Several measurements with different force and output vectors, fm and cm, can be made on the actual physical system, each

of those indexed by a subscript m ¼ 1, . . ., Me. The measured transfer functions, ym (o), differ from the model transfer

functions, gm, due to both error in measurements and model errors. This difference is denoted as the measurement error em
(which is also a random variable) so that

ymðoÞ ¼ gmðo; k; sÞ þ emðo; k; sÞ: (4.3)

4.2.3 Gaussian Process Statistics of the Measurement Error

In the current analysis, we assume that the measurement errors with different force and output vectors are independent from

each other and that there is correlation of the measurement errors between different frequencies. Specifically, for a given

measurement ym evaluated at discrete frequencies, oj ¼ o0 þ jDo; j ¼ 1; :::;Q, the true measurement error (corresponding

to the actual location k and damage magnitude s ¼ ½sðo1Þ; :::; sðoQÞ�T) is a Gaussian process such that

p «mð Þ ¼ 1

pQ detðSÞ e
�«HmS

�1«m (4.4)

Where det(S) denotes the determinant of S, «m ¼ emðo1; k; sÞ; :::; emðoQ; k; sÞ
� �T

is the (complex) vector of errors at

different frequencies, and «Hm is the transpose conjugate of «m. The matrix S ¼ s2 C is the product of the standard

deviation s2 and the correlation matrix C whose (q, r) coefficient is e�ir q�r Dojj for r > 0. The matrix C thus has the form

C ¼

1 e�irDo . . . e�irðQ�1ÞDo

e�irDo 1 . .
. ..

.

..

. . .
. . .

.
e�irDo

e�irðQ�1ÞDo . . . e�irDo 1

0
BBBB@

1
CCCCA (4.5)

and the cross-correlations decrease as the frequency space, Do, or the parameter r increase. Thanks to the form of this

correlation matrix, the inverse and determinant of S can be evaluated cheaply as will be discussed in the next section.

The parameters s2 and r are here assumed equal for all measurements and are a priori unknown (as are the two other

parameters, i.e. the location k and damage vector s).
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4.3 Bayesian Inference

In this section, the principles providing posterior probability of the parameters based on measurements are presented.

4.3.1 General Bayes Considerations

The values of the four sets of parameters, namely the position y1 ¼ k of the damage, the error measurement parameters,

y2 ¼ 1=s2, and y3 ¼ r, and the vector of damage magnitudes, u4 ¼ s, can be stored in a vector u ¼ ½y1; :::; u4T �T of length

3 + Q. The uncertainty pervading these parameters based on the measurements and prior knowledge can then be evaluated

using Bayes theorem, i.e.

pðujYÞ ¼ pðYjuÞpðuÞ
pðYÞ (4.6)

with Y ¼ ½y1; . . . ; yMe
� and ym ¼ ½ymðo1Þ; . . . ; ymðoQÞ�Tfor m ¼ 1, . . ., Me

.. The likelihood pðYjuÞ and prior statistics p (u)
will now be discussed while the denominator probability, pðYÞ ¼ R

DðuÞ pðYjuÞpðuÞdu (which can be expressed as an integral

of the numerator on the domain D(u) of the parameters) is a scaling factor that is not necessary for implicit sampling by

Markov Chain Monte Carlo. Since this function is the integral of the numerator, in principle equation (4.5) gives

probabilities of all combined and marginal probabilities of the location and extent of damage, as well as of the parameters

of the measurement errors.

4.3.2 System Randomness and Likelihood

Randomness or uncertainty is propagated in the system as follows: the knowledge of the position k and damage magnitude

vector s uniquely determines the vector of model transfer functions, gmðk; sÞ ¼ ½gmðo1; k; sðo1ÞÞ; . . . ; gmðoQ; k; sðoQÞÞ�T .
The probability of the measurements ym for given s2 and r is then equal to the probability of the corresponding error in

measurements, «m ¼ ym � gmðk; sÞ. The likelihood of the measurements is therefore

pðYjuÞ ¼ 1

pðQ:MeÞ: det ðSÞMe
exp �Sm¼1;...;Me

½ðym � gmðk; sÞÞHS�1ðym � gmðk; sÞÞ�Þ
�

(4.7)

¼ 1

ðp:s2ÞðQ:MeÞ: det ðCÞMe
exp � 1

s2

� �
Sm¼1; . . . ;Me

ðym � gmðk; sÞÞHC�1ðym � gmðk; sÞÞ
h i	 


: (4.8)

As already mentioned, the determinant and inverse of S can be evaluated efficiently.

4.3.3 Prior Engineering Knowledge and Probabilities

Any prior knowledge and resulting prior probability of the parameters can be incorporated in the statistical model. The

particular choices made here are now described. No a priori information on the location of damage is known. A uniform prior

is therefore selected such that all locations, k ¼ 1; . . . ;N, are equiprobable, p(y1 ¼ k) ¼ 1/N. For efficiency, a Gamma

distribution (with parameters a and b) is chosen for the measurement error standard deviation. The prior is then such that

p y2 ¼ 1
s2 ; a; b

� � ¼ ba

GðaÞ
1
s2
� �a�1

e
�b 1

s2 where GðaÞ ¼ R1
0
tða�1Þe�tdt is the Gamma function. It will be shown that with this

choice, analytical steps can be taken in the MCMC process. Since the a priori knowledge of the correlation factor r can vary

over a large range, a lognormal prior probability is selected such that the probability of r is assumed to be a normal variable
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with mean m1 ¼ log(r0) and standard deviation t1. Therefore, pðy3 ¼ r; m1; t1Þ ¼ 1ffiffiffiffiffiffiffi
2pt2s

p exp � logðrÞ�m1ð Þ2
2ðt1Þ2

h i� �
. A (complex)

Gaussian process damage vector is considered in the examples presented in this paper. The same Gaussian process structure,

with parameters s2s and rs, is used as prior, so that pðu4 ¼ s; ss; rsÞ ¼ 1

ðp:s2s ÞQ detðCsÞ e
� 1

s2s

� �
sHCs

�1s
where the (q, r) coefficients

of Cs are e
�irsjq�rjDo.

4.4 Markov Chain Monte Carlo

In this section, a MCMC metropolis walk is described to estimate the posterior probability of the system parameters.

4.4.1 General MCMC Considerations

Samples can be explicitly drawn from the posterior pðujYÞ without the need to recur to the evaluation of the integral p(Y),
by using a Metropolis MCMC scheme [11]. At each step, the new sampled values u(j+1) of the parameters depend only on

the previous sample u and, after a burn-in period, the distribution of samples u(1), u(2), . . . tends to the equilibrium

posterior probability, pðuðjÞÞ ! pðujYÞ [11, Chap. 10, Sect. 10.3]. New random trial samples u(*)are drawn from a jump

probability distribution Jðuð�Þ; uðjÞÞ by updating one or more of the parameters of u(j). The trial samples are then accepted as

u(j+1) ¼ u(*) with probability r ¼ min 1;
pðuð�ÞjYÞ
pðuðjÞjYÞ

� �
, and otherwise u(j+1) ¼ u(j). Each of the trial samples are generated by

updating one or more of the individual components of u(j) by a random linear or logarithmic step. Here we report

experiments in which a single component of the four components of the parameter vector is updated when drawing each

new trial sample. Note that the trial steps must be chosen such that the probability of stepping from one to the other

parameter step is symmetric, Jðuð�Þ; uðjÞÞ ¼ JðuðjÞ; uð�ÞÞ, in classic Metropolis MCMC.

4.4.2 Choice of Trial Steps

The four components of the parameter vector are updated one after the other (only modifying y1 at step j, y2 at step j + 1,. . .)
in the following way. The trial locations y1 ¼ k are generated by discrete normal steps, yð�Þ1 � yðjÞ1 � round½Nð0; tÞ�, that are
the rounded version (closest integer) of a real normal variable x � Nð0; tÞ; pðxÞ ¼ 1ffiffiffiffiffiffi

2pt2
p e

�x2

2t2 . Trials that fall outside the range

of possible values of k are automatically refused. The steps for the standard deviation, y2 ¼ 1/s2, as well as for the error

correlation r are log-normal yð�Þ2 � yðjÞ2 eNð0;�2Þ, and yð�Þ3 � yðjÞ3 eNð0;�3Þ. Finally, the steps for the vector of the disturbance

magnitude at all frequencies are generated from a multi variable (complex) normal variable with parameters sp and

rp (instead of s and r).

4.4.3 Improvement of the Walks

Two improvements of the Bayesian MCMC walk are presented here: direct sampling from an analytical probability density

function, and use of parallel tempered chains. While the main purpose of these improvements is to accelerate the

convergence of the samples to the posterior distribution, the use of tempered chains may be critical in practical situations

to avoid the samples being limited to a single region of relatively high probability of the posterior.
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4.4.3.1 Faster Convergence by Using Analytic Steps

The length of the burn-in is, in principle, reduced by sampling the standard deviation, y2 ¼ 1
s2 from its exact conditional

posterior distribution. Thanks to the choice of prior and likelihood function, the conditional posterior (as a function of y2)
is indeed a Gamma distribution (with parameters aþ Q:Me and bþ Sm¼1;...;Me

½ðym � gmðk; sÞÞHC �1ðym � gmðk; sÞÞ�)
since it is proportional to

p y2 ¼ 1

s2

����Y; un2
� �

/ pðYjuÞpðy2; a; bÞ /

1

ðs2ÞðaþQ:Me�1Þ e
� 1

s2

� �
bþSm¼1;...;Me ðym�gmðk;sÞÞHC�1ðym�gmðk;sÞÞ½ �f g (4.9)

where u\2 indicates the parameters (the part of the parameter vector u) complementary to y2. Samples from this parameter

can therefore be drawn directly from this Gamma distribution in the MCMC walk when all the other parameters are

kept constant.

4.4.3.2 Treatment of Multimodality by Tempering

Statistical multimodality (several separated regions of parameters with high probability) can be such that a single MCMC

chain can stagnate in a single region of relatively higher probability. If this is the case, some regions of the parameter space

with high probability, even that with the highest probability, may not be reached during a feasible finite number of samples.

For the current model, such multimodality exists at high frequency. A solution chosen here is to run several chains i ¼ 0, 1,

2, . . ., I in parallel. Besides the main original chain, the other chains correspond to a tempered posterior pi such that the

likelihood is raised to a given power, ti, with t0 ¼ 1 and ti < ti�1,

piðujYÞ / ½pðYjuÞ�tipðuÞ: (4.10)

While these tempered posteriors are not identical to the original posterior and the walks therefore do not share the same

equilibrium distribution, they allow for increased mixing of the samples. At each step, either ‘regular’ trial samples are

drawn and accepted or refused in each of the chains independently of the other chains, or an exchange of samples is proposed

between two neighbouring (indices i and i�1) chains. If the full vectors of samples are indexed by their chain number such

that ui ¼ yi;1; . . . ; ui;4T
� �T

, then trial exchange samples at a step j + 1 are u
ð�Þ
i ¼ u

ðjÞ
i�1 and u

ð�Þ
i�1 ¼ u

ðjÞ
i . This exchange is

accepted with probability r ¼ min 1;
pi u

ð�Þ
i jYð Þpi�1ðuð�Þi�1jYÞ

pi u
ðjÞ
i jYð Þpi�1ðuðjÞi�1jY

� �
, in which case u

ðjþ1Þ
i ¼ u

ð�Þ
i and u

ðjþ1Þ
i�1 ¼ u

ð�Þ
i�1. Otherwise,

u
ðjþ1Þ
i ¼ u

ðjÞ
i and u

ðjþ1Þ
i�1 ¼ u

ðjÞ
i�1. The exchange steps occur every other Nfull +1 steps and the two neighbouring chains (i and

i�1) are chosen by drawing the index i uniformly within the range 1, . . ., I.

4.4.3.3 Efficient Evaluation of the Gaussian Process Likelihood

At each step of the MCMC walk, the inverse of (or solution with) the matrix C is in principle required to evaluate terms of

the form «Hm C�1«m as seen from (4.8) or (4.9). Since C depends on the correlation parameter, r, its inverse cannot be

evaluated once for all steps and the cost of the solutions could therefore be prohibitive. The very particular form of this

Toeplitz matrix however allows for very efficient evaluation at each step. Details of this will be presented elsewhere.

4.5 Simulations

Results of simulations are now reported and discussed. The parameters of the system, likelihood, priors, and MCMC steps

are first presented.
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4.5.1 Parameters

Results are presented for simulations in low and higher frequency ranges. The parameters of the system and MCMC

simulations in the higher frequency range are summarised in Table 4.1.

The system is made of N ¼ 300 masses and is lightly damped (loss factor � ¼ 0.01). The actual location of damage is at

k ¼ 171. Measurements are made at Q discrete frequencies (with frequency step Do ¼ 0.0005) at several locations

lc ¼ [240 270 72 240 245] for unit forces at mass locations lf ¼ [240 150 133 270 172] respectively. The actual value of

the damage magnitude is drawn from a complex Gaussian process, s ~ GPC(rs ¼ 0.1, ss ¼ 0.5), and the measurement error

is similarly drawn (independently at each measurement point) from the likelihood Gaussian process distribution em ~ GPC(r
¼ 400, s ¼ 0.1). The prior knowledge is uniform for the location of damage and the following Gamma and lognormal prior

distributions are considered for the standard deviation and correlation of the measurements, p y2 ¼ 1
s2 ; a ¼ 1:9; b ¼ 1

2:9

� �
and

p y3 ¼ r; m1 ¼ 50; t1 ¼ 1ð Þ. The prior for the damage magnitude vector is similar to the Gaussian process from which actual

damage magnitude was drawn, p u4 ¼ s; ss ¼ 0:5; rs ¼ 1ð Þ.
The parameters of the MCMC walk to implicitly sample the posterior are a maximum number of Miter ¼ 30,000 steps,

and a sequential consideration of the components y1, y2, y3, u4. Every Nfull ¼ 3 times a full sequence of the four parameter

components have been updated, an exchange between two neighbour tempered levels is considered. Seven tempered chains

are considered (additional to the regular chain) with powers ti ¼ 0.500,0.333,0.167,0.100,0.050,0.033,0.020. The starting

location of the main chain has been chosen relatively far from the actual damage location k
ð0Þ
0 ¼ 60 and the starting locations

of the other chains have been randomly drawn. The other starting values were identical for all tempered levels, yð0Þ2 ¼ 33:33,

yð0Þ3 ¼ 0:05, u
ð0Þ
4 ¼ 0. The parameters of the sampling process, ti; �2;i; �3;i; rp;i, and sp,i have been assigned values that allow

appropriate mixing of the chains and similar parameters were used for the low frequency range simulations.

4.5.2 Results

Results of the MCMC walks are presented for two frequency configurations: In the first set of results, a walk is considered at

each single frequency (Q ¼ 1) independently of the measurements at other frequencies while in the second set, all Q ¼ 150

frequencies are considered at the same time in the same Gaussian process likelihood. The same range of frequencies Do,
2Do, . . ., 0.075 is covered in both cases.

Table 4.1 Parameters of the system and MCMC walk

System System dimension N ¼ 300

Loss factor � ¼ 0.01

Damage location k ¼ 171

Damage magnitude s ~ GPC(rs ¼ 0.1, ss ¼ 0.5)

Measurements # of measurements Me ¼ 5

Input locations lf ¼ [240 150 133 270 172]

Output locations lc ¼ [240 270 72 240 245]

Meas. error «m ~ GPC(r ¼ 400, s ¼ 0.1)

Frequency step Do ¼ 0.0005

Prior Prior y2 Gamma p y2 ¼ 1
s2 ; a ¼ 3; b ¼ 20

� �
Prior y3 Lognormal, p y3 ¼ r;m1 ¼ 200; t1 ¼ 1ð Þ
Prior u4 Gaussian process, p u4 ¼ s; ss ¼ 0:5;rs ¼ 1ð Þ

MCMC walk Maximum # of steps Miter ¼ 30000

Walk order one component at a time: y1, y2, y3, u4
Step y1 yðjÞ1 þ round½Nð0; tiÞ�
Step y2 yðjÞ2 eNð0;�2;iÞ

Step y3 yðjÞ3 eNð0;�3;iÞ

Step u4 yðjÞ4 þ GPCðrp;i; sp;iÞ
Initial values: ½kð0Þi ; 0:011; 151:25; 0T �T

Tempering parameters # of tempered levels I ¼ 7

Regular/exchange Nfull ¼ 3

Tempering powers t ¼ [1,0.500,0.333,0.167,0.100,0.050,0.033,0.020]
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4.5.2.1 Individual Frequency Simulations

The case of frequencies considered individually is similar to the analysis presented in [4] with additional recourse here to

tempering. The (left) part a) of Fig. 4.2 is a map of histograms of the second half of samples (j ¼ 15000 . . . 30001). Each
horizontal line is therefore the (scaled) posterior probability of damage location estimated from measurements at a single

frequency. Patterns can be clearly distinguished. At very low frequency, the (significant) probability of damage is located in

a single region and when the frequency increases, other modes (in a statistical sense) of probability appear. The actual

damage location is the only location at which significant posterior probability exists at all frequencies. Furthermore, there are

frequencies at which the location is perfectly well identified (it is the only one with significant posterior probability). Similar

patterns were already noted in the evaluation of analytical posteriors in [7] and could be explained by the form of the

likelihood function. These patterns are also present at higher frequency as is illustrated in the (right) part b) of Fig. 4.2.

Although they are in theory qualitatively identical, the high (statistical) multimodality, quality of the estimation (identical

walk parameters were used at all frequencies), and (structural dynamic) modal characteristics make for a very different story.

Visually, at first sight, all locations appear to be almost equally likely and it is hard to distinguish the exact location amongst

these. Also, despite the presence, again, of discrete frequencies at which the exact location is better identified by the (single

frequency) posterior, the situation is very different than in the low frequency case, since small variation from one given

frequency appears to possibly lead to large qualitative change in the posterior. Useful information may however be extracted

from this apparent relative chaos through the use of MCMC with Gaussian process.

4.5.2.2 Gaussian Process Simulations

The maps of posterior probabilities at individual frequencies show that one should expect the location of damage to be

perfectly well identified if a range of frequencies is considered at a time. This is verified by considering all the Q ¼ 150

frequencies in single Gaussian processes (both for the measurement error likelihood and the damage magnitude prior). In the

higher frequency range, the posterior of the damage location estimated by MCMC identifies the actual location (k ¼ 171) as

the only possible position of damage (All the location samples yðjÞ1 are equal to 171 for j ¼ 15000 . . . 30000). The
convergence of the samples to the actual location is explained by the conditional likelihood of the location (when other

exact parameters are fixed) presented in Fig. 4.3 which shows that only the exact location is likely.

A big advantage of Bayesian methods is that they provide information on all the parameters at the same time. This is

demonstrated in Fig. 4.4 where additional statistical information on the damage magnitude is presented.

Fig. 4.2 Scaled histogram map of the damage 2 location considering one frequency (horizontal line) at a time. Actual location of the damage is

k ¼ 171. (a) Low frequency range o E [0, 0.075]. (b) Higher frequency range o E [0.5, 0.575]
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4.6 Conclusion

The use of Bayesian methods based on transfer function measurements of a structural dynamic system appears to be a

feasible technique to identify structural damage. In the simulations reported here, a nominal one-dimensional structure is

known to have been damaged at a single location. Measurements of the transfer functions are taken over a range of discrete

frequencies. Whilst the value of the damage is unknown, it is assumed known that it has a Gaussian process form (as a

function of frequency) with unknown scale and correlation parameters. Error in measurements has a similar form.

The location and magnitude (at each frequency) of damage as well as the parameters of the measurement error Gaussian

process are parameters of a Bayesian analysis. It is shown that MCMC samples can be used to estimate the posterior

distribution of these parameters. The consideration of parallel multi-chain tempering allows one to avoid the main chain

becoming stuck in a local region of relatively high probability. Results of Gaussian process walks are compared to results of
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walks run at individual frequencies. It is shown that the posteriors have a different qualitative behaviour at different

individual or range of frequencies. Notably, (statistical) multimodality increases at higher frequencies. Considering several

frequencies together nevertheless allows one to identify the location of damage almost deterministically for the particular

system considered here. This appears to be true both at low and higher frequency ranges.
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Chapter 5

Identification of Hysteretic Systems Using NARX Models,

Part I: Evolutionary Identification

K. Worden and R.J. Barthorpe

Abstract Although there has been considerable work on the identification of hysteretic systems over the years, there has

been comparatively little using discrete NARX or NARMAX models. One of the reasons for this may be that many of the

common continuous-time models for hysteresis, like the Bouc-Wen model are nonlinear in the parameters and incorporate

unmeasured states, and this makes a direct analytical discretisation somewhat opaque. Because NARX models are universal

in the sense that they can model any input–output process, they can be applied directly without consideration of the

hysteretic nature; however, if the polynomial form of NARX were to be used for a Bouc-Wen system, the result would be

input-dependent because of the non-polynomial (indeed discontinuous) nature of the original model. The objective of the

current paper is to investigate the use of NARX models for Bouc-Wen systems and to consider the use of non-polynomial

basis functions as a potential means of alleviating any input-dependence. As the title suggests, the parameter estimation

scheme adopted will be an evolutionary one based on Self-Adaptive Differential Evolution (SADE). The paper will present

results for simulated data.

Keywords Hysteresis • NARX models • Nonlinear system identification • Self-Adaptive Differential Evolution (SADE) •

The Bouc-Wen model

5.1 Introduction

This paper represents the first of two in a short sequence discussing aspects of the system identification problem for

hysteretic systems i.e. systems with memory. The basis for discussion here is the extremely versatile parametric form for the

modelling of hysteretic systems provided by the Bouc-Wen model [1, 2]. The model form has been widely adopted and the

literature on the Bouc-Wen model is extensive. There is no intention here to survey the said literature and the reader is

instead referred to the recent book [3] for a comprehensive guide. In the past, one of the main problems associated with

adopting the Bouc-Wen form for a system model was the identification of the model parameters, as the problem is

complicated by nonlinearity in the parameters and the presence of unmeasured states. These issues have been largely

dealt with by the adoption of evolutionary identification schemes; the Differential Evolution (DE) scheme discussed in [4]

proved particularly effective, as did the later self-adaptive variant [5].

Having determined an effective identification scheme for the Bouc-Wen system, it is possible to turn ones attention to the

model form itself in order to see if one can develop a more convenient or effective variant. The first thing which comes to

mind is that the Bouc-Wen system is described by a continuous-time differential equation of motion and it is often more

convenient for system identification purposes to adopt a discrete form. In terms of discrete models of nonlinear systems, it is

probably fair to say that the NARMAX (Nonlinear Auto-Regressive Moving Average with Exogenous Inputs) or NARX

form is the ‘standard model’ for system identification [6, 7]. One issue with the NARMAX or NARX models is that one has

to specify the basis of model terms in use and, although other bases have been adopted successfully, a polynomial basis is

most usually adopted. A problem with this approach is that the fitted model may be input-dependent; although the

polynomial basis can approximate any function with any desired accuracy, the approximation will depend on the level of
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excitation if the system of interest does not truly have polynomial nonlinearities—as in the case of the Bouc-Wen system.

A way around the problem of input-dependence is to include in the NARMAX or NARX basis, terms which represent the

true nonlinearities of the system. This will be the approach adopted in the current paper in order to derive a NARX (noise

will not be considered here so the moving average part is not estimated) class of models for Bouc-Wen systems. It will be

shown that the Bouc-Wen NARX class also potentially overcomes other problems which arise in fitting polynomial NARX

models to systems of Bouc-Wen type.

The layout of the paper is as follows: Sect. 5.2 briefly describes the Bouc-Wen model of hysteresis considered here and

explains the evolutionary approach to system identification. Sect. 5.3 describes how the NARX Bouc-Wen model is derived

and identification results based on simulated data are presented in Sect. 5.4. The paper concludes with a little discussion in

Sect. 5.5.

5.2 Identification of the Bouc-Wen Hysteresis Model

The system of interest here will be the general Single-Degree-of-Freedom (SDOF) hysteretic system described in the terms of

Wen [2]. The system is a continuous-time one and is represented below with zðy; _yÞ the hysteretic part of the restoring force,
m€yþ c _yþ kyþ zðy; _yÞ ¼ xðtÞ (5.1)

where m, c and k are the mass, damping and stiffness parameters respectively, y(t) is the system displacement response and

x(t) is the excitation force; overdots denote differentiation with respect to time. The system in (5.1) is a restricted form of

the Bouc-Wen model as it has a linear non-hysteretic internal force; in general one could have an arbitrarily nonlinear

non-hysteretic component. The hysteretic component is defined by Wen [2] via an additional equation of motion,

_z ¼ A _y� aj _yjzn � b _yjznj (5.2)

for n odd, or,

_z ¼ A _y� aj _yjzn�1jzj � b _yzn (5.3)

for n even.

The parameters a, b and n govern the shape and smoothness of the hysteresis loop. A simplification from the point of view

of parameter estimation is that the stiffness term in (5.1) can be combined with the term A _y in the state equation for z i.e. one
can set k ¼ 0. As a system identification problem, this set of equations has presented a number of difficulties in the past,

foremost are: (a) the state z is not measurable and therefore it is not possible to use (5.2) or (5.3) directly in a least-squares

formulation, and (b) The parameter n enters the state equations (5.2) and (5.3) in a nonlinear way; this means that a linear

least-squares approach is not applicable to the estimation of the full parameter set. However, it has been shown that there are

a number of identification procedures which can accommodate the difficulties peculiar to the Bouc-Wen system; as

discussed in [5], the differential evolution algorithm [8], and it’s adaptive variant [9, 10], offer a powerful approach to

the parameter estimation problem. As in all evolutionary optimisation procedures, a population of possible solutions (here,

the vector of parameter estimates), is iterated in such a way that succeeding generations of the population contain better

solutions to the problem in accordance with the Darwinian principle of ‘survival of the fittest’. The problem is framed as a

minimisation problem with the cost function defined as a normalised mean-square error between the ‘measured’ data and

that predicted using a given parameter estimate, i.e.

Jðm; c; k; a; bÞ ¼ 100

Ns2y

XN

i¼1
ðyi � ŷiðm; c;A; a; b; nÞÞ2 (5.4)

where sy
2 is the variance of the ‘measured’ sequence of displacements yi and the caret denotes a predicted quantity. The

identification scheme adopted in this paper is based on the Self-Adaptive Differential Evolution (SADE) algorithm

mentioned above and illustrated previously on Bouc-Wen systems in [5].

Before moving on to the NARX form of the Bouc-Wen model, some description of the simulated data used here for

illustration is given. The main data for the current study were generated by numerical simulation. The coupled equations (5.1)

and (5.3) were integrated forward in time inMatlab [11] using a fixed-step fourth-order Runge–Kutta scheme for initial value

problems [12]. The fixed-step solver was used in order to avoid a subtle issue with adaptive solvers which was raised in [5].
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The parameters for the baseline system adopted here were: m ¼ 1, c ¼ 20, a ¼ 1. 5, b ¼ �1:5, A ¼ 6680. 0 and n ¼ 2.

The excitation was a Gaussian white noise sequence with mean zero and standard deviation 9.92. These are the same

parameter values as those adopted in [5]. The step-size (or sampling interval) was initially taken as 0.004 s, corresponding to

a sampling frequency of 250 Hz. As the main aim of the paper is concerned with discussing the new NARX model form, the

data are not corrupted by noise, this matter will be investigated at a later date. The ‘training set’ or identification set used here

was composed of 1,000 points corresponding to a record duration of 4 s.

5.3 The NARX Bouc-Wen Model

Without any real loss of generality here, the Bouc-Wen systemwill be specified by (5.1) and (5.3) for n even. In fact, to simplify

matters further, the parameter n will be fixed at the value 2 in order to remove it from the identification problem as it does not

affect the arguments which will follow. As a first step in deriving a discrete model for the Bouc-Wen system, a continuous-time

form independent of z will be obtained. The first step in this process is simply to differentiate equation (5.1) to form,

m€vþ c _vþ _z ¼ _xðtÞ (5.5)

with the assumption that k ¼ 0 as discussed in the last section. The natural notation v ¼ _y has been adopted. Substituting for
{v ¼ _z} from (5.3) then gives,

m€vþ c _vþ Av� ajvjzn�1jzj � bvzn ¼ _xðtÞ (5.6)

Finally, one substitutes,

z ¼ x� cv� m _v (5.7)

which is a trivial rearrangement of (5.1), to give,

m€vþ c _vþ Av� ajvjðx� cv� m _vÞn�1jx� cv� m _vj � bvðx� cv� m _vÞn ¼ _xðtÞ (5.8)

The latter equation is independent of the unmeasured state z; however, this freedom has been achieved at the expense of

making the form very nonlinear in the excitation x. Discretisation of the Bouc-Wen system now proceeds in the standard

manner. First, one adopts discrete approximations to the first and second derivative terms in (5.8),

_v � 1

Dt
ðvi � vi�1Þ (5.9)

€v � 1

Dt2
ðviþ1 � 2vi þ vi�1Þ (5.10)

where vi ¼ v(iDt) and Dt is the sampling interval. With this prescription for the derivatives (which is by no means

compulsory), one finds that,

x� cv� m _v � xi � cvi � m

Dt
ðvi � vi�1Þ ¼ xi þ g1vi þ g2vi�1 (5.11)

with the latter equation serving to define the coefficients gi. By a similar process, one finds the discrete form,

m€vþ c _vþ Av � a0viþ1 þ a1vi þ a2vi�1 (5.12)

and similar for the x terms.

Putting all of this together in (5.8), redefining ai by � ai=a0 throughout and shifting the time index yields finally,

vi ¼
X2

j¼1
ajvi�j þ

X2

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

X2

j¼1
gjvi�jÞjxi�1 þ

X2

j¼1
gjvi�jjn�1 þ bviðxi�1 þ

X2

j¼1
gjvi�jÞ

n

(5.13)
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on restoring a general (even) n. The parameters which require estimation here are (a1, a2, b1, b2, a, b, g1, g2) and so there

are eight in total in this, the minimal NARX Bouc-Wen model. Allowing for the fact that more accurate approximations for

the derivatives could have been used, one arrives at a more general NARX Bouc-Wen form,

vi ¼
Xp

j¼1
ajvi�j þ

Xq

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

Xr

j¼1
gjvi�jÞjxi�1 þ

Xr

j¼1
gjvi�jjn�1 þ bviðxi�1 þ

Xr

j¼1
gjvi�jÞ

n
(5.14)

however, only the minimal form (5.13) will be discussed further in this paper.

As promised, (5.13) is tailored to the nonlinear terms expected from a Bouc-Wen system; however, it will offer other

advantages over the polynomial form of the NARX model. First, it must be observed that the NARX Bouc-Wen system is

still nonlinear-in-the-parameters. This is not an issue for the evolutionary optimisation scheme adopted here, but it is a

problem for a polynomial NARX approach. The problem is avoided by making the polynomial approximation,

jzj � c0 þ c2z
2 (5.15)

which renders all terms in (5.13) polynomial at the expense of making the model input-dependent as discussed in

the introduction. A further problem now is that the highest-order polynomial term needed to represent the minimal

NARX Bouc-Wen model (with n ¼ 2) will be fifth-order. This means that the polynomial NARX structure detection

algorithm must search over all candidate basis terms up to fifth order and this is likely to be prohibitively expensive.

The final advantage of the NARX Bouc-Wen form over the continuous form is shared by NARX models in general and is

that forward prediction is a simple iteration rather than requiring the use of a differential equation solver. This is particularly

significant in the context of the evolutionary identification scheme as predictions have to made for all candidate parameter

sets in the SADE population. In all other respects, the SADE approach to identification is identical to that for the continuous-

time Bouc-Wen model except for the fact that one now minimises a cost function,

Jða1; a2; b1; b2; a; b; g1; g2Þ ¼
100

Ns2y

XN

i¼1
ðyi � ŷiða1; a2; b1; b2; a; b; g1; g2ÞÞ2 (5.16)

(assuming n fixed).

5.4 Illustration on Simulated Data

The application of the NARX Bouc-Wen model structure will later be shown on data simulated from a continuous-time

Bouc-Wen model; however, in order to develop the algorithm an even simpler benchmark was developed first.

The parameters m ¼ 1, c ¼ 20, a ¼ 1. 5, b ¼ �1:5, A ¼ 6680. 0 and n ¼ 2 discussed in Sect. 5.2 were adopted for

the continuous-time Bouc-Wen system and the corresponding parameters for the NARX model were calculated. With a

sampling interval of Dt ¼ 0. 004, this led to a1 ¼ 1:813; a2 ¼ �0:92; b1 ¼ 0:004; b2 ¼ �0:004; a ¼ 0:000024;
b ¼ �0:000024; g1 ¼ �270; g2 ¼ 250. Adopting a Gaussian white noise sequence with zero-mean and standard deviation

9.92, the exact discrete form in (5.13) was used to generate reference data for vi. 1,000 points of identification data were

generated. In the first stage of the identification process, one usually has little prior knowledge of the parameters and this will

be reflected here by assuming initial bounds on the parameters which range over an order of magnitude above and below

the true values; this means the initial ranges are: [0. 1813, 18. 13] for a1, ½�9:2;�0:092� for a2 etc. On applying the SADE

approach a problem immediately arose. This issue related to the stability of the NARX model; it transpired that

the randomly-generated initial population of parameter vectors in SADE almost always generated unstable predictions.

After some investigation, it became clear that the main source of the problem was the g1 parameter; when the corresponding

term was removed from the model in (5.13), the stability problem was reduced to the extent that stable predictions

were generated. A further source of instability was introduced by any attempt to include initial conditions in the forward

prediction of the velocity data; while this bears further investigation, the problem was ‘solved’ here by prescribing

v1 ¼ v2 ¼ 0. A result of this is that an initial transient appears in all predicted velocity time-series and this lower

bounds the prediction accuracy which can be achieved by the identification. New simulated data were generated as

above, but with g1 ¼ 0.

The hyperparameters of the SADE algorithm adopted here are the same as those described in [5], which is a further

confirmation of the robustness of the adaptive algorithm. The only modifications were that a population size of 200 was
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used and the maximum number of generations was set at 1,000. Because the algorithm begins from a random initial population,

10 runs of the algorithm were made with different initial populations. When the data generated by the ‘exact’ NARX form

were identified using the SADE algorithm, all parameters were estimated to machine accuracy. The evolution of the cost

functions over the 10 runs is shown in Fig. 5.1; the descent to machine precision over 600 generations or so is shown clearly.

There is no purpose in showing how the model-predicted data compares with the ‘true’ data as they would simply appear

superimposed.

Having established that the algorithm is implemented correctly (verification) it became necessary to show that it

generated appropriate models in more demanding cases (validation). This was accomplished here by identifying data

generated from a continuous-time Bouc-Wen process as described in Sect. 5.2. In this case, the ‘true’ NARX Bouc-Wen

parameters were not known, so it was not immediately obvious how to set initial bounds on the parameters. However, based

on the general behaviour of the discretised models e.g. ai ¼ O(1), bi ¼ O(Dt) etc. it was possible to set bounds which gave

initial convergence of the predictions. These ‘trial and error’ bounds were: [ � 2, 2] for a1, a2, b1 and b2; [ � 0. 01, 0. 01]

for a and b and [ � 500, 500] for g2. With the initial ranges specified, the SADE algorithm converged to a solution with cost

value 4.90% in 4 of the 10 runs; the optimal parameter set found was: a1 ¼ 1:819; a2 ¼ �0:92; b1 ¼ 0:00344;
b2 ¼ �0:00361; a ¼ �0:0000104; b ¼ �0:0000222; g2 ¼ 13:6. The linear term parameter estimates agree with those of

the algebraically-derived form of the discrete model, while the nonlinear parameters are somewhat different; this is to

be expected because of the inexact nature of the discretisation. Figure 5.2 shows the model predicted data compared

to the ‘true’ data.

Previous experience with the cost function used here as shown that a value of 5% indicates a good model fit while 1%

indicates a truly excellent fit. The value of 4.9% obtained here, based on noise-free data was considered a little disappointing.

There are various reasons why the model fit could be less than perfect, but the first one that was considered here was the

accuracy of the discretisation. In order to investigate this, data were simulated from the same continuous-time Bouc-Wen

system as before, except that ‘sampling’ was carried out at 1,000 Hz (i.e. Dt ¼ 0. 001s). When the identification scheme was

applied to this data, an error of 1.99% was found, which showed that sampling was an issue; in practice, this could also be

addressed by using more lags in the model i.e. adopting the more general form in (5.14). In contrast to the case for the ‘exact’

NARX data, the SADE algorithm only found a good solution in one of 10 runs (as shown in the cost evolutions in Fig. 5.3).

In 4 of the runs, the algorithm failed to escape from regions of the parameter space leading to instability of the predictions.

With the best parameter set, which was: a1 ¼ 1:97283; a2 ¼ �0:9802159; b1 ¼ 0:000923679; b2 ¼ �0:000925449; a ¼
0:000005516; b ¼ �0:000008497; g2 ¼ �116:53, the comparison between the predicted and true data was as shown in

Fig. 5.4. The prediction error in this case is dominated by the component in the initial transient which appears for reasons

discussed earlier; the data later in the time series show an excellent fit of the model.

The observant reader will no doubt question why parameter estimates are being quoted to six significant figures when

previously three sufficed. The reason is interesting; when only three significant figures are used in order to make the model

predictions, the results in this case are rather poor as shown in Fig. 5.5. This shows that the predictions are very sensitive to

Fig. 5.1 Evolution of cost

functions for identification of

exact NARX data (solid:
average cost over population;

dashed: minimum cost over

generation)
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the parameter estimates. The extent of this sensitivity bears further investigation and could be considered by using Bayesian

sensitivity analysis as discussed in the context of the continuous-time Bouc-Wen system in [13].

As a final consideration, a linear model was fitted to the 1,000 Hz data, i.e., the parameters a, b and g2 were constrained to
zero in the identification. This exercise gave a cost value of 3.7% showing that the nonlinear terms are needed.
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5.5 Conclusions

Lengthy conclusions do not appear to be warranted here as the work presented is largely of an exploratory nature and much

remains to be followed up. A discrete NARX structure has been introduced tailored to hysteretic systems of Bouc-Wen type

in the hope that input-independent NARX models can be found for hysteretic systems with small parameter sets. It has been

shown that the SADE algorithm provides an effective means of estimating parameters for the NARX Bouc-Wen structure.

Among the many issues raised here that bear further investigation are:

• It will be important in general to understand the stability properties of the NARX Bouc-Wen form, at least as far as it is

necessary to generate initial populations for the SADE algorithm which do not all blow-up. At least, the influence of the

a1 parameter and the initial conditions needs further investigation.
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• It will be necessary to consider more general forms for the NARX model, both in terms of the number of lags in the linear

components in the model and in terms of allowing a nonlinear non-hysteretic restoring force.

• Sensitivity to the parameter uncertainty appears to be an issue, this may be critical when the identification algorithm is

applied to real noisy data.

• Estimation of parameter confidence (related to but not the same as sensitivity) is an issue and can be investigated using

various approaches.

• One could add basis terms for a range of n values and then determine which make a significant contribution.

As indicated in the introduction, this paper is one of a pair; the second in the series will consider a Bayesian system

identification scheme based on Markov-Chain Monte Carlo and will by its nature encounter some of the issues indicated

above in that separate context.
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algorithm.
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Chapter 6

Identification of Hysteretic Systems Using NARX Models,

Part II: A Bayesian Approach

K. Worden, R.J. Barthorpe, and J.J. Hensman

Abstract Following on from the first part of this short sequence, this paper will investigate the use of a Bayesian

methodology for the identification of Bouc-Wen hysteretic systems by NARX models. The approach—based on Markov

Chain Monte Carlo—offers a number of advantages over the evolutionary approach of the first paper. Among them are the

ability to sample from the probability density functions of the parameters in order to develop nonparametric estimators and

the possibility of selecting model terms in a principled manner. The paper will investigate the use of the Deviance

Information Criterion (DIC) as a means of selecting model terms, specifically the special basis functions developed for

the Bouc-Wen system in Part I. Results for simulated data will be given.

Keywords Bayesian inference • Hysteresis • Markov Chain Monte Carlo (MCMC) • Nonlinear system identification • The

Bouc-Wen model

6.1 Introduction

This paper represents the second in a two-part series. In the first part [1], the authors showed how to transform the Bouc-Wen

hysteretic system [2, 3] into a discrete NARX (Nonlinear Auto-Regressive model with eXogeneous inputs) form [4, 5].

The resulting model structures are tailored to the nonlinear terms expected from a Bouc-Wen system in order to allow the

possibility of establishing input-independent models rather than the input-dependent models that would be expected from

polynomial NARX approximations; however, as noted in [1], they will offer other advantages over polynomial NARX.

If one assumes a linear non-hysteretic force, there is no structure detection problem for the models and the system

identification problem is reduced to parameter estimation. In [1], the parameter estimation algorithm was an evolutionary

scheme based on Self-Adaptive Differential Evolution (SADE). This paper will present an alternative parameter estimation

method based on a Bayesian Markov Chain Monte Carlo (MCMC) approach. There are many advantages of such an

approach as discussed in [6]; among them is the ability to generate confidence intervals for parameters; in fact the scheme

allows one to actually sample from the probability density functions of the parameters.

The layout of the paper is as follows: Sect. 6.2 describes the newly-proposed Bouc-Wen NARX model structures.

In Sect. 6.3 the necessary background to the MCMC scheme is described and the results of applying the method are given in

Sect. 6.4. The paper concludes with a little discussion in Sect. 6.5.
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6.2 The NARX Bouc-Wen Model

As in the first paper in this short sequence [1], the system of interest here is specified as the general Single-Degree-of-

Freedom (SDOF) hysteretic system described in the terms of Wen [3] as,

m€yþ c _yþ kyþ zðy; _yÞ ¼ xðtÞ (6.1)

y(t) is the system displacement response and x(t) is the excitation force; overdots denote differentiation with respect to time.

As represented above, zðy; _yÞ as the hysteretic part of the restoring force; the non-hysteretic part is taken here as linear, where
m, c and k are the mass, damping and stiffness parameters respectively, The hysteretic component of the internal force is

defined by Wen [3] via the additional equation of motion,

_z ¼ A _y� aj _yjzn � b _yjznj (6.2)

for n odd, or,

_z ¼ A _y� aj _yjzn�1jzj � b _yzn (6.3)

for n even.

The parameters a, b and n govern the shape and smoothness of the hysteresis loop.

In [1], a discrete NARX (Nonlinear Auto-Regressive model with eXogeneous inputs) form for Bouc-Wen systems.

For even n, the minimal Bouc-Wen NARX model is given,

vi ¼
X2

j¼1
ajvi�j þ

X2

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

X2

j¼1
gjvi�jÞ

n
þ bvijxi�1 þ

X2

j¼1
gjvi�jjn (6.4)

for n odd and,

vi ¼
X2

j¼1
ajvi�j þ

X2

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

X2

j¼1
gjvi�jÞjxi�1

þ
X2

j¼1
gjvi�jjn�1 þ bviðxi�1 þ

X2

j¼1
gjvi�jÞ

n (6.5)

for n even. Note that the primary variable of interest is now the velocity v ¼ dy=dt/ The parameters which require estimation

here are (a1, a2, b1, b2, a, b, g1, g2) and so there are eight in total in the minimal NARX Bouc-Wen model. Allowing for the

fact that more accurate approximations for the derivatives could have been used, one arrives at the more general NARX

Bouc-Wen forms,

vi ¼
Xp

j¼1
ajvi�j þ

Xq

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

Xr

j¼1
gjvi�jÞ

n þ bvijxi�1 þ
Xr

j¼1
gjvi�jjn (6.6)

for n odd and,

vi ¼
Xp

j¼1
ajvi�j þ

Xq

j¼1
bjxi�j þ ajvi�1jðxi�1 þ

Xr

j¼1
gjvi�jÞjxi�1

þ
Xr

j¼1
gjvi�jjn�1 þ bviðxi�1 þ

Xr

j¼1
gjvi�jÞ

n (6.7)

for n even. However, only the minimal forms (6.4) and (6.5) will be discussed further in this paper. For reasons relating to the

stability of predictions that are discussed in [1], the parameter g1 is set to zero here and there are thus seven parameters for

estimation: (a1, a2, b1, b2, a, b, g1, g2)
As discussed in the introduction, if one assumes a linear non-hysteretic force, there is no structure detection problem for

the models and the system identification problem is reduced to parameter estimation. The estimation strategy in this paper is

a Bayesian method based on Markov Chain Monte Carlo (MCMC) and this is defined in the following section. It has to be

said that, in order to make the present paper as self-contained as possible, substantial portions of earlier papers by the authors

on the MCMC approach are reproduced including material from [6].
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6.3 Bayesian Inference and Markov Chain Monte Carlo

6.3.1 Bayesian Inference for System Identification

The problem of system identification is simply stated: given measured data from a structure or system of interest, how does

one infer the equations of motion which ‘generated’ the data. The main classical, almost exclusively linear, approaches to

the problem are well-described in [7, 8]. Although the problem can be stated simply, mathematically it can be extremely

ill-posed even if the underlying equations are assumed to be linear in the parameters of interest [9]. If the equations of motion

are not linear in the parameters of interest, the difficulties multiply.

Another issue is concerned with confidence in any parameter estimates. This issue is a result of the fact that measurements

or data from a system will, in reality, almost always be contaminated by random noise. Suppose that one has a set of data

D ¼ fðxi; yiÞ; i ¼ 1; . . . ;Ng of sampled system inputs xi and outputs yi. If one assumes that there is no measurement noise,

then the application of an identification algorithm, will yield (subject to the conditioning of the problem), a deterministic

estimate of the system parameters w,

w ¼ idðDÞ (6.8)

where the function id represents the application of the identification algorithm to the data D. In the context of the current

problem (a1, a2, b1, b2, a, b, g1, g2). Now, if noise e(t) is present on the input or output data (or both), w will become a

random variable conditioned on the data. The problem is no longer to find an estimate of w, but rather to specify the belief

in its value. For simplicity, it will be assumed that the noise is Gaussian with (unknown) variance s. The parameter s will

be subsumed into w, since it is to be inferred along with the model parameters. In probabilistic terms, instead of (6.8) one

now has,

w � pðwjD;MÞ (6.9)

where M represents the choice of model (the Bouc-Wen system with Gaussian noise in the case here). In the presence of

measurement noise, the most one can hope to learn from any data is the probability density function of the parameter

estimates; in fact, in a probabilistic context, this is everything. The Bayesian approach to the parameter estimation problem

described here was motivated by the recent work in [10, 11] where Bayesian approaches to determining the parameters of

continuous-time differential equations were proposed and developed. Such an approach was applied in a structural dynamic

context in [6]; the method described here differs only in that parameters are estimated for discrete-time systems.

The usual objective of system identification is to provide a predictive model i.e. a mathematical model which can estimate

or predict system outputs if a different system input were provided. In the probabilistic context described above, the best that

one could do is to determine a predictive distribution. Suppose a new input sequence x� were applied to the system, one

would wish to determine the density for the predicted outputs,

y� � pðy� jx� ;w;D;MÞ (6.10)

noting all the dependencies. However, the true Bayesian viewpoint on the prediction, would require one to marginalise over

the parameter estimates, i.e. to derive,

pðy� jx� ;D;MÞ ¼
Z

pðy� jx� ;wÞpðwjD;MÞdw (6.11)

This is a very powerful idea: allowing for a fixed model structure, one is making predictions using an entire set of
parameters consistent with the training data, with each point in the space of parameters weighted according to its likelihood

given the data. In practice, there are considerable problems in implementing the full Bayesian approach. For the purposes of

this paper, the main issue for discussion will be the problem of inferring the distributions for the parameters as given in (6.9).

Another potential advantage of a Bayesian approach is that it may be possible to assess the relative evidence for a number

of competing model structures. This issue is discussed in more detail in [6]. One simple approach to model selection, which

will be applied later is the Deviance Information Criterion (DIC), which is a Bayesian generalisation of the Akaike

Information Criterion (AIC) [12]. This is specified in terms of the deviance DðwÞ, defined by,

DðwÞ ¼ �2 log pðDjwÞ þ C (6.12)
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where pðDjwÞ is simply the likelihood of the data and C is a constant. Because the DIC will only ever be used in comparing

models, the C will cancel out when a difference is taken and is therefore unimportant. The expectation of the deviation,

D ¼ Ew½DðwÞ� (6.13)

is a measure of how well a given model structure fits the data, as the parameters themselves have been marginalised. Now,

the effective number of parameters is defined as,

pD ¼ D� DðwÞ (6.14)

where w ¼ E½w�. A little thought is enough to show that this function will be an increasing function of the number of model

parameters. Finally, the DIC is defined by,

DIC ¼ pD þ D (6.15)

The DIC is higher if more parameters are used because of the first term and lower if the model explains the data better.

The first term therefore balances the second as models with more parameters will naturally fit data better. Like the AIC, the

DIC penalises model complexity and rewards model fidelity.

6.3.2 Markov Chain Monte Carlo

As stated earlier, the central problem for this paper will be to determine the probability density function for parameter

estimates, given data from a Bouc-Wen hysteretic system. Unfortunately, in terms of exact statistical inference this problem

is already too difficult. It is not possible to analytically determine the form of the required distribution and it will be

necessary to adopt numerical methods. If one were to assume a specific parametric form for the density e.g. Gaussian, one

could make headway; however, this involves imposing a restrictive, and quite possibly incorrect, assumption. One ideally

wishes to adopt a nonparametric approach to the problem so that the true statistics of the parameter density are obtained.

An obvious step in the direction of nonparametric estimation is to sample from the parameter distribution itself and thus

build a picture; however, the distribution in question is unknown. Fortunately, there exists a very powerful class of numerical

methods which allow sampling from such densities—the class of Markov Chain Monte Carlo (MCMC) methods [13].

While many sampling methods are available for Monte Carlo estimation, one of the most versatile and powerful is

MCMC; the variant used in this paper will be the Metropolis–Hastings (MH) method. In order to describe the method, it is

sufficient to assume that one has a single random variable x with true, but unknown, density p(x). The MH method works

even if p(x) is too complicated to sample from directly. First of all, one assumes that one can at least evaluatep(x), given a

candidate value for x; in fact, one only needs to evaluate a density p ∗ (x), where p ∗ (x) ¼ Zpp(x) i.e. the density of interest
up to a multiplicative constant. The method hinges on the use of a proposal distributionq(x), which is simpler than p(x) and
can also be evaluated up a multiplicative constant. The use of the proposal distribution is common to many methods like

importance and rejection sampling [13]. The unique feature of MCMC methods is that a sequence of samples or states xi are
generated, with the proposal distribution a function of the state at any given time; one estimates the probability for the next

state in the sequence (a Markov chain—hence the name) by conditioning on the current state, the proposal distribution is

q(x0 xi). Another way of regarding q is as a transition probability density for a jump in the state/sample space. Often q is

taken as a simple distribution, i.e. a Gaussian. Note that if the proposal distribution has a small variance, this will lead to

small jumps in the sample space and will produce (at least locally) correlated states/samples.

The MH algorithm proceeds as follows. Assume one is at iteration i in the process:

1. Sample from the proposal density q(x0 xi) to generate a candidate state x0.
2. Evaluate the quantity,

a ¼ p� ðx0Þqðxijx0Þ
p� ðxiÞqðx0jxiÞ

3. If a � 1, the new state is accepted, otherwise the new state is accepted with probability a.
4. If the new state is accepted, set xiþ1 ¼ x0, else set xiþ1 ¼ xi.
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A full description of why this procedure leads to sampling from p(x) is beyond the scope of this paper, the curious reader
should consult [13].

It is possible to show that for any q such that q(x0 x) > 0 for all x, x0, the probability density of the xi will tend to p(x) as
i ! 1 [13]. Two issues arise with the iteration above. The first concerns initial conditions. As in any iterative process,

initial conditions matter, depending on these there will be a transient period before the sequence becomes stationary and is

consistently generating samples from p(x). In order to allow for this, the algorithm is usually run for a burn-in period before
samples are drawn. The second issue is concerned with independence, as observed above, the proposal density may only

allow small jumps in the state/sample space, so states close together in the sequence will be correlated. To obtain

independent samples, one only saves every ntth state; this process is called thinning. Finally, another issue becomes

important when one uses the algorithm in higher dimensions, one should choose the proposal distribution in such a way

that the algorithm explores the posterior space quickly without exhibiting too much random walk behaviour. This is the

problem of mixing There are no hard-and-fast rules for choosing a suitable proposal distribution, though [12] offers some

helpful guidance.

6.3.3 MCMC for System Identification

In order to implement MCMC, it is necessary to evaluate a density p� ðwjDÞ which is the required pðwjDÞ up to a constant

multiple (forgetting the noise variance for the moment). Using Bayes theorem, one has,

pðwjDÞ ¼ pðDjwÞpðwÞ
pðDÞ (6.16)

and as p(D) is fixed by the data (and cannot be evaluated anyway), one has,

p� ðwjDÞ ¼ pðDjwÞpðwÞ (6.17)

as the required density (p, up to a constant). This is the product of a likelihood for the data (which can be computed under the

assumption that the noise is Gaussian—the log likelihood is then related to the least-squared error between predictions using

the candidate parameters and the measured data) and a prior for the parameters. The only thing needed then for the MH

algorithm is the proposal distribution qðx0jxiÞ and a simple prescription for this can be a spherical Gaussian distribution,

qðx0 jxiÞ � Nðxi; spIÞ (6.18)

controlled by a single scale parameter sp (I is the identity matrix).

One feature of the MCMC algorithm is that it simplifies the computation of the DIC discussed earlier; one simply

calculates the average of DðwÞ over the sequence of parameter samples and evaluates D at the mean of those samples w.

6.4 Results

The training data for the current study were generated by simulation. The coupled equations (6.1) and (6.3) were integrated

forward in time using Matlab [14] using a fixed-step fourth-order Runge–Kutta scheme for initial value problems [15].

The parameters for the baseline system adopted here were: m ¼ 1, c ¼ 20, a ¼ 1. 5, b ¼ �1:5, A ¼ 6680. 0 and n ¼ 2.

The excitation was a Gaussian random sequence with mean zero and standard deviation 10.0. The step-size (or sampling

interval) was taken as 0.004 s, corresponding to a sampling frequency of 250 Hz. Noise of RMS 1% of the response was

added to the velocity response data which were used, with the corresponding samples of excitation force, as ‘training data’

for the algorithm. The training set, or identification set, used here was composed of 500 points corresponding to a record

duration of 2 s. The training set, force and displacement is illustrated in Fig. 6.1.
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Once the data had been generated, the MCMC algorithm was applied to the identification problem. The parameter n was
not included for direct estimation; the reason being that different values of n here will be treated as generating different

models from a given class and model selection will be carried out by using the DIC as discussed in the last section.

The MCMC identification routine was coded in the Python language using the package PyMC [16]. A number of

identification runs were made using values of the Bouc-Wen n parameter from 1 to 4 in order to later investigate the

possibility of model selection using the DIC as discussed earlier. As well as the seven parameters: a1, a2, b1, b2, a, b and g2,
as discussed earlier, the MCMC routine also attempted to learn the output noise variance; however, for convenience this was

encoded as a precision parameter B ¼ 1=s2. Because of the differences in scale between the parameters, log values were

used in the algorithm to improve mixing as discussed earlier. All of the model parameters were given uniform priors with the

bounds set one order of magnitude below and above the ‘true’ parameters. As the data are from a continuous-time Bouc-Wen

system yet the model fitted is discrete-time, the true parameters are not known, so in this case the parameters were intialised

with estimates obtained from the data using the Self-Adaptive Differential Evolution (SADE) algorithm as described in [1].

The initial parameter values were thus set as a1 ¼ 1:819; a2 ¼ �0:92; b1 ¼ 0:00344; b2 ¼ �0:00361; a ¼ �0:0000104;
b ¼ �0:0000222; g2 ¼ 13:6. The proposal distribution q was essentially set as a spherical Gaussian with variance of

0.1 in each direction. The MCMC algorithm was set to run for 25,000 samples, thinning by taking every tenth sample

and a burn-in of 5,000 samples was used. The results from the MCMC run are shown in Fig. 6.2. Each of the subfigures

shows the sequence of MC samples for the parameter of interest, followed by a frequency histogram giving a coarse view of

the parameter density.

The first observation one can make from Fig. 6.2 is that the chains for the parameters are all largely stationary

immediately following the burn-in period, although some are still showing a little drift (and these drifts are clearly correlated

between the parameters). When the means and standard deviations for the parameters were estimated over the samples in

each chain, the results were as summarised in Table 6.1. As mentioned above the only comparison one can make is with the

results obtained when the data were identified using the SADE algorithm.

The results are excellent. The 3s bounds (99.7% confidence intervals if the parameter densities are Gaussian) in almost

every case, encompass the true values of the parameters estimated using the SADE algorithm. The one exception is the

g2 parameter which is still not subject to significant bias. Also, in contrast to an identification scheme where the parameter

distributions are assumed Gaussian, the parameter samples are available here so that a test can be carried out to check.

Using the last 50 samples from the chains, the predicted responses were computed and are shown superimposed on the true

response in Fig. 6.3.
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It is clear that the predictions have very little variation between them, consistent with the low standard deviations of the

parameters. This is, to an extent, a consequence of the way the predictions have been made and is on the optimistic side.

By integrating the differential equations across the entire time with a single realisation of the parameters, the predictions

ignore the component of uncertainty associated with state estimation. This effect is discussed in some detail in [6].

Table 6.1 Parameter estimates

for NARX Bouc-Wen model with

n ¼ 2 (correct n)

Parameter SADE value MC mean MC Std

a1 1.83 1.82228 0.00025

a2 � 0.92 � 0.92012 0.00024

b1 0.00344 0.0033915 0.0000071

c � 0.00361 � 0.0035522 0.0000071

a � 1:04� 10�5 � 1:152� 10�5 0. 321 �10 � 5

b � 2:22� 10�5 � 5:430� 10�5 0. 199 �10 � 5

g2 13.6 12.594 2.740
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As discussed earlier, one can also use the Bayesian approach to guide model selection. As the DIC is readily available

from MCMC calculation and is actually computable within the PyMC software, it will be considered here. NARX Bouc-

Wen models with n equal to 1–4 were fitted, and also a linear ARX model of the form,

vi ¼
X2

j¼1
ajvi�j þ

X2

j¼1
bjxi�j (6.19)

The resulting (mean) parameters and corresponding DICs are given in Table 6.2. In all cases, the analysis produced small

confidence intervals for the parameters and the predictions were equally good apart from the n ¼ 4 model which is also the

only one showing significant deviations in the linear parameters from those extracted by the SADE algorithm. If one defines

a normalised mean-square-error by,

MSEðy� Þ ¼ 100

Ns2y

XN

i¼1
ðyi � y�

i Þ2 (6.20)

where the yi are the observed outputs and the yi
∗ are the predictions, the first three Bouc-Wen models gave MSE values of

about 5.0, while the n ¼ 4 model gave 50.6 and the linear model gave a value of 5.2. This is understandable, the difference

between the Bouc-Wen models and the linear model shows that the hysteretic effects are small but observable. Given the

extra parameters in the Bouc-Wen models, they are all able to fit the data better (with the exception of the n ¼ 4 model,

somewhat surprisingly). However, the DIC shows that the n ¼ 2 model is clearly preferred. The results from the DIC can be

shown in a slightly clearer manner by setting a reference value for the linear model at 0 and stating the differences as DIC ∗ .
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Table 6.2 Parameter estimates for NARX Bouc-Wen model with different n values

n a1 a2 b1 b2 a b g2 DIC DIC ∗

Linear 1.817 � 0.921 0.00341 � 0.00358 21301.6 0

1 1.819 � 0.921 0.00342 � 0.00358 � 9:595� 10�5 � 1:978� 10�4 45.42 20,505 � 796

2 1.822 � 0.920 0.00339 � 0.00355 � 1:152� 10�5 � 5:430� 10�5 12.59 20,216 � 1085

3 1.821 � 0.921 0.00339 � 0.00355 � 1:012� 10�6 � 2:486� 10�6 8.908 20,415 � 887

4 1.701 � 0.765 0.00346 � 0.00325 � 1:000� 10�6 � 2:000� 10�6 1.351 24,7757 22,6455
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6.5 Conclusions

It has been shown here that a Bayesian MCMC system identification scheme provides an effective means of estimating

parameters for NARX Bouc-Wen hysteretic systems. The scheme provides natural confidence intervals for the parameter

estimates. A further advantage of the Bayesian approach is that it provides access to various means of model selection.

The DIC approach shown here is not one of the most discriminating; however, it was shown to select the correct model

structure here from a set of competing Bouc-Wen models.
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Chapter 7

Bayesian Methods for Uncertainty Quantification in Multi-level Systems

Shankar Sankararaman, Kyle McLemore, and Sankaran Mahadevan

Abstract This paper develops a Bayesian methodology for uncertainty quantification and test resource allocation in

multi-level systems. The various component, subsystem, and system-level models, the corresponding parameters, and the

model errors are connected efficiently using a Bayes network. This provides a unified framework for uncertainty analysis

where test data can be integrated along with computational models and simulations. The Bayes network is useful in two

ways: (1) in a forward problem where the various sources of uncertainty are propagated through multiple levels of modeling

to predict the overall uncertainty in the system response; and (2) in an inverse problem where the model parameters of

multiple subsystems are calibrated simultaneously using test data. The calibration procedure leads to a decrease in the

variance of the model parameters, and hence, in the overall system performance prediction. Then the Bayes network is used

for test resource allocation where an optimization-based procedure is used to identify tests that can effectively reduce the

uncertainty in the system model prediction are identified. The proposed methods are illustrated using two numerical

examples: a multi-level structural dynamics problem and a multi-disciplinary thermally induced vibration problem.

Keywords Bayes network • Model calibration • Resource allocation • Sensitivity analysis • Testing

7.1 Introduction

Engineering systems are often composed of multiple levels of models. These levels may correspond to subsystems and/or

components of the overall system. The subsystem/component may represent isolated features, or isolated physics, or

simplified geometry of the original system. Typically, along the hierarchy of a multi-level system, the complexity of the

governing physics increases, and hence, the complexity of the model increases, the cost of testing increases, and hence,

the amount of available experimental data decreases. At the system-level, full-scale testing may not even be possible to

predict the system performance under actual operating conditions. It is essential to quantify the overall uncertainty in the

system-level prediction using the models and data available at all levels. The field of “quantification of margins and

uncertainties” (QMU) has the goal of enabling this overall capability [1].

The first challenge in this regard is to efficiently connect the model inputs, parameters, outputs, model errors, and

available data across all the hierarchy. This is not straightforward because there are several sources of uncertainty – physical

variability, data uncertainty, and model uncertainty – at each level of the multi-level system. The Bayes network serves as an

efficient and powerful tool to integrate multiple levels of models, associated sources of uncertainty, and experimental data at

multiple levels. It can used for uncertainty propagation (forward problem), where the system-level prediction uncertainty is

quantified by propagating all the sources of uncertainty at lower levels through the Bayes network. The Bayes network

is also useful for model parameter calibration (inverse problem), where the data available at all levels can be simultaneously

used to calibrate the underlying parameters at different levels of models. In addition, it can also be used to quantitatively

judge the predictive capability of a model, which is the focus of model validation; the issue of model validation is not

addressed in this paper.
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The above capabilities of the Bayes network are then exploited to guide in test resource allocation. Test data available at

multiple levels of system hierarchy are used for model parameter calibration, which in turn leads to a reduction of

uncertainty in the model parameters; this reduced uncertainty is represented through the posterior distributions of the

model parameters. When these posterior distributions are propagated through the Bayes network, the uncertainty in the

system-level response also decreases. Thus, testing can be used to evolve the system performance prediction and a common

concern is to select that test design which leads to maximum reduction in the uncertainty (usually expressed through

variance) of the system performance prediction. The tests need to be selected and designed with adequate precision

(measurement error and resolution), and the simulations need to be developed with adequate resolution (model fidelity) to

achieve the project requirements. This can be performed by embedding the Bayes network within an optimization algorithm

where the decision variables correspond to the test data. This formulation is very interesting because, in the past [2], model

parameters have been calibrated with available test data; the difference now is that it is required to perform Bayesian

calibration and assess the reduction in uncertainty in the system-level response even before actual testing is performed.

Two types of questions are answered in this paper: (1) what tests to do? and (2) how many tests to do? Tests at different

levels of the system hierarchy have different costs and variance reduction effects. Hence, the test selection is not trivial and it

is necessary to identify an analytical procedure that helps in the optimum test resource allocation. However, current practice

for this is, at best, based on simplified analysis and relevant experience, and at worst based on ad hoc rules, any of which may

or may not result in truly conservative estimates of the margin and uncertainty. For multi-level systems, a rational test

selection procedure should also incorporate the information from component-level and subsystem-level tests towards overall

system level performance prediction.

Section 7.2 describes the Bayes network-based methodology for integrating multiple models and the different sources of

uncertainty. The Bayes network can be used in two ways: (1) in a forward problem, where the different sources of

uncertainty are propagated through multiple levels using multiple models to compute the uncertainty in the overall system

performance prediction, and (2) in an inverse problem, where test data at a higher level can be used to calibrate the model

parameters at lower levels. Section 7.3 describes the proposed approach for test resource allocation using optimization.

Sections 7.4 and 7.5 implement the proposed methodology in two illustrative examples – a multi-level structural dynamics

problem (Sect. 7.4) and a multi-physics thermal vibration problem (Sect. 7.5).

7.2 Bayes Network for Uncertainty Quantification

A Bayes network [3] is a graphical representation of relationship between uncertain quantities. Each uncertain quantity is

represented as a node and successive links are connected to each other using unidirectional arrows that express dependence

based on conditional probabilities. In a Bayes network, an ellipse corresponds to a source of uncertainty and a rectangle

represents observed data. A solid line arrow represents a conditional probability link, and a dashed line arrow represents the

link of a variable to its observed data if available.

Figure 7.1 shows a conceptual Bayes network that aids in uncertainty quantification across multiple levels of models.

In this Bayes network, F and V are model parameters, and z and y are model outputs. Experimental data Z and Y are

available for comparison with the respective model predictions z and y. Let X denote a higher level system response quantity

that depends on the lower level model predictions z and y.
The Bayes network shown in Fig. 7.1 can be used in two different problems – a forward problem [4], and an inverse

problem [5]. In the forward problem, the probability distributions of the parametersF andV are known and these can be used

to calculate the probability distribution of z, y, and hence X, using methods of uncertainty propagation such as Monte Carlo

z 

 
y 

Z 

Y 
W

X 

Fig. 7.1 Bayes network
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sampling (MCS), first-order reliabilitymethod (FORM), second-order reliabilitymethod (SORM), etc. The experimental data

available, i.e. Z and Y are not used. The distribution of the higher level output quantity X can be calculated as:

f XðxÞ ¼ f X xjy; zð Þf y; zjF;Oð Þf Fð Þf Oð ÞdFdO: (7.1)

In the inverse problem, the probability densities of the parameters (V and F) can be updated using the data Y and Z as:

f ;FjY; Zð Þ / L ;Fð Þf ;Fð Þ: (7.2)

In (7.2), the first term on the right hand side represents the likelihood function and the second term refers to the prior

distribution of the parameters (V and F).

The updated statistics of these parameters (V and F) can then be used to estimate the updated statistics of the system

response quantity X. The Bayes network thus links the various models and corresponding experimental observations in

multiple levels to accomplish uncertainty quantification and propagation through multiple levels of modeling, thereby aiding

in the uncertainty quantification of the overall system model prediction.

7.3 Test Resource Allocation

Using the Bayes network, the model parameters are updated using test data and this updating procedure is likely to lead to a

decrease in the variance of the calibration quantity. When the updated distribution of the calibration quantity is propagated to

calculate the overall system performance prediction, the variance of the overall system performance prediction is also likely

to decrease with more data.

The fact that data can be collected at multiple levels translates to the fact that data can be collected across several nodes in

a Bayes network. As each source of uncertainty corresponds to a node in the Bayes network, the ranking of importance of

different source of uncertainty corresponds to the ranking of nodes in the Bayes network. Hence, it would be ideal to collect

experimental data related to those nodes that contribute significantly to the overall uncertainty in the system prediction.

Suppose that there are multiple nodes related to which data may be collected. Let the number of data points to be collected

in the ith node be equal to Ni and the cost of each corresponding experiment be Ci. Let D denote this entire set of data.

The test resource allocation problem is to find optimal values of Ni, given the cost values Ci. The objective is be to minimize

the variance of the system-level prediction as a result of the above collected data.

If the data D were available, then it is possible to include this available data in the Bayes network, and recalculate the

probability distribution of the system response quantity. Let D(D) denote the reduction in variance as a result of the updating
using this data D. Note that this reduction in variance is a function of the data set D. However, this quantity D cannot be

calculated because D depends on the test data set D which is not available before testing.

This difficulty is overcome by calculating an estimate of D by generating “imaginary” bootstrap samples for the test data

set (D) and calculating the probability distribution of D as a function of Ni, i.e. fD(D| Ni). Note that the variability in D is due

to generating multiple samples of D. The optimal choice of testing can be selected by solving the optimization problem

explained in Fig. 7.2.

Note that this optimization is a complicated integer optimization problem, where the Bayesian updating procedure has to

be repeated multiple times for every evaluation of the objective function. Two different approaches have been used in this

paper to solve this optimization. First, a grid search algorithm which computes the expected value of D for every feasible

combination of Ni’s is used. Then, an adaptive test selection algorithm which is based on a what-to-test-next approach is

used. In this adaptive method, the test that immediately leads to the maximum reduction in variance in chosen at every step

and this procedure is repeated until the budget is exhausted or the target variance reduction in reached. The proposed

methods are illustrated through two numerical examples in the following two sections.

Minimize Expected Value of D

Σ (Ci Ni) < Total Budget  

Given Ci where i denotes multiple possible tests
(component level, subsystem level, system level, etc.) 

Fig. 7.2 Formulating the test resource allocation problem

7 Bayesian Methods for Uncertainty Quantification in Multi-level Systems 69



7.4 Numerical Example I – Structural Dynamics

This section illustrates the proposed methods through the structural dynamics validation challenge problem proposed at the

Sandia National Laboratories [7]. Note that the focus of this paper is not on validation and only the definition of the structural

dynamics system is used in this paper. This system consists of three levels. The first level consists of a simple spring mass

damper. The second level integrates three spring mass dampers from the previous level. The third level integrates the

previous level with a beam. These three levels are shown in the Fig. 7.3.

The solutions to the subsystems in the first two levels are straightforward [9] and the solution to the third level can be

obtained using the Belytschko method. Red-Horse and Paez [7] describe in detail the modeling and simulation of this

system.

In this paper, the system response quantity (R) whose variance needs to be minimized is the acceleration in the first mass

of the spring mass damper system. Let x11, x12, x13 denote the response quantities for the three different masses in the 1st

level; x2 and x3 denote the response in the 2nd and 3rd level respectively; let e be the model uncertainty in each level. Then

the Bayes network for this problem is shown in Fig. 7.4.

In this numerical example, the stiffness values of the three masses, i.e. k1, k2, and k3 are identified to be the calibration

parameters. Prior distributions are assumed for these quantities and later updated with testing data. The numerical values of

all the quantities are summarized in Table 7.1.

The mass of the beam is taken to be 0.1295. The excitation applied on all the levels is a sine function force with an

amplitude of 10,000 with a frequency of o ¼ 100There are five possible test cases. The costs of testing, for the sake of

illustration, are assumed to be $100, $500 and $1,000 in the 1st, 2nd, and 3rd level respectively. For the purpose of test

resource allocation, future test data is generated by drawing samples out of a uniform distribution, based on expert opinion.

The grid search algorithm yielded results of 20 1st level tests (1 for the 1st mass, 14 for the 2nd mass, and 5 for the 3rd

mass). While the computational difficultly involved in executing the grid search algorithm increases with the number of

possible test cases (5, in this numerical example), alternative solution approaches like the adaptive search method must also

be investigated. While the grid search algorithm leads to a global minimum, the adaptive method might not. In this case, the

adaptive search method led to an optimum of 15 tests at the 1st level (4 for m1, 7 for m2, and 4 for m3) and one test at the 2nd

level, thus exhausting the the $2,000 budget. However, the resultant variance using the adaptive test selection procedure was

higher than the global optimum variance reduction attained through the grid search algorithm, suggesting that the adaptive
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Fig. 7.3 Structural dynamics problem (a) Level 1: spring mass damper (b) Level 2: three spring mass dampers (c) Level 3: three spring mass

dampers on a beam
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test selection procedure might lead to a local minimum. The reduction of variance with increasing cost (for the adaptive test

selection algorithm) is shown in Fig. 7.5.

It is seen that the reduction in variance using the last $500 (i.e. from $1,500 to $2,000) was insignificant compared to the

reduction in variance using the initial $1,500. Hence, from an economics-perspective, it is advantageous to use only $1,500

for testing as the extra $500 does not lead to further significant reduction in variance.

Fig. 7.4 Bayes network: structural dynamics problem

Table 7.1 Numerical values

No. Mass (m) Damping (c)

Priors (stiffness)

mk CoV of k

1 0.012529 0.023466 5,600 0.260187

2 0.019304 0.021204 11,000 0.280557

3 0.035176 0.031216 93,000 0.279296
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Fig. 7.5 Decrease of variance with increasing cost
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7.5 Numerical Example II – Thermally Induced Vibration

This coupled-physics example illustrates a laboratory experiment to simulate the behavior of spacecraft booms. In this

experiment, a thin walled circular tube is rigidly attached at its top and supports a concentrated mass at its bottom. The tube

and the mass are initially at rest and a constant heat flux is applied along the length of the tube. The application of the heat

flux causes an increase in the temperature on the incident surface while the unheated side remains at the initial temperature.

The temperature gradient causes the beam to bend rapidly away from the lamp and triggers continuous vibration. The set up

of this experiment is shown in Fig. 7.6.

The temperature at the tip mass Tm is given by the following differential equation:

@Tm

@t
þ Tm

t
¼ T�

t
1� vðx; tÞ

b�

� �
: (7.3)

In (7.3), v(x, t) represents the displacement of the beam as a function of length and time. The other parameters T*, t, b*
are constants and Thornton [8] explains how to calculate them.

The displacement v(x, t) can be related to the displacement of the tip mass V(t) as:

v x; tð Þ ¼ 3x2

2l2
� x3

2l3

� �
VðtÞ: (7.4)

The tip mass displacement, in turn, depends on the forcing function as follows:

€V þ 2xo0ð Þ _V þ o2
0 þ

6g

5l

� �
V ¼ FðtÞ

m
: (7.5)

In (7.5), x is the damping ratio, and o0 is the frequency. The forcing function F(t) depends on the thermal moment which

in turn depends on the temperature, thereby casing coupling between the thermal equation and the structural equation. These

relations are shown in (7.6) and (7.7) respectively.

FðtÞ ¼ � 3

l3
lx
00
M u; tð Þdudx: (7.6)

Mðx; tÞ ¼
Z

EaTmðx; tÞ cosðFÞydA (7.7)

Equation 7.7, E is the elastic modulus, a is the coefficient of thermal expansion,F is the angle of incident flux on the cross

section, y is the distance from the center of the cross section and the integral is over the area of the cross section A. Refer
Thornton [8] for a detailed description of this problem. The Bayes network corresponding to this problem is shown in Fig. 7.7.

v 

V mg x 
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l 

Fig. 7.6 Thermally induced vibration [8]
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In this numerical example, three quantities, the elastic modulus (E), the damping constant (c), and the radius of the mass

(r) are chosen as calibration quantities. The other quantities are assumed to be known. Their numerical values are identical to

those given by Thornton [8]. The priors for the calibration quantities are chosen to be normal, with means based on Thornton

[8], and 10% coefficient of variation. The overall system output (R) is chosen to be ratio of the amplitudes at two different

time instants for the coupled system which is subjected to thermally induced vibrations. If R < 1, then it implies that the

system is stable with oscillations diminishing as a function of time. If R > 1, then it implies that the system is unstable,

commonly referred to as flutter, an undesirable scenario.

There are four possible test cases – two material level tests (stress–strain test, and temperature test), a thermal subsystem

test (without structural effects), and a flexural subsystem test (without thermal interaction). It is assumed that there is no

testing possible for the coupled thermally induced vibration system. For the purpose of illustration, each material level test is

assumed to cost $100 while each subsystem level is assumed to cost $500.

The test resource allocation problem was solved using the grid search algorithm and the adaptive test selection procedure.

For this problem, both the algorithms yielded identical solutions: 15 temperature-based material level tests, and one flexural

subsystem test, thereby exhausting the $2,000 budget. The sensitivity of the modulus (E) was low compared to the sensitivity

of the other two calibration quantities (r and c), and hence no stress–strain material level tests were required. The decrease of

variance with cost is shown in Fig. 7.8.

Fig. 7.7 Bayes network: thermally induced vibration
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Similar to the structural dynamics example in Sect. 7.4, it is seen that the reduction in variance using the last $1,000

(i.e. from $1,000 to $2,000) was insignificant compared to the reduction in variance using the initial $1,000. Hence, from an

economics-perspective, it is advantageous to use only $1,000 for testing as the exta $1,000 does not lead to further significant

reduction in variance.

7.6 Conclusion

This paper proposed a Bayesian methodology for uncertainty quantification in multi-level systems. The various component,

subsystem, and system models, and their inputs, parameters, and outputs, and experimental data were efficiently connected

through a Bayes network. Further, the various sources of uncertainty – physical variability, data uncertainty, and model

uncertainty were also included in the Bayes network. The Bayes network was then used for three different tasks: (1) calibrate

the parameters of models at multiple levels using all available test data from multiple levels; (2) propagate the various

sources of uncertainty (including the previously estimated model parameters) through the Bayes network to predict the

overall uncertainty in the system-level prediction; and (3) aid in resource allocation for test selection and identify the most

effective tests to reduce the overall uncertainty in the system-level prediction. The procedure for test resource allocation

required Bayesian calibration and assessment of system-level prediction uncertainty even before actual testing was

performed. This was achieved by generating multiple samples of test data and estimating the expected reduction in variance

of the system-level prediction.

The algorithm for test resource allocation leads to several insights. A lower level test can easily isolate individual

components and hence, the model parameters can be effectively updated, leading to a significant reduction in the variance of

the system-level prediction. However, such a test would not account for the interaction between the higher level models and

the corresponding parameters. In contrast, a higher level test would readily include the effects of interaction between

multiple subsystem-level and component-level models. However, the calibration of parameters across multiple models may

be difficult and may not lead to a significant reduction in the variance of the system-level prediction. The proposed test

resource allocation procedure trades off between lower level tests and higher level tests by accounting not only for the

resultant reduction in variance of the system-level prediction but also for the costs involved in testing.
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Chapter 8

Sampling Techniques in Bayesian Finite Element Model Updating

I. Boulkaibet, T. Marwala, L. Mthembu, M.I. Friswell, and S. Adhikari

Abstract Recent papers in the field of Finite Element Model (FEM) updating have highlighted the benefits of Bayesian

techniques. The Bayesian approaches are designed to deal with the uncertainties associated with complex systems, which is

the main problem in the development and updating of FEMs. This paper highlights the complexities and challenges of

implementing any Bayesian method when the analysis involves a complicated structural dynamic model. In such systems

an analytical Bayesian formulation might not be available in an analytic form; therefore this leads to the use of numerical

methods, i.e. sampling methods. The main challenge then is to determine an efficient sampling of the model parameter space.

In this paper, three sampling techniques, the Metropolis-Hastings (MH) algorithm, Slice Sampling and the Hybrid

Monte Carlo (HMC) technique, are tested by updating a structural beam model. The efficiency and limitations of each

technique is investigated when the FEM updating problem is implemented using the Bayesian Approach. Both MH and

HMC techniques are found to perform better than the Slice sampling when Young’s modulus is chosen as the updating

parameter. The HMC method gives better results than MH and Slice sampling techniques, when the area moment of inertias

and section areas are updated.

Keywords Bayesian • Finite elementmodel updating •Hybrid monte carlo method • Markov chain monte carlo • Metropolis-

hastings method • Sampling • Slice sampling method

8.1 Introduction

Finite element models (FEM) use a numerical method to provide approximate solutions for complex engineering problems

[1, 2]. The FEM method is recognised as a powerful method for computing displacements, stresses and strains in structures

under a set of loads. However, accurate solutions obtained by an FEM are only possible for few simple model cases.

In complex systems FEM results are different from those obtained from experiments [3, 4]. These differences can be a result

of the modelling errors and/or the uncertainties associated with the process of constructing the FEM of the structure.

Therefore, the models obtained from the finite element method need to be updated to match the measurements. In the recent

years, Bayesian model updating techniques have shown promising results in systems identification research [4–6].

The Bayesian approach provides accurate solutions for complex systems, due to its ability to characterize the uncertainties

of these complex systems. In this paper, the Bayesian approach is used to update the uncertain parameter of the FEM where

these can be represented as random vectors with a joint probability density function (pdf). This posterior (pdf) characterises
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the uncertainty in the model parameters. The use of Bayesian techniques becomes useful when an analytical solution to this

function is not available. This is often the case because of the high dimensionality of the parameter search space. In these

situations some Markov chain Monte Carlo (MCMC) simulation methods provide the only practical solution [4, 6].

In this paper three sampling techniques, the Metropolis-Hastings (MH), the Slice Sampling (SS) and the Hybrid Monte

Carlo (HMC) are investigated on their ability to sample the posterior pdf of FEM updating parameters. These three

techniques are tested by updating a structural beam model. The efficiency, reliability and limitations of each technique

are investigated when a Bayesian approach is implemented on a FEM updating problem.

In the next section, the finite element model background is presented. In Sect. 8.3, an introduction to the Bayesian

framework is introduced where the posterior distribution of the uncertain parameters of FEM is also presented. Section 8.4

introduces the sampling techniques used to predict the posterior distribution. Section 8.5 presents an implementation of the

Bayesian FEM updating on a simple cantilever steel beam, where two cases of study will be provided. Section 8.6 concludes

the paper.

8.2 Finite Element Model Background

In finite element modelling, anN degree of freedom dynamic structure may be described by the matrix equation of motion [7]

M€xðtÞ þ C€xðtÞ þKxðtÞ ¼ fðtÞ (8.1)

whereM;C andK are the mass, damping and stiffness matrices of size N � N. xðtÞ is the vector of N degrees of freedom and

fðtÞ is the vector of forces applied to the structure. In case that no external forces are applied to the structure and if the

damping terms are neglected (C � 0), the dynamic equation may be written in the modal domain (natural frequencies and

mode shapes) where the error vector for the ith mode is obtained from

� om
i

� �2
MþK

h i
Fm

i ¼ ei (8.2)

om
i is the ithmeasured natural frequency, fm

i is the ithmeasured mode shape vector and ei is the ith error vector. In (8.2), the
error vector eiis equal to 0if the system matricesM and K correspond to the modal properties (om

i and fm
i ). However, ei is a

non-zero vector if the system matrices obtained analytically from the finite element model do not match the measured modal

properties om
i and fm

i . In the case that (8.2) contains both measured vectors, om
i and fm

i , and the matrices obtained from

the analytic methods M and K, the error obtained in (8.2) represents the difference between the measured and the analytic

modal properties. Another problem might arise in many practical situations, where the dimension of the mode shape vector

does not match the dimension of the system matrices. This is because the measured modal coordinates are fewer than the

finite element modal coordinates. To ensure the compatibility between the system matrices and the mode shape vectors,

the dimension of the system matrices is reduced using Guyan reduction [8].

8.3 Bayesian Inferences

In order to update the mathematical models, the uncertain parameters have to be identified. The Bayes theorem offers this

possibility, where the uncertain parameters can be determined from their measurements [4, 9]. In this work, the Bayesian

method is used to solve the finite element updating problem based on modal properties. Bayesian approaches are governed

by Bayes rule [9, 10]:

P EjDð Þ ¼ P DjEð ÞPðEÞ
PðDÞ (8.3)

where E represent the vector of updating parameters and the mass M and stiffness K matrices are functions of the updating

parameters E. The quantity P Eð Þ, known as the prior probability distribution, is a function of the updating parameters in

the absence of the data. D is the measured modal properties; the natural frequencies oi and mode shapes fi. The quantity

P EjDð Þ is the posterior probability distribution function of the parameters in the presence of the data D. P DjEð Þ is the

likelihood probability distribution function and PðDÞ is a normalization factor [4, 9, 10].

76 I. Boulkaibet et al.



8.3.1 The Likelihood Distribution Function

The likelihood distribution can be seen as the probability of the modal measurements in the presence of uncertain

parameters. The likelihood function P DjEð Þ can be defined as the normalized exponent of the error function that represents

the differences between the measured and the analytic frequencies.

This function can be written as follows

P DjEð Þ ¼ 1

ZD bð Þ exp �b
XF

j

XNm

i
e2ij

� �� �
(8.4)

where, b is the coefficient of the measured modal data contribution to the error. eij represents the error between the measured

and analytical frequencies where i indicates the ith modal properties and subscript j represents the jth measurement position.

The superscript F is the number of measured mode shape coordinates; Nm is the number of measured modes and ZD bð Þ is a
normalising constant given by

ZD bð Þ ¼ exp �b
XF

j

XNm

i
e2ij

� �� �
d D½ � ¼ p

b

� �FNm=2

(8.5)

8.3.2 Prior Distribution Function

The prior pdf represents the prior knowledge of the updating parameters E . It quantifies the uncertainty of the parameters E.

In this paper, some parameters are updated more intensely than others. For example, parameters next to joints should be

updated more intensely than for those corresponding to smooth surface areas far from joints. The prior probability

distribution function for parameters E is assumed to be Gaussian and is given by [10, 11]

P Eð Þ ¼ 1

ZE að Þ exp �
XQ

i

ai
2
jjEjj2

� �
(8.6)

where Q is the number of groups of parameters to be updated, and ai is the coefficient of the prior pdf for the ith group of

updating parameters. The jj � jj is the Euclidean norm of � . In (8.6), if ai is constant for all of the updating parameters, then

the updated parameters will be of the same order of magnitude. Equation 8.6 may be viewed as a regularization parameter

[12]. In (8.6), Gaussian priors were conveniently chosen because many natural processes tend to have a Gaussian

distribution. The function ZE að Þis a normalization factor given by [4, 10]

ZE að Þ ¼ exp �
XQ

i

ai
2
jjE jj2

� �
d E½ � ¼ 2pð ÞQ=2

YQ

i¼1
1ffiffiffiffi
ai
p (8.7)

8.3.3 Posterior Probability Distribution Function

The posterior distribution function of the parameters Egiven the observed data D is denoted as P EjDð Þand obtained by

applying the Bayes’ theorem as represented in (8.3). The distribution P EjDð Þis calculated by substituting (8.4) and (8.6) into
(8.3) to give [4]

P EjDð Þ ¼ 1

Zs a; bð Þ exp �b
XF

j

XNm

i
e2ij

� �
�
XQ

i

ai
2
jjE jj2

� �
(8.8)

where

Zs a; bð Þ ¼ ZD bð Þ:ZE að Þ (8.9)

8 Sampling Techniques in Bayesian Finite Element Model Updating 77



8.4 Sampling Techniques

Sampling techniques are very useful numerical methods which can be employed to simplify the Bayesian inference by

providing a set of random samples from posterior distribution [6, 9, 10, 13]. Suppose that Y is the observation of certain

parameters at different discrete time instants; the probabilistic information for the prediction of the future responses Y at

different time instants is contained in the robust predictive PDF which is given by the Theorem of Total Probability as

P YjDð Þ ¼ P YjEð ÞP EjDð Þd E½ � (8.10)

Equation 8.10 depends on the posterior distribution function which is very difficult to solve analytically due to the

dimension of the updating parameters. Therefore, sampling techniques, such as Markov chain Monte Carlo (MCMC)

methods, are employed to predict the updating parameter distribution and subsequently to predict the modal properties.

Given a set of Ns random parameter vector drawn from a pdf P EjDð Þ, the expectation value of any observed function Y can

be easily estimated.

The integral in (8.10) is solved using three different sampling techniques: the MH algorithm, the slice sampling algorithm

and the HMC algorithm [6, 9, 14, 15]. These algorithms are used to generate a sequence of vectors E1;E2; . . . ;ENs
f g where

Ns is the number of samples and these vectors can be used to form a Markov chain. This generated vector is then used to

predict the form of the stationary distribution functionP EjDð Þ. The integral in (8.10) can be approximated as

eY ffi 1

Ns

XNs

i¼1 G Eið Þ (8.11)

where G is a function that depends on the updated parameters Ei. As an example, if G ¼ E then eY becomes the expected

value of E. Generally, eYis the vector that contains the modal properties and Ns is the number of retained states.

8.4.1 The Metropolis-Hastings Algorithm

The MH algorithm is one of the simplest sampling methods, and is related to rejection and importance sampling [9]. To

sample from the posterior distribution function P EjDð Þ, where E ¼ E1;E2; . . . ;ENm
f g is a Nm-dimensional parameter

vector, a proposal density distribution q EjEt�1ð Þ is introduced in order to generate a random vector E given the value at

the previous iteration of the algorithm. The MH algorithm consists of two basic stages: the draw from the proposed density

stage and the retained/rejected stage. The MH algorithm can be summarized as:

1. An initial value E0 is used to initiate the algorithm.

2. At iteration t, E� is drawn from the proposed density q EjEt�1ð Þ, where Et�1is the parameter value at the previous step.

3. Update the FEM to obtain the new analytic frequencies, then compute the acceptance probability, given by

a E�;Et�1ð Þ ¼ min 1;
P E�jDð Þq Et�1jE�ð Þ
P Et�1jDð Þq E�jEt�1ð Þ

	 


4. Draw u from the uniform distribution Uð0; 1Þ.
5. If u � a E�;Et�1ð Þ accept E�. Otherwise, reject E�
6. Return to step 2.

8.4.2 The Slice Sampling Algorithm

The slice sampling method is a simple technique that can provide an adaptive step size, which is automatically adjusted to

match the characteristics of the posterior distribution function [9, 14]. In this method, the goal is to sample uniformly from
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the area under the posterior distribution P EjDð Þ where E ¼ E1;E2; . . . ;ENm
f g. The algorithm of this technique can be

described as [14]:

1. Draw Y from the uniform distribution Uð0;P E0jDð ÞÞ.
2. Initiate the interval around E0 as follows:

For i ¼ 1 to N

Ui � Uniformð0; 1Þ

Li  E0;i � wiUi

Ri  Li þ wi

End

3. Sample from the interval I ¼ ðR; LÞ and do the following:

Repeat:

For i ¼ 1toN

Ui � Uniformð0; 1Þ

E1;i  Li þ Ui Ri � Lið Þ

End

IF Y � P E0jEð Þ Then exit loop

For i ¼ 1toN
IF E1;i<Eo;iThenLi  E1;iElseRi  E1;i

4. Repeat step 3 to get Ns samples.

8.4.3 Hybrid Monte Carlo

The Hybrid Monte Carlo method, known as the Hamiltonian Markov Chain method, is a good method for solving higher-

dimensional complex problems [6, 9, 15]. In HMC, a new dynamical system is considered in which auxiliary variables, called

momentum, p 2 RN , are introduced and the uncertain parameters, E 2 RN , in the target posterior distribution function are

treated as displacements. The total energy, Hamiltonian function, of the new dynamical system is defined by

H E; pð Þ ¼ V Eð Þ þW pð Þ, where the potential energy is defined by V Eð Þ ¼ �ln P EjDð Þð Þ and the kinetic energy W pð Þ ¼
pTM�1p=2 depends only on p and some chosen positive definite matrix M 2 RN�N . Using Hamilton’s equations, the

evolution of E; pð Þthrough time t and time step dt is given by

p tþ dt
2

� �
¼ pðtÞ � dt

2
rV EðtÞ½ � (8.12)

E tþ dtð Þ ¼ EðtÞ þ dtM�1p tþ dt
2

� �
(8.13)

p tþ dtð Þ ¼ p tþ dt
2

� �
� dt

2
rV E tþ dtð Þ½ � (8.14)

where rV is obtained numerically by finite difference as

@V

@Ei
¼ V Eþ Dhð Þ � V E� Dhð Þ

2hDi
(8.15)
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D ¼ D1;D2; . . . ;DN½ �is the perturbation vector, the distribution of which is user-specified and h is a scalar which dictates the
size of the perturbation of E. After each iteration of Equations (8.12)–(8.14), the resulting candidate state is accepted or

rejected according to the Metropolis criterion based on the value of the Hamiltonian H E; pð Þ. Thus, if ðE; pÞ is the initial
state and E�; p�ð Þ is the state after the equations above have been updated, then this candidate state is accepted with

probability min 1; exp H E; pð Þ � H E�; p�ð Þf gð Þ. The new vector Ewill be used for the next iteration and the algorithm will be

stopped when a Ns samples of Eare provided.

8.5 Beam Example

An experimental cantilever steel beam is updated based on the measurements of Kraaij [16]. The beam has the following

dimensions: length 500 mm, width 60 mm and thickness 10 mm. E ¼ 2:1� 1011N/m2, v ¼ 0:3 and r ¼ 7850kg/m3. Three

accelerometers were used in the experiment, which were all located 490 mm from the clamped end. This location is chosen

because the response on this point is large [16]. Each accelerometer has a mass of 40 g; the middle accelerometer is of type

303A3, the outer accelerometers are of type 303A2 (see [16] for more details of experimental set-up).

To test the updating methods, the beam was modeled using Version 6.3 of the Structural Dynamics Toolbox SDT® for

MATLAB. The beam was divided into 50 Euler–Bernoulli beam elements and excited at various positions. The measured

natural frequencies of interest of this structure are: 31.9 Hz, 197.9 Hz, 553 Hz, 1082.2 Hz and 1781.5 Hz, which correspond

to modes 1, 3, 5, 7, and 9, respectively. For the first set of experiments, the Young’s modulus of the beam elements was used

as an updating parameter where for every 10 elements a different Young’s modulus is allocated. Thus, the parameters to be

updated can be represented by a vector of 5 variables E ¼ E1;E2;E3;E4;E5f g. In the second set of experiments, the

moments of inertia and the section areas are updated. This is done by associating an area moment of inertia, Ix, and an area,
Ax, to every 25 elements of the beam (this will reduce the number of the parameters to be updated to four parameters).

The updated parameters vector is thus E ¼ Ix1; Ix2;Ax1;Ax2f g.

8.5.1 Updating Young’s modulus

In this section, a vector of 5 parameters E ¼ E1;E2;E3;E4;E5f g is updated using the Bayesian approach. The reason for

using a large number of updating parameters is to determine the performance and the convergence speed of each sampling

technique when a large number of variables are introduced in the updating process. Ns samples of the vector E were

generated from the posterior distribution function, P EjDð Þmentioned in (8.8). The constant b in (8.8) was set equal to 1, and

the coefficients ai were set equal to 1
s2i
, where s2i is the variance of the parameterEi. Since the updating parameter vector

contains only the Young’s modulus, all si were set equal to 2� 1011 (a large value of sito weight the value of E). The
updating parameters Ei were bounded with a maximum equal to 2:5� 1011 and a minimum equal to 1:7� 1011. The number

of samples Ns was 1,000, for all techniques, and the initial vector of E is 2:4� 1011; 2:4� 1011; 2:4� 1011; 2:4� 1011;
�

2:4� 1011g. Instead of using themean steel value ofE as an initial value, a large value of the initial parameter vector is chosen

to highlight the updating process. The results for the updating vector and the frequencies are given in Tables 8.1 and 8.2.

The MH technique updates all vector parameters simultaneously and gives results that are close to the mean value for

steel of 2:1� 1011N/m2. The same comment can be made for the HMC technique where three of these parameters are close

to the mean value. The Slice sampling method gives updating parameters that are far from the mean, because of the way that

the Slice technique generates samples. The Slice sampling technique sequentially updates individual vector entries as oppose

to updating all entries simultaneously, see Sect. 8.4. In this case, a small adjustment of the first parameter can cause a

significant updating of the rest of the updating vector.

The results in Table 8.2 show that the three sampling techniques give results that on average are better than the initial

FEM. The three algorithms weight the measured frequencies in different ways because each algorithm has a different way of

generating samples. In the Slice sampling technique, each variable is changed one at a time which is not the case with the

M-H algorithm where all the parameters are varied at once. The HMC technique uses additional parameters to evaluate

the sampling.

The MH and HMC algorithms give better results than those obtained by using the Slice Sampling method. The error

between the third measured natural frequency and that of the initial model was 7.55%. When the MH method was used, this

error was reduced to 2.15% and in using the Slice sampling method it was only reduced to 3.21%. The same comment can be
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made for the first and fourth natural frequencies. The errors for the second and fifth modes are targeted by the Slice sampling

method, where the error is a little smaller than that obtained from the MHmethod. However,, the overall result shows that the

MH method gave better results than the Slice sampling method in terms of errors. Also the convergence of the MH method

was faster than the Slice sampling method. The results show that Slice sampling is inefficient in sampling Young’s modulus

when 1,000 samples are generated. The HMC method converges faster than the other methods (MH and Slice sampling

techniques). In addition, the HMC method gives a bad error for the two first modes where the error between the first

measured natural frequency and that of the initial model was 2.51%. When the HMC method was used, this error was

increased to 9% (similarly for the second mode). However, for the other three modes the HMC method gave better results

than both the MH and Slice sampling methods. For example, the error between the third measured natural frequency and that

of the initial model was 7.55%; the HMC method reduced this error to 0.9% whereas the Slice sampling method only

reduced it to 3.21%. The same comment can be made in using MH algorithm where the error for the third mode only reduced

to 2.15%. The three methods did not improve the first natural frequency because the same coefficient, b, was set for all of the
natural frequencies. Choosing b as a vector, to weight the natural frequencies, would improve the first natural frequency

results. In general, the error between the measured frequency and these obtained by the three algorithms is a bit high when

the Young’s modulus is updated. In this case, conclusions about the most efficient method are difficult. For this reason,

another updating exercise is performed, where the area moments of inertia and cross-section area are updated and the results

obtained are discussed in Sect. 8.5.2.

8.5.2 Updating Area Moments of Inertia and Cross-section Area

In this section, four parameters E ¼ Ix1; Ix2;Ax1;Ax2f g are updated using the Bayesian approach. Ns samples of the vector E

were generated from the posterior distribution function P EjDð Þ. The constant b is equal 1, and all coefficients ai are set equal to
1
s2i
, where s2i is the variance of the parameterEi. Since the updating parameter vector contains area moments of inertia and

section areas, the vector of si is defined as s ¼ 5� 10�9; 5� 10�9; 5� 10�4; 5� 10�4
� 


. The Young’s modulus is set to

2:1� 1011N/m2 as opposed to 2:4� 1011 N/m2 in the previous section. The updating parameters Ei are bounded by

maximum values equal to 7:5� 10�9; 7:5� 10�9; 9� 10�4; 9� 10�4
� 


and minimum values equal to 3:5� 10�9;
�

3:5� 10�9; 4:5� 10�4; 4:5� 10�4�. The number of samples Ns is set to 1,000. The results are given in Tables 8.3 and 8.4.

The MH and HMC techniques update all parameters simultaneously and again give results that are closer to the the initial

parameter vector than those obtained by using the Slice sampling technique (see Table 8.3). The Slice sampling method

gives updating parameters far from the mean value of E and this because of the way that the Slice sampling technique

updates (the Slice sampling technique updates each parameter in turn).

Table 8.1 The updated vector of Young’s modulus using MH, Slice Sampling and HMC techniques

Young’s modulus (N/m2)

Initial M-H method Slice sampling method HMC method

E1 2:4� 1011 2:177� 1011 2:387� 1011 1:727� 1011

E2 2:4� 1011 2:151� 1011 1:851� 1011 2:344� 1011

E3 2:4� 1011 1:944� 1011 1:849� 1011 1:838� 1011

E4 2:4� 1011 1:785� 1011 1:853� 1011 2:052� 1011

E5 2:4� 1011 2:036� 1011 1:864� 1011 2:004� 1011

Table 8.2 Frequencies and errors when MH, slice sampling and HMC techniques used to update Young’s modulus

Modes

Measured

frequency

(Hz)

Initial

frequency

(Hz)

Error

(%)

Frequencies

M-H method

(Hz)

Error

(%)

Frequencies slice

sampling method

(Hz)

Error

(%)

Frequencies

HMC method

(Hz)

Error

(%)

1 31.9 32.7 2.51 30.8 3.38 30.8 3.44 29 9

2 197.9 209.4 5.83 190.3 3.85 190.9 3.51 186.2 5.92

3 553 594.8 7.55 541.1 2.15 535.2 3.21 548 0.9

4 1082.2 1237.2 14.32 1123.6 3.83 1127.6 4.2 1099.99 1.64

5 1781.5 1961.7 10.12 1798.2 0.93 1772.4 0.51 1773.6 0.45
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In this section, the results obtained give lower errors than those in Table 8.2. The results in Table 8.4 show that the HMC

and HMmethods give better updating than the Slice sampling algorithm. This can be seen by comparing the errors for modes

1 and 2. The error between the second measured natural frequency and that of the initial model was 2.58%. When the MH

and HMC methods were used, the error was reduced to 1.34% and 2.06% respectively, and in using the Slice sampling

method it was increased to 7.1%. Moreover, the results in Table 8.2 give a priority to HMC over MH and Slice sampling

algorithms in term of convergence time since the HMC approach converges faster than the other methods. In addition, the

HMC technique gives a small error compared to that obtained by using MH algorithm, where in modes 1, 4 and 5 the HMC

method gives small frequency errors compared to the MH method. Despite the errors that may occur when the gradients are

evaluated numerically, the HMC algorithm shows good results.

8.6 Conclusion

In this paper the finite element model updating problem is posed as a Bayesian problem. This means the uncertainty

associated with the model parameters and the distribution of the data with these parameters is concisely formulated in Bayes

theorem. To evaluate the resultant high dimensional posterior distribution three MCMC sampling techniques are

implemented; the Metropolis-Hastings algorithm, Slice Sampling and the Hybrid Monte Carlo technique.

These sampling techniques are tested on a simple beam structure. In the first simulation the Hybrid Monte Carlo and

Metropolis-Hastings technique gave more accurate results than the Slice sampling method. In addition the HMC method

converges faster than both the MH and Slice sampling algorithms. In the second simulation the HMC method gave better

results than both the MH and slice sampling methods and has more attractive convergence properties than the latter. Further

work includes testing these algorithms on more complicated dynamic structures.
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Chapter 9

Bayesian Model Updating Approach for Systematic Damage

Detection of Plate-Type Structures

Masahiro Kurata, Jerome P. Lynch, Kincho H. Law, and Liming W. Salvino

Abstract This paper presents a model-based monitoring framework for the detection of fatigue-related crack damages in

plate-type structures commonly seen in aluminum ship hulls. The monitoring framework involves vibration-based damage

detection methodologies and finite element modeling of continuum plate structures. A Bayesian-based damage detection

approach is adopted for locating probable damage areas. Identifying potential damage locations by evaluating all possible

combinations of finite elements in the model is computationally infeasible. To reduce the search space and computational

efforts, initial knowledge of the probable damage zones and a heuristic-based branch-and-bound scheme are systematically

included in the Bayesian damage detection framework. In addition to an overview of the model-based monitoring

framework, preliminary results from numerical simulations and experimental tests for a plate specimen with a welded

stiffener are presented to illustrate the Bayesian damage detection approach and to demonstrate the potential application of

the approach to detect fatigue cracks in metallic plates.

Keywords Aluminum plate • Bayesian model updating • Branch and bound technique • Damage detection

9.1 Introduction

The adoption of aluminum alloy materials for ship structures presents many challenges to the naval engineering community.

In addition to being light-weight, aluminum alloys have high corrosion resistance but often exhibit fatigue-related micro-

cracks. High-speed aluminum hulls can remain in operation even after the initiation of micro-cracks because of the ductile

mechanical characteristic of the material. Therefore, to enhance the maintenance of ships and to prevent catastrophic failure

of ship’s hull, one key component in monitoring aluminum ship structures is the early detection of fatigue-induced cracks.

This paper presents a preliminary investigation of a computationally efficient and practical framework for the monitoring

and performance assessment of aluminum plate structures. Specifically, aluminum plate specimens have been designed and

built with welded assemblies to facilitate the investigation of system identification and damage detection methods. The area

of damage in the structure is estimated by a model-based damage detection methodology that compares the structural

characteristics of the “true” structure (damaged or undamaged) to finite element “trial” models. The probability associated

with a hypothesized damage state (e.g., location and size) is evaluated through the calculation of an error between the “true”

and “trial” models. Incorporating with prior knowledge and computational heuristics, the probable damage area (i.e., fatigue

crack path) is identified by repeatedly applying a Bayesian inference algorithm [1]. The Bayesian probabilistic model-

updating framework is applied to validate its potential applicability for damage identification around critical weld zones in

the plate specimens. Numerical simulations and experimental tests are conducted to examine the model-based approach to

the testing of aluminum plates with crack damages.
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9.2 Methodology

9.2.1 Model Updating for Damage Detection

A general class of damage detection algorithms is based on model updating. Model parameters are varied until the model

approximates the behavior of the true observed system. To identify an optimal model, the outputs from the observed system

are used to evaluate a pre-defined objective (or error) function. An appropriate objective function is one that takes into

account the fundamental behavior of the system in both its damaged and undamaged states, yet is compatible with

experimental data available. Changes in the model parameters are then correlated to the condition (damage vs. undamage)

of the structure.

Consider a simple plate structure. The governing equation describing the dynamic behavior of a vibrating plate can be

written in the following form [2]:

Dr4wþ rh
@2w

@t2
¼ qðx; y; tÞ (9.1)

where D is the flexural rigidity and is defined as:

D ¼ Eh3

12ð1� n2Þ (9.2)

Here, w denotes the vertical displacement of the plate, q(x,y,t) is the normal load distribution function on the top of the plate,

r is the plate density (mass per unit area), h is the plate thickness, E is the Young’s (elastic) modulus and v is the Poisson
ratio.

For a finite element (FE) model with N elements, the elastic moduli for the elements can be denoted as:

E ¼ fE1;E2; � � � ;Ei;Eiþ1; � � � ;Eiþn; � � � ;EN�1;ENg (9.3)

For modeling purposes, fatigue crack damage is represented by a change in the flexural rigidity or stiffness of the plate,

which, in turn, is reflected by a reduction in the elastic modulus of the damaged elements. If the model contains n damaged

elements, their elastic moduli fEiþ1; � � � ;Eiþj; � � � ;Eiþng are replaced by

Ed ¼ fkiþ1Eiþ1; � � � ; kiþjEiþj; � � � ; kiþnEiþng (9.4)

where kiþj (<1), j ¼ 1,. . .,n, denotes the reduction factor for the (i + j)th damaged element.

The model updating problem is posed as a combinatorial optimization problem that seeks to find the optimal set of elastic

moduli that minimizes a defined objective function by comparing the FE model output and the output derived from actual

measurements taken from the structure. In other words, the inverse problem can be posed as a combinatorial optimization

problem for finding the optimal set of n elements, whose effective elastic moduli represent the damage state of the real

structure as denoted in (9.4).

9.2.2 A Flexibility-Based Objective Function

Conceptually, damage detection methods seek to identify changes (damages) in a structure by using certain structural

characteristics as the basis for evaluation. Vibration data are among the most common sensor information easily obtained

from dynamic excitations. Vibration-based damage identification methods using mode-shape information have been

proposed [3]. One approach is to detect damages directly based on the changes in structural characteristics between

damaged and undamaged structures. Examples of structural characteristics include curvature mode shape [4], flexibility

parameters [5, 6], strains and modal strain energy [7]. Although current research in damage detection has made substantial

progress, the methods developed so far are primarily restricted to simple beam or frame structures with a limited number of

degrees-of-freedom (DOFs). In contrast, continuum systems, such as plate-like structures, pose many challenges for current
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methods because of the large number of DOFs that are required to properly model the structure. Additionally, it is not

realistic to place sensors to measure the system responses at all of the DOFs. An alternative approach is to construct a system

model (such as a FE model) of a target structure using measurement data. This “model-based” approach updates the system

model by modifying the structural properties of the elements until the model resembles the dynamic characteristics

estimated from sensor information. The objective is to define an objective (error) function and to compute the difference

(error) between the trial FE model and the target structure. Damages, if any, are identified and revealed through the changes

in the model parameters during the model-updating process.

For the plate problem, our study indicates that the use of flexibility matrices constructed based on modal properties

(modal frequencies and mode shapes), as opposed to the direct use of modal properties, is an appropriate choice for the

objective function [8]. The inverse relationship between the flexibility matrix and the square of modal frequency renders

the flexibility matrix as less sensitive to high frequency modes which are difficult to identify in vibration tests. This unique

characteristic allows for the inclusion of lower order modes in a truncated flexibility matrix. This feature has attracted many

researchers to explore flexibility as a core element in developing structural damage detection algorithms [5–7, 9]. In the

“Flexibility-Based Approach” (FBA) described below, the objective (error) function is expressed in terms of the difference

between the flexibility matrices that correspond to the true (measured) and trial (FE) models.

When the mode shapes are mass-normalized (i.e., �f
T
M�f ¼ I), the flexibility matrix F can be expressed in terms of the

modal properties as follows:

F ¼ �fO�1�f
T ¼

XN

i¼1

1

o2
i

�fi
�fT
i (9.5)

whereM is the mass matrix, �f ¼ �f1
�f2 . . .

�fN

� �
is the mode shape matrix, O ¼ diagðo2

i Þ is the spectral matrix consisting the

square of the modal frequencies oi, and N is the number of DOFs in the system. The mass-normalized modal vector �fi is

related to the arbitrarily scaled mode shape fi as:

�fi ¼ fidi (9.6)

where di ¼ 1ffiffiffiffiffiffiffiffiffiffi
fT
i Mfi

p is a mass normalization constant for the ith mode.

Suppose only a few (lower) modes are available (e.g., from experimental tests), a truncated flexibility matrix is

obtained as:

Ftrun ¼
Xn

i¼1

di
o2

i

� �2

�fi
�fT
i (9.7)

where n denotes the number of modes available.

Let’s define the difference (DFtrun) between the flexibility matrices of the true (damaged) structure and the trial FE

model as:

DFtrun ¼ Ftrue
trun � Ftrial

trun (9.8)

When a trial FE model reasonably resembles the damaged structure with true damage, the difference in flexibility matrices is

close to zero (exactly zero if there is no measurement noise nor modeling error). The scalar magnitude on the difference in

the flexibility matrices can be measured by calculating the Frobenius norm of DFtrun:

DFtrunk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

X
j
x2ij

q
(9.9)

which vanishes when all matrix elements xij in DFtrun are zero (i.e., the FE model perfectly matches the observed structure).

The difference in the flexibility matrices can also be further decomposed into singular values by singular value

decomposition (SVD):

DFtrun ¼ USVT (9.10)
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where VT and U are matrices of singular vectors, S is the diagonal matrix whose elements are the singular values, si. Since
the Frobenius norm is invariant under unitary transformation, the SVD of the DFtrun yields

DFtrunk kF ¼ USVT
�� ��

F
¼ Sk kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ � � � þ s2R

q
(9.11)

where R is the rank of DFtrun. Thus, the objective is to search for a trial model that minimizes the Frobenius norm shown

in (9.11).

Since the mode shapes experimentally obtained are arbitrary scaled, the mass normalization constants (di) are required to
properly compute the flexibility matrix of the real, true structure. One approach to extracting themass normalization constants

is based on testing the structure with a perturbed mass matrix (by adding a known mass at a certain location) and examining

the sensitivity of the eigenvalues [10, 11]. In this study, mass normalization constants are estimated using the FE model

and applied to the experimentally obtained (i.e., not mass normalized) mode shapes.

9.2.3 Bayesian Probabilistic Approach

The model updating procedure adopted in this study is based on a Bayesian probabilistic approach which utilizes the

parameters measured or estimated from a series of collected vibration signals or data. Unlike a deterministic optimization

formulation, the state space search must reflect the relative degree of belief on the estimates of the optimal subset (i.e., Ed, in

this case). Let M denote the hypothesized damage states of the model. The calculation of the error that exists between the

“true” structure and the FE “trial” model is based on the measured or estimated structural parameters. The updated estimates

on the damage of the structure are expressed as the posterior distribution based on Baye’s rule as follows

pðMjsÞ ¼ pðsjMÞpðMÞ
pðsÞ / pðsjMÞpðMÞ (9.12)

where pðMjsÞ is the posterior distribution function for a hypothesisM given the measured or estimated parameters, s. pðsjMÞ
is termed the likelihood function, pðMÞ is the prior probability of the hypothesis and p(s) is treated here as some

normalization constant. By collecting the likelihood function, the posterior distribution pðMjsÞ would progressively become

a better estimate than the prior probability pðMÞ as the process goes on. For instance, if the initial estimate of the probable

area of damage is assumed to be uniformly distributed over the structure before the model updating procedure, the most

likely damaged areas are revealed with relatively higher posterior estimates by the repeated applications of the Bayesian

inference process.

The selection of the most probable events from all conceivable possibilities using the Bayesian probabilistic approach can

be systematized using various “optimal” search methods; otherwise a random search in optimal subspace becomes a

computationally intractable task. To sample the posterior parameter distribution, the Bayesian approaches implemented

with the Markov Chain Monte Carlo (MCMC) method and genetic algorithms (GA) have been reported with successful

performance in detecting structural damage [12–14]. However, these approaches are computationally expensive and they do

not guarantee convergence to an optimal solution. To reduce the computational effort, the Bayesian damage detection

algorithm proposed herein is enhanced with a branch-and-bound (BB) search technique where the search space is

systematically narrowed through enumeration and pruning of candidate model solutions [1].

The BB technique is a general search method originally developed for discrete optimization problems and is a powerful

technique for controlling the size of a search space used in model updating [15]. As illustrated in Fig. 9.1, the BB algorithm

initially starts its search from some random subspaces (i.e., leaf nodes associated with Branch 1 in Fig. 9.1a). At each step, the

algorithm takes an additional sample (i.e., an additional element in the hypothesized subset) at each leaf node and aims to

improve its estimates (this process is called branching). As the search proceeds, the branches associated with large “errors” are

pruned and the search is bounded by evaluating the remaining branches (this process is called pruning). Figure 9.1b

schematically shows the application of BB technique in FE updating of a plate-type structure. Here, the crack is assumed

to damage the entire section of the plate in the thickness direction and represented in the model by a set of finite elements with

substantially reduced elastic modulus for simplicity. The collection of survived leaf nodes (or “trial” model with small error)

is mapped to reveal a potential damage area at every branching process. Therefore, the probable damage area in a system can
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be systematically updated by implementing the BB technique in the Bayesian formulation. The computational effort and

accuracy of the estimates for the optimal subset (i.e., Ed) can be controlled by pruning the less likely candidates during the

branching process.

9.2.4 Summary of the Model Based Bayesian Damage Detection Framework

In summary, the model-based structural monitoring framework consists of three phases. The first phase is the construction of

the FE model with structural properties and boundary conditions close to that of a target structure. In the second phase, the

monitoring system acquires information about the status of the target structure through a network of sensors deployed to

the structure. Once the variation in the modal properties exceeds a pre-defined threshold value, the third phase involving the

Bayesian-based damage detection algorithm proceeds to compute the error associated with an initial set of hypotheses using

the flexibility-based objective function. Engineering judgment based on knowledge about common damage patterns can be

very useful to account for the selection of the initial set of hypotheses; for instance, heat affected zones around welds or

notches along edges are good initial candidates for hypothetical probable damaged areas. The branching process adds one

more damaged element to each hypothesis following the branching rule shown in Fig. 9.1b. Hypotheses with relatively large

error are pruned before the next branching process. The branching, error computing and pruning processes make a finite loop

until the damage identification algorithm terminates. At the end of each loop, the elements survived in the current and

previous pruning processes are classified and stored in bins based on their error. The histogram-like plot of survived

elements serves as a damage map showing the probable area(s) of damage. The search process is terminated when the

deviation between the current and last damage areas converges within a predefined tolerance.

9.3 Numerical Simulation and Experimental Validations

The Bayesian model-updating procedure is applied to the problem of damage detection on a stiffened aluminum plate as

shown in Fig. 9.2a. The design of the structural plate is intended to include the geometric complexity that is commonly found

in aluminum ship hull structures. The aluminum plate includes an area with high stress concentration due to the presence of a

welded stiffener. Such areas are the likely location for fatigue-related damage (i.e., fatigue cracking). Knowledge of this fact

allows one to customize the model updating algorithm to prioritize the search of this area. The aluminum plate is

24 in. � 48 in. and is ¼ in. thick. In addition, the plate has a 2 in. � 18 in. � ¼ in. stiffener plate; the base plate and the

stiffener plate are rigidly welded together. Crack paths in the main plate initiating from the heat affected zone (HAZ) around

the welded stiffener plate are considered as example damage scenario cases.

The plate structure is modeled using ABAQUS, a general-purpose FE analysis program. The base plate and stiffener plate

are modeled with 4-node reduced integration, doubly curved shell elements with hourglass control (S4RSW). These plates

are assumed to be rigidly connected. The mesh size of the plate elements are 1 in. � 1 in. The elastic modulus E of the

undamaged elements is 10,300 ksi while for the cracked elements, the elastic modulus is reduced 10�6 times the original

Fig. 9.1 Application of the branch and bound (BB) technique for model-updating: (a) concept of the branch-and-bound search scheme, (b)

candidates for probable damage state
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modulus (Ed ¼ E� 10�6). The mass density of the aluminum is assumed to be 2.489 � 10�7 slug/in.3 The Lanczos
frequency analysis method in ABAQUS is employed to compute the modal properties (i.e., modal frequency and mode

shape) of the base structure as well as the structures with different damage scenarios. Only the first five modes are considered

in both the numerical and experimental simulations. Additionally, sensors are placed (or assumed to be placed for numerical

simulations) at strategic locations as shown in Fig. 9.2b.

9.3.1 Numerical Simulations

For the numerical simulation study, the test-bed plate structure as shown in Fig. 9.2a is employed for evaluating the model-

based damage detection algorithm. Two separate cases are considered. First, damage detection of the plate with a single

stiffener having individual cracks around the stiffener is investigated. Second, the plate is assumed to have an additional

welded stiffener and the initial probable damage zone is expanded to include areas around both stiffeners and along the edges

of the plate.

Damage detection of individual crack path with a single stiffener: Numerical simulations of the plate with a single stiffener

are studied first. The three crack paths (i.e. the targeted area) considered in the numerical studies are shown in Fig. 9.3. The

modal properties of the undamaged plate structure and of the hypothetical damaged plate are obtained first. Table 9.1

summarizes the modal frequencies obtained for the undamaged and damaged plates. Using the computed modal frequencies

and mode shapes, the flexibility matrices of the damaged models are constructed using (9.7).

The Bayesian-based damage detection procedure, as described in phase 3 of the model-based monitoring framework, is

employed to identify the individual cracks. Figure 9.3a illustrates the basic process of locating crack path 1 (the “Target”) as

shown. Starting from the probable damaged elements in the vicinity of the weld as shown in Fig. 9.2b, at each branching

step, the probabilistic branch-and-bound scheme proceeds to search for the most likely set of damaged elements based on the

objective function shown in (9.11), which evaluates the difference between the trial FE model and the true damaged FE

model. The results shown in the figure is based on a pruning rate of 50% (i.e., only 50% of the hypotheses which have smaller

error are retained in the next branching process). In the damage maps, the elements marked with darker color have the higher

probabilities of being damaged. As shown in Fig. 9.3a, the procedure progressively converges to the crack region and is

terminated when the variation between 8th and 9th branching results becomes negligible.

The probabilistic model-based updating procedure is also applied for the detections of crack paths 2 and 3 as shown in

Fig. 9.3b, c respectively. These two cracks are slightly shorter than crack 1 and they are located internally inside the plate

boundaries. The detection of these two cracks is more challenging because of the relatively small changes in the modal

properties between the undamaged and damaged plates as shown in Table 9.1. As shown in Fig. 9.3b, the model-updating

algorithm is able to identify accurately the location of crack path 2. It can be seen from the damage map that the search for

probable damaged elements converges quickly with only a modest number of branching steps. Crack path 3 is a particularly

challenging case because the crack is oriented in the longitudinal direction (i.e., along the longer side of the plate). It may

also be interesting to point out that the finite elements are uniformly and regularly distributed in the mesh. As shown in

Table 9.1, there are very little changes in the modal properties between the damaged and the undamaged plates. Nonetheless,

as shown in Fig. 9.3b, the model-updating procedure is able to locate the probable damage area that includes the crack but

Fig. 9.2 A testbed plate structure: (a) schematics of the test-bed plate structure, (b) sensor locations and probable damage zone
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the area is distributed in the transverse direction (i.e. along the shorter side of the plate). Again, the probable damage area

converges very quickly with very few branching steps.

Damage detection of individual cracks with multiple stiffeners: The model-updating procedure is applied to detect damages

in a plate with two welded stiffeners as shown in Fig. 9.4a. Similar to the previous cases, the three crack paths as shown in

Fig. 9.3 are considered individually. However, the initial probable damage zone is expanded to include the weld toes around

the two stiffeners and along the longitudinal edges of the plate. Figure 9.4b shows the probable damage areas identified. For

the damage detection for crack path 1, areas around the longer stiffener and along the top edge are suspected for possible

damage very early in the process. The hypothetical branches grow both from the weld toe and edges and later formed the

most probable damage area around the vicinity of crack 1. For the detection of crack 2, the model-updating algorithm is not

able to pin-point the damage area with high probability. Instead, the detection result suggests two damage prone areas as

shown in Fig. 9.4b. Nevertheless, the area around crack 2 is included in one of the probable damage areas. For detecting

crack path 3, the model-updating procedure identifies the damage area successfully with high probability, as noted with

darker color elements shown in Fig. 9.4b. All in all, the damage detection results show the ability of the probabilistic model-

updating algorithm in detecting cracks on a plate with multiple stiffeners and the rapid convergence of the method on

identifying the damage areas even when the initial probable damage areas includes relatively widespread regions around the

stiffeners and along the edges of the plate.

a

b

c

Target

Target

Target

Branching: 1

Branching: 5 Branching: 6

Branching: 1

Branching: 1 Branching: 2 Branching: 3 Branching: 4

Branching: 3 Branching: 5 Branching: 7

Branching: 7 Branching: 8 Branching: 9

Branching: 2 Branching: 3 Branching: 4

Fig. 9.3 Histogram-like damage map showing the basic process for locating probable damage region: (a) damage detection for crack path 1,

(b) damage detection for crack path 2, (c) damage detection for crack path 3

Table 9.1 Modal frequencies of the damaged and undamaged plates

Mode

No. crack Crack 1 Crack 2 Crack 3

(Hz) (Hz) Diff (%) (Hz) Diff (%) (Hz) Diff (%)

1 26.88 26.52 �1.34 26.82 �0.22 26.86 �0.05

2 41.76 39.89 �4.48 41.60 �0.39 41.69 �0.18

3 72.87 70.89 �2.72 72.02 �0.18 72.82 �0.08

4 94.93 89.49 �5.73 94.88 �0.05 94.85 �0.09

5 128.95 126.93 �1.57 128.64 �0.24 128.93 �0.02
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9.3.2 Experimental Simulation

A number of plate specimens have been fabricated in full-scale (according to the schematic of the testbed structure shown in

Fig. 9.2a) to test the applicability of the probabilistic model-updating procedure for crack damage detection. The experimen-

tal setup is shown in Fig. 9.5. The specimens are made of marine grade aluminum alloy (alloy 5086). As shown in Fig. 9.5a, an

18 in. long stiffener plate has been welded to each of the tested plates with 0.625 in. long discrete tungsten inert gas (TIG)

welds at five locations (with a spacing of 4.5 in.) to avoid excessive distortions that might result from weld heat. The base

plates have been pre-heated using a gas torch to expedite the welding process. As shown in Fig. 9.5b, the base plates are fixed

along the shorter edges using 8–3/8 in. stainless screws with round aluminumwashers; furthermore, the assemblage is rigidly

connected to a large steel beam post-tensioned to the concrete strong floor. Figure 9.5b shows a diagonally cut (resembling

crack path 2 as shown in Fig. 9.3b) adjacent to the stiffener. As shown in the figure, MEMS-based accelerometers (Crossbow

CXL02LF1Z) are used to measure the vibration of the specimen during the tests. Furthermore, the Narada wireless system

developed at the University ofMichigan, which has been successfully implemented for the monitoring of civil infrastructures,

is deployed as the primary data acquisition system for collecting the acceleration data [16].

Modal properties extraction and calibration: Both impact hammer tests and hand tapping tests were applied on each plate

specimen. For each plate specimen, albeit the undamaged plate or the plates with crack, the hammer test is applied six times

with impact locations away from the weld and crack damage areas as shown in Fig. 9.5a. Additionally, each plate specimen

sensor location

elements probable for 
damage initiation

stiffener

ba

Fig. 9.4 Damage detection of cracks on a plate with multiple welded stiffeners: (a) a baseline structure with two stiffeners, (b) damage detection

results with individual cracks and two stiffeners

Fig. 9.5 Setup for experimental tests on plate specimens with stiffener and crack: (a) schematics of the experimental plate specimens,

(b) specimen with crack and accelerometers
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is hand tapped five times at random locations to simulate broad-band ambient excitation. The frequency domain decompo-

sition (FDD) technique is employed to extract the modal properties of the plate specimens using the measured acceleration

data. The FDD technique is widely used for modal parameter estimation and is based on the classical complex mode

identification function [17].

For the calibration of the finite element model, the modal properties of the undamaged plate specimen (without cracks)

are extracted from the vibration tests. Slight differences in modal frequency between the experimental results and the

original FE model (used in the numerical simulation) has been observed. Such a difference is expected because of the

variation in the idealized finite element model, the material properties in the plate specimens, and boundary conditions in the

experimental setup. To better calibrate between the numerical model and the experimental specimens, the elastic (Young’s)

modulus used in the finite element model is reduced to 90% of the nominal values (10,300 ksi) so that the first mode

frequencies of the undamaged plate from both the finite element model and the experimental tests are closely matched.

Table 9.2 summarizes the modal frequencies of the plate structure with crack path 1 obtained from the experimental hammer

and hand tapping tests as well as from the updated finite element model. It can be seen that the results match very well with

the values of modal assurance criteria (MAC) well above 90%.

Damage identification results: The model-updating procedure is applied to identify the damage area (cracks) based on the

modal properties extracted from the plate specimens. Figure 9.6 shows the damage identification results for the three crack

paths from both impact hammer and hand tapping tests. It can be seen that the model-updating procedure successfully

detects crack paths 1 and 3. However, for crack path 2, although the most probable damage area is identified near the damage

area, the procedure fails to pin-point the actual crack location. It can also be observed that, in general, the damage

identification results based on impact hammer tests are more precise, as illustrated from the darker colors shown in the

damage maps. It should be cautioned that, as in any experimental tests, the fabrication qualities of the plate specimens and

the welds do vary. The modal frequencies could vary up to 5–7%. Further study on the impact of modeling uncertainties is

needed. Preliminary investigation into the factors of noise to the probabilistic model-updating procedure is currently

underway.

Table 9.2 Summary of modal properties extracted for specimen with crack path 1

Mode

Impact hammer test Hand-tapping test

Modal frequency Mode shape Modal frequency Mode shape

Test (Hz) Updated FEM (Hz) MAC Test (Hz) Updated FEM (Hz) MAC

1 24.22 25.17 0.998 24.22 25.17 0.999

2 35.89 37.89 0.983 35.94 37.89 0.996

3 65.43 67.36 0.992 65.43 67.36 0.985

4 85.57 85.14 0.982 85.64 85.14 0.976

5 122.07 120.43 0.932 121.97 120.43 0.935

Fig. 9.6 Damage identification results from experimental test specimens
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9.4 Summary and Discussion

In this paper, a model-based monitoring framework for the detection of fatigue-related crack damage in plate-type structures

commonly seen in aluminum ship hulls is presented. The monitoring framework involves vibration-based damage detection

methodologies and finite element modeling of continuum plate structures. Modal properties derived from sensor information

are employed to update the finite element models. A Bayesian-based approach is adopted for model updating. Inherent to the

finite element modeling of a continuum structure is the large number of elements and degrees-of-freedom that are required to

properly model the structure. To examine all possible combinations of elements to identify potential damage locations is

computationally infeasible. To reduce the computational efforts involved in searching for possible damage locations, initial

knowledge of probable damage areas and a heuristic-based branch-and-bound scheme are included in the Bayesian-based

model-updating framework. Numerical simulations and experimental tests have been conducted to illustrate the model-

based monitoring framework and to validate the potential application of the probabilistic-based damage detection approach.

Preliminary numerical and experimental results for the plate specimens studied indicate that the proposed procedure is able

to successfully identify crack damage areas, especially when the size of the crack is relatively large. However, further study

is needed to enhance the damage detection algorithm for accurately locating the exact location of small cracks. Furthermore,

modeling uncertainties, sensor noise, variations in loading excitations, and their effects on the proposed damage detection

method are interesting subjects of future research.
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Chapter 10

On the Legitimacy of Model Calibration in Structural Dynamics

François M. Hemez and Christopher J. Stull

Abstract In structural dynamics, a finite element model is often calibrated to better reproduce experimental measurements

collected from the structure. When the agreement between measurements and predictions is unsatisfactory, the model is

parameterized and calibrated to improve its overall accuracy. We argue that model calibration may not always be legitimate

to improve test-analysis correlation, because a calibration study attempts to compensate for parametric errors when, in fact,

the disagreement between measurements and predictions may originate from other sources (e.g. discretization error). In this

work, a scaled model of a three-story frame structure that responds mostly in bending is tested experimentally and modeled

with finite elements. The agreement between measurements and predictions is assessed relative to the overall level of

experimental variability. Truncation error is quantified by performing mesh refinement studies. Guidance on the legitimacy

of model calibration is formulated by comparing the overall levels of truncation error, parametric uncertainty, and

experimental variability. It is concluded that, while useful, model calibration is a technique that should be deployed only

after other sources of modeling error have been rigorously quantified and adjusted for. (Publication approved for unlimited,
public release on September 29, 2011, LA-UR-11-5608, Unclassified.)

Keywords Model calibration • Mesh discretization • Sensitivity analysis • Truncation error

10.1 Introduction

In structural dynamics, a Finite Element (FE) model is often calibrated to better reproduce experimental measurements

collected from the structure. Features commonly used for test-analysis correlation are the resonant frequencies, mode

shapes, and modal damping ratios of the linear vibration response. When the agreement between experimental

measurements and numerical predictions is unsatisfactory, the model can be parameterized and calibrated to improve its

accuracy. Model-updating techniques have been developed for and successfully applied to linear [1, 2] and nonlinear

dynamics problems [3].

FE model-updating techniques and more broadly, calibration methods offer the advantage that the optimization of

parameters of a numerical simulation leads to predictions that better reproduce the experimental measurements. This is

appealing to analysts who must demonstrate that their numerical simulations are appropriate representations of a reality

of interest. Matching experimental observations also appeals to decision-makers who need to rely on numerical simulations

to guide their judgments. Model calibration, however, may lead to a false sense of confidence, because there are
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fundamental trade-offs between: (1) the fidelity-to-data, or ability of predictions to match measurements; (2) the robustness

to lack-of-knowledge, or influence on predictions of assumptions made during the model development; and (3) the

predictive power, or consistency of predictions provided by a family of equally-robust models [4]. The conjecture that we

wish to explore in this work is that calibration may lead to accurate predictions for the wrong reasons. It is emphasized that

the previous statement is not a criticism of calibration; the authors rely on model calibration in their everyday work and

understand its strengths and weaknesses. Our intent is instead to draw attention to potential abuses and suggest methods that

can be implemented to guarantee that the recourse to calibration is legitimate.

There are many reasons why calibrating a model may not be appropriate to improve fidelity-to-data, or the ability of

predictions to match experimental observations. The main four candidates are: (1) the lack of resolution in the simulation;

(2) an inappropriate mathematical idealization; (3) an ineffective parameterization; and (4) the lack of prediction sensitivity.

This work focuses exclusively on demonstrating the effect that a potential lack-of-resolution may exercise, first, on the

global sensitivity of a prediction to parameter changes and, second, on the calibration. The lack of resolution aspect refers to

the fact that the discretization of a FE model may not provide enough resolution to yield “asymptotically converging”
discrete solutions. The immediate consequence of inappropriate convergence is that truncation effects yield large numerical

uncertainty in the predictions. The danger that we wish to expose is that model calibration may attempt to reduce the

discrepancy between numerical predictions and experimental measurements by adjusting parameters when this discrepancy

may instead be due (in part) to truncation effects. The second aspect (idealization) refers to what is commonly known as

“modeling error” or the selection of an inappropriate mathematical model to represent the reality of interest. An example

would be the simulation of deformation of a wall structure, due to Earthquake vibration, using membrane elements that carry

in-plane stresses only when the actual response involves shear stresses.

A parameterization may be ineffective (third aspect) because it fails to adequately compensate for the discrepancy between

predictions and measurements. If this happens, then adjusting the parameters may not translate into a reduction of discrepancy.

An example would be attempting to correct a mistake in the moments of inertia of a non-symmetric, slender structure by

adjusting its modulus of elasticity. An ineffective choice of parameters may originate from amathematical idealization that does

not define the “correct” parameters, therefore, leaving the analyst with no choice but to calibrate parameters that cannot

compensate for the discrepancy. It may also be that the parameterization appropriately represents the reality of interest but the

selection made for calibration is incorrect. The effectiveness of the parameterization may, or not, be coupled to a lack of

sensitivity of predictions to changes in parameter values (fourth aspect). A lack-of-sensitivity translates into the inability to

influence the predictions by varying model parameters. If this happens, then numerical ill-conditioning is likely to be generated

which, if not addressed using some sort of pre-conditioning or regularization, further accentuates the problem.

The manuscript is organized as follows. The frame structure analyzed to illustrate our conjecture is described, together

with the results of vibration testing, in Sect. 10.2. The FE model developed for this study is explained in Sect. 10.3.

Section 10.4 briefly summarizes the quantification of solution uncertainty caused by truncation effects, and the results of our

application to the three-story frame structure are presented in Sect. 10.5.

10.2 The Three-Story Frame Structure and its Vibration Testing

The application presented in this study is a three-story frame designed to mimic conditions encountered when column-to-

floor connections of a building are subjected to vibrations, such as those generated during an earthquake. Section 10.2.1

briefly describes the structure and the experimental campaign of vibration testing is summarized in Sect. 10.2.2.

10.2.1 The Three-Story Frame Structure

The three-story frame designed and tested at Los Alamos National Laboratory (LANL) is illustrated in Fig. 10.1.

The structure is designed to represent a scaled model of a shear building that can be used in structural health monitoring

research [5], as well as to generate datasets for model validation activities [6]. The structure consists of aluminum columns

and plates assembled using bolted joints. Each floor measures 30.5 � 30.5 � 2.5 cm, and is connected to the floors above

and/or below by four aluminum columns measuring 17.7 � 2.5 � 0.6 cm. The frame slides on rails that allow movement in

one direction which coincides with the weak bending direction of columns. A center columnmeasuring 15.0 � 2.5 � 2.5 cm

is suspended from the third floor, as shown in the left panel of Fig. 10.1, and a contact mechanism is attached to the second

floor (see Fig. 10.1, right).
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Nonlinearity may be introduced into the system by adjusting the amplitude of the oscillations and/or the gap between the

center column and back-stop, also referred to as the “bumper,” such that contact occurs between these two components.

The position of the bumper can be adjusted to vary the severity of impacts that occur at a given level of excitation.

As explained in Reference [5], this particular design is motivated by several real-world examples that have been published,

which report opening and closing of bending and shear cracks under dynamic loading conditions such as those encountered

during an earthquake event.

10.2.2 Vibration Testing and Identification of the Linear Response

An experimental campaign of vibration testing is performed to acquire datasets for different configurations of the three-story

frame. Four factors are varied: (1) the type of input excitation, (2) magnitude of input force excitation, (3) activation of the

nonlinear contact mechanism (on/off), and (4) level of clearance between the center column and the back-stop.

The combinations of these four factors result in a total of 42 datasets, without accounting for the replicates performed for

each configuration tested. Because we are interested in correlating the modal response of a linear FE model, only the

non-contacting response is investigated in this study.

The input force is applied by an electromagnetic shaker connected to the base floor. The structure and shaker are mounted

together on the base floor and the entire system rests on rigid foam, where the foam is intended to minimize extraneous

sources of unmeasured excitation from being introduced through the base. A force transducer with nominal sensitivity of

2.2 mV/N is attached to the end of the stinger to measure the input force from the shaker.

Time-history responses are measured for each type of excitation signal. These signals include random, chirp, harmonic,

and transient excitations. A total of four accelerometers with nominal sensitivities of 1,000 mV/g are attached at the

centerline of each horizontal floor on the opposite side from the excitation side. A Dactron Spectrabook fast Fourier

transform analyzer is used for data collection and analysis. The output channel that provides the excitation signal is

connected to a Techron 5530 power amplifier that drives the shaker. For the case of random excitation analyzed here, the

analog signals are discretized with 4,096 time-history points at the sampling rate of 640 Hz. A band-limited random

excitation in the range of 20–200 Hz is used to define the input signals, so as to avoid exciting the rigid body modes present

below 20 Hz. The Root Mean Square (RMS) excitation level is varied from 1.5 V RMS to 2.5 V RMS to perform linearity

checks that turn out conclusive.

For experimental modal analysis, the Frequency Response Function (FRF) curves are defined with 1,024 samples, 50%

overlap, and a Hanning window. Ten replicates of time-history data are collected to perform the averaging. FRF curve-fitting

is carried out in the frequency domainwithin the 20–80Hz bandwidth. Figure 10.2 compares the mode shapes of the first three

bending modes identified using different configurations where the type and magnitude of input excitation signals are varied.

These comparisons, combined with the linearity check, indicate that the extraction of modal properties is high-quality.

The left side of Table 10.1 lists the identified resonant frequencies and modal damping ratios that result from the

experimental modal analysis, where only the first three bending modes are considered in this study. The overall level of

experimental variability is then quantified in the right side of Table 10.1. Variability is assessed by replicating the modal tests

and varying the configuration tested with different types of excitation signals and different levels of excitation magnitudes.

These values serve as a “reference” for the test-analysis correlation of numerical models discussed in Sect. 10.3.

Fig. 10.1 The LANL three-

story frame structure (left) and
its contact mechanism (right)
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10.3 Computational Models of the Three-Story Frame Structure

This section describes the model used to simulate vibrations of the frame structure. The rationale of model development is

introduced in Sect. 10.3.1 by discussing a one-dimensional, shear-building model. In Sect. 10.3.2, the two-dimensional

model, that is the focus of this investigation, is discussed.

10.3.1 One-Dimensional Shear Model for Linear or Nonlinear Vibrations

Irrespective of the type of modeling implemented, the equation of motion is described in a matrix notation using the master

FE mass (M), stiffness (K), and damping (C) matrices as:

M
d2xðtÞ
dt2

þ C
dxðtÞ
dt

þ K x(t) þ FNL(t) ¼ FEXT(t), (10.1)

where the vectors x(t), FEXT(t), and FNL(t) denote the displacement solution, external (or applied) forces, and nonlinear

forces, respectively. To simulate time-domain datasets, the displacement, velocity, and acceleration solutions of Eq. 10.1 are

obtained with numerical integration using an integration scheme such as the Newmark or Runge–Kutta method. Proportional

damping is assumed, which implies that the master matrix can be defined as C ¼ aM + bKwhere the two coefficients (a; b)
are related to the kth-mode resonant frequency ok and damping ratio x k as:

zk ¼
1

2

a
ok

þ b ok

� �
: (10.2)
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Fig. 10.2 Mode shape deflections identified from different testing configurations. (a) First bending. (b) Second bending. (c) Third bending

Table 10.1 Identified bending

frequencies and damping ratios of

the three-story frame
Mode Frequency (Hz) Damping ratio (%)

Frequency standard

deviationa (s, Hz)
Frequency coefficient

of variancea (s/m, %)

2 29.40 3.26 0.30 1.00

3 54.25 1.07 0.45 0.82

4 71.34 0.73 0.20 0.28
aStatistics based on testing different configurations, with ten replicates each time
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Equation 10.2 shows that coefficients (a; b) can be best-fitted given a minimum of two identified modes. Finally, it is

noted that FNL ¼ 0 in Eq. 10.1 whenever the linear system is simulated.

The one-dimensional model represents the three-story frame as a shear building discretized with four degrees-of-freedom

(DOF). Masses are lumped (or concentrated) while the stiffness coefficients are obtained by adding the bending stiffness

values of the four columns treated as one-dimensional beams. The base-to-first-floor stiffness coefficient is assigned a low-

magnitude value because friction between the support rails and frame structure is negligible. The structure also includes a

center column suspended from the 3rd floor and a contact mechanism attached to the 2nd floor (see Fig. 10.1, left). Masses of

the center beam and back-stop are added to the appropriate DOF of the one-dimensional model. Even though this model is

rather simplistic, it provides accurate predictions of the first three bending modes of the three-story frame structure

(see Reference [6]). It is used as starting point to develop the two-dimensional model.

10.3.2 Two-Dimensional Finite Element Model for Modal Analysis

The numerical model employed in this study is composed of linear, Euler-Bernouilli beams to describe the bending of

vertical columns and triangular shell elements to describe the membrane behavior of the floors. Although the geometry of the

three-story frame is represented with fidelity, this model is referred to as “two-dimensional” because of the nature of

elements used in the mathematical idealization.

Figure 10.3 illustrates a computational mesh composed of ten beam elements per column and, likewise, ten triangular

shell elements per side of a floor. Green square symbols denote the added point-masses at column-to-floor connections and

the back-stop mass on the second floor. For modal analysis, eigenmodes are extracted from the master mass and stiffness

matrices. Boundary condition springs are included in the model to account for the potential flexibility of the support rails.

This capability, however, is not exercised here because the six DOFs of boundary nodes are kept clamped.

Figure 10.4 illustrates the mode shapes (w/ modal frequencies) associated with the first three bending modes as predicted

by the “nominal,” two-dimensional FE model. This model implements the mass and stiffness coefficients proven acceptable

by the one-dimensional shear-building model. It also discretizes the geometry with a seed of NFE ¼ 20 elements. Each

column is discretized by 20 beam elements and, likewise, each side of a horizontal floor is discretized by 20 triangular

membrane elements, for a total of 12,048 elements.

Direct comparison between Table 10.1 (identified frequencies) and the predicted frequencies given in Fig. 10.4 indicates

that the initial test-analysis correlation of the nominal model is acceptable. Frequency errors for the first three bending modes

are in the order of 10%. These large errors, relative to the overall level of experimental variability (see Table 10.1), would

normally justify the recourse to parameter calibration to improve the test-analysis correlation. Before calibrating the model,

the numerical uncertainty is first quantified in Sect. 10.4.

Fig. 10.3 Two-dimensional

model discretized with

NFE ¼ 10 elements per

component
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10.4 Asymptotic Convergence of Bending Frequency Predictions

This section discusses numerical uncertainty. The theory, briefly summarized in Sect. 10.4.1, is illustrated with two mesh

refinement studies: one where the predictions are converging asymptotically and one where this is not the case.

In Sect. 10.4.2, mesh refinement is applied to only the vertical columns of the model while the discretization of horizontal

floors remains unchanged. The second study, where the vertical beams and horizontal columns are refined simultaneously,

is discussed in Sect. 10.4.3.

10.4.1 Brief Overview of Numerical Uncertainty

It is well known that the discrete solutions obtained by discretizing the equations of motion, or conservation laws, of a

physical system do not converge to the exact solution of the Partial Differential Equations (PDE). For example, yExact is the

exact solution of the following equation in the case of a simple, one-dimensional conservation law:

@yExact

@t
þ @F yExactð Þ

@x
= S(x;t): (10.3)

Equation 10.3 expresses that the rate-of-change and the flux of the solution are in equilibrium with the source on the right-

hand side. When geometry, boundary conditions, or nonlinearity prevent the resolution in closed-form, a numerical solution

can be obtained by discretizing equation (10.3) using, for example, finite elements. As the level of resolution in the

calculation is increased, denoted as “Dx ! 0” for short, the discrete solution y(Dx) converges to the exact solution ŷ of

the modified equation [7]. The modified equation is an infinite Taylor series-like expansion that explicitly identifies the

truncation error introduced by the particular choice of numerical method implemented. For example:

@ŷ

@t
þ @F ŷð Þ

@x
= S(x;t)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OriginalEquation

þ @2ŷ

@t2
Dtþ 1

2

@ŷ

@x
Dx2 þ 1

6

@2ŷ

@x2
@ŷ

@t
DtDx3þ:::|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TruncationError

: (10.4)

Deriving a modified equation analytically, such as suggested by Eq. 10.4, is possible only in a few cases that combine

simple PDE, geometry, boundary conditions, and numerical method. Modified equations are generally inaccessible in solid

mechanics or structural dynamics where the FE method is applied. When the exact functional form of truncation is unknown,

the best that one can hope for is to obtain an upper bound of solution error, simply written as:

yExact � y Dxð Þ
y Dxð Þ

����
���� � U Dxð Þ; (10.5)
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Fig. 10.4 First six mode shape deflections of the nominal, two-dimensional FE model. (a) 1st bending (25.67 Hz) (b) 2nd bending (51.33 Hz) (c)

3rd bending (81.60 Hz)
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where y(Dx) denotes a prediction, such as a resonant frequency or peak stress, obtained at the level of resolution Dx and

U(Dx) is the corresponding upper bound of solution error.

When the exact solution yExact is unknown, one can no longer talk of “error.” The difference in the left-hand side of

Eq. 10.5, |yExact�y(Dx)|, becomes an uncertainty caused by truncation effects. This uncertainty can be estimated with a

formalism that derives from modified equation analysis [7], postulating that the difference between exact and discrete

solutions is defined as:

yExact � y Dxð Þþb � Dxp; (10.6)

where b is a pre-factor coefficient and the exponent p denotes the rate-of-convergence of the numerical method. Equation 10.6

is a simplistic approximation of the modified equation where the higher-order terms are ignored, the pre-factor b is assumed to

remain constant, convergence is monotonic as Dx! 0, and the analysis is restricted to scalar-valued quantities. Using mesh

refinement where the same problem is solved several times with different levels of resolution, References [8, 9] independently

arrive at a similar upper bound:

U Dxð Þ¼FS � y R � Dxð Þ�y Dxð Þj j
Rp�1ð Þ ; (10.7)

where Dx is a characteristic mesh size, R is the refinement ratio, and FS denotes a user-defined safety factor. By definition,

the refinement ratio relates the coarse and fine levels of resolution, that is, DxC ¼ R·Dx and DxF ¼ Dx, respectively.
The safety factor of the Grid Convergence Index (GCI) proposed in Reference [8] is a user-defined value within 1 � FS � 3.

Reference [9] further shows that this scaling is not necessary to arrive at an upper bound, which means that FS ¼ 1 can be

used in Eq. 10.7 without loss of generality.

10.4.2 Mesh Refinement Applied to the Vertical Columns Only

The first mesh convergence study refines the vertical columns (beam elements), while the discretization of horizontal floors

(shell elements) is kept constant. Table 10.2 defines properties of the six meshes analyzed. Since the refinement is limited to

beam elements, the number of DOFs does not increase significantly with higher resolution. Resonant frequencies of the first

three bending modes are listed in Table 10.2 for each of the meshes. It can be observed that the predictions “stabilize” as the
level of resolution is increased. However, without a quantitative analysis, this observation remains pointless.

Because the refinement ratio is not kept constant, numerical optimization is used to solve for the unknown pre-factor and

rate-of-convergence (b; p) of Eq. 10.6. These coefficients are listed in Table 10.3 for the three frequencies analyzed. Also

tabulated are the extrapolated solutions, which are the best-possible estimates of solutions ŷ of the modified equation (10.4)

that the code is attempting to converge to as Dx ! 0.

As expected, the super-convergent, second-order accuracy is recovered in Table 10.3. This is due to the fact that, even

though the Euler-Bernouilli element implements linear shape functions, this low-order interpolation suffices to capture well

the bending of vertical columns. Attempting to predict, on the other hand, a torsional mode would reduce the accuracy back

to first order. The rates-of-convergence are then used to calculate the upper bounds U(Dx) listed in Table 10.4.

Table 10.4 indicates that the solution uncertainty is very low when mesh refinement is applied only to the beam elements

of the vertical columns. The numerical uncertainty is smaller than 0.02 Hz, even for the coarsest mesh labeled (II), while the

Table 10.2 Definition of the column-only refinement of the two-dimensional FE model

Mesh

number

FE discretization Statistics of meshes Predicted bending frequencies

Column

discretization

Number

of nodes

Number of

elements

Number

of DOFs

Mode-3 frequency

(Hz)

Mode-5 frequency

(Hz)

Mode-6 frequency

(Hz)

(I) 5 1,813 3,265 10,878 25.67 51.33 81.60

(II) 10 1,878 3,330 11,268 25.68 51.35 81.62

(III) 20 2,008 3,460 12,048 25.68 51.35 81.62

(IV) 40 2,268 3,720 13,608 25.68 51.35 81.62

(V) 80 2,788 4,240 16,728 25.68 51.35 81.62

(VI) 160 3,828 5,280 22,968 25.68 51.35 81.62
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overall experimental variability is one order of magnitude greater (see Table 10.1). These results indicate that the predictions

of bending frequency are not sensitive to the level of resolution used to discretize the vertical columns, at least when using a

minimum of ten elements per column.

10.4.3 Mesh Refinement Applied to the Entire Mesh

The insensitivity of predictions to mesh resolution, observed in Sect. 10.4.2, justifies the recourse to model calibration to

adjust the material properties and moments of inertia of beam elements. One should, however, stop short of drawing a similar

conclusion when it comes to the shell elements of the horizontal floors since their discretization is unchanged in the first

study.

We proceed with another study where the entire mesh is refined uniformly. The difficulty comes from the fact that beam

and shell elements exhibit different asymptotic behaviors. While the beam is second-order accurate, as observed previously,

the shell is expected to be only first-order accurate. The two behaviors are in competition in the (unknown) modified

equation of the problem and it not possible to assess a priori what will be the dominant form of truncation error.

Table 10.5 defines properties of the six meshes analyzed. It is similar to Table 10.2 with the exception that resolution is,

here, increased for the entire mesh. It can be seen that refining the triangular shells rapidly becomes expensive because the

computational cost of a modal extraction grows approximately as the square of the number of DOFs.

Table 10.6 summarizes the asymptotic behavior of truncation error observed when the entire mesh is refined. It is similar

to Table 10.3 in the case of beam-only refinement. The triplet (b; p; ŷ) of unknown coefficients is, as before, estimated

through numerical optimization of Eq. 10.6. Although the extrapolated solutions differ from those of Table 10.3 by only a

few percentage points, the convergence rates clearly suggest first-order accuracy, indicating that the overall asymptotic

behavior of the calculation is dominated by the truncation error of shell elements.

For the analysis of meshes (II) to (V) in Table 10.5, the first-order accuracy of the two-dimensional model leads to

25–36% prediction uncertainty for mode 3, 5–9% uncertainty for mode 5, and 4–5% uncertainty for mode 6. These

percentages of solution uncertainty yield, on average, 7 Hz for mode 3, 3 Hz for mode 5, and 4 Hz for mode 6, which is

larger than the experimental variability by at least one order of magnitude (see Table 10.1).

Table 10.3 Asymptotic behavior observed with the column-only refinement

Mode Pre-factor coefficient, b (Hz/mmp) Rate of convergence, p Extrapolation, ŷ (Hz) Residual MSE (%)

3 5,397.9 2.027 25.68 0.003

5 15,000.8 2.009 51.35 0.000

6 17,621.1 2.002 81.62 0.000

Table 10.5 Definition of the entire-mesh refinement of the two-dimensional FE model

Mesh number

FE discretization Statistics of meshes

Floor discretization Column discretization Number of elements Number of DOFs

(I) 5 5 265 1,158

(II) 10 10 930 3,588

(III) 20 20 3,460 12,048

(IV) 40 40 13,320 43,368

(V) 60 60 29,580 93,888

(VI) 80 80 52,240 163,608

Table 10.4 Upper bounds of uncertainty estimated from the column-only refinement

Mesh

Absolute uncertainty, U(Dx) Percent uncertainty, U(Dx)/y(Dx)

Mode 3 � 10�4 (Hz) Mode 5 � 10�4 (Hz) Mode 6 � 10�4 (Hz) Mode 3 (%) Mode 5 (%) Mode 6 (%)

(II) 36.39 116.87 144.14 0.014 0.023 0.018

(III) 9.09 29.01 35.97 0.004 0.006 0.004

(IV) 2.27 7.24 8.99 0.001 0.001 0.001

(V) 0.58 1.81 2.25 0.000 0.000 0.000
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Instead of tabulating the upper bounds U(Dx) of solution uncertainty, they are represented as a function of mesh size Dx in
Fig. 10.5. The figure also compares the two refinement studies. To emphasize the different asymptotic behavior, the left side

of Fig. 10.5 (column-only refinement) represents numerical solutions y(Dx) while the right side (refinement of the entire

mesh) depicts solution errors |ŷ – y(Dx)| relative to the best-guess, extrapolated solutions ŷ. In both cases, the vertical

blue lines indicate the � U(Dx) bounds of solution uncertainty. Clearly, the refinement of the entire mesh generates more

prediction uncertainty than restricting it to the vertical columns.

10.5 Influence of Mesh Resolution on Sensitivities of Model Predictions

Section 10.4 demonstrates that the refinement of shell elements leads to a significant level of prediction uncertainty that is

not reduced as resolution increases. This arises from the sub-optimal formulation of the particular shell implemented for

this study, where it is noted that implementing an improved formulation could reduce the prediction uncertainty. These

results nevertheless beg the question of whether calibration is a legitimate recourse to improve the correlation between

experimental measurements and numerical predictions. To answer this question, the sensitivities of bending frequencies

to mesh resolution are studied. First, the connection between model calibration and global sensitivity analysis is stressed.

Then, the results observed are discussed to shed light on the legitimacy of model calibration.

10.5.1 Calibration of Model Parameters and Sensitivity of Predictions

It is well known that calibration depends on the sensitivity of the response being correlated to the parameters being adjusted.

This is because a calibration algorithm generally solves a first-order approximation such as:

oTest
k � ok(p) +

@okðpÞ
@p1

@okðpÞ
@p2

� � � @okðpÞ
@pN

h i
�

Dp1
Dp2
..
.

DpN

2
6664

3
7775; (10.8)

where corrections Dp ¼ [Dp1; Dp2; . . . Dpn] are brought to the parameters p ¼ [p1; p2; . . . pn] such that the FE model

predicts resonant frequencies that better match the measurement ok
Test on the right-hand side. Writing Eq. 10.8 for several

modes, or augmenting it with similar equations written for other responses of the structure, leads to a linear system of

equations from which the adjustment Dp can be calculated.

Equation 10.8 indicates that an adjustment Dpn depends on the sensitivities of the prediction to all parameters considered

for calibration. Therefore, the calibration results are likely to change if these sensitivities vary relative to one another.

The level of mesh resolution is one of the factors that could change these sensitivities, which is the contention that we wish to

demonstrate next. In the application to the two-dimensional FE model presented in Sect. 10.3.2, eight parameters are

considered for calibration. Table 10.7 defines the nominal values of these parameters, with their ranges of variability. Prior to

starting the calibration, we seek to learn the sensitivities of bending frequencies such that only the most influential

parameters are adjusted.

Table 10.8 shows the total variability of the first three resonant frequencies predicted by the model when the eight

parameters of Table 10.7 vary simultaneously within their respective ranges. The table indicates 24–27% prediction

variability, which is more important than the experimental variability of 1%, at most, in Table 10.1. These variance statistics

are estimated using a two-level, full-factorial design that requires 28 ¼ 256 runs of the FE model at the nominal mesh

resolution.

Table 10.6 Asymptotic behavior observed with the entire-mesh refinement

Mode Pre-factor coefficient, b (Hz/mmp) Rate of convergence, p Extrapolation, ŷ (Hz) Residual MSE (%)

3 288.87 1.112 22.34 2.014

5 88.95 1.035 49.93 2.125

6 168.17 1.133 79.86 1.768
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Fig. 10.5 Asymptotic convergence of the first three bending frequencies. (a) First bending (column-only refinement). (b) First bending (entire-

mesh refinement). (c) Second bending (column-only refinement). (d) Second bending (entire-mesh refinement). (e) Third bending (column-only

refinement). (f) Third bending (entire-mesh refinement)
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Coefficients of global sensitivity are estimated from an Analysis-of-Variance (ANOVA), where the ANOVA decomposes

the total prediction variance into contributions due to each parameter, their linear interactions, and higher-order interactions.

This decomposition can be written symbolically as:

s2 okð Þ ¼
X

n¼1:::N

S2nþ
X

p¼1:::Nqrp

S2p;qþ
X

p¼1:::Nqrp;rrq
S2p;q;rþ::: + S21;2;:::;N; (10.9)

where Sn
2 is the contribution to total variance of the nth variable only, Sp,q

2 is the contribution due to interaction between the

pth and qth parameters, etc. The coefficients of partial variance reflect the statistical influence of specific effects [10].

A simplification of Eq. 10.9 is:

s2 okð Þ �
X

n¼1:::N

@okðpÞ
@pn

����
p¼pMean

 !2

� s2 pnð Þ; (10.10)

where the total variance s2(ok) of the resonant frequency is expressed as a linear combination of the variability s2(pn) of the

individual parameters. In this simplification, the coefficient of influence is simply the square of the local derivative estimated

at the mean parameter value. Equation 10.10, however, is correct only for a linear model, ok ¼ a0 + a1p1 + a2p2 + . . . +
aNpN, with uncorrelated parameters. The ANOVA decomposition performed next does not suffer from these restrictions.

10.5.2 Global Sensitivity Analysis of the Bending Frequencies

The coefficients of global sensitivity Sk of Eq. 10.9 are estimated using a two-level, full factorial designs-of-computer-

experiments for mesh resolutions similar to those of Table 10.5. It means that, at each resolution, 256 calculations are

performed considering all combinations of lower and upper bounds defined in Table 10.7. Results of a main-effect ANOVA

are summarized in Table 10.9 for the first three bending frequencies.

Columns of Table 10.9 identify the mesh resolution at which an ANOVA is carried out, where the symbol NFE denotes the

number of elements that discretize a vertical column or horizontal floor. The rows refer to a specific parameter of the FE

model. For simplicity, only the three parameters labeled A, B, and C in Table 10.7 are listed while the other factors (D to K)

are grouped together. A large R2 statistic indicates a variable that, when it is varied by itself while the other variables are kept

unchanged, tends to influence significantly the prediction of resonant frequency.

It can be observed from Table 10.9 that, as expected, the modulus of elasticity of the vertical columns is the most

statistically significant parameter of the model. This does not come as a surprise since the analysis is limited to the

Y-direction bending dynamics, which the columns influence greatly. The second most influential variable is the density

Table 10.7 Parameterization of the two-dimensional model for sensitivity analysis

Symbol Label of Input parameter Nominal value Lower bound (%) Upper bound (%)

A “ElasticityModulusAllFloors” 69.00 GPa �50 +50

B “MaterialDensityAllFloors” 2,700.00 kg/m3 �20 +20

C “ElasticityModulusAllColumns” 69.00 GPa �50 +50

D “MaterialDensityAllColumns” 2,700.00 kg/m3 �20 +20

E “CornerMassAllFloors” 21.94 g �50 +50

F “NonLinearBeamElasticityModulus” 69.00 GPa �50 +50

H “NonLinearBeamMaterialDensity” 2,700.00 kg/m3 �50 +50

K “NonLinearBeamBackStopMass” 140.70 g �50 +50

Table 10.8 Total variability of FE model predictions of first three bending frequencies

Mode Mean frequency, m (Hz) Standard deviation, s (Hz) Coefficient CVAR ¼ s/m (%)

3 24.67 5.88 23.82

5 50.03 13.52 27.02

6 79.58 20.51 25.77
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of the horizontal floors. The contribution of the floors to the bending deformation comes essentially in the form of rigid

masses, which explains why the density variable is influential. The modulus of elasticity of horizontal floors is a distant third

effect because the floor rigidity plays little role in the bending behavior. Finally, the group of five remaining variables is

almost insignificant to explain how the resonant frequencies vary.

Table 10.9 also tabulates the influence of mesh size on the global sensitivity to model parameters. This is particularly

striking for the first bending frequency where varying the level of resolution reduces the influence of the floor modulus of

elasticity by a factor of three while, at the same time, it increases the sensitivity to the column modulus of elasticity by 9%

points. For each main effect investigated, these variations can be quantified as a change of the R2 statistic relative to the

number of elements used in the calculations:

Dk¼ S2k DxFð Þ�S2k DxCð Þ
NF

FE - NC
FE

����
����; (10.11)

where Dx and NFE represent the resolution and total number of elements used in a calculation, while superscripts (•)C and

(•)F denote the coarse-mesh and fine-mesh resolutions, respectively. Figure 10.6 illustrates these incremental changes as a

function of the total number of elements used in the calculations. Because the scale is logarithmic, the slope of curves

Dk-versus-NFE should be consistent with the rate-of-convergence of the truncation error (see Sect. 10.4.1). A theoretical,

first-order accuracy is inserted in the triangular shapes for reference.

Figure 10.6 provides the evidence needed to confirm our hypothesis that the level of resolution in the calculation exercises

a significant influence on the sensitivities of resonant frequencies. This is especially true for runs performed with fewer than

NFE ¼ 10 elements to discretize the columns and floors. The figure also indicates that, as the level of resolution increases,

these incremental changes in sensitivity start to behave according to the theoretical rate of first-order accuracy. When Dk

reaches 10�4, or less, any variation due to mesh resolution becomes so small that the global sensitivities “stabilize,”
eventually rendering them meaningful.

10.6 Conclusion

The practice of calibrating a FE model when the agreement between physical measurements and numerical predictions is

unsatisfactory is common in structural dynamics. Our contention is that calibration may not always be a legitimate recourse

to improve test-analysis correlation because it attempts to compensate for parametric errors when, in fact, the source of the

disagreement between measurements and predictions may be elsewhere.

Table 10.9 Main-effect ANOVA for predictions of the first three bending frequencies

Main-effect, R2 statistics of the first bending frequency (mode 3)

Input parameter label NFE ¼ 5 (%) NFE ¼ 10 (%) NFE ¼ 20 (%) NFE ¼ 30 (%) NFE ¼ 40 (%) NFE ¼ 60 (%)

“ElasticityModulusAllFloors” 10.11 10.37 8.25 6.38 4.95 3.02

“MaterialDensityAllFloors” 16.35 16.52 16.12 15.65 15.19 14.39

“ElasticityModulusAllColumns” 73.47 73.05 75.58 77.92 79.81 82.54

All other variables combined 0.07 0.06 0.05 0.05 0.05 0.05

Main-effect, R2 statistics of the second bending frequency (mode 5)

Input parameter label NFE ¼ 5 (%) NFE ¼ 10 (%) NFE ¼ 20 (%) NFE ¼ 30 (%) NFE ¼ 40 (%) NFE ¼ 60 (%)

“ElasticityModulusAllFloors” 0.64 0.63 0.51 0.39 0.29 0.17

“MaterialDensityAllFloors” 12.81 12.85 12.73 12.56 12.40 12.14

“ElasticityModulusAllColumns” 86.51 86.49 86.72 87.01 87.27 87.66

All other variables combined 0.04 0.03 0.04 0.04 0.04 0.03

Main-effect, R2 statistics of the third bending frequency (mode 6)

Input parameter label NFE ¼ 5 (%) NFE ¼ 10 (%) NFE ¼ 20 (%) NFE ¼ 30 (%) NFE ¼ 40 (%) NFE ¼ 60 (%)

“ElasticityModulusAllFloors” 2.63 2.18 1.69 1.42 1.24 0.99

“MaterialDensityAllFloors” 14.24 13.94 13.61 13.40 13.24 13.00

“ElasticityModulusAllColumns” 83.07 83.83 84.64 85.13 85.47 85.96

All other variables combined 0.06 0.05 0.06 0.05 0.05 0.05
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This research focuses attention on the truncation error caused by a lack-of-resolution of the spatial discretization of the

equations of motion. When it is significant enough, truncation error introduces a systematic bias between numerical

predictions and “true values” of the responses being simulated. Attempting to resorb this gap through model calibration is

the wrong remedy. The mechanism of this commonly encountered mistake is explored by showing that truncation error

adversely affects the global sensitivities of numerical predictions. Incorrect sensitivities are, in turn, fed to the calibration,

resulting in an erroneous inference of model parameters.

This mechanism is illustrated by analyzing the bending deformations of a scaled model of three-story frame structure.

Experimental modal analysis and finite element modeling are carried out to measure and predict, respectively, the vibration

response. Mesh refinement is performed to quantify the numerical uncertainty with which resonant frequencies of the

structure are predicted by the finite element model. The second step is an analysis-of-variance to estimate the global

influence, or sensitivities, that parameters of the model exercise on frequency predictions. The analysis indicates that a

relatively fine level of discretization is necessary before the sensitivities start to “stabilize.” It suggests that any attempt to

calibrate calculations performed with a coarse discretization yields incorrect parameter values because the model

sensitivities are erroneous.

Main-effect Influence of Variable “ElasticityModulusAllFloors”

Main-effect Influence of Variable “ElasticityModulusAllColumns”
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The conclusion is that, while useful, the calibration of a numerical model should be attempted only after other sources of

modeling error have been rigorously quantified and adjusted for. In particular, the overall level of truncation error should be

quantified through mesh refinement. The guidance suggested is twofold. First, one should proceed with calibration only if it

can be demonstrated that the global sensitivities of the model are “stable” under the conditions imposed by mesh refinement.

Second, the numerical uncertainty of predictions should be “small” relative to the experimental variability. The risk of not

meeting these conditions is to compensate, via calibration, for the systematic bias introduced by truncation error instead of

learning parameter values from the inference process. Using these incorrect parameters in conjunction with another

discretization, or another structure, would then yield erroneous predictions. The continuation of this work assesses the

potentially adverse consequences for the calibration of two- and three-dimensional models of the three-story frame structure.
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Chapter 11

Possibilistic Interpretation of Mistuning

in Bladed Disks by Fuzzy Algebra

H. Çağlar Karataş, Ender Ciğeroğlu, and H. Nevzat Özg€uven

Abstract In the study of effect of mistuning on the dynamic response analysis of bladed disk systems, in literature,

probabilistic methods are used. Conversely, in this paper, mistuning will be investigated by possibilistic analysis where

mistuning parameters are modeled as fuzzy variables possessing possibility distributions. Fuzzy forced response

characteristics of mistuned bladed disk systems are determined by mathematical basis of fuzzy sets. In order to do so,

extension principle solution of fuzzy functions is used which overcomes the dependency issue problem observed on interval

arithmetic solutions; hence, enhancing solution accuracy. Membership function distributions are digitized using alpha-cut

methodology, slicing distributions to levels of confidence. Bounds of fuzzy variables in each and every level of confidence

are determined using genetic optimization. Using this method, fuzzy forced response characteristics of a cyclically

symmetric lumped parameter bladed disk model is determined. The possibilistic interpretation of mistuning is exemplified

by determining the bounds of the possible maximum blade forced responses of the system for different orders of engine order

excitation and by determining worst-possible case.

Keywords Mistuning • Possibilistic analysis • Fuzzy modeling • Maximum possible forced response • Engine order

excitation • Energy localization • Extension principle solution • Genetic algorithm

11.1 Introduction

Mistuning – deviation from cyclical symmetry in bladed disks - is a phenomenon which results in failure of blades much

earlier than their predicted life due to localization of vibration energy on a particular blade. In order to avoid possible

failures, the system needs to be analyzed by considering uncertainties in system parameters that are arisen from reasons like

manufacturing tolerances, wear in service and material non-uniformities. Depending on the type of analysis, these

uncertainties can either be treated as random [1, 2] or imprecise. Mathematics and methodologies considering uncertain

variables as random variables have already been studied broadly in literature. To the best of authors’ knowledge, there is no

study on mistuning where the uncertain parameters are treated as imprecise parameters and modeled as fuzzy variables.

Therefore, the aim of this paper is to define the possibilistic interpretation of mistuning by explaining the methodology for

solving dynamic equations of fuzzy forced response problem which enables the determination of the maximum possible

forced response among blades within each and every uncertainty range.

In order to explain the solution procedure, first of all, details of the process of modeling uncertain variables as fuzzy

variables are briefly summarized. Up on the investigation of solution methods to fuzzy equations, proper method is chosen

and adapted to fuzzy forced response problems. Finally, the methodology is exemplified by determining the worst-case

scenario among different engine order excitations.
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11.2 Methodology

11.2.1 Fuzzy Modeling and Fuzzy Algebra

For the analysis of engineering systems with vague and imprecise uncertainties, fuzzy set theory and possibility theory are

utilized together. For modeling uncertain parameters as fuzzy variables possessing possibility distributions, possibility

theory [3] is used and required mathematical operations regarding fuzzy variables are governed by the fuzzy arithmetic,

based on the rules of fuzzy set theory [4], all developed by A. Lutfi Zadeh.

For instance, the proposition p: ‘deviation in stiffness parameters of structure Y is �5% at most’ carries fuzziness on the

values that are going to be assigned to the imprecise variable, deviation in stiffness parameters of structure Y, Dk. Due to the

fuzziness in meaning of the proposition p, the imprecise parameter Dk is modeled as fuzzy variable possessing possibility

distribution Pk.

Let us suppose that the universe of discourseM with a generic elementm, carries all possible values of any stiffness value.
Then, the proposition ‘�5% at most’ defines a unique fuzzy subset F which is characterized by the membership function mF,
governing the compatibility of m with the proposition. Namely, regarding to the definition of fuzzy sets [4], every

value m takes a membership function value mFðtakesÞ from 0 to 1 denoting its degree of membership to the fuzzy set F
with zero membership function value meaning m does not belong to fuzzy set F and the closer the membership function

value to unity the higher the grade of membership of m in F. Consequently, the proposition p can be transformed into the

proposition “Dk is F”.
According to the definition of the concept of possibility distribution [3], the proposition p induces a possibility

distribution PkY which equates the possibility of Dk taking value m to mFðmÞ. In this way Dk becomes a fuzzy variable

which is associated with the possibility distribution Pk.

For instance, let us suppose that the stiffness parameters are designed to be of value 4 kN/m. Regarding the proposition p,
stiffness parameters can take values between 3.8 and 4.2 kN/m. Then in order to represent the possibility distribution Pk of

fuzzy variable Dk a triangular fuzzy number �A ð3:8=4=4:2Þ can be used as shown in Fig. 11.1; where for a triangular fuzzy

number �Aðx=y=zÞ, the three numbers x<y<z identifies the base of the triangular possibility distribution by ½x; z� and its vertex
by y [5]. Figure 11.1 states that the stiffness parameters are designed to be of value 4 kN/m and they are not expected to be

4.25 or 3.75 kN/m. Furthermore, it is observed that regarding proposition p, assessor is more confident to assign 3.9 kN/m to

the stiffness value than 4.15 kN/m since 3.9 kN/m has larger possibility value.

Similarly, in this paper, uncertain system parameters of the bladed disk structure are modeled as triangular fuzzy

variables possessing �5% deviation at most. These fuzzy variables are used in fuzzy forced response analysis in order to

obtain worst-possible blade response in bladed disk.

Mathematically, fuzzy forced response analysis is composed of solutions to fuzzy equations and basic algebraic

operations of fuzzy variables. There are two methods for basic algebraic operations of fuzzy variables and solution to

fuzzy equations; extension principle solution and alpha-cuts and interval arithmetic solution.

For two fuzzy numbers �A and �B, if �A � �B ¼ �C, � denoting addition, multiplication, subtraction or division, then extension

principle defines membership function for �C as;

�CðzÞ ¼ max
x;y
fminð �AðxÞ; �BðyÞÞjx � y ¼ zg (11.1)

Extension principle solution, in definition, searches for all ½x; y�i pairs that constitute zi and records minimummembership

function value within the pairs minð �AðxiÞ; �BðyiÞÞ as �CðziÞ.The membership function value for �CðziÞ is finally assigned as the
maximum among the records, maxð �CðziÞÞ.

In contrast, interval arithmetic method uses alpha-cuts in definition to calculate basic algebraic operations. Alpha-cuts are

slices of possibility distributions producing confidence levels as non-fuzzy, crisp intervals, as shown in Fig. 11.1 by squared

marks. For the closed-bounded intervals of alpha-cuts of two fuzzy numbers �A and �B, �A½a� ¼ ½a1ðaÞ; a2ðaÞ� and �B½a� ¼
½b1ðaÞ; b2ðaÞ� (for instance, the least confidence level of fuzzy variable in Fig. 11.1 can be written as �A½0� ¼ ½3:8; 4:2�),
interval arithmetic solution calculates addition, subtraction, multiplication and division using interval arithmetic rules [6]:

�C½a� ¼ �A½a� � �B½a� (11.2)

Due to the rules of interval arithmetic, compared with respect to extension principle solution, larger solution intervals are

expected. These rules conflict with the physical structure integrity and creates dependency problem [6]. In contrast,
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extension principle solution can be adapted to alpha-cut methodology [5]; hence, approximates the true solution practically

and without creating dependency issue. Therefore, for the definition of fuzzy functions and for the solutions of fuzzy

equations extension principle solution is used in this study.

11.2.2 Fuzzy Functions and Solutions of Fuzzy Equations

Mathematically speaking, fuzzy functions are mapping from fuzzy numbers to fuzzy numbers. They are usually extended

from real valued functions. According to extension principle, a real-valued function h : ½x; y� ! R can be extended to the

corresponding fuzzy function Hð �X; �YÞ ¼ �Z as follows:

�ZðzÞ ¼ max
x;y
fminð �XðxÞ; �YðyÞÞjhðx; yÞ ¼ z; a1 � x � b1; a2 � y � b2g (11.3)

According to Eq. 11.3, in order to be able to assess the possibility of the dependent variable �ZðzÞ, all pairs of the

independent variables ½x; y� that are mapped into z should be determined regardless of their confidence levels. This makes use

of extension principle impossible on computer since it is impossible to determine all pairs for all types of equations.

However, Buckley et.al. [5] proposes that, if the real-valued function h is continuous, then upper and lower bounds of the

alpha-cuts of fuzzy function �ZðzÞ can be determined as follows:

z1ðaÞ ¼ minfhðx; yÞjx 2 �X½a�; y 2 �Y½a�g
z2ðaÞ ¼ maxfhðx; yÞjx 2 �X½a�; y 2 �Y½a�g; 0 � a � 1

(11.4)

Equation 11.4 uses alpha-cut representation of possibility distributions. For instance, the fuzzy variable in Fig. 11.1 can

be expressed in terms of its alpha-cuts as �A½a� ¼ ½3:8þ 0:2a; 4:2� 0:2a�; 0 � a � 1 . So, instead of declaring the shape of

the possibility distribution as �Aðx=y=zÞ, the values that share the same confidence level is declared as intervals to represent

the fuzzy variable.

By using alpha-cut representation of fuzzy variables on solutions to fuzzy equations, Eq. 11.4 approximates the true

solution by utilizing independent variables from the same confidence level. Namely, instead of searching all possible

independent variable pairs from any confidence level, the ones that share the same possibility distribution value �X½a� and �Y½a�
are used to determine the interval of dependent variables with the same possibility distribution value, �Z½a�. This approxima-

tion makes the use of extension principle possible on computer and hence, establishes the basis of solution to fuzzy functions

and equations.
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In order to determine upper and lower bounds of alpha-cuts of the dependent variable, �Z½a� ¼ ½z1ðaÞ; z2ðaÞ�, Eq. 11.4
requires a minimization and/or maximization operation which is an optimization procedure. Determination of global

optimum requires a “good” initial guess if gradient based optimization procedures are used which is not practical; hence,

the formulation given above is suitable to be used with genetic algorithm which can be utilized to determine the bounds of

the alpha-cuts. In conclusion, in this paper for the solution of fuzzy forced response equations, extension principle is used by

utilizing alpha-cut representation of fuzzy variables and by using genetic algorithm for determining bounds of alpha-cuts.

11.2.3 Fuzzy Forced Response Analysis

Mathematically, determining the worst-possible blade forced response requires solution to dynamic equations of fuzzy

forced response problem which can be done by modal analysis. For a crisp (non-fuzzy) lumped-parameter system with

structural damping, the crisp equation of motion is given as follows:

½M� €qf g þ ½K�� qf g ¼ Ff g (11.5)

where ½K�� is the complex stiffness matrix including structural damping, ½M� is the mass matrix, Ff g is the forcing vector,

qf g and €qf g represents displacement and acceleration vectors, respectively. Since mass and stiffness matrices reflect

physical systems, the solution to equation of motion needs to be continuous. Therefore, the equation that is used for

determining alpha-cuts of the solution, Eq. 11.4, is valid.

Consequently, let F be an algorithm that computes the forced vibration responses of the system by modal analysis where

it accepts mass and stiffness matrices and forcing vector ½M�; ½K��; fFgas inputs and returns displacement of the nodes of the

lumped parameter model qf g, as the output.If the system elements are considered as imprecise so as fuzzy variables, the

equation of motion transforms into the fuzzy equation of motion:

½ �M� €�q
� �þ ½ �K�� �qf g ¼ �Ff g (11.6)

where over-bar expresses fuzzy matrices and vectors. Then, correspondingly the algorithm F would accept alpha-cuts of

elements fuzzy correspondence of the inputs ½ �M�; ½ �K��; f �Fg; �mij½a�, �kij½a�, �fi½a� and would return the alpha-cuts of elements of

fuzzy displacement vector �qf g, �qi½a� as the output. Then, according to Eq. 11.4, assuming the excitation force vector is

exactly known, i.e. crisp, alpha-cuts of the blade displacement forced response values with respect to deviations in system

parameters are calculated as follows:

�q½a� ¼ ½q
1
ðaÞ; q

2
ðaÞ�

q
1
ðaÞ ¼ minfFðk11; . . . ; knn;m11; . . . ;mnnÞjkij 2 �kij½a�;mij 2 �mij½a�g

q
2
ðaÞ ¼ maxfFðk11; . . . ; knn;m11; . . . ;mnnÞjkij 2 �kij½a�;mij 2 �mij½a�g (11.7)

So, for a vibrating system with imprecise parameters regarding the proposition ‘deviation in stiffness parameters of

structure is �5% at most’ can be solved for alpha-cuts of the blade fuzzy forced response elements practically and without

creating dependency issue using Eq. 11.7.

This concludes explanations to methodology of fuzzy forced response modal analysis. In the following section, given

methodology is exemplified by determining the worst-case blade displacement of a cyclically symmetric lumped parameter

mistuned bladed disk model under the excitation of an engine order forcing.

11.3 Numerical Example

Numerical example considered in this section is designed to exemplify the effects of mistuning on a cyclically symmetric

integrated bladed disk system (bladed disk) by determining the worst-case scenario among different possible engine order

excitations. The worst-case scenario for mistuning considerations is the case where the energy is localized on a particular

blade. Since energy localization results in much higher displacement values on that particular blade compared to the rest of
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the blades, the maximum possible blade displacements for each engine order excitation is sought and compared with the rest

of the blade displacement values in order to determine the worst-case situation where the energy localization occurs.

Energy localization results from destruction of cyclical symmetry due to uncertainties like manufacturing tolerances,

wear in service and material non-uniformities. In this study, these uncertainties are treated as imprecise and assumed to be

effecting stiffness parameters only. The stiffness parameters are expected to deviate at most �5% from the tuned case

stiffness parameters of a cyclically symmetric lumped parameter bladed disk model shown in Fig. 11.2.

Here,M;m; kd; kb; hd are the disk mass, blade mass, disk stiffness, blade stiffness and structural damping, respectively and

�5% deviation in imprecise parameter is named as �5% mistuning level in this study. The assumption regarding

imprecision in system parameters requires fuzzy modeling of stiffness parameters and the use of possibilistic analysis in

order to determine maximum possible blade displacement value. Therefore, possibility distributions of fuzzy variables is

determined and used in fuzzy forced response analysis using extension principle solution that utilizes alpha-cut methodology

and genetic algorithm as stated in Eq. 11.7 with fuzzy stiffness parameters �kd½a�,�kb½a� only.
Let us suppose that elements of blisk model are realized with non-fuzzy, crisp values given in Table 11.1. All system

parameters except stiffness parameters are used in possibilistic analysis with the tuned case values given in Table 11.1 and

stiffness parameters are modeled as triangular fuzzy variables. A triangular possibility distribution has three components, i.e.

two base values and a vertex value. For fuzzy stiffness values, tuned case value given is assigned to the vertex of the

corresponding fuzzy variable and base values are chosen to be �5% deviated from the tuned case value compatible with the

assumption, as shown in Fig. 11.3.

Let us further suppose that the blisk spins in a static pressure field hence experiences engine order excitation which can be

modeled as [7]:

fj ¼ Fm cosðmOtþ 2pmj
n

Þ; (11.8)

where j, m, n, O and Fm are the blade number, engine order, number of blades, rotational speed and excitation amplitude,

respectively. The effects of engine orders 1, 2, 3 and 4 of 1 N forcing amplitude are sought for the worst-case analysis. In

order to determine the mode that each type of excitation excites, the frequency term mO is swept within the frequency range

of interest. For 0.9 confidence level (corresponding to �0.5% mistuning level), at each forcing frequency, the displacement

of the blade corresponding to the maximum response is given for different engine order excitations in Fig. 11.4.

From Fig. 11.4 it can clearly be seen that different engine order excitations excite different modes of vibration at different

resonant frequencies. Also, the figure highlights the maximum possible blade displacements recorded within the blisk for a

forcing of 1 N amplitude and �0.5% mistuning level within the forcing frequency range of interest.

Fig. 11.2 Cyclically

symmetric lumped-

parameter jet-engine bladed

disk model

Table 11.1 Physical

values of the lumped

parameter model

Parameter Value

Disk mass, M 4 kg

Disk stiffness, kd 60,000 N/m

Blade mass, m 2 kg

Blade stiffness, kb 7,000 N/m

Structural damping coefficient, g 0.01
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In order to observe the effect of mistuning, together with the blade that has maximum displacement, the vibration

amplitudes of rest of the blades are given in Fig. 11.5 as bar plots for four different engine orders at �5% mistuning level.

From Fig. 11.5, among engine orders 1, 2, 3 and 4, the energy localization for engine orders 3 and 4 can clearly be seen in

the figure where a single blade has a much larger response compared to all other blades. Moreover, engine order 3 shows the

highest maximum blade forced response compared to other cases. Therefore, the worst-possible case is determined to be the

case where the blisk is excited by engine order 3 for �5% mistuning level.

This concludes the determination of worst-case scenario for the blisk model considered for different engine order

excitations. First, the mode that each type of excitation excites is selected by pursuing a frequency sweep within the

range of interest and resonant frequencies are determined for�0.5% mistuning level since different engine order excitations

excite different modes of vibration. Then the behavior of the blisk excited by four different engine orders at the

corresponding resonant frequencies is investigated and the case where the blisk is excited by engine order 3 is determined

to be the worst-possible case for the system considered. Furthermore, In Fig. 11.6, behavior of the blisk excited by engine

order 3 for different mistuning levels is detailed at different excitation frequencies. The plot contains representative

mistuning levels to show the change in the maximum blade displacement with respect to increasing percent deviations in

stiffness parameters. It is observed that the possibility of obtaining a higher maximum forced response increases as the

mistuning level increases. Therefore, it can be concluded that around the crisp resonant frequency, the possibility of

resonance increases as the mistuning level increases.

11.4 Conclusion

In conclusion, this study explains and exemplifies the methodology to treat uncertainties in mistuning problems as imprecise

and the way to pursue fuzzy forced response analysis. The proper fuzzy arithmetic method is suggested in order to overcome

the dependency issue problem. Adapting fuzzy solution tools to modal analysis, solution to fuzzy forced response problem is
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proposed. Using fuzzy forced response analysis that uses extension principle solution which utilizes alpha-cut methodology

and genetic algorithm, the worst-possible effect of mistuning on a cyclically symmetric lumped parameter model that is

excited by different engine order excitations is determined. It is observed that not all engine order excitations result in energy

localization. Therefore, in order to determine the critical one, several engine order excitations are required to be checked

separately. Finally, the trend of change of maximum blade displacement with respect to changes in frequency and mistuning

level is obtained. It is concluded that possibility of resonance increases as the mistuning level increases around the tuned

case resonant frequency.
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Chapter 12

FEM Sensitivity Technique for Dynamic Response

Uncertainty Analyses

Robert N. Coppolino

Abstract Parametric variation of large order finite element models is required for bracketing dynamic response

uncertainties of complex systems. It is generally accepted that structural joint interface stiffness parameters are uncertain

over parametric ranges that may span orders of magnitude. Therefore incremental sensitivity analysis techniques are not

appropriate. Recent development of a vector-based sensitivity analysis technique that utilizes residual shape functions

provides an efficient, accurate tool for vibration mode uncertainty studies. This paper introduces an extension of the

sensitivity technique for dynamic response uncertainty studies. The key innovation lies in an efficient quasi-static stiffness

sensitivity formulation that is closely related to mathematical principles employed in the vibration mode sensitivity

technique. An end-to-end sensitivity formulation, appropriate for response to transient, steady-state and random

environments, is defined for displacement, member load and stress recovery based on the mode displacement method

with quasi-static residual vector augmentation. A simple illustrative example is provided to demonstrate accuracy and

efficiency of the technique.

Keywords Dynamic response sensitivity method • Finite element method • Modal sensitivity method

12.1 Introduction

An efficient method for computation of structural dynamic modal frequency and mode shape sensitivities due to variation of

physical stiffness and mass parameters was published at IMAC XXIX [1]. At the heart of the method is the formation of

residual vectors that describe the distributed effect of both stiffness and mass deviations with respect to the baseline system’s

modes. The combined set of baseline modes and residual vectors define a transformation matrix which is used to form a

greatly reduced order sensitivity model that accurately tracks changes in system modes and natural frequencies driven by

large stiffness and mass variations. This technique was successfully applied to effect reconciliation of an International Space

Station Component’s finite element model with modal test data as early as 2001 [2]. A second, important application of

sensitivity analysis is estimation of system dynamic response variations (accelerations, displacements, strains and stresses)

due to stiffness and mass uncertainties. Additional residual vectors, however, must be defined in order to accurately and

efficiently track changes in system dynamic response.

Two equally valid strategies for accurate computation of system dynamic response have been widely employed for many

years, namely (a) the mode acceleration method [3], and (b) the residual mode vector method [4]. Both approaches account

for “quasi-static” response contributions of high frequency modes that are not part of the selected (truncated) set of low

frequency modes. Details associated with implementation of the above techniques in finite element analysis are provided in

Ref. [5]. In order to efficiently and accurately track changes in dynamic response loads due to stiffness and mass variations,

sensitivity of “quasi-static” contributions of high frequency modes must be taken into account. Formation of vectors

describing sensitivity of the “quasi-static” residual vectors is the primary innovation of this paper.
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12.2 Nomenclature

Variable Definition Equation Variable Definition Equation

[A] Generalized mass 13.31 [DB] Damping alteration 13.1

[B] Damping 13.1 [DK] Stiffness alteration 13.1

{F(t)} Physical applied forces 13.1 [DM] Mass alteration 13.1

[I] Identity matrix 13.22 [Dk] Generalized stiffness alteration 13.6

[K] Stiffness 13.1 [Dm] Generalized mass alteration 13.6

[M] Mass 13.1 [F] Eigenvectors, modes 13.2

[Q] Generalized coordinate 13.24 [G] Load allocation 13.1

[U] Static displacement 13.11 [C] Trial vectors 13.4

[k] Generalized stiffness 13.5 [j] Generalized eigenvector 13.7

[m] Generalized mass 13.5 [l] Eigenvalues 13.2

p Sensitivity parameter 13.1 {s(t)} Stresses 13.21

{q} Modal displacement 13.19 [o] Frequency (rad/s) 13.10

{u} Physical displacements 13.1 z Modal critical damping ratio 13.19

12.3 Low Frequency Mode Sensitivity

Low frequency mode sensitivity was the primary focus of Ref. [1]. The matrix equation set describing dynamics of a

baseline or altered system, excited by applied dynamic loads is

M0 þ
XN
i¼1

pi � DMi

" #
€uf g þ B0 þ

XN
i¼1

pi � DBi

" #
_uf g þ K0 þ

XN
i¼1

pi � DKi

" #
uf g ¼ G½ � FðtÞf g (12.1)

When all “pi” are null, the system is “baseline”. Attention shall be limited to sensitivities due to stiffness and mass

changes.

The low frequency undamped modes of the baseline system are solutions of the eigenvalue problem

KO½ � F0L½ � � MO½ � F0L½ � l0L½ � ¼ 0½ � (12.2)

Definition of residual vectors describing parametric variations in (12.1) is accomplished utilizing the lowest frequency

mode shapes of the baseline structure as well as the lowest mode shapes associated with each independent alteration of the

structure

KO þ piDKi½ � FiL½ � � MO þ piDMi½ � FiL½ � liL½ � ¼ 0½ � for i ¼ 1; . . . ;Nð Þ; (12.3)

where �pi is a finite (rather than infinitesimal parametric perturbation). An initial set of trial vectors that redundantly

encompass all low frequency altered system mode shapes is

C½ � ¼ F1L F2L ::: FNL½ � (12.4)

The redundant set of trial vectors is reduced to a linearly independent “modal” set, �FOL½ �, by following the methodology

described in Appendix A. The resulting approximate generalized sensitivity model is

kO þ
XN
i¼1

pi Dki½ �
" #

f½ � � mO þ
XN
i¼1

pi Dmi½ �
" #

f½ � l½ � ¼ 0½ �; (12.5)

where the reduced stiffness and mass matrix components are

kO½ � ¼ �FT
OLKO

�FOL

� �
; mO½ � ¼ �FT

OLMO
�FOL

� �
; Dki½ � ¼ �FT

OLDKi
�FOL

� �
; Dmi½ � ¼ �FT

OLDMi
�FOL

� �
; (12.6)
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The low frequency physical modes for the altered dynamic system are recovered using the relationship

FL½ � ¼ �FOL½ � f½ � (12.7)

12.4 System Dynamic Response and “Quasi-Static” Residual Vectors

The matrix equations describing exact forced response of a linear structural model are

M½ � €uf g þ B½ � _uf g þ K½ � uf g ¼ G½ � FðtÞf g (12.8)

Truncation inaccuracies associated with forced response analysis (when the lowest frequency modes are included) are

remedied by incorporation of “quasi-static” residual response of the higher frequency modes [4, 5]. MacNeal’s approxima-

tion incorporating “quasi-static” residual response is

uðtÞf g ¼ FL½ � qLf g þ Cr
� �

FðtÞf g; (12.9)

where the “quasi-static” residual vectors are defined as

Cr
� � ¼ FH½ � o2

H

� ��1
FT

HG
� � ¼ K½ ��1 G½ � � FL½ � o2

L

� ��1
FT

LG
� �

(12.10)

A more convenient alternative to the above expression utilizes the residual vectors, [Cr], as pseudo-modes that are used

to complete the augmented trial vector set.

In order to assure accurate calculation of system response, in the presence of stiffness and mass changes, sensitivity of the

“quasi-static” residual trial vectors, defined by (12.10), must be formulated. This is accomplished by collection of static

response solutions for baseline and altered systems which are excited by the load distributions, [G]. The static solutions are

UO½ � ¼ KO½ ��1 G½ �; Ui½ � ¼ KO þ �pi � DKi½ ��1 G½ �; for i ¼ 1; . . . ;Nð Þ (12.11)

An initial set of trial static displacement vectors that adequately (and perhaps redundantly) spans all potential altered

system static deflection shape variations is

CS½ � ¼ U0 U1 ::: UN½ � (12.12)

A minimum rank augmented of the trial vector set spanning (a) low frequency mode variations (defined in Sect. 12.3), and

(b) static deflection shape variations is defined using the general procedure (described in Appendix A) as follows:

C0
S

� � ¼ CS½ � � �FOL½ � �FT
OLKO

�FOL

� ��1 �FT
OLKOCS

� �
residual ‘‘quasi - static00 trial vectorsð Þ (12.13)

�COS

� � ¼ �FOL C0
S

� �
augmented modal sensitivity trial vectorsð Þ (12.14)

�CT
OSKO

�COS

� �
C½ � � �CT

OSMO
�COS

� �
C½ � lC½ � ¼ 0½ �; �FOS½ � ¼ �COS

� �
C½ � orthogonalized trial vectorsð Þ (12.15)

The response sensitivity analysis relationships are therefore

kO þ
XN
i¼1

pi Dki½ �
" #

f½ � � mO þ
XN
i¼1

pi Dmi½ �
" #

f½ � l½ � ¼ 0½ �; (12.16)

Where

kO½ � ¼ �FT
OSKO

�FOS

� �
; mO½ � ¼ �FT

OSMO
�FOS

� �
; Dki½ � ¼ �FT

OSDKi
�FOS

� �
; Dmi½ � ¼ �FT

OSDMi
�FOS

� �
(12.17)
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The physical modes for the altered dynamic system (with “quasi-static” residual enhancement) are

F½ � ¼ �FOS½ � f½ � (12.18)

Forced response of the sensitized dynamic system is calculated by solution of the uncoupled modal equations

€qiðtÞ þ 2zioi _qiðtÞ þ o2
i qiðtÞ ¼ FT

i G
� �

FðtÞf g (12.19)

The system dynamic displacement, velocity, and acceleration responses are

uðtÞf g ¼ F½ � qðtÞf g; _uðtÞf g ¼ F½ � _qðtÞf g; €uðtÞf g ¼ F½ � €qðtÞf g (12.20)

Provided a stress-displacement matrix, [Ks], is available (also a function of the sensitivity parameters), the system

stresses are

sðtÞf g ¼ Ks½ � uðtÞf g (12.21)

12.5 Illustrative Example: Rectangular Plate

The illustrative example structure, selected to demonstrate the qualities of the dynamic response sensitivity technique,

consists of the 8.500 width, 6.300 height, 0.0600 thick aluminum (E ¼ 107 psi, v ¼ 0.3, rg ¼ 0.3 lb/in.3) rectangular plate,

illustrated in Fig. 12.1. The plate is supported on its lower face and two side faces; the upper face is free.

The plate, modeled with 108 grid points, is shown in its third mode with its lower and side faces simply supported. A unit

integrated applied load distribution (each point load is 1/12 units) to be employed in forced response analysis is also

illustrated. The boundary stiffness variation distributions are parameterized as follows:

• Lower boundary: p1 � DK(i,i) ¼ p1 � [20,000] on all lower boundary grid points on DOF 5

• Side boundaries: p2 � DK(i,i) ¼ p2 � [20,000] on all side boundary grid points on DOF 6

Accuracy of the modal sensitivity technique (described in Sect. 12.3) is illustrated by comparison of natural frequency

sensitivities for three methods of analysis, namely, (a) exact modal analysis, (b) approximate analysis based on ten baseline

system modes plus 16 residuals (based on (12.4)–(12.7)), and (c) approximate analysis based on 26 baseline system modes

Side boundary, p2

Lower boundary, p1

Y X
Z

Side boundary, p2

Mode 3, 345.3 Hz

Grid 105

Applied load
distribution

Fig. 12.1 Illustrative

example rectangular plate

(mode 3, simply supported on

three faces)
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(no residuals). Results of sensitivity analyses for which p1 and p2 are separately varied, summarized below in Fig. 12.2, indicate

a close match of exact analysis and modal sensitivity technique, confirming validity of the modal sensitivity technique [1].

Forced response sensitivity analysis (described in Sect. 12.4) is demonstrated by study of modal parameter and dynamic

response changes associated with p1 ¼ p2 ¼ 0.1. Table 12.1 provides a comparison of exact and approximate modal

frequencies and mode shapes (via cross-orthogonality [5]).
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Fig. 12.2 Rectangular plate modal frequency sensitivities

Table 12.1 Rectangular plate modal sensitivities (p1 ¼ p2 ¼ 0.1)

Exact solution

1 2 3 4 5 6 7 8 9 10

Mode Freq (Hz) 174.14 403.75 458.24 703.30 921.79 956.98 1,182.60 1,250.70 1,611.80 1,740.90

10 Modes + Residuals 1 174.15 100.00

2 403.80 100.00 0.01 0.01 0.01

3 458.28 100.00 0.01

4 703.51 0.01 100.00 0.05

5 921.87 100.00 0.01 0.01 0.01

6 975.19 0.01 100.00 0.07 0.05

7 1,182.90 0.01 0.01 0.07 100.00 0.08

8 1,251.10 0.04 100.00 0.03

9 1,611.90 100.00 0.03

10 1,741.80 0.01 0.01 0.05 0.08 99.99

Table 12.1 Rectangular plate modal sensitivities (p1 ¼ p2 ¼ 0.1)

Exact solution

1 2 3 4 5 6 7 8 9 10

Mode Freq (Hz) 174.14 403.75 458.24 703.30 921.79 956.98 1,182.60 1,250.70 1,611.80 1,740.90

26 Modes 1 189.04 99.95 0.95 2.61 1.04 0.51 0.13

2 424.19 0.96 99.91 0.70 2.76 2.29 0.48

3 487.19 99.93 0.36 0.98 3.28

4 734.14 0.34 99.92 1.87 0.55

5 978.82 1.85 1.72 90.37 42.35 2.37 0.52

6 995.98 2.01 2.21 42.22 90.39 2.55 2.39

7 1,243.60 0.56 2.21 3.08 1.34 99.74 0.01 0.01

8 1,290.90 0.89 1.87 0.01 99.85 1.89

9 1,688.50 3.20 0.33 1.78 99.68

10 1,803.60 0.16 0.38 1.32 1.93 0.18 99.77
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The numerical results provide further confirmation of the accuracy of the modal sensitivity technique. Note its superiority

over the 26 baseline mode set sensitivity approximation. Additional “quasi-static” residual vector sensitivity data is required

(see Sect. 12.4) for accurate transient response estimation. It was found that three additional trial vectors, appended to the

original 26 trial vectors, permit accurate tracking of “quasi-static” response of the plate. Ability of the resulting trial vector

set to track plate static deflection, subjected to the unit amplitude load patch in Fig. 12.1, is illustrated below in Fig. 12.3.

Performance of the forced response sensitivity technique is evaluated for the situation in which a distributed transient load

is applied to the patch shown in Fig. 12.1. Acceleration and displacement responses at grid point 105 (see Fig. 12.1) to a

transient, step-up load are provided below in Fig. 12.4

Fig. 12.3 Quasi-static

deflection accuracies (26

baseline mode estimate has

~5% error)
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The above results demonstrate that modal sensitivity analysis using the residual sensitivity technique yields accurate

acceleration and displacement estimates. Note that the 26 baseline modes (no residuals) approximation yields erroneous

peak and steady-state displacements (which are required for recovery of structural member loads and stresses).

12.6 Concluding Remarks

This paper provides a natural extension of the modal sensitivity method introduced in Ref. [1] for estimation of accurate

dynamic response sensitivities. The key innovation of this work is systematic definition of trial vectors that permit efficient

tracking of (1) natural frequency and mode shape changes, and (2) static response sensitivities. The trial vectors are used to

define a compact, reduced order set of dynamic equations that, when solved, closely approximate exact system dynamic

response sensitivities.

Demonstrated accuracy of the technique indicates that studies of dynamic response and load sensitivity, for large

parametric alterations, may be reliably conducted using extremely small order approximate dynamic models. Such

capability offers a timely, cost-effective means for estimation of peak dynamic loads in the presence of large uncertainties

in multiple system parameters, typical of distributed structural joints.

Implementation of the dynamic response sensitivity method requires explicit knowledge of mass and stiffness matrices.

This presents a challenge when FEM codes that do not make stiffness and mass matrices accessible are used.

Appendix A: General Procedure for Generating Residual Vector Sets

Consider the general task of relating an arbitrary set of trial vectors, [C], to a set of the lowest frequency system modes,

[FOL], of an undamped dynamic system

KO½ � F0L½ � � MO½ � F0L½ � l0L½ � ¼ 0½ � where FT
OLMOFOL

� � ¼ I½ �; FT
OLKOFOL

� � ¼ lOL½ � (12.22)

In addition, the stiffness matrix is related to the low and high frequency modes according to

KO½ � ¼ MOFOL½ � lOL½ � FT
OLMO

� �þ MOFOH½ � lOH½ � FT
OHMO

� �
(12.23)

The set of trial vectors is the sum of (a) a linear combination of system modes, [FOL] and (b) residual vectors, [CR]

C½ � ¼ FOL½ � Q½ � þ CR½ � (12.24)

Employing weighted least squares, and enforcing orthogonality of the residuals with respect to the system modes,

FT
OLKOC

� � ¼ FT
OLKOFOL

� �
Q½ � þ FT

OLKOCR

� �
; (12.25)

which results in,

Q½ � ¼ FT
OLKOFOL

� ��1
FT

OLKOC
� �

(12.26)

Thus the residual vectors are,

CR½ � ¼ C½ � � FOL½ � FT
OLKOFOL

� ��1
FT

OLKOC
� � ¼ C½ � � FOL½ � lOL½ ��1 FT

OLKOC
� �

(12.27)

Due to the assumption in (12.24), the residual vectors are orthogonal with respect to the stiffness matrix as well as the

mass matrix, as shown below:

FT
OLMOCR

� � ¼ FT
OLMOC

� �� FT
OLMOFOL

� �
lOL½ ��1 FT

OLKOC
� � ¼ FT

OLMOC
� �� lOL½ ��1 FT

OLKOC
� �

(12.28)
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Substituting (12.23) into the above results in

FT
OLMOCR

� � ¼ FT
OLMOC

� �� lOL½ ��1 FT
OLMOFOL

� �
lOL½ � FT

OLMO

� �þ FT
OLMOFOH

� �
lOH½ � FT

OHMO

� �
C

� �
(12.29)

FT
OLMOCR

� � ¼ FT
OLMOC

� �� lOL½ ��1 lOL½ � FT
OLMO

� �
C

� � � 0½ �

It can also be proven that mathematically equivalent residual vectors may be derived using the mass matrix as a weighting

matrix,

CR½ � ¼ C½ � � FOL½ � FT
OLMOFOL

� ��1
FT

OLMOC
� � ¼ C½ � � FOLFT

OLMOC
� �

(12.30)

While the residual vectors are orthogonal to the low frequency modes, they are not necessarily linearly independent of

one another. A reduced order linearly independent residual vector set, however, may be estimated using singular value

decomposition. This is accomplished by solving the following algebraic eigenvalue problem,

A½ � ¼ CT
RMOCR

� �
; A½ � fr

h i
¼ fr

h i
lr
� �

; lr1 � lr2 � lr3 � ::::: (12.31)

A suitable cut-off criterion, noted below, that has been employed over the past 10 years with good success in defining the

suitable reduced trial vector set, is

lrN
lr1

� 10�5: (12.32)

The set of linearly independent residual vectors and an augmented trial vector set, respectively, are defined as

C0
R

� � ¼ CR½ � fr

h i
and �COL

� � ¼ FOL C0
R½ � (12.33)

Finally, a mutually orthogonal trial vector set may be defined based on the complete (not truncated) solution of the

following reduced eigenvalue problem:

�CT
OLKO

�COL

� �
C½ � � �CT

OLMO
�COL

� �
C½ � lC½ � ¼ 0½ �; (12.34)

where

�FOL½ � ¼ �COL

� �
C½ � (12.35)
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Chapter 13

Uncertainty Quantification of Weighted Residual Method

in Loads Estimation

Colin M. Haynes, Michael D. Todd, and Kevin L. Napolitano

Abstract This paper presents an uncertainty analysis for a new methodology to predict reaction forces in weapon store

connections of naval aircraft. The proposed methodology utilizes a strain-gage-based measurement technique in which a

series of sensors are affixed to the connector and calibrated with a set of known loading configurations. The calibration

matrix relating the measured strains to the loads can then be used to estimate unknown loads from measured strains. In this

way, the system can be used to monitor the force through the connector when the aircraft is in service.

The primary objective in this work is to quantify the inherent uncertainties due to noise, miscalibration, or the estimation

process itself in this loads estimation approach. First, the relationship between variance on the sensor measurements and the

variance on the predicted force is characterized. A technique of sensor fusion called the weighted residual method is used to

minimize the variance on force components that are the most important to the user of the system. The effect of thermal

loading on the system is also explored via finite element simulation.

Keywords Uncertainty quantification • Loads estimation • Optimal sensor placement

13.1 Introduction

Quantifying the load transfer between two structural components is a challenge that has widespread interest in the structural

health monitoring (SHM) community. These connection regions tend to be critical to the safe operation of the structure, and

being able to measure experimentally the loads going through them facilitates the application of a damage prognosis

strategy. Such load monitoring techniques are in fact a key part of any predictive failure modeling effort, since they can be

used to define the operational load profiles to which the connection is subjected. However, the estimation of these load

profiles is subject to a substantial degree of uncertainty that must be properly understood and quantified in order to produce

meaningful prediction.

A new approach to predicting reaction forces in the weapon store connections of naval aircraft is presented in this paper,

along with a methodology for quantifying and prioritizing the various sources of uncertainty in the prediction. The force

prediction is accomplished by a strain-based trained network approach that uses known training loads and corresponding

measured strains to determine the calibration matrix. This process is modeled using finite element analysis, and an optimal

sensor placement scheme is implemented. Finally, several sources of uncertainty are considered – noise on strain gage

measurements, noise on force measurements, and uncertainty from uncompensated thermal change – and the contributions

of each to the total uncertainty in the force estimate are analyzed.
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13.2 Force Prediction Procedure

The proposed methodology for predicting reaction forces is a trained network approach using strain measurements. Using a

given sensor arrangement, a set of known training loads (Fcal) is applied, resulting in a measured matrix of strains (Ecal). For

a linear network, this yields a calibration matrix (C) which can be used to predict future unknown forces from measured

strains. The procedure is summarized in (13.1):

F ¼ C �E
F ¼ Fcal

�pinvðEcalÞ �E
(13.1)

where F is the estimated vector of forces, and E is the vector of measured test strains.

The general trained network procedure may also be extended to the nonlinear case by using a tool like an artificial neural

network. However, in the present application example, it is not yet assumed that the structure will exhibit sufficiently

nonlinear behavior so as to warrant using such an approach, so this paper will consider only the linear case of (13.1).

13.3 Optimal Sensor Placement Procedure

13.3.1 Modeling

In order to develop a scheme for optimally placing a limited number of sensors, it is necessary to develop a model of the

structure. A finite element model (FEM) was previously developed for the forward bracket alone [1]. Analysis subsequent to

that initial model development revealed that a more global approach taking into account all three connecting brackets must

be pursued. As a result, a new FEM was developed as shown in Fig. 13.1. However, the focus at this phase is still to

instrument and predict the interface forces for the forward connector.

In order to get an idea of the local strain fields surrounding the forward connector, six unit loads – bounce, lateral, and

fore/aft forces, in addition to roll, pitch, and yaw moments (defined in Fig. 13.2) – were separately applied to the connector.

The other two connectors were held fixed along the portion that they are clamped to the missile launcher. The surface strains

from the areas on which gages may safely be applied were then extracted from the FEMmodel. The strains are then averaged

to over areas equivalent to the strain gages’ active gage length (~1 cm) and passed to the optimization routine. Furthermore,

since the strain/force relationship is assumed to be linear, any arbitrary force state may be reconstructed by a linear

combination of the strain fields obtained in this way.

13.3.2 Optimization Algorithm

The first step in determining an optimal sensor arrangement is deciding upon a metric that quantifies the performance of the

given arrangement so that it may be compared to other arrangements in a meaningful way. In this case, the so-called

Fig. 13.1 Views of the new FEM of the missile – forward bracket (left), middle bracket (middle), and aft brackets (right). Forces are shown in

pink, restraints in orange
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weighted residual method is used, as presented previously in Ref. [1]. This method is an extension of Kammer’s method [2],

seeking to minimize the weighted trace of the covariance matrix, or equivalently to maximize the weighted trace of the

Fisher information. Extending Kammer’s method to the current case, the following model of the force prediction is used:

b ¼ pinvðCÞ (13.2)

Therefore:

e ¼ bFþ N (13.3)

F̂ ¼ bTb
� ��1

bTe (13.4)

where N � N 0; s2ð Þ and F̂ is the estimated force vector.

For an efficient unbiased estimator, Kammer has already shown that the covariance matrix of F̂ is given by

P ¼ bT s2
� ��1

b
h i�1

¼ Q�1 (13.5)

where Q is the Fisher information matrix. With the covariance matrix derived, Kammer suggests that the trace is the

appropriate matrix norm to minimize. However, rather than using the trace, the diagonal components of the covariance

matrix are multiplied by arbitrary coefficients representing their relative importance and subsequently summed. This allows

the user of the system to design a sensor arrangement that emphasizes accuracy on the most important load components.

Finally, with the new performance metric defined, a new algorithm for finding the optimal placement of sensors was

developed. There are approximately 3,500 possible sensor locations, based on the discretization of the FEM mesh. This

FEM size is prohibitively large to implement a simple rote search. Therefore, a hybrid between a genetic algorithm and

a forward greedy algorithm was developed. The genetic algorithm is based on a slight modification of the built-in MATLAB

toolbox. A greedy algorithm is one in which a sensor is added at each step of the process according to which one improves

the performance most at that stage (the locally optimal choice), and iterates until all sensors have been selected [3]. In the hybrid

scheme, the genetic algorithm is run to select the first six sensors because that is the minimum number to predict six independent

load cases, and thus the lowest number of sensors for which the performance metric is valid. From that point, a forward greedy

algorithm is used to select the remaining sensors because of its computational efficiency – running a genetic algorithm on the full

number of sensors would be up to a factor of 65 slower and does not necessarily improve performance. Furthermore, in the

implementation of this hybrid algorithm, the genetic algorithm mutates such that most of the time, each sensor shifts slightly in

space or in orientation, and only a few times is allowed tomutate to a completely new and random location. The starting locations

are randomizedonlywithin a limited subset of user-selected locations.Bothof thesemodifications cause the algorithm toproduce

arrangements that are more in line with the new, stringent constraints on sensor location.

At this point, equal weights were applied to all of the load cases, and the algorithm was used to compute a sensor

arrangement. The fitness value of the genetic algorithm is plotted versus each generation is shown in Fig. 13.3, and the

Fig. 13.2 Definition of forces

and moments applied to

bracket
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subsequent greedy algorithm results (fitness value vs. number of sensors) is given in Fig. 13.4. The final arrangement of the

sensors is shown in Fig. 13.5, which contains four different views of the forward bracket. Note that the sensors are numbered

by the order they were selected – i.e. the lower the number, the more critical the sensor is to the final force prediction.

13.4 Uncertainty Quantification

Whenever any sort of prediction is being made, it is important to understand the uncertainty inherent in that prediction. For

this system, the uncertainty in the location, orientation, and magnitude of the training loads are all of significant concern,

since these sources of error will dramatically affect the realized subsequent predictions. The uncertainty in the location of the

strain sensors, while not affecting the force prediction directly, makes it difficult to place sensors at the optimal location to

maximize the independence of the strain measurements. Finally, the random noise on the sensors, both the strain gages and

the force transducer, will contribute significantly to the prediction uncertainty. The model used to represent these sources is

given in the following section.

13.4.1 Noise Model

It is necessary to develop a model of the uncertainty of each input in order to begin to estimate the output of the prediction. A

very simple model of the noise affecting the measurements is given in (13.6):

Fest ¼ Fcal þ uð Þ�pinvðEcal þ vÞ�ðEþ wÞ (13.6)

Fig. 13.3 Results of genetic

algorithm

Fig. 13.4 Results of greedy

algorithm

128 C.M. Haynes et al.



Note that (13.6) is a matrix equation. Fcal is a vector of calibration forces, Ecal and E are the matrices of calibration and test

strains, with a size of number of forces x number of strain sensors. Fest is the estimated force vector, u is the uncertainty in the

measurement of the training forces, and v and w are two realizations of the noise on the strain gage measurement. It is

assumed that u, v, and w are normally-distributed, zero-mean, statistically independent additive noise components. Since v

and w are associated with the same sensors, it is generally assumed that they have the same variance, which is distinct from

the variance of u. It is further assumed that there is no correlation in error between individual sensors, so the covariance

matrices of u, v, and w are all diagonal.

The first step is to simply take the expectation of each side of (13.6) and see what can be learned. However, due to the fact

that three matrices fully populated with independent random variables are multiplied together, the algebra quickly becomes

difficult. It becomes intractable when realizing that the middle matrix is actually the pseudoinverse of a normal random

matrix. The distribution of such a matrix is addressed in Ref. [4], but to continue propagating the error through the rest of the

matrices proved too difficult a process to be attempted here. Instead, a numerical approach based onMonte Carlo simulations

was undertaken to quantify the impact that each source of noise has on the total variance of the force estimate.

13.4.2 Monte Carlo

Numerical simulation can be used to generate good estimates of the uncertainty parameters given a sufficient number of

iterations. In order to understand the relative importance of the various sources of error in this system, a Monte Carlo

simulation was run using different noise levels for the strain and force sensors. The results, broken down by each load

component, are presented in Fig. 13.6. It is clear that the variance in the overall estimate is much more sensitive to noise on

the strain sensors than noise on the force sensors. The value of that sensitivity varies from component to component.

A separate Monte Carlo simulation was also run using only one noise variable (i.e. u, v, or w) at a time. Thus, the percentage

of the total estimation variance represented by each noise variable can be determined, and these percentages are plotted in

Fig. 13.7. It is clear that w, the noise on the test strain, is the dominant source of variance, accounting for about 80% of the

variance on average. Note that the totals are not quite 100% because the Monte Carlo simulation is approximate.

The results of performing the Monte Carlo analysis on the entire (13.6) are shown in Fig. 13.8. Despite the fact that three

normal random matrices are passed through (13.6), which is a nonlinear operation on the noise, the results seem well

approximated by the normal distributions overlaid in red. It is also interesting to note that the overall estimated force

variance changes with both the mean and variance of the input parameters.

Fig. 13.5 Sensor placement selected by the hybrid algorithm for equal weights on all load components. Sensors are numbered in the order they

were selected
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13.4.3 Uncertainty from Temperature Change

Given that this system is designed with in-flight sensing in mind, it is important to quantify the effects that temperature

changes will have on the force prediction, if unaccounted for. Therefore, the FE model was used to run a thermal simulation,

and the strains for a change of 1�F were output. Using the sensor arrangement obtained from the optimal sensor placement

procedure, this strain matrix was fed into the trained network to see what magnitude of forces would be produced. The result

is presented in Table 13.1. The magnitude of the errors are quite significant, highlighting the need for effective thermal

compensation to be integrated into the procedure. The error tolerance for this load estimation system has been defined as 5%,
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Fig. 13.6 Surface plots of standard deviation of estimation versus standard deviation of strain and force measurements, by load component

Fig. 13.7 Graphical representation of the contribution of each noise term to the total variance of the estimate
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with loads anticipated to go as high as 2,000 lb. That means that if all of the permissible error were to come from

uncompensated temperature change, the maximum temperature change would be approximately 4�F. Temperature variation

in the flight environment is expected to be much greater, perhaps as much as 130�F – therefore, a thermal compensation

system accurate to 4�F or better must be implemented.

13.5 Conclusion

A new loads estimation procedure for structural connectors has been introduced. The principle of using a strain-based trained

network was applied to a new FEM of the entire missile and all three connecting brackets. An updated scheme for optimal

sensor placement is presented and used to find a sample arrangement.

Finally, the uncertainty of the final force estimation is considered. A model of the noise process was developed, and the

uncertainty was propagated through it via Monte Carlo methods. This analysis reveals that the variance of the estimate is

much more sensitive to noise on the strain sensors than the force sensors, with approximately 80% of the total variance

coming from the noise on the test strain, w. The entire process even appears to fit a Gaussian distribution very well, despite

the fact that the noise process involves the nonlinear pseudoinverse function. Results from thermal loading were considered,

and it seems clear that thermal compensation will be a necessary component of the loads estimation system.
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Fig. 13.8 Histograms of the error on each component of the force prediction, from a Monte Carlo simulation of the process

Table 13.1 Force errors resulting from uncompensated thermal change

X (Lateral) Y (Bounce) Z (Fore/Aft) MX (Pitch) MY (Yaw) MZ (Roll)

Force (lb/�F) �22.82 11.45 �23.20 14.18 �15.93 �8.03
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Chapter 14

Rapid Structural Condition Assessment Using Transmissibility

with Quantified Confidence for Decision Making

Zhu Mao and Michael Todd

Abstract The motivation of this paper is to achieve a rapid condition assessment and identification for aero-space

structures. For such a circumstance, transmissibility is a good vibration-domain feature for damage detection and localiza-

tion, highlighting the sensitivity of the relative dynamics between any two interest points on the structure to many forms of

damage (such as connection losses). With a quantified uncertainty model of transmissibility available, test results may be

compared to baseline (undamaged) statistics, and statistical significance under certain confidence level may be found.

Receiver operating characteristic curves suggest the optimized threshold of detection that balances detections and false

alarms. In this paper, three such models are presented, and the aforementioned statistical identifications are validated

through a plate structure with a single-edge clamped boundary condition. The benchmark test results show very good

consistency with the model prediction and the robustness to different noise contamination situations.

Keywords Uncertainty quantification • Statistical modeling • Damage detection • Receiver operating characteristics

14.1 Introduction and Background

In the past couple of decades, transmissibility has been proven to be a good feature for assessing structural condition,

because of its potential sensitivity to small and local parameter changes [1, 2]. Among all kinds of damage detection

methodologies, changes in transmissibility are often considered as the indicator of damage occurrence. However, in real

implementations with different types of variability or uncertainty, the measurements are necessarily noisy, and the

transmissibility estimations are non-deterministic. These sources of uncertainty and noise may cause misinterpretation of

test results by similarly affecting transmissibility, namely false alarms (Type-I error).

Most of the works involved with uncertainty quantification are focused on the modeling of the power density and

input–output transfer function uncertainties [3]. In this paper, three statistical models are proposed to quantify the

uncertainty of transmissibility magnitude estimations from fundamental Gaussian random processes. Quantified uncertainty

models help to improve the confidence in decision making, where decision thresholds for optimal sensitivity and specificity

can be determined for damage detection via receiver operating characteristics.
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14.2 Uncertainty Quantification Models

14.2.1 Transmissibility and Estimation

We simplify the data flow into a single-input multiple-output (SIMO) chart shown in Fig. 14.1, in which transmissibility can

be mathematically defined as the ratio between two outputs at different locations, in the spectral domain:

TijðoÞ ¼ ViðoÞ
VjðoÞ ; (14.1)

where xðtÞ is the input, niðtÞ is the response at arbitrary position i, and ViðoÞ is the Fourier transform of viðtÞ. For a more

realistic condition, extraneous noise n(t) is also considered.

Under random broad-band excitation, Welch’s method will usually be adopted to average multiple segments of

measurements in order to obtain a better quality of estimation [3, 4]. Equation 14.2 shows the estimation of cross-power

density function as an example with nd times of averages via Welch’s algorithm:

Ĝxy oð Þ ¼ X̂� oð Þ � Ŷ oð Þ ¼ 1

ndT

Xnd
k¼1

~X�
k o; Tð Þ � ~Yk o; Tð Þ: (14.2)

From the power spectral estimations, we will have different forms of transmissibility expressions, or estimators, which

are more robust and practical compared to the original mathematical definition in (14.1). Three such estimators for

transmissibility magnitude are shown in (14.3):

T̂ij

�� �� ¼ Ĝxyi

�� ��
Ĝxyj

�� �� ¼ Ĥi

�� ��
Ĥj

�� �� ¼
ffiffiffiffiffiffiffiffiffi
Ĝyiyi

Ĝyjyj

s
: (14.3)

14.2.2 Statistical Model of Transmissibility Magnitude

Previous works [5, 6] have presented more detailed discussions of the three estimators in (14.3) and have compared their

accuracy under various modeling assumptions. In the first approach, a perturbation approach is used, and (14.4) gives the

approximate variance of transmissibility magnitude estimation in terms of the coherence function g2yiyj between two output

responses

Var T̂ij

�� ��� � � 1�
ffiffiffiffiffiffiffiffi
g2yiyj

q� �
ffiffiffiffiffiffiffiffi
g2yiyj

q
� nd

Tij
�� ��2; (14.4)

where it was assumed that the coherences were balanced, i.e. g2v1y2 ¼ g2y1v2 ¼
ffiffiffiffiffiffiffiffiffi
g2y1y2

q
. This model gives the order statistics of

transmissibility estimation and approximately quantifies the uncertainty bounds without sophisticated probability density

derivation.

For the second estimator in (14.3), T̂ij

�� �� ¼ Ĥi

�� �� Ĥj

�� ���
, exact probability density function was derived, (14.5), where the

frequency response functions are regarded as Gaussian random variables themselves:

f ðzÞ ¼ 1

p
� sisj
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1� r2

p

s2j � 2rzsisj þ z2s2i
� e
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(14.5)
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where

mi ¼ E Ĥi

�� ��� � ¼ Gxvi

Gxx
and mj ¼ E Ĥj

�� ��� � ¼ Gxvj

Gxx
;

si ¼ e Ĥi

�� ��� � � mi and sj ¼ e Ĥj

�� ��� � � mj;
e Ĥi

�� ��� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2xyi

2 � nd � g2xyi

s
and e Ĥj

�� ��� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2xyj

2 � nd � g2xyj

s
:

This approach models the transmissibility magnitude in a Gaussian bivariate way, and ends up with the expression in

error function. Instead of giving only order statistics as in the perturbation approach, this approach gives expression of entire

probability density, and the distribution of estimation is fully described.

A third approach uses the magnitude estimator T̂ij

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĝyiyi Ĝyjyj

�q
, and it can be shown that the auto-power density

estimations is theoretically Chi-square distributed if the measurement series is Gaussian. Therefore, the exact probability

density function for this estimation can be derived through a Chi-square bivariate approach as shown in (14.6):

ptðT̂Þ ¼
22nd T̂

2nd�1ð Þ
1� r2ð Þs2Yis2Yj

� �nd
G nd þ 1

2

	 

ffiffiffi
p

p
s2Yi þ T̂

2
s2Yj

� �2nd
1� 4T̂

2
r2s2

Yi
s2
Yj

s2
Yi
þT̂

2
s2
Yj

� �2

0
B@

1
CA

ndþ1
2

G ndð Þ

; (14.6)

where the symbols s2Yi , s
2
Yj
represent the variance of complex Gaussian random variables Yi and Yj, r is the correlation

coefficient, and G �ð Þ is Gamma function. This uncertainty model describes the transmissibility magnitude uncertainty in the

most accurate way, but as addressed in Ref. [5], for specific noise-contaminated conditions, the estimator itself fails for low

signal-to-noise levels.

14.3 Plate Structure Experimental Validation

The uncertainty quantification models in (14.4)–(14.6) are compared and validated by experimental structural tests. Because

this validation is deployed in a laboratory, most of the uncertainties come from the sensing and calculation, without

significant influence from external influences of environmental and operational variability. For a better simulation of in-

situ test condition, we intentionally add extraneous noise to the measured time series in order to validate the statistical

models under a more strict condition.

Fig. 14.1 SIMO signal flow

14 Rapid Structural Condition Assessment Using Transmissibility with Quantified. . . 135



14.3.1 Test Structure

Validation is implemented on a clamped aluminum plate shown in Fig. 14.2, and by placing an additional external spring

under the plate, the structure can be regarded as “damaged” under stiffness change. Gaussian noise is applied on to the plate,

and four channels of acceleration responses are recorded. Figure 14.3 shows a mesh model of the structure with one fixed end

boundary condition and all the positions of the shaker, sensors, and spring addition.

14.3.2 Test Results

Several transmissibility estimations between position 2 and 4 are plotted in Fig. 14.4, with corresponding confidence bounds

calculated from the aforementioned three uncertainty models. The left column of Fig. 14.4 represent the extraneous noise

Fig. 14.2 Test structure and spring damage

Fig. 14.3 Illustration of plate test bed, cross: position of excitation; circle: damage location; dots: sensing positions

136 Z. Mao and M. Todd



free condition, which means the uncertainty is primarily from measurement noise and the estimation algorithm itself; as a

result, the estimations are very accurate, and all the confidence bounds are very close to each other. The right column of plots

in Fig. 14.5 represent the condition with surrogate Gaussian white noise added in order to simulate a more realistic

environment with other sources of ambient noise and variability. For the noise- contaminated conditions, transmissibility

magnitude estimations are corrupted with obviously larger uncertainty, but the quantification models also capture the change

and reflect wider uncertainty intervals.

One observation from Fig. 14.4f is that the estimator involved with output auto-power density function does not require

information from input. Consequently, when the extraneous noise is added onto outputs, the estimation gets much poorer

without the reference from input series, and peaks sharp peaks and notches are not observed as in Fig. 14.4b, d.

Specific performance comparison among the methods may be achieved by comparing experimental outliers to predicted

outliers (based on percentage). A 500-round Monte Carlo test was implemented, and at every frequency line the uncertainty
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Fig. 14.4 Transmissibility estimation between position 2 and 4, with confidence bounds plotted. (a) �1s bounds, perturbation approach, noise

free. (b) �1s bounds, perturbation approach, noise contaminated. (c) 90% confidence bounds, Gaussian bivariate, noise free. (d) 90% confidence

bounds, Gaussian bivariate, noise contaminated. (e) 90% confidence bounds, Chi-square bivariate, noise free. (f) 90% confidence bounds,

Chi-square bivariate, noise contaminated
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models were evaluated. The percentage of outliers was calculated and plotted in Fig. 14.5. For statistical models established

via Gaussian and Chi-square bivariate approaches, probability density functions are available, and we set the confidence level

to be 90%, anticipating 10%outliers. For the statisticalmodel given by perturbation approach,we have only standard deviation

of estimations available, without full knowledge of the actual underlying distribution; therefore we plot in Figs. 14.4a, b and

14.5a, b the estimations and outlier percentages bounded by one standard deviation limits for fair comparison.

From the outlier percentage plots in Fig. 14.5, we can conclude that all the uncertainty models are stable in different

frequency lines and different noise contamination conditions, and all are sensitive to capturing the structural parameter

changes. For extraneous noise-free conditions, a dramatic increase of outlier observations is present, no matter which

quantification model is applied. When the measurements are suffered to extraneous noise, the outlier detection can still

capture most of the statistical significances.

Fig. 14.5 Transmissibility estimation outlier percentage at each frequency line, dot: undamaged condition; cross: damaged condition.

(a) Approach, noise free. (b) Perturbation approach, noise contaminated. (c) Gaussian bivariate, noise free. (d) Gaussian bivariate, noise

contaminated. (e) Chi-square bivariate, noise free. (f) Chi-square bivariate, noise contaminated

138 Z. Mao and M. Todd



There is a very narrow frequency region below 300 Hz for the noise free condition in Chi-square outlier percentage

plot (Fig. 14.5e) where baseline values are not as consistent with the pre-set confidence threshold. This is because of a

violation of the stationary Gaussian time series requirement, and therefore weak satisfaction of Chi-square characteristics in

auto-power density magnitude. By increasing the length of measurement or adding extraneous Gaussian noise, the

stationarity will become much better, and this can be seen from Fig. 14.5f.

From the entire frequency domain point of view, we can draw the conclusion that Gaussian bivariate approach is the most

stable/reliable method in quantifying the confidence. However, once extraneous noise is present in measurements or the

record is long enough to show stationarity, the Chi-square model also has very good performance.

14.3.3 Receiver Operating Characteristics

Instead of looking at the entire frequency domain for a global damage detection purpose, we sometimes focus on limited

frequency bands in order to distinguish the statistical significance between two distributions. Figure 14.6 shows the

visualization of each model for damaged/undamaged structure at an arbitrary frequency line, with both noise-free and

noise-contaminated data. For each model, there is overlap between the two distributions, although it may appear that the chi-

square model performs the best purely based on visual observation.

In order to quantify the detection performance, we will calculate and compare the true positive rate (true detection) versus

false positive rate (false alarm), which is called receiver operating characteristics (ROC).

Receiver operating characteristics for the two approaches using analytical probability density functions are plotted in

Fig. 14.7. The two curves with noise contamination are much closer to the random guess line (45� line) than the two noise-

free ROC curves, as would be expected. Comparing the results between the models, we can see that Chi-square results are

furthest from the random guess line, which means for a certain number of false alarms there will be more true detections.

Therefore, different from the conclusion we made in Sect. 14.3.2 for entire frequency domain, we see a more sensitive and

specific detection at single frequency line through Chi-square bivariate distribution modeling.
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Fig. 14.6 Statistical model visualization for transmissibility estimation at an arbitrary frequency. (a) Histogram observation and 1-s bounds of

perturbation model, noise free. (b) Probability density function of Gaussian bivariate model, noise free. (c) Probability density function of Chi-

square bivariate model, noise free. (d) Histogram observation and 1-s bounds of perturbation model, noise contaminated. (e) Probability density

function of Gaussian bivariate model, noise contaminated. (f) Probability density function of Chi-square bivariate model, noise contaminated
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14.4 Conclusion

In this paper, three models of transmissibility magnitude uncertainty quantification are investigated and compared experi-

mentally using shaker test on a clamped plate. To be more realistic, the robustness of the quantification models is also tested

with extraneous noise added. One model gives variance of the estimations, and the other two describe the full probability

density characteristics. All the models are validated and compared quantitatively via outlier percentage observations, and

test results show a very good consistency between the observed percentage and corresponding pre-set confidence level.

These models, with different computational complexity and accuracy, all successfully quantify the transmissibility uncer-

tainty, and detect the change of transmissibility in a more quantified statistical way so that help to improve the quality of

decision making in the applications of structural health monitoring. Receiver operating characteristics suggest a quantitative

sensitivity and specificity option that certain detect threshold can be given by which the detection quality is optimized to

trade-off between true detections and false alarms.
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Chapter 15

Simulating Unbalance for Future IVHM Applications

Ryan Walker, Sureshkumar Perinpanayagam, and Ian Jennions

Abstract Unbalance is among the most common mechanical faults in rotating machinery, and is of particular interest to the

aviation industry. A state of the art machine fault simulator has been used in order to recreate a range of unbalance faults

which have been studied in detail from the perspective of fault localisation. High fidelity finite element models have been

created in NASTRAN NX and experimentally validated against results for the machine fault simulator. The applicability of

such simulations is discussed from an IVHM perspective, along with the potential for such research to influence the

development of future engine health management with respect to improved safety and maintenance.

Keywords Rotordynamics • Localisation • Simulation • IVHM

15.1 Introduction

As the aviation industry continues to work towards implementing complete IVHM (Integrated Vehicle Health Management)

systems, the need for accurate fault diagnosis and localisation techniques for industrial applications is becoming increasingly

urgent. One of the key areas of interest is rotating machinery, specifically gas turbines. Rotordynamics is a subject which has

been studied in detail for many years; however techniques for the diagnosis and, particularly, localisation of faults have yet

to be widely implemented in the aviation industry.

Gas turbines can suffer from a wide range of rotordynamic faults, from bearing failures to fluid induced instability. One of

the most prevalent (and potentially serious) faults is unbalance [1]. Whilst unbalance faults in rotating machinery have been

extensively studied from the perspective of diagnosis ([2, 3] being two of many recent examples), techniques for the

localisation of this fault are little studied [4].

The object of this paper is to describe studies into localisation of a range of unbalance faults from a simulation

perspective. As ‘seeding’ unbalance faults into gas turbines is difficult and costly a state of the art machine fault simulator

(MFS) has been used as the basis of the studies and for model validation. The machine fault simulator (see Fig. 15.1) enables

unbalance weights to be added and removed quickly and easily, and a number of other faults can also be simulated for study.

Simulation of the MFS has been performed using NASTRAN NX finite element software. This paper takes reference from

and builds upon the work by Machorro-López et al. [5], who used a similar setup to study damaged shafts from a simulation

perspective.

NASTRAN finite element models have been constructed and validated against the MFS, this takes the form of extensive

hammer testing to identify modes of both the rotating parts and the support structure. In addition to this the complex

eigenvalue solution for comparison against the rotating system with and without unbalance faults at various speeds has been

considered. Based upon these experimental results, the FEA models were updated, validated and then expanded in order to

study fault localisation methods not possible/practical to do experimentally – even on the MFS, thus taking full advantage of

the benefits of simulation.
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The initial studies of this ongoing project which are outlined in this paper are concentrated on mode shapes and

modal frequencies, with the aim of fully understanding the system and the effects of rotor unbalance for the purposes

of localisation. Based upon the results collated here, a discussion is included that is aimed at outlining future work

into fault localisation, including design optimisation for future IVHM systems and considerations required for implementing

fault diagnosis and localisation techniques into industrial IVHM applications.

15.2 High-Fidelity Model Validation

In order to correctly validate finite element models for further simulation, a high degree of accuracy is required (at least

initially), involving a combination of accurate material properties, precise dimensions and appropriate constraints. Of

particular relevance to rotating machinery are the bearing points, and providing stiffness and damping factors which

sufficiently represent the system in question. In order to achieve the desired aims, the modelling procedures outlined in

Ref. [5] provided a starting point, from which increasingly accurate models have been developed by incorporating accurate

geometry and further developing bearing stiffness and damping factors for validation by hammer testing. Figure 15.2

displays the finite element model in meshed and constrained format. Initial models began with a simple constraint system on

the bearing points (five fixed degrees of freedom, one free rotational). This was then developed by the addition of one-

dimensional stiffness/damping elements linking the shaft with the fixed constraints.

Hammer testing was performed in free-free and fixed-fixed configurations, with the first ten modes identified from the

finite element model initially studied (resulting in a frequency range of 0–1,000 Hz). Figure 15.3 demonstrates an example

correlation between the experimental hammer test and the FEA (finite element analysis) results. Table 15.1 displays the first

ten modes from fixed-fixed simulation configuration against the hammer test results. Not all predicted modes from the FEA

analysis are visible in the hammer test, however those that could be correlated were catalogued and used to tune the finite

element model in order to produce the results displayed in Table 15.1. A similar study was produced using a free-free setup

for the purposes of validating the initial rotor model before applying the bearing constraints. By altering accelerometer

positions around the system it was determined that the detected mode at 110 Hz was the first bending mode (shown in

NASTRAN simulation in Fig. 15.3), the third bending mode was detected to be at 353 Hz which displayed the clearest

indication of any mode detected by hammer test.

After the rotor-shaft system was validated for normal operating conditions, a series of faults were induced into the

model and a complex eigenvalue analysis performed in order to study the effects on the rotating system. Experimental

results are detailed in a spectrogram (Fig. 15.4) for normal (left) and faulty (5.8 g static unbalance, right) operating

conditions. These experimental results display frequency shifts which can be correlated to those predicted from

the complex eigenvalue simulation analysis, in this case the rotational speed was 25 Hz. Table 15.2 displays the results

of the complex eigenvalue analysis frequency shifts from normal to faults conditions for a rotational speed of 25 Hz.

Fig. 15.1 Spectraquest

machine fault simulator
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Repetitions of these experiments at different rotational speeds were used to validate the simulations against results from

the MFS for the frequency range of 0–1,000 Hz, covering the first ten modes. Building upon these results, a finite element

model of the MFS structure was created in order to identify structural modes and provide a rounded view of the experimental

information collected from the experimental results. The structural model can be viewed in Fig. 15.5.

Due to the large number parts connected to the support structure (gearbox, electric motor, reciprocating ‘piston’ etc.)

identifying all of the structural modes would be a complex and unnecessary task. Despite this, identifying the key structural

modes present in experimental studies was important so that they could be separated from the behaviour of the rotating

Fig. 15.2 High-fidelity FEA model
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Fig. 15.3 Hammer test experimental and simulation correlation

Table 15.1 Hammer test

experimental and simulation

correlation

Mode number NASTRAN NX (Hz) Fixed-fixed hammer test (Hz)

1 112.4 110

2 157.9 Not detected

3 158.0 Not detected

4 196.2 192

5 360.1 353

6 360.1 353

7 581.8 580

8 581.9 580

9 635.3 640

10 635.4 640
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system. With this in mind a number of finite element studies were performed using the aforementioned model, intended to

interpret structural modes identified from hammer testing. In Fig. 15.6, two accelerometers were placed on the structure, one

on the motor-side bearing housing (white) and one on the centre of the support plate (red). In this case the complex nature of

the response can be seen, however from matching with the simulation results, structural bending modes were identified at

140 and 560 Hz. The frequency range of 0–1,000 Hz was again studied for the purposes of this test, with repeat experiments

carried out using accelerometers at different positions around the support structure.

Using the data collected from experimental studies, the final calibration of the finite element models could be performed.

This in turn led to the simulations assisting in identifying the phenomena which were observed from the experimental

studies. The result indicated that the final set of finite element models could be considered to be validated to a suitable degree

of accuracy, taking into account the desire to equate numbers between simulation and experiment along with the need to use

simulations to produce future trending data.
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Fig. 15.4 MFS 25 Hz spectrograms without fault (left) and with fault (5.8 g unbalance, right)

Table 15.2 Modal frequency shifts from normal operating conditions for 5.8 g

Mode 1 2 3 4 5 6 7 8 9 10

Frequency shift (Hz) 1.16 1.50 1.30 2.7 8.9 4.8 2.5 1.4 4.8 4.0

Fig. 15.5 Full MFS finite element model
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15.3 Fault Localisation

Using the set of validated finite element models, the next stage of simulation was to study mode shapes and modal

frequencies for potential use in localising unbalance faults. In this regard, simulation presented several advantages over

an experimental MFS. From an experimental perspective, the MFS contains two rotors – opening the possibility to localise a

fault to one (or both) of these rotors. Using simulation, it is possible to extend this to a situation where 12 rotors are fitted.

This is of interest as many rotating machines, gas turbines providing one example, contain many rotors in several ‘stages’.

The ability to localise a fault to one section of a machine could produce several enhancements with maintenance and safety –

including the ability to speed up fault finding and part replacement.

In order to study this aspect, a model was created which maintained the shaft and bearing dimensions of the original

model (and thus actual MFS), however applied 12 equally-spaced rotors along the length of the shaft. A simple 13.3 g static

unbalance was applied to each rotor in turn, monitoring the shifts in modal frequency depending on the position of the

unbalance within the machine. The 12 rotor model can be seen displayed in Fig. 15.7, with the results displayed in Fig. 15.8.

In Fig. 15.8, rotor 1 refers to the rotor positioned closest to the motor and rotor 12 refers to the rotor positioned farthest

from the motor. A detailed, finely-meshed, simulation was used in order to reduce model error – however from repeat

experiments it is estimated that a model error of �0.1 Hz is incorporated in these results, and therefore only shifts in

frequency greater than 0.1 Hz can be considered valid. It is also worth noting that, although the rotors are equally spaced, due

to the bearing points and motor position the model is not symmetrical. The results produced in Fig. 16.10 display clear

defining features when the unbalance is applied to certain rotors, with less well defined features on others. It would not be

possible to accurately localise an unbalance based solely on these results, however in combination with further studies these

results could potentially prove to be very useful.

Unbalance faults can occur on one rotor in a variety of forms; these include static, dynamic and couple unbalance [6].

With this in mind, another form of fault localisation could be considered to be localising an unbalance within one rotor, or,
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Fig. 15.6 MFS support structure hammer test, 0–1,000 Hz
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more specifically, identifying the type of unbalance which has occurred. In order to study this further simulation studies were

performed. For this case, the original finite element model of the MFS was used, with a variety of unbalance faults applied to

the motor-side rotor. Starting at ‘top dead centre’ a static (single) unbalance was applied. This unbalance was then

incrementally separated in 20� segments until the unbalance was separated by 180� (coupled unbalance). The resulting

model displayed the characteristics shown in Fig. 15.9. Repeat studies estimated that this model contained a variation (error)

of approximately �0.2 Hz, and therefore only results outside of 0.2 Hz variation can be considered a good indication of

variance from the static unbalance case. It is also of note that due to a shaft-rotor coupling, each rotor, whilst balanced, is not

symmetrical. Once again the results do not provide a conclusive method of localising unbalance; however in combination

with additional studies this can potentially be achieved.

15.4 Other Unbalance Studies and Observations

In addition to the results detailed above, some additional studies performed provide information valuable to future works.

Unbalance as a fault can occur as an individual item or as a function of another underlying problem – such as a shaft

misalignment. It is therefore pertinent to investigate if unbalance faults can be identified as an individual fault or a function

of another malfunction. Table 15.3 displays the differences from normal operating conditions between mode shifts of the

first ten modes for unbalance and unbalance + misalignment cases. The unbalance applied was 5.8 g applied to both rotors;

the misalignment was a 1 mm misalignment at the rotor-end bearing point. The results are based on the same conditions as

detailed for Table 15.2.

Fig. 15.7 ‘12 rotor’ MFS model for unbalance localisation
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The results in Table 15.3 indicate a relatively large difference between the plain unbalance and the misalignment cases.

However, as only one simple combination of misalignment and unbalance has been studied, this alone is not enough to state

that unbalance can be identified as an individual fault or as part of a misalignment. Further investigation would be required in

this area to correctly understand fault differentiation.

Also of note is the effect of the size of the unbalance on detection ability. All unbalances simulated for this paper are

based upon those available for application on a MFS. It should be noted that in rotating machinery terms these are relatively

large unbalances. In gas turbines, a much smaller unbalance than has been studied here can be deemed unacceptable. As size

of the unbalance (as a function of rotor mass) decreases the variation in modal frequencies also decreases, thus complicating

the ability to localise such faults.

15.5 Discussion

The experimental and simulation work outlined in this paper indicates the first steps towards the production of a strategy for

fault localisation. The work concerns mostly model validation and lower-order modal investigations. Accurate, high fidelity

models have been used as a basis for validation of simulation for the purposes of future study. A level of validation has been

achieved which has been deemed acceptable in these circumstances, following general and popular model validation

techniques (namely hammer testing). The next stage in the investigation of fault localisation involved experimental and

simulation studies to determine the effect of a variety of unbalance faults on modal frequencies, with the intention to use this

information for fault localisation. The studies concentrated on lower-order modes, in the case of the MFS the first ten, or

roughly 0–1,000 Hz.

In this frequency range, it is possible to relate experimental results to mode shapes and defined modal frequencies. The

results obtained from simulation indicate that the possibility exists in order to develop such localisation methods (or

strategies) using techniques such as these. However, due to a number of factors including the relatively small frequency

shifts involved the results to not represent a complete method for localising unbalance.

In order for this aim to be achieved, it is necessary to look at a broader frequency spectrum and alternate methods of

assessing frequency-spectrum changes. By incorporating medium and high-frequency information with that which has been

obtained during this study, the possibility to localise unbalance faults is greatly increased. In addition to this, some other
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Table 15.3 Modal frequency shifts from normal operating conditions for 5.8 g unbalance and 5.8 g unbalance plus 1 mm bearing point

misalignment cases

Mode 1 2 3 4 5 6 7 8 9 10

Unbalance 1.16 1.50 1.30 2.7 8.9 4.8 2.5 1.4 4.8 4.0

Unbalance + misalignment �0.5 1.9 1.5 3.0 5.6 3.4 4.4 9.0 3.9 1.6
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studies performed in this paper indicate at directions for future research. In order to provide suitable unbalance localisation

techniques which are valid in industrial situations a number of factors need to be considered. These include considering a

wide range of possible faults so that overlap does not occur, with the potential for false localisation readings to be produced.

Other considerations for future studies include the applicability of FEA models to determine the information necessary

for fault localisation. High-fidelity models generate large amounts of data and take a long time to solve. Repeating the

procedures here, along with any additional required studies in order to develop localisation techniques for large structures

such as a gas turbine could quickly get unwieldy. With this in mind, techniques such as model order reduction could prove

valuable for effective simulation and data gathering of larger structures. Another important factor discussed was the ability

to differentiate unbalance from other common faults such as misalignment; as such cases complicate fault localisation and

render it less effective.

Finally, for future unbalance fault localisation techniques to prove usable, data acquisition methods and sensor position-

ing must be considered. In a simulation/lab based environment this does not prove as large an issue as with large, complex

systems. Therefore any resulting localisation techniques need to be compatible in systems where sensors cannot necessarily

sit on or close to the desired section of machine, thus resulting in a key consideration for future.

15.6 Conclusion

This study in the simulation of unbalance in rotating machinery for fault localisation has produced a number of results

relevant for the development of future IVHM systems. High-fidelity model validation provided the basis for accurate

simulation results, with simulations and experimental work centred on a state of the art machine fault simulator. Lower order

modes and modal frequencies were used as the basis for unbalance localisation studies. Summarising the results in can be

said that with further research into medium and high-order frequency spectra, combined with such considerations as sensor

placement could result in a comprehensive strategy for fault localisation for future IVHM systems.
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Chapter 16

Inverse Eigensensitivity Approach in Model Updating

of Avionic Components

Elvio Bonisoli, Carlo Rosso, Cristiana Delprete, and Fabio Stratta

Abstract This paper presents an application of a well-known model updating approach based on the inverse eigensen-

sitivity method.

The methodology is applied to an avionic equipment that supports different electronic instruments. In order to predict the

operative dynamic behavior, a modal analysis is necessary, but high modal density and effects of nonlinearities of links,

joints or rivets in the structure cannot allow an adequate correlation from test and numerical analysis. The structure is

composed of two plates of aluminum connected by frame links with different sections and thickness to improve the stiffness

on the borders and in the centre where the instruments are positioned. The different parts are connected with rivets.

The target is the gap minimization between measured and computed modal parameters through the adjustment of a small

number of physical parameters in the FE model.

The original contribution of the paper consists of substructuring and numerical strategies of coupling and select

eigenfrequencies and eigenvectors in the iterative parameter updating. The approach demonstrates that few iterations are

required to get a good correlation between EMA and FEA.

Keywords Avionic equipment • Inverse eigensensitivity method • Model updating

16.1 Introduction

The inverse eigensensitivity method has become relatively more popular than other methods and it has been successfully

applied to improve analytical model, according to experimental data. These methods have been developed to reduce the

inaccuracies of mathematical models. The sources of errors are different and appear most often combined one with another,

principally when there are complex structures where joints, boundary conditions and damping have to be modeled.

Finite element model updating has emerged in the 1990s as shown in the surveys by Imregun and Visser [1]. The problem

of updating a numerical model by using data acquired from a physical vibration test is richly handled by Mottershead and

Friswell [2]. They showed how many issues are to be addressed to produce the desired improvement. The totally of method

can be classified especially into direct methods and iterative methods. The latter are based on minimizing an objective

function that is generally a non-linear function. Often eigenvalues and eigenvectors are used to construct this function.

The use of eigendata sensitivity for analytical model updating in an iterative framework was first proposed by Collins et al.

[3], instead Chen and Garba [4] used matrix perturbation technique for recomputation of eigensolution and evaluation of

eigendata sensitivities. The effect of the improvement including second order sensitivities was studied by Kim et al. [5].

Another type of method was proposed by Lin et al. [6] to employ both the analytical and the experimental modal data for

evaluating sensitivity coefficients with the objective of improving convergence to cases where there is a higher error

magnitude, thing that happens in complex analytical model. It is also possible to directly use the measured frequency

response function (FRF) data for identifying the system matrices as done in Fritzen [7], or still using this experimental
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information to apply a method named response function method (RFM) that was developed by Lin and Ewins [8]. Imregun

et al. [9–11] conducted several studies using simulated and experimental data to evaluate the effectiveness of this approach

as a matter of common.

Although several different approaches have been proposed and successfully applied on different structures, the authors of

this paper would propose their experience on an avionic equipment. The aim is to define an appropriate and updated FE

model for modal analysis (FEA) and to match the numerical results with an experimental modal analysis (EMA) campaign.

The inverse eigensensitivity approach [2, 12] is proposed as an iterative model updating technique with respect to an

experimental modal test campaign. Its validity and quick convergence has been demonstrated in Literature, but modal

truncation and experimental inaccuracy effects may represent an interesting task for model updating of this kind of

structures. The principal task of this article is the comparison of two different versions of the method used to reach a

good matching between the modal characteristics of an avionic structure modeled with a linear FE approach and

substructured in components. The mathematical bases are the same for both methods but the difference is defined in the

objective functions to minimize, and this difference goes to affect the dimensions of the sensitivity matrix that are smaller for

the new method than for the previous one. The classical objective function is the combination of errors between experimen-

tal and numerical eigenvalues and eigenvectors as is customary [12, 13]:

Do2
r ¼

o2
exp;r � o2

r

o2
r

; DFðrÞ� � ¼ FðrÞ
exp

n o
� FðrÞ� �

: (16.1)

After this the updating of the parameters DParf g ¼ D a1; :::;D apm;D b1; :::;D bpk
� �T

of the analytical model are done by

solving a linear system where the sensitivity [S] is calculated analytically from the FE model:

DEigf g ¼
o2

exp;r � o2
r

o2
r

FðrÞ
exp

n o
� FðrÞ� �

8><
>:

9>=
>; ¼ S½ � DParf g: (16.2)

The idea of trying a method modification arises because, neglecting the meaning of each row of (16.2), errors of

eigenvector degree of freedom can affect the parameter corrections in the same way of an eigenvalue error. The fact of

modifying (16.2) is to weight the eigenvector error with a scalar estimate and minimize the sensitivity matrix [S]. In
particular, in the identified mode-shapes is common having some qualitative misalignments between experimental nodes

and, although these small discrepancies do not affect the goodness of experimental modes, they can produce undesired

effects on the updating parameters computations. The proposed modification tries to minimize this problem without

producing worse updating results.

To evaluate the efficiency of both methods, before applying them to a real avionic structure, some numerical tests have

been performed, taking into account that the equivalent experimental data were actually a reduced part of analytical results

obtained from some modifications of substructures parameters in the FE model.

16.2 Modified Inverse Eigensensitivity Model Updating

In order to obtain an updated FE model, the inverse eigensensitivity methodology using arbitrarily chosen macro-elements is

implemented. It relies on the minimization of the discrepancies between measured and computed modal parameters through

the adjustment of a number of uncertain parameters in the finite element model. In particular, the inverse eigensensitivity

methodology takes into account modal parameters obtained from a modal test, which are, in most cases, not compatible with

those from the analytical model, because of the limited number of experimental modes and measured coordinates. Therefore,

a strong modal truncation is applied on the error estimation of eigenvectors.

The success of the iterative procedure based on the inverse eigensensitivity methodology depends heavily on the choice

of the submatrices, i.e. macro-elements, which the structure is divided in. The fastness of convergence and the stability of the

iterative procedure depend on this choice. It was observed that global parameters are highly more efficient, instead of local

parameters, to get a better updated model in few iterations and a following refinement may be applied, by using more

autonomous substructures [13].
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The mass and stiffness matrices of the FE model can be expressed through the sum of macro-substructures, expanded to

global dimensions and weighted by independent parameters ai, bi

M½ � ¼ Ppm
i¼1

ai Mi½ �; K½ � ¼ Ppk
i¼1

bi Ki½ � (16.3)

where an overall of pm inertial plus pk elastic updating parameters for the FE model are considered.

Regarding (16.2), both non-dimensional eigenvalues and eigenvectors errors DEigenVf g between experimental and

analytical model are considered, in order to update the FE model respect to the vector of correction coefficients DParf g ¼
D a1; :::;D apm;D b1; :::;D bpk

� �T
in the neighborhood of the unitary vector, corresponding to the analytical configuration.

The proposedmodification of the approach acts on the vector DEigf g. It reduces the number of independent error estimations

related to the sensitivity matrix. Instead of having one independent row for each point of measure, the error on each involved

eigenvector is computed as a scalar value, pre-multiplying corresponding part of the error vector DEigf g and the sensitivity
matrix [S] by the experimental-numerical eigenvector error DFðrÞ� �T

. Although this modification of the original approach

combines experimental and numerical estimations in the sensitivity matrix [S], a numerical improvement is expected in

numerical stability and insensitive properties on erroneous identification of some components of experimental eigenvectors.

The rth eigenvalue and eigenvector of the FE model can be expanded in a Taylor series; by neglecting the second and

higher-order terms, both eigenvalues and eigenvectors residuals can be approximated as
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where FðrÞ�� ��2 ¼ FðrÞ� �T
FðrÞ� �

and the matrix is the balanced sensitivity matrix [S]. In order to estimate the coefficients of

the sensitivity matrix [S], by taking derivatives of the M and K-orthogonality properties of eigenvectors, it results [14, 15]:
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hence the eigenvectors derivative are expressed by using the expansion theorem and considering eigenvectors as a base to

describe those terms.

The updating procedure has been achieved by solving the following linear system:

DEigf g ¼ S½ � DParf g ¼ U½ � S½ � V½ �T DParf g; (16.8)

where the number of updating parameters are usually much smaller than the number of modal residual equations in the

original inverse eigensensitivity method, while [S] is more similar to a square matrix in the proposed modification.
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Therefore the updating parameters are obtained in a least square sense, by a Singular Value Decomposition technique

DParf g ¼ V½ � S½ �þ U½ �T DEigenVf g; (16.9)

where S½ �þ is the Moore-Penrose generalized inverse matrix of S½ �.
The mass and stiffness matrices of the updated FE model result thus:

M½ � ¼ Ppm
i¼1

ai þ D aið Þ Mi½ �; K½ � ¼ Ppk
i¼1

bi þ D bið Þ Ki½ �: (16.10)

Finally, before or after the updating procedure, independently to the eigenvectors, it is possible to minimize the non-

dimensional eigenvalues errors Do by using a global rescale of the FE model, in order also to control the mass of the system;

in a least square sense, the inertial and elastic updating parameters may be evaluated through

D ai ¼ 0; D bi ¼ bi e2 � 1ð Þ; (16.11)

where Do ¼ min
e

Pn
r¼1

oexp;r�e or

e or

��� ���� �
gives e ¼ Pn

r¼1

oexp;r

or

h i2 Pn
r¼1

oexp;r

or

	
.

The improvement of the inverse eigensensitivity model updating of (16.4) is mainly to reduce the size of the sensitivity

matrix, so even themathematical errors to solve the linear system in amean least square sense areminor. But on the other hand

experimental information are lost because there is only one value that groups the errors of each identified eigenvector. The

difference from the two different methods can be quantified with controlled test that are developed in the rest of the paper.

In order to test effectively the inverse eigensensitivity approach, the FE model must be prepared and be modified. In the

next paragraph the avionic structures under test is presented.

16.3 Avionic Structure Description

The object under study is an avionic equipment inside aircraft, whose rule is to operate as support for electronic devices. The

structure is a typical rig composed of aluminum plates with several stiffening components. Numerous rivets are used to

connect the components. Numerous and close modes of the plates are expected, depending heavily on connections

properties. The 3D CAD model is shown in Fig. 16.1.

The prototype of the object is simplified as shown in Fig. 16.1, trying to keep intact as much as possible its inertia and

stiffness properties, and preserving geometrical dimensions. In Fig. 16.2 the corresponding model of the realized prototype

is shown. Specifically, the assembly is therefore consisting of the following elements:

• Two frame links with Z section,

• Two frame links with T section,

• Two frame links with C section,

• One upper plate,

• One bottom plate.

Fig. 16.1 3D drawing of

avionic equipment
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The simplified geometry is imported, using the IGES interface, in the preprocessing for the FE analysis PATRAN 2005.

This structure is discretized using two-dimensional shell elements quad4 and tria3 with equivalent thickness properties of the

prototype. The material is a hard aluminum class T2024. The connections are composed of RBE2 elements and

accelerometers are been taken into account with CONM2 elements for completeness. The FE model and its characteristics

are reported in Fig. 16.3 and resumed in Table 16.1.

The experimental tests are defined by positioning 31 mono-axial accelerometers on both plates; the boundary conditions

are assumed as free-free by means of a suspension structure of soft springs, as shown in Fig. 16.4. Typical hammer tests [16]

are performed to identify modal data through SIMO (single input, multi output) frequency domain techniques implemented

in LMS software.

Having the modal data from the experimental campaign and the predictions arising from the numerical model, it was

possible to perform a numerical–experimental comparison. To evaluate the mode-shape correlation, the index MAC (Modal

Assurance Criterion) is adopted [16]:

MAC j; kð Þ ¼
FðjÞ� �T

FðkÞ
exp

n o��� ���2
FðjÞ� �T

FðjÞ� �
 �
FðkÞ

exp

n oT
FðkÞ

exp

n o� � (16.12)

Fig. 16.2 Isometric view with components name of the avionic equipment prototype

Fig. 16.3 Corresponding FE model of the prototype

Table 16.1 FEM characteristics

Nodes 1,925

Elements 1,573

CONM2 31

RBE2 87

RBE3 31
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From this first comparison, reported in Fig. 16.5, two main inconsistencies are noted:

• The absence of the first mode of bottom plate from experimental tests,

• A not-satisfactory comparison for the first six modes.

These two problems are discussed and tackled separately. The first problem can be solved adding rivet damping to the

model. In particular, this mode is over-damped, due to the strong dissipative effects of the numerous rivets on the boundary

of the structure. This problem is not handled in this paper, while for the first mode-shapes the model updating technique,

based on the modification of the inverse eigensensitivity approach, is the aim.

16.4 Methodology Application

By applying the method to the structure, the avionic equipment is divided into five sub-structures (Fig. 16.6). Material

Young’s modulus and density for each component are the updating parameters. In this case it is appropriate to put the two

plates separated into two independent subgroups (named part 3 for the top plate and part 4 for the bottom one). Since other

parts of the model come in pairs (there are two frame links of section C, two Z and two T) three different subgroups could be

defined; the better choice is to bring together the C and Z sections because they represent the structural board of the structure

(named part 1) and, if some modifications are expected, these should affect the entire subgroup. Whereas the frame links T

(named part 2) are independent because they deeply interact on the vibration modes of the upper plate. The steffening

corners, fifth subgroup (named part 5), contain the eight angulars that form the connection between the various parts. It is

defined for the structure completeness, but its effect could be omitted and its parameters could not be updated. Figure 16.6

shows the exploded view of the assembly to highlight the five subgroups.

Fig. 16.4 Experimental test
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16.5 Numerical and Experimental Tests

16.5.1 Test 1: EMA Obtained from Numerical Modifications

To be confident of the convergence, physical validity and robustness of both methods, controlled tests are analyzed. Some

parameters values are numerically modified in the FE model. This modified model is adopted, through modal truncation, as

the equivalent experimental modal data to update as a reference instead of the actual data derived from experimental modal

analysis. Therefore, a physical solution of the updating technique is definitely consistent.

The starting point is the errors on eigenvalues and the evaluation of the MAC index for eigenvectors discrepancies. Both

are represented like matrices in Fig. 16.7.

The progressive iterations of density and Young’s modulus for each part are shown in Figs. 16.8, 16.9, and 16.10, using

the original version of the inverse eigensensitivity approach, while Figs. 16.11, 16.12, 16.13, and 16.14 show the results

obtained through the modification of (16.4). The first six flexible modes are controlled at each iteration. The known existing

updated model is represented as the target of this test.

Fig. 16.6 Division of the model in five subgroups
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Fig. 16.7 Test 1: eigenvalues errors (left) and MAC matrix (right) between EMA and FEA
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Fig. 16.8 Test 1: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the original version
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Fig. 16.9 Test 1: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the original version
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Fig. 16.11 Test 1: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the modified version
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Fig. 16.12 Test 1: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the modified version
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Fig. 16.13 Test 1: MAC matrices between EMA and FEA after 10 iterations (left) and 15 iterations (right) with the inverse eigensensitivity

approach in the modified version



16.5.1.1 Updating with the Original Method

The procedure is necessarily iterative, but engineering experience is suitable for avoiding not physical solutions. Therefore

the iterative algorithm is not automatic. Furthermore two degrees of freedom for piloting the iterations are available at each

iteration: the number of modes to control and howmany parameters can be accepted or neglected in the updating parameters.

In fact in this first test the first six modes are always taken into account for all the iterations, but for the first five iterations

only the more important four parameters are updated to tune the modal characteristics (density r and Young’s modulus E of

the upper and bottom plates). After the first five iterations, all the ten parameters (density r and Young’s modulus E for each

substructure) are then considered. It is worth noting that already at the fifth iteration the method leads to an equivalent system

that has the same modal characteristics of the true model used to withdraw the reference data. So after this point the method

allows to update all the ten parameters that in few steps reach the known values.

16.5.1.2 Updating with the Modified Method

The procedure and results are similar to the original method, but more iterations are needed. All the ten parameters are active

in the updating technique after the tenth iteration. A negative note is that, although even this method converges at true

values, it is more unstable and requires more attention to decide which parameters update at each iteration. With this first test

the efficiency of both methods is demonstrated.

16.5.2 Test 2: EMA Obtained from Numerical Modifications with Noise

The next step is to introduce a Gaussian distribution of noise in the data taken as a reference. This test allows to have a

measure of the robustness of the proposed modification.

The initial parameters are identical to the first test. Here, however, experimental values are taken as the eigenvalues and

eigenvectors that come from this model and are slightly dirtied through the introduction of a percentage of noise: a random

Gaussian noise of 10% with respect to the eigenvector RMS is assumed. The added noise must necessarily be small because

otherwise both methods diverge; it means that the model cannot replicate the information that the modal values are taken

as experimental.

The starting point is represented in the matrices shown in Fig. 16.14.

The effect of noise can be underlined with the use of an auto-MAC between eigenvectors before and after the introduction

of noise. A high correspondence of the two sets of eigenvectors is anyway evinced; in fact, the indexMAChas amean value of

about 98% for all modes on the diagonal and some correlations between similar mode-shapes are emphasized. Thus, mainly

for the first flexible modes, random noise has a relative weight on eigenvector discrepancies. Higher negative effects can be

produced on eigenvalues, where random noise could produce unphysical systems with respect to the updating parameters.

Also in this test, the first six flexible modes are controlled at each iteration.
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Fig. 16.14 Test 2: eigenvalues errors (left) and MAC matrix (right) between EMA and FEA
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16.5.2.1 Updating with the Original Method

With the introduction of the random noise in the reference data, the method fails to converge to the true values of density and

Young’s modulus (Fig. 16.15), although both approaches still leads to a physical system with the same modal information

except for modes 9 and 10 that are not well described (Figs. 16.16, 16.17).

It is worth noting that inertial and elastic properties of both plates are detected after six iterations, where all the ten

updating parameters are active and independent.

16.5.2.2 Updating with the Modified Method

The modification is more unstable as discussed in the previous test (Figs. 16.18, 16.19). It is further from the true values even

if it also leads to an equivalent dynamic system. The MAC index shown in Fig. 16.20 has equivalent correspondence to the

original method results. For all the iterations the parts 1, 4 and 5 are not updated. Similar conclusions of the previous test can

be resumed.

At the end of the considered iterations, both methods have eigenvalues and eigenvectors errors that are not negligible; the

modified method demonstrated minor suitability, but its trend is similar to the original approach.

16.5.3 Test 3: EMA from Experimental Campaign

After checking the reliability of both methods, a real experimental case is chosen to update the FE model of the avionic

equipment described previously.

The main characteristics of the test are:

• There is no guarantee that a physical system exists and possesses the identified experimental modal data;

• Moreover, if the boundary conditions between the substructures are not well modeled or the updating parameters are not

suitable to describe the modal modification according to the modal errors, the iterative updating procedure could be not

effective;

• Finally, due to the relative weight of updating an FE model for each iteration, the computing cost is quite relevant, the

iterative procedure depends from the starting point and it is not possible to know if an optimal iterative solution is the best

physical solution. In practice, the approach does not guarantee to compute a global optimization of the modal errors.

The starting point is represented in the matrix shown in Figs. 16.21.

16.5.3.1 Updating with the Original Method

In both cases only the density and Young’s modulus of both plates are updated, because these four parameters affect more

the modal characteristics of the structure. The low frequencies modes depends only on the first plate modes. In order to

reduce the difference between EMA and FEA, after numerous attempts, it has been useless go to activate other

parameters.

16.5.3.2 Updating with the Modified Method

Similar strategy is adopted for the modified method. The final MAC is practically identical for both methods. This confirms

that the modified method comes to similar results of the original method. There are differences on the values of density and

Young’s modulus of the subgroups but, of course, it is not possible saying if one approach is better than the other one.

Analogously to the MAC comparison of Fig. 16.24 for the original method, Fig. 16.27 shows the EMA and FEA results

for the modified one: the inversion of frequency order between the first two modes is removed, but the mean MAC value is

similar to the previous results.
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Fig. 16.15 Test 2: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the original version
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Fig. 16.16 Test 2: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the original version
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Fig. 16.17 Test 2: MAC matrix between EMA and FEA after nine iterations with the inverse eigensensitivity approach in the original version
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Fig. 16.18 Test 2: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the modified version
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Fig. 16.20 Test 2: MAC matrix between EMA and FEA after 10 iterations with the inverse eigensensitivity approach in the modified version
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Fig. 16.19 Test 2: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the modified version
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Fig. 16.21 Test 3: eigenvalues errors (left) and MAC matrix (right) between EMA and FEA
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Fig. 16.22 Test 3: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the original version
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Fig. 16.23 Test 3: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the original version
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Fig. 16.25 Test 3: density (left) and Young’s modulus (right) during the progressive iterations of the five substructures with the inverse

eigensensitivity approach in the modified version
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Fig. 16.24 Test 3: MAC matrix between EMA and FEA after seven iterations with the inverse eigensensitivity approach in the original version
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Fig. 16.26 Test 3: eigenvalues (left) and eigenvectors errors (right) of the first six modes during the progressive iterations with the inverse

eigensensitivity approach in the modified version



As a result of the conducted tests, it can be said that the modified method converges like the previous one. The new

method is certainly the most unsuitable and leads to less good results with regard to the characteristics of the materials, but

the modal characteristics of the equivalent model that is to be found are very similar for the two methods.

In Fig. 16.28, the comparison of the first six EMA and FEA mode-shapes of the top and bottom plates is shown. It

confirms the right matching of the modes taken in consideration and the complexity of the model to reproduce the

experimental modal characteristics.
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Fig. 16.27 Test 3: MAC matrix between EMA and FEA after seven iterations with the inverse eigensensitivity approach in the modified version
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16.6 Discussions and Conclusions

On the basis of the above results the following conclusions are drawn:

• In the case of the first test, both methods have eliminated the errors completely;

• In the presence of noise, the convergence for both methods is adversely affected making the iterations relatively unstable

especially for the modified method; adding even more noise of about 20%, the results (not shown) are worst; it is

reasonable, due to modal data that is not compatible with the considered physical system;

• In the case of the real application both methods lead to a systems not so different, and the results are satisfactory because

12 modes have a good matching after the updating.

In all tests the iterations are stopped when the ratio between time and quality of results is optimized. In conclusion the two

methods produce similar results, although the second one is slightly worse because it requires a greater numbers of iterations

to converge, but it has also an important advantage of giving the same weight for errors on eigenvalues and eigenvectors.

Thus the numerical approximation involved in the sensitivity matrix inversion is reduced.
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Chapter 17

Shape Optimization of Plates for Desired Natural Frequencies

from Coarse Grid Results

Eduardo B.M.R. Germano and Rodrigo Nicoletti

Abstract The design of structures and machines must consider the restrictions imposed by the boundary conditions. Such

conditions can be of dynamic nature, thus limiting the frequency ranges that the structure can operate. Among the different

design tools available for dealing with dynamic restrictions, shape optimization is a way of deviating natural frequencies

from problematic ranges during the design process. In this work, a cantilever plate is optmized aiming at desired natural

frequencies. A coarse grid finite element model is correlated to results from experimental modal analysis, and the

optimization is done with help of Nastran software. The main contribution is showing that an interpolation of the coarse

grid optimization results leads to the solution of the fine grid optimization problem. Hence, it is possible to obtain the smooth

geometry that optimizes natural frequencies in plates from coarse grid models, thus not requiring high computational costs.

17.1 Introduction

Metallic panels are widely used in industry as a part of the machine structure. In many cases, panel structures are subjected to

weight and dynamic restrictions, and these restrictions must be taken into account in the design process. This is the case of

aeronautic and automotive systems. To cope with the dynamic restrictions in panels (frequency ranges and frequency

response limits), several dampening mechanisms have been successfully developed, for example bitumen layers, deadeners,

vibration absorbers, and active piezo patches. However, the disadvantage of such mechanisms is the addition of mass into

the system. For this reason, the study of panel shapes and thickness variation of plates has been motivated, aiming at

designing structures with desired dynamic characteristics (natural frequencies, mode shapes, frequency response functions).

The early works on the subject focused on the sole calculation of natural frequencies and mode shapes of plates with

given thickness variation. Initially, stepped thickness variation was considered, where areas of the plate had discrete

thickness values with sudden local variations [1]. Proper shape optimization of plates aiming at desired eigenfrequencies

and mode shapes began to be investigated in the middle of the 1990s. A methodology for the optimization of plate thickness

in structures of revolution is presented in [2]. In this work, the authors adopt cubic splines to represent the thickness variation

along the plate, and discuss different parameters that can be used as design variables: key points, position vectors, or splines

coefficients. Examples of numerical application are presented for conical shells, circular plates, branched shells, and bells.

Similar analyzes are presented in [3] and [4] for the optimization problem of prismatic structures formed by folded plates.

The optimization of plates with non uniform variation of thickness (non continuous functions) started with the idea of

stepped variation. In this case, the thickness itself is used as the design variable at different regions of the plate (regions to be

optimized), with sudden change in thickness values between regions. Analytical procedures and numerical results were

obtained for concentric rectangular plates [5] and linear segmented circular plates [6]. Finite element algorithms can also be

used and are naturally suitable for the stepped variation approach because finite element models divide the plate area in

discrete regions of constant thickness.
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The most recent investigations on the shape optimization of plates for desired eigenfrequencies are related to laminated

(composite) plates. First attempts on this direction used the orientation of fibers as design variables [7, 8]. Later, other

parameters began to be investigated, like the number of plies, number of layers, and the type of composites in the layers

[9–11].

Considering the information available in literature, much has been done for eigenfrequency optimization of plates in the

numerical field, but few works deal with experimental validation. Actually, the only comparison to experimental results is

found in [12]. In the present work, the shape optimization of a cantilever plate aiming at desired natural frequencies is

validated against experimental data. In the optimization procedure, one adopts the optimization toolbox of Nastran software

and plate local thickness is used as design variables (stepped thickness variation). Results show that the errors in natural

frequency values remained below 3%. In addition, and most importantly, it is shown that the interpolation of coarse grid

results can be used as an approximate solution to the problem of fine grid stepped thickness variation. Consequently,

computational cost is reduced in the optimization procedure, and convergence is more easily assured by the adoption of

coarser grids.

17.2 Cantilever Plate Modal Analysis and Model Correlation

The aluminum cantilever plate used in the optimization has dimensions of 150�185 mm, nominal thickness of 2 mm, and

material density of 2674 kg/m3. The identification of the dynamic characteristics of the plate is performed through classical

modal analysis procedure [13]. The plate is clamped as shown in Fig. 17.1. The excitation force from the electrodynamic

shaker (1) is measured by a load cell (2) connected to the corner of the plate. The plate response is measured by a 2.4 g piezo

resistive accelerometer (3) in a grid of 25 measurement points (5�5 grid). The adopted excitation signal is a chirp signal

ranging from 10 to 350 Hz in 2 s, in a total of 20 repetitions and 40 s period of acquisition. The adopted acquisition rate is

2 kHz. The frequency response functions are calculated by the H1 estimator [13] and several tests are performed until

clamping condition does not affect significantly the results.

The obtained results in terms of the first three natural frequencies are listed in Table 17.1. The variation observed in the

results of the 25 measuring points is mainly caused by the additional mass of the accelerometer over the plate. Despite the

uncertainties introduced by the mass of the accelerometer, the variation of the values remained below 2% for the 96%

confidence interval (2s confidence interval). The mode shapes associated to the first three natural frequencies of the plate are

obtained by the Ewins-Gleeson Method [13], and the results are shown in Fig. 17.2.

Fig. 17.1 Configuration for

the experimental identification

of the plate: (1) shaker; (2)
load cell; (3) accelerometer

Table 17.1 Natural frequencies

identified experimentally

for the cantilever plate

Natural frequency 1 2 3

Mean value (Hz) 50.76 135.52 277.48

Standard deviation 0.436 1.558 2.387

96% confidence interval (Hz) 50.8 � 0.9 136 � 3 278 � 5
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In order to optimize the plate thickness towards desired natural frequencies, a finite element model is developed using

MSC Nastran v.2005 finite element algorithm. In this case, a 4�5 element mesh is used. Elements are CQUAD4 shell

elements with 2 mm thickness and material is considered isotropic (MAT1), with Young modulus of 7.1�1010 N/m2 and

Poisson ratio of 0.3. All nodes in the clamped edge of the plate are fully constrained (zero displacements and rotations in all

directions). The natural frequencies and associated mode shapes are obtained with solution 103 of Nastran software.

By adopting the 4�5 mesh model and calculating the respective natural frequencies and mode shapes, one obtained the

results presented in Table 17.2. The error between numerical and experimental results remained below 5% for the first three

natural frequencies. Mode shapes are also coherent to those experimentally measured as evidenced by the MAC matrix

(Modal Assurance Criterion) shown in Fig. 17.3, whose strong diagonal preponderance gives an indication of the similarity

between the numerical and the experimental modes [14]. Considering that natural frequency errors are within acceptable

margins, the model is thought to be a fairly good representation of the cantilever plate in study.

a b c

Fig. 17.2 Experimental mode shapes of the cantilever plate. (a) First mode (50.8 Hz). (b) Second mode (136 Hz). (c) Third mode (278 Hz)

Table 17.2 Natural frequencies of the 4�5 and 48�60 mesh models

Mesh model

4�5 48�60 48�60

No add mass No add mass 5 g mass

Mode 1 2 3 1 2 3 1 2 3

Natural frequency (Hz) 49.3 134.7 291.9 50.2 144.2 310.7 47.4 127.7 298.5

Error (%) 2.9 0.6 5.0 1.2 6.0 11.7 6.7 6.1 7.5
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Fig. 17.3 MAC matrix of the 4�5 mesh model
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Similar results are obtained with a fine mesh model of 48�60 elements. In this case, better results are obtained for a

model with additional 5 g mass in the excitation position (Table 17.2, Fig. 17.4). For this reason, the 48�60 element

model with 5 g additional mass at the excitation position is also considered to be a good representation of the system in

study (cantilever plate).

17.3 Shape Optimization

The optimization of the plate thickness aiming at desired natural frequencies is performed with solution 200 of Nastran

software. The adopted objective function is:

f ¼ 1� on1

O1

� �2

þ 1� on2

O2

� �2

þ 1� on3

O3

� �2

(17.1)

where oni is the i-th natural frequency of the plate (numerical) and Oi is the i-th desired natural frequency for the plate.

The thickness of every element in the model (ti) is a design variable of the optimization problem, and they are subjected to

the side constraints:

1:5 � ti � 5:0 mm (17.2)

The initial values of ti are 2 mm.

The natural frequencies of the plate are 50.8, 136, and 278 Hz, as identified previously. Let’s change the second natural

frequency to 100 Hz, keeping the other frequencies at the same values. Thus, the desired natural frequencies are: 50.8, 100,

and 278 Hz. By adopting the finite element model described earlier (4�5 model), and solving the optimization problem

((17.1) and (17.2)) with help of Nastran software, one obtains the results shown in Table 17.3 and Fig. 17.5. The results

shown in Fig. 17.5 refer to a thickness equally distributed in relation to the plate middle surface (ti / 2 in the bottom surface

and ti / 2 in the upper surface of the plate).

By checking the optimized solution (Fig. 17.5), one can see that mass is concentrated in the free tips of the plate

(upper left and right corners) and in the center region near the clamped edge (bottom). This makes sense, considering that

the objective was to lower the torsion natural frequency without affecting bending natural frequencies. The concentrated

masses in the free corners of the plate will reduce torsion natural frequency. In order to keep the bending frequencies

unchanged, more mass is located near the clamping to balance the additional mass in the free edge of the plate and to

increase bending stiffness.
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Fig. 17.4 MAC matrix of the

48�60 mesh model with 5 g

additional mass
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The time required to run the optimization algorithm remained below 5 min in a desktop microcomputer Pentium 4 with

3.2 GHz processor and 2.5 GB RAMmemory, taking five design cycles to converge to a solution. The optimization problem

using the fine mesh model with 48�60 elements did not converge to a solution. Hence, it was possible to find optimized

shapes for the plate in a stepped thickness configuration (coarse grid results), but an optimized smooth shape of the plate was

not obtained, as it would be expected from the fine mesh model with 48�60 elements (fine grid results). In the later case, the

number of design variables (2,880 variables) was too large for the algorithm to cope with (insufficient computer memory).

17.4 Optimized Plate Modal Analysis

In order to experimentally check the optimization results, the solution obtained for the 4�5 element model (Fig. 17.5) was

machined with the same material sample used to machine the original cantilever plate (Fig. 17.6). The identification of the

dynamic characteristics of the plate is performed according to the same experimental procedure used in the identification of

the original plate. Again, several tests are performed until clamping condition does not affect significantly the results.

The obtained results in terms of the first three natural frequencies are listed in Table 17.4. The variation observed in the

results of the 25 measuring points is mainly caused, again, by the additional mass of the accelerometer over the plate. The

variation of the values remained below 3% for the 96% confidence interval. Comparing the experimental results to those

predicted by the numerical simulation (Table 17.3), a remarkably good agreement is found, with bigger error in the

Table 17.3 Natural frequencies

of the optimized model
4�5 model

1 2 3

Natural frequency (Hz) 48.7 101.6 274.3

Error (%) 4.1 1.6 1.3
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5Fig. 17.5 Optimized

thickness distribution over the

cantilever plate for desired

frequencies of 50.8, 100, and

278 Hz (clamped edge in the

bottom) – 4�5 model

Fig. 17.6 Aluminum

cantilever plate with

optimized thickness (4�5

element configuration)
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prediction of the first natural frequency (2.2%). Finally, comparing the obtained natural frequencies to the desired ones,

again good agreement is achieved, remaining the error below 2%.

The mode shapes associated to the first three natural frequencies of the optimized plate are also obtained by the Ewins-

Gleeson Method. The results in Fig. 17.7 show that the mode shapes did not change in comparison to those of the original

plate (Fig. 17.2).

Hence, the placement of natural frequencies of a cantilever plate, by changing its shape, was successfully achieved using

a 4�5 finite element model (stepped thickness distribution). A faster manufacturing solution is stamping a smooth surface on

the plate. For that, one must know the surface to be stamped, which could be obtained from the results of the optimization

problem using a finer mesh model. The problem is that finer mesh models have a large number of design variables, and this

can jeopardize algorithm convergence as observed in the case of the 48�60 element model. An alternative solution is

interpolating the results obtained for the coarse grid, which are computationally cheap and achieve good experimental

results, into a fine grid of points to form the smooth surface of the plate.

17.5 Interpolation of Coarse Grid Results

The interpolation of the optimized results is done with help of command interp2 of MatLab software. This interpolation

command is suitable for functions in two dimensions (surfaces) and bases on the Delaunay triangulation of data using the

Quickhull algorithm [15]. One can adopt linear and cubic interpolating functions in the procedure.

By interpolating the results obtained for the coarse grid model (4�5 model), one obtained the results shown in Fig. 17.8.

In both cases (linear and cubic interpolation), one considered the thickness in the center position of each element on the

plate. The results were interpolated into a fine 48�60 element grid. As one can see in Fig. 17.8, there is a clear difference

between the linear and the cubic interpolation due to the coarse nature of the original thickness distribution. The smoother

thickness distribution obtained by interpolating the coarse grid optimization results is used to calculate the natural

frequencies of the plate (now in a 48�60 element model). The results are presented in Table 17.5.

Good results are obtained from the interpolation of the coarse grid optimized results. Errors below 10% are achieved for

all natural frequencies. The linear interpolation presents better results for the second and third natural frequencies, whereas

the cubic interpolation gives better results for the first natural frequency.

Table 17.4 Natural frequencies

identified experimentally for the

optimized cantilever plate

Natural frequency 1 2 3

Mean value (Hz) 48.75 102.40 275.96

Standard deviation 0.577 1.581 2.300

96% confidence interval (Hz) 49.8 � 1.2 102 � 3 276 � 5

Predicted in Table 17.3 (Hz) 48.7 101.6 274.3

Error (%) 2.2 0.4 0.6

Desired (Hz) 50.8 100 278

Error (%) 1.9 2.0 0.7

a b c

Fig. 17.7 Experimental mode shapes of the optimized cantilever plate. (a) First mode (49.8 Hz). (b) Secondmode (102 Hz). (c) Third mode (276 Hz)

172 E.B.M.R. Germano and R. Nicoletti



17.6 Conclusion

The application of the optimization procedure for tuning the natural frequencies of a metal plate with varying thickness

resulted in the following conclusions:

• One can achieve successful results from the optimization of plate thickness using a commercial finite element software.

The error between the desired and the experimental values of natural frequencies remained below 3%.

• The interpolation of coarse grid results from the finite element analysis leads to the approximated solution of the

optimization problem for the fine grid model.

• The linear interpolation leads to slightly better results than those obtained with the cubic interpolation.

It is important to note that good model correlation is crucial to obtain successful results, especially in the shape

optimization procedure. Such correlation is strongly affected by the boundary conditions of the plate (supporting assump-

tion), which in the studied case (clamped-free-free-free) was simple enough to be well represented and updated in the model.
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Chapter 18

Model Updating of Complex Assembly Structures

Based on Substructures-Joint Parameters

Morteza H. Sadeghi, Parivash Soleimanian, and Hamed Samandari

Abstract To study the dynamic behavior of complex assembled structures consisting of several substructures and real joints

connecting them, an updated finite element model of the associated structure is required. This paper presents a new

technique to create an accurate updated finite element model of such structures. Given the fact that modal testing of real

joints (such as bolt with some washers) are almost impossible; in this research the updated model of the assembled structures

is constructed by utilizing parametric finite element model of the joint in conjunction with modal testing of the assembly

structure and its substructures. In this paper, eigen-sensitivity method (used for characterizing cost function) and genetic

algorithm (used for minimization scheme) are employed to update the assembled structure as well as substructures.

A laboratory-scale unsymmetrical cross-beam is employed as the case study. The actual dynamic properties of the joint

(including stiffness, mass and damping matrix) of this structure were estimated. The accuracy of the estimated parameters of

the model was examined by comparison of the FRFs of the real assembled structure with the ones of the updated model.

By achieving full compliance between these FRFs, the accuracy and efficiency of the proposed method, in a wide frequency

range, is demonstrated.

Keywords Model updating • Genetic algorithm • Eigen-sensitivity • FRF • Substructure • Finite element

18.1 Introduction

Most of the assembly structures consisting of some substructures connected by joints play a significant role in dynamic

properties of these systems. FE model updating has become a viable approach to increase the correlation between the

dynamic response of a structure and the predictions from a model. It is well known that a mathematical FE model will be

incorrect due to unavoidable difficulties in modeling of joints, damping and boundary conditions. It is clear that the

experimental data are generally considered to be more accurate. Extracting a model in experimental approach also confronts

problems due to limited number of measured degrees of freedom (DOFs), limited frequency range and difficulty in

measurement of rotational-torsional DOFs [1, 2]. This has led to the progress of model updating techniques which aims

at reducing the inaccuracies present in the analytical model in the light of measured dynamic test data.
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The substructuring method is preferable to cope with complex structures such as Cross-Beam. In general, the individual

substructures are analyzed separately to obtain designated solutions, which are subsequently assembled to recover the

properties of the global structure by constraining the interfaces of the adjacent substructures [3]. The substructuring method

is advantageous mainly in three aspects. First, as the global structure is replaced by smaller and more manageable

substructures, it is much easier and quicker to analyze the small system matrices. Second, the separated substructures are

analyzed independently. When one or more substructures are modified, only the modified substructures need to be

re-analyzed while the others remain unchanged [4]. This property can be promising when applied to model updating.

When the uncertain parameters are localized within parts of a structure, only one or more substructures containing those

parts are re-analyzed during model updating, and the other substructures are untouched [5, 6]. The substructuring method

will be more efficient when some identical substructures exist or when the substructuring method is incorporated with

parallel computation. Finally, the substructuring method is helpful to be combined with the model reduction technique in

calculating the eigensolutions and eigensensitivities [7, 8].

Model updating is a procedure in which the errors in the computational model are corrected by minimizing the

discrepancy between the predicted and the actually measured response data [9]. The most commonly used experimental

data for model updating are the dynamic modal data. Because the dynamic modal data are inherently dependent upon the

structural properties, minimizing the difference between the predicted and measured dynamic properties will lead to the

identification of the correct physical model parameters.

The traditional techniques for performing dynamic model updating are mostly iterative-based [10, 11], and they usually

employ the sensitivity analysis to directly update the structural physical parameters to achieve a match between the

analytical and experimental data. Some example applications can be found in Refs. [12, 13]. However, iterative-based

updating methods bear the limitation that the searching procedure may be trapped into a local optimum instead of the actual

global solution; and moreover the modal data sensitivities must be computed in each iteration, which is very time-consuming

and troublesome due to the high non-linearity of mode shape sensitivity with respect to the physical parameters [14, 15].

The recent development in artificial intelligence algorithms provides desirable alternatives to sensitivity-based optimization

approaches in searching for the true optimum. Amongst them, genetic algorithms (GAs) appear to be particularly attractive

because they operate to globally optimize a given objective function and hence are capable of finding a global solution.

The GA searches for the candidate solution from a large population of points rather than a single point as in traditional

optimization methods. It does not require the continuity or differentiability of the objective function. Thus, constructing

the objective (error) function becomes very flexible. Recently, a few researchers have applied GAs in model

updating and damage detection problems [16–19]. For example, Levin and Lieven [18] applied GA and the blended

simulated annealing (BSA) technique for FE model updating, using directly the frequency response function (FRF) data.

They also compared the binary GA (BGA) with BSA and discussed the appropriate choice of updating parameters after some

trial analyses. David and Keng [19] also applied the binary coding GA approach to solve a model refinement problem.

They proposed a new method for the mode shape correlation in the formulation of the GA fitness function to tackle the

problems associated with closely spaced modes of vibration, and also touched on the solution quality in connection with the

relationship between the chosen response and the physical parameters. The binary coding scheme adopted in the above

studies, however, is computationally intensive and hence could become intractable if the number of parameters to be updated

is large such as in real life structures. However, the real number coding GA, which encodes each parameter using only

one real number in the chromosome, can substantially reduce the computational effort. In addition, the real number

representation also prevents the loss of precision which could be encountered in the binary-coding GA [20]. Most of the

updating methods neglect the damping. In complex structures such as Cross-Beam, these methods cannot be used for

predicting complex FRFs and damping especially in a wide frequency range. All structures have some form of damping,

but despite a large study on the damping, it still remains one of the apprehensions in general vibration analysis. Adhikari

and Woodhouse [21] identified the damping of the system as viscous damping. However, viscous damping is not only

damping of a model.

In this paper, GA, Eigen-Sensitivity and FRF-Based approach, is presented for the dynamic model updating of complex

assembly structures consisting of substructures and real joints based on the measured dynamic properties. At the

outset of this paper, the Eigen-sensitivity based approach using GA algorithm is incorporated to perform the updated

model of substructures. In the following by using the obtained updated results of substructures and considering properties

of joint as updated variables, the updated model of assembly structure is created by using GA algorithm in a wide

frequency range.

Damping of joint is updated by using FRF-based model updating approach and minimizing related objective function.

In the final step, the updated FRFs of assembly structure is achieved by using updated damping of joint and damping of

substructures, and the assembly structure extracted from the measured data.
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18.2 Eigensensitivity-Based Model Updating Method

Model updating by nature is to make adjustment on the variable structural parameters so that the predicted responce by the

model best matches the measured counterparts. In sensitivity-based model updating procedure, different objective functions

which minimized by a sensitivity-based iterative procedures are used. In this paper the following objective function is used

as a cost function that optimized by genetic algorithm (GA).

JðpÞ ¼
XNf

i¼1

ðoxÞi2 � ðoAðpÞÞi2
ðoxÞi2

�����
�����

�����
����� (18.1)

Where Nf is number of measured frequency points, p is the vector of design variables and ðoAÞi and ðoxÞi are the ith
corresponding analytical and experimental eigenvalues, while JðpÞ is a function of updating parameters.

In this model updating method the eigensolutions are calculated from the system matrices of the global structure, based

on the eigenequation:

K ’if g ¼ liM ’if g (18.2)

Where K and M are the stiffness and mass matrices, and li, ’if g are the ith eigenvalue and eigenvector, respectively.

Updated mass and stiffness matrices are the results of this section. The objective function is minimized by continuously

adjusting the parameters {r} of the initial FE model through optimization searching techniques. The optimization genetic

algorithm (GA) is used to minimize the objective function in a trust region.

18.3 Overview of the Genetic Algorithm

In GAs, the searching procedure derives from the process of natural selection and evolution. The distinguished feature of

genetic algorithms lies in their inherent advantage that following the rule of ‘survival of the fittest’ they can arrive at the

global optima. GAs differ from calculus-based search procedures in several ways [22], namely, (a) they search from a

population of points, not a single point; (b) they make use of information about the objective function itself, not derivatives

or other auxiliary knowledge; and (c) they adopt probabilistic rather than deterministic transition rules. The basic elements in

GAs are ‘strings’, or in genetic terminology ‘chromosomes’, which code the information about the phenotype of variables.

An individual chromosome is composed of a number of ‘genes’. Different numbers of genes may be used to represent

different variables. The choice of a proper form of genes for a particular type of problem can be vital to the success of the

optimization. For example, when dealing with discrete problems, binary genes may be preferred, while for continuous

problems (e.g. the FE model updating problems concerned in this paper) the use of real number genes is favoured for

efficiency consideration [22]. For each chromosome, a quantity called ‘fitness’ is defined to measure the quality of the

solution represented by this chromosome. The ‘fitness’ of chromosomes refers to the corresponding values of the defined

objective function. The genetic optimization procedure proceeds step-by-step. After the initialization stage the genetic

operations, i.e. selection, crossover and mutation, are activated repeatedly.

18.3.1 Initialization

First, the GA is initialized by establishing the starting population, which can be generated either randomly or heuristically.

The choice of the population size, i.e. the number of strings, is a trade-off decision between computing time and the

requirement on the precision of the optimal solution. In general, a larger population size can result in a better solution. As an

illustration, assuming the underlying problem has four variables, the initial population with real number genes can take the

following form:

Chromosome 1: 0.43 0.61 0.85 0.92

Chromosome 2: 0.52 0.67 0.28 0.52

Chromosome 3: 0.36 0.49 0.65 0.47

Chromosome 4: 0.97 0.57 0.63 0.59

In practice, the population size could be far larger than the above. After the initial population is established, a new

population is to be produced through the genetic operations, as discussed in what follows.
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18.3.2 Selection

In this process, a decision is made on the number of copies for each chromosome into the next generation. Typical selection

strategies include roulette wheel selection and ranking selection. The roulette wheel selection, owing to its full mapping

scheme, limits the GA to only perform a maximization problem. In contrast, ranking selection methods only require the

objective function to map the solutions to a partially ordered set. They work by assigning selection probability pi for each

individual based on the rank of its fitness, and thus minimization problems and negative objective functions can be tackled.

In the present study, the ranking selection is adopted. Via the selection operation, the number of chromosomes with fitness

above the average will increase exponentially in future generations.

18.3.3 Crossover

This operation reproduces the offspring population by recombining the information from two parent chromosomes.

The simplest type of crossover is single point crossover, in which two parent chromosomes are selected randomly and

cross over their genes at a randomly chosen position to produce two offspring. For example, suppose the two parents

consisting of m genes x ¼ x1 x2 :::: xm½ � and y ¼ y1 y2 :::: ym½ �. If a crossover point is chosen at the kth position

counting from the left side, then the resulting two offspring are:

x0 ¼ x1 x2 :::: xk ykþ1 :::: ym½ � y0 ¼ y1 y2 :::: yk xkþ1 :::: xm½ �

For the simple case mentioned earlier, if Chromosome 1 and Chromosome 3 are chosen as parents and the crossover point

is randomly selected at the second position, the two descendants from crossover would be:

Offspring 1: 0.43 0.61 0.65 0.47

Offspring 2: 0.36 0.49 0.85 0.92

Depending on the coding schemes, there are many other ways to perform this operation, such as the two-point and the

uniform crossover in binary-coding GAs and the arithmetic crossover in real-coding GAs. This paper, however, adopts the

so-called ‘heuristic’ crossover as it can generally result in offspring with improved fitness in real-coding GA. Assuming that

parent X is better than Y in terms of fitness, the heuristic crossover [23] operates such that

X0 ¼ X þ rðX YÞ
Y0 ¼ X

where X0 and Y 0 are the two newborn descendants and r takes a random number between 0 and 1. In case any variable coded

in X0 violates the corresponding boundary condition, the above process has to be repeated until a reasonable X0 emerges.

18.3.4 Mutation

This final operator is motivated to help further increase the genetic diversity and improve the global nature of the search. It

simply alters one gene (representing a variable) in a chromosome based on a certain rule. For example, boundary mutation in

a real-coding GA only replaces the value of a randomly chosen gene by one of its two bounds. There exist many mutation

methods for different application and encoding schemes. In this paper, uniform mutation is used such that the selected gene

is superseded with a real number randomly drawn within its prescribed boundary.

Following the selection, crossover and mutation operations, a new generation is produced. Typically, the process

will iterate for many generations until the convergence criterion is satisfied, which may be a maximum number of

generations allowed, or when there is no increase in the fitness over a few generations. Besides, a replacement strategy

called elitism strategy [22] is incorporated into GA operations in this study to ensure the best members are retained from one

generation to the next.
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18.3.5 Implementation of the GA to Minimize the Defined Objective Function

Model updating by nature is to make adjustment on the variable structural parameters so that the predicted response by the

model best matches the measured counterparts. Therefore, the updating procedure can be ascribed to performing optimiza-

tion on an error function. In the present study, the available measurements are assumed to be the modal data, i.e. the

resonance frequencies. Subsequently, the objective or error function is defined as consisting of the error in the natural

frequency, JðpÞ. It should be mentioned that the representation of the structural parameters identified through the updating

procedure to the real physical parameters depends upon the overall adequacy of the FE model for the structure. Where a FE

model is a much simplified form of the actual structure, the parameters identified should be interpreted as an equivalent

measure of the actual physical properties.

It has to be pointed out that the allocation of weights has considerable influence on the updating process and the results by

GA. There is no definite method for the selection of weighting factorWoi. A general rule is that the weighting factors may be

chosen as inversely proportional to the variance of the corresponding measurements.

Having specified the objective function, a searching space for the individual variables needs to be defined before the

GA can start. In a model updating problem, the variables are the structural parameters to be updated and the searching space

for the GA should be defined according to the possible variation range of each parameter. The evaluation of the fitness

involves a structural analysis procedure to calculate the eigendata. Figure18.1 shows the flowchart of a GA-based model

updating procedure.

In the actual implementation, it is necessary to choose a proper configuration for the GA. Studies by DeJong [24],

Grefenstette [25] and Schaffer et al. [26] indicate that for binary-encoding GAs, a population size of 20–30 chromosomes, a

crossover rate of 0.6–0.9 and a mutation rate of 0.01–0.02 perform reasonably well in most cases. However, for a real-coding

GA, theoretically a lower crossover rate and a higher mutation probability should be considered. In the present study,

the configuration of the GA is chosen following a preliminary trial procedure, in which the mutation rate was selected

between 0.0 and 1.0, and 20 runs with different seeds were performed. The running average error upon the final GA

solution and the variance value are used to gauge the quality of the updating. The chosen configuration details are shown

in Table 18.1.

FE Analysis 
 (Modal data calculation) 

Fitness Evaluation

Convergence 

Termination; Output of Updating Results 

Yes

No

Selection

Mutation

Crossover

Insert of Response (Modal) Data

Selection of Reference Parameters and Reference Responses

Definition of Fitness (Objective) Function

Population Initialization

Fig. 18.1 Flowchart of

GA-based dynamic model

updating procedure
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18.4 FRF-Based Model Updating for Identifying Damping of Joint

Joints are the major source of damping in complex assembly structures (such as Cross-Beam). In this paper a new iterative

method introduced which uses measured FRF data directly to identify damping of joint. The mass and stiffness matrices of

joint are Mj and Kj that updated by presented GA algorithm. The following proportional damping considered for joint:

Cj ¼ ajMj þ bjKj (18.3)

The damping coefficients of joint aj and bj are identified by minimizing the following objective function:

eðpÞ ¼
XNf

i¼1

wiilog HAðoiÞ � HxðoiÞk k (18.4)

Where Nf is number of measured frequency points, wii weighting coefficient, HðoiÞ ¼ Hðoi; pÞ, HAðoiÞ and HxðoiÞ are the
ith corresponding analytical and experimental FRFs respectively.

The minimization algorithm of objective function is described in Table 18.2. The process described in this table, starts

with creating a sample of n + 1 random points in the search space in line 2. Here, the create Pop operation must ensure that

these samples form a no degenerated simplex. Notice that apart from the creation of the initial simplex, all further steps are

deterministic and do not involve random numbers. In each search step, the points in the simplex S are arranged in ascending
order according to their corresponding objective values (line 4). Hence, the best solution candidate is S[0] and the worst is S
[n]. We then compute the centerm of the n best points in line 5 and then reflect the worst solution candidate S[n] through this
point in line 6, obtaining the new point r. The reflection parameter a is usually set to 1.

In the case that r is somewhere in between of the points in the current simplex, i.e., neither better than S[0] nor as worse as
S[n], we directly replace S[n] with it. This simple move was already present in the first simplex algorithm defined by

Spendley et al. [27]. The contribution of Nelder and Mead [28] was to turn the simplex search into an optimization algorithm

by adding new options. These special operators were designed for speeding up the optimization process by deforming the

simplex in way that they suggested would better adapt to the objective functions [29].

If r is better than the best solution candidate S[0], one of these operators is to expand the simplex further into this

promising direction (line 11). we obtain the point e with the expansion parameter g set to 1. We now choose the better one of

these two points in order to replace S[n]. If r was no better than S[n], we the simplex is contracted by creating a point c

somewhere in between of r and m in line 17. Then the contraction parameter r was set to 1/2.

We substitute S[n] with c only if c is better than r. When everything else fails, we shrink the whole simplex in line 23

by moving all points (except S[0]) into the direction of the current optimum S[0]. The shrinking parameter s normally

has the value 1/2.

18.5 Experimental Case Study

Cross-Beam laboratory-scale structure is conducted to demonstrate the effectiveness and efficiency of the above mentioned

approach in structural model updating. The test assembly is a Cross-Beam laboratory-scale structure, consisting of two steel

beams with identical lengths and cross sections ð800; 30� 10 mmÞ, which were connected (asymmetrically) together by

an elastic joint, as shown in Fig.18.2. The joint consisted of a nut, bolt, rubber and steel washers, as shown in Fig.18.3.

(U1z � U9zÞ and (D1z � D9zÞ are measured points of substructures 1 and 2 respectively.

Table 18.1 GA configuration

Encoding scheme Population size Termination criterion Selection method

Real number coding 100 Maximum generations 250 Linear ranking

Crossover Mutation Replacement strategy Fitness scaling

Heuristic crossover Uniform mutation Elitist strategy, replacement rate No

Probability pc ¼ 0:80 Probability pm ¼ 0:024 l ¼ 0:10
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Table 18.2 Minimization algorithm in FRF-sensitivity
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A B&K 4809 shaker powered by a B&K 2706 amplifier was used to random excitation of the system. The applied force

was measured by a force transducer connected to a charge amplifier (B&K 8200 + 2647a) and the response was measured by

a DJB A/120/V accelerometer as shown in Fig.18.4. The accelerometer and force signals were collected at nine locations on

each substructure, with totally 18 points on the assembly, as shown in Fig.18.2. The structure was hanged from one point by

Fig. 18.2 The plot of real assembly

Fig. 18.3 The real joint composition
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a thin string resembling the free-free condition as much as possible. In order to combine the obtained FRFs from the

experiments and the ones from the updated FE model, the obtained accelerants from measurements converted to receptances

by multiplying them to (�1/o2). Using the setup shown in Fig.18.4, the FRFs associated only with the TDOFs were

obtained. An example of a measured FRF is shown in Fig.18.5.

18.6 Updating of Assembly Structure Based on Substructures-Joint Parameters

As mentioned before, model updating of complex assembly structures that consisting of several substructures and real joints,

is considerably difficult. So to reach the exact and acceptable results, the updated model of substructures must be made by

using measured modal data and presented GA algorithm. Then by considering the characteristics of joint as variables of

updating and using updated results of substructures, the updated FE model of assembly structure can be achieved.

In this paper, three dimensional Euler-Bernoulli beam elements and three dimensional parametric Euler-Bernoulli beam

elements having two-node/12-DOF in each element are used for FE model of the substructures and joint respectively. Finite

element model updating is obtained by using GA approach in 3 steps: In first step the substructures (Upper and Down) are

update using presented GA approach by considering module of elasticity (Es) and density (rs) as update variables. In the

second step, the updated model of the assembly structure is constructed by utilizing parametric finite element model of joint

and updated results of substructures. So by considering characteristics of joint (module of elasticity Ej, density rj and
moment of inertia Ij) as update variables and using presented GA approach, the updated model of assembly structure can be

obtained. At the end of these two steps, undamped updated mass and stiffness matrix of substructures, joint and assembly

structure are achieved. Figure18.6 shows Comparison of the measured FRF and analytical FRF curves before updating.

Figure18.7 shows the performance curve of the GA. Damping matrix of the substructures and assembly structure were

extracted from modal parameters, estimated from the measured data. The sample updated results for damped substructures

and undamped assembly structure are presented in Figs.18.8 and 18.9. Table 18.3 shows the updated variables before and

after updating for assembly structure.

Fig. 18.4 Experimental test setup for FRF measurement
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It is seen that the FRFs of undamped updated model has a very good match with the measured FRF except at the

resonance and antiresonance frequencies. In the following the damped FRFs of assembly updated structure obtained and

compared with experimental FRFs, as shown in Fig.18.10. This figure shows that the damped updated model FRF has a very

good match with the measured FRF except specific resonance and antiresonance frequencies (80, 1,057, 1,392, 1,971 and

3176 Hz) that are depend on damping of joint.

18.7 Identification of Damping of Joint

Using objective function of Eq. 18.4 and minimization algorithm according to Table 18.2 and changing damping coefficients

of joint (aj and bj) manually we see that only resonance and antiresonance at specific frequencies of assembly structure FRFs

(80, 1,057, 1,392, 1,971 and 3176 Hz) are changed (Table 18.4).

Consequently damping coefficient of joint must be identified using presented FRF-based model updating. Figure18.11

compares experimental and analytical FRF curves near by 80 Hz natural frequency before updating of damping coefficients

and Fig.18.12 shows the progress of updating process. Figures18.13 and 18.14 show the convergence of damping

coefficients of joint from its initial value respectively. Comparison of experimental and analytical FRF curves near by

80 Hz natural frequency after updating of damping coefficients is shown in Fig.18.15. Table 18.5 shows the damping

coefficients of joint before and after updating.

Table 18.3 Variables before

and after updating
Initial value After updating

Ej(Pa) 1e10 0.6748e10

rj(kg/m
3Þ 1e3 3.7275e3

Ijðm4Þ 1e-8 0.4392e-8
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Fig. 18.10 Comparison of

FRFs for assembly structure

(damped)

Table 18.4 Effect of damping

of joint on sample resonance
Amplitude of resonance

Natural frequency (Hz) aj ¼ 10; bj ¼ 4e� 7 aj ¼ 5; bj ¼ 2e� 7

81 209.9 200.9

1,057 273.6 267.8

1,392 309.3 308.1

1,971 305.9 303.1

3,176 362.1 360.9
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It is seen that the damped updated model FRF has a very good match with the measured FRF. It is observed from

Fig.18.15 and Table 18.5 that after damping identification the predicted dynamic characteristics are closer to the measured

characteristics of the modified structure even at resonance and antiresonance frequencies. In the third step using damping of

assembly structure and updated damping of joint, FRFs of assembly updated structure obtained by using GA and compared

with experimental FRFs (Fig.18.16).

18.8 Conclusions

In this paper, GA, Eigen-Sensitivity and FRF-Based approach, is presented for the dynamic model updating of complex

assembly structures consisting of substructures and real joints based on the measured dynamic properties. The modal testing

of real joints, such as real bolted joints, is almost impossible. So, model updating of the mentioned assembly structures in a
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Table 18.5 Damping

coefficient of joint
Initial value After updating

aj 1 4.1821

bj 1e-8 18.1435e-8
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wide frequency range, will be difficult. To tackle this problem, at the outset of this paper, the Eigen-sensitivity based

approach using GA algorithm is incorporated to perform the updated model of substructures. In the following by using the

obtained updated results of substructures and considering properties of joint as updated variables, the updated model of

assembly structure is created by using GA algorithm in a wide frequency range. In the process of updating, the damping

matrix of substructures and assembly structure were extracted from modal parameters, which were estimated by measured

data. The obtained results show that there are good agreements between the FRFs obtained from the updated model

(substructure and assembly structure) and the ones from the measured data, except for specific resonance and antiresonance

frequencies that depend on the damping of joint. Damping of joint is updated by using FRF-based model updating approach

and minimizing related objective function. In the final step, the updated FRFs of assembly structure is achieved by using

updated damping of joint and damping of substructures, and the assembly structure extracted from the measured data.

The updated FRFs show a full fitness with the measured ones, which demonstrates the superior performance of the proposed

approach in comparison with other methods.
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