
Chapter 14

Truncating the Impulse Responses of Substructures to Speed Up

the Impulse-Based Substructuring

Daniel Rixen and Nazgol Haghighat

Abstract Recently a time-domain substructuring method was proposed based on the assembly of series of impulse

responses of components: the Impulse Base Substructuring (IBS). Although theoretically the IBS is the time-domain

equivalent to the Frequency Based Substrcutring method (FBS), it has several advantages when computing shock responses

for instance. However a major drawback of the IBS is the rapid increase of computational costs when the simulated time

increases. In this contribution we propose a truncation and windowing procedure in order to limit the cost involved by the

discretized convolution product inherent to the IBS method. We describe how to truncate the Impulse Response Functions of

floating and non-floating substructures, and describe a cosine windowing function to improve the accuracy and stability of

the dynamic response obtained from the superposition of truncated impulse responses. A simple bar example is used to

illustrate the numerical performance of the truncated IBS.

14.1 Nomenclature

FRF Frequency response functions

FBS Frequency based substructuring

IBS Impulse based substructuring

IRF Impulse response functions

u Array of degrees of freedom

f Array of external forces

H(t) Matrix of impulse response function

⋆(s) Pertaining to substructure s
Ns Number of substructures in the system

B Signed Boolean matrix defining compatibility constraints

l Lagrange multipliers on interface

M, K, C Mass, stiffness and damping matrix of a linear(ized) system

R Matrix of rigid body modes of a floating substructure

dt Time-step size

⋆n Pertaining to time-step n
[⋆i Component i of an array

b, g Parameters of the Newmark time-integration scheme

e Relative amplitude threshold for the truncation of the IRF

tc Cutoff time for the truncation of the IRF
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14.2 Introduction

The Impulse Based Substructuring (IBS) method was proposed in [3] as a time-domain counter-part of the Frequency Based

Substructuring (FBS) (see for instance [1] for an overview of the FBS approach). The FBS represents the dynamics of the

substructures through the Frequency Response Functions (FRFs) in the frequency domain at the interface, input and output

degrees of freedom. The IBS describes the substructure dynamics using impulse response functions (IRF) which, in theory,

are the inverse Fourier transforms of the FRFs.

Although the IBS approach is the direct counterpart of the FBS in the time domain, it has some advantages when one

wants to compute the response of a system to shock loads using the measured or simulated response of its components.

In the present contribution we deal with one of the shortcomings of the IBS method, namely the fact that computing the

response through a discretized convolution product can become computationally expensive when the time interval one is

interested in for the simulation is not small. To alleviate the cost involved in the IBS computation, we investigate the

possibility to apply truncation and windowing to the impulse responses of the components. Although such an approach

seems straightforward, special caution must be taken when a component is floating, namely when it has not enough

constraints to fix it in space once it is disconnected from its neighboring components.

In Sect. 14.2 we will shortly recall the basic principles of the IBS method and in Sect. 14.3 we discuss the truncation

procedures for the IRFs of the components. We first describe the truncation and windowing for a non-floating component,

then we develop a truncation procedure for floating ones. In Sect. 14.4 a simple numerical example is presented in order to

illustrate the accuracy and stability of the solution computed by the truncated IBS approach.

14.3 The Impulse Based Substructuring in a Nutshell

14.3.1 Convolution of Impulse Response Functions and Inputs

The impulse based computation of the response of a dynamical system is described by the Duhamel’s integral stating that a

dynamic response is obtained from the convolution of the impulse response h(t) (i.e. the response to a unit impulse at time

t ¼ 0) and the applied force f(t). For a system with several inputs and outputs, we callH(t) the matrix of the impulse response

functions between inputs and outputs. The system responses at the outputs are denoted by the array u(t) and the applied

forces (the inputs) are denoted by an array f(t). The Duhamel’s integral can then be written as

uðtÞ ¼
Z t

0

Hðt� tÞf ðtÞdt (14.1)

In practice, for engineering systems, the IRFs, namely H(t) are not known analytically but can be measured (see [2]) or

simulated (see [3]). So the IRF is available in a time-discretized form. CallingHn, fn and un, the IRF matrix, input and output

arrays at time tn, the Duhamel’s integral (14.1) can be approximated by the finite difference form

un ¼
Xn�1

i¼0

Hn�if i þ Hn�i�1f iþ1

� �
dt=2 (14.2)

This approximation is obtained by applying the trapezoidal rule to the Duhamel’s integral. It was observed in [3] that, if

the IRF matrix is computed using a Newmark scheme, the discretization (14.2) yields the some dynamic response as when a

Newmark scheme is applied to compute the response to the excitation f.

14.3.2 Assembling the Dynamic Response of Substructures

Let us now assume that a system is described by the impulse response of its Ns substructures and let as call H(s) the IRFs of

substructure O(s). The assembly of the substructure is perform in a dual manner by imposing the compatibility between

matching degrees of freedom on the interface between substructures. This can be written as
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XNs

s¼1

BðsÞuðsÞ ¼ 0 (14.3)

where B(s) are signed Boolean matrices identifying the matching degrees of freedom on the interfaces (see [1] for instance).

This relation merely states that for any matching pair (ui
(s), uj

(r)) one must impose u
ðsÞ
i � u

ðrÞ
j ¼ 0. This compatibility

condition is enforced using Lagrange multipliers l, representing the internal forces on the interfaces. Hence for a partitioned
problem the Duhamel’s integral (14.1) can be written as1

uðsÞðtÞ ¼
Z t

0

HðsÞðt� tÞ f ðsÞðtÞ þ BðsÞTlðtÞ
� �

dt

XNs

s¼1

BðsÞuðsÞðtÞ ¼ 0

8>>><
>>>:

(14.4)

Considering the same time-discretization as in (14.2), taking into account that H0 ¼ 0, the dual assembly (14.4) can be

discretized as

uðsÞn ¼ HðsÞ
n f

ðsÞ
0

dt

2
þ BðsÞTl0

� �
þ
Xn�1

i¼1

H
ðsÞ
n�i f

ðsÞ
i dtþ BðsÞTli

� �
XNs

s¼1

BðsÞuðsÞn ¼ 0

8>>>><
>>>>:

(14.5)

In practice this system is solved for every time instance tn by first predicting the substructure response as if the interface

impulses ln � 1 are null, then computing the ln � 1 necessary to satisfy compatibility at time tn, and finally correcting the

substructure responses for the interface force. In summary,

~uðsÞn ¼HðsÞ
n f

ðsÞ
0

dt

2
þ BðsÞTl0

� �
þ
Xn�2

i¼1

H
ðsÞ
n�i f

ðsÞ
i dtþ BðsÞTli

� �
þ H

ðsÞ
1 f n � 1ðsÞdt (14.6)

ln�1 ¼ �
XNs

s¼1

BðsÞHðsÞ
1 BðsÞT

 !�1XNs

s¼1

BðsÞ~uðsÞn
(14.7)

uðsÞn ¼ ~uðsÞn þ H
ðsÞ
1 BðsÞTln�1 (14.8)

14.4 Truncating the Impulse Responses

Clearly the cost of the discretized convolution (14.6) is increasing rapidly when the simulation time tn is getting large. This is
due to the fact that all the forces that have been acting on the system from time t0 to time tn � 1 determine the dynamic

response at tn through the history transmitted over the time domain according to the impulse response H. For instance the

force f0 applied at time t0 will influence the response at time tn through the value of the IRFs Hn. If however the IRFs at tn
have significantly decreased due to the damping in the system, it seems acceptable to neglect the contribution of f0 to the

response un. In essence one then truncates the IRFs of the system. This will be investigated in this section, first for a non-

floating component, then for a floating component.

1 In the time-discrete form l are chosen to represent interface impulses.
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14.4.1 Non-Floating Substructures

Let us split the Duhamel’s integral (14.2) in the following two convolution products:

un ¼
Z tn

0

Hðtn � tÞf ðtÞ dt ¼
Z tn�tc

0

Hðtn � tÞf ðtÞ dtþ
Z tn

tn�tc

Hðtn � tÞf ðtÞ dt (14.9)

Let us further assume that after time tc the IRFs have decayed so that they can be assumed to be zero:

Hðtn � tÞ ’ 0 fortn � t > tc; namelyfort < tn � tc

Note that this will occur only if damping is present and if the structure is not floating. Indeed if the structure (or substructure

in the case of the IBS) are not restrained by enough imposed displacements, the IRFs will grow steadily due to the rigid body

motion generated by the initial impulse. This case will be discussed in Sect. 14.3.2. Assuming thus that enough damping is

present and that the (sub)structure is not floating, one can then write the approximation2

un ’
Z tn

maxf0;tn�tcg
Hðtn � tÞf ðtÞdt (14.10)

’
Xn�1

i¼maxf0;n�cg
Hn�if i þ Hn�i�1f iþ1

� �
dt=2 (14.11)

This approximation can significantly reduce the cost of the convolution computation. It corresponds to cutting the IRF

after time tc, and can thus be seen as windowing the IRF with a rectangular window of width equal to tc. Obviously other

windows can be defined in order to force the IRFs to zero in a smoother manner. This is discussed next.

Let us consider a user defined threshold e. Then the cutoff time tc can be chosen as the time for which all the impulse

responses inH have a vibrational amplitude lower than e (see Fig. 14.1). The approximation (14.11) can then be interpreted

as applying a rectangular window on the IRFs in order to set them to zero after time tc. Such a rectangular window can

formally be written as

WrectðtÞ ¼
1 if t < tc

0 if t > tc

(
(14.12)

where tc is such that the amplitude of all the IRFs in H have reached an oscillatory amplitude e-times lower than their

maximum value over time.3 Obviously, forcing the impulse response to zero can seriously perturb the dynamic response

computed by superposition of impulse responses since it corresponds to introducing parasitic impulses after time tc in order
to “kill” the impulse response of forces that have been acting on the system c time steps earlier. Thus applying smoother

windows is desirable in order to improve the accuracy and the stability of the dynamic response constructed ontruncated

IRFs. Here we will investigate a simple cosine window defined as

WcosðtÞ ¼
cos

pt
2tc

� �
if t < tc

0 if t > tc:

8><
>: (14.13)

An illustration of such a window is given in Fig. 14.2. This cosine window has the advantage to introduce only very small

additional damping at the beginning of theIRF, therefore not perturbing to much the dynamical properties of the system.

2 In case of substructures, one must also add the interface forces BðsÞTl in these equations. Nevertheless, to simplify the text, we will omit the

interface forces in this section.
3 In our work the oscillatory amplitude is detected by evaluating the peak values of the IRFs.
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Nevertheless one should be aware that such a window, unlike for instance a classical exponential window, transforms the

IRF in a dynamic response that isnot mechanically interpretable. Furthermore, the high slope of the cosine window close to

the cutoff time might induce significant velocity and acceleration perturbations.

When such a non-rectangular window is applied one first multiplies the IRFs up to tc byWcos to obtain the weighted IRFs
�H (red curve in Fig. 14.2) and uses the truncated convolution (14.11) whereH is replaced by �H. Obviously such a procedure

can be introduced in the IBS approach (14.5) by simply restricting the convolution computation and replacing the IRFs by

the weighted ones.
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Fig. 14.2 IRF truncated by a cosinus window
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Fig. 14.1 IRF truncated by a rectangular window
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14.4.2 Floating Substructures

Let us now consider the case of a floating (sub)structure and split again the convolution product as in (14.9)

un ¼
Z tn

0

Hðtn � tÞf ðtÞ dt ¼
Z tn�tc

0

Hðtn � tÞf ðtÞ dtþ
Z tn

tn�tc

Hðtn � tÞf ðtÞ dt

When the substructure is floating, namely when there are not enough boundary conditions to block its rigid body motion, one

can no longer assume that the IRF is close to zero after a time tc since the initial impulse has generated an initial velocity

causing the (sub)structure to drift away. In fact the IRF can be seen as a vibration superimposed on a global rigid body

motion.

The approach proposed here is then to truncate and apply a window on the part of the IRF remaining when one has

removed the rigid body motion due to a unit impulse. The overall rigid body motion in the IRF will be accounted for during

the full length of the convolution and thus is not truncated.

To build the rigid body response, one can either estimate the constant velocity part from the measured or simulated IRF,

or if the global inertia of the (sub)structure is known, it can be computed. Calling R the matrix containing in its columns the

rigid body modes of the (sub)structure (i.e. the nullspace of the stiffness matrix K), the overall motion is found by setting

u ¼ Ra (14.14)

where a are the unknown rigid body mode amplitudes. Let as write the linear(ized) equilibrium equation of the system as

M€uþ C _uþ Ku ¼ f (14.15)

where M, C and K are respectively the mass, damping and stiffness matrices. Introducing the assumption (14.14) in the

equilibrium equation and noting that KR ¼ 0 by definition, and assuming further that CR ¼ 0,4 one finds

RTMR€a ¼ RTf (14.16)

Thus, when f is an initial unit impulse, one can write

Z t

0

Z t

0

RTMR€adt ¼
Z t

0

Z t

0

RTf ¼ RT11 t

where 11 is an array containing zeros for all entries except at the degree of freedom excited by the impulse, where the value

of 11 is 1. Defining then

Mtot ¼ RTMR (14.17)

the total inertia related to the rigid body modes R and recalling that for the IRF, initial conditions are null, one finds

a ¼ M�1
tot R

T11 t (14.18)

Substituting now in (14.14) one finds the rigid body motion related to a unit impulse:

urigid ¼ R�1
tot R

T11 t (14.19)

So computing the rigid body motion associated to every input of the IRF matrixH, one builds the rigid body response matrix

4 This assumption means that the damping in the (sub)structure is internal and does not produce any damping force when no deformations are

present.
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Hrig ¼ RM�1
tot R

T t (14.20)

and the vibrational part of the IRF is obtained from5

Hvib ¼ H � Hrig (14.21)

The truncation of the IRF for a floating (sub)structure then consists in truncating only its vibrational part since that portion

of the IRF can be assumed to decay to a negligible contribution after the cutoff time tc. Mathematically speaking we write

n ¼
Z tn

0

Hðtn � tÞf ðtÞ dt

¼
Z tn

0

Hrigðtn � tÞ þ Hvibðtn � tÞ� �
f ðtÞ dt

’
Z tn

0

rigðtn � tÞf ðtÞdtþ
Z tn

tn�tc

vibðtn � tÞf ðtÞ dt

where rigðtn � tÞ ¼ R�1
tot R

T ½tn � t� dt

(14.22)

The first part represents the rigid body response to the force f and, introducing the simplified notation

M�1 ¼ RM�1
tot R

T ; (14.23)

it can be written as

urign ¼
Z tn

0

M�1 ½tn � t�f ðtÞ dt (14.24)

¼
Z tn�1

0

M�1 ½tn�1 þ dt� t�f ðtÞ dtþ
Z tn

tn�1

M�1 ½tn � t�f ðtÞdt

¼
Z tn�1

0

M�1 ½tn�1 � t�f ðtÞtþM�1 dt

Z tn�1

0

f ðtÞ dtþM�1

Z tn

tn�1

½tn � t�f ðtÞdt

¼ urign�1 þM�1 dt

Z tn�1

0

f ðtÞ dtþ
Z tn

tn�1

½tn � t�f ðtÞdt
� 	 (14.25)

This last relation is interesting since it indicates that the rigid body part of the response can be computed by time stepping

and does not need a lengthy convolution. Let us observe that the second term in (14.25) can be given a clear physical

interpretation by noting thatM�1
R tn�1

0
f ðtÞ dt, basically the accumulated impulses divided by the inertia, corresponds to the

overall velocity at time tn � 1. So the second term expresses the increase of displacement during the time increment dt due to
that velocity. The third term is related to the additional acceleration produced by the force applied between tn � 1 and tn.

The discretization of (14.25) can be performed using the same finite difference approach as done earlier for the

convolution product. For that let us restart from the definition (14.24) of the rigid response and discretize it in time following

the trapezoidal rule also used in (14.2):

5 Let us note that since the impulse response for a linear dynamic system can be seen as the superposition of its impulse modal responses, an

equivalent way to compute the vibrational part of the IRF is to project the IRF M-orthogonal to the rigid body modes, namely

Hvib ¼ ðI � RM�1
tot R

TÞH

and the rigid part is

Hrig ¼ R M�1
tot RT H
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urign ¼
Z tn

0

M�1 ½tn � t�f ðtÞt

’ M�1
Xn�1

i¼0
ðn dt� tÞf ðtÞ½ �t¼i dt þ ðn dt� tÞf ðtÞ½ �t¼ðiþ1Þdt

n o dt

2

’ M�1
Xn�1

i¼0
ðn� iÞf i þ ðn� i� 1Þf iþ1


 � dt2
2

(14.26)

Following now the same steps as from (14.24) to (14.25), but now in the time-discrete case,

urign ’ M�1
Xn�1

i¼0
ðn� iÞf i þ ðn� i� 1Þ f iþ1


 � dt2
2

’ M�1
Xn�2

i¼0
ðn� iÞf i þ ðn� i� 1Þf iþ1


 � dt2
2

þM�1f n�1

dt2

2

’ M�1
Xn�2

i¼0
ððn� 1Þ � iÞf i þ ððn� 1Þ � i� 1Þf iþ1


 � dt2
2

þM�1
Xn�2

i¼0
f i þ f iþ1


 � dt2
2

þM�1f n�1

dt2

2

’ urign�1 þM�1
Xn�2

i¼0
f i þ f iþ1


 � dt2
2

þM�1f n�1

dt2

2

(14.27)

which reveals the time-discrete form of (14.25). Finally we can summarize the discretized and truncated IRFs for floating

domains by substituting in (14.22) the discretization (14.27) for the rigid part and considering the truncation (14.11) for the

vibrational term:

I 0 ¼ f 0
dt

2
(14.28)

I n ¼ I n�1 þ f n�1 dt (14.29)

urign ¼ urign�1 þM�1I n dt (14.30)

un ’ urign þ
Xn�1

i¼maxf0;n�cg
�Hvib
n�if i þ �Hvib

n�i�1f iþ1

� �
dt=2 (14.31)

where the effect of the applied forces is accumulated in the total impulse I n and where �Hvib denotes the vibrational part of

the IRFs possibly weighted by, for instance, the cosine window described in the previous section. In the context of the IBS,

the truncation of the convolution product for floating subdomains can be introduced in the dually assembled form (14.5).

14.5 A Simple Example

In this contribution we consider the same example as the one treated in [3]. We consider the bar structure described in

Fig. 14.3 excited by a load at its end. The structure is divided in two substructures of equal length, each substructure being

modeled by 25 bar finite elements (the consistent mass matrices are used here). The bar is made of steel (E ¼ 2. 1 1011 Pa,

r ¼ 7500 kg/m3), has a uniform cross-section of A ¼ 3:14 10�4 m2 and each substructure has a length of L ¼ 0. 5 m. In the
model damping has been introduced by constructing C ¼ 1 10�6K.

L0 L0

λ f

Fig. 14.3 Example of a beam

with two substructures
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Assuming the dofs of the substructures are numbered from left to right, the Boolean constraining matrices are

Bð1Þ ¼ 0 � � � 0� 1
� 


Bð2Þ ¼ 1 � � � 0 0
� 


The impulse responses are computed using a Newmark scheme g ¼ 1=2; b ¼ 1=4 for a unit force applied at time t ¼ 0 at

the interface degrees of freedom and at the end of the second substructure (this will be the input of the force in our example).

The time-step is chosen equal to 3dtcritwhere dtcrit is the critical time step, namely the stability limit if the integration scheme

would be explicit. The obtained IRFs are plotted in Fig. 14.4 for inputs on the interface and on the end of the bar. On the right

of that figure the IRFs are zoomed. The IRFs for this problem are shown in Fig. 14.4. It can be clearly seen that the IRFs for

the right substructure converge to a monotonically increasing line, illustrating the drift of the displacement for a floating

substructure. In this case the rigid body mode of the second substructures is simply an array with all ones as entries and the

total mass matrix Mtotal is equal to the total translation mass of the second substructure.

Now, using the IBS approach described by (14.7), we compute the response of the assembled bar to a step load of unit

amplitude applied at the right end (see [3] for a detailed outline of the algorithm for this example). The threshold e for the
truncation (see Sect. 14.3.1, Figs. 14.1 and 14.2) was chosen successively to be 10 � 1, 10 � 2 and 10 � 3.

In Fig. 14.5 we report the dynamic response obtained at the interface of the bar, under a unit step load applied at the end of

the bar, when applying the IBS approach with and without truncation. Here a simple rectangular window is applied (as

illustrated in Fig. 14.1). When the threshold e is chosen to high (in this case e ¼ 10�1) the truncation introduces too many
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Fig. 14.4 IRFs for the bar substructures (zoomed on the right)
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residual impulses leading to an unstable response in the IBS. For e ¼ 10�2 the solution is stable, but clearly the truncation

significantly affects the accuracy of the solution. For e ¼ 10�3, the solution computed by the truncated IBS is rather

accurate, although zooming in the curves (right side of Fig. 14.5) it is clear that a noticeable error has been introduced by the

truncation. Note that for this last case, namely e ¼ 10�3, the cutoff time is tc ¼ 0. 048, resulting in only a small

computational saving in our computation where the simulation is run until tfinal ¼ 0. 1.

Applying now a cosine window, we obtain the results reported in Fig. 14.6. It is very interesting to observe that with the

cosine window the IBS method results in a stable and rather accurate dynamic response, even for e ¼ 10�1. This threshold

corresponds to a cutoff time tc ¼ 0. 014 and the truncation yields a significant reduction of computational effort in

computing the convolution product. Finally we observe that when the threshold is further reduced (to 10 � 2 and 10 � 3)

the results of the truncated IBS is nearly identical to the results without truncation. Nevertheless the cutoff time is higher and

thus more computational effort is required.
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Fig. 14.5 Interface displacement of the full bar to a unit step, computed by IBS, with (green) and without (blue) truncation: rectangular window.
The red line indicates the cutoff time for the truncation
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14.6 Conclusion

In this contribution we have shown how to apply truncation and windowing on the Impulse Response Functions (IRF) of

substructures, so that one can significantly reduce the computational burden related to the convolution product in the Impulse

Based Substructuring (IBS) method.

Special care must be taken when truncating the IRFs of floating substructure: the overall rigid body motion can not be

truncated since it does not decay to zero. We have indicated how the truncation can be applied only to the vibrational part of

the IRF in that case.
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Fig. 14.6 Interface displacement of the full bar to a unit step, computed by IBS, with (green) and without (blue) truncation: cosine window. The
red line indicates the cutoff time for the truncation (color figure online)
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We have described a cosine window in order to force the IRF smoothly to zero at the cutoff time, without introducing

significant damping in the system. The results on a simple bar example decomposed in two substructures have indicated that

the truncated IBS with the cosine window can produce accurate results while significantly reducing the necessary number of

operations in the computation of the convolution product.

Future work will concentrate on investigating other time windows and on applying windowing directly on the IRF

expressed for the velocities or the accelerations. Also more detailed analysis must be performed to investigate the stability

conditions for the truncated IBS. Currently, the truncated IBS is being applied to a three-dimensional engineering structure

in order to estimate the gain in computational time when applying an appropriate truncation.

References

1. Klerk DD, Rixen DJ, Voormeeren SN (2008) General framework for dynamic substructuring: history, review and classification of techniques.

AIAA J 46(5):1169–1181

2. Rixen DJ (2010) Substructuring technique based on measured and computed impulse response functions of components. In: Sas P, Bergen B

(eds) ISMA, KU Leuven

3. Rixen DJ (2010) Substructuring using impulse response functions for impact analysis. In: IMAC-XXVIII: international modal analysis

conference, Jacksonville, Society for experimental mechanics, Bethel

148 D. Rixen and N. Haghighat


	Chapter 14: Truncating the Impulse Responses of Substructures to Speed Up the Impulse-Based Substructuring
	14.1 Nomenclature
	14.2 Introduction
	14.3 The Impulse Based Substructuring in a Nutshell
	14.3.1 Convolution of Impulse Response Functions and Inputs
	14.3.2 Assembling the Dynamic Response of Substructures

	14.4 Truncating the Impulse Responses
	14.4.1 Non-Floating Substructures
	14.4.2 Floating Substructures

	14.5 A Simple Example
	14.6 Conclusion
	References


