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Preface

Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics represents one of six volumes of technical

papers presented at the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012 organized by the Society

for Experimental Mechanics, and held in Jacksonville, Florida, January 30 – February 2, 2012. The full proceedings also

include volumes on Dynamics of Civil Structures; Nonlinear Dynamics; Model Validation and Uncertainty Quantification;

and Modal Analysis, I & II.

Each collection presents early findings from experimental and computational investigations on an important area within

Structural Dynamics. The current volume on Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics
presents research in two areas of great importance. Recent advances in experimental techniques, sensor/actuator

technologies, novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years

leading to new insights and improved experimental and analytical techniques.

Governments around the world have set ambitious goals of meeting 20% of energy requirements by 2020 through

renewable energy sources including wind energy. This presents challenges, including the growing size and complexity of the

wind turbine structure, necessitating the need for designers to better understand and characterize the dynamics of the wind

turbine. Despite well-established techniques (Experimental and Operational Modal Analysis) for dynamic characterization

of structures, their application to wind turbines is not straight forward due to the complexities involved on account of

considerable aeroelastic interaction and time-varying nature of wind turbines, when in operation. This volume showcases

research activities with regards to application of modal analysis to wind turbines, preparing and updating numerical models,

instrumentation and sensing on wind turbine blades, and structural health monitoring as applied to wind turbines.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in

this track.
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Chapter 1

Tutorial on Experimental Dynamic Substructuring

Using the Transmission Simulator Method*

Randy L. Mayes

Abstract Although analytical substructures have been used successfully for years, practical experimental substructures

have been limited to special cases until recently. Many of the historical practical applications were based on a single point

attachment. Since substructures have to be connected, theoretically, in both translation and rotation degrees of freedom,

measurement translation responses and forces around the single point attachment could be used to estimate the rotational

responses and moments. For multiple attachment points, often the rotations and moments have been neglected entirely.

In addition, often the effect of the joint stiffness and damping is neglected. The translation simulator approach developed by

Allen and Mayes captures the interface forces and motions through a fixture called the transmission simulator, overcoming

the historical difficulties. The experimental free modes of the experimental substructure mounted to the transmission

simulator and the finite element model of the transmission simulator are used to couple the experimental substructure to

another substructure and subtract the transmission simulator. This captures the effects of the joint stiffness and damping.

The experimental method and mathematics will be explained with examples. The tutorial assumes a basic understanding of

the linear multi-degree of freedom equations of motion and the modal approximation.

1.1 Introduction

The modal constraint for fixture and subsystem (MCFS) method was introduced at IMAC in 2007 for the component mode

synthesis approach (Allen and Mayes [1]) and the Frequency Based Substructuring approach (Mayes and Stasiunas [2]).

It uses a fixture in the experimental dynamic substructure called the transmission simulator, so is also called the transmission

simulator method. An analytical model of the transmission simulator is always required with this method.

Physically, the transmission simulator is mounted to the experimental substructure with exactly the same joint geometry

and material as that to which the experimental substructure will ultimately be connected. Because of this, the resulting

experimental substructure inherently includes the linearized stiffness and damping in the joint, which classical methods

neglect, to their peril. The fixture is also designed to provide accessible locations to mount response sensors and to apply

input forces. Often the actual connection points are poor locations to mount sensors. For example, the connection point may

be at a bolt or a threaded screw interface. Special features can also be included to provide good driving point measurements,

which are extremely important to obtain accurate modal mass for scaling the mode shapes.

The analytical model of the transmission simulator is used in multiple ways. It is generally mounted with an assumed

welded connection to the analytical substructure (often a finite element model) to which the experimental substructure is to

be connected. By constraining the transmission simulator on the experimental substructure to have the same motion as the

transmission simulator on the analytical substructure, the systems are joined. Then the mass and stiffness of the analytical

and experimental transmission simulators are subtracted from the assembled system. The analytical model of the transmis-

sion simulator can also be thought of as an aid to interpolate from the measurement sensor locations back to the actual

R.L. Mayes (*)
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connection degrees of freedom (dof). A truncated set of the mode shapes of the transmission simulator is used that spans

the frequency bandwidth of interest. The sensor set can be chosen to provide a set of sensor locations for which all chosen

transmission shapes are linearly independent. These sensors can all be translational – no rotations are required. The

rotations at the connection points are inherently carried in the modal coordinates of the transmission simulator.

The connections can actually be continuous, not just discrete, as long as the transmission simulator mode shape set spans

the space of the connection motion reasonably well. In addition the transmission simulator mass stresses the joint. This

stress across the joint provides a much better Ritz vector shape basis than simple free modes where there is no stress at the

joint. It provides enough improvement in the basis vectors that residuals, which are difficult to measure, do not need to be

added to the basis set.

Although this method requires fabrication of a fixture and generation of its associated analytical model, it provides

extensive benefits for the investment. One does not have to measure exactly at the connection points. One does not have to

measure rotations because they are inherently included in the analytical model modal coordinates (so they are not just being

neglected). The stiffness and damping of the joint are inherently included. No residual measurements are required.

One problem that can result in this method is that the mass matrix can be indefinite when the transmission simulator is

subtracted. However, methods to correct the mass matrix have been developed recently [3]. This has cleared the way so that

in practice, refinements can be made without theoretical road blocks.

An example from [3] shows conceptually how the method was implemented for one actual hardware case in Fig. 1.1. The

transmission simulator hardware, which is a ring with tabs, is mounted to the experimental substructure with eight bolts, just

as it will be attached in the real system to the cylinder substructure, so it contains the joint. An analytical model of the

transmission simulator is welded in to the flange of the cylinder analytical model. The transmission simulator and the

cylinder flange actually occupy the same space, which can be done with an analytical model. Then transmission simulators

for each substructure are forced to have the same motion, which connects them. Finally the stiffness and mass of the two

transmission simulators are analytically subtracted.

The free-free experimental modal test setup is shown in Fig. 1.2 with 12 triaxial accels on the transmission simulator and

2 triaxial accels at points of interest on the beam. Twenty five rigid body and elastic modes were extracted out to 4 kHz. This

structure had eight discrete bolted attachments, which would require 48 discrete constraints for the three rotations and three

translations at each connection. Figure 1.3 shows the 12 triax locations, which are not at the eight connection points. 18

modes of the transmission simulator analytical model were used to span the connection space motion, using 36 measured dof

to describe the mode shapes. The method thus reduces the number of constraints down from the classic 48 connections to 18.

The 18 modes covered a frequency bandwidth of 2 kHz.

Fig. 1.1 Coupling of experimental substructure C with analytical substructure D to generate full system E after transmission simulators (Aan1 and

Aan2) are subtracted

2 R.L. Mayes



1.2 Component Mode Synthesis Theory Using Primal Formulation

in a Generalized Framework

The generalized framework of deKlerk, Rixen and Voormeeren [4] for dynamic substructuring is utilized. Here assume that

each substructure has been approximated with a reduced model, whether experimental or analytical. Then the displacements

are approximated with the modal substitution as

�u ffi R�h (1.1)

where �u is the vector of physical displacements, �h is the vector of generalized coordinates from a modal test or eigenvector

analysis and R is the truncated mode shape matrix relating the generalized coordinates to the physical coordinates. Then the

equations of motion for the substructure can be written as

MðsÞR€�h
ðsÞ þ CðsÞR _�h

ðsÞ þKðsÞR�hðsÞ ¼ �f
ðsÞ þ �gðsÞ þ �rðsÞ (1.2)

Where M, C and K are mass stiffness and damping matrices, the superscript (s) denotes the particular substructure, �f
ðsÞ

denotes the external forces applied to the substructure, �gðsÞrepresents the equilibrium joining forces from another substructure

Fig. 1.2 Experimental

substructure free modal test

setup with 36 sensors on the

transmission simulator ring

and a few sensors at points

of interest on the substructure

Fig. 1.3 Transmission

simulator with 12 triaxial

accelerometers at blue nodes

for sensing

1 Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method 3



that will be applied to the substructure, and �rðsÞis the residual force due to the mismatch caused by the approximation of the

displacements in (1.1). Premultiplying by RT yields

RTMðsÞR€�h
ðsÞ þ RTCðsÞR _�h

ðsÞ þ RTKðsÞR�hðsÞ ¼ RT�f
ðsÞ þ RT�gðsÞ þ RT�rðsÞ: (1.3)

It can be shown that, because of orthogonality of the mode shapes with respect to M, C and K,

RT�rðsÞ ¼ �0 (1.4)

which leaves

RTMðsÞR€�h
ðsÞ þ RTCðsÞR _�h

ðsÞ þ RTKðsÞR�hðsÞ ¼ RT�f
ðsÞ þ RT�gðsÞ; (1.5)

or in a renamed form

MðsÞ
m
€�h
ðsÞ þ CðsÞ

m
_�h
ðsÞ þKðsÞ

m �hðsÞ ¼ �f
ðsÞ
m þ �gðsÞm (1.6)

where subscript m denotes modal quantities. The matrices are, if the mode shapes are mass normalized,

MðsÞ
m ¼ RTMðsÞR ¼ I

CðsÞ
m ¼ RTCðsÞR ¼ diagð2��z:� �vÞ

KðsÞ
m ¼ RTKðsÞR ¼ diagð�v:^2Þ
�f
ðsÞ
m ¼ RTfðsÞ

�gðsÞm ¼ RTgðsÞ: (1.7)

At this point, let us concatenate the various substructures together in the uncoupled form as

Mm€�hþ Cm _�hþKm�h ¼ �fm þ �gm: (1.8)

Compatibility is now enforced with a constraint equation from

B�uc ¼ �0 (1.9)

Where B is a Boolean matrix of ones, zeros and negative ones, and for convenience we will include only connection dof in

the displacement vector. Take the partition of (1.1) for only the connection dof and again make the modal substitution

BRc�h ffi �0 (1.10)

where the subscript c indicates taking only the partition of R necessary for the connection dof.

Up to this point we have followed the generalized framework rather strictly, but at this point, the transmission simulator

method affects the rest of the development. It is assumed that there is an analytical model of the transmission simulator, one

uses a truncated set of its mode shapes,Cc, as a basis to span the space of the connection motion for each substructure. Now

we use the pseudo-inverse (denoted with a superscript +) to project the constraint on the space of the transmission simulator

vector space by premultiplying both sides by the block diagonal pseudo-inverse as

CBDþ
c BRc�h ffi CBDþ

c
�0 (1.11)

where

CBDþ
c ¼

Cþ
c 0 0

0 ::: 0

0 0 Cþ
c

2
4

3
5 (1.12)

4 R.L. Mayes



will have as many block rows as there are substructures. The right hand side of (1.11) is still a vector of zeros, although the

number of constraints (rows) is reduced since the matrix Ccis selected so that it always has more dof than modes. The final

constraint is

~B�h ¼ �0 (1.13)

where

~B ¼ CBDþ
c BRc (1.14)

There are multiple reasons for premultiplying byCBDþ
c . First it softens the constraint (reduces the number of constraints).

The advantage of this is that it gives a least squares fit through the measured motions of the transmission simulator at the dof

to which the constraints will be applied. The mode shapes of the transmission simulator provide a smoothing effect through

the measured motions, which always have experimental error. The modified matrix greatly improves the conditioning of the

problem. Also, one does not HAVE to use motions measured directly at the attachment points and also does not HAVE to

measure rotations, which are inherently carried along in the generalized dof of the transmission simulator. The generalized

modal dof of the transmission simulator are �g in the following

Cc�g ffi RðsÞ
c �hðsÞ (1.15)

but can be expressed as

�g ffi Cþ
c R

ðsÞ
c �hðsÞ (1.16)

which can be seen in the left hand side of (1.11) as converting the constraint to the transmission simulator modal coordinates.

Now continue the development in the general framework from (1.13). We perform another modal-like substitution with

�h ¼ ~L�«: (1.17)

Substitute (1.17) into (1.13) to give

~B~L�« ¼ �0: (1.18)

If one chooses ~L such that it is in the null space of ~B, then (1.18) is guaranteed to be satisfied because

~B~L ¼ ½zeros�: (1.19)

All the rows of ~B are orthogonal to all the columns of ~L. Since ~B is known, a one line command in matlab can provide ~L.
Substituting (1.17) back into the uncoupled equations of motion in (1.8) and premultiplying by ~L

T
gives

~L
T
Mm

~L€�«þ ~L
T
Cm

~L _�«þ ~L
T
Km

~L�« ¼ ~L
T�fm þ ~L

T
�gm; (1.20)

which couples the equations of motion, reducing the number of rows in (1.8) by the number of constraints (rows) in (1.13).

This leads to the primal coupling formulation in this framework. In this formulation ~L
T
�gm ¼ ~L

T
RT�g ¼ �0, since the rows of

~L
T
are orthogonal to a linear combination of the columns of RT , leaving

~Mm€�«þ ~Cm _�«þ ~Km�« ¼ ~�fm (1.21)

where

~Mm ¼ ~L
T
Mm

~L

~Cm ¼ ~L
T
Cm

~L

~Km ¼ ~L
T
Km

~L

~�fm ¼ ~L
T�fm: (1.22)

1 Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method 5



1.3 Frequency Based Substructuring Dual Formulation in the General Framework

Again following [4], for the physical dof, the uncoupled equations of motion, the compatibility and the equilibrium

are written as

M€�uþ C _�uþK�u ¼ �f þ �g (1.23)

B�u ¼ �0 (1.24)

LTg ¼ �0 (1.25)

where M, C and K are block diagonal with as many blocks as substructures. The constraint forces �g between the

substructures can be written as

g ¼ �BT�l (1.26)

where �l are Lagrange multipliers corresponding physically to the interface forces. Equations (1.23) and (1.24) can now

be written in matrix form as

M 0

0 0

� �
€u
l

� �
þ C 0

0 0

� �
_u
l

� �
þ K BT

B 0

� �
u

l

� �
¼ f

0

� �
: (1.27)

Taking the Fourier transform to put into the frequency domain, where each quantity is a function of frequency, gives

Z BT

B 0

� �
u

l

� �
¼ f

0

� �
(1.28)

where Z is the block diagonal impedance matrix resulting from the mass, stiffness and damping. The frequency response

function matrix,H, which is often measured experimentally is the inverse of Z. The dual formulation coupled formulation in

terms of H is derived from (1.28) by eliminating l, yielding

�u ¼ H�f �HBTðBHBTÞ�1
BH�f: (1.29)

The transmission simulator method modifies the B matrix in (1.24) as

CBDþB�u ffi �0 (1.30)

So one has

B̂�u ¼ �0 (1.31)

where

B̂ ¼ CBDþB: (1.32)

Now simply substitute (1.32) into (1.29) to give the frequency based transmission simulator equation as

�u ¼ H�f �HB̂
TðB̂HB̂

TÞ�1
B̂H�f: (1.33)

The B̂matrix transforms the physical connection dof frequency response functions (FRFs) into generalized dof FRFs cast

on the space of the transmission simulator mode shapes. This collapses the size of the physical connection dof FRFs down to

the size of the number of modes of the transmission simulator, providing some least squares smoothing, and makes the

matrix inversion in (1.33) much better conditioned.
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1.4 Example Combining Experimental Plate/Beam Substructure with Analytical

Cylinder Substructure Using the CMS Approach

The example is based on the hardware and analytical finite element models depicted in the first three figures. In the equations

below, the finite element (FE) substructure is considered to have the analytical model of the transmission simulator attached,

and the experimental (EXP) substructure has the physical transmission simulator attached. Two transmission simulators

must be subtracted. In this example, 100 modes were utilized from the finite element substructure, 25 modes from the

experimental substructure, and 18 modes from the transmission simulator giving 143 uncoupled equations of motion.

Consider only the eigenvalue equations of motion, and then the final coupled modal parameters can be used to analytically

form any desired full system response FRF. Damping will be predicted in a simplified method later. The undamped

frequency domain equations of motion using modal coordinates when forces are removed are

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>;�v2

IFE 0 0

0 IEXP 0

0 0 �2ITS

2
64

3
75

€hFE

€hEXP

€hTS

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>; (1.34)

and the physical displacements, y, on each substructures are

yFE

yEXP

yTS

8><
>:

9>=
>; ¼

RFE 0 0

0 REXP 0

0 0 RTS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>; (1.35)

where R are a truncated set of the mass normalized mode shapes of each substructure coming from experiment or analysis.

The motion of the transmission simulator in all three substructures should be the same when all the substructures are

coupled, so two sets of physical constraints can be written

yFEmeas ¼ yEXPmeas and yEXPmeas ¼ yTSmeas (1.36)

Just consider the first of these constraints, invoke the modal substitution from (1.35) and premultiply by the pseudo-

inverse of transmission simulator mode shapes, Rþ
TSto give

Rþ
TSRFEmeas�hFE ¼ Rþ

TSREXPmeas�hEXP (1.37)

Or moving everything to the left had side gives

Rþ
TSRFEmeas�hFE � Rþ

TSREXPmeas�hEXP ¼ 0: (1.38)

A similar process can be applied to the second constraint of (1.36). The constraints can now be written in the form given

in (1.12)–(1.14) as

Rþ
TS 0

0 Rþ
TS

" #
I �I 0

0 I �I

" # RFEmeas 0 0

0 REXPmeas 0

0 0 RTS

2
64

3
75

hFE

hEXP

hTS

8><
>:

9>=
>; ¼ 0

0

( )
(1.39)

Where CBDþ
c in (1.11) is RBDþ

TS and B is the Boolean matrix here, thus

~B ¼ Rþ
TS 0

0 Rþ
TS

" #
I �I 0

0 I �I

" # RFEmeas 0 0

0 REXPmeas 0

0 0 RTS

2
64

3
75: (1.40)
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Repeating (1.17) and (1.18) here for clarity gives

�h ¼ ~L�« (1.41)

and

~B~L�« ¼ �0 (1.42)

and ~Lis the null space of ~B,which is known. Substitute (1.41) into (1.34) and premultiply by ~L
T
to give

LT

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75L�«�v2LT

IFE 0 0

0 IEXP 0

0 0 �2ITS

2
64

3
75L€�« ¼ �0 (1.43)

providing the coupled equations from which the eigenvalue problem can be solved yielding. The solution will provide a set

of eigenvectors, F, frequencies, v2
, and modal coordinates, �b. Now the coupled displacements will be

�y ¼ RLF�b: (1.44)

The resulting new damping matrix is formed by

FTLT

v2
FE 0 0

0 v2
EXP 0

0 0 �2v2
TS

2
64

3
75LF (1.45)

From which we usually just take the diagonal values to give 2�znew: � �vnew.

1.5 Example Combining Experimental Plate/Beam Substructure with Analytical Cylinder

Substructure Using the CMS Approach

Generally, the author does not execute (1.33) in a single step, since it makes the matrices very large and the resulting

inversions are computationally too intensive. For this example, assume we have one step where systems C and D in the

figure are too be joined. (Another step can be taken to subtract the transmission simulators, which will not be done here).

Define HC and HD as the frequency response function matrices for substructures C and D respectively. HT is the FRF

matrix of the total system after C and D are coupled. Each substructure has a two dimensional FRF matrix for every

frequency line of the FRFs. The first subscript on any of these matrices represents the output response dof and the second

subscript represents the input force dof. Perhaps the two most useful equations from partitions of the classical method in

(1.29) are

HTri ¼ HDrc HDcc þHCccð Þ�1
HCci (1.46)

where the force input is on substructure C and the response output is on substructure D, and

HTri ¼ HCri �HCrc HDcc þHCccð Þ�1
HCci (1.47)

where the force input is on substructure C and the response output is also on substructure C. Here the subscript r represents
the output response and the subscript i represents the input force, and the subscript c represents the connection dof between
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the two substructures. With the transmission simulator method, the Boolean matrix B is replaced with B̂ to convert all the

connection dof to modal dof of the transmission simulator in (1.33), so that

HDrc ¼ HDrpR
Tþ
TS (1.48)

HDcc ¼ Rþ
TSHDppR

Tþ
TS (1.49)

HCcc ¼ Rþ
TSHCppR

Tþ
TS (1.50)

HCci ¼ Rþ
TSHCpi (1.51)

HCrc ¼ HCrpR
Tþ
TS (1.52)

in (1.46) and (1.47). The subscript p represents the dof at the transmission simulator measurement locations on either

substructure. The pseudo-inverse of the mode shape matrix RTS of the transmission simulator reduces the size of the physical

measurement FRF matrices down to the number of modes kept for the transmission simulator at all the connection dof.

In Fig. 1.4 one can see the axial FRF at the tip of the beam (see Fig. 1.1 for location). The red FRF was constructed from

the modal parameters of the coupled system mode shapes, frequencies and damping using the transmission simulator method

with the CMS approach. The blue FRF represents the truth data constructed from the modal parameters of a highly validated

finite element model of the full system.
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Chapter 2

Experimental–Analytical Substructure Model Sensitivity

Analysis for Cutting Machine Chatter Prediction

Anders Liljerehn and Thomas Abrahamsson

Abstract Process reliability and dynamic stability is a growing customer demand in the metal machining industry.

A limiting factor in process stability is regenerative vibrations which may damage the machined component, the cutting

tool and even the machine tool. Spindle speed optimization to ensure process stability and enable larger cutting depths is

based on the machine tool and cutting tool assembly’s frequency response at the tool-tip. The traditional procedure to

retrieve the tool-tip frequency response is to conduct dynamic testing of each machine tool mounted cutting tool. This

methodology is normally very time-consuming. In an attempt to reduce testing time, receptance coupling substructure

analysis (RCSA) has been proposed by a number of researchers. The objective with this approach is to measure the machine

tool structure once and then couple a finite element based substructure representation of the cutting tool of interest. The

accuracy of the predicted tool-tip frequency response is then dependent on the quality of measured data. This paper details

the state-space based sub-structure coupling technique that is used and presents a sensitivity analysis. This analysis

distinguishes key considerations for the machine tool component test and it quantifies the parameter influence on the

process stability predictions of the coupled system.

2.1 Introduction

In metal cutting, spindle speed optimization for process stability is one example of action that may reduce production time

and increase process reliability. For process stability, it is crucial to avoid regenerative vibrations due to feedback of the

cutting forces and thereby enable larger cutting depth, with higher material removal rate as benefit. An analytical spindle

speed optimization is based on the real part of frequency response functions, FRFs, in two orthogonal transversal directions

at the tool tip of a machine tool and cutting tool assembly. Based on the real part of the tool tip FRFs a chart of what is known

as stability lobes can be constructed see Fig. 2.1. The stability lobe chart indicates optimal spindle speeds where regenerative

vibrations can be avoided for larger depths of cut. The chart, Fig. 2.1, should be read as follows. A stable machining process

can be expected if the spindle speed and axial depth of cut is in a combined state in the stable region of the chart. In the

unstable state, however, regenerative vibrations also known as chatter do occur. From the stability chart one can see that

some spindle speeds are more beneficial than others where greater cutting depths, and thus a better production, are allowed

without encountering chatter.

The stability chart is only constructed out of the negative values of the real FRF in two orthogonal main directions at the

tool tip of the cutting tool. The creation of the whole set of stability lobes to create the complete stability chart is based on the

phase shifts between the vibration marks left on the machined surface made from one cutting tooth to the next tooth that

comes in to cut, see [1].

Stability lobe predictions have been a vast research area since the early 1960s, [2, 3]. One of the limitations of FRF-based

chatter predictions is that the FRF at the tool tip of a machine tool and cutting tool assembly only yields for a specific setup.
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Larger production plants are usually equipped with a substantial amount of cutting tools in their machine tools. To measure

each cutting tool combination is not only time consuming but it also requires that the machine tool is taken out of operation

during measurements. This results in productivity losses which in many cases are regarded as unacceptable by the plant

company. To reduce testing time receptance coupling substructure analysis (RCSA) has been utilized by a number of

researchers. The objective with this approach is to only measure the machine tool structure once and then couple a

substructure representation of the cutting tool of interest into an assembly.

To use a receptance coupling technique by synthesizing the frequency response displacement function of the system is

indeed very appealing but is not without obstacles. This paper is a factor relevance investigation, trying to answer questions

that aroused after the writing of [4]. One of the conclusions drawn in [4] was that a slight overestimation of the first bending

mode of the coupled system’s spindle/cutting tool assembly, compared to verification measurements, can have a large

impact on the stability chart. The question of which parameters effects the result of the substructured system is one of the key

understandings that need to be in place in order to conduct relevant measurements and stability lobe predictions.

The factor relevance investigation in this paper is strictly restricted to FRFs generated from FEM of the assembly

components. The models are described in [4] and the coupling routines used are fully described in [5]. The approach of using

synthetic data has been chosen in order to avoid the complexity and uncertainties that follows with measurements in terms of

noise, misalignment of force and output sensors, etc. The necessity of further sensitivity analyses to the measurement

problem is evident but excluded from this paper.

2.2 Component Synthesis

Component substructuring is usually divided in to two main categories. The first is direct frequency response function

coupling [6–11]. The direct FRF coupling method has the advantage that it is fast in that sense that it can be applied directly

on measured FRFs and don’t require a system identification data processing. The absence of data processing is also its

biggest disadvantage since it makes this type of coupling techniques sensitive to noise. The other type of coupling methods

often found in literature is component mode synthesis [12–15]. This method has the advantage that it diminishes the noise

problems but on the other hand requires that the mode shapes are captured well and it may also suffer from errors that can

come from mode truncation. The mode truncation issue for the modal synthesis coupling technique is not a problem in the

direct FRF coupling methods since the influences of higher frequency modes are accounted for in the measurement data. The

component synthesis used in this sensitivity analysis is based on the state-space coupling method proposed in [5]. This

coupling method utilizes the benefits of noise suppression introduced by modal analysis. This is done by coupling of

identified first-order state-space substructure component models. The coupling method is used to couple two subsystems

(i ¼ 1, 2) on state-space form with displacement or velocities as output. A state-space model with external force inputs u and

displacement outputs y can be written as follows

_xi ¼ Aixi þ Biui

yi ¼ Cixi

(
(2.1)

Fig. 2.1 Stability lobe chart
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The state vector isx, andA,B andC are constant coefficientmatrices.Both subsystemsare partitionedwith respect to coupling

degrees of freedom (DOFs), subscript c, and other DOFs, subscript o, according to the partition of response and loading

yi ¼ yc
i

yo
i

( )
ui ¼ uc

i

uo
i

( )
(2.2)

Using the non-uniqueness of state-space representations, the system might be transformed with similarity transformation

without approximation. A similarity transform T with certain properties transforms the states as

~xi ¼ Tixi ¼
_yc

i

yc
i

xo
i

8><
>:

9>=
>; (2.3)

it can be shown, see [5], that the state-space matrices in this case turn into the particular coupling form as

~A
i ¼

Ai
vv Ai

vd Ai
vo

I 0 0

0 Ai
od Ai

oo

2
664

3
775 ~B

i ¼
Bi
vv

0

0

Bi
vo

0

Bi
oo

2
664

3
775 ~C

i ¼
0

Ci
ov

I

Ci
od

0

Ci
oo

" #
(2.4)

Thepartition subscripts indicate velocityoutputs (v), displacement outputs (d) andother states (o), all in accordancewith (2.3).

The next stage in order to couple themodels together, equilibriumand compatibility conditions has to be taken in to account at the

couplingDOFs. For response and excitation of two subsystems that are co-oriented and numbered in the same order we canwrite

the relation between the response and the excitation quantities between the uncoupled subsystem models and the synthesized

models as

yIc

yIIc

( )
¼ I

I

" #
�yc �uc ¼ ½I I�

uIc

uIIc

8<
:

9=
; (2.5)

and from here on considering coupling responses only in displacement, yc
i for simplicity. We can now write the state-space

realization on coupled form using (2.4) and (2.5), which is defined as

€�yc

_�yc

_xo

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

Ai
vv Ai

vd Ai
vo

I 0 0

0 Ai
od Ai

oo

2
6666664

3
7777775

_�yc

�yc

xo

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

Bi
vv

0

0

Bi
vo

0

Bi
oo

2
6666664

3
7777775

�uc

uo

8><
>:

9>=
>; (2.6a)

�yc

yo

( )
¼

0

Ci
ov

I

Ci
od

0

Ci
oo

" # _�yc

�yc

xo

8><
>:

9>=
>; (2.6b)

The advantage of using first-order state-space models in lieu to a second-order modal model is that the state-space model has

lesser restrictionwhich enables thismodel to better reproduce themeasured data. However, some physical properties, introduced

as constraints in the system identification phase, have been found to enhance the first-order state-space model, [5]. To enforce

these kinematic and equilibriumconstraintswefirst need to transform the two subcomponents, subsystemI and subsystem II, in to

coupling form in accordance with (2.6a) and (2.6b). The first kinematic constraint to enforce is that the interface velocities and

displacements should be equal. This is done by considering the first row of equation (2.6a) from which we have that the

acceleration output for substructure I, 2.7a and II, 2.7b can be formulated as

€�y
I
c ¼ AI

vv
_�y
I
c þ AI

vd�y
I
c þ AI

vox
I
o þ BI

vv�u
I
c þ BI

vou
I
o (2.7a)

€�y
II
c ¼ AII

vv
_�y
II
c þ AII

vd�y
II
c þ AII

vox
II
o þ BII

vv�u
II
c þ BII

vou
II
o (2.7b)
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and to fulfill the stated kinematic constraints it follows that the velocity output at the coupling DOFs, 2.8a, satisfies

_�y
I
c ¼ _�y

II
c ¼

def
_�yc (2.8a)

and the displacement output at the coupling DOFs 2.8b, satisfies

�yIc ¼ �yIIc ¼
def

�yc (2.8b)

and the equilibrium conditions are met for substructure I, 2.9a and II, 2.9b respectively

�uIc ¼ �uI;IIc þ �uIc;e (2.9a)

�uIIc ¼ ��uI;IIc þ �uIIc;e (2.9b)

Where �uI;IIc denotes the cross-sectional force between the two subsystems and �uc;e denotes the externally applied force to

the interface DOFs. By introducing (2.8a,b) and (2.9a,b) into (2.7a,b) we get

€�yc ¼ AI
vv
_�yc þ AI

vd�yc þ AI
vox

I
o þ BI

vv�u
I;II
c þ BI

vv�u
I
c;e þ BI

vou
I
o (2.10a)

€�yc ¼ AII
vv
_�yc þ AII

vd�yc þ AII
vox

II
o � BII

vv�u
I;II
c þ BII

vv�u
II
c;e þ BII

vou
II
o (2.10b)

The mass inertial of the interface DOFs correspond to the inverse of BI
vv and B

II
vv. To introduce these kinematic constraints

the first step is to multiply (2.10a) with BI
vv

� ��1
from the left and (2.10b) with BII

vv

� ��1
also from the left and add them

together.

BI
vv

� ��1 þ BII
vv

� ��1
� �

€�yc ¼ BI
vv

� ��1
AI

vv þ BII
vv

� ��1
AII

vv

� �
_�yc

þ BI
vv

� ��1
AI

vd þ BII
vv

� ��1
AII

vd

� �
�yc

þ BI
vv

� ��1
AI

vox
I
o þ BII

vv

� ��1
AII

vox
II
o þ �uc

þ BI
vv

� ��1
BI
vou

II
o þ BII

vv

� ��1
BII
vou

II
o (2.11)

were �ucis the total external load applied to assembled components interface DOFs and is defined as

�uc ¼
def

�uIc þ �uIIc ¼ �uI;IIc þ �uIc;e � �uI;IIc þ �uIIc;e ¼ �uIc;e þ �uIIc;e (2.12)

rearranging (2.11) slightly we can write it in the following structure

€�yc ¼ �Avv
_�yc þ �Avd�yc þ �A

I
vox

I
o þ �A

II
vox

II
o þ �Bvv�u

II
c þ BI

vo�u
I
o þ BII

vo�u
II
o (2.13)

where

�Avv ¼ BII
vv BI

vv þ BII
vv

� ��1
AI

vv þ BI
vv BI

vv þ BII
vv

� ��1
AII

vv (2.14)

�Avd ¼ BII
vv BI

vv þ BII
vv

� ��1
AI

vd þ BI
vv BI

vv þ BII
vv

� ��1
AII

vd (2.15)

�A
I
vo ¼ BII

vv BI
vv þ BII

vv

� ��1
AI

vo (2.16)

�A
II
vo ¼ BI

vv BI
vv þ BII

vv

� ��1
AII

vo (2.17)

�Bvv ¼ BI
vv BI

vv þ BII
vv

� ��1
BII
vv (2.18)
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�B
I
vo ¼ BII

vv BI
vv þ BII

vv

� ��1
BI
vv (2.19)

�B
II
vo ¼ BI

vv BI
vv þ BII

vv

� ��1
BII
vv (2.20)

the assembled systems on state-space form can now be written as

€�yc

_�yc

_xIo

_xIIo

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

�Avv
�Avd

�A
I
vo

�A
II
vo

I 0 0 0

0 AI
od AI

oo 0

0 AII
od 0 AII

oo

2
66666664

3
77777775

_�yc

�yc

xIo

xIIo

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ

�Bvv
�B
I
vo

�B
II
vo

0 0 0

0 �B
I
oo 0

0 0 �B
II
oo

2
66666664

3
77777775

�uc

�uIo

�uIIo

8>>><
>>>:

9>>>=
>>>;

(2.21)

�yc

yIo

yIIo

8><
>:

9>=
>; ¼

0 I 0 0

CI
ov CI

od CI
oo 0

CII
ov CII

od 0 CII
oo

2
64

3
75

_�yc

�yc

xIo

xIIo

8>>>><
>>>>:

9>>>>=
>>>>;

(2.22)

For the system studied in this paper which is a non-gyroscopic, non-circulatory and passive mechanical system it is

expected that Betti’s reciprocity principle should apply. To ensure reciprocity the condition CiBi ¼ 0 has been enforced, in

order for the system to be self-adjoint. The state-space models used have also been forced to be stable and passive, see [5].

2.3 System Setup

The purpose of the investigation is to investigate the causal effects different factors have on the tool tip FRF which is the

foundation for the stability lobe chart. This approach requires a system which is free from errors, such as noise and model

order uncertainties. The system chosen for this investigation is a simplified FE-model of a test rig used in [4], see Fig. 2.2.

The FE-model of the test rig consists of two substructures, Fig. 2.3. The spring suspended metal block with the clamping

unit along with the coupling and the tool family generic part of the cutting tool, referred to as the blank, constitutes

subsystem I. The tool tip, with a geometry that may vary within the tool family, is considered to be substructure II. Figure 2.4

shows the DOF numbering of the interface. In this study we are particularly interested in motion in the y- and z-directions,

DOFs 2 and 3.

Before proceeding with sensitivity analysis we made a validation of the coupling technique. As a reference we obtained

frequency response functions of the total system coupled to an entity by ordinary FEM assembly procedures. We see one

example in Fig. 2.5. To mimic the system identification procedures for test data we made a system identification of FRFs

given by FEM analysis of substructure I. In the frequency range from 0 to 5 kHz it was found that 30 states were sufficient to

capture data. In the FE representation 0.5% damping was introduced to all modes.

Fig. 2.2 Left; FE-model of test rig. Right; real test rig
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2.3.1 Results of Validation and Substructuring Method

The result of the state-space coupling of the identified model can be seen in Fig. 2.5. It is seen that it compares favorable to

the FEM results and validates the coupling technique. Figure 2.5 also shows the FRF of Subsystem I from FEM and system

identification can be seen to match very well. Figure 2.5 also contains and an additional comparison using a direct FRF

Fig. 2.4 Reference coordinate system and degree of freedom notations
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Fig. 2.5 Frequency response function comparison between uncoupled subsystem I and the state space identification of subsystem I as well as the
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Fig. 2.3 Substructures I and II
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coupling method, [6], of the two substructures using generalized frequency domain substructure synthesis. The coupled

FRFs using this method match the re-estimated assembled parallel model perfectly which is a good indication that the state

space coupling routines works properly. It can be seen in Fig. 2.5 that the FRFs of these three systems matches the fully

assembled FEMmodel very well up and over the first bending mode which is at about 500 Hz. The slight deviation at higher

frequencies Is due to model truncation in the synthesis of FRFs of component I.

2.4 Sensitivity Analysis and Evaluation Method

With a reliable identification process in place the next step is the sensitivity analysis based on perturbation of the state space

model from modal data and model estimation of that system.

2.4.1 Problem Formulation

The evaluation is limited to investigate the factors governing the accuracy of the predicted spindle speed and depth of cut and

quantify the impact they have on the predicted stability lobes. A criterion function based on the stability lobe chart is

required. The sensitivity analysis is performed through a screening process where each parameter can vary within a certain

interval. Each test combination resulted in a perturbed FRF from which a stability lobe chart were obtained. The lobes from

the perturbed test were evaluated against a stability lobe chart based on the solution of the unperturbed coupled state space

model presented in Fig. 2.5 system based on two criteria.

A first criterion is an evaluation of the angle between stability lobe data vectors of the nominal and perturbed systems.

These data vectors are stability lobe functions at discrete spindle speeds. The good thing about this approach is that

amplitude of the vectors is disregarded. The angle ranges between 0 and p/2 were 0 means that the two data vectors are

completely parallel and an angle of p/2 means that the two data vectors are orthogonal. In this evaluation the angle is

normalized by taking cosine of the angle resulting in a number ranging from 0 to 1 were 1 means that the two data vectors are

perfectly parallel and in that sense equal and 0 means completely orthogonal which is not desirable. We call this normalized

angle the co-linearity index

A second evaluation criterion is the minimum axial depth of cut, ap
lim, were the cutting process is stable for all spindle

speeds, see Fig. 2.6. This criterion was selected since this depth of cut is the local minimum value of all lobes. This is not the

case with the stability peaks which grows with higher spindle speeds. The minimum depth of cut is also the parameter that is

especially important when machining at low spindle speeds.

2.4.2 Screening

A traditional screening set up, see [16], is an essential first step of the objective evaluation method that will be used to answer

the question of which factors has the largest impact on the criterion function and if there are any interaction between these

factors. The aim is to assign all factors the same possibility to influence the criteria and then, if possible, reduce the number

Fig. 2.6 Description

of minimum axial depth

of cut, ap
lim

2 Experimental–Analytical Substructure Model Sensitivity Analysis for Cutting Machine Chatter Prediction 17



factors for further investigations. Some of the factors subjected to investigation in this paper have been found to have a strong

nonlinear behavior within their range of variation. This makes them unsuitable for the coupled analysis, proposed in [16],

which would make it hard to determine their separate impact on the coupled system. A much simpler approach was taken

regarding the sensitivity analysis based on the insight that the attempt to investigate the full design space was much to

complicate. The approach was instead of changing many parameters all at once to simply change one parameter at the time

and keep all others at their reference values. The screening procedure starts with listing, categorizing and determine a relevant

range that each factor can vary within. Table 2.1 presents the factors chosen to be investigated in this investigation along with

their category and variation span. The screening procedure has multiple objectives. The first is to get an insight of which

factors have most influence on the result of the coupled model. If a factor is found to have no influence on the criteria then that

result is also useful information. The exclusion of a factor can be proven to be very beneficial from a time or economical

perspective. The screening also ranks each factor and therefore gives an indication of which of the factors to put additional

focus on.

The chosen factors all contribute differently to the identified models. The number of states included in the state-space

model is an interesting parameter to investigate. Previous tests conducted in [17] showed that too few states could influence

the coupled systems of but no investigation of the impact of too many states was made. Damping is another parameter of

interest since it can normally not be precisely determined from measurements. To see how much amplitude error influences

the coupled system is also of interest. This parameter can be influenced from ill calibrated accelerometers, errors in force

input measurements and test setup errors. The cut-off frequency will determine how many modes that are taken into account

by the state-space substructures and this should influence the coupled system.

2.5 Results

The stability lobe chart is constructed from the real part of FRF22 and FRF33, the FRFs associated to transversal motion. Both

these directions are important for the final evaluation of the stability lobe chart. The results of a comparison between the real

part of the FRF22 of the reference and the perturbed systems show how the different parameter influences the location of the

bending eigenfrequency and the amplitude of the FRF22, see Fig. 2.7.

Stability lobes for comparison were constructed based on the results of the perturbed FRFs for evaluation. The ingoing

cutting parameters used to obtain the stability lobe charts presented in tabled in Table 2.2.

Figure 2.8 shows how the different parameter settings affect the stability lobe chart. It should be noted that the perturbed

system with a reduced number of states is not seen in the chosen plot interval. The amplitude of the stability lobes for this

setting is much too high to be included in the plot. The drastic impact of this setting is seen in Fig. 2.7.

The plotted stability lobe chart comparison gives a good indication of the influence of different perturbations to the

system but it makes it hard to quantify its meaning. The results of the comparisons of the angle between stability lobe data

vectors and the minimum value of the depth of cut for each perturbed system compared to the reference system makes it

easier to interpret the results. Such results are presented in Table 2.3.

From the results in Table 2.3 it can be seen that the factor with the smallest impact on the system is the one were two

additional states has been introduced to add a resonance frequency close to that of the first bending mode. This factor has a

very small influence on the angle between the real FRF vectors and almost no influence on the minimum amplitude value

compared to the reference. The perturbed system were the state order had been underestimated by neglecting a bending

mode showed a significant impact on both evaluation criterions. The damping perturbation proved to have a very small

influence on the subspace angle criterion and minimum amplitude seemed to be proportional to the magnitude of the

Table 2.1 Factors subjected to perturbation in identification of subsystem I

Test nr. Factor Change

N1 Number of states that describe first bending mode Add 2

N2 Number of states that describe first bending mode Subtract 2

N3 Damping estimation of first bending mode Add 20%

N4 Damping estimation of first bending mode Subtract 20%

N5 FRF level Add 10%

N6 FRF level Subtract 10%

N7 Cut off frequency for system identification 2 kHz instead of 5 kHz
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Fig. 2.7 Real part of FRF22 of unperturbed (reference) and the perturbed systems

Table 2.2 Cutting parameters used in stability lobe predictions

Cutting parameters Quantity Unit

Number of teeth, z 1 –

Tool diameter, Dc 80 [mm]

Radial width of cut, ae 80 [mm]

Cutting force coefficient in tangential direction, Kt 1319 [MPa]

Cutting force coefficient in radial direction, Kr 789 [MPa]
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Fig. 2.8 Stability lobe comparisons between unperturbed (reference) and the perturbed systems

Table 2.3 Comparison between the influences of the different perturbation factors minimum axial depth of cut and co-linearity index relative to

that of reference configuration

Test nr. Type of perturbation Co-linearity index Minimum axial depth of cut

N1 Number of states +2 0.985 0.99

N2 Number of states �2 0.410 1335.33

N3 Damping estimation of first bending mode +20% 0.975 1.21

N4 Damping estimation of first bending mode �20% 0.976 0.83

N5 FRF amplitude +10% 0.484 0.60

N6 FRF amplitude �10% 0.427 0.81

N7 Cut-off frequency 0.825 1.06
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damping. A factor that influenced the coupled system much was the FRF amplitude. The system that had its amplitude

increased by 10% underestimated the eigenfrequency with 12 Hz and overestimated the eigenfrequency with 12 Hz with a

similar underestimation for an amplitude decrees. Both these errors then propagated to the stability lobe chart resulting in an

optimum spindle speed error of 90 rpm. The lowered cut-off frequency perturbation was the fourth least influential

perturbation when it comes to the subspace angle criterion. The lowered cut-off frequency also had a small minimum

amplitude error.

2.6 Conclusions

The methodology and workflow used to conduct these analyses make up a good foundation for designing the measurement

set up. The approach with the two evaluation criteria based on subspace angle and minimum amplitude, makes the

evaluation of the perturbed systems much clearer and the two evaluation criteria makes good indications on the comparison

to the reference system. This method allows several factors to be evaluated against each other even though they can play a

very different role in the identification process. Regarding the results the sensitivity analysis definitely distinguishes the

important from the less important parameters. The parameter that influenced the coupled system the most was an error in

the estimation of the FRF amplitude. Such significant impact points towards that great care must be taken during the

measurement procedure. Accelerometer imprecision of 5% is not uncommon for accelerometers used in these types of

measurements. Large accelerometer errors can be expected from temperature transients, calibration errors, linearity errors,

frequency and phase response errors, aging errors, cable motion, and electromagnetic interference in cables. Load cell errors

affect the FRF estimation similarly. It is seen that the number of states may be very important. This is much in line with the

conclusions drawn in [17]. It seems that an excessive state order not necessarily causes bad coupling results as long as

the identified modes fit is also shown in the stability chart. The damping perturbation seems to practically only influence the

amplitude error in the stability chart. This is good from an application standpoint were the accurate spindle speed is

considered much more important than the amplitude of the stability chart. To find the stability limit is fairly easy compared

to finding the optimum spindle speed. Regarding the cut-off frequency it is shown that it influences the coupled model but it

should not have a large impact as long as no states are disregarded.
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Chapter 3

Eliminating Indefinite Mass Matrices with the Transmission

Simulator Method of Substructuring*

Randy L. Mayes, Mathew S. Allen, and Daniel C. Kammer

Abstract The transmission simulator method of experimental dynamic substructuring captures the interface forces and

motions through a fixture called a transmission simulator. The transmission simulator method avoids the need to measure

connection point rotations and enriches the modal basis of the substructure model. The free modes of the experimental

substructure mounted to the transmission simulator are measured. The finite element model of the transmission simulator is

used to couple the experimental substructure to another substructure and to subtract the transmission simulator. However, in

several cases the process of subtracting the transmission simulator has introduced an indefinite mass matrix for the

experimental substructure. The authors previously developed metrics that could be used to identify which modes of the

experimental model led to the indefinite mass matrix. A method is developed that utilizes those metrics with a sensitivity

analysis to adjust the transmission simulator mass matrix so that the subtraction does not produce an indefinite mass matrix.

A secondmethod produces a positive definite mass matrix by adding a small amount of mass to the indefinite mass matrix. Both

analytical and experimental examples are described.

3.1 Introduction

Experimental-analytical substructuring has been a topic of interest since modal testing was first introduced several decades

ago. It is appealing because it has the potential to allow one to replace complicated subcomponents with experimental

models that may be much less expensive to derive. It also allows the experimentalist to re-use the experimental model,

predicting its response in a multitude of other configurations without repeating the test. One can also think of structural

modification [1] as a special case of substructuring, where the modification is a special substructure that one wishes to

determine in order to produce a desired response, (although the terms “substructuring” and “structural modification” are

often used interchangeably [2]).

The authors recently presented a new substructuring methodology, called Modal Constraints for Fixture and Subsystem

(MCFS), that has proven quite effective at subtracting one structure from another [3]. Typically one has experimentally

measured the modes of a built-up structure and one wishes to remove one subcomponent from that assembly. The subtraction

is accomplished by creating a model of the subcomponent that is to be removed, making its mass, stiffness, and damping

negative and then coupling the negative subcomponent to the assembly. Whereas, in conventional substructuring one

enforces constraints between the points where the substructures are joined, the MCFS method estimates a set of modal
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coordinates on the substructure and enforces constraints on those coordinates. This reduces the sensitivity of the method

to experimental errors and assures that an appropriate number of constraints is enforced.

The MCFS method is primarily used to estimate a modal model that can be used for substructuring predictions. The

substructure is connected to a fixture or transmission simulator [4] and the assembly is tested in free-free conditions. This is

equivalent to the well-known method where rigid masses are attached to the structure and used to create a mass-loaded

interface, except that the proposed methodology is valid even if the transmission simulator is flexible. The transmission

simulator serves to mass-load the interface of the subcomponent, enriching the modal basis and circumventing the need to

measure displacements and rotations at the connection point. A model of the transmission simulator is then created and used

to subtract its effects from the measured modal model in order to obtain a model for the substructure of interest in isolation,

but with an improved modal basis. However, because a system with negative mass has been introduced in order to remove

the transmission simulator, the substructure model may not necessarily have a positive definite mass matrix. Similar

problems were encountered by other researchers when removing rigid masses from a structure [5]. This paper presents

two methods that can be used to assure that the mass matrix of the subcomponent has positive mass.

3.2 Theory

3.2.1 Review of Subtraction of Modal Substructures

Suppose that the natural frequencies, or, damping ratios, zr, and matrix of mass-normalized mode shapes, FC, of

an assembly consisting of the subcomponent of interest and the transmission simulator have been measured. The modal

parameters of the transmission simulator are also known. (Here we shall refer to the substructure that is being removed as the

transmission simulator, but in a general problem it could be any subcomponent that one wishes to subtract from the

assembly). The assembly shall be referred to as system C and the transmission simulator as system A, as in [3],

so the uncoupling procedure estimates the modes of B, the component of interest, since C� A ¼ ðAþ BÞ � A ¼ B. First

the equations of motion of C and (-A) are concatenated as follows

IC 0

0 �IA

� �
€qC
€qA

� �
þ

n2zrorn
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C
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0 � n2zrorn
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" #
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yC
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� �
qC

qA

� � (3.1)

where the q dof are the generalized modal coordinates of each substructure, and then constraints are enforced as

F
y

A;m FC;m�IA � qC
qA

� �
¼ 0

�
(3.2)

Where the superscript, { , denotes the pseudo-inverse of the matrix, and subscript m represents degrees of freedom common

to both system C and system A that have been measured.

This is done by finding a matrix B that transforms the concatenated coordinates into a set of unconstrained coordinates.

The coordinates of C are typically a suitable set [6], so one can choose

qC

qA

� �
¼ BqC

B ¼ IC

t

� � (3.3)

where t ¼ FA;m
yFC;m. The number of modal coordinates in A and C are denoted NA and NC respectively. One can verify

that B is in the null space of the matrix on the left in (3.2), so these coordinates always satisfy the constraints. As discussed

in [3], if the model for the transmission simulator is accurate then the negative transmission simulator model completely
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cancels the forces that the transmission simulator would exert on system B. The equations of motion of the system

after applying constraints are

MB€qc þ CB _qc þKBqc ¼ BT
FC

TFC

FA
TFA

( )

yC

yA

( )
¼

FC 0

0 FA

" #
Bqc

(3.4)

where the mass matrix of the constrained system is

MB ¼ BT IC 0

0 �IA

� �
B ¼ IC � tTIAt (3.5)

and similarly for the damping and stiffness matrices.

The equation above shows that the eigenvalues ofMB can become negative if any of the terms that are subtracted are too

large. This might be the case, for example if the density value used in the transmission simulator model was higher than the

true density. In that case one would simply need to adjust the modal mass of each the transmission simulator modes to

alleviate the problem. In practice the situation is more complicated; negative mass is typically encountered due to a

mismatch in the modal bases of A and C, causing the modal mass of A to be assigned incorrectly to the modes of C. Two

approaches to adjustMB to make it positive definite are given in Sect. 3.2.2 and 3.2.3, the modal scale factor method and the

added mass method. First the modal scale factor method is discussed.

3.2.2 Modal Scale Factor Method

The matrix t is related to an orthogonal projector that projects the motion of C onto the space spanned by the modes of the

transmission simulator, A, as explained in [3]. One might be able to create a model for B that has a positive definite mass

matrix by decreasing certain values along the diagonal in IA (or equivalently, by increasing the mode shape values on some

of the modes of the transmission simulator by multiplying by a scale factor). With this approach, revise the name of the

transmission simulator mass matrix from IA toMA.MA begins as the identity matrix, but individual elements will be reduced

as described below. The eigenvalues of the mass matrix, MB, are found by solving the eigenvalue problem,

MBCk ¼ lkCk (3.6)

There are typically only a few negative eigenvalues lk < 0 k ¼ 0:::Nneg and several modal masses, so this can be cast

as an under-constrained optimization problem where one seeks values for the modal masses of the transmission simulator,

MTS,j , inMA ¼ diag MTS;1 ::: MTS;NA½ � that cause all of the eigenvalues ofMB to be positive. An equivalent approach is to

reduce the diagonals ofMA until all of the eigenvalues of tTMAt are less than one (see (3.5)). A simplified Newton-Raphson

algorithm can be devised to accomplish this. First calculate the Jacobian (sensitivity matrix) of the eigenvalues which are

greater than one in tTMAt with respect to each diagonal member ofMA. Let f(MTS,j) ¼ [ lk . . .l N>1]
T. A first order Taylor

series expansion of this function is

fdesiredðMTS; jÞ ¼ fðMTS; jÞ þ ½rfðMTS; jÞ�MTS; j
DMTS; j (3.7)

where fdesired(MTS, j) is chosen as a new eigenvalue slightly below one (.9999) for this work. Instead of proceeding in the

usual way with the full matrices, one chooses the worst (largest) eigenvalue of tTMAt and only the mass value ofMA which

is most sensitive to the worst eigenvalue. This reduces the matrices down to scalars, which alleviates some problems if the

matrices have high condition numbers. Then one solves for the reduction in a single diagonal member of MA as

DMTS; j ¼ ½rfðMTS; jÞ��1
MTS; j

½fdesiredðMTS; jÞ � fðMTS; jÞ� (3.8)
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where there is only one member in the Jacobian and one eigenvalue to change. The eigenvalues are a nonlinear function, so

the process is iterative. On each iteration, the mass that is most sensitive to the largest eigenvalue above one is adjusted,

until all eigenvalues of tTMAt are below one. Then MB will have no negative eigenvalues.

The modal scale factors found using this approach will be optimum only in the sense that they are the smallest

perturbations to the transmission simulator mass matrix that produce a positive definite MB.

3.2.3 Added Mass Method

The procedure in Sect. 3.2.2 seeks to find a positive definite mass matrix by adjusting the modal scale factors (or the modal

mass) of the transmission simulator. An alternative is to simply compute MB in (3.5) and then to add mass to the system to

cause the negative eigenvalues of the mass matrix to become slightly greater than zero. Physically, this is identical to

attaching point masses to the system at various locations, which are governed by equations of motionm€yC ¼ 0, wherem is a

diagonal matrix of point masses. One can use the same procedure described in (3.1) through (3.4) to compute the equations

of motion for the system with these additional masses, and the resulting equations are identical to those in (3.4) only withMB

replaced with MB þ Dm, where Dm ¼ FC
TmFC.

Typically there are more physical nodes than there are modes, soFC has more rows than columns and one can determine

a pattern for the applied masses that would create an arbitrary increase, Dm, in the mass of the system. The smallest change

toMB will cause the negative eigenvalues to increase to just above zero while leaving the remaining eigenvalues unchanged,

and can be obtained by adding the following to each eigenvalue.

Dlk ¼ 0 lk> 0

�lk þ e lk � 0

�
(3.9)

One can then find Dm using,

Dm ¼ CL̂CT (3.10)

where L̂ ¼ diag l1 þ Dl1ð Þ � � � lNc þ DlNC
ð Þ½ � and C ¼ Ck � � � CNC

½ �. The eigenvalues of MB þ Dm will then

be the strictly positive values that are on the diagonal of L̂. One would hope that very little mass would need to be added to

the structure to make the eigenvalues positive. One can measure the amount of mass added using the ratio of the

norms: nrat ¼ Dmk k
MBk k.

3.3 Applications

3.3.1 Analytical T-Beam System

The first system considered is a 12-in. long steel beam with a 0.75 by 1.0 in. cross section. This is the same system that was

considered in [6]. A 6.0-in. long transmission simulator with the same cross section is attached to the beam and the modes of

the assembly (the C system) are computed; in the usual practice these modes would be found experimentally with a modal

test, but here the analytically computed modes are used in order to simulate perfect measurements (Fig. 3.1).

Fig. 3.1 T-Beam System. The substructure of interest is the (blue) horizontal beam. It is tested while connected to the (orange) vertical beam,

or transmission simulator. The proposed procedures will be used to obtain a positive definite mass matrix after removing the transmission simulator

(color figure online)
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As discussed in [6], it is important to assure that enough modes of the transmission simulator are used to span the space of

the motions of C in the frequency band of interest. Using the best practice identified in that work, seven modes are used for

the transmission simulator and 15 modes for C, which corresponds to all modes below 20 kHz for C and below 24 kHz for A.

The resulting model for B has two negative eigenvalues: l1 ¼ �0.00050468, l2 ¼ �2.4058e-16, although l2 is essentially
zero. We desire to make these eigenvalues positive using the methods presented in Sect. 3.2.

3.3.1.1 Mode Scale Factor Method

The mode scale method was applied to this system using the scalar Newton-Raphson algorithm. The Jacobian was used

to identify the two modes of the transmission simulator that most strongly influenced the negative eigenvalues, revealing

that the first and sixth modes had the largest influence. These were the same modes that were identified by the metrics in [6]

as having the largest contribution to the negative eigenvalues. The Newton-Raphson algorithm converged to values

of MTS,1 ¼ 0.9984 and MTS,6 ¼ 0.9999, which correspond to multiplying the first and sixth mode shapes of the transmission

simulator by 1.0008and 1.000050 respectively. The smallest two eigenvalues of MB were positive values on the order

of 1e-5.

It is important to mention that some difficulty was encountered in selecting a value of fdesired(MTS,j) for these calculations.

Initially fdesired(MTS,j) ¼0.99 was used in which case the Newton-Raphson algorithm gave results in which the FRFs

had extra zeros in the response. When more significant figures were used (0.9999) the results converged to analytical up

to 20 kHz.

3.3.1.2 Added Mass Method

The added mass method was also applied to this system. An addition to the mass matrix, Dm, was computed using (3.9) and

(3.10) with e ¼ 2.2e-14 (one hundred times larger than the estimated machine precision) and added toMB. As expected, the

smallest eigenvalues of MB became 2.2e-14. The amount of mass that has been added can be quantified using the ratio

between the norm of the added mass and the total mass of MB, which was found to be nrat ¼ 0.000505, indicating that a

minuscule amount of mass has been added to the system in order to make MB positive definite.

Now that the model has positive mass, it is important to check that it still represents the system accurately. In previous

works the authors have found that very small changes to the modal scale factors can sometimes introduce errors causing

significant changes to the model. These are easiest to assess by reconstructing the frequency responses (FRFs) of the model,

since they give a visual indication of whether both the frequency and amplitude of each mode is correct. Figures 3.2 and 3.3

show the FRFs of the system that were obtained after using each of the proposed methods to correct for the negative

eigenvalues in the mass matrix.

Figures 3.2 and 3.3 reveal that the substructure models accurately reproduce all of the modes of the system out to almost

20 kHz, which is not too surprising since the set of modes used to derive them spanned this same range. (According to the

traditional rule of thumb, one would only expect the model to be accurate out to about half the bandwidth of the modes used

to derive it). Both the Added Mass and Modal Scale Factor approaches produce nearly identical results in this bandwidth,

accurately reproducing the first five bending and two axial modes. This is significant, since, as described in [6], the authors

previously tried many different adjustments to the substructure model and were unable to obtain a model that reproduced

the FRFs accurately. For example, Sect. A.1 in the Appendix shows the result obtained when using an ad-hoc approach

to eliminate the negative mass, where there are fairly significant errors in the FRFs predicted by the substructure model.

3.3.2 Three Dimensional Beam-Plate System

In this section the proposed methods are applied to the system studied in [3], a schematic of which is repeated in Fig. 3.4.

The experimental subcomponent, C, consists of a beam connected to a plate at its center. A transmission simulator, A, is

attached and a modal test is performed, as shown in the photograph. System C is attached to the transmission simulator

with eight bolts around the circumference of the plate. The finite element model consists of the cylinder plus a second copy

of the transmission simulator. Modal substructuring is used to assemble C and D and to remove two copies of the

transmission simulator, resulting in the built-up structure, E.
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Fig. 3.2 Frequency response function of beam in bending direction after removing the transmission simulator. The blue line shows the analytical
FRF computed from the FEA model of the beam alone, while the red and green lines show those of the substructure model estimated after removing

the transmission simulator and after adjusting the mass matrix using the Added Mass and Modal Scale Factor approaches (color figure online)
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Fig. 3.3 Frequency response function in the axial direction (See description for Fig. 3.2)
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As explained in [3], two copies of the transmission simulator were used in this problem to simplify the coupling between

D and C. Using this approach, the same modal constraints that are used to connect C or D to the negative transmission

simulator model are also used to connect C to D. Since the transmission simulator is welded to D, this results in an effective,

continuous constraint between the two systems. Furthermore, because the bolted joints are part of system C, their effect is

captured experimentally as it is manifest in the coupling between C and the transmission simulator.

Because there are two transmission simulator models in this problem, the methods proposed in this work must be

implemented differently. The C system could be treated in the usual way, but one must also treat subcomponent D as if

it were an experimental subcomponent (although with a large number of perfectly measured modes, since they can be readily

extracted from the FEA model). Then one could remove A from D, assure that the mass is positive and return the resulting

model to the FEA package. On the other hand, either of the methods proposed here could potentially be implemented within

FEA, eliminating the negative mass after the subcomponents had been assembled but before computing the modes or

response of the assembly. Both of these approaches will be explored briefly.

The experimental test identified 25 modes of the C system, the highest having a natural frequency of 3,835 Hz. Eighteen

modes were used to model the transmission simulator spanning 0 to 1,850 Hz. To facilitate the implementation, the D

system was reduced to a 100-mode model spanning 0 to 6,165 Hz. When all of these components are assembled, the resulting

system has four negative eigenvalues: l1 ¼ �0.197, l2 ¼ �0.0764, l3 ¼ �0.134, l4 ¼ �0.118. The negative mass causes

the system to have four spurious natural frequencies that are purely imaginary f1 ¼ 2144i, f2 ¼ 2636i, f3 ¼ 2813.3i,

f4 ¼ 3453.3i Hz. Plots of the reconstructed FRFs are shown in [3], revealing that these spurious natural frequencies

apparently do not contaminate the FRFs noticeably, but a positive definite mass matrix is still desired, so the methods

presented here will be employed.

3.3.2.1 Case 1: Assemble All Substructures then Correct the Mass Matrix

First consider the case where all of the substructures are assembled before correcting the mass matrix. (In the applications of

interest, this would require one to embed the mass correction algorithm within the FEA code). The added mass method was

used to compute a matrix Dm that would make the mass matrix positive definite. The resulting mass addition was relatively

large compared to the original mass matrix, with a norm ratio of nrat ¼ 0.197. The frequency response functions were

reconstructed at two points in order to determine whether the added mass had changed the nature of the response. Figures 3.5

and 3.6 show the frequency responses before and after applying the mass addition algorithm, as well as the finite element

truth model described in [3].

Fig. 3.4 Schematic of Cylinder-Plate System and photograph of the hardware that was tested to obtain an experimental model for substructure C.

Labels are shown indicating the names of the substructures, as well as two drive points where FRFs were later reconstructed
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3.3.2.2 Case 2: Correct the Mass Matrix for C-A

Next consider the case where we wish to create a model for subcomponent C that has positive definite mass after removing the

transmission simulator A. Coupling C-A directly one finds that the resulting system’smassmatrix has two negative eigenvalues:

l1 ¼ �0.116 and l2 ¼ �0.0865. There are eight imaginary natural frequencies, although three of them are above 100 kHz and

three are below 1 Hz. The other two are at 0 + 2304.4i and 0 + 2532.1i Hz, within the range of the modes of C.

First the added mass method was used to correct the mass matrix for this system. It computed a mass addition whose norm

was nrat ¼ 0.116. The resulting system no longer had the two imaginary natural frequencies in the band of interest.

Next the mode scale factor method was employed. This algorithm reduced five of the 18 modal masses of the

transmission simulator as follows: mass 1 ¼ .9931; mass 9 ¼ .5783; mass10 ¼ .9488; mass 11 ¼ .8224; and mass

13 ¼ .4942. This achieved a positive definite mass matrix. The resulting axial FRF of the axial response of the plate and

beam is shown in Fig. 3.7. The mode scale method has slightly more degradation than the mass added method as compared

with the analytical result.

3.3.3 Observations on the Transmission Simulator Mass Corrections Based on the Applications

In the T beam studies, only a small amount of mass had to be subtracted from the transmission simulator using the modal scale

factormethod, and only a small amount had to be addedwith the addedmass approach.With the cylinder/plate/beam system, the

amount of mass subtracted by the modal scale factor method or added by the added mass method was much larger. It was also

observed that the FRF quality of the final result for the modal scale factor method degraded when larger mass changes were

required tomake the constrainedmassmatrix positive definite. The authors believe that the severity of the correction is related to

adequacy with which the mode shapes of the transmission simulator span the space of the actual motion of the substructures

when they are constrained together. The transmission simulator mode shapes probably never span the constrained connection

motion perfectly. If the transmission simulator mode shapes span the space well, only small corrections are needed, but larger

corrections are required when they do not span the space as well. Therefore the amount of mass change required may provide a

metric on the quality of the transmission simulator mode shapes for use in the specific application.
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Fig. 3.7 Blue curve provides the analytical axial C-A plate/beam FRF, red is the added mass method and green is the mode scale factor method for

generating positive definite mass matrix after subtraction
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3.4 Conclusions

This work presented two methods that can be used to obtain a positive definite mass matrix from the indefinite result that is

often obtained when removing one structure from another using modal substructuring. The first method, called the mode

scale factor method, used a nonlinear optimization algorithm to vary the modal masses (or equivalently mode scale factors)

of the modes of the transmission simulator. This approach was found to work well in cases where the required transmission

simulator modal mass changes were small, and it has the advantage that it is physically justifiable whenever the mode scale

factors found are reasonable considering the uncertainty in the transmission simulator model. When large changes in the

mode scale factors were required, the resulting response FRFs degraded slightly in the applications investigated here.

The second method corrects the system of interest by adding mass to the structure. A simple equation is available to

compute the amount of mass required to make the mass matrix positive definite. This approach appears to be more robust

than the modal scale factor method. However, one disadvantage of this approach is that one cannot readily relate the mass

added to the transmission simulator modes, which are the cause of the negative mass in the first place.
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Appendix

Results Using Ad-hoc Approach to Eliminate Negative Mass for T-Beam System

The following Figures show the FRFs that were obtained using an ad-hoc approach to eliminate the negative mass. The

modal mass of all of the transmission simulator modes was decreased (simulating a uniform decrease in density of that

model) until the negative eigenvalues disappeared. Trial and error revealed that the modal scale factors had to be multiplied

by 1.011 to eliminate all of the negative eigenvalues.
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Fig. 3.8 Frequency response function of beam in bending direction after removing the transmission simulator. The blue line shows the analytical
FRF computed from the FEA model of the beam alone, while the red line shows that of the substructure model after eliminating the negative

eigenvalues using the ad-hoc approach (color figure online)
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Chapter 4

Using Substructuring to Predict the Human Hand Influence

on a Mechanical Structure

Sébastien Perrier, Yvan Champoux, and Jean-Marc Drouet

Abstract Substructuring methods have been widely used on mechanical structures to study and improve the dynamic

behavior of complex assemblies by analyzing the behavior of each substructure separately. Substructuring methods can

potentially be used to create a functional link between the dynamic behavior of the human body and mechanical structures in

order to enhance the interactions between the body and these same structures. Keeping in mind that significant amounts of

vibrations are transmitted to the body from contact with vibrating structures – human-structure coupling interactions could

be used as a way to study components of comfort during vibration exposure, and even with the goal of preventing injuries

caused by transmitted vibration.

This paper investigates a coupling between a straight beam and the hand-arm system which is a non-linear structure. Each

structure is characterized by experimentally obtained mechanical mobility Frequency Response Function (FRF) data over a

frequency range between [5, 300] Hz. The FRF Based Substructuring method (FBS) allows coupling through the interface

set of substructures. This links mechanical structures with the human body where only interface measurements are gathered.

The FBS method is used to predict the dynamic behavior of the assembly.

4.1 Introduction

Knowledge of the interactions between structure assemblies is a major concern in mechanical engineering. Since the 1960s,

substructuring methods have become a focus of research in structural dynamics [1–11]. These methods have been used on

mechanical structures to study and improve the dynamic behavior of complex assemblies. Human-structure interactions are

also an important issue for persons exposed to vibrating structure. The mechanical behavior of the human body has been

characterized and studied mainly in the context of health and safety, as well as in the context of dynamic comfort evaluation

[12–28]. Furthermore, a compliant structure’s dynamic behavior is strongly influenced by contact with the human body [19].

For future studies, developments, and product designs, a clear understanding must be established of all the dynamics

involved in the coupling between a mechanical structure and a human subject. While these previous research efforts have

provided valuable insight into the dynamic characterization of assemblies through the use of substructuring methods and the

characterization of the human body’s dynamic behavior, no attempts have yet been made to study a substructuring coupling

that involves both the human body and a mechanical structure. Therefore, in this study we propose to assemble the dynamic

characteristics of the hand-arm system with a mechanical structure using the Frequency Response Function Based

Substructuring (FBS) method in order to predict the mechanical influence of the hand-arm system on the structure.

FBS coupling between a straight beam and the hand-arm system is investigated in this study. To our knowledge, no

coupling has been performed with a structure and the human body using the FBS method. Mechanical coupling using the

FBS method is an important research tool to study vibration transmission. In human applications, transmissibility is a viable

means of studying the subject’s health, safety, and dynamic comfort. Also, specific FBS coupling with the human body

allows us to assess both the mechanical behavior of the human body alone by the mechanical impedance, as well as the
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human influence on a structure as predicted by the FBS model. These results will be beneficial to further enhance interactions

between humans and structures. Finally, during the developing process of a mechanical structure, it is valuable to be able to

predict the human impact on newly developed structures. The FBS method allows coupling between substructures through

consideration of their interface set only [6]. This is a major advantage in linking a mechanical structure with the human body

where only interface measurements can be gathered. One of the main conditions when using the FBS method is the linearity

of the structures involved [6]. Although the human body is not linear, including the hand-arm system, mechanical coupling

using the FBS method can be used with the hand-arm system by controlling various parameters. The dynamic behavior of the

hand-arm system varies according to several parameters such as posture, hand position, type of excitation, excitation

direction, amplitude, push and grip force [20–23].

In this paper, each structure is characterized in the frequency range [5, 300] Hz. The beam is characterized by the

mechanical mobility Frequency Response Function (FRF) and the hand-arm system by mechanical impedance FRF.

Impedance measurement is typical when studying the dynamic behavior of the hand-arm system [24–27]. Two of the

main parameters that must be controlled when performing measurements on the hand-arm system are the person’s posture

and the push force applied by the hand. In this paper we present the influence of these two factors on the mechanical

impedance of the hand-arm system and the resulting FBS prediction for the hand on the beam.

4.2 Methods

The methods used in this paper to predict the influence of the human hand on a mechanical structure include the generalized

frequency domain substructure synthesis presented in [6]. This well-known method, also referred to as FBS (Frequency

Based Substructuring), combines the response FRF data of each substructure to analyze the dynamics of a complex

assembled structure. This method is based on an implicit statement of the force and velocity continuity considerations at

the connection nodes. It enables substructures to be coupled by taking into account the characteristics of the interface nodes

only [6] Fig. 4.1.

The mathematical expression for the FRF coupling of two substructures using the FBS method in terms of mobility Y is

shown in (4.1) where: a and b identify the two substructures involved; A is the set of internal degrees of freedom in

substructure a; I is the set of interface contact points between substructures a and b; and B is the set of internal degrees of

freedom in substructure b.
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(4.1)

Substructures a and b represent the beam (mechanical structure) and the hand-arm system respectively. The coupling

process using the FBS method is achieved by measuring the beam mobility characteristics and the hand mobility

characteristics separately. These characteristics are assembled through (4.1) to predict the influence of the hand on the

beam. The mobility characteristics of the assembly are then compared with the measured mobility characteristics of

the beam in contact with the hand. For this study, only interface data can be gathered for the hand-arm system, and therefore

only the equation for the interface set will be considered in (4.2) where YII
Beam corresponds to the mechanical mobility of

I
A B

Substructure a Substructure b

Fig. 4.1 Diagram of two

coupled substructures a and b
with interface set I
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the beam determined by an excitation force applied at the interface point (N�2 on Fig. 4.2) and a velocity response also at the
interface point (N�3 on Fig. 4.2).

YBeam Hand
II ¼ YBeam

II �YBeam
II YBeam

II þYHand
II

� ��1
YBeam

II (4.2)

An assumption is made where only vertical z-axis is considered, resulting in (4.3).

YBeam Hand
IzIz ¼ YBeam

IzIz � YBeam
IzIz YBeam

IzIz þ YHand
IzIz

� ��1
YBeam
IzIz (4.3)

4.2.1 Beam Mobility

Figure 4.2 shows the beam that was used to perform an FBS coupling. The beam is straight with a 1 in diameter through a

hollow circular section, a wall thickness of 1/8 in., and a total length of 5.5 ft. The beam configuration is clamped at both

ends on two rigid steel posts which are firmly screwed onto a rigid steel table. This structure was chosen to reveal multiple

modes in the frequency range of interest 5–300 Hz. In this configuration there is a strong modification of the dynamic

behavior of the beam when in contact with the hand. Beam mobility is measured (velocity/force) using an accelerometer

(integrated in the frequency domain) and a force transducer installed on an adaptor which is fixed to the beam and linked

to the shaker by a stringer (N�2 and 3 on Fig. 4.2). A random vibration signal is provided to the shaker within the frequency

range of 5–300 Hz. The acquisition system is Test.Lab 11B software from LMS. A strain gauge is installed on the beam

(N�4 on Fig. 4.2) to control the force applied by the hand when performing measurements on the beam coupled with the

hand. This strain gauge is calibrated prior to measuring the corresponding force.

Fig. 4.2 Experimental setup to measure the dynamic behavior of the beam at the I point ((1) Vibration exciter (shaker), (2) Force sensor 208C03

type ICP from PCB Piezotronics at the I point, (3) Accelerometer 356B20 type ICP from PCB Piezotronics, (4) Strain gauge, (5) Signal conditioner

type P-3500 from Vishay for the strain gauge)
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4.2.2 Hand-Arm System Mechanical Impedance

In (4.3), YIzIz
Beam corresponds to the mobility of the beam at point I under the vertical z-axis and YIzIz

Hand corresponds to

the mobility of the hand-arm system at point I under the vertical z-axis.

Typically, the dynamic characteristics of the hand-arm system are in the form of mechanical impedances. Several

investigators have conducted impedance measurements on the Hand-Arm system. However, the results from these studies

have not resulted in a consensus [24, 28]. For these reasons and in this paper, the hand-arm system is characterized in terms

of measured impedance.

Theoretically, the mobility also known as Admittance is the inverse of Impedance Y½ � ¼ Z½ ��1
� �

.

The mechanical impedance of the hand-arm system is obtained using a specially designed handle equipped with

an accelerometer and mounted on a force sensor installed on a shaker for mobility measurements (Fig. 4.3). The same

LMS system is used as a signal generator to provide a random vibration signal to the shaker within the frequency range of

5–300 Hz.

Measurements are performed with and without a hand on the handle. Because the handle is sufficiently rigid in the

frequency range of interest, the handle impedance can then be subtracted from the total impedance (hand + handle) to obtain

the hand-arm system mechanical impedance [16, 23]:

ZHandðoÞ ¼ ZTotalðoÞ � ZHandleðoÞ (4.4)

The impedance data can be inverted to get the mobility of the hand-arm system and used directly in (4.3).

The study is carried out on one subject to avoid inter-subjects variability. Two different hand-arm postures are used

for impedance measurements in the vertical and transverse directions. In accordance with ISO-5349 [27], these directions

refer to an excitation of the hand and arm in the Xh and Zh directions (Fig. 4.4). A total of four push forces are tested at 20, 30,

40, and 50 N. The angle between the upper arm and forearm is a 180� elbow extension (arm fully extended). In the Xh

direction, the angle between the upper body and shoulder is 90�, and in the Zh direction, the angle is 0
� (Fig. 4.5).

For each configuration, the subject is asked to hold the handle without applying any grip force. After the correct

posture and push force are established, the vibration data are measured. The subject is requested to maintain a constant

push force during the test using the DC force displayed by the force sensor. A total of 10 measurements are performed

for each configuration to evaluate intra-subject variability. The measurements are carried out over several days to avoid

subject fatigue.

Fig. 4.3 Diagram of the

hand-arm impedance

measurement system

((1) LMS Test.Lab 11b

software, (2) Power amplifier

SS250VCF from MB

Dynamics for the shaker,

(3) Vibration exciter (shaker),

(4) 6 DOFs force sensor model

MC3-6-500 from AMTI,

(5) Accelerometer 356B20

type ICP from PCB

Piezotronics, (6) Handle)
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4.2.3 Target Measurements

These measurements are used to evaluate the accuracy of the FBS prediction for the circular hollow beam coupled with a

hand (4.3). Using the same procedure as for the hand-arm system mechanical impedance section above, the subject is

requested to grasp the beam and maintain a constant push force during the exposure by looking at the force level displayed

through a strain gauge signal conditioner (N�5 on Fig. 4.2).

4.3 Results

4.3.1 Hand-Arm System Mechanical Impedance

The results for the four push forces are illustrated in Fig. 4.6 for the hand-arm system under the Zh-axis and in Fig. 4.8 for the
hand-arm system under the Xh-axis. Each curve represents the mean of the measured frequency spectrums for each

configuration. One important thing to mention is that the measured impedances for the hand-arm system under the Zh and
Xh-axes have the same trend and the same magnitude as those published in the literature.

For the Zh-axis posture and each push force (Fig. 4.6), the results mainly show two damped peaks in the frequency range

of 5–75 Hz and higher amplitude for this range of frequencies. Between 75 and 300 Hz, the amplitude decreases for any push

force. This reveals a more important influence of the dynamic behavior of the hand-arm system under Zh-axis vibration for

Fig. 4.5 Postures for excitations of the hand (a) along the Zh-axis and (b) along the Xh-axis

Fig. 4.4 The biodynamic co-ordinates of the hand-arm system according to ISO/DIS 5349 [27]

4 Using Substructuring to Predict the Human Hand Influence on a Mechanical Structure 37



frequencies between 5 and 75 Hz. By looking at the standard deviation (Fig. 4.7) and the impedance results (Fig. 4.6)

for different push forces, a � 10 N difference in the push force can be differentiated on the resulting hand-arm impedances.

By taking a close look at the two peaks in Fig.4.6, it is possible to identify that these peaks are shifting as a function of the

applied push force. This is a clear display of the non-linear behavior of the hand-arm system. Between 250 and 270 Hz,

Fig. 4.6 Mechanical impedance of the hand-arm system under Zh-axis Vibration

Fig. 4.7 Standard deviation for the hand-arm system impedance under Zh-axis Vibration
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a small bump in the results is noticeable in Fig. 4.6. This is due to the subtraction of the handle impedance in (4.4) whose

dynamic behavior is not strictly rigid around 250 Hz. This is associated with the handle dynamic behavior, and not with the

hand impedance response.

For the Xh-axis posture and each push force (Fig. 4.8), results mainly show one damped peak in the frequency range of

50–175 Hz and higher amplitude for this range of frequencies. Between 175 and 300 Hz, the amplitude decreases for any

Fig. 4.8 Mechanical impedance of the hand-arm system under Xh-axis Vibration

Fig. 4.9 Standard deviation for hand-arm system impedance under Xh-axis vibration
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Fig. 4.10 FBS mobility predictions of the hand coupled to the beam in the Zh-axis posture compared to the target mobility measurements for the

four push forces ((a) 20 N, (b) 30 N, (c) 40 N, (d) 50 N)
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Fig. 4.11 FBS mobility predictions of the hand coupled to the beam in the Xh-axis posture compared to the target mobility measurements for the

four push forces ((a) 20 N, (b) 30 N, (c) 40 N, (d) 50 N)
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push force. This reveals a more important influence of the dynamic behavior of the hand-arm system under Xh-axis vibration

for frequencies from 50 to 175 Hz. By looking at the standard deviation (Fig. 4.9) and the impedance results (Fig. 4.8) for the

different push forces, a � 10 N difference in the push force can be differentiated on the resulting hand-arm impedances as

for Zh-axis. By taking a close look at this damped peak in Fig. 4.8, it is possible to detect the shift of this peak as function

of the applied push force, displaying the non-linear behavior of the hand-arm system. Between 250 and 270 Hz in Fig. 4.8,

a small bump in the results is also noticeable. This is again associated with the handle dynamic behavior, and not with the

hand impedance response.

4.3.2 FBS Model

The FBS predictions for the hand coupled with the beam at the four different push forces in the Zh-axis posture (Fig. 4.10)
and the Xh-axis posture (Fig. 4.11) are compared to the target measurements corresponding to the hand holding the beam

with the same posture and push forces. In order to observe the influence of the hand on the beam, the dynamic behavior of the

beam only is added (dotted line). The influence of the hand on the beam is also presented with the four different push forces

for the Zh-axis posture to highlight the importance of controlling the push forces when performing FBS predictions involving

the hand-arm system (Fig. 4.12).

4.4 Discussion and Conclusion

The results for the Zh-axis posture (Fig. 4.10) demonstrate that the FBS model succeeds in providing reliable predictions

for the influence of the hand on a beam with four different push forces. This gives a strong indication that coupling between

the hand-arm system and a mechanical structure is possible using this method.

The impedances for the Zh-axis posture reveal a strong influence of the hand-arm system for frequencies up to 75 Hz.

The FBS predictions also show that the hand with this posture has an influence on the beam up to around 75 Hz for the first

mode of the beam. For the second and third modes of the beam, the hand adds damping. Furthermore, by looking at the

differences on the first mode of the beam, FBS predictions for the four push forces (Fig. 4.12) show that it is really important

Fig. 4.12 Comparison of the four FBS predictions for the hand coupled to the beam in the Zh-axis posture and with the four push forces

42 S. Perrier et al.



to control the push force while performing measurements in order to obtain accurate predictions. Finally, inaccuracies in the

impedance measurements between 250 and 270 Hz are due to the dynamics of the handle and do not appear in the FBS

coupling between the hand-arm system and the beam.

According to the results for the Xh-axis posture (Fig. 4.11), the FBS model failed to provide reliable predictions for the

influence of the hand on a beam with the four different push forces. This indicates that coupling between the hand-arm

system and the beam is not simple with this posture. The discrepancy between the FBS predictions and the target

measurements can be explained by the fact that only the vertical z-axis is considered in this work and that this assumption

is too restrictive for the coupling of the hand-arm system with the beam in this Xh-axis posture.

This work shows that reliable predictions can be obtained using the FBS method even with a non-linear structure such as

the hand-arm system. Mechanical coupling predictions between the human body and a mechanical structure are thus

possible using this method. Results show that it is important to control several parameters when performing the FBS

coupling with a human body part because the mechanical behavior of the human body is sensitive to several factors such as

position, orientation, and forces. This work also highlights the following merits of the FBS method: (1) Direct use of shaker

test data, (2) Combination of substructures when only the data interfaces are known.

However, a lack of information regarding degrees of freedom in some specific cases can lead to the failure of mechanical

coupling prediction. Despite this limitation and the need to process a large amount of data when several substructures are

coupled through several contact points, the results revealed in this study indicate that the FBS method is a promising

approach to study vibration interaction mechanisms between a mechanical structure and the human body.
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Chapter 5

Simple Experiments to Validate Modal Substructure Models

Mathew S. Allen and Daniel C. Kammer

Abstract While significant strides have been made in recent years, experimental/analytical substructuring methods can

be quite sensitive to seemingly small measurement errors, to modal truncation (for modal methods), small residual terms

(for frequency based methods), etc. . . As a result, one tends to have less confidence in a substructuring prediction than, for

example, a finite element model, even though both may have similar accuracy in some situations. This work explores ways of

estimating the uncertainty inmodal substructuremodels, seeking to provide the experimentalist with an approach that could be

used to evaluate the fidelity of a substructure model. This would allow one to detect cases where the substructuring problem is

very sensitive to uncertainty, so a remedy can be sought, and perhaps even provide a measure of the expected scatter in the

predictions. Simple experiments are proposed, for example obtaining the natural frequencies of the subcomponent after

attaching a well characterized subcomponent at a point, in order to verify the subcomponent model and to estimate the

sensitivity of the substructuring predictions to uncertainties. Special attention is paid to the adequacy of the modal basis of the

substructure.

5.1 Introduction

Experimental-analytical substructuring is a procedure in which an experimental model for a subcomponent is obtained, e.g.

using modal testing techniques, and then coupled with an analytical model (typically a finite element model) of another

subsystem in order to predict the response of the assembled system. By replacing part of the system with a test based model

one saves the difficulty and expense required to create a computational model; hence the method is most often desirable

when the subcomponent of interest is poorly known (e.g. its material properties, interface stiffnesses, etc. . .) or difficult to
model (intricate geometric features, etc. . .). On the other hand, although the tests required to create the experimental model

are straightforward and have existed for over 40 years, there are several issues that must be addressed in order to obtain an

accurate subcomponent model. Specifically, one must assure that an adequate number of subcomponent modes are captured

to describe the substructure adequately in the assembly of interest (modal truncation), rotational motions may need to be

measured, which are generally difficult to obtain and susceptible to noise. As a result of these issues, seemingly insignificant

experimental errors can cause dramatic errors in the substructuring predictions in some situations (see, e.g. [1, 2]). Some of

these issues are summarized in recent review papers [3, 4]. Because of these and other factors, experimental-analytical

substructuring seems to be quite under-utilized today, although there has been a resurgence of interest in recent years and

recent studies have shown better success in several situations [5–9].

Because substructuring predictions can sometimes be extremely sensitive to experimental errors, one may be hesitant to

rely on them and this inhibits more widespread use of the techniques. (One could, perhaps, argue that a finite element model

of a complicated substructure is just as likely to be plagued with severe errors, but that is a discussion for another paper. . .)
This paper takes initial steps towards addressing this lack of confidence by exploring whether some small number of

additional measurements can be taken when creating the experimental substructure model in order to assess its accuracy.

Specifically, after creating the subcomponent model, a second test is proposed where a known fixture is attached to the

subcomponent and its natural frequencies are measured. Those results are then compared with predictions of the natural
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frequencies of the assembly, obtained using substructuring techniques in order to assess the quality of the subcomponent

model. Mode shapes could also be measured but here we presume that those would not be available since they might increase

the cost of the test. (If a large channel count system is used with fixed sensors then the mode shapes might be easily obtained

and used in this validation as well; this will not be explored here).

Substructuring predictions can be obtained using modal models for the subcomponents (Modal Substructuring) or the

frequency response functions directly (Frequency Based Substructuring). This work focuses on the modal substructuring

approach; some of the similarities and differences between these approaches are discussed in [3, 4]. The authors are not

aware of any other works where model validation has been applied to substructure models, but the work by Kanda, Wei,

Brown & Allemang [10] is closely related. In that work they attached rigid blocks with known properties to a structure in

order to verify that the mode shape scale factors had been identified accurately. Several studies have compared

substructuring predictions with analytical models and/or experiments on the actual assembly (see, e.g. [1, 8, 11, 12]), but

here we treat a more realistic case where the modes of the assembly of interest are not known so one must infer whether the

subcomponent model is adequate using some other test.

The following section describes the proposed technique using a simple beam system as an example. Simulated results for

this system are then presented in Sect. 5.3 followed by the conclusions in Sect. 5.4.

5.2 Theory

Suppose that an experimental model of a certain system is desired. The system of interest might be as complicated as an

automotive engine, a rocket payload with exotic, difficult to characterize materials, or it might be as simple as a truss or a

basic electronic component. In any event, experiments would be performed to find the modes of the subcomponent and those

would constitute a modal model for the substructure. One of two basic approaches are typically used, both of which are

illustrated in Fig. 5.1. In the free-free modes approach, the structure of interest (the cyan colored beam in the figure) is

suspended from negligibly soft supports [13] and a modal test is performed to extract its modes. This method is known to

produce quite inaccurate substructure models since all of the modes in the substructure’s modal basis have zero shear and

moment at the connection point (the left end of the beam in this example). This can often be remedied by including residual

effects of out of band modes [14–16], although additional tests are often required to obtain the residual flexibilities and even

then they tend to be weakly represented in the measurements and difficult to accurately extract.

An attractive alternative is the mass-loaded interface approach, where a well characterized fixture or a transmission

simulator (TS) is attached to the subcomponent of interest and the free-free modes of the assembly are measured. The

effects of the transmission simulator are then removed from the substructure model in order to estimate the desired modal

model for the system of interest. Traditionally the fixture was designed to be rigid in the frequency band of interest so it

could be treated as a point mass [10, 17], but the authors recently showed that flexible fixtures could be readily

accommodated so long as the proper constraints were applied between the fixture and its analytical model when removing

its effects [6]. They introduced the name “transmission simulator” in [18] a few years after their initial work [6]. This

method produces a model whose modal basis is enriched with mode shapes that involve nonzero shear and moment at the

interface, so it tends to serve as an accurate, efficient basis for the substructure. This approach can also simplify

substructure testing when the components of interest are connected at many points. On the other hand, one disadvantage

of this approach is that one must subtract one subcomponent from another to estimate the substructure model, and this may

introduce negative mass (or stiffness) causing the results to be nonphysical. The authors recent works present some very

promising remedies to these difficulties [19, 20].

5.2.1 Substructure Validation Experiments

Once a substructuremodel has been obtained, this work proposes to validate it by performing an additional experiment. Awell

characterized fixture or structure is attached to the system and its natural frequencies are measured. The natural frequencies of

the assembly are then predicted using modal substructuring and the frequencies are compared with the measured frequencies.

(The details of the substructuring method are reviewed in [6], or also in Chap. 9 of the text by Ginsberg [21]).

The implicit assumption is that the error in the natural frequencies found when connecting the subcomponent to a fixture

in the validation experiment will be representative of the errors that will be obtained when the substructure model is

assembled in the system of interest. This issue should be considered very carefully, as it will determine whether the
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validation experiment is useful. If the validation experiment is well designed, then good correlation between the test results

and the natural frequencies predicted with the substructure model will provide a strong indication of how accurate the

substructure model.

Eventually, one might be able to rigorously quantify the accuracy of the substructure model using an approach such as

this, but that would probably require more tests than are likely to be practical. On the other hand, if one is willing to make a

strong assumption, for example that the errors in the natural frequencies are normally distributed and that each natural

frequency has the same standard deviation, then one could estimate bounds on the substructuring predictions. There is no

evidence yet to support such an assumption so for the moment this method should be expected to give only a qualitative

measure of the accuracy of the substructure model.

5.3 Results

The proposed validation methodology will be explored using the system pictured in Fig. 5.1, where the substructure of

interest is a 12-in. long beam with 0.75-in. height and 1.0-in. length (similar to the system studied in [6]). The transmission

simulator for the mass-loaded modes method is a 6.0-in. long beam with the same cross section. (The transmission simulator

used here differs significantly from that used in [6].) The frequency range of interest for this very stiff structure is 0–20 kHz.

All of the components were modeled using one dimensional finite element models (three degrees of freedom per node) with

30 nodes for the system of interest and 21 nodes for the transmission simulator.

Two different models were then obtained, one using the Free-Free modes method, denoted FF, and the other using the

mass-loaded interface method, denoted ML. The natural frequencies of these two models are shown in Table 5.1 below.

In practice the FF model would have been obtained by performing a modal test on the 12.0-in. beam with soft supports

simulating free-free boundary conditions. Here such a test was simulated by simply taking the FF model to be a modal model

with all of the modes of the beam that were within the testable bandwidth (e.g. assuming that a perfect test was performed).

Here the testable bandwidth was taken to be 0–20 kHz, so ten modes were obtained, three of which are rigid body modes.

As discussed previously, a FF model such as this without residual terms is known to be a poor model for a substructure. In the

following the goal is to see whether the results of the validation experiment can be used to discriminate between this poor

model and the more accurate ML model.

To obtain the ML model for the beam, a test on the T-beam system was simulated by coupling the transmission simulator

to the beam (resulting in a 30*3 + 21*3-3 ¼ 150 DOF system). Then all of the modes of the system below 20 kHz were

assumed to be measured perfectly, resulting in a 15 mode model for the beam. The transmission simulator was then removed

using the approach in [6] using only the displacements at each node in the FEAmodels for each beam (not the rotations) for a

total of 42 measurement points. In this process, seven negative TS modes are added to the system and seven constraints

applied, so the total number of DOF is still 15. Of these 15 modes, 12 remain below 20 kHz and 10 of those\correspond

closely with the free modes of the beam. The other two natural frequencies, at 695 and 1,037 Hz, are spurious modes that

involve very little motion of the beam of interest. (The transmission simulator and its negative model dominate the motion of

these modes; they would not make an important contribution to any FRF on the structure of interest.) Finally, the ML mode

model has three additional modes above 20 kHz that involve other motions of the beam; these are the modes that allow the

ML model to capture motions where the shear and moment at the connection point are nonzero.

Experimental Component C = 
Experimental Component B

Transmission 
Simulator 

used to find 
ML modes.

Free-Free Modes Mass-Loaded Modes

Experimental 
Component C

FEM Transmission 
Simulator: A

Experimental Based 
Component: B

Fig. 5.1 Two common methods for obtaining a modal model of a subcomponent of interest (the cyan colored beam is the substructure of interest

in this example) (color figure online)
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5.3.1 Validation Experiment: Simulating Perfect Measurements

Now a validation experiment is simulated as follows. A finite element model is created for a validation fixture that is a beam

of the same cross section at the transmission simulator, 3.0-in. long, modeled in FEA with 11 nodes. This validation fixture is

attached to the full FEA of the beam at its end as shown in Fig. 5.2a and all of the modes below 20 kHz are extracted to use as

validation data. (This assumes that one could extract all of the modes perfectly in a test, hence they are labeled “true” below.)

Then the FF and ML substructure models are used with the FEM of the validation fixture to predict the modes the assembly.

The natural frequencies obtained are shown below in Table 5.2. The results show that the ML model much more accurately

predicts the first several modes of the system, having a maximum natural frequency error of 1.5% as compared to 10.4% for

the FF model. The average error in each case is 0.9% for the ML model and 4.5% for the FF model. Hence, the validation

experiment has revealed that the ML model is quite an accurate model for the subcomponent, while the FF model is less

accurate although perhaps adequate for some purposes.

Table 5.1 Natural frequencies

(Hz) of FF and ML

subcomponent models for the

beam

Mode FF ML

1 0 0

2 0 0

3 0 0

– – 695

– – 1,037

4 1,082 1,083

5 2,982 2,993

6 5,845 5,892

7 8,422 8,424

8 9,663 9,809

9 14,435 14,831

10 16,869 16,892

11 25,954

12 31,480

13 2.9E + 09

Validation
Fixture

a b c

Fig. 5.2 Three potential validation experiments for the beam substructure shown in Fig. 5.1. A fixture with known properties is attached (orange
colored beam in the figure) and the natural frequencies of the assembly are measured and compared to predictions

Table 5.2 Natural frequencies

of FF and ML subcomponent

models for the beam for

validation case (a) in Fig. 5.2

Mode True (Hz) FF (Hz) FF % error ML (Hz) ML % error

4 768.5 777.9 1.2 771.8 0.4

5 1699.1 1875.0 10.4 1721.1 1.3

6 3155.8 3452.8 9.4 3196.3 1.3

7 5710.8 5919.5 3.7 5767.1 1.0

8 7752.6 7785.4 0.4 7758.2 0.1

9 9167.7 9227.7 0.7 9240.6 0.8

10 12813.4 13310.6 3.9 12877.4 0.5

11 14534.8 15459.1 6.4 14757.8 1.5

12 17500.3 20110.2 14.9 17783.5 1.6

13 19691.8 30085.6 52.8 123620.1 527.8
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This same procedure was repeated using the configuration shown in Fig. 5.2b, where the validation fixture is attached at

its center in much the same way that the transmission simulator was attached, although recall that the TS was 6.0 in. long

while the validation fixture is only 3.0 in. long, so its properties are quite different. The results in this case are shown in

Table 5.3. The maximum and mean errors for the FF substructure model are 12.4% and 7.2% for this validation experiment,

while the maximum and mean errors for the MLmodel are 2.2% and 1.2% respectively, significantly lower than those for the

FF model.

A third validation experiment similar to the case in Fig. 5.2a was performed, only with a 6.0 in. long validation fixture

(twice as long as the fixture used in the results presented in Table 5.2). Hence, the validation fixture is the same as the

transmission simulator except that it is connected at its end rather than at its mid-point. In this case it was observed that the

errors in the predictions of the FF substructure model were about 20% smaller than those reported in Table 5.2, while those of

the ML model remained about the same. There were also quite a few additional modes in the testable bandwidth (0–20 kHz).

This suggests, and it seems reasonable that, as the validation fixture becomes larger, that the modes obtained may become

more dependent on the (known) properties of the validation fixture and less dependent on the substructure model.

A few other cases were also explored, but they will not be presented in detail since the results presented above are

representative of all of the cases studied.

5.4 Conclusions

This work has proposed a methodology for validating experimentally derived models for substructures by performing an

additional experiment with a known fixture attached. The experimentally measured natural frequencies in this configuration

are then compared with the predicted natural frequencies to assess the quality of the substructure model. Some simple cases

were studied where validation experiments were simulated for two substructure models, one based on free-free modes (and

which was known to be fairly inaccurate) and another based on mass-loaded interface modes (which was thought to be

superior). In all of the cases shown the validation experiment did suggest that the ML model was superior. The differences

between the predicted natural frequencies (using the substructure model) and those obtained in the validation test are thought

to be indicative of the quality of the substructure model. This will be explored in more detail in future works.

This work has sought to detect inadequacies in a substructure model caused by modal truncation (i.e. inadequate span of

the modal basis of the subcomponent modes). Modal truncation is thought to be a significant contributor to the uncertainty in

a modal substructure model, but there are other important sources of uncertainty as well. The same procedure might also be

useful for quantifying the error in a substructure model due measurement uncertainty. Another potential source of error is the

way in which the connection between two substructures (e.g. the bolted joint) is approximated. This interface is captured

experimentally using the transmission simulator method, so this type of uncertainty might also be addressed using this

approach. Future works will explore these issues.
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Table 5.3 Natural frequencies

of FF and ML subcomponent

models for the beam for

validation case (b) in Fig. 5.2

Mode True (Hz) FF (Hz) FF % error ML (Hz) ML % error

4 839.9 842.1 0.3 840.4 0.1

5 2261.5 2334.6 3.2 2271.1 0.4

6 3982.0 4476.0 12.4 4045.3 1.6

7 6157.0 6619.5 7.5 6246.8 1.5

8 7038.7 7689.8 9.2 7096.1 0.8

9 9805.2 10815.8 10.3 9996.7 2.0

10 12600.8 13277.4 5.4 12702.6 0.8

11 14605.8 15998.5 9.5 14921.6 2.2

12 17293.0 21921.1 26.8 17460.1 1.0

13 20203.7 33475.3 65.7 49402.7 144.5
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Chapter 6

Experimental Realization of System-Level Vibration by Use of Single

Component Based on Virtual Boundary Condition Concept

Kohei Furuya, Tetsuki Hiyama, Nobuyuki Okubo, and Takeshi Toi

Abstract In order to meet the requirement of less vibration and less noise of complex machine, such as automobile, the

system-level vibration test is carried out in spite of huge cost and time, which is conducted only when all components are

able to be assembled. Although the vibration of individual component alone is different from the system-level, but a

sophisticated component test is aimed to realize the system-level vibration at early development stage.

In this paper, a virtual boundary concept where the single component involved vibration source is excited by common

uni-axial electro-magnetic exciters at proper point and direction with proper feed signal is proposed for experimental

realization of the system-level vibration.

First the FRFs of the component are measured solely and the operating force can be identified based on operating

vibration of the component. Then the FRFs of the rest component of the system and the system external force are given and

consequently the transmitted forces through the connection points between the component and the rest can be determined.

Therefore the target system-level vibration of the component can be predicted and the proper point and direction with proper

feed signal of the exciters can be determined.

After verification by simple numerical model, the proposed method is applied to a Heating, Ventilating and Air

Conditioning, HVAC component of automobile involved a blower motor. The difference of vibration and noise as well

between the HVAC component and system level is revealed and finally two exciters are used to realize the system-level

vibration and noise.

6.1 Introduction

In automobile companies, less vibration and less noise that affect directly on added value are strongly required and at the

same time shortening development time and cost cut should be satisfied [1, 2]. However the conventional procedure which

repeats try and error tests from component level till fully equipped level is time consuming with huge cost. Therefore in this

paper a Virtual Boundary Condition (hereafter denoted as VBC) concept based on the following four steps is proposed to

realize the system-level vibration and consequently noise by use of a single component that is interested in investigation,

usually involves vibration source. As a result this enables us the evaluation of vibration and noise at early development stage.

First the Frequency Response Functions, FRFs of the individual component are independently measured. And the

component under consideration is sorely operated to identify the generated force based on FRF matrix inversion with

operating vibration responses [3, 4].

At the second step, the transmitted forces between the component and the rest can be determined by using the FRFs of the

rest and given system external force and thus the system-level vibration as target can be predicted without assembling all

components [5].
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Then at the third step, in order to generate the target vibration at specified multiple frequencies (for example, harmonic

order of rotating motor), the point and direction of the exciters are determined as the directional force vector and weighting

factors as mentioned later.

Finally the VBC is realized to feed proper excitation signal to the exciters and the system-level vibration and noise of the

component can be obtained for further investigation of vibration and noise improvement.

6.2 Influence of Component on System-Level Vibration

In this chapter, the difference of vibration between the component-level and system-level when all components are

assembled is discussed and thus the problem of component test is revealed and the need of proposed method is mentioned.

The each case of component level is shown in Fig. 6.1; (a) a Heating, Ventilating and Air Conditioning, HVAC unit under

consideration is shown, which involves a blower motor rotating around Z axis at constant speed, 2,580 rpm under free-free

condition, which corresponds to the pure component test. (b) a beam which is assumed as the rest of car for simplification.

(c) the HVAC and the beam is connected through three bolts under free-free condition. (d) In addition to (c), a pseudo force

is exerted to the end of the beam in z direction which assumes the external road or engine excitation forces. In this case,

composed two sinusoidal signals at 43 and 258 Hz which correspond to the first order and sixth order of rotating speed of the

blower motor are fed to the other exciter.

The comparison of SPL among these levels at specified two frequencies, which is measured in semi unechoic room by a

microphone at 10 cm apart from HVAC back in + x direction is shown in Fig. 6.2. The rhombus mark expresses the case (a),

namely the component level test, the circle mark for case (c) where the SPL increase at the first order and the SPL decrease at

the sixth order are observed, that proves the component-level vibration is influenced by the beam. Also the square mark

expresses the case (d), namely the system-level which differs from component-level by 10 dB at both frequencies.

This concludes that the vibration and noise measured in component test is quite different from those in system test.

Operating motor

Operating motor Operating motor

Pseudo road/engine forceBEAMBEAM

HVAC

HVAC HVAC

BEAM

Z
X

Y

a

c d

b
Fig. 6.1 Schematic

representation for different

conditions. (a) HVAC: motor

in operation, (b) BEAM,

(c) coupled system 1: motor

on HVAC in operation,

(d) coupled system 2: motor

on HVAC and a pseudo

engine/road force on BEAM

in operation (Operating

condition)

:Coupled system 2 (d)
:Coupled system 1 (c)

2dB

:HVAC (a)

SP
L

 [
dB

]

a (1st 43Hz) b (6th 258Hz)Fig. 6.2 Comparison of SPLs
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6.3 Virtual Boundary Condition in Case of Simple FE Model

6.3.1 Identification of Transmitted Forces

The transmitted forces between the component and the rest which realize the system-level vibration without assembling all

components can be predicted by use of FRF synthesize method.

Figure 6.3 shows two components system connected through two points rigidly under free-free condition as simple FE

model. The component 1 under consideration is excited by constant force f1 of 2[N] assumed an internal vibration source as a

motor and the rest component 2 is acted by constant force f2 of 1[N] as external force. Also in the lower part, the VBC

concept is illustrated using only the component under free-free condition with two exciters.

The system-level vibration can be expressed by

xi ¼ Hcomp:
ij fj þ Hcomp:

ik rk (6.1)

Where x, f and r are the acceleration vector, the external force vector and the transmitted forces at boundary connection points

respectively. The lower subscript i, j and k stand for the evaluation point, the system input point and the connection

point respectively. H is the FRF matrix of individual component between the reference and the evaluation point and the

upper subscript stands the component number.

Then this equation is rearranged into unknown and know part and the following equation can be derived where the

system-level vibration and unknown transmitted force at boundary is left hand side.

xi
rk

� �
¼ A �H1

ik

B H2
ik

� ��1 H1
ij 0

0 H2
ij

" #
fe1
fe2

� �
(6.2)

Where

A ¼ I 0½ �; B ¼ 0 I½ �

By use of (6.2), the transmitted force can be determined by FRF of the component sorely and the external force. In this

paper, two specific frequencies, 42 and 84 Hz which not coincides any resonances are chosen because in general the

operating frequency is designed no to coincide the resonance and the directions of transmitted force are inherently different

at these two frequencies while the uni-axial exciter only provides one directional force and therefore the direction of the

exciter has to be optimized to minimize this inconsistency.

Point 1

Point 3

Point 2 Point 4

Component 2

Component 1

fe1 fe1

fe2

Z
X

Y

Fig. 6.3 Operating condition of a couple system and the conceptual scheme of a virtual boundary condition
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6.3.2 Setting VBC

In this section, the vibration at arbitrary points of the component is calculated as the target by transmitted forces and the

setting of exciters, in this case two exciters is discussed. First the candidate excitation points are so chosen as to distribute at

point 2 and 3 on the bottom surface of the component 1, that are connection point and at point 4 to 7 on 4 side surfaces except

top one where the input force f1 is located as shown in Fig. 6.4.The target acceleration vector x in system-level due to the

transmitted forces is expressed as,

xi ¼ H1
ikrk (6.3)

Then the directional force vector which defines uni-axial direction of each exciter and the weighting factor at two

specified frequencies which defines the amplitude of feed signal are determined in the least square manner as follows.

The directional force vector in x, y and z direction is denoted fa, the weighting factor at two o1 and o2 are a and b and then

the response difference e square between the target vibration and VBC vibration can be written as,

e2 ¼ xðo1Þ � a � xðo1Þk k2 þ xðo2Þ � b � xðo2Þk k2 (6.4)

Where

xðo1Þ ¼ Hðo1Þfa; xðo2Þ ¼ Hðo2Þfa

Therefore fa, a and b can be determined as,

fa ¼ HHðo1Þ � Hðo1Þ þ HHðo2Þ � Hðo2Þ
� ��1 � HHðo1Þ � xðo1Þ

xðo1Þj j þ HHðo2Þ � xðo2Þ
xðo2Þj j

� 	
(6.5)

a ¼ xðo1Þ � xðo1Þ
xðo1Þj j2 ; b ¼ xðo2Þ � xðo2Þ

xðo2Þj j2 (6.6)

Where the upper subscript H means complex conjugate.

Because of two exciters used, the combination of exciters at point 2–7 are 15 and the least square norm of e are shown in
Fig. 6.5, which suggests the optimum combination is point 2 and 7 for two exciters. Also Fig. 6.6 shows the directional force

vector and weighing factor at point 2 and 7 based on (6.5) and (6.6). At point 2 the force in z direction and at point 7 x direction

is dominant. As a result the VBC is illustrated in Fig. 6.7. Also Fig. 6.8 shows the flow chart of proposed VBC concept.

Point 1

Point 7

Point 3

Point 5

Point 4

Point 6

Point 2

Z
X

Y

Fig. 6.4 Candidate locations

for two exciters as VBC
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6.4 Application of VBC to HVAC

6.4.1 Force Identification of Blower Motor

In this section, the force generated by the blower motor in HVAC unit is identified by conventional FRF inverse method.

From the practical point of view, the FRF at spindle of the motor is difficult to measure and thus the substitute point is chosen

close to the spindle as shown in Fig. 6.9. The force identification is carried out to use the following equation as,

fb ¼ Hþxb (6.7)
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fa
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]
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Fig. 6.6 Exciter setting as

VBC: Directional force vector
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Where fb is the identified force of the blower motor and the upper subscript + means the pseudo inverse. The acceleration

vector includes three connection points in three directions and six points in x direction located in the surface which

contributes largely to radiate the noise.

Figure 6.10 shows the identified force where the first order of rotating speed is dominant and the harmonic order look

small. But due to HVAC dynamic characteristic the six orders should be taken into account.

6.4.2 Identification of Transmitted Forces

In this section, the transmitted forces to HVAC are identified. Figure 6.11 shows a typical direct FRF of HVAC component

at point 2 (indicated in Fig. 6.13) in x direction together with FRF of beam. Up to 300 Hz there are many resonances are

existed in both components and consequently the system should be influenced mutually. The external system force exerted to

the beam is assumed similar to the previous simple FE model. The identified transmitted force at point 2 is

FRF measurement and External

force identification

Interface force identification

Target vibration

For a candidate location

Weighting factors

Error calculation

Directional force vector

Next candidate
location

Eq. (2)

Eq. (3)

Eq. (5)

Eq. (6)

Eq. (4)

Fig. 6.8 Flow chart of VBC

concept

Spindle of the blower motor

Substitute location for the
identified blower motor force

Y

Y

x

x

z

z

HVAC

Fig. 6.9 Placement for

blower motor force

identification
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shown in Fig. 6.12 where not only the force in x and y direction but also that in z direction are found due to the rotation of

the blower motor.

6.4.3 Setting VBC

In this section, the setting of VBC is discussed. Fig. 6.13 shows the candidate excitation points on HVAC unit from point

2 to 8 in which point 2, 3 and 4 are the connection points with the beam. Then the error against the target system-level

vibration is shown in Fig. 6.14 for possible 21 combinations and point 2 and 4 for two exciters are found to minimize

the error. Also the directional force vector and weighting factor are shown in Fig. 6.15 for two exciters. As you can see, three

dimensional consideration is essential.

1st 43Hz

1st 43Hz

6th 258Hz

6th 258Hz

Frequency [Hz] Time [s]0 0.045

Time [s]0 0.045

Time [s]0 0.045

−3.0

3.0

0

X direction

Y direction

Z direction

Frequency [Hz]
F

or
ce

 [
N

]

F
or

ce
 [
N

]

−3.0

3.0

0

F
or

ce
 [
N

]

−3.0

3.0

0

F
or

ce
 [
N

]

F
or

ce
 [
N

]

0 300

0 300

1st 43Hz

6th 258Hz

Frequency [Hz]0 300

0

0

0.5

0.5

F
or

ce
 [
N

]

0

0.5

a

b

c

Fig. 6.10 Identified blower

motor force: frequency

domain (left), time series

(right). (2,580 rpm 43 Hz,

1 period 0.0227 s).

(a) X direction, (b) Y

direction, (c) Z direction

1st 43Hz 6th 258Hz

: HVAC
: BEAM

Frequency [Hz]

A
cc

el
er

an
ce

[(
m

/s
2 )

/N
]

1.0e+3

1.0e−3
0 300

Fig. 6.11 Driving point FRFs

of components at point 2

(X direction)

6 Experimental Realization of System-Level Vibration by Use of Single Component. . . 57



6.4.4 Application of VBC

The VBC is applied to the HVAC unit and SPL measured similar to the previous is compared with component-level and

system-level. The HVAC unit under free-free condition is sorely excited by two exciters based on suggested VBC as shown

in Fig. 6.16 while the blower motor rotates in 2,580 rpm. Figure 6.17 shows the comparison of SPL at evaluation point,

where the difference between the system-level square marked and component-level by good use of VBC triangular marked

is found about 2 dB at 43 Hz and 4 dB at 258 Hz, that improves significantly compared with rhombus mark, namely pure

component test without VBC.
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6.5 Conclusions

1. The transmitted forces between components in system level can be determined by FRFs of individual component and

system external force. Therefore the target vibration of the component under consideration can be predicted.

2. This target vibration can be realized by uni-axial exciters at proper point and direction with proper feed signal, so called

the Virtual Boundary Condition, VBC.

3. The VBC is successfully applied to actual HVAC unit and the system-level vibration and noise can be approximated at

specified frequencies without assembling all components.
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Chapter 7

An Introduction to the SEM Substructures

Focus Group Test Bed – The Ampair 600 Wind Turbine*

Randy L. Mayes

Abstract Recent advances have provided renewed interest in the topic of experimental dynamic substructures. A focus

group has been formed in the Society for Experimental Mechanics to advance the experimental dynamic substructures

technology and theory. Sandia National Laboratories has developed two identical test beds to enable the focus group to

advance the work. The system chosen was an Ampair 600 wind turbine with a fabricated tower and base. Some modifications

were made to the system to make it more linear for initial studies. The test bed will be available for viewing in the technology

booth of the IMAC exposition. A description of the turbine and modifications will be presented. Initial measurements on the

full system will be described. Initial modal tests have been performed on six blades at the University of Massachusetts at

Lowell [1]. Geometry and mass measurements for finite element modeling have been performed by the Atomic Weapons

Establishment in the UK [2]. Initial efforts to quantify each blade as an experimental substructure are ongoing. One goal is to

develop an experimental dynamic substructure of the blades and hub to couple with a finite element model of the nacelle and

tower to predict parked system response.

7.1 Introduction

There has been a resurgence of interest in experimental dynamic substructures in the past few years that has been

demonstrated by the number of papers and sessions at IMAC. In 2007 there were no substructures sessions, and of the

27 papers that mentioned the word “substructure”, less than half a dozen addressed experimental substructures. Since then

there have been three or four sessions on substructures each year. For a few years there was talk of developing a focus group

on the topic and last year the group formed officially. One of the first actions was to develop a test bed structure that could be

used for international collaboration. Sandia National Laboratories has developed two test beds that can be used for research,

one of which is available for loan. In the experimental substructures focus group meeting at IMAC in 2011, initial plans were

developed which led to the papers focused on the test bed this year.

7.2 Overview Description of the Experimental Dynamic Substructures Test Bed

In Fig. 7.1 one can see one of the two test beds. The test bed is founded upon an AMPAIR 600 wind turbine. The turbine was

set upon a tapered aluminum pole representing the tower with an aluminum base plate softly supported on the trampoline.

The base plate set on the trampoline should have a more consistent and more easily modeled boundary condition than the

base plate set on some unknown foundation. The height is 1.85 m from the bottom of the base plate to the top of the generator

housing. The rotor diameter is 1.7 m. The total mass of the test bed without the trampoline is 114 kg. For initial studies the

rotor was parked by modifying the generator.
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7.3 Description of the Blades

The blades are a glass reinforced polyester construction with local axes chosen as shown in Fig. 7.2. They are coated with a

white epoxy. In addition to the six blades on the two test beds, six other blades were acquired for individual blade testing.

The blades were given serial numbers. The blades are clamped to the hub by three bolts and two plates that sandwich the

blade in place.

7.4 Description of the Hub

The hub to which the blades attach is shown in the center and bottom of Fig. 7.3. The hub has a mechanism which pitches the

blades so they will not transmit power in high winds. Initial substructure studies will be focused on developing linear

experimental substructures, so nonlinear elements of the system are minimized. For the test bed, the mechanism is defeated

by potting the mechanism in the normal operating position to attempt to eliminate any nonlinear action such as gapping or

rattling in the dynamics. The mechanism was activated by masses that were attached through bolts in the holes at the greatest

radial distance from the center of the hub (seen on the black brackets in the figure). These masses were removed and only

hardened steel bolts were inserted in those three locations. In addition the shaft was replaced with a modified shaft that bolts

to the hub to ensure that there is no slip between the shaft and hub.

Fig. 7.1 Substructures focus

group test bed – Ampair 600

wind turbine
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7.5 Description of the Generator

The generator is modified to make the system parked for initial studies. In Fig. 7.3 the generator parts can be seen. The white

generator housing and front bearing retainer have the original bearings in them, but the armature and field coils are replaced

by a single machined steel part that simulates their mass. The modified mass mounts in the bearings in the front bearing

retainer and aft housing and is shown in the figure. When the front bearing retainer is bolted to the aft housing, it fixes the

modified mass in the housing so that it cannot rotate in the bearings. This is another effort to minimize nonlinearity.

Figure 7.4 shows the actual parts that are replaced by the modified mass. A smaller aluminum tail fin replaces the

manufacturer’s large tail fin to reduce the number of tail fin modes in the testable bandwidth (shown in Fig. 7.1).

Fig. 7.2 One of the Ampair

600 blades

Fig. 7.3 Test bed parts –

(Left to Right) – Generator

housing, mass to replace

the armature and field coils,

coffee cup (for size

comparison), hub, front

bearing retainer, blade
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7.6 Description of the Tower and Base

The base is made of a 7.62 cm thick by 76.2 cm diameter aluminum plate. It bolts to a 3.81 cm thick plug that is screwed and

glued into the base of the pole representing the tower. The tower is made from a hollow tapered aluminum flag pole cut to

152.4 cm in length with 0.318 cm wall thickness. The tower base outside diameter is 7.62 cm and the top outside diameter is

6.39 cm. A hollow adapter sleeve that is 7.19 cm outside diameter is welded to the top of the tower to adapt to the generator

housing. Three radial screws attach the base of the generator housing to the top of the tower. All this is set on a trampoline to

provide a well-characterized boundary condition for the base. Setting the base on a floor was considered to be too variable a

boundary condition, depending on floor roughness and material.

7.7 Linearization Attempts

The desire of the substructures focus group was to start with a linear experimental dynamic substructure, so efforts to remove

possibly nonlinear parts were undertaken. In general, joints can be nonlinear. First the rotating shaft of the armature was

replaced with the armature/field coil mass that would be locked to the housing when the front bearing retainer was bolted to

the housing. Second, the overspeed mechanism which pitches the blades to reduce lift in high winds was potted to reduce the

rattling and free play in that mechanism. The masses that activate this mechanism through centrifugal force were also

removed. Third, the hub shaft was replaced with a shaft that would directly bolt to the hub to eliminate play between the hub/

rotor and shaft.

7.8 A First Look at the Dynamics

A rudimentary impact modal test was performed to get a first look at the dynamics of some of the lower modes. There were

not enough accelerometers to distinguish between first and second bending mode shapes of a blade or the tower. The elastic

modes were extracted with the SMAC algorithm [3]. Low frequency rigid body frequencies were extracted from the peak in

an autospectrum generated from a person exciting a specific rigid body motion of the test bed on the trampoline. Table 7.1

shows the modal parameters and a description of the modes extracted up to 50 Hz. Figures 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11,

and 7.12 show the mode shapes. Figure 7.13 shows the analytical synthesis of a complex mode indicator function from

extracted modal parameters compared to the actual experimental data. The frequencies and damping change slightly with

impact level, but the modal extraction was readily achievable.

Fig. 7.4 Removed generator

parts
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7.9 First Research Efforts

The substructures focus group consensus was to begin by characterizing just one blade. Initial plans of university and

industry partners were to test blades in free and possibly mass loaded or fixed configurations. Also efforts were initiated to

develop the solid geometry and a finite element model of the blade to aid studies. One proposal was to experimentally extract

the parked rotor substructure and couple it to an analytical model of the tower and base. The hardware lends itself to these

and many other possible approaches.

Mode 3
 Frequency: 16.966 Hz
 Damping: 1.675 %Cr
 IDLine 1: Generated from reference 1001Z+
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Fig. 7.5 Top view 16.97 Hz

Table 7.1 Modal parameters of the Ampair 600 test bed

Description Frequency Modal damping %

Pitch about X axis 0.875 Hz (.125 Hz resolution) **

Pitch about Z axis 0.875 Hz (.125 Hz resolution) **

Vertical Y bounce 2.75 Hz (.125 Hz resolution) **

Lateral X 3.125 Hz (.125 Hz resolution) **

Lateral Z 3.125 Hz (.125 Hz resolution) **

Torsion about Y 3.375 Hz (.125 Hz resolution) **

Blades bending about Y 16.97 1.5

Blades bending about X 17.68 1.8

Blades bending in phase in Z 18.76 1.87

First bend tower in X 20.4 1.74

First bend tower in Z 21.38 1.50

Second bend tower in X 29.57 2.37

Tail X motion out of phase with rotor Z motion 37.12 1.09

Rotor out of phase with nacelle rotation about X 50.80 1.36
**A few rigid body modes that were extracted from impact FRFs had damping on the order of 10%
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Mode 3
 Frequency: 17.679 Hz
 Damping: 1.800 %Cr
 IDLine 1: Generated from reference 1101Z+
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Fig. 7.6 YZ plane 17.68 Hz

Mode 4
 Frequency: 18.759 Hz
 Damping: 1.874 %Cr
 IDLine 1: Generated from reference 1101Z+
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Mode 4
 Frequency: 20.397 Hz
 Damping: 1.743 %Cr
 IDLine 1: Generated from reference 3X+
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Fig. 7.8 XY plane 20.4 Hz

Mode 5
 Frequency: 21.382 Hz
 Damping: 1.496 %Cr
 IDLine 1: Generated from reference 3Z+
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Fig. 7.9 YZ plane 21.38 Hz
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Mode 5
 Frequency: 29.572 Hz
 Damping: 2.374 %Cr
 IDLine 1: Generated from reference 9X+
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Mode 6
 Frequency: 37.120 Hz
 Damping: 1.085 %Cr
 IDLine 1: Generated from reference 9X+
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Mode 10
 Frequency: 50.801 Hz
 Damping: 1.353 %Cr
 IDLine 1: Generated from reference 1001Z+

-60 -50 -40 -30 -20 -10 0 10 20

-35

-30

-25

-20

-15

-10

-5

0

5

10

Y axis (in)

Z
 a

xi
s 

(in
)
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Fig. 7.13 CMIF for 120 degree blade – analytical (dashed) versus experimental (solid)
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Chapter 8

Modal Assessment of Wind Turbine Blade in Preparation

of Experimental Substructuring

Mohsin Nurbhai and David Macknelly

Abstract As an active member of the International Modal Analysis Conference (IMAC) Substructuring Focus Group,

AWE has agreed to participate in an international effort in the development of analytical and experimental substructuring

techniques. The field of analytical and experimental substructuring in highly complex, especially the coupling of the two

methods, and deservedly attracts an international audience. A large and diverse working group directly benefits this

development activity, in order to make significant progress over the next few years. The overall aim of the programme is

to engage parties interested in dynamic substructuring to attack and conquer the practical problems limiting the use of

substructures. In response to the IMAC XXIX, Jacksonville, Florida, experimental substructuring focus group meeting, the

Structural Dynamics team at AWE have conducted modal analysis work on a test bed, in preparation for future experimental

substructuring efforts to be conducted by the focus group.

Following the first meeting of the technical focus group at IMAC XXIX, it was unanimously agreed by all stakeholders

that the mechanism to carry out this development would be via the substructuring of a wind turbine, specifically the Ampair

600 Wind Turbine, manufactured by a UK based company. The longer term deliverable of this work stream would be to

successfully model this wind turbine system where the turbine blades were modelled from experimentally derived

substructures and other components were modelled as analytical substructures. This offers a unique capability to better

model complex structures with complex material properties in an assembly configuration.

Three Ampair 600 Wind Turbine blades were procured with the aim to understand the characteristics of their structure.

The blade is divided into sections, a Blade and an Anchor to the rotor. The Blade is believed to be made from a composite of

glass fabric and polypropylene matrix, and the Anchor, from a foam of thermoplastic based syntactic polymer.

To derive high precision blade geometry, a non-contact scanning and reverse engineering approach was used. For

complex freeform geometry, conventional contact measurement methods are unsuitable due to their low point density and

rate of capture. For this reason a Romer Absolute articulated arm with Perceptron V5 laser scanner was used. This system

was specifically used due to its tolerance of reflective surfaces and those with differing contrast, as present in the turbine

blades. All three blades were measured and the resulting stitched surface meshes were put out in standardised CAD format.

A master (average) mesh was constructed from the combinations of the individuals by averaging the errors between the three

datasets over their complete geometry. A two-stage best fit alignment was used comprising of a coarse alignment by

minimising deviations between a small number of sample points followed by a fine alignment using a more dense point

sample. Mesh averaging the surfacing was done using Rapidform XOR3 and the final model generation was completed in

Unigraphics NX5.

A full modal assessment was carried out by the authors, consisting of Modal free-free testing and Modal free and fixed

analysis, together with an analytical model update and full correlation between the experimental and analytical results. Finite

element models (FEM) for each of the blades, tuned to their relative mass, were generated in the ANSYS analysis code.

Material models in these analytical models were further optimised following correlation with test data.

The three turbine blades were each scanned in a Free-Free condition using a Polytec 3D Scanning Laser Doppler

Vibrometer. Using this technique it was possible to get a relatively high spatial density of measurement points compared to

traditional techniques such as accelerometers. In addition to the high spatial density, translational DoFs were measured in all

three axes. The measurements were post-processed and its modal parameters were fitted using the ICATS software package.
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The results from the physical tests were mapped to a reduced FEM. This allowed like-for-like, test-to-test and test-to-FEM

correlation using a number of standard correlation metrics.

As an immediate follow-on to this piece of work, the authors suggest that fixed-based modal tests of the three blades are

carried out including to-test and to-FEM correlation for completeness at the least. It is also proposed that further material

testing is carried out on blade material samples, including visual inspection of the fibre layup and Dynamic Material

Analysis to help better characterise its mechanical response.

AWE (c) Crown Owned Copyright 2012
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Chapter 9

Comparison of Some Wind Turbine Blade Tests

in Various Configurations

Julie Harvie and Peter Avitabile

Abstract As part of the SEM Dynamic Substructuring Subgroup, several different dynamic modeling scenarios are to be

studied in an attempt to identify an overall substructuring modeling strategy that can be used. A wind turbine system was

chosen as a test bed to deploy some of those techniques. Two separate wind turbines with a total of six blades are available

for this study.

Modal tests were performed with the six turbine blades in a free–free, built-in and mass loaded configuration to develop

modal data bases for comparison of the blades. Each of the six blades were tested and compared to each other to identify the

similarity and differences in the blades. The results of that study are presented in this paper.

9.1 Introduction

Dynamic substructuring techniques have been used for the development of analytical models for many years. Experimental

techniques utilizing modal data have also been used for several decades and more recently use of frequency based

substructuring techniques have gained popularity. However, many times the experimental data sets lack some of the

necessary degrees of freedom for the development of the model or have been plagued by measurement issues pertaining

to measurement noise that have often caused the approaches to not produce the high fidelity models that are expected for this

type of modeling.

The Dynamic Substructuring Subgroup, newly formed as part of the SEM International modal Analysis Conference

community, has placed emphasis on developing these approaches and to provide basic guidance in the utilization of these

techniques. The group is focused on a “best practices” type of approach to help all of the experimental structural dynamic

engineers in deploying these valuable modeling techniques in the best manner possible given the current understanding of

the methodology and common pitfalls using actual experimental data to develop these models. The group is also focused on

moving this technology forward in a meaningful and practical way to optimize the benefits of these modeling strategies.

As such, the SEM Dynamic Substructuring Subgroup has started to plan out a candidate structure that can be used to

deploy these modeling strategies and provide guidance on the use of the approaches through the use of a small Ampair wind

turbine blade. Sandia Labs has initiated the process and has companion papers at IMAC 30 (2012) [1] to describe the

structure and the sets of data and databases that will be developed for general use in the structural dynamics community;

a website has been set up for the group’s activities [2].

The work presented in this paper focuses on the experimental modal tests that were performed on six turbine blades that

were obtained from two separate Ampair wind turbines. The blades were tested in three separate configurations and all the

blades were compared to each other as part of this exercise. Note that the majority of test and analysis results presented here

were conducted as part of the University of Massachusetts Lowell’s Vibrations course during the Spring 2011 semester;

these results were part of educational studies for that class and as such, the results should be used with that in mind. The sets

of cases studied along with the comparison of the results are presented next.
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9.2 Cases Studied

For this study, six Ampair wind turbine blades were used as the test subjects to explore the similarities and differences

between blades. Impact tests were performed on the turbine blades in several configurations which can be summarized as:

Case 1 – Blade hanging free–free

Case 2 – Blade with mass loaded connection at root end

Case 3 – Blade clamped to sizeable anchor

9.2.1 Structure Description & General Modeling/Testing Performed

The six Ampair blades each weighed approximately 1.8 lb and were approximately 30” in length along the centerline. The

blades had 20 impact points specified to be at roughly the same position on each blade. Note that the impact locations were

defined using three consistent hole mounting locations for reference; slight errors in the locations of these reference holes did

cause a small amount of variation that could visibly be seen in the actual geometric location for the 20 points identified for

impact testing on each of the blades. All blades were serialized by Sandia Labs with the notation of #001, #002, #003, #004,

#005, and #006 for reference. A photo of one of the turbine blades with impact locations identified is shown in Fig. 9.1.

Impact excitation was used to study the first few modes of the blades in the flapwise direction. For cases 1 and 2, the tests

were performed as part of a class project where six teams of two students tested each blade. Various testing parameters were

used by each group, but generally a bandwidth of either 300 Hz or 500 Hz was employed with 800 lines of spectral

resolution. For case 3, testing was performed on all blades by a single individual with a bandwidth of 300 Hz and 1,600 lines

of spectral resolution. Consistently five averages were taken for all tests. A reference accelerometer with a nominal

sensitivity of 10 mV/g was attached to the back side of each of the blades at a point near the tip using wax; generally

point 18 was chosen for the location of the accelerometer. Some modes were not able to be measured in a few cases where

different points were chosen for the location of the reference accelerometer.

9.2.2 Case 1 – Blade Hanging Free–Free

The blades were each tested in a free–free condition by hanging them with bungee cords that were hooked to threaded rods

fixed through the holes toward the root of the blades using nuts and washers. Illustration of test setup, similar for all blades, is

shown in Fig. 9.2. Frequency results are displayed in Table 9.1 along with drive point FRFs up to 300 Hz for consistency.

Consideration of the natural frequencies reveals that blade S/N #003 consistently had the highest frequency for each mode,

suggesting that there might be something unique about its material properties; however the densities of all blades are likely

equal because the weights of each blade were approximately the same. After extracting the normalized mode shapes from the

test data, a MAC was performed between blades with the tip point excluded because it was observed to have inconsistent

behavior for many of the mode shapes due to impact difficulties. The MAC is displayed in Table 9.2, where the strong mini-

diagonals indicate good correlation of subsequent modes; the average MAC for the first three modes of all the blades was

98.3, with a minimum of 90.5. Note the gray boxes indicate immeasurable modes due to reference location.

Fig. 9.1 Ampair blade with

impact points labeled,

consistent for all six blades
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9.2.3 Case 2 – Blade with Mass Loaded Connection at Root End

The blades were each tested in a mass loaded condition by attaching a 2.45 lb aluminum block, slightly greater mass than that

of the blades, to three threaded rods fixed through the holes toward the root of the blades using nuts and washers. The

apparatus was then hung by two bungee cords that were hooked to the same threaded rods where the added mass was located.

Illustration of test setup, similar for all blades, is shown in Fig. 9.3. Table 9.3 shows frequency results along with drive point

FRFs up to 300 Hz for consistency. Consideration of the natural frequencies reveals that once again blade S/N #003

consistently had the highest frequency for each mode, supporting the notion that there is something unique about its material

properties. After extracting the normalized mode shapes from the test data, a MAC was performed between blades with the

tip point excluded because it was observed to have inconsistent behavior for many of the mode shapes due to impact

difficulties. The MAC is displayed in Table 9.4, where the strong mini-diagonals indicate good correlation of subsequent

modes; the average MAC for the first three modes of all the blades was 97.8, with a minimum of 88.4. Note that once again

the gray boxes indicate immeasurable modes due to location of reference accelerometer.

Fig. 9.2 General test setup

of blade in free–free

configuration

Table 9.1 First five natural frequencies of six Ampair blades in flapwise direction tested in free–free configuration

Blade #001 #002 #003 #004 #005 #006

Mode Hz Hz Hz Hz Hz Hz

1 40.2 42.6 45.1 41.0 40.7 40.3

2 119.9 127.4 132.5 120.5 122.0 122.1

3 183.2 191.3 194.3 187.2 181.1 193.9

4 225.7 245.0 251.5 240.1 N/A 235.6

5 303.3 319.6 323.8 N/A 306.5 319.4

Ref dof Pt 18 Pt 18 Pt 18 Pt 20 Pt 19 Pt 18

Drive pt FRF 300 Hz BW
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Table 9.2 MAC correlation values for six Ampair blades in flapwise direction tested in free–free configuration

Fig. 9.3 General test setup

of blade in mass loaded

configuration
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9.2.4 Case 3 – Blade Clamped to Sizeable Anchor

The blades were each tested in a clamped condition by bolting them to an 800-lb optical table. This was achieved by

attaching an aluminum adapter plate to three threaded rods fixed through the holes toward the root of the blades using nuts

and washers. The adapter plate was then bolted to the optical table at nine locations. A few photos regarding test setup are

shown in Fig. 9.4. Table 9.5 shows frequency results for the first three modes of the blades along with the corresponding

drive point frequency response functions; higher order modes were not studied in this configuration because the boundary

condition seemed to have a noticeable contribution to the test subject’s modal characteristics at higher frequencies. After

extracting the normalized mode shapes from the test data, a MAC was performed between blades with the tip point excluded

because it was observed to have inconsistent behavior for many of the mode shapes due to impact difficulties. The MAC is

displayed in Table 9.6, where the strong mini-diagonals indicate good correlation of subsequent modes; the average MAC

Table 9.3 First five natural frequencies of six Ampair blades in flapwise direction tested in mass loaded configuration

Blade #001 #002 #003 #004 #005 #006

Mode Hz Hz Hz Hz Hz Hz

1 37.5 39.8 41.8 37.5 37.0 37.3

2 107.4 113.5 119.7 110.5 111.8 111.6

3 172.9 181.7 187.9 178.4 171.9 184.1

4 199.1 212.7 223.0 212.0 N/A 206.4

5 260.9 254.6 288.2 N/A 245.4 267.2

Ref dof Pt 18 Pt 18 Pt 18 Pt 20 Pt 19 Pt 18

Drive pt FRF 300 Hz BW

Table 9.4 MAC correlation values for six Ampair blades in flapwise direction tested in mass loaded configuration
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Fig. 9.4 General test setup of blade in clamped configuration

Table 9.5 First three natural frequencies of six Ampair blades in flapwise direction tested in clamped configuration

Blade #001 #002 #003 #004 #005 #006

Mode Hz Hz Hz Hz Hz Hz

1 19.3 20.7 21.5 19.8 19.7 19.5

2 64.5 70.0 72.8 71.7 72.0 70.0

3 137.4 133.3 134.8 127.0 126.8 128.5

Ref dof Pt 18 Pt 18 Pt 18 Pt 18 Pt 18 Pt 18

Drive pt FRF 300 Hz BW

Table 9.6 MAC correlation values for six Ampair blades in flapwise direction tested in clamped configuration
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for the first three modes of all the blades was 95.6, with a minimum of 74.7. This somewhat low MAC can likely be

attributed to blade S/N #002 since all MAC values under 80 involve blade S/N #002; when excluding this blade the average

MAC for the first three mode increases to 97.1, with a minimum of 84.1.

9.3 Conclusions

The results of modal tests performed on six different Ampair turbine blades, tested in three different sets of boundary

conditions, were presented. Frequency and shape correlation was presented for all of the studies performed.

These studies were performed as part of the SEM Dynamic Substructuring Subgroup work to identify “best practices” in

the utilization of dynamic substructuring modeling methodologies. These results are archived as part of that project and are

available for use in different dynamic modeling activities.
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Chapter 10

Consideration of Interface Damping in Dynamic Substructuring

Pascal Reuss, Bernhard Zeumer, Jan Herrmann, and Lothar Gaul

Abstract Dynamic substructuring offers the possibility to simulate assembled systems efficiently. The coupling of the

substructures can be established either by Component Mode Synthesis (CMS), or Frequency Response Functions (FRF) can

be used to couple the substructures by Frequency Based Substructuring (FBS). In real systems, coupling is done by joints

which can influence the dynamics of the assembled system significantly due to local damping and nonlinearities caused by

friction. In this contribution the coupling of two beam-like substructures, which are assembled by a bolted joint, is

considered using both coupling methods. While the substructures are linear, the implementation of the nonlinear friction

forces requires special attendance in the equations of motion. The Harmonic Balance Method is therefore used to efficiently

compute FRFs. Using FBS, the coupling is established directly in the frequency domain. The method provides the possibility

to replace the dynamics of individual substructures by measured FRFs of the uncoupled system and combining numerical

and experimental models. Alternatively, Component-Mode-Synthesis is used.

10.1 Introduction

Substructuring methods are of great interest for the computation of large finite element models of assembled structures.

A separate consideration of each substructure offers several advantages in comparison with an investigation of the whole

system. A validation of each substructure can be realized much easier compared to the consideration of the entire system.

A substructure can be replaced without changing the whole model and even experimental data can be used to describe the

dynamics of a substructure.

In real structures coupling is done by bolted joints where friction effects play an important role [3, 7, 8]. The damping

contribution of the joints can significantly change the system behavior due to the fact that the damping is much higher than

the overall material damping. Additionally, friction in joints is a local damping effect that requires a special attendance when

modeling the substructure interface. In this paper, special focus lies on the dynamics within the interface and it is shown how

this interface dynamic can be implemented in the system equations to compute FRFs.

In order to give an impression of the task which is treated in this work, Fig. 10.1 shows two substructures a and b which

are coupled by two nonlinear elements. The elements are connected to the substructure at the interface node pairs (2, 4) and

(3, 5). Now, the transfer path from the excitation point 1 to the considered output at point 6 is of interest. By reference to this

example, two different coupling methods are presented in this paper, which is organized as follows. In the next section,

Component Mode Synthesis is introduced and the Craig-Bampton reduction basis is reviewed for clarity. Then, it is

demonstrated how to integrate a nonlinear local joint model in the component synthesis. Subsequently, the Frequency-

based Substructuring is presented and both methods are tested using an example system. The suggested simulation approach

is finally applied to a finite element model of two coupled beams. The paper closes with an short conclusion.
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10.2 Component Mode Synthesis (CMS)

The concept of Component Mode Synthesis (CMS) combines model order reduction of component models with

substructuring methods to obtain a model with a minimal set of degrees of freedom (DOF) and a sufficient approximation

of the dynamic behavior of the assembled system [2, 9]. For large finite element models, the Craig-Bampton method is one

of the standard methods to establish component model order reduction and subsequent coupling of substructures.

10.2.1 Craig-Bampton Recduction Basis

Using the Craig-Bampton method the reduced system represents a mixed formulation of the system dynamics in modal and

physical coordinates. The idea is to let the interface DOFs, where forces can act on the substructure, in the physical domain

and replace the free DOFs by a combination of so called fixed interface modes describing the dynamic part and static terms,

the constraint modes. Therefore the matrices are partitioned to free (index f) and interface (index i) DOFs, i.e.

Mff Mfi

Mif Mii

� �
€xf
€xi

� �
þ Kff Kfi

Kif Kii

� �
xf
xi

� �
¼ 0

f i

� �
: (10.1)

For the free degrees of freedom the fixed interface modes are computed by solving the EVP of the form

Kff � o2
j Mff

� �
fj ¼ 0: (10.2)

The dynamic part of the reduction base is defined by the first m eigenvectors F ¼ f1, . . ., fm containing the desired

frequency range. Additionally the reduction base is enriched by the constraint modes defining a unit displacement on the

interface DOFs so that the reduction base Y can be written as

xf
xi

� �
¼ F �K�1

ff Kfi

0 I

� �
q
xi

� �
¼ Y

q
xi

� �
: (10.3)

The reduced matrices of each substructure can now be computed with the individual reduction base Y

~Mi ¼ YTMiY; ~Ki ¼ YTKiY:

10.2.2 Coupling of Reduced Substructures by Nonlinear Elements

Following the approach of [5], the governing equation of an assembled system can be written as

M€xþ D _xþ Kx ¼ f þ g; (10.4)

Substructure a

Substructure a

Substructure b

Substructure b

Coupling

1

1

2

2

3

3

4

4

5

5

6

6

Nonlinear ElementFig. 10.1 Coupling of two

substructures with two

nonlinear elements
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where the matrices contain the reduced matrices of the substructures

M ¼ diag ~M1; . . . ; ~Mp
� �

; D ¼ diag ~D1; . . . ; ~Dp
� �

; K ¼ diag ~K1; . . . ; ~Kp
� �

;

x ¼ q1; x1i ; . . . ; q
p; xpi

� 	T
; f ¼ Y1f 1; . . . ;Ypf p

� 	T
; g ¼ Y1g1; . . . ;Ypgp

� 	T
:

Here, f is the vector of the external forces and g the vector of the connecting forces. The force equilibrium at the interface is

given by

LTg ¼ 0; (10.5)

where L is a Boolean matrix localizing the interface DOFs of the substructure in the global set of DOFs. The forces g can be
expressed by the Boolean matrix B with the relation L ¼ null(B). The Lagrange multipliers l represent the interface forces,
such that

g ¼ �BTl: (10.6)

The equilibrium condition can be written as

LTg ¼ �LTBTl ¼ 0: (10.7)

Following [15], the Lagrange multipliers can be expressed by the stiffness and the damping quantities, Kb and Db, of the

coupling elements

l ¼ Kbuþ Db _u; (10.8)

where u is the relative displacement between the coupling points. For the introductory example, u is

u ¼ x2 � x4
x3 � x5

� �
¼ Bx: (10.9)

In the later application, the nonlinear coupling element is a friction model. The friction only acts in one direction and the

other DOFs of the coupling points are fixed. Therefore the Bmatrix is partitioned into perfect and flexible interface DOFs, as

presented in [15]:

B ¼ Bf

Bp

� �
: (10.10)

The perfect interface is coupled by the null space of the constraint operator related to the perfect part of the interface

Lp ¼ nullðBpÞ; (10.11)

whereas the interface forces of the friction are implemented using the flexible part of B

g ¼ �BT
f KbBf x� BT

f DbBf _x: (10.12)

The flexible part contains the Lagrange multiplier describing the friction forces FT at the node pairs. The nonlinear friction

forces can be approximated by an equivalent stiffness and damping term using the Harmonic Balance Method (HBM):

l ¼ FT � Khbmuþ Dhbm _u: (10.13)

Now, the interface forces can be expressed by

g ¼ �BT
f KhbmBf x� BT

f DhbmBf _x: (10.14)
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The final equation which is solved iteratively in the frequency domain for time-harmonic behavior now reads

LTp ðK þ BT
f KhbmBf ÞLp þ ioLTp ðDþ BT

f DhbmBf ÞLp � o2LTpMLp

� �
x̂ ¼ LTp f̂ : (10.15)

10.3 Interface Flexibility and Damping

In order to linearize the nonlinear friction force FT by the use of the Harmonic Balance Method [13], it is decomposed into an

in phase part, i.e. stiffness and an out of phase part which corresponds to damping. Accordingly, the friction force can be

substituted by a harmonic equivalent stiffness coefficient khbm and a harmonic equivalent damping coefficient dhbm
depending on the relative displacement u

FTðuÞ � khbmuþ dhbm _u: (10.16)

In this work, the so called Jenkins friction model is chosen which consists of a Coulomb friction model with an additional

spring in series, as depicted in Fig. 10.2. The contact stiffness is denoted as kt. For small displacement amplitudes û, the
model behaves like a pure elastic spring. No damping occurs until a critical amplitude is excessed. The critical amplitude

when sliding begins is û ¼ mN=kt, which can also be written in a normalized form, where sticking and sliding are separated

for u ∗ � 1 and u ∗ < 1, respectively, to u� ¼ mN=ktû.
The Fourier coefficients of the equivalent stiffness and damping for the Jenkins model can be computed by a section-wise

integration of the friction force for one period. The coefficients are given in Table 10.1 and can be found in the literature, see

e.g. [1, 12]. In addition, other methods to obtain equivalent stiffness and damping coefficients are provided in [11].

10.4 Frequency-Based Substructuring (FBS)

Instead of using a modal representation, the system dynamics can also be represented by frequency response functions (FRF)

and coupling is realized in the frequency domain directly [10]. With the difficulties of experimental data in mind [4, 14],

numerical and experimental models can hereby be combined. A compact formulation of FBS can be found in [5]. In this

Table 10.1 Equivalent stiffness

and damping of the Jenkins

friction model for sticking

and stick-slip

Coefficient Sticking (u ∗< 1) Stick - Slip (u ∗� 1)

khbm kT kT
p ðarccosð1� 2

u� Þ � 2
u� ð1� 2

u� Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u� � 1

p Þ
dhbm 0 4kT

pou� ð1� 1
u� Þ

FT
kt

μN

u

FT,u

θ∗
ω π

ω
θ∗+π

ω
2π
ω

û

μN

t

θ ∗ =arccos(1−2 μN
ktû

)

Fig. 10.2 Jenkins friction model (left) and friction behavior for a time harmonic relative displacement (right)

84 P. Reuss et al.



work, a formulation following the approach from [6] is used (with scalar quantities for clarity). Consequently, every point of

the substructure possesses one DOF. Substructure a can be written in the frequency domain as

x̂1
x̂2
x̂3

2
4

3
5 ¼

H11 H12 H13

H21 H22 H23

H31 H32 H33

2
4

3
5 F̂1

F̂2

F̂3

2
4

3
5; (10.17)

and for substructure b

x̂4
x̂5
x̂6

2
4

3
5 ¼

H44 H45 H46

H54 H55 H56

H64 H65 H66

2
4

3
5 F̂4

F̂5

F̂6

2
4

3
5: (10.18)

Here,H corresponds to the receptanceH ¼ ðK þ ioD� o2MÞ�1
. The equilibrium of the interface forces can be expressed by

F̂2 þ F̂4 ¼ 0 ) F̂2 ¼ �F̂4 ¼ F̂ 1; (10.19)

F̂3 þ F̂5 ¼ 0 ) F̂3 ¼ �F̂5 ¼ F̂ 2; (10.20)

where F̂ 1 and F̂ 2 are the nonlinear forces of the coupling elements. The interface forces can be computed by the relative

displacements of the interface DOFs

x̂2 � x̂4 ¼ û1 ¼ �F̂ 1

G24

; x̂3 � x̂5 ¼ û2 ¼ �F̂ 2

G35

: (10.21)

Here, G�c~c is the complex describing function [6] representing the equivalent linearized stiffness and damping of the coupling

element

G�c~c ¼ �F̂ j

ûj
¼ khbm þ io dhbm: (10.22)

With (10.19), (10.20) and the relation of (10.21), the coupled system is derived as

x̂1
x̂2
x̂3
x̂4
x̂5
x̂6
0

0

2
66666666664

3
77777777775
¼

H11 0 H12 H13

H21 0 H22 H23

H31 0 H32 H33

0 H46 �H44 �H45

0 H56 �H54 �H55

0 H66 �H64 �H65

H21 �H46 H22 þ H44 þ 1=G24 H23 þ H45

H31 �H56 H32 þ H54 H33 þ H55 þ 1=G35

2
66666666664

3
77777777775

F̂1

F̂6

F̂ 1

F̂ 2

2
664

3
775: (10.23)

Introducing block matrices, the equation can be expressed in a more compact form

x̂r
0

� �
¼ Hri Hrc

Hci Hcc þ G�1
�c~c

� �
F̂i

F̂ j

� �
: (10.24)

Eliminating the coupling forces F̂ j, (10.24) yields

x̂r ¼ Hri � Hrc Hcc þ G�1
�c~c

� 	�1
Hci

h i
F̂i: (10.25)

This equation can be solved iteratively with the requirement that the Fourier coefficients of the coupling elements, G�c~c,

depend on the amplitude x̂r.
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10.5 Numerical Example

The two methods are applied to a system where the substructures consist of two equal two-mass-oscillators, see Fig. 10.3.

Coupling is done by a linear spring-damper in parallel with a Jenkins friction model. Parameters of the system are given in

Table 10.2. The excitation force Fexc is applied at substructure a and the displacement output x4 is considered.
The FRFs in Fig. 10.4 (left) show that coupling by CMS (red) and FBS (dashed green) give equal results. Due to a local

damping effect not all modes are damped depending on the mode shape. As a result of the additional stiffness in the friction

model a shift in some eigenfrequencies can be seen compared to the linearly coupled system (blue). The right plot in

Fig. 10.4 displays the development of the FRF for different values of the normal force N.

Substructure a Substructure b

k k kk

mm mm

x1 x2 x3 x4

coupling element

d d dd
dc

kc

kT

μN

Fexc

Fig. 10.3 Example system consisting of two substructures a and b coupled by a nonlinear element

Table 10.2 Parameter of the

example system
Parameter Value Unit Parameter Value Unit

m 1 kg kc 4 �104 N/m

d 4 Ns/m kt 4 �104 N/m

k 4 �104 N/m m 1 -

dc 4 Ns/m Fexc 15 N
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5

10 15
20

30
100

Fig. 10.4 Left: Comparison between CMS (red) and FBS coupling (dashed green) for N ¼ 10 N for the example. Additionally the result of a

linearly coupled (kc,dc) system is shown (blue). Right: FBS coupling (green) for different normal forces (color figure online)
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10.6 Finite Element Model

Based on the results of the four-mass oscillator, the method is now applied to a finite element model shown in Fig. 10.5.

The substructures are discretized by standard 8-node hexahedral solid elements having linear shape functions with three

DOFs at each node. The two beams are coupled at four node pairs (1, 2, 3, 4) using CMS, whereby the two beams have

coincident meshes at the interface. The excitation force Fexc ¼ 15 N is applied at Substructure 1 and the displacement output

at Substructure 2 is considered in the y-direction. In this situation only bending modes are excited.

The applied normal force N is equally distributed to the node pairs and results are presented in Fig. 10.6 for different

values of N. Friction is implemented at the node pairs only in the z-direction, whereas the other directions are perfectly

coupled. Contact stiffness is estimated by kt ¼ 1 �108 and the friction coefficient is m ¼ 1. Geometrical and material

parameter of a substructure can be found in Table 10.3. Damping in terms of Rayleigh is neglected to highlight the damping

Fig. 10.5 Finite element model of two coupled beams

Table 10.3 Geometrical

and material parameter

of a substructure

Parameter Value Unit Parameter Value Unit

Length l 0.3 m Density r 7850 kg/m3

Width b 0.03 m Young’s modulus E 210 �103 N/mm2

Height h 0.003 m Poisson ratio n 0.3 –
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Fig. 10.6 Left: Frequency response function of the coupled beams with CMS (red) for different normal forces. Additionally the result of a perfect

coupling is shown (blue). Right: Zoom on the sixth bending mode (color figure online)
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effect caused by friction. Similar to the results of the four-mass oscillator, only selected modes are damped depending on the

relative interface displacement of the corresponding mode shape. As with the oscillator, damping due to friction depends on

the applied normal force N, as a closer consideration of the sixth bending mode shows.

10.7 Conclusion

In this work, the implementation of nonlinear coupling elements in a substructuring formulation using CMS and FBS is

reviewed. The methods are used to compute frequency response functions of subsystems coupled by friction elements. For

the four-mass oscillator, both methods give identical results. For the finite element model, CMS is used due to the fact that

with increasing number of coupling nodes the handling of the system representation is much clearer. Furthermore, a higher-

harmonic consideration of the system can be established much easier.
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Chapter 11

Direct Hybrid Formulation for Substructure Decoupling

Walter D’Ambrogio and Annalisa Fregolent

Abstract The paper considers the decoupling problem or subsystem subtraction, i.e. the identification of the dynamic

behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the

remaining part of the structural system (residual subsystem). Often it is necessary to combine numerical models (e.g. FEM)

and test models (e.g. FRFs). In such cases, one speaks of experimental dynamic substructuring. Substructure decoupling

techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations

describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. Direct

decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem.

In this paper, starting from the 3-field formulation (dynamic balance, interface compatibility and equilibrium), a direct

hybrid approach is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at

coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not

be the same: this generates the so-called non-collocated approach. The technique is applied using simulated data from a

discrete system.

11.1 Introduction

The paper is focused on the decoupling problem or subsystem subtraction, namely how to extract a substructure model from

the assembled system. A trivial application of decoupling is mass cancellation, to get rid of the effect of the accelerometer

mass on FRF measurements. Another application is joint identification. More generally, decoupling is a relevant issue for

subsystems that cannot be measured separately, but only when coupled to their neighboring substructure(s) (e.g. a fixture

needed for testing or subsystems that are very delicate or in operational conditions). To be more precise, the decoupling

problem is defined as the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic

behaviour of the assembled system, and from information about the remaining part of the structural system (residual

subsystem).

The decoupling problem can be seen as a special case of dynamic substructuring. However, while for subsystem addition

many well established techniques exist when all substructures are modeled theoretically, in subsystem subtraction this would

give rise to a trivial problem. Therefore, in subsystem subtraction the model of at least one subsystem must derive from

experimental tests. Due to modal truncation problems, the use of FRFs (Frequency Based Substructuring) is preferred with

respect to the use of modal parameters. The main algorithm for frequency based substructuring is the improved impedance

coupling [1] that involves just one matrix inversion with respect to the classical impedance coupling technique that requires

three inversions. A general framework for dynamic substructuring is provided in [2, 3], where primal and dual formulation

are introduced.
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Substructure decoupling techniques can be classified as inverse coupling techniques or direct decoupling techniques. In

inverse coupling, the equations written for the coupling problem are rearranged to isolate (as unknown) one of the

substructures instead of the assembled structure. Examples of inverse coupling are impedance and mobility approaches [4, 5].

Direct decoupling consists in adding to the assembled system a fictitious subsystem, which is the negative of the residual

subsystem. The technique starts from the 3-field formulation: one set of equations expressing the dynamic balance of the

assembled system and, separately, of the fictitious subsystem; one set of equations enforcing compatibility at interface DoFs,

one set of equations enforcing equilibrium of constraint forces at interface DoFs. To solve the problem, a dual approach [6]

or a primal approach [7] can be used. Compatibility and equilibrium can be required either at coupling DoFs only (standard

interface), or at additional internal DoFs of the residual subsystem (extended interface). Furthermore, in [8, 9] it is pointed

out that DoFs used to enforce equilibrium need not to be the same as DoFs used to enforce compatibility: this gives rise to the

so called non collocated approach, as opposite to the traditional approach in which such DoFs are the same, which is called

collocated. The choice of interface DoFs determines a set of frequencies at which the decoupling problem is ill conditioned,

as shown in [6] for the dual approach. Apparently, when using an extended interface, the problem is singular at all

frequencies, although this singularity is easily removed by using standard smart inversion techniques.

In this paper, an admittance and reduced version of the 3-field formulation (dynamic balance, interface compatibility and

equilibrium) is developed: this formulation is particularly suited for experimental dynamic substructuring since it uses only

measurements on the minimum set of DoFs that are necessary to enforce compatibility and equilibrium conditions. Starting

from the 3-field formulation, the dual assembly is revisited and a hybrid assembly is developed by requiring that both

compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of

the residual subsystem. Dual and hybrid assembly are compared both from the theoretical and the practical point of view,

using simulated data from a discrete system.

11.2 Direct Decoupling Techniques

The coupled structural system RU (NRU DoFs) is assumed to be made by an unknown subsystem U (NU DoFs) and a residual

subsystem R (NR DoFs) joined through a number of couplings (see Fig. 11.1). The residual subsystem (R) can be made by

one or more substructures. The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs (not

belonging to the couplings) of subsystem U (u), internal DoFs of subsystem R (r), and coupling DoFs (c).
It is required to find the FRF of the unknown substructure U starting from the FRF of the coupled system RU. The

subsystem U can be extracted from the coupled system RU by cancelling the dynamic effect of the residual subsystem R.
This can be accomplished by adding to the coupled system RU a fictitious subsystem with a dynamic stiffness opposite to

that of the residual subsystem R and satisfying compatibility and equilibrium conditions. The dynamic equilibrium of the

coupled system RU and of the fictitious subsystem can be expressed in block diagonal format as:

�ZRU 0

0 ��ZR

� �
uRU

uR

� �
¼ �fRU

�fR

� �
þ �gRU

�gR

� �
(11.1)

where:

• �Z
RU

, �Z
R
are the dynamic stiffness matrices of the coupled system RU and of the residual subsystem R, respectively;

• �uRU, �uR are the vectors of degrees of freedom of the coupled system RU and of the residual subsystem R, respectively;
• �fRU, �fR are the external force vectors on the coupled system RU and on the fictitious subsystem, respectively;

• �gRU, �gR are the vectors of connecting forces between the coupled system and the fictitious subsystem, and viceversa

(constraint forces associated with compatibility conditions).

According to this point of view, the interface between the coupled system RU and the fictitious subsystem should not only

include all the coupling DoFs between subsystems U and R, but should as well include all the internal DoFs of subsystem R.
However, since the problem can be solved by considering just coupling DoFs, the number of interface DoFs should be

greater than or equal to the number of coupling DoFs nc. Therefore, three options for interface DoFs can be considered:

• Standard interface, including only the coupling DoFs (c) between subsystems U and R;
• Extended interface, including also a subset of internal DoFs (i � r) of the residual subsystem R;
• Mixed interface, including subsets of coupling DoFs (d � c) and internal DoFs (i � r) of subsystem R.
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The compatibility condition at the (standard, extended, mixed) interface DoFs implies that any pair of matching DoFs �uRUl
and �uRm, i.e. DoF l on the coupled system RU and DoF m on subsystem R must have the same displacement, that is

�uRUl � �uRm ¼ 0. Let the number of interface DoFs on which compatibility is enforced be denoted as NC.

The compatibility condition can be generally expressed as:

�BRU
C

�BR
C

� � �uRU

�uR

� �
¼ 0 (11.2)

where each row of �BC ¼ �BRU
C

�BR
C

� �
corresponds to a pair of matching DoFs. Note that �BC has size NC�(NRU + NR) and is, in

most cases, a signed Boolean matrix.

Alternatively, the compatibility DoFs can be extracted from the full set of DoFs by an output selection matrix P as

uRU

uR

� �
¼ PRU 0

0 PR

� �
�uRU

�uR

� �
(11.3)

where uRU and uR are vectors of size NC and P has size 2NC �(NRU + NR). In this case, the compatibility condition can be

expressed as:

BRU
C BR

C

� � uRU

uR

� �
¼ 0 (11.4)

where BC has size NC �2NC. Note that, in most cases, BRU
C is a permutationmatrix and BR

C is the negative of a permutation

matrix, or viceversa. (Recall that a permutation matrix is a square binary matrix that has exactly one entry 1 in each row and

each column and zeroes elsewhere.)

Substituting (11.3) in (11.4), one obtains:

BRU
C BR

C

� � PRU 0

0 PR

� �
�uRU

�uR

� �
¼ 0 (11.5)

from which

�BRU
C

�BR
C

� � ¼ BRU
C BR

C

� � PRU 0

0 PR

� �
(11.6)

Fig. 11.1 Scheme of the decoupling problem
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Equation 11.5 shows how, starting from the full set of DoFs, the compatibility condition can be enforced in two steps: in

one step, the matching DoFs are extracted from the full set of DoFs using the selection matrix P; in the second step, each pair

of matching DoFs is constrained to have the same displacement by the BC matrix.

However, in case of experimental substructuring, it is reasonable to assume that only necessary measurements are

performed, i.e. those on matching DoFs, and the first step becomes unnecessary. Therefore, (11.4) is the most suited for

experimental dynamic substructuring.

Before deriving the equilibrium condition, it should be noted that the interface DoFs involved in the equilibrium

condition are not necessarily the same used to enforce the compatibility condition, as long as controllability between

equilibrium and compatibility DoFs is ensured. If the compatibility and the equilibrium DoFs are not the same, the approach

is called non-collocated [8]. Note that a non-collocated approach requires an extended or mixed interface and therefore it is

only possible in the decoupling problems (in coupling problems only standard interface can be defined). Obviously, the

traditional approach, in which compatibility and equilibrium DoFs are the same, is called collocated.

Let NE denote the number of interface DoFs on which equilibrium is enforced. The equilibrium condition for constraint

forces implies that their sum must be zero for any pair of matching DoFs, i.e. �gRUr þ �gRs ¼ 0. Furthermore, if DoF k on the

coupled system RU (or on the residual subsystem R) does not belong to the equilibrium interface, it must be �gRUk ¼ 0

(�gRk ¼ 0): this holds for any DoF not involved in the equilibrium condition.

Overall, the above conditions can be expressed as:

�LRU
E
�LR
E

� �T
�gRU

�gR

� �
¼ 0 (11.7)

where the matrix �LE ¼ �LRU
E

�LR
E

� �
is a Boolean localisation matrix. Note that the number of columns of �LE is equal to the

number NE of equilibrium interface DoFs plus the number NNE of DoFs not belonging to the equilibrium interface. Note that

NNE ¼ NRU þ NR � 2NE: in fact, the number of DoFs belonging to the equilibrium interface must be subtracted once from

NRU and once from NR. Therefore, the size of �LE is ðNRU þ NRÞ � ðNRU þ NR � NEÞ.
Alternatively, the elements of �gRU and �gR not involved in the equilibrium condition can be set to zero by writing

�gRU

�gR

� �
¼ QRU 0

0 QR

� �
gRU

gR

� �
(11.8)

where the rows of Q corresponding to DoFs not involved in equilibrium conditions are zero, gRU and gR are vectors of size

NE, and Q has size (NRU + NR) �2NE.

Limited to the equilibrium DoFs, the condition for matching constraint forces can be expressed as:

LRU
E

LR
E

� �T
gRU

gR

� �
¼ 0 (11.9)

where the matrix LE ¼ LRU
E LR

E

� �
has size 2NE �NE. Note that, in most cases, both LRU

E and LR
E are permutation matrices.

Again, (11.9) is the most suited for experimental dynamic substructuring, since in this case only necessary measurements

are performed.

If it is further assumed that external forces act at most on interface DoFs involved in equilibrium conditions, it is possible

to write

�fRU

�fR

� �
¼ QRU 0

0 QR

� �
fRU

fR

� �
(11.10)

where Q is the same as for the constraint forces.

The dynamic equilibrium equation (11.1) can be rewritten, by using (11.8) and (11.10) and by premultiplying by the

inverse of the dynamic stiffness, as

�uRU

�uR

� �
¼ �ZRU 0

0 ��ZR

� ��1
QRU 0

0 QR

� �
fRU

fR

� �
þ gRU

gR

� �� 	
(11.1*)
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Using (11.3) to select only the NC compatibility DoFs, (11.1 ∗ ) becomes:

uRU

uR

� �
¼ HRU 0

0 �HR

� �
fRU

fR

� �
þ gRU

gR

� �� 	
(11.1**)

where the frequency response function matrix H (2NC �2NE) is defined as:

HRU 0

0 �HR

� �
¼ PRU 0

0 PR

� �
�ZRU 0

0 ��ZR

� ��1
QRU 0

0 QR

� �
(11.11)

Equation 11.1 ∗∗ is much more suited for experimental dynamic substructuring than (11.1) since the FRF matrices of the

coupled system and of the residual subsystem can be directly measured among the minimum set of DoFs necessary to

enforce the required compatibility and equilibrium conditions.

Equations 11.1 ∗∗ , 11.4 and 11.9 can be put together to obtain the admittance version of the 3-field formulation, suited

for experimental dynamic substructuring:

uRU

uR

� �
¼ HRU 0

0 �HR

� �
fRU

fR

� �
þ HRU 0

0 �HR

� �
gRU

gR

� �
ð11:1��Þ

BRU
C BR

C

� � uRU

uR

� �
¼ 0 ð11:4Þ

LRU
E

LR
E

" #T
gRU

gR

� �
¼ 0 ð11:9Þ

8>>>>>>>>><
>>>>>>>>>:

Starting from the 3-field formulation, several assembly techniques can be devised. The classical ones are

• Primal assembly [2, 7] where the compatibility condition is satisfied exactly by defining a unique set of interface DoFs;

• Dual assembly [6, 8] where the equilibrium condition is satisfied exactly by defining a unique set of connecting force

intensities.

In the sequel, after reviewing the dual assembly, the hybrid assembly is introduced aimed to satisfy both compatibility

and equilibrium conditions.

11.2.1 Dual Assembly

In the dual assembly, the equilibrium condition gRUr þ gRs ¼ 0 at a pair of equilibrium interface DoFs is ensured by choosing,

for instance, gRUr ¼ �l and gs
R ¼ l. If a Boolean matrix BE is defined similarly to BC, but related to interface equilibrium

DoFs, the overall interface equilibrium can be ensured by writing the connecting forces in the form:

gRU

gR

� �
¼ � BRU

E

T

BR
E

T

" #
l (11.12)

where l are Lagrange multipliers corresponding to connecting force intensities and BE is a NE�2NE matrix. Since there is a

unique set of connecting force intensities l, the interface equilibrium condition is satisfied automatically for any l, i.e.

LRU
E

LR
E

� �T
gRU

gR

� �
¼ � LRU

E

LR
E

� �T
BRU
E

T

BR
E

T

" #
l ¼ 0 (11.13)
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Then BE
T is the nullspace of LE

T , and viceversa LE is the nullspace of BE:

BRU
E BR

E

� � LRU
E

LR
E

" #
¼ 0

LRU
E

LR
E

" #T
BRU
E BR

E

� �T ¼ 0

8>>>>><
>>>>>:

(11.14)

In the dual assembly, the total set of DoFs is retained, i.e. each interface DoF is present as many times as there are

substructures connected through that DoF. Since (11.13) is always satisfied, the 3-field formulation reduces to:

uRU

uR

� �
¼ HRU 0

0 �HR

� �
BRU
E

T

BR
E

T

" #
lþ HRU 0

0 �HR

� �
fRU

fR

� �
ð1��Þ

BRU
C BR

C

� � uRU

uR

� �
¼ 0 ð4Þ

8>>>><
>>>>:

To eliminate l, it is possible to proceed by writing (11.1 ∗∗ ) in compact form, with obvious meaning of symbols:

u ¼ �HBE
TlþHf (11.1**)

By substituting in (11.4) also written in compact form, it is:

BCHBE
Tl ¼ BCHf (11.15)

from which l, to be back-substituted in (11.1***), is found as:

l ¼ BCHBE
T


 �þ
BCHf (11.16)

To obtain a determined or overdetermined matrix for the generalized inversion operation, the following condition must be

satisfied:

number of rows of BC � number of rows of BE

i.e.

NC � NE � nc (11.17)

Note that, if NC > NE, (11.15) is not satisfied exactly by vector l given by (11.16), but only in the minimum square sense.

This implies that also (11.4) is not satisfied exactly, i.e. compatibility conditions at interface are approximately satisfied. On

the contrary, equilibrium is satisfied exactly due to the introduction of the connecting force intensities l as in (11.12).

By substituting l in (11.1 ∗∗∗ ), it is obtained:

u ¼ Hf �HBE
T BCHBE

T

 �þ

BCHf ¼ HUf (11.18)

where HU is the FRF matrix of the unknown subsystem U that can be rewritten in expanded form as:

HU ¼ HRU 0

0 �HR

" #
� HRU 0

0 �HR

" #
BRU
E

T

BR
E

T

" #

� BRU
C BR

C

� � HRU 0

0 �HR

" #
BRU
E

T

BR
E

T

" # !þ

� BRU
C BR

C

� � HRU 0

0 �HR

" #
(11.19)

94 W. D’Ambrogio and A. Fregolent



With the dual assembly, the rows and the columns ofHU corresponding to compatibility and equilibriumDoFs appear twice.

Furthermore,when using an extended ormixed interface,HU contains somemeaningless rows and columns: those corresponding

to the internal DoFs of the residual substructure R. Obviously, only meaningful and independent entries are retained.

In (11.19), the product of the three matrices to be inverted can be defined as interface flexibility matrix. The interface

flexibility matrix can be rewritten as:

BRU
C BR

C

� � HRU 0

0 �HR

" #
BRU
E

T

BR
E

T

" #
¼ BRU

C HRUBRU
E

T � BR
CH

RBR
E

T
(11.20)

It is possible to define:

ĤRU ¼ BRU
C HRUBRU

E

T
and ĤR ¼ BR

CH
RBR

E

T

where ĤRU and ĤR are permutations of the FRF matrices of the coupled structure and of the residual substructure.

Therefore, the interface flexibility matrix becomes:

BRU
C HRUBRU

E

T � BR
CH

RBR
E

T ¼ ĤRU � ĤR (11.21)

11.2.2 Hybrid Assembly

In the hybrid assembly, it is sought to satisfy exactly both compatibility and equilibrium conditions. To satisfy the

compatibility conditions, a unique set of DoFs is defined as in the primal assembly,

uRU

uR

� �
¼ LRU

C

LR
C

� �
q (11.22)

where q is the unique set of DoFs, and LC is a localisation matrix similar to LE introduced previously. Note that LC is a 2NC

�NC matrix. Since there is a unique set of DoFs, q, the compatibility condition is satisfied automatically for any set q, i.e.

BRU
C BR

C

� � uRU

uR

� �
¼ BRU

C BR
C

� � LRU
C

LR
C

� �
q ¼ 0 8q (11.23)

To satisfy exactly the equilibrium condition, it is possible to proceed as in the dual assembly i.e. by writing the connecting

forces in the form given by (11.12).

By substituting (11.22) and (11.12) into (11.1 ∗∗ ), the 3-field formulation reduces to:

LRU
C

LR
C

� �
qþ HRU 0

0 �HR

� �
BRU
E

T

BR
E

T

" #
l ¼ HRU 0

0 �HR

� �
fRU

fR

� �
(11.1***)

or in more compact form:

LC qþHBE
Tl ¼ H f (11.1***)

By gathering q and l in a single vector, one can rewrite:

LC HBE
T

� � q

l

� �
¼ Hf (11.24)

where the block left matrix has size 2NC �(NC + NE).

Finally, from (11.24):

q

l

� �
¼ LC HBE

T
� �þ

H f (11.25)
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where the superscript + denotes the generalised inverse.

To obtain a determined or overdetermined matrix for the generalised inversion operation, the following condition must be

satisfied:

2NC � NC þ NE ) NC � NE � nc (11.26)

where it is worth to recall that nc is the number of coupling DoFs.

Note that, if NC > NE, (11.24) is not satisfied exactly by the solution given by (11.25), but only in the minimum square

sense, whilst equilibrium and compatibility conditions are satisfied exactly.

Equation 11.25 can be rewritten as:

q

l

� �
¼ HU

NC�2NE

TNE�2NE

� �
f (11.27)

where HU (i.e. the first NC rows of the block matrix) is the FRF of the unknown subsystem U and T is the transmissibility

between the external forces and the connecting force intensities.

With the hybrid assembly, the columns of HU corresponding to the equilibrium interface DoFs appear twice. Further-

more, when using an extended interface, HU contains some meaningless rows and columns: those corresponding to the

internal DoFs of the residual substructure R. Obviously, only meaningful and independent entries are retained.

In (11.25), the matrix to be inverted LC HBE
T

� �
, can be written in expanded form as:

LRU
C

LR
C

HRU 0

0 �HR

� �
BRU
E

T

BR
E

T

" #" #
¼ LRU

C HRUBRU
E

T

LR
C �HRBR

E

T

" #
(11.28)

Similarly to LRU
E and LR

E , L
RU
C and LR

C are permutation matrices. Furthermore, similarly to BRU
C and BR

C, B
RU
E is a permutation

matrix and BR
E is the negative of a permutation matrix.

If NC ¼ NE, the matrix in (11.28) is square and it is possible to compute its determinant, taking into account that

permutation matrices behave as identity matrices when computing the determinant:

LRU
C HRUBRU

E

T

LR
C �HRBR

E

T

�����
����� ¼ I HRU

I HR

����
���� ¼ � HRU �HR

�� �� (11.29)

which is the negative of the determinant of the interface flexibility matrix, (11.21).

11.2.3 Singularity

Both for dual and hybrid assembly, the interface flexibility matrix is strictly related to singularity: for dual assembly the

interface flexibility matrix must be inverted directly, for hybrid assembly the determinant of the matrix to be inverted is the

negative of the determinant of the interface flexibility matrix.

In relation with dual assembly, it is shown in [6, 7] that the interface flexibility matrix is singular:

• At the resonant frequencies of the residual substructure with coupling DoFs grounded, both for standard interface and for

non collocated extended interface;

• At all frequencies for collocated extended interface, although this kind of singularity can be easily removed by smart

inversion techniques.

The above conclusions hold for the hybrid formulation too.

11.2.4 Hybrid vs Dual Formulation

In this section, the hybrid formulation and the dual formulation are compared to establishwhether they provide the same result

or not, and under which conditions. With regard to the hybrid formulation, By comparing (11.25) with (11.27), one obtains:
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HU

T

� �
¼ LC HBE

T
� �þ

H (11.30)

If NC ¼ NE, (11.30) becomes:

HU

T

� �
¼ LC HBE

T
� ��1

H (11.31)

Premultiplying by [LC HBE
T], one obtains:

LC HBE
T

� � HU

T

� �
¼ H (11.32)

i.e.:

LC HU þHBE
TT ¼ H (11.33)

Premultiplying by H�1:

H�1 LC HU þ BE
TT ¼ I (11.34)

Finally, premultiplying by LE
T , one obtains:

LE
TH�1 LC HU ¼ LE

T (11.35)

being LE
TBE

T ¼ 0 since BT
E is the nullspace of LT

E.

The FRF of the unknown subsystem U provided by dual formulation (see [6], Eq. 18) can be rewritten in compact form

for NC ¼ NE:

HU
D ¼ H�HBE

T BCHBE
T


 ��1
BCH (11.36)

where the subscript D stands for dual. Premultiplying by H�1, one obtains:

H�1HU
D ¼ I� BE

T BCHBE
T


 ��1
BCH (11.37)

Premultiplying by LT
E, one obtains:

LE
TH�1HU

D ¼ LE
T (11.38)

where again LE
TBE

T ¼ 0.

By comparing (11.38) and (11.35), it is found that:

HU
D ¼ LCH

U (11.39)

The former equation shows that, if NC ¼ NE, hybrid and dual formulations provide the same result. In fact, by considering

the hybrid formulation, the relation between the unique set of DoFs q and the redundant set of DoFs u is given by u ¼ LCq.

On the contrary, if NC > NE, (11.32) cannot be obtained from (11.30) since:

LC HBE
T

� �
LC HBE

T
� �þ 6¼ I

due to the definition of pseudoinverse for an overdetermined system.

Therefore, if NC > NE, the hybrid and the dual formulation provide different results.
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11.3 Application

A relatively simple application is considered on a discrete system already used as a case study in [8]. The complete system is a

9 DoFs system (see Fig. 11.2). The residual subsystem R is a 7 DoFs system, represented by subsystem A in figure, and the

unknown subsystemU is a 4 DoFs system, represented by subsystemB. The two subsystems are coupled at a 2 DoFs interface.

Mass and stiffness values are shown in Table 11.1. Proportional damping is used: C ¼ aMþ bK, with a ¼ 0. 1, b ¼ 0.

To have an idea of the dynamic behaviour of the system, the natural frequencies of the subsystems U and R, and of the

coupled system RU are shown in Table 11.2.

It is assumed that the FRFs (mobilities) describing the velocity/force relationship of the coupled system RU, and the

mechanical impedance of the residual subsystem R are known. The mobility of subsystemU has to be determined. The exact

uA1

uA3

uA2 uA4
uA5

uA7

uA6
uB1 uB3

uB4

uB2

kA11

kA3

kA2

kA41

k
A42

kA5

kB1

kB2

kB3

kA12

mA1

mA2

mA3

mA4

mA5 mA6
mB1

mB3 mB4

mB2mA7

Subsystem A Subsystem BInterface

Fig. 11.2 Sketch of the test system

Table 11.1 Physical parameter

values
Mass (kg) Stiffness (N �m)

mA1 10 kA11 2,000

mA2 3 kA12 2,000

mA3 3 kA2 1,000

mA4 6 kA3 1,000

mA5 2 kA41 500

mA6 2 kA42 1,000

mA7 4 kA5 200

mB1 2 kB1 1,000

mB2 4 kB2 1,000

mB3 8 kB3 2,000

mB4 5 – –

Table 11.2 Natural frequencies

of the systems (Hz)
System

Mode U (B) R (A) RU (AB)

1 0 0 0

2 2.6801 1.3168 1.1464

3 3.4287 2.1436 2.3974

4 4.7808 3.0046 2.5671

5 – 4.1146 3.0846

6 – 5.0329 4.0175

7 – 5.9736 4.5716

8 – – 5.0329

9 – – 5.9688
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FRFs Ĥij of the coupled system RU and the impedances of subsystem R are computed starting from the physical parameters

of Table 11.1. To simulate the effect of noise on the FRFs of the coupled system, a complex random perturbation is added to

true FRFs:

HijðokÞ ¼ ĤijðokÞ þ mij;k þ i nij;k (11.40)

where i ¼ ffiffiffiffiffiffiffi�1p
, mij,k and nij,k are independent random variables with gaussian distribution, zero mean and a standard

deviation of 1 �10 �3 m/(sN), chosen as about 5% of FRF mean value and about 0.1% of FRF peak value. The effect of such

perturbation on the drive point mobilities at the coupling DoFs is shown in Figs. 11.3 and 11.4 together with the FRF

obtained after curve-fitting.

In the sequel, only FRFs perturbed by simulated noise will be considered. In fact, if noise-free FRFs of the coupled system

are used, the FRF of the unknown subsystem is predicted without errors (although the problem may be singular for several

reasons, as stated in [6], the use of smart inversion techniques completely removes the singularity). Furthermore, perturbed

FRFs are not used in raw form but are smoothed through a curve fitting procedure.

The mobility of subsystem U can be determined by using the procedure described previously where the compatibility and

equilibrium DoFs are defined on a case by case basis. Results are compared with those obtained using the dual

formulation [6].
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11.3.1 Decoupling

First of all, the case of standard interface (mobility known only at the coupling DoFs 6 and 7) is considered. In this case,

NC ¼ 2, NE ¼ 2 and

BE ¼
� uRU6 uRU7
1 0

0 1

BRU
E

����
uR6 uR7
�1 0

0 � 1

BR
E

�
(11.41)

LC ¼ LRU
C

LR
C

� �
¼

1 0

0 1

1 0

0 1

2
6664

3
7775
 uRU6

 uRU7

 uR6

 uR7

(11.42)

In Figs. 11.5 and 11.6, the true drive point mobilities at the coupling DoFs 1 and 2 of subsystem U are compared with the

corresponding FRFs computed using the hybrid formulation, (11.25), starting from the fitted perturbed FRFs of the coupled

system. As known, the same results are obtained using the dual formulation.

0 1 2 3 4 5 6 7
10

−5

10
0

10
5

Frequency [Hz]

M
ag

ni
tu

de
 [m

 s
−

1 /N
 ]

0 1 2 3 4 5 6 7
−4

−2

0

2

4

Frequency [Hz]

P
ha

se
 [r

ad
]

Fig. 11.5 HU
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As discussed in previous papers [6, 10], the predicted mobility of subsystem U is badly identified at some frequencies.

This depends on ill conditioning due to unmeasured internal DoFs. In fact, the coupled system RU and the residual

subsystem R, with the “measured” coupling DoFs 6 and 7 grounded, share five resonance frequencies, namely fn1 ¼ 0. 96

Hz, fn2 ¼ 2. 72 Hz, fn3 ¼ 3. 90 Hz, fn4 ¼ 5. 03 Hz and fn5 ¼ 5. 96 Hz. Around these frequencies, the problem is

ill-conditioned and noise can be greatly amplified.

A way to circumvent this problem is to use an extended interface, i.e. to assume that the FRF matrix of the coupled system

is known not only at the coupling DoF but also at a subset of the five internal DoFs (1, 2, 3, 4, 5) of the residual subsystem R.
A possibility is to use a collocated approach with all the internal DoFs. In this case, NC ¼ 7, NE ¼ 7 and

BE ¼

uRU1 uRU2 uRU3 uRU4 uRU5 uRU6 uRU7

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666664

�����������������
BRU
E

uR1 uR2 uR3 uR4 uR5 uR6 uR7
�1 0 0 0 0 0 0

0 �1 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 �1 0 0 0

0 0 0 0 �1 0 0

0 0 0 0 0 �1 0

0 0 0 0 0 0 �1

3
777777777775

BR
E

LC ¼ LRU
C

LR
C

� �
¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666666666666666666666666664

3
777777777777777777777777777777775

 uRU1

 uRU2

 uRU3

 uRU4

 uRU5

 uRU6

 uRU7

 uR1

 uR2

 uR3

 uR4

 uR5

 uR6

 uR7

(11.43)

In Figs. 11.7 and 11.8, the true drive point mobilities at the coupling DoFs 1 and 2 of subsystem U are compared with the

corresponding FRFs computed using the hybrid formulation, starting from the fitted perturbed FRFs of the coupled system.

As known, the same results are obtained using the dual formulation. In this case, the residual subsystem is fully grounded and

no ill-conditioned frequencies appear.

Using a non collocated approach enforcing compatibility at all DoFs and equilibrium only at the coupling DoFs 6 and 7, it

is NC ¼ 7, NE ¼ 2, BE is the same as in (11.41) and LC is the same as in (11.43).

In Figs. 11.9 and 11.10, the true drive point mobilities at the coupling DoFs 1 and 2 of subsystemU are compared with the

corresponding FRFs computed using once the hybrid formulation, (11.25), and once the dual formulation. The two approach

provide very similar results, and ill conditioned frequencies are the same as for standard interface but they affect the

predicted FRFs to a lower extent if compared with the standard interface.
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Since the full set of internal DoFs can be difficult to measure in practice, results obtained by adding only one internal DoF

are considered. By enforcing compatibility at DoFs 2, 6, 7, and equilibrium only at coupling DoFs, it is NC ¼ 3, NE ¼ 2, BE

is the same as in (11.41) and

LC ¼ LRU
C

LR
C

� �
¼

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

2
6666666664

3
7777777775

 uRU2
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 uR2
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In Figs. 11.11 and 11.12, the true drive point mobilities at the coupling DoFs 1 and 2 of subsystem U are compared with

the corresponding FRFs computed using once the hybrid formulation, (11.25), and once the dual formulation. Again, results

from the two formulations are very similar and show that noise is amplified around ill-conditioning frequencies which are the

same as for standard interface.
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11.4 Summary and Discussion

The identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of the

assembled system, and from information about the residual subsystem, (the remaining part of the structural system), i.e.

decoupling problem, is considered in this paper. Direct decoupling techniques are considered, that consist in adding to the

assembled system a fictitious subsystem, which is the negative of the residual subsystem. Starting from the 3-field

formulation (dynamic balance, compatibility and equilibrium), a hybrid approach for decoupling is developed and compared

with a dual approach.

Compatibility and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal

DoFs of the residual subsystem (extended interface): the choice of interface DoFs determines a set of frequencies at which

the decoupling problem is ill conditioned. An additional variant is the possibility to use the non collocated approach, in

which DoFs used to enforce equilibrium are not the same as DoFs used to enforce compatibility: in this case the number of

DoFs used to enforce compatibility must be not less than the number of DoFs used to enforce equilibrium.

As in dual assembly, also in hybrid assembly ill conditioning is strictly related to the interface flexibility matrix.

Furthermore, hybrid assembly and dual assembly provide the same result when the number of DoFs used to enforce
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compatibility is equal to the number of DoFs used to enforce equilibrium, i.e. in the collocated approach and in some special

case of non collocated approach. On the contrary, when the number of DoFs used to enforce compatibility is greater than the

number of DoFs used to enforce equilibrium, the two approaches provide different results: in fact, using the hybrid approach,

compatibility and equilibrium are enforced exactly; using the dual approach, compatibility is only approximate whilst

equilibrium of constraint forces is enforced exactly.
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Chapter 12

Substructuring with Nonlinear Subcomponents: A Nonlinear

Normal Mode Perspective

Matthew S. Allen and Robert J. Kuether

Abstract Substructure coupling techniques allow one to predict the response of an assembly from dynamic models for each

subcomponent. Linear substructures are routinely used in analysis (e.g. the Craig-Bampton method) to reduce the computa-

tional cost of vibration, noise and load predictions for structures. They also provide a designer with insight into the influence

that each subcomponent has on the assembled system’s natural frequencies, mode shapes and damping. These concepts are

currently limited to assemblies of linear substructures. This work explores substructuring with nonlinear subcomponents

(substructures), using the nonlinear normal modes of each substructure to seek to understand how those contribute to the

nonlinear modes of the assembly. The goal is to extend the insights that have been developed over the past several years for

linear substructures, to nonlinear ones. A specific type of describing function model, which captures the variation of the

structure’s natural frequencies and mode shapes with energy is introduced, which is here dubbed a Representative Linear

Modal Model (RLMM). The results show that this type of model can be used with linear substructuring techniques to

effectively predict the dynamics of a nonlinear assembly, suggesting that linear substructuring concepts may be applied

advantageously to nonlinear assemblies.

12.1 Introduction

Dynamic substructuring techniques allow one to predict the dynamics of an assembly from knowledge of the dynamics of

each subcomponent and the way in which the subcomponents are assembled. For example, this is the basis of the finite

element method, where individual elements with known stiffness and mass are assembled to approximate the behavior of a

complicated structure. However, substructuring methods are more often employed in situations in which the subcomponents

are more meaningful, for example, models of an engine and transmission may be assembled to predict the performance of

a vehicle’s powertrain. In applications such as this each subcomponent is likely to be described by a reduced order model.

For example, when the subcomponents are linear, their low frequency modes (e.g. a Craig-Bampton model [1]) can be used

to construct a reduced order model for each subcomponent and then dynamic substructuring procedures can be used to

assemble the system; more simply, this approach allows one to predict the modes of an assembly from the known modes of

the subcomponents. These techniques are also valid when the model for one of the subcomponents is derived experimentally

(i.e. instead of using the finite element method to create the reduced-order modal model). Substructuring techniques are quite

mature for linear assemblies comprised of analytical (e.g. Finite element) subcomponents, while, on the other hand, they are

still not used very frequently with experimentally derived models. Work is ongoing in this area [2–4]. The reader is referred

to a recent review [5] for additional details.

Substructuring methods can be classified as to whether they use modal models for the subcomponents, termed Modal

Substructuring, or, for linear systems, the frequency response functions, called Frequency Based Substructuring in [5].

Modal substructuring will be the focus of this work. The concept of modes is very powerful. For example, one can show

M.S. Allen (*) • R.J. Kuether

Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA

e-mail: msallen@engr.wisc.edu; rkuether@wisc.edu

R.L. Mayes et al. (eds.), Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2,
Conference Proceedings of the Society for Experimental Mechanics Series 27,

DOI 10.1007/978-1-4614-2422-2_12, # The Society for Experimental Mechanics, Inc. 2012

109

mailto:msallen@engr.wisc.edu
mailto:rkuether@wisc.edu


that each mode of an assembly is most strongly affected by those subcomponent modes that have similar frequencies [6]

(or see the case study in [7]), so if an assembly has a mode at an undesirable frequency a designer can target specific

subcomponent motions to alleviate the problem. Modes can also be used to construct very efficient subcomponent models.

For example, while it may be prohibitively expensive to compute the modes of a structure that is modeled by millions of

finite elements, the computational cost can be reduced dramatically by first breaking the substructure into subcomponents,

using the Craig-Bampton method to construct modal models of each and then assembling the reduced-order models. Modal

models are also convenient when a substructure is modeled experimentally, since the modes of the structure are readily

manifest in the response and can be extracted to create a compact model for the subcomponent.

This work seeks to extend the concept of modal substructuring to nonlinear dynamic systems. A nonlinear system does

not have modes if one remains bound to the classical definition, but many of the key concepts can be readily extended to

nonlinear systems using the concept of a nonlinear normal mode (NNM). Specifically, a nonlinear normal mode describes

the frequency of oscillation and the deformation shape of a nonlinear structure, and how those evolve with increasing energy

(or amplitude). Here the definition pioneered by Rosenberg [8] will be used, which was developed further in recent years by

Vakakis, Kerschen and others [9–11]. This work explores the relationship between the nonlinear normal modes of an

assembly and those of its subcomponents, revealing that many concepts from linear substructuring can be readily extended

to nonlinear systems. For example, this work shows that two nonlinear subcomponents with similar NNM frequencies

interact to form new modes at distinct frequencies in the assembly, in much the same way that two linear modes combine in

the classical vibration absorber.

The concept of modes with amplitude or energy dependent frequencies, which is central to this work, is well established

although perhaps only more recently placed on a firmer theoretical basis using the nonlinear normal mode concept.

(The concept of frequency energy dependence will be rigorously defined in Sect. 12.2.3.) For example, many structures

are only weakly nonlinear so that the nonlinearity is thought to have little effect besides causing the effective natural

frequencies and/or mode shapes to change somewhat as the forcing amplitude is increased. Hence, it has often been

suggested that one can simply ignore the nonlinearity and obtain adequate accuracy with a linear model so long as the

appropriate natural frequency (for the forcing level of interest) is used when simulating the response or performing

substructuring. (See, for example [12]. This idea is also closely related to the describing function approach used in nonlinear

controls [13], also called quasi-linearization). This work explores the validity of this approach and seeks to understand its

merits and limitations with regard to substructuring. The results presented here suggest that this approach is remarkably

useful. The examples presented show that the amplitude dependent modal parameters of two subcomponents can be

combined with linear modal substructuring to accurately predict the frequency-energy evolution of the nonlinear normal

modes of the assembly. This approximate substructuring approach could be very valuable when designing systems with

nonlinear subcomponents, since it allows the analyst to predict how the NNMs of an assembly will react to a structural

modification.

The paper is organized as follows. The following section briefly reviews substructuring theory for both linear and

nonlinear systems. Then the nonlinear normal mode concept is introduced and explained in this context. An approximate

substructuring method is then proposed in Sect. 12.2.4, which reveals how changes in the effective frequency and mode

shape of a nonlinear subcomponent affect those of the assembly. The proposed methods are demonstrated on some relatively

simple, nonlinear, spring-mass models in Sect. 12.3 and the conclusions are presented in Sect. 12.4.

12.2 Theory

12.2.1 Review of Substructuring Theory for Linear and Nonlinear Systems

Figure 12.1 shows a schematic of a general substructuring problem, adapted from [5], where two substructures, denoted

A and B, are assembled at three connection points in order to form the built-up system.

A general, nonlinear dynamic system can be described with the following equation of motion in terms of the state

vector, x, and the input forces, u, which are comprised of both the forces applied at the interface (i) and elsewhere

(app) u(t) ¼ FA
i + Fapp

A. The superscript ()A identifies the quantities that pertain to substructure A and similarly for B.

_xAðtÞ ¼ fA xAðtÞ; uðtÞ� �
_xBðtÞ ¼ fB xBðtÞ; uðtÞ� �

(12.1)
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The derivative of the state vector is, in general, a nonlinear function, fA(), of the states and the input forces. A similar set

of equations is written for B and the process could be repeated for any number of subcomponents. The goal is to assemble

the subcomponent models in order to obtain a dynamic model for the built-up system.

Assembly is accomplished by enforcing equal displacement at certain points, e.g. x1
A ¼ x3

B if the first node of A is

joined to the third node of B. Common constraints are linear and can be written as follows

a
xA

xB

� �
¼ 0 (12.2)

Where a is a matrix of constants, e.g. for the case where the constraint is x1
A ¼ x3

B, a is a row vector with a value of 1 in the first

column and with �1 in the column corresponding to x3
B. The state vector contains both displacements and velocities,

but typically only the displacements need to be constrained. One must also enforce equilibrium, or in other words that the net

force at each point on the interface should be zero after assembly (assuming that no external forces are applied at the interface).

Equations 12.1 and 12.2 constitute a set of differential-algebraic equations (see Ginsberg [14]) or constrained ordinary

differential equations, since the state vector is not free to assume any value for each state but must satisfy (12.2). Equations

such as these can be solved by various methods. When the substructures are linear one typically uses (12.2) to eliminate

some of the states in order to form an unconstrained set of generalized coordinates (see [15] or [5]). The basic linear

substructuring process is summarized in Fig. 12.2 below. Further mathematical details are provided in the Appendix.

12.2.2 Linearization

It is important to contrast the approach that shall be presented in this work with linearization. One can use the Taylor series

expansion of the equations of motion in (12.1) to obtain the following linearized system,

_xAðtÞ ¼ AxAðtÞ þ BuðtÞ

A ¼ @f i
@xj

� �
�x;�u

; B ¼ @f i
@uj

� �
�x;�u

(12.3)

Fig. 12.1 Schematic of general substructuring problem. Subcomponents A and B are assembled at a series of connection points to form the

assembly of interest

Linear Modal
Substructuring

Modes of 
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( ) ( )
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Modes of 
Assembly:

r rω φ

Fig. 12.2 Overview of linear modal substructuring process. Modal models for the substructures are combined, constraints are enforced between

the components, and the result is an estimate of the mode shapes and natural frequencies of the assembly
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where the notation signifies that the (i, j)th element of the A matrix is the derivative of the ith function in fwith respect to the
jth element of x (see [16] for further details). Note that the Jacobians must be evaluated at a fixed value of the state and input,

�x; �u, to obtain a linear time invariant model. One could evaluate the Jacobians at every point along a trajectory but then a

time-varying model would be obtained. (See, e.g. [17].)

This derivation reveals that one cannot obtain a linear time invariant model for a system by linearizing about a certain

amplitude or input level. Only the mean value of the displacement or forcing may be varied if one wishes to obtain a rigorous

linear time invariant model. However, in many applications of interest the resonance frequencies of a structure seem to

change in response to the amplitude of the forcing or response, but an alternate methodology is needed to describe this

phenomenon.

12.2.3 Undamped Nonlinear Normal Modes (NNMs)

While a few definitions exist for nonlinear modes, the definition that will be used here is that a nonlinear normal mode

(NNM) is simply a vibration in unison of a system or a “not necessarily synchronous periodic solution” to the equations

of motion [9]. This definition is essentially the same as the definition of a linear mode, since linear modes are also found

by solving for the periodic solutions of the linear equations of motion. However, there are several important differences

the most significant being that the response of a nonlinear system is not a linear superposition of its nonlinear normal

modes. Vakakis provided an excellent review of the literature in this area, explaining how NNMs relate to the response of

the system and highlighting methods for finding them analytically [10]. Kerschen also recently provided an excellent

overview [9].

It is helpful to illustrate the nonlinear normal mode concept with a single-degree-of-freedom (SDOF) system before

proceeding. Figure 12.3 shows the fundamental frequency of the NNM of a Duffing oscillator whose equation of motion

is given below in nondimensional form. The parameters used in this example are: z ¼ 0.01, o1 ¼ 1 and o3 ¼ 0.5.

€xþ 2zo1 _xþ o1xþ o3x
3 ¼ f ðtÞ (12.4)

The NNM is merely a periodic solution to the undamped (z ¼ 0) equation of motion for the system; so if the system were

linear then a possible periodic solution would be a pure sinusoid at a specific natural frequency, with a certain magnitude and

phase. The analogous solution to the nonlinear equation of motion is a fundamental frequency plus a series of harmonics.
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Fig. 12.3 (solid black) Frequency-energy plot for the nonlinear normal mode of a single-degree-of-freedom Duffing oscillator. (dashed red)
Frequency response curves of Duffing oscillator at various forcing amplitudes. The NNM provides tremendous insight into the free and forced

response of the system (color figure online)
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Figure 12.3 shows how the fundamental frequency of this solution evolves as the total energy in the system increases.

The black line gives the fundamental frequency of the response, or frequency of the NNM, at each energy level. As expected

for this system (whose nonlinearity is of the hardening type) the fundamental frequency increases as the energy increases.

For example, if the undamped system were given an initial energy of E ¼ 102 (dimensionless) and released, the system

would oscillate at a fundamental frequency of 2.7 rad/s. It is clear that the NNM concept captures how the oscillation

frequency of structure may change with amplitude. For convenience, the nonlinear normal mode frequency of the rth mode

will be denoted oNNMðEÞr, where the dependence on energy is explicit noted, or more simply, oNNM
r. Note that the NNM

frequency may be multi-valued, that is, the NNM curve may fold back so that there are several possible frequencies for rth
NNM at certain energy levels; this is termed an internal resonance of the nonlinear system and will be observed in the

example in Sect. 12.3.

The NNMs of a system are closely related to its forced response, analogous to the way in which the linear modes can be

used to explain the forced response of a linear system (see, e.g. [10]). The red curves in Fig. 12.3 show the forced response

of the Duffing oscillator at different excitation levels. Contrary to the usual convention, frequency is on the vertical axis

in this figure. The curves for nondimensional forcing amplitudes A ¼ 0.05, 0.5 and 1.0 are shown, all computed

with z ¼ 0.01. The NNM forms the backbone of the frequency response curves, which reach further up the NNM as the

amplitude increases. At high enough amplitude, the frequency response curves bend upward and a region emerges

where three possible solutions exist (i.e. three possible response amplitudes for a fixed forcing frequency and amplitude).

One of the solutions is unstable, but either the other might be observed at that forcing level, depending on the structure’s

initial conditions. One can also see that peaks begin to emerge at lower frequencies as the amplitude increases. These

peak occur at integer fractions of the NNM frequency and correspond to superharmonic resonances of the system [18].

Nonlinear normal modes and nonlinear forced response curves such as these are relatively straightforward to compute using

recently developed continuation techniques, and they provide tremendous insight into the dynamics of the system. The

nonlinear mode of the Duffing oscillator shown above was found using the methods in [9, 11] implemented in their

“NNMcont” Matlab package. The nonlinear frequency response curves were computed using the closely related method

that is described in [19].

The nonlinear normal modes of a system depend on its nonlinear stiffness and mass, in much the same way that the linear

modes of a structure depend on its linear stiffness and mass. For example, Fig. 12.4 shows how the NNM of the Duffing

system changes as (a) its nonlinear stiffness increases from 0.5 (black line) to 0.75 1.0 1.25 and 1.5, (b) its linear stiffness

increases from 1.0 (black line) to 1.25 1.5 1.75 and 2.0 or (c) its mass increases from 1.0 (black line) to 1.25 1.5 1.75 and 2.0.

The behavior of the NNM is quite intuitive in this simple example. The changes in the frequency at low energy due to

increasing the mass and stiffness are exactly what one would predict with linear theory.

When a system possesses multiple degrees of freedom, there are several nonlinear normal modes. Each mode can be

characterized by a frequency-energy backbone curve such as that shown above for the Duffing oscillator. As with a linear

mode, the structure also exhibits a particular deformation shape during each NNM. When a linear structure vibrates in a

linear modal motion, the deformation of the structure can be written as

x ¼ f1r f2r � � � fNr½ �Tqr ¼ wrðqrÞ (12.5)

where qr is the amplitude of the rth mode of vibration and fjr is the shape of the rth mode at the jth node. One could also

think of the mode shape as expressing a functional relationship between all of the nodes of the structure and the modal

amplitude, qr, so one could write the structural deformation as a vector function wrðqrÞ. In the case of a linear system as

shown above, each element of the function wrðqrÞ is simply proportional to, or a linear function of qr. As one might expect,

when the system is nonlinear the NNMs become nonlinear functions of the modal displacement. For example, Fig. 12.5

shows the shape, in the (x1, x2) space, of the first nonlinear normal mode of a two-DOF system that is described later (shown

in Fig. 12.7). It is clear that x2 and x1 are nonlinear functions of the amplitude. If the system were linear, the relative

amplitudes would obey a linear trend as is shown with the dashed red line.

A NNM shape such as that shown with a blue line in Fig. 12.5 is only valid for a single energy level. Hence, the rth NNM
of a nonlinear system will here be denoted wNNMðE; qrÞr to make the dependence on energy explicit, or more simply, wNNM

r.

It is important to note that the NNM curve at a low energy is not necessarily a subset of the NNM at a higher energy.

For example, if a second curve was added to Fig. 12.5 showing the NNM at a higher energy level, the two curves would

not generally overlay. Also, in some situations the modal amplitude is a complicated function of the physical displacements,

so it is often more convenient to write the NNM shape as a function of time wNNMðE; tÞr, where time is only defined within

the fundamental period 0� t<2p=oNNMðEÞr.
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12.2.4 Proposed Approximate Nonlinear Substructuring Methodology Based
on Representative Linear Modal Models (RLMMs)

At the most basic level, one can think of a nonlinear normal mode as providing the frequency and mode shape of a system as

a function of energy. As explained in the previous section the NNM shapes are not simple linear functions of modal

amplitude and the frequency of the NNM is only the fundamental frequency of a multi-frequency oscillation. In any event,

this leads one to question: To what degree is the behavior of the nonlinear system well described simply by the change in the

fundamental frequency of oscillation of the nonlinear system with energy? If the system can be described by a linear model

with the appropriate frequency and mode shape then modeling, simulation and test could all be simplified dramatically.

Section 12.2.2 established the fact that linearization will not generally capture a nonlinear system’s frequency-energy

dependence. Here an alternative description is proposed based on the nonlinear normal mode concept and which is dubbed a

Representative Linear Modal Model (RLMM). This concept is closely related to the describing function concept, which has

various definitions and uses [13, 20].

A representative linear modal model is a linear system defined by a set of natural frequencies and mode shapes, both of

which are functions of energy. The RLMM natural frequency, oRðEÞr, is taken to be the fundamental frequency of the NNM

curve of the system.

oRðEÞr ¼ oNNMðEÞr (12.6)

In cases where the NNM frequency is multi-valued one could retain the various values, or simply select a single

branch of interest and discard the others. The mode shape might be obtained in a number of ways. In this work we

propose to use a secant approximation to the NNM. Specifically, the mode shape is taken to be the maximal deformation

of the structure, defined as the deformation at the instant when the velocity is zero (assuming a predominantly

synchronous motion),

fRðEÞr ¼ wNNMðE; tdpkÞr (12.7)

where tdpk is the time instant at which _x ¼ 0. At a particular energy level the mode shape is a vector of constants akin

to a linear mode shape. For example, consider the NNM shape shown in Fig. 12.5. The maximal deformation occurs at

the extremes of the blue curve, so the proposed RLMM mode shape approximates the NNM with a line connecting

the maximum positive and negative deformations of the structure, or a secant line connecting the two extremes of the

NNM shape.

The goal in defining representative linear modal models is to characterize the response of the nonlinear system and to

facilitate substructuring predictions when various subcomponents are assembled. Towards the latter goal, this work proposes

to treat the RLMMs of two subcomponents as linear models. Hence, given the RLMMs of two subcomponents at various

energy levels, one would simply use linear modal substructuring techniques to predict the modes of the assembly.

The resulting modes of the assembly would then be an RLMM model describing the frequency-energy and mode shape-

energy dependence of the assembled system. The procedure is outlined in Fig. 12.6 and specific examples will be presented

in the following section.
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It is interesting to contrast this approachwith a complete nonlinearmodel for the assembly. For example,Apiwattanalunggarn

Shaw, and Pierre [21] adapted the Craig-Bampton approach to accommodate nonlinear normal mode models, but found

that it was quite impractical to compute nonlinear normal modes that contained the required nonlinear couplings and

also to simulate the response of the assembly using the NNM subcomponent models. In contrast, the operations

outlined in Fig. 12.6 could be performed at negligible computational cost even if each subcomponent has dozens of

RLMMs.

12.3 Case Study

The fundamentals of nonlinear substructuring will be explored with the simple substructuring problem that is depicted

in Fig. 12.7, where two nonlinear spring-mass systems are joined forming a 2DOF built-up system. The parameters used

are: m1 ¼ 1, m2 ¼ 0.5, m3 ¼ 0.5, k1 ¼ 1, k2 ¼ 0.2, and the nonlinear springs are cubic with coefficients knl,1 ¼ 0.5

and knl,2 ¼ 1e-5. The figure shows the frequency-energy dependence of the nonlinear normal modes of each of the

subcomponents, as well as those of the assembled system. The NNMs of the assembled system were computed directly

from the model for system C shown below; there was no approximation of the system so these NNMs can be taken to be the

truth model for the nonlinear system.

This system is linearizable, so it is helpful to first consider what insights the linearized system provides. Each NNM of the

system reduces to the linearized natural frequency of the structure at sufficiently low energy (at the far left edge of the plot).

The system parameters are such that the linearized natural frequency of the base system, A, (blue line) is o1
A ¼ 1 rad/s,

which is close to the second linearized natural frequency, o2
B ¼ (2k2/m2)

(1/2) � 0.89, of the attached system, B, (green

line). (Note that o1
B ¼ 0.) The dashed red lines in Fig. 12.7 give the natural frequencies obtained by combining the

linearized models (knl,1 ¼ knl,2 ¼ 0), revealing that the two modes of the subcomponents that have similar natural

frequencies combine to form two new modes of system C that have distinct natural frequencies. This is similar to the

standard vibration absorber or mass-tuned damper problem (see, e.g. [22]), where the two modes of the subcomponents

combine to form two new modes, one above and the other below the original resonance frequency.
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12.3.1 Rigorous Analysis of the Nonlinear Assembly

Now consider the nonlinear system. At low energy the subcomponents are well approximated as linear and the linearized

analysis predicts their natural frequencies precisely. As energy increases, the NNM of subsystem A increases in frequency,

beginning at an energy of E ¼ 0.1. Subsystem B has a weaker nonlinearity (knl,2 is four orders of magnitude smaller than

knl,1), so its NNM frequency does not begin to increase until E ¼ 100. Interestingly, the two NNMs of the assembly, C, seem

to track the frequencies of subsystems A and B, with the higher NNM of C following the curve for system A’s nonlinear

mode and the lower one following the curve for B’s nonlinear mode.

Viewing the substructuring problem in terms of nonlinear normal modes in this manner leads to a number of important

insights. First, it seems that the first NNMof the built-up structure is primarily influenced by the nonlinearmode of subsystemB.

The NNM of subsystemA seems to dominate the second NNMof the assembly. This information can be very valuable during

the design process. For example, if the response analysis were to reveal that the 1st NNM of the assembled system was

responsible for excessive vibration, then one might target the NNM of subsystem B in order to cause the greatest change.

The inset in Fig. 12.7 shows a magnified view of the 1st NNM frequency over a small range of energy, revealing a feature

which is unique to nonlinear systems. The natural frequency of the first NNM is seen to change in a very erratic way at this

energy level. The mode shape also changes dramatically in this region (not shown) as the system exhibits a 1:3 internal

resonance (the first mass moves at three times the frequency of the second). This type of response could be detrimental, since

it could lead to high vibration levels at unexpected frequencies. On the other hand, this phenomenon has also been proposed

as a mechanism for very effective nonlinear vibration absorbers [23]. It is also important to note that one could have

predicted that subharmonic resonance was possible at this energy level because the 2nd NNM frequency is three times the

1st NNM frequency at that energy and the nonlinearities are cubic. The NNM frequency-energy dependence of the coupled

system seems to follow the trend of the individual subcomponent NNMs except in this relatively small region where this

internal resonance occurs.

12.3.2 Substructuring Analysis with Representative Linear Modal Models

The frequency-energy plot in Sect. 12.3.1 presented the true dynamics of the assembly of nonlinear subcomponents.

This section considers the result that one obtains using RLMMs for the substructures A and B.

Substructure A is a single degree-of-freedom system, so it has a single nonlinear modewhose frequency-energy dependence,

oRðEÞ1
� �A

, is shownwith a blue line in Fig. 12.7, ranging from1 rad/s at low energy to 17.8 rad/s at E ¼ 105. The corresponding

nonlinear mode shape is a scalar value which, after mass-normalizing, remains unchanged, fRðEÞ1
� �A ¼ 1. Substructure B is a

two degree-of freedom system, but its first NNM is equivalent to its linear rigid body mode so oRðEÞ1
� �B ¼ 0 and

fRðEÞ1
� �B ¼ 1 1½ �T. The frequency dependence of its second RLMM, oRðEÞ2

� �B
, is shown with a green line in Fig. 12.7,

ranging from 0.89 to 2.45 rad/s at E ¼ 105. The corresponding shape also happens to be constant with energy,

fRðEÞ2
� �B ¼ 1 �1½ �T. Now the procedure outlined in Fig. 12.6 can be applied to predict the RLMMs of the assembled

system. This was implemented using the freely available “ritzscomb”Matlab routine which implements themethod described in

[3, 15]. The frequency-energy curves for each of the RLMMs computed using this approach are shown in Fig. 12.8.

Figure 12.8 shows that the RLMMmethod reproduces the nonlinear modes of the assembly with surprising accuracy. The

RLMMs are linear models and they were assembled using linear substructuring techniques, so this results suggests that the

frequency-energy dependence of the assembly is governed primarily by the effective natural frequencies (or RLMM

frequencies) of the underlying substructures. Other nonlinear effects, such as nonlinear coupling between the underlying

linear modes, seem to be much less significant. On the other hand, the inset shows that the linear RLMMmodel is incapable

of describing the internal resonance that occurs when the energy is near E ¼ 100, so that feature of the response is

completely missed.

In order to better understand how well the RLMM approximation captures the response of the nonlinear system, the first

nonlinear normal mode of the assembly is shown in Fig. 12.9 for an energy level of E ¼ 250. (Recall that the NNM is simply

a periodic response of the nonlinear structure). The corresponding response of the RLMM model is also shown, which is

a pure cosine since the RLMM is a linear model. Comparing the curves, the RLMM can be seen to approximate the motion

of x2(t) quite well; x2(t) dominates the response of this NNM at this energy level. On the other hand, the NNM shape of x1(t)
is dominated by higher frequency motion that cannot be captured by the RLMM model.
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12.3.3 Three Degree of Freedom Example of RLMM Substructuring

It was noted previously that both of the subcomponents used in the example in the previous subsection had constant RLMM

mode shapes, and this might cause one to question whether those results were simply an anomaly arising because the mode

shapes were constant. This was evaluated by using the RLMM substructuring procedure to add yet another copy of

subsystem B to assembly described in Figs. 12.7 and 12.8. The result, summarized in Fig. 12.10 below, shows that once

again very accurate results were obtained using the RLMM procedure, even though the shapes of the RLMM modes of one

of the substructures changed very significantly in this second example.

It is important to note that the actual nonlinear normal modes of this system show several internal resonances which are

not visible due to the coarse scale of the frequency-energy plot in Fig. 12.10. Indeed, some effort was required to compute
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the true NNMs of this system since the 1st NNM curve suddenly doubles back upon itself several times. The RLMMmethod

does not capture any of this complexity, but it does capture the overall trend in the NNM curves, and it does so at a miniscule

computational cost compared to the rigorous nonlinear model.

12.4 Conclusions

This work has extended concepts from linear modal substructuring to assemblies of nonlinear subcomponents using the

nonlinear normal mode concept. Nonlinear normal modes provide important insights into both the forced and free response

of a system, and this work has shown that the basic evolution of the nonlinear normal modes of an assembly can be predicted

very accurately if the NNMs of the subcomponents are known. Their evolution seems to be dominated by the frequency-

energy dependence of the individual subcomponents, so concepts from linear substructuring can be readily applied to

understand how each subcomponent contributes to the dynamic behavior of the assembly. Furthermore, these observations

were exploited by presenting a new substructuring technique that uses linear modal substructuring techniques to assemble

linear models for the subcomponents, here called Representative Linear Modal Models (RLMMs), in order to predict the

frequency-energy dependence of the assembly. This method was found to predict the frequency-energy evolution very

accurately and with minimal computational cost.

Of course, it is important to remember that linear models are not able to capture exclusively nonlinear phenomena such as

internal resonance, instabilities or chaos, so any linear analysis should be followed by a more detailed nonlinear analysis at

key energy levels in order to assure that important dynamics have not been missed. Fortunately, in many cases one can

predict the energy levels at which internal resonances might occur based on the NNM curves. For example when a system

has cubic springs, internal resonance typically occurs when one mode has a frequency that is three times that of another

mode [18]. The first NNM in Fig. 12.7 is three times the second at only one energy level, precisely that at which the internal

resonance was observed. Hence, for a system such as this one could predict the general evolution of the NNMs using the

substructure RLMMs and linear substructuring and then identify the energy at which internal resonances are possible.
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Appendix

This section explains how two linear substructures, each described by a set of linear modes can be joined so that the modes of

the assembly can be computed. The natural frequencies, or, and the matrix of mass-normalized mode shapes, F, are known
for each substructure. The concatenated equations of motion (in second order form) are then the following.

IA 0

0 IB

� �
€qA
€qB

� �
þ

nor
2n

� 	
A

0

0 nor
2n

� 	
B

" #
qA

qB

� �
¼ FA

TFA

FB
TFB

( )

yA

yB

� �
¼ FA 0

0 FB

� �
qA

qB

� � (12.8)

The constraints can then be expressed in terms of the physical or modal coordinates as follows:

ap
� 	 yA

yB

� �
¼ 0 ! ap

� 	 FA 0

0 FB

� �
qA
qB

� �
¼ 0 (12.9)

Then the constrained generalized coordinates can be eliminated by defining a nonsquare matrix B that transforms the

concatenated coordinates into a set of unconstrained coordinates using either the method described in [15] or the method in

[5] where

qC
qA

� �
¼ Bqu (12.10)

and B is in the null space of the matrix of constraints in (12.9). The equations of motion of the system in unconstrained

coordinates then become the following

Mu€qu þKuqu ¼ BT FA
TFA

FB
TFB

( )

yA

yB

� �
¼ FA 0

0 FB

� �
Bqu (12.11)

where the mass and stiffness matrices of the coupled system are.

Mu ¼ BT IA 0

0 IB

� �
B; Ku ¼ BT

nor
2n

� 	
A

0

0 nor
2n

� 	
B

" #
B (12.12)

One can show that multiplying the forces by BT eliminates the constraint forces, ensuring that compatibility is satisfied

(see Chap. 9 in [15]). The modes of the assembly can then be computed by solving an eigenvalue problem withMu; Ku and

then relating the mode shapes in qu coordinates back to the physical coordinates with (12.11).
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Chapter 13

An Effective Method for Assembling Impulse Response Functions

to Linear and Non-linear Finite Element Models

P.L.C. van der Valk and D.J. Rixen

Abstract The Impulse Based Substructuring (IBS) method has been proposed lately as an effective approach to evaluate the

dynamic response of a system, using either the numerically or experimentally obtained Impulse Response Functions (IRFs)

of its components. In this paper, the method will be combined with the (non-linear) Newmark time integration scheme in

order to couple IRFs with linear and non-linear finite element models. In the linear case this is done by performing, for each

time step, the Newmark step for the FE substructures and solving the convolution integrals for the IRFs simultaneously.

After this, the interface forces are computed that are required to enforce compatibility between all the substructures. For the

non-linear case, all the neighboring linear subsystems are condensed in the non-linear subsystems, which is then solved

using Newton-Raphson iterations on this condensed (non-linear) problem. A general multi-degree-of-freedom case will be

shown to illustrate the accuracy and versatility of the method. From the numerical results it is shown that the method yields

the same results as a Newmark time integration, thereby showing that the IBS method can be an efficient method to quickly

compute the response of a system obtained by assembling precomputed numerical components or measured substructures.

Nomenclature

M Mass matrix

C Damping matrix

K Stiffness matrix

u Array of degrees of freedom

f External force vector

g Connection force vector

p Internal elastic and damping force vector

B Compatibility matrix (Boolean)

L Localization matrix (Boolean)

l Vector of Lagrange multipliers

S Time stepping matrix

St Jacobian (iteration) matrix

IRF Impulse Response Function

IBS Impulse Based Substructuring
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13.1 Introduction

Dynamic substructuring is a family of methods based on the ancient idea of “divide and conquer”; by dividing a large and

complex system into smaller and simpler subsystems, one is able to compute the dynamic behavior, which might otherwise

not be possible, or greatly improve the efficiency of doing so. The first successful implementation of this idea in mathematics

was done by Schwarz in 1890 [15], but the idea of substructuring didn’t find its way to mechanics for another 70 years.

In 1960 Hurty [6] was the first to propose the so called Component Mode Synthesis technique, which triggered an entire new

field and was soon followed by the methods from Hurty [7], Gladwell [4], Guyan [5], Craig [1], MacNeal [10] and

Rubin [14] in the 1960s and 1970s.

In the 1980s a second class of substructuring methods originated from the desire to assemble measured substructures.

In 1984 Crowley et al. [2] presented a method for the direct assembly of frequency response functions (FRFs), SMURF

(structural modification using experimental frequency response functions), which did not get much attention from the

engineering community. Jetmundsen et al. [8] proposed an alternative method, which is often referred to as the classical

Frequency Based Substructuring method (FBS).

Nowadays, a third class of substructuring techniques can be identified, which is referred to by Rixen as Impulse Based

Substructuring (IBS) using either numerical models [13], or experimentally obtained models [12]. Similar ideas where

already used by Lehmann [9] for coupling finite element models and infinite domains in the field of soil-structure interaction.

Section 13.2 handles some of the basic topics, such as time integration using IRFs, discretization of the duhamel integral

and how to numerically obtain the impulse response functions. In Sect. 13.3 the Impulse Based Substructuring (IBS)

methods for both linear and non-linear finite element models (FEM) are presented. Both methods are demonstrated using an

academic example and the results are shown in Sect. 13.4. Finally, conclusions and discussion can be found in Sect. 13.5.

13.2 Time Integration Using Impulse Response Functions

As the name implies, Impulse Response Functions (IRFs) show the response of the system at hand to a unit impulse force

over time. Hence, they give the input–output relationship of a system or structure. As any force, that is a function of time, can

be expressed as subsequent force impulses over time, IRFs can be used to determine the time response of a system. In this

section it will be shown how to obtain and use these IRFs for time integration.

13.2.1 Time Integration Using the Impulse Response Functions

Firstly, starting from the equation of motion of a general linear dynamic system:

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ f ðtÞ (13.1)

Here, M denotes the mass matrix, C the viscous damping matrix, K the stiffness matrix, f (t) the external force, which is a

function of time and uðtÞ; _uðtÞ; €uðtÞ respectively the displacements, velocities and accelerations, which are also a function of

time. Assuming that €uðoÞ ¼ io _uðoÞ ¼ �o2uðoÞ, it can be rewritten into:

�o2M þ ioCþ K
� �

uðoÞ ¼ ZðoÞuðoÞ ¼ f ðoÞ, (13.2)

where Z(o) is the dynamic stiffness matrix. The reader can easily verify that the equations of motion (13.1) have been

transformed from the time to the frequency domain (13.2).

ZðoÞ�1f ðoÞ ¼ YðoÞf ðoÞ ¼ uðoÞ, (13.3)

where Y(o) is the dynamic flexibility matrix. So, if one would be interested in the time response of a certain system caused

by a certain input force, (13.3) can be transformed back to the time domain by means of an inverse fourier transform, which

would result in:

uðtÞ ¼
Z t

t¼0

Yðt� tÞf ðtÞdt, (13.4)
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where, Y(t) is the impulse response function of the dynamic system at hand. This integral equation is known as a convolution

product or Duhamel integral, and needs to be discretized to allow for numerical computations.

13.2.2 Discretization of a Convolution Product

The obtained convolution integral (13.4) is a continues equation and needs to be discretized in order to use it for numerical

computations. By looking at the applied force f (t) as a sum of discrete impulses, one could interpret this integral as being a

sum of the responses to impulse excitations between t ¼ 0 and t ¼ t.
In general however, the analytical impulse response function is not available, therefore one can compute a discrete

numerical approximation Y(ti), for ti ¼ 0. . .tn. Due to this, the integral of (13.4) is replaced by a finite sum, which converges

to the exact solution if dt goes to zero.

uðtnÞ ¼ un ¼ dt
Xn�1

i¼0

Yn�i f i (13.5)

Note that the sum in (13.4) is from 0 to n � 1, since Y(0) ¼ 0. This is due to the fact that the response of a system in terms of

displacements at t ¼ 0 to an impulse at t ¼ 0 is zero, as only the accelerations and velocities respond directly to the impact.

In this sum, it is assumed that both the impulse response function and the forcing function are piecewise constant. A more

accurate approximation would be to assume a piecewise linear variation of the forcing function a the different time stations,

which would result in the following sum and is also known as the trapezoidal rule.

un ¼ dt

2

Xn�1

i¼0

Yn�ið f i þ f iþ1Þ (13.6)

A brief introduction to discrete time integration using the impulse response matrices and the convolution product has been

given. In the next sections this will be used to apply these methods directly in different substructuring analysis.

13.2.3 Computing the Unit Impulse Response Functions

For computing the unit impulse force response functions, the Newmark time integration scheme is used. There are several

initial conditions one can use to compute the impulse force response functions [13]. In this paper it is assumed that an initial

force is given in the first time step (t0 ¼ 0), this is chosen as it is consistent with the constant average Newmark method.

From this assumption, the following initial conditions can be derived.

u0 ¼ 0

_u0 ¼ 0

€u0 ¼ M�1
1½j�
dt

,

(13.7)

where 1[j] is a vector with a unit coefficient for DoF j. Note that, throughout this paper the constant average acceleration

variant of the Newmark (g ¼ 0:5; b ¼ 0:25) is used. This thus implies that the values of the forcing function vary linearly

between the different time stations, as can be seen in Fig. 13.1. Due to this, the system is in fact excited not by a unit pulse,

Fig. 13.1 Force impulse

in the constant average

acceleration Newmark

scheme
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but by a half unit pulse and the final result has to be corrected for this. Using (13.7) as the initial conditions and performing a

time simulation, one is able to obtain the accelerations, velocities and displacements at all DoF as a result of the impulse

force at DoF j. Thereby determining the jth column of the Unit Impulse Force Response Matrices. Hence obtaining the entire

set of IRFs needed in (13.6).

YðtiÞ ¼

Y½11�ðtiÞ . . . Y½1j�ðtiÞ . . . Y½1N�ðtiÞ
..
. . .

. ..
. . .

. ..
.

Y½j1�ðtiÞ . . . Y½jj�ðtiÞ . . . Y½jN�ðtiÞ
..
. . .

. ..
. . .

. ..
.

Y½N1�ðtiÞ . . . Y½Nj�ðtiÞ . . . Y½NN�ðtiÞ

2
6666664

3
7777775

(13.8)

13.3 The Impulse Based Substructuring Method

As the basics of Sect. 13.2 have been discussed now, the different Impulse Based Substructuring (IBS) methods can be

presented in this section. In this section it will be shown how to assemble an IRF to a linear or non-linear FE model, as is

visualized in Fig. 13.2. Firstly, from the conditions necessary for coupling, the set of coupled equations of motion will be

derived. Using this set of coupled equations and the Newmark time integration scheme, a method is developed to obtain

coupled dynamic load simulations for combining both linear (Sect. 13.3.2) and non-linear (Sect. 13.3.3) finite element

models with impulse response functions.

13.3.1 Conditions for Assembly: Compatibility and Equilibrium

The goal of this section is to come from the set of uncoupled equations (13.9), where the variables with superscript (s) denote
the linear substructures described in their IRFs, the variables with superscript (r) denote the models given as (non) linear FE

models and pðrÞð _uðrÞn ; u
ðrÞ
n Þ is a vector of linear and non-linear internal forces, to the set of coupled equations of motion.

u
ðsÞ
n ¼ dt

2

Pn�1
i¼0 Y

ðsÞ
n�i

�
f
ðsÞ
i þ f

ðsÞ
iþ1 þ g

ðsÞ
i þ g

ðsÞ
iþ1

�
MðrÞ€uðrÞn þ pðrÞ _u

ðrÞ
n ; u

ðrÞ
n

�
¼ f ðrÞn þ g

ðrÞ
n

�
8<
: (13.9)

Here, g denotes the interface forces coming from the neighboring substructures, which are needed to enforce coupling

between these substructures. It is known that in order to obtain a fully coupled set of equations, two conditions have to be

satisfied. The first one being compatibility, which means that the the displacements of the nodes on both sides of the interface

have to be equal, and thus no gap is allowed between the different substructures.

u
ðsÞ
½b� ¼ u

ðrÞ
½b� , (13.10)

where the subscript [b] denotes the interface (or boundary) nodes. The compatibility condition can also be written using

Boolean operators that work on the boundary DoF within the full set of DoF, such that

Fig. 13.2 Conceptual view

of coupling FEM to IRFs
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BðsÞ � � � BðrÞ� � uðsÞ

..

.

uðrÞ

2
64

3
75 ¼ Bu ¼ 0 (13.11)

The second condition is Equilibrium, which states that the sum of the forces at the connecting nodes have to be equal to zero,

such that no resulting force between the substructures exists. This means that the interface forces have to be opposite in sign

and equal in magnitude.

g
ðsÞ
b þ g

ðrÞ
b ¼ 0 (13.12)

Using the Boolean operator B from (13.11), this can be written as:

gðsÞ

gðrÞ

� 	
¼ �BTl, (13.13)

where l are known as Lagrange Multipliers that denote the magnitudes of the interface forces. Hence, by using (13.13), the

number of unknowns is reduced. Substitution of both the compatibility condition (13.11) and the equilibrium condition

(13.13), results in the set of coupled equations.

u
ðsÞ
n ¼ dt

2

Pn�1
i¼0 Y

ðsÞ
n�iðf i þ f iþ1 � BðsÞT ðli þ liþ1ÞÞ

MðrÞ€uðrÞn þ pðrÞð _uðrÞn ; u
ðrÞ
n Þ ¼ f ðrÞn � BðrÞTln

Bun ¼ 0,

8><
>: (13.14)

Note that solving these equations is not straight forward and in addition one needs to consider the time discretization

relations for the velocities and accelerations in the Finite Element submodels. In the next sections, it will be discussed how to

rewrite these equations in order to solve them in a time stepping scheme. Firstly, in Sect. 13.3.2, it is assumed that the FE

model at hand is a linear model, hence pðrÞ
�
_u
ðrÞ
n ; u

ðrÞ
n

�
is replaced by the sum of internal (linear) damping and elastic forces.

Finally, Sect. 13.3.3 covers the assembly of non-linear finite element models and (linear) impulse response functions.

For more details on Boolean operators and assembly of substructures, the interested reader is referred to [3, 16].

13.3.2 Assembly of Linear FE Models and Impulse Response Functions

First, the linear case will be handled, therefore the non linear forces are discarded and pðrÞ
�
_u
ðrÞ
n ; u

ðrÞ
n

�
is replaced by

CðrÞ _uðrÞn þ KðrÞuðrÞn . The sets of equations of motion for the different subsystems are now:

u
ðsÞ
n ¼ dt

2

Pn�1
i¼0 Y

ðsÞ
n�iðf i þ f iþ1 � BðsÞT ðli þ liþ1ÞÞ

MðrÞ€uðrÞn þ CðrÞ _uðrÞn þ KðrÞuðrÞn ¼ f ðrÞn � BðrÞTln

Bun ¼ 0,

8><
>: (13.15)

Again, the compatibility and equilibrium conditions stated in Sect. 13.3.1 have to be satisfied for a successful coupling of the

subsystems. Since the outcome of this substructuring analysis would be to obtain the response of the total system to a certain

set of input forces, the equations are solved in a time stepping scheme. Since the Newmark method is one of the most popular

and most common time stepping schemes, it will also be used in this research. In the Newmark scheme, a Taylor expansion is

used to deduce the velocities and displacements of the next time station, according to:

_un ¼ _un�1 þ ð1� gÞdt€un�1 þ gdt€un

un ¼ un�1 þ dt _un�1 þ dt2
1

2
� b


 �
€un�1 þ dt2b€un

(13.16)
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Substituting the velocities and displacements according to (13.16) into (13.15), results in the numerical scheme to compute

the accelerations of the next time step.

SðrÞ€uðrÞn ¼ f ðrÞn � BðrÞTln � CðrÞ _̂uðrÞn � KðrÞûðrÞn (13.17)

where,

SðrÞ ¼ MðrÞ þ gdtCðrÞ þ bdt2KðrÞ

_̂uðrÞn ¼ _u
ðrÞ
n�1 þ ð1� gÞdt€uðrÞn�1

ûðrÞn ¼ u
ðrÞ
n�1 þ dt _u

ðrÞ
n�1 þ dt2

1

2
� b


 �
€u
ðrÞ
n�1

(13.18)

As compatibility is enforced on the interface displacements (13.15), an expression for un
(r) is required. Firstly, note that

(13.17) can be rewritten into:

€uðrÞn ¼ SðrÞ
�1
�
f ðrÞn � BðrÞTln � CðrÞ _̂uðrÞn � KðrÞûðrÞn

�
(13.19)

Substituting (13.19) into (13.16) and separating the known part (~u
ðrÞ
n ) from the unknown part, this leads to an expression for

the displacements at tn.

uðrÞn ¼ ~uðrÞn � dt2bSðrÞ
�1

BðrÞTln (13.20)

where,

~uðrÞn ¼ ûðrÞn þ dt2bSðrÞ
�1
�
f ðrÞn � CðrÞ _̂uðrÞn � KðrÞûðrÞn

�
(13.21)

Now, the same approach is taken to obtain an expression for the unknown displacements for the subsystems denoted by the

superscripts (s) at tn, the duhamel integral from (13.15) is also separated into a known and unknown part.

uðsÞn ¼ ~uðsÞn � dt

2
Y
ðsÞ
1 BðsÞTln, (13.22)

where:

~u
ðsÞ
n ¼ dt

2

Pn�2
i¼0 Y

ðsÞ
n�iðf i þ f iþ1 � BðsÞT ðli þ liþ1ÞÞ þ dt

2
Y
ðsÞ
1 ðf ðsÞn�1 þ f ðsÞn � BðsÞTln�1Þ (13.23)

Note that in both (13.20) and (13.22), the “known” part of the displacements is in fact the uncoupled response of the different

subsystems. Due to all the steps taken so far, (13.15) is rewritten into (13.24).

u
ðsÞ
n ¼ ~u

ðsÞ
n � dt

2
Y
ðsÞ
1 BðsÞTln

u
ðrÞ
n ¼ ~u

ðrÞ
n � dt2bSðrÞ

�1

BðrÞTln

Bun ¼ 0

8><
>: (13.24)

It can be seen that the unknowns at this point are still un
(s), un

(r) and ln. By now substituting the first two lines of (13.24) into

the last line, the compatibility condition, and rewriting the result, the direct relation between the known part of the

displacements ~un and interface forces ln is obtained.

ln ¼ ðBW BTÞ
�1

B~un (13.25)

where,

W ¼
dt
2
Y
ðsÞ
1 0

0 dt2bSðrÞ
�1

" #
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Substituting the result from (13.25) back into (13.24) and (13.16) leads to the actual coupled displacements, velocities and

accelerations at time tn, which is then the starting point to compute the coupled response at time tn + 1. The integration

scheme discussed here is also summarized in Fig. 13.3.

13.3.3 Assembly of Non-linear FE Models and Impulse Response Functions

In addition to linear finite element models, one should also be possible to handle non-linear finite element models. Recalling

(13.14), it is clear that the internal force vector pðrÞ
�
_u
ðrÞ
n ; u

ðrÞ
n

�
contains all the internal linear and non-linear elastic and

damping forces. As for the non-linear case, the accelerations, velocities and displacements cannot be found in one step. The

non-linear (finite element) subsystems of (13.14) are solved using the non-linear Newmark scheme [11], which uses

Newton-Raphson iterations in order to solve the set of non-linear equations of motion. For solving the displacements of

the linear part, expressed in IRFs, only the Lagrange multipliers (ln) are needed.

In this section it will be shown how to re-arrange the equations, in order to solve the set of coupled equations. First of all,

it will be shown how to condense all the linear subsystems in the non-linear subsystems, as this will ensure that the

contribution of the linear subsystems is included in the Newton-Raphson iterations on the non-linear subsystems. Finally, it

is shown how to update the accelerations, velocities and displacements of the non-linear subsystems using a non-linear

Newmark scheme and how to use these to explicitly obtain the Lagrange multipliers, which are required to update the

displacements of the linear subsystems (as can be seen in (13.6)).

Repeating the second line from (13.14) here:

MðrÞ€uðrÞn þ pðrÞ
�
_uðrÞn ; uðrÞn

�
þ BðrÞTln ¼ f ðrÞn (13.26)

Note that BðrÞTln is the interface force, which is there due to the coupling to other substructures. Now, if one wants to solve

for the accelerations, velocities and displacements, the most common method is to use a Newton-Raphson scheme, which

requires an iteration matrix. This iteration matrix St

�
u
ðrÞ
n

�
, is a local linearization of the non-linear problem and can be

interpreted as a tangent dynamic stiffness matrix.

St

�
uðrÞ

�
¼ @pðrÞ

@uðrÞ
þ @pðrÞ

@ _uðrÞ
@ _uðrÞ

@uðrÞ
þMðrÞ @€u

ðrÞ

@uðrÞ
� @f ðrÞ

@uðrÞ
þ @BðrÞTl

@uðrÞ
(13.27)

Note that, in order to compute this matrix, a direct relationship between l and u(r) is required and needs to be computed.

Recalling the compatibility equation (13.11), the IRFs describing the linear subsystems (13.14) can be substituted in this

compatibility condition and is rewritten into:

BðrÞ BðsÞ� � u
ðrÞ
n

~u
ðsÞ
n

� 	
þ BðrÞ BðsÞ� � 0 0

0 dt
2
Y
ðsÞ
1

� 	
BðrÞT

BðsÞT
� 	

ln ¼ 0, (13.28)

where ~u
ðsÞ
n is given in (13.30).

~u
ðsÞ
n ¼ dt

2

Pn�2

i¼0

Y
ðsÞ
n�iðf i þ f iþ1 � BðsÞT ðli þ liþ1ÞÞ þ dt

2
Y
ðsÞ
1

�
f
ðsÞ
n�1 þ f ðsÞn � BðsÞTln�1

�
(13.29)

It can be seen, that from (13.29), the relation between l and u(r) is easily obtained.

ln ¼
�
BðsÞ dt

2
Y
ðsÞ
1 BðsÞT

��1

B�un, (13.30)

where, �un ¼ u
ðrÞT
n ~u

ðsÞT
n

h iT
. As can be seen, B�un denotes the compatibility error (due to the fact that the displacements of

the linear part are not updated yet), which is multiplied by the equivalent interface stiffness of the linear subsystem and thus

results in the interface force that is required to close the “gap”. Note that this is an implicit equation, as un
(s) is also a function
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Fig. 13.3 Integration scheme for the linear IBS case
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of the interface force ln (13.14). Nevertheless, (13.31) can be substituted in the equations of motion of the non-linear part of

the total problem (13.14). This results in the following set of equations.

MðrÞ€uðrÞn þ
�
pðrÞð _uðrÞn ; u

ðrÞ
n

�
þ BðrÞT

�
BðsÞ dt

2
Y
ðsÞ
1 BðsÞT

��1

B�un ¼ f ðrÞn
(13.31)

This is in fact a condensation of the linear subsystems, described in their IRFs, into the non-linear subsystems. Using (13.32),

the tangent iteration matrix St(u
(r)) can be computed.

St uðrÞn

� �
¼ K

ðrÞ
t þ g

bdt
C
ðrÞ
t þ 1

bdt2
MðrÞ þ BðrÞT

�
BðsÞ dt

2
Y
ðsÞ
1 BðsÞT

��1

BðrÞ (13.32)

Using the relations obtained so far, the time stepping scheme (Fig. 13.4) can now be discussed. The scheme consists of two

simultaneous loops over time; the first being the discretized convolution product and the second being the modified non-

linear Newmark time integration scheme. As with any time integration scheme, one starts with the initial conditions and

computes the initial accelerations. In the next step, the so called predictors are computed. In the case of the convolution

product, this is in fact the “uncoupled” response of the subsystem, as is given in (13.30). For the non-linear Newmark scheme

one computes, at each new time step, predictions for the displacements, velocities and accelerations.

uðrÞn ¼ u
ðrÞ
n�1 þ dt2

� 1

2
� b

�
€u
ðrÞ
n�1

_uðrÞn ¼ _u
ðrÞ
n�1 þ ð1� gÞdt€uðrÞn�1

€uðrÞn ¼ 0

(13.33)

Using these predictions, the error on the equilibrium is computed, which can be interpreted as a residual force vector.

rðrÞn ¼ MðrÞ€uðrÞn þ pðrÞð _uðrÞn ; uðrÞn Þ � f ðrÞn þ BðrÞTln (13.34)

Note that l is computed using (13.31). The goal is to minimize this residual to a given convergence criterium jrðrÞn j<ej f ðrÞint j,
where f

ðrÞ
int is the sum of all the internal forces and e is a constant dictating the strictness of convergence. This minimization of

the residual is achieved by successive Newton-Raphson iterations

StðuðrÞn ÞDuðrÞ ¼ �rðrÞn , (13.35)

here, Du(r) is the correction on the displacements and the iteration matrix St(un
(r)) is the Jacobian of the equations of motion

as computed in (13.33). Using Du(r), the displacements, velocities and accelerations are updated.

€uðrÞn ¼ €uðrÞn þ 1

bdt2
DuðrÞ

_uðrÞn ¼ _uðrÞn þ g
bdt

DuðrÞ

uðrÞn ¼ uðrÞn þ DuðrÞ

(13.36)

Using the updated displacements, a new interface force ln is computed for each iteration using (13.31). Substituting the new

interface force and the updated displacements, velocities and accelerations into (13.35), results in the “updated” residual

force, which is used for the next iteration. After the non-linear part has converged, the linear substructures can be updated

uðsÞn ¼ ~uðsÞn � dt

2
Y
ðsÞ
1 BðsÞTln, (13.37)

and a new time step is started. The method for coupling IRFs and non-linear FE models is shown in Fig. 13.4, where the

iteration-loop is indicated by the green dotted line. It is clear that the Impulse Based Substructuring method can also be used

to couple IRFs with non-linear finite element models and that the implementation only requires some small modifications to

the original Newmark time integration scheme for non-linear problems.
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Fig. 13.4 Integration scheme for the non-linear IBS case
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13.4 Case Study

The methods presented above, will be demonstrated using both a linear and a non-linear academic test case. Both test cases

are based on the same model (Fig. 13.5 and Table 13.1), where in the non-linear case one of the linear springs is replaced by

a cubic spring. Subsystem A is a 7 DoF system and is modeled using the finite element method, subsystem B is a 4 DoF

system and is modeled using impulse response functions. The total system consists of 9 DoF, as uA6 is rigidly connected to

uB1 and uA7 is rigidly connected to uB2. In order to demonstrate the method, the system is excited by an impulse on mA1 at

t ¼ 0. 1s and the computed displacements are compared to a reference solution, which is obtained by performing a

Newmark time integration on the total system. The results of the linear test case are shown in Fig. 13.6. In the upper

graph, the displacements uA1 is shown for both the reference solutions as well as the solution computed using the IBS

method; it is clear that the responses are the same. The interface forces are shown in the lower graph, where l1 is the

interface force between mA6 and mB1 and l2 is the interface force between mA7 and mB2. In the non-linear case, the linear

spring denoted kA0 in Fig. 13.5 is replaced by a cubic spring, with the following behavior

f ¼ kA0u
3
A1

and m A1 is excited by the same impulse. The results of the non-linear test case are shown in Fig. 13.7. The effect of the non-

linear spring is apparent in the results and it can easily be verified by the reader that, again, the method gives perfect results.

13.5 Conclusions and Discussion

In this paper it was shown how to assemble both linear and non-linear finite element models to impulse response functions.

From Figs. 13.3 and 13.4 it is easy to see that the IBS method can actually be seen as and “add-on” to the standard Newmark

time integration schemes and require only a limited number of modifications. From the results it can be concluded that the

method works excellent for both the linear and non-linear cases.

Table 13.1 Parameters of mass-spring systems

System parameters

Subsystem A Subsystem B

Mass (kg) Stiffness (N/m) Mass (kg) Stiffness (N/m)

General mA1 ¼ 10 kA11 ¼ 2 �103 mB1 ¼ 2 kB1 ¼ 1 �103
mA2 ¼ 3 kA12 ¼ 2 �103 mB2 ¼ 4 kB2 ¼ 1 �103
mA3 ¼ 3 kA2 ¼ 1 �103 mA3 ¼ 8 kB3 ¼ 2 �103
mA4 ¼ 6 kA3 ¼ 1 �103 mB4 ¼ 5 kB4 ¼ 2 �102
mA5 ¼ 2 kA41 ¼ 0. 5 �103
mA6 ¼ 2 kA42 ¼ 1 �103
mA7 ¼ 4 kA5 ¼ 0. 2 �103

Linear case kA0 ¼ 1 �103
Non-linear case kA0 ¼ 5 �107

Fig. 13.5 Simple system used for case study
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In addition to this, in theory, the method can also be used for combining numerical models with experimentally obtained

impulse response functions. Although working with measurements is altogether challenging, the technique should allow for

time integrations which include measured components.
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Fig. 13.6 Results of the linear test case
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Fig. 13.7 Results of the non-linear test case
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Chapter 14

Truncating the Impulse Responses of Substructures to Speed Up

the Impulse-Based Substructuring

Daniel Rixen and Nazgol Haghighat

Abstract Recently a time-domain substructuring method was proposed based on the assembly of series of impulse

responses of components: the Impulse Base Substructuring (IBS). Although theoretically the IBS is the time-domain

equivalent to the Frequency Based Substrcutring method (FBS), it has several advantages when computing shock responses

for instance. However a major drawback of the IBS is the rapid increase of computational costs when the simulated time

increases. In this contribution we propose a truncation and windowing procedure in order to limit the cost involved by the

discretized convolution product inherent to the IBS method. We describe how to truncate the Impulse Response Functions of

floating and non-floating substructures, and describe a cosine windowing function to improve the accuracy and stability of

the dynamic response obtained from the superposition of truncated impulse responses. A simple bar example is used to

illustrate the numerical performance of the truncated IBS.

14.1 Nomenclature

FRF Frequency response functions

FBS Frequency based substructuring

IBS Impulse based substructuring

IRF Impulse response functions

u Array of degrees of freedom

f Array of external forces

H(t) Matrix of impulse response function

⋆(s) Pertaining to substructure s
Ns Number of substructures in the system

B Signed Boolean matrix defining compatibility constraints

l Lagrange multipliers on interface

M, K, C Mass, stiffness and damping matrix of a linear(ized) system

R Matrix of rigid body modes of a floating substructure

dt Time-step size

⋆n Pertaining to time-step n
[⋆i Component i of an array

b, g Parameters of the Newmark time-integration scheme

e Relative amplitude threshold for the truncation of the IRF

tc Cutoff time for the truncation of the IRF
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14.2 Introduction

The Impulse Based Substructuring (IBS) method was proposed in [3] as a time-domain counter-part of the Frequency Based

Substructuring (FBS) (see for instance [1] for an overview of the FBS approach). The FBS represents the dynamics of the

substructures through the Frequency Response Functions (FRFs) in the frequency domain at the interface, input and output

degrees of freedom. The IBS describes the substructure dynamics using impulse response functions (IRF) which, in theory,

are the inverse Fourier transforms of the FRFs.

Although the IBS approach is the direct counterpart of the FBS in the time domain, it has some advantages when one

wants to compute the response of a system to shock loads using the measured or simulated response of its components.

In the present contribution we deal with one of the shortcomings of the IBS method, namely the fact that computing the

response through a discretized convolution product can become computationally expensive when the time interval one is

interested in for the simulation is not small. To alleviate the cost involved in the IBS computation, we investigate the

possibility to apply truncation and windowing to the impulse responses of the components. Although such an approach

seems straightforward, special caution must be taken when a component is floating, namely when it has not enough

constraints to fix it in space once it is disconnected from its neighboring components.

In Sect. 14.2 we will shortly recall the basic principles of the IBS method and in Sect. 14.3 we discuss the truncation

procedures for the IRFs of the components. We first describe the truncation and windowing for a non-floating component,

then we develop a truncation procedure for floating ones. In Sect. 14.4 a simple numerical example is presented in order to

illustrate the accuracy and stability of the solution computed by the truncated IBS approach.

14.3 The Impulse Based Substructuring in a Nutshell

14.3.1 Convolution of Impulse Response Functions and Inputs

The impulse based computation of the response of a dynamical system is described by the Duhamel’s integral stating that a

dynamic response is obtained from the convolution of the impulse response h(t) (i.e. the response to a unit impulse at time

t ¼ 0) and the applied force f(t). For a system with several inputs and outputs, we callH(t) the matrix of the impulse response

functions between inputs and outputs. The system responses at the outputs are denoted by the array u(t) and the applied

forces (the inputs) are denoted by an array f(t). The Duhamel’s integral can then be written as

uðtÞ ¼
Z t

0

Hðt� tÞf ðtÞdt (14.1)

In practice, for engineering systems, the IRFs, namely H(t) are not known analytically but can be measured (see [2]) or

simulated (see [3]). So the IRF is available in a time-discretized form. CallingHn, fn and un, the IRF matrix, input and output

arrays at time tn, the Duhamel’s integral (14.1) can be approximated by the finite difference form

un ¼
Xn�1

i¼0

Hn�if i þ Hn�i�1f iþ1

� �
dt=2 (14.2)

This approximation is obtained by applying the trapezoidal rule to the Duhamel’s integral. It was observed in [3] that, if

the IRF matrix is computed using a Newmark scheme, the discretization (14.2) yields the some dynamic response as when a

Newmark scheme is applied to compute the response to the excitation f.

14.3.2 Assembling the Dynamic Response of Substructures

Let us now assume that a system is described by the impulse response of its Ns substructures and let as call H(s) the IRFs of

substructure O(s). The assembly of the substructure is perform in a dual manner by imposing the compatibility between

matching degrees of freedom on the interface between substructures. This can be written as
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XNs

s¼1

BðsÞuðsÞ ¼ 0 (14.3)

where B(s) are signed Boolean matrices identifying the matching degrees of freedom on the interfaces (see [1] for instance).

This relation merely states that for any matching pair (ui
(s), uj

(r)) one must impose u
ðsÞ
i � u

ðrÞ
j ¼ 0. This compatibility

condition is enforced using Lagrange multipliers l, representing the internal forces on the interfaces. Hence for a partitioned
problem the Duhamel’s integral (14.1) can be written as1

uðsÞðtÞ ¼
Z t

0

HðsÞðt� tÞ f ðsÞðtÞ þ BðsÞTlðtÞ
� �

dt

XNs

s¼1

BðsÞuðsÞðtÞ ¼ 0

8>>><
>>>:

(14.4)

Considering the same time-discretization as in (14.2), taking into account that H0 ¼ 0, the dual assembly (14.4) can be

discretized as

uðsÞn ¼ HðsÞ
n f

ðsÞ
0

dt

2
þ BðsÞTl0

� �
þ
Xn�1

i¼1

H
ðsÞ
n�i f

ðsÞ
i dtþ BðsÞTli

� �
XNs

s¼1

BðsÞuðsÞn ¼ 0

8>>>><
>>>>:

(14.5)

In practice this system is solved for every time instance tn by first predicting the substructure response as if the interface

impulses ln � 1 are null, then computing the ln � 1 necessary to satisfy compatibility at time tn, and finally correcting the

substructure responses for the interface force. In summary,

~uðsÞn ¼HðsÞ
n f

ðsÞ
0

dt

2
þ BðsÞTl0

� �
þ
Xn�2

i¼1

H
ðsÞ
n�i f

ðsÞ
i dtþ BðsÞTli

� �
þ H

ðsÞ
1 f n � 1ðsÞdt (14.6)

ln�1 ¼ �
XNs

s¼1

BðsÞHðsÞ
1 BðsÞT

 !�1XNs

s¼1

BðsÞ~uðsÞn
(14.7)

uðsÞn ¼ ~uðsÞn þ H
ðsÞ
1 BðsÞTln�1 (14.8)

14.4 Truncating the Impulse Responses

Clearly the cost of the discretized convolution (14.6) is increasing rapidly when the simulation time tn is getting large. This is
due to the fact that all the forces that have been acting on the system from time t0 to time tn � 1 determine the dynamic

response at tn through the history transmitted over the time domain according to the impulse response H. For instance the

force f0 applied at time t0 will influence the response at time tn through the value of the IRFs Hn. If however the IRFs at tn
have significantly decreased due to the damping in the system, it seems acceptable to neglect the contribution of f0 to the

response un. In essence one then truncates the IRFs of the system. This will be investigated in this section, first for a non-

floating component, then for a floating component.

1 In the time-discrete form l are chosen to represent interface impulses.
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14.4.1 Non-Floating Substructures

Let us split the Duhamel’s integral (14.2) in the following two convolution products:

un ¼
Z tn

0

Hðtn � tÞf ðtÞ dt ¼
Z tn�tc

0

Hðtn � tÞf ðtÞ dtþ
Z tn

tn�tc

Hðtn � tÞf ðtÞ dt (14.9)

Let us further assume that after time tc the IRFs have decayed so that they can be assumed to be zero:

Hðtn � tÞ ’ 0 fortn � t > tc; namelyfort < tn � tc

Note that this will occur only if damping is present and if the structure is not floating. Indeed if the structure (or substructure

in the case of the IBS) are not restrained by enough imposed displacements, the IRFs will grow steadily due to the rigid body

motion generated by the initial impulse. This case will be discussed in Sect. 14.3.2. Assuming thus that enough damping is

present and that the (sub)structure is not floating, one can then write the approximation2

un ’
Z tn

maxf0;tn�tcg
Hðtn � tÞf ðtÞdt (14.10)

’
Xn�1

i¼maxf0;n�cg
Hn�if i þ Hn�i�1f iþ1

� �
dt=2 (14.11)

This approximation can significantly reduce the cost of the convolution computation. It corresponds to cutting the IRF

after time tc, and can thus be seen as windowing the IRF with a rectangular window of width equal to tc. Obviously other

windows can be defined in order to force the IRFs to zero in a smoother manner. This is discussed next.

Let us consider a user defined threshold e. Then the cutoff time tc can be chosen as the time for which all the impulse

responses inH have a vibrational amplitude lower than e (see Fig. 14.1). The approximation (14.11) can then be interpreted

as applying a rectangular window on the IRFs in order to set them to zero after time tc. Such a rectangular window can

formally be written as

WrectðtÞ ¼
1 if t < tc

0 if t > tc

(
(14.12)

where tc is such that the amplitude of all the IRFs in H have reached an oscillatory amplitude e-times lower than their

maximum value over time.3 Obviously, forcing the impulse response to zero can seriously perturb the dynamic response

computed by superposition of impulse responses since it corresponds to introducing parasitic impulses after time tc in order
to “kill” the impulse response of forces that have been acting on the system c time steps earlier. Thus applying smoother

windows is desirable in order to improve the accuracy and the stability of the dynamic response constructed ontruncated

IRFs. Here we will investigate a simple cosine window defined as

WcosðtÞ ¼
cos

pt
2tc

� �
if t < tc

0 if t > tc:

8><
>: (14.13)

An illustration of such a window is given in Fig. 14.2. This cosine window has the advantage to introduce only very small

additional damping at the beginning of theIRF, therefore not perturbing to much the dynamical properties of the system.

2 In case of substructures, one must also add the interface forces BðsÞTl in these equations. Nevertheless, to simplify the text, we will omit the

interface forces in this section.
3 In our work the oscillatory amplitude is detected by evaluating the peak values of the IRFs.
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Nevertheless one should be aware that such a window, unlike for instance a classical exponential window, transforms the

IRF in a dynamic response that isnot mechanically interpretable. Furthermore, the high slope of the cosine window close to

the cutoff time might induce significant velocity and acceleration perturbations.

When such a non-rectangular window is applied one first multiplies the IRFs up to tc byWcos to obtain the weighted IRFs
�H (red curve in Fig. 14.2) and uses the truncated convolution (14.11) whereH is replaced by �H. Obviously such a procedure

can be introduced in the IBS approach (14.5) by simply restricting the convolution computation and replacing the IRFs by

the weighted ones.
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Fig. 14.2 IRF truncated by a cosinus window
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Fig. 14.1 IRF truncated by a rectangular window
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14.4.2 Floating Substructures

Let us now consider the case of a floating (sub)structure and split again the convolution product as in (14.9)

un ¼
Z tn

0

Hðtn � tÞf ðtÞ dt ¼
Z tn�tc

0

Hðtn � tÞf ðtÞ dtþ
Z tn

tn�tc

Hðtn � tÞf ðtÞ dt

When the substructure is floating, namely when there are not enough boundary conditions to block its rigid body motion, one

can no longer assume that the IRF is close to zero after a time tc since the initial impulse has generated an initial velocity

causing the (sub)structure to drift away. In fact the IRF can be seen as a vibration superimposed on a global rigid body

motion.

The approach proposed here is then to truncate and apply a window on the part of the IRF remaining when one has

removed the rigid body motion due to a unit impulse. The overall rigid body motion in the IRF will be accounted for during

the full length of the convolution and thus is not truncated.

To build the rigid body response, one can either estimate the constant velocity part from the measured or simulated IRF,

or if the global inertia of the (sub)structure is known, it can be computed. Calling R the matrix containing in its columns the

rigid body modes of the (sub)structure (i.e. the nullspace of the stiffness matrix K), the overall motion is found by setting

u ¼ Ra (14.14)

where a are the unknown rigid body mode amplitudes. Let as write the linear(ized) equilibrium equation of the system as

M€uþ C _uþ Ku ¼ f (14.15)

where M, C and K are respectively the mass, damping and stiffness matrices. Introducing the assumption (14.14) in the

equilibrium equation and noting that KR ¼ 0 by definition, and assuming further that CR ¼ 0,4 one finds

RTMR€a ¼ RTf (14.16)

Thus, when f is an initial unit impulse, one can write

Z t

0

Z t

0

RTMR€adt ¼
Z t

0

Z t

0

RTf ¼ RT11 t

where 11 is an array containing zeros for all entries except at the degree of freedom excited by the impulse, where the value

of 11 is 1. Defining then

Mtot ¼ RTMR (14.17)

the total inertia related to the rigid body modes R and recalling that for the IRF, initial conditions are null, one finds

a ¼ M�1
tot R

T11 t (14.18)

Substituting now in (14.14) one finds the rigid body motion related to a unit impulse:

urigid ¼ R�1
tot R

T11 t (14.19)

So computing the rigid body motion associated to every input of the IRF matrixH, one builds the rigid body response matrix

4 This assumption means that the damping in the (sub)structure is internal and does not produce any damping force when no deformations are

present.
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Hrig ¼ RM�1
tot R

T t (14.20)

and the vibrational part of the IRF is obtained from5

Hvib ¼ H � Hrig (14.21)

The truncation of the IRF for a floating (sub)structure then consists in truncating only its vibrational part since that portion

of the IRF can be assumed to decay to a negligible contribution after the cutoff time tc. Mathematically speaking we write

n ¼
Z tn

0

Hðtn � tÞf ðtÞ dt

¼
Z tn

0

Hrigðtn � tÞ þ Hvibðtn � tÞ� �
f ðtÞ dt

’
Z tn

0

rigðtn � tÞf ðtÞdtþ
Z tn

tn�tc

vibðtn � tÞf ðtÞ dt

where rigðtn � tÞ ¼ R�1
tot R

T ½tn � t� dt

(14.22)

The first part represents the rigid body response to the force f and, introducing the simplified notation

M�1 ¼ RM�1
tot R

T ; (14.23)

it can be written as

urign ¼
Z tn

0

M�1 ½tn � t�f ðtÞ dt (14.24)

¼
Z tn�1

0

M�1 ½tn�1 þ dt� t�f ðtÞ dtþ
Z tn

tn�1

M�1 ½tn � t�f ðtÞdt

¼
Z tn�1

0

M�1 ½tn�1 � t�f ðtÞtþM�1 dt

Z tn�1

0

f ðtÞ dtþM�1

Z tn

tn�1

½tn � t�f ðtÞdt

¼ urign�1 þM�1 dt

Z tn�1

0

f ðtÞ dtþ
Z tn

tn�1

½tn � t�f ðtÞdt
� 	 (14.25)

This last relation is interesting since it indicates that the rigid body part of the response can be computed by time stepping

and does not need a lengthy convolution. Let us observe that the second term in (14.25) can be given a clear physical

interpretation by noting thatM�1
R tn�1

0
f ðtÞ dt, basically the accumulated impulses divided by the inertia, corresponds to the

overall velocity at time tn � 1. So the second term expresses the increase of displacement during the time increment dt due to
that velocity. The third term is related to the additional acceleration produced by the force applied between tn � 1 and tn.

The discretization of (14.25) can be performed using the same finite difference approach as done earlier for the

convolution product. For that let us restart from the definition (14.24) of the rigid response and discretize it in time following

the trapezoidal rule also used in (14.2):

5 Let us note that since the impulse response for a linear dynamic system can be seen as the superposition of its impulse modal responses, an

equivalent way to compute the vibrational part of the IRF is to project the IRF M-orthogonal to the rigid body modes, namely

Hvib ¼ ðI � RM�1
tot R

TÞH

and the rigid part is

Hrig ¼ R M�1
tot RT H

14 Truncating the Impulse Responses of Substructures to Speed Up the Impulse-Based Substructuring 143



urign ¼
Z tn

0

M�1 ½tn � t�f ðtÞt

’ M�1
Xn�1

i¼0
ðn dt� tÞf ðtÞ½ �t¼i dt þ ðn dt� tÞf ðtÞ½ �t¼ðiþ1Þdt

n o dt

2

’ M�1
Xn�1

i¼0
ðn� iÞf i þ ðn� i� 1Þf iþ1


 � dt2
2

(14.26)

Following now the same steps as from (14.24) to (14.25), but now in the time-discrete case,

urign ’ M�1
Xn�1

i¼0
ðn� iÞf i þ ðn� i� 1Þ f iþ1


 � dt2
2

’ M�1
Xn�2

i¼0
ðn� iÞf i þ ðn� i� 1Þf iþ1


 � dt2
2

þM�1f n�1

dt2

2

’ M�1
Xn�2

i¼0
ððn� 1Þ � iÞf i þ ððn� 1Þ � i� 1Þf iþ1


 � dt2
2

þM�1
Xn�2

i¼0
f i þ f iþ1


 � dt2
2

þM�1f n�1

dt2

2

’ urign�1 þM�1
Xn�2

i¼0
f i þ f iþ1


 � dt2
2

þM�1f n�1

dt2

2

(14.27)

which reveals the time-discrete form of (14.25). Finally we can summarize the discretized and truncated IRFs for floating

domains by substituting in (14.22) the discretization (14.27) for the rigid part and considering the truncation (14.11) for the

vibrational term:

I 0 ¼ f 0
dt

2
(14.28)

I n ¼ I n�1 þ f n�1 dt (14.29)

urign ¼ urign�1 þM�1I n dt (14.30)

un ’ urign þ
Xn�1

i¼maxf0;n�cg
�Hvib
n�if i þ �Hvib

n�i�1f iþ1

� �
dt=2 (14.31)

where the effect of the applied forces is accumulated in the total impulse I n and where �Hvib denotes the vibrational part of

the IRFs possibly weighted by, for instance, the cosine window described in the previous section. In the context of the IBS,

the truncation of the convolution product for floating subdomains can be introduced in the dually assembled form (14.5).

14.5 A Simple Example

In this contribution we consider the same example as the one treated in [3]. We consider the bar structure described in

Fig. 14.3 excited by a load at its end. The structure is divided in two substructures of equal length, each substructure being

modeled by 25 bar finite elements (the consistent mass matrices are used here). The bar is made of steel (E ¼ 2. 1 1011 Pa,

r ¼ 7500 kg/m3), has a uniform cross-section of A ¼ 3:14 10�4 m2 and each substructure has a length of L ¼ 0. 5 m. In the
model damping has been introduced by constructing C ¼ 1 10�6K.

L0 L0

λ f

Fig. 14.3 Example of a beam

with two substructures
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Assuming the dofs of the substructures are numbered from left to right, the Boolean constraining matrices are

Bð1Þ ¼ 0 � � � 0� 1
� 

Bð2Þ ¼ 1 � � � 0 0
� 

The impulse responses are computed using a Newmark scheme g ¼ 1=2; b ¼ 1=4 for a unit force applied at time t ¼ 0 at

the interface degrees of freedom and at the end of the second substructure (this will be the input of the force in our example).

The time-step is chosen equal to 3dtcritwhere dtcrit is the critical time step, namely the stability limit if the integration scheme

would be explicit. The obtained IRFs are plotted in Fig. 14.4 for inputs on the interface and on the end of the bar. On the right

of that figure the IRFs are zoomed. The IRFs for this problem are shown in Fig. 14.4. It can be clearly seen that the IRFs for

the right substructure converge to a monotonically increasing line, illustrating the drift of the displacement for a floating

substructure. In this case the rigid body mode of the second substructures is simply an array with all ones as entries and the

total mass matrix Mtotal is equal to the total translation mass of the second substructure.

Now, using the IBS approach described by (14.7), we compute the response of the assembled bar to a step load of unit

amplitude applied at the right end (see [3] for a detailed outline of the algorithm for this example). The threshold e for the
truncation (see Sect. 14.3.1, Figs. 14.1 and 14.2) was chosen successively to be 10 � 1, 10 � 2 and 10 � 3.

In Fig. 14.5 we report the dynamic response obtained at the interface of the bar, under a unit step load applied at the end of

the bar, when applying the IBS approach with and without truncation. Here a simple rectangular window is applied (as

illustrated in Fig. 14.1). When the threshold e is chosen to high (in this case e ¼ 10�1) the truncation introduces too many
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Fig. 14.4 IRFs for the bar substructures (zoomed on the right)
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residual impulses leading to an unstable response in the IBS. For e ¼ 10�2 the solution is stable, but clearly the truncation

significantly affects the accuracy of the solution. For e ¼ 10�3, the solution computed by the truncated IBS is rather

accurate, although zooming in the curves (right side of Fig. 14.5) it is clear that a noticeable error has been introduced by the

truncation. Note that for this last case, namely e ¼ 10�3, the cutoff time is tc ¼ 0. 048, resulting in only a small

computational saving in our computation where the simulation is run until tfinal ¼ 0. 1.

Applying now a cosine window, we obtain the results reported in Fig. 14.6. It is very interesting to observe that with the

cosine window the IBS method results in a stable and rather accurate dynamic response, even for e ¼ 10�1. This threshold

corresponds to a cutoff time tc ¼ 0. 014 and the truncation yields a significant reduction of computational effort in

computing the convolution product. Finally we observe that when the threshold is further reduced (to 10 � 2 and 10 � 3)

the results of the truncated IBS is nearly identical to the results without truncation. Nevertheless the cutoff time is higher and

thus more computational effort is required.
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14.6 Conclusion

In this contribution we have shown how to apply truncation and windowing on the Impulse Response Functions (IRF) of

substructures, so that one can significantly reduce the computational burden related to the convolution product in the Impulse

Based Substructuring (IBS) method.

Special care must be taken when truncating the IRFs of floating substructure: the overall rigid body motion can not be

truncated since it does not decay to zero. We have indicated how the truncation can be applied only to the vibrational part of

the IRF in that case.
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We have described a cosine window in order to force the IRF smoothly to zero at the cutoff time, without introducing

significant damping in the system. The results on a simple bar example decomposed in two substructures have indicated that

the truncated IBS with the cosine window can produce accurate results while significantly reducing the necessary number of

operations in the computation of the convolution product.

Future work will concentrate on investigating other time windows and on applying windowing directly on the IRF

expressed for the velocities or the accelerations. Also more detailed analysis must be performed to investigate the stability

conditions for the truncated IBS. Currently, the truncated IBS is being applied to a three-dimensional engineering structure

in order to estimate the gain in computational time when applying an appropriate truncation.
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Chapter 15

Application of Residual Vectors to Superelement Modeling

of an Offshore Wind Turbine Foundation

B.P. Nortier, S.N. Voormeeren, and D.J. Rixen

Abstract Traditionally, wind turbine dynamics are analyzed using aero-elastic codes based on geometrically simplified

models. As hundreds of simulations are required per wind farm for verification purposes, such coarse models allow

reasonable computation while still capturing the overall dynamic behavior. With offshore turbines being installed in deeper

waters, the industry nowadays moves gradually towards more complex foundation structures such as jackets and tripods.

Even the simplest models of such structures have many more DoF than the complete wind turbine model, leading to

excessive computation times. To cope with this, reduced “superelement” modeling of the foundation structure can be

employed. However, since these structures are subjected to wave loading at a large portion of their DoF, traditional reduction

methods such as Craig-Bampton fail to properly describe the component’s response due to this excitation. Hence in this work

we propose to use the concept of modal truncation augmentation, which consists in extending the reduction basis by adding

“residual vectors”. Furthermore we use principal component analysis to find the predominant wave loading on the

foundation structure. Through application on a realistic model of a wind turbine and complex offshore foundation, it will

be shown that this approach gives a very compact yet accurate model of the combined structure.

15.1 Introduction

15.1.1 Offshore Wind Energy

At present there are few topics as heavily debated as “sustainability”. On a daily basis the media are full of items on climate

change, oil prices, CO2 reductions, rising energy consumptions and so on. Regardless of one’s opinion on the subject, a fact

is that more sustainable ways of power generation need to be found simply because the currently used resources will some

day be exhausted.

One of the more promising ways of generating “green” electricity on a large scale is provided by wind energy. As a result,

the wind turbine industry has undergone a huge transition: from a small group of mainly Danish enthusiasts in the early

1980s, the modern wind power industry now has grown to a global multi billion dollar industry.

However, wind energy has not been without debate. Opponents point at the intermittency and variability of wind

generated electricity, furthermore noise and “landscape pollution” are often heard complaints. In an attempt to mitigate

these negative effects, developers have turned to a new place to install wind turbines: the sea. Offshore, average wind speeds

are higher and acoustic and visual nuisance is hardly relevant. In Northern Europe, many offshore wind farms have been

installed over the last years and many more are currently planned or under construction. In fact, few high wind/shallow water

sites are still available. As a result, there is a trend towards deeper water with even higher average wind speeds.
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All in all, it is clear that wind turbine manufacturers are faced with many challenges in order to make their wind turbines

operate efficiently and reliably in these harsh conditions. One of these challenges concerns the correct modeling and analysis

of the structural dynamic behavior of the wind turbine.

15.1.2 Offshore Wind Turbine Dynamic Analysis

Since the environmental conditions (water depth, soil properties) and ambient excitations (wind, wave and current loading)

can vary greatly across different offshore sites, every offshore wind farm is custom engineered. This means that a standard

rotor-nacelle assembly (RNA) is combined with a specifically designed tower and offshore foundation. An important part of

the engineering process is to perform dynamic simulations to assess whether the design can withstand the loads during its

specified lifetime. For certification purposes, several hundreds or even thousands of load cases need to be evaluated.

To efficiently perform these dynamic simulations, wind turbine manufacturers, research institutes and universities have

developed many different aero-elastic codes [13]. These advanced codes are designed to analyze the global dynamics of a

wind turbine, taking into account aerodynamic loads and coupling, and wave loads. Given the number of load cases that need

to be run, these models must be as coarse as possible to keep the computation times at an acceptable level. Such aero-elastic

models typically consist of 300–400 degrees of freedom (DoF).

For offshore wind turbines, by far the most popular type of foundation is the monopile due to its simplicity and

robustness. When installing wind turbines in deeper water, however, such monopiles become less attractive as a dispropor-

tional amount of material is needed for it to withstand the more severe loading. More complex types of foundations then

become economical, with the jacket structures as the most interesting option. See Fig. 15.1.

However, a jacket type of foundation is considerably more complex then a monopile and so is its dynamic behavior.

Consequently, a more detailed dynamic model is needed to predict these dynamics. Where a monopile can typically be

representedwith a few beam elements leading to amodel of approximately 50 DoF, a jacket structuralmodel easily consists of

more than 1,000 DoF. Needless to say, this negatively impacts the computation times of the dynamic simulations. Simplifying

the jacket dynamics cannot be done in general since coupling can occur between vibrations in the jacket and RNA.

In this work we therefore propose to use a reduced component model (or superelement) to represent the jacket structure.

However, since these structures are subjected to wave loading at a large portion of their DoF, traditional reduction methods

such as Craig-Bampton fail to properly describe the components response due to this excitation. Hence in this work we

propose to use the concept of modal truncation augmentation, which consists in extending the reduction basis by adding

“residual vectors” which are dependent on the external loading.

15.1.3 Paper Outline

This paper is organized as follows. In the next Section, the classic component model reduction technique of Craig-Bampton

is explained. Thereafter, Sect. 15.3 addresses the theory of modal truncation augmentation, which can be used to augment

the Craig-Bampton reduction basis in order to improve the accuracy of the forced response predictions of the reduced model.

Fig. 15.1 Different foundation types for increasing water depths
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Sect. 15.4 then outlines the proper orthogonal decomposition (POD) method, which can be used to extract the dominant

wave loading on the foundation structure. The use of the methods is illustrated through application to a reference structure in

Sect. 15.5. Finally, some conclusions and recommendations are given in Sect. 15.6.

15.2 Component Model Reduction: Craig-Bampton Method

In structural dynamic analysis a technique that is often applied to analyze large or complex systems is dynamic

substructuring (DS). This methodology combines the ideas of a componentwise “divide and conquer” approach and

model reduction techniques as follows:

1. The complete system is decomposed into components or substructure.

2. Each component is modeled and reduced separately, using a suitable reduction basis. This basis usually consists of a set of

static modes describing the interaction with neighboring components, and some vibration modes to account for the

dynamics.

3. The reduced component models are assembled to form the model of the complete system.

This approach is often also called component mode synthesis (CMS) and was first introduced in the 1960s [8, 7]. One very

popular CMSmethod often used today is the Craig-Bampton method [3]. This is the method considered in this work and will

be explained hereafter.

As a starting point we take the equations of motion of a discretized dynamic component model s:

MðsÞ€uðsÞðtÞ þ CðsÞ _uðsÞðtÞ þ KðsÞuðsÞðtÞ ¼ f ðsÞðtÞ þ gðsÞðtÞ (15.1)

Here M(s), C(s) and K(s) are the components mass, damping and stiffness matrix, respectively. Vector u(s)(t) denotes the

degrees of freedom, and _uðsÞðtÞ and €uðsÞðtÞ its respective time derivatives, f (s)(t) the external force vector and g(s)(t) the vector
of the connection forces with other component models. To simplify the expressions we will drop the explicit time

dependency and the component model notation in subsequent equations. Furthermore, damping will not be considered

here, but it can be included in the developments.

To allow assembly with other component models we partition the DoF vector u into a part belonging the interface

(boundary) DoF, denoted by ub, and the internal DoF, denoted by ui. This gives the partitioned equations of motion of a

component model as:

Mbb Mbi

Mib Mii

� �
€ub
€ui

� �
þ Kbb Kbi

Kib Kii

� �
ub
ui

� �
¼ f b

f i

� �
þ gb

0

� �
(15.2)

The Craig-Bampton method now consists in retaining the boundary and finding a good approximation for the internal DoF.

This is done by splitting the response of the internal DoF into a static and a dynamic part:

ui ¼ ui;stat þ ui;dyn (15.3)

The static response ui, stat is obtained from the second line of (15.2) by setting the force on internal DoF to zero (i.e. fi ¼ 0)
and neglecting the inertia forces by taking €ui and €ub to zero, by doing so we obtain:

ui;stat ¼ �K�1
ii Kibub ¼ CC;iub (15.4)

Here CC,i are the so-called static constraint modes. Each column of CC,i represents the static response of ui to a unit

displacement of an interface DoF, while the other interface DoF are constrained. The number of static modes thus equals the

number of boundary DoF. For components with large or refined interfaces this could be a limiting factor for the reduction

process. To overcome this issue interface reduction techniques can be used which approximate the interface dynamic

behavior, thereby reducing the number of interface DoF. See for instance [4, 2, 21, 17, 18].

The dynamic response ui,dyn is also obtained from the second line of (15.2), where again we set the force acting on the

internal DoF to zero and restrain the interface DoF. The dynamic response can then be approximated using a superposition of

a truncated number of vibration modes:

ui;dyn � Fihi (15.5)
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Where matrix Fi contains a truncated collection of so-called fixed interface vibration modes, obtained from the

eigenproblem (15.6), and Zi is a vector which contains the corresponding modal amplitudes.

Kii � o2
i;nMii

� �
Fi;n ¼ 0 (15.6)

HereFi, n represents a single fixed interface vibration mode with unit modal mass ando2
i;n its corresponding eigenfrequency.

Combining (15.4) and (15.5) an approximation for the response of the internal DoF is obtained:

ui � CC;iub þFihi (15.7)

Since for obtaining ui,stat and ui,dyn the force external on the internalDoFwas set to zero the approximation in (15.7) does not take

this force into account. The accuracy of the response is dependent on how well the static constraint and fixed interface vibration

modes represent the response to this force. The reduction matrix of the Craig-Bampton method is now found as:

ub
ui

� �
� I 0

CC;i Fi

� �
ub
hi

� �
¼ RCB

ub
hi

� �
(15.8)

Using the reduction matrix RCB the equations of motion in (15.2) can be reduced to obtain:

~M ¼ RT
CBMRCB (15.9)

~K ¼ RT
CBKRCB

Where ~M and ~K have the following form

~K ¼
~Kbb 0

0 V2
i

" #

~Kbb ¼ Kbb � KbiK
�1
ii Kib

~M ¼
~Mbb

~Mbf

~Mfb I

" #

~Mbb ¼ Mbb �MbiK
�1
ii Kib � KbiK

�1
ii Mib þ KbiK

�1
ii MiiK

�1
ii Kib

~Mfb ¼ FT
i Mib �MiiK

�1
ii Kib

� � ¼ ~MT
bF

(15.10)

In (15.10) Vi
2 is a diagonal matrix containing the fixed interface eigenfrequencies. One of the advantages of the CB

reduction is that all the interface DoF are retained, thereby allowing for easy assembly with other component models.

15.3 Modal Truncation Augmentation

As discussed in the previous section, the external force acting on the internal DoF is not considered in the Craig-Bampton

method. The fixed interface vibration modes used for the reduction are usually selected based on their eigenfrequency in

order to cover the frequency content of the external excitation, which leads to spectral convergence. However, spatial

convergence is rarely considered which can lead to an inadequate representation of the response.

To improve this spatial convergence the CB reduction basis can be augmented by a set of correction vectors (also called

residual or load dependent vectors). For this themodal truncation augmentation (MTA) method is used which can be seen as

a generalization of the mode acceleration (MA) method [14]. The MTA method was introduced in [5, 15] where it was

shown that it can greatly improve the dynamic response by including correction vectors in the reduction basis.

In this section we will derive the MTA method for a Craig-Bampton reduced component. As a starting point we take the

second line of (15.2):

Mii€ui þ Kiiui ¼ �Mib€ub � Kibub þ f i (15.11)
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Where we note that the external force on the internal DoF is kept in the expression. As is done for the Craig-Bampton method

a solution is sought for the internal DoF u}i by splitting the response into a static and dynamic part, see (15.3). The static

response of the internal DoF is again obtained by substituting (15.3) into (15.11) and neglecting the inertia forces:

ui;stat ¼ CC;iub þ K�1
ii f i (15.12)

It is observed that ui,stat now is not only described by the static constraint modes but also includes the response to external

loading. By substituting (15.3) and (15.12) into (15.11) and rewriting for the dynamic solution ui,dyn the following can be

obtained:

Mii€ui;dyn þ Kiiui;dyn ¼ �MiiCC;i �Mib

� �
€ub �MiiK

�1
ii
€f i

¼ Y€ub �MiiK
�1
ii
€f i

(15.13)

Here we have defined the matrix Y ¼ �MiiCC;i �Mib

� �
, where its columns can be seen as load vectors associated to the

interface. We now split ui, dyn into a quasi-static solution yi, stat and a relative dynamic solution yi,dyn. The quasi-static part
yi, stat is obtained by setting €ui;dyn ¼ 0 in (15.13).

yi;stat ¼ K�1
ii Y€ub � K�1

ii MiiK
�1
ii
€f i (15.14)

In (15.14) the K�1
ii Y term can be interpreted as the static response of the internal DoF associated to internal inertia

loads due to unit accelerations of the interface DoF. The separation of ui,dyn together with the definition of yi,stat,
given in (15.14), can be substituted into (15.13). If this is rewritten for the dynamic solution, now yi,dyn, the following is

obtained:

Mii€yi;dyn þ Kiiyi;dyn ¼ K�1
ii MiiK

�1
ii Y

d4ub
dt4

þ MiiK
�1
ii

� �2 d4f i
dt4

(15.15)

By repeating this process the response of ui is represented as a sequence of (high order) correction modes:

ui ¼ ui;stat þ yi;stat þ zi;stat þ . . .þ wi;dyn (15.16)

By substituting the obtained results for the (quasi-)static and dynamic response the following is obtained:

ui ¼CC;iub þ K�1
ii Y€ub � K�1

ii MiiK
�1
ii Y

d4ub
dt4

þ . . .

þ K�1
ii f i � K�1

ii MiiK
�1
ii
€f i þ K�1

ii Mii

� �2
K�1
ii

d4f i
dt4

þ . . .
(15.17)

The first term on the right hand in (15.17) are the static constraint modes which are already present in the Craig-Bampton

reduction basis. The last term is the dynamic solution wi,dyn which is approximated by a superposition of the fixed-interface

vibration modes, i.e. wi,dyn � FiZi. The remaining terms of the expression can be separated into a group involving the

external force acting on the internal DoF (the terms containing fi) and a second involving the interface excitation (the term

containing ub). These terms are the so-called MTA vectors which will be discussed in further detail below.

First we define a representation of the external force acting on the internal DoF. In general this can be represented by a

superposition of g spatial (time-independent) force vectors which are modulated by their time dependent amplitudes:

f i ¼
Xg

p¼1
f i;papðtÞ (15.18)

Where fi,p is the pth spatial force vector and ap(t) its corresponding (time dependent) amplitude. The spatial force vectors can

represent different types of forces such as point forces, gravity and wind or wave loads. Here we assume that the external

force can be represented by a number of these spatial force vectors, contained in the matrix Fi. In the next section it will be
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shown that these spatial force vectors can be obtained from time varying load data using the proper orthogonal decomposition
(POD) method.

The correction terms in (15.17) can be written as the MTA vectors, where we assume unitary interface displacements

(and its time derivatives), from this we obtain:

�FMTA ¼ �FMTA;0 . . . �FMTA;j . . . �FMTA;m�1�
�

(15.19)

Where �FMTA is a collection of the MTA vectors of different orders, given by j. Each order of MTA vector(s) is computed by:

�FMTA;j ¼ P K�1
ii Mii

� �j
K�1
ii YFi

� 	
j ¼ 0; . . . ;m (15.20)

Here we have applied a projection matrix, defined as P ¼ I �FiF
T
i Mii, which orthogonalizes the MTA vectors to the fixed

interface vibration modes since they both capture a part of the dynamic response. This could lead to linear dependency in the

columns of the reduction matrix which can cause numerical problems. In [16] it was shown that the MTA vectors can be

efficiently computed by post-processing the Lanczos iterations created by the computation of the fixed interface vibrations

modes. For this the starting vectors for the algorithm have to be chosen as the columns of K�1
ii Y Fi

� 	
. To further improve the

numerical robustness the columns of �FMTA are mutually orthogonalized by solving an eigenvalue problem defined as:

�FT
MTAKii

�FMTA

� �
y ¼ m2 �FT

MTAMii
�FMTA

� �
y (15.21)

Where m2 is a diagonal matrix containing the “pseudo-frequencies” corresponding to the MTAs. These frequencies are

always higher than those of the fixed interface vibration modes and provide an indication for what frequency range a

dynamic correction is supplied. The orthonormalized MTAs are computed by

FMTA ¼ �FMTAy (15.22)

Where the properties of the MTA vectors are:

FT
MTAMiiFMTA ¼ I

FT
MTAKiiFMTA ¼ m2

(15.23)

Including the MTA vectors, the solution of the internal DoF using the Craig-Bampton method can now be represented by

ui � CC;iub þFihi þFMTAz (15.24)

Where z are the modal amplitudes of the MTAs. The augmented Craig-Bampton reduction basis can thus be written as:

ub
ui

� �
� I 0 0

CC;i Fi FMTA

� � ub
hi

z

2
4

3
5 ¼ RACB

ub
hi

z

2
4

3
5 (15.25)

Similar to the standard reduced Craig-Bampton model, all interface DoF are retained which allows assembly of the reduced

component model as a superelement.

15.4 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD), also known as principle component analysis (PCA) or the Karhunen–Loève

transform (KLT), is a mathematical data analysis method which is used to efficiently analyze complex data. The POD

method is an orthogonal linear transformation that transforms the data dependent on n possibly correlated variables into a

reduced or equal set of uncorrelated variables, called principal components. First a brief explanation of the theory will be

given together with a physical interpretation of the components.
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From a time varying data series a number of snapshots m can be obtained, these snapshots can for instance represent the

response of a structure or the magnitude of the wave loads on the structure at a specific time. Each snapshot consists of a

vector zi containing n variables. All these snapshots can be collected into a matrix Z, which has dimensions n �m.

Z ¼ z1 � � � zm½ � ¼
z11 � � � zm1
..
. . .

. ..
.

z1n � � � zmn

2
64

3
75 (15.26)

The snapshots can be chosen such that they have a zero mean xi ¼ zi � ma, where ma is the average of all the snapshots. The
matrix containing the new snapshots xi is called the response matrix, denoted as X. A singular value decomposition (SVD)

can be performed on this matrix, such that:

X ¼ USVT (15.27)

The matrix U is a square (n�n) matrix of left singular vectors, S is a (n�m) matrix containing the singular values and V is a

(m �m) matrix of right singular vectors. By dividing the left singular vectors by the number of snapshots the proper
orthogonal modes (POMs) are obtained. By doing the same for the singular value contained in S the proper orthogonal
values (POVs) are obtained.

The POVs represent the relative amount of the total energy is captured by their corresponding POMs. It can be shown

that, due to its formulation, the POD is optimal in a least squares sense when considering the energy in the snapshots. This

means that the POMs form a vector basis that captures more energy per mode than any other set of basis vectors [10, 11, 12].

Hence, often surprisingly few modes are needed to capture a large amount of the system’s energy.

15.4.1 Obtaining Force Vectors Using POD

The POD method can be used to obtain spatial force vectors from time varying load data. This is done by taking as the

response matrix the time varying load data, where the dimension m is thus given by time.

The obtained POMs now represent time-independent spatial force vectors which capture a part of the total energy present

in the force data, this is given by the corresponding POV. As described in Sect. 15.3, MTA vectors can be computed based

on these spatial force vectors. In Sect. 15.5 these force vectors will be used to compute MTA vectors and added to the

reduction basis of an offshore wind turbine support structure.

15.4.2 Comparison Methods Based on POD

The dynamic response of a reduced system obtained from time integration can show phase shifts with respect to a reference

solution. These phase shifts occur because the eigenfrequencies of the reduced model are an approximation of those of the

unreduced system and can be different for various reduced models. As a result direct comparison of calculated time

responses becomes troublesome.

In this work it is proposed to analyze the dynamic response using the PODmethod and to compare the POMs and POVs of

the reduced system response to those of the unreduced system. The POMs can be treated similarly to eigenmodes and

compared using the modal assurance criterion (MAC) [1]. The POVs can be treated as eigenfrequencies and compared by

computing the relative error. However, to take into account that the relative energy captured by the POMs diminishes

quickly, the relative error is scaled using the relative energy captured by the corresponding POM, so:

es;i ¼ ~si � si
si

� siPn
i¼1si

(15.28)

Here es,i is the error of the ith POV, which is computed using si and ~si which are the corresponding POVs from the

unreduced and reduced system, respectively.
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15.5 Case Study

In this section the presented approach will be applied to a representative offshore wind turbine model to test its effectiveness.

To this end, a numerical model of a 5 MW offshore wind turbine with a jacket support structure has been created, which will

be described next. Thereafter, Sect. 15.5.2 describes the numerical experiments performed on this model, while results will

be presented in Sect. 15.5.3.

15.5.1 System Description

The reference model consists of a 5 MW wind turbine on a jacket offshore support structure. For the turbine model the one

created by the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) was chosen. This baseline

turbine, known as the “NREL 5 MW baseline wind turbine” is, as the name suggests, a 5 MWwind turbine. The turbine is a

conventional horizontal axis, three bladed, upwind type and its specifications can be found in detail in [9].

For the support structure the jacket model is used that was initially created for the Offshore Code Comparison

Collaboration Continuation (OC4) project. The details of this jacket structure can be found in [20]. Therein also some

modifications are given for the NREL turbine model which are also taken into account in the subsequent model description.

Both the 5 MW baseline turbine and the OC4 jacket have been modeled, using Matlab and ANSYS/ASAS. Both models

will be briefly described next.

15.5.1.1 NREL 5 MW Baseline Turbine

The NREL turbine consists of a standard tubular tower, a nacelle, hub and three blades, see Fig. 15.2 for the dimensions.

These components are modeled as follows:

• Tower: a conical tower is created according to the specifications given in [20]. The tower is 68 m in height, with a base

diameter of 5.6 m and top diameter of 4.0 m, and is modeled using 8 three-dimensional linear beam elements. The tower

has two 6 DoF interfaces, one at the bottom (tower bottom), which will be connected to the jacket structure and one at the

top (tower top) which will be connected to the rotor-nacelle assembly.

• Nacelle: modeled as one single rigid and massless linear beam element with on one end a point mass representing the

nacelle’s mass (240,000 kg) and inertia, and on the other a 6 DoF interface which connects to the tower top. The large

stiffness and low mass of the element are created using a high Young’s modulus and a low density value. The parallel axis

theorem was used to calculate the moments of inertia around its local axes.

5°

1.9 m

5.0 m

2.4 m

1.5 m (rigid)

88.15 m

1.75 m

y
z

x

z

Fig. 15.2 RNA of the NREL 5 MW baseline turbine
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• Hub: modeled similar to the nacelle as a single rigid and massless linear beam element. The hub has a virtual distance of

1.5 m between its center and the connection to the blades. The hub’s mass (56,780 kg) is added as a point mass at one end

of the element together with its moments of inertia. The element has two 6 DoF interfaces, one end connects to the tower

top, the other to the three blades.

• Blades: the blades are 61.5 m in length and each weighs 17,740 kg. They are modeled using 49 three-dimensional linear

beam elements. A root-element, located at the base of each blade, is modeled as a 1.5 m long rigid and massless element

to account for the virtual distance discussed earlier. The root-element has a 6 DoF interface which connects to the hub

element.

The assembled turbine model consists of 157 elements and possesses 948 DoF.

15.5.1.2 OC4 Jacket Structure

The jacket designed for the OC4 project, which hereafter will be called the OC4 jacket, consists of four main legs which are

interconnected via four levels of X-braces, see Fig. 15.3. The height of the jacket is 68 m and is designed for water depths of

50 m. As was described in [20], the stiffness of the connection to the seabed is assumed to be high and is therefore modeled

as rigid. The connection between the turbine and jacket is realized using a concrete transition piece weighing 666 ton. This

transition piece rigidly connects the top elements of the jacket. The interface to the tower is realized using a 6 DoF interface.

The jacket is modeled in ANSYS according to the specification given in [20] and hereafter converted into a Matlab

model. To account for the added mass created by the surrounding water when the jacket structure moves, additional point

masses (with directional properties) are added to the structure’s nodes, shown as red dots in Fig. 15.3. The total jacket model

consists of 229 linear beam elements and 1,014 DoF.

15.5.1.3 Properties of the Model

The correctness of the numerical models of the NREL turbine and OC4 jacket has been checked by comparing the manually

calculated mass to that resulting from the application of (translational) unit accelerations. The total mass of the turbine

model was found to be 567 ton, which is 1.3% higher than the manually calculated 560 ton. Although there is a difference

between the two values the accuracy was found to be adequate. The total mass of the jacket structure model was found to be

1,205 ton, including the 666 ton concrete transition piece and without the added masses, which is in agreement with the

manually calculated value. Preferably an eigenfrequency comparison should be performed on both models, when clamped at

their interfaces. Unfortunately, no such data was found in literature, so this comparison could not be made.

x

y

yx

z
z

y

Fig. 15.3 Matlab model of

the OC4 jacket
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The first ten eigenfrequencies and eigenmodes of the assembled turbine-jacket model are given in Table 15.1. The

obtained eigenfrequencies are comparable to those found in literature, see [19].

15.5.2 Numerical Experiments

The model described in the previous section is used for a number of numerical experiments. The goal is to compare the

accuracy of different reduced models by comparing their modal results and dynamic response to those of the unreduced

model. Here the interest lies in the creation of an accurate superelement of the jacket model, the wind turbine is not reduced.

As outlined in the introduction the number of DoF of the jacket model has to be minimized in order to limit the simulation

time of aero-elastic codes. As mentioned in the introduction currently monopile support structures are modeled using around

50 DoF. For the jacket model we further reduce this number by allowing only 26 DoF as a maximum.

To create the reduced jacket model the (augmented) Craig-Bampton method is used. So for the reduction basis a

combination of static constraint modes CC, i, fixed interface vibration modes Fi and MTA vectors FMTA can be used. In

total seven reduced jacket models are created and assembled to the unreduced turbine model. In order for the reduced models

to be at least statically correct all static constraint modes CC,i are included in the reduced models. Then 20 additional DoF

are used for both fixed interface vibration modes and MTA vectors. To investigate the improvement of adding vibration

modes the jacket model it is also reduced by the static constraint modes only, resulting in a 6 DoF model. This type of

reduction is known as the Guyan method [6].

In Sect. 15.3 it was shown that MTA vectors can be based on force vectors arising from the interface or from external

loading. Here the focus lies on the latter, by creating MTAs based on the spatial force vectors obtained from time data using

the POD method.

This time varying data for the jacket structure is obtained from ASAS, which is an extension of ANSYS specialized for

offshore and maritime applications, for four sea conditions namely: low, medium, high and “freak” waves. The importance

of dynamic analysis of this wave loading is underlined by the fact that the frequency content of the wave loads is in the range

of the eigenfrequencies of the turbine model, so modal excitation is likely to occur. For each sea condition a (quasi-)

stochastic time series of 100 s is obtained with time steps of 0.04 s, so 2,500 samples in total. The time step is such that the

highest frequency that can be represented in the data is higher than the highest frequency present in the signal. From the

POMs obtained using the method described in Sect. 15.4 the first five are selected, capturing more than 93% of the total

energy. This shows the effectiveness of the POD method.

A limitation of the POMs, and thus the resulting MTAs, obtained using this method is that they are based on a single wave

type. Therefore, it is likely that they are able to only accurately capture the response to that specific wave type. This would

limit the use of the reduced jacket model to a single wave type. To overcome this issue a generalized method of obtaining

force vectors is also investigated. An extended time series is obtained by simply combining all wave condition specific time

series, forming one long time series.1 Generalized force vectors can be obtained from this data and used to compute

Table 15.1 First ten

eigenfrequencies and mode

shape description of turbine

model

Mode Frequency

number [-] [Hz] Modeshape description

1 0.32 1st global side-side

2 0.33 1st global fore-aft

3 0.73 1st asymmetric flapwise yaw

4 0.77 1st asymmetric flapwise pitch

5 0.80 1st flapwise collective

6 1.04 1st edgewise collective

7 1.16 1st asymmetric edgewise pitch

8 1.24 1st asymmetric edgewise yaw

9 1.26 2nd global fore-aft

10 1.33 2nd global side-side

1 To prevent the introduction of high frequencies in the combined data a signal window was used to scale the magnitude of the wave loads to zero at

the transitions between time series. Furthermore, because the magnitude of the force data varies for different wave types, one can imagine that high

waves produce larger forces than low waves, a normalization step is taken, explicitly scaling the maximum occurring value of the individual time

series to unity.
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generalized MTA vectors. The first five generalized POMs showed to capture 93% of the total energy. From a cross

correlation between the wave specific and generalized POMs using the MAC, it can be seen that the generalized POMs show

reasonable correlation with the POMs of the medium, high and freak wave, but a low correlation to those of the low waves.

See Fig. 15.4.

Based on these POMs the first and second order MTAs are created and added to the reduction basis, so 10 MTAs in total.

Since we decided to allocate 20 DoF in total, the reduced jacket models including MTAs have ten fixed interface vibration

modes in their basis. An overview of the reduced assemblies and the ingredients for the jacket’s reduction bases are given in

Table 15.2. The last letter in the name of the reduced models with MTAs indicates the wave conditions on which the MTA

vectors are based (l ¼ low, m ¼ medium, h ¼ high, f ¼ freak and c ¼ combined).

15.5.3 Results

15.5.3.1 Modal Comparison

In Fig. 15.5 the modal results for the first 60 eigensolutions of the different reduced assemblies are plotted. All results are

relative to the reference (unreduced) model. From the figure it can be observed that the addition of fixed interface vibration

modes and MTA vectors improves the modal results compared to the system where the jacket is reduced using only the static

constraint modes, the CB00 model. Furthermore, it can be noticed that the modal results of systems including MTA vectors

are very similar. For the first 20 modes the results on both the eigenmodes and eigenfrequencies are of similar quality as the

CB20 model, hereafter however the CB20 system produces better results.

From the modal results a high correlation is observed between the unreduced and reduced assemblies (with the exception

of the CB00 model) for the eigenmodes 20, 26 and 31. On further inspection of these modes it was found that they show very

localized deformation of the jacket structure which is exactly represented by the fixed interface vibration modes. These

modes are present in all reduction bases (with the exception of the CB00 model) and thus explain the high correlation.
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Fig. 15.4 Modal results of the reduced wind turbine models

Table 15.2 Overview of numerical models of baseline offshore turbine

Wave MTA Total #

conditions # of CC, i # of Fi # of FMTA order of DoF Name

– – – – – 1,956 REF

– 6 – – – 948 CB00

– 6 20 0 – 968 CB20

Low 6 10 10 2 968 MTA10l

Medium 6 10 10 2 968 MTA10m

High 6 10 10 2 968 MTA10h

Freak 6 10 10 2 968 MTA10f

Combined 6 10 10 2 968 MTA10c
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15.5.3.2 Time Integration Results

In Figs. 15.6–15.9 the results of the POMs and POVs for various wave conditions are shown. From all figures it can be

observed that the CB00 model gives the least accurate results, which was to be expected since the jacket model is statically

reduced to a 6 DoF model. The addition of both fixed interface vibration modes and MTA vectors improve these results,

resulting in higher correlation with the POMs and POVs of the unreduced assembly. Note that although the results of the first

20 POMs and POVs are compared, a large part of the energy is captured by just the first few modes.

An interesting comparison is that between the results of the CB20 system and the corresponding system including the

wave condition specific MTA vectors (i.e. MTA10l, MTA10m, MTA10h or MTA10f):

• For the results for the low waves (Fig. 15.6), the CB20 and MTA10l systems do not show a clear difference in the results.

Hence for this case the MTA vectors do not give better description than the fixed interface vibration modes they replace.

Investigation of the shape of the POMs for this wave type showed that they create very localized excitation around the

mean sea level (around the height of the second level of X-braces). From analysis of the fixed interface modes of the jacket

structure it was found that these also include very localized deformations at this height. These modes could already be

sufficient to capture the response to this loading and hence explain why the accuracy is not improved by adding the MTAs.

• For the medium waves (Fig. 15.7), it can be observed that for the first 11 POMs the MTA10m model shows improved

results compared to the CB20 model. For the POV values we can see that the first five are better approximated, hereafter

no clear trend is observed.

• The results for the high and freak waves, Figs. 15.8 and 15.9, also show similar results, where the system including MTA

vectors shows improved results on the first POMs and POV values.
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Another interesting observation is that the system where the MTA vectors are based on the combined POMs (MTA10c),

results are found that are comparable to those of when wave type specific MTA vectors are used. This thus shows that the

obtained POMs for the combined wave load data produce MTAs which are suitable for different wave conditions, so that a

generalized reduced model can be created.

15.6 Conclusions and Recommendations

The current trend in wind turbine engineering is to install wind turbines further offshore on more complex foundation

structures such as jackets. In order to efficiently perform integrated dynamic analysis, this work proposed the use of reduced

component models for the foundation. However, one of the shortcomings of the common component reduction methods is

their inability to accurately represent the response to external excitation. It was explained how this shortcoming can be

overcome by augmenting the reduction basis using the MTA method. Furthermore, it was shown how spatial force vectors

can be extracted from time varying load data using the proper orthogonal decomposition (POD) method.

To test the methodology, a case study was performed on the NREL 5 MW reference wind turbine attached to the OC4

benchmark jacket support structure. The dynamic response of various reduced models was compared, showing that the

addition of the MTA vectors gave a more accurate response for almost all wave conditions compared to an equal sized

normal reduced model. It can therefore be concluded that combining the component model reduction and the MTA method,

adequate models can be obtained for complex offshore wind turbine foundations.

A number of open issues require additional research. One topic worth investigating is including damping in the reduced

model. Simple mass/stiffness proportional damping can be readily applied, but more complex damping types (e.g.

hydrodynamic and soil damping) are less straightforward. Furthermore, research is required on calculating even more

general MTAs that can be used for example for wave loads coming from different directions.
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Chapter 16

Demonstrating Predictive Capability of Validated Wind

Turbine Blade Models

Kendra L. Van Buren, François M. Hemez, and Sezer Atamturktur

Abstract Verification and Validation (V&V) activities provide a means by which credibility can be established for

simulation models developed to predict the behavior of wind turbines. This paper discusses the use of validation activities

in the development of finite element (FE) models for wind turbine blades. The nine-meter CX-100 wind turbine blade,

developed at Sandia National Laboratories (SNL), is utilized in this study. The FE model is developed using design

specifications for the geometry of the blade, and the rule of mixtures is applied to smear the cross section so that it can be

represented using isotropic material properties. Experimental modal data from laboratory tests of the CX-100 blade at the

National Renewable Energy Laboratory (NREL), is collected for a fixed-free boundary condition, in which the blade is

bolted to a 20 t steel frame. The experimental modal data is collected in two configurations: (1) in the original fixed-free

condition and, (2) with two masses attached to the blade at the 1.6 and 6.75 m stations. To mimic the second experimental

configuration, the FE model is modified by incorporating point masses attached to the blade with springs. Calibration of the

fixed-free and mass-added FE models is limited to use of the natural frequencies only. By exploring these different

configurations of the wind turbine blade, credibility can be established regarding the ability of the FE model to predict

the response to different loading conditions. Through the use of test-analysis correlation, the experimental data can be

compared to model output and an assessment is given of the predictive capability of the model. (Publication approved for
unlimited, public release on September 26, 2011, LA-UR-11-5490, Unclassified.)

16.1 Introduction

16.1.1 Motivation

Wind energy is being pursued in the United States to supply 20% of power by the year 2030 [1]. Wind plants, and

consequently wind turbines, are being produced at a larger scale to capture and produce more energy to meet the growing

demands of the wind energy industry [2]. However, it is absolutely crucial to understand the dynamics and vibrations of wind

turbine blades to efficiently increase the performance of wind turbines. The blades are responsible for only 10–15% of the

cost of the wind turbine system [2], however, they capture all of the energy produced from wind turbines, and damage to the

blades can result in rotor instability that can lead to damage of the entire wind turbine system [3, 4]. Because blade damage to

turbines is perhaps the most prohibitive cost of wind energy [5], condition-based blade maintenance schemes are critical to

lowering operational and maintenance costs [6]. Such schemes are only possible through a better understanding of wind

turbine blade vibrations.

The development of modeling and simulation (M&S) techniques for studying the vibrations of wind turbine blades offers

an economical alternative to constructing new generation blades and maintaining current blades in optimal condition.

It is forecasted that the wind energy industry will benefit from the financial benefits provided by M&S due to the increasing
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costs of full-scale testing as wind turbine blades are produced at larger scales [2]. M&S also provides a means to efficiently

evaluate the structural design [7]. Recently, finite element (FE) models calibrated against experimental data have gained

acceptance for routine use in studying wind turbine blades, owing to their versatility in predicting many complex load cases

[8], whereas only idealized loads can be implemented in full scale experiments [9].

The ultimate goal of this study is to demonstrate the predictive capability of a validated FE model of the CX-100 wind

turbine blade developed at Sandia National Laboratories (SNL). Here, “predictive capability” is defined as the ability to

accurately predict different configurations of experimentally obtained data that has not been previously considered with the

FE model. The FE model used in this study has previously gone through rigorous Verification and Validation (V&V)

exercises as reported in Reference [10, 11]. The FE model employed in this study is developed using the rule of mixtures to

smear the cross-sectional areas of the blade and characterize the materials with isotropic properties, instead of modeling the

multiple composite layers embedded in an epoxy matrix. This study demonstrates the potentials and limitations of FE

models to predict the behavior of wind turbine blades by comparing the FE model predictions to new data that have not yet

been used during the calibration of the FE model.

16.1.2 Related Literature

FE models suffer from many, unavoidable sources of uncertainty, such as variability of the manufactured product from

design specifications, deviation of material properties from coupon properties used to represent the material behavior, and

unique stress loading behaviors in critical sections of the model [9]. Furthermore, to reduce the complexity of FE models

assumptions and simplifications of known, or unknown, physics are inevitably applied. Assumptions and simplifications,

such as neglecting damping or assuming a two-dimensional flow over the blades, [12, 13] limit the ability of the model to

replicate reality. It has been shown that FE models of composite structures that assume smeared cross sections, such as the

FE model implemented in this paper, can accurately model the global response but are limited in predicting the behavior of

thick laminates, stress and strain near geometric and material discontinuities, and the kinematics of delamination [14].

In using predictive simulation models, it is imperative to understand the limitations imposed by such assumptions and

simplifications to the model.

In the development of simulation models, reliable experimental data for use in calibration and validation exercises is also

necessary. Experimental testing has been pursued in several studies to provide a description of the structural response of

wind turbine components. For example, a 25-m wind turbine blade was exercised in a full-scale static flapwise test to provide

measurements of local deflection and strain for comparison to FEmodels [15]. Modal testing is also a common experiment to

perform, due to the ease in which it can be assessed in simulation models [16]. Although experimental data are useful for

comparison to model output, research can be limited due to its lack of availability. Efforts have been put forth to collect

experimental data for different types of wind turbines [17], however, public access to such data is typically limited.

An example of an analytical study utilizing experimental data is provided in Reference [18], in which a full static test to

failure of a wind turbine blade was performed to confirm the FE predictions of the buckling behavior of the blade. Similarly,

a FE model was successfully developed to study the buckling collapse observed during experimental flap-wise loading of a

wind turbine blade [8]. In subsequent experimentation, modeling is utilized to investigate fatigue damage to study why

300 kW wind turbine blades were failing prior to the design life of 20 years. Failure scenarios were categorized from

coupons of a failed wind turbine blade, and FE modeling was used to investigate areas of high stress and to determine the

critical mode of failure [19]. FE modeling has also been demonstrated as a tool that can be used during the design phase of

wind turbine blades. This was demonstrated in Reference [20], when the optimal design of a wind turbine blade was

developed through parametric studies, and various load cases specified by the International Electrotechnical Commission

61400-1 for wind turbine blade design requirements were applied to the wind turbine FE model. Consequently, the wind

turbine blade was manufactured for experimental studies, and comparison to the FE model output found that the final

product was within 4% error of the mass, span-wise center of gravity, blade tip deflection, and first-flap natural frequency.

In addition to studying and replicating laboratory tests, simulation models can be used to study complex load cases or

events that cannot be measured experimentally. One application is to study the onset of damage. In an effort to study the

increasingly complex load cases that wind turbines will experience in off-shore conditions, a FE model of a wind turbine

blade was coupled to a Computational Fluid Dynamics (CFD) model to study the interaction of the flexible wind

turbine blade with wind loading [21]. Another study employed FE modeling to investigate the fatigue failure of wind

turbine blades [22]. The study concluded that at best, the wind turbine blade used in their study could survive a 24-year life

span, just barely meeting the 20–30 year design lifetime. A recent study used a calibrated model of a wind turbine to explore

the onset of damage, concluding that modal properties produced changes that were too insensitive to damage [6]. The study
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was able to demonstrate that the use of statistical modeling has the potential to detect damage; however, more simulation

modeling and testing would be necessary to confirm this hypothesis. These studies demonstrate the potential of FE modeling

to be used in a predictive capacity to model the behavior of wind turbine blades. The current study aims to contribute to these

efforts by investigating the level of accuracy that can be provided by FE models through the use of validation exercises and

test-analysis correlation to quantify the model agreement to experimental data.

16.2 Model Development and Experimental Campaign

16.2.1 Development of the CX-100 FE Model

This section provides a review of the development process of the FE model of the CX-100 blade, as discussed in-depth in

Refs. [10, 11]. The model is developed from design specifications of the geometry using the NuMAD preprocessor

developed at SNL, and imported into ANSYS v 12.1 with Shell-281 elements. The mesh discretization is based on an

element size of Dx ¼ 8 cm, producing an overall solution uncertainty of 1.78%, comparable to a 3-s experimental

variability of 1.62% estimated from free-free modal testing performed at Los Alamos National Laboratory (LANL) [23].

Six independent sections are defined in the development of the FE model: shear web, root, spar cap, trailing edge, leading

edge with balsa, and leading edge without balsa. The sections are illustrated in Fig. 16.1; however, the shear web is not

shown because it is an internal component of the wind turbine blade. Isotropic materials with smeared cross-sectional

properties are used to define the material sections. Free-free and clamped-free modal testing performed at LANL is used in

the calibration and validation of the FE model. Reference [11] describes the calibration of model parameters to the free-free

experimental natural frequencies. The FE model is also compared to the results of the clamped-free modal testing, in which a

250-kg steel bookend was used to create the boundary condition. Springs are introduced to the base of the blade to create a

condition that is neither “fixed” nor “free,” and to mitigate the uncertainty associated with the experimentally implemented

clamped-free testing.

16.2.2 NREL Modal Testing of the CX-100 Wind Turbine Blade

Experimental modal testing performed at the National Renewable Energy Laboratory allows the possibility of examining the

predictive capability of such a simplified model. The CX-100 blade is attached to a 20-t (18,000 kg) steel frame, effectively

allowing for a fixed-free setup of the blade. Modal testing is performed using a roving impact hammer test of the CX-100

blade under two different set-ups: first, in a fixed-free condition, and second with large masses clamped to the blade. The

addition of a 582-kg mass and 145-kg mass at the 1.6 and 6.75-m locations, respectively, is inspired by their utility in

performing fatigue testing on the blade. Four uni-axial accelerometers and one tri-axial accelerometer are used to collect

data for hammer impacts at 65 locations: 47 in the flapwise directions, and 18 in the edgewise directions. Three test repeats

are performed with a linear average and 150 Hz sampling frequency. The acceleration response is collected with 4,096

sampling points without a window function due to the relatively long sampling period of 11 s.

Fig. 16.1 Illustration of the ANSYS model showing different sections of the blade
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The experimental set-ups and base fixity are shown in Fig. 16.2. Note that the boundary condition provided in the NREL

testing is different from the boundary condition found in previous modal testing performed at LANL [11, 23].

16.2.3 Fixed-Free CX-100 Model

As mentioned in Sect. 16.2.1, the data from previous clamped-free testing employed a 250-kg steel bookend fixture;

however, the experimental boundary condition is created using an 18,000-kg steel frame in the current study. Due to this

change in boundary condition, calibration of the fixed-free model is re-considered.

Three statistically significant model parameters of the fixed-free FE model of the wind turbine blade are identified using a

forward propagation of uncertainty and sensitivity analysis in Reference [11]. The influential parameters are: translational

springs used to model the boundary condition perpendicular to the base fixity, the modulus of elasticity of the spar cap, and

the density of the trailing edge. Measurements of the natural frequencies obtained during the NREL testing are utilized to

calibrate the FE model. Instead of performing calibration as an optimization of model parameters to best-fit the experimental

data, inference uncertainty quantification is performed to explore the posterior probability distribution of these three

parameters. To efficiently perform the inference uncertainty quantification, the FE model is executed using full-factorial

design-of-computer-experiments to provide simulation data to train a fast-running Gaussian Process Model (GPM).

A Markov Chain Monte Carlo (MCMC) algorithm is used to explore the posterior distribution of the GPM utilizing the

computational methodology proposed in Refs. [24, 25].

The results of the inference are summarized in Table 16.1. Columns 2–4 summarize the prior uncertainty, which

represents the range of values used in the full-factorial design to train the GPMs. Columns 5–7 provide the posterior

uncertainty, which are the statistics inferred from the MCMC search algorithm. The inference is most successful at

“learning” the value of the spar cap modulus of elasticity, as indicated by the reduction of its uncertainty relative to the

initial range used in the design.

Fig. 16.2 Experimental fixed-free (left) configuration, mass-added (middle) configuration, and base fixity (right)

Table 16.1 Comparison of prior and posterior uncertainty of the FE model parameters

FE model parameter

Prior uncertainty Posterior uncertainty

Lower Upper Range Mean Std. dev. �2s range

Trailing edge, r (kg·m�3) 484.37 729.81 245.44 607.34 68.25 272.95

Spar cap, E (MPa) 29.92 53.56 23.64 47.81 4.51 18.04

Z spring, k2 (� 10+6 N·m�1) 1.00 100.0 99.00 48.13 30.25 131.00
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A graphical representation of the posterior distribution is provided in Fig. 16.3, which plots the marginal distribution of

each parameter on the diagonal and a probability contour of the pairs of parameters in the off-diagonal boxes. The inference

is not capable of reducing the uncertainty of the spring constants or trailing edge density. It is possible that there is an

interaction between the density and the spring during calibration that produces compensating effects, thus making it difficult

to calibrate using the present methodology. On the other hand, the inference is successful in reducing the uncertainty of the

spar cap modulus, as observed in Table 16.1, when comparing the prior range to the posterior range. However, the visual

representation of the posterior, shown in Fig. 16.3, and the clustering of samples drawn towards the upper bound, suggest

that the algorithm may be attracted to values outside of the initial range provided to the GPM.

Table 16.2 compares the experimentally obtained natural frequencies to those predicted by the FE model with the

parameters set to the mean values of the posterior distribution. The simulation consistently under-predicts the experimental

results by approximately 15–26%. While this seems to be a large deviation, the absolute differences for the first three

frequencies are only 0.74, 1.71, and 1.71 Hz, respectively. This under-prediction also provides a possible explanation for

why the inference uncertainty quantification appears to be searching for larger values in the posterior distribution for the spar

cap modulus, shown in Fig. 16.3, because a stiffer blade would potentially provide higher values for the natural frequencies.

16.2.4 Mass-Added CX-100 Model

To implement the masses into the simulation, a central point mass is added at each cross section and then connected by

springs to the nodes of the blade to adjust for the interaction between the blade and the added masses. The configuration of

the springs, with the point mass in the middle, is shown in Fig. 16.4. This modeling is adopted because exploratory FE

Fig. 16.3 Marginal

distribution and correlation

functions corresponding to

Table 16.1

Table 16.2 Comparison of

experimental and simulated

results for the fixed-free

model

Mode Description Experimental (Hz) Simulated (Hz) Difference (%)

1 First flap 4.35 3.61 �17.0

2 First lag 6.43 4.72 �26.6

3 Second flap 11.51 9.80 �14.8

4 Third flap 20.54 16.79 �18.2

5 Second lag 23.11 19.51 �15.6

6 Fourth flap 35.33 29.86 �15.5

7 First torsion 46.27 35.39 �23.5

8 Third lag 48.64 40.02 �17.7
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simulations indicate that representing the masses simply as concentrated values does not adequately account for the rigidity

introduced. A way to model this rigidity is through the introduction of fictitious springs.

To preserve the fixed-free model, the spring stiffness constants are the only parameters considered for calibration in the

mass-added model. A parametric study is performed first to evaluate how the model output changes as the spring stiffness

coefficients are varied.

Figure 16.5 shows the frequency predictions as the spring stiffness values are varied from 10 to 108 N/m. As the spring

stiffness is increased, the natural frequencies also increase, due to the change in interaction between the blade and the

springs. Around a value of 106 N/m, the natural frequencies plateau to values that consistently under-predict the experimen-

tal natural frequencies. This under-prediction is likely an extension of the observed results from the fixed-free model.

Because of the inability of the parametric spring study to form an envelope around the experimentally obtained natural

frequencies, a calibration of the model parameters would likely converge to the upper bound of the spring stiffness values.

Therefore, a value of 108 N/m is chosen for the spring stiffness value, indicated by the vertical black line in Fig. 16.5.

Table 16.3 compares natural frequencies from the experiments to the model output. Again, the natural frequencies are

consistently under-predicted by the model; however, the absolute differences for the first three modes, 0.38, 0.74, and

1.30 Hz, demonstrate an acceptable fidelity to experimental data despite the minimal calibration activities performed after

the model was modified to include the added masses.

Fig. 16.4 Illustration of the

blade cross-section with added

point mass and springs

Fig. 16.5 Effect of spring

stiffness constants on the first

three frequencies

Table 16.3 Comparison of

experimental and simulated

results for the mass-added

model

Mode Description Experimental (Hz) Simulated (Hz) Difference (%)

1 First flap 1.82 1.44 �21.1

2 First lag 2.68 1.94 �27.8

3 Second flap 9.23 7.93 �14.0

4 Third flap 12.72 10.27 �19.3

5 Second lag 14.68 11.14 �24.1

6 Fourth flap 18.86 18.52 �1.8

7 Third lag 24.43 24.51 0.4
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16.3 Test-Analysis Correlation for Validation

16.3.1 Mode Shapes

Our contention is that a model can be considered validated only when it is able to accurately predict data that have not

previously been considered during calibration exercises, and is an important component to establish the credibility of FE

models. Ideally, experimental data used for validation is independent of the data used for calibration [16]. This constraint can

often times be difficult to achieve for engineering applications involving complex structures. One reason, as discussed in

Reference [26], is because calibration exercises sometimes have the tendency to over-fit simulation models, in which case

the model may have good fidelity to the data to which it was calibrated but low predictive capability. It is also possible that

the model is being used to provide predictions for cases outside of what it was intended to predict during the initial model

development process. These concerns make validation an important step in the development of FE models to ensure the

credibility of predictions.

The mode shape deflections are used to illustrate the predictive capability of the FE model through Test-Analysis

Correlation (TAC). The parameters are set to the mean values of the posterior distributions for comparison to the

experimental mode shapes. Figures 16.6 and 16.7 provide a comparison of the experimental and simulation mode shapes,

with the simulated shape plotted in red, experimental shape in black, and un-deformed shape in blue. The flapwise and

edgewise bending behaviors are decoupled for the graphical and quantitative comparisons (see Sect. 16.3.2) due to noise

present in components of the experimentally-obtained mode shapes.

The agreement of mode shapes for the fixed-free FE model is shown in Fig. 16.6. However, the correlation breaks down

for the first and third edgewise, bending modes. As shown in the simulation figures and Table 16.2, these modes are

dominated by flapwise bending, providing a possible explanation for why noise is introduced into the experimentally

obtained edgewise bending of the mode shapes.

The agreement of the mode shapes for the mass-added FE model is shown in Fig. 16.7. An excellent degree of correlation

is obtained for the flapwise bending component of the mode shapes, however, the same agreement is not observed for the

edgewise bending component. While it is possible that the FE model may not be producing accurate predictions, it is also

likely due to the noise in the experimentally obtained mode shapes.

16.3.2 Modal Assurance Criterion

The Modal Assurance Criterion (MAC) is a well-known metric used to quantify the degree to which mode shapes obtained

experimentally and computationally are correlated:

MAC ¼ FT
Test � FModel

� �2
FT

Test � FTest

� �
FT

Model � FModel

� � ; (16.1)

where FTest and FModel are the measured and simulated mode shapes, respectively, expressed at the same degrees-of-

freedom. The MAC is used to identify the corroboration between the experimental mode shapes and deflection shapes

predicted by the fixed-free or mass-added FE models. This procedure allows both the equivalence of the modal results in the

two experimental set-ups and the quantification of the agreement. Due to limited access to the experimental data, only the

first five modes are considered. It is emphasized that the mode shape vectors are not considered during calibration, thus

allowing them to be used as a validation data set.

The comparison of the simulated shapes obtained from the fixed-free model and the experimental mode shapes is shown in

Fig. 16.8. The lowest diagonal flapwise MAC is 78.3%, corresponding to the second mode shape, which potentially contains

noisy measurements of the mode shape vector, as shown in Fig. 16.6. The edgewise modes, however, have significantly low

MAC values for the first and third mode, also consistent with the observed noise in Fig. 16.6. The introduction of noise into the

edgewise bending of these mode shapes is likely due to the fact that the first and third modes are flapwise modes. When not

considering these two modes, the lowest diagonal term in the edgewise MAC is 94.2%, demonstrating an excellent degree of
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correlation between the experiments and simulation. In addition, the repeated mode shapes that occur when transitioning

between flap and lag bending modes can explain the significantly high off-diagonal terms shown in Fig. 16.8.

The MACs obtained from the mass-added model are shown in Fig. 16.9. Despite the minimal calibration performed, the

modes obtained demonstrate an acceptable correlation to data. The lowest diagonal MAC for the flapwise bending is

Fig. 16.6 Measured (black line) and simulated (red line) mode shapes for the fixed-free configuration. (a) Flapwise bending (left), edgewise bending
(middle), and simulated deflection (right) for the firstmode. (b) Flapwise bending (left), edgewise bending (middle), and simulated deflection (right) for
the second mode. (c) Flapwise bending (left), edgewise bending (middle), and simulated Mode (right) for the third mode. (d) Flapwise bending (left),
edgewise bending (middle), and simulated mode (right) for the fourth mode. (e) Flapwise bending (left), edgewise bending (middle), and simulated

deflection (right) for the fifth mode (color figure online)
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obtained for mode 2, as shown in Fig. 16.9. However, in reference to Fig. 16.7, this mode contains a significant amount of

noise and is characterized as a lag-bending mode. Consistent with the graphical representation of the mode shapes in

Fig. 16.7, the correlation of the mode shape vectors breaks down for the edgewise, bending component of the mode shapes.

This slight disagreement can again be explained by the noise present in the experimentally obtained mode shapes.

Fig. 16.7 Measuredand simulatedmodeshapes for themass-added configuration. (a) Flapwisebending (left), edgewisebending (middle), and simulated

deflection (right) for the first mode. (b) Flapwise bending (left), edgewise bending (middle), and simulated deflection (right) for the second

mode. (c) Flapwise bending (left), edgewise bending (middle), and simulated deflection (right) for the third mode. (d) Flapwise bending (left),
edgewise bending (middle), and simulated deflection (right) for the fourth mode. (e) Flapwise bending (left), edgewise bending (middle), and
simulated deflection (right) for the fifth mode
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0.986 0.986 0.217 0.162 0.072 

0.699 0.783 0.613 0.236 0.095 

0.162 0.250 0.962 0.500 0.297 

0.078 0.089 0.103 0.874 0.953 

0.049 0.061 0.126 0.800 0.895 

0.673 0.678 0.453 0.270 0.281 

0.998 0.998 0.626 0.383 0.348 

0.174 0.204 0.017 0.100 0.145 

0.356 0.310 0.903 0.971 0.997 

0.364 0.311 0.883 0.986 0.942 

b

a

Fig. 16.8 Mode shape MACs for the fixed-free model. (a) Graphical comparison of the flapwise MAC (left) to the edgewise MAC (right).
(b) Numerical comparison of the flapwise MAC (left) and edgewise MAC (right)

0.801 0.681 0.232 0.493 0.516 

0.504 0.549 0.228 0.165 0.172 

0.420 0.794 0.835 0.932 0.920 

0.453 0.724 0.703 0.954 0.962 

0.551 0.445 0.202 0.805 0.827 

0.477 0.548 0.359 0.294 0.032 

0.902 0.977 0.340 0.326 0.007 

0.221 0.480 0.864 0.913 0.150 

0.088 0.261 0.476 0.673 0.522 

0.193 0.436 0.951 0.931 0.070 

b

a

Fig. 16.9 Mode shape MACs for the mass-added model. (a) Graphical comparison of the flapwise MAC (left) to the edgewise MAC (right).
(b) Numerical comparison of the flapwise MAC (left) and edgewise MAC (right)
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16.4 Conclusion

This manuscript discusses the use of validation datasets to assess the predictive capability of the FE model of the CX-100

wind turbine blade. In an effort to assure the credibility of the FE model despite the use of simplifications during the model

development process, V&V exercises are applied in the model development process. Natural frequencies identified from

experimental modal laboratory tests performed at the NREL are utilized for calibration of the model, and the corresponding

mode shape vectors are utilized for validation.

Emphasized in this study is that calibration studies should be limited to reduce the occurrence of over-fitting, in which the

simulation is able to accurately replicate data to which it was calibrated but has low predictive power. Furthermore,

performing validation exercises provides a means by which the predictive capability of the model is objectively assessed.

In this study, validation is carried out by calculating the degree of correlation between mode shape deflections predicted by

the model and those measured experimentally. Even though this exercise can be viewed as “weak” validation because the

resonant frequencies and mode shape vectors originate from the same identification procedure and, therefore, are not

completely independent, the MACs obtained demonstrate that the simplified FE model accurately predicts the mode shape

vectors. The study also concludes that it is important to consider the coupling between mode shapes due to the decision to

analyze the flapwise and edgewise mode shapes independently.

The quality of the experimental data is called into question in the analysis of mode shape deflections. Figures 16.6 and

16.7 demonstrate undeniable noise in the experimentally obtained mode shapes, likely due to the combination of low-order

frequencies at which the blade vibrates and specific choices of experimental procedures. Future studies could improve on the

validation presented herein by applying data cleansing filters to minimize the noisy data. Experiments could also be repeated

when the quality of the data acquired is questionable. Furthermore, test-to-test and specimen-to-specimen replicates would

provide an envelope of expected responses that quantify the overall level of experimental variability and could allow for a

more comprehensive TAC.

This study demonstrates the steps necessary to validate FE models, in an effort to assess their predictive capability. This is

an important step to establish the credibility of simulation models that incorporate important simplifications for wind energy.
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Chapter 17

Towards the Experimental Assessment of NLBeam for Modeling

Large Deformation Structural Dynamics

Sarah Dalton, Lisa Monahan, Ian Stevenson, D.J. Luscher, Gyuhae Park, and Kevin Farinholt

Abstract With the growth of the wind energy industry, it has become apparent that gear boxes in wind turbines, which link

the blades to the generator, tend to wear down faster than anticipated. This phenomenon is not clearly understood; one theory

is that existing wind turbine modeling approaches used to design the turbines do not properly account for nonlinearities

caused by large amplitude blade deformations. To help understand the effects of geometric nonlinearities, a finite element

based code, NLBeam, has been developed to simulate structural dynamic responses of wind turbine blades by employing the

geometrically exact beam theory. This research focuses on assessing the adequacy of NLBeam by comparing simulation to

experimental results. Three aluminum blade surrogates with different geometries were tested by applying large amplitude

base excitations while assuring the surrogates stayed within the elastic range. A variety of orientations were utilized

changing the dynamic characteristics of the surrogates and reflecting actual turbine blade behavior. The results are used

to guide future development of NLBeam which will be coupled with large scale simulations of wind plants in a Computa-

tional Fluid Dynamics based program developed at Los Alamos National Laboratory called WindBlade.

17.1 Introduction

In a 2008 report published by the Department of Energy, the possibility of providing 20% of the United States’ power supply

through wind energy by 2030 was assessed [1]. To accomplish such a feat, it is projected that wind energy production must

increase beyond 300 gigawatts (GW) by 2030, an increase of 25 orders of magnitude in 23 years. In order to meet this

increase in energy demand, wind plants are expanding in size and requiring the optimization of turbine placement to most

efficiently produce power for a given wind input. Concurrently, individual wind turbines are manufactured larger and with

higher capacities. Turbine blade lengths are continually increasing in order to more efficiently extract power from wind,

however, a corresponding increase in displacement and, even more importantly, large magnitudes of rotation associated with

deformation also occur. Such deformations, for example, blade torsion, influence angle-of-attack and ultimately affect wind

flow at the plant scale in a coupled manner. To model the wind and turbine-turbine interactions at a plant scale, Los Alamos

National Laboratory has developed a computational fluid dynamics (CFD)-based wind plant simulation code called

WindBlade [2].
To realize such production, it is imperative that wind power production not only increase in capacity, but also become

more economically viable. A clear area to reduce wind energy costs is to increase wind turbine reliability. Wind turbines

include multiple assemblages which interact and transfer loads to the foundation. Evidence has been found indicating certain
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assemblies, such as the gearbox, are plagued by premature failures [3]. The cause is not clearly understood; one theory is that

existing wind turbine modeling approaches do not properly account for nonlinearities caused by large amplitude blade

deformations. Consequently, the actual loads transmitted through the wind turbine blades are higher than anticipated.

With the growing desire to harvest wind power at increased demand levels, the length of turbine blades and the number of

turbines erected in wind plants is ever increasing. Modeling these plants to determine the most efficient layout is difficult due

to the complex nature of aerodynamic loading on turbines, mainly due to variable inflow conditions as shown by Robinson

et al. [4]. The deeper the wind penetrates into the plant, the more turbines it interacts with, creating noise effects on the wind

flow. The noisy wind conditions imposed upon downwind turbines complicate both the modeling of structural loading on the

turbines and the modeling of their ability to capture energy [5]. LANL’s WindBlade aims to model the interactions of wind

and turbines [2]; however, it currently assumes rigid body dynamical motion of the turbine rotors. This simplification does

not account for the change in angle of attack with respect to the wind when blades deform and rotate. Furthermore, the actual

loads being transmitted throughout the wind turbine system are not computed, thus losing available insight on the influence

of the dynamic wind field on the structural loading. Essentially, key aspects of the aeroelastic interaction between the wind

and wind turbines are not captured. To improve this plant scale simulation capability, a more complete representation of

wind turbine structural dynamics must be implemented into WindBlade.
One such approach has been developed by the National Renewable Energy Laboratory (NREL) leading to the implemen-

tation of a code coined FAST (Fatigue, Aerodynamics, Structures, and Turbulence) [6, 7]. FAST utilizes equations of motion

for the modeling of complex dynamic systems derived from Kane’s method. This theory differs from other methods for

obtaining equations of motion such as Lagrange’s method, D’Alembert’s method, and Newton-Euler’s method, in that

Kane’s method parameterizes the motion of deformation into decoupled orthogonal modes [8, 9]. In order to model flexible

elements, FAST utilizes linear modal characterization assuming small deformations [7]. This approach can be inauspicious

in that (1) the small deformation assumption is often not held; inducing geometric nonlinearities and (2) the reliability of the

model depends on the validity of mode shapes over a range of operating conditions which are input into FAST from a

separate code [6].

Another approach is to develop detailed, high fidelity three-dimensional finite element (FE) models to couple with the

fluid–structure interactions of wind turbine blades [10–12]. These high fidelity models are advantageous in modeling both

the spatial and temporal multi-scale physics throughout the entire system over a given time period. However, the

computational costs associated with running simulations of this level of sophistication preclude application at the plant

scale as accomplished by WindBlade.
An alternative approach, as employed in this paper, strikes a balance between accurately representing generally nonlinear

behavior with the computational costs when considered as an integral part of a plant-scale simulation code. In particular, this

research uses the geometrically exact beam theory such as developed by Reissner [13, 14], Simo [15], Simo and Vu-Quoc

[16], Jelenic and Crisfield [17], for example. The use of this method is advantageous in comparison to those modeling

techniques of rigid body systems, linear modal representations, or high fidelity modeling due to its ability to handle the

nonlinear problem in a computationally efficient manner [17, 18]. In the context of this paper, it is important to note that

geometrically exact implies the treatment of finite rotation of each cross section as exact, obviating any small-angle

approximations [19]. The geometrically exact beam theory exploits the slenderness of beams, allowing for dimensional

reduction, i.e., the simplification of a geometrically nonlinear 3D problem by decoupling the problem into a linear 2D cross-

sectional analysis and a nonlinear beam problem along a reference axis [19]. This approach preserves geometric

nonlinearities in a computationally tractable manner when representing beam deformations [17–19].

A finite element code, NLBeam, was developed to implement this theory for application to modeling coupled

fluid–structure dynamics within WindBlade. The research presented in this paper aims to initiate validation of that code

by (1) developing an experimental methodology to isolate geometric nonlinearity in structural dynamics of flexible beams,

and (2) assess the predictive modeling capabilities of NLBeam in capturing large amplitude blade dynamics by comparing

experimental results with NLBeam simulations for dynamically driven surrogate blades. Moreover, a secondary objective

aims to contribute to a body of evidence which can be used to aid in the future development and validation of NLBeam.

17.2 Geometrically Exact Beam Theory

NLBeam employs the geometrically exact beam theory to represent the geometric nonlinearity associated with generally

large rotations. Geometrically exact beam theory dates back to the pioneering work of Reissner and Simo and Vu-Quoc and

has been extensively developed over the last three decades [14–19] and applied, for example, to helicopter rotor dynamics

[18]. The theory is only briefly summarized here.
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The kinematic description underlying the geometrically exact beam theory is essentially that shown in Fig. 17.1.

The green curve in this figure depicts a beam reference axis in its undeformed configuration whilst the blue curve represents

the same reference axis in a deformed configuration. Each point along the reference axis is located within the fixed inertial

frame,Ei, by the vector, r0. Associated with each point along the reference axis is a cross section whose orientation is defined

by the orthogonal triad of unit vectors Bi. Note that the orientation of Bi within the fixed inertial frame is defined by the initial

sectional rotation tensor, L0, i.e., Bi ¼ L0 � Ei. At some later time, t > t0, the beam reference axis has deformed into a

different configuration where each point previously located at r0 in the undeformed configuration is now located by the

vector r in the inertial frame Ei. In addition, the cross section associated with a particular point along the reference axis has

an orientation defined by the orthonormal basis, bi, which differs from Bi according to bi ¼ ~L � Bi. Here,L0 describes initial

orientation, ~L is the rotation of a cross-section due to deformation, andL is the total rotation aligning the fixed inertial basis,

Ei, with the deformed beam cross section axes bi, i.e., bi ¼ L � Ei where L ¼ ~L � L0.

A key ingredient of the geometrically exact beam theory is that the position of any point in the three-dimensional

continuum body (beam in this case) can be expressed as

R0 ¼ r0 þL0 � j0 (17.1)

or

R ¼ r0 þ uþL � j0 (17.2)

in the undeformed and deformed configurations, respectively, where contributions due to cross-sectional warping

are omitted (Cf. Hodges, et al. [19] for a more general representation accounting for warping) and the vector, j0,
expresses the cross-sectional position {0, x2,x3} within the reference frame Bi. This enables a continuum displacement

field, i.e., U ¼ R� R0 from which classical continuum strain measures can be computed. An important point is that the

continuum motion of every point in the three dimensional beam is tracked by a total of six kinematical parameters, namely,

three vector components of the reference axis displacement, u, and three rotation vector parameters, u, comprising the

sectional rotation, ~L uð Þ.
In this paper, isotropic Hooke’s law describes the elastic constitutive response such that the continuum stresses, s, are

related to strains, «, by s ¼ lTr «½ � Iþ 2m « where m is the elastic shear modulus and the Lamé constant related to Young’s

modulus, E, and Poisson ratio, n, as indicated in (17.3), I is the second order identity tensor, and Tr[*] denotes the trace of *.

m ¼ E

2 1þ nð Þ and l ¼ nE
1þ nð Þ 1� 2nð Þ (17.3)

Note, however, that NLBeam employs a generally anisotropic Hooke’s law suitable for representation of composite cross-

sections. The stresses thus obtained allow the strong form of conservation of momentum within the 3D continuum to be

Fig. 17.1 Kinematics of

geometrically exact beam

theory

17 Towards the Experimental Assessment of NLBeam for Modeling Large Deformation Structural Dynamics 179



expressed asr � sþ rfb ¼ r€Uwhere∇ is the divergence operator, r the material mass density per unit volume, fb is a body

force per unit mass, for example due to gravity, and €U is the acceleration of a given material point. The strong form of

the conservation of momentum is integrated across the beam cross-section to get a suitable weak form in terms of

generalized sectional forces and strains. Likewise, the local strain energy can be integrated across a cross-section yielding

an expression for the strain energy,W, at each point along the beam reference axis in terms of cross-sectional strains, g, and
curvatures, k, i.e.,

W ¼ 1

2

g
k

� �T

C½ � g
k

� �
(17.4)

where the sectional strains and curvatures are computed by

g ¼ LTr0 � b1 and k ¼ LTL0 (17.5)

and’ denotes differentiation with respect to the coordinate along the undeformed beam reference axis, x1. The components of

the sectional strain vector comprise axial strain and transverse shear strains in two directions. The curvature vector

comprises the torsional rate of twist about the beam reference axis as well as bending curvature about the other two axes.

Differentiating the cross-sectional elastic strain energy of (17.4) with respect to the sectional strains and curvatures yields the

sectional forces and moments, respectively, i.e.,

FN ¼ @W

@g
and FM ¼ @W

@k
(17.6)

For the case of a homogeneous cross-section, as studied in this paper, the cross-sectional elastic matrix is simply,

[C] ¼ Diag[EA, GA2, GA3, GJ, EI2, EI3], where Diag indicates a diagonal matrix, A is the area of the cross section, I2 and
I3 are geometric moments of inertia about the corresponding section axes, J is the polar geometric moment of inertia, and A2

and A3 are effective shear areas along the corresponding section axes. Accordingly the sectional forces and moments are simply

FNa ¼ EA g1; FNv2 ¼ GA2 g2; FNv3 ¼ GA3 g3
FMt ¼ GJ k1; FMb2 ¼ EI2 k2; FMb3 ¼ EI3 k3

(17.7)

where FNa, Fvi are the axial and shear forces, respective, and FMt, FMbi are the axial torque and bending moments, respective.

Equation (17.7) reflects a linear force-to-strain relationship in the local section coordinate system along the beam; however,

the rotation used in transforming into fixed inertial frame is inherently nonlinear (as all rotations are strictly speaking).

The strong form of conservation of momentum is weakened and then implemented into a numerical form (NLBeam) using
a Petrov-Galerkin finite element discretization in space. The weak form of the equations of motion are expressed as

RI ¼ Rm
I þ Rd

I � Re
I ¼ 0 (17.8)

where the total residual, RI, at node I, is expressed in terms of contributions from material stress, Rm
I , inertia, R

d
I , and external

forces, Re
I , as computed by

RI
m ¼ R L

0

NI
0I 0

NI
~r0 NI

0I

� �
L � FN

L � FM

� �
dx1

RI
d ¼ R L

0
NIðx1Þ rA€u

~WJrW þ JrA

� �
dx1

RI
e ¼ R L

0

NIrA fb
0

� �
dxþP

k

NI x1
k

� �P L � �fk
L � �mk

� � (17.9)

In (17.9),W and A are the angular velocity and acceleration, respectively, of a point on the beam reference axis, Jr is the

cross-sectional inertia tensor (a cross-sectional property), and �fand �m are concentrated forces and moments, respectively.

Additionally, the elemental shape functions, NI, have been introduced and are quadratic Lagrange interpolating polynomials
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in NLBeam, thus each element comprises three nodes. Integration of these terms is carried out using (reduced) two point

Gauss quadrature over the length of each element. Equation 17.8 reflects a nonlinear system of equations whose independent

variables are the incremental nodal degrees of freedom, Du and Du, and is solved using a Newton–Raphson iterative scheme.

17.3 Experimental Approach

Toward the overarching research goal, experimental procedures were performed with the role of providing data for

comparison to numerical results from NLBeam simulations. It was intended that surrogate beams be driven into large, i.e.,

nonlinear, deformation. The experimental effort consisted of imposing base excitations on three blades of differing geometry

in three different orientations under varying excitation amplitudes in order to create and observe the desired nonlinearities.

To accomplish the experimental goal of driving and identifying geometrically nonlinear deformation, specific test

specimens were designed with differing geometries. Each geometry consists of a different tapered width profile and a

constant thickness of 0.32 cm selected for practical reasons during fabrication, as seen in Fig. 17.2. These width profiles were

selected in order to evaluate NLBeam’s modeling capabilities for nonprismatic beams, a purely geometric consideration.

To minimize experimental variability and model uncertainty the specimens were fabricated of Aluminum 6061. Although

typical wind turbine blades are made of optimized fiber reinforced composite lay-ups, aluminum was chosen due to its well-

documented homogenous, isotropic material properties.

The physical experimental setup consists of a surrogate blade specimen fixed to a base, replicating a fixed-free cantilever

beam which is fairly representative of operating turbine-blade boundary conditions. The base is then bolted to a VTS Model

VG 100-6 shaker, suitable for driving the desired base excitations. Each specimen was excited in the flap-wise bending

direction in three different orientations, viz. horizontal-flat, horizontal-edge, vertical, as seen in Fig. 17.3, to explore

geometric nonlinearities due to differing gravitational loads. This is a relevant response condition because wind turbine

blades experience changing stress fields which are attributed to varying gravitational loading throughout their rotations.

A small mass of approximately 50 g was attached to the end of each surrogate blade as seen in Fig. 17.4. The mass served to

exaggerate geometric nonlinearities observed in the experimental procedures; however, the additional inertial forces

induced rocking motion of the base. This rocking complicated the boundary conditions input to the model.

Excitation signals used to dynamically drive the system originate from aDactron data acquisition system which sends the

desired excitation voltage through a power amplifier and, ultimately, to the shaker which drives the surrogate blade.

Excitation signals used comprise of (1) random and (2) sine dwell. Dactron configurations for each excitation are shown

below in Table 17.1. Random base excitations were used to generate a comprehensive baseline frequency response function

(FRF) to identify natural frequencies and screen for nonlinear responses. Sine dwells were then utilized to focus on specific

frequencies for generating data that could easily be compared to simulation results. Sine dwell excitation was advantageous

to this research in that the degree of nonlinearity of response data can be easily measured using a harmonic distortion metric,

represented in (17.10), where an represents the magnitude of the response at the nth harmonic. A large value for this metric

implies a highly nonlinear system.

HD ¼ 1

a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

an2
r

(17.10)

92.08 cma

b

c

d

92.08 cm

92.08 cm
7.60 cm

2.50 cm 0.65 cm

0.65 cm2.50 cm

2.50 cm

7.60 cm

0.32 cm

Fig. 17.2 Geometry of the

surrogate blade test specimen

used in experiments; (a) non-

tapered, (b) linear taper,

(c) radiused taper, (d) uniform

thickness profile for all

geometries
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Fig. 17.3 Three blade orientations investigated; (a) horizontal flat (b) horizontal edge (c) vertical

Fig. 17.4 Mass attached at tip to help drive geometrically nonlinear deformation

Table 17.1 Dactron settings

for each excitation type
Cutoff frequency Data points Spectral lines Other

Random 250 4,096 1,600 0.5 Vrms

On-resonance sine 500 4,096 1,600 57 Hz

Off-resonance sine 250 4,096 1,600 35 Hz
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Because the Dactron system restricts the total number of data input channels to four, careful channel allocation and sensor

placement was important. To aid in this task, a solid/continuum finite element model of one blade geometry was developed

to estimate representative modal characteristics using the commercial finite element software, Abaqus. The preliminary

mode shapes were used to aid sensor placement on the test specimens and also provide some frame of reference for

specifying excitation signal parameters. Two accelerometers were placed on the base fixture, one on the back end and one on

the front end in order to capture any base rocking, one accelerometer is placed approximately at the midspan of the beam,

and one accelerometer is placed near the beam’s tip, as seen in Fig. 17.5. Early experiments collected base displacement data

from a laser vibrometer (as shown in Fig. 17.5), but this approach was aborted because (1) it could not capture the rotation of

the base and (2) the data contained prohibitive levels of noise for use as boundary conditions for input to a numerical model.

17.4 Numerical Modeling

Toward the goal of establishing the predictive capability of NLBeam and highlighting nonlinear structural dynamic response

when present, two different FE modeling approaches were utilized to simulate the experiments. The two modeling

approaches used were (1) a geometrically nonlinear model using NLBeam and (2) a linear modal superposition model

using the commercial FE modeling package Abaqus. The role of the nonlinear model is to demonstrate acceptable agreement

between NLBeam and experimental results, while the use of a linear model aims to highlight geometric nonlinearities in

observed response. In both cases, simulation output results are directly compared with experimental data to substantiate

quantitative and qualitative assessments.

To model surrogate blades, NLBeam uses quadratic beam elements based on the geometrically exact beam theory as

described above. Each node includes six degrees of freedom (DOF); three translations and three rotations in (and about,

respectively) the global x, y, and z directions. At each elemental integration point along the length of the beam, two-

dimensional cross-sectional properties, shown in Table 17.2, are defined via a sectional properties pre-processor developed

as part of this work.

The linear superposition model employs the Abaqus beam element, B32, which is a quadratic beam element in space, also

accounting for six degrees of freedom at each node. Rectangular beam cross-section properties are calculated directly within

Abaqus from sectional widths and thicknesses corresponding to the center node of each element given as input. The response

data from the modal superposition model reflects a superposition of the first four modal responses accounting for each

mode’s participation factor.

Fig. 17.5 Experimental setup

17 Towards the Experimental Assessment of NLBeam for Modeling Large Deformation Structural Dynamics 183



Boundary condition input data (displacement/acceleration time histories) for both models were generated from base

accelerometer data measured in experiments. NLBeam is limited to accept only displacement (rather than acceleration) time

histories as boundary conditions; therefore the measured experimental acceleration data was converted into suitable

displacement data. Rocking (rotation about global z-axis) of the base, attributed to the addition of a tip mass, was observed

in experimental data. This feature of the boundary conditions was significant enough that it was necessarily accounted for in

a manner ensuring both the translational and rotational base accelerations were preserved.

To achieve this, assumed rigid body translational and angular acceleration are computed from both accelerometers on the

base according to (17.11), where ab is translational acceleration, ab is rotational acceleration, and a1, a2 are the measured

accelerations from two sensors on the assumedly rigid base.

ab ¼ a1 þ a2
2

ab ¼ a1 þ a2
r12

(17.11)

These rigid body accelerations were high-pass filtered, Hh, and doubly integrated to obtain displacement and rotation

data, i.e.,

ub ¼
ZZ

Hh abð Þdt yb ¼
ZZ

Hh abð Þdt (17.12)

Finally, pure translational displacements applicable to nodes on the base are calculated according to (17.13) and low pass

filtered, Hl, to reduce high frequency noise. The key reason for calculating displacement in this manner is to preserve relative

phase information between translational displacement and angular rotation that is essential for parity of simulations

and experiment.

u1 ¼ Hl ub þ r12
2

� yb
	 


u2 ¼ Hl ub � r12
2

� yb
	 


(17.13)

The result of this scheme is highlighted in Fig. 17.6 where a representative measured experimental acceleration time

history is compared with the acceleration time history as computed by NLBeam given the displacement input boundary

conditions. It is clear from this figure that the angular and translational motion including the relative phase is preserved.

The nominal NLBeam model consisted of 24 elements, of which, one element corresponded to the relatively rigid

base holding the surrogate blade. This element was effectively stiffened to reflect the rigid body motion of the base fixture.

The base displacement input time history computed according to (17.13) was specified as nodal boundary conditions for

the first and last node of this “fixture-base-beam” element. A point mass was included at the tip node corresponding

to the experimental tip mass. Simulation results from the NLBeam model used for comparison to experiment in this

paper come from a node located 86 cm from the base of the blade corresponding to the location of tip accelerometer.

As suggested by (17.9), NLBeam directly includes contributions from gravitational forces as well as the nonlinear geometric

stiffening due to stresses in the beam. Accordingly, simulations were conducted using the NLBeam model for all

three surrogate blade geometries across all three orientations to compare to assess the influence of the orientation with

respect to gravity.

Table 17.2 Material and

sectional property relations

used in pre-processor

Parameter Symbol Value

Young’s modulus E 69 GPa

Shear modulus G 26 GPa

Density r 2.70 g/cm3

Area A wh

Torsion constant J hw3 1
3
� 0:21 w

h 1� w4

12h4

	 
	 

Moments of inertia (y-dir) Iy wh3

12
Moments of inertia (z-dir) Iz hw3

12
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Much consideration was given to ensuring that parameters and boundary conditions for the modal superposition model,

utilizing Abaqus, were as close to those employed in NLBeam as the software would allow, in order for meaningful

comparisons. Thus, the nominal modal superposition model consisted of 23 elements with one element allocated to the base

fixture of the experimental setup. Similar to the NLBeam case, this element was stiffened in order to ensure the assumed rigid

body motion boundary condition; however, since acceleration time histories can be specified directly as boundary conditions

within this FE code, base accelerometer data measured in experiments were used as excitation sources for the linear

superposition model. Likewise, a point mass corresponding to the mass used in experimentation was applied to the final node

in the model. All data extracted from the modal superposition model and presented herein are from a node located 86 cm

from the base of the blade which corresponds to the location of the tip accelerometer. The surrogate’s response across all

three orientations was simulated using a gravitational preload in an effort to explore the effects of gravity on a linear

(perturbation) model.

17.5 Results and Discussion

Ultimately, it is desired to experimentally validate NLBeam over a range of response regimes including behavior that

exhibits varying levels of geometric nonlinearity. Achieving such conditions in this study proved to be difficult with the

available experimental hardware and code capabilities. Physical restraint of the shaker system was difficult under cases of

large deformations because of the large accelerations and resulting base moments associated with such motion. The base

moments also induced the aforementioned rotations (rocking) of the base of the blade where it affixes to the shaker.

Furthermore, the shaker itself has internal physical stops which limited the amplitude of base displacement. In light of these

experimental limitations, the most efficient manner to drive large deformations was to operate the shaker near a resonant

frequency of the beam. However, simulating this behavior near resonance was complicated because the model did not

directly include physical damping. Accordingly, this section compares simulation and experiment results for near resonance

and off resonance cases and, perhaps more importantly, discusses improvements in both experiment and model that can be

used in the future.

Fig. 17.6 Comparison of translational (top) and rotational (bottom) acceleration at the base between NLBeam and experiment
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17.5.1 Fixture Base Rotation Complexities

As was discussed previously, a mass of approximately 50 g was added to the tip of the surrogate blades to enhance any

nonlinearity in the response of the test specimen. The addition of this mass increases the inertial loading, in turn, causing the

“rocking” motion of the base. This rocking is not driven by the shaker, per se, but is permitted due to the compliance of that

system. The kinematic motion of this rocking behavior is captured and input as boundary conditions to the model as

discussed in Sects. 17.3 and 17.4. Figure 17.7 shows a representative normalized power spectral density (PSD) of an

experimental case prior to and following the addition of the 50 g mass. The tip acceleration of the surrogate blade with tip

mass contains several harmonics of the fundamental excitation frequency (57 Hz in this case), whereas the signal from the

case without a tip mass does not. Presumably this difference is a manifestation of nonlinearity in the system response which

is enhanced by adding the mass.

However, the source of nonlinearity in this experimental configuration cannot be isolated to the surrogate blade response

and it is believed to be attributable, as least in part, to a nonlinear interaction between the shaker and the test specimen.

This coupling cannot be directly accounted for in the simulations because they model the surrogate blade only, i.e., there is

not a direct model of the shaker system or its interface with the surrogate beam. With the objective of model validation this is

viewed as a limitation of the experiment (in permitting such induced rotations) rather than the model, as there is no desire to

develop a physical model of the shaker system.

It is interesting that the induced rocking behavior is characteristic of a bi-stable phase orientation between the rigid base

translation and base rotation. Figure 17.8 illustrates this behavior as follows. A representative experimental case

(non-tapered beam, horizontal-flat orientation, with a normalized input amplitude of 2.0 at 57 Hz), was repeated ten

times. The acceleration time histories measured by two accelerometers located on the shaker base fixture are plotted in

Fig. 17.8. The rear-most accelerometer data appears relatively repeatable and is plotted in blue with sinusoidal amplitude of

approximately 4 m/s2. Data from the forward-most accelerometer separates into two distinct categories of response classified

by their respective amplitudes, i.e., approximately 2 and 6 m/s2. This indicates a base rotation that falls into one of two

bistable operational modes; one is in phase with the base translation and contributes additively to the forward-most

accelerometer and the other mode is 180� out of phase with the base translation, thus contributing subtractively to the

forward-most accelerometer.

As suggested in Sect. 17.3, one measure of system nonlinearity is the harmonic distortion of an output signal observed

when the system’s input is a pure sinusoid at a single frequency. The relevance of this metric is revealed by considering that a

nonlinear model, M, relating inputs, x, to outputs, y, can be expressed in a power series. If x is a pure sinusoid then harmonics

of the frequency of x appear in the output

Y ¼ MðXÞ ¼
X1
n¼0

MnðX � CÞn (17.14)

If, for the sake of discussion, X ¼ a sin o tð Þ þ b cos o tð Þ, then (17.14) yields a Fourier series, i.e.,

Y ¼ A0 þ
X1
n¼0

An sin no tð Þ þ Bn cos no tð Þ (17.15)

where a, b, Ai, Bj, are constants pertaining to the model and input data, n is an integer specifying each harmonic of the

original signal input frequency, o. Clearly, if the system is nonlinear, then the output will contain harmonics of the original

input frequency. Figure 17.9 presents the harmonic distortion computed from measured tip acceleration collected from

experiments conducted at each orientation for the prismatic beam versus a normalized magnitude of the input excitation

amplitude. The harmonic distortion increases with the input amplitude up to a maximum value that is unique for each case.

Further increases in input amplitude result in a decrease in the observed nonlinearity. The source of this behavior is unclear,

but we speculate that such experimental nonlinearity is caused by the mechanical connection between the surrogate blade

and the shaker fixture. This type of behavior is consistent with a stick–slip transition in this mechanical connection where

nonlinearity is most profound near the incipient transition from stick to slip response. At low amplitudes the connection

behaves essentially linearly, at increasing amplitudes up to some point the connection spends more time near the stick–slip

transition. However, as amplitudes continue to increase the response is dominated by the slip condition manifest as frictional

dissipation (itself a nonlinearity, though perhaps not as profound as the transition.) The experiments generating this data
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were conducted in turn at each orientation in the order: (1) flat-horizontal, (2) edge-horizontal, (3) vertical. Immediately after

completing the experiment in the vertical orientation, the experiment was repeated under the flat-horizontal orientation.

Results from this final case are plotted in green in Fig. 17.9 and clearly differ from the original experiment conducted in this

orientation (shown in blue). The lack of agreement between this data and that from the initial flat-horizontal case indicates a

change in the system throughout the progression of these experiments. This change is consistent with the theory of the

stick–slip transition nonlinearity. Such behavior would probably be influenced by the specific details of the interface

between the surrogate blade and base fixture. The apparatus was disassembled and reassembled between each experimental

case, accordingly, such connection details, for example bolt preload, are most likely different between each case. No attempt

was made to characterize or control these connection details.

Fig. 17.8 Representative measured acceleration time histories from multiple experimental repeats. Data from accelerometer on rear of fixture is

plotted in blue. Data from accelerometer near the front of base fixture separates into two distinct phases of base rotation: additive (plotted in red)
and subtractive (plotted in black) (color figure online)

Fig. 17.7 PSD of tip acceleration without mass (red) and with mass (blue) (color figure online)
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17.5.2 On-Resonance Results

Predicting response under sine-dwell excitation at a frequency near resonance is complicated because of the base rocking

complexities previously discussed as well as the lack of physical damping in NLBeam. The first issue is addressed to a

limited extent by specifying a rotational motion of the base in the finite element models that coincides with the observed

rocking accelerations. The latter issue is handled to some extent by numerical damping associated with the Newmark time

integration scheme employed by NLBeam. Physical damping mechanisms in this system comprise friction at the fixture base

and material damping in the beam. NLBeam was developed to represent the structural dynamic response within an

aeroelastically coupled wind turbine modeling code. In this context the actual damping mechanisms are expected to be

dominated by interaction of relative velocity and aerodynamic drag. Accordingly, little attention thus far has been devoted to

modeling material or frictional damping within NLBeam. One consequence is poor agreement (over predicting amplitudes)

in predicting structural response near resonance where the numerical model is unstable for truly zero damping.

Aside from damping, another issue is the complexity associated with the shaker-fixture-beam interface, which is not

being modeled. It is unclear precisely the influence of this coupling, but it is possible to represent the nonlinearly coupled

Fig. 17.10 Comparison of tip acceleration time history for horizontal-flat orientation excited with sine dwell near resonance (57 Hz)

Fig. 17.9 Harmonic distortion of measured tip acceleration response versus input amplitude (normalized) for various orientations of surrogate
blade
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behavior by simply specifying base rotations, while conceptually sound, overly constrains the response of the model. Also, it

is important to note that the addition of mass to the tip of the blade necessitated relocating the tip accelerometer toward the

base of the blade, essentially placing it near a node of the operational deflected shape point. Thus, the acceleration reported at

this point is presumably sensitive to details such as the precise location of the sensor and/or FE-node. Attributing the

discrepancy between model and experiment to these issues is somewhat speculative; however, it is recommended that

the experimental program be adjusted to eliminate these uncertainties.

Figure 17.10 presents a representative comparison between experimentally observed and NLBeam prediction of tip

acceleration for the surrogate blade without taper in the horizontal-flat orientation. The general response is captured by

NLBeam, albeit with a significantly subdued amplitude for this particular period of the total time history. Other orientations

and surrogate geometries are not discussed here because of the issues described previously.

17.5.3 Off-Resonance Results

In order to eliminate many of the issues discussed in the previous sections, an off-resonance low-amplitude set of

experiments was also conducted. Results from these tests enable a more meaningful (and consequently, better quantitative)

comparison between experiment and models. On the other hand, the very nature of these experiments restricts comparisons

to a fundamentally linear regime of response. For example, consider Table 17.3, which reports the harmonic distortion of the

experimentally measured tip acceleration for the surrogate blade with no taper in a horizontal flat orientation for near-

(57 Hz) and off- (35 Hz) resonance cases. Clearly, there is no significant nonlinearity present in the response for this case.

In order to make some comparison, a frequency domain correlation metric is defined as

C12 ¼ A1 oð Þ � A2 oð Þ
A1 oð Þk k A2 oð Þk k (17.16)

where Ai oð Þ is the acceleration response in the frequency domain for the ith signal and the inner product is taken over the

frequency domain. This particular correlation metric is used because it measures how well the shape of the two signals match

in the frequency domain, although it does not strongly penalize discrepancy in the magnitudes of those signals. Computed

values of this correlation metric between experimental data and each of the two modeling approaches are shown in

Table 17.4. Generally, both modeling approaches do well, although when comparing only simulated data to experimental

data, the models are better able to predict responses in both the horizontal-edge (average correlation value of 0.983) and

horizontal-flat (average correlation value of 0.980) orientations. As expected, the modal superposition and geometrically

nonlinear model are highly correlated in the frequency domain. Thus, the geometrically nonlinear approach offers negligible

advantage for modeling dynamic response dominated by linear behavior. Comparisons of acceleration time histories shown

in Figs. 17.11, 17.12, and 17.13 affirm this conclusion; although, in some cases NLBeam compares more favorably than the

model superposition results. Such “eyeball” comparisons can be misleading and development of a quantitative metric for

comparing nuances of time history data is recommended for future work. Note in particular, acceleration time histories for

Table 17.3 Experimental harmonic distortion for tip acceleration response for no taper, horizontal flat orientation

Orientation Sine at 35 Hz Sine at 57 Hz (third mode)

Horizontal flat 1.00 26.48

Horizontal edge 1.00 8.42

Vertical 1.00 6.72

Table 17.4 Computed frequency domain response correlation metric values

No taper Linear taper Radiused taper

Flat Edge Vert Flat Edge Vert Flat Edge Vert

Exp. – NLB 0.985 0.985 0.977 0.977 0.981 0.952 0.979 0.982 0.975

Exp. – ABQ 0.984 0.982 0.974 0.978 0.982 0.956 0.982 0.984 0.976

ABQ – NLB 0.995 0.992 0.996 0.998 0.998 0.993 0.995 0.994 0.992
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Fig. 17.11 Comparison of tip acceleration response for no taper and horizontal-flat orientation

Fig. 17.12 Comparison of tip acceleration response for no taper and horizontal-edge orientation

Fig. 17.13 Comparison of tip acceleration response for no taper and vertical orientation
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both models compare reasonably with experiment for the non-tapered beam (Cf. Fig. 17.11, 17.12 and 17.13). On the other

hand, neither model does well matching experimental response for the linear tapered beam as shown in Fig. 17.14. A possible

source of error is that the relatively coarse mesh cannot adequately capture the varying geometry. While a thorough grid

convergence study has not been performed to assess the accuracy of the results for the linear taper case, it is expected that is

not the sole source of discrepancy between the experiment and model and more work needs to be done to rectify this case.

Finally, results for the radiused taper case are presented in Fig. 17.15. In this case, NLBeam appears to capture the

experimental response with better agreement than modal superposition.

17.6 Conclusions

This paper presents work conducted within the scope of the 2011 Los Alamos Dynamics Summer School. The intention was

to develop an experimental program supporting validation of a geometrically nonlinear structural dynamics code under

development as part of Los Alamos National Laboratory’s effort to expand modeling capabilities for wind turbines amenable

Fig. 17.14 Comparison of tip acceleration response for linear taper and horizontal-flat orientation

Fig. 17.15 Comparison of tip acceleration response for radius taper and horizontal-flat orientation
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to simulation of entire operating plants. The experimental technique and modeling presented in this paper are directly

capable of assessing the influence of orientation of laboratory-size surrogate blades under small base excitation. Experi-

mental validation of simulation capabilities under conditions of truly large deformation response remains elusive, but will

benefit from the findings reported in this paper. For conditions of small deformation and varying orientations with respect to

gravity, simulation results from the code NLBeam compare favorably with experimental results in most cases. Future

capability enhancements to this code consist of the addition of physical damping mechanisms to enable simulation of

response near resonance, allowing specification of rotation time histories as nodal boundary conditions, and providing for

the input of accelerations rather than displacement or rotation for boundary conditions. Future improvements to the

experimental program that would enable validation over a broader range of nonlinear deformation response include

the addition of sensors to measure the resultant base forces and moments, an actuation system that eliminates inadvertent

base rotations and that permits large displacement and acceleration amplitudes.
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Chapter 18

Wind Turbine Experimental Dynamic Substructure Development*

Randy L. Mayes

Abstract Structural dynamic development of modern wind turbines is important for control and to maximize the fatigue life

of the wind turbine components. Modeling can be used in development to aid designs. In some cases an experimental

dynamic model, or substructure, may be cheaper to develop and more accurate than an analytical model. Some applications

for which dynamic substructures could be useful for wind turbine development are presented. Recent advances have

provided renewed interest in the topic of experimental dynamic substructures. A focus group has been formed in the Society

for Experimental Mechanics to advance the experimental dynamic substructures technology and theory. Sandia National

Laboratories has developed two identical test beds to enable the focus group to advance the work. The system chosen was an

Ampair 600 wind turbine with a fabricated tower and base. Some modifications were made to the system to make it more

linear for initial studies. The test bed will be available for viewing in the technology booth of the IMAC exposition.

A description of the turbine and modifications will be presented. Initial measurements on the full system will be described.

Organizations already performing experiments on the test bed are the UK Atomic Weapons Establishment, University of

Massachusetts-Lowell, Technical University-Delft and University of Wisconsin.

18.1 Introduction

There has been interest in being able to couple experimental and analytical substructures for a long time [1], but difficulties

in the experimental methods prevented the common use of experimental substructures. There has been a resurgence of

interest in experimental dynamic substructures in the past few years that has been demonstrated by the number of papers and

sessions at IMAC. In 2007 there were no substructures sessions, and of the 27 papers that mentioned the word “substruc-

ture”, less than half a dozen addressed experimental substructures. Since then there have been three or four sessions

on substructures each year. For a few years there was talk of developing a focus group on the topic and last year the group

actually formed officially. One of the first actions was to develop a test bed structure that could be used for international

collaboration. Sandia National Laboratories has developed two test beds that can be used for research, one of which is

available for loan. In the experimental substructures focus group meeting at IMAC in 2011, initial plans were developed

which led to the papers focused on the test bed this year. Interest in wind turbines has also soared over the last several

years. Several possible applications of experimental dynamic substructures may be useful for wind turbine structural

dynamic development. In Sect. 18.2 some possible applications for experimental dynamic substructures are proposed.

In the other sections, some initial work of the SEM substructures focus group on the AMPAIR 600 wind turbine test bed will

be described.

R.L. Mayes (*)
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18.2 Possible Applications of Experimental Dynamic Substructures

for Wind Turbine Dynamic Development

In Fig. 18.1 is shown a small wind turbine which will be used as an example for discussion of possible applications of

experimental dynamic substructures for wind turbine development. One of the most logical uses of experimental dynamic

substructuring based simply on maximum utilization of resources is to develop an experimental model of a portion

(a substructure) of the wind turbine system because it is cheaper or more accurate than developing an analytical model.

The experimental models can be coupled with validated analytical substructures of the other portions of the wind turbine to

accurately predict full system response. It seems plausible that the tower and the hub of the rotor might be reasonably

modeled with finite elements, since they have relatively well understood geometry and are often made of an isotropic

material such as steel. However, certain portions of the wind turbine are not well understood which makes them difficult

to model accurately. One other advantage of a finite element substructure over an experimental substructure is that it can be

easily modified for updated designs. Experimental substructures are constructed from input/output relationships which may

not easily be related back to design change parameters. In the following paragraphs, some suggested uses of experimental

dynamic substructures for wind turbines are proposed. The author is most familiar with the transmission simulator method

[2, 3] of experimental dynamic substructures, so applications for which that method is applicable are emphasized.

18.2.1 Experimental Dynamic Substructure of the Foundation

In the figure, the base of the wind turbine is set on a trampoline, simply because it provides a much more consistent and easily

modeled boundary condition than setting the base on a floor with unknown mass, stiffness and contact mechanics. This

emphasizes one of the difficult modeling problems for field wind turbines. The foundation of the wind turbine is often difficult

Fig. 18.1 Substructures focus

group test bed – Ampair 600

wind turbine
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tomodel, requiring an understanding of how a base fixture, bolts, concretematerials and soil interact together, whichmay not be

well understood. But the boundary condition of the base has a huge effect on the frequency of the first bendingmode of the tower.

The damping that is caused by the foundation is an order of magnitude more difficult to model than the stiffness and mass

(most damping values for FE models are derived from measured experimental data). Experimental dynamic substructuring

might be the cheapest and fastest way to get a substructure model of the foundation that could be connected to a FEmodel of the

tower. In fact, if an accuratemodel of the tower exists, the transmission simulator method of dynamic substructuring can be used

to determine the experimental substructure model of the foundation.With this method, an instrumented fixture is attached to the

connection points of the foundation. The tower could be used as the fixture since it generally already exists. The transmission

simulator method provides a mass, stiffness and damping matrix directly from translation force and acceleration measurements

made on the tower, which is connected to the foundation. No measurements directly on the foundation have to be made. In the

end, the stiffness, mass and damping of the tower can be subtracted analytically, leaving simply a stiffness, mass and damping

matrix for the foundation and the joint between the foundation and the tower.

18.2.2 Experimental Dynamic Substructure of the Blade

Some development wind turbine blades are difficult to model because of complex geometries and uncertain material

properties making the analytical stiffness, mass and (especially) damping matrices difficult to generate. Experimental

substructure models of the blades may be valuable for certain analyses. The transmission simulator method might be

performed with the actual hub used as a fixture connected to a blade. Then the hub can be subtracted, and a model of the

blade that includes the joint stiffness and damping between blade and hub results.

18.2.3 Experimental Dynamic Substructure of the Nacelle and Its Components

Because of the complex geometry, bearings, joints, gears, cables and mechanisms in the generator, the nacelle and its

internal parts may be more easily and accurately modeled with an experimental substructure than an analytical model.

However, the experimental setup may be logistically challenging. Since it has a connection to the hub and a connection to

the tower, two fixtures would be necessary to capture the connection dynamics. The hub could perhaps be used for the

connection to the rotor, but a special fixture would probably be needed to capture the connection to the tower.

18.2.4 Experimental Dynamic Substructure of the Nacelle/Tower/Foundation

Logistically it might be easier to model the shaft, nacelle and components, tower and foundation all as one experimental

substructure, rather than modeling the foundation and tower experimentally and the tower analytically. If an analytical

model of the rotor was available, it could be connected to this substructure to predict full system response.

18.3 Overview Description of the Experimental Dynamic Substructures Test Bed

In Fig. 18.1 one can see one of the two test beds. The test bed is founded upon an AMPAIR 600 wind turbine. The turbine

was set upon a tapered aluminum pole representing the tower with an aluminum base plate softly supported on the

trampoline. The base plate set on the trampoline should have a more consistent and more easily modeled boundary condition

than the base plate set on some unknown foundation. The height is 1.85 m from the bottom of the base plate to the top of

the generator housing. The rotor diameter is 1.7 m. The total mass of the test bed without the trampoline is 114 kg. For initial

studies the rotor was parked by modifying the generator.
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18.4 Description of the Blades

The blades are a glass reinforced polyester construction with local axes chosen as shown in Fig. 18.2. They are coated with a

white epoxy. In addition to the six blades on the two test beds, six other blades were acquired for individual blade testing.

The blades were given serial numbers. The blades are clamped to the hub by three bolts and two plates that sandwich the

blade in place.

18.5 Description of the Hub

The hub to which the blades attach is shown in the center and bottom of Fig. 18.3. The hub has a mechanism which pitches

the blades so they will not transmit power in high winds. Initial substructure studies will be focused on developing linear

experimental substructures, so nonlinear elements of the system are minimized. For the test bed, the mechanism is defeated

by potting the mechanism in the normal operating position to attempt to eliminate any nonlinear action such as gapping or

rattling in the dynamics. The mechanism was activated by masses that were attached through bolts in the holes at the greatest

radial distance from the center of the hub (seen on the black brackets in the figure). These masses were removed and only

hardened steel bolts were inserted in those three locations. In addition the shaft was replaced with a modified shaft that bolts

to the hub to ensure that there is no slip between the shaft and hub.

18.6 Description of the Generator

The generator is modified to make the system parked for initial studies. In Fig. 18.3 the generator parts can be seen.

The white generator housing and front bearing retainer have the original bearings in them, but the armature and field coils are

replaced by a single machined steel part that simulates their mass. The modified mass mounts in the bearings in the front

bearing retainer and aft housing and is shown in the figure. When the front bearing retainer is bolted to the aft housing,

Fig. 18.2 One of the Ampair

600 blades

196 R.L. Mayes



it fixes the modified mass in the housing so that it cannot rotate in the bearings. This is another effort to minimize

nonlinearity. Figure 18.4 shows the actual parts that are replaced by the modified mass. A smaller aluminum tail fin replaces

the manufacturer’s large tail fin to reduce the number of tail fin modes in the testable bandwidth (shown in Fig. 18.1).

18.7 Description of the Tower and Base

The base is made of a 7.62 cm thick by 76.2 cm diameter aluminum plate. It bolts to a 3.81 cm thick plug that is screwed and

glued into the base of the pole representing the tower. The tower is made from a hollow tapered aluminum flag pole cut to

152.4 cm in length with 0.318 cm wall thickness. The tower base outside diameter is 7.62 cm and the top outside diameter is

6.39 cm. A hollow adapter sleeve that is 7.19 cm outside diameter is welded to the top of the tower to adapt to the generator

housing. Three radial screws attach the base of the generator housing to the top of the tower. All this is set on a trampoline to

provide a well-characterized boundary condition for the base. Setting the base on a floor was considered to be too variable a

boundary condition, depending on floor roughness and material.

Fig. 18.3 Test bed parts –

(Left to Right) – generator

housing, mass to replace

the armature and field coils,

coffee cup (for size

comparison), hub, front

bearing retainer, blade

Fig. 18.4 Removed

generator parts
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18.8 Linearization Attempts

The desire of the substructures focus group was to start with a linear experimental dynamic substructure, so efforts to remove

possibly nonlinear parts were undertaken. In general, joints can be nonlinear. First the rotating shaft of the armature was

replaced with the armature/field coil mass that would be locked to the housing when the front bearing retainer was bolted to

the housing. Second, the overspeed mechanism which pitches the blades to reduce lift in high winds was potted to reduce the

rattling and free play in that mechanism. The masses that activate this mechanism through centrifugal force were also

removed. Third, the hub shaft was replaced with a shaft that would directly bolt to the hub to eliminate play between the hub/

rotor and shaft.

18.9 A First Look at the Dynamics

A rudimentary impact modal test was performed to get a first look at the dynamics of some of the lower modes. There were

not enough accelerometers to distinguish between first and second bending mode shapes of a blade or the tower. The

elastic modes were extracted with the SMAC algorithm [4]. Low frequency rigid body frequencies were extracted from

the peak in an autospectrum generated from a person exciting a specific rigid body motion of the test bed on the trampoline.

Table 18.1 shows the modal parameters and a description of the modes extracted up to 50 Hz. Figures 18.5, 18.6, 18.7, 18.8,

18.9, 18.10, 18.11 through 18.12 show the mode shapes. Figure 18.13 shows the analytical synthesis of a complex mode

indicator function from extracted modal parameters compared to the actual experimental data. The frequencies and damping

change slightly with impact level, but the modal extraction was readily achievable.

18.10 First Research Efforts

The substructures focus group consensus was to begin by characterizing just one blade. Initial plans of university and

industry partners were to test blades in free and possibly mass loaded or fixed configurations. Also efforts were initiated to

develop the solid geometry and a finite element model of the blade to aid studies. One proposal was to experimentally extract

the parked rotor substructure and couple it to an analytical model of the tower and base. The hardware lends itself to these

and many other possible approaches.

Table 18.1 Modal parameters of the Ampair 600 test bed

Description Frequency Modal damping%

Pitch about X axis 0.875 Hz (.125 Hz resolution) **

Pitch about Z axis 0.875 Hz (.125 Hz resolution) **

Vertical Y bounce 2.75 Hz (.125 Hz resolution) **

Lateral X 3.125 Hz (.125 Hz resolution) **

Lateral Z 3.125 Hz (.125 Hz resolution) **

Torsion about Y 3.375 Hz (.125 Hz resolution) **

Blades bending about Y 16.97 1.5

Blades bending about X 17.68 1.8

Blades bending in phase in Z 18.76 1.87

First bend tower in X 20.4 1.74

First bend tTower in Z 21.38 1.50

Second bend tower in X 29.57 2.37

Tail X motion out of phase with rotor Z motion 37.12 1.09

Rotor out of phase with nacelle rotation about X 50.80 1.36

**A few rigid body modes that were extracted from impact FRFs had damping on the order of 10%
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Mode 3
 Frequency: 16.966 Hz
 Damping: 1.675 %Cr
 IDLine 1: Generated from reference 1001Z+
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Fig. 18.5 Top view 16.97 Hz

Mode 3
 Frequency: 17.679 Hz
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Fig. 18.6 YZ plane 17.68 Hz
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Mode 4
 Frequency: 18.759 Hz
 Damping: 1.874 %Cr
 IDLine 1: Generated from reference 1101Z+
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Fig. 18.7 YZ plane 18.76 Hz

Mode 4
 Frequency: 20.397 Hz
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Fig. 18.8 XY plane 20.4 Hz
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Mode 5
 Frequency: 21.382 Hz
 Damping: 1.496 %Cr
 IDLine 1: Generated from reference 3Z+
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Fig. 18.9 YZ plane 21.38 Hz

Mode 5
 Frequency: 29.572 Hz
 Damping: 2.374 %Cr
 IDLine 1: Generated from reference 9X+
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Fig. 18.10 XY plane 29.57 Hz
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Mode 6
 Frequency: 37.120 Hz
 Damping: 1.085 %Cr
 IDLine 1: Generated from reference 9X+
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Fig. 18.11 Top view 37.12 Hz

Mode 10
 Frequency: 50.801 Hz
 Damping: 1.353 %Cr
 IDLine 1: Generated from reference 1001Z+
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Fig. 18.12 YZ plane 50.80 Hz
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18.11 Concluding Remarks

Experimental dynamic substructuring can be applied to a wind turbine: experimental substructure models for foundation

(land-based and offshore), drive train and blades could be combined in a relevant way with analytical substructure modes for

design analysis predictions of dynamics. There are several potential applications in which structural dynamic wind turbine

development could possible benefit from the use of experimental dynamic substructuring technology. In the cases when a

portion of a wind turbine needs to be modeled, it may be more cost effective and more accurate to obtain an experimental

dynamic substructure of that portion instead of an analytical model. This is especially true when the substructure model may

be extremely difficult to develop analytically from first principles. Possible experimental substructure applications discussed

were: (1) Wind turbine foundation; (2) A blade with complex geometry and uncertain material properties; (3) The nacelle

and its components with many joints, bearings and mechanisms; and (4) The nacelle/tower/foundation assembly. The

substructures focus group of SEM has established two test beds for development of experimental substructuring methods.

The test beds are two wind turbines based on Ampair 600 machines mounted to a tower and base. Testing and modeling of

the blades and system has already commenced with participation internationally from both academia and industry. Over 20

participants were involved in the first focus group workshop and planning meeting at IMAC in 2011. Their work is

demonstrated in four sessions on substructuring methods at IMAC in 2012.
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Chapter 19

Validation of a Finite Element Model Used for Dynamic

Stress–Strain Prediction

Jack LoPiccolo, Jennifer Carr, Christopher Niezrecki, Peter Avitabile, and Micheal Slattery

Abstract Modal testing is performed on wind turbine blades to provide information that is necessary for model updating

and validation. In this work, a finite element model of a small wind turbine blade is developed and is used to perform

dynamic stress–strain prediction using digital image correlation techniques. In order to assure that the model is appropriate

for this work, a modal test is performed and correlated to the finite element model. Several blades are tested to identify

the variability expected in the as-built configuration. This paper presents the test, analysis and correlation for this wind

turbine blade.

19.1 Introduction

As part of the certification process for wind turbine blades, static and dynamic tests are conducted to validate the structural

configuration. Load tests are performed along with fatigue testing on the blades. Generally, the blades are instrumented

with various measurement transducers and, in particular, strain gages are generally included as part of the measurement

system.

As part of the work performed on these blades, a new approach was used for the identification of the stress–strain

experienced by the blade during static and dynamic testing. Typically, only a handful of strain gages are used for the

identification of the blade stress–strain. However, in these tests, digital image correlation (DIC) was used allowing for

the measurement of full-field surface strain. The primary benefit to using DIC is that the measurement approach is not

limited to identifying the strain at only the point discrete strain gage locations.

As part of the certification process, many times the finite element model generated is validated through the use of

experimental modal data to assure that the model is an accurate representation of the structure. For this work, the correlation

of the model is also important for the correlation of the test results obtained from the DIC to be compared to the finite

element model results.

At the time of the writing of this paper, the solid finite element model had not been finalized. Therefore a simpler

beam like representation of the blade was used for the correlation studies presented in this paper. A future paper will present

the solid model and correlation to the test data along with the comparison of the data to the stress–strain results.

The presentation of the methodology for the static [1] and dynamic [2] results for this blade are presented in companion

papers. This paper focuses on the correlation of the test data collected for several representative blades to the finite element

model of the blade.
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19.2 Finite Element Model Developed and Analysis Performed

A solid model of the blade was in the final stages of development at the time of the writing of this paper. The solid model is

shown in Fig. 19.1 for reference. A preliminary finite element model of the blade was also developed from the solid model

but was also not finalized at the time the paper was finalized. The rough model of the blade is shown in Fig. 19.2.

Fig. 19.1 Schematic of solid

model and several related

cross sections [3]

Fig. 19.2 Preliminary solid

finite element model with test

data (In progress)
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In order to provide preliminary information in regards to the dynamic characteristics of the blade, a simpler finite element

(FE) model of the blade was created. This model was created using beam elements to represent the blade. The cross section

of the blade was taken from a CAD model that had been provided by the manufacturer [3]. Cross sectional properties were

recorded for every 0.5 in. along the length of the blade. A new CAD part was then created for each cross section sketch,

where the cross-section was extruded to a 0.5-in. beam. The CAD parts for each cross-section were imported into FEMAP.

This process is illustrated in Fig. 19.3.

Each beam element of the FE model was given a length of 0.5 in. and the cross-sectional properties to match the cross-

sections imported from the CAD cross sections. The beam elements followed a line based on the centroids of the cross-

sectional areas taken from the CADmodel. This line formed the curve of the blade. The final FE model is shown in Fig. 19.4.

The image on the top shows the beam elements of the FE model, while the image on the bottom illustrates the cross-section

of each beam element. The solid elements on which the FE model is overlaid, are imported from the parts of each cross-

section from the CAD model.

Based on the high refinement of the beam elements, the simplified FE model was an acceptable model of the blade

and could be used further for analysis. As a check to the accuracy of the model, the mass of the blade in FEMAP was

checked. The weight of the FE blade was found to be 15.9 lbf. The actual blade weighs approximately 18 lbf which is an

11.7% difference.

An analysis was performed that characterized the blade FE model for a free-free boundary condition. For the analysis,

eight modes were calculated in order to obtain six modes in the flap-wise direction. Figure 19.5 shows the flexible mode

shapes and frequencies for the free-free condition. The highlighted modes are edge-wise dominant and not important for this

analysis here, that is mainly focused on flap-wise blade motion.

Fig. 19.3 Process of FE formulation
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19.3 Dynamic Testing and Results

Testing was performed on four 7-ft wind turbine blades. The blades were serialized, and are referred to as “Blade 1,” “Blade

2,” “Blade 3,” and “Blade 4.” For experimental testing, each blade was hung vertically from the root using two bungee cords

to simulate a free-free condition for flap-wise response. An impact test was performed on each blade using 37 impact

Fig. 19.5 Free-free shapes and frequencies

Fig. 19.4 Finite element model from beam elements with cross section
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locations with five averages at each point. Two reference accelerometers were placed on the turbine blade. One reference

accelerometer was placed at the tip of the blade. The second reference accelerometer was placed closer to the root of the

blade, off the center axis. A 4-channel LDS Dactron Photon II Analyzer was used for data acquisition during the modal tests.

The test data was then processed with MEScope for the modal parameter estimation. The test setup, along with a map of the

impact locations, is shown in Fig. 19.6.

To study the variability that can be expected in the blades, four blades were subjected to modal tests to obtain multiple

data sets for future analyses. Additionally, each blade was weighed, as differences in mass would result in changes in

dynamic characteristics. The weights of the blades are listed in Table 19.1.

The first six modes of each blade were captured during impact testing. A comparison of the natural frequency results is

shown in Table 19.2.

Fig. 19.6 Test setup and measurement parameters

Table 19.1 Weights of blades Blade 1 Blade 2 Blade 3 Blade 4

17 lbs 17 lbs 18 lbs 20 lbs

Table 19.2 Natural frequencies

of blades
Mode Blade 1 (Hz) Blade 2 (Hz) Blade 3 (Hz) Blade 4 (Hz)

1 14.5 13.6 13.1 13.3

2 28.8 26.4 25.6 25.9

3 54.2 50.1 49.0 49.6

4 65.6 56.6 56.4 56.2

5 90.1 83.3 81.5 82.5

6 130.1 120.1 117.7 119.7
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19.4 Data Corelations

To further study the variability in the blades, a modal assurance criterion (MAC) was performed between the mode shapes of

each blade. The MAC results are shown in Table 19.3.

The diagonals and sub-diagonals highlighted in gray show the high level of correlation of the mode shapes between the

modal test results for each of the blades. However, the fourth mode of Blade 4 does not correlate well with the other blades.

This is due to differences in the tip displacement, as shown in Fig. 19.7, which overlays the mode shapes for Blade 1 and

Blade 3.

Measurements at the tip are difficult to obtain because the high response at this location results in double impacts for

many measurement averages and distorts the measurement. To obtain better correlation between the blades, the two

measurement points nearest the tip of the blades were deleted and another MAC was performed. These results are shown

in Table 19.4.

The correlation of all blades improved, with Blade 3 improving the most. The average MAC for each of the blade

correlations has been compiled in Table 19.5.

A comparison between blades was performed to determine expected variance between blades. The weight varied by as

much as 17% and was determined to be 18.3 � 1.2 lbs. The frequency of the first mode varied by as much as 9.7% and was

Table 19.3 MAC of all blades

Fig. 19.7 Blade 1 and 3,

mode 4 revealing a difference

in tip displacement
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determined to be 13.6 � 0.5 Hz. The frequency of the second mode varied by as much as 11.1% and was determined to be

26.7 � 1.3 Hz. All MAC comparisons were above 95% once the poor tip measurements were deleted.

The four sets of blade data were then compared to the FE model predictions. Table 19.6 compares the predicted natural

frequencies of the blade from the FE model with the measured natural frequencies of the four tested blades.

Table 19.6 lists the largest percent differences found among all the blades for each natural frequency. Every largest percent

difference was found to be associated with Blade 1, highlighted in gray. All measured values of natural frequency for Blade 1

resulted in a higher natural frequency for each mode when compared to the FE prediction. On the contrary, Blades 2, 3, and 4

test results in lower values for natural frequencies when compared to the FE predictions for each mode.

Table 19.4 MAC of blades with tip points deleted

Table 19.5 Improvement of Average MAC values by removing tip points

Average MAC

Correlation Original Tip points removed

Blade 1 and 2 82.0 97.0

Blade 1 and 3 82.2 96.7

Blade 1 and 4 82.1 96.9

Blade 2 and 3 98.2 98.7

Blade 2 and 4 97.5 98.3

Blade 3 and 4 99.0 99.0

Table 19.6 Comparison between FE and test natural frequencies

Mode

Frequency (Hz)

Largest% DiffFE model Blade 1 Blade 2 Blade 3 Blade 4

1 13.8 14.5 13.6 13.1 13.3 4.9%

2 25.9 28.8 26.4 25.6 25.9 9.9%

3 50.1 54.2 50.1 49.0 49.6 7.5%

4 57.7 65.6 56.6 56.4 56.2 12%

5 84.2 90.1 83.3 81.5 82.5 6.5%

6 123.7 130.1 120.1 117.7 119.7 4.9%
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Experience has shown that the finite element method generally produces frequency values that are greater than what is

measured in the field. Table 19.6 shows that this is consistent for Blades 2, 3, and 4. To validate the finite element model

predictions for mode shapes, a MAC calculation was performed. Table 19.7 shows the MAC calculation for each of

the blades.

Table 19.7 shows that most of the MAC values are 90 or above. The lowest value is found at mode 4 of blade 3. Mode 4 is

classified as a torsional mode. Testing was performed using a single axis accelerometer and excitation in the Flap-wise

direction. Although the mode shape of mode 4 has components of both flap-wise and torsion, the torsional component is

dominant, and only the small component of flap-wise motion could be measured during testing. Therefore, the average MAC

was calculated again omitting mode 4. By omitting mode 4, the average MAC increased slightly for Blades 1, 2, 4, and

significantly increased for Blade 3.

The results were examined to determine if there were any particular measured degrees of freedom that were mostly

responsible for the poor MAC values. The mode shape pairs were examined, and several test points were causing errors in

the correlation calculations. Table 19.8 shows graphics of the mode shape pairs for each mode.

Table 19.8 shows that mode shape correlation is poor at the tip of the blade for all modes. The blade is very compliant

near the tip and the measurements at the tip were not consistent for all of the blades, thus contaminating the MAC values of

all blades. The correlation improvements for test data seen in Table 19.4 were a result from deleting the node point pairs at

the tip of the blade. Table 19.9 shows the updated MAC values resulting from deleting erroneous node point pairs near the tip

and root of the blade.

Overall the updated MAC values are improved by deleting the inaccurate node point pairs from the correlation

calculation. Table 19.10 compares the original Average MAC values which were contaminated with the inaccurate node

point pairs, to the updated Average MAC values. The greatest improvement of AverageMAC is observed in Blades 2, 3, and 4.

The greatest improvement is observed for Blade 4, and yields a 2.959%difference due to the tip and root node point pair deletion.

The results of these preliminary correlations provide important information for the future correlation effort for the blade

using the full solid finite element model currently in progress. These preliminary results are very useful to help understand

the dynamic characteristics of the blade for future efforts to predict dynamic stress–strain.

19.5 Conclusion

As part of an overall assessment of a turbine blade for static and fatigue loading, modal testing was performed for several

wind turbine blades to understand the overall dynamic characteristics and variability from a set of turbine blades. Modal

characteristics of the test data was compared to each other to identify any obvious differences between the blades. MAC

values for all the Flap-wise modes were very good overall.

In addition, a simple beam finite element model was developed (while the solid model of the blade was being prepared)

for comparison to the measured data. The beam model was correlated to the test data collected for each of the blades tested.

Overall the correlation to the model was very good. Improvements to the correlation were observed as certain measurements

(suspected to be prone to measurement error) were removed from the data set. Further correlation studies are yet to be

performed once the solid model is available.

Table 19.7 MAC values for first six modes of turbine blade compared to FE model

Mode

MAC

DescriptionBlade 1 Blade 2 Blade 3 Blade 4

1 91.4 90.7 90.6 88.5 Flap-wise

2 96.6 96.5 95.6 94.4 Flap-wise

3 92.3 93.8 94.3 90.0 Flap-wise

4 90.2 90.6 57.9 88.4 Torsional

5 90.0 91.8 85.9 83.2 Flap-wise

6 89.6 91.3 87.6 86.6 Flap-wise

Average 91.68 92.45 85.32 88.52

Average, Omitting Mode 4 91.98 92.82 90.80 88.54
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Table 19.8 Correlated mode shape pairs

Mode Mode shape pair Cause of error

1

Test Model
FE Model
Pair 01 MAC  91.4 Tip root

2

Test Model
FE Model
Pair 02 MAC  96.6 Tip

3

Test Model
FE Model
Pair 03 MAC  92.3 Tip

4

Test Model
FE Model
Pair 04 MAC  90.2 Tip

5

Test Model
FE Model
Pair 05 MAC  90.0 Tip

6

Test Model
FE Model
Pair 06 MAC  89.6 Tip
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Table 19.9 Updated MAC

values for flap-wise modes

of the turbine blade compared

to FE model

Mode

MAC

DescriptionBlade 1 Blade 2 Blade 3 Blade 4

1 90.4 86.1 84.5 82.9 Flap-wise

2 97.9 99.0 99.0 98.9 Flap-wise

3 95.1 97.4 96.7 95.5 Flap-wise

5 90.7 92.6 88.9 88.5 Flap-wise

6 85.8 91.9 88.7 90.4 Flap-wise

Average 92.0 93.40 91.60 91.24 Flap-wise

Table 19.10 Comparison

of average MAC values

for flap-wise modes of the

turbine blade

Blade Average MAC Average MAC updated % Diff

1 91.98 92.00 <0.01

2 92.82 93.40 0.615

3 90.80 91.60 0.873

4 88.54 91.24 2.959
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Chapter 20

Dynamic Stress–Strain on Turbine Blade Using Digital Image

Correlation Techniques Part 1: Static Load and Calibration

Jennifer Carr, Javad Baqersad, Christopher Niezrecki, Peter Avitabile, and Micheal Slattery

Abstract Often times, wind turbine blades are subjected to static and dynamic testing to identify the performance levels that

can be achieved for a particular configuration. These tests are a necessary part of the validation process. Typically, a variety

of different static and dynamic measurements are made using a variety of different transducers. Typically, only a handful of

strain gages are deployed to capture strain information.

Recent advances in digital image correlation (DIC) and dynamic photogrammetry (DP) have allowed new

opportunities for blade inspection, structural health monitoring, and full-field vibration testing. The primary benefit to

using DIC is that the measurement approach is not limited to identifying the displacement or strain at only a few discrete

measurement locations, but instead makes full-field surface measurements possible. These techniques are currently being

explored on several wind turbine blade applications and can provide a wealth of additional information that was

previously unobtainable.

This paper, which is the first part of a two part paper, presents the static strain measurements and calibration of the system

overall. The strain distribution along the length of the structure is compared to the finite element model. The data analysis is

used to assure that the model is calibrated for the dynamic testing results; dynamic testing results are presented in the second

part of this paper.

20.1 Introduction

As part of the certification process for wind turbine blades, static and dynamic tests are conducted to validate the structural

configuration. Load tests are performed along with fatigue testing on the blades. Generally, the blades are instrumented with

variousmeasurement transducers and, in particular,many strain gages are generally included as part of themeasurement system.

These strain gages are used to identify the stress and strain from the test. However, these gages are located at discrete

points and information regarding the full-field distribution of the stress–strain is not available. Using digital image

correlation (DIC) techniques, the full-field stress–strain can be obtained.

This work focuses on the use of DIC techniques to measure full-field stress and strain for both static and dynamic tests.

Part 1 (this paper) focuses on the static testing and general calibration of the system. Part 2 focuses on the dynamic testing

results. The test configuration is described and the results of conventional strain gages are compared to the DIC technique to

show the advantages of the full-field approach.
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In preparation for the testing of an actual wind turbine blade, a simple beam like structure was used for the validation of

the test set up and methodology for the actual testing (see Fig. 20.1). The beam is very easy to characterize from both a test

and model standpoint and the results provide more credibility for the proposed approach. (The actual testing of the

Southwest Windpower turbine blade was underway at the time of this writing and the results will be presented in a future

paper.) The test rig is described followed by the static testing performed prior to the dynamic tests; the dynamic testing

results are presented in Part 2 of this paper.

20.2 Test Rig for Testing Blades

To perform testing on the turbine blades, a test rig was designed, manufactured, and assembled [1]. During the design

process, information on loading procedure and experimental requirements was based upon a test report from the National

Renewable Energy Laboratory (NREL) [2]. An overview of the test setup is shown in Fig. 20.2.

An optical table was chosen as the base of the test rig. To prevent transferring of forces generated by testing to the table, a

frame was used to connect the fixture to the table. The frame was constructed with 3 in. by 3 in. aluminum extrusion beams.

A 3/8 in. steel plate was bolted over a 2 ft by 2 ft area of the frame on which the fixture holding the blade was bolted. A CAD

model of the frame is shown in Fig. 20.3.

The fixture is designed to secure the root of the blade during testing and consists of two cast iron angle blocks, two shear

plates, two spacer plates, and assorted hardware. The cast iron angle blocks clamp against the blade and secure the blade to

the frame. The shear plates are used to increase torsional rigidity of the fixture. The aluminum spacer plates were used to

adapt the face of the root, which has compression limiters and a triangular extrusion that interfere with clamping, to the face

of the angle blocks. The fixture is shown in Fig. 20.4.

The load applied to the blade was distributed using a whiffle tree. The design of the whiffle tree was based on the NREL

test report [2], but pink insulation foam was used for the saddles instead of machined delrin pieces. The whiffle tree is shown

in Fig. 20.5.

The designed loading mechanism consists of a 3 in. pneumatic (air) ram controlled by three precision air flow valves and

fed by a small compressor. A controller was designed and manufactured to allow the load to be increased or decreased. This

device permitted a user-controlled loading speed. The ram was mounted to the frame using a square post and a swiveling

mounting bracket. The swiveling bracket allows the pneumatic ram to maintain a perpendicular pulling angle with respect to

the whiffle tree. The air ram is connected to the whiffle tree with rope that has a force gage in the middle to measure the load.

The pneumatic ram is shown in Fig. 20.6.

Fig. 20.1 Test setup for turbine blade (top) and aluminum beam (bottom)
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Fig. 20.3 Frame design

Fig. 20.4 Fixture realization and CAD model

Fig. 20.2 Test rig including the mounting fixture, turbine blade, whiffle tree, and pneumatic actuator
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20.3 Structure Description

Testing and analysis was performed on a 5-ft long aluminum beam. The cross-section of the beam was a rectangular tube

with dimensions of 1-in. by 2-in. and a thickness of 1/8-in. The beam was clamped in a fixture specifically designed for

testing a wind turbine blade. The beam was used as a simplified structure for preliminary testing to validate the test set up and

methodology for the actual testing. The beam is very easy to characterize from both a test and model standpoint and the

results provide more credibility for the proposed approach. The test methods were designed for wind turbine blade

applications and will be implemented on a wind turbine blade when the testing procedures and equipment are better

understood and successfully performed on the beam.

20.4 Testing Performed

For validation and calibration of the system and finite element model, a static test was performed on the structure. The load

was applied using the pneumatic ram described earlier. Incremental loads of 25 lbs were applied up to a 125 lb load. At each

loading stage, data was taken using strain gages and DIC cameras, and the results were compared. A visual comparison of the

finite element model to the DIC results when the structure was subjected to a 125 lb load, along with graphical strain

comparisons of the strain gage results and DIC results, are shown in Fig. 20.7.

Fig. 20.6 Pneumatic ram actuator used to provide the turbine blade loading

Fig. 20.5 Whiffle tree
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Fig. 20.7 Comparison of the full-field DIC results and the measurement from two strain sensors
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The DIC data provides a full-field strain plot over the measured length of the beam. This plot shows a similar trend

compared to the finite element model over the same field of the beam. To compare the results of the strain gages and the DIC

data, the results from one measurement point of the speckle pattern located in the center of the strain gages was compared to

the strain gage data, as shown in the plots of Fig. 20.7. In addition to the strain gages and DIC results, an expected value of

strain at those locations was calculated to ensure the results were reasonable. Although there was variance on the DIC data

due to the proximity to the noise floor of the DIC measurement, the data is comparable to the strain gage results. Table 20.1

shows the coefficient of determination (R2) values between the strain gage data and the DIC data (Note: Strain gage data for

the location nearest the tip of the structure was not measured for runs 3 or 4, so an R2 correlation was performed between the

DIC data and the calculated strain). All the R2 values are greater than 0.98, except in Run 3 in the data closer to the tip of the

beam in which the DIC data were offset from the expected strain values. Overall, the results from the strain gage, model, and

DIC compare very well. The acceptable correlation of data from a static test validates the testing approach and permits

dynamic testing to be performed with confidence. The dynamic testing is presented in Part 2 of this paper.

Using DIC techniques to measure strain provides full-field strain results on a structure, that has a large advantage over

conventional discrete strain measurement techniques. Because strain gages only measure discrete points, unexpected strain

values due to defects in the structure would only be captured if a strain gage were placed at that precise location. However,

current studies show that measuring strain along a structure using DIC techniques allows for the detection of defects due to

changes in the full-field strain results. Additionally, using DIC permits measurements to be taken without the preparation

time and wiring required when using strain gages.

20.5 Conclusion

Static and dynamic measurements for wind turbine blades are generally required for validation procedures. Digital image

correlation has been used for making full-field surface measurements of displacement and strain in many applications and is

currently being explored for measurement on turbine blades. For this work, in Part 1 of this paper, a static load test was

performed on a cantilevered aluminum beam to validate the test setup and methodology for testing that will be performed for

a turbine blade. Strain gages measured strain at discrete points on the structure while DIC measurement techniques were also

employed to capture a full-field strain measurement. The DIC results and strain gage data compared very well; all strain

measurements between the two techniques had R2 correlation coefficients greater than 0.98, and the use of DIC for this

application was validated. The full-field strain contour from the DIC measurement was also compared to a strain contour of

the finite element model, and the contour plots exhibited the same trend along the length of the structure.
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Table 20.1 Coefficient

of determination for strain

gage and DIC data

Run # Strain gage 1 (near base) Strain gage 2 (near tip)

1 0.998 0.993

2 0.995 0.988

3 0.994 0.959

4 0.991 0.993
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Chapter 21

Dynamic Stress–Strain on Turbine Blades Using Digital Image

Correlation Techniques Part 2: Dynamic Measurements

Jennifer Carr, Javad Baqersad, Christopher Niezrecki, Peter Avitabile, and Micheal Slattery

Abstract Often times, wind turbine blades are subjected to static and dynamic testing to identify the performance levels that

can be achieved for a particular configuration. Many times only a handful of strain gages are deployed to capture that

information.

The first paper (part 1) presents the static strain measurements and calibration of the system overall. The strain

distribution obtained by using digital image correlation (DIC) along the length of the beam is compared to discrete strain

gage measurements and with a finite element model. In this second paper, DIC techniques are used to identify the full-field

stress–strain on the turbine blade during dynamic testing. Comparison of the full-field stress–strain and the conventional

strain gages are presented to show the usefulness of the image correlation approaches.

21.1 Introduction

As part of the certification process for wind turbine blades, static and dynamic tests are conducted to validate the structural

configuration. Load tests are performed along with fatigue testing on the blades. Generally, the blades are instrumented with

various measurement transducers and, in particular, many strain gages are generally included as part of the measurement

system.

These strain gages are used to identify the stress and strain from the test. However, these gages are located at discrete

points and information regarding the full-field distribution of the stress–strain is not available. Using digital image

correlation (DIC) techniques, the full-field stress–strain can be obtained.

This work focuses on the use of DIC techniques to measure full-field stress and strain for both static and dynamic tests.

Part 1 focuses on the static testing and general calibration of the system. Part 2 (this paper) focuses on the dynamic testing

results. The test configuration is described and the results of conventional strain gages are compared to the DIC technique to

show the advantages of the full-field approach.

In preparation for the testing of an actual wind turbine blade, a simple beam like structure was used for the

validation of the test set up and methodology for the actual testing (see Fig. 21.1). The beam is very easy to

characterize from both a test and model standpoint and the results provide more credibility for the proposed approach.

(The actual testing of the Southwest Windpower turbine blade was underway at the time of this writing and the results

will be presented in a future paper). The dynamic testing results measured using strain gages and DIC techniques are

presented and analyzed.
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21.2 Structure Description

Testing and analysis was performed on a 5-ft long aluminum beam. The cross-section of the beam was a rectangular tube

with dimensions of 1-in. by 2-in. and a thickness of 1/8-in. The beam was clamped in a fixture specifically designed for

testing a wind turbine blade; for a description of the test rig, see Part 1 of this paper [1]. The beam was used as a simplified

structure for preliminary testing to validate the test set up and methodology for the actual testing. The beam is very easy to

characterize from both a test and model standpoint and the results provide more credibility for the proposed approach. The

test methods were designed for wind turbine blade applications and will be implemented on a wind turbine blade when the

testing procedures and equipment are better understood and successfully performed on the beam.

21.3 Testing Performed

Two different dynamic tests were performed to study the effectiveness of the image correlation techniques. The first

dynamic test performed on the beam was a pluck test. For this test, the tip of the beam was displaced a certain distance. The

beam was then released and allowed to oscillate. Three of these tests were performed, with tip displacements of approxi-

mately 1, 2, and 3 in., respectively. When the beam tip was displaced, the entire optical table, which sits upon pneumatic

legs, also moved; when the beam was released, the table also oscillated, but at a much lower frequency. Tip displacements

were measured with respect to the table. The results of the pluck tests are shown in Fig. 21.2.

As displayed in Fig. 21.2, the DIC data contains noise. A 100 Hz filter was applied to the strain gage measurements during

testing, and the strain gage data is smoothed. The calculation of strain from the DIC measurement involves spatial filtering of

the images. For this test, the default settings were used in the AramisTM software. Other filter settings may affect the

processed data however, further studies on the effects of applying a filter to the DIC data are beyond the scope of this paper.

Also, within the DIC data, there is a low frequency oscillation that is caused by the movement of the optical table. If this

table oscillation were removed from the data, the peak strain results would match better. Although there is noise on the DIC

data, the strain gage and DIC measurements match very well. In Fig. 21.2, the peak-to-peak values of strain are comparable

between the strain gage and DIC measurements, which demonstrates that the DIC produces measurements of strain that are

comparable to strain gage measurements.

When using DIC techniques, full-field strain of the structure can be produced at any slice in time, whereas strain gages

can provide strain values for a discrete point on the structure over a period of time. This powerful aspect of the DIC approach

is demonstrated in Fig. 21.3, that displays strain fields at two separate points in time. Having the full-field strain

measurements provides data about structural defects or abnormalities that strain gages could only detect if placed at that

discrete location.

Fig. 21.1 Test setup for turbine blade (Top) and aluminum beam (Bottom)
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Fig. 21.2 Dynamic strain measurements from the Pluck test for three different tip displacements comparing DIC to strain gages at two beam

locations
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For the second dynamic test a shaker was placed 8.25 in. from the base on the back side of the beam. A discrete sine input

at the first natural frequency (determined to be 14.8 Hz through modal testing) of the system was applied. The strain on the

beam was measured using both strain gages and DIC, and the results were compared. A comparison of the results is shown in

Fig. 21.4. Again, there is noise in the DIC data that can be filtered but is beyond the scope of work for this paper. For the

discrete sine test, the peak strain measurements are again comparable. DIC techniques that provide full-field strain values at

any given instant in time can also be applied to this type of testing.

Fig. 21.3 Full-field strain measurements from DIC during Pluck test
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21.4 Conclusion

Static and dynamic measurements for wind turbine blades are generally required for validation of numerical models. Digital

image correlation has been used for making full-field surface measurements of strain in many applications and is being

explored for turbine blade applications. Within this paper, dynamic testing was performed on a cantilevered aluminum beam

to compare the measurements between strain gages and DIC. The next phase of the testing will involve measurements that

will be performed on a turbine blade. First, a pluck test, was performed where the tip of the beam was displaced a certain

amount, released, and the beam oscillated. In another dynamic test a shaker was located near the base of the beam and

oscillated at the first natural frequency of the system. Strain gages measured strain at discrete points on the structure while

DIC measurement techniques were also employed to capture a full-field strain measurement. The DIC results and strain gage

data compared very well, and the use of DIC for this application was validated.

Using DIC techniques as a measurement tool provides great potential in gathering data. The DIC measurements produce

full-field strain measurements at any instant in time for dynamic testing. Full-field measurements can detect abnormalities in

the strain field that a strain gage can only measure if placed at that precise location.

Fig. 21.4 Strain measurements from Shaker test at the first natural frequency
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Chapter 22

Structural Health Monitoring of Wind Turbine Blades

Under Fatigue Loads

Samuel J. Dyas, Justin Scheidler, Stuart G. Taylor, Kevin Farinholt, and Gyuhae Park

Abstract This paper presents the results of dynamic characterization and preparation of a full-scale fatigue test of a 9 m

CX-100 blade. Sensors and actuators utilized include accelerometers and piezoelectric sensors. To dynamically characterize

a 9 m CX-100 blade, full scale modal analyses were completed with varying boundary conditions and blade orientations.

Also, multi-scale sensing damage detection techniques were explored; high frequency active-sensing was used in identifying

fatigue damage initiation, while low frequency passive-sensing was used in assessing damage progression. Ultimately, high

and low frequency response functions, wave propagations, and sensor diagnostic methods were utilized to monitor and

analyze the condition of the wind turbine blade under fatigue loading.

22.1 Introduction

22.1.1 Background

Wind Energy is the fastest growing renewable domestic energy source in the United States. The DOE recently proposed that

20% of the nation’s energy needs may be met through wind energy by 2030 [1]. In order to accomplish a larger wind power

presence in the US, significant investments are being made in wind turbine technology, thus motivating manufactures to

produce more efficient and more complex wind turbines. These trends are producing larger, longer, and lighter blades,

ultimately generating greater power with increased efficiency. Given the demand for wind, and significant investments

required, great effort is being expended to improve the design and manufacturability of wind turbine blades [2–4].

Maximizing wind turbine design reliability is a key to providing safe and cost effective operation. In order to increase

wind turbine reliability, a non-destructive structural health monitoring (SHM) system specifically designed for the blades of

the turbines would allow real-time monitoring of the blades while in a working state. Monitoring the health of the blades is

practically important as they account for 15–20% of the total cost of the system. Also, if blade damage goes undetected, it

may cause rotating unbalance, causing secondary damage to various other components of the turbine [5]. SHM could lead to

condition based (as opposed to time based) maintenance, which saves operators unnecessary maintenance costs, while still

alerting operators of real-time problems. SHM may ultimately lead to less downtime of wind turbines, and more efficient

operation of the US wind energy national network.

This study will utilize a multi-scale sensing strategy which will lead to the characterization of both damage initiation and

progression within the CX-100 blade. The multi-scale strategy will include the use of accelerometers, strain gages,

piezoelectric transducers and acoustic emission sensors. High frequency sensing will be used in identifying fatigue damage
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initiation, while low frequency sensing will be used in assessing damage progression. Methods including high and low

frequency response functions, wave propagations, and sensor diagnostics will be utilized to monitor and analyze the

condition of the blade under the fatigue loads [6].

22.1.2 Previous Work

Many SHM techniques rely upon blade frequency response data. It has been shown during modal analyses of research-sized

wind turbine blades that the boundary conditions prescribed during testing can have a significant effect on the frequencies

and magnitudes of the blade’s mode shapes [7–10]. For a research-sized blade supported by bungees, to simulate free

conditions, percent differences of 2% and 52% in the first edgewise bending mode frequency and damping, respectively,

were observed after support stiffness and locations were altered [10]. The same study also illustrated, theoretically, that

measured damping could be far from the true value even for softly supported structures, and that the ideal location of support

straps was at the nodes of the most relevant modes. By simply changing the location of straps used to support a CX-100 blade

in a free-free condition, an average percent difference of 8.20% from the baseline was measured in the frequencies of the first

three flap-wise modes [8]. From this research, it is apparent that the boundary conditions applied during validation of various

SHM techniques must be closely monitored. The effect of random errors sources (such as force level, input force location,

and algorithmic) and bias error sources (such as mass loading, data transmission cables, and ambient environment) on

experimentally measured modal frequencies and damping has also been studied [11]. It was found that bias errors tend to be

more significant than random errors. Further, mass loading from instrumentation cables and sensors (having 0.7% of the

structure mass) can result in as much as 35% increases in damping and 4% decreases in frequency, with torsional modes

affected the most [11].

The use of SHM strategies on research-sized wind turbine blades has also been investigated. The SHM strategies can

generally be divided into low-frequency and high-frequency categories. In the low-frequency regime, frequency response

functions (FRFs) were used in conjunction with data from an FE model to monitor changes in resonant frequencies and

mode shapes [12], deviations in the root-mean-square of an FRF and a neural network were used to identify delamination in

composites [13], and a modal-based approach used PZT patches to observe changes in resonant frequencies [14, 15]. The

low-frequency techniques are typically used for damage detection on a global scale. These low-frequency methods usually

lack sufficient sensitivity, and are affected by changes to boundary or operational conditions [16].

In the high-frequency regime, piezoelectric-based MFC (macro-fiber composite) self-sensing actuators were used

to measure mechanical impedance from the sensor electrical impedance [17–19], acoustic emission sensors have been

used to measure changes in acoustic velocity and attenuation [14, 17, 20, 21], MFC and piezoelectric actuators and

sensors were used to track and obtain time domain responses [22], variations in blade loading were measured using

accelerometers and piezoelectric [17], surface displacements were monitored by a coherent optical technique [20],

changes in piezoelectric sensor response to lamb wave propagations were investigated [22], and changes to frequency

response measurements were observed using piezoelectric actuating and sensing [16, 17, 22]. Results showed that

acoustic emission strategies face challenges due to the vast range of materials in a wind turbine blade, and that while

many techniques are promising, additional research is needed to determine the optimal SHM strategy for a particular

wind turbine system. A challenge facing many high-frequency techniques is the relatively high memory usage and power

consumption [22]. High-frequency techniques are used to detect damage on a local scale, and therefore require location

of the sensors close to the failure region (which presents challenges to detecting small scale damage, while also

monitoring the entire blade).

Since the damage detection range for many SHM techniques is limited, it is important to locate the sensors at critical

locations on the blade. Static testing of a TX-100 blade resulted in failure between 1 and 3 m from the root, near

maximum chord, on the compression side. Also, fatigue testing of similar 9 m blades yielded failure near the maximum

chord. However, recent fatigue testing of a TX-100 blade resulted in failure on the tension side at the spar cap

termination point [17]. A number of damage “hot spots” on wind turbine blades have also been identified as (1)

30–35% and 70% in blade length from the blade root, (2) the blade root, (3) the maximum chord, and (4) the upper

spar cap/flange of the spar [5].

Equally important or possibly more important than sensor location is sensor diagnostics. Sensor diagnostics determine

whether a sensor is in a healthy condition and therefore if its measurements can be trusted. In this field, monitoring of PZT

sensor electrical admittance (and effectively the capacitance) has shown much promise [23–25]. The electrical admittance

monitoring method has been shown to identify sensor debonding progression and degradation of the electromechanical

properties of the PZT in situ [23].
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22.1.3 Purpose and Goals

There are two primary objectives of this study. The first is to dynamically characterize the CX-100 in various boundary

conditions. This is crucial to the development and validation of finite element (FE) models of the CX-100 blade. This study

will not be involved with the development or validation of the FE models, but data from this study will be provided to other

research projects involved with the effort. The second primary objective is to prepare working and validated tools and

methods for the SHM of the CX-100 once the blade has begun a full-scale fatigue test at the National Energy Renewable

Laboratory (NREL). When the full-scale fatigue tests commences, the CX-100 will be oscillated to failure, while various

sensor provide real-time data that will serve as inputs to the SHM analysis techniques developed in this research.

22.2 Modal Analysis Discussion

22.2.1 LANL Free-Free Analysis

A free-free modal analysis on this blade was completed [8]. The support straps were placed at the node of the first mode in

order to minimize the effects of the boundary condition. A photo of the set-up is shown in Fig. 22.1, while the modal test data

acquisition parameters are shown in Table 22.1.

The modal results of the free-free modal analysis are shown in Table 22.2.

22.2.2 LANL Vertical Fixed-Free Analysis

In this test, a modal analysis was performed under a vertical fixed-free configuration. A photo of the experimental set-up is

shown in Fig. 22.2. The data acquisition parameters used were the same as the free-free analysis (Table 22.1).

Fig. 22.1 Set-up of free-free modal test of CX-100, completed summer 2010 [8]

Table 22.1 Data acquisition

parameter of free-free modal

test of CX-100, completed

summer 2010 [8]

Sampling frequency (Hz) 150

Number of data points 4,096

Number of averages 5

Sampling time (s) 11

Type of average Linear

Window None
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The experimental procedure for the fixed-free analysis included impacting 73 total points on the blade and frame. (49 on

the blade and 24 on the support structure). Also there were three accelerometers utilized, two on the blade and one on the

frame. The impact grid, placement and direction of the accelerometers are shown in Fig. 22.3.

The results of the vertical fixed-free modal analysis are shown in Table 22.3.

Table 22.2 Modal results of CX-100 in free-free configuration [8]

Mode Frequency (Hz) Damping (% critical) Description

1 7.61 0.195 First flap bending

2 18.1 2.960 First lag bending

3 20.2 0.752 Second flap bending

4 32.2 0.353 Third flap bending

5 45.1 0.733 Second lag bending

6 50.5 0.630 Fourth flap bending

7 63.9 0.740 First torsion

8 70.1 0.568 Third lag bending

Fig. 22.2 Set-up of vertical fixed-free modal test of CX-100

Fig. 22.3 Impact grid and accelerometer placement for vertical fixed-free modal analysis of CX-100
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As shown in Table 22.3, there were two 2nd flap bending modes observed when testing in the vertical fixed-free

orientation (modes 3 and 4). Upon further investigation of the two modes, it can seen in Fig. 22.4 that at 7.10 Hz the

frame is out of phase with the tip of the blade, while at 8.80 Hz the frame is in phase with the tip of the blade.

The splitting of the 2nd bending mode due to fixture movement confirmed the suspicion of a relatively non-stiff and non-

massive constraint. Due to the fixtures excessive movement and interaction with the blades mode shapes, a full modal

analysis was performed on the blade support fixture.

22.2.3 LANL CX-100 Fixture Modal Analysis

A photo of the CX-100 support fixture is shown in Fig. 22.5.

The fixture shown in Fig. 22.5 weighs approximately 800 lbs and is primarily 80–20 aluminum and 100 steel plate. The
results of the fixture modal analysis are shown in Table 22.4.

In order for the 2nd bending mode of the blade to be split, due to interactions with the fixture, the frame must have a mode

between 7.1 and 8.8 Hz. The modal test revealed there was a mode located at 8.37 Hz, in the same direction as the vertical

orientation blade’s bending modes. This confirmed that the frame was acting as a tuned absorber.

Table 22.3 Modal results of CX-100 in vertical free-free configuration

Mode Frequency (Hz) Damping (%) Description

1 3.22 0.241 First flap bending

2 4.16 0.251 First lag bending

3 7.10 0.361 Second flap bending

4 8.80 0.275 Second flap bending

5 16.9 0.325 Third flap bending

6 19.2 0.330 Second lag bending

7 30.9 0.255 Fourth flap bending

8 39.3 0.565 First torsion

9 47.5 0.291 Fifth flap bending

Fig. 22.4 Tuned absorber

effect of frame on CX-100

at 2nd bending mode
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22.2.4 LANL Horizontal Fixed-Free Analysis

In addition to the vertical fixed-free analysis, the blade was rotated 90� and tested in the horizontal fixed-free orientation. The
horizontal fixed-free analysis was completed primarily to check for non-linearity due to mass loading of the blade in the flap-

wise direction. A photo of the horizontal fixed-free analysis is shown in Fig. 22.6.

The testing parameters provided in Table 22.1 were used for data acquisition of the horizontal fixed-free modal analysis.

Due to vibration forces in the vertical direction in combination with concerns of the strength of the fixture, a reduced number

of points were impacted. There were 28 total impact points in the vertical direction, 20 on the blade and eight on the fixture.

Fig. 22.5 LANL CX-100

fixture

Fig. 22.6 Set-up of horizontal fixed-free modal test of CX-100

Table 22.4 Results of fixture

modal analysis
Mode Frequency (Hz) Damping (%) Description

1 8.37 0.409 Side-to-side oscillation

2 27.1 0.388 Side-to-side torsion

3 45.7 0.555 Vertical oscillation
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Again, three accelerometers were used, all in the same placements as in the vertical testing (Fig. 22.3). Although, unlike the

vertical modal test where one accelerometer measured a different direction from the other two, all three accelerometers

where placed to measure in the vertical direction, thus only flap-wise and torsional modes could be observed. See Fig. 22.7

for horizontal impact point layout.

The results of the horizontal fixed-free modal analysis are presented in Table 22.5.

22.2.5 Comparison of Fixed-Free Vertical Versus Horizontal Modal Analyses

Table 22.6 presents the percent differences between the vertical and horizontal modal analyses of the CX-100. Only the flap

bending modes were compared, as only the flap bending modes were observed during the horizontal modal test.

A MAC comparing the mode shapes of vertical versus horizontal orientation CX-100 modal analyses is presented is

Fig. 22.8.

The agreement observed in the natural frequencies and mode shapes of the two different orientations of the CX-100 may

answer some important questions. Assuming the vertical orientation of the blade returned linear behavior of the blade, and

Fig. 22.7 Impact grid for

horizontal fixed-free modal

analysis of CX-100

Table 22.5 Results of

horizontal fixed-free modal

analysis of CX-100

Mode Frequency (Hz) Damping (%) Description

1 3.37 0.287 First flap bending

2 8.77 0.242 Second flap bending

3 16.8 0.311 Third flap bending

4 31.0 0.312 Fourth flap bending

5 38.8 0.419 First torsion

6 52.3 1.14 Fifth flap bending

Table 22.6 Comparison of fixed-free vertical versus horizontal

Vertical orientation Horizontal orientation Percent difference

Mode Description Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) Frequency (Hz) (%) Damping (%)

1 First flap bending 3.22 0.24 3.37 0.29 4.55 19.0

2 Second flap bending 8.80 0.28 8.77 0.24 0.34 15.5

3 Third flap bending 16.9 0.33 16.8 0.31 0.59 6.26

4 Fourth flap bending 30.9 0.26 31.0 0.31 0.32 17.7

5 First torsion 39.3 0.57 38.8 0.42 1.28 31.0

6 Fifth flap Bending 47.5 0.29 52.3 1.14 9.64% 184%

22 Structural Health Monitoring of Wind Turbine Blades Under Fatigue Loads 233



given the MAC agreement (Fig. 22.8), it may be concluded that there is minimal non-linearity due to mass loading in the

horizontal orientation. The conclusion of minimal non-linearity due to mass loading of the blade in the horizontal direction

also assumes there is no aerodynamic loading on the blade and an attack angle of zero. Finally, the disappearance of the split

2nd bending mode (compare Table 22.3, 22.5) further substantiates the LANL fixture is in fact acting as a tuned absorber

when the blade is in the vertical orientation.

22.2.6 Fixed-Free Modal Analysis with a Seismic Fixed-Free Condition

There were twomodal tests performed on the CX-100 under a different boundary condition. These tests were done at National

Renewable Energy Laboratory (NREL). Both were performed with fixed-free boundary conditions. The fixed boundary

condition atNREL ismade of a relatively seismic concrete/steel block; a photo of the boundary condition is shown in Fig. 22.9.
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Fig. 22.8 MAC comparing fixed-free vertical versus horizontal orientation modal analyses of CX-100

Fig. 22.9 NREL fixed boundary condition
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The first modal test of the CX-100 at NREL was a horizontal fixed-free condition modal test. A photo of the set-up is

shown in Fig. 22.10.

The results of the NREL horizontal Fixed-Free modal analysis are presented in Table 22.7.

22.2.7 NREL Fixed-Free Modal Analysis with Fatigue Masses Attached

The final modal analysis performed was a Fixed-Free analysis of the CX-100 at NREL with two fatigue masses attached to

the blade. The fatigue masses are attached to the blade at strategic locations (shown in Fig. 22.11), as to inflict maximum

damage during fatigue testing.

A photo of the mass loaded CX-100 is shown in Fig. 22.12.

Fig. 22.10 NREL horizontal

fixed-free modal analysis

set-up

Table 22.7 Modal results

of CX-100 in horizontal

free-free configuration

at NREL

Mode Frequency (Hz) Damping (%) Description

1 4.35 0.200 First flap bending

2 6.42 0.253 First lag bending

3 11.5 0.243 Second flap bending

4 20.5 0.283 Third flap bending

5 23.1 0.310 Second lag bending

6 35.3 0.307 Fourth flap bending

7 46.4 0.428 First torsion

8 48.6 0.422 Third lag bending

9 54.6 0.455 Fifth flap bending
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A modal test was performed on the mass loaded CX-100 for two primary reasons. The first was to determine the first

natural frequency of the final mass loaded system. The first natural frequency would then be used to excite the blade for the

duration of the fatigue test. The second was to obtain baseline natural frequencies of the system. Then throughout the

duration of the fatigue test, modal tests will be performed, and changes in natural frequencies will be tracked. Changes in

natural frequencies may be clues to damage initiation or damage propagation. The results of the mass loaded CX-100 modal

analysis are presented in Table 22.8.

Fig. 22.11 Locations and weights of fatigue masses placed on CX-100

Fig. 22.12 Mass loaded CX-100, final set-up of full-scale fatigue test

Table 22.8 Natural

frequencies of mass

loaded CX-100

Mode Frequency (Hz) Damping (%) Mode Description

1 1.82 0.132 First flap bending

2 2.68 0.312 First lag bending

3 9.23 0.546 Second flap bending

4 12.7 0.868 Third flap bending

5 14.7 1.50 Second lag bending

6 18.9 0.958 Fourth flap bending

7 24.4 1.33 Third lag bending
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Modal analysis tracking is only one form of SHM to be performed on the CX-100 throughout the full scale fatigue test.

There would also be several multi-scale sensing techniques employed on the CX-100 throughout the fatigue test.

22.3 Accelerometers Versus piezoelectric button sensors for modal analysis

Piezoelectric button sensors are routinely employed for use in SHM, but for modal analyses, accelerometers are the first

choice for a transducer, while piezoelectrics are not regularly used. Compared to piezoelectric button sensors, accele-

rometers are significantly more expensive. Further, a multi-scale sensing approach to SHM was desired, employing both

high and low frequency sensing techniques. Therefore, to reduce the complexity of a multi-scale sensing SHM system and

reduce costs, it was desired to utilize piezoelectric button sensors as both actuators and sensors for both the high and low

frequency sensing methods.

In order compare an accelerometer-based modal analysis to a piezoelectric button-based sensor modal analysis, the

NREL CX-100 was outfitted with both accelerometers and piezoelectric sensor patches. Figure 22.13 shows the placements

of the three accelerometers and four piezoelectric buttons. As shown, each of the accelerometers was co-located with

piezoelectric button sensors (specifically PZT-based elements).

A modal test of the CX-100 was completed in the NREL Fixed-Free boundary condition. After, the accelerometer and

PZT sensor modal data was processed separately. The results are shown in Table 22.9.

The high level of agreement between the accelerometers and PZT sensors suggest that piezoelectric button sensors offer

the same fidelity as accelerometers for measuring the low-frequency modal frequencies and damping. Therefore, the

piezoelectric sensors can be utilized for high and low frequency sensing techniques in a multi-scale sensing approach.

22.4 Structural Health Monitoring

One of the major challenges hindering the expansion of wind power is reliability. Since the trend in the wind energy field has

led to increasing blade length and tower height, insufficient research has gone into blade reliability. Additionally, as stated

earlier, blades account for 15–20% of the total wind turbine cost, and blade failure can lead to significant secondary damage

[5]. Thus, real-time monitoring of blade health is of great importance.

Fig. 22.13 Placements of accelerometers and PZT sensors on CX-100

Table 22.9 Accelerometer versus PZT sensor modal results of NREL fixed-free horizontal orientation

Accelerometer data PZT sensor data % Difference

Mode

Frequency

(Hz)

Damping

(%)

Frequency

(Hz)

Damping

(%)

Frequency

(Hz)

Damping

(%)

1 4.35 0.170 4.35 0.176 0.00 3.47

2 6.42 0.255 6.42 0.257 0.00 0.78

3 11.5 0.260 11.5 0.254 0.00 2.33

4 20.5 0.284 20.5 0.278 0.00 2.14

5 23.1 0.324 23.1 0.318 0.00 1.87

6 35.3 0.313 35.3 0.302 0.00 3.58
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A full scale fatigue test of a 9 m CX-100 wind turbine blade will occur at NREL. The goal of this and subsequent research

is to develop and refine techniques that will be utilized to detect and monitor the progression of damage in the CX-100 blade

during the fatigue test.

A multi-scale sensing approach to SHM is presented in this research. For this application, multi-scale sensing refers to a

use of both high and low frequency SHM methods. As is common, high-frequency techniques will be utilized to detect and

locate damage on a region localized around the sensing array. To determine if the localized damage poses a significant threat

to the health of the entire wind turbine system, low-frequency SHMmethods will be employed to determine if global damage

(i.e. changes to the global mass, damping, and/or stiffness) has occurred. The high-frequency methods of interest include

frequency response function analysis and lamb wave propagation analysis, each utilizing piezoelectric elements as sensors,

actuators, or both. The low-frequency damage-sensing technique of interest is a modal characterization utilizing piezoelec-

tric elements in place of the typical accelerometers.

22.4.1 Sensor Diagnostics

Sensor diagnostics are crucial to successful SHM. In order to accurately monitor or detect damage, sensor health must first be

determined to prevent false positives from occurring. Sensor diagnostics strive to detect a variety of false positives, from the

fracture/breakage/degradation of sensors to debonding/delamination of sensors to poor cable connections from sensors to

data acquisition systems.

The sensor diagnostic system used on the CX-100 SHM system is the Electrical Impedance (EI) method, developed at

LANL [23]. The basic process of EI sensor diagnostics is as follows:

1. Bond PZT sensor to structure surface

2. Measure electrical admittance (inverse of electrical impedance) of PZT sensor

(a) Use initial admittance of sensor as baseline

3. Measure admittance of sensors periodically to check for defects

(a) Deviations from baseline infer a variety of sensor issues

The slope of the electrical admittance of the PZT sensors is a measure of the capacitance of said sensors. Thus, this

method monitors the PZT sensors for changes in their capacitance. Figure 22.14 is a visual of the EI method.

A MATLAB code was developed to quickly identify sensor defects based on electrical admittance measurements of

sensors. Figure 22.15 shows an example of the code’s output for a single day when measuring a sensor array of eight sensors.
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The admittance measurements (left side of Fig. 22.15) are the baselines, from which an average sensor status is determined.

Based on deviations of each sensor from the average, a Percent Deviation of Sensor Status is determined for each sensor

(right side of Fig. 22.15).

Periodically a set of EI measurements are acquired for the same array of eight sensors.

Figure 22.16 shows the progression of EI measurements from 5/10/2011 to 6/10/2011. Sensor issues can be seen from

significant (as governed by a predetermined threshold) changes in the “percent deviation of sensor status” from date-to-date.

A significant change in sensor status is shown on the upper right of Fig. 22.18. The cause of this sensor problem was

determined to be a loose wire connection. After fixing the connection, the sensor status’s returned to normal, as seen on the

subsequent date. This is an example of a successful sensor diagnosis, and illustrates how the technique may be utilized prior

to SHM investigations.

22.4.2 SHM Experimental Setup

Structural health monitoring of the 9 m CX-100 wind turbine blade at NREL was performed. Health monitoring was

conducted using high-frequency lamb-wave propagation and FRF techniques, employing inexpensive piezoelectric buttons

as actuators and sensors. For each technique, one piezoelectric actuator was surrounded by an array of piezoelectric sensors.

The high-frequency FRFs were measured using two mutually exclusive sensing arrays (an inner array and an outer array),

while lamb-wave propagation responses were obtained using only the inner array. The location of the piezoelectric actuator

and the locations of the piezoelectric sensors relative to the actuator for the inner and outer sensor arrays are shown in

Figs. 22.17 and 22.18, respectively. The actuators and sensors were located on the low-pressure side of the blade.

To obtain lamb wave propagations, the piezoelectric actuator was excited with a tone-burst sine signal having a

specifically controlled frequency. Eleven excitation frequencies ranging from 50 to 275 kHz were used. The reason for

multiple excitation frequencies is the complex composite structure of the CX-100 wind turbine blade. A cross-section of the

blade is shown in Fig. 22.19. In this method, the sensors measure propagating lamb waves in the composite blade. When

damage occurs, propagating waves are reflected, attenuated, and/or dispersed. Due to the complex composite structure, lamb

wave speeds, reflections, attenuations, and/or dispersion change depending upon the sensing path location on the blade.

Time-domain responses to the tone-burst sine signal were measured at each sensor in the array using a Metis Intelli-

Connector digital SHM system. As seen in Fig. 22.17, six sensing paths were monitored. A fast Fourier transform (FFT) of

each sensor response was calculated, and the integral of each FFT was estimated using trapezoidal numerical integration in

MATLAB. This resulted in a single metric (representing the energy content of the response) for the wave propagation

between the actuator and each sensor, that could be tracked over time to assess changes in the wave propagation response.
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For each sensor array, FRFs between each sensor and the actuator to a random excitation were measured using a Br€uel
and Kjaer Laser USB data acquisition system. As seen in Figs. 22.17 and 22.18, this resulted in six and seven sensing paths

for the inner and outer arrays, respectively. The FRFs were measured at a sampling frequency of 96 kHz for a total of 16,384

points, and utilized a hanning window. The output of the data acquisition system was a single FRF calculated by linearly

averaging 20 FRFs for each sensor-actuator pair. FRFs were measured in this manner over a period of weeks. In order to

Fig. 22.19 CX-100 wind

turbine blade cross section

Fig. 22.17 Sensor and

actuator locations for inner

sensor array

Fig. 22.18 Sensor and

actuator locations for outer

sensor array
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assess the progression of damage, a linear correlation coefficient between a current FRF and the baseline FRF was calculated

for each sensor and measurement period. The linear correlation coefficient is simply a measure of how linearly related two

data sets are, with one signifying a perfect linear relationship and zero signifying no linear relationship. The correlation

coefficients were then subtracted from one to obtain a damage coefficient, such that as damage or differences from baseline

increased, the damage coefficient increased. This provided a single metric to monitor for each sensing path.

22.4.3 SHM Results

The progression of damage coefficients, calculated from high-frequency FRF measurements, over an 11 week period for the

inner and outer sensor arrays are shown in Figs. 22.20 and 22.21, respectively. In these plots, the FRF responses on 05/23/

2011 are used as the baseline measurement, and therefore have zero damage coefficients. Throughout the 11 week

measurement period, a number of tests on and modifications to the blade were enacted. These alterations are summarized

in Table 22.10. A huge change in the FRF responses was seen from 05/10/2011 to 05/23/2011. Referring to Table 22.10, the

likely cause can be identified as the addition of the 900 and 300 lb (4,000 N and 1,330 N) fatigue masses. With the addition of

the fatigue masses to the stock blade, cracking and settling of the composite material from the as manufactured condition

likely occurred. This is a typical occurrence for wind turbine blades. This would result in stiffness and damping changes in

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sensor

FRF Damage Progression - Inner Sensor Array

D
iff

er
en

ce
 C

oe
ffi

ci
en

t
(1

 -
 C

or
re

la
tio

n 
C

oe
ff)

05/10/2011
05/23/2011
06/10/2011
07/19/2011
07/20/2011
07/22/2011
07/25/2011
07/27/2011
07/28/2011
07/29/2011
07/30/2011

Fig. 22.20 FRF damage

progression as measured

by the inner sensor array

Table 22.10 Changes to the CX-100 blade during SHM testing

Date Description of the change to or test on the blade

5/10/2011–5/23/2011 Fatigue masses at X ft (X m) and 22 ft (6.7 m) added on the blade, Ref. Fig. 22.13

5/25/2011–6/10/2011 Surface of the blade was painted across the sensing region

7/28/2011–7/29/2011 500 lb (2,220 N) dead weight added to the fatigue mass at 22 ft (6.7 m), Ref. Fig. 22.13

7/29/2011–7/30/2011 Edgewise pull test of 500 lb (2,220 N) in the +y direction at 22 ft (6.7 m) from the root, Ref. Figs. 22.11and 22.13

7/30/2011–7/31/2011 Edgewise pull test of 500 lb (2,220 N) in the �y direction at 22 ft (6.7 m) from the root, Ref. Figs. 22.11 and 22.13
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the blade, leading to changes in the FRF responses. The next shift in damage coefficient occurs between 05/23/2011 and 06/

10/2011 for both sensing arrays. Referencing Table 22.10, this damage can be reasonably identified as due to the painting of

the blade. It is interesting to note that the high-frequency FRFs were not sensitive to the static strains induced by the pull

tests, as described in Table 22.10. This was an expected result due to the high frequency sensing used. Had low-frequency

sensing been analyzed, frequency shifts and attenuation in the FRFs would have been expected. Thus, once the blade had

moved through the settling in period, the high-frequency sensing FRF technique was insensitive to operational conditions.

Wave propagation results for all excitation frequencies of sensors three and four are shown in Figs. 22.22 and 22.23,

respectively. In these plots, the progression of the estimated integral as a function of date for each excitation frequency is of

interest. All of the frequencies are plotted together for comparison, in order to ascertain at which frequencies the lamb wave

propagation technique was most sensitive to damage or modifications to the blade for the specific sensing path.

Comparing Tables 22.10 and 22.11 with Fig. 22.22, it can been seen that lamb wave propagation frequencies between 125

and 250 kHz were sensitive to the painting of the blade surface. As seen in Fig. 22.23, sensing path 4 was insensitive to the

painting of the blade. At the time of writing, the fatigue test at NREL had not been started. Additionally, the sample set of

lamb wave propagation data analyzed is very small. Thus, the applicability of this frequency range to sensing actual damage

cannot be assessed. This illustrates the difficulty in selecting an excitation frequency. Depending upon location on the blade,

some excitation frequencies may result in damage detection, while others may be insensitive.
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Due to the lack of damaged blade data and the small data set, an effective baseline, used to assess if damage has occurred,

could not be established for each sensing path. However, the framework for quickly analyzing high-frequency lamb-wave

propagation and high-frequency response function data, and for identifying ideal excitation frequencies was developed.

22.5 Conclusions

The 9 m CX-100 blade was tested in various boundary conditions, including fixed-free in two drastically different fixtures,

and in both the vertical and horizontal orientation. From comparisons of vertical versus horizontal orientation fixed-free

modal analyses, it was concluded that there is minimal non-linearity when the blade was mass loaded in the horizontal

direction. This assumes that non-linearity is absent in the vertical orientation, the blade has no aerodynamic loading, and a

blade attack angle of zero. Also, when performing fixed-free modal analysis in the vertical orientation, a tuned absorber was

found in the LANL fixture. This was one indication the LANL fixture was a relatively flexible, fixed boundary condition. It

was determined that mode shapes and natural frequencies from fixed-free modal testing on the LANL fixture were not

accurate representations of the CX-100. The mode shapes and natural frequencies found from fixed-free testing at LANL

were that of the coupled system of the CX-100 blade and fixture. This is a crucial distinction, as a finite element model

should be validated from experimental tests whose boundary conditions can be accurately modeled in the software. Also, the

natural frequencies of a mass-loaded CX-100 were determined prior to the full-scale fatigue test commencement. This was

important for two reasons, (1) for determination of the first natural frequency, as it would be used as the excitation frequency

for the duration of the fatigue test, and (2) for the determination of a baseline of natural frequencies, as any changes

throughout the fatigue test, may point to damage initiation or propagation.

It was shown through a modal analysis of the CX-100 blade, that piezoelectric button sensors provide the same fidelity as

accelerometers in measuring modal frequencies and damping. This result is significant in that it offers the ability to not only

replace expensive accelerometers with inexpensive piezoelectrics, but also to serve as the backbone for multi-scale sensing

structural health monitoring. Piezoelectric buttons can operate as sensors or accelerometers for both high-frequency

sensing and low-frequency sensing. High-frequency sensing techniques analyzed in this research were frequency response

functions and lamb wave propagations. High-frequency frequency response functions were shown to be insensitive to

operational conditions following a settling in period of the CX-100 blade. The excitation frequency for high-frequency lamb

wave propagations was shown to be very difficult to ascertain, and to depend upon sensor location on the blade. At the time

of writing, fatigue data for the CX-100 blade was not available. However, a framework was developed for both high-

frequency methods that will allow for quick determination of damage location and progression.
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Chapter 23

Dynamic Characterization of Whisper 500 Turbine Blade

Christopher Nonis, Samuel Garrett, Stuart G. Taylor, Kevin M. Farinholt, and Gyuhae Park

Abstract The aim of this research is to analyze the dynamic behavior of a 2.2 m whisper 500 wind turbine blade. Several

roving impact hammer modal tests were carried out in both free-free and fixed-free conditions. A reduced order model to

capture the essential dynamics of the blade is also developed to represent the actual blade. This reduced order model can be

used in embedded sensors for damage identification. The prediction capability of this reduced model is tested and validated,

where “simulated” damage is introduced to the blade in the form of masses loading the blade. After characterizing the blade,

a Kalman filter is implemented to estimate the blade t4ip deflection from accelerometer data. First, a simplified two degree of

freedom model is developed in Matlab to verify the performance of the filter. The blade model is then combined with

accelerometer data from impulse tests to infer tip deflection which is then compared to laser vibrometer data (measuring tip

deflection) during the same impulse tests.

23.1 Introduction

23.1.1 Background

The DOE has projected that wind turbines could produce as much as 20% of the United States’ electricity by 2030 [1].

Considering their potential economic importance, it is critical to develop cost-effective methods of maintaining these

systems. Wind turbines are subject to constant loads which over time result in damage. Damage to the blades is of particular

interest as they constitute approximately 20% of the cost of the system. Furthermore, they are one of the most expensive

parts to repair and can cause secondary damage to other components of the system if they are functioning improperly [2].

Embedded sensing in turbine blades is an emerging field in the area of wind turbine Structural Health Monitoring (SHM).

These sensors, however, have limited computational capacity and limited electrical supply. It is therefore necessary that a

reduced order model be developed which is simplified enough to be run in conjunction with these embedded systems yet is

still sufficiently accurate to properly detect changes in the blades.

Having a way to monitor tip deflection can be important for more cheaply maintaining wind turbines. Tip deflection

influences load transmission which is a significant source of damage for blades. Also tip deflection is sometimes an indicator

of already existing damage so it also has structural health monitoring applications. Finally, tip deflection measurements may

be able to determine when tower strikes are imminent. This is especially relevant because a tower strike can destroy an entire

wind turbine installation.
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23.1.2 Previous Work

Many researchers have applied Kalman filtering techniques to wind turbine measurement applications. Haynes et al. [3] used

a Kalman filter to determine tip deflection in a 1 m turbine blade. They used this data to study load transmission from the tip

of the blade to the hub. Donders [4] has used a Kalman filter to determine wind speed incident on a turbine from the actuator

gain in a pitch-to-vane control wind turbine. Bottasso et al. [5] used strain gauges and accelerometers placed on structural

members of a wind turbine and a Kalman filter to approximate vertical and horizontal wind shear and yawed flow on the

turbine. A software package called SHMTools is under development by Flynn et al. [6] which includes C-code that can be

embedded in sensors and includes routines for data acquisition, feature extraction, and feature classification. This will

provide an integrated software platform for structural health monitoring systems.

23.1.3 Purpose

The purpose of this paper is to present the results of a full dynamic characterization of a Whisper 500 turbine blade including

free-free and fixed-free boundary conditions. It will also be to determine whether or not a reduced-order model can

accurately predict the effect of damaged conditions on the overall dynamics of the blade. Finally, it has the goal of using

a Kalman filter to estimate tip deflection using data from just one accelerometer mounted at the tip of the blade.

23.2 Experimental Procedure

23.2.1 Impact Grid

A roving impact hammer modal test was used to dynamically characterize the blade. To start, the Whisper 500 was measured

for length and then marked with a 36 point grid. The grid extends over 84 in. from the tip of the blade to just 2 in. from the

root. Impact points are distributed in rows 6 in. apart. Depending on the width of the blade section there are either two or

three impact points per row. Because the blade is relatively flat it can be reasonably approximated as a beam with impact

points coplanar. Three reference accelerometer locations were used during the tests. Figure 23.1 shows the impact grid and

reference accelerometer locations. See Appendix A for more details on the experimental setup.

For the first two modal tests reference accelerometers were placed at 9 and 36. Point 9 was chosen to detect torsional

modes. Point 36 was chosen to measure flapwise bending modes because the tip experiences maximum displacement.

In later tests reference accelerometers were placed at 35 and 36. Reference accelerometer 35 was used to measure edgewise

bending modes. All data was recorded using an RT Pro Photon Dactron and all curve fitting was done in ME Scope.

23.2.2 Free-Free Modal Tests

Six Free-Free modal tests were conducted in total on two different blades. For these tests the blade was suspended in a

vertical orientation. The set up consisted of a single steel portal frame. The blade was hung from a set of bungee cords and

Fig. 23.1 Impact grid
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fishing line. The bungee cords were connected to the frame and the fishing line. The fishing line was looped through the first

two bolt holes on the whisper 500. The free-free test configuration is shown in Fig. 23.2.

23.2.2.1 Flapwise Test

The first two modal test conducted measured the flapwise bending modes of Blades 1 and 2.

23.2.2.2 Flapwise/Edgewise Test

Inspecting the results of the flapwise modal tests showed 2 s order bending modes, which was very suspicious. It was

estimated one of the modes was actually an edgewise bending. To confirm this and account for edgewise modes in future

tests a reference accelerometer was moved from the flap to the tip to measure edgewise displacement.

One edgewise was conducted by impacting the leading edge of the blade. The next test was a full test, where both flapwise

and edgewise modes were measured.

The next modal tests carried out were combined edgewise/flapwise tests. In these modal tests both blades were tested

again. This test allowed the creation of cleaner and more accurate animations of mode shapes. It also eliminated uncertainty

about which were flapwise and which were edgewise modes.

Fig. 23.2 Free-free test

configuration
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23.2.3 “Damaged” Modal Tests

Two modal tests were conducted with simulated damage added to the blade in the form of C-clamps attached at various

points. The first was a .444 lbm clamp attached at the tip. The second case was a 1.3 lbm clamp attached at the top of the

blade. These tests were conducted to check the accuracy of the finite element model. Figure 23.3 shows the mass loaded tip

with the 0.444 lbm clamp. Figure 23.4 shows the root mass loaded with the 1.3 lbm clamp.

23.2.4 Fixed-Free Modal Tests

Six fixed-free modal tests were carried out on Blade 1. Only one blade was used because it had been established that blades 1

and 2 behaved identically. It was attached to an 800 lbm Aluminum-Steel structure normally used to hold a CX-100 9 m

turbine blade shown in Fig. 23.5.

Fig. 23.3 Mass loaded tip

Fig. 23.4 Mass loaded root
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23.2.4.1 “Damaged” Fixed Free

After one fixed-free test, five mass loaded tests were run.

• 0.444 lbm C-clamp at tip

• 0.444 lbm C-clamp at middle, Point 20

• 0.3 lbm C-Clamp at root, Point 7

• 0.3 lbm C-Clamp at middle, Point 25

• 1.3 lbm C-Clamp at root, Point 7

23.2.4.2 Vibrometer

To verify the accuracy of the Kalman Filter’s ability to predict tip displacement, actual tip displacement was measured with a

laser vibrometer along with acceleration. The blade was excited with an impulse at Points 5, 14, 16, 23, and 33. These

vibrometer tests were done during the sequence of fixed-free modal tests. The record of the laser vibrometer time series

analyses is in Appendix B. The vibrometer set up is shown in Fig. 23.6.

Fig. 23.5 Fixed free set up

(mass loaded)
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23.2.5 Model

A simple finite element model was created in Matlab based on a previous study reported by Avitabile [7]. A finite element

model is used to develop the state space model required by the Kalman Filter. A simple Matlab 30 degree of freedom beam

model was used because it could be run quickly and the Stiffness and Mass matrix were easily extracted and implemented

into the Matlab Kalman Filter.

The model is comprised of 14 6 in. length beam elements and 15 nodes. Each node has a vertical and rotary degree of

freedom. The location of the elements, nodes and degrees of freedom, DOF, are shown in Fig. 23.7. Odd number DOFs

correspond to vertical translation and even to rotation.

The parameters used to define the beam model are shown in Table 23.1.

The cross sectional area and area moment of inertia were measured using Solidwork’s section properties tools (Fig. 23.8).

These parameters were measured at the location of each node and were assumed to be constant along the length of the beam

element. The blade is constructed of a foam core and fiberglass and carbon fiber shell. It was assumed that the foam did not

contribute significantly to the stiffness or weight of the blade, therefore only the composite shell was measured.

Some additional assumptions are made in the model. The composite material is assumed to be homogenous and isotropic,

therefore density is constant and elastic modulus is not directional dependent. The flapwise bending modes were assumed to

account for most of the tip deflection and therefore, the model only calculates flapwise bending modes.

Fig. 23.6 Laser vibrometer

set up

Fig. 23.7 Finite element model node and degree of freedom locations

Table 23.1 Finite element

model parameters
Parameter Value

Number of elements 14

Number of nodes 15

Elastic modulus 2.5 Mpsi [8]

Density .0492 lbm/in.3

Element length 600

Cross sectional area Section dependent

Area moment of inertia (flapwise bending) Section dependent
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23.2.5.1 Modeling Boundary Conditions

There were two boundary conditions that needed to be modeled, free-free and fixed-free. To simulate free-free, a soft vertical

spring and soft torsional spring supported the root of the blade. Figure 23.9 shows the free-free model and Table 23.2 lists the

spring values.

To simulate fixed-free stiff vertical and torsional springs as well as a large mass were attached to the root. Figure 23.10

shows the fixed-free model and Table 23.3 lists the mass and spring values.

23.2.5.2 Modeling Attached Mass

In seven modal tests the blade was mass loaded using C-clamps. To model these additional masses, point masses were added

to the closest vertical degree of freedom. Mass moment of inertia was modeled because it was difficult to measure and when

it was added it had minimal effect, especially on lower order modes.

The validity of the model and all the assumptions made were confirmed by comparing FEM natural frequencies and mode

shapes to experimental results.

23.2.6 Kalman Filter

The Kalman filter is an algorithmic method for simultaneously reducing measurement noise and inferring one measurement

from another. It does this by comparing measurement readings against what a theoretical model predicts should be

the behavior of the object under question. Then, depending upon how much either the model or the readings are “trusted”

Fig. 23.8 Measuring blade

with solidworks sections

properties tool

Fig. 23.9 Free-free boundary

condition

Table 23.2 Free-free

boundary condition

stiffness

Spring Stiffness

Vertical spring 2 lbf/in.

Torsional spring 2 lb-in./rad
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(this is supplied by the user), the filter weights the result toward one or the other and typically delivers quite accurate results.

It infers one reading from another simply by using a state space model wherein the matrices can be arranged such that an

input of one type of data produces a different type in the output, so long as the equations of motion for the system are known.

23.2.6.1 Two Degree of Freedom Model

This project attempts to use a 30 degree of freedom model of a Whisper 500 blade and tip-mounted accelerometer

measurements to infer tip deflection with a Kalman filter. To validate this approach a two degree of freedom mass-

spring-damper system model was first developed in Matlab. See Fig. 23.11 for a diagram of the system. The dynamics of

this system are well known and can be modeled quite accurately, thus serving as a reliable benchmark to test the Kalman

filter. An LSIM model fed “fake” accelerometer data from a 1 Hz sinusoidal excitation of the system to the Kalman filter.

Before it entered the filter, however, randomized signal “noise” was added to the data. The Kalman filter then processed this

data and output predicted displacement data.

23.3 Results

All free-free data was recorded using RT Pro Photon Dactron and mode shapes, natural frequencies and damping were

calculated by curve fitting in ME Scope.

Fig. 23.10 Fixed-free boundary condition

Table 23.3 Fixed free boundary

condition mass and stiffness
Parameter Value

Vertical spring 2,000,000 lbf/in.

Torsional spring 2,000,000 lb-in./rad

Mass 1,000,000 lbm

Mass moment of inertia 1,000,000 lbm*in.2

k1

x1

c1 c2

m1 m2

k2

x2Fig. 23.11 Diagram of two

degree of freedom system
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23.3.1 Free-Free Modal Tests Results

By comparing natural frequencies and mode shapes it was determined the dynamic characteristics of Blade 1 and Blade 2 are

nearly identical. Because the blades have nearly identical dynamics further tests were not duplicated on each blade.

23.3.1.1 Free-Free Natural Frequencies

The natural frequencies of the free-free test are summarized in Table 23.4. Table 23.4 shows Blade 1 and Blade 2 have

similar natural frequencies.

23.3.1.2 Free-Free Mode Shape Comparisons

A modal assurance criterion was used to compare the mode shapes of Blade 1 to Blade 2. Figure 23.12 shows very similar

mode shapes.

Table 23.4 Free-free frequency

results
Mode

Frequencies (Hz)

DescriptionBlade 1 Blade 2

1 25.1 26.2 First flapwise bending

2 63.0 65.8 Second flapwise bending

3 104.0 101.5 First edgewise bending

4 118.7 122.3 Third flapwise bending

5 188.9 194.5 Fourth flapwise bending

6 260.8 256.2 Second edgewise bending

7 277.4 282.0 Fifth flapwise bending

8 368.0 379.4 Sixth flapwise bending

9 387.9 406.7 First torsional

10 469.8 488.2 Seventh flapwise bending
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Fig. 23.12 Free-free MAC

comparing Blade 1 to Blade 2
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23.3.2 Fixed-Free Modal Test Results

The frequency results of the fixed-free test are shown in Table 23.5.

23.3.3 Finite Element Model Validation

To validate the FEM, a variety of boundary conditions and mass loading situations were simulated and compared to

experimental mode shapes and natural frequencies.

23.3.3.1 Free-Free Model Validation

Table 23.6 shows the comparison of natural frequencies. The percent difference is quite low, indicating the FEM can

accurately predict frequencies.

To confirm the FEM can accurately predict flapwise bending modes, a MAC was created that compared FEM shapes to

experimental mode shapes. Only the experimental measurement points on the leading edge of the blade were used in the

MAC. This was necessary because the experimental geometry was two dimensional and the FEM was only one dimensional.

A MAC of the free-free mode shapes is shown in Fig. 23.13. The MAC shows high correlation, confirming the FEM can

accurately predict free-free mode shapes.

23.3.3.2 Fixed-Free Model Validation

Table 23.7 shows a comparison of the fixed-free natural frequencies. The low percent difference between experimental and

FEM confirms the model accurately predicts fixed-free frequencies.

There is a relatively high percent difference between mode two natural frequencies. This is likely caused by the presence

of a lag bending mode, the coupling of edgewise and flapwise ending modes. The FEM does not account for this, and is

likely the cause for this error.

Figure 23.14 shows a MAC comparing experimental fixed-free mode shapes to FEM shapes.

The MAC shows high correlation for flapwise bending modes 1, 3 and 4 and slightly lower for Mode 2. Again this error is

likely caused by the model not accounting for the lag bending mode.

Table 23.5 Fixed-free natural

frequencies
Mode Frequencies (Hz) Description

1 11.1 First flapwise bending

2 32.9 Second fapwise bending

3 37.5 First lag bending

4 75.7 Third flapwise bending

5 124.2 First edgewise bending

6 135.1 Fourth flapwise bending

7 210.4 Fifth flapwise bending

8 280.0 Second edgewise bending

9 295.7 Sixth flapwise bending

10 314.2 First torsional

11 388.6 Seventh flapwise bending

Table 23.6 Free-free natural

frequency comparison, FEM

to experimental

Frequencies (Hz)

Mode Blade 1 Blade 2 Test Avg. FEM % Diff.

1 25.1 26.2 25.7 25.1 2

2 63.0 65.8 64.4 65.5 2

3 118.7 122.3 120.5 126.7 5

4 188.9 194.5 191.7 204.2 6
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23.3.3.3 Mass Loaded Model Validation

Seven additional modal tests were completed where the blade was mass loaded with a variety of C-Clamps. In general, the

FEM was able to accurately predict frequencies and mode shapes. The frequency comparisons, MACs and other details are

in Appendix C.
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Fig. 23.13 Free-free MAC,
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Table 23.7 Fixed-free natural

frequency comparison, FEM

to experimental Mode

Frequencies (Hz)

% DifferenceExperimental FEM

1 11.1 11.0 0.6

2 32.9 38.0 �15.6

3 75.7 82.2 �8.6

4 135.1 145.0 �7.4

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4.5

4.5

4

4

3.5

3.5

3

3

2.5

2.5

2

2

1.5

1.5

1

1
0.5

0.5

Fig. 23.14 Fixed-free MAC,

experimental Blade 1 to finite

element model

23 Dynamic Characterization of Whisper 500 Turbine Blade 257



While the FEM was able to accurately simulate most tests, some loading conditions can induce effects not accounted for

in the model. One example is the free-free test with a tip mass. See Fig. 23.3. In the experimental setup, the blade is hanging

vertically, reference Fig. 23.2, and the mass is at the tip (bottom). As a result, there is an axial load applied to the blade which

affects mode shapes and frequencies. The model does not account for this load, therefore the results were poor. Table 23.8

shows a comparison of the natural frequencies.

The error caused by the axial load can also be seen in the MAC shown in Fig. 23.15.

To confirm that the poor model prediction was caused by the axial force, a clamp was attached to the root (top),

effectively eliminating the axial load. See Fig. 23.4 for clamp location. The model’s prediction of this mass loaded condition

was much more accurate. The frequency comparison is shown in Table 23.9.

The MAC comparing experimental to FEM is shown in Fig. 23.16.

The model was also able to accurately simulate masses added in the fixed free condition. Five different tests were carried

out to confirm this. Table 23.10 shows the comparison of a fixed free condition with a .444 lbm mass at point 20 near the

middle of the blade. MAC values are shown to be very good for this condition shown in Fig. 23.17.

Table 23.8 Frequency

comparison of free-free tip

loaded blade Mode

Frequencies (Hz)

% DifferenceExperimental FEM

1 17.3 16.4 5

2 70.4 49.4 29

3 121.9 105.6 13

4 194.7 180.6 7
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Fig. 23.15 Tip loaded free-

free MAC, experimental

Blade 2 to finite element

model

Table 23.9 Comparison of

frequencies with mass attached

at root Mode

Frequencies (Hz)

% DifferenceExperimental FEM

1 24.3 24.2 0.4

2 61.5 63.2 �2.8

3 129.7 122.1 5.9

4 196.6 196.6 0.0
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Table 23.10 Comparison of

fixed free blade with .444 lbm

mass load in middle Mode

Frequencies (Hz)

% DifferenceExperimental FEM

1 11 10.8302 1.54

2 31.3 34.8631 �11.38

3 72.7 79.7708 �9.73

4 134.6 141.5375 �5.15

Mode 1

FEM
0.5

0.5
1

1.5
2

2.5
3

3.5
4

4.5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 1.5 2 2.5 3 3.5 4 4.5

Experimental
Blade 1

Mode 2
Mode 3

Mode 4

0.88

0.95

0.99

0.99

Mass Loaded: MAC Between FEM and ExperimentalFig. 23.17 Fixed free mass

loaded near middle of blade

with .444 lbm

23 Dynamic Characterization of Whisper 500 Turbine Blade 259



23.3.4 Kalman Filter Results

23.3.4.1 Two Degree of Freedom Model Results

This data was then compared to displacement data output by the same LSIM model and was found to match with a high

degree of accuracy, shown in Fig. 23.18.

The complication with this model is that it could only sustain a small amount of measurement noise before the

displacement estimate began to diverge. The plot in Fig. 23.18 has a signal to noise ratio of 40 to 1. At a signal to noise

ratio of 10 to 1 the measurement begins to diverge and become unusable, shown in Fig. 23.19.
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It is probable that a lack of necessary computational power is to blame for this relatively limited filtering capacity.

The tests shown were restricted to a 1,000 Hz sample rate. The computers available were not able to handle sample rates

much higher than this. If they were then it is conceivable that much lower signal to noise ratios could have been subject to the

filter and returned accurate results. To further confirm the validity of the two degree of freedom model, several parameters

were varied to determine their effect on the output of the Kalman filter.

23.3.4.2 Thirty Degree of Freedom Model

After validating the Kalman filter with a two degree of freedom system, the same strategy was used to filter the 30 degree of

freedom model of the Whisper 500 blade. However, when attempting to supply the filter with data produced by simulation,

the output of the Kalman filtering loop quickly diverged to infinity. It is suspected that lack of sufficient computational power

is also to blame here. The state matrix is much larger and computational intensity much higher, therefore divergent behavior

is to be expected with the very limited sampling rate available. Due to severe time constraints further investigation into this

behavior was not possible.

23.4 Conclusions

Modal testing of the Whisper 500 was completed in free-free and fixed free configurations. The natural frequencies and

mode shapes were identified for the first few modes. Results of the free-free modal tests confirmed the two blades had almost

identical dynamic characteristics. A reduced-order model that was developed in this study was shown to be able to

accurately predict frequencies and mode shapes for a variety of boundary and mass loaded conditions. This reduced order

model can be used in embedded sensors for detecting changes in the properties of wind turbine blades. Determining changes

in the characteristics of turbine blades can allow detection of damage before total failure of a blade occurs.

The Kalman filter accurately inferred the displacement of a two degree of freedom system from accelerometer

measurements under relatively high signal to noise ratio conditions. As noise became a larger component of the measure-

ment though, the predictive capacity of the Kalman filter became unstable. This is likely due to a low sampling rate which is

the result of limited computational capacity. For unknown reasons when the 30 degree of freedom model is subjected to the

same Kalman code, its results rapidly diverge to infinity. It is possible this is due to insufficient computational power as well.

Acknowledgements The authors would like to thank Dr. Charles Farrar and the Los Alamos Dynamics Summer School for the opportunity to

conduct this research. The following companies generously provided various software packages to aid in modeling and data analysis: Vibrant

Technologies and SIMULIA. The authors would also like to acknowledge, Dr. Peter Avitabile (University of Massachusetts Lowell) for providing

invaluable guidance over the course of this project.

23 Dynamic Characterization of Whisper 500 Turbine Blade 261



Appendix A

Modal Test Record

Test # Modal test Blade ME scope file Description Mass

1 Modal test 1 6_23_2011 1 Whisper 500 Blade 1 Free free flapwise NONE

2 Modal test 2 7_6_2011 2 Whisper 500 Blade 2 Free free flapwise NONE

3 Modal test 3 7_7_2011 1 Whisper 500 Blade 1 Free free edgewise NONE

4 Modal test 4 7_18_2011 2 Whisper 500 Blade 2 test 4 Free free edgewise and flap NONE

5 Modal test 5 7_18_2011_Mass 2 Whisper 500 Blade 2 test 5 Free free mass @ tip .444 lbm clamp

6 Modal test 6 7_22_2011_Mass_II 2 Whisper 500 Blade 2 test 6 Free free mass @ top 1.3 lbm clamp

7 Modal test fixed bld 1 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free

8 Modal test fixed bld 1 Mass 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free w/tip mass .444 lbm clamp

9 Modal test fixed bld 1 Mass2 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 20 .444 lbm clamp

10 Modal test fixed bld 1 Mass3 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 7 .3 lbm clamp

11 Modal test fixed bld 1 Mass4 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 25 .3 lbm clamp

12 Modal test fixed bld 1 Mass5 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 7 1.3 lbm clamp

Data Acquisition

Software: ProPhoton Version 5.1

Hardware: Dactron

Lines: 800

Bandwidth: 500 Hz

Points: 2048

DT: 781.3
Linear Averages: 5

Window: None

Appendix B

Laser Vibrometer Time Series Record

1 Modal test fixed bld 1 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free None

2 Modal test fixed bld 1 Mass 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free w/tip mass .444 lbm clamp

3 Modal test fixed bld 1 Mass2 7_27_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 20 .444 lbm clamp

4 Modal test fixed bld 1 Mass3 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 7 .3 lbm clamp

5 Modal test fixed bld 1 Mass4 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 25 .3 lbm clamp

6 Modal test fixed bld 1 Mass5 7_28_2011 1 Whisper 500 Blade 1 Fixed free Fixed free mass @ 7 1.3 lbm clamp
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Impact Map

Appendix C

MAC Figures

Fig. C.1 MAC of .444 lbm mass clamped at point 20
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Fig. C.2 MAC of .3 lbm mass clapmed at point 7

Fig. C.3 Mac of .3 lbm mass clamped at point 25
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Fig. C.4 MAC of 1.3 lbm mass clamped at point 7

Fig. C.5 MAC of .444 lbm mass clamped at tip

23 Dynamic Characterization of Whisper 500 Turbine Blade 265



Fig. C.6 MAC of 1.3 lbm mass clamped at root
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Chapter 24

Developing a Finite Element Model in Conjunction

with Modal Test for Wind Turbine Blade Models

Eric Harvey, Peter Avitabile, and Christopher Niezrecki

Abstract There are numerous modeling approaches that can be employed in the generation of composite models for wind

turbine applications. Several more traditional approaches have been used over the past few decades. However, one modeling

approach used for the generation of manufacturing models uses what is referred to as the unit cell approach. This modeling

approach has been used for large deformation applications where the orientation realignment of the composite plies needs to

be considered in the forming process. This modeling approach has been used for static and large deformation applications but

not for dynamicmodeling scenarios. There would be a significant advantage to use this approach for the complete modeling of

wind turbine blades. A comparison of the traditional composite ply modeling approach and the unit cell approach is studied to

determine similarities and differences in the approaches. A panel section is modeled and tested in various conditions followed

by correlation and updating studies. A comparison of the different modeling approaches is performed.

The use of this modeling technique is specifically intended to be used in conjunction with the determination of dynamic

stress–strain prediction for turbine blade applications. A simple break-out section of a turbine blade comprised of balsa and

resin/fiber is used to identify typical model properties needed to properly model the turbine blade. A panel section is

modeled and tested and then the model is updated to reflect the properties to best represent the panel structure. The test

is performed with several different perturbed boundary conditions to assure that the updated model has appropriate and

realistic properties identified for the model.

24.1 Background

Finite element models of a system are composed of elemental and material properties with multiple degrees of freedom.

There are many possible ways in which the model can be developed to capture the dynamics of interest. Models are used to

represent existing structures where dynamic behaviors are of interest. Using numerical analyses, the system’s response to a

given input is predicted and often correlated to test data, validating the models accuracy. Improvement of the model’s

accuracy depends on the information provided to each property; consequently, updates to the properties are made to best

represent the structure. Several different modeling techniques and properties can be used to validate the model, but the

engineer must filter out unreasonable results, depending on the desired solution.

A composite panel provided by TPI Composites Inc. (TPI) is provided to do several different expansion and stress–strain

tests. To do the analysis on the panel an accurate finite element model is required. FEMAP [1] and Nastran [2] are used to

develop two finite element models, using different techniques in modeling. Modal tests are done on the plate and the models

are updated to converge to mode shapes and frequencies.

Twomethods ofmodeling were utilized in the development of the finite elementmodel. The first method uses a unit cell [3]

produced by 2-D plate and 1-D beam elements that mimic the resin and fibers of the composite, respectively. The unit cell was

developed for the purpose of preservingmaterial properties during the forming of the composite in amold. The plate and beam
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elements shift and translate just like the behavior of the fiber and resin. Traditionally, composites are developed using

orthotropic plates. The second method uses an orthotropic plate to capture the effective directional properties. Figure 24.1

shows the layout of the elements in a composite layer for each modeling method.

24.2 Test Structure Description

The structure to be analyzed is a panel, manufactured by TPI Composites, consisting of a fiber/resin composite material and

an end-grain balsa core. Five-plies of composite are laid on each side of the balsa core, in the same direction, with each layer

consisting of a 0–90� warp-weft architecture. The combined plate is a 0.865 m square with an overall thickness of 0.018 m

and a mass of 19.5 kg. Figure 24.2 shows the physical properties of the composite structure.

24.3 Modal Test Description

Traditional modal impact techniques were used to collect data from the test structure using three different boundary

conditions: one free-free and two fixed boundary conditions. Configurations can be seen in Fig. 24.3, where the panel is

designated into four upright positions. Configurations 1 and 3 fix the panel along the softer, 90�, axis primarily utilizing

bending in the stiffer direction and configurations 2 and 4 are fixed along the stiffer. The plates were clamped to a 500 lb steel

anchor for clamped testing configurations.

Fig. 24.1 Modeling of a

composite plate using the unit

cell and orthotropic shell

methods

Fig. 24.2 Composite panel

test structure for model

updating
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Using LMS Test.Lab [4], five impacts were made at 25 different locations with three reference accelerometers. Impacts

were measured at 1,800 lines over a band of 650 Hz and curvefit using LMS’s Polymax. Sixteen modes in each configuration

were observed and are listed in Table 24.1. Configurations 1 and 3 as well as 2 and 4 were compared to each other to check

for uniformity. The overall structure is highly directional. Bending modes in the stiffer and softer directions are clearly

observed and can be seen in Fig. 24.4. The first ten flexible modes in each configuration are shown.

Fig. 24.3 Composite panel

test configurations

Table 24.1 List of natural frequencies of the composite plate in free-free, and configurations 1 through 4
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24.4 Model Description and Cases Studied

Using FEMAP, multiple model configurations were assembled and studied. For the analysis of the composite plate,

two models are presented. Each model consists of an isotropic balsa core sandwiched between 5-plies of composite material

on each side. Model A uses the unit cell method to model the composite layer and Model B employs the orthotropic

shell technique. Each model is compared to the test data in all three configurations and updated using the free-free data.

The two clamped configurations are used as perturbations to confirm the update parameters provide reasonable

dynamic characteristics.

24.4.1 Model A: Unit Cell

The first model produced uses the unit cell to model the composite portion of the plate. Properties of the beams and elements,

specific to the composite material used, were provided by the UMASS Lowell Advanced Composite Materials and Textile

Research Laboratory. Material properties were obtained by using static material characterization tests. Figure 24.5 shows the

geometry and the parameters for a unit cell. The 1-D elements represent the fibers of the composite and the 2-D elements are

of resin. Table 24.2 is a list of the material properties provided by TPI Composites Inc.

Fig. 24.4 Modes of the composite plate in all configurations and a typical drive point measurement
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Assembly of the composite plate combines each unit cell in order to make one layer. The layers are then offset and

connected rigidly to each other as seen in Fig. 24.6. Two composite sections of 5-plies are then connected to the balsa core,

which ismade out of isotropic shell elements. Nastran is used to compile the data and solve for 16modes in each configuration.

FEMtools is used to correlate Model A to test data in the free-free configuration. Figure 24.7 shows the correlation.

There is a strong diagonal showing the mode shapes correlated well for around the first ten modes with an average Modal

Assurance Criterion (MAC) over all the collected modes of 96.5. The frequencies show a different trend with an average

difference of 45.4%. The shift in frequencies is something global in the model, frommaterial properties to modelingmethods.

Because the unit cell was provided, the properties of the composite are assumed to be correct, leaving balsa as the only

possible characteristic to change in the updating. FEMtools [5] was used to update the model to match frequencies and mode

shapes. From the optimization, the balsa was much more sensitive to the updating and changed significantly whereas the

Fig. 24.5 Unit cell parameters

Table 24.2 Material properties

used in Model A
Material Young’s Modulus [GPa] Poisson’s ratio Mass density [kg/m3]

Balsa 1.51 0.3 155

Fiber 60.6 0.2 2,600

Resin 3.00 0.3 1,200

Fig. 24.6 Combination

of unit cell with rigid

connections to make

a multiple layers
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composite material also changed but not as significantly as the balsa properties. After multiple runs, the only convergence of

the model occurs when the Young’s modulus is updated. Table 24.3 shows the updated properties of Model A.

In order for the model to converge, the Young’s modulus of the balsa material needed to be increased by a factor of 100.

While this value may seem unreasonable, these changes produce frequencies with an average difference of �0.53% in the

free-free configuration. Themodel is then checked against the two different perturbed configurations to validate the parameter

change. Correlations in the free-free and fixed configurations can be seen in Figs. 24.8, 24.9, and 24.10. Due to a strong

correlation between the fixed configurations (1 and 3) and (2 and 4), the model was correlated to only configurations 1 and 2.

Without specifically reviewing the actual material properties obtained, the updated model does satisfy the measured

modes from the free-free test. In addition, the two perturbed boundary condition models also confirm that the properties can

replicate the different test conditions measured. If the specific material characteristics are not of interest and only the

response is of concern, then these models are acceptable for use in further dynamic studies. Both mode shapes and

frequencies are preserved; however, the questionable value of balsa draws a concern and the material properties of the

unit cell are re-evaluated. Updates to the material properties of the composite layers show no significant improvement to the

overall system. Using the unit cell model approach, there was a difference between the model and test data. Therefore a

secondary model was constructed using more traditional methods of composite modeling.

24.4.2 Model B: Orthotropic Shell

The composite portion of the plate is modeled using an orthotropic shell. The orthotropic shell has an independent stiffness

value in both the x and y directions as shown in Fig. 24.11. The same size shell is used as the unit cell. Analytical models

and studies were performed to produce an orthotropic plate from the unit cell. Effective material properties can be seen

in Table 24.4.

Assembly of the composite plate is similar to that of the unit cell by combining each orthotropic shell to make one layer.

Using FEMAP’s layup tool the composite layers are combined to make two 5-ply sections. The 5-ply sections are offset and

connected to the balsa core through rigid connections. The balsa core is made of the same with isotropic shells and Nastran is

used to compile the data and solve for 16 modes in each configuration. FEMtools is used to correlate Model B to test data in

the free-free configuration. Figure 24.12 shows the correlation.

Again the MAC values show excellent correlation, but as seen before the average frequency difference is 22.0% lower

than the test. Allowing the balsa to stay within reasonable range, the model was updated to the free-free test data. Properties

of the updated material are shown in Table 24.5.

Fig. 24.7 Correlation of Model A to test data in free-free
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Fig. 24.9 Updated Model A correlated to configuration 1

Table 24.3 Updated material properties used in Model A

Material Young’s modulus [GPa] Poisson’s ratio Mass density [kg/m3]

Balsa 1.51 ! 145 0.3 155

Fiber 60.6 ! 61 0.2 2,600

Resin 3.00 ! 11 0.3 1,200

Fig. 24.8 Updated Model A free-free correlation
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In order for the model to converge, the fiber and resin are updated in the x and y directions. The updated parameters for

the fiber and resin (which were originally assumed to be valid from the unit cell model approach) did change fairly

significantly. From the manufacturer’s specification sheet, the updated parameters seemed to be in agreement with the

expected material properties. The values were in the same ballpark with Ex ¼ 18.2 GPa and Ey ¼ 47.8 GPa, a max

difference of 1% from the updated values. Correlation in the free-free and the two different fixed configurations can be seen

in Figs. 24.13, 24.14 and 24.15. Due to a strong correlation between the fixed configurations (1 and 3) and (2 and 4), the

model was correlated to only configurations 1 and 2.

The two different updated models developed were compared to each other and the correlation between them is very good

overall. However, the material properties for each of these updated models are significantly different than the material

properties obtained from the unit cell modeling approach. The correlation of these two models in a free-free condition is

shown in Fig. 24.16; note that the correlation of the two models to each other for the two different perturbed boundary

conditions also correlates very well with similar levels of correlation as seen in Fig. 24.16 and are not shown for brevity.

Fig. 24.11 Orthotropic shell parameters

Table 24.4 Derived material properties of orthotropic shell

Material Young’s modulus [GPa] Poisson’s ratio Mass density [kg/m3]

Balsa 1.51 0.3 155

Fiber/Resin Ex 8.65

Ey 17.2 0.3 1823

Gxy 5.00

Fig. 24.10 Updated Model A correlated to configuration 2
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Fig. 24.13 Updated Model B free-free correlation

Table 24.5 Updated material properties used in Model B

Material Young’s modulus [GPa] Poisson’s ratio Mass density [kg/m3]

Balsa 1.51 0.3 155

Fiber/Resin Ex 8.65 ! 18.0

Ey 17.15 ! 45.0 0.3 1,823

Gxy 5.00 ! 6.10

Fig. 24.12 Correlation of Model B to free-free test data
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24.5 Conclusion

Using modal tests and updating, an accurate finite element model is produced for use with the composite panel. Two models

were produced using different techniques. Both Model A and Model B converge to the same mode shapes and frequencies

using different parameters. The advantage of Model B is that the material properties can be used for calculation such as stress

and strain. By only providing accurate displacements, Model A lacks that ability. Model A contains parameters that are

sufficient to describe the response even though some of the material properties may not appear to reflect actual properties of

the physical components; the accuracy of the model was confirmed by additionally correlating to two different perturbed

boundary conditions.

Fig. 24.14 Updated Model B correlated to configuration 1

Fig. 24.15 Updated Model B correlated to configurations 2
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Two modeling approaches were used to develop two separate models to identify the dynamic response of the composite

panel structure. One model used orthotropic plate properties derived from the unit cell approach and the properties were

updated and compared to the free-free test. The second model was developed from the unit cell approach and only the balsa

material in the model was updated to correlate to the free-free test. In both cases, the models converged to an acceptable level

of correlation and both models can be used for further response studies. In addition, both models were also subjected to two

different sets of perturbed boundary conditions and both models correlated well to the measured data in those perturbed tests.

While the updated models correlate well to test data in all perturbed boundary conditions, the models may not reflect the true

material properties of the system needed for prediction of stress but are certainly suitable for use for dynamic response

characterization studies.
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Chapter 25

Dynamic Stress-Strain Prediction from Limited Measurements

in the Presence of Structural Defects

Eric Harvey, Peter Avitabile, and Christopher Niezrecki

Abstract Complex composite structures, that are subjected to appreciable externally induced loading, will fatigue and fail

over time. For many structures, imminent failure and loss of structural integrity is not externally apparent. Typical failure

occurs at the interfaces between the structure’s surface and internal ribs or stiffening members. Conventional approaches

for proper validation of full-scale exterior dynamic behavior of numerical models require a significant number of

measurement points; unfortunately, interior dynamic response due to time-varying loads is not currently predictable

from measured data.

The current research focuses on the global and local interior and exterior member dynamic interactions to understand the

possible loss of structural integrity and fatigue failure of complex composite structures. Using some newly developed

dynamic stress-strain modeling approaches from limited sets of measured locations, identification of stress-strain

distributions will be used as a damage detection tool for structural health monitoring assessment.

25.1 Introduction

Structural systems need to withstand a wide variety of loading conditions during the life of the structure. Often times,

periodic inspections are necessary or mandated through codes and standards or local ordinances. Whether or not these are

mandatory, structures need to be evaluated over time to assure that the structural integrity of the system is guaranteed. These

inspections can become extremely expensive over the life of the structure especially if there are periodic inspections based

on calendar rather than based on the condition of the structure. In any event, there are many reasons to identify alternate or

more efficient mechanisms for assuring the structural integrity of a system.

The field of structural health monitoring [1, 2] has blossomed for more than a decade and many researchers are studying

alternate approaches for the identification of procedures to economically assure the integrity of these systems. There have

been many approaches that have been suggested, proposed, evaluated and studied from a variety of researchers with

completely different methodologies and approaches. Many approaches have merit in certain applications but most of the

techniques have some shortcomings or are not appropriate for specific applications.

In this work, an alternate approach is proposed which is based on the recent work related to the identification of full field

dynamic response and dynamic stress-strain prediction from limited sets of real time operating data. This approach has been

recently reported in several papers and a brief summary of the development of the technique is discussed here.

In an effort to better understand complicated response from limited sets of data, Chipman [3] used a unique

expansion process to provide improved visualization of missile firing systems from operating data. The main focus of

that work was to provide a better overall visual description of the complicated response that is not easy to comprehend

from a very limited set of measured data. While that work mainly focused on experimentally derived data and expansion

functions, Chipman suggested that this could also be used in conjunction with a finite element model to provide full field

response.
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Following Chipman’s work, Pingle [4] extended the expansion procedure to obtain full field displacements at the full

set of finite element DOF. The expansion process was shown to provide acceptable results provided that a sufficient set of

orthogonal projection vectors were used to formulate the expansion matrices. Pingle also showed that an over-specification

of the set of projection vectors (using more modes in the process) did not unnecessarily smear the results or distort the

information. Pingle further went on to use these full field displacement results in the back substitution process of the finite

element model to obtain dynamic stress-strain due to real time transient data. Many analytical simulations were performed

to study various effects that could possibly distort the results due to actual measurements. Pingle also used an academic

structure to acquire actual measured transient impact data and was able to use the orthogonal expansion process to obtain

full field displacements at all the finite element DOFs and dynamic stress-strain; these results were very favorably

compared to measured data.

A simple schematic (Figs. 25.1, 25.2) is used in order to understand the approach. Generally, a finite element model is

developed to study structural system characteristics and response. The steps in the development of the model can be stated as

the general development of a finite element model, the assembly of the system matrices, the application of loads and

boundary conditions followed by the solution of the set of equations and the recovery of the stress-strain solution. This

procedure is shown schematically in Fig. 25.1 for a wind turbine blade where significant loadings may occur while the

system is in normal operation (e.g. rotating). However, for many situations, the actual loading is not known and the actual

boundary conditions are not well understood.

Fig. 25.1 Schematic showing normal finite element model development

Fig. 25.2 Schematic showing alternate expansion/solution sequence
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For the approach considered in Pingle’s work, the difference is that the actual application of the loads and boundary

conditions and the solution of the system set of equations are not specifically performed. Rather, the sparse set of

displacements, measured from an actual operating event, are used with a set of orthogonal expansion functions to obtain

the full field displacement solution. This displacement solution is then used with the normal recovery of the stress-strain

solution in the finite element modeling process. This procedure is shown schematically in Fig. 25.2 where the limited

set of measurement degrees of freedom are used with expansion processes to obtain the full field displacement for

the system.

With this approach, the finite element modeling solution process is intercepted and replaced with the expansion of the

limited set of measured degrees of freedom. In this current work, the expansion functions from the undamaged finite element

model are used with limited sets of measured data to provide full field response as well as full field dynamic strain at many

instances in time. These actual measured, expanded dynamic strain results are compared to the anticipated, undamaged finite

element results to see what differences may exist. Obviously if there is damage to the structure, there will be a redistribution

of load which will result in a different displacement pattern. The difference in the displacements will result in a change in the

full field dynamic strain distribution that may be obvious to identify.

In order to understand the basic steps necessary to formulate the orthogonal projection matrices, the basic theoretical

approach is summarized below and utilizes concepts from model reduction and model expansion as the underlying

methodology for the expansion approach used for this work.

25.2 Model Reduction and Expansion Theory

Model reduction is necessary in order to develop expansion approaches for modal data for the unmeasured translational DOF

(degree of freedom) as well as for rotational DOF. For this work the expansion is needed for augmenting the limited set of

real-time operating data to provide a full field displacement solution. The reduction techniques are the basis of the expansion

discussed in this work. These techniques have been presented in earlier work cited in the references; only summarizing

equations are presented below. Several model reduction methods have commonly been used for expansion of measured data.

Four common methods are Guyan [5], Dynamic Condensation [6], SEREP (System Equivalent Reduction-Expansion

Process) [7], and a Hybrid method [8]. In these methods, the relationship between the full set of degrees of freedom and a

reduced set of degrees of freedom can be written as

Xnf g = [T] Xaf g (25.1)

All of these methods require the formation of a transformation matrix that can project the full mass and stiffness matrices

to a smaller size. The reduced matrices can be formulated as

Ma½ � ¼ T½ �T Mn½ � T½ � (25.2)

Ka½ � ¼ T½ �T Kn½ � T½ � (25.3)

For the specific work in this paper, only the SEREP method has been used for the expansion of mode shapes. The System

Equivalent Reduction Expansion Process (SEREP) produces reduced matrices for mass and stiffness that yield the exact

frequencies and mode shapes as those obtained from the eigensolution of the full size matrix. The SEREP transformation is

formed as

TU½ � ¼ Un½ � Ua½ �g (25.4)

The SEREP transformation is developed with analytical mode shapes for the structure (but can also be evaluated using

measured modal vectors as done in Chipman’s work [3]). Equation 25.1 is used for expansion of real-time operating data and

is written as

ERTOn½ � ¼ T½ � RTOa½ � (25.5)
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The transformation matrix, [T], can be one of the matrices used for reduction described above but SEREP is used in all

work presented herein.

25.3 Procedure

The procedural mechanics of the process are described in this section as schematically shown in Fig. 25.3.

• The finite element model is developed as is typically done in any design sequence. An eigensolution is performed to

obtain the mode shapes to be used as the orthogonal projector matrix.

• Next the selection of the test DOF (ADOF) is identified and the finite element model mapping matrix [Tu] (4) is

formulated; note that the reduced mass (2) and stiffness (3) are not necessary for the processing of this procedure but may

be useful for other processing.

• Measured data at the test measurement points is obtained (from either operating data or prescribed input).

• The measured data at ADOF is expanded to NDOF using [Tu] (4).

• The same forcing function is applied to the undamaged finite element model.

• The dynamic strain is computed from both the damaged and undamaged models.This strain is compared at several time

steps to identify hot spots.

25.4 Finite Element Model Description

A simple beam type model was developed using quadrilateral plate elements. The cantilevered beam was modeled using

aluminum and had a cross section of 200 � 100 and was 7200 long; only bending response about the weaker axis was considered
in this analysis and all loads were applied normal to the surface of the beam. The model consisted of 725 nodes and 576

elements with a total of 2160 degrees of freedom (DOF) and was modeled using FEMAP [9]. An eigensolution was

performed to find the lower order modes of the system [10]. The first several modes are shown in Fig. 25.4.
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Fig. 25.3 Schematic of procedural overview of process
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25.5 Damage Model Simulation Description

In order to provide a structure with damaged data for the simulations presented in this paper, the finite element model was

modified to include a reduction of stiffness via a thickness change of 50% to 3% of the elements approximately one third of

the distance from the clamped end. For reference, another eigensolution was performed to find the lower order modes of the

system. The first several modes are shown in Fig. 25.4.

25.6 Comparison of Finite Element Model and Simulated Damaged Model

A correlation was performed for the finite element model and the simulated damaged test data for reference [11]. The

frequency correlation along with the MAC for the correlated modes is shown in Table 25.1. In general, the damaged model is

not significantly different in frequency from the undamaged model for the lower order modes and the mode shapes show a

good deal of similarity; but there is not enough difference in the mode shapes to make any concrete evaluation as to the

location of the damage. The mode shape correlation is shown in Fig. 25.5 where the right column contains the comparison of

the test to finite element DOF at the limited set of measurement points (ADOF); the left column shows the same information

but at the full set of finite element DOF (NDOF).

6.16 Hz

Undamaged Damaged
5.73 Hz

35.35 Hz

103.15 Hz

205.73 Hz

321.70 Hz

38.58 Hz

107.89 Hz

211.07 Hz

348.17 Hz

Fig. 25.4 Frequencies and mode shapes of the undamaged (left) and damaged (right) beam

Table 25.1 Mode shape pairs with frequency difference and MAC

Mode # Undamaged freq (Hz) Damaged freq (Hz) Frequency % difference N-space MAC

1 6.16 5.73 7.47 99.9

2 38.58 35.35 9.14 99.4

3 107.89 103.15 4.60 99.4

4 211.07 205.73 2.60 96.8

5 348.17 321.70 8.23 96.0

6 518.74 516.56 0.42 99.9

7 722.28 682.54 5.82 96.9

8 958.19 933.45 2.65 97.7
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25.7 Forced Response of the Structure

In order to provide time response data, the structure was subjected to a force pulse that is comprised of a positive and

negative pulse acting over a time span that excited approximately the first ten modes of the beam system. This is important to

understand the mode contribution to the structure response to assure that an appropriate set of modes are used for the

development of the expansion matrices used for the process. For this particular force pulse, the first ten modes are needed to

characterize the response. Because adding more modes will not adversely affect the expansion process, 15 modes were

utilized for the expansion process.

It is very important to note that because both the finite element model and the damaged model are available as analytical

representations, the simulation of the response can be obtained for both configurations. This is useful for later comparison to

the predicted expanded response results.

25.8 Cases Studied

For this preliminary evaluation, only one case was studied. The applied force was used to determine the response from the

simulated, damaged model to obtain response at the measured ADOF. These were selected to 18 ADOF that were fairly

uniformly distributed along the length of the beam along the center axis. For this preliminary work only bending modes were

used in the studies presented here; future work will address more general cases of force and response due to a more general

structure with general 3D response characteristics. This force was also applied to the undamaged finite element model to

show the response of the system if no damage were to have occurred.

The time response for several points along the damaged beam are shown in Fig. 25.6 to illustrate the time response data

that would be measured if an actual damaged structure were subjected to this force. And as a comparison for reference only,

the same response points are also shown for the undamaged finite element model in Fig. 25.6.

Now the expansion process can be used to take the limited set of measured ADOF on the damaged structure and obtain an

estimate of the response for the entire structure over the full set of all finite element DOF (NDOF). (NOTE: While all DOF

could potentially be measured for the entire surface, the important item to note is that the expansion process provides all the

finite element DOF which includes translation and rotation and would be able to identify interior DOF if they were available.

In this simple structure, there are no interior DOF but this procedure is applicable to any general 3D finite element model that

may be generated).

The expanded set of finite element DOF are used as a displacement pattern for the back substitution process in the finite

element model to obtain dynamic stress-strain for the entire structure. The resulting strain from the expanded response

displacements are viewed for several of the time steps resulting from the transient dynamic solution for the model. In order to

properly understand the results, Fig. 25.7 shows three separate columns of data from the selected stages of the time response.

The first column shows the anticipated strain that the finite element analyst would obtain from the model developed. The last

Fig. 25.5 Mode pairs for the damaged and undamaged beam at NDOF and ADOF
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column shows the actual strain computed from the actual damaged beam to serve as a reference to compare the results of the

dynamic expansion process. The middle column contains the dynamic strain resulting from the expansion of the limited set

of measured displacements from the damaged beam using the dynamic expansion process.

In viewing these results, stage 10 and 14 in column 2 appear to have a high strain at the mid span of the beam that is higher

than expected from the anticipated strain from the finite element design model. Note that the strain in this region is exactly

where the damage occurs as seen in column 3. This is not seen at all in the finite element design model results in column 1.

Fig. 25.7 Strain response of beam (damaged and undamaged) due to applied force for the anticipated finite element design model (left), for the
expanded displacement solution (middle) and for the actual damaged beam (right) for several time stages analyzed

Point 6 Point 12 Point 18

Time Responses

Point 6 Point 12 Point 18

Force

Force

Fig. 25.6 Time response of beam (damaged and undamaged) due to applied force
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To further show this, stage 10 is presented separately in Fig. 25.8; this clearly shows that there is a significant change in

the overall load distribution resulting in a different strain that clearly highlights the region where the actual damage was

applied to the structure. These results are extremely encouraging and will be studied in more depth in future efforts related to

this work.

The important characteristic that enables the clear depiction of the strain damaged area is due to the fact that transient

response is used to interrogate the structure rather than mode shapes. The mode shapes may not be as revealing especially if

the damage is in an area of little curvature. However, using transient response, which is comprised of the linear combination

of all the modes that participate, there is a higher possibility to see the strain changes at various points in time due to the

response of the structure. At this time there are no clear guidelines as to how many time steps may be needed or types of

excitation that will be sufficient to excite the structure in such a manner as to efficiently capture the necessary response to

clearly see the damage regions. However, these initial results are very promising and additional work is needed to address

many of these issues.

25.9 Conclusion

Recent efforts on the identification of full field dynamic stress-strain using limited sets of measured data have produced very

good results for the prediction of both dynamic displacements and dynamic stress-strain. Extensions of this work have been

presented here in this paper to identify full field dynamic stress-strain from damaged structures using this approach. These

predictions are compared to the anticipated results from the design finite element model. Differences in the strain patterns

show possible locations where damage may exist. The test cases studied clearly showed the damage area. The main

advantage of this technique over other modal based and contour based approaches is that the transient response used in

the prediction has the effect of using multiple modes simultaneously and therefore appears to have better detection

capability. While only limited cases have been studied, these results are very promising and will be the subject of future

work.
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Fig. 25.8 Strain response of beam (damaged and undamaged) due to applied force for the anticipated finite element design model (upper), for the
expanded displacement solution (middle) and for the actual damaged beam (lower) for stage 10
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Chapter 26

On the Mode Based Simulation of Dry Friction inside Lap Joints

Markus Breitfuss, Wolfgang Witteveen, and Gerhard Prechtl

Abstract Recently proposed joint interface modes (JIM), which have been presented at the IMAC 25th, consider Newton’s

third law across a joint already at the stage of mode generation. This approach leads to significant improvements in the

subsequent mode based simulation, where nonlinear contact and frictional forces are applied. This contribution is focusing on

the efficient computation of forces according to dry friction. The first part covers the friction model itself. A lot of literature

points out that the discontinuity of the well known Coulomb friction is a major drawback in terms of efficient time integration.

Therefore alternative friction models are investigated and a comparison with the Coulombmodel is performed. The second part

deals with the relevance of trial functions in tangential direction of the contact surface. The latter mentioned JIM can be

subdivided into Ritz vectors, which are required to approximate the joint deformation in joint normal direction where the contact

forces are acting, and such, which are required to approximate the joint deformation in joint tangential direction where the

friction forces are acting. Theoretical considerations and a numerical example are presented which reveal, that the number of

JIM in tangential direction is significantly smaller as the one in contact direction without losing remarkable quality of the result.

Nomenclature

~M Mass matrix of FE model

~Mred Mass matrix of reduced model

~D Damping matrix of FE model

~Dred Damping matrix of reduced model

~K Stiffness matrix of FE model

~Kred Stiffness matrix of reduced model

~T Transformation matrix

~F Mode matrix

~fext Vector of external nodal forces of FE model

~f fric Vector of frictional nodal forces of FE model

~f red Vector of projected nodal forces

~x Vector of nodal DOF of FE model

~xB Boundary nodal DOF

~xI Internal nodal DOF

~xIJ Contact area nodal DOF
_~x First derivative of~x with respect to time
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€~x Second derivative of~x with respect to time

~q Generalized coordinates of reduced model
_~q First derivative of~q with respect to time

€~q Second derivative of~q with respect to time

n Number of degrees of freedom of FE model

nq Number of generalized coordinates

26.1 Introduction

Nowadays simulation has become an integral part of modern product development processes. Belonging to one of the more

challenging disciplines, the evaluation of a mechanical systems dynamic behavior requires complex models and reliable

results are determined by several factors, realistic consideration of dissipation within lap joints being one of them.

The finite element (FE) method is a widely used technique for the numerical analysis of mechanical structures. It is

capable to deliver very accurate results but lacks computational efficiency due to the high number of physical or nodal

degrees of freedom (DOF) to be considered during a simulation. To overcome this drawback, model order reduction methods

have been developed during the last decades, see [1] for a comprehensive overview. These methods reduce the number of

DOF significantly by introducing Ritz trial functions, often referred to as mode base, and projecting the physical coordinates

onto generalized coordinates.

As this approach usually involves the linearization of the mechanical system at a certain point of operation, these methods

are not well suited for reducing systems involving nonlinearities as it is the case for built up structures containing contact

regions within the joint areas. An extension to classic mode bases for handling such areas properly, even in reduced systems,

was proposed at the IMAC 25th [2], 26th [3] and 27th [4]. By using additional trial functions within the reduction process,

contact forces inside lap joints can be computed quite accurately during the simulation.

A short review on the idea behind and a possible method for the computation of these trial functions is given in the following

section. The next section shortly recapitulates the influence of friction on the system behaviour within lap joints and summarizes

some potentially interesting numerical models for friction found in literature. After this the necessity of additional trial functions

in tangential direction of the contact surface is discussed. A numerical example and a conclusion complete this contribution.

26.2 Quick Review on Joint Interface Modes

As mentioned in the introduction, contact phenomena within joints represent local nonlinearities. Common modal reduction

methods, like the well known component mode synthesis (CMS) according to [1], use a clever mixture of local and global

mode shapes as approximation for the flexible structure deformation. These so called constraint modes (CM) for particular

nodal FE DOF and boundary fixed normal modes (BFNM) for the remaining internal nodal FE DOF do not explicitly

consider the local deformation within the joint area.

Theoretically it is possible to define CM for all nodal FE DOF located on contact surfaces. But this would not be a very

efficient approach in case of automatically meshed structures containing large interface areas. The idea of the proposed joint

interface modes (JIM) is exemplarily demonstrated on the generic structure outlined in Fig. 26.1. The FE Model consists of

two substructures which are connected via a beam. The contact surfaces are outlined by black dots and the whole structure is

supported on both sides. If all available nodal FE DOF would be retained via constrained modes, a joint deformation like the

one in Fig. 26.2 could be represented by the resulting mode base.

To consider the nonlinear contact behavior in an adequate manner for industrial applications, the possible surface

deformation, as pointed out in Fig. 26.2, is not relevant. Moreover the deformation shapes are likely to be much smoother.

Therefore, the consideration of all nodal FE DOF preserves more information than needed to compute results with

acceptable accuracy. The main idea is to provide an efficient extension to a classic mode base (e.g. computed according

to Craig and Bampton, see [1] for more details) by particular modes, which are outlined in Fig. 26.3. Beside the deformation

shapes of classical mode bases these additional trial vectors represent the local joint deformation of the joint contact surfaces

for small relative movement of the involved contact surfaces.

In order to achieve a quickly converging set of modes, a fundamental mechanical characteristic is utilized during the

process ofmode generation: the local continuity of forces acting on the two contact surfaces of the joint is explicitly accounted

for. This leads to a convergence of the solution which is almost twice as fast as the interface mode method. In order to provide
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this extension in a very easy and convenient way, the software package calledMAMBA [5] has been developed. One possible

method for the computation of the proposed JIM is shortly outlined within this section, for more details refer to [2–4].

An example for a jointed FE structure is shown in Fig. 26.4. The letter B denotes nodal FE DOF loaded by external,

concentrated forces. Nodal FE DOF of the joint contact surfaces are denoted by IJ1 and IJ2 respectively, depending on the

surface number. The remaining nodes are denoted by I\IJ. Compatible meshes are assumed for the whole contact surface

region. It should be noted that the theory of joint interface modes can be extended to the case of non matching meshes within

the contact surface area as well. The software package MAMBA already provides this extension.

The equations of motion for a linear FE structure with n degrees of freedom can be given in the form

~M €~xþ ~D _~xþ ~K~x ¼~fext: (26.1)

Fig. 26.1 Generic FE model

Fig. 26.2 Hypothetical

deformation of the joint area

Fig. 26.3 Sample of contact

modes
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The vector of nodal DOFs

~x ¼ ~xB
~xI

� �
¼

~xB
~xIJ
~xIn IJ

8<
:

9=
; ¼ ~xB

T ~xIJ1
T ~xIJ2

T ~x InIJ
T

h iT
(26.2)

is assumed to be partitioned into a boundary part, which is loaded by concentrated forces and an internal part containing the

remaining nodes. Considering only the static part of (26.1) leads to

~KB;B
~KB;IJ1

~KB;IJ2
~KB;InIJ

~KIJ1;B
~KIJ1;IJ1

~KIJ1;IJ2
~KIJ1;InIJ

~KIJ2;B
~KIJ2;IJ1

~KIJ2;IJ2
~KIJ2;InIJ

~KInIJ;B ~KInIJ;IJ1 ~KInIJ;IJ2 ~KInIJ;InIJ

2
6664

3
7775

~0
~xIJ1
~xIJ2
~x InIJ

8>><
>>:

9>>=
>>; ¼

~fB
~f IJ1
~f IJ2
~0

8>><
>>:

9>>=
>>;: (26.3)

Due to the explicit consideration of Newton’s third law and the substitution of ~x I n IJ by an identity obtained from the

fourth row of (26.3) one obtains a relationship between the nodal degrees of freedom of both contact surfaces

~xIJ1 ¼ ~G~xIJ2 (26.4)

where ~G ¼ ~KIJ1;IJ1 þ ~KIJ2;IJ1 � ~KIJ1;InIJ þ ~KIJ2;InIJ
� �

~K
�1

InIJ;InIJ ~KInIJ;IJ1
h i�1

~KIJ1;InIJ þ ~KIJ2;InIJ
� �

~K
�1

InIJ;InIJ ~KInIJ;IJ2 � ~KIJ1;IJ2�
h

~KIJ2;IJ2�. Using this relationship the static reduction rule

~xB
T ~xIJ1

T ~xIJ2
T ~x I n IJ

T
h iT

¼ ~H~xIJ2 (26.5)

is fully defined. Applying this reduction rule to the equations of motion (26.1) and neglecting the damping matrix ~D and the

force vector~fext as well leads to the intermediate result

~Mred;IJ2
€~xIJ2 þ ~Kred;IJ2~xIJ2 ¼ ~0 (26.6)

where ~Mred;IJ2 ¼ ~H
T ~M~H holds the reduced mass matrix and ~Kred;IJ2 ¼ ~HT ~K ~H holds the reduced stiffness matrix. Solving a

generalized eigenvalue problem with these matrices finally leads to the proposed JIM. The transformation matrix

~T ¼ ~Fclassic
~FJIM

� �
(26.7)

contains the classic mode base ~Fclassic and the proposed additional trial functions ~FJIM respectively and is used during the

final model order reduction process using the approximation

~x � ~T~q (26.8)

Fig. 26.4 Exemplary jointed

FEM structure
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which introduces the vector~q containing nq¼nclassicþnJIM generalized coordinates. Finally the equations of motion for the

reduced system can be written as

~Mred
€~qþ ~Dred

_~qþ ~Kred~q ¼~f red: (26.9)

referencing

~Mred ¼ ~T
T ~M~T; ~Dred ¼ ~T

T ~D~T; ~Kred ¼ ~T
T ~K~T and~f red ¼ ~T

T~fext (26.10)

26.3 Numerical Models for Dry Friction

The quality and therefore reliability of result data obtained from the dynamic analyses of mechanical systems highly depends

on the stiffness distribution, the mass distribution and the dissipative behavior of the model under investigation. In contrast

to the stiffness and mass distributions, which are typically known quite well from geometry and material data of the system,

the determination of damping values is usually quite inaccurate due to the load dependent and nonlinear characteristic of the

governing effects.

One major source of dissipation within metallic structures is the friction inside jointed areas, which can be one order of

magnitude higher than material damping. Detailed investigations of a simple structure containing a bolted joint are reported

in [6] and [7]. Usually a characteristic hysteresis similar to the idealized one shown in Fig. 26.5 is used to describe the

dissipative behavior of a joint. It is interesting to note that, according to [8], for excitation frequencies up to 1 kHz the

hysteresis loop remains almost unchanged in shape and size.

Several states can be distinguished. Between 1 and 2 (4 and 5) the contact surfaces stick together. The slope is determined

by a surface roughness dependent sticking stiffness. As a result the frictional forces can be considered as imposed forces

without need to activate constraints to resemble sticking. Between 3 and 4 (6 and 1) the contact surfaces slide relative to each

other. The slope is determined by a material and contact pressure dependent sliding stiffness. The transition from sticking to

sliding takes place between 2 and 3 (5 and 6).

As friction is a highly nonlinear phenomenon, the according forces are typically applied as a state dependent force vector
~f fric at the right hand side of the governing (26.1) of the unreduced system

~M€~xþ ~D _~xþ ~K~x ¼~fext þ~f fric: (26.11)

The damping matrix ~D, if needed at all in this case, is often used to consider only the material damping. In terms of

reduced order models ~Mred
€~qþ ~Dred

_~qþ ~Kred~q ¼~f red, the so called modal damping approach is a common way to model

dissipation. In contrast to a general reduced damping matrix according to (26.10), which may become a fully populated

matrix, this approach uses a generic diagonal matrix

~Dred ¼ diagðd1; d2; � � � ; dnÞ (26.12)

Fig. 26.5 Characteristic

hysteresis of a bolted joint
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referencing nq modal damping values di. This fact is responsible for the very good performance in terms of computational

efficiency as the equations of the reduced system remain uncoupled.

Though the concept of modal damping hardly fits for dissipative effects due to friction, making it very troublesome to

estimate good damping values for a complex structure, it is common practice to utilize this approach for industrial

applications and accept the possible negative impact on result quality. As the above mentioned method of using additional

trial functions to account for the local deformation within the joint area facilitates a realistic computation of contact pressure

distributions, the resulting surface normal stresses can be utilized for an up following computation of forces due to friction.

This in turn enables a realistic consideration of such effects, even for reduced order models.

To compute frictional forces an efficient and robust mathematical model is needed. Beside the well known Coulomb

friction many numerical models can be found in literature, each of them valuable for a certain reason. A good starting point

for investigations is given by [9] and [10]. To select promising ones among these models, some criterions for evaluation need

to be defined. Within this contribution the shape of the characteristic hysteresis loop and the efficiency in terms of

computational effort are used as criteria.

The evaluation is carried out using two steps. In the first step the shape of the hysteresis loop of each model is evaluated

using an enforced displacement setup. If the shape of the hysteresis loop is satisfactory, the computational effort during a

dynamic simulation is evaluated. In Fig. 26.6 both setups are exemplarily depicted for the Coulomb friction reference model.

This evaluation is without loss of generality as the enforced displacement setup can also represent the connection between

two mating nodes of a complex contact area.

Beside the Coulomb friction two approaches for numerical friction models can be found in literature. One approach is to

utilize springs and damper elements, as it is the case within the Maxwell element or the Kelvin-Voigt element. The other

class of models relies on functional equations, like the Bouce-Wen model (refer to [7]), the Lu-Gre model (refer to [9]) or the

Valanis model (refer to [6] or [7]). Some examples of the resulting hysteresis loops are shown in Fig. 26.7.

The evaluation reveals that models based on properly connected spring and damper elements are very easy to implement

but deliver an unsatisfying approximation of the hysteresis loop. Furthermore, the size of the hysteresis loop depends on the
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Fig. 26.7 Exemplary hysteresis loops (the x-coordinate represents the displacement in meter and the y-coordinate the tangential force in newton):

(a) reference model, (b) Kelvin-Voigt element, (c) Valanis model
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Fig. 26.6 Coulomb friction reference model: (a) enforced motion, (b) single DOF model
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frequency. In contrast the models based on functional equations approximate the hysteresis loop very well. The drawback of

these models is the necessity to solve an additional differential equation, which leads to additional computational effort.

Consequently, the implementations of the Coulomb friction and the Valanis model used in this evaluation perform quite

similar in terms of computational effort.

26.4 Additional Trial Functions in Tangential Direction

Depending on the system state the joint contact surfaces get divided into areas without relative movement and areas with

significant relative movement. For all cases where the boundaries of these areas are approximated in a sufficient way by the

trial functions within the transformation matrix ~T ¼ ~Fclassic
~FJIM

� �
utilized during the model order reduction process, no

additional trial functions in tangential direction are needed at all. As size and boundaries of these areas might change during

a simulation, two cases can be distinguished:

• If the regions without relative movement were considered at the wrong location or estimated too large during the

reduction process, the damping within the reduced system typically gets underestimated compared to the unreduced

system as the trial functions represent less relative movement within the joint area.

• If the regions without relative movement were considered to small during the reduction process, the damping within the

reduced systems typically gets overestimated compared to the unreduced system as the trial functions represent more

relative movement within the joint area.

The authors propose to differ between ~FJIM;n holding nJIM;n trial functions in surface normal direction and ~FJIM;t

referencing nJIM;t trial functions in surface tangential direction. This allows for separate computation of both types of

additional trial functions using the above mentioned algorithm in a slightly extended way. Using a further partitioned vector

of nodal DOF

~x ¼ ~xB
~xI

� �
¼

~xB
~xIJ
~x InIJ

8<
:

9=
; ¼ ~xB

T ~xIJ1
T ~xIJ2

T ~x InIJ
T

h iT
¼ ~xB

T ~xIJ1;n
T ~xIJ1;t

T ~xIJ2;n
T ~xIJ2;t

T ~x InIJ
T

h iT
(26.13)

the contact area nodal DOF ~xIJ1 and ~xIJ2 are subdivided into normal and tangential direction. This can be done without

loosing generality as for arbitrary oriented contact surfaces only an additional transformation into proper aligned local

coordinate systems has to be considered. Considering only the static part of (26.1) leads to

~KB;B
~KB;IJ1n

~KB;IJ1t
~KB;IJ2n

~KB;IJ2t
~KB;InIJ

~KIJ1n;B
~KIJ1n;IJ1n

~KIJ1n;IJ1t
~KIJ1n;IJ2n

~KIJ1n;IJ2t
~KIJ1n;InIJ

~KIJ1t;B
~KIJ1t;IJ1n

~KIJ1t;IJ1t
~KIJ1t;IJ2n

~KIJ1t;IJ2t
~KIJ1t;InIJ

~KIJ2n;B
~KIJ2n;IJ1n

~KIJ2n;IJ1t
~KIJ2n;IJ2n

~KIJ2n;IJ2t
~KIJ2n;InIJ

~KIJ2t;B
~KIJ2t;IJ1n

~KIJ2t;IJ1t
~KIJ2t;IJ2n

~KIJ2t;IJ2t
~KIJ2t;InIJ

~KInIJ;B ~KInIJ;IJ1n ~KInIJ;IJ1t ~KInIJ;IJ2n ~KInIJ;IJ2t ~KInIJ;InIJ

2
66666666664

3
77777777775

~0

~xIJ1n

~xIJ1t

~xIJ2n

~xIJ2t

~x I nIJ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

~fB
~f IJ1n
~f IJ1t
~f IJ2n
~f IJ2t
~0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: (26.14)

The explicit consideration of Newton’s third law and the separate treatment of normal and tangential direction lead to a

relationship between the nodal degrees of freedom of both contact surfaces in normal direction

~xIJ1;n ¼ ~G
IJ;n
~xIJ2;n (26.15)

and tangential direction respectively

~xIJ1;t ¼ ~GIJ;t~xIJ2;t: (26.16)
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Using these equations the static reduction rules

~xB
T ~xIJ1;n

T ~xIJ1;t
T ~xIJ2;n

T ~xIJ2;t
T ~x I n IJ

T
h iT

¼ ~HIJ;n~xIJ2;n (26.17)

and

~xB
T ~xIJ1;n

T ~xIJ1;t
T ~xIJ2;n

T ~xIJ2;t
T ~x I n IJ

T
h iT

¼ ~HIJ;t~xIJ2;t (26.18)

are fully defined. Applying these reduction rules to the equations of motion (26.1) and neglecting the damping matrix ~D and

the force vector~fext as well leads to the intermediate result for the contact surface normal direction

~Mred;IJ2n
€~xIJ2;n þ ~Kred;IJ2n~xIJ2;n ¼ ~0 (26.19)

where ~Mred;IJ2n ¼ ~H
T

IJ;n
~M~HIJ;n and

~Kred;IJ2n ¼ ~H
T

IJ;n
~K~HIJ;n and for the contact surface tangential direction respectively

~Mred;IJ2t
€~xIJ2;t þ ~Kred;IJ2t~xIJ2;t ¼ ~0 (26.20)

where ~Mred;IJ2t ¼ ~H
T

IJ;t
~M~HIJ;t and

~Kred;IJ2t ¼ ~HIJ;t

T ~K~HIJ;t. Solving two generalized eigenvalue problems with these matrices

finally leads to the proposed JIM for each direction.

In many technical structures the stiffness associated with~xIJ1;t and~xIJ2;t is significantly higher than the stiffness associated
with~xIJ1;n and~xIJ2;n. As a consequence the eigenvalues associated with the joint interface modes in contact surface tangential

direction are higher than those associated with the joint interface modes in contact surface normal direction. This indicates

that, compared to trial functions in normal direction, only a small amount of trial functions in tangential direction is needed,

if necessary at all.

26.5 Numerical Example

The potential of the introduced approach is demonstrated using the FE model of a spare wheel carrier shown in Fig. 26.8.

This model consists of three main components: the frame, the bracket and the wheel itself. Important to note are the two

bolted joints between bracket and frame which are expected to have significant influence on the dissipative behavior of the

structure.

The wheel is modeled as idealized rigid body parameterized by mass and moments of inertia. The remaining structure

except the four bolts of the joint, which are modeled using beam elements, is built up using solid elements. All elements

reference the material properties of iron. To clearly denote the involved nodal DOF the partitioning scheme of (26.13) is

Fig. 26.8 FE model of a spare

wheel carrier consisting

of frame, bracket and

idealized wheel
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used. Interface nodes are located at the wheel center and in the middle of two rigid planes at both ends of the frame. The DOF

of these nodes are collected within the boundary part~xB, the remaining nodal DOF are referenced as the internal part~xI of
the vector~x.

Before starting the dynamic simulation a convergence study is performed to verify whether the number of additional trial

functions ~FJIM is sufficient or not. As the influence on the result quality within the joint region is of main interest the

Euclidean norm of the relative displacement within this area is a good criterion for such a study. Although static load cases

are used the informative value is not lowered as the dynamic behavior of the reduced system is mainly determined by the

classic mode base ~Fclassic. In return the computational effort for such a study is diminished significantly.

For the final reduced order model 24 JIM in contact surface normal direction are considered together with 18 CM due to

~xB, 10 FBNM and 4 pretension modes caused by the bolted joints. The investigated load case is the pretension of the bolts

connecting the bracket to the frame combined with a force impulse applied at the center of the wheel. The structure is

allowed to vibrate freely until amplitudes fade out. This results in growing regions of sticking friction within the joint contact

area. The shape of the force impulse and the resulting vertical deformation of the wheel center are shown in Fig. 26.9. Both

quantities are normalized to their respective maximum values.

The simulation results confirm the theoretical considerations regarding additional trial functions in contact surface

tangential direction:

• Without consideration of ~FJIM;t damping gets overestimated and the “high frequency” displacement component fades out

earlier.

• With consideration of ~FJIM;t holding less trial functions than ~FJIM;n, the “high frequency” displacement component is

damped less compared to the first case.

• With consideration of ~FJIM;t holding almost as much entries as ~FJIM;n, no significant changes are observed compared to

the second case.

• The consideration of ~FJIM;t is only necessary for problems with varying regions of sticking friction. During the first

period of the displacement signal, no differences occur at all.

26.6 Conclusion

The presented investigations reveal that the consideration of forces due to friction within reduced order models is possible in

a quite accurate way. Furthermore, this approach enables the consideration of dissipation due to friction in a more realistic

way compared to the modal damping approach.

Several numerical models for the computation of forces due to friction in dynamic systems are available. A closer look on

the Coulomb friction reveals that, if proper implemented, the drawback of the discontinuity in terms of efficient time

integration can be avoided and simulations with reasonable computational effort are possible using this formulation.
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Fig. 26.9 Dynamic simulation: (a) force impulse, (b) vertical deflection measured at the wheel center
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The application of forces in contact surface tangential direction raises the question, if additional trial functions in this

direction are necessary to capture energy dissipation correctly. Both, theoretical considerations and numerical examples

clearly show that less additional JIMs in tangential direction than JIMs in normal direction are needed, if necessary at all.
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Chapter 27

Efficient Updating of Static Modes in the Craig-Bampton

Reduction Basis

S.N. Voormeeren and D.J. Rixen

Abstract Although component mode synthesis (CMS) methods for structural dynamic analysis were introduced in the

1960s, it is still an active field of research. One of the current challenges is to apply CMS in a design process in which some

component(s) of the system are (parametrically) modified. For every design change, the component reduction basis needs to

be recomputed, thereby seriously hindering the effectiveness of the CMS approach.In this work we address the static modes,

which are an essential part of every component reduction basis. For the popular Craig-Bampton CMS method, we present an

efficient yet accurate method for updating the static modes based on the iterative conjugate gradient solver. This way, no

factorization of the modified stiffness matrix is needed and optimal use is made of the available information. The

effectiveness of the proposed strategy will be illustrated by a case study.

27.1 Introduction

27.1.1 Updating of Component Reduction Bases

With ever shorter design cycles and increasingly complex products, the need for faster structural dynamic analysis never

seizes to exist. One way of decreasing the computational burden of dynamic analysis is by applying the dynamic
substructuring methodology. This paradigm combines the concepts of a componentwise approach and model reduction

techniques, as follows:

1. The complete system is decomposed into components or substructures.

2. Each component is modeled and reduced separately, using a suitable reduction basis. This basis consists of a set of static

modes describing the interaction with neighboring components, and some vibration modes to account for the dynamics.

3. The reduced component models are assembled to form the model of the complete system.

This approach is often also referred to as component mode synthesis (CMS) and was first introduced in the 1960s [10, 11].

One very popular CMSmethod often used today is the Craig-Bampton method [4]; this is the method considered in this work.

The main computational cost in the CMS process lies in the computation of the component reduction bases. This involves

solving both a linear system of equations for the static modes and an eigenproblem to obtain the vibration modes. This

investment pays off when the assembled system is analyzed, since it is very compact and can be analyzed efficiently.

However, in the setting of a practical design process, some of the component models may be subject to successive

(parametric) modifications. Hence for every design change their reduction bases need to be recomputed, which undermines

the efficiency of the CMS approach.

However, the design changes made to the components are in practice often rather small. It is therefore unlikely that the

modified component will start exhibiting completely different behavior in terms of eigenfrequencies and mode shapes. The

question thus arises whether we actually need to recalculate the complete component reduction basis or if we could maybe
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use the knowledge of the nominal system to efficiently update its basis to suit the modified component. In the literature,

different approaches have been proposed to achieve this.

For the static modes, one approach is to simply assume that the nominal static modes can also be used to reduce the

modified component [13]. Another approach is to recompute them based on the new model [3]. Finally, the static modes can

be updated using the Combined Approximations (CA) technique [12], as proposed in [1].

The vibration modes can also be updated using the Combined Approximations method, as proposed in [3]. Another

approach is to enrich the reduction basis using sensitivity modes as described in [13, 1]. Such sensitivity modes represent the

change of the vibration mode shapes around the nominal design point with respect to the design change.

In this work, we propose yet another approach. Given the importance of the static modes in predicting the low frequency

behavior (including the rigid body modes), we wish to recompute them with sufficient accuracy. Since the accuracy of the

CA updating procedure cannot be guaranteed [1], here it is proposed to use an iterative conjugate gradient (CG) based solver.

Especially for small design changes such an iterative approach is expected to give the desired accuracy at low computational

cost compared to recomputation using a direct solver. For the vibration modes we adopt the enrichment strategy from [13,

1], although iterative approaches similar to the CG method can also be devised for the vibration modes. This is however out

of the scope of this paper.

27.1.2 Paper Outline

The starting points for the work presented in this paper are as follows:

• In line with the work referred to earlier [1, 13, 3], we assume that the component FE mesh topology and connectivity are

not altered. Nodal positions may be changed (e.g. elongation or thickness changes) as long as this does not result in

element shape violations.

• The goal of the methodology presented here is to update the static part of the reduction basis, such that it is suited to the

modified component model and allows to accurately predict the static/rigid body behavior.

• The (quasi-)stiffness matrix of the nominal system is factorized when setting up the reduced model of the nominal system.

This factorization is a significant part of the computational cost of the reduction. We assume that the factorized stiffness

matrix of the nominal system is stored for further use.

As a result, the paper is organized as follows. In the next section we will briefly recapitulate the theory of the Craig-

Bampton method. Thereafter, Sect. 27.3 will present the procedure for updating the static modes, based on the

Preconditioned Conjugate Gradient method. Thereafter, the enrichment method for the vibration modes and the resulting

modified reduction basis are briefly explained in Sect. 27.4. In order to assess the performance of the proposed updating

strategy, Sect. 27.5 presents a case study where the methods are applied to an industrial sized FE problem. Conclusions are

drawn in Sect. 27.6.

Regarding the notations in this paper: a superscript ⋆(0) refers to the nominal system, while ⋆(1) designates the modified

component. The symbol D⋆ is used to indicate the difference between the nominal and modified system.

27.2 The Craig-Bampton Method

In order to derive the Craig-Bampton CMS method, we start from the component discretized equations of motion:

M sð Þ€u sð ÞðtÞ þK sð Þu sð ÞðtÞ ¼ f sð ÞðtÞ (27.1)

Here s is denoting the substructure at hand,M is its mass matrix, K is the stiffness matrix, u the vector of degrees of freedom

(DoF) and f the external excitation vector. Next, the DoF vector is split into some set of internal DoF ui and a set of boundary
(or interface) DoF ub, leading to the partitioned equations of motion:

Mbb Mbi

Mib Mii

� �
€ub
€ui

� �
þ Kbb Kbi

Kib Kii

� �
ub
ui

� �
¼ f b

0

� �
(27.2)
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Here the explicit time dependence and substructure identifier s have been omitted for clarity. The Craig-Bampton method

now consists in retaining the boundary and finding a good approximation for the internal DoF. This is done by splitting the

response of the internal DoF into a static and a dynamic part:

ui ¼ ui;stat þ ui;dyn (27.3)

To obtain an approximation for the static part of the response, it is assumed that there is no external excitation on the internal

DoF, i.e. fi ¼ 0. Now ui can be condensed into ub to find the so-called static constraint modes CC as:

ui;stat ¼ �K�1
ii Kibub ¼ CCub (27.4)

Note that using the static modes, the static response can be described exactly when the force is applied at the boundary DoF.

The static modes are essential in a component reduction basis as they describe the static response of the component model to

excitations coming from neighboring substructures through the boundary DoF. By taking only the static modes in the

reduction basis one finds the classic Guyan method [8].

Next, to find an approximation for the dynamic part of the response the modal superposition principle is used. Hence, we

describe the dynamic response of the internal DoF using internal vibration modes (often referred to as fixed interface

vibration modes), which are computed by setting ub ¼ 0 and solving the following eigenproblem:

Kii �v2
iMii

� �
fi ¼ 0 (27.5)

In order to achieve the actual reduction, we only retain the firstm < < nimode shapesfiwhich are mass normalized, such that:

Fi ¼ fi;1 fi;2 . . . fi;m

� �
FT

i MiiFi ¼ I

FT
i KiiFi ¼ diagðv2

i;1 . . .v
2
i;mÞ ¼ V2

i

The total set of internal degrees of freedom is therefore approximated by:

ui � CCub þFihi (27.6)

Where �i are the modal amplitudes of the internal modes. This transformation can be put into matrix format in order to obtain

the Craig-Bampton reduction matrix:

ub
ui

� �
¼ ub

CCub þFihi

� �
¼ I 0

CC Fi

� �
ub
hi

� �
¼ R q (27.7)

So, the original set of component DoF are reduced to a new set of DoF using the static constraint modes and fixed interface

vibration modes. Substituting the reduction in the original set of equations then gives the following:

M R€qþ K R q ¼ f þ r (27.8)

Here we have introduced a residual force r since the accuracy of the reduced model is always less then the full model and

hence an equilibrium error will exist. By definition, this error is orthogonal to the space of the modes used in the reduction

matrix and hence can be eliminated by pre-multiplication:

RTM R€qþ RTK R q ¼ ~M€qþ ~Kq ¼ RTf ¼ ~f (27.9)

Since the interface DoF are retained, this reduced component model can be easily assembled to other components, hence this

type of model is often referred to as a superelement.
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27.3 Updating of Static Modes

27.3.1 Approach: Direct vs. Iterative Methods

As outlined above, for the computation of the static modes one has to solve a static problem of the form:

KCj ¼ f j; (27.10)

Here a more compact notation has been used, such that for the Craig-Bampton method it holds that:

K ! Kii

Cj ! CC;j

f j ! Kib;j

8<
:

where the index j refers to some static mode contained in the set of p static modes CC ¼ [CC, 1� � �CC, p].

The most time consuming step in the process of computing the static modes is the factorization of the stiffness matrix,

performed by so-called direct solvers. Such solvers are basically variants of the factorization techniques by Gauss, such as

LDLT decomposition for symmetric matrices or Cholesky decomposition for symmetric positive matrices. Hence, when a

component is modified one would ideally like to avoid refactorizing the stiffness matrix.

Indeed, it was noted earlier that when the modified system is “close” to the nominal one, its structural behavior will

probably not change dramatically. Therefore, we propose not to start the calculations for the modified component from

scratch but instead use iterative methods. The aim is to start from the solutions of the nominal system, reuse as much as

possible from the available information and quickly converge to the solutions for the modified system. In this section we

therefore present an approach for updating the static modes, based on the iterative conjugate gradient (CG) method. The

starting point for this updating problem is as follows. For the nominal component, we have solved the static problem

Cð0Þ ¼ Kð0Þ�1

Fð0Þ; (27.11)

Subsequently we make a design modification to the component, which leads to the new static problem:

Kð1ÞCð1Þ ¼ Fð1Þ (27.12)

The goal is now to efficiently find C(1) by reusing C(0) and Kð0Þ�1

, while avoiding the factorization of K(1). This section is

therefore organized as follows. First the general concept of the CG method is outlined, thereafter we discuss its convergence

and how to improve it using preconditioning in Sect. 27.3.3. The issue of solving for multiple right hand sides is addressed in

Sect. 27.3.4 while in Sect. 27.3.5 we finally return to the updating problem and show why the approach might be useful.

27.3.2 The Conjugate Gradient Method

Most iterative methods for static problems are based on the conjugate gradient algorithm proposed by Hestenes and Stiefel

[9] in 1952. The conjugate gradient method is an iterative algorithm for solving systems of linear equations with symmetric

and positive-definite operators, such as the problem for a static mode:

KC ¼ f

Solving this linear system is equal to minimization of the quadratic problem:

ℒ Cð Þ ¼ 1

2
CTKC�CTf (27.13)

Suppose that we have some initial guess C0 of the solution (C0 can be equal to 0) and we wish to iteratively refine it by

adding some improvement:C1 ¼ C0 þ DC. The question now is how to choose DC. If we take the negative gradient of the

quadratic problem around the initial guess, we find:

� @ℒ
@C

����
C0

¼ f � KC0 ¼ r0 (27.14)
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In fact, r0 is the residual force vector for the initial guess u0 and corresponds to the steepest descent direction aroundC0, that

is, the direction in which ℒ is reduced quickest. Hence we write the new approximation C1 as

C1 ¼ C0 þ �0r0; (27.15)

where Z0 is the unknown amplitude in the direction of the residual r0. Inserting this in the linear problem yields

KC1 ¼ K C0 þ �0r0ð Þ ¼ f � r1 (27.16)

To find the “optimal” value for Z, we require the new residual to be zero in the space of the current approximation, i.e.

r0
Tr1 ¼ 0. This gives

rT0K C0 þ �0r0ð Þ ¼ rT0 f ; (27.17)

and using the expression for r0 then allows us to find Z0:

�0 ¼
rT0 r0
rT0Kr0

(27.18)

Note that this corresponds to a “line search” minimization step. Subsequently one can calculate C1 and the associated

residual r1, compute the next correction for Z1, and so on. In order to avoid that the same direction appears several times in

the residual, such that the solution is not guaranteed to be found in a finite number of steps, an orthogonalization step should

be included in this process. In this way, the search direction at iteration k is no longer directly the residual rk, but is first
K-orthogonalized to all the previous search directions. In theory, the new search direction needs to be orthogonalized only

with respect to the previous one, but due to numerical round-off errors the preceding directions will progressively reappear.

Hence a full orthogonalization is needed, as follows:

pk ¼ rk �
Xk�1

i¼0

pibi (27.19)

where k is the index of the current iteration and i the index of the previous directions. We use p to denote the search direction
(i.e. orthogonalized residual) as opposed to the true residual r. Realizing that after orthogonalization it should hold that

pi
TKpk ¼ 0, and after scaling the search directions such that pi

TKpi ¼ 1, the factor bi is found as:

bi ¼ rTkKpi (27.20)

Since the search directions obtained in this way span a K-orthogonal space, the algorithm is guaranteed to converge in n
iterations, where n is the size of the problem. We have now treated the basic ingredients of the CG method, which can be

expressed in the form of Algorithm 1.
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Some remarks are in place regarding the Algorithm 1 and the CG method in general:

• The main cost of the algorithm is in the matrix-vector multiplication Kpk. Hence one can optimize the algorithm by

storing this product as wk, so that it needs to be calculated only once per iteration.

• The calculation of the new residual can be done recursively or directly. For numerical stability it is advisable to explicitly

evaluate the residual once every few iterations (for instance
ffiffiffi
n

p
); see [23] for a discussion.

• The convergence criterion is to compare the norm of the residual with the norm of the force (right hand side) and define an

iteration tolerance e for their ratio.
• The normal CGmethod makes use of the symmetry of the operatorK in the conjugation step. However, for non-symmetric

operators similar algorithms can be devised such as the bi-CG or GMRES methods [22, 21].

27.3.3 Convergence and Preconditioning

In the original version of the CG method outlined above, the convergence of the algorithm is usually very slow. To illustrate

this, let us first define the K-norm of some vector x as follows:

xk kK ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xTK x

p
(27.21)

Using this norm, a lower bound for the convergence rate of the conjugate gradient method can be expressed as a function of

the condition number k of the operator K [6]:

C�Ckk kK � 2 C�C0k kK
ffiffiffi
k

p � 1ffiffiffi
k

p þ 1


 �k

(27.22)

This indicates that when k(K) � 1 the convergence of the CG algorithm is very fast. Most structural problems however,

suffer from bad mathematical conditioning for instance arising from stiffness changes in the structure, mixing of translation

and rotational DoF, etc. In those cases k(K) � 1 and the convergence rate is very slow. An important way to increase the

convergence rate is thus to improve the condition number of the operator. This can be done by the transformation

K̂ ¼ S�1K; (27.23)

with S chosen such that the condition number of K̂ is lower than that of K, a concept known as preconditioning. Note that S
must be a full rank matrix in order to retain the full possible solution space. In the iterative scheme of the CG method the

preconditioning step can be implemented by taking

pk ¼ S�1rk; (27.24)

In the ideal case one would take S�1 ¼ K�1, so that kðK̂Þ ¼ 1. In that case the search direction becomes pk ¼ K�1rk and the

exact solution would be found in one iteration. This is of course the paradox of the method: to achieve this we need the

inverse of K from a factorization. The updating step is then nothing more than a forward/backward substitution and the CG

method has in fact become a direct solver. The trick is therefore to come up with some approximation K̂�1 for K � 1 which is

good enough to seriously speed up the calculations but is not too costly in its construction.

A physical interpretation of the slow convergence without preconditioning is that the displacement solution we seek is

iteratively updated using forces (the orthogonalized residual vectors). This seems inconsistent from a mechanical point of

view and one should in fact translate the force errors to a displacement correction, using preconditioning. The better the

preconditioner approximates the inverse of K, the closer the correction is to a true displacement correction.The issue of

choosing an optimal preconditioner has been studied intensively over the years and as a result, many other preconditioners

exist. This is however not of interest here, as we will show in Sect. 27.3.5.
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27.3.4 Multiple Right Hand Sides

In the above discussion the CG method was considered for solving a static problem with a single right hand side:

KCj ¼ f j

In practice however, a component very rarely has a single interface DoF and hence multiple static modes need to be

calculated:

KC ¼ F; (27.25)

whereC ¼ [C1� � �Cp] and F ¼ [f 1� � �f p]. Using a direct solver this is very easy; since the factorization is already available
only a forward/backward substitution is needed to solve for the new right hand sides.

The question thus arises if something similar can be done for the CG method. In fact, two ways exist to handle multiple

right hand sides in the CG method, namely (1) performing subsequent iterations making use of the previous results through

projection and reconjugation, and (2) simultaneous iteration on a block of vectors. Both will be treated next.

27.3.4.1 Projection and Reconjugation

Suppose that we have computed the first static mode with a (preconditioned) CG solver:

KC1 ¼ f 1

In the process the following sequences were generated P1 ¼ p1, p2, � � � andW1 ¼ Kp1, Kp2, � � � , such that by construction
we have a K-orthonormal basis:

PT
1KP1 ¼ PT

1W1 ¼ I (27.26)

Hence, if we consider a new right hand side to find the next static mode we can first search for (an estimate of) the solution in

the existing space. So suppose we wish to solve

KC2 ¼ f 2 (27.27)

and already have an initial guess C2, 0 for the solution (the following also holds ifC2, 0 ¼ 0). Instead of directly starting
the CG iterations, we first try to improve the solution by searching for a correction in the existing space:

C2 � C2;0 þ P1a1 (27.28)

Inserting this in the static mode problem, premultiplying with P1
T and solving for a1 gives:

a1 ¼ PT
1 f 2 � KC2;0

� �
(27.29)

The improved solution for the second static mode is thus found as

C2 ¼ C2;0 þ P1P
T
1 f 2 � KC2;0

� � ¼ C2;0 þ P1P
T
1 f 2 � P1P

T
1KC2;0; (27.30)

where the last term can be recognized as projection of theC2, 0 on the space K-orthogonal to the existing space P1. By doing

this we already have the solution in the space P1 and will improve the solution by CG iterations. To that end, we can calculate

the associated residual:

r ¼ f 2 � KC2

¼ f 2 � KC2;0 � KP1P
T
1 f 2 þ KP1P

T
1KC2;0

¼ I �W1P
T
1

� �
f 2 � K �W1W

T
1

� �
C2;0

(27.31)
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This forms the starting point for the CG iterations for the new static mode. To avoid searching in the existing subspace,

the new search directions should not only be mutually orthogonalized but should also be orthogonalized with respect to P1

(this is sometimes called reconjugation). This process can be repeated for all right hand sides and the search space P is

continuously enriched. When this space is rich enough, the solution for a new right hand side may be found with very few

iterations. For more details see for instance [20].

27.3.4.2 Block Conjugate Gradient

Another way to treat multiple right hand sides in a CG solver is by solving them all simultaneously (i.e. solving directly

(27.26)). This can be achieved by iterating on a block of vectors [14]. In order to adapt the CG algorithm to block

computations, the only notable difference with the single vector algorithm is instead of simple scaling one needs to perform

a K-orthonormalization of the vectors in the block of search directions P, such that PTK P ¼ PTW ¼ I. This can be

accomplished for example through a modified Gram-Schmidt process [6]. Using this orthonormality, the orthogonalization

step of the block of vectors with respect to the previous directions is straightforward:

Pk ¼ Rk �
Xk�1

i¼1
Pibi with bi ¼ WT

i Rk: (27.32)

Similarly, the minimization step in the block algorithm is also easily solved as:

Ckþ1 ¼ Ck þ Pkhk with hk ¼ PT
kRk: (27.33)

Since in the block implementation the residuals are minimized simultaneously in all search directions, the convergence of

the method is very fast in terms of number of iterations. However, the total number of search directions needed for

convergence (i.e. block size times number of iterations) is approximately equal for the block and the single vector

algorithms. Still the block CG method is an interesting option since modern CPUs can run more efficiently when iterations

are performed on a number of vectors instead of a single vector.

However, the efficiency of the block approach is lost when a large number of static modes is sought (i.e. when the

component has many interface DoF) due to the memory requirements and the need to orthonormalize Pk. To overcome this,
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the projection and reconjugation approach for multiple right hand sides can be combined with the block CG algorithm. This

allows one to choose the block size such that the processor is optimally used while at the same time using the previous

iterates for finding the solutions for the other block right hand sides. So, the static problem of (27.26) is split in a number of

block equations

KCj ¼ Fj; (27.34)

and subsequently solved using a combination of the projection/reconjugation and block approaches. This variation of the CG

method is outlined in Algorithm 2.

27.3.5 Application to Updating of Static Modes

27.3.5.1 Preconditioning

In the previous subsections the basics of the CG method were outlined and it became clear that the convergence rate of the

algorithm is highly dependent on the effectiveness of the preconditioner. In this section we will show why the CG algorithm

is potentially very attractive for updating the static modes in a component reduction basis.

Suppose that we have calculated the static modesC(0) of the nominal component and stored the factorization of K(0). Next

we wish to solve the static modes problem for the modified component using the CG method from Algorithm 2. As initial

guess for the solution we use the static modes of the nominal system and, more importantly, the factorization of the nominal

stiffness matrix is used for preconditioning. Note that we can write the static problem for the modified system as:

Kð0Þ þ DK
� 

Cð1Þ ¼ Fð0Þ þ DF
� 

; (27.35)

Hence, taking the nominal static modes C(0) as initial guess for C(1), the initial (block) residual for the CG method can be

calculated as:

R0 ¼ F 0ð Þ þ DF
� 

� K 0ð Þ þ DK
� 

C 0ð Þ ¼ DF� DKC 0ð Þ (27.36)

After preconditioning, minimization and updating, the new estimate for the updated static modes is found: C1
(1). This

approximation can be written as the nominal solution plus some correction Cð1Þ
1 ¼ Cð0Þ þ DC0. We can therefore calculate

the next residual as:

R1 ¼ F 0ð Þ þ DF
� 

� K 0ð Þ þ DK
� 

C 0ð Þ þ DC0

� 
¼ R0 � K 0ð Þ þ DK

� 
DC0 (27.37)

Now we note that in case the correction would be exact, this residual R1 would be equal to zero. Hence, for the exact

correction we can write:

R0 ¼ Kð0Þ þ DK
� 

DC (27.38)

The corresponding search directions are found after preconditioning:

P0 ¼ Kð0Þ�1

R0 ¼ I þ K 0ð Þ�1

DK
� 

DC (27.39)

This shows that the closer Kð0Þ�1

DK is to some factor times identity, the closer the search direction will be to the direction of

the exact correction. Indeed, in case DK ¼ aK(0), then the search direction would be DC, the minimization step scales this

direction by the factor (1 + a) and the solution is obtained in one iteration. Hence, a very good preconditioner is available

“for free” if K(0) was factorized for the nominal system. The closer the modified component is to the nominal one (i.e. the

smaller the design change), the better this preconditioner becomes and the faster the CG algorithm will converge.
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Note that in practice a component often undergoes a series of design modifications from the nominal to the final design. In

that case, not only the factorization of the nominal component’s stiffness matrix might be useful for preconditioning, but also

the CG iterates obtained from updating computations of previous modifications. One important issue then becomes selecting

from all this available information the most relevant content for approximating the inverse of the current stiffness matrix.

This will not be addressed here.

27.3.5.2 Practical Issues Block Implementation

As outlined in the introduction, a component’s static modes correspond physically to the static deformation shapes in

response to an excitation (either displacement or force) at one of its boundary DoF. In practice, where the boundary DoF may

be located close to each other, this means that some of the static modes may be very similar in shape. Mathematically

speaking, such vectors are (nearly) linearly dependent. Indeed, when starting the CG iterations with C0
(1) ¼ C(0) and C(0)

having linearly dependent columns, the initial residual will not have full rank. As a result, the orthonormalization process of

the vectors in P0 will break down and the CG algorithm is no longer guaranteed to converge. To overcome this, a check on

the rank of the initial residual needs to be performed when initializing the block CG algorithm [5]. If the block of vectors is

rank deficient, they need to be orthogonalized such that:

R0 ¼ Fð1Þ � Kð1ÞCð0Þ ¼ �R0G (27.40)

Here �R0 has size n �r and G has size r �p, with r the rank of R0 and p the original number of vectors in the block. The

original problem is then transformed to:

Kð1Þ �Cð1Þ ¼ �R0 (27.41)

After solving the transformed problem, the solutions to the original updating problem can be recovered by:

Cð1Þ ¼ Cð0Þ þ �Cð1ÞG (27.42)

Another issue encountered in practice is that not all vectors in the block converge at the same rate. Some vectors may thus

meet the convergence criterion much sooner than others. In order to minimize the computational effort and, more

importantly, to avoid numerical instabilities in the minimization step it is therefore advisable to remove converged vectors

from the block.

27.4 Modified Component Reduction Basis

In the previous section it was explained how the static modes of the modified component can be found by updating the

nominal modes using the preconditioned conjugate gradient method. Here we will treat enrichment of the dynamic part of

the reduction basis using vibration mode sensitivities. Thereafter we will show the complete reduction basis of the modified

component and finally the reduction basis updating method will be briefly summarized.

27.4.1 Enrichment of Vibration Modes

As explained in the introduction, we choose not to recompute or update the (fixed interface) vibration modes but instead to

enrich the basis using modal sensitivity vectors. This method was first described in [13] and also applied in [1]; its derivation

will be treated below.

Based on the eigensolutions of the nominal component and the design modification, one can easily and fairly cheaply

calculate so called modal sensitivities. These modal sensitivities contain information on the extent and direction in which the

eigensolutions have changed due to the design modification. In order to obtain these sensitivity modes, suppose that we have

solved the eigenproblem of the nominal system:

Kð0ÞFð0Þ �Mð0ÞFð0ÞOð0Þ2 ¼ 0 (27.43)
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Here we have again used compact notation, such that for the Craig-Bampton (i.e. fixed interface vibration modes) case we

have:

K ! Kii

M ! Mii

F ! Fi

O ! Oi

8>>><
>>>:

Next, we wish to solve the eigenproblem for the modified component:

Kð1ÞFð1Þ �Mð1ÞFð1ÞOð1Þ2 ¼ Kð0Þ þ DK
� 

Fð1Þ � Mð0Þ þ DM
� 

Fð1ÞOð1Þ2 ¼ 0 (27.44)

This problem we can write as:

Kð0ÞFð1Þ �Mð0ÞFð1ÞOð1Þ2 ¼ �DKFð1Þ þ DMFð1ÞOð1Þ2 (27.45)

Since we are interested in the lowest eigenmodes, assume now that the elastic forces are dominating over the inertia forces.

This gives not the true modes, but some correction or sensitivity �Fð1Þ:

Kð0Þ �Fð1Þ ¼ �DKFð1Þ þ DMFð1ÞOð1Þ2 (27.46)

However, the eigenmodes and frequencies of the modified system are unknown. Still we can assume that

Fð1Þ ¼ Fð0Þ þ DF and Oð1Þ2 ¼ Oð0Þ2 þ DO2: (27.47)

Inserting in (27.46) and neglecting higher order terms gives a set of first order correction/sensitivity modes as:

Fð1Þ ¼ �Kð0Þ�1

DKFð0Þ � DMFð0ÞOð0Þ2
� 

(27.48)

Since the factorization of K(0) is already computed and the design changes may be only local, this is not very expensive to

compute. These “modal sensitivities” or corrections are directly used to enrich the reduction basis, which is sometimes

called the Enriched Craig-Bampton method (ECB) [1]. Physically, these modal corrections can be interpreted as the

deformation shapes due to the force residual resulting from the applying the nominal eigensolutions to the modified

structure.

In order to retain the sparsity of the reduced matrices, one can decide to orthogonalize the sensitivity modes. This

involves both orthogonalization with respect to the nominal vibration modes and mutual orthogonalization by solving the so-

called interaction problem. See for instance [18].

27.4.2 Modified Component Reduction Basis

In summary, the Craig-Bampton reduction basis for the modified component consists of:

• Modified static constraint modes CC
(1), obtained from updating the nominal static constraint modes using the PCG

method.

• Original fixed interface vibration modes Fi
(0), obtained from solving the nominal fixed interface eigenproblem.

• Modal sensitivity vectors �Fð1Þ
i , obtained from the first order perturbation analysis.

Hence, the internal DoF ui of the modified structure are approximated by:

ui � C
ð1Þ
C ub þF

ð0Þ
i hi þ �F

ð1Þ
i a (27.49)
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Where a are the modal amplitudes of the sensitivity modes. As in the nominal Criag-Bampton basis the interface DoF are

retained. This transformation can be put into matrix format in order to obtain the updated and enriched Craig-Bampton

reduction matrix for the modified component:

ub
ui

� �
¼ ub

C
ð1Þ
C ub þF

ð0Þ
i hi þF

ð1Þ
i a

� �
¼ I 0 0

C
ð1Þ
C F

ð0Þ
i F

ð1Þ
i

� � ub
hi

a

2
4

3
5 ¼ Rð1Þq (27.50)

The updating method is summarized in Fig. 27.1, where the blocks shown in green are the ingredients used in the original

component reduction basis while the orange blocks form the reduction basis for modified component.

27.5 Case Study

27.5.1 Structure and Design Modifications

The structure taken for the case study is a so called bedframe from a modern multi-megawatt wind turbine. The bedframe is

the central part of the nacelle and supports the wind turbine drive train. Common practice among wind turbine manufacturers

is to base new wind turbine models on existing designs by changing the rotor diameter and/or rated generator power. In the

design process, the nominal components from the original turbine are subjected to small design modifications such that they

have sufficient capacity to withstand the loads associated with the new rotor and/or generator. This design approach also

holds for the bedframe considered here.

Three finite element models have been created for the bedframe structure, only differing in their mesh size. These models

will be referred to as the “coarse”, “normal” and “fine” models, respectively, and their properties are listed in Table 27.1.

Considering three FE models allows to study the influence of the model size on the effectiveness of the iterative CG method.

All three finite element models are meshed using quadratic (i.e. ten-node) tetrahedral elements with only translational

nodal DoF. Note that this somewhat simplifies the analysis, as difficulties with scaling of rotational DoF are avoided. The

normal finite element model of the nominal bedframe structure is shown in Fig. 27.2. The interfaces of the bedframe

considered here are the red areas shown in the topview plot. At these locations, the so-called yaw system is connected. Each

interface consists of multiple nodes which for simplicity have been replaced by a single 6 DoF master node by assuming the

interface region behaves rigidly. In total, this leads to 24 interface DoF, regardless of the mesh size.

To resemble realistic situations, the bedplate structure is subjected to the following design modifications:

Case 1 – Global geometric change in x, z directions The complete bedframe geometry is modified to grow in the global x
(width) and z (thickness) directions; both directions are scaled by the same factor. The length of the bedframe as well as its

structural properties, such as the Young’s modulus, Poisson ratio and density, remain constant. In order to study the effect of

Vibration modes (0)

Compute static modes
using direct solver

Compute static modes using 
PCG 

Full FE model 
nominal system

K(0), M(0)
Factorized K(0)

Static modes (0)

Compute vibration modes
using iterative solverNominal system

Modified system
Full FE model 

modified system
K(1) , M(1)

Design change
(parametric)

Static modes (1)

Iterates P, W

Compute vibration mode 
sensitivities Sensitivity  modes 

(1)

Preconditioning

Initial guess

Vibration modes (0)

Fig. 27.1 Flowchart for updating of component reduction bases
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the magnitude of the design change, the following series of 15 scaling factors is used: [1.005, 1.01, 1.02, 1.03, 1.04, 1.05,

1.075, 1.10, 1.125, 1.15, 1.20, 1.25, 1.30, 1.40, 1.50]. This means that for each FE model 15 modified variants will be

created.

Case 2 – Local material property change For this case the structure is divided into three parts as shown in Fig. 27.3: the

bedplate (green), bearing housing (red, designated by “mb”) and gearbox supports (blue, designated by “gs”). Two variants

are considered for each FE model, namely where the material properties of the bearing housing and gearbox supports are

individually changed from steel to aluminium. The material properties used for both materials are listed in Table 27.2.

In order to quantify the effect of the set of design changes described above, we define the following metrics based on the

Frobenius norm of the structural matrices:

dK ¼ kDKk
kKð0Þk and dM ¼ kDMk

kMð0Þk (27.51)

Since the models at hand only consist of translational DoF, these numbers can be roughly interpreted as the factor by which

the global stiffness and mass properties have changed by the design modification.

Table 27.1 Bedplate FE model

properties
Coarse Normal Fine

# DoF 123.459 246.762 511.953

# Elements 23.651 49.882 107.681

Fig. 27.2 Finite element model of bedframe structure

Fig. 27.3 Division of the bedframe finite element model into three parts
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In the remainder of this section we first illustrate the need for accurate updating of the static modes through a comparison

with the ECB method [13]. Thereafter we present in Sect. 27.5.3 the results for the updating of the static modes, where we

will address how the block size, design modification and model size affect the results. Finally, we note that all calculations

are performed in MATLAB R2009b on a quad-core Intel Xeon machine running Windows XP64.

27.5.2 Importance of Accuracy of Static Modes

In order to illustrate the need for an accurate and efficient updating method for the static modes, we first show the difference

between a modified component reduced using the ECB method and the updated/enriched basis proposed in (27.51). As

explained before, the only difference between these reduction bases is that in the ECB method the static modes of the

nominal component are applied to the modified component, whereas in our approach the static modes are updated to suit the

modified component. The vibrational information is the same in both bases.

For this comparison the normal FE model (250k DoF) is taken and subjected to design modification case 1, variant 8 (i.e.

10% scaling in global x and z directions), which was considered a realistic testcase. This model is reduced using the nominal

CB reduction basis, the true modified reduction basis, the ECB basis and the updated CB basis. This creates four reduced

models of which the eigenfrequencies are computed and compared. The results are shown in Fig. 27.4.

Since the model is free-floating, the first six eigensolutions should be rigid body modes at (approximately) 0 Hz.

However, as mentioned before, inaccuracies in the static modes can cause the rigid body modes to shift to higher

frequencies. Therefore, the frequencies of the first six modes in Fig. 27.4 are normalized by the first true flexible frequency.

For modes 7 and higher the difference between the full and reduced model frequency is plotted, normalized by the

corresponding full model frequency. From Fig. 27.4 a number of observations can be made:

• Both the nominal CB and ECB bases are unable to properly describe the rotational rigid body modes of the modified

reduced model. This severely handicaps the use of these models in an assembled model, as rigid motions already cause

reaction forces to neighboring components.

• Sufficient accuracy of the static modes is also important to properly represent the first few flexible modes.

• Adding sensitivity modes to the basis helps the accuracy of the higher eigenfrequencies, as can be seen from the

difference between the ECB method and applying the nominal CB basis to the modified component.

Table 27.2 Material properties Density [kg/m3] Young’s modulus [GPa] Poisson ration [ � ]

Steel 7,850 210 0.30

Aluminium 2,700 70 0.35

Updated CB
Enriched CB
True modified CB
Nominal CB

Frequency errors for different reduction bases
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Fig. 27.4 Frequency errors for different reduction bases for normal FE model, case 1 – (x, z) scaling by 10%
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• The updated basis presented here gives only slightly less accurate results than the true recomputed CB basis. Depending

on its computational efficiency, the method could be very promising.

This comparison emphasizes the need to accurately represent the static modes in the component reduction basis. As

mentioned earlier, this can be done by direct computation (requiring refactorization of the stiffness matrix) or using the

iterative CGmethod proposed here. In order for the latter method to be successful, its computational cost must be lower. This

will be investigated next, where the main comparison criterion will be CPU time.

27.5.3 Efficiency of Updating of Static Modes

The test structure has 24 interface DoF, hence we need to compute 24 static constraint modes. In order to obtain the static

modes for the nominal component we apply a compiled direct solver based on sparse LDLt-type decomposition. This solver

is part of the SD Toolbox [2]. For the three FE models, Table 27.3 lists the solver’s computation times for the factorization of

the stiffness matrix and backsubstitution to obtain the 24 static modes.

After performing the design modifications as outlined before and rebuilding the finite element matrices, we wish to

compute the static modes of the modified structures using an implementation of Algorithm 2. In all subsequent calculations

the relative iteration tolerance is set to e ¼ 10�6.

27.5.3.1 Effect of Algorithm Settings

In the block CG algorithm shown in Algorithm 2 the block size used in the iterations can be freely chosen. In order to assess

the influence of the block size on the efficiency of the CG solver, the normal FE model is taken and analyzed for all design

modifications in case 1 and different block sizes ranging from 1 to 24. Figure 27.5 shows the results for the relative CPU time

for each design modification, i.e. the CPU time for a specific block size divided by the lowest CPU time for that design

modification. The size of the markers is inversely proportional to the relative CPU time, while the green markers indicate

lowest CPU time.

Furthermore, taking case 1, design modification 8 (i.e. 10% scaling in global x and z directions) the effect of varying the

block size is listed in Table 27.4.

Table 27.3 CPU times for direct calculation of static modes

Coarse Normal Fine

Factorization [s] 11 50 260

Backsubstitution [s] 2 5 16

Total direct [s] 13 55 276

Case 1 – Effect of block size
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Design modification #
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Fig. 27.5 Relative CPU time versus block size
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From these results we observe the following:

• For the current implementation and calculation setup, in the majority of cases a block size of 8 is the most efficient choice.

This seems to be independent of design modification and model size, as similar results are found for the coarse and fine

FE model (not shown here).

• As speculated in Sect. 27.3.4.2, the block algorithm is always more CPU efficient than its single vector equivalent, even

for a block size of 2.

• From a memory usage perspective the single vector algorithm is least demanding, as it finds the solution using the lowest

number of search directions. However, these differences are rather small compared to the differences in CPU time.

• The block size times the number of iterations is in general not equal to the total number of vectors used in the

approximation space, due to the fact that converged vectors have been removed from the iteration blocks.

Following these results, all subsequent calculations using the block CG method are performed with a block size of 8.

27.5.3.2 Effect of Design Modification and Model Size

As mentioned before, the most important criterion for the practical applicability of the updating strategy is its computational

cost compared to that of direct methods for realistic design modifications. In order to assess this, the three finite element

models are subjected to the design changes described in Sect. 27.5.1. The results are presented in Fig. 27.6 where the

relative CPU time is plotted as a function of the intensity of the design change, expressed by dK as defined in (27.52). The

relative CPU time is defined as the actual CPU time divided by the CPU time needed for the direct solver (see Table 27.3).

Furthermore, for each of the two design change cases we have chose one representative variant and provided detailed

results in Table 27.5. For case 1 a global scaling of 10% was deemed realistic, while for case 2 the material change of the

bearing housing is considered.

Based on Fig. 27.6 and Table 27.5, a number of observations and remarks can be made:

• From the results of case 1 it appears that a somewhat linear relation seems to exist between dK and the CPU time,

regardless of the model size.

• With increasing model size the updating approach becomes relatively more efficient. This is due to the fact that

factorization of the sparse stiffness matrix takes in the order of nb2 floating point operations, where n is the model size

and b the matrix’ diagonal bandwidth [6]. Backsubstitution requires an additional nb operations, leading to a total of the

order of nb2 + nb operations for the direct solver. From Table 27.5 we see that the number of CG iterations needed for

convergence is not dependent on the model size. Hence the number of matrix-vector multiplications, each requiring of the

order of nb operations, is constant and the total number of operations is of the order of nbm, where m is the number of

iterations. In both cases the number of operations, and hence the computation time, scales linearly with the model size n.
However, the matrix bandwidth b also increases with a smaller mesh size. Since the computational cost of the direct

solver depends quadratically on b while the CG solver’s cost depends only linearly, it is clear that for larger models the

iterative method becomes more and more attractive.

• For the global modifications, the top plot in Fig. 27.6 can be used to determine the “break-even” point, i.e. the dK values

and scaling factors for which the CPU time of the CG solver is equal to that of the direct solver (relative CPU time equal

to 1) (Table 27.6).

• Local modifications can be handled much more efficiently then global changes even though the corresponding dK values

are larger. In fact, for the two local modifications tested here, the updating approach is always more efficient then the

direct method.

Table 27.4 Effect of block size for normal FE model, case 1 – (x, z) scaling by 10%

Block size CPU time [s] # iterations # vectors

1 105 141 141

2 69 77 144

4 63 43 149

6 54 28 148

8 51 22 150

12 59 15 175

24 68 11 195
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• In practice a design modification where the structure’s dimensions are scaled by 50% is not realistic. In that case one

either creates a new model or sequentially applies smaller design changes of for instance 10% scaling. In the latter case,

one can use the updating approach combined with previous CG iterates to enhance the preconditioning. Although out of

the scope of this work, an important aspect is then the selection of the most relevant parts of the old iterates for the current

problem. See for instance [19, 16, 17, 7, 15].
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Table 27.5 Static modes updating results for three realistic cases

Design change dK CPU [s] # iterations # vectors Rel. CPU [ � ]

Case 1 – 10% Coarse 0.109 20 22 150 1.6

Normal 0.096 51 22 150 0.9

Fine 0.096 142 23 152 0.5

Case 2 – mb Coarse 0.260 10 13 77 0.8

Normal 0.239 24 12 76 0.4

Fine 0.252 66 12 76 0.2

Table 27.6 Break even points for updating of static modes

Coarse Normal Fine

dK scale % dK scale % dK scale %

0.041 4 0.105 11 0.230 23
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27.6 Conclusions and Recommendations

Application of component model reduction techniques such as the Craig-Bampton method can be troublesome in practical

design settings due to the need to recompute the component reduction basis when the model is subject to design

modifications. Especially the static modes in this basis need to be adapted to the modified model in order to represent the

rigid body modes and interaction with neighboring components.

In this paper a method was proposed for updating the static modes in the Craig-Bampton component model reduction

method. The method is based on a preconditioned conjugate gradient method and reuses the factorization of the nominal

stiffness matrix and nominal static modes. Furthermore, the enrichment strategy from the Enriched Craig-Bampton method

was adopted to account for the modified component’s dynamics by adding modal sensitivity vectors to the reduction basis.

A case study was performed to test the proposed methodology.

From the results it can be concluded that proper description of the modified static modes is crucial to the reduced model

accuracy, confirming the need for the proposed updating method. In many realistic cases the updating method also proved to

be more computationally efficient than direct recomputation of the static modes. Depending on the intensity of the design

change and the size of the model, the updating method is up to five times faster than recomputation. In addition, the

enrichment method proved to give sufficient accuracy on the higher vibration modes for a realistic design change. It can

therefore be concluded that the proposed method is an attractive alternative to both recomputation of the basis and existing

reanalysis methods.

However, the method loses its strength for larger design changes and/or multiple parametric variations. In that case, the

modal sensitivity vectors are not sufficient to describe the modified dynamics and/or the reduction basis needs to be enriched

by so many modes that it loses its compactness. In that case an iterative updating strategy, similar to that devised here for the

static modes, might be more efficient. Research on this topic is ongoing.
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Chapter 28

Comparison of CMS, Krylov and Balanced Truncation Based Model

Reduction from a Mechanical Application Engineer’s Perspective

Wolfgang Witteveen

Abstract Component Mode Synthesis (CMS) is a well known and established method for order reduction of Finite Element

(FE) models. One advantage of CMS is a clear physical interpretability and another, more practical one, is the availability in

common FE packages. In the last years a lot of research has been done, in order to adapt reduction methods, which are based

on Krylov subspaces and balanced truncation for FE models. Several recent publications denote mode based reduction

methods, like CMS, as out-dated while the latter ones are so called ‘modern methods’. For a mechanical application engineer

the question arises, whether these methods are really so advantageous, that the reliable CMS should be exchanged against

one of the two other methods.

This paper is devoted to a numerical and qualitative comparison of these three methods with respect to each other. The

contribution starts with an introduction, where the ‘mechanical application engineer’s perspective’ is explained in terms

of requirements and boundary conditions of the reduction process. Next, all three approaches will be briefly outlined

and representative literature will be cited. In the next chapter, all three methods will be demonstrated by a simple three

mass example, so that some basic characteristics can easily be seen and first conclusions can be drawn. In the subsequent

section the different methods will be applied to simple FE structures and the quality of the reduced models will be

examined. Finally a conclusion will be drawn whether one of the three methods is clear better (or worse) with respect to

the other ones.

Nomenclature

M Stiffness matrix

K Stiffness matrix

B, B1 Input matrix

C, C1 Output matrix

E, A System matrices for LTI system

q State space vector
~M Quantity M in reduced model

u Force vector

x Nodal DOF vector of FE model

y Output vector

n Number of DOF of FE model

u Number of external forces

y Number of outputs

m Number of DOF in reduced model

W. Witteveen (*)

University of Applied Sciences Upper Austria – Wels Campus, Stelzhammer str. 69, Wels 4600, Austria

e-mail: wolfgang.witteveen@fh-wels.at

R.L. Mayes et al. (eds.), Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2,
Conference Proceedings of the Society for Experimental Mechanics Series 27,

DOI 10.1007/978-1-4614-2422-2_28, # The Society for Experimental Mechanics, Inc. 2012

319

mailto:wolfgang.witteveen@fh-wels.at


p Number of considered modes

s Number of static trial vectors

V, W Subspace for reduction

VD Modes gained by an eigenvalue problem

VS Static deformation shapes

xB Boundary DOF

xI Inner DOF

b Number of boundary DOF

s Complex laplace variable

H(s) Transfer function matrix

f Frequency

oi Eigenfrequency of the i-th mode

o* Eigenfrequency limit

T
s0
j j-th moment around s0

WC Controllability Gramian matrix

WO Observability Gramian matrix

t Time

T Particular time instant

si Hankel Singular Value

r Number of considered trial vectors

28.1 Introduction and Motivation

Model order reduction is a key issue when the dynamics of Finite Element models is investigated. During the last decades

a lot of reduction methods have been proposed. For linear elastic structures with a moderate number of input degrees of

freedom (DOF), mode based reductions methods, like Component Mode Synthesis (CMS) have been developed to very

reliable standard tools. In the last years a lot of effort has been made in order to adapt model reduction methods for

mechanical structures which come from control engineering, namely Krylov subspace and balanced truncation based

methods. In some newer publications the latter methods are named as ‘modern methods’ while the mode based methods

are characterized as ‘out dated’. For an application engineer the question arises whether the well established and very reliable

CMS should be replaced by other methods. This work is devoted to a critical qualitative and numerical comparison of the

three methods in the context of industrial use together with solid and lightly damped structures.

Key issues off this comparison are:

• Restriction to conservative systems.

• Sensitivity of the reduced system with respect to boundary conditions at the input/output DOF (multi body dynamics)

• Static response

• Structure and stability preserving model order reduction

• Full system response (for stress recovery)

• Number of required modes for convergence and parameters in order to select them

28.1.1 Restriction to Conservative Systems

For a wide range of applications in solid mechanics with iron like materials it is sufficient to regard the conservative system

for model reduction only. This is because of the nature of the two most frequently involved damping mechanisms, namely

joint damping (micro slip) and material damping. Both of them are mainly frequency independed energy dissipation

mechanisms, see exemplarily [1] and [2]. Consequently a viscous model does not meet reality, see [3] for joint damping.

Consequently, a viscous damping is always a rough approximation in such cases and it does not matter if it is introduced in

the full system or in the reduced system. The latter statements are not valid for structures which consists entirely or partially

of rubber or other visco-elastic materials. This publication deals with iron like materials where visco-elastic effects do not

play an important role.
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28.1.2 Sensitivity of the Reduced System with Respect to Boundary Conditions
at the Input/Output DOF

One of the most frequent situations when model order reduction of Finite Element models has to be applied is when such

structures are implemented in Multi Body Dynamics (MBD). In this particular case an arbitrary interaction of the input/

output DOF with the surrounding rigid or flexible bodies should be possible. In other words, the response of the reduced

system has to be sufficient accurate if no stiffness or if infinite stiffness acts on the input/output DOF. Therefore, the response

of the reduced system will be investigated in this paper when no stiffness acts on the input/output DOF and when a subset of

the input/output DOF are mounted.

28.1.3 Static Response

In mechanics the static response of a system is of special interest. It is not just a theoretical issue as may be in other

disciplines. Statics has a special physical meaning and an exact reproduction of the static system behavior is definitely an

advantage of a certain reduction method.

28.1.4 Structure and Stability Preserving Model Order Reduction

If a reduced model is used for time integration it is of significant importance, that no instability will be introduced due to the

model order reduction. In this particular case, when no damping is regarded the eigenvalues of the reduced model are

required to be real such as they are in the original system. For the sake of physical interpretability it is furthermore required

that the reduced mass and stiffness matrixes are symmetric such as they are in the full system. This requires, that the input

DOF are the same as the output DOF which can be seen in the literature cited below. The investigations here are restricted to

such systems.

28.1.5 Full System Response (for Stress Recovery)

Krylov subspace methods and in particular balanced truncation guarantee a defined behavior between the input and output

DOF. This is of special interest in control but this is not sufficient in structural mechanics where the place of the highest

stress is not known a priory and in general it is not at the location of an input or output DOF. For this reason this publication

is not concerned about the input/output transfer behavior. The focus is on the response of the entire structure. As it can be

seen in the theory, outlined below, the entire structure cannot be defined as input/output DOF because that would lead to a

huge number of trial vectors.

28.1.6 Number of Required Modes for Convergence and Parameters in Order to Select Them

A key quality feature of a reduction method is the number of necessary trial vectors in order to obtain a sufficient accurate

result. This issue has to be seen in the context of stress recovery where this convergence issue is more critical as when just

displacements will be regarded. That means, error estimation for displacements is not sufficient. Stress and displacement are

not necessarily directly connected. Locations with high displacements may have low stresses and vice versa.

Note, that the applicability of the methods for huge FE structures is not part of this publication. Furthermore it is not the

meaning of this work to question the importance of the Krylov subspace or balanced truncation based methods for other

fields like control engineering. The focus of this work is model reduction for solid mechanics.

There is already a considerable amount of comparative literature available, see exemplarily [4–8]. The latter publications

do not have the particular focus on the issues mentioned above.
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The paper is organized as follows: In the subsequent section all three approaches will be briefly outlined and representative

literature will be cited. In the next chapter, all three methods will be demonstrated by a simple three mass example, so that

some basic characteristics can easily be seen and first conclusions can be drawn. In the subsequent section the different

methods will be applied to a simple FE structures and the quality of the reducedmodels will be examined. Finally a conclusion

will be drawn whether one of the three methods is clear better (or worse) with respect to the other ones.

28.2 Short Review of Mode Based, Krylov Subspace Based and Balanced Truncation

Based Model Order Reduction Methods

The Finite Element Method (FEM) leads to an equation of motion in the form of

M €xþKx ¼ B1u

y ¼ C1x
(28.1)

where the (n � n) matrixes M and K are the mass and stiffness matrix, the (n � 1) vector x contains the bodies degrees of

freedom, the (u � 1) vector holds the time varying loads, the (n � u) matrix B1 maps the loads to the corresponding degrees

of freedom, the (y � 1) vector y holds the output of interest and C1 maps the state variables to the output. In the following a

symmetric system is considered with M ¼ M
T and K ¼ K

T.

The corresponding reduced system can be given as

~M€zþ ~Kz ¼ ~B1u

y ¼ ~C1z
(28.2)

x ¼ Vz; ~M ¼ WTMV; ~K ¼ WTKV; ~B1¼WTB1; ~C1¼C1V (28.3)

with the n � m matrixes V and W. Model order reduction deals with the question of determining the matrixes V and W so

that the reduced system captures somehow the important characteristics of the unreduced system.

System (28.1) can be transformed into a LTI system in standard state space representation:

E _q ¼ Aqþ Bu

y ¼ Cq
(28.4)

qT ¼ xT _xT
� �

; B ¼ 0

B1

� �
; C ¼ C1 0½ �; E ¼ I 0

0 M

� �
;A ¼ 0 I

�K 0

� �
(28.5)

In [9] a little modification of (28.4) is suggested, so that symmetric system matrixes are obtained in case of a symmetric

system (28.1).

E� _q ¼ A�qþ Bu

y ¼ Cq
(28.6)

E� ¼ �K 0

0 M

� �
; A� ¼ 0 �K

�K 0

� �
(28.7)

The according reduced system is

~E _~q ¼ ~A~qþ ~Bu

y ¼ ~C~q
(28.8)

~q ¼ Vq; ~E ¼ WTEV ; ~A ¼ WTAV; ~B ¼ WTB; ~C ¼ CV (28.9)
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28.2.1 Mode Based Approach

A mode based reduction procedure is typically directly applied to the second order system (28.1). In order to preserve the

symmetric structure and the stability characteristics a so called symmetric or ‘one sided’ projection W ¼ V has to be

applied. Commonly, the reduction matrixes are of the form

V ¼ VS VD½ � (28.10)

where the trial vectors in the (n � p) matrix VD are vibration modes which capture the systems dynamics. These modes are

obtained by a proper eigenvalue problem which delivers an additional eigenfrequency for each mode. For the reduction

process just these p modes (p � n) are regarded having an eigenfrequency which is in the range of the frequency spectra of

external excitation forces, see [10–12].

In order to improve the convergence, some static trial vectors are added to the vibration modes. This is of particular

importance in case of stress recovery, see [13]. The latter modes are collected in the columns of the (n � s) matrix VS.

During the last decades a lot of methods for the computation of V have been suggested, see [10–12]. One of the best

known and a widely used approach is the one of Craig (and Bampton), see [14]. For this publication the latter method is

chosen to represent the family of ‘mode based’ reduction methods.

The vector of nodal DOF of the FE model (28.1) is subdivided into

xT ¼ xB
T xI

T
� �

(28.11)

where the (b � 1) Vector xB represents the ‚boundary‘DOF and the ((n�b) � 1) vector xI holds the emaining ‚inner‘DOF.

The boundary DOF are defined, as those DOF on which external forces may be applied. In terms of the system (28.1), the

input matrix B1 contains non zero entries at these DOF.

According to the subdivision (28.11), an eigenvalue problem in the form of

KI;I � oi
2MI;I

� �
vD;i ¼ 0 (28.12)

can be solved. Because the boundary DOF are fixed, the obtained modes vD,i are named as ‚Fixed Boundary Normal Modes‘.

The matrix of vibration modes can be given as

VD ¼ 0 0 0 0

vD;1 vD;2 � � � vD;p

� �
(28.13)

with an user defined eigenfrequency limit o* so that

op < o� (28.14)

The latter limit is usually connected to the highest relevant frequency content of the excitation. Die Matrix VS is obtained

according to a Guyan reduction

VS ¼ I

�KI;I
�1KI;B

� �
(28.15)

with the identity matrix I. Obviously, each boundary DOF introduces a trial vector in VS. These strategy leads to difficulties

in case of distributed loads when the number of b is very high. In such a case the space spanned by VS can be approximated

by a space with a lower dimension as b, see exemplarily [15] and [16].

Due to the clear physical meaning of the displacement fields and eigenvalues it is a nice and important feature of CMS,

that measurements and experience can be directly used to evaluate the quality of the model and the projection base.
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28.2.2 Krylov Subspace Based Approach

With the Laplace transformation the transfer function of the system (28.4) can be given as

HðsÞ ¼ C sE� Að Þ�1
B (28.16)

where s holds the complex Laplace variable, see [17–21]. An approximation of (28.16) with a Power Series around s0 gives

HðsÞ ¼
X1
j¼0

Ts0
j s0 � sð Þj (28.17)

with the so called j-th moment Ts0
j ([20]).

T
s0
j ¼ C s0E� Að Þ�1

E
� �j

s0E� Að Þ�1
B (28.18)

If W and V are chosen in such a way, that the spanned space is equal to

V ¼ Pv
J�1Rv � � � Pv

1Rv Rv

� �
W ¼ PW

J�1RW � � � PW
1RW RW

� � (28.19)

with

Rv ¼ s0E� Að Þ�1
B; Pv ¼ s0E� Að Þ�1

E

RW ¼ s0E� Að Þ�T
CT; Pv ¼ s0E� Að Þ�T

ET
(28.20)

it can be shown, that the first 2 J moments of the reduced system around s0 are equal to the ones in the full system.

T
s0
j ¼ ~T

s0
j j ¼ 1::2J (28.21)

Note, that a direct implementation of (28.19) for the construction of W and V is numerically disadvantageous. The

literature offers better choices, see exemplarily [19].

If model reduction is performed in order to enable efficient time integration, structure and stability preserving reduction

schemes are required. For that reason a symmetric (or one sided) projectionwithW ¼ V is used. In such a case just J moments

of the reduced and full model matches [19]. For system (28.6) and the special case thatM ¼ MT, K ¼ KT and C1
T ¼ B1 it

easily can be seen that W evaluates exactly to V, see (28.20). Note, that in structural mechanics this case is very common.

The transfer function of the second order system (28.1) is

HðsÞ ¼ C1 s2M� �Kð Þ� 	�1
B1 (28.22)

The formal similarity of (28.22) and (28.16) can be used to obtain the desired quantities in a similar matter. Again W

evaluates toV in case of a symmetric system (M ¼ MT,K ¼ KT) where the input is equal to the output (C1
T ¼ B1), see [20].

V ¼ PJ�1R � � � P1R R
� �

R ¼ s0
2MþK

� 	�1
B1; P ¼ s0

2MþK
� 	�1

M
(28.23)

The computation of V in the presence of a damping matrix can be found in [20].

A more mechanical interpretation of the Krylov sequences around s0 ¼ 0 can be found in [22] and [23]. There, each

additional Krylov sequence regards the dynamic residua of the already existing Krylov subspace in a quasi-static matter.

Note, that in [22] an estimation for the maximum error in the difference of the eigenfrequencies and eigenvectors can be

found. This is of particular interest, because no direct error estimation is available, like it is, in the case of balanced truncation.
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28.2.3 Balanced Truncation Based Approach

For the introduction of the Gramianmatrixes the system (28.4) is considered withE ¼ I. The conversion into such a system is

trivial in case of a non singularE. For a system (28.4) amatrixWC(T) can be given, so that, based on this matrix an input signal

u(t) can be computed, in order to reach an arbitrary state q(T) within the time T starting at q0 ¼ 0, see [17, 18] and [9, 24–26].

The latter input signal can be given as

uðtÞ ¼ BTe�ATt WCðTÞ½ ��1
e�ATqðTÞ (28.24)

with the so called Gramian controllability matrix WC(T)

WCðTÞ ¼
ðT
0

e�AtBBTe�ATtdt (28.25)

Further one the L2-norm for u(t) according to (28.24) can be given as

uðtÞk k22¼ qðTÞT WCðTÞ½ ��1
qðTÞ (28.26)

Very similar, the Gramian observability matrix WO(T) can be given. The matrix WO(T) can be used to reconstruct the

initial condition q0 based on an arbitrary output y(t). This reconstruction can be given as (u(t) ¼ 0):

q0 ¼ WOðTÞ½ ��1

ðT
0

eA
TtCTyðtÞdt (28.27)

with the Gramian observability matrix

WOðTÞ ¼
ðT
0

eA
TtCTCeAtdt (28.28)

and for the time history of y(t) the L2-norm can be given as:

yðtÞk k22¼ q0
T WOðTÞ q0 (28.29)

Note, that controllability and observability have been assumed for the latter considerations. The particular Gramians

WC(‘) und WO(‘) fulfill the Lyapunov equation:

AWC þWCA
T þ BBT ¼ 0

ATWO þWOAþ CTC ¼ 0
(28.30)

In case of B ¼ CT and a symmetric system of the form (28.6), the matrixes WC(‘) and WO(‘) are identical and can be

computed by the generalized Lyapunov equation, see [9].

E�WC A�½ �T þ AWC E�½ �T þ BBT ¼ 0 (28.31)

At this point it is important to note, that the systems (28.4) and (28.6) und their Gramians are not unique. With each non

singular (2n � 2n) transformation matrix T an equivalent but different system in the form of

~E _~q ¼ ~A~qþ ~Bu

y ¼ ~C~q
(28.32)

~q ¼ Tq; ~E ¼ TET�1 ; ~A ¼ TAT�1; ~B ¼ TB; ~C ¼ CT�1 (28.33)
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can be constructed. A system is called ‘balanced’ when the Gramians are diagonal matrixes and WC ¼ WO. This

‘balanced’realization and the corresponding transformation is unique. For the balanced system, equation (28.26) evaluates to

uðtÞk k22¼ ~qðTÞT
1
s1

. .
.

1
s2n

2
664

3
775~qðTÞ ¼ ~q1ðTÞ

1

s1
~q1ðTÞ þ ::::::: þ ~q2nðTÞ

1

s2n
~q2nðTÞ (28.34)

with s1 > s2 > . . ... > s2n. Equation (28.34) gives insight how the energy of the input signal (force) is distributed among

the states which corresponds to the vectors of T�1. A small sj leads to a large sj
�1 and that means, that the vector i needs a

lot of energy from the input signal to be controlled. Equation (28.29) can be given as

yðtÞk k22¼ ~q0
T

s1
. .
.

s2n

2
64

3
75~q0 ¼ ~q0;1s1~q0;1 þ :::::::þ ~q0;2ns2n~q0;2n (28.35)

and shows how the energy of the output signal depends from the states which corresponds to the vectors of T�1. A large

value of sj means, that the energy of the output signal is strongly influenced by this particular state. The idea of balanced

truncation is, to use just these states which need low energy to be controlled from the input and which give a lot of energy to

the output. Note, that the so called Hankel singular values s1 to s2n decrease quickly for common mechanical structures so

that just a view columns of the transformation matrix needs to be considered as trial vectors for the model reduction. A

special feature of this approach is an a-priori error bound in the form of

y� ~yk k2bdBT uk k2 (28.36)

with

dBT ¼ 2
X2n
j¼rþ1

sj (28.37)

and r as the number of the last considered trial vector, see [18].

For the implementation of balanced truncation several methods have been proposed, even for large structures, and

directly to second order systems see [17, 18] and [9, 24–26]. Note that balanced truncation for systems with a large number

of inputs and outputs still an active field of research. A more recent publication on that issue can be found in [27].

It is important to note, that there is a relation between balanced truncation and the vibration modes in case of an undamped

system. In [28] and [17] it can be seen that the balanced controllability and observability Gamian can be computed (or low

rank approximated) by the POD snapshot technique and in [29] it is shown, that the POD snapshot modes are identical with the

vibration modes of a conservative and symmetric system like (28.1). Of course, just ‘sufficient controllable’ and ‘sufficient

observable’ modes will form the base of Ritz vectors. This can be observed in the numerical examples below.

Note furthermore, that the Gramians obtained by the Lyaponov equations consider all frequencies. It is possible to

compute or approximate the Gramians just for the frequencies of interest, see [17] or [28].

In some publications the connection of the Krylov subspace method together with balanced truncation has been suggested.

In [30] it is suggested that the Krylov subspace method should be used to transform a huge system into a system of moderate

size. In a second step balanced truncation will be applied in order to transform themoderate system into a system of small size.

28.2.4 Error Quantities

Three very simple error quantities will be used in this presentation, namely:

• The modal assurance criterion (MAC)

• The relative difference of the eigenvalues of the reduced and full system

• The difference of the according normalized eigenvectors
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Due to these simple error norms, a very high accuracy is demanded for a satisfying performance.

The modal assurance criterion (MAC) between an vector vi and wj is defined as

MAC vi;wj

� 	 ¼ vi
T wj

� 	2
viT við Þ wj

T wj

� 	 (28.38)

The relative difference of the eigenfrequencies between the full and the reduced system is defined as

ei ¼ ~o� oi

oi

(28.39)

Finally, the difference between the eigenvectors of the full and reduced systems is given by the Euclidian norm

bi ¼ ~wi � wik k2 (28.40)

where wi holds the normalized i-th eigenvector of the full or the reduced system. This quantity will be used to measure the

difference of static deflection shapes as well. In that case wi stands for a deflection due to a static load and the quantity is

denoted as bS.

28.3 Simple 3 Mass Example

For qualitative considerations of the three reduction methods a system of threemasses (DOF) will be investigated, see Fig. 28.1.

As output and input DOF, mass 1 is selected. All computations have been performed with the software package Scilab

[31]. The system parameters are given as c ¼ 1, mi ¼ 1 and c* ¼ 1. Three eigenfrequencies can be computed to f1 ¼ 0.082

Hz, f2 ¼ 0.159 Hz and f3 ¼ 0.307 Hz with the according eigenvectors w1
T ¼ [�0.628 �0.46 �0.628], w2

T ¼ [�0.707

0 0.707] and w3
T ¼ [0.325 �0.888 0.325]. The static response due to a unit force acting on DOF 1 is ws

T ¼ [2 1 1].

As frequency limit of the reduced system f* ¼ 0.125 Hz is chosen. Consequently, the accuracy of the first mode will be

observed.

In a second step the error of an off tuned system will be observed. The idea is, that the reduction process should be

independed of the finally applied loads. Consequently it should be possible to connect a spring with the input/output DOF.

The properties of the off tuned full and reduced system should be similar even the reduction base of the original system has

been used. For the off tuned system, the first DOF is connected via a spring to ground. The according spring parameter has

been chosen to c ¼ 5. The first eigenfrequency of the full system in off tuned condition is f1 ¼ 0.119 Hz and the according

eigenvector has the form of wT ¼ [�0.628 �0.46 �0.628]. Note, that the second eigenfrequency is higher as f* and

therefore not of interest.

Fig. 28.1 One dimensional

three mass example
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28.3.1 Mode Based Approach

The first two eigenfrequencies of the Fixed Interface Normal Modes are 0.12 and 0.29 Hz. It is common to regard each

eigenfrequency below 2f* and this leads to one Fixed Interface Normal Mode. The second mode is obtained by the static

deflection of the structure due to a unit displacement and DOF 1, see (28.41).

VCMS ¼ vS vD½ � ¼
1 0

0:5 0:937
0:5 2:263

2
4

3
5 (28.41)

Note, that the vectors in (28.41) are not normalized. It is obvious, that the static deflection can be exactly reproduced in

the reduced systems. The relative error of the first eigenfrequencies is e1 ¼ 1.2e-3 and e2 ¼ 8e-3. Note, that just the first

eigenfrequency is actually in the range of validity. The main diagonal entities in the MAC matrix are 1 and 0.997 and the off

diagonal entity is 0.004.

For the off tuned system a relative eigenfrequency error of e1 ¼ 3.9e-5 and a MAC value of 1 is obtained.

28.3.2 Krylov Subspace Based Approach

The Krylov vectors are computed by an algorithm which can be seen in [19]. The Krylov vectors are computed around

s0 ¼ 0. For comparability with the CMS method, two vectors will be considered, see (28.42).

VK ¼ vK;1 vK;2½ � ¼
1 �1:31
0:5 0:655
0:5 1:964

2
4

3
5 (28.42)

Note again, that the vectors are not normalized. The first column contains the exact static solution as it has to be expected.

It can be stated that the exact static solution cannot be guaranteed if s0 is not equal to 0. The relative error of the first both

eigenfrequencies are e1 ¼ 5.7e-4 und e2 ¼ 3.2e-2. The main diagonal entities in the MACmatrix are 1 and 0.988 and the off

diagonal entity is 0.01.

For the off tuned system a relative eigenfrequency error of e1 ¼ 1e-2 and a MAC value of 0.998 is obtained.

28.3.3 Balanced Truncation Based Approach

The application of the SBPOR algorithm of [9] delivers the following reduction base

VBT ¼ vBT;1 vBT;2½ � ¼
�0:628 �0:707
�0:46 0

�0:628 0:707

2
4

3
5 (28.43)

The corresponding singular values are: 2746.2, 250 and 3.79. Again two modes have been selected in order to enable

a ‘fair’ comparability with all other methods. Note, that the reduction base is formed by the first two vibration modes of the

system. According to literature, this has to be expected, see Chap. 5. Consequently, there is no error in the reduced system

concerning the eigenfrequencies and the modes. The static response wBT,s
T ¼ [2 1.092 0.986] on the other hand is not exact.

Furthermore it can be stated, that the singular values are of less physical meaning as frequencies even they can be used to

compute an error bound. Note that the selection of just one mode (the first one) would lead to an exact representation of the

first vibration mode, but would lead to a really bad solution for the static deformation.

Note furthermore, that the static error depends on the local mass distribution, which is not very physical, even it remains

small in terms of an a-priory error estimation. In order to illustrate that, the mass m3 is set to ten. The first two

eigenfrequencies and eigenvectors of the reduced model fit exactly with the ones of the full model. Physically, the static

deformation should not be influenced by changing the mass properties but evaluates to wBT,s
T ¼ [2 1.13 1.02].

For the off tuned system a relative eigenfrequency error of e1 ¼ 4e-3 and a MAC value of 0.999 is obtained.
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28.3.4 Comparison

All results have been collected in Table 28.1. As conclusion of the latter considerations and numerical results it can be said that:

• The CMS method delivers acceptable results for all test cases

• BT delivers the best results for the dynamics of the original undamped system because the vibration modes themselves

are used.

• The CMS and Krylov subspace based reduction deliver exact results for the static case while BT does not.

• CMS delivers the best results for the off tuned system.

• The characteristic of BT that the vibration modes are used should lead to a bad convergence in case of off tuned system.

However this cannot be observed in this example but will be clearly observed in the next one.

28.4 Cantilever Beam Example (Finite Element Model)

A beam modeled with the FEM is considered in this section. An image of the structure can be seen in Fig. 28.2. The structure

is mounted at point A, where all translational and all rotational stiffness’s where set to 1e + 10 and they are acting between

the structure and ground. At point B a force is acting with two unit components in both lateral directions. The static

deformation will be computed based on this force. The off tuned system is characterized by an additional mounting at point

C. The parameters of this mount are the same as the ones of point A. Consequently there are 8 input/output DOF (2 at point B

and 6 at point C).

The number of considered trial vectors is determined by the Krylov subspace based approach. This approach leads to 8,

16, 32 . . .. . . modes. For this example 16 modes will be used.

28.4.1 Mode Based Approach

As explained before, 16 modes will be used for this comparison. This leads to eight constraint interface modes and eight

fixed constrained normal modes. This covers a frequency range from approximately f* ¼ 250 Hz and Fixed Constrained

Normal Modes up to 400 Hz have been regarded.

Fig. 28.2 Cantilever beam example – solid and wireframe representation

Table 28.1 Comparison of the three methods

Off tuned system with additional stiffness acting on m1

bS e1 e2 b1 b2 e1 b1
CMS 0 1.2e-3 8.0e-3 0.015 0.077 3.9e-5 0.004

K 0 5.7e-4 3.2e-2 0.011 0.15 1e-2 0.064

BT 0.087 0 0 0 0 4e-3 0.04
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28.4.2 Krylov Subspace Based Approach

As mentioned 16 trial vectors have been regarded. The first eight trial vectors contain the static solution due to unit forces at

the input/output DOF.

28.4.3 Balanced Truncation Based Approach

As before it can be observed, that the trial vectors are indent with the vibration modes of the cantilever beam.

28.4.4 Comparison

A summary of all computations is given in Table 28.2.

Note, that the color of the cells have been chosen according to the error quantity:

• Green – Error below 1e-3

• Cyan – Error below 1e-2

• Yellow – Error below 1e-1

• Red – Error higher as 1e-1 or mode could not be found in the reduced system

It can be seen, that one mode could not be found in the reduced system in case of BT. For the original and the off tuned

system, the first torsion mode could not be found. However, in case of BT 22 trial vectors have to be used in order to obtain

this torsion mode.

The CMS method is the one with the best results for the original and off tuned system. Both, the static response and the

vibration modes are of excellent accuracy.

It can be seen, that BT does not deliver that good results in case of the off tuned system. This is because the projection

base is formed by the modes of the original system. It is well known, that projection bases where no trial vectors fulfill the

boundary conditions of the reduced system have bad convergence. This is the case in the off tuned system. On the other hand,

the construction of the CMS projection base ensures that for both systems some trial vectors fulfill the boundary conditions.

However, the Krylov subspace based approach delivers a better result in the off tuned case as BT but not that good result

as the CMS method.

28.5 Conclusion

As conclusion with respect to the investigated issues it can be said that the CMS method is the best choice for model

reduction of solid structures. The CMS method has clearly the best performance in terms of sensitivity of the reduced model

with respect to varying boundary conditions. Balanced truncation has the worst one because of its characteristic, that just

Table 28.2 Comparison of the three methods

With additional stiffness acting between Point C and Ground
Mode Freq.

[Hz]
CMS K BT Freq.

[Hz]
CMS K BT

εi βi εi βi εi βi εi βi εi βi εi βi
1 8.28 5.6e-6 2.5e-5 8.0e-7 2.8e-6 8.0e-7 1.4e-8 44.4 2.3e-4 1.4e-3 1.5e-3 1.6e-2 1.7e-2 5.1e-2
2 44.7 4.8e-4 2.4e-3 1.4e-3 1.7e-2 3.7e-9 1.0e-7 56.9 3.0e-4 1.6e-3 9.8e-3 2.1e-2 1.1e-2 5.2e-2
3 56.3 4.7e-4 2.5e-3 9.7e-3 2.1e-2 -5.4e-10 2.0e-7 98.8 2.0e-7 2.6e-5 2.7e-3 2.5e-3 -- --
4 76.0 2.9e-4 3.5e-3 3.3e-4 3.7e-3 9.0e-9 4.9e-6 130.0 2.8e-4 4.6e-3 3.3e-3 1.5e-2 3.4e-2 5.3e-2
5 83.0 6.1e-4 4.7e-3 3.0e-4 2.9e-3 5.4e-8 3.5e-5
6 129.9 1.7e-3 9.9e-3 3.3e-3 1.5e-2 6.2e-9 4.1e-7
7 235.8 4.4e-3 1.6e-3 5.0e-2 8.9e-2 -- --
Static 1.5e-9 1.7e-9 5.4e-5 1.6e-10 3.1e-10 5.7e-3
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vibration modes will be used for the projection base. The CMS method and Krylov subspace based (around frequency zero)

method give exact static solutions while balanced truncation does not. For the investigated examples it could not be

observed, that one of the three methods will lead in general to significant less trial vectors. However, balanced truncation

needed a lot of more trial vectors in order to catch a torsion mode in the reduced model. If some input DOF in the reduced

model are fixed it can be expected, that balanced truncation delivers bad convergence with respect to stress recovery. This is

because no trial vectors of the projection base fulfil the boundary conditions of the fixed DOF. Another nice feature of CMS

is that the mode selection criterion is the frequency of a particular mode. The Hankel singular values of balanced truncation

on the other hand are difficult to interpret and for the advantage of a defined error limit in the L2 norm the penalty of bad

convergence in terms of stresses has to be paid. Finally it is worth to mention that the direct application of modal and static

measurements complete the superior performance of CMS methods.
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Chapter 29

Vertical Axis Wind Turbine Operational Modal Analysis

in Sheared Wind Flow

J.F. Kusnick and D.E. Adams

Abstract There has been increased interest in implementing co-located renewable energy generation systems in urban

areas, and vertical axis wind turbines (VAWTs) are a candidate technology for capturing the unsteady, omnidirectional

winds that are typical of an urban environment. Before the technology can be widely deployed, the issues of reliability and

environmental noise must be addressed. Knowledge of the structural dynamic response of the rotor blades as a function of

the wind state that enters the rotor will facilitate a better understanding of both reliability (of the blades and driveline

bearings) and noise (frequency content of the blade motions that causes structure-borne noise). An experimental modal

model was developed to relate the forces introduced by wind loads to the response of the structure. Experimental modal

analysis was performed on a 600 W lift-type (Darrieus) VAWT for a range of azimuth angles and tower heights.

Additionally, operational modal analysis was conducted in an indoor simulated wind environment test bed. A modal filtering

technique was applied and verified using an electro-dynamic shaker and was then used to analyze the operational data.

The effects of wind speed and shear on the modal response were investigated. The key results were a shift down in resonance

frequencies with increasing height of the turbine tower for rotor modes coupled to the tower response and significant changes

in operational modal response for non-uniform (sheared) wind conditions, especially from the 5 Hz mode of vibration.

Future work will involve operational testing of vibration and acoustic emissions of the VAWT on a building rooftop.

29.1 Introduction

VAWTs have been receiving renewed attention, especially for applications in urban environments since their low tip speeds

translate to lower aeroacoustic noise emissions than traditional horizontal axis wind turbines [1]. Previous structural

dynamic work was performed by Sandia National Laboratories on large (17 m and 34 m) experimental turbines, which

were of a 2-blade parabolic design and had fairly high rotation speeds [2]. Most new designs are 3-bladed, are generally

small (<5 kW), and some incorporate twisted, helical blades, which are meant to reduce torsional oscillations by

maintaining a relatively constant solidity as they rotate [3]. VAWTs are being installed in urban locations and on building

rooftops because of their ability to accept wind from all directions, making them impervious to yaw error, as well as their

lower aero-acoustic emissions. The close proximity to people makes vibration and structure borne noise transmission

important considerations. It is also important to classify how the turbine responds structurally to the dynamic wind

environment, and to determine how to place urban wind turbine systems to maximize power output and component lifetime.

29.2 Experimental Modal Analysis

Two separate modal impact tests were performed. The first test focused solely on analyzing the turbine modes, as well as

determining sensor placement and impact locations for subsequentmodal tests. The second test took placewith the turbine installed

on a telescopic tower inside the laboratory, and included the tower response and its coupling effects with the rotor response.
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29.2.1 VAWT Modal Impact Test No. 1

Experimental modal analysis was conducted to classify the free response characteristics of the turbine system. The first

modal impact test on the wind turbine was conducted on a small test stand bolted to the concrete floor. The test stand was

constructed from 1/800 thick drawn-over-mandrel steel tubing, and had an overall height of 3100, which provided a rigid base

on which to test the modes of vibration of the turbine. A FARO Arm® three dimensional coordinate measurement machine

was used to consistently place the impact locations on each blade as well as to record their locations in space and the surface

normal vectors for accurate mode shape animation. Four points were spaced 5 in. apart from the leading edge to the trailing

edge of each blade on the low-pressure, outer surface of the blade, in 18 planes separated by 4 in. vertically, for a total of 72

impact points per blade. Each of the six struts supporting the blades had 17 impact points along the top edges, and there were

12 points on the rotor shaft:6 evenly spaced along the axis of the shaft, and another six rotated 120� from the first group. One

triaxial, AC-coupled accelerometer was placed on the top, trailing edge of each blade using adhesive, and one was placed

near the top of the rotor shaft. Figure 29.1 shows impact locations and accelerometer placement.

29.2.2 Modal Impact Test No. 2: VAWT on Telescopic Roof Fixture

VAWTs installed on or near buildings are subjected to a much different wind environment than in open areas, high off

the ground where wind turbines are usually located. Wind flow accelerates over and around buildings, which can be

advantageous in terms of energy capture, but also subjects the turbines to a high level of wind shear and turbulence.

Figure 29.2 demonstrates this effect in a velocity vector field around a rectangular building using a k-epsilon turbulence

computational fluid dynamics model [4], as well as a preliminary CFD model of the lab building on which the turbine will

be installed.

A telescopic roof fixture was designed and fabricated to facilitate the observation of different intensities of wind shear

over the building, as the wind field varies with height above the roofline. The fixture is constructed from two sleeved, drawn-

over-mandrel steel tubes separated by Delron plastic bushings. A hand-winch and pulley system is used to raise and lower

the inner tube, and 3=400 through-holes in the outer tube allow a locking pin to be inserted through the inner tube in 600

increments. The total vertical travel is limited to 5.5 ft, or about one turbine height. Figure 29.3 shows the roof fixture with

the turbine installed in the lab, the pulley mechanism, and a dimensioned drawing of how the turbine will be installed on the

lab roof in future operational testing.

Fig. 29.1 First modal test setup. (a) turbine on base, (b) blade accelerometer location, (c) strut impact points, (d) tower accelerometer
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In order to build a modal model that can be used for spatial modal filtering when the turbine is on the roof (see Sect. 29.3.3)

several modal impact tests were conductedwith the turbine installed on this roof fixture inside the lab to account for the change

in boundary conditions associated with the tower. The bolted connections to the tower, the tower’s varying stiffness as its

height is adjusted, and the plastic bushings between the sleeved poles can affect the vibration response of the structure.

Because the twisted, composite blades may exhibit different directional stiffness, such as a higher stiffness in the lead-lag

(edgewise) direction as compared to the flap direction, modal impact tests were conducted for seven equally spaced azimuth

positions from 0 to 120�; after 120�, the orientation of the blades repeats due to the radial symmetry of the design. The blade

geometry prevented a roving impact test since all points on the blades were not accessible by a modal hammer for one single

impact direction; furthermore, the small edgewise area of the blades prevented impacting them in the lead-lag direction.

Therefore, a roving accelerometer test was conducted, and all impact locations were on a single face of the tower in one

direction – perpendicular to the plane of the winch cable. Five triaxial accelerometers were placed on the leading edge of the

Fig. 29.2 (a) Velocity contours of wind flow over lab building from turbulent CFD simulation; (b) velocity vectors from CFD of wind flow over

rectangular building (top), and around side of building (bottom) [4]

Fig. 29.3 (a) Turbine on telescopic fixture in lab; (b) CAD drawing with transparent outer tube showing pulleys, white plastic bushing, guy-cable

tabs, and turbine mounting flange; (c) bottom of Inner tube with bushing and pulley; (d) Roof installation
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blade to capture flap, edgewise, and vertical motion. Five additional single axis accelerometers were placed on the trailing

edge of the blade measuring the flap degree of freedom; six single axis accelerometers were on each strut, six were on the

rotor shaft, and 12 single-axis accelerometers were fastened to the telescopic mast. The modal tests for each azimuth position

were repeated for three different extended heights of the mast – the retracted, lowest position; a middle height with the tower

extended 2.5 ft, and at the fully extended position. The height of the turbine above the base of the tower in each position is 7,

9.5, and 12.5 ft, respectively.

29.2.3 Modal Analysis Results

The first modal test (Sect. 29.2.1) was conducted with high spatial resolution: 330 total impact locations. After observing the

mode shapes, subsequent tests were completed with fewer inputs. The complex mode indicator function (CMIF) was used to

determine the modal frequencies from the experimentally measured frequency response functions (FRFs), and the modal

vectors were extracted from the left singular vectors corresponding to the peaks in the CMIF. Some of the resulting mode

shapes are represented in Fig. 29.4 and are described in Table 29.1. For clarity in the images, the blades are not displayed, but

in general they moved in a motion similar to that of their supporting struts.

For the testing conducted on the telescopic mast (Sect. 29.2.2), the complex mode indicator function was used to observe

changes in the modal response among the three extended heights for one azimuth position. The bandwidth of interest in the

tests was 0–100 Hz, and many of the resonant frequencies in this range exhibited a significant decrease in modal frequency

as the height of the tower increased. This effect was especially evident in the 3.8 Hz mode indicated in Table 29.2, which was

predominantly a mode of vibration of the tower. The mode shape of the turbine around 18 Hz appeared to be coupled to the

tower motion, and also exhibited a significant shift down in frequency with increased tower height, as is expected due to the

reduced stiffness. There were also several modes of vibration that involved little tower response, such as those near 30.6 Hz

and 100.3 Hz, and these frequencies had a much smaller change in relation to the height of the tower. The effects are

evidenced in the plot of the top line of the CMIF for each of the tower heights at one azimuth position in Fig. 29.5, and the

frequency changes for the aforementioned modes are detailed in Table 29.2.

The results of the tests indicated that there was little change in modal response with respect to azimuth position. This may

be due to the excitation being applied to the tower rather than to the blades and struts directly, which is likely less effective in

exciting the blades and struts in the prescribed direction as compared to a direct impact. Figure 29.6 displays the top line of

the CMIF for each of the azimuth angles on a single plot that reveals the similarity in the results. Notably, the 3.8 Hz tower

mode had nearly the identical result in the CMIF for each azimuth angle, verifying that that particular resonant frequency is

Fig. 29.4 (a) Mode 1; (b) Mode 2; (c) Mode 3. Undeformed shape in black, deformed shape in blue (color figure online)

Table 29.1 Mode shape

descriptions
Mode Frequency (Hz) Description

1 7.8 Shaft: first vibrational mode of hollow cylinder

Struts: top three first-bending coupled with torsion, two struts in-phase;

two lower struts first bending, 180� out of phase
2 9.4 All struts and shaft rock side-to-side in phase

3 10.9 All struts first-bending in-phase
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largely dependent on the tower height and not the rotor azimuth position. There were some subtle changes in rotor modes,

such as a resonance around 138 Hz, which was present for azimuth positions 60 through 120�, but not 0, 20, and 40�. The
mode shape involved the second bending mode of the struts attached to the two blades closest to the impact location when

rotated from 60 through 120�, which may not have been well-excited in the first three blade orientations.

Table 29.2 Modal frequencies versus extended tower height

Retracted Mid-height Fully extended

Frequency (Hz) Frequency (Hz) % Change Frequency (Hz) % Change

3.8 2.8 �26.3 2.2 �42.1

18.1 17.5 �3.3 15.6 �13.8

30.6 30.6 0.0 30.6 0.0

100.3 99.7 �0.6 99.7 �0.6
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Fig. 29.5 Top line of CMIF for three extended heights of roof fixture at the 0� azimuth position
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Fig. 29.6 Top line of CMIF for each azimuth position at lowest height setting

29 Vertical Axis Wind Turbine Operational Modal Analysis in Sheared Wind Flow 337



29.3 Operational Testing

With the modal frequencies and vectors determined, the next step was to use that information to gain insight into the

structural response of the turbine in operation. This study used an in-house wind dynamics test bed to gather baseline data

in a controlled airflow environment prior to future testing of the turbine in real rooftop operating conditions. Separate tests

were conducted for a range of wind speeds from 3.4 to 5.4 m/s (7.6–12.1 miles per hour), which starts near the idle speed

of the turbine and increases into the power-generating region. Additionally, four separate wind shear conditions were

tested to explore the effect of wind shear on operational response: (1) a uniform flow with no wind shear; (2) a vertically

sheared flow like that present in the atmospheric boundary layer or seen in the profile of wind flow over a building; and

(3, 4) left and right side-shear, which may be due to obstructions, wind flow around the sides of a building, or upstream

wind turbines.

29.3.1 Experimental Setup

The experimental test bed consists of an enclosed test section which generates a simulated wind flow using four large axial

exhaust fans to pull air through a honeycomb, laminarizing core (see Fig. 29.7 below). Accelerometers were placed in the

same locations on the rotor as during the first modal test (Sect. 29.2.1); however, unlike the modal impact tests, DC-coupled

sensors were used to better capture the low frequency, per-revolution harmonics. A data acquisition device and wireless

transmitter were statically balanced and fastened to the base of the rotor shaft. Because of the added mass and the change in

boundary conditions inside the test bed, another modal impact test was conducted to obtain the modal parameters.

Wind shear was generated by placing window screening material on the inlet of the test bed. The resulting inlet wind

plane was measured using an ultrasonic anemometer at 100 measurement points, 2 ft inward from the honeycomb core face,

and the results were interpolated to generate the images in Fig. 29.8. Leading edge shear (hereafter denoted LS) indicates

that the wind was slowed on the side of the leading, advancing edge of the blade. Trailing edge shear (TS) indicates the wind

was slowed on the trailing, retreating edge of the blade.

29.3.2 Operational Modal Analysis

The wind velocity fields were experimentally measured, but because the force input on the turbine is unknown, operational

modal analysis (OMA) was applied to relate the operational response of the turbine to the free response dynamics measured

in the experimental modal analysis. The two primary assumptions in OMA are: (1) the power spectrum of the input force is

Fig. 29.7 Experimental

test bed
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broadband and smooth (i.e. has no poles or zeroes in the frequency range of interest), and (2) the forcing function is spatially

distributed in a uniform manner [5]. Assumption (1) is not particularly well-fulfilled for wind-excited structures since the

power spectrum of wind is generally dominated by low-frequency components [6]. In general, however, rotating machinery

is self-excited at harmonics of the operating speed [7], and this was evident in the OMA frequency response functions

measured on the VAWT. Assumption (2) is reasonable for the rotating wind turbine, and the measured wind planes in

Fig. 29.8 demonstrate the spatial uniformity.

The data processing involved time-synchronously averaging the accelerometer responses, then performing OMA by first

computing the autocorrelation of the time response, which is the time-domain equivalent of the auto power spectrum. The

result is two-sided, containing a positive exponential portion corresponding to the negative poles of the power spectrum, and

a decaying exponential portion corresponding to the positive poles [5]. Since both parts of the result contain the same

information, the positive exponential part is set to zero, essentially zero-padding the time signal. The resulting function is

treated as an impulse response function, the discrete Fourier transform of which is the OMA FRF. Figure 29.9 schematically

describes the process.

29.3.3 Modal Filtering

The physical response spectrum is the result of a summation of individual modal responses. Spatial modal filtering can be

applied to determine the values of the modal coordinates, or contribution from a subset of individual modes, at areas of

interest in the operational response spectrum. In order to predict the fatigue and wear in components, modal filtering can be

Fig. 29.8 Inlet wind velocity planes
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used to calculate the number of loading cycles and the magnitude of response each mode has undergone in operation. This

has applications in cycle-based, predictive maintenance as well [9].

A modal filter transforms the physical coordinates of a system to modal coordinates, as shown in (29.1),

pðtÞf g ¼ ½C�fxðtÞg (29.1)

where {x(t)} is a column vector of physical coordinates – the outputs from each of the sensor channels, {p(t)} is a column

vector of modal coordinates, and [C] is the transformation matrix, which is called the modal filter. The response, {x(t)}, can

be expressed as a sum of modal coordinates spatially weighted by the modal vectors, which is written in matrix form in

(29.2),

x1ðtÞ
x2ðtÞ
..
.

xmðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

¼

c1;1 c1; 2

c2;1
. .
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. . . c1;N

..
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6666664
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7777775

p1ðtÞ
p2ðtÞ
..
.

pNðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(29.2)

where [C] is the modal matrix, which is experimentally measured in this case; m is the number of measurement channels;

N is the number of modes; pN(t) is the response of mode N at time t; and xm(t) is the response of physical coordinatem at time

t. To calculate the modal coordinates, the response vector {x(t)} is left-multiplied by the pseudo inverse of the modal matrix

for every time t.
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29.3.4 Modal Vector Selection and Modal Filter Verification

In order to improve the numerics of the calculation by having an overdetermined system, the number of modal vectors

chosen for the filter should be less than the number of measurement channels, typically by a factor of two or more.

Furthermore, the modal vectors should be linearly independent so that they can be distinguished spatially [9]. The

polyreference time domain (PTD) algorithm along with a consistency diagram approach was employed to identify physical,

stable poles and vectors in the modal impact data. A modal assurance criterion (MAC) test was then performed to check the

modal vectors for linear independence. There were 12 response channels, and four modes were chosen, corresponding to

frequencies of 5.0, 42.7, 47.0, and 54.3 Hz. The low off-diagonal values of the MAC in Fig. 29.10a demonstrate the

independence of the modal vectors.

Next, to verify the operation of the modal filter, a shaker test was performed. A small, seven-pound electro-dynamic

shaker excited one of the rotor blades in the flap-direction shown in Fig. 29.10b with a sinusoidal input at each of the

resonant frequencies used in the modal filter. The modal filter was then applied to the time response data from the

accelerometers, and was able to extract the modal coordinate of the mode being excited. The modal coordinates for each

test were summed and plotted in Fig. 29.11 below.

The filter was then applied to the operational data. The matrix representation of the modal filter in (29.2) can also be

formulated in the frequency domain and evaluated at every frequency in the response spectra. The wind turbine operational

data was analyzed in this way. In particular, the modal coordinates were computed at the peaks in the summed OMA FRF

response spectrum of all 12 measurement channels for each wind speed and shear condition. A sample result is shown in

Fig. 29.12 below, which shows the magnitude of the modal coordinates at each of those peaks.

To view the average value of the modal coordinates as a function of shear condition, the magnitude of each modal

coordinate was summed at each of the peaks in the OMA response spectrum, then normalized for each wind shear.

The results for the 35 Hz fan speed (3.4 m/s wind speed at no-shear) are shown in Fig. 29.13 below.

Clearly, the 47 Hz mode is dominant regardless of wind shear; however, the response of the remaining three modes does

appear to depend on shear condition. The 5 Hz mode is of particular interest since it represents some considerable shaft

vibration, which may introduce dynamic fatigue loads on the rotor bearings. The vertical shear condition, which will be

predominant on the building rooftop, contains the highest contribution from the 5 Hz mode. Additionally, each shear

condition has a higher normalized 5 Hz modal coordinate response than the baseline no-shear condition.
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Fig. 29.10 (a) Modal assurance criterion for modal filter vectors, (b) Shaker test setup
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29.4 Conclusion

Several modal impact tests were performed on a small vertical axis wind turbine (VAWT). A telescopic roof-fixture was

designed and built for future operational testing to explore the effects on the structural dynamic response of the wind turbine

in sheared and turbulent wind flow in urban locations. Modal tests of the turbine were conducted for a range of azimuth

angles and three different extended heights of the tower, resulting in a considerable shift downward in resonant frequencies

for tower-coupled modes at extended heights, and relatively little change depending on azimuth position. The azimuth tests

may have been less successful than anticipated in exciting the blades and struts in the directions intended: perpendicular to

the tower base in six different orientations from 0 to 120� of rotation. The roving accelerometer test, as opposed to roving

input, may also have decreased the quality of the results.

Operational data was recorded for a range of wind speeds and wind shear conditions with the VAWT installed in a wind-

dynamics test bed under controlled wind-input conditions. A modal filtering technique was applied and verified using a

shaker-test. The modal filtering results indicated significant changes in modal response among the different wind shear

conditions. Future work will apply modal filtering to the operational response of the turbine installed on the laboratory roof.

Loading cycles and magnitudes will be counted, and any changes in the performance of the turbine will be documented.

Additionally, noise measurements will be taken to correlate modal response to structural noise emissions.
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Chapter 30

Output-Only Estimation of Wind Induced Stresses in Structures

Eric M. Hernandez, Dionisio Bernal, and Luca Caracologlia

Abstract The use of output feedback as a means to monitor stresses and fatigue in metal structures has been the subject of

recent work by researchers in the field of vibration based structural health monitoring. The methodologies that have been

proposed in the literature employ the Kalman filter as an estimator and operate under the premise that excitations are

realizations of Gaussian white noise. In practice two issues arise, excitations cannot always be approximated by realizations

of Gaussian white noise and performance requirements are such that engineers require the use of large finite element models

to accurately estimate structural response. This is especially true in the case of wind excited structures, such as tall wind

turbines and complex buildings. In the present paper we propose a model based state estimator that can be implemented as a

modified finite element model of the system subjected to corrective forces proportional to the measurements. This allows for

direct implementation within the context of an arbitrarily large finite element model (FEM) and is of significant importance

for implementation purposes given the difficulties typically encountered when implementing the standard Kalman filter in

large FEM. Additionally, the proposed estimator is able to explicitly account for the non-white nature of wind loads by using

knowledge of the power spectral density of the process. The proposed methodology is successfully applied to estimate the

time history of bending moments throughout the height of a simulated tall vertical structure subject to stationary turbulent

wind using only sparse measurements of dynamic response and a FEM.

30.1 Introduction

The use of output feedback as a means to monitor stresses and fatigue in metal structures has been the subject of recent work

by researchers in the field of vibration based structural health monitoring [1]. The methodologies that have been proposed in

the literature employ the Kalman filter as an estimator and operate under the premise that excitations are realizations of

Gaussian white noise. In practice two issues arise, excitations cannot always be approximated by realizations of Gaussian

white noise and performance requirements are such that engineers require the use of large finite element models to

accurately estimate structural response. This is especially true in the case of wind excited structures, such as tall wind

turbines and complex buildings.

In this paper we present a model based state estimator that can be implemented as a modified finite element model of the

system subjected to corrective forces proportional to the noise contaminated measurements. This allows for direct

implementation within the context of an arbitrarily large finite element model (FEM). In addition the proposed estimator

allows for explicit consideration of unmeasured turbulent stationary wind loads modelled as a realization of random fields

with specified spectral density and spatial correlation.
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Throughout the paper we shall restrict our attention to symmetric finite n-dimensional linear structural systems satisfying

Newton’s equation of motion with velocity proportional damping. These systems can be described by the following matrix

ordinary differential equation

M€qðtÞ þ CD _qðtÞ þ KqðtÞ ¼ b2 f ðtÞ (30.1)

where qðtÞ 2 Rnx1 is the displacement vector at time t,M ¼ MT > 0 is the mass matrix, CD ¼ CT
D � 0 is the damping matrix,

and K ¼ KT � 0 is the stiffness matrix. The forcing function vector is f ðtÞ 2 Rnx1 and b2 2 Rnxn is the force distribution

matrix, which indicates the degrees of freedom on which the forcing function is applied.

In addition m measurements of the system’s response are available in the form

yðtÞ ¼ CxðtÞ þ Df ðtÞ þ nðtÞ (30.2)

where C 2 Rmx2n is the measurement matrix and nðtÞ 2 Rmx1 is the measurement noise. For displacement or velocity

measurements the Dmatrix is zero and C has the following form

Cdis ¼ c2 0½ � Cvel ¼ 0 c2½ � (30.3)

where c2 2 Rmxn maps the degrees of freedom to the measurements. If the measurements consist of accelerations the C
matrix is given by

C ¼ � c2M
�1K �c2M

�1CD

� �
(30.4)

and the D matrix is given by

D ¼ c2M
�1b2 (30.5)

30.2 Wind Load Model

The main focus of this paper is to examine the problem of reconstructing internal stress fields in a structure induced by

stationary turbulent wind excitation. In this section we describe the mathematical model to represent the unmeasured wind

induced forces. The total wind induced force at height z is given by

Fðz; tÞ ¼ 1

2
rCDðzÞAtðzÞVðz; tÞ2 ¼ 1

2
rCDðzÞAtðzÞ UðzÞ þ uðz; tÞð Þ2 (30.6)

where u(z,t) is the time varying component of the wind velocity at height z and at time t, and U(z) is the mean wind speed at

height z. The constants r, CD and At are the air density, drag coefficient and reference area of contact respectively. The time

varying component u(z,t)may be simulated as a realization of a stationary random process with spectral density given by the

single-sided Kaimal spectrum [2]

nSðz; nÞ
u2�

¼ 200f

ð1þ 50f Þ5=3
(30.7)

where S(z,n) is the value of the spectrum measured at height z, u* is the friction velocity and n is the frequency (in Hz).

The Monin coordinate f is dimensionless and given by

f ¼ nz

UðzÞ (30.8)

whereU(z) is themeanwind speed at theheight z. For any twopoints j and k, separatedbydistancesDy andDz in the twoorthogonal

directions to the wind flow, the cross-spectral density between the two stochastic processes Vj and Vk is real and given by

SVj;Vk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SVj;Vj

ðoÞSVk ;Vk
ðoÞ

q
e�Cj;kðoÞ (30.9)
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where the turbulence auto-spectra at j and k, SVj;Vj
ðoÞand SVk ;Vk

ðoÞ, can be derived from (30.7) and the Cj,k(o) is a function
given by

Cj;kðoÞ ¼
oj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
yD

2
y þ C2

zD
2
z

q
p Uj þ Uk

� � (30.10)

whereo is the circular frequency, Cy and Cz are appropriate decay constants andUj andUk are the mean wind speed at points

j and k. For the case of interest in this paper, i.e. tall vertical structures, such as wind turbines, all points of interest can be

assumed to lie in a vertical line and thus Dy ¼ 0.

Finally, in order to realize the Kaimal spectra as a digital time signal at various heights of the structure we employed the

algorithm proposed in [3]. The algorithm is based on a spectral decomposition of the power spectral density matrix of

the wind turbulence.

30.3 The Proposed Estimator

The proposed estimator that we present in this paper was originally derived in [4] and it is written in second order form as

M€̂qðtÞ þ CD þ cT2Ec2
� �

_̂qðtÞ þ Kq̂ðtÞ ¼ cT2EyðtÞ (30.11)

As can be seen from (30.11) and Fig. 30.1, under premise of velocity measurements, the proposed observer is a modified

version of the system with added dampers and excited by forces which are linear combinations of the measurements

proportional to the added dampers. This interpretation makes the application of the state estimation more direct, transparent

and computationally efficient. The basic component of the proposed estimator is the matrix E which must be selected to

minimize (with the constraints of the problem) the trace of the state error covariance, that is, the 2-norm of the state error

vector.

Defining the state error ase ¼ q� q̂, one can find that the expression for the state error is given by

M€eðtÞ þ CD þ cT2Ec2
� �

_eðtÞ þ KeðtÞ ¼ b2 f ðtÞ � cT2EnðtÞ (30.12)

where E is still free to be selected. Before carrying out any further computations, one can see that as the matrix E increases

the effective damping of the estimator increases and consequently reduces the estimation error. However, it also increases

the term driving the estimation error on the right hand side of (30.12), which is proportional to the measurement noise.

Therefore, intuitively a certain optimal balance should be reached in order to make the optimal choice for E. In addition it is
important to note that the mathematical problem at hand is not a problem of pole placement. Selecting E solely based on a

desired location of poles without accounting for the measurement noise will not yield accurate results in general.

In order to derive the exact expression for the state error covariance consider taking Fourier transforms of both sides of (30.12)

�Mo2 þ CD þ cT2Ec2
� �

ioþ K
� �

eðoÞ ¼ b2 f ðoÞ � cT2EnðoÞ (30.13)

Fig. 30.1 (a) Generic system

subject to disturbances f(t) and
measurements y(t)
(b) proposed observer, a

modified model of the system

with applied forces p(t)
proportional to the

measurements and added

dampers
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Defining

GðoÞ ¼ �Mo2 þ CDioþ K (30.14)

and

HoðoÞ ¼ GðoÞ þ cT2Ec2io
� ��1

(30.15)

we obtain the expression for the state error estimate in the frequency domain

eðoÞ ¼ HoðoÞ b2 f ðoÞ � cT2EnðoÞ
� �

(30.16)

The spectral density matrix of the state error See(o) is given by

SeeðoÞ ¼ HoðoÞb2Sff ðoÞbT2H�
oðoÞ þ HoðoÞcT2ESnnðoÞEc2H�

oðoÞ (30.17)

Where Sff is the spectral density matrix of the wind load, described in the previous section and Snn is the noise spectral

density. This last equation assumes that the noise and excitation are uncorrelated and it takes advantage of the internal

symmetry of E. Finally, the covariance matrix of the state error is given by

P ¼
Z þ1

�1
Seedo ¼

Z þ1

�1
HoðoÞb2Sff ðoÞbT2H�

oðoÞ þ HoðoÞcT2ESnnðoÞEc2H�
oðoÞ

� �
do (30.18)

The objective here is to select the matrix E in order to minimize the trace ofP. Notice that this is the same objective

function that is used in the Kalman filter, i.e. minimization of the trace of the state error covariance.

30.3.1 Selection of E

As explained in the previous section, the optimal selection of E depends on the minimization of the integral in (30.18). For a

general multivariable case a close form solution for the optimal matrix E has not been found, therefore numerical

optimization is required. However, as it will be shown in the examples to follow, such minimization is not numerically

expensive because although in theory (m2 + m)/2 independent values are required; using only m (the diagonal of E) can
yield excellent results. Physically this means that the estimator (modified model) would only have added grounded dashpots

at the location of the corrective forces which coincide with the measurements and no dashpots interconnecting the output

location. In the specific case of Fig. 30.1, this results in an E matrix with the following form

E ¼ E11 0

0 E22

� �
(30.19)

30.4 Simulation Results

In this section we present the results corresponding to the simulation of the proposed estimator within the wind load

environment presented in a previous section.

The simulated system to be modeled is a cantilever with a height of 100 m and a tapered hollow circular cross section that

varies from 5.00 m at the base (considered perfectly fixed) to 2.50 m. at the top (Fig. 30.2). The cantilever is modeled as

having wall thickness of 0.305 m. The model is discretized every 5.00 m with 20 elements across the height. The structure is

modeled as steel (E ¼ 210,000 MPa) with 1% classical damping in every mode.

The wind is modeled as one-directional and for every point in the finite element model a wind load time history is

assigned in accordance with the mathematical model described in a previous section based on the Kaimal power spectrum.
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For the wind simulations a density of 1.20 kg/m3 and a drag coefficient of 1.20 were used. The wind parameters that define

the Kaimal spectra are given by zo ¼ 0.1, U ¼ 30 m/s and Cz ¼ 10.

The objective in these simulations is to reconstruct the integral of the shear and normal stresses at the base of the

cantilever, namely, the shear force and bending moment time history at the base of the structure. Implementing

Fig. 30.2 (a) The original structure and (b) the propose finite element observer

Fig. 30.3 Comparison of estimated base shear force with the true shear force at the base of the structure
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the minimization in (30.18) we find that the added dampers in order to implement the observers (see Fig. 30.2) we find that

b1 ¼ b2 ¼ 83.7 � 106 kNs2/m. In Fig. 30.3 we show the estimated transverse shear in comparison with the real shear at the

base of the structure. Similarly in Fig. 30.4 the estimated bending moment and the real bending moment at the base of the

structure are compared.

30.5 Conclusions

The paper has shown that it is possible to use the model-based observer proposed in [4] in order to accurately reconstruct the

internal forces in an instrumented tall vertical structure subject to transverse stationary wind. The estimation quality of

the proposed observer, even with a very limited number of sensors, is adequate (see Figs. 30.3, 30.4). This shows that the

proposed observer is a practical option for real-time monitoring of tall vertical structures subject to transverse wind.

The estimates can be used as input for fatigue damage functions within the context of an on-line monitoring system. Further

studies using non-stationary wind loads in the simulations will be carried out in order to verify the adequacy of the proposed

estimator under these conditions.
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Chapter 31

Modal Testing of 9 m CX-100 Turbine Blades

Tim Marinone, Bruce LeBlanc, Julie Harvie, Christopher Niezrecki, and Peter Avitabile

Abstract Several modal tests were conducted on several CX-100 9-meter wind turbine blades (manufactured by TPI

Composites Inc.) as part of an evaluation to identify their structural dynamic characteristics. Experiments were made with

the blades using different boundary conditions including free-free and clamped. The data for the different tests was

processed and compared for the different configurations. This paper presents the results of those studies to provide a

database for future use.

31.1 Introduction

Wind energy in the United States is one of the fastest growing sources of clean and renewable domestic energy. A recent

DOE technical report [1] prescribed a path for meeting 20% of the nation’s energy needs through wind power by 2030.

Because of this increased investment into wind energy, significant effort is being expended into the design and

manufacturing of wind turbine blades. As part of this work, considerable testing is being conducted in order to provide

empirical measurements that can be used to validate numerical blade models and give blade designers a better understanding

of the structural and dynamic stiffness of the various designs.

The CX-100 is a 9-meter experimental blade designed by Sandia National Laboratories as part of a long-term effort into

the research of innovative approaches to the design and manufacture of blades. The CX-100 contains a unidirectional

carbon-fiber laminate spar cap, which provides increased stiffness while reducing the overall weight of the blade.

There have been several modal tests of the CX-100 blade reported with free-free and cantilevered results [2–6].

Of particular note was the free-free modal test by White et al. [2] and the multiple configurations tested by Deines et al.
[3], both which will be used for comparison in this paper.

The first part of this paper contains a comparison of results for three blades tested in free-free configuration.

Discrepancies between tests are noted and explained. The second part of this paper contains a re-evaluation of a series of

tests described at IMAC 29 [3] based on additional testing (more recently performed) and analysis performed using more

advanced data reduction techniques. In addition, a simplified analytical model was developed to substantiate the results.

31.2 Project Overview

As part of a project investigating the design of wind turbine blades (U.S. Department of Energy, Award No DE-EE001374

ARRA Funding- “Effect of Manufacturing-Induced Defects on Wind Turbine Blades”), the University of Massachusetts

Lowell Structural Dynamics and Acoustics Laboratory (UML SDASL) collaborated with Sandia National Laboratories
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(SNL), the National Renewable Energy Laboratories (NREL), and TPI Composites Inc. (TPI) to manufacture two CX-100

wind turbine blades in early 2011. The first blade, hereafter known as “SDASL 1”, was designed with known defects

embedded into the blade. Fiber optic and structural health monitoring sensors were also inserted during layup in order to

attempt to detect these known defects. The second blade (“SDASL 2”) was also designed with known defects but was cut

into sections for further static and fatigue testing as well as modeling efforts. In addition, in 2010 the Los Alamos National

Laboratory (LANL) also obtained a CX-100 blade as a test bed to validate several structural health monitoring approaches.

Previous test results conducted at SNL [2] are used in this paper for frequency comparison.

As part of the initial grant, there was no plan to conduct modal tests on the two SDASL blades. During the manufacturing

and assembly process of the two blades, however, a short period of time was available in between the manufacturing and

shipping of the blades. Therefore, a brief modal test was conducted on both blades, where the blade was only excited in the

flapwise axis due to time constraints. Although both the flapwise and edgewise modes are listed, the focus of this paper is on

the flapwise modes, as they were the modes primarily excited.

31.3 Cases Studied

The first set of cases studied presents a comparison of the results obtained for the three blades considered. The second set of

cases studied shows some of the results obtained from perturbed boundary conditions tested along with some simple

analytical models to substantiate the results.

31.3.1 Part 1: Comparison of Three Blades in a Free-Free Configuration

As described previously, modal testing was performed on three CX-100 blades listed above. In all cases, traditional modal

testing methodologies and modal parameter estimation techniques were used for the extraction of modal parameters.

However, each of the different groups utilized different data acquisition systems, different test setups, and different data

reduction techniques for the identification of the frequencies and mode shapes for the blade characteristics. Sandia Labs used

a VXI Technologies HPE 1432a data acquisition system and reduced data using X-Modal2. The work at Los Alamos

National Labs used a LabVIEW/National Instruments acquisition system with ME’scope as the modal parameter estimation

software. UMASS Lowell tests were performed using LMS DIFA SCADAS data acquisition with LMS TEST.LAB as the

data reduction software.

One important consideration concerns the support mechanism for the so-called free-free testing. Sandia Lab utilized a soft

bungee attachment for the vertical free-free support mechanism and had slightly different support locations for the testing

performed. LANL and UML utilized a slightly stiffer vertical attachment for the free-free testing and similar support

location (but different from those used by Sandia Labs); measurement and identification of flapwise modes were the major

objective of the LANL and UML teams, so the vertical stiffness for the edgewise modes was not of particular interest in

those tests. Care should be exercised when evaluating the reported frequencies due to these differences which can have a

more serious effect for the edgewise modes of the blade.

A comparison of the results for the three blades with the Sandia reference mode set is shown in Table 31.1; note that the

un-highlighted modes are the flapwise related modes which are most reasonable to compare, and are less affected by the

differences in the vertical free-free support mechanism. The modes highlighted in grey are the edgewise and torsion modes,

which are more significantly affected by the vertical free-free support mechanism.

Table 31.1 Comparison of frequency results of three tested blades with reference blade

Mode # SDASL1 (Hz) SDASL2 (Hz) LANL (Hz) Sandia (Hz) Mode description

1 7.9 7.8 7.6 8.2 First flapwise bending

2a 16.0 15.7 18.1 16.8 First edgewise bending

3 20.8 21.3 20.2 20.3 Second flapwise bending

4 32.5 31.3 32.2 33.8 Third flapwise bending

5a 43.2 43.6 45.1 42.2 Second edgewise bending

6 50.9 49.7 50.5 52.2 Fourth flapwise bending

7a 65.6 63.1 63.9 60.6 First torsion

8a 70.5 68.2 70.1 69.9 Third edgewise bending
aCare should be taken when examining the edgewise and torsion modes, as the structure was only excited in the flapwise direction due to the

significant stiffness of the supports in the edgewise axis
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The frequency results are generally consistent between tests, although there is some discrepancy. In order to examine this

frequency discrepancy, the boundary conditions were studied. Figure 31.1 shows the schematic for the support locations for

the different tests, while Fig. 31.2 shows the various support conditions.

Fig. 31.1 Comparison of support locations for free-free test between tests

Fig. 31.2 (a) Supports used at Sandia [2]. (b) supports used at LANL [3]. (c) supports used by SDASL at TPI [6]
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As seen in Figs. 31.1 and 31.2, all of the tests were conducted using different supports. Although there was an effort to

replicate the support conditions as closely as possible, limitations in equipment and safety concerns governed the final

support set up for each test configuration. Care was taken, however, in locating the support closer to the blade tip at the node

of the first mode (6.5 m) in order to minimize the effect of the supports.

In addition to examining the frequencies, a Modal Assurance Criterion (MAC) was performed on the mode shapes of each

blade to determine their level of correlation. Figure 31.3 shows the characteristic mode shapes for the first four flapwise

modes. (The edgewise and torsion mode shapes are not shown as they were not primarily excited nor were of interest for the

tests conducted). Table 31.2 lists the MAC for all three blades compared to each other. (The mode shapes from Sandia [2]

were not available and thus were not compared). Note that the modes not highlighted in grey are the flapwise modes that

were primarily excited. The grey highlighted modes are the edgewise modes which were not primarily excited and are only

shown for completeness.

The sub-diagonals indicating the high level of correlation between the blades are evident in the MAC matrix. In addition,

the two SDASL blades correlate well as seen in Table 31.3. The LANL blade did not correlate as well and is not shown.

Again, note the high frequency and MAC correlation for the flapwise modes in white. The modes highlighted in grey are not

the modes of interest, and do not correlate as well.

31.3.2 Part 2: Blade Boundary Condition Study

Previous work in the summer of 2010 at LANL [3] provided results of a modal test of the blade with three different boundary

conditions. “Free # 1” involved suspending the blade with straps at both ends. “Free # 2” consisted of a 500 lb mass attached

to the root end of the blade, while still being hung in a free-free configuration; although the mass rested on top of the 300 lb

80–20 aluminum fixture which was designed to represent a cantilever condition, the mass was not bolted down. “Clamped”

consisted of bolting the 500 lb mass at the end of the blade to the 300 lb 80–20 fixture while the rest of the blade was

suspended from the fixture with no other support for the structure. Figure 31.4 shows the various BCs studied.

The results reported are shown in Table 31.4; however, some of these frequencies will be further evaluated in the paper

and the specific mode characteristics of the specific shape will be further re-identified and discussed

The LANL blade was eventually brought to NREL, where a modal test was conducted with the blade in a large massive

fixture for fatigue and static loading. The results obtained at NREL using a much more substantial fixture were higher in

frequency than the results reported from LANL. As a result, some frequencies were questionable; the data was re-examined

and re-evaluated to confirm the original data results obtained.

Examination of the 3.2 Hz mode previously reported showed there was substantial motion in the fixture, and that the blade

had minimal bending in contrast to the shearing of the 80–20 frame. Accordingly, the modal data was re-processed in order

to better identify the flapwise modes. In addition, vector correlations were also performed rather than just relying on the

frequency comparisons. The new mode shapes show that a high degree of correlation exists when compared to the free-free

test as shown in Table 31.5. As a result, there appears to be a minimal frequency and mode shape change due to the addition

of the 800 lb mass and attachment to the 80–20 frame structure in the LANL lab set up.

The updated frequency comparisons are shown in Table 31.6; these are different than those previously reported in

Table 31.4

Examining Tables 31.5 and 31.6 show that the addition of the 800 lb mass and bolting to the 80–20 fixture was not

sufficient to accurately represent a built in condition. Both the mode shapes and frequencies correlate well between the free-

free and clamped condition, indicating the minimal effect due to the mass of the fixture and attachment to the 80–20 fixture at

the LANL lab.

Fig. 31.3 Characteristic

mode shapes – (a) first

flapwise. (b) second flapwise.

(c) third flapwise. (d) fourth

flapwise
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31.3.3 Analytical Model Approximations

In order to further substantiate these updated results, a very simple planar beam model approximation for the blade was

developed. The model was not intended to be a super, high fidelity model but rather just a coarse approximation of the blade

cross sections with a reasonable distribution of mass in the model to represent the generic free-free and mass loaded

conditions.

Three sections of the blade “SDASL 2” were cut for further study at the University of Massachusetts Lowell. Based on

these three sections and other dimensions given [7], the physical characteristics of the model were compared to the various

known values shown in Table 31.7.

In addition, the first three flapwise modes along the centerline were compared between SDASL 2 and the model where

Table 31.8 lists the frequency and MAC values. While the simple beam model is not perfect, the model allows for the

investigation of different boundary conditions on the blade frequency.

With a reasonable degree of confidence in the model, a study was done to determine the effect of the 800 lb mass on the

blade. Table 31.9 lists the results for adding various masses to the analytical model as well as the test results.

Table 31.2 MAC of all three blades for the first eight modes of each test (F flapwise, E edgewise, T torsional)

SDASL 1 SDASL 2 LANL

7.9 
(F)

16.0 
(E)

20.8
(F)

32.5
(F)

43.2
(E)

50.9
(F)

65.6
(T)

70.5
(E)

7.8
(F)

15.7
(E)

21.3
(F)

31.3
(F)

43.6
(E)

49.7
(F)

63.1
(T)

68.2
(E)

7.6
(F)

18.1
(E)

20.2
(F)

32.2
(F)

45.1
(E)

50.5
(F)

63.9
(T)

70.1
(E)

SD
A

SL
 1

7.9 
(F)

100 1.8 15.5 1.5 10.4 4.9 9.4 3.5 98.3 4.1 19.6 4.8 9.2 5.3 5 2.2 99.6 25.9 5.3 0.9 0.1 0.1 1.6 0

16.0 
(E)

1.8 100 76.5 3.7 29.8 1.6 1.9 9.1 4.4 96.2 68.8 5.5 15.7 1 0.1 2.6 21.9 84.9 81.2 4.9 2.8 0.1 5.2 0.2

20.8
(F)

15.5 76.5 100 15.4 50.2 4.6 3.5 13.6 22.1 72 97.6 19.6 26.4 3.1 0.1 5.7 41.6 96.8 79 13.1 0.1 0 7.9 0.2

32.5
(F)

1.5 3.7 15.4 100 49.3 3.8 14.6 9 4.3 6.2 20.5 95.9 23.5 2.1 1.4 6 16.5 38.4 27 88.4 20.3 0.3 0.2 3.7

43.2
(E)

10.4 29.8 50.2 49.3 100 30.5 3.4 5.5 16.6 34.1 57.7 53.8 73.3 20.1 0.8 0.4 33.5 60.3 42.4 49.9 13.9 6.2 4.8 0.6

50.9
(F)

4.9 1.6 4.6 3.8 30.5 100 7.5 8 7.3 4.4 9.2 11 73.6 96 1.4 3.9 22.8 20.9 9.9 19.2 50.6 62.5 0 0.2

65.6
(T)

9.4 1.9 3.5 14.6 3.4 7.5 100 30 12 5.8 6.6 22 12 15.2 80.8 30.7 28 14.9 5.5 20.4 15.5 7.3 32.7 0.7

70.5
(E)

3.5 9.1 13.6 9 5.5 8 30 100 5.6 14 18.7 15.9 15.6 15.3 27.4 90.2 38.4 44.4 28.6 15.2 1.7 5.9 3.8 19.2

SD
A

SL
 2

7.8
(F)

98.3 4.4 22.1 4.3 16.6 7.3 12 5.6 100 7.9 27.1 9.5 14.2 7.7 5.2 3.8 98.9 33.9 9.7 3.1 0.4 0.2 2.3 0

15.7
(E)

4.1 96.2 72 6.2 34.1 4.4 5.8 14 7.9 100 67.7 9.7 23.4 3.8 1.6 5.6 28.3 81.6 73.8 8.7 0.8 0.9 2.7 0

21.3
(F)

19.6 68.8 97.6 20.5 57.7 9.2 6.6 18.7 27.1 67.7 100 26.7 36.6 7.3 0.8 9.3 47.8 93.5 72.2 17.4 0.2 0.2 5.1 0.2

31.3
(F)

4.8 5.5 19.6 95.9 53.8 11 22 15.9 9.5 9.7 26.7 100 35 9 4.4 12.2 24.5 42.9 28.2 80.1 24.2 2.2 0.1 3.8

43.6
(E)

9.2 15.7 26.4 23.5 73.3 73.6 12 15.6 14.2 23.4 36.6 35 100 65.2 2 6.6 34.7 44.8 27.2 39 27.2 24.6 0 0.1

49.7
(F)

5.3 1 3.1 2.1 20.1 96 15.2 15.3 7.7 3.8 7.3 9 65.2 100 6.9 10.9 26.8 20.1 8.7 15.1 46.9 61.6 1.2 0

63.1
(T)

5 0.1 0.1 1.4 0.8 1.4 80.8 27.4 5.2 1.6 0.8 4.4 2 6.9 100 33.5 15.3 5.6 1.5 9.6 8.5 4.1 61.2 0.4

68.2
(E)

2.2 2.6 5.7 6 0.4 3.9 30.7 90.2 3.8 5.6 9.3 12.2 6.6 10.9 33.5 100 39.5 40.4 25 16.3 0.8 1.6 5.9 17.4

L
A

N
L

7.6
(F)

99.6 25.9 5.3 0.9 0.1 0.1 1.6 0 98.9 33.9 9.7 3.1 0.4 0.2 2.3 0 100 27.9 6.4 1.2 0 0 2 0

18.1
(E)

21.9 84.9 81.2 4.9 2.8 0.1 5.2 0.2 28.3 81.6 73.8 8.7 0.8 0.9 2.7 0 27.9 100 89.7 14.9 0.5 0.2 9.7 0.4

20.2
(F)

41.6 96.8 79 13.1 0.1 0 7.9 0.2 47.8 93.5 72.2 17.4 0.2 0.2 5.1 0.2 6.4 89.7 100 12.1 2.4 0.6 9.2 0.6

32.2
(F)

16.5 38.4 27 88.4 20.3 0.3 0.2 3.7 24.5 42.9 28.2 80.1 24.2 2.2 0.1 3.8 1.2 14.9 12.1 100 29.8 0.5 0.1 5.8

45.1
(E)

33.5 60.3 42.4 49.9 13.9 6.2 4.8 0.6 34.7 44.8 27.2 39 27.2 24.6 0 0.1 0 0.5 2.4 29.8 100 52.9 3.8 14.4

50.5
(F)

22.8 20.9 9.9 19.2 50.6 62.5 0 0.2 26.8 20.1 8.7 15.1 46.9 61.6 1.2 0 0 0.2 0.6 0.5 52.9 100 3.9 0

63.9
(T)

28 14.9 5.5 20.4 15.5 7.3 32.7 0.7 15.3 5.6 1.5 9.6 8.5 4.1 61.2 0.4 2 9.7 9.2 0.1 3.8 3.9 100 0

70.1
(E)

38.4 44.4 28.6 15.2 1.7 5.9 3.8 19.2 39.5 40.4 25 16.3 0.8 1.6 5.9 17.4 0 0.4 0.6 5.8 14.4 0 0 100
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Table 31.4 Original frequency results reported for three conditionsa

Test: First flap (Hz) Second flap (Hz) Third flap (Hz) Fourth flap (Hz)

Free-free # 1 (straps only) 7.6 17.9 32.1 50.4

Free-free #2 (fixture + strap)b 3.3 8.7 17.6 30.7

Clamped-free (bolted to fixture + frame)b 3.2 8.8 19.2 30.8
aNote that these results were obtained by just considering frequency comparisons without mathematical comparisons of the actual

shape correlations
bNote that the frequencies are of the combined system, where the fixture and frame have a significant contribution to the frequencies and

mode shapes

Table 31.5 MAC comparing blade in all three configurations for first three flapwise modes

MAC

Free # 1 Free # 2 Clamped

1 – 7.61 2 – 20.11 3 – 32.23 1 – 7.15 2 – 17.5 3 – 30.66 1 – 7.11 2 – 16.84 3 – 30.85

Free # 1 1 – 7.61 100 7.3 1 75.8 24.2 2.5 97.4 32.3 8.2

2 – 20.11 7.3 100 11.3 0.2 87.9 22.9 8.6 82.9 28.6

3 – 32.23 1 11.3 100 0.9 9.4 96.1 2.6 10.4 92

Free # 2 1 – 7.15 75.8 0.2 0.9 100 6.8 1.6 80.9 9.3 5.2

2 – 17.5 24.2 87.9 9.4 6.8 100 18.5 24.1 97.5 27.5

3 – 30.66 2.5 22.9 96.1 1.6 18.5 100 5.3 19.9 97.5

Clamped 1 – 7.11 97.4 8.6 2.6 80.9 24.1 5.3 100 31.6 12.2

2 – 16.84 32.3 82.9 10.4 9.3 97.5 19.9 31.6 100 30.1

3 – 30.85 8.2 28.6 92 5.2 27.5 97.5 12.2 30.1 100

Table 31.3 Comparison of results between SDASL 1 and SDASL 2 blades

Pair # SDASL 1
(Hz)

SDASL 2
(Hz)

%Frequency
Difference MAC Mode Description

1 7.90 7.76 1.80 98.3 1st Flapwise Bending

2 15.97 15.67 1.89 96.2 1st Edgewise Bending

3 20.84 21.26 -1.94 97.6 2nd Flapwise Bending

4 32.45 31.34 3.55 95.9 3rd Flapwise Bending

5 43.20 43.60 -0.90 73.3 2nd Edgewise Bending

6 50.87 49.68 2.40 96.0 4th Flapwise Bending

7 65.55 63.09 3.90 80.8 1st Torsion

8 70.45 68.23 3.26 90.2 3rd Edgewise Bending

Fig. 31.4 Boundary condition setup for three tests conducted
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In order to replicate a built-in condition, a significant amount of mass would be required (much more than the weight of

the 800 lb fixture) to be added to the root end of the blade. (Further modeling studies are provided in Reference [8]).

The results of the model above substantiate the findings from the test results presented in the second part of the paper.

31.4 Conclusion

Two separate CX-100 wind turbine blades were tested in April 2011 and the results of these tests were correlated. Previous

testing performed at Los Alamos National Laboratories (LANL) during the summer of 2010 on another CX-100 blade was

re-evaluated and compared to these latest results. The LANL blade was also subjected to several different perturbed

boundary conditions. All of the results from these three blades were compared and resulting flapwise modes correlated

well following re-examination of previously collected data. In addition, a very simple analytical model of the blade was

developed to further substantiate the result observed.

Table 31.7 Comparison of

calculated and actual physical

characteristics

Actual Model % Difference

Total length [m] 9.0 [7] 9.0 0.00

Total weight [lb] 382.9 [7] 382.6 0.08

Weight of 2300 section [lb] 16.7 17.1 �2.40

Weight of 2100 section [lb] 12.3 12.3 0.00

Weight of tip section [lb] 33.9 30.2 10.91

Table 31.6 Updated comparison

of frequencies between boundary

conditions
Test:

First flap

(Hz)

Second flap

(Hz)

Third flap

(Hz)

Free-free # 1 (straps only) 7.61 20.11 32.23

Free-free #2 (fixture + strap) 7.15 17.5 30.66

Clamped-free (bolted to fixture, frame) 7.11 16.84 30.85

NREL test 4.35 11.51 20.54

Table 31.8 Frequency and

MAC values between model

and test for free-free condition

Mode # SDASL 2 (Hz) Model (Hz) MAC Mode description

1 7.76 7.84 99.85 First flapwise bending

2 21.26 18.50 98.28 Second flapwise bending

3 31.34 34.52 98.85 Third flapwise bending

Table 31.9 Frequency values for model as various masses added at root section

MATLAB results Test results

Free-free

(Hz)

250 lb mass

(Hz)

500 lb mass

(Hz)

1,000 lb mass

(Hz)

1,000 lb

mass w/inertia

(Hz)

Built-in

(Hz)

LADSS 2010 –

800 lb mass added

(Hz)

LANL blade

w/NREL fixture

(Hz)

Mode 1 7.84 7.45 7.35 7.28 4.60 4.36 7.11 4.35

Mode 2 18.50 17.67 17.48 17.36 12.05 11.76 16.84 11.51

Mode 3 34.52 33.21 32.95 32.77 24.63 24.25 30.85 20.54
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