
Chapter 5
Mixed Interaction Models

5.1 Introduction

This chapter introduces mixed interaction models, a class of models for discrete
and continuous variables that combine log-linear models for discrete variables (de-
scribed in Chap. 2) with graphical Gaussian models for continuous variables (de-
scribed in Chap. 4). The exposition given here is restricted to homogeneous mixed
interaction models. Homogeneity in this context means that the covariance matrix
of the Gaussian variables does not depend on the values of discrete variables. More
general types of mixed interaction models that do not assume homogeneity are de-
scribed in Lauritzen (1996) and Edwards (2000). An important advantage of the
homogeneous models is that they can be specified using model formulae that are
similar to the model formulae for log-linear models and for graphical Gaussian mod-
els.

5.2 Example Datasets

To introduce the models we consider three datasets that are in gRbase. The first
dataset, milkcomp1, comes from a study comparing the composition of sow milk
in terms of fat, protein and lactose content under 8 different diets. The control diet
consisted of soybean meal, barley and wheat. The other diets added 8% fat to this
basis diet: animal fat, rapeseed oil, fish oil, coconut oil, palm oil or sunflower oil.
Sow milk was analysed for the concentration of dry matter, protein, fat and lactose:
here we consider the data recorded four days after farrowing (i.e., giving birth). For
further details see Lauridsen and Danielsen (2004). The first rows of the dataset are:

> data(milkcomp1, package='gRbase')
> head(milkcomp1)

treat fat protein dm lactose
1 d 6.16 6.65 18.55 5.06
2 c 4.06 5.44 18.32 5.23
3 f 9.25 5.67 20.68 5.15

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_5, © Springer Science+Business Media, LLC 2012

117

http://dx.doi.org/10.1007/978-1-4614-2299-0_5

118 5 Mixed Interaction Models

4 b 5.82 5.62 17.57 5.74
5 a 4.98 5.37 16.38 5.55
6 b 9.06 5.08 20.21 5.29

The second dataset, wine, contains the results of a study of the chemical constituents
of three varieties of grape, grown in the same region in Italy. There are 178 ob-
servations on 14 variables, of which one is discrete (grape variety) and the rest
(chemical constituents) are continuous. For more information on this dataset see
http://archive.ics.uci.edu/ml/datasets/Wine.

> data(wine, package='gRbase')
> head(wine)

Cult Alch Mlca Ash Aloa Mgns Ttlp Flvn Nnfp Prnt Clri Hue Oodw
1 v1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92
2 v1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40
3 v1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.68 1.03 3.17
4 v1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45
5 v1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.32 1.04 2.93
6 v1 14.20 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85
Prln

1 1065
2 1050
3 1185
4 1480
5 735
6 1450

The third dataset, Nutrimouse, stems from a study of the effect of nutrition on lipid
levels and gene expression in mice. Forty mice were each assigned one of five dif-
ferent diets, with different fatty acid compositions. Two strains of mice were used,
one with the PPARα gene knocked out and the other was wild-type (i.e. the PPARα

gene was present). The PPARα gene is known to affect fatty acid metabolism. The
concentrations of 21 lipids (fatty acids) in the liver were recorded. In addition the
data include the expression levels of 120 genes in the liver: these 120 were selected
from a much greater number as potentially relevant for nutrition. Thus the dataset
contains N = 40 observations of 143 variables: two discrete design variables—
genotype (with two levels) and diet (with five levels), 120 gene expression values
and 21 lipid values. For more details see Martin et al. (2007).

The following code fragment lists a small subset of the data.

> data(Nutrimouse, package='gRbase')
> head(Nutrimouse[,c(1:5,123:126)])

genotype diet X36b4 ACAT1 ACAT2 C14.0 C16.0 C18.0 C16.1n.9
1 wt lin -0.42 -0.65 -0.84 0.34 26.45 10.22 0.35
2 wt sun -0.44 -0.68 -0.91 0.38 24.04 9.93 0.55
3 wt sun -0.48 -0.74 -1.10 0.36 23.70 8.96 0.55
4 wt fish -0.45 -0.69 -0.65 0.22 25.48 8.14 0.49
5 wt ref -0.42 -0.71 -0.54 0.37 24.80 9.63 0.46
6 wt coc -0.43 -0.69 -0.80 1.70 26.04 6.59 0.66

http://archive.ics.uci.edu/ml/datasets/Wine

5.3 Mixed Data and CG-densities 119

5.3 Mixed Data and CG-densities

Suppose that N observations of d discrete variables and q continuous variables
are available. We denote the set of discrete variables by Δ, the set of continuous
variables by Γ , and the combined variable set by V = Δ ∪ Γ .

An observation has the form x = (i, y) = (i1, . . . , id , y1, . . . , yq). This combines
the notation of Chap. 2 and Chap. 4. As in Chap. 2 we write the set of possible cells
i = (i1, . . . , id) as I .

We construct a homogeneous conditional Gaussian density, or CG-density for
short, for x = (i, y) in the following way. Firstly, the probability of the discrete
variables falling in cell i is denoted p(i). We assume that p(i) > 0 for all i ∈ I .
Secondly, the conditional distribution of the continuous variables given that the dis-
crete variables fall in cell i is multivariate Gaussian N {μ(i),Σ}. Observe that the
mean may depend on i but the variance does not. The density takes the form

f (i, y) = p(i)(2π)−q/2 det(Σ)−1/2 exp

[
−1

2
{y − μ(i)}�Σ−1{y − μ(i)}

]
(5.1)

The parameters {p(i),μ(i), i ∈ I;Σ}, that is, the cell probability and mean vector
for each cell i and the common covariance matrix, are called the moment parame-
ters.

It is convenient to represent (5.1) in exponential family form as

f (i, y) = exp

{
g(i) +

∑
u

hu(i)yu − 1

2

∑
uv

yuyvkuv

}

= exp

{
g(i) + h(i)�y − 1

2
y�Ky

}
(5.2)

The parameters {g(i), h(i), i ∈ I;K} are called the canonical parameters. Note that
the canonical parameters have the same dimensions as the moment parameters: for
each i, g(i) is a scalar (the discrete canonical parameter) and h(i) is a q-vector
(the linear canonical parameter); also, the concentration matrix K is a symmetric
positive definite q × q matrix.

Occasionally it is convenient to use the mixed parameters which are given
as {p(i), h(i), i ∈ I;K}. We allow ourselves to write the parameters briefly as
{p,μ,Σ}, {g,h,K} and {p,h,K}.

We can transform back and forth between the different parameterizations using
the relations

K = Σ−1

h(i) = Σ−1μ(i)

g(i) = logp(i) − 1

2
log det(Σ) − 1

2
μ(i)�Σ−1μ(i) − q

2
log(2π),

120 5 Mixed Interaction Models

and

Σ = K−1

μ(i) = K−1h(i)

p(i) = (2π)
q
2 det(K)−

1
2 exp

{
g(i) + 1

2
h(i)�K−1h(i)

}
. (5.3a)

5.4 Homogeneous Mixed Interaction Models

The homogeneous mixed interaction models, which we for brevity here refer to as
MI-models, are defined by constraining the canonical parameters of CG-densities so
as follow factorial expansions.

For example, let Δ = {A,B} and Γ = {X,Z} and let the levels of the factors A

and B be denoted j and k. So in this case i = (j, k) and y = (x, z). The joint density
can be written

f (i, y) = exp

{
g(i) + hx(i)x + hz(i)z − 1

2
(kxxx

2 + 2kxzxz + kzzz
2)

}
(5.4)

and we can write the unrestricted (or saturated) model as

g(i) = u + ua
j + ub

k + uab
jk (5.5)

hx(i) = v + va
j + vb

k + vab
jk (5.6)

hz(i) = w + wa
j + wb

k + wab
jk (5.7)

K =
(

kxx kxz

kxz kzz

)
(5.8)

where the u’s, v’s and w’s are interaction terms. In this model g(i), hx(i) and hy(i)

are unrestricted functions of the cells i = (j, k). To estimate the interaction terms
uniquely would require some further constraints but we do not bother about this
here. This is because we use the factorial expansions to constrain the way canonical
parameters vary over I , but are not usually interested in their values per se.

Models are defined by setting certain interaction terms to zero. The usual hierar-
chical rule, that if a term is set to zero then all higher-order terms must also be zero,
is respected. So by this rule, if we set va

j to zero for all j , we must also set vab
jk to

zero for all j and k.
Conditional independence constraints can be imposed by setting interaction

terms to zero. For example, to make A ⊥⊥ X | (B,Z) we must set all terms involv-
ing A and X in (5.4) to zero, that is, va

j = vab
jk = 0, ∀j, k. To make A ⊥⊥ B | (X,Z)

we must set all terms involving A and B to zero, i.e., uab
jk = vab

jk = wab
jk = 0, ∀j, k.

Finally, to obtain X ⊥⊥ Z | (A,B) we set kxz = 0.

5.4 Homogeneous Mixed Interaction Models 121

For example, consider the milkcomp1 data:

> head(milkcomp1,3)

treat fat protein dm lactose
1 d 6.16 6.65 18.55 5.06
2 c 4.06 5.44 18.32 5.23
3 f 9.25 5.67 20.68 5.15

The CGstats() function calculates the number of observations and the means of
the continuous variables for each cell i, as well as (by default) a common covariance
matrix:

> library(gRim)
> SS <- CGstats(milkcomp1, varnames=c("treat","fat","protein",

"lactose"))
> SS

$n.obs
treat
a b c d e f g
8 8 8 8 8 7 8

$center
a b c d e f g

fat 6.641 8.010 7.053 7.401 8.134 7.519 6.974
protein 5.487 5.287 5.475 5.817 5.263 5.296 5.580
lactose 5.491 5.489 5.468 5.314 5.406 5.383 5.415

$cov
fat protein lactose

fat 2.31288 0.19928 -0.07028
protein 0.19928 0.12289 -0.03035
lactose -0.07028 -0.03035 0.04530

Note that the mean of fat (and to a lesser extent of protein) varies over the treatments
whereas the lactose means seem to be more or less constant. The coefficients of
variation are:

> apply(SS$center,1,sd) / apply(SS$center,1,mean)

fat protein lactose
0.07416 0.03656 0.01187

The corresponding canonical parameters are

> can.parms<-CGstats2mmodParms(SS,type="ghk")
> print(can.parms, simplify=FALSE)

MIparms: form=ghk
$g
treat

a b c d e f g
-745.5 -729.4 -740.5 -743.6 -712.7 -710.5 -740.2

$h
a b c d e f g

[1,] 0.787 1.628 0.9976 0.8736 1.686 1.344 0.8642
[2,] 88.221 85.006 87.6318 90.1511 84.137 84.817 88.5107
[3,] 181.555 180.651 180.9626 179.0642 178.338 177.745 180.1856

122 5 Mixed Interaction Models

$K
[,1] [,2] [,3]

[1,] 0.5056 -0.7503 0.2817
[2,] -0.7503 10.8649 6.1158
[3,] 0.2817 6.1158 26.6104

Let j refer to a level of the treatment factor. Then h(j) takes the form

h(j) = (hfat(j), hprotein(j), hlactose(j)).

The coefficients of variation for h are

> apply(can.parms$h,1,sd) / apply(can.parms$h,1,mean)

[1] 0.324840 0.026150 0.007934

which suggests that hlactose(j) is constant as a function of j ; that is

h(j) = (hfat(j), hprotein(j), hlactose).

If we insert this in (5.2) and use the factorization criterion 1.1 we find that

lactose⊥⊥ treat | (fat,protein).

The partial correlation matrix is more informative than the concentration matrix:

> conc2pcor(can.parms$K)

[,1] [,2] [,3]
[1,] 1.00000 0.3201 -0.07679
[2,] 0.32014 1.0000 -0.35968
[3,] -0.07679 -0.3597 1.00000

This suggests that the partial correlation between fat and lactose is zero. If we
set kfat,lactose = 0 in (5.2) and use the factorization criterion we find that

lactose⊥⊥ fat | (treat,protein).

5.5 Model Formulae

In this section we describe how to specify MI-models using model formulae and
show how they may be represented as dependence graphs. Here and later we refer
to the models and graphs shown in Table 5.1.

As we have seen above in Sect. 5.4, we define an MI-model by constraining g(i)

and the hu(i) for u ∈ Γ to satisfy factorial expansions, and by constraining some
off-diagonal elements of K to zero. So in principle we can define an MI-model by
giving a list of generating classes—one for g(i) and one for hu(i) for each u ∈ Γ —
together with list of off-diagonal elements of K that are allowed to be non-zero.
Together these specifications define an MI-model, although some restrictions in the
different components are necessary, as we describe below.

5.5 Model Formulae 123

Table 5.1 Some homogeneous mixed interaction models

Model Formula Graph Graphical Decomposable

(a) A*B*X*Z true true

(b) A*B*Z+B*X*Z true true

(c) A*B*Z+A*X true true

(d) A*Z+B*Z+A*X true false

(e) A*X+A*Z+B*X+B*Z true false

(f) A*B+A*Z+B*X*Z false false

(g) A*X+B*X true false

To give all these generating classes would be very cumbersome, however. It
is much more convenient to specify a model using a single generating class C =
{G1, . . . ,Gm}, with Gj ⊆ V for each j = 1 . . .m. We now explain how this is done.

We use the following convention. We write a generator G as a pair (a, b) where
a = G∩Δ are discrete variables and b = G∩Γ are continuous variables. For a ⊂ Δ,
by ga(ia) we mean a function which depends on an index i only through ia . Let q be
the number of variables in Γ . Suppose that y is a q-vector. For b ⊂ Γ we write the
corresponding subvector of y as yb . Furthermore, we take [yb] to mean the q-vector
obtained by padding yb with zeros in the right places to obtain full dimension.

Using this convention we can define the restrictions which a generating class C
imposes on a general (homogeneous) CG-density.

1. The discrete canonical parameter g(i) is constrained to follow the factorial ex-
pansion

g(i) =
∑

(a,b)∈C
ga(ia)

That is to say, the generators for g(i) are the maximal elements of {a | (a, b) ∈ C},
which we write compactly as max({a | (a, b) ∈ C}). These are called the discrete
generators of the model.

124 5 Mixed Interaction Models

2. The linear canonical parameter h is constrained to follow the factorial expansion

h(i) =
∑

(a,b)∈C
[hb

a(ia)].

It follows that h(i)�y = ∑
(a,b)∈C hb

a(ia)
�yb . For each u ∈ Γ , the generators for

hu(i) are Cu = max({a | (a, b) ∈ C ∧ u ∈ b}); that is, the discrete components
of those generators containing u. These are termed the linear generators of the
model.

3. Finally, the quadratic canonical parameter K is constrained as follows: elements
kuv of K are set to zero unless {u,v} ⊂ b for some generator (a, b) ∈ C. The sets
{b | (a, b) ∈ C} induce a graph whose edges of correspond to those kuv which are
not set to zero. The cliques of the graph are called the quadratic generators of
the model.

For example, the last model in Table 5.1 has the generating class

{(A,B), (A,Z), (B,X,Z)}.
The derived formulae for g(i), hx(i) and hz(i) are {(A,B)}, {(B)}, and {(A), (B)},
respectively. Hence g(i) is unrestricted, hx(i) satisfies hx(i) = v + vb

k for all i =
(j, k) and hz(i) satisfies hz(i) = w + wa

j + wb
k for all i = (j, k). Since (X,Z) ⊂

(B,X,Z), kxz is not set to zero.
It can be shown that to ensure location and scale invariance, the formula for g(i)

must be “larger” than the formulae for each hu(i) in the sense that each generator
for hu(i) must be contained in a generator for g(i). This constraint is automatically
fulfilled by the above construction.

The model formula notation for MI-models used here has the disadvantage
that distinct formulae can specify the same model. For example, if Δ = {I } and
Γ = {X,W,Z} then the formulae I*X*W+X*W*Z and I*X*W+X*Z+W*Z give identi-
cal models. This is not usually problematic, but it can impact the efficiency of the
iterative estimation procedure, as we describe later. We can define a particular rep-
resentation, termed the maximal form of the model. This has generators defined as
the maximal sets A ⊆ Δ ∪ Γ such that:

1. A∩ Δ is contained in a generator of g(i),
2. for each u ∈A∩ Γ , A∩ Δ is contained in a generator of hu(i), and
3. for each x, y ∈A∩ Γ , with u �= v, kuv is not set to be zero.

For example, I*X*W+X*W*Z is of maximal form but I*X*W+X*Z+W*Z is not.
The mmod() function in the gRim package allows MI-models to be defined using

model formulae. For example, to define the model for the milk composition dataset
with the conditional independences arrived at in Sect. 5.4, we specify the gener-
ating class with generators {treat,fat,protein} and {protein,lactose}, as
follows:

> milkmod <- mmod(~treat*fat*protein + protein*lactose, data=milkcomp1)

5.6 Graphical and Decomposable MI-models 125

Fig. 5.1 Mixed interaction
model for milk composition
data. Discrete variables are
shown as grey nodes while
continuous variables are white

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 428.47 mdim : 26 aic : 480.47
ideviance : 18.97 idf : 14 bic : 532.66
deviance : 2.11 df : 7

The discrete, linear and quadratic generators of the model are

> str(milkmod$modelinfo$dlq)

List of 3
$ discrete :List of 1
..$: chr "treat"
$ linear :List of 2
..$: chr [1:2] "fat" "treat"
..$: chr [1:2] "protein" "treat"
$ quadratic:List of 2
..$: chr [1:2] "fat" "protein"
..$: chr [1:2] "protein" "lactose"

To construct the dependence graph of an MI-model defined using such a formula, we
connect with an edge all variable pairs appearing in the same generator. By conven-
tion, discrete variables are drawn with filled circles and continuous variables with
hollow circles. The global Markov property (Sect. 1.3) can be used for reading con-
ditional independencies from the dependence graph in the usual way. For example,
the dependence graph for the model milkmod just discussed is shown in Fig. 5.1. It
can be obtained using the plot function:

> plot(milkmod)

5.6 Graphical and Decomposable MI-models

Suppose we are given an undirected graph with vertex set Δ ∪ Γ and consider the
MI-model for Δ ∪ Γ whose generators are the cliques of the graph. An MI-model
that can be formed in this way is termed a graphical MI-model. Table 5.1 shows
some graphical MI-models.

As with log-linear models, it is possible to set higher-order interactions to zero,
without introducing new conditional independence relations. Such models are called

126 5 Mixed Interaction Models

non-graphical. For example, consider model (b) in Table 5.1. Since the generators
of the formula correspond to the cliques of the graph, the model is graphical. The
model implies that the term hy(i) is unrestricted, say as

hy(i) = w + wa
j + wb

k + wab
jk .

If we constrain wab
jk = 0, ∀j, k, then hy(i) has the additive form hy(i) = w + wa

j +
wb

k , ∀j, k. This does not correspond to a conditional independence restriction, but
results in model (f) in Table 5.1. So model (f) is non-graphical. Since no further
conditional independence restrictions have been added model (f) has the same de-
pendence graph as model (b).

We now turn to a subclass of the graphical MI-models, the decomposable MI-
models. These build on a more basic concept, that of a decomposition, which we
describe first.

The notion of a decomposition of a graph G with mixed variables relates to the
question of how and when the analysis of a graphical MI-model may be broken
down into analyses of smaller models. This notion is slightly more elaborate than
in the purely discrete and purely continuous cases. Let A, B and S be disjoint non-
empty subsets of V such that A ∪ B ∪ S = V . We define (A,B,S) to be a decom-
position of G if the following conditions hold:

1. A and B are separated by S in G,
2. S is complete in G, and
3. S ⊂ Δ or B ⊂ Γ .

It can be shown that when (A,B,S) is a decomposition of G, the maximum likeli-
hood estimator f̂ of the density of the graphical MI-model with dependence graph
G is given by

f̂ = f̂[A∪S]f̂[B∪S]
f̂[S]

where f̂[A∪S], f̂[B∪S], f̂[S] are the estimates of densities based on the models corre-
sponding to the relevant induced subgraphs and based on marginal data only. Indeed
they are weak marginals of f̂ , see Sect. 5.7.5.1 below.

A graph with mixed variables G is called decomposable if it is complete or it can
be successively decomposed into complete graphs.

Various characterizations of graphs with this property are useful. One is based on
the forbidden path property: a forbidden path is a path between two non-adjacent
discrete vertices that passes through only continuous vertices. It can be shown that
a graph is decomposable if and only if it is triangulated and has no no forbidden
paths. A simple example of a graph with mixed variables that is not decomposable
is:

�� �

Another characterization is that the cliques of a decomposable graph with mixed
variables can be ordered as (C1, . . . ,Ck) with a modified version of the running in-

5.6 Graphical and Decomposable MI-models 127

Fig. 5.2 Decomposable
graphs with mixed variables.
If a and d are discrete and b

and c are continuous then the
first graph is not
decomposable whereas the
second graph is

tersection property. For j > 1 define Hj = ⋃j−1
t=1 Ct and Sj = Cj ∩ Hj . The modi-

fied condition is that

1. for each j > 1, Sj ⊂ Ci for some i < j , and
2. for each j > 1 it holds that Cj \ Sj ⊆ Γ or Sj ⊆ Δ.

The additional condition (2) states that continuous variables cannot be prior to dis-
crete ones. A graph with mixed variables is decomposable if and only there exists
an ordering of its cliques fulfilling conditions (1) and (2).

A decomposable MI-model is a graphical MI-model whose dependence graph is
decomposable. For such a model, the maximum likelihood estimates take the closed
form

f̂ (x) =
k∏

j=1

f̂[Cj](xCj
)

f̂[Sj](xSj
)

(5.9)

where we have let S1 = ∅ and f̂∅ = 1.
To check whether a graph with mixed variables is decomposable, the so-called

star graph construction can be used. That is, let G� be a new graph obtained by
adding an extra vertex, �, to G and adding edges between � and all discrete variables.
Then G� is triangulated (which can be checked with maximum cardinality search)
if and only if G is decomposable.

It can also be shown that a graph G with mixed variables is decomposable if
and only if the vertices of G can be given a perfect ordering. For such graphs this is
defined as an ordering {v1, v2, . . . , vT } such that (i) Sk = ne(vk)∩{v1, v2, . . . , vk−1}
is complete in G and (ii) Sk ⊂ Δ if vk ∈ Δ. The mcsmarked() function is based on
constructing G� as described above and returns a perfect ordering if the graph is
decomposable.

As an example consider the following two graphs shown in Fig. 5.2. If a and d

are discrete and b and c are continuous then the graph on the left is not decompos-
able whereas the graph on the right is. Note that since a graph object contains no
information about whether the nodes are discrete or continuous, mcsmarked() has
to be supplied this information explicitly.

> uG1 <- ug(~a:b+b:c+c:d)
> uG2 <- ug(~a:b+a:d+c:d)
> mcsmarked(uG1, discrete=c("a","d"))

128 5 Mixed Interaction Models

character(0)

> mcsmarked(uG2, discrete=c("a","d"))

[1] "a" "d" "b" "c"

5.7 Maximum Likelihood Estimation

In this section we derive expressions for the likelihood and describe algorithm(s)
the maximize this.

5.7.1 Likelihood and Deviance

In this section we derive some expressions for the likelihood and the deviance. The
log density can be written as

logf (i, y) = logp(i) − q log(2π)/2 − log det(Σ)/2

− {y − μ(i)}�Σ−1{y − μ(i)}/2,

so the log-likelihood of a sample (iν, yν), ν = 1, . . . ,N is

	 =
∑

i

n(i) logp(i) − Nq log(2π)/2 − N log det(Σ)/2

−
N∑

ν=1

{yν − μ(iν)}�Σ−1{yν − μ(iν)}/2.

We can simplify the last term using that

∑
i

∑
ν:iν=i

{yν − μ(i)}�Σ−1{yν − μ(i)}

= N tr(SΣ−1) +
∑

i

n(i){ȳ(i) − μ(i)}�Σ−1{ȳ(i) − μ(i)}.

So an alternative expression for the log likelihood is

	 =
∑

i

n(i) logp(i) − Nq log(2π)/2 −
∑

i

n(i) log det(Σ)/2

− N tr(SΣ−1)/2 −
∑

i

n(i){ȳ(i) − μ(i)}�Σ−1{ȳ(i) − μ(i)}/2.

5.7 Maximum Likelihood Estimation 129

The full homogeneous model has MLEs p̂(i) = n(i)/N , (so that m̂(i) = Np̂(i)),
μ̂(i) = ȳ(i), and Σ̂ = S = ∑

i n(i)Si/N , so the maximized log likelihood for this
model is

	̂s =
∑

i

n(i) log{n(i)/N} − Nq log(2π)/2 − N log det(S)/2 − Nq/2, (5.10)

and the deviance of a homogeneous model M with MLEs p̂(i), μ̂(i), and Σ̂ with
respect to the full homogeneous model simplifies to

D = 2
∑

i

n(i) log{n(i)/m̂(i)} − N log det(SΣ̂−1) + N{tr(SΣ̂−1) − q}

+
∑

i

n(i){ȳ(i) − μ̂(i)}�Σ̂−1{ȳ(i) − μ̂(i)}.

Note that in contrast to the models considered in Chap. 4, we do not necessarily
have tr(SΣ̂−1) = q so the term N log det(SΣ̂−1) does not disappear.

5.7.2 Dimension of MI-models

The dimension of a mixed interaction model may be simply calculated by adding
the dimensions of the component models for g(i) and each hu(i) to the number of
free elements of the covariance matrix, and finally subtract one for the normalisation
constant.

5.7.3 Inference

Under M, the deviance D is asymptotically χ2(k) where the degrees of freedom
k is the difference in dimension (number of free parameters) between the saturated
model and M. Similarly, for two nested models M1 ⊆M2, the deviance difference
D1 − D2 is asymptotically χ2(k) where the degrees of freedom k is the difference
in dimension (number of free parameters) between the two models.

5.7.4 Likelihood Equations

Suppose we have a sample of N independent, identically distributed observations
(iν, yν) for ν = 1 . . .N . Let (n(i), t (i), y(i))i∈I be the observed counts, variate to-
tals and variate means, for cell i, and SS and S be the uncorrected sums of squares
and sample covariance matrices, i.e.,

n(i) = #{ν : iν = i},

130 5 Mixed Interaction Models

t (i) =
∑

ν:iν=i

yν,

y(i) = t (i)/n(i),

SS =
∑
ν

yν(yν)�,

SSD =
∑
i∈I

∑
ν:iν=i

{yν − y(i)}{yν − y(i)}� = SS − n(i)
∑
i∈I

y(i){y(i)}�

S = SSD/N

For a ⊆ Δ, we write the marginal cell corresponding to i as ia and likewise for
b ⊆ Γ , we write the subvector of y as yb. Similarly, we write the marginal cell
counts as {n(ia)}ia∈Ia

, marginal variate totals as {tb(ia)}ia∈Ia
and marginal variate

means as {ȳb(ia)}ia∈Ia
. Define

SSDb
a(ia) =

∑
ν:iνa =ia

{yk
b − ȳb(ia)}{yk

b − ȳb(ia)}�

and let

SSDb
a =

∑
ia∈Ia

SSDb
a(ia) = SSb −

∑
ia∈Ia

n(ia)ȳb(ia)ȳb(ia)
�

where SSb is the b-submatrix of the sums-of-squares matrix SS.
The log-likelihood for the sample is

l =
∑

(a,b)∈C

∑
ia∈Ia

n(ia)ga(ia) +
∑

(a,b)∈C

∑
ia∈Ia

hb
a(ia)

�tb(ia)

−
∑
u∈Γ

SSuukuu/2 −
∑

{u,v}∈Γ

SSuvkuv (5.11)

where in the last term there is a contribution from SSuv only if kuv �= 0, that is if
{u,v} ∈ b for some generator (a, b) ∈ C.

Consider now a given model with generators C = {G1, . . . ,Gm} and derive the
formulae for g(i) and each hu(i) as described in Sect. 5.5. Then a set of minimal
sufficient statistics is given by

1. A set of marginal tables of cell counts {n(ia)}ia∈Ia
for each discrete generator a.

2. For each u ∈ Γ , a set of marginal variate totals {tu(ia)}ia∈Ia
for each linear gen-

erator a of u.
3. A set of marginal tables of uncorrected sums and squares {SSb} for each

quadratic generator b.

From exponential family theory, we know that the MLE of {p(i),μ(i),Σ} can be
found by equating the expectations of these minimal sufficient statistics to their
observed values. Equating the minimal sufficient statistics to their observed values
for a generator (a, b) yields:

5.7 Maximum Likelihood Estimation 131

n(ia) = Np(ia), ∀ia ∈ Ia, (5.12)

tb(ia) = N
∑

j :ja=ia

p(j)μb(j), ∀ia ∈ Ia (5.13)

SSb = N

{
Σb +

∑
j∈I

p(j)μb(j)μb(j)�
}
. (5.14)

Each generator (a, b) ∈ C defines a set of equations of the form (5.12)–(5.14) and
the collection of these equations are the likelihood equations for the model. The
MLEs, when they exist, are the unique solution to these equations that also satisfy
the model constraints.

For example, for the saturated model on V = Δ ∪ Γ , we set a = Δ and b = Γ .
Here there are no model constraints, and from the equations we find that the MLEs
are given as p̂(i) = n(i)/N , μ̂(i) = y(i) and Σ̂ = S.

5.7.5 Iterative Proportional Scaling

As with discrete log-linear models and graphical Gaussian models, iterative meth-
ods to find the maximum likelihood parameter estimates are generally necessary.
The iterative proportional scaling algorithm for mixed interaction models proceeds
by equating observed and expected margins, in much the same way as with dis-
crete and continuous models. An important conceptual difference, however, relates
to marginalization. Whereas multinomial and Gaussian distributions are preserved
under marginalization, the same is not generally true in the mixed case: the marginal
distribution of a CG-distribution is not necessarily CG. For this reason the concept
of weak marginals is needed.

5.7.5.1 Weak Marginals

Consider a CG-density fV defined over the variables V = Δ∪Γ . Letting a ⊂ Δ and
b ⊂ Γ we wish to obtain the marginal density fa∪b . This density is obtained by first
integrating over yΓ \b to produce fΔ∪b which again is a CG-density. The next step is
to sum over iΔ\a to form fa∪b . This summation may involve forming a mixture of
normal densities, which does not generally have the form of a CG-density. However,
even though fa∪b is not in general a CG-density we can find the moments of fa∪b

using standard formulae, namely

p[a](ia) = p(Ia = ia) = p(ia) =
∑

j :ja=ia

p(j)

μb[a](ia) = E(Y b | Ia = ia) =
∑

j :ja=ia

p(j)

p[a](ia)
μb(j), and

132 5 Mixed Interaction Models

Σb[a](ia) = V(Y b | Ia = ia)

= Σb +
∑

j :ja=ia

p(j)

p[a](ia)
{μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�.

These moments {p[a](ia),μb[a](ia),Σb[a](ia)}ia∈Ia
define a CG density f[a∪b] de-

noted the weak marginal density (which is not homogeneous).
Furthermore, we define the homogeneous weak marginal variance to be:

Σb[a] =
∑

ia∈Ia

p[a](ia)Σb[a](ia)

= Σb +
∑

ia∈Ia

∑
j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�.

The moments {p[a](ia),μb[a](ia),Σb[a]}ia∈Ia
define a CG density f h[a∪b] which is de-

noted the homogeneous weak marginal density.
The weak marginal density is the CG-density which best approximates the true

marginal fa∪b in the sense of minimizing the Kullback–Leibler distance, see Lau-
ritzen (1996), p. 162. The same proof yields that the analogous statement holds for
the homogeneous weak marginal.

5.7.5.2 Likelihood Equations Revisited

It is illustrative to rewrite the likelihood equations as follows. Observe that

Qb
a =

∑
ia∈Ia

∑
j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�

=
∑
i∈I

p(i)μb(i){μb(i)}� −
∑

ia∈Ia

p[a](ia)μb[a](ia){μb[a](ia)}� (5.15)

Using the definitions of the parameters of weak marginal models, (5.12) and
(5.13) imply that

n(ia)/N = p[a](ia), ȳb(ia) = tb(ia)/n(ia) = μb[a](ia). (5.16)

Using (5.15) and (5.16) we get from (5.14) that

SSDb
a = SSb −

∑
ia∈Ia

n(ia)ȳ
b(ia)ȳ

b(ia)
�

= N

[
Σb +

∑
ia∈Ia

∑
j :ja=ia

p(j){μb(j) − μb[a](ia)}{μb(j) − μb[a](ia)}�
]

= N(Σb + Qb
a) = NΣb[a]

5.7 Maximum Likelihood Estimation 133

The MLEs under the saturated MI-model for the variables a ∪ b (whose density
is denoted f̃a∪b) are {p̃a(ia), μ̃

b
a(ia), S̃

b
a }ia∈Ia

where

p̃a(ia) = n(ia)/N, μ̃b
a(ia) = ȳb(ia) and S̃b

a = SSDb
a/N.

In other words, the likelihood equations are:

p̃a(ia) = n(ia)/N = p[a](ia) (5.17)

μ̃b
a(ia) = ȳb(ia) = μb[a](ia) (5.18)

S̃b
a = SSDb

a/N = Σb[a] (5.19)

thus the homogeneous weak marginal model on a ∪ b should be identical to the
saturated MI-model on a ∪ b, i.e. f h[a∪b] = f̃a∪b .

5.7.5.3 General IPS Update Step

Here we describe the iterative algorithm for general MI-models implemented in
gRim and MIM (Edwards 2000). Equations (5.17)–(5.19) suggest the following
IPS update step for a generator (a, b):

f ∗(i, y) ∝ f (i, y)
f sat

a∪b(ia, yb)

f h[a∪b](ia, yb)
(5.20)

Note that the right-hand side of (5.20) will not in general be a density: Integrating
over yΓ \b and summing over iΔ\a gives

fa∪b(ia, y
b)f sat

a∪b(ia, y
b)/f h[a∪b](ia, yb)

which will not be a density unless the marginal density fa∪b(ia, yb) equals the ho-
mogeneous weak marginal density f h

[a∪b](ia, yb).
It is convenient to perform the update (5.20) on log-densities using the canon-

ical parametrisation, since it just involves to addition and subtraction of canonical
parameters. From (5.17)–(5.19), to update (g,h,K) we first transform the moment
parameters {p̃a, μ̃

b
a, S̃

b
a } and {p[a],μb[a],Σb[a]} of f̃a∪b and f h[a∪b] to canonical pa-

rameters (g̃a, h̃
b
a, K̃

b
a) and (g[a], hb[a],Kb[a]). Then we

1. Update g as follows: For each ia ∈ Ia do for all j for which ja = ia :

g(j) ← g(j) + {g̃a(ia) − g[a](ia)}. (5.21)

2. Update the b subvector of h as follows: For each ia ∈ Ia do for all j for which
ja = ia :

hb(j) ← hb(j) + {h̃b
a(ia) − hb[a](ia)}. (5.22)

134 5 Mixed Interaction Models

3. Update the b submatrix Kbb of K as follows:

Kbb ← Kbb + {K̃b
a − Kb[a]}. (5.23)

After the update steps (5.21)–(5.23) we know h and K and hence the conditional
distribution of y given i. To complete the update we must transform (g,h,K) to
moment form (p,μ,Σ), normalize p to sum to one and transform back to canonical
form (g,h,K) again before moving on to the next generator. Running through the
generators (a1, b1), (a2, b2), . . . , (aM,bM) as described above constitutes one cycle
of the iterative fitting process.

A measure of how much the updates (5.21)–(5.23) change the parameter esti-
mates may be obtained by comparing the moments of f̃a∪b and f h[a∪b]. Following
Edwards (2000) we use the quantity:

mdiff(a, b) = max
ia∈Ia,u,v∈b

{
N |p[a](ia) − p̃a(ia)|√

Np[a](ia) + 1
,
|μu[a](ia) − μ̃u

a(ia)|√
(Σb[a])uu

,

|(Σb[a])uv − (Σ̃b
a)uv|√

(Σb[a])uu(Σ
b[a])vv + (Σb[a])2

uv

}
(5.24)

It sometimes happens that the updates (5.21)–(5.23) lead to a decrease in the likeli-
hood. To avoid this situation we first calculate mdiff(a, b) in (5.24). If mdiff(a, b)

is smaller than some prespecified criterion we do not update the model but proceed
to the next generator. If this is true for all generators we exit the iterative process, as
it essentially only happens when we are close to the MLE.

Since the estimation algorithm in the mmod() function is based on the model for-
mula, which is not unique, there will be efficiency differences between the different
representations of the same model. The maximal form is the most efficient.

5.7.5.4 Step-Halving Variant

It can happen that the updates (5.21)–(5.23) fail to increase the likelihood, or lead to
a K that is not positive definite. The step-halving variant of the algorithm (currently
not implemented in gRim) replaces the three update steps in (5.21)–(5.23) with:

g(j) ← g(j) + κ{g̃a(ia) − g[a](ia)},
hb(j) ← hb(j) + κ{h̃b

a(ia) − hb[a](ia)},
Kbb ← Kbb + κ{K̃b

a − Kb[a]}.
Initially κ = 1. The update is attempted and it is then checked if (1) K is posi-
tive definite and (2) the likelihood is increased. If either of these conditions fail, κ

is halved and the update is attempted again. The step-halving variant is therefore
slower than the general algorithm. Edwards (2000, p. 312) shows an example with
contrived data where step-halving is necessary.

5.8 Using gRim 135

5.7.5.5 Mixed Parameterisation Variant

If the model is collapsible onto the discrete parameters, the estimate p̂(i) is identical
to the estimate obtained in the log-linear model with the same discrete generator.
This permits another variant based on the mixed parametrisation to be used. It has
the following update scheme

p(j) ← p(j){p(ia)/p[a](ia)},
hb(j) ← hb(j) + κ{h̃b

a(ia) − hb[a](ia)},
Kbb ← Kbb + κ{K̃b

a − Kb[a]}.

The model is collapsible onto Δ if and only every connected component of the sub-
graph induced by the continuous variables has a complete boundary in the subgraph
induced by the discrete variables (Frydenberg 1990b). This variant is currently not
implemented in gRim.

5.8 Using gRim

The function mmod() in the gRim package allows homogeneous mixed interaction
models to be defined and fitted to data.

> glist <- ~treat:fat:protein+protein:lactose

~treat:fat:protein + protein:lactose

> milk <- mmod(glist, data=milkcomp1)

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 428.47 mdim : 26 aic : 480.47
ideviance : 18.97 idf : 14 bic : 532.66
deviance : 2.11 df : 7

This model is shown in Fig. 5.1. More details about the model are obtained with

> summary(milk)

Mixed interaction model:
Generators:
:"treat" "fat" "protein"
:"protein" "lactose"

Discrete: 1 Continuous: 3
Is graphical: TRUE Is decomposable: TRUE
logL: -214.233011, iDeviance: 241.774364

The parameters are obtained using coef() where the desired parameterization can
be specified. For example, the canonical parameters are

> coef(milk, type="ghk")

136 5 Mixed Interaction Models

MIparms: form=ghk
a b c d e f

[1,] -676.055 -666.0859 -675.0546 -690.992 -664.9730 -666.7805
[2,] -1.135 -0.2838 -0.9179 -1.022 -0.2012 -0.5375
[3,] 84.349 81.3414 83.8954 86.851 81.0040 81.8196
[4,] 164.634 164.6335 164.6335 164.634 164.6335 164.6335

g
[1,] -680.022 NA NA NA
[2,] -1.043 0.5026 -0.815 0.000
[3,] 84.953 -0.8150 10.762 5.667
[4,] 164.634 0.0000 5.667 24.646

5.8.1 Updating Models

Models are changed using the update() method. A list with one or more of the
components add.edge, drop.edge, add.term and drop.term is specified. The
updates are made in the order given. For example:

> milk2 <- update(milk, list(add.edge=~fat:lactose,
drop.edge=~treat:protein))

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 446.17 mdim : 21 aic : 488.17
ideviance : 10.12 idf : 9 bic : 530.33
deviance : 10.96 df : 12

5.8.2 Inference

Functions such as ciTest(), testInEdges(), testOutEdges(), etc. behave
more or less as for pure discrete and pure continuous variables. For example

> ciTest(milkcomp1)

Testing treat _|_ fat | protein dm lactose
Statistic (DEV): 4.371 df: 6 p-value: 0.6266 method: CHISQ

and

> testInEdges(milk,getInEdges(milk$glist))

statistic df p.value aic V1 V2 action
1 5.530 6 0.47780 -6.470 fat treat +
2 9.345 6 0.15510 -2.655 protein treat +
3 4.139 1 0.04191 2.139 protein fat -
4 5.123 1 0.02362 3.123 lactose protein -

> testOutEdges(milk,getOutEdges(milk$glist))

statistic df p.value aic V1 V2 action
1 1.9464 6 0.9246 10.054 lactose treat -
2 0.4914 1 0.4833 1.509 lactose fat -

5.8 Using gRim 137

or

> milk3 <- update(milk, list(drop.edge=~treat:protein))

Model: A mModel with 4 variables
graphical : TRUE decomposable : TRUE
-2logL : 447.16 mdim : 20 aic : 487.16
ideviance : 9.63 idf : 8 bic : 527.30
deviance : 11.45 df : 13

> compareModels(milk, milk3)

Large:
:"treat" "fat" "protein"
:"protein" "lactose"

Small:
:"protein" "lactose"
:"treat" "fat"
:"fat" "protein"

-2logL: 18.69 df: 6 AIC(k= 2.0): 6.69 p.value: 0.155100

and

> testdelete(milk, c("treat","protein"))

dev: 9.345 df: 6 p.value: 0.15510 AIC(k=2.0): -2.7 edge:
treat:protein

Notice: Test perfomed by comparing likelihood ratios

> testadd(milk, c("treat","lactose"))

dev: 1.946 df: 6 p.value: 0.92456 AIC(k=2.0): 10.1 edge:
treat:lactose

Notice: Test perfomed by comparing likelihood ratios

5.8.3 Stepwise Model Selection

The stepwise() function in the gRim package implements stepwise selection for
mixed interaction models. The functionality is very similar to that described above
in Sect. 2.4 and Sect. 4.4.1, for discrete graphical models and undirected graphical
Gaussian models respectively. We refer to those sections for further details, and
illustrate using the wine dataset described in Sect. 5.2. We start from the saturated
model and use the BIC criterion:

> data(wine, package=`gRbase')
> mm <- mmod(~.^., data=wine)
> mm2 <- stepwise(mm, k=log(nrow(wine)), details=0)

The selected model is shown below:

> plot(mm2)

138 5 Mixed Interaction Models

We note that the model is non-decomposable, since there are several chordless four-
cycles in the graph. Since the graph is connected, it appears that all constituents dif-
fer over the grape varieties. Seven constituents are adjacent to the discrete variable.
The model implies that these seven are sufficient to predict grape variety, since the
remaining six are independent of variety given the seven, and so would not increase
predictive ability.

5.9 An Example of Chain Graph Modelling

In this section we illustrate an approach that is appropriate when there is a clear
overall response to the data, that is, when some variables are prior or explanatory
to others, that are themselves prior or explanatory to others, and so on. The vari-
ables can a priori be divided into blocks, whose mutual ordering in this respect is
clear. The goal of the analysis is to model the data, respecting this ordering between
blocks, but not assuming any ordering within blocks. Chain graph models fit this
purpose well.

The Nutrimouse dataset described above in Sect. 5.2 is here used as example.
Here, the variables fall into three blocks: two discrete design variables (genotype
and diet), 120 gene expression variables, and 21 lipid measurements. Clearly the
design variables, which are subject to the control of the experimenter, are causally
prior to the others. It is also natural as a preliminary working hypothesis to suppose
that the gene expression measurements are causally prior to the lipid measurements,
and this is the approach taken here. More advanced methods would be necessary to
study whether there is evidence of influence in the opposite direction.

The chain graph is constructed using two graphical models: the first is for the
gene expressions (block 2) given the design variables (block 1), and the second is
for the lipids (block 3) given blocks 1 and 2. We use the gRapHD package described
in Chap. 7. This package supports decomposable mixed models, both homogeneous
and heterogeneous, exploiting the closed-form expressions for the MLEs (5.9). This
restriction also means that models can simply be specified as graphs, rather than
using model formulae.

5.9 An Example of Chain Graph Modelling 139

Fig. 5.3 A tree model for the gene expression variables (block 2) given the design variables
(block 1)

To model the conditional distribution of block 2 given block 1 we restrict atten-
tion to models in which block 1 is complete, that is, there is an edge between the
two design variables. See Fig. 4.33. The following code first finds the minimal BIC
forest containing this edge, and then uses this as initial model in a forward selection
process to find the minimal BIC decomposable model. This takes a few seconds.

> data(Nutrimouse, package='gRbase')
> library(gRapHD)
> block2 <- Nutrimouse[,1:122]
> gF1 <- minForest(block2, cond=list(1:2))
> gD1 <- stepw(gF1, data=block2)

> xyD1 <- plot(gD1, numIt=5000, disp=F)
> plot(gF1, numIt=0, coord=xyD1)

> plot(gD1, numIt=0, coord=xyD1)

We display the two graphs in Figs. 5.3 and 5.4, using the same vertex coordinates
for clarity. The vertex coordinates are saved in a matrix xyD1.

We now turn to modelling the conditional distribution of block 3 variables given
the prior blocks. We adopt the same approach as before, first finding a minimal BIC

140 5 Mixed Interaction Models

Fig. 5.4 A decomposable model for the gene expression variables (block 2) given the design
variables (block 1)

forest and then using this as start model in a forward selection process. As before
we restrict the search space to conditional models by including all edges between
prior variables in the models considered. The forward selection process seeks the
decomposable MI-model with minimum BIC in this search space.

> gF2 <- minForest(Nutrimouse, cond=list(1:122))
> gD2 <- stepw(gF2, data=Nutrimouse)

The stepw() function is computationally intensive, taking around 10 minutes on an
ordinary laptop running Windows. We display the decomposable model in Fig. 5.5.

> plot(gD2, numIt=1000)

Now we construct a graph gD3 by adding to gD1 those edges in gD2 that have a
vertex in block 3:

> E2 <- data.frame(gD2@edges)
> names(E2) <- c("v1", "v2")
> E2 <- as.matrix(E2[(E2$v1>122) | (E2$v2>122),])
> E3 <- rbind(gD1@edges, E2)
> gD3 <- gD2
> gD3@edges <- E3

5.9 An Example of Chain Graph Modelling 141

Fig. 5.5 A decomposable model for the lipid variables given the gene expression and design vari-
ables. The subgraph induced by the gene expression and design variables is complete, and is shown
as a compact splat

Note that gD3 is an undirected graph rather than a chain graph. We use the igraph
package to display it as a chain graph using different colours for the blocks, in-
terblock edges displayed as arrows, in a layout in which the different blocks are
separated for clarity. See Fig. 5.6

> # Define the blocks
> blk <- c(rep(1,2),rep(2,120),rep(3,21))
> # Derive the layout from the graph with only intrablock edges
> E <- gD3@edges
> E1 <- cbind(blk[E[,1]],blk[E[,2]])
> intrablock <- E1[,1]==E1[,2]
> tG3 <- gD3; tG3@edges <- E[intrablock,]
> itG3 <- as(as(tG3, "graphNEL"),"igraph")
> xy.coord <- piecewise.layout(itG3)
> # Use this for the chain graph
> igD3 <- graph.edgelist(E-1, directed=T)
> V(igD3)$label <- as.character(1:143)
> V(igD3)[blk==1]$color <- "white"
> V(igD3)[blk==2]$color <- "SkyBlue2"

142 5 Mixed Interaction Models

Fig. 5.6 A chain graph model for the nutrimouse data. The design variables are shown as open
circles, the gene expression variables as blue circles, and the lipid variables as red circles. The
variables are shown as column numbers

> V(igD3)[blk==3]$color <- "red"
> V(igD3)$size <- 8
> V(igD3)$label.cex <- 0.5
> E(igD3)[intrablock]$arrow.mode <- "-"
> E(igD3)[!intrablock]$arrow.mode <- "->"
> E(igD3)$arrow.size <-0.3
> plot(igD3, layout=xy.coord)

5.10 Various

Several other R packages are designed for graphical modelling with mixed discrete
and Gaussian variables. The package CoCo (Badsberg 1991) implements undi-
rected graphical (and hierarchical) models with mixed variables. The package deal
(Bøttcher and Dethlefsen 2003) allows a Bayesian analysis using models for mixed

5.10 Various 143

variables based on DAGs, based on the conditional Gaussian distribution. Prior dis-
tributions for the model parameters are set and posterior distributions given data are
derived. A heuristic search strategy for structural learning is also supported. The
package RHugin also supports the use of Bayesian network models with mixed
variables: see Chap. 3.

	Chapter 5: Mixed Interaction Models
	5.1 Introduction
	5.2 Example Datasets
	5.3 Mixed Data and CG-densities
	5.4 Homogeneous Mixed Interaction Models
	5.5 Model Formulae
	5.6 Graphical and Decomposable MI-models
	5.7 Maximum Likelihood Estimation
	5.7.1 Likelihood and Deviance
	5.7.2 Dimension of MI-models
	5.7.3 Inference
	5.7.4 Likelihood Equations
	5.7.5 Iterative Proportional Scaling
	5.7.5.1 Weak Marginals
	5.7.5.2 Likelihood Equations Revisited
	5.7.5.3 General IPS Update Step
	5.7.5.4 Step-Halving Variant
	5.7.5.5 Mixed Parameterisation Variant

	5.8 Using gRim
	5.8.1 Updating Models
	5.8.2 Inference
	5.8.3 Stepwise Model Selection

	5.9 An Example of Chain Graph Modelling
	5.10 Various

