Chapter 7
High Dimensional Modelling

7.1 Introduction

This chapter describes and compares some methods available in R for selecting and
working with high-dimensional graphical models. By ‘high-dimensional’ we are
thinking of models with hundreds to tens of thousands of variables. Modelling such
data has become of central importance in molecular biology and other fields, but is
challenging. Many graph-theoretic operations scale poorly: for example, finding the
cliques of a general undirected graph is known to be NP-hard. Model selection al-
gorithms that work well in low dimensional applications may be quite infeasible for
high dimensional ones. There can be statistical as well as algorithmic limitations:
for example, for high-dimensional Gaussian data with modest numbers of observa-
tions, maximum likelihood estimates will not exist for complex models. Generally
it is necessary to assume that relatively simple models are adequate to model high-
dimensional data.

In Sect. 7.2 two example datasets are described. In Sect. 7.3 some model selection
algorithms available in R are compared in respect to their scalability. Sections 7.4,
7.5 and 7.6 describe the use of some of the more scalable methods in more detail.
Finally, in Sect. 7.7 we describe a Bayesian approach, showing how to identify the
MAP (maximum a posteriori) forest for high-dimensional discrete data.

7.2 Two Datasets

We illustrate the methods in this chapter using two datasets. The first is supplied
along with gRbase and is taken from a study comparing gene expression profiles in
tumours taken from two groups of breast cancer patient, namely those with and those
without a mutation in the p53 tumour suppression gene. See Miller et al. (2005) for
a further description of the study.

> data(breastcancer)
> dim(breastcancer)
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(1] 250 1001
> table(sapply(breastcancer, class))

factor numeric
1 1000

> table(breastcancer$code)

case control
58 192

There are N = 250 observations and 1001 variables, comprising 1000 continuous
variables (the log-transformed gene expression values) and one binary factor, code.
There are 58 cases (with a p53 mutation) and 192 controls (without the mutation).
The second dataset comes from a large multinational project to study human
genetic variation, the HapMap project (http://www.hapmap.org/). The dataset con-
cerns a sample of 90 Utah residents with northern and western European ancestry,
the so-called CEU population, and contains information on genetic variants and
gene expression values for this sample. The genetic variants are SNPs (single nu-
cleotide polymorphisms), that is to say, individual bases at particular loci on the
genome that show variation in the population. In statistical terms SNPs are categor-
ical variables with three levels—two homozygotes and a heterozygote. Around 10
million SNPs have been identified in humans. Datasets containing both SNP and
gene expression data enable study of the the genetic basis for differences in gene
expression. The data from this sample are supplied along with the package GGtools
in the BioConductor repository. The code
data(hmceuB36.2021)
k <- 200
ggdata <- data.frame (hmceuB36.2021$male,
as(smList (MAFfilter (hmceuB36.2021, lower=.1))

[["21"]][,1:k], "character"), t(exprs(hmceuB36.2021))[,1:k])
ggdatal[,1:(k+1)] <- lapply(ggdatal,1:(k+1)], factor)

vV + +VVvyv

loads an object hmceuB36.2021 containing SNP data from chromosomes 20 and
21, gene expression data and other phenotypic information recorded for individuals
in the sample. In all it contains data on 199921 SNPs on chromosome 20, 50165
on chromosome 21, and expression values for 47293 genes. The above code frag-
ment creates a dataframe ggdata by extracting the individuals sex, the first 200
SNPs from chromosome 21 and the first 200 log-transformed gene expression val-
ues from hmceuB36.2021. Prior to extraction the SNPs are filtered so that SNPs
with a minimum allele frequency of less than 10% are discarded. Some values of
the SNPs are missing, but here the missing values are coded as a distinct charac-
ter value, so the SNPs are factors with up to four levels. The last line converts the
discrete variables into factors.

7.3 Computational Efficiency

A thorough study of the computational efficiency of the algorithms described in this
book would be a huge and complex task. In this section, we report on some timings
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Fig. 7.1 Timing comparisons

of the algorithms when applied to a specific dataset, in a specific computing envi-
ronment. It is hoped that this will give at least a rough impression of their relative
efficiency on similar datasets in other computing environments.

The algorithms were applied to data from the HapMap project described in
Sect. 7.2. For various values of the dimension p, the first p gene expression val-
ues were used. So there were 90 cases and p Gaussian variables, where p ranges
from 50 to 50000. Three algorithms to select undirected graphical models, and four
to select (equivalence classes of) graphical models based on DAGs were compared.
The computations were run under Redhat Fedora 10 Linux on a Intel i7 four-core
2.93 GHz machine with 48 GB RAM. The timings are shown in Fig. 7.1.

The undirected model selection methods were:

(i) The extended Chow-Liu algorithm, implemented in the minForest () function
in the gRapHD package, that finds the minimum BIC forest. This is further
described in Sect. 7.4.

(i) A greedy decomposable search algorithm, implemented in the stepw() func-
tion in the gRApHD package, that seeks (but is not guaranteed to find) the
minimum BIC decomposable model. See Sect. 7.5 below. Here the minimum
BIC forest is used as initial model.

(iii) The glasso() function in the glasso package described in Sect. 4.4.2. Here
the tuning parameter p = 0.2 is used.
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The DAG selection methods were:

(iv) The PC-algorithm implemented in the pc () function in the pcalg package, as
described in Sect. 4.6.1. Here oo = 0.05 is used.

(v) The hill-climbing algorithm implemented in the hc () function in the bnlearn
package, as described in Sect. 4.6.2.1.

(vi) The max-min hill-climbing algorithm implemented in the mmhc () function in
the bnlearn package, a hybrid constraint- and score-based algorithm, described
above in Sect. 4.6.2.2. Here o = 0.05 is used.

Note that (i) and (ii) return decomposable models, which represent equivalence
classes of DAGs (see Sect. 4.5.1), so these can also be regarded as DAG selection
methods.

We note that the algorithms for undirected models are more efficient than those
for directed models. The most efficient of the latter is the pc-algorithm: however,
when p = 5000, this takes approximately 24 hours whereas the extended Chow—
Liu algorithm takes about 1 minute for these data.

7.4 The Extended Chow-Liu Algorithm

In a paper predating much of the theoretical development of graphical models,
Chow and Liu (1968) described an algorithm to find the maximum likelihood tree
model for multivariate discrete data. In modern terminology, tree models are dis-
crete graphical models whose graphs are trees. Trees and forests are special cases
of undirected graphs. A forest is an acyclic undirected graph, that is, an undirected
graph with no cycles. A tree is a connected acyclic undirected graph. So a forest
may have several connected components, these being trees. Chow and Liu showed
that finding the maximum likelihood tree can be formulated as finding a maximum
weight spanning tree—a task for which highly efficient algorithms exist. Their ap-
proach requires, first, that all edge weights are calculated, and then a maximum
weight spanning tree algorithm is applied to find a maximum weight spanning tree.
(This may be non-unique if there are ties in the edge weights.)

Usually the algorithm due to Kruskal (1956) is used to find the maximum
weight spanning tree. This starts with the null graph and successively selects edges
e1,...,er. If edges eq, ..., e have been selected, the algorithm selects an edge e
such that

(a) ed{er,...ex} and {eq,...e, e} is a forest, and
(b) e has maximum weight among all edges satisfying (a).

Chow and Liu’s approach may be extended in various ways (Edwards et al. 2010):

e It can be applied to Gaussian data using appropriate weights.

e By modifying the weights appropriately it can be adapted to find the minimal
AIC or BIC forest. If this has several connected components we can analyze these
separately—a dimension reduction that can be very useful with high-dimensional
problems.
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e It can be applied to mixed discrete and Gaussian data by modifying the weights
appropriately and limiting the search space in (a) to strongly decomposable
forests, that is, forests containing no forbidden paths. Recall that a forbidden path
is a path between non-adjacent discrete nodes passing through continuous nodes.
This restriction implies that in each tree of the forest, the discrete nodes induce a
connected subgraph.

e In the conditional Chow-Liu algorithm (Kirshner et al. 2004) the search space is
extended to graphs that include a given set of edges, E( say. Formally, the search
space becomes

{G=(V,E): Ey C E Aany cycle in G has all edges in Ep}
To do this, the algorithm starts off from Gy = (V, Ep) and (a) is modified to

restrict candidate edges to those that do not create new cycles.

The extended algorithm is implemented in the minForest() function in the
gRapHD package. It requires the data to be supplied as a dataframe with discrete
and/or continuous variables. The discrete variables must be represented as factors.
For example, we can apply it to the breastcancer dataframe as follows:

> bF <- minForest (breastcancer)
> bF

gRapHD object

Number of edges = 1000

Number of vertices = 1001

Model = mixed and homogeneous
Statistic (minForest) = BIC

Statistic (stepw) =

Statistic (user def.) =

Edges (minForest) = 1...1000

Edges (stepw) =0...0

Edges (user def.) = 1...1000

Per default, the minForest function returns the minimal BIC forest, in the form of
a gRapHD object. Note that bF has 1001 nodes and 1000 edges. Since a forest with
n nodes and k connected components has n — k edges, we see that bF is a tree: all
nodes are interconnected.

These gRapHD objects are essentially undirected graphs represented in node and
edge list form, in which nodes are identified by their column numbers in the input
dataframe. They also contain information on variable types (discrete or continuous)
and names (which are used to label the nodes in plots). They may be displayed using
the plot function

> plot (bF)

but here, plotting a high-dimensional graph like bF would not be a good idea: no
structure would be visible. Instead, since we are primarily interested in the effect of
the mutation on gene expression, let us look at the neighbourhood of the discrete
variable, code. This is the last column of breastcancer, column number 1001.
The following two lines of code extract the nodes of bF whose path length from
code is less than or equal to 4, and then display the subgraph of bF induced by
these nodes.
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> nby <- neighbourhood(bF, orig=1001,
> plot(bF, vert=nby, numIter=1000)

7 High Dimensional Modelling

rad=4)$v([, 1]

A212978_at

A208627_s_at A221505_at
A208709_s_at
B224217 s at
A202283_s_at
A208108 5 aty 510066y ot
8224753_at
B.235609_at | A202338_at
A212423_at
B.222740_at B8.225686 at A210821_x_at
A205339.at  A213137_s_at
B.23gpsat A204162_at
B.222640_at
A202095_s_at A211519_s_at
8223666 at
A204127 at
£520681 s at A201970_s_at
Azgggdat 822455 at . 4o A214062_x_at
B.230165_at
-2 |B.230021_at A217938_s_al A202613_at A.208808 at
5225834 _at A206074-5 4t
A20287075 At B.226955_at
209642 at
2@ ot A204203at A208433 s _at
- A204675_at A205240 at
A221922_at
A 20840540 =
A201930_at  /A203418_at =2 A206499_s_at
A.45633a1
8222752 s at
A 2049627s._at
A219493_at
B226116 af
8222958_s._at
A209002°s at A201479_at £:229007_at
A21688575_al A201201_at 8.226661_at B.230596_at
a1 ot 8.223056_s_at
A208167 at A204510_at
8232278 s at
4
A208764_at AZ1Ggp4_at 52385 at
A200996_at
B.223274 at
A221258 s at
A204033_at
A2199 'A39854_r_at A218499_at
Wodheos s o - A218542-a B.228327_x_at
A217844 at
B227212_s_at
A.200881 /4t 'A.208580_x K444 &t
A219918_s _ak
A210@ o at A218755 at
B.228799 at
A219650 at
K222089_at

The plot () function, when applied to gRapHD objects, shows discrete variables
as dots and continuous variables as circles. It uses the iterative layout algorithm of
Fruchterman and Reingold (1991): here we specify 1000 iterations to get a clear lay-
out. We see that the effect of the mutation on gene expression appears to be mediated
by its effect on the expression of gene A.202870_s_at. To find out more about this
gene we can google this string, from which we learn that under the alias CDC20 the
gene “...appears to act as a regulatory protein interacting with several other proteins
at multiple points in the cell cycle. It is required for two microtubule-dependent pro-
cesses, nuclear movement prior to anaphase and chromosome separation.” In other
words, it is involved in cell division. Below, using strongly decomposable models,
we re-examine the hypothesis that the effect of p53 mutation on gene expression is
mediated by its effect on the expression of this gene.

The following code illustrates the extended Chow-Liu approach applied to the
ggdata dataset. The minimal BIC forest is obtained using the minForest () func-
tion:
> ggF <- minForest (ggdata)
> ggF
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gRapHD object

Number of edges = 392

Number of vertices = 401

Model = mixed and homogeneous
Statistic (minForest) = BIC

Statistic (stepw) =

Statistic (user def.) =

Edges (minForest) =1...392

Edges (stepw) =0...0

Edges (user def.) =1...392

> table(Degree (ggF))

o 1 2 3 4 5 6 7 8 10
5198 103 49 23 7 10 4 1 1

> plot(ggF, numIter=500, vert.labels=1:ggF0p, main="min BIC forest")

min BIC forest
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We see that ggF is a forest with 401 — 392 = 9 connected components. The De-
gree () function returns a vector containing the degree (number of adjacent nodes)
of each node: we see that there are 5 isolated nodes. We can identify the components
by converting the gRapHD object to a graphNEL object using the as () function, and
then applying the connComp () function, which returns a list of components.
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> cc <- connComp (as(ggF, "graphNEL"))
> sapply(cc, length)

[1] 172218 3 1 3 1 1 1 1

The 9 connected components consist of two large components (with 172 and 218
nodes), two components with 3 nodes, and 5 isolated nodes. If we look at the two
largest components

> intersect(cc[[1]], names(ggdata)[1:201])

[1] "hmceuB36.2021.male"

> length(intersect(cc[[2]], names(ggdata)[1:201]))
[1] 189

we see that the first contains only one discrete variable (sex), but the second contains
189 SNPs and 29 gene expression variables.

7.5 Decomposable Stepwise Search

In a celebrated paper, Chickering (1996) showed that identifying the Bayesian net-
work that maximizes a score function is in general a NP-hard problem, and it is
reasonable to suppose that this is also true of undirected graphical models (Markov
networks). However, there are ways to improve computational efficiency. A use-
ful approach is to restrict the search space to models with explicit estimates, the
decomposable models. The following key result is exploited: if My C M are de-
composable models differing by one edge e = {u, v} only, then e is contained in
one clique C of M only, and the likelihood ratio test for M versus M can be
performed as a test of u LL v|C \ {u, v}. These computations only involve the vari-
ables in C. It follows that for likelihood-based scores such as AIC or BIC, score
differences can be calculated locally—which is far more efficient then fitting both
M and M—and then stored, indexed by u, v and C, so that they can be reused
again if needed in the course of the search. This can lead to considerable efficiency
gains.

The stepw() function in the gRapHD package implements forward search
through decomposable models to minimize the AIC or BIC. At each step, the edge
giving the greatest reduction in AIC or BIC is added. A convenient choice of start
model is the minimal AIC/BIC forest, but an arbitrary decomposable start model
may be used. We illustrate use of this function by resuming the analysis of the breast
cancer dataset. The minimal BIC forest for the neighbourhood of the code variable
is obtained as follows.
> bc.marg <- breastcancer[,nby]

> mbF <- minForest (bc.marg)
> plot(mbF, numIter=1000)
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The gene adjacent to code is A.202870_s_at (CDC20) as we saw before. This
suggests that the effect of p53 mutation on gene expression is mediated by its effect
on CDC20. However, this might be a consequence of adopting this restrictive—and
sparse—model class. It is interesting to expand the search space to decomposable
models. The minimal BIC decomposable model is obtained using the stepw () func-

tion:

> mbG <- stepw(model=mbF, data= bc.marg)

> mbG

gRapHD object

Number of edges = 225

Number of
Model

Statistic
Statistic
Statistic

vertices

(minForest)
(stepw)
(user def.)

Edges (minForest)
Edges (stepw)
Edges (user def.)

94
mixed and homogeneous
BIC
BIC

1...93
94...225
1...93

To plot mbG using the same layout as in the previous plot, we store the node coordi-
nates from the previous plot and reuse them when plotting mbG, as follows:

> posn <- plot(mbF, numIter=1000, disp=F)
> plot (mbG, numIter=0, coord=posn)
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Although the minimal BIC decomposable model is considerably less sparse, the
interpretation is unaltered: it still appears that the effect of p53 mutation on gene
expression is mediated by its effect on the expression of CDC20.

An interesting aspect of this example is the presence of so-called hub genes—
nodes of high degree—that may play a key role in the regulatory network. If we
compare the degree distributions of the two graphs

> table(Degree (mbF))

1 2 3 4 5 61217
6812 5 1 2 2 3 1

> table(Degree (mbG))

1 2 3 4 5 6 7 8 912 15 21 22 25 29

7282110 8 1 8 3 1 1
> Degree (mbF) [Degree (mbF)>4]

2 6 13 18 20 24 27 31
1217 6 6 51212 b

> Degree (mbG) [Degree (mbF)>4]

2 6 13 18 20 24 27 31
25 29 15 12 21 22 25 9

11 2 1

we see that the hub genes in the—presumably more realistic—graph mbG are reliably

identified using the forest mbF.
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7.6 Selection by Approximation

Here we illustrate use of the graphical lasso algorithm of Friedman et al. (2008)
described in Sect. 4.4.2. We apply it to the breastcancer dataset (omitting the discrete
class variable since the algorithm is only applicable to Gaussian data).

S <- cor(breastcancer[,nby[-1]])

res.lasso <- glasso(S, rho=0.8)

AM <- res.lasso$wi != 0

diag(AM) <- F

rownames (AM) <- colnames (AM) <- names(breastcancer) [nby[-1]]
g.lasso <- as(AM, "graphNEL")

g.lasso

VVVVVYVYV

=

graphNEL graph with undirected edges
Number of Nodes = 93
Number of Edges = 198

> g.HD <- as(g.lasso, "gRapHD")
> plot(g.HD, numIt=1000)
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The example selects a model to the variables in the neighbourhood of the code
variable in the breast cancer dataset (omitting the code variable itself since it is dis-
crete). We apply the glasso () function to the expirical correlation matrix of the
variables, in effect standardizing the variables to unit variance. Note that since the
glasso procedure is not scale invariant, this is normally a sensible step. As penalty
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parameter we use p = (0.8: this choice was made so as to obtain a graph of com-
parable density to those obtained previously. The glasso () function returns a list
containing the estimated inverse covariance matrix wi. Note that the method com-
bines model selection with parameter estimation. In the code fragment shown we
derive the adjacency matrix from the inverse covariance and use this to construct a
graphNEL graph of the model. The diagonal elements of the adjacency matrix are
set to false to omit self-edges from the graph.

The graph selected by the algorithm contains a module of interconnected vari-
ables and a large number of isolated ones. To see the former more closely, we can
use the following code:

> cc <- connComp(g.lasso)
> sapply(cc, length)

1] 382 11 2 11 11 111 11 1 11 11111 2
[23] 1 2 1 1 1 1 1 1 1 1 1 1
[45] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-
—
—
-
-
—
-
—
—
—

> g.sub <- subGraph(cc[[1]], g.lasso)
> g.subHD <- as(g.sub, "gRapHD")
> plot(g.subHD, numIt=1000)
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B.230165_at B.226661_at
A.205339-at A-204162_at
B:222958 5 at
A.201930_at.
B.222608:s-at 203764 at
A 209642 at A;204444 _at

B;229610_at
A204962_ 5 219918 s at
A 202870:5-a 202580 X at

A.209408_at
A.203418_at A.218755-at

A218542_at Bi228273 at
APT005275 at

B:224753_at
B.225834_at

A202095_s_at,

A.204033_at
A211519_s_at
A.222039_at

A.209891_at
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7.7 Finding MAP Forests

In this section we describe a Bayesian equivalent to the minimal AIC/BIC forest
approach described in Sect. 7.4. This builds on the framework of Dawid and Lau-
ritzen (1993). We write a collection of d discrete random variables as X = (X,)yev,
and we write a generic observation as i = (i, ..., i), and the observed data as
X =", v=1,...,N). We are interested in a collection of graphs I with vertex
set V. For each graph G € I', let ©g be the associated parameter space, and Lg be
a prior distribution (or law) on ®¢. Then the marginal likelihood of G is

FXIG) = / F(XIG, 0)Lg(d0).

Og

If 7 (G) is the prior probability of G, then the posterior probability is given as
7(G) = (G1X) o f(X|G)m(G). (7.1)

The maximum a posteriori (MAP) estimate is the graph in I" that maximizes 7*(G).

We now sketch how a prior distribution £g on &g may be chosen. Consider
first an unconstrained multinomial distribution on an array with parameters p =
(p())iez, and let L = (A(i));e7z be an array of positive numbers. The Dirichlet
distribution D(A) has density

7(pla) o[ Tp@)* @71

If the prior distribution of p is D(X) and counts n = (n(i));c7 are observed, then
the posterior distribution of p is D(A 4 n): in other words, the Dirichlet distribution
is the conjugate prior of the multinomial. The numbers A are called the equivalent
sample size, or smoothing parameter.

Dawid and Lauritzen (1993) generalize this to construct the conjugate prior
for a decomposable graphical model G, which they term the hyper-Dirichlet dis-
tribution. Essentially this involves specifying a Dirichlet prior for each clique of
G. Let C = (Cy, ..., Cy) be these cliques. Thus a hyper-Dirichlet prior is spec-
ified though the collection of arrays (Ac)cec. These must satisfy a consistency
criterion, namely that for all cliques C, D € C, Ac(icnp) = Ap(icnp) for all
cells icnp. Without loss of generality we can specify the A¢’s by specifying a
A = (A(i));e7 for the whole array and setting Ac to the marginal totals Ac(ic) =
> jeT:je=ic »(J)- This construction automatically fulfills the consistency criteria.
It also allows the array X to function as a ‘master-prior’ to specify the smoothing
parameters for the hyper-Dirichlet prior for the parameters for any decomposable
model.

Dawid and Lauritzen (1993) also show that for a hyper-Dirichlet prior, the
marginal likelihood factorizes in a fashion similar to the likelihood:
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f (X 19)
f(XI9) = — (7.2)
11 510
where S = (81, ..., Sk) are the separators corresponding to C. Moreover the factors

f(Xc,1G) are constant for all G in which C; is (or is contained in) a clique, so in
that sense the conditioning on G is unnecessary.

Let now I be the set of forests with vertex set V. These models are decompos-
able, and so using (7.2) we obtain for G € I

l_[eEE(g) f(Xe)
[Toey f(Xy)do@=1

f(X19) = (7.3)

where dg (v) is the degree of v in G. Let BF(e) be the Bayes factor for independence
along edge ¢ = (u, v), so that

BF(e) = &
F (X)) f(X)
Then (7.3) can be written as
fXI9=1]r@) [] BFe) (7.4)
veV ecE(G)

It follows from (7.1) and (7.4) that assuming a uniform prior on I" we can find the
MAP estimate by using a maximum weight spanning tree algorithm, using loga-
rithms to the BF(e) as edge weights.

From (41) in Dawid and Lauritzen (1993) we can derive an expression for BF(e)
in terms of ratios of gamma functions:

(. +n)/T O] T Qij+nij) /T (hij)

BF(e) =
© = T T 0w+ /T O [1; T Oy +n)/T 0y

where 7 and j range over the number of levels of X, and X,, {n;;} is the corre-
sponding table of counts, {};;} the corresponding array of smoothing parameters,
and the - notation indicates marginal totals.

The following example illustrates application of this approach to find the MAP
forest for a dataset with 400 discrete variables (SNPs). A convenient choice is A (i) =
a/|Z| Vi, where « is a scalar. This implies that A, , = &/ (| X4 || Xy|) where | X, | and
| Xy | are the number of levels of X, and X, . In the following fragment we extract the
dataset from the GGtools package, define a function to calculate the logarithms of
the Bayes factors, and call the minForest () function specifying that 1ogBF be used
to calculate the edge weights. For comparison purposes we also find the minimum
BIC forest:
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> data(hmceuB36.2021)
> p <= 400
> SNPdata <- data.frame(as(smList(MAFfilter (hmceuB36.2021, lower=.1))

+

[["21"]][,1:p], "character"))

> SNPdatal[,1:p] <- lapply(SNPdatal[,1:p], factor)
> logBF <- function(newEdge, numCat, dataset, alpha=1) {

VV++++++++++++

i <- newEdgel[1]; j <- newEdgel[2]

n <- table(dataset[,i], dataset[,j])

I <-dim(n)[1]; J <- dim(n)[2]; IJ<-I*J

nm <- addmargins(n)

ni <- nm[1:I,J+1]; nj <- nm[I+1,1:J]; N <- nm[I+1,J+1]
fij <- sum(lgamma(n+alpha/IJ)-lgamma(alpha/IJ))
fi <- sum(lgamma(ni+alpha/I)-lgamma(alpha/I))
fj <- sum(lgamma(nj+alpha/J)-lgamma(alpha/J))
f <- lgamma(N+alpha) - lgamma(alpha)

logBF <- fij - fi - £j + f

return (logBF)

snp.MAP <- minForest(SNPdata, stat=logBF, alpha=1)
snp.F <- minForest (SNPdata)

Then we display the two graphs:

> plot(snp.MAP, numIt=500, vert.labels=1:snp.MAP@p, main="MAP forest")

MAP forest
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> plot(snp.F, numIt=500, vert.labels=1:snp.F@p, main="min BIC forest")

min BIC forest
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We see that the MAP estimate has many isolated vertices, indicating a stronger
tendency to negative logBF values than negative BIC values for weakly associated

variables.
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