
Chapter 3
Bayesian Networks

3.1 Introduction

A Bayesian network is traditionally understood to be a graphical model based on
a directed acyclic graph (a DAG). The term refers to its use for Bayesian infer-
ence in expert systems, where appropriate use of conditional independencies enable
rapid and efficient computation of updated probabilities for states of unobserved
variables, a calculation which in principle is forbiddingly complex. The term is also
used in contrast to the once fashionable neural networks which used quite a differ-
ent inference mechanism. In principle there is nothing Bayesian about a Bayesian
network.

It should be pointed out that the DAG is only used to give a simple and transpar-
ent way of specifying a probability model, whereas the simplification in the compu-
tations are based on exploiting conditional independencies in an undirected graph.
Thus, as we shall illustrate, methods for building undirected graphical models can
just as easily be used for building probabilistic inference machines.

The gRain package (gRaphical independence network) is an R implementa-
tion of such networks. The package implements the propagation algorithm de-
scribed in Lauritzen and Spiegelhalter (1988). Most of the exposition here is based
on the package gRain, but RHugin is also used, see below. The networks in
gRain are restricted to discrete variables, each with a finite state space. The pack-
age has a similar functionality to that of the GRAPPA suite of functions (Green
2005).

The package RHugin provides an R-interface to the (commercial) HUGIN soft-
ware, enabling access to the full functionality of HUGIN through R. RHugin is not
on CRAN but is available from http://rhugin.r-forge.r-project.org/. RHugin requires
a version of HUGIN to be pre-installed. The examples in this chapter which use
RHugin work with the free version HUGIN Lite, which has full functionality but
has size limitations on the networks.

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_3, © Springer Science+Business Media, LLC 2012

51

http://rhugin.r-forge.r-project.org/
http://dx.doi.org/10.1007/978-1-4614-2299-0_3

52 3 Bayesian Networks

Fig. 3.1 The directed acyclic
graph corresponding to the
chest clinic example from
Lauritzen and Spiegelhalter
(1988). The arrows indicate a
formalization of the
relationships expressed in the
narrative

3.1.1 The Chest Clinic Example

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988)
(illustrated in Fig. 3.1) and shows one way of specifying a network in gRain. Details
of the steps will be given in later sections. Other ways of specifying a network are
described in Sect. 3.3.1. Lauritzen and Spiegelhalter (1988) motivate the example
with the following narrative:

Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis, or
none of them, or more than one of them. A recent visit to Asia increases the chances of tu-
berculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.
The results of a single chest X-ray do not discriminate between lung cancer and tuberculo-
sis, as neither does the presence or absence of dyspnoea.

This narrative is represented by the directed acyclic graph in Fig. 3.1 which forms
the basis for the Bayesian network constructed in this example.

3.1.2 Models Based on Directed Acyclic Graphs

We focus on Bayesian networks for discrete variables and we shall, in accordance
with Chap. 2, use the following notation: Let X = XV = (Xv;v ∈ V) be a discrete
random vector. The labels of Xv are generically denoted by iv so the levels of X are
denoted i = iV = (iv, v ∈ V) and the set of possible values of X is denoted I .

The multivariate distribution associated with a Bayesian network is constructed
by combining univariate (conditional) distributions using the structure of the di-
rected acyclic graph (DAG) with vertices V . To be precise, probability distributions
p(iV) factorizes w.r.t. a directed acyclic graph if it can be expressed as

p(iV) =
∏

v∈V

p(iv | ipa(v)) (3.1)

i.e. if the joint density or probability mass function is a product of conditional den-
sities of individual variables given their parents in the DAG, see also Sect. 1.3.

3.1 Introduction 53

For the chest clinic example, write the variables as A = Asia, S = smoker,
T = tuberculosis, L = lung cancer, B = bronchitis, D = dyspnoea, X = X-ray and
E = either tuberculosis or lung cancer. Each variable can take the values “yes” and
“no”. Note that E is a logical variable which is true (“yes”) if either T or L are true
(“yes”) and false (“no”) otherwise. The DAG in Fig. 3.1 now corresponds to a factor-
ization of the joint probability function p(iV), where V = {A,S,T ,L,B,E,D,X}
(apologies for using X with two different meanings here) as

p(iA)p(iS)p(iT |iA)p(iL|iS)p(iB |iS)p(iE |iT , iL)p(iD|iE, iB)p(iX|iE). (3.2)

In gRain, each conditional distribution in (3.2) is specified as a table called a
conditional probability table or a CPT for short.

Distributions given as in (3.1) automatically satisfy the global directed Markov
property so that whenever two sets of nodes A and B are d-separated by a set of
nodes S, see Sect. 1.3 for this notion, then A ⊥⊥ B |S.

The directed acyclic graph in Fig. 3.1 can be specified as:

> g<-list(~asia, ~tub | asia, ~smoke, ~lung | smoke, ~bronc | smoke,
+ ~either | lung : tub, ~xray | either, ~dysp | bronc : either)
> chestdag<-dagList(g)

We can query conditional independences using the function d.separates() con-
structed in Sect. 1.3:

> d.separates("tub", "smoke", c("dysp","xray"), chestdag)

[1] FALSE

whereas

> d.separates("tub", "lung", "smoke", chestdag)

[1] TRUE

3.1.3 Inference

Suppose we are given evidence that a set of variables E ⊂ V have a specific value
i∗E . For the chest clinic example, evidence could be that a person has recently visited
Asia and suffers from dyspnoea, i.e. iA = yes and iD = yes.

With this evidence, we may be interested in the conditional distribution
p(iv |XE = i∗E) (or p(iv | i∗E) is short) for some of the variables v ∈ V \ E or in
p(iU | i∗E) for a set U ⊂ V \ E. In the chest clinic example, interest might be in
p(iL | i∗E), p(iT | i∗E) and p(iB | i∗E), or possibly in the joint (conditional) distribution
p(iL, iT , iB | i∗E). Interest might also be in calculating the probability of a specific
event, e.g. p(i∗E) = p(XE = i∗E).

As noticed above, each conditional distribution in (3.2) is in gRain specified
as a conditional probability table. A brute force approach to calculating p(iU | i∗E)

is to calculate the joint distribution given by (3.2) by multiplying the conditional
probability tables. Finding p(iU | i∗E) then reduces to first finding the slice defined

54 3 Bayesian Networks

by iE = i∗E of the joint table and then marginalizing over the variables not in U that
slice.

As all variables in the chest clinic example are binary, the joint distribution will
have 28 = 256 states but for larger networks/more levels of the variables the joint
state space becomes prohibitively large. In most practical cases the set U will be
much smaller than V (U might consist of only one or two variables while V can
be very large). Combined with the observation that the factorization in (3.2) im-
plies conditional independence restrictions, this implies that p(iU | i∗E) can be found
without ever actually calculating the joint distribution. See Sect. 3.2.3 for details.

3.2 Building and Using Bayesian Networks

3.2.1 Specification of Conditional Probability Tables

One simple way of specifying a model for the chest clinic example is as follows.
First we specify conditional probability tables with values as given in Lauritzen and
Spiegelhalter (1988). This can be done with array() or as here with the cptable()
function, which offers some additional features:

> library(gRain)
> yn <- c("yes","no")
> a <- cptable(~asia, values=c(1,99), levels=yn)
> t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
> s <- cptable(~smoke, values=c(5,5), levels=yn)
> l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
> b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
> e.lt <- cptable(~either+lung+tub,values=c(1,0,1,0,1,0,0,1),

levels=yn)
> x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
> d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9),

levels=yn)

Notice that the “+” operator used above is slightly misleading in the sense, for ex-
ample, that the operator does not commute (the order of the variables is important).
We use the “+” operator merely as a separator of the variables. The following forms
are also valid specifications:

> cptable(~tub|asia, values=c(5,95,1,99), levels=yn)
> cptable(c("tub","asia"), values=c(5,95,1,99), levels=yn)

Notice that since E is a logical variable which is true if either T or L are true and
false otherwise, the corresponding CPT can be created with the special function
ortable() (there is also an corresponding andtable() function):

> e.lt <- ortable(~either+lung+tub, levels=yn)

3.2 Building and Using Bayesian Networks 55

3.2.2 Building the Network

A network is created with the function grain() which returns an object of class
grain:

> plist <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> grn1 <- grain(plist)
> summary(grn1)

Independence network: Compiled: FALSE Propagated: FALSE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...

> plot(grn1)

The compileCPT() function does some checking of the specified CPT’s. (For ex-
ample, it is checked that the graph defined by the CPT’s is acyclic. Furthermore, the
specification of t.a gives a table with four entries and the variable tub is specified
to be binary. Hence it is checked that the variable asia is also binary.) The object
plist is a list of arrays and it is from this list that the grain object is created.

3.2.2.1 Compilation—Finding the Clique Potentials

A grain object must be compiled and propagated before queries can be made.
These steps are performed by the querygrain() function if necessary, but for some
purposes it is advantageous to perform them explicitly. Compilation of a network is
done with the compile() method for grain objects:

> grn1c <- compile(grn1)
> summary(grn1c)

Independence network: Compiled: TRUE Propagated: FALSE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...
Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8

56 3 Bayesian Networks

Compilation of a grain object based on CPTs involves the following steps: First it
is checked whether the list of CPTs defines a directed acyclic graph (a DAG). If so,
then the DAG is created; it is moralized and triangulated to form a chordal (triangu-
lated) graph. The CPTs are transformed into clique potentials defined on the cliques
of this chordal graph. The chordal graph together with the corresponding clique po-
tentials are the most essential components of a grain object, and one may indeed
construct a grain object directly from a specification of these two components, see
Sect. 3.3.1.

We again consider the Bayesian network of Sect. 3.2.1: The factorization (3.2)
into a clique potential representation follows by simply noticing that in (3.2) each
of the conditional probability tables can be considered a function of the variables it
involves. These potentials are simply non-negative functions.

The dependence graph of the Bayesian network is derived from the potentials.
For example, the presence of the term p(xD |xE,xB) implies that there must be
edges between all pairs in {D,E,B}. Algorithmically, the dependence graph can
be formed from the DAG by moralization: The moral graph of a DAG is obtained
by first joining all parents of each node by a line and then dropping the directions
on the arrows. For the chest clinic example, the edges between tub and lung, and
between either and bronc are added.

The next step is to triangulate the dependence graph if it is not already so by
adding additional edges, so-called fill-ins. This is done to enable simple compu-
tation of marginals from the clique potentials, cf. Sect. 3.2.2.2 below. Finding an
optimal triangulation (in terms of a minimal number of fill-ins) of a given graph
is NP-complete, but various good heuristics exist. The gRbase package imple-
ments a Minimum Clique Weight Heuristic method inspired by Kjærulff (1990).
Two possible fill-ins are the edge between lung and bronc, and the edge between
either and smoke. The triangulated graph is also a dependence graph for (3.2);
the graph just conceals some conditional independence restrictions implied by the
model.

The steps described above can alternatively be carried out separately, and Fig. 3.2
illustrates the process:

> g <- grn1$dag
> mg <- moralize(g)
> tmg <- triangulate(mg)

Recall from Sect. 1.2.1 that an ordering C1, . . . ,CT of the cliques of a graph is a RIP
ordering if Sj = (C1 ∪ · · · ∪ Cj−1) ∩ Cj is contained in one (but possibly several)
of the cliques C1, . . . ,Cj−1, obtained with:

> rip(tmg)

cliques
1 : tub asia
2 : either tub lung
3 : bronc lung either
4 : smoke lung bronc
5 : dysp bronc either
6 : xray either

3.2 Building and Using Bayesian Networks 57

Fig. 3.2 Left: moralized DAG; Right: triangulated moralized DAG. The chect clinic example of
Lauritzen and Spiegelhalter (1988)

separators
1 :
2 : tub
3 : lung either
4 : lung bronc
5 : bronc either
6 : either

parents
1 : 0
2 : 1
3 : 2
4 : 3
5 : 3
6 : 5

Picking a particular clique, say Ck , with Sj ⊆ Ck and naming this as the parent
clique of Cj , with Cj being the child of Ck , organizes the cliques of the triangulated
graph in a rooted tree with the cliques as nodes and arrows from parent to child. We
call Sj the separator and Rj = Cj \Sj the residual, where S1 = ∅. The junction tree
is formed by ignoring the root and the directions on the edges. It is a tree with the
property that for any pair (A,B) of cliques and any clique C on the unique path
between A and B it holds that A ∩ B ⊆ C. It can be shown that the cliques of a
graph can be organized in a junction tree if and only if the graph is triangulated.

The junction tree can be displayed by plot(),

> plot(grn1c,type="jt")

58 3 Bayesian Networks

where the numbers on the nodes refer to the clique numbers in the RIP-ordering.
Other RIP-orderings of the cliques can be found by choosing an arbitrary clique
as the first and then numbering the cliques in any way which is increasing as one
moves outward from the first clique in this tree. For example C3,C2,C5,C1,C6,C4
would be another RIP-ordering.

The functions p(iv | ipa(v)) are hence defined on complete sets of the triangulated
graph. For each clique C we collect the conditional probability tables p(iv | ipa(v))

into a single term ψC(iC) by multiplying them. Triangulation may have created
cliques to which no CPT corresponds. For each such clique the corresponding po-
tential is identically equal to 1. Thus we have obtained the clique potential repre-
sentation of p(iV) as

p(iV) =
T∏

j=1

ψCj
(iCj

). (3.3)

The representation (3.3) is the fundamental representation for the subsequent
computations. As such, a DAG and a corresponding factorization as in (3.2) is just
one way of getting to the representation in (3.3) and one may alternatively specify
this directly as shall be illustrated in Sect. 3.3.1.

3.2.2.2 Propagation—from Clique Potentials to Clique Marginals

To be able to answer queries, the grain object must be propagated, which means
that the clique potentials must be calibrated (adjusted) to each other. Propagation is
done with the propagate() method for grain objects:

> grn1c <- propagate(grn1c)
> summary(grn1c)

Independence network: Compiled: TRUE Propagated: TRUE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" ...
Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8

3.2 Building and Using Bayesian Networks 59

The propagation algorithm works by turning the clique potential representation (3.3)
into a representation in which each potential ψCj

is replaced by the marginal distri-
bution p(iCj

). This representation is called a clique marginal representation. This
is done by working twice through the set of cliques and passing ‘messages’ between
neighbouring cliques: first from the last clique in the RIP-ordering towards the first,
i.e. inwards in the junction tree, and subsequently passing messages in the other
direction.

In detail, the process is as follows. We start with the last clique CT in the RIP
ordering where CT = ST ∪ RT , ST ∩ RT = ∅. The factorization (3.3) together with
the factorization criterion (1.1) implies that RT ⊥⊥ (C1 ∪ · · · ∪ CT −1) \ ST |ST .
Marginalizing over iRT

gives

p(iC1∪...∪CT −1) =
(

T −1∏

j=1

ψCj
(iCj

)

)
∑

iRT

ψCT
(iST

, iRT
).

Let ψST
(iST

) = ∑
iRT

ψCT
(iST

, iRT
). Then from the expression above we have

p(iRT
| iST

) = ψCT
(iST

, iRT
)/ψST

(iST
)

and hence

p(iV) = p(iC1∪···∪CT −1)p(iRT
| iST

) =
{(

T −1∏

j=1

ψCj
(iCj

)

)
ψST

(iST
)

}
ψCT

(iCT
)

ψST
(iST

)
.

The RIP ordering ensures that ST is contained in the neighbour of CT in the junc-
tion tree (one of the cliques C1, . . . ,CT −1), say Ck . We can therefore absorb ψST

into ψCk
by setting ψCk

(iCk
) ← ψCk

(iCk
)ψST

(iST
). We can think of the clique CT

passing the message ψST
to its neighbour Ck , making a note of this by changing its

own potential to ψCT
← ψCT

/ψST
, and Ck absorbing the message.

After this we now have p(iC1∪···∪CT −1) = ∏T −1
j=1 ψCj

(iCj
). We can then apply

the same scheme to the part of the junction tree which has not yet been traversed.
Continuing in this way until we reach the root of the junction tree yields

p(iV) = p(iC1)p(iR2 | iS2)p(iR3 | iS3) . . . p(iRT
| iST

) (3.4)

where p(iC1) = ψC1(iC1)/
∑

iC1
ψC1(iC1). The resulting expression (3.4) is called a

set chain representation. Note that the root potential now yields the joint marginal
distribution of its nodes.

For some purposes we do not need to proceed further and the set chain repre-
sentation is fully satisfactory. However, if we wish to calculate marginals to other
cliques than the root clique, we need a second passing of messages. This time we
work from the root towards the leaves in the junction tree and send messages with a
slight twist, in the sense that this time we do not change the potential in the sending
clique. Rather we do as follows:

Suppose C1 is the parent of C2 in the rooted junction tree. Then we have that
p(iS2) = ∑

iC1\S2
p(iC1) and so

p(iV) = p(iC1)
p(iC2)

p(iS2)
p(iR3 | iS3) . . . p(iRT

| iST
).

60 3 Bayesian Networks

Thus when the clique C2 has absorbed its message by the operation

ψC2(iC2) ← ψC2(iC2)p(iS2)

its potential is equal to the marginal distribution of its nodes. Proceeding in this way
until we reach the leaves of the junction tree yields the clique marginal representa-
tion

p(iV) =
T∏

j=1

p(iCj
)/

T∏

j=2

p(iSj
). (3.5)

3.2.3 Absorbing Evidence and Answering Queries

Consider absorbing the evidence i∗E = (i∗v , v ∈ E), i.e. that nodes in E are known to
have a specific value. We note that

p(iV \E | i∗E) ∝ p(iV \E, i∗E)

and hence evidence can be absorbed into the model by modifying the terms ψCj

in the clique potential representation (3.3) as follows: for every v ∈ E, we take an
arbitrary clique Cj with v ∈ Cj . Entries in ψCj

which are locally inconsistent with
the evidence, i.e. entries iCj

for which iv �= i∗v , are set to zero and all other entries are
unchanged. Evidence can be entered before or after propagation without changing
final results.

To answer queries, we carry out the propagation steps above leading to a clique
marginal representation where the potentials become ψCj

(iCj
) = p(iCj

|i∗E). In this
process we note that processing of the root potential to find p(iC1 | i∗E) involves
computation of

∑
iC1

ψ1(iC1) which is equal to p(i∗E). Hence the probability of the
evidence comes at no extra computational cost.

Evidence is entered with setFinding() which creates a new grain object:

> grn1c.ev <-
+ setFinding(grn1c,nodes=c("asia","dysp"), states=c("yes","yes"))

To obtain p(iv | i∗E) for some v ∈ V \ E, we locate a clique Cj containing v and
marginalize as

∑
iCj \{v} p(iCj

). Based on (3.5) the grain objects with and without

evidence can now be queried to give marginal probabilities using querygrain():

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="marginal")

$lung
lung

yes no
0.09953 0.90047

$bronc
bronc

yes no
0.8114 0.1886

3.2 Building and Using Bayesian Networks 61

> querygrain(grn1c,nodes=c("lung","bronc"), type="marginal")

$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

The evidence in a grain object can be retrieved with the getFinding() function
while the probability of observing the evidence is obtained using the pFinding()

function:

> getFinding(grn1c.ev)

Finding:
variable state

[1,] asia yes
[2,] dysp yes
Pr(Finding)= 0.004501

> pFinding(grn1c.ev)

[1] 0.004501

Suppose we want the distribution p(iU | i∗E) for a set U ⊂ V \ E. If there is a clique
Cj such that U ⊂ Cj then the distribution is simple to find by summing p(iCj

)

over the variables in Cj \ U . If no such clique exists we can obtain p(iU | i∗E) by
calculating p(i∗U , i∗E) for all possible configurations i∗U of U and then normalizing
the result: this can be computationally demanding if U has a large state space.

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="joint")

bronc
lung yes no
yes 0.06298 0.03654
no 0.74842 0.15205

> querygrain(grn1c.ev,nodes=c("lung","bronc"), type="conditional")

bronc
lung yes no
yes 0.07762 0.1938
no 0.92238 0.8062

Note that the latter result is the conditional distribution of lung given bronc—but
also conditional on the evidence.

However, if it is known beforehand that interest will be in the joint distribution
of a specific set U of variables, one can ensure that the set U is contained in a single
clique in the triangulated graph. This can for example be done by first moralizing,
then adding edges between all nodes in U , and finally triangulating the resulting
graph. The price to be paid is that the cliques may become larger and since compu-
tational complexity is exponential in the largest clique, this can be prohibitive.

62 3 Bayesian Networks

To do this in practice we first need to compile the grain again

> grn1c2 <- compile(grn1, root=c("lung", "bronc", "tub"),
propagate=TRUE)

> grn1c2.ev <- setFinding(grn1c2,nodes=c("asia","dysp"),
+ states=c("yes","yes"))

Now compare the computing times: the second method is much faster:

> system.time({for (i in 1:50)
+ querygrain(grn1c.ev,nodes=c("lung","bronc","tub"),
+ type="joint")
+ })

user system elapsed
1.5 0.0 1.5

> system.time({for (i in 1:50)
+ querygrain(grn1c2.ev,nodes=c("lung","bronc","tub"),
+ type="joint")
+ })

user system elapsed
0.02 0.00 0.01

Evidence can be entered incrementally by calling setFinding() repeatedly. It is

most efficient to set propagate=FALSE in setFinding() and then only call the

propagate() method for grain objects at the end:

> grn1c.ev <- setFinding(grn1c,nodes="asia", states="yes",
+ propagate=FALSE)
> grn1c.ev <- setFinding(grn1c.ev,nodes="dysp", states="yes",
+ propagate=FALSE)
> grn1c.ev <- propagate(grn1c.ev)

Evidence can be retracted (removed) using the retractFinding() function:

> grn1c.ev <- retractFinding(grn1c.ev, nodes="asia")
> getFinding(grn1c.ev)

Finding:
variable state

[1,] dysp yes
Pr(Finding)= 0.004501

Omitting nodes implies that all evidence is retracted, i.e. that the grain object is

reset to its original status.

3.3 Further Topics 63

3.3 Further Topics

3.3.1 Building a Network from Data

A grain object can also be built from a dataframe of cases in various ways, as
illustrated below.

One way is to build it is to use data in combination with a graph such as, for
example, the directed acyclic graph chestdag specified in Sect. 3.1.2.

The data chestSim500 from the gRbase package is generated from our fictitious
example using the command simulate() method described in Sect. 3.3.3 below.

When building a grain object this way, the CPTs are estimated from data
in chestSim500 as the relative frequencies. To avoid zeros in the CPTs one
can choose to add a small number, e.g. smooth=0.1 to all values, correspond-
ing to a Bayesian estimate based on prior Dirichlet distributions for the CPT en-
tries:

> library(gRbase)
> data(chestSim500, package='gRbase')
> simdagchest <- grain(chestdag, data=chestSim500)
> simdagchest <- compile(simdagchest, propagate=TRUE, smooth=.1)
> querygrain(simdagchest, nodes =c("lung","bronc"),type="marginal")

$lung
lung
yes no

0.046 0.954

$bronc
bronc
yes no

0.454 0.546

Alternatively, a grain object can be built from an undirected (but triangulated)
graph rather than a Bayesian network, making some steps of the process of com-
pilation redundant. The undirected triangulated graph for the compiled chest clinic
example can be specified as:

> g<-list(~asia : tub, ~either : lung : tub, ~either : lung : smoke,
+ ~bronc : either : smoke, ~bronc : dysp : either, ~either :
+ xray)
> myug <- ugList(g)

A grain object can now be built from the graph and the data. In this pro-
cess, the clique potentials are directly estimated by the appropriate frequen-
cies:

> simugchest <- grain(myug, data=chestSim500)
> simugchest <- compile(simugchest, propagate=TRUE)
> plot(simugchest)

64 3 Bayesian Networks

This is natural when directions are not known beforehand. For example, using the
reinis data with a model selection procedure yields

> data(reinis, package='gRbase')
> m0 <- dmod(~.^., data=reinis)
> m1 <- stepwise(m0)
> reinisgrain <- grain(as(m1,"graphNEL"), data=reinis)
> plot(reinisgrain)
> reinisgrain <- compile(reinisgrain, propagate=TRUE)
> querygrain(reinisgrain,nodes=c("phys","protein"), type="marginal")

$protein
protein

y n
0.5763 0.4237

$phys
phys

y n
0.5035 0.4965

Now evidence can be entered and revised probabilities found as usual:

3.3 Further Topics 65

> reinisgrain.ev <-
+ setFinding(reinisgrain,
+ nodes=c("systol","smoke","mental"), states=c("y","y","y"))
> querygrain(reinisgrain.ev,nodes=c("phys","protein"), type="marginal")

$protein
protein

y n
0.6744 0.3256

$phys
phys

y n
0.2776 0.7224

3.3.2 Bayesian Networks with RHugin

The package RHugin (see http://rhugin.r-forge.r-project.org) provides an Applica-
tion Programmer’s Interface (API) to HUGIN in the R language. It consists of a basic
library of functions which mirrors the C API

http://www.hugin.com/developer/documentation/API_Manuals/
provided with HUGIN. More precisely, every command in the C API of HUGIN

of the form h_something has an R-variant called RHugin_something, e.g.
RHugin_domain_propagate uses .Call to invoke the HUGIN function
h_domain_propagate etc. In this way, the full functionality of HUGIN becomes
available within R.

In addition, RHugin provides a few higher level functions based on this API
which enables simple operations for Bayesian networks to be carried out, for exam-
ple such as those described in the previous sections. For the first simple illustrations
we repeat the basic steps above using RHugin instead of gRain.

We first create the domain

> library(RHugin)
> RHchestClinic <- hugin.domain()

and subsequently create nodes and give them states

> chestNames <- c("asia", "smoke", "tub", "lung", "bronc",
+ "either", "xray", "dysp")
> for(node in chestNames)
+ add.node(RHchestClinic, node, states = c("yes", "no"))

Then nodes are connected with edges to form the DAG

> add.edge(RHchestClinic, "tub", "asia")
> add.edge(RHchestClinic, "lung", "smoke")
> add.edge(RHchestClinic, "bronc", "smoke")
> add.edge(RHchestClinic, "either", c("tub", "lung"))
> add.edge(RHchestClinic, "xray", "either")
> add.edge(RHchestClinic, "dysp", c("either", "bronc"))

http://rhugin.r-forge.r-project.org
http://www.hugin.com/developer/documentation/API_Manuals/

66 3 Bayesian Networks

The network now exists and can be displayed using Rgraphviz

> library(Rgraphviz)
> plot(RHchestClinic)

At this point the network has default (uniform) probability tables:

> get.table(RHchestClinic, "dysp")

dysp either bronc Freq
1 yes yes yes 1
2 no yes yes 1
3 yes no yes 1
4 no no yes 1
5 yes yes no 1
6 no yes no 1
7 yes no no 1
8 no no no 1

These can now be changed manually:

> cpt <- get.table(RHchestClinic, "asia")
> cpt$Freq <- c(0.01, 0.99)
> set.table(RHchestClinic, "asia", cpt)
> cpt <- get.table(RHchestClinic, "tub")
> cpt$Freq <- c(5, 95, 1, 99)
> set.table(RHchestClinic, "tub", cpt)
> cpt <- get.table(RHchestClinic, "either")
> cpt

either tub lung Freq
1 yes yes yes 1
2 no yes yes 1
3 yes no yes 1
4 no no yes 1
5 yes yes no 1
6 no yes no 1

3.3 Further Topics 67

7 yes no no 1
8 no no no 1
> cpt$Freq <- c(1,0,1,0,1,0,0,1)
> set.table(RHchestClinic, "either", cpt)
>

or using available data to populate one of the tables:

> set.table(RHchestClinic,"dysp",chestSim500)

leading to

> get.table(RHchestClinic, "dysp")
dysp either bronc Freq

1 yes yes yes 10
2 no yes yes 2
3 yes no yes 176
4 no no yes 39
5 yes yes no 12
6 no yes no 5
7 yes no no 29
8 no no no 227

Note that the CPTs are not yet normalized. In HUGIN this happens at the stage of
compilation. We can also let most (or all) tables be based on frequencies in the
dataframe:

> set.table(RHchestClinic, "smoke", chestSim500)
> set.table(RHchestClinic, "bronc", chestSim500)
> set.table(RHchestClinic, "lung", chestSim500)
> set.table(RHchestClinic, "xray", chestSim500)
> get.table(RHchestClinic, "smoke")

smoke Freq
1 yes 238
2 no 262

If we compile the network we find that tables have become normalized:

> compile(RHchestClinic)
> get.table(RHchestClinic, "dysp")

dysp either bronc Freq
1 yes yes yes 0.8333
2 no yes yes 0.1667
3 yes no yes 0.8186
4 no no yes 0.1814
5 yes yes no 0.7059
6 no yes no 0.2941
7 yes no no 0.1133
8 no no no 0.8867

The network is now ready for absorbing evidence and calculating revised probabil-
ities:

> set.finding(RHchestClinic, "asia","yes")
> set.finding(RHchestClinic, "dysp","yes")
> propagate(RHchestClinic)
> get.belief(RHchestClinic, "lung")

68 3 Bayesian Networks

yes no
0.07729 0.92271

> get.belief(RHchestClinic, "bronc")

yes no
0.806 0.194

Note the values are somewhat different from those previously obtained. This is due
to the fact that probabilities are estimated from the (simulated) data rather than
specified exactly.

3.3.3 Simulation

It is possible to simulate data from a Bayesian network model. The methods use
the current clique potentials to do this and thus generates values conditional on all
evidence entered in the grain object. It uses the method of random propagation as
described in Dawid (1992); see also Cowell et al. (1999, p. 99). If a domain is not
propagated when simulate() is applied, simulate() will force this to happen
automatically.

> simulate(grn1c.ev, nsim=5)

asia tub smoke lung bronc either xray dysp
1 yes no yes no yes no no yes
2 yes yes yes no yes yes yes yes
3 yes no yes no no no no yes
4 yes no no no yes no no yes
5 yes no no no yes no no yes

One application of such a simulation is to obtain the joint distribution of lung and
bronc conditional on the finding:

> xtabs(~lung+bronc, data=simulate(grn1c.ev, nsim=1000))/1000

bronc
lung yes no
yes 0.070 0.033
no 0.757 0.140

The result of the simulation is close to the exact result given in Sect. 3.2.3. A simu-
late() method is also available with RHugin, but this only works if the domain has
been propagated.

> simulate(RHchestClinic, nsim=5)

asia smoke tub lung bronc either xray dysp
1 yes yes no no yes no no yes
2 yes no no no yes no yes yes
3 yes no no no yes no no yes
4 yes no no no yes no no yes
5 yes no no no yes no no yes

3.3 Further Topics 69

3.3.4 Prediction

A predictmethod is available for grain objects for predicting a set of “responses”
from a set of “explanatory variables”. Two types of predictions can be made. The
default is type="class" which assigns the value to the class with the highest prob-
ability:

> mydata

bronc dysp either lung tub asia xray smoke
1 yes yes yes yes no no yes yes
2 yes yes yes yes no no yes no
3 yes yes yes no yes no yes yes
4 yes yes no no no yes yes no

> predict(grn1c, response=c("lung","bronc"), newdata=mydata,
+ predictors=c("smoke", "asia", "tub", "dysp", "xray"), type="class")

$pred
$pred$lung
[1] "yes" "no" "no" "no"

$pred$bronc
[1] "yes" "yes" "yes" "yes"

$pFinding
[1] 0.0508476 0.0111697 0.0039778 0.0001083

The output should be read carefully: Conditional on the first observation in my-

data, the most probable value of lung is "yes" and the same is the case for bronc.
This is not in general the same as saying that the most likely configuration of the
two variables lung and bronc is "yes".

The entire conditional distribution can be obtained in gRain by setting
type=‘dist’:

> predict(grn1c, response=c("lung","bronc"), newdata=mydata,
+ predictors=c("smoke", "asia", "tub", "dysp", "xray"), type="dist")

$pred
$pred$lung

yes no
[1,] 0.7745 0.2255
[2,] 0.3268 0.6732
[3,] 0.1000 0.9000
[4,] 0.3268 0.6732

$pred$bronc
yes no

[1,] 0.7182 0.2818
[2,] 0.6373 0.3627
[3,] 0.6585 0.3415
[4,] 0.6373 0.3627

$pFinding
[1] 0.0508476 0.0111697 0.0039778 0.0001083

70 3 Bayesian Networks

The jointly most probably configuration can be found by using the option equilib-
rium ="max" with RHugin. HUGIN uses the max-propagation algorithm described
in Dawid (1992); see also Cowell et al. (1999, p. 97 ff.). For the third datapoint we
get

> initialize(RHchestClinic)

A Hugin domain
Nodes: asia smoke tub lung bronc either xray dysp
Edges:
asia -> tub
smoke -> bronc
smoke -> lung
tub -> either
lung -> either
bronc -> dysp
either -> dysp
either -> xray

> set.finding(RHchestClinic,"smoke","yes")
> set.finding(RHchestClinic,"asia","no")
> set.finding(RHchestClinic,"tub","yes")
> set.finding(RHchestClinic,"dysp","yes")
> set.finding(RHchestClinic,"xray","yes")

The joint probability of the evidence is

> propagate(RHchestClinic)
> pev<-get.normalization.constant(RHchestClinic)
> pev

[1] 0.003687

and the most likely configuration is

> propagate(RHchestClinic,equilibrium ="max")
> get.belief(RHchestClinic,"either")
yes no
1 0

> get.belief(RHchestClinic,"lung")

yes no
0.08676 1.00000

> get.belief(RHchestClinic,"bronc")

yes no
1.0000 0.5627

The most probable configuration of the unobserved nodes either, lung, bronc

is found by combining states where get.belief() returns 1.00, in this case yes,
no, yes. The second number indicates how much the joint probability decreases if
the state at that particular node is changed, i.e. the joint probability of yes,yes,yes,

3.3 Further Topics 71

is .08676 times the maximal probability. The probability of the most probable con-
figuration and evidence jointly is obtained via the normalization constant again

> pmax<-get.normalization.constant(RHchestClinic)
> pmax

[1] 0.002171

So the conditional probability of the most probable configuration given the evidence
is

> predprob<-pmax/pev
> predprob

[1] 0.5888

To simulatewith RHugin, we now need to propagate again with the default "sum"
option.

3.3.5 Working with HUGIN Files

With HUGIN, the specifications of a BN are read or saved in a textfile in a format
known as a .net. HUGIN can also save and read domains in its own binary format
.hkb which can contain further information in the form of compilation, evidence,
and propagation results.

A grain object saved in this format can be loaded into R using the loadHugin-
Net() function in gRain:

> chest <- loadHuginNet("ChestClinic.net")

> chest

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "PositiveXray" "Bronchitis" "Dyspnoea" ...

HUGIN distinguishes between node names and node labels. Node names have to be
unique; node labels need not be so. When creating a BN in HUGIN node names
are generated automatically as C1, C2 etc. The user can choose to give more in-
formative labels or to give informative names. Typically one would do the former.
Therefore loadHuginNet uses node labels (if given) from the netfile and otherwise
node names.

This causes two types of problems. First, HUGIN allows spaces and special char-
acters (e.g. “?”) in variable labels, but these are not allowed in gRain. If such a
name is found by loadHuginNet, it is converted as follows: special characters are
removed, the first letter after a space is capitalized and then spaces are removed.
Hence the label “visit to Asia?” in a net file will be converted to “visitToAsia”. The
same convention applies to states of variables. Secondly, because node labels in the

72 3 Bayesian Networks

net file are used as node names in gRain we may end up with two nodes having the
same name, which is obviously not permitted. To resolve this gRain will in such
cases force the node names in gRain to be the node names rather than the node
labels from the net file. For example, if nodes A and B in a net file both have label
foo, then the nodes in gRain will be denoted A and B. Note that this approach is
not entirely foolproof: If there is a node C with label A, then we have just moved
the problem. So the scheme above is applied recursively until all ambiguities are
resolved.

A grain can be saved in the .net format with the saveHuginNet() function.

> saveHuginNet(reinisgrain,file="reinisgrain.net")

Note that reinisgrain does not have a DAG by default, so the save function con-
structs a DAG which has the same conditional independence structure as the trian-
gulated graph defining the grain object.

RHugin interacts continuously with HUGIN but has also read and write func-
tions write.rhd() and read.rhd(). For example we can now create a domain in
RHugin as

> RHreinis<-read.rhd("reinisgrain.net")
> RHreinis

A Hugin domain
Nodes: family mental phys systol smoke protein
Edges:
mental -> family
phys -> mental
systol -> protein
smoke -> mental
smoke -> phys
smoke -> protein
smoke -> systol
protein -> phys

We can now operate fully in RHreinis with RHugin, for example

> get.table(RHreinis,"mental")
> set.finding(RHreinis,"mental","y")
> set.finding(RHreinis,"protein","n")
> compile(RHreinis)
> propagate(RHreinis)
> get.normalization.constant(RHreinis)
> get.belief(RHreinis,"smoke")
> write.rhd(RHreinis,"RHreinis.hkb",type="hkb")
> write.rhd(RHreinis,"RHreinis.net",type="net")

The file RHreinis.hkb will now be in a binary format readable by HUGIN (or
RHugin) and contain a compiled and propagated domain with its evidence and the
associated .net file, whereas RHreinis.net will be a textfile identical to rein-

isgrain.net. Similarly, RHugin can also read domains which are saved in .hkb

format.

3.4 Learning Bayesian Networks 73

It is important to emphasize the relationship between RHugin and gRain on the
one side and HUGIN on the other: gRain works entirely within R, creates R objects,
and only relates to HUGIN through its facilities for reading and writing .net files.
In contrast, domains, nodes, edges etc. of an RHugin-domain are not R objects as
such. They are external pointers to objects which otherwise exist within HUGIN. So,
for example, a statement of the form

> newRHreinis<-RHreinis

does not create a new R object, but just an extra pointer to the same HUGIN domain.
This means that if anything is changed in RHreinis, it will automatically change in
the same way in newRHreinis and vice versa.

3.4 Learning Bayesian Networks

Hitherto in this chapter it has been assumed that the Bayesian network was known
in advance. In practice it is often necessary to construct the network based on an ob-
served dataset—a topic known in the machine learning community as structural
learning (in contrast to parameter learning) and in the statistical community as
model selection.

Model selection algorithms for Gaussian graphical models based on DAGs are
described in Chap. 4. Available algorithms include the PC-algorithm (Spirtes and
Glymour 1991) and various algorithms in the bnlearn package: these can also be
used to select discrete Bayesian networks.

As illustration we consider a dataframe cad1 supplied along with the gRbase
package. This contains data on coronary artery disease from a Danish heart clinic.
In all 14 discrete variables were recorded for 236 patients at the clinic including
five background variables (sex, hypercholesterolemia, smoking, heridary disposition
and workload), one recording whether or not the patient has coronary artery disease,
four variables representing disease manifestation (hypertrophy, previous myocardial
infarct, angina pectoris, other heartfailures), and four clinical measurements (Q-
wave, T-wave, Q-wave informative and T-wave informative). These data were used
as an example of chain graph modelling in Højsgaard and Thiesson (1995).

As a first attempt we can apply the hill-climbing algorithm implemented in the
hc function in the bnlearn package. This is a greedy algorithm to find a model
optimizing a score: various scores may be used, and here we choose to minimize
the Bayesian Information Criterion (BIC).

> library(gRbase)
> data(cad1, package='gRbase')
> library(bnlearn)
> cad.bn <- hc(cad1)
> plot(as(amat(cad.bn), "graphNEL"))

74 3 Bayesian Networks

As described in more detail in Sect. 4.5.1, DAGs can only be selected up to Markov
equivalence, so it is useful to see which DAGs are Markov equivalent to the selected
one. These may be represented as an essential graph, using the essentialGraph

function in the ggm package.

> library(ggm)
> plot(as(essentialGraph(amat(cad.bn)), "graphNEL"))

3.4 Learning Bayesian Networks 75

This model is implausible, since it suggests amongst other things that whether or not
a patient has coronary artery disease (CAD) determines their sex and whether they
smoke. A better approach is to incorporate our prior knowledge of the system under
study into the model selection process. We do this by dividing the variables into the
four blocks described above, namely background variables, disease, disease mani-
festations and clinical measurements. Note that we treat hypertrophy as a disease
variable, following Højsgaard and Thiesson (1995). We restrict the model selection
process by blacklisting (i.e., disallowing) arrows that point from a later to an earlier
block. The following code shows how this may be done. First we construct an adja-
cency matrix containing the disallowed edges, then we convert this into a dataframe
using the get.edgelist function in the igraph package. This is then passed to the
hc function.

> block <- c(1,3,3,4,4,4,4,1,2,1,1,1,3,2)
> blM <- matrix(0, nrow=14, ncol=14)
> rownames(blM) <- colnames(blM) <- names(cad1)
> for (b in 2:4) blM[block==b, block<b] <- 1
> library(igraph)
> blackL <- data.frame(get.edgelist(as(blM, "igraph")))
> names(blackL) <- c("from", "to")
> cad.bn1 <- hc(cad1, blacklist=blackL)
> plot(as(amat(cad.bn1), "graphNEL"))

Finally, we again examine the essential graph of the selected DAG:

76 3 Bayesian Networks

> library(ggm)
> plot(as(essentialGraph(amat(cad.bn1)), "graphNEL"))

This is more plausible. To create the corresponding grain object, we can use

> cad.gr <- as(amat(cad.bn1), "graphNEL")
> cad.grain <- grain(cad.gr, data=cad1)

and proceed as before.

	Chapter 3: Bayesian Networks
	3.1 Introduction
	3.1.1 The Chest Clinic Example
	3.1.2 Models Based on Directed Acyclic Graphs
	3.1.3 Inference

	3.2 Building and Using Bayesian Networks
	3.2.1 Speciﬁcation of Conditional Probability Tables
	3.2.2 Building the Network
	3.2.2.1 Compilation-Finding the Clique Potentials
	3.2.2.2 Propagation-from Clique Potentials to Clique Marginals

	3.2.3 Absorbing Evidence and Answering Queries

	3.3 Further Topics
	3.3.1 Building a Network from Data
	3.3.2 Bayesian Networks with RHugin
	3.3.3 Simulation
	3.3.4 Prediction
	3.3.5 Working with HUGIN Files

	3.4 Learning Bayesian Networks

