
Chapter 6
Graphical Models for Complex Stochastic
Systems

6.1 Introduction

In this chapter we describe the use of graphical models in a Bayesian setting, in
which parameters are treated as random quantities on equal footing with the ran-
dom variables. This allows complex stochastic systems to be modelled. This is one
of the most successful application areas of graphical models; we give only a brief
introduction here and refer to Albert (2009) for a more comprehensive exposition.

The paradigm used in Chaps. 2, 4 and 5 was that of identifying a joint distribution
of a number of variables based on independent and identically distributed samples,
with parameters unknown apart from restrictions determined by a log-linear, Gaus-
sian, or mixed graphical model.

In contrast, Chap. 3 illustrated how a joint distribution for a Bayesian network
may be constructed from a collection of conditional distributions; the network can
subsequently be used to infer values of interesting unobserved quantities given ev-
idence, i.e. observations of other quantitites. As parameters and random variables
are on an equal footing in the Bayesian paradigm, we may think of the interesting
unobserved quantitites as parameters and the evidence as data.

In the present chapter we follow this idea through in a general statistical setting.
We focus mainly on constructing full joint distributions of a system of observed and
unobserved random variables by specifying a collection of conditional distributions
for a graphical model given as a directed acyclic graph with nodes representing all
these quantities. Bayes’ theorem is then invoked to perform the necessary inference.

6.2 Bayesian Graphical Models

6.2.1 Simple Repeated Sampling

In the simplest possible setting we specify the joint distribution of a parameter θ and
data x through a prior distribution π(θ) for θ and a conditional distribution p(x | θ)

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_6, © Springer Science+Business Media, LLC 2012

145

http://dx.doi.org/10.1007/978-1-4614-2299-0_6

146 6 Graphical Models for Complex Stochastic Systems

Fig. 6.1 Representation of a Bayesian model for simple sampling. The graph to the left indicates
that observations are conditionally independent given θ ; the picture to the right represents the
same, but the plate allows a more compact representation

of data x for fixed value of θ , leading to the joint distribution

p(x, θ) = p(x | θ)π(θ).

The prior distribution represents our knowledge (or rather uncertainty) about θ be-
fore the data have been observed. After observing that X = x our posterior distri-
bution π∗(θ) of θ is obtained by conditioning with the data x to obtain

π∗(θ) = p(θ |x) = p(x|θ)π(θ)

p(x)
∝ L(θ)π(θ),

where L(θ) = p(x | θ) is the likelihood. Thus the posterior is proportional to the
likelihood times the prior and the normalizing constant is the marginal density
p(x) = ∫

p(x|θ)π(θ)dθ .
If the data is a sample x = (x1, x2, x3, x4, x5) we can represent this process by a

small Bayesian network as shown to the left in Fig. 6.1. This network represents the
model

p(x1, . . . , x5, θ) = π(θ)

5∏

ν=1

p(xν | θ).

reflecting that the individual observations are conditionally independent and identi-
cally distributed given θ . We can make a more compact representation of the net-
work by introducing a plate which indicates repeated observations, such as shown
to the right in Fig. 6.1.

For a more sophisticated example, consider a graphical Gaussian model given
by the conditional independence X1 ⊥⊥ X3 |X2 for fixed value of the concentra-
tion matrix K . In previous chapters we would have represented this model with its
dependence graph:

However, in the Bayesian setting we need to include the parameters explicitly
into the model, and could for example do that by the graph in Fig. 6.2.

The model is now represented by a chain graph, where the first chain component
describes the structure of the prior distribution for the parameters in the concen-

6.2 Bayesian Graphical Models 147

Fig. 6.2 A chain graph
representing N independent
observations of
X = (X1,X2,X3) from a
Bayesian graphical Gaussian
model in which
Xν

1 ⊥⊥ Xν
3 |Xν

2 ,K and K

follows a hyper Markov prior
distribution

tration matrix. We have here assumed a so-called hyper Markov prior distribution
(Dawid and Lauritzen 1993): conditionally on k22, the parameters (k11, k12) are
independent of (k23, k33). The plate indicates that there are N independent obser-
vations of X, so the graph has 3N + 5 nodes. The chain component on the plate
reflects the factorization

f (x1, x2, x3 |K)

∝ det(K)1/2 exp{−(x2
1k11 + x2

2k22 + x2
3k33 + 2x1x2k12 + 2x2x3k23)/2}

for each of the individual observations of X = (X1,X2,X3).

6.2.2 Models Based on Directed Acyclic Graphs

A key feature of Bayesian graphical models is that explicitly including parame-
ters and observations themselves in the graphical representation enables much more
complex observational patterns to be accommodated. Consider for example a linear
regression model

Yi ∼ N(μi, σ
2) with μi = α + βxi for i = 1, . . . ,N.

To obtain a full probabilistic model we must specify a joint distribution for (α,β,σ)

whereas the dependent variables xi are assumed known (observed). If we specify in-
dependent distributions for these quantities, Fig. 6.3 shows a plate- based represen-
tation of this model with α, β , and σ being marginally independent and independent
of Yi .

Note that μi are deterministic functions of their parents and the same model
can also be represented without explicitly including these nodes. However, there
can be specific advantages of representing the means directly in the graph. If the
independent variables xi are not centered, i.e. x̄ �= 0, the model would change if xi

were replaced with xi − x̄, as α then would be the conditional mean when xi = x̄

rather than when xi = 0, inducing a different distribution of μi .
For a full understanding of the variety and complexity of models that can easily

be described by DAGs with plates, we refer to the manual for BUGS (Spiegelhalter
et al. 2003), which also gives the following example.

148 6 Graphical Models for Complex Stochastic Systems

Fig. 6.3 Graphical representations of a traditional linear regression model with unknown intercept
α, slope β , and variance σ 2. In the representation to the left, the means μi have been represented
explicitly

Fig. 6.4 Graphical representation of a random coefficient regression model for the growth of rats

Weights have been measured weekly for 30 young rats over five weeks. The
observations Yij are the weights of rat i measured at age xj . The model is essentially
a random effects linear growth curve:

Yij ∼N (αi + βi(xj − x̄), σ 2
c)

and

αi ∼N (αc, σ
2
α), βi ∼N (βc, σ

2
β),

where x̄ = 22. Interest particularly focuses on the intercept at zero time (birth),
denoted α0 = αc − βcx̄. The graphical representation of this model is displayed in
Fig. 6.4.

For a final illustration we consider the chest clinic example in Sect. 3.1.1. Fig-
ure 6.5 shows a directed acyclic graph with plates representing N samples from the
chest clinic network.

6.3 Inference Based on Probability Propagation 149

Fig. 6.5 A graphical
representation of N samples
from the chest clinic network,
with parameters unknown and
marginally independent for
seven of the nodes

Here we have introduced a parameter node for each of the variables. Each of these
nodes may contain parameters for the conditional distribution of a node given any
configuration of its parents, so that, following Spiegelhalter and Lauritzen (1990),
we would write for the joint model

p(x, θ) =
∏

v∈V

π(θv)

N∏

ν=1

p(xν
v |xν

pa(v), θv).

6.3 Inference Based on Probability Propagation

If the prior distributions of the unknown parameters are concentrated on a finite
number of possibilities, i.e. the parameters are all discrete, the marginal posterior
distribution of each of these parameters can simply be obtained by probability prop-
agation in a Bayesian network with 7 + 8N nodes, inserting the observations as ob-
served evidence. The moral graph of this network is shown in Fig. 6.6. This graph
can be triangulated by just adding edges between xν

L and xν
B and the associated junc-

tion tree would thus have 10N cliques of size at most 4. Thus, propagation would
be absolutely feasible, even for large N .

We illustrate this procedure in the simple case of N = 3 where we only introduce
unknown parameters for the probability of visiting Asia and the probability of a
smoker having lung cancer, each having three possible levels, low, medium and
high. We first define the parameter nodes

> library(gRain)
> lmh <- c("low","medium","high")
> thA<- cptable(~theta_A, values =c(1,1,1), levels=lmh)

150 6 Graphical Models for Complex Stochastic Systems

Fig. 6.6 Moral and
triangulated graph of N

samples from the chest clinic
network, with seven unknown
parameters

> thL<- cptable(~theta_L, values =c(1,1,1), levels=lmh)
> param <- list(thA, thL)

and then specify a template for probabilities where we notice that A and L have an
extra parent

> yn <- c("yes","no")
> a <- cptable(~asia[i]|theta_A, values=c(1,99,2,98,5,95),levels=yn)
> t.a <- cptable(~tub[i]|asia[i], values=c(5,95,1,99),levels=yn)
> s <- cptable(~smoke[i], values=c(5,5), levels=yn)
> l.s <- cptable(~lung[i]|smoke[i]:theta_L,
+ values=c(5,95,1,99,1,9,1,99,1,4,1,99), levels=yn)
> b.s <- cptable(~bronc[i]|smoke[i], values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either[i]|lung[i]:tub[i],
+ values=c(1,0,1,0,1,0,0,1),levels=yn)
> x.e <- cptable(~xray[i]|either[i], values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp[i]|bronc[i]:either[i],
+ values=c(9,1,7,3,8,2,1,9), levels=yn)
> plist.tmp <- list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

We create three instances of the pattern defined above. In these instance the variable
name asia[i] is replaced by asia1, asia2 and asia3 respectively.

> plate <- repeatPattern(plist.tmp, instances=1:3)

We then proceed to the specification of the full network which is displayed in
Fig. 6.7:

> plist <- compileCPT(c(param, plate))
> chestlearn <-grain(plist)
> plot(chestlearn)

Finally we insert evidence for three observed cases, none of whom have been
to Asia, all being smokers, one of them presenting with dyspnoea, one with a pos-

6.3 Inference Based on Probability Propagation 151

Fig. 6.7 Bayesian network
for the chest clinic example
with two unknown parameter
nodes and two potential
observations of the network.
Parameters appear as nodes in
the graph

itive X-ray, one with dyspnoea and a negative X-ray; we then query the posterior
distribution of the parameters:

> chestlearn.ev<- setFinding(chestlearn,
+ nodes = c("asia1","smoke1","xray1"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia2","smoke2","dysp2"), c("no","yes","yes"))
> chestlearn.ev<- setFinding(chestlearn.ev,
+ nodes = c("asia3","smoke3","dysp3","xray3"),

c("no","yes","yes","no"))
> querygrain(chestlearn.ev,nodes =c("theta_A","theta_L"))

$theta_A
theta_A

low medium high
0.3504 0.3399 0.3096

$theta_L
theta_L

low medium high
0.2211 0.3099 0.4690

We see that the probabilities of visiting Asia is now more likely than before to be
low, whereas the probability of having lung cancer for a smoker is more likely to be
high.

In the special case where all cases have been completely observed, it is not nec-
essary to form the full network with 7 + 8N nodes, but updating can be performed
sequentially as follows.

152 6 Graphical Models for Complex Stochastic Systems

Let p∗
n(θ) denote the posterior distribution of θ given n observations x1, . . . , xn,

i.e. p∗
n(θ) = p(θ |x1, . . . , xn). We then have the recursion:

p∗
n(θ) ∝ p(x1, . . . , xn, θ) =

{
n∏

ν=1

p(xν | θ)

}

p(θ)

= p(xn | θ)

{
n−1∏

ν=1

p(xν | θ)

}

p(θ)

∝ p(xn | θ)p∗
n−1(θ).

Hence we can incorporate evidence from the n-th observation by using the posterior
distribution from the n − 1 first observations as a prior distribution for a network
representing only a single case. It follows from the moral graph in Fig. 6.6 that if all
nodes in the plates are observed, the seven parameters are conditionally independent
also in the posterior distribution after n observations. If cases are incomplete, such
a sequential scheme can only be used approximately (Spiegelhalter and Lauritzen
1990).

6.4 Computations Using Monte Carlo Methods

In most cases the posterior distribution

π∗(θ) = p(θ |x) = p(x|θ)π(θ)

p(x)
∝ p(x|θ)π(θ) (6.1)

of the parameters of interest cannot be calculated or represented in a simple fashion.
This would for example be the case if the parameter nodes in Fig. 6.5 had values in
a continuum and there were incomplete observations, such as in the example given
in the previous section.

In such models one will often resort to Markov chain Monte Carlo (MCMC)
methods: we cannot calculate π∗(θ) analytically but if we can generate samples
θ(1), . . . , θ (M) from the distribution π∗(θ), we can do just as well.

6.4.1 Metropolis–Hastings and the Gibbs Sampler

Such samples can be generated by the Metropolis–Hastings algorithm. In the fol-
lowing we change the notation slightly.

We suppose that we know p(x) only up to a normalizing constant. That is to say,
p(x) = k(x)/c, where k(x) is known but c is unknown. We partition x into blocks,
for example x = (x1, x2, x3).

6.4 Computations Using Monte Carlo Methods 153

We wish to generate samples x1, . . . , xM from p(x). Suppose we have a sample
xt−1 = (xt−1

1 , xt−1
2 , xt−1

3) and also that x1 has also been updated to xt
1 in the current

iteration. The task is to update x2. To do so we need to specify a proposal distribu-
tion h2 from which we can sample candidate values for x2. The single component
Metropolis–Hastings algorithm works as follows:

1. Draw x2 ∼ h2(· |xt
1, x

t−1
2 , xt−1

3). Draw u ∼ U(0,1).
2. Calculate acceptance probability

α = min

(

1,
p(x2 |xt

1, x
t−1
3)h2(x

t−1
2 |xt

1, x2, x
t−1
3)

p(xt−1
2 |xt

1, x
t−1
3)h2(x2 |xt

1, x
t−1
2 , xt−1

3)

)

(6.2)

3. If u < α set xt
2 = x2; else set xt

2 = xt−1
2 .

The samples x1, . . . , xM generated this way will form an ergodic Markov chain
that, under certain conditions, has p(x) as its stationary distribution so that the ex-
pectation of any function of x can be calculated approximately as

∫
f (x)p(x)dx = lim

M→∞
1

M

M∑

ν=1

f (xν) ≈ 1

M

M∑

ν=1

f (xν).

Note that p(x2 |xt
1, x

t−1
3) ∝ p(xt

1, x2, x
t−1
3) ∝ k(xt

1, x2, x
t−1
3) and therefore the ac-

ceptance probability can be calculated even though p(x) may only be known up to
proportionality.

A special case of the single component Metropolis–Hastings algorithm is the
Gibbs sampler: If as proposal distribution h2 we choose p(x2 |xt

1, x
t−1
3) then the

acceptance probability becomes 1 because terms cancel in (6.2). The conditional
distribution of a single component X2 given all other components (X1,X3) is known
as the full conditional distribution.

For a directed graphical model, the density of full conditional distributions can
be easily identified:

f (xi |xV \i) ∝
∏

v∈V

f (xv |xpa(v))

∝ f (xi |xpa(i))
∏

v∈ch(i)

f (xv |xpa(v)) = f (xi |xbl(i)), (6.3)

where bl(i) is the Markov blanket of node i:

bl(i) = pa(i) ∪ ch(i) ∪
{ ⋃

v∈ch(i)

pa(v) \ {i}
}

or, equivalently, the neighbours of i in the moral graph, see Sect. 1.4.1. Note that
(6.3) holds even if some of the nodes involved in the expression correspond to values
that have been observed. To sample from the posterior distribution of the unobserved

154 6 Graphical Models for Complex Stochastic Systems

values given the observed ones, only unobserved variables should be updated in the
Gibbs sampling cycle.

In this way, a Markov chain of pseudo-observations from all unobserved vari-
ables is generated, and those corresponding to quantities (parameters) of interest
can be monitored.

6.4.2 Using WinBUGS via R2WinBUGS

The program WinBUGS (Gilks et al. 1994) is based on the idea that the user specifies
a Bayesian graphical model based on a DAG, including the conditional distribu-
tion of every node given its parents. WinBUGS then identifies the Markov blanket
of every node and using properties of the full conditional distributions in (6.3), a
sampler is automatically generated by the program. As the name suggests, Win-
BUGS is available on Windows platforms only. WinBUGS can be interfaced from R

via the R2WinBUGS package (Sturtz et al. 2005) and to do this, WinBUGS must be
installed. R2WinBUGS works by calling WinBUGS, doing the computations there,
shutting WinBUGS down and returning control to R.

The model described in Fig. 6.3 can be specified in the BUGS language as follows
(notice that the dispersion of a normal distribution is parameterized in terms of the
concentration τ where τ = σ−2):

model {

for (i in 1:N) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta*(x[i] - x.bar)

}

x.bar <- mean(x[])

alpha ~ dnorm(0, 1.0E-6)

beta ~ dnorm(0, 1.0E-6)

sigma ~ dunif(0,100)

tau <- 1/pow(sigma,2)

}

BUGS comes with a Windows interface in the program WinBUGS. To analyse this
model in R we can use the package R2WinBUGS. First we save the model specifi-
cation to a plain text file:

> cat(
+ "model {
+ for (i in 1:N) {
+ Y[i] ~ dnorm(mu[i],tau)
+ mu[i] <- alpha + beta*(x[i] - x.bar)
+ }
+ x.bar <- mean(x[])
+ alpha ~ dnorm(0, 1.0E-6)
+ beta ~ dnorm(0, 1.0E-6)
+ sigma ~ dunif(0,100)

6.4 Computations Using Monte Carlo Methods 155

+ tau <- 1/pow(sigma,2)
+ }",
+ file="linesModel.txt")

We specify data:

> Y <- c(1,3,3,3,5)
> x <- c(1,2,3,4,5)
> N <- 5

As the sampler must start somewhere, we specify initial values for the unknowns:

> p.ini <- list(alpha = 0, beta = 0, sigma = 1)

We may now ask WinBUGS for a sample from the model:

> library(R2WinBUGS)
> lines.res <-
+ bugs(data = list(Y=Y, x=x, N=N),
+ inits = list(p.ini),
+ param = c("alpha","beta","sigma"),
+ model = "linesModel.txt",
+ n.chains = 1,
+ ## Total number of samples, including burn-in:
+ n.iter = 7000,
+ ## Burn-in values; will be discarded in subsequent analyses:
+ n.burnin = 5000,
+ ## Of the non-discarded samples only every 'n.thin'th
+ will be used.
+ n.thin = 5,
+ bugs.directory = "c:/Programs/WinBUGS14/",
+ debug = F,
+ clearWD = TRUE)

The file lines.res contains the output. A simple summary of the samples is

> print(lines.res)

Inference for Bugs model at "linesModel.txt", fit using WinBUGS,
1 chains, each with 7000 iterations (first 5000 discarded), n.thin = 5
n.sims = 400 iterations saved

mean sd 2.5% 25% 50% 75% 97.5%
alpha 3.0 1.0 1.7 2.7 3.0 3.3 4.6
beta 0.9 0.7 -0.1 0.6 0.8 1.0 2.3
sigma 1.5 2.1 0.5 0.7 1.0 1.5 6.2
deviance 14.4 5.3 9.0 10.8 12.8 16.4 28.5

DIC info (using the rule, pD = Dbar-Dhat)
pD = 0.2 and DIC = 14.7
DIC is an estimate of expected predictive error (lower deviance is

better).

We next convert the output to a format suitable for analysis with the coda package:

> library(coda)
> lines.coda <- as.mcmc.list(lines.res)

An summary of the posterior distribution of the monitored parameters is as follows:

> summary(lines.coda)

156 6 Graphical Models for Complex Stochastic Systems

Iterations = 5001:6996
Thinning interval = 5
Number of chains = 1
Sample size per chain = 400

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 2.980 1.037 0.0518 0.0525
beta 0.887 0.735 0.0367 0.0465
deviance 14.425 5.307 0.2654 0.3996
sigma 1.534 2.139 0.1070 0.1536

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 1.708 2.708 3.023 3.28 4.56
beta -0.065 0.598 0.813 1.04 2.35
deviance 9.046 10.837 12.775 16.41 28.47
sigma 0.459 0.740 1.002 1.49 6.16

As the observations are very informative, the posterior distributions of the regres-
sion parameters α and β are similar to the sampling distributions obtained from a
standard linear regression analysis:

> summary(lm(Y~I(x-mean(x))))

Call:
lm(formula = Y ~ I(x - mean(x)))

Residuals:
1 2 3 4 5

-4.00e-01 8.00e-01 4.84e-17 -8.00e-01 4.00e-01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.000 0.327 9.19 0.0027 **
I(x - mean(x)) 0.800 0.231 3.46 0.0405 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.73 on 3 degrees of freedom
Multiple R-squared: 0.8, Adjusted R-squared: 0.733
F-statistic: 12 on 1 and 3 DF, p-value: 0.0405

A traceplot (see Fig. 6.8) of the samples is useful for visual inspection of indications
that the sampler has not converged. There appears to be no problem here:

> library(coda)
> par(mfrow=c(2,2))
> traceplot(lines.coda)

A plot of the marginal posterior densities (see Fig. 6.9) provides a supplement to the
numeric summaries shown above:

> par(mfrow=c(2,2))
> densplot(lines.coda)

6.4 Computations Using Monte Carlo Methods 157

Fig. 6.8 A traceplot of the samples produced by BUGS is a useful tool for visual inspection of
indications of that the sampler has not converged

Fig. 6.9 A plot of each posterior marginal distribution provides a provides a supplement to the
numeric summary statistics

158 6 Graphical Models for Complex Stochastic Systems

6.5 Various

An alternative to WinBUGS is OpenBUGS (Spiegelhalter et al. 2011). The two pro-
grams have the same genesis and the model specification languages are very similar.
OpenBUGS can be interfaced from R via the BRugs package and OpenBUGS/BRugs
is available for all platforms. The modus operandi of BRugs is fundamentally differ-
ent from that of WinBUGS: a sampler created using BRugs remains alive in the sense
that one may call the sampler repeatedly from within R. Yet another alternative is
package rjags which interfaces the JAGS program; this must be installed separately
and is available for all platforms.

	Chapter 6: Graphical Models for Complex Stochastic Systems
	6.1 Introduction
	6.2 Bayesian Graphical Models
	6.2.1 Simple Repeated Sampling
	6.2.2 Models Based on Directed Acyclic Graphs

	6.3 Inference Based on Probability Propagation
	6.4 Computations Using Monte Carlo Methods
	6.4.1 Metropolis-Hastings and the Gibbs Sampler
	6.4.2 Using WinBUGS via R2WinBUGS

	6.5 Various

