
Chapter 8
System Identification

Mathematical models are essential to modern science and engineering, and have
been very successful in advancing the technology that has had profound impact to
our society. A serious question to be addressed in this chapter is how to obtain
the model for a given physical process. There are two basic approaches. The first
one is based on principles in physics or other sciences. The inverted pendulum in
Chap. 1 provides an example to this approach. Its advantage lies in its capability to
model nonlinear systems and preservation of the physical parameters. However, this
approach can be costly and time consuming. The second approach is based on input
and output data to extrapolate the underlying system model. This approach treats
the system as a black box and is only concerned with its input–output behaviors.
While experiments need to be carried out and restrictions on input signals may
apply, the second approach overcomes the weakness of the first approach.

This chapter examines the input/output approach to modeling of the physical
system which is commonly referred to as system identification. In this approach, the
mathematical model is first parameterized and then estimated based on input/output
experimental data. Autoregressive moving average (ARMA) models are often used
in feedback control systems due to their ability to capture the system behavior with
lower order and fewer parameters than the MA models or transversal filters. On
the other hand, wireless channels are more suitable to be described by MA models
due to the quick die out of the CIR. Many identification algorithms exist, and
most of them uses squared error as the identification criterion. The squared error
includes energy or mean power of the model matching error that results in least
squares (LS), or total LS (TLS), or MMSE algorithms. These algorithms will be
presented and analyzed in two different sections. For ease of the presentation, only
real matrices and variable are considered, but the results are readily extendable to the
case of complex valued signals and systems. A very important result in estimation
is the well-known Cramér–Rao lower bound (CRLB). See Sect. 6 in Appendix B for
details.
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344 8 System Identification

8.1 Least-Squares-Based Identification

Consider an m-input/p-output system with plant model

H(z) = M(z)−1N(z) =

(
I−

nμ

∑
k=1

Mkz−k

)−1( nν

∑
k=1

Nkz−k

)
.

The parameter matrices are those of {Mk}nμ
k=1 with dimension p× p, and of {Nk}nν

k=1
with dimension p×m. Due to the existence of measurement error, the input and
output are related through the following difference equation:

y(t) =
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=1

Nku(t − k)+ v(t), (8.1)

where v(t) is a WSS process with mean zero and covariance σ2I. Define

Θ =
[

M1 · · · Mnμ N1 · · · Nnν

]
as the true parameter matrix of dimension p× (nμ + nν)m, and

φ (t) =
[

y(t − 1)′ · · · y(t − nμ)
′ u(t − 1)′ · · · u(t − nν)

′ ]′
as the regressor vector of dimension (nμ + nν)m. There holds

y(t) =Θφ(t)+ v(t). (8.2)

The linearity is owing to the linearity of the system. Although the above signal
model is derived from the input/output model (8.1), this section assumes temporarily
that φ (t) is noise-free. This assumption holds for the FIR model, including wireless
channels. The dependence of the signal model (8.2) on input/output model (8.1) will
be revisited in the next section.

8.1.1 LS and RLS Algorithms

The LS algorithm is perhaps the most widely adopted in the practice of system
identification. It has an interpretation of maximum likelihood estimate (MLE), if
the observation noise is Gauss distributed. Consider Gauss-distributed v(t) that is
temporally white with mean zero and covariance Σv = σ2I that is known. The MLE
is equivalent to minimizing the squared error index

JΘ (t0, t f ) =
1

2σ2

t f

∑
t=t0

[y(t)−Θφ(t)]′[y(t)−Θφ(t)]
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by noting that MLE maximizes the PDF given by

fV (y;Θ) =
1√

(2πσ2)(t f −t0+1)p
exp
{−JΘ (t0, t f )

}
,

and by noting the independence of {v(t)}. For convenience, denote

Y0, f =
[

y(t0) y(t0 + 1) · · · y(t f )
]
,

Φ0, f =
[

φ (t0) φ (t0 + 1) · · · φ (t f )
]
.

(8.3)

Then the squared error index can be rewritten as

JΘ (t0, t f ) =
1

2σ2 Tr
{(

Y0, f −ΘΦ0, f
)(

Y0, f −ΘΦ0, f
)′}

. (8.4)

The LS solution Θ =ΘLS minimizes JΘ (t0, t f ) and is the MLE.
Recall the definition in (B.50). It is left as an exercise to show (Problem 8.1)

∂Tr{AXB}
∂X

= A′B′,
∂Tr{AX ′B}

∂X
= BA,

∂Tr{AXBX ′}
∂X

= A′XB′+AXB.

See Sect. B.5 in Appendix B. The next result provides the MLE in the general case.

Theorem 8.1. Consider the signal model in (8.2) where v(t) is Gauss distributed
with mean zero and covariance Σv = diag(σ2

1 , · · · ,σ2
p). Then the MLE estimate

based on {(y(t),φ(t)}t f
t=t0 is the LS solution and given by

ΘLS = Y0, f Φ ′
0, f (Φ0, f Φ ′

0, f )
−1, (8.5)

provided that (Φ0, f Φ ′
0, f ) is invertible. Moreover, let θ i be the ith row of Θ . Then

σ−2
i Φ0, f Φ ′

0, f is the FIM associated with estimation of θ ′
i for 1 ≤ i ≤ p, and thus,

σ2
i (Φ0, f Φ ′

0, f )
−1 is the corresponding CRLB.

Proof. Suppose that Σv is known. Then the Gauss assumption and (8.3) imply that
the MLE minimizes

JΘ =
1
2

Tr
{

Σ−1
v

(
Y0, f −ΘΦ0, f

)(
Y0, f −ΘΦ0, f

)′}

=
1
2

Tr

{
Σ−1

v

(
Y0, fY

′
0, f −ΘΦ0, fY

′
0, f −Y0, f Φ ′

0, fΘ
′+ΘΦ0, f Φ ′

0, fΘ
′
)}

.
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Direct calculation shows

∂JΘ
∂Θ

= Σ−1
v

(
ΘΦ0, f Φ ′

0, f −Y0, f Φ ′
0, f

)
.

Setting the above to zero yields the MLE in (8.5). Since the MLE is independent of
Σv, ΘLS is indeed the MLE. With partition row-wise,

Y0, f =

⎡
⎢⎢⎣

y
1
(t0, t f )

...
y

p
(t0, t f )

⎤
⎥⎥⎦, Θ =

⎡
⎢⎣

θ 1
...

θ p

⎤
⎥⎦,

and ε i = y
i
(t0, t f )−θ iΦ0, f for 1 ≤ i ≤ p. There holds

ln fV (y;Θ) = −JΘ (t0, t f ) =−1
2

p

∑
i=1

σ−2
i ε iε

′
i

= −1
2

p

∑
i=1

σ−2
i

(
y

i
(t0, t f )−θ iΦ0, f

)(
y

i
(t0, t f )−θ iΦ0, f

)′

by Σv = diag(σ2
1 , · · · ,σ2

p). It can be easily verified that

∂ ln fV (y;Θ)

∂θ ′
i

=−σ−2
i Φ0, f

(
y

i
(t0, t f )−θ iΦ0, f

)′
=−σ−2

i Φ0, f ε ′i.

By recognizing E{(y
i
(t0, t f )−θ iΦ0, f )

′(y
i
(t0, t f )−θ iΦ0, f )}= σ2

i I, the above yields
the FIM for θ ′

i:

FIM(θ ′
i) = E

{
∂ ln fV (y;Θ)

∂θ ′
i

∂ ln fV (y;Θ)

∂θ i

}
= σ−2

i Φ0, f Φ ′
0, f .

The corresponding CRLB is thus σ2
i (Φ0, f Φ ′

0, f )
−1 that concludes the proof. ��

It needs to keep in mind that the LS solution may not have the MLE interpreta-
tion, if φ (t) involves random noises. Consider the case when the covariance of v(t)
is Σv(t), and thus, {v(t)} is not a WSS process. Suppose that Σv(t) = σ2

t I that is
known for all t. Then JΘ is replaced by

JΘ =
1
2

t f

∑
t=t0

Tr
{

σ−2
t [y(t)−Θφ(t)][y(t)−Θφ(t)]′

}
. (8.6)

The MLE minimizes the above JΘ and satisfies

t f

∑
t=t0

σ−2
t

[
ΘLSφ(t)φ (t)′ − y(t)φ(t)′

]
= 0.
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Hence, the MLE is the weighted LS with weighting {σ−2
t }. Without loss of

generality, assume that t0 = 0. For k > 0, denote

Pk =

[
k−1

∑
t=0

σ−2
t φ (t)φ (t)′

]−1

, Qk =
k−1

∑
t=0

σ−2
t y(t)φ(t)′. (8.7)

By the proof of Theorem 8.1, Θ̂t f =ΘLS = Qtf +1Ptf +1 is the MLE.
The simplicity form of the LS solution allows its recursive computation with low

complexity. To be specific, denote Θ̂k as the LS solution based on the measurement
data over the time horizon [0, k) for some k > 0. Suppose that new input and output
measurements are obtained at k. There hold

Θ̂k = QkPk, Θ̂k+1 = Qk+1Pk+1.

The recursive LS (RLS) algorithm is aimed at computing Θ̂k+1 based on Θ̂k and the
updated regressor φ(k) without explicitly computing Qk+1Pk+1. In this regard, RLS
is similar to Kalman filtering in Theorem 5.6. The key is computation of Pk+1 based
on Pk and φ(k).

First, it is noted that the covariance type matrix Pk+1 can be written as

Pk+1 = [P−1
k +σ−2

k φ (k)φ (k)]−1

= Pk −Pkφ(k)[σ2
k +φ(k)′Pkφ(k)]−1φ (k)′Pk

by the matrix inversion formula in Appendix A. See also Problem 8.4 in Exercises.
The above can be rewritten as

Pk+1 = Pk −Pkφ (k)gk, gk = [σ2
k +φ(k)′Pkφ (k)]−1φ (k)′Pk. (8.8)

The derivation next shows the relation between φ(k)′Pk+1 and gk:

φ (k)′Pk+1 = φ (k)′Pk −φ(k)′Pkφ (k)[σ2
k +φ(k)′Pkφ (k)]−1φ(k)′Pk

= {I−φ(k)′Pkφ (k)[σ2
k +φ(k)′Pkφ (k)]−1}φ(k)′Pk

= σ2
k [σ

2
k +φ(k)′Pkφ(k)]−1φ(k)′Pk = σ2

k gk.

It follows from Qk+1 = Qk +σ−2
k y(k)φ (k)′ that

Θ̂k+1 = Qk+1

[
Pk −Pkφ(k)gk

]
= Θ̂k −Θ̂kφ (k)gk +σ−2

k y(k)φ(k)′Pk+1

= Θ̂k −Θ̂kφ (k)gk + y(k)gk = Θ̂k +[y(k)− ŷ(k)]gk,
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where ŷ(k) = Θ̂kφ (k) can be regarded as the predicted output. The above and (8.8)

form the RLS algorithm. If no knowledge is available at k = 0, then Θ̂0 = 0 and
P0 = ρ2I with large ρ can be employed which admit a similar interpretation to that
in Kalman filter.

An important problem in parameter estimation is the convergence of the estimate.
Consider the case when σ2

t = σ2 > 0 is a constant. Then the signal is called
persistent exciting (PE), if Pt → 0 as t → ∞. Accordingly, the PE condition implies
Θ̂t →Θ asymptotically based on the facts that gt → 0 as t →∞ and that LS algorithm
yields the MLE. As a result Θ̂t stops updating eventually. In fact, the LS estimate Θ̂t

may stop updating very quickly when the signal is rich in its information content.
While the convergence is welcomed, it does not suit to estimation of the time-

varying parameter matrix. Basically, the RLS algorithm fails to track the underlying
parameter matrix, when the PE condition holds. One may periodically reset Pt to
prevent it from being zero. However, this method is not suggested due to the loss of
past information. A more sophisticated method considers the following performance
index:

JΘ (t f ) =
1
2
‖y(t f )−Θφ(t f )‖2 + γt f JΘ (t f − 1), (8.9)

where γt ∈ (0, 1) is referred to as the forgetting factor at time t. In the case when
γt = γ is a constant and 0 < γ < 1,

JΘ (t f ) =
1
2

t f

∑
t=0

γt f −t‖y(t f )−Θφ(t f )‖2.

Thus, the terms in the distant past decay exponentially with respect to the time
duration. The resultant minimizer is very similar to the RLS algorithm derived
earlier with an appropriate modification.

To derive the RLS with the forgetting factor, it is noted that

JΘ (t − 1) =Ct +ΘP−1
t Θ ′ −ΘQ′

t −QtΘ ′

for some time-dependent constant matrices Pt , Qt , and Ct . Consequently,

JΘ (t) =
γt

2
Tr
{

Ct +ΘP−1
t Θ ′ −ΘQ′

t −QtΘ ′}+ 1
2
‖y(t f )−Θφ(t f )‖2.

Its partial derivative can be easily computed and is given by

∂JΘ (t)
∂Θ

∣∣∣∣
Θ=Θ̂t+1

= Θ̂t+1[γtP
−1
t +φ(t)φ (t)′]− [γtQt + y(t)φ(t)′].

Setting the above to zero yields Θ̂t+1 = Q̃t+1P̃t+1 with

P̃t+1 = γtPt +φ(t)φ (t)′, Q̃t+1 = γtQt + y(t)φ(t)′.
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It is interesting to observe that

P̃t+1 = γtPt+1, Q̃t+1 = γtQt+1

where Pt and Qt are defined in (8.7) by taking γt = σ2
t . It is left as an exercise

(Problem 8.6) to show that the RLS with forgetting factor is given by

Θ̂t+1 =Θt +[y(t)− ŷ(t)]gt , ŷ(t) = Θ̂tφ(t), (8.10)

Pt+1 = γ−1
t

[
Pt −Ptφ(t)gt

]
, gt = [γt +φ(t)′Ptφ(t)]−1φ (t)′Pt . (8.11)

Two examples are used to illustrate the LS algorithm next.

Example 8.2. Let {Hi}2
i=0 be the CIR with one input and two outputs. Thus, each

Hi has dimension 2× 1, specified by

H0 =

[
0.6360
0.0636

]
, H1 =

[−0.3552
0.2439

]
, H2 =

[
0.5149

−0.3737

]
. (8.12)

Hence, ‖H‖2 = 1. The training sequence of binary symbols ±Pb is transmitted with
length ranging from 10 to 20 bits. The received signals are corrupted by i.i.d. Gauss
noises with variance σ2. Since ‖H‖2 = 1, the SNR is the same as the ratio of Pb

to σ2. Numerical simulations are carried out for the cases when SNR = 10 dB and
when SNR =20 dB. A total of 500 ensemble runs are used to evaluate the channel
estimation performance. Let {Ĥ(k)

i } be the estimated CIR at the kth ensemble run.
The RMSE is computed according to

RMSE =

√√√√ 1
T

T

∑
k=1

Tr

{
2

∑
i=0

(
Hk − Ĥ(k)

i

)(
Hk − Ĥ(k)

i

)′}
.

The results are plotted in the following figure.
The upper two curves correspond to the case of SNR = 10 dB. The dashed line

marked with diamond shows the RMSE, while the solid line marked with circle is

the corresponding CRLB curve, defined by
√

Tr{FIM−1} that is the lower bound
for RMSE. These two curves are close to each other. In fact, the two curves overlap
for large T (Problem 8.5 in Exercises). The lower two curves in Fig. 8.1 correspond
to the case of SNR = 20 dB. The dashed line marked with square shows the RMSE,
while the solid line marked with ∗ shows the corresponding CRLB.

The simulation result validates the MLE nature of the LS solution in the case of
FIR models that hold for the wireless channels (Problem 8.8 in Exercises). However,
if the temporary assumption on noise-free {φ (t)} is removed that is the case for IIR
models (refer to (8.1) in which Mk 
= 0 for at least one k), the MLE interpretation of
the LS solution will be lost. Specifically, the physical systems in feedback control
are generically described by IIR models. Figure 8.2 illustrates the plant model with
input/output signals together with observation noises.
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Fig. 8.1 RMSE plots for LS-based channel estimation

Fig. 8.2 Plant model with
noisy measurement data

It is clear that both observations u(t) and y(t) are no longer the actual input and
output of the plant. In fact, the signal model in (8.1) is replaced by

y(t) = vy(t)+
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=1

Nk[u(t − k)+ vu(t − k)]. (8.13)

Hence, when the LS algorithm is applied to estimate the system parameters, the
estimation performance is different from the case for FIR models. The next example
illustrates the identification results.

Example 8.3. Consider identification of a SISO plant represented by its transfer
function

P(z) =
0.3624z+ 0.1812

z2 − 1.5z+ 0.7
.

The input u(t) is chosen as white Gauss with variance 1 that results in output
variance about 4 dB. Observation noises are added to input, or output, or both in
the same way as shown in Fig. 8.2. The corrupting noises are white and Gauss
distributed with variance 0.1, or −20 dB. The corresponding RMSE curves are
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Fig. 8.3 RMSE curves for LS-based IIR model estimation

plotted in Fig. 8.3 with a larger observation interval than the previous example,
in order to illustrate the trend of the identification error. It is clearly seen that
the RMSE curves do not monotonically decline anymore. The simulation results
indicate that the LS solution is biased for identification of IIR models in the presence
of output observation noises. In fact, the corruption noise at the output impacts more
negatively than at the input in terms of the estimation performance.

It needs to be pointed out that the CRLB curve used in the figure is the same as

σv

√
Tr{(Φ0, f Φ ′

0, f )
−1}. This expression is actually not the true CRLB anymore due

to the observation noise involved in Φ0, f . The derivation of the CRLB for the case
of noisy Φ0, f will be investigated in a later subsection.

8.1.2 MMSE Algorithm

For the signal model y(t) =Θφ(t)+ v(t) studied in the previous section, {φ(t)} is
likely to involve observation noises, in which case the LS solution is not the MLE,
and the MLE solution is difficult to compute in general. An alternative to MLE is
the MMSE estimate that minimizes E{‖y(t)−Θφ(t)‖2}. Assume that both φ (t) and
v(t) are WSS processes, and denote

Ry = E{y(t)y(t)′}, Rφ = E{φ(t)φ (t)′}, Ry,φ = E{y(t)φ(t)′}.
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The following provides the MMSE estimate.

Theorem 8.4. Suppose that both φ(t) and v(t) are WSS processes, and Rφ

is nonsingular. Then ΘMMSE = Ryφ R−1
φ is the MMSE estimate and minimizes

E{‖y(t)−Θφ(t)‖2}. Moreover, the MSE associated with ΘMMSE is given by

εMMSE = min
Θ

E{‖y(t)−Θφ(t)‖2}= Tr
{

Ry −RyφR−1
φ R′

yφ

}
. (8.14)

Proof. Let εMSE = E{‖y(t)−Θφ(t)‖2} be the performance index for the MMSE
estimation. Then

εMSE = Tr
{

Ry +ΘRφΘ ′ −RyφΘ ′ −ΘR′
yφ

}
.

Since the MMSE estimate minimizes εMSE , it can be computed from

∂εMSE

∂Θ
= 2
(
ΘRφ −Ryφ

)
= 0 (8.15)

that shows ΘMMSE = Ryφ R−1
φ . Substituting Θ =ΘMMSE into the expression of εMSE

yields (8.14). ��
The autocorrelation matrices Rφ and Ryφ are often unavailable in practice.

Estimates based on N samples of measurements over [0, t f ] with t f = N − 1 can
be used:

Rφ ≈ 1
N

N−1

∑
t=0

φ(t)φ (t)′ =
P−1

N

N
, Ryφ ≈ 1

N

N−1

∑
t=0

y(t)φ(t)′ =
QN

N
(8.16)

where PN and QN are the same as defined in (8.7). If

Rφ = lim
N→∞

1
N

N−1

∑
t=0

φ(t)φ (t)′, Ryφ = lim
N→∞

1
N

N−1

∑
t=0

y(t)φ (t)′,

then {φ(t)} and {y(t)} are called ergodic processes. The PE condition is clearly
necessary for Rφ to be nonsingular. Under both WSS and ergodic assumptions, the
RLS solution approaches the MMSE estimate, i.e.,

Θ̂N = PNQN =

(
1
N

N−1

∑
t=0

φ (t)φ(t)′
)−1(

1
N

N−1

∑
t=0

y(t)φ (t)′
)

→ ΘMMSE

as N → ∞. It follows that (cf. Problem 8.10 in Exercises)

Θ̂N → Θ + lim
N→∞

E
{

V0, f Φ ′
0, f

}(
E
{

Φ0, f Φ ′
0, f

})−1
(8.17)
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Fig. 8.4 Schematic
illustration for channel
estimation

where N = t f − t0 +1. Hence, if E{V0, f Φ ′
0, f }→ 0 as N → ∞, then the LS algorithm

is asymptotically unbiased. Otherwise, the LS solution is biased in which case large
number of samples does not help to eliminate the bias in the LS solution.

The next example illustrates the use of MMSE estimation.

Example 8.5. In wireless communications, channel information is essential for
reliable data detection. While pilot tones such as training sequence can be used
to estimate the CIR, it is desirable to estimate the CIR based on statistical
information of the data sequence. Consider MIMO channel estimation in Fig. 8.4
with E{s(t)s(t −k)′}= Rs(k) assumed to be known for each integer k. The received
signal at the output of the channel is given by

y(t) =
L

∑
k=1

His(t − i)+ v(t) =Θφ(t)+ v(t)

for some white Gauss noise v(t) where

Θ =
[

H1 · · · HL
]
, φ(t) =

⎡
⎢⎣

s(t − 1)
...

s(t −L)

⎤
⎥⎦ .

It follows from E{s(t)s(t − k)′}= Rs(k) that

Rφ = Rs = E{φ(t)φ (t)′}= [ Rs(k− i) ]L,Li,k=1,1

is a block Toeplitz matrix known at the receiver. However, Ryφ has to be estimated
using

Ryφ ≈ 1
N

N−1

∑
t=0

y(t)φ(t)′

for some integer N >> 1. In this case, the MMSE estimate for CIR can be obtained
from ΘMMSE = Ryφ R−1

φ . If {Rs(k)}L−1
k=0 are not available at the receiver, they need to

be estimated as well. A commonly seen method employs the past detected symbols,
assumed to be correct, which yields effective way to estimate Rφ .
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It is worth to pointing out the difference between the MMSE estimation in this
section and that in Chap. 5. Recall that in Chap. 5, the state vector under estimation
is random, whereas the parameters under estimation in this section are deterministic.

8.2 Subspace-Based Identification

For the signal model y(t) =Θφ(t)+ v(t) studied in the previous section, the MLE
interpretation for the LS algorithm does not hold in general, if the noise sequence
{v(t)} is not Gauss distributed. Although the LS solution can still be used to
extrapolate the system model, the estimate is not unbiased anymore for IIR models,
because φ(t) involves {y(k)} for k < t (Problem 8.10 in Exercises). It turns out that
it is the TLS algorithm that yields the unbiased estimate asymptotically which will
be used for system identification in this section.

8.2.1 TLS Estimation Algorithm

The TLS algorithm arises from the class of error-in-variable (EIV) models. Let Θ
be the parameter matrix of interest satisfying ΘA0 = B0 where A and B are
wide matrices. The precise values of A0 and B0 are not available. Instead, only
their measurements, denoted by A and B, respectively, are available given by the
EIV model [

A
B

]
=

[
A0

B0

]
+MΔ . (8.18)

To be specific, the dimensions of A, B, and M are L×N, p×N, and p× � with
N > (L+ p). Thus, Δ has dimension �×N. The elements of Δ are assumed to be
independent and identically distributed (i.i.d.) random variables with mean zero and
variance σ2. The goal is to estimate Θ of dimension p×L based on A, B, and M.

The previous section studied the estimation problem for the case of A = A0. The
only measurement error comes from B. Recall the deterministic assumption for Φ0, f

by taking A = A0 = Φ0, f and B = Y0, f 
= B0. The LS algorithm finds B̂ closest to B
such that

rank

{[
A
B̂

]}
= rank{A},

and then solve for Θ̂ from ΘA = B̂. It is noted that B = B̂+ B̂⊥ of which each row
of B̂ lies in the row space of A, and B̂⊥A′ = 0. That is, the row spaces of B̂ and
B̂⊥ are orthogonal to each other. Consequently, ΘAA′ = BA′ = B̂A′ yielding the LS
solution ΘLS = BA′(AA′)−1. If the measurement errors are Gauss distributed, then
the LS algorithm yields the MLE estimate.
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When A 
= A0 in addition to B 
= B0, both Â and B̂ closest to A and B, respectively,
are searched for such that

rank

{[
Â
B̂

]}
= rank{Â}

prior to solving for Θ from Θ Â = B̂ that is the essence of the TLS. Let M = I to
begin with. The TLS algorithm is aimed at minimizing

JA,B :=

∥∥∥∥
[

A
B

]
−
[

Â
B̂

]∥∥∥∥
F

subject to rank

{[
Â
B̂

]}
= L (8.19)

with ‖X‖F =
√

Tr{X ′X} the Frobenius norm. A similar problem is encountered
in Hankel-norm approximation. See (4.58) in Sect. 4.3 and the discussion therein.
Hence, SVD can be used to compute such a pair of Â and B̂. As a result, there exists
a unique solution pair (X1,X2) with X2 of dimension p× p to X1Â = X2B̂. If X2 is
nonsingular, then Θ̂ = X−1

2 X1 is the TLS solution.
A formal procedure for TLS is stated next. Define

W :=

[
A
B

][
A′ B′ ] , (8.20)

and let W = G′ΛG be the eigenvalue decomposition with

Λ = diag(λ1,λ2, · · · ,λL+p)

arranged in descending order. Partition the eigenvector matrix G and eigenvalue
matrix Λ according to

G =

[
G11 G12

G21 G22

]
, Λ =

[
Λ1 0
0 Λ2

]
, (8.21)

where G11 and Λ1 have the same dimension of L×L. Then

ΘTLS = G21G−1
11 =−(G′

22)
−1G′

12 (8.22)

is the TLS estimate, provided that G22 is nonsingular. It can be shown that
det(G22) 
= 0 has probability 1, but the proof is skipped because of the involvement
of more specialized mathematical background. The next result shows the MLE
property when the elements of Δ are Gauss distributed.

Theorem 8.6. Suppose that M = I and elements of Δ are normal i.i.d. with mean
zero and variance σ2. Let W be defined in (8.20), W = G′ΛG be the eigenvalue
decomposition with diagonal elements of Λ arranged in descending order. Partition
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G and Λ as in (8.21) where G11 and Λ1 are of dimension L×L. Then G11 and G22

are nonsingular w.p. 1 (with probability 1), and

Θ̂ = G21G−1
11 =−(G′

22)
−1G′

12, σ̂2 =
Tr{Λ2}
(L+ p)N

(8.23)

are MLEs for Θ and σ2, respectively.

Proof. The PDF for the measurement data A and B is given by

fΔ ({δi j}) = 1(√
2πσ̂2

)(L+p)N
exp

{
− 1

2σ̂2

∥∥∥∥
[

A
B

]
−
[

Â
B̂

]∥∥∥∥
2

F

}
.

The MLE searches Â, B̂ and σ̂2 which maximize fΔ ({δi j}). Since JA,B defined in
(8.19) is independent of σ2, its minimum is Tr{Λ2} by taking Θ̂ = G21G−1

11 . See
Problem 8.13 in Exercises. Hence,

max fΔ ({δi j}) = max
σ̂ 2

1(√
2πσ̂2

)(L+p)N
exp

{
− 1

2σ̂2 Tr{Λ2}
}
.

Taking derivative with respect to σ̂ and setting it to zero yield

(L+ p)N
σ̂

− Tr{Λ2}
σ̂3 = 0.

Hence, σ̂2 in (8.23) is the MLE for σ2 that concludes the proof. ��
Theorem 8.6 shows the MLE of the TLS, but whether or not it is unbiased,

estimate remains unknown. The following shows that the TLS solution is asymp-
totically unbiased.

Theorem 8.7. Suppose that the same hypotheses of Theorem 8.6 hold, and
assume that

(i) Π0 := lim
N→∞

A0A′
0

N
> 0, (ii) lim

N→∞

Δ
[

A′
0 B′

0

]
N

= 0. (8.24)

Then the TLS estimate ΘTLS →Θ as N → ∞. In addition, there holds

lim
N→∞

W
N

= σ2I+

[
I

Θ

]
Π0
[

I Θ ′ ] . (8.25)

Proof. By the EIV model (8.18), M = I, W in (8.20), and ΘA0 = B0,

W
N

=
1
N

[
A0

B0

][
A′

0 B′
0

]
+

ΔΔ ′

N
+

Δ
N

[
A′

0 B′
0

]
+

1
N

[
A0 B0

]
Δ ′.
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Taking limit N → ∞ and using the two assumptions in (8.24) arrive at

lim
N→∞

W
N

= lim
N→∞

1
N

[
A0

B0

][
A′

0 B′
0

]
+

ΔΔ ′

N

= σ2I +

[
I

Θ

]
Π0
[

I Θ ′ ]

by the assumption on the i.i.d. of elements of Δ , which verifies (8.25). Hence,
λL+i → σ2 as N → ∞ for 1 ≤ i ≤ p. Denote R(·) for the range space. Then

R

([
G11

G12

])
−→ R

([
I

Θ

])

as N → ∞. The asymptotic convergence of Θ̂TLS to Θ thus follows. ��
Two comments are made. The first regards the assumption in (8.24): Statement

(ii) is in fact implied by (i). But because the proof is more involved, it is skipped.
The second is the convergence of the MLE for the noise variance σ2. The proof of
Theorem 8.7 indicates that

lim
N→∞

(L+ p)σ̂2

p
= lim

N→∞

Tr{Λ2}
pN

=
Tr{σ2Ip}

p
= σ2 (8.26)

where σ̂2 is the MLE for σ2 in Theorem 8.6. Therefore, the MLE for the σ2 is
not an asymptotically unbiased estimate. The regularity condition breaks down for
estimation of σ2.

Theorems 8.6 and 8.7 address the estimation problem for the EIV model in the
case of M = I. If M 
= I is a full rank and possibly wide matrix, it can be converted
to the estimation problem of M = I.

Corollary 8.1. Under the same conditions and hypotheses of Theorem 8.6 except
that M(
= I) has the full row rank, the expressions of MLEs in (8.23) hold, provided

that the eigenvalue decomposition of W is replaced by that of W0 = Σ−1/2
0 WΣ−1/2

0

where MM′ = Σ0. In addition, the MLE Θ̂ is an asymptotically unbiased estimate

for Θ , and (L+p)σ̂ 2

p is an asymptotically unbiased estimate for σ2.

Proof. It is important to note that σ2Σ0 = σ2MM′ can be regarded as the common
covariance for each column of ΔM, and thus,

Σ−1/2
0

[
A
B

]
= Σ−1/2

0

[
A0

B0

]
+UΔ (8.27)



358 8 System Identification

with Σ1/2
0 symmetric and U = Σ−1/2

0 M satisfying UU ′ = I. Theorem 8.6 can now
be applied, leading to (

λiI −Σ−1/2
0 W Σ−1/2

0

)
vi = 0 (8.28)

for i = 1,2, · · · ,L+ p. Hence, by setting

G =
[

v1 · · · vL+p
]
, Λ = diag(λ1, · · · ,λL+p),

the proof of the corollary can be concluded. ��
It is noted that the eigenvalue/eigenvector equation in (8.28) is the same as the

following generalized eigenvalue/eigenvector equation:

(λiΣ0 −W )gi = 0 (8.29)

by taking gi = Σ−1/2
0 vi for i = 1,2, · · · ,L + p. The above is more convenient to

compute than (8.28), and avoids the potential numerical problem associated with

the inversion of Σ1/2
0 .

In the case when M(
= I) is a wide and full rank matrix, the MLE for Θ
corresponds to the generalized TLS solution. It requires to compute the p smallest
(generalized) eigenvalues and their respective eigenvectors in (8.29) in order to
obtain the MLE. Let diag(X) be a diagonal matrix using diagonal elements of X .
It is interesting to observe that the p eigenvectors associated with the p smallest
(generalized) eigenvalues in (8.29) solve the following minimization problem
(Problem 8.12 in Exercises):

min
H

{
Tr{H ′WH} : diag

(
H ′Σ0H

)
= Ip
}
. (8.30)

Indeed, by denoting hi as the ith column of H, and by setting the cost index

J =
p

∑
i=1

[
h′

iWhi + γi(1−h′
iΣ0hi)

]
(8.31)

with {γi}p
i=1 Lagrange multipliers, the constrained minimization in (8.30) is equiv-

alent to the unconstrained minimization of J in (8.31). Carrying out computation of
the necessary condition leads to (γiΣ0 −W )hi = 0 that has the same form as (8.29).
Hence, the optimality is achieved by taking γi = λL+i and hi = gL+i for 1 ≤ i ≤ p
that are the p smallest (generalized) eigenvalues and their respective eigenvectors in
(8.29). In the next two subsections, the results of the TLS solution will be applied
to channel estimation in wireless communications, and also to system identification
in feedback control systems.
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8.2.2 Subspace Method

In wireless communications, the CIR has finite duration. Let {Hi} be the CIR of a
MIMO channel with M input and P output. The received signal is mathematically
described by

y(t) =
L

∑
i=0

His(t − i)+ v(t), (8.32)

where {s(k)} is the sequence of the transmitted symbols and {v(k)} is the sequence
of i.i.d. with normal distribution. Denote

y(t) =

⎡
⎢⎢⎢⎣

y(t)
y(t − 1)

...
y(t − q)

⎤
⎥⎥⎥⎦, v(t) =

⎡
⎢⎢⎢⎣

v(t)
v(t − 1)

...
v(t − q)

⎤
⎥⎥⎥⎦, s(t) =

⎡
⎢⎢⎢⎣

s(t)
s(t − 1)

...
s(t −Lq)

⎤
⎥⎥⎥⎦

with LN = L+ q. Let TH be a block Toeplitz matrix defined by

TH =

⎡
⎢⎢⎢⎢⎣

H0 · · · HL 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 H0 · · · HL

⎤
⎥⎥⎥⎥⎦ (8.33)

that has dimension (q+ 1)P× (q+L+ 1)M. There holds

y(t) = TH s(t)+ v(t). (8.34)

Training signals are often employed to estimate the CIR. However, the use of
training signals consume precious channel bandwidth. There is thus a strong
incentive to estimate the channel blindly, given the statistics of the symbol sequence
{s(t)}. A common assumption is that s(t) is a WSS process and has mean zero
and covariance Σs that is known at the receiver site. This subsection considers the
subspace method for blind channel estimation.

Suppose that P > M. Then TH is a strictly tall matrix, if (q+ 1)(P−M) > LM.
Since L and M are fixed for each MIMO channel, the block Toeplitz matrix TH can
be made strictly tall by taking large q.

Lemma 8.1. Let TH of dimension (q+ 1)P× (q+ L+ 1)M be the block Toeplitz
matrix defined in (8.33) with P > M and (q+ 1)(P−M)> LM. Suppose that both
H0 and HL have the full column rank. Then TH has the full column rank, if

rank{ H(z) }= M ∀ z ∈ C (8.35)

where H(z) = H0 +H1z−1 + · · ·+HLz−L is the channel transfer matrix.
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Proof. The contrapositive argument will be used for the proof. Suppose that TH has
the full column rank, but the rank condition (8.35) fails. Since H(z) losses its rank
for some z = z0, there exists s 
= 0 such that H(z0)s = 0. The hypothesis that both
H0 and HL have the full column rank implies that z0 
= 0 and z0 
= ∞. As a result,

L

∑
i=0

Hiz
−(i+k)
0 s = 0

for each positive integer k. By taking s(t − k) = z−k
0 s for each element of s(t) in

(8.34) yields TH s(t) = 0, contradicting to the full column rank assumption for TH

at the beginning. The proof is now complete. ��
A common assumption on the measurement noise is that it is not only temporally

but also spatially white. Hence, E{v(t)v(t)′}= σ2
v I. Under the condition that {s(t)}

and {v(t)} are independent random processes,

Σy = E
{

y(t)y(t)′
}
= TH ΣsT

′
H +σ2I.

Both {s(t)} and {v(t)} are assumed to be not only WSS, but also ergodic.
Consequently, there holds

Σ̂y =
1
N

N−1

∑
t=0

y(t)y(t)′ −→ Σy = TH ΣsT
′
H +σ2I, (8.36)

as N → ∞. Applying eigenvalue decomposition to Σy yields

Σy =

[
G11 G12

G21 G22

][
Λ1 0
0 σ2

v Iν

][
G′

11 G′
21

G′
12 G′

22

]

where the partitions are compatible and ν = (q+1)(P−M)−LM > 0. Recall R{·}
for the range space and N {·} for the null space. There hold

R{TH }= R

{[
G11

G21

]}
, N {T ′

H }= R

{[
G12

G22

]}
. (8.37)

The former is termed signal subspace and the latter termed noise subspace. The
orthogonality of the two subspaces leads to the subspace method for channel
estimation. Specifically, TH = TH ({Hi}), and there holds

[
G′

12 G′
22

]
TH ({Hi}) = 0. (8.38)

However, the precise Σy is not available due to finitely many samples of the received
signal and the existence of the measurement error. Hence, the relation in (8.38) does
not hold, if the eigen-matrix G is computed based on the estimated Σy. Nevertheless,
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(8.38) suggests an effective way for channel estimation by searching for {Ĥi} to
minimize

JF =
∥∥∥[G′

12 G′
22

]
TH ({Ĥi})

∥∥∥
F

subject to
L

∑
i=0

Ĥ ′
i Ĥi = I. (8.39)

The normalization constraint is necessary to prevent the CIR estimates {Ĥi} from
being the meaningless zero. Although other norms and normalization constraints
can be adopted, the constrained minimization of JF in (8.39) leads to a simpler
solution for the CIR estimates {Ĥi}.

Specifically, let C =
[

G′
12 G′

22

]
that has dimension ν × (q + 1)P. It can be

partitioned into (q+ 1) blocks of the same size as follows:[
G′

12 G′
22

]
=
[

C0 C1 · · · Cq
]
.

Thus, each Ci has dimension ν × P. Let F = [G′
12 G′

22 ]TH ({Ĥi}). Recall that

TH ({Ĥi}) has dimension (q+ 1)P× (q+L+ 1)M. There exists a partition[
G′

12 G′
22

]
TH ({Ĥi}) =

[
F0 F1 · · · Fq+L+1

]
(8.40)

with {Fi} of the same dimension of ν ×M. Denote Θ as the parameter matrix of
dimension (L+1)P×M with Hi being the (i+1)th block, F as a (q+L+1)ν ×M
matrix with Fi as the (i+ 1)th block, and TC as a block Toeplitz matrix consisting
of {Ci} as shown next:

Θ̂ =

⎡
⎢⎢⎢⎣

Ĥ0

Ĥ1
...

ĤL

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

F0

F1
...

FN+L+1

⎤
⎥⎥⎥⎦ , TC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0 0 · · · 0
...

. . .
. . .

...
...

. . . 0
... C0

CN
...

0
. . .

...
...

. . .
. . .

...
0 · · · 0 CN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

assuming that q ≥ L. It can be verified that F = TC Θ̂ and

JF =
∥∥∥[G′

12 G′
22

]
TH

({
Ĥi
})∥∥∥

F
=

q+L+1

∑
i=0

Tr
{

F ′
i Fi
}
= F ′F .

Therefore, the constrained minimization of JF is the same as minimization of

JF = Tr
{

Θ̂ ′T ′
C TC Θ̂

}
subject to Θ̂ ′Θ̂ = I. (8.41)
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Fig. 8.5 RMSE for blind channel estimation

It is important to observe that T ′
C TC is a block Toeplitz matrix. The minimizer

consists of the M right singular vectors {vi} corresponding to the M smallest
nonzero singular values {σi} that can be obtained via SVD of TC = USV ′ and
V = [v1 v2 · · · v(L+1)M ]. Since the true second-order statistics Σy is not available, its

sampled version Σ̂y defined in (8.36) has to be used. As a result, Θ̂opt 
=Θ in general

with Θ̂opt the solution to the constrained minimization in (8.41). The performance of
the subspace algorithm depends on SNR and on the estimation of the noise subspace.

Example 8.8. Consider the same CIR in Example 8.2 with P= 2, M = 1, and L = 2.
The transmitted signal consists of binary symbols that is white. The SNR, defined
as the ratio of the signal power to the noise power, is taken to be 0 dB. The received
signal is measured at 2000 times samples and used to compute the sampled second-
order statistics Σy. The constrained minimization of (8.39) is employed to compute

the estimated CIR. Let {Ĥ(k)
i } be the estimated CIR for the kth emsemble run. The

RMSE is computed according to

RMSE =

√√√√ 1
T

T

∑
k=1

Tr

{
L

∑
i=0

(
Hi − Ĥ(k)

i

)′(
Hi − Ĥ(k)

i

)}

with a total of T = 2500 ensemble runs. The simulation results are plotted in the
Fig. 8.5 that shows the improvement when N increases. However the improvement
due to large N diminishes as SNR increases that is why a small SNR is used in this
example.
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The subspace algorithm for blind channel estimation is closely related to the TLS
algorithm studied in the previous subsection. Both compute the sampled second-
order statistics, and both use eigenvalue decomposition. The difference lies in the
Toeplitz structure of the second-order statistics for blind channel estimation that
prevents the subspace algorithm from being MLE. Nonetheless, the following result
is true.

Theorem 8.9. Let Θ̂opt be the channel estimate for blind channel estimation based
on the subspace algorithm. If the input signal is both temporally with nonsingular
Σs, then the estimate Θ̂opt converges to the true Θ as the number of time samples
approaches infinity w.p.1.

Proof. The assumption on the input signal implies that (8.36) holds. In addition,
the convergence has probability 1 which is the same as that for the TLS algorithm.
Hence, the strong convergence holds. ��

Thus far, the optimality of the subspace method is not addressed. The main hurdle
lies in the structure of the signal model that is not in the same form as the EIV model.
It will be shown in the next subsection that the subspace is asymptotically optimal
in the sense of MLE.

8.2.3 Graph Space Method

For identification of the plant model in feedback control, the subspace method can
also be used to estimate the plant parameters. Let P(z) be the transfer matrix with m
input/p output. It is assumed that P(z) = B(z)A(z)−1 with

A(z) = I+
L

∑
k=1

Akz−k, B(z) =
L

∑
k=0

Bkz−k. (8.42)

Even though the physical system is strictly causal, B0 
= 0 is assumed which can
help to reduce the modeling error. It is further assumed that

rank

{[
A(z)
B(z)

]}
= m ∀ z ∈ C.

The above ensures that {A(z),B(z)} are right coprime. Because physical systems in
practice are more complex than the linear finite dimensional models, this assumption
holds for most real systems.

Let {u(t)}, and {y(t)} be the input and output of the system, respectively. The
graph space associated with the plant model P(z) is defined as

GP :=

{
z(t) =

[
u(t)
y(t)

]∣∣∣∣ : ∃ w(t) : z(t) =
[

A(q)
B(q)

]
w(t)

}
. (8.43)
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The unknown signal {w(t)} will be referred to auxiliary input. For this reason, an
FIR transfer matrix G(z) can be defined via

G(z) =
L

∑
k=0

Gkz−k, Gk =

[
Ak

Bk

]
, (8.44)

where A0 = Im is taken. By taking z(t) as the observation and w(t) as the unknown
input, system identification for the plant model P(z) is converted to parameter
estimation for {Gk}. As a result, the subspace method from the previous subsection
can be employed to estimate the system parameters. To emphasize the graph space of
the system and to distinguish it from blind channel estimation, the subspace method
used for control system identification is termed as the graph space method.

Denote Θ = [G′
0 G′

1 · · · G′
L ]

′ as the parameter matrix of the system. The
constraint Θ ′Θ = I from the subspace method is replace by the first square block of
Θ being A0 = I. However, this constraint does not change the estimation algorithm.
Let v(t) be the noise vector comprising both measurement errors at the plant input
and output. There holds

z(t) =
L

∑
k=0

Gkw(t − k)+ v(t) (8.45)

that is almost identical to (8.32). Define the block Toeplitz matrix TG of dimension
(q+ 1)(p+m)× (L+ q+1)m as

TG =

⎡
⎢⎢⎢⎢⎣

G0 · · · GL 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 G0 · · · GL

⎤
⎥⎥⎥⎥⎦ (8.46)

that is identical to (8.33), except that Hi is replaced by Gi for 0 ≤ i ≤ L. Similarly,
denote

z(t) =

⎡
⎢⎢⎢⎣

z(t)
z(t − 1)

...
z(t − q)

⎤
⎥⎥⎥⎦ , v(t) =

⎡
⎢⎢⎢⎣

v(t)
v(t − 1)

...
v(t − q)

⎤
⎥⎥⎥⎦ , w(t) =

⎡
⎢⎢⎢⎣

w(t)
w(t − 1)

...
w(t −Lq)

⎤
⎥⎥⎥⎦

with Lq = L+ q. It follows that at each time sample t,

z(t) = TG w(t)+ v(t). (8.47)
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The observation noise vector v(t) is assumed to be both spatially and temporally
white with noise variance σ2. The sampled second-order statistics can be computed
via

Σ̂z =
1
N

N−1

∑
t=0

z(t)z(t)′ −→ Σz = TG ΣwT ′
G +σ2I

as N → ∞. The above convergence has probability 1, and is similar to that for blind
channel estimation.

For the graph space method, the persistent excitation (PE) for the input signal
{u(t)} needs to be assumed which ensures strictly positivity of Σw. Hence, under
the PE condition and μ = (q+1)p−Lm > 0, the covariance matrix Σz has precisely
μ zero eigenvalues. Let {xi}μ

i=1 be the corresponding eigenvectors that span the
noise subspace of the sampled second-order statistics. Denote

X =
[

x1 x2 · · · xμ
]
.

The graph space method is aimed at searching for {Ĝi} to minimize

JF =
∥∥∥X ′TG

({
Ĝi
})∥∥∥2

F
subject to

[
Im 0
]

Ĝ0 = Im. (8.48)

The matrices X and F = X ′TG ({Ĝi}) have dimensions of (q+ 1)(p+m)× μ and
μ × (L+ q+ 1)m, respectively. Partition these two matrices in accordance with

X ′ =
[

X0 X1 · · · Xq
]
,

F =
[

F0 F1 · · · FL+q+1
]
,

of which each Xi has the dimension μ × (p+m) and each Fi has the dimension
μ ×m. There holds F = TX Θ̂ where

Θ̂ =

⎡
⎢⎢⎢⎣

Ĝ0

Ĝ1
...

ĜL

⎤
⎥⎥⎥⎦, F =

⎡
⎢⎢⎢⎣

F0

F1
...

Fq+L+1

⎤
⎥⎥⎥⎦, TX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0 0 · · · 0
...

. . .
. . .

...
...

. . . 0
... X0

Xq
...

0
. . .

...
...

. . .
. . .

...
0 · · · 0 Xq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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assuming that q ≥ L. As a result,

JF =
∥∥∥X ′TG

({
Ĝi
})∥∥∥2

F
=

q+L+1

∑
i=0

Tr
{

F ′
i Fi
}
= F ′F.

Therefore, the constrained minimization of JF in (8.48) is the same as minimiza-
tion of

JF = Tr
{

Θ̂ ′T ′
X TX Θ̂

}
subject to

[
Im 0
]
Θ̂ = Im. (8.49)

The minimizer is given by Θ̂opt =
[

vLm+1 vLm+2 · · · v(L+1)m

]
Ω−1, consisting of

the m right singular vectors {vi}(L+1)m
i=Lm+1 corresponding to the m smallest nonzero

singular values {σi}(L+1)m
i=Lm+1. The normalization matrix Ω is used to satisfy the

constraint
[

Im 0
]
Θ̂ = Im. Similar to the subspace algorithm, the right singular

vectors can be computed via SVD.

Theorem 8.10. Consider square transfer matrix P(z) = B(z)A(z)−1 with
{A(z),B(z)} specified in (8.42). Suppose that G(z) defined in (8.44) is right
coprime, the input {u(t)} is PE, and the noise vectors {v(t)} in (8.45) are both
spatially and temporally white and Gauss with variance σ2. If the auxiliary input
{w(t)} is also spatially and temporally white with covariance identity, then the
graph space algorithm in this subsection is asymptotically optimal in the sense of
MLE, and the estimate Θ̂opt converges to the true system parameter matrix Θ with
probability 1.

Proof. By the hypothesis, p = m, although the result is true for p 
= m. The right
coprime assumption implies the existence of

G�(z) =
L

∑
i=0

[
A�k B�k

]
z−k

such that G�(z)JG(z) ≡ 0 where

J =

[
0 Ip

−Im 0

]
, A�0 = I.

That is, A�(z)B(z) = B�(z)A(z) with

A�(z) = I+
L

∑
i=1

A�k z−k, B�(z) =
L

∑
i=0

B�k z−k,

and thus, {A�(z),B�(z)} are left coprime and P(z) = A�(z)−1B�(z). Since A�0 = A0

by p = m, the left coprime factors {A�(z),B�(z)} are uniquely determined by right
coprime factors {A(z),B(z)} up to a unitary matrix, and vice versa. As a result,
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identification of the right coprime factors is the same as that of the left coprime
factors. Consider the case q = L. Denote

zJ(t) = Jz(t) =
[

y(t)
−u(t)

]
.

In the noise-free case, there holds the relation

[
I Θ�

]
zJ(t) = 0, Θ� =

[
B�0 A�1 B�1 · · · A�L B�L

]
where zJ(t) is the blocked column vector of zJ(t) with size (L+1)(p+m). Clearly,
zJ(t) is permutation of z(t). In the noisy case, an EIV model is resulted in but the
elements of the noise matrix are not i.i.d. anymore.

Without loss of generality, the measurements zJ(t)} at times samples [t0, t f ] are
assumed. Hence, the corresponding EIV model is given by

[
zJ(t0) · · · zJ(t f )

]
=
[

z(0)J (t0) · · · z(0)J (t f )
]
+
[

vJ(t0) · · · vJ(t f )
]

with z(0)J (t) the noise-free blocked graph signal at time t. Indeed, the elements of the
noise matrix are not i.i.d., because vJ(t) is a blocked column vector of vJ(t) = Jv(t)
consisting of {v(t − i)}N

i=0. It follows that the TLS solution is not an MLE for Θ�.
On the other hand, let

ε2
N =

1
N

tf

∑
t=t0

∥∥∥zJ(t)− z(0)J (t)
∥∥∥2

, N = t f − t0 + 1.

Since vJ(t) = zJ(t)− z(0)J (t), it can be verified that

ε2
N =

q
N

tf −q

∑
t=t0

‖vJ(t)‖2 +
1
N

q−1

∑
i=1

[
(q− i)‖vJ(t0 − i)‖2 + i‖vJ(t f − i+ 1)‖2] .

Recall q= L that is fixed and finite. The second summation on the right-hand side of
the above equation approaches zero as N → ∞. Hence, the TLS solution minimizes
ε2

T asymptotically in the same spirit of MLE. In addition, the white assumption on
w(t) leads to

1
N

tf

∑
t=t0

z(t)z(t)′ −→ QJTG T ′
G Q′

J +σ2I

for some permutation matrix QJ dependent on J. The right-hand side is determinis-
tic. Consequently, the TLS solution for Θ̂�, and thus the graph space estimate Θ̂opt,
are indeed the asymptotic MLE. The convergence with probability 1 follows from



368 8 System Identification

the PE condition and identity covariance of {w(t)}. The proof for the case of q > L
can be covered by adding zero blocks to Θ�. The proof is now complete. ��

It is known that the error covariance for MLE approaches the CRLB asymp-
totically under certain regularity condition. To compute the CRLB, it is necessary
to obtain first the corresponding FIM. Denote fV ({z(t)}) as the joint PDF. By the
Gauss assumption and the signal model in (8.45),

ln fV ({z(t)})∼ J =− 1
2σ2

t f

∑
t=t0

Tr
{[

z(t)−Θ̃w(t)
][

z(t)−Θ̃w(t)
]′}

, (8.50)

where Θ̃ =
[

G0 G1 · · · GL
]
. Denote

ϑ =

⎡
⎢⎣

vec(G0)
...

vec(GL)

⎤
⎥⎦, zN =

⎡
⎢⎣

z(t f )
...

z(t0)

⎤
⎥⎦,

wT+L =

[
w(t f )

...
w(t0 −L)

]
, vN =

⎡
⎢⎣

v(t f )
...

v(t0)

⎤
⎥⎦.

Direct calculation yields

∂J
∂ϑ

=
1

σ2

⎡
⎢⎣

w1(t f )Ip+m · · · w1(t0)Ip+m
... · · · ...

w(L+1)m(t f )Ip+m · · · w(L+1)m(t0)Ip+m

⎤
⎥⎦
⎡
⎢⎣

v(t f )
...

v(t0)

⎤
⎥⎦

=:
1

σ2 MwvN (8.51)

where wk(t) is the kth component of w(t). A caution needs to be taken to that the
first m rows of ϑ are the same as Im which are known. Let ϑ̃ be obtained from ϑ by
deleting the m2 known elements. Then

∂J(Θ̃)

∂ϑ̃
=

1
σ2 M̃wvN , M̃w =

[
Z 0
0 ImpL

]
Mw, (8.52)

and Z = Im ⊗ [0 Ip
]
.

It is important to notice that the auxiliary input {w(t)} is also unknown. Its
impact to the CRLB needs to be taken into account. Let TG (Θ) be the same as
in (8.46) but with blocking size q = N. There holds

zN = TG (Θ)wN+L + vN .
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Then the likelihood function in (8.50) can be written alternatively as

J(Θ ,w) =− 1
2σ2

[
zN −TG (Θ)wN+L

]′ [zN −TG (Θ)wN+L

]
. (8.53)

Thus, the partial derivative of J(Θ ,w) with respect to wN+L is given as

∂J(Θ ,w)

∂wN+L
=

1
σ2 TG (Θ)′

[
zN −TG (Θ)wN+L

]
=

1
σ2 TG (Θ)′vN . (8.54)

To compute the FIM, the following matrices

FIM(Θ) = E

{
∂J(Θ ,w)

∂ϑ̃
∂J(Θ ,w)

∂ϑ̃ ′

}
=

1
σ2 M̃wM̃′

w,

E

{
∂J(Θ ,w)

∂ϑ̃
∂J(Θ ,w)

∂w′

}
=

1
σ2 M̃wTG (Θ),

FIM(w) = E

{
∂J(Θ ,w)

∂w
∂J(Θ ,w)

∂w′

}
=

1
σ2 TG (Θ)′TG (Θ)

are useful. The CRLB for estimation of Θ can be obtained according to

CRB(Θ) = σ2
(

FIM(Θ)− M̃wTG (Θ)
[
TG (Θ)′TG (Θ)

]−1
TG (Θ)′M̃′

w

)−1
. (8.55)

The above CRLB can be difficult to compute, if N, the number of time samples,
is large, in light of the fact that the blocked Toeplitz matrix TG (Θ) has size
(N + 1)(p+m)× (N+L+ 1)m. It is left as an exercise to derive an efficient
algorithm for computing the CRLB (Problem 8.16).

Example 8.11. Consider the SISO plant model given by

P(z) =
1.4496z−1+ 0.7248z−2

1− 1.5z−1+ 0.7z−2 .

This plant model has the same poles and zeros as the one in Example 8.3. The
difference lies in the gain factor of 4. A total of N=3,000 input and output
measurements are generated by taking the auxiliary input {w(t)} as white Gauss of
variance one. The resulting {u(t)} and {y(t)} are WSS and admit variance of 5.672
and 4.264 dB, respectively. The measurement error {v(t)} is also taken as white
Gauss with variance one, implying that the SNR for the input and output signals
is 5.672 and 4.264 dB, respectively. Using the graph space method, the estimation
errors are plotted against the CRLB similar to that in Example 8.8. A total of 2500
ensemble runs are used to compute the RMSE value of the estimation error. The
RMSE is seen to converge to the CRLB, albeit slowly. In fact, a larger number of
time samples are used in order to see such a convergence.
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Fig. 8.6 RMSE curves for identification using the graph space method

The simulation results show that as q increases, the RMSE value decreases.
However, the largest drop of the RMSE value occurs at q = L+ 1. As N increases
beyond L+1, the decrease of the RMSE values slows down dramatically that is why
the RMSE values are shown for only the cases of q = L,L+ 1,L+ 5. It needs to be
pointed out that the white assumption for auxiliary input {w(t)} is important in order
to achieve asymptotic MLE. Figure 8.6 shows the case when the input signal {u(t)}
is white with variance one, and both {y(t)} and {w(t)} become colored signals
with variances 15.78 and 9.28, respectively. Under the same statistical noise {v(t)},
the total SNR is greater than the previous case. However, the simulation results in
Fig. 8.7 shows that the RMSE values resulted from the graph space method do not
converge to the CRLB. In fact, the larger the q, the worse the RMSE performance.
The simulation results in this example indicates the importance of the auxiliary
input being white, in order to obtain asymptotic MLE, which is consistent with
the theoretical result in Theorem 8.10. Since white auxiliary input is not possible
to generate prior to system identification, it is suggested to apply the LS algorithm
first for system identification. After a reasonably good plant model is identified,
white {w(t)} can be generated, and the plant input u(t) = Â(q)w(t) can be obtained
using the estimate model, which can then be applied as the exogenous input. Once
the output measurements are available, the graph space algorithm can be applied to
obtain more accurate identification results.
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Fig. 8.7 RMSE curves for (graph space) identification with white input

Let σ2
u and σ2

y be the noise variances of the input and output, respectively. This
subsection assumes σu = σy = σ thus far. In the case when σu 
= σy,

zr(t) =

[
ru(t)
y(t)

]
, r =

σy

σu
,

can be employed to replace z(t) in (8.45). The noise vectors associated with {zr(t)}
admit covariance σ2

y I, and thus, the graph space method can be applied to {zr(t)}
which estimates rA(z) and B(z). A more serious issue is how to estimate the
variances σ2

u and σ2
y . Methods have been developed in the research literature, and

are not pursued in this book.

Notes and References

LS algorithm is presented in almost every textbook on system identification. See for
instance [78,102]. The RLS algorithm can not only be found in system identification
books but also in adaptive control books [7, 38]. The TLS algorithm has a shorter
history. A good source is [35, 113]. It is basically the same as the bias elimination
LS [49, 103, 104]. Blind channel estimation based on subspace in [87] is connected
to TLS. See also [51, 110] for blind channel estimation. The graph space method in
this chapter is generalized from the subspace method in [87].



372 8 System Identification

Exercises

8.1. Let A, B, and X be real matrices with compatible dimensions. Show that

∂Tr{AXB}
∂X

= A′B′,
∂Tr{AX ′B}

∂X
= BA,

∂Tr{AXBX ′}
∂X

= A′XB′+AXB.

8.2. Suppose that p = m = 1, and thus, (8.2) is reduced to y(t) = φ(t)′θ where
Θ = θ ′. Show that the RLS algorithm in Sect. 8.1.1 can be derived with Kalman
filter. (Hint: Use x(t) = θ as the state vector, and thus,

x(t + 1) = Atx(t), y(t) = ctx(t)+ v(t)

with At = I, ct = φ(t)′, and σ2
t = E

{|v(t)|2}.)

8.3. Let Pt be updated in (8.8). Show that the RLS algorithm in the previous
problem can be obtained from minimizing

Jθ =
(

θ̂t+1 − θ̂t

)′
P−1

t

(
θ̂t+1 − θ̂t

)
+σ−2

t

[
y(t)−φ(t)′θ̂t+1

]2
.

8.4. Show that (D−CA−1B)−1 = D−1+D−1C(A−BD−1C)−1BD−1. (Hint: Recall
the inverse of the square transfer matrix:

[D+C(zI−A)−1B]−1 = D−1 −D−1C(zI −A+BD−1C)−1BD−1

and then set z = 0.)

8.5. For the LS solution ΘLS = Y0, f Φ ′
0, f (Φ0, f Φ ′

0, f )
−1 in Theorem 8.1, denote θ i

and θ̂ i as the ith row of Θ and ΘLS, respectively. Assume that Φ0, f is noise-free.
Show that

(i) E
{

θ̂ i

}
= θ i, (ii) E

{(
θ̂ i −θ i

)′(
θ̂ i − θ̂ i

)}
= σ2

i (Φ0, f Φ ′
0, f )

−1.

8.6. Prove the RLS algorithm with the forgetting factor in (8.10) and (8.11).

8.7. Program the RLS algorithm, and the RLS algorithm with forgetting factor. Use
the following transfer function as a testing example:

P(z) =
1.4496z−1+ btz−2

1− 1.5z−1+ atz−2

where both at and bt lie in the interval of [0.6, 0.8] and change slowly. The forgetting
factor can be generated via γt = γ0γt−1 +(1− γ0) with γ0 ∈ [0.95, 0.99].
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8.8. Consider the input/output measurement model in Fig. 8.2. Show that the LS
solution to system identification is MLE, if the plant model has an FIR structure and
input is noise-free. What happens when the plant input is not noise-free?

8.9. Consider the input/output measurement model in Fig. 8.2. (i) If the plant input
is noise-free, show that the LS solution is asymptotically unbiased, and (ii) if the
plant input involves noise, show that the corresponding RMSE depends on the
system parameters.

8.10. For the signal model in (8.2) for t ∈ [t0, t f ], arising from the system
input/output description in (8.1) in which the observation noises corrupt both input
and output signals, show that

1. The matrix Φ0, f in Y0, f =ΘΦ0, f +V0, f involves observation noises if Mk 
= 0 for
at least one k > 0.

2. The LS solution can be written as

ΘLS =Θ +V0, f Φ ′
0, f (Φ0, f Φ ′

0, f )
−1.

3. Show that ΘLS is a biased estimate of Θ , if Mk 
= 0 for at least one k > 0.

(Hint: E{V0, f Φ ′
0, f (Φ0, f Φ ′

0, f )
−1} 
= 0, because the noise components of {v(t)}

corrupted to {y(t)} cannot be removed from Φ0, f , if Mk 
= 0 for at least one k > 0.)

8.11. Consider partition of the eigenvector matrix G and eigenvalue matrix Λ in
(8.21).

(i) Show that
G′

12G11 +G′
22G21 = 0.

(ii) Show that G11 is nonsingular, if and only if G22 is nonsingular.
(iii) Show that ΘTLS in (8.22) is indeed the TLS solution.

8.12. Show that the optimal solution to (8.30) is the generalized TLS solution.

8.13. Consider minimization of JA,B in (8.19). Show that minJA,B = Tr{Λ2} where
Λ2 of dimension p× p is defined in (8.21).

8.14. For the case p = 1, the bias-eliminating LS estimate is given by

Θ̂ = Y0, f Φ ′
0, f (Φ0, f Φ ′

0, f − λ̂ 2
minI)−1

where λ̂min is the minimum eigenvalue of

Σ̂z =
1
N

N−1

∑
t=0

z(t)z(t)′

with z(t) the same as in (8.43). Show that the bias-eliminating LS estimate is the
same as the TLS solution.



374 8 System Identification

8.15. Show that the TLS solution to Y0, f ≈ΘΦ0, f minimizes

JTLS(T ) := Tr
{(

Y0, f −ΘΦ0, f
)′ (

I+ΘΘ ′)−1 (
Y0, f −ΘΦ0, f

)}
.

8.16. The CRLB in (8.55) is difficult to compute, if the time horizon [t0, t f ] is
large. This exercise provides a guideline on an efficient algorithm for computing the
CRLB in (8.55) in the case of large time horizon:

1. Show that TG (Θ)′TG (Θ) = T̃G (Θ)′T̃G (Θ)−T ′
GTG where

T̃G (Θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
...

. . .
... GL

G0
...

. . .
...

G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

TG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
...

. . .

G1 · · · GL

G0 · · · GL−1
. . .

...
g̃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are of dimension (t f − t0 +2L+1)(p+m)× (t f − t0 +L+1)m and 2(p+m)L×
(t f − t0 +L+ 1)m, respectively.

2. Denote Ψ = T̃G (Θ)′T̃G (Θ). Show that

[TG (Θ)′TG (Θ)]−1 = (Ψ −T ′
GTG)

−1

= Ψ−1 +Ψ−1T ′
G(I2(p+m)L −TGΨ−1T ′

G)
−1TGΨ−1.

3. Let Ψ−1 = T̃ ′
−1T̃−1 be Cholesky factorization such that T̃−1 is block lower

triangular with block size m×m. Denote Ω = TGT̃ ′
−1 and Γ = M̃wTG (Θ)T̃ ′

−1.
Show that

CRB(Θ) = σ2 (FIM(Θ)−ΓΓ ′ −Γ Ω ′(I −ΩΩ ′)−1ΩΓ ′)−1
.

The efficient computation of CRB(Θ) is hinged to the Cholesky factorization of
Ψ−1 = T̃ ′

−1T̃−1 that will be worked out in the next problem.
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8.17. (i) For {A(z),B(z)} in (8.42) which are right coprime, show that the
existence of the spectral factorization

A(z)∼A(z)+B(z)∼B(z) = C(z)∼C(z)

where C(z) is the right spectral factor with size m×m and given by

C(z) =
L

∑
k=0

Ckz−k.

(ii) Show that the Toeplitz matrix Ψ = TG (Θ)′TG (Θ) in the previous problem
corresponds to spectral factorization of (Sect. C.3 in Appendix C)

[
z−LG

(
z−1)]∼ [z−LG

(
z−1)]= [z−LC

(
z−1)]∼ [z−LC

(
z−1)] .

(iii) Show that T̃−1 in the previous problem is lower block Toeplitz, and consists of
the impulse response of [z−LC(z−1)]−1.
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