
Chapter 5
Optimal Estimation and Control

Estimation and control are the two fundamental problems for dynamical systems.
Many engineering design tasks can be formulated into either an estimation or control
problem associated with some appropriate performance index. In order to simplify
the design issues in practice, dynamical systems are usually assumed to be linear
and finite-dimensional. Otherwise, various approximation methods can be applied
to derive linear and finite-dimensional models with negligible modeling errors. As
such, state-space representations are made possible providing computational tools
for optimal design and enabling design of optimal estimators and controllers.

Estimation aims at design of state estimators that reconstruct the state vector
based on measurements of the past and present input and output data. Due to
the unknown and random nature of the possible disturbance at the input and the
corrupting noise at the output, it is impossible to reconstruct the true state vector in
real-time. Therefore, the design objective for state estimators will be minimization
of the estimation error variance by assuming white noises for input disturbances and
output measurement errors. The focus will be on design of optimal linear estimators.

Disturbance rejection has been the primary objective in feedback control system
design in which white noises are the main concern. The emphasis will be placed on
the design of state-feedback controllers to not only stabilize the feedback control
system but also minimize the adverse effect due to white noise disturbances. With
the variance as the performance measure, optimal control leads to linear feedback
controllers that are dual to optimal linear estimators.

Without exaggeration, optimal estimation and control are the two most celebrated
results in engineering system design. They have brought in not only the design
algorithms but also the new design methodology that has had far reaching impacts as
evidenced by the wide use of Kalman filtering and feedback control in almost every
aspect of the system engineering. Nevertheless, it is the conceptual notions from
linear system theory that empower the state-of-the-art design algorithms and allow
applications of optimal estimation and control in engineering practice. This chapter
will cover the well-known results in Kalman filtering and quadratic regulators that
have enriched engineering system design. It also covers optimal output estimators
and full information control that are developed more recently.
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176 5 Optimal Estimation and Control

5.1 Minimum Variance Estimation

5.1.1 Preliminaries

As a prelude to optimal estimation for state-space systems, a simpler and more
intuitive estimation problem will be investigated. Let X and Y be two random vectors
with the PDFs pX (x) and pY (y), respectively. A natural question is how knowledge
of the value taken by Y can provide information about the value taken by X . In other
words, how an estimate of X = x̂ can be made based on the observation of Y = y?
Clearly, with Y = y being observed the PDF of X is modified into the conditional
PDF given by Bayes’ rule:

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)
(5.1)

assuming that pY (y) �= 0.
The quality of estimation is better measured by maximum a posteriori (MAP).

That is, x = x̂ should maximize pX |Y (x|y). As a result, computation of the MAP
estimate involves nonlinear optimization procedures, which is not tractable in
general due to the existence of multiple peaks in pX |Y (x|y) or high dimension of x.

An alternate measure is the conditional error variance E
{
‖X − x̂‖2 |Y = y

}
. The

minimum variance estimate X = x̂ satisfies

E
{‖X − x̂‖2|Y = y

}≤ E
{‖X − x‖2|Y = y

} ∀ x. (5.2)

The left-hand side of (5.2) is often termed the minimum mean-squared error
(MMSE). The MMSE estimate or the minimum variance estimate has the closed-
form solution which is a contrast to the MAP estimate, as shown next.

Theorem 5.1. Let X and Y be two jointly distributed random vectors. The MMSE
estimate x̂ of X given observation Y = y is uniquely specified as the conditional
mean (by an abuse of the notation for integration)

x̂ = E{X |Y = y}=
∫ ∞

−∞
xpX |Y (x|y)dx. (5.3)

Proof. Let h(z) = E
{‖X − z‖2|Y = y

}
with z to be chosen. Then

h(z) =
∫ ∞

−∞
‖x− z‖2pX |Y (x|y)dx

=

∫ ∞

−∞
‖x‖2pX |Y (x|y)dx+ ‖z‖2− 2Re{z∗E[X |Y = y]}
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= ‖z−E{X |Y = y}‖2 +

∫ ∞

−∞
‖x‖2pX |Y (x|y) dx−‖E{X |Y = y}‖2

≥
∫ ∞

−∞
‖x‖2pX |Y (x|y) dx−‖E{X |Y = y}‖2.

The minimum is achieved uniquely with z = x̂ in (5.3). �	
Theorem 5.1 indicates that the MMSE estimate is the same as the conditional

mean. Its closed-form offers a great advantage in its computation compared with
the MAP estimate. In some cases, the conditional mean can be experimentally
determined which can be extremely valuable if the joint PDF of X and Y is
unavailable. Clearly, the MMSE estimate is different from the MAP estimate in
general unless the global maximum of pX |Y (x|y) takes place at the conditional mean
x = E{X |Y = y}. The next example is instrumental.

Example 5.2. Let the two random vectors X and Y be jointly Gaussian.Then the
random vector Z =

[
X∗ Y ∗ ]∗ is Gaussian distributed with

mz = E{Z}=
[

mx

my

]
, Σzz = cov{Z}=

[
Σxx Σxy

Σyx Σyy

]
.

Clearly, Σxy = E{(x−mx)(y−my)
∗} and

mx = E{X}, Σxx = cov{X} := E{(x−mx)(x−mx)
∗},

my = E{Y}, Σyy = cov{Y} := E{(y−my)(y−my)
∗}.

Suppose that the covariance matrices Σxx and Σyy are nonsingular. Then X and Y
have marginal PDFs

pX(x) =
1√

(2π)n det(Σxx)
exp

{
−1

2
(x−mx)

∗Σ−1
xx (x−mx)

}
, (5.4)

pY (y) =
1√

(2π)n det(Σyy)
exp

{
−1

2
(y−my)

∗Σ−1
yy (y−my)

}
, (5.5)

respectively. It is left as an exercise to show that the conditional PDF of X , given
Y = y, is

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)
=

pZ(z)
pY (y)

=
1√

(2π)n det
(
Σ̃xx

)exp

{
−1

2
(x− m̃x)

∗ Σ̃−1
xx (x− m̃x)

}
, (5.6)
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where m̃x = mx + ΣxyΣ−1
yy (y − my) and Σ̃xx = Σxx − ΣxyΣ−1

yy Σyx. Hence, the
conditional PDF in (5.6) is also Gaussian. Its MAP estimate is identical to the
MMSE estimate given by

x̂ = m̃x = mx +ΣxyΣ−1
yy (y−my). (5.7)

Suppose that X and Y have the same dimension and are related by

Y = X +N,

where N is Gaussian independent of X with zero vector mean and Σnn the
covariance. Then by the independence of X and N,

my = mx, Σxy = Σxx, Σyy = Σxx +Σnn.

The optimal estimate in (5.7) reduces to

x̂ = mx +Σxx(Σxx +Σnn)
−1(y−my). (5.8)

The linear form (strictly speaking it is the affine form) of the estimate in terms of
the observed data Y = y is due to the Gaussian distribution which does not hold in
general.

Example 5.2 reveals several nice properties about the Gaussian random vectors.
First, one needs know only the mean and covariance matrix in order to have the
complete knowledge of the PDF. Often such statistical quantities can be experi-
mentally determined. Second, if X and Y are jointly Gaussian, then each marginal
and conditional distribution is also Gaussian. Moreover, a linear combination of
Gaussian random vectors is Gaussian as well. Finally, the Gaussian assumption
leads to the linear form of the optimal estimate for both the MMSE and MAP
criteria. Because the observed data y in (5.7) can be any value and is in fact
random, (5.7) actually gives the expression of the optimal estimator (a function of
the observation) for jointly Gaussian random vectors. More generally, the following
result on the MMSE estimator holds.

Theorem 5.3. Let X and Y be two jointly distributed random vectors. Then the
MMSE estimator X̂ of X in terms of Y is given by X̂ = E{X |Y}.

Proof. The difference between E{X |Y} and E{X |Y = y} lies in that E{X |Y} takes
the expectation over all possible values of X and Y . Hence, the MMSE estimator
is more difficult to prove than the MMSE estimate. However, the following two
properties of the conditional expectation are helpful:

EX |Y { f (X ,Y )|Y = y}= EX |Y { f (X ,y)|Y = y}, (5.9)

EY
{

EX |Y [ f (X ,Y )|Y = y]
}
= EX ,Y{ f (X ,Y )}, (5.10)
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where the subscripts indicate the variables with respect to which expectation is being
taken. Hence, by the MMSE estimate in (5.3),

EX |Y
{∥∥X − X̂(y)

∥∥2 |Y = y
}
≤ EX |Y

{∥∥X − X̃(y)
∥∥2 |Y = y

}

for any other estimator X̃(·). On the other hand, (5.9) implies that

EX |Y
{∥∥X − X̂(y)

∥∥2 |Y = y
}
≤ EX |Y

{∥∥X − X̃(Y)
∥∥2 |Y = y

}
.

The above inequality is preserved with expectation being taken with respect to Y .
Now with the aid of (5.10), there holds

EX ,Y

{∥∥X − X̂(Y )
∥∥2
}
≤ EX ,Y

{∥∥X − X̃(Y )
∥∥2
}

which establishes the desired result. �	
The next example shows that the MAP and MMSE estimators are nonlinear in

general. For convenience, the estimator X̂(Y ) is still denoted by x̂.

Example 5.4. A typical case in digital communications is when the random vari-
ables X and Y are related as Y = X +N. Suppose that the random variable X is
binary and equiprobable with the probability

PX [X = 1] = 0.5, PX [X =−1] = 0.5.

The random variable N represents the additive noise which is assumed to be
Gaussian distributed with zero mean and the variance σ2

n . Suppose that X and N
are independent. Then X and Y are jointly distributed. If X = x (x only takes values
±1) is transmitted, then the PDF of Y = y is given by

pY |X(y|x) =
1√

2πσn
exp

{
− (y− x)2

2σ2
n

}
. (5.11)

It is easy to see that the marginal PDF for Y = y is given by

pY (y) = PX [X = 1]pY |X(y|x = 1)+PX [X =−1]pY |X(y|x =−1)

= 0.5pY |X(y|x = 1)+ 0.5pY|X(y|x =−1). (5.12)

By an abuse of notation, the conditional probability for X = 1, given Y = y is
received, is given by
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PX |Y [X = 1|Y = y] =
pY |X (y|x = 1)PX [X = 1]

pY (y)

=
0.5pY |X(y|x = 1)

0.5pY |X (y|x = 1)+ 0.5pY|X (y|x =−1)

=

(
1+

pY |X (y|x =−1)

pY |X (y|x = 1)

)−1

=

(
1+ exp

{
− 2y

σ2
n

})−1

in light of (5.11) and (5.12). Similarly, the conditional probability for X =−1, given
Y = y is received, is given by

PX |Y [X =−1|Y = y] =

(
1+

pY |X (y|x = 1)

pY |X (y|x =−1)

)−1

=

(
1+ exp

{
2y
σ2

n

})−1

.

It is easy to verify that PX |Y [X = 1|Y = y]+PX |Y [X =−1|Y = y] = 1. If y > 0, then

PX |Y [X = 1|Y = y]> 0.5, PX |Y [X =−1|Y = y]< 0.5.

Because X is binary, the maximum of PX |Y [X = x|Y = y] for y > 0 takes place at
X = 1. If y < 0, then

PX |Y [X = 1|Y = y]< 0.5, PX |Y [X =−1|Y = y]> 0.5,

and thus, the maximum of PX |Y [X = x|Y = y] takes place at X = −1. Consequently,
the MAP estimator is obtained as

x̂MAP =

{
1, for y > 0,

−1, for y < 0.
(5.13)

This is identical to the optimal decision rule as discussed in Sect. 2.3 in the sense
that the BER is minimized.

On the other hand, given received data Y = y the conditional mean for X is given
by (recall that X is binary valued):

x̂MMSE = E{X |Y = y}=
(

1+ exp

{
− 2y

σ2
n

})−1

−
(

1+ exp

{
2y
σ2

n

})−1

.

Different from the MAP estimate, x̂MMSE is not binary valued. Its values as function
of the received y are plotted in the following figure where the dotted line is for the
case σ2

n = 1, the dash–dotted line for σ2
n = 0.1, and the solid line for σ2

n = 0.01 (see
Fig. 5.1).

As the variance σ2
n decreases (which corresponds to increase of the SNR), the

MMSE estimate approaches the MAP estimate. It is noted that both estimators are
nonlinear functions of the received data y.
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Fig. 5.1 The conditional mean estimates x̂ as function of y

In spite of the fact that optimal estimators are nonlinear in general, the linear
estimator (strictly speaking it is the affine estimator) has its appeal owing to its
simplicity and mathematical tractability. Moreover, in the special case of Gaussian
random vectors, both MMSE and MAP estimators are linear. Hence, there is an
incentive to focus on linear estimators and search for the optimal estimator among
all the linear estimators. The next theorem contains the complete result for MMSE
estimators.

Theorem 5.5. Let X and Y be two jointly distributed random vectors with

E

{[
X
Y

]}
=

[
mx

my

]
, cov

{[
X
Y

]}
=

[
Σxx Σxy

Σyx Σyy

]
. (5.14)

Then the linear MMSE estimator for X in terms of Y is given by

X̂ = mx +ΣxyΣ−1
yy (Y −my), (5.15)

where Σ+
yy can be used if Σyy is singular (Problem 5.1 in Exercises). The error

covariance associated with X̂ is unconditioned and given by

E
{(

X − X̂
)(

X − X̂
)∗}

= Σxx −ΣxyΣ−1
yy Σyx. (5.16)



182 5 Optimal Estimation and Control

If X and Y are jointly Gaussian, then (5.15) is also the MMSE estimate X̂ = E{X |Y}
and is optimal among all (linear and nonlinear) estimators. Its error covariance
conditioned on Y is the same as in (5.16).

Proof. For any random vector Z its covariance satisfies

cov{Z}= E{(Z −mz)(Z −mz)
∗}= E{ZZ∗}−mzm∗

z ,

where mz = E{Z}. As a consequence,

E
{‖Z‖2}= Tr{cov[Z]}+Tr{mzm∗

z}= Tr{cov[Z]}+ ‖mz‖2. (5.17)

Now parameterize linear estimators as X̃ = FY + g with matrix F and vector g free
to choose. Setting the random vector

Z = X − X̃ = X −FY − g

yields mean mz = mx −Fmy − g and the covariance

cov{Z}= Σxx +FΣyyF∗ −FΣyx −ΣxyF∗.

Hence, the error variance E
{‖Z‖2

}
= E{‖X −FY − g‖2} is given by

E
{‖Z‖2} = Tr{cov[Z]}+ ‖mz‖2 ≥ Tr{cov[Z]}

= Tr{Σxx +FΣyyF∗ −FΣyx −ΣxyF∗}
= Tr

{[
F −ΣxyΣ−1

yy
]

Σyy
[
F −ΣxyΣ−1

yy
]∗
+Σxx −ΣxyΣ−1

yy Σyx

}

≥ Tr
{

Σxx −ΣxyΣ−1
yy Σyx

}

for any F and g where (5.17) is used. By taking

F = Fopt = ΣxyΣ−1
yy and g = gopt = mx −Foptmy,

mz = 0 and E
{‖Z‖2

}
= Tr

{
Σxx −ΣxyΣ−1

yy Σyx
}
= E

{‖Z‖2
}

which is the uncondi-
tional error variance. Therefore, the error covariance in (5.16) holds and the linear
MMSE estimator is given by

X̂ = FoptY + gopt = mx +Fopt(Y −my)

which is identical to (5.15) by Fopt = ΣxyΣ−1
yy . It is noted that the linear MMSE

estimator is identical to (5.7), if Y = y, due to the fact that the linear MMSE
estimator coincides with the overall MMSE estimator (among all linear and
nonlinear estimators) for the Gaussian case. �	
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Fig. 5.2 Signal model for
Kalman filtering

It should be emphasized that (5.16) is the unconditional error covariance in
general. Only when X and Y are jointly Gaussian is it also the conditional error
covariance. In the case when Σyy is singular, Σ−1

yy needs to be replaced by its pseudo-
inverse Σ+

yy for which the results in Theorem 5.5 still hold. See Problem 5.1 in
Exercises.

5.1.2 Kalman Filters

The design of state estimators is considerably more difficult than that of the
estimator in the previous subsection due to the dynamical model for the random
processes.

Consider the time-varying state-space system

x(t + 1) = Atx(t)+ v1(t), y(t) =Ctx(t)+ v2(t), (5.18)

where both {v1(t)} and {v2(t)} are random processes. Traditionally, {v1(t)} is
called the process noise and {v2(t)} the observation noise. See the signal model
in Fig. 5.2.

It is assumed that both {v1(t)} and {v2(t)} are white random processes with
Gaussian distributions for each t and with zero means:

E{v1(t)}= 0, E{v2(t)}= 0.

Since {v1(t)} and {v2(t)} are white, the covariance matrices are given by

E{v1(t + k)v1(t)
∗} = BtB

∗
t δ (k),

E{v2(t + k)v2(t)
∗} = DtD

∗
t δ (k),

E{v2(t + k)v1(t)
∗} = DtB

∗
t δ (k),

for some matrices Bt of size n×m and Dt of size p×m where n and p are the sizes
of the state vector x(t) and the observed output y(t), respectively. For this reason,
the state-space model (5.18) can be equivalently written as

x(t + 1) = Atx(t)+Btv(t), y(t) =Ctx(t)+Dtv(t) (5.19)
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for some equivalent white Gaussian random process {v(t)} where

E{v(t)}= 0m and E{v(t + k)v(t)∗}= Imδ (k). (5.20)

Basically, substitutions of v1(t) = Btv(t) and v2(t) = Dtv(t) are employed in
arriving at the state-space model (5.19).

Suppose that the initial condition x0 = x(0) is also random, and Gaussian
distributed with mean and covariance

E{x0}= x0 and cov{x0}= P0, (5.21)

respectively. Assume further that x0 is independent of {v(t)}, and x0 and v(0) are
jointly Gaussian. Then

x(1) = A0x0 +B0v(0)

is a linear combination of two jointly distributed Gaussian random vectors. Thus,
x(1) is Gaussian distributed as well. By the white assumption on {v(t)} and
independence of x0 to {v(t)}, x(1) and v(t) are independent random vectors for
all t ≥ 1. As a result, x(1) and v(1) are jointly Gaussian. Hence, by the induction
process, the state vectors {x(t)} are Gaussian random processes. In fact, x(t) and
v(t) are jointly Gaussian for each t ≥ 0. Optimal state estimators are concerned with
the MMSE estimate of x(t + 1) for t ≥ 0, based on the observation data {y(k)}t

k=0.
Due to the Gaussian property, such an MMSE estimator is also a MAP estimator.
The solution to the optimal state estimator is the well-publicized Kalman filtering
which will be studied in this subsection.

Under the Gaussian assumption, the MMSE estimator is easy to derive for x(t)
and x(t + 1) based on {y(k)}t

k=0 using the basic result in Theorem 5.5. Specifically
in the case of x(t + 1), denote

x(t + 1) = E{x(t + 1)}, Y t = E{Yt},

where Yt is the observation up to time t ≥ 0 with an expression

Yt = vec
([

y(0) y(1) · · · y(t)
])
. (5.22)

Then x(t+1)= Atx(t). The state vector x(t+1) and the observed data Yt are jointly
Gaussian with mean

{
Atx(t),Y t

}
and covariance

cov

{[
x(t + 1)

Yt

]}
=

[
Pt+1 Zt

Z∗
t Ψt

]
. (5.23)

It is easy to see that Ψt = cov{Yt}, Pt+1 = cov{x(t + 1)}, and

Zt = E
{
[x(t + 1)− xt+1]

[
Yt −Y t

]∗}
. (5.24)
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Note that Ψt is nonsingular provided that det
(
DkD∗

k

) �= 0 for 0 ≤ k ≤ t. Hence,
Theorem 5.5 can be applied to compute the MMSE estimate for x(t + 1) based on
Yt which is given by

x̂t+1|t = Atxt +ZtΨ−1
t

(
Yt −Y t

)
(5.25)

by x(t + 1) = Atx(t). The associated error covariance according to (5.16) is

Σt+1|t = E
{[

x(t + 1)− x̂t+1|t
][

x(t + 1)− x̂t+1|t
]∗}

= Pt+1 −ZtΨ−1
t Z∗

t . (5.26)

However, the MMSE estimator as described in (5.25) and (5.26) has no value in
practice because the associated computational complexity grow with respect to the
time index t. A remarkable feature of the Kalman filter is its recursive computation
of the MMSE estimate x̂k+1|k and recursive update of the optimal error covariance
Σk+1 with complexity dependent only on the order of the state-space model in (5.19)
rather than the time index.

Theorem 5.6. Consider the state-space model in (5.19) where {v(t)} is the white
Gaussian random process satisfying (5.20) and the initial condition x(0)= x0 is also
Gaussian distributed, independent of {v(t)}, with the mean x0 and the covariance
P0. Suppose

BtD
∗
t = 0, Rt = DtD

∗
t > 0, ∀ t ≥ 0. (5.27)

Denote x̂k|i as the MMSE estimate of x(k) based on Yi, and Σk|i as the correspond-
ing error covariance where k ≥ i ≥ 0. Then

x̂t|t = x̂t|t−1 +Lt
[
y(t)−Ct x̂t|t−1

]
, (5.28)

Lt = Σt|t−1C∗
t

(
Rt +CtΣt|t−1C∗

t

)−1
, (5.29)

Σt|t = Σt|t−1 −Σt|t−1C∗
t

(
Rt +CtΣt|t−1C∗

t

)−1
CtΣt|t−1, (5.30)

x̂t+1|t = At x̂t|t , Σt+1|t = AtΣt|t A∗
t +BtB

∗
t , (5.31)

initialized by x̂0|−1 = x0 and Σ0|−1 = P0.

Proof. Given x̂t|t−1, Σt|t−1, and observation Yt , it can be verified that

E

{[
x(t)

y(t)

]∣∣∣∣∣Yt−1

}
=

[
x̂t|t−1

Ctxt|t−1

]
, (5.32)

cov

{[
x(t)

y(t)

]∣∣∣∣∣Yt−1

}
=

[
Σt|t−1 Σt|t−1C∗

t

CtΣt|t−1 Rt +CtΣt|t−1C∗
t

]
. (5.33)

Applying Theorem 5.5 with X = x(t) and Y = Yt leads to the MMSE estimate
x̂t|t and error covariance Σt|t in (5.28)–(5.30) which are referred to as measurement
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update. Because of (5.27), the random vectors Btv(t) and Dtvt are uncorrelated or
E{Btv(t)[Dtvt ]

∗}= BtD∗
t = 0. In fact, Btv(t) and Dtvt are independent of each other

due to the Gauss assumption. It follows that Btv(t) and y(t) are independent of each
other. Hence

E{Btv(t)|Yt}= E{Btv(t)|yt}= 0.

The above leads to E{x(t + 1)|Yt}= At x̂t|t +E{Btv(t)|Yt}= At x̂t|t and

Σt+1|t = AtΣt|t A∗
t +BtB

∗
t

or (5.31) that is referred to as time update. The proof is now complete. �	
Theorem 5.6 indicates that Kalman filtering is basically an efficient and recursive

algorithm for implementing the MMSE estimator. Recall that the computational
complexity for those in (5.25)–(5.26) grows with respect to the time index. It is
surprising that the MMSE estimator is linear and finite-dimensional with the same
order as that of the signal model in (5.19), rather than nonlinear and infinite-
dimensional as one might have speculated at the beginning. Of course, such linear
and finite-dimensional properties of the MMSE estimator are owing to the Gaussian
assumption. If the noise process {v(t)} is not Gaussian, then the Kalman filter can
only be claimed to be optimal among all linear filters of arbitrary orders in light of
Theorem 5.5. In addition, its property of being an MAP estimator is lost in general.

It is observed that the Kalman filter in Theorem 5.6 actually consists of two
MMSE estimators: One is the measurement update as described in (5.28)–(5.30),
and the other is time update as described in (5.31). While Theorem 5.6 is the main
result of Kalman filtering, Kalman filter is often referred to the recursive algorithm
for computing x̂t+1|t based on x̂t|t−1. The next result shows the structure of such an
optimal one-step predictor. The proof is left as an exercise (Problem 5.9).

Theorem 5.7. Denote Σk = Σk|k−1 for each integer k ≥ 1. Under the same
hypotheses of Theorem 5.6, the MMSE estimate x̂t+1|t for x(t + 1) based on the
observation Yt = {y(k)}t

k=0 is given recursively as

x̂t+1|t = [At +KtCt ] x̂t|t−1 −Kty(t), x̂0|−1 = x0, (5.34)

Kt =−AtΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 , (5.35)

Σt+1 = AtΣtA
∗
t +BtB

∗
t +KtCtΣt A

∗
t , Σ0 = P0. (5.36)

It is interesting to observe that (5.34) can be written as

x̂t+1|t = At x̂t|t−1 −Kt
[
ŷt|t−1 − y(t)

]

with ŷt|t−1 = Ct x̂t|t−1. So, it is similar to (5.19) with only one difference in that
Btv(t) is replaced by −Kt

[
y(t)−Ct x̂t|t−1

]
. A reflection on this indicates that the

vector
(
y(t)−Ct x̂t|t−1

)
provides new information that is not contained in Yt−1.
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For this reason,
{(

y(t)−Ct x̂t|t−1
)}

is called innovation sequence which is in fact a
white process (refer to Problem 5.12 in Exercises). It is also interesting to observe
that the error covariance Σt+1|t is independent of the observation Yt . That is,
no one set of measurements helps any more than any other set to eliminate the
uncertainty in xt . For convenience, Σt+1 := Σt+1|t will be used in the rest of the
text. Equation (5.36) governing the error covariance is called the difference Riccati
equation (DRE).

The initial covariance Σ0 =P0 measures the confidence of the a priori information
on the initial estimate x0|−1 = x0. Small P0 means high confidence whereas large P0

means low confidence. In practice, the knowledge on the a priori information of
x0 and P0 may not be available. In this case, x0 = 0 and P0 = ρIn are often taken
with ρ > 0 sufficiently large. However, so long as the Kalman filter is stable (to be
investigated in the next subsection), the impact of x0 and P0 to the MMSE estimate
x̂t+1|t will fade away as t gets large. The next result is obtained for time-invariant
systems.

Proposition 5.1. Suppose that (At ,Bt ,Ct ,Dt) = (A,B,C,D) for all t and the hy-
potheses of Theorem 5.6 hold. If Σ0 = 0, then the solution to the DRE (5.36) is
monotonically increasing, i.e., Σt+1 ≥ Σt for all t ≥ 0.

Proof. For t = 0, the DRE (5.36) gives Σ1 = BB∗ ≥ Σ0 = 0 in light of the time-
invariance hypothesis. Using the induction, assume that Σk ≥ Σk−1 for k > 1. The
proof can be completed by showing Σk+1 ≥ Σk. Denote Δt = Σt −Σt−1 for t = k and
k+ 1. The DRE (5.36) is equivalent to

Σt+1 = A
(
I+ΣtC

∗R−1C
)−1 ΣtA

∗+BB∗, R = DD∗.

See Problem 5.10 in Exercises. Taking the difference Δk+1 = Σk+1 −Σk gives

Δk+1 = A
[(

I+ΣkC
∗R−1C

)−1 Σk −Σk−1 (I+C∗RCΣk−1)
−1
]

A∗

= A
(
I +ΣkC

∗R−1C
)−1 Δk

(
I +C∗R−1CΣk−1

)−1
A∗

= A
(
I +Σk−1C∗R−1C+ΔkC

∗R−1C
)−1 Δk (I +C∗RCΣk−1)

−1 A∗

= Ak−1

[
I+ΔkC

∗ (R+CΣkC
∗)−1 C

]−1
ΔkA

∗
k−1 ≥ 0

by Δk = Σk −Σk−1 ≥ 0 where Ak−1 = A
(
I+Σk−1C∗R−1C

)−1
. �	

Before ending this subsection, the removal of the assumption (5.27) needs to be
addressed. It is noted that the difference between the estimated and the true state
vectors satisfies the difference equation

ê(t + 1) = (At +KtCt)ê(t)+ (Bt +KtDt)v(t) (5.37)
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by taking the difference of (5.19) and (5.34) where ê(t) = x(t)− x̂t|t−1. This is
the error equation for the associated Kalman filter under the assumption (5.27)
or BtD∗

t = 0 for all t. For the case BtD∗
t �= 0, it is claimed that the error equation

associated with the MMSE estimate has the form

ê(t + 1) =
(
Ãt + K̃tCt

)
ê(t)+

(
B̃t + K̃tDt

)
v(t), (5.38)

Ãt = At −BtD∗
t R−1

t Ct , B̃t = Bt
[
Im −D∗

t R−1
t Dt

]
, (5.39)

where B̃tD∗
t = 0. Specifically, the state-space system (5.19) can be written as

x(t + 1) = Ãtx(t)+ B̃tv(t)+BtD
∗
t R−1

t y(t). (5.40)

Because B̃tD∗
t = 0, and y(t) is the measured output, the Kalman filter can be adapted

to compute the MMSE estimate for x(t + 1) in accordance with

x̂t+1|t =
[
Ãt + K̃tCt

]
x̂t|t−1 − K̃ty(t)+BtD

∗
t R−1

t y(t), (5.41)

where the Kalman gain and the error covariance are given by

K̃t = −ÃtΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 , (5.42)

Σt+1 = ÃtΣt Ã
∗
t + B̃t B̃

∗
t − ÃtΣtC

∗
t (Rt +CtΣtC

∗
t )

−1 CtΣt Ã
∗
t , (5.43)

respectively. The Kalman gain K̃t is associated with
(
Ãt , B̃t

)
, but Σt is the same error

covariance as before. Subtracting (5.41) from (5.40) yields (5.38) as claimed earlier.
On the other hand, (5.41) can be equivalently written as

x̂t+1|t = (At +KtCt) x̂t|t−1 −Kty(t) Kt = K̃t −BtD
∗
t R−1

t , (5.44)

where Kt is the Kalman gain associated with (At ,Bt). There holds

Kt = K̃t −BtD
∗
t R−1

t =−(AtΣtC
∗
t +BtD

∗
t )(Rt +CtΣtC

∗
t )

−1 . (5.45)

Therefore, the Kalman filter has the same form with a slight increase in the
complexity of computing the Kalman gain and the associated DRE for the error
covariance. The next result summarizes the above discussion.

Corollary 5.1. Let Ãt and B̃t be as in (5.39). Under the same hypotheses of
Theorem 5.7, except that BtD∗

t �= 0, the Kalman filter for x(t + 1) based on the
observation Yt = {y(k)}t

k=0 is given recursively by (5.44), (5.45), and (5.43) which
collapse to those in Theorem 5.7 for the case BtD∗

t = 0.

Corollary 5.1 indicates that there is no loss of generality in focusing on the
case BtD∗

t = 0 for Kalman filtering. The case BtD∗
t �= 0 causes only some minor

computational modifications for (linear) MMSE estimators.
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5.1.3 Stability

An immediate question regarding the Kalman filter is its stability. Are Kalman filters
always stable? What stability properties do Kalman filters possess? Such questions
will be answered first for time-varying systems and then for time-invariant systems.
The following stability result holds.

Theorem 5.8. Let the state-space model be as in (5.19) with {v(t)} the white
noise satisfying (5.20). For the case BtD∗

t = 0, assume that (At ,Bt) is uniformly
stabilizable and (Ct ,At) is uniformly detectable. Then the Kalman filter as described
in Theorem 5.7 is asymptotically stable. For the case BtD∗

t �= 0, assume that
(
Ãt , B̃t

)
is uniformly stabilizable, and (Ct ,At) is uniformly detectable where Ãt and B̃t are
as in (5.39). Then the Kalman filter as described in Corollary 5.1 is asymptotically
stable.

Proof. If BtD∗
t = 0, then the stabilizability and detectability assumptions imply the

existence of linear state estimation gains {Lt} such that

x(t + 1) = (At +LtCt)x(t)

is asymptotically stable. Hence, the difference Lyapunov equation

Qt+1 = (At +LtCt)Qt(At +LtCt)
∗+LtRtL

∗
t +BtB

∗
t

has bounded nonnegative solutions {Qt}. On the other hand, the DRE (5.36) which
governs the error covariance of the Kalman filter can be written into the same form
as the above difference Lyapunov equation:

Σt+1 = (At +KtCt)Σt(At +KtCt)
∗+BtB

∗
t +KtRtK

∗
t .

See Problem 5.10 in Exercises. It is noted that
(

A+KtCt ,
[

Bt KtR
1/2
t

])
is

stabilizable. In light of the discussions at the end of Chap. 3, stability of the Kalman
filter is hinged to the boundedness of Σt as t → ∞. But the Kalman filter is optimal
among all linear estimators. It follows that Tr{Σt} ≤ Tr{Qt}. The Kalman filter is
thus asymptotically stable. The proof for the case BtD∗

t �= 0 is similar, and is skipped.
�	

For asymptotically exponentially stable systems, the assumptions of uniform
stabilizability and detectability hold. Hence, the Kalman filter preserves the stability
property that is owing to the fact Σt ≤ Pt or the error covariance for the estimated
state vector is no larger than the covariance of the state vector to be estimated,
which is in turn owing to the optimality of the Kalman filter. The hypothesis on
stabilizability of (At ,Bt) in Theorem 5.8 might seem unnecessary by the argument
on the existence of the stable linear estimators. However, it cannot be removed for
the stability result in Theorem 5.8 to hold true. Nevertheless, this hypothesis can be
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weakened for stability of Kalman filters if the underlying state-space system is time
invariant and the additive noise process is stationary. For this purpose, consider the
following signal model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t), (5.46)

where x(0) = x0 with mean x0 and covariance P0. Suppose that x0 and {v(t)} are
independently distributed and {v(t)} satisfies (5.20). Then {Bv(t)} and {Dv(t)} are
both WSS white processes. Stability of A and E{x(t)}= 0 imply that {x(t)} can be
made a stationary process, provided that P = P0 satisfies the Lyapunov equation

P = APA∗+BB∗. (5.47)

Assume that A is stable. Then there is a unique solution P≥ 0 to the above Lyapunov
equation. If P0 �= P, then {x(t)} is not a WSS process in general. But, it is WSS
asymptotically. Indeed, let Pk = cov{x(k)} for k ≥ 0. Then

Pt+1 = APtA
∗+BB∗ = At+1P0(A

∗)t+1 +
t

∑
k=0

AkBB∗(A∗)k

by P0 = cov{x0}. Stability of A implies that

P = lim
t→∞

Pt+1 =
∞

∑
k=0

AkBB∗(A∗)k

exists and is bounded that is the unique solution to (5.47). However, if A is not a
stability matrix, then {x(t)}may diverge and is thus not a WSS process in general. A
somewhat surprising fact is that the error state vectors ê(t) = x(t)− x̂t|t−1 associated
with the Kalman filter are WSS process asymptotically, provided that the Kalman
filter is asymptotically stable. Stability of A is not required. Consider the following
nth order LTI estimator

x̂t+1 = (A+KC)x̂t −Ky(t), x̂0 = x(0), (5.48)

K =−AΣC∗ (R+CΣC∗)−1 , (5.49)

Σ = A
(
In +ΣC∗R−1C

)−1 ΣA∗+BB∗. (5.50)

This is the same as the Kalman filter in (5.34)–(5.36) after removing the time indexes
of the matrices. The equation for the error covariance in (5.50) is called the algebraic
Riccati equation (ARE).

Example 5.9. Consider the inverted pendulum system. Its state-space realization
after discretization with sampling period Ts = 0.25 is obtained in Example 3.16
of Chap. 3. Suppose that 0.1BB∗ is the covariance for the process noise and
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diag(0.1, 0.01) is the covariance for the measurement noise, assuming that the
noises for measurements of position and angle are uncorrelated. The Matlab
command “dare” can be used to compute the solution Σ to the ARE in (5.50) and
the stationary estimation gain K in (5.49). The numerical results are given by

Σ =

⎡
⎢⎢⎣

21.762 5.5171 1.6675 0.7219
5.5171 1.6269 0.6957 0.4560
1.6675 0.6957 0.4602 0.3910
0.7219 0.4560 0.3910 0.3699

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎣

0.4017 −44.5166
0.4402 −10.6004
0.4451 −2.5400
0.4330 −0.6398

⎤
⎥⎥⎦ .

It can be easily verified with Matlab that the eigenvalues of (A+KC) are all positive
real, and strictly smaller than 1. Hence, (A+KC) is a stability matrix, implying that
the error for estimation of the state vector approaches zero asymptotically.

The ARE solution computed in Matlab, if it exists, is called stabilizing solution
that is defined next.

Definition 5.1. The solution Σ to the ARE (5.50) is said to be stabilizing, if K as in
(5.49) is stabilizing. That is, (A+KC) is a stability matrix.

The stabilizing solution to ARE (5.50), if it exists, is unique (refer to
Problem 5.13 in Exercises). The next result regards stability of the Kalman filter.

Theorem 5.10. Suppose that (A,B) is stabilizable, BD∗ = 0, and R = DD∗ > 0 for
the random process in (5.46) where {v(t)} is WSS with zero mean and identity
covariance. If the ARE (5.50) admits a stabilizing solution, then the Kalman filter
for (5.46) is asymptotically stable and its associated state estimation error vector
ê(t) = x(t)− x̂t|t−1 is WSS asymptotically.

Proof. Let Σt be the solution to the DRE (5.36). Since the time-invariant estimator
described in (5.48)–(5.49) is a special case of the linear estimator in Problem 5.11,
its error covariance Σ ≥ Σt ≥ 0 for all t ≥ 0, provided that Σ ≥ P0 ≥ 0. In this case,
{Σt} is monotonically increasing in light of Proposition 5.1 and uniformly bounded
above by Σ . Hence, its limit Σ exists. Since the limit of the DRE (5.36) is identical
to the ARE (5.50), it can be written as

Σ =
(
A+KC

)
Σ
(
A+KC

)∗
+KRK

∗
+BB∗,

where K = −AΣC∗ (R+CΣC∗)−1
. Stabilizability of (A,B) implies that Σ is

stabilizing, and thus Σ = Σ by its uniqueness. As such the Kalman filter converges
to the linear estimator as described in (5.48)–(5.49) which is stable. The fact that the
Kalman filter is linear implies that its stability is independent of the initial condition
x̂0|−1 = x0 which in turn implies that the convergence of Σt to Σ is independent of
the boundary condition Σ0 = P0. Moreover, the conditional mean and covariance
associated with ê(t) are zero and Σ (asymptotically), respectively. So, the state error
vector ê(t) is WSS asymptotically. The proof is completed. �	
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The LTI estimator in (5.48)–(5.49) is referred to as stationary Kalman filter.
It is the state-space version of the Wiener filter. In lieu of the optimality properties
of the Kalman filter, the stationary Kalman filter outperforms all LTI estimators of
arbitrary orders. If, in addition, the noise process is Gaussian, then the stationary
Kalman filter outperforms all (linear or nonlinear) time-invariant estimators. The
premise is the existence of the stabilizing solution to the ARE (5.50) for which the
following result provides the necessary and sufficient condition.

Theorem 5.11. There exists a stabilizing solution to the ARE in (5.50), if and only
if (C,A) is detectable and

rank
{[

A− e jωIn B
]}

= n ∀ ω ∈ IR.

Different from time-varying systems with nonstationary noises, stabilizability
of (A,B) is not required so long as (A,B) does not have unreachable modes on
the unit circle. The proof is delayed to the next section. After the brain-storm of
materials on Kalman filtering in the style of theorem/proof, it will be wise to pause
for a while with readings of a few examples. It does need to be pointed out though
that the results on time-invariant systems and WSS noises are established under
the assumption that BD∗ = 0. If the assumption does not hold, then the stationary
Kalman filter is still the same as in (5.48) but the Kalman gain in (5.49) and the
ARE in (5.50) need to be replaced by

K = −(AΣC∗+BD∗)
(
R+CΣC−1)−1

, (5.51)

Σ = Ã
(
In +ΣC∗R−1C

)−1 Σ Ã∗+B
(
I −D∗R−1D

)
B∗, (5.52)

respectively, where Ã = A−BD∗R−1C. Moreover, the ARE (5.52) has a stabilizing
solution, if and only if (C,A) is detectable, and

rank

{[
A− e jωIn B

C D

]}
= n+ p ∀ ω ∈ IR

with p the number of rows of C. Its proof is again delayed to the next section.
Two examples will be presented which are designed to help digest the theoretical

results in this section. The first example is modified from digital communications as
illustrated in the following Fig. 5.3 and discussed next.

Example 5.12. Consider estimation of the symbol s(t) in multiuser wireless data
communications. The multipath channel is described by

r(t) =
�

∑
k=1

Hk(t)s(t − k) (5.53)
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Fig. 5.3 Estimation of the
symbol inputs

which is an MA model. It is assumed that the channel information or the impulse
response {Hk(t)} is known at time t and has dimension p×m. The objective is to
design linear receivers that estimate the symbol s(t − d) for some d satisfying 1 <
d ≤ � with the minimum error variance. The design problem seems to be different
from Kalman filtering but is intimately related to the estimation problem in this
subsection.

First, the input symbols are assumed to be independent and have the same
(equiprobable) distributions. As such, {s(t)} is white with the zero mean and
covariance σ2

s I where σ2
s is the transmission power for each symbol. For simplicity,

σs = 1 is taken via some suitable normalization. Secondly, the channel model can
be associated with a realization with the state vector

x(t) = vec
([

s(t − 1) s(t − 2) · · · s(t − �)
])
. (5.54)

Denote v(t) =
[

s(t)∗ n(t)∗
]∗

. The observed signal y(t) at the receiver site can be
described by the same state-space model in (5.19) with

At = A =

[
0 0m×m

Im(�−1) 0

]
,Bt = B =

[
Im 0
0 0m(�−1)×p

]

Ct =
[

H1(t) · · · H�(t)
]
,Dt =

[
0 Σ

1
2

n

]
,

(5.55)

where Σn > 0 is the covariance of n assumed to be white and WSS. Hence, the
signal to be estimated is given by

s(t − d) = Jdx(t), Jd =
[

0 · · · 0 Im 0 · · · 0
]
, (5.56)

where 1 < d ≤ � and Im is the dth block of Jd . Finally, it is noted that v(t) is white
but not Gaussian. If H0(t) ≡ 0, i.e., there is a pure delay in the multipath channel,
then BD∗

t = 0. An application of Kalman filtering yields the optimal linear estimator
for s(t − d) = Jdx(t) = Jd+1x(t + 1) based on observations {y(k)}t

k=0 given by

x̂t+1|t = (A+KtCt)x̂t|t−1 −Kty(t), Kt =−AΣtC
∗
t (R+CtΣtC

∗
t )

−1 ,

Σt+1 = AΣtA
∗+BB∗−AΣtC

∗
t (R+CtΣtC

∗
t )

−1 CtΣtA
∗,
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where R = Σn. Any other linear estimator for x(t + 1) has an error variance no
smaller than Tr{Σt+1}, and the error variance for ŝ(t − d) is also the smallest
among all linear receivers. Recall that {s(t − k)}�k=1 are subsumed in x(t). It is
thus concluded that ŝ(t − d|t) = Jd x̂t|t = Jd+1x̂t+1|t is an optimal linear estimate
of s(t −d). See also Problem 5.11 in Exercises. If the channel is time invariant, then
Hk(t) = Hk, and thus, Ct =C ∀ t. In this case, the linear MMSE estimator converges
to the stationary Kalman filter:

x̂t+1|t = (A+KC)x̂t|t−1 −Ky(t), ŝ(t − d|t) = Jd+1x̂t+1|t ,

Σ = A
(
In +ΣC∗R−1C

)−1 ΣA∗+BB∗, K =−AΣC∗ (R+CΣC∗)−1 .

As A is a stability matrix, the solution Σ ≥ 0 exists and is stabilizing.

Example 5.12 shows that if the signals to be estimated are output of the form
z(t) = Jx(t + 1), then the optimal output estimator is the same as the optimal state
estimator. Hence, the Kalman filter serves as the optimal linear estimator for both
state and output estimation, provided that both estimators are restricted to being
strictly causal. The following example regards the application of Kalman filtering to
system identification.

Example 5.13. Suppose that the system is described by an ARMA model

y(t) =
n

∑
k=1

αky(t − k)+
m

∑
k=1

βku(t − k)+η(t),

where {η(t)} is white and Gaussian. Suppose that

h =
[

α1 · · · αn β1 · · · βm
]∗

is also Gaussian with a priori mean h and covariance P. It is reasonable to assume
that {η(t)} and h are independent. The goal of system identification is to estimate
the true value of h based on measured data {y(t)} and the deterministic input data
{u(t)}. For this purpose, consider the fictitious state-space equation

x(t + 1) = x(t) = h, y(t) = q(t)x(t)+η(t), (5.57)

where q(t) =
[

y(t − 1) · · · y(t − n) u(t − 1) · · · u(t −m)
]

is a row vector. This cor-
responds to the random process model (5.19) with At = In+m,Bt = 0n+m,Ct = q(t)
and Dt = [cov{η(t)}]1/2. An application of the Kalman filtering with ĥt = x̂t+1|t
yields the estimator:

ĥt = ĥt−1 +Σtq(t) [Rt +q(t)Σtq∗(t)]−1 [y(t)−q(t)ĥt−1
]
,

Σt+1 = Σt −Σtq(t)∗ [Rt +q(t)Σtq(t)∗]−1 q(t)Σt , Σ0 = P, (5.58)
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where ĥ−1 = h and Rt = cov{η(t)}. It is noted that Σt+1 is not truly the error
covariance associated with ĥt by the fact that Ct = q(t) is random to which the
Kalman filter in Theorem 5.7 does not apply. Hence, the estimator in (5.58) is
not an MMSE estimator for h. This also explains why the MMSE estimator in
(5.58) is nonlinear in terms of the observed data {y(k)}t−1

k=t−n in Ct = q(t), even
though the Kalman filter is linear. On the other hand, if at time t, y(k) is treated
as deterministic containing the realization of the noise process η(k) for k < t, then
the estimator in (5.58) can be interpreted as an MMSE estimator for h. However,
this interpretation is rather far-fetched. A more interesting case is when n = 0, i.e.,
the system is an MA model. In this case, the row vector q(t) does not contain
any measured output data {y(k)}t

k=0. Since the input {u(t)} is deterministic, the
estimator in (5.58) becomes linear, and thus, the estimator in (5.58) is truly the
MMSE estimator for h outperforming any other system identification algorithms
for FIR models. Moreover, Σt+1 is truly the error covariance associated with ĥt . If
the joint Gaussian assumption is dropped, then the estimator in (5.58) is the linear
MMSE estimator outperforming any other linear algorithms for identification of FIR
models. Nonetheless, such claims do not hold for the case n > 0 or the IIR models.

5.1.4 Output Estimators

The Kalman filter estimates x(t) or x(t + 1) based on observations Yt = {y(k)}t
k=0

at time t ≥ 0. A more practical problem is the output estimation or estimation of
the linear combination of the state vector and the process noise at time t based on
observation Yt . Such an estimation problem is described by the following state-
space model:

⎡
⎣

x(t + 1)
z(t)
y(t)

⎤
⎦=

⎡
⎣

At Bt

C1t D1t

C2t D2t

⎤
⎦
[

x(t)
v(t)

]
, (5.59)

where v(t) is the white noise process as in (5.20), the initial condition x(0) = x0 is
a random vector, and z(t) is the signal to be estimated. The goal is design of a linear

estimator represented by state-space realization
(

Ât , B̂t ,Ĉt , D̂t

)
such that ẑt|t , the

estimate of z(t) based on the observation {y(k)}t
k=0, minimizes the error variance

of ez(t) = z(t)− ẑt|t . Figure 5.4 shows the schematic diagram for output estimation
that is different from the state estimation problem in Kalman filtering. In the special
case of C1t = I and D1t = 0 for all t, it aims to estimate x(t), based on observation
{y(k)}t

k=0. On the other hand, if C1t = 0 and D1t = I for all t, then it is an estimator
for the noise process v(t) based on observations {y(k)}t

k=0. Therefore, the output
estimation problem is more versatile and more useful in engineering practice. It
turns out that among all linear estimators, the MMSE estimator can be obtained
from the Kalman filter with some minor modifications.
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Fig. 5.4 Schematic diagram for linear output estimator

Theorem 5.14. Let the state-space model be as in (5.59) with {v(t)} the white
noise satisfying (5.20). Suppose that Rt = D2tD∗

2t is nonsingular and x(0) = x0 has
mean x0 and covariance P0 which is independent of {v(t)}. Let

(
Ãt , B̃t

)
be as in

(5.39), i.e.,

Ãt = At −BtD
∗
2tR

−1
t C2t , B̃t = Bt

[
I−D∗

2tR
−1
t D2t

]
. (5.60)

Then the linear MMSE estimation of z(t) based on observation {y(k)}t
k=0 is given

recursively by

x̂t+1|t = [At +KtC2t ] x̂t|t−1 −Kty(t), x̂0|−1 = x0,

ẑt|t = [C1t +LtC2t ] x̂t|t−1 −Lty(t), (5.61)

where the Kalman gains Kt and Lt are given by

[
Kt

Lt

]
= −

[
AtΣtC∗

2t +BtD∗
2t

C1tΣtC∗
2t +D1tD∗

2t

]
(Rt +C2tΣtC

∗
2t)

−1 , (5.62)

Σt+1 = Ãt
(
In +ΣtC

∗
2tR

−1
t C2t

)−1 Σt Ã
∗
t + B̃tB̃

∗
t , Σ0 = P0. (5.63)

Proof. The trick of the proof is to convert the output estimation to Kalman filtering.
For simplicity, assume that BtD∗

2t = 0 and D1tD∗
2t = 0 for each t. Augment the state

vector

x̆(t) =
[

x(t)
z(t − 1)

]
, x̆(0) =

[
x0

0

]
.

Its associated a priori covariance is P̆0 = diag(P0,0). There holds

x̆(t + 1) = Ăt x̆(t)+ B̆tv(t), y(t) = C̆t x̆(t)+ D̆tv(t) (5.64)

by straightforward calculation where D̆t = D2t and

Ăt =

[
At 0
C1t 0

]
, B̆t =

[
Bt

D1t

]
, C̆t =

[
C2t 0

]
. (5.65)
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Since x(t + 1) and z(t) are subsumed in x̆(t + 1), the MMSE output estimator for
z(t) is equivalent to the MMSE estimation of x̆(t + 1), among all linear estimators,
based on {y(k)}t

k=0. Recall the discussion after Example 5.12. Hence, the optimal
solution is the Kalman filter in Theorem 5.7 for the random process in (5.64) due
to B̆t D̆∗

t = 0 by the hypothesis BtD∗
2t = 0 and D1tD∗

2t = 0 leading to the DRE and
Kalman gain:

Σ̆t+1 = Ăt
(
I+ Σ̆tC̆

∗
t R−1

t C̆t
)−1 Σ̆t Ă

∗
t + B̆tB̆

∗
t , (5.66)

K̆t = −Ăt Σ̆tC̆
∗
t

(
Rt + C̆tΣtC̆

∗
t

)−1
. (5.67)

Partition Σ̆k into a 2× 2 block matrix with Σk the (1, 1) block which is the error
covariance for x̂k|k−1 at k = t and k = t +1. Then the (1, 1) block of the DRE (5.66)
and the Kalman gain in (5.67) are obtained as

Σt+1 = At
(
I +ΣtC

∗
2tR

−1
t C2t

)−1 ΣtA
∗
t +BtB

∗
t ,

K̆t =

[
Kt

Lt

]
=−

[
AtΣtC∗

2t ,

C1tΣtC∗
2t

]
(Rt +C2tΣtC

∗
2t)

−1

which are the same as in (5.63) and (5.62), respectively, for the case BtD∗
2t = 0. It

follows that the Kalman filter for x̆(t + 1) in the system (5.64) is given by

[
x̂t+1|t
ẑt|t

]
=
(
Ăt + K̆tC̆t

)
[

x̂t|t−1

ẑt−1|t−1

]
− K̆ty(t),

=

[
At +KtC2t

C1t +LtC2t

]
x̂t|t−1 −

[
Kt

Lt

]
y(t),

by substitution of the expressions in (5.65). The above are the same as the linear
MMSE output estimator in (5.61) for the case BtD∗

2t = 0. If BtD∗
2t �= 0 and

D1tD∗
2t �= 0, the same procedure can be carried out using the Kalman filtering

results in Corollary 5.1 that will lead to the linear MMSE estimator in (5.61) with
the Kalman gains in (5.62). The details are omitted here and left as an exercise
(Problem 5.15). �	

Theorem 5.14 indicates that the optimal output estimate ẑt|t is a linear function of
the optimal state estimate x̂t|t−1 in light of (5.61) and the associated error covariance
is irrelevant to C1t and D1t . In this sense, optimal output estimation is equivalent to
optimal state estimation. The realization of the linear MMSE output estimator in
(5.61) is given by

(
Ât , B̂t ,Ĉt , D̂t

)
= (At +KtC2t ,−Kt ,C1t +LtC2t ,−Lt)
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which has the same order as the original state-space model in (5.59). Its input is
y(t), and output is ẑt|t as shown in Fig. 5.4. In light of the Kalman filtering, the linear
estimator in (5.61) is optimal among all linear estimators with arbitrary orders. If, in
addition, the noise process {v(t)} and the initial condition x0 are independent, and
jointly Gaussian, then the linear estimator in (5.61) is optimal among all possible
output estimators, including those nonlinear ones. The next example is related to
Example 5.12, and illustrates the utility of output estimators.

Example 5.15. A commonly seen state-space model in applications is

x(t) = Atx(t − 1)+Btv(t), y(t) =Ctx(t)+Dtv(t) (5.68)

that appears differently from the ones discussed in this chapter thus far. It will be
shown that the results on output estimation are applicable to derive the optimal state
estimator for the model in (5.68).

For simplicity, assume that Bt+1D∗
t = 0 and Rt = DtD∗

t > 0. Under the same
hypotheses on white and Gaussian v(t), and on the initial state x(0) that has
mean x0 and covariance P0, Theorem 5.14 can be used to derive the equations for
measurement update:

x̂t|t = [I+LtCt ] x̂t|t−1 −Lty(t), (5.69)

Σt|t = Σt −ΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 CtΣt , (5.70)

initialized by x̂0|−1 = x0 and covariance Σ0 = P0 where

Lt =−ΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 . (5.71)

Recall Σt = Σt|t−1. Moreover, the time update equations can be obtained as

x̂t+1|t = At+1x̂t|t , Σt+1 = At+1Σt|tA∗
t+1 +Bt+1B∗

t+1. (5.72)

Specifically, the state-space model in (5.68) can be rewritten as

x(t + 1) = At+1x(t)+Bt+1v(t + 1), y(t) =Ctx(t)+Dtv(t). (5.73)

Because Bt+1v(t + 1) and Dtv(t) are uncorrelated, replacing At by At+1 and
Bt by Bt+1 in Theorem 5.14 leads to the optimal state estimator or one-step
predictor x̂t+1|t = E{x(t + 1)|Yt}:

x̂t+1|t = [At+1 +KtCt ] x̂t|t−1 −Kty(t) (5.74)

initialized by x̂0|−1 = x0 where Kt = At+1Lt is the Kalman gain. In addition with
Σ0 = P0, the associated error covariance Σt+1 for t ≥ 0 can be computed according
to the DRE
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Σt+1 = At+1Σt
(
I+C∗

t R−1
t CtΣt

)−1
A∗

t+1 +Bt+1B∗
t+1. (5.75)

For x̂t|t = E{x(t)|Yt}, setting z(t) = x(t) leads to the optimal estimator in (5.69)
by C1t = I, D1t = 0, and C2t =Ct . The fact of Kt = At+1Lt and optimal estimate in
(5.69) yield time update equations in (5.72). A comparison of Σt+1 in (5.72) with
the one in (5.75) shows

Σt|t = Σt
(
I+C∗

t R−1
t CtΣt

)−1
(5.76)

that is the same error covariance in (5.70).

The linear MMSE output estimator as in Theorem 5.14 has the same stability
properties as those of the Kalman filter by the fact that they have the identical covari-
ance matrices for the state vectors. Hence, all the results in the previous subsection
apply to the linear MMSE output estimators, which will not be repeated here except
for the following. Suppose that the state-space realization in (5.59) is independent
of time t. Let Ã = A−BD∗

2R−1C2, R= D2D∗
2, and B̃ = B

(
I−D∗

2R−1D2
)
. If the ARE

Σ = Ã
(
In +ΣC∗

2R−1C2
)−1 Σ Ã∗+ B̃B̃∗ (5.77)

has a stabilizing solution Σ ≥ 0, then the output estimator in (5.61) is asymptotically
stable, in light of Theorem 5.10. In this case, the output estimator in (5.61) converges
asymptotically to the following time-invariant system

x̂t+1|t = [A+KC2] x̂t|t−1 −Ky(t), x̂0|−1 = x0,

ẑt|t = [C1 +LC2] x̂t|t−1 −Ly(t), (5.78)

where K and L have the same expressions as in (5.62) with the time index t removed.
One may employ the time-invariant estimator (5.78) directly for output estimation
which can be computed off-line in order to reduce the computational complexity
in its implementation. Clearly, the estimator in (5.78) admits the transfer matrix,
denoted by F(z) and given by

F(z) =−
[
L+(C1 +LC2)(zIn −A−KC2)

−1 K
]
. (5.79)

This section is concluded with an example on Wiener filtering (see Fig. 5.5).

Example 5.16. (Wiener filtering) Consider the signal model as in Fig. 4.5 where
v1(t) and v2(t) are independent white noises of zero mean and identity covariance,
and G1(z) and G2(z) are causal and stable rational transfer matrices. Wiener filtering
aims to design a LTI filter W(z) which estimates z(t−m), the output of G1(z), based
on observations y(k) for all k ≤ t and some integer m. It is termed as smoothing, if
m > 0 (estimation of the past output), filtering, if m = 0 (estimation of the present
output), and prediction, if m < 0 (estimation of the future output). It is claimed
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Fig. 5.5 Signal model for
Wiener filtering

Fig. 5.6 Wiener filter as an output estimator

that these three estimation problems can all be cast into the output estimation as
illustrated in the figure below, provided that z−mG1(z) is causal.

Indeed, if z−mG1(z) is causal, then

G(z) =

[
z−mG1(z) 0

G1(z) G2(z)

]
=

⎡
⎣

A B
C1 D1

C2 D2

⎤
⎦

for some realization matrices. Let v(t) =
[

v1(t) v2(t)
]′

. Then Wiener filtering can
be converted into output estimation as shown in Fig. 5.6. Consequently, the results
on output estimation can be applied to design the stationary optimal estimator
represented by W(z) which is the required Wiener filter. If z−mG1(z) is not causal,
decompose

z−mG1(z) = GA(z)+GC(z)

with GC(z) causal and GA(z) strictly anticausal. A state-space realization of
G(z) can again be obtained with z−mG1(z) replaced by GC(z). It can be shown
(Problem 5.19 in Exercises) that the Wiener filter does not depend on GA(z).

5.2 Minimum Variance Control

A common control problem is disturbance rejection. Engineering systems are de-
signed to operate in various environments where unknown and random disturbances
are unavoidable and detrimental to the system performances. Disturbance rejection
aims to design effective control laws that suppress the devastating effects of the
disturbances and ensure that the system operates as desired. Often it results in
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feedback control laws. This section investigates the case when disturbances are
white noise processes and the variance is the performance measure for control
system design.

The system under consideration is described by the state-space model

x(t + 1) = Atx(t)+B1tv(t)+B2tu(t), z(t) =Ctx(t)+Dtu(t), (5.80)

where v(t) is the white noise disturbance with the same statistics as in (5.20), u(t) is
the control input signal, and z(t) is the output to be controlled. The initial condition
x(0) = x0 is assumed to be random and has mean x0 and covariance P0. Due to the
random nature and the dynamic impact of the initial condition, x0 is accounted as
part of the disturbance. The objective is to design a control law UT = {u(t)}T−1

t=0 that
minimizes

V[0,T) =
T−1

∑
t=0

Vt , Vt = E
{
‖z(t)‖2 |UT

}
= Tr(E{z(t)z(t)∗|UT}) (5.81)

with Vt the variance of the controlled output.
The aforementioned control problem is very different from the estimation

problem in the previous section, but the two are closely related. In fact, there
exists a duality relation between the linear minimum variance control and the linear
minimum variance estimation. As a fortiori, optimal disturbance rejection can be
obtained from the Kalman filtering. However, such a derivation may blur out the
distinctions between control and estimation and is thus not adopted in this text.
Instead, linear minimum variance control will be derived independently. The duality
will be interpreted at a later stage to deepen the understanding of the resultant
optimal feedback control.

5.2.1 Linear Quadratic Regulators

Before tackling the problem of disturbance rejection, design of linear quadratic
regulators (LQRs) will be studied. The LQR is a deterministic control problem.
Yet, its solution coincides with that for disturbance rejection. Let

x(t + 1) = Atx(t)+Btu(t), x(0) = x0 �= 0. (5.82)

It is desirable to regulate the state vector x(T ) to the origin 0 in finite time T > 0
through some suitable control action {u(t)}T−1

t=0 . However, the exact regulation to
x(T ) = 0 may not be feasible in some finite time T . Even if it is feasible, the cost
of control input can be prohibitively high. Hence, it is appropriate to consider the
quadratic performance index
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JT (t0) = x(T )∗QT x(T )+
T−1

∑
t=t0

x(t)∗Qtx(t)+u(t)∗Rtu(t) (5.83)

for t0 = 0 which provides the mechanism of trade-offs between the regulation of
x(t) and the energy constraint on u(t). The weighting matrix Qt =Q∗

t ≥ 0 represents
the penalty on the state vector and thus the quality of regulation, and Rt = R∗

t > 0
shows the penalty on the control input and thus the measure of the energy at time t.
For convenience, JT = JT (0) is used.

The hypothesis on the weighting matrices in JT implies that

Qt =C∗
t Ct , Rt = D∗

t Dt , D∗
t Ct = 0 (5.84)

for some Ct of dimension p× n and Dt of dimension p×m with n the order of the
state-space model in (5.82) and m the dimension of the control input. Let z(t) =
Ctx(t)+Dtu(t). Then together with the state-space equation (5.82),

[
x(t + 1)

z(t)

]
=

[
At Bt

Ct Dt

][
x(t)
u(t)

]
(5.85)

which represents the system model. The decomposed LQR cost at time t is

‖z(t)‖2 = x(t)∗Qtx(t)+u(t)∗Rtu(t).

For any square matrix Xt+1 = X∗
t+1 ≥ 0 with size n× n, let

Wt+1 = x(t + 1)∗Xt+1x(t + 1)+ ‖z(t)‖2

be the candidate Lyapunov function for 0 ≤ t < T . Then

Wt+1 = x(t + 1)∗Xt+1x(t + 1)+ z(t)∗z(t)

=
[

x(t + 1)∗ z(t)∗
][Xt+1 0

0 I

][
x(t + 1)

z(t)

]

=

([
At Bt

Ct Dt

][
x(t)
u(t)

])∗ [
Xt+1 0

0 I

]([
At Bt

Ct Dt

][
x(t)
u(t)

])

=
[

x(t)∗ u(t)∗
][A∗

t Xt+1At +Qt A∗
t Xt+1Bt

B∗
t Xt+1At Rt +B∗

t Xt+1Bt

][
x(t)
u(t)

]
,

where (5.85) and the relations Rt = D∗
t Dt , Qt = C∗

t Ct , and D∗
t Ct = 0 are used. Let

Ψt = A∗
t Xt+1At +Qt ,Ωt = B∗

t Xt+1At , and Θt = Rt +B∗
t Xt+1Bt . Because Θt > 0 by

Rt > 0, the Schur decomposition
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[
Ψt Ω ∗

t

Ωt Θt

]
=

[
I Ω ∗

t Θ−1
t

0 I

][
Xt 0
0 Θt

][
I 0

Θ−1
t Ωt I

]

holds (refer to Problem 5.8 in Exercises) with Xt =
(
Ψt −Ω ∗

t Θ−1
t Ωt

)
the Schur

complement. The Lyapunov function candidate Wt+1 can now be written into

Wt+1 =
[

x(t)∗ (u(t)−Ftx(t))
∗ ]
[

Xt 0
0 Θt

][
x(t)

u(t)−Ftx(t)

]
,

where Ft =−Θ−1
t Ωt =−(Rt +B∗

t Xt+1Bt)
−1 B∗

t Xt+1At and Xt satisfies

Xt = A∗
t Xt+1At +Qt −A∗

t Xt+1Bt (Rt +B∗
t Xt+1Bt)

−1 B∗
t Xt+1At

= A∗
t Xt+1

(
In +BtR

−1
t B∗

t Xt+1
)−1

At +Qt (5.86)

which is a DRE dual to the estimation DRE as in Theorem 5.7. Because Θt > 0, the
minimum value of Wt+1 is achieved by setting

u(t) = uopt(t) := Ftx(t), Ft =−(Rt +B∗
t Xt+1Bt)

−1 B∗
t Xt+1At (5.87)

for which Wt+1 = x(t)∗Xtx(t) is the minimum possible.
Let XT = QT be the boundary condition and {Xt}T−1

t=0 be the solution to
the DRE in (5.86). Then an induction process can be applied to Wt+1 with
t = T − 1,T − 2, . . . ,0 in the performance index (5.83) yielding

JT = x(T )∗XT x(T )+
T−1

∑
k=0

‖z(k)‖2 =WT +
T−2

∑
k=0

‖z(k)‖2

≥ x(T − 1)∗XT−1x(T − 1)+
T−2

∑
k=0

‖z(k)‖2

= WT−1 +
T−3

∑
k=0

‖z(k)‖2 ≥ ·· · ≥ x(0)∗X0x(0),

where the fact Wt+1 ≥ x(t)∗Xtx(t) is used to arrive at the lower bound of JT . It is
noted that the lower bound x∗0X0x0 for JT is achievable by employing the optimal

control law
{

uopt(t)
}T−1

t=0 as in (5.87) which constitutes the optimal solution to the
LQR control problem. The above derivations are summarized into the following
result.

Theorem 5.17. Suppose that Qt ≥ 0 and Rt > 0 for 0 ≤ t < T . Let {Xt}T−1
t=0 be

the solution to the DRE in (5.86) with the boundary condition XT = QT ≥ 0. Then
the optimal control law minimizing the performance index JT in (5.83) and subject
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to the dynamic equation (5.82) is given by {uopt(t)}T−1
t=0 in (5.87). The associated

minimum performance index of JT is x∗0X0x0 with x0 �= 0 the initial condition of the
state vector x(t).

It is surprising that the optimal control law for the LQR problem is linear and
static. After all, one might have expected nonlinear and dynamic control laws as
the possible optimal solution. On the other hand, the feedback structure of the
control law is more or less expected. The optimal feedback gains {Ft}T−1

t=0 as in
(5.87) are functions of the solution to the DRE in (5.86) which has the form of
backward recursion. Such a backward recursion is deeply rooted in the principle
of optimality which states that an optimal control policy over the time interval
[k, T ) for 0 < k < T constitutes the optimal control policy over the time interval
[0, T ) regardless of the states and control inputs before the time k. Indeed, denote

U[t0,t f ) = {u(t)}t f −1
t=t0 with t f > t0. There holds

min
U[0,T)

JT (0) = min
U[0,T )

{Jk(0)+ JT (k)}= min
U[0,k)

{
Jk(0)+ min

U[k,T)

JT (k)

}

for 0 < k < T in light of the causality of the state-space equation. That is, minimiza-
tion of JT (0) can be carried out in two stages with stage 1 for minimization of JT (k)
over all possible U[k,T ) and stage 2 for minimization of Jk(0)+min

{
JT (k) : U[k,T )

}
over all possible U[0,k). The repeated use of this two-stage method for k = T − 1,
T − 2, . . . is what is called dynamic programming and is employed in the derivation
of the optimal control law for the LQR problem. It is worth emphasizing that, by
again causality,

min
U[0,T )

JT (0) �= min
U[k,T)

{
JT (k)+ min

U[0,k)

Jk(0)

}
= min

U[k,T )

JT (k)+ min
U[0,k)

Jk(0).

One should also realize that the principle of optimality applies to more broad
optimal control problems beyond the LQR for linear state-space systems.

Example 5.18. As an application of the LQR control, consider the tracking problem
for the state-space system (5.82) with output y(t) = Ctx(t). Given a desired output
trajectory ỹ(·), how does one design a state-feedback control law which minimizes
the tracking error and consumes the minimum energy? A reasonable measure is the
quadratic performance index

JT =
T−1

∑
t=0

[y(t)− ỹ(t)]∗ Q1(t) [y(t)− ỹ(t)]+ x(t)∗Q2(t)x(t)+u(t)∗Rtu(t), (5.88)

where Rt > 0, Q1(t) > 0, and Q2(t) = I −C∗
t (CtC∗

t )
−1 Ct for all t assuming that

rows of Ct are linearly independent. Let the dimension of y(t) be p < n with n
the dimension of the state vector x(t). A small tracking error imposes only the p
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constraints on the state vector or in the subspace spanned by p columns of C∗
t .

The weighting matrix Q2(t) regulates the state vectors with the remaining (n− p)
constraints or in the null space of Ct . The weighting factors can be changed through
adjusting Q1(t) and Rt . The terminal penalty Q1(T ) is omitted for convenience. The
desired output trajectory ỹ(·) is assumed to be the output of a LTI model

w(t + 1) = Aww(t), ỹ(t) = Hw(t).

Such a model includes step functions, sinusoidal signals, and their linear combina-
tions. Together with the system model (5.82), there holds

x̃(t + 1) = Ãtx(t)+ B̃tu(t), δy(t) = C̃t x̃(t),

where x̃(t) =
[

x(t)∗ w(t)∗
]∗
,δy(t) = y(t)− ỹ(t), and thus,

Ãt =

[
At 0
0 Aw

]
, B̃t =

[
Bt

0

]
, δCt =

[
Ct −H

]
.

It follows that the performance index JT in (5.88) can be written into the same form
as in (5.83) with x(t) replaced by x̃(t) leading to

Qt =

[
Q2(t)+C∗

t Q1(t)Ct −C∗
t Q1(t)H

−H∗Q1(t)Ct H∗Q1(t)H

]
.

Hence, the LQR control law in Theorem 5.17 can be readily applied.

In reference to the LQR control, a similar solution approach can be adopted to the
minimum variance control. Recall the expression of Vt in (5.81) and the augmented
performance index

V[t0,T ) =Vt0 +Vt1 + · · ·+VT−1, 0 ≤ t0 < T. (5.89)

Then the control law {u(t)}T−1
t=0 minimizing V[0,T) is reminiscent of LQR control

law as shown next.

Theorem 5.19. Consider the state-space system (5.82) where {v(t)} is white
satisfying (5.20) and x(0) = x0 is a random vector independent of {v(t)} with mean
x0 and covariance P0. Suppose that Rt = D∗

t Dt > 0 and D∗
t Ct = 0 for all t. Let Qt =

C∗
t Ct , and {Xt}T−1

t=0 be the solution to the DRE in (5.86) with the boundary condition
XT = 0 and Bt = B2t . Then the optimal control law minimizing V[0,T) in (5.89) is

the same as uopt(t) in (5.87). Denote UT = {u(t)}T−1
t=0 . Let Σt = E{x(t)x(t)∗|UT}.

Then Σ0 = P0 and

Σt+1 = (At +B2tFt)Σt (At +B2tFt)
∗+B1tB

∗
1t . (5.90)
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The minimum variance for the controlled output over [0, T ) is given by

min
UT

V[0,T ) =
T−1

∑
t=0

Tr{(Ct +DtFt)Σt(Ct +DtFt)
∗} . (5.91)

Proof. It is noted that the state-space equation in (5.82) can be written as
[

x(t + 1)
z(t)

]
=

[
At B2t

Ct Dt

][
x(t)
u(t)

]
+

[
B1t

0

]
v(t) (5.92)

which is similar to (5.85). Let Wk+1 = E{x(k+ 1)∗Xk+1x(k+ 1)|UT}+Vk. Since
the solution to the DRE (5.86) with the boundary condition XT = 0 satisfies Xt ≥ 0
(refer to Problem 5.21 in Exercises), Wk+1 is nonnegative for 0 ≤ k < T . Similar to
the derivation for the LQR control, there holds

Wk+1 = E{x(k+ 1)∗Xk+1x(k+ 1)+ z(k)∗z(k)|UT }

= E

{[
x(k+ 1)∗ z(k)∗

][Xk+1 0
0 I

][
x(k+ 1)

z(k)

]∣∣∣∣UT

}

= Tr{B∗
1kXk+1B1k}+E

{[
x(k)

δu(k)

]∗ [
Xk 0
0 Θk

][
x(k)

δu(k)

]∣∣∣∣∣UT

}

by the independence of u(k) and x(k) to v(k) where Θk = Rk +B∗
2kXkB2k,δu(k) =

u(k)− uopt(k), and uopt(k) is defined as in (5.87) with Bk = B2k. It follows that
u(k) = uopt(k) minimizes Wk+1 for k = T − 1,T − 2, . . . ,0 and thus V[0,T) in (5.89).
Indeed, with XT = 0,

V[0,T) =
T−1

∑
k=0

Vk =WT +
T−2

∑
k=0

E{z(k)∗z(k)|UT }

≥ Tr
{

B∗
1(T−1)XT B1(T−1)

}
+WT−1 +

T−3

∑
k=0

E{z(k)∗z(k)|UT }

≥ ·· · ≥
T−1

∑
k=0

Tr{B∗
1kXk+1B1k}+E{x(0)∗X0x(0)|UT}.

The lower bound for V[0,T) is achieved by UT = {uopt(t)}T−1
t=0 which also minimizes

Vt for all t ∈ [0, T ) in light of the principle of optimality. The expression in (5.91)
can be easily verified by direct computation. �	

It is observed that B1t has no influence on the optimal feedback gain {Ft}
although it changes the performance index Vt . This feature is important and induces
the duality between the minimum variance control and the Kalman filtering for
which Ft is dual to the Kalman gain Kt , and the backward control DRE (5.86)
is dual to the forward filtering DRE (5.36). For this reason, many properties of
the Kalman filter also hold for the minimum variance control. In particular, the
condition D∗

t Ct = 0 can be removed as shown next.
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Corollary 5.2. Under the same hypotheses as in Theorem 5.19 except that D∗
t Ct �=

0, the optimal control law minimizing Vt in (5.89) is given by u(t) = uopt(t) = Ftx(t)
with

Ft = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1At +D∗

t Ct) , (5.93)

Xt = Ã∗
t Xt+1

(
In +B2tR

−1
t B∗

2tXt+1
)−1

Ãt + C̃∗
t C̃t , (5.94)

where Ãt =
(
At −B2tR

−1
t D∗

t Ct
)
, C̃t =

(
I−DtR

−1
t D∗

t

)
Ct , and XT = 0.

Again the control gain Ft in (5.93) is dual to the filtering gain Kt in (5.45), and
the control DRE in (5.94) is dual to the filtering DRE in (5.43).

Proof. Introduce the variable substitution u(t) =−R−1
t D∗

t Ctx(t)+ ũ(t) with ũ(t) to
be designed. Then (5.92) is changed into

[
x(t + 1)

z(t)

]
=

[
Ãt B2t

C̃t Dt

][
x(t)
ũ(t)

]
+

[
B1t

0

]
v(t).

The result in Theorem 5.19 can then be applied to obtain the DRE in (5.94)
and the optimal control gain as F̃t = −(Rt +B∗

2tXtB2t)
−1 B∗

2tXt Ãt . Hence, u(t) =
−R−1

t D∗
t Ctx(t)+ F̃tx(t) = Ftx(t) with

Ft = F̃t −R−1
t D∗

t Ct =−Θ−1
t

[
B∗

2tXt Ãt +(Rt +B∗
2tXtB2t)R

−1
t D∗

t Ct
]

= −Θ−1
t

[
B∗

2tXt
(
At −B2tR

−1
t D∗

t Ct
)
+D∗

t Ct +B∗
2tXtB2tR

−1
t D∗

t Ct
]

= −(Rt +B∗
2tXtB2t)

−1 (B∗
2tXtAt +D∗

t Ct)

which is identical to (5.93) where Θt = (Rt +B∗
2tXtB2t) is used. �	

Corollary 5.2 shows that it has no loss of generality to study the minimum
variance control for the case D∗

t Ct = 0 from which the results can be easily carried
to the case D∗

t Ct �= 0. Moreover, there is no loss of generality to study the LQR
problem in place of the minimum variance control. Both result in the same linear
feedback control law. Hence, the rest of the section will focus on the LQR problem
under the condition D∗

t Ct = 0 for simplicity.

5.2.2 Stability

State-feedback control was briefly discussed in Chap. 3 in connection with the
notion of stabilizability. The LQR control is an effective way to design state-
feedback control laws for the system model in (5.82) and is aimed at minimizing the
quadratic performance index (5.83). A more general LQR control problem can be
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found in Problem 5.24 in Exercises that includes the cross term for the performance
index. It is natural to study stability of the closed-loop system for the LQR feedback
control which is governed by

x(t + 1) = [At +BtFt ]x(t), x(0) = x0 (5.95)

with Ft given in Theorem 5.17. An important question to be answered is under what
conditions the closed-loop system (5.95) is asymptotically or exponentially stable
as T → ∞ in the performance index JT . It needs to be pointed out that difficulties
exist in computing the LQR control law in the limiting case because of the time-
varying realization for the system in (5.82) and time-varying weighting matrices
in the performance index. Nevertheless, theoretical analysis can be made to obtain
similar stability results to those for the Kalman filter. The next result is dual to
Theorem 5.8 in the previous section but with strengthened stability property.

Theorem 5.20. For the state-space model in (5.82) and the performance index
in (5.83), assume that (At ,Bt) is uniformly stabilizable and (Ct ,At) is uniformly
detectable with Qt =C∗

t Ct . Then the closed-loop system (5.95) for the LQR control
as described in Theorem 5.17 is exponentially stable as T → ∞.

The proof of this theorem is again left as an exercise (Problem 5.26). It is noted
that exponential stability can be concluded for the LQR control different from that
for the Kalman filter which is only asymptotically stable. Its reason lies in the
Lyapunov stability criteria as discussed in Chap. 3. Recall that the filtering DRE
in (5.36) can be written as the forward Lyapunov difference equation (Problem 5.10
in Exercises) for which the result of Lemma 3.4 can only ensure the asymptotic
stability. On the other hand, the control DRE in (5.86) can be written as the
backward Lyapunov difference equation (Problem 5.23 in Exercises) for which the
result of Theorem 3.37 can in fact ensure the exponential stability.

While a stronger stability result holds for the LQR control than that for the
Kalman filter, optimal state-feedback gain is difficult to compute for the limiting
case T → ∞. The exception is the stationary LQR control when the realization and
the weighting matrices in the performance index JT are all time invariant, and the
time horizon T → ∞. Consider the ARE

X = A∗XA−A∗XB(R+B∗XB)−1 B∗XA+C∗C

= A∗ (In +XBR−1B∗)−1
XA+C∗C, (5.96)

where R = D∗D and D∗C = 0. The above is the same as the DRE in (5.86) except
that all the time indices are removed. It is often called the control ARE, versus the
filtering ARE (5.50) for the stationary Kalman filtering.

Example 5.21. Consider the flight control system introduced in Problem 1.11 in
Exercises of Chap. 1. Its state-space realization after discretization with sampling
period Ts = 0.025 is obtained in Example 3.17 of Chap. 3. Suppose that the LQR
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control is employed with Q =C′C and R = I. The Matlab command “dare” can be
used to compute the solution X to the ARE in (5.96) that is given by

X =

⎡
⎢⎢⎢⎢⎢⎣

112.3476 18.2824 164.7632 25.6960 −102.8198
18.2824 43.9026 38.9169 8.1070 −24.7280

164.7632 38.9169 382.4594 81.6639 −213.8244
25.6960 8.1070 81.6639 23.1625 −42.9162

−102.8198 −24.7280 −213.8244 −42.9162 129.6328

⎤
⎥⎥⎥⎥⎥⎦
.

The corresponding stationary state-feedback gain is obtained as

F =−(R+B∗XB)−1 B∗XA =

⎡
⎣

0.1230 0.0096 −0.0520 −0.0853 −0.0399
−0.4477 −1.0709 −0.9530 −0.1986 0.6062

0.8648 0.2892 2.9645 0.8771 −1.5290

⎤
⎦ .

It can be easily verified with Matlab that (A+BF) is a stability matrix by examining
its eigenvalues, implying that the state vector under this LQR control approaches
zero asymptotically.

A similar notion to that for Kalman filtering is defined next.

Definition 5.2. The solution X to the ARE (5.96) is said to be stabilizing, if the
state-feedback gain F =−(R+B∗XB)−1 B∗XA is stabilizing.

With the feedback gain F = −(R+B∗XB∗)−1 B∗XA, the ARE in (5.96) can be
written into the Lyapunov equation (refer to Problem 5.23 in Exercises)

X = (A+BF)∗X(A+BF)+C∗C+F∗RF. (5.97)

The following is the stability result for the stationary LQR control.

Theorem 5.22. Let Q =C∗C and (C,A) be detectable. If the ARE (5.96) admits a
stabilizing solution X, then the solution {Xt(T )} to the DRE

Xt(T ) = A∗Xt+1(T )
[
In +BR−1B∗Xt+1(T )

]−1
A+Q, XT (T ) = 0 (5.98)

converges to X as T → ∞. In this case, the closed-loop system

x(t + 1) = (A+BF)x(t), F =−(R+B∗XB)−1 B∗XA (5.99)

for the stationary LQR control is stable.

Proof. The solution to (5.98) satisfies (refer to Problem 5.31 in Exercises):

Xt+1(T )≤ Xt(T ) = Xt+1(T + 1),
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where Xt+1(T + 1) is the solution to the same DRE in (5.98) with T replaced by
T + 1. Hence, {Xt(T )} is monotonically increasing with respect to T . Let JT (t),
t ≥ 0, be the performance index associated with DRE (5.98). Then

0 ≤ lim
T→∞

JT (t) = lim
T→∞

x(t)∗Xt(T )x(t)≤ x(t)∗Xx(t)

implying 0≤Xt(T )=Xt(T )∗ ≤X ∀t < T by the fact that the stabilizing solution X is
maximal (Problem 5.27 in Exercises). Thus, it has a unique limit X = X

∗
satisfying

0 ≤ X ≤ X . Since the ARE (5.96) is the limit of the DRE (5.98), X is a solution to
(5.96) which is the same as the Lyapunov equation (5.97) with X replaced by X and
F replaced by F = −(R+B∗XB∗)−1

B∗XA. The detectability of (C,A) and X ≥ 0
imply that

(
A+BF

)
is a stability matrix in light of the Lyapunov stability result or

X is a stabilizing solution to the ARE in (5.96). By the uniqueness of the stabilizing
solution to the ARE (Problem 5.13 in Exercises), X = X . It follows that the closed-
loop system in (5.99) is stable. �	

Theorem 5.22 offers a numerical algorithm for computing the unique stabilizing
solution X to the ARE (5.96) through computing iteratively the solution to (5.98).
That is, one may set X (0) = XT (T ) = 0 then compute

X (i+1) = A∗
[
In +BR−1B∗X (i)

]−1
X (i)A+Q

for i = 1,2, . . . until
∥∥∥X (N+1)−X (N)

∥∥∥ ≤ ε with ε > 0 some prespecified error

tolerance and then take X = X (N+1). The next result answers under what condition
there exists a stabilizing solution to the ARE (5.96). Since the ARE (5.50) for the
stationary Kalman filter is dual to the ARE (5.96), it also provides the proof for
Theorem 5.11.

Theorem 5.23. Let Q = C∗C and R > 0. There exists a stabilizing solution to the
ARE in (5.96), if and only if (A,B) is stabilizable and

rank

{[
A− e jωIn

C

]}
= n ∀ ω ∈ IR. (5.100)

Proof. It is obvious that stabilizability of (A,B) is a necessary condition for the ARE
(5.96) to have a stabilizing solution. To confirm that (5.100) is also a necessary
condition, assume on the contrary that (5.100) does not hold but the ARE (5.96)
admits a stabilizing solution X . The Lyapunov form of the ARE in (5.97) implies
that (A+BF) is a stability matrix with F as in (5.99), and thus, X = X∗ ≥ 0. Since
(5.100) does not hold,

Aq = e jθ q, Cq = 0 (5.101)

for some θ real and q �= 0. That is, (C,A) has at least one unobservable mode on the
unit circle. Multiplying both sides of the ARE in (5.96) by q∗ from left and q from
right, and using the relation in (5.101) yield
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q∗XB(R+B∗XB)−1 B∗Xq = 0 =⇒ B∗Xq = 0.

By the expression of F , the above leads to

(A+BF)q =
[
A−BB∗ (R+B∗XB)−1 B∗XA

]
q = e jθ q.

So e jθ remains an eigenvalue of A+BF contradicting the stabilizing assumption on
X . This concludes the necessity of (5.100).

For the sufficiency part of the proof, assume that (A,B) is stabilizable and (5.100)
holds. Then some F0 exists such that (A+BF0) is a stability matrix. It is claimed
that the following recursion

Xi = (A+BFi)
∗ Xi (A+BFi)+F∗

i RFi +Q, (5.102)

Fi+1 = −(R+B∗XiB)
−1 B∗XiA, i = 0,1, . . . , (5.103)

converges to the stabilizing solution X of the ARE (5.96). The proof of the claim
proceeds in three steps. At the first step, it will be shown that stability of (A+BFi)
implies stability of (A+BFi+1) for i ≥ 0. For this purpose, rewrite (5.102) as (refer
to Problem 5.27 in Exercises)

Xi = A∗ (In +XiBR−1B∗)−1
XiA+Q+ΔF(i)

∗ [R+B∗XiB]ΔF(i)

= (A+BFi+1)
∗ Xi (A+BFi+1)+F∗

i+1RFi+1 +Q

+ ΔF(i)
∗ [R+B∗XiB]ΔF(i) (5.104)

with ΔF(i) = Fi+1 −Fi where (5.97) is used with X replaced by Xi and F by Fi+1 to
obtain the second equality. Now suppose that

(A+BFi+1)v = λ v, |λ | ≥ 1. (5.105)

Multiplying both sides of (5.104) by v∗ from left and v from right yields

(
1−|λ |2)v∗Xiv = v∗

[
F∗

i+1RFi+1 +Q+ΔF(i)
∗ (R+B∗XiB)ΔF(i)

]
v,

where (5.105) is used. Because the left-hand side ≤ 0 by |λ | ≥ 1 and positivity of Xi

due to stability of (A+BFi) and the right-hand side ≥ 0 by positivity of R, Q, and
Xi, it is concluded that |λ |= 1 and

Cv = 0, Fi+1v = 0, ΔF(i)v = 0 =⇒ Fiv = 0.
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The above together with (5.105) imply Av = λ v which in turn implies

(A+BFi)v = Av = λ v.

Because (A+BFi) is a stability matrix, v = 0 concluding that λ is not an eigenvalue
of (A+BFi+1). As λ with |λ | ≥ 1 is arbitrary, (A+BFi+1) is also a stability matrix.
The fact that (A+BF0) is a stability matrix implies that Fi+1 in (5.103) is stabilizing
for each i ≥ 0. As a second step, it is noted that (5.104) and the definition of Xi+1

imply

ΔX (i) = (A+BFi+1)
∗ΔX(i)(A+BFi+1)+ΔF(i)

∗(R+B∗XiB)ΔF(i)

with ΔX (i) = Xi −Xi+1. Stability of (A+BFi+1) implies that ΔX (i) ≥ 0 or {Xi} is
a decreasing matrix sequence. Since Xi ≥ 0 by stability of (A+BFi), the recursion
in (5.102) and (5.103) converges with limits X ≥ 0 satisfying the ARE (5.96) and
F as given in (5.99). Finally, as (A+BFi) is stable for all i ≥ 0, the n eigenvalues
of (A+ BFi) converge to the n eigenvalues of (A +BF) on the closed unit disk.
The condition (5.100) prohibits any eigenvalues of (A+BF) from being on the unit
circle because if it does, then

(A+BF)v = e jθ v, v �= 0

for some θ real. Multiplying both sides of (5.97) by v∗ from left and v from right
leads to Fv = 0 and Cv = 0, and thus Av = e jθ v with the same argument as before.
This contradicts the condition (5.100). The proof is now complete. �	
The proof of Theorem 5.23 shows that the condition (5.100) is indispensable.
Stabilizability of (A,B) alone does not ensure that the LQR problem is well posed. If
the condition (5.100) is violated, then any unobservable mode of (C,A) on the unit
circle does not contribute to the LQR performance index. Thus, in this case, even if
the ARE (5.96) admits a solution X = X∗ ≥ 0, the optimal performance index (for
the stationary LQR control)

Jopt =
∞

∑
t=0

x(t)∗Qx(t)+u(t)∗Ru(t) =
∞

∑
t=0

x(t)∗ (Q+F∗RF)x(t) = x∗0Xx0

and stability of (A+BF) cannot be achieved simultaneously. The reason lies in the
facts that stabilization of any unobservable mode of (C,A) on the unit circle will
increase the energy cost of the control input by R > 0 and that such unstable modes
of (C,A) do not contribute to the LQR performance index anyway. This is illustrated
in the following example.

Example 5.24. Consider the stationary LQR control with

A =

[−1 0
0 0

]
, B =

[
1
0

]
, C =

[
0 1

]

and R = 1. Clearly, (A,B) is stabilizable, but the condition (5.100) does not hold. It
can be verified that with F0 =

[
1
2 0

]
,(A+BF0) is a stability matrix. The recursive
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algorithm as in (5.102) and (5.103) gives

Xi =

[
1

2i+2−1
0

0 1

]
, A+BFi =

[
1

2i+1 − 1 0
0 0

]

for 0 ≤ i < ∞. Hence, (A+BFi) is stable for any finite i and Xi ≥ 0 is monotonically
decreasing. However, the limits

lim
i→∞

Xi =

[
0 0
0 1

]
, lim

i→∞
Fi = lim

k→∞

[
1

2i+1 0
]
=
[

0 0
]

and thus (A+BFi)→ A as i → ∞ which is unstable.

Example 5.24 leads to the deduction that if (C,A) has unobservable modes strictly
outside the unit circle but the stabilizability of (A,B) and (5.100) hold, then the ARE
has more than one nonnegative definite solutions. One is the stabilizing solution X .
There is at least one more, denoted by Xu, which is not stabilizing. That is, the
unobservable modes of (C,A) strictly outside the unit circle are not stabilized by
Fu = −(R+B∗XuB)−1 B∗XuA. Since the unstable modes strictly outside the unit
circle do not contribute to the performance index by the hypothesis, X ≥ Xu ≥ 0.
In this case, the maximal solution of the ARE is always the stabilizing solution. It
is now clear why the detectability of (C,A) is required in Theorem 5.22, without
which XT (t) may converge to Xu as T → ∞ with t ≥ 0 finite.

The next result states the solution to the general stationary LQR control.

Corollary 5.3. For x(t + 1) = Ax(t)+Bu(t) with x(0) = x0 �= 0, let

J∞ =
∞

∑
t=0

‖Cx(t)+Du(t)‖2, R = D∗D > 0, D∗C �= 0.

Let Ã =
(
A−BR−1D∗C

)
and C̃ =

(
I−DR−1D∗)C. Suppose that the ARE

X = Ã∗ (I +XBR−1B∗)−1
XÃ+ C̃∗C̃ (5.106)

has a stabilizing solution X. Then the optimal control law is given by

u(t) = Fx(t), F =−(R+B∗XB)−1 (B∗XA+D∗C) (5.107)

which is stabilizing and minimizes J∞. Moreover, the ARE (5.106) admits a
stabilizing solution, if and only if (A,B) is stabilizable and

rank

{[
A− e jωIn B

C D

]}
= n+m ∀ ω ∈ IR, (5.108)

where m is the dimension of the input and n the dimension of the state vector.
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Proof. Since the general LQR control is the same as that for Theorems 5.22 and 5.23
with A replaced by Ã and C replaced by C̃, the proof of the first part of the
corollary is simple and skipped. For the second part of the corollary, it is noted
that stabilizability of

(
Ã,B

)
is the same as stabilizability of (A,B), and thus, the

proof can be completed by showing that the condition

rank

{[
Ã− e jω In

C̃

]}
= n (5.109)

is equivalent to (5.108). It is straightforward to compute

⎡
⎣

In −BR−1D∗

0 I −DR−1D∗

0 R−1D∗

⎤
⎦
[

A− e jωIn B
C D

]
=

⎡
⎣

Ã− e jωIn 0
C̃ 0

R−1D∗C Im

⎤
⎦ .

The first matrix on the left is an elementary matrix that does not alter the rank of the
second matrix on the left. It follows that

rank

{[
A− e jωIn B

C D

]}
= m+ rank

{[
Ã− e jωIn

C̃

]}
,

and hence, the condition (5.108) is equivalent to the one in (5.109). �	

5.2.3 Full Information Control

In minimum variance control, the controlled output z(t) in (5.80) does not involve
the disturbance input. This is the main reason why the optimal feedback control law
is a function of only x(t). Suppose that the state-space model and the controlled
output are specified respectively by

x(t + 1) = Atx(t)+B1tv(t)+B2tu(t),

z(t) = Ctx(t)+D1tv(t)+D2tu(t). (5.110)

It can be expected that the optimal feedback control law will be a function of not
only x(t) but also of v(t) which is the white noise process satisfying (5.20). Such a
control law is termed full information control. One needs to keep in mind that often,
in the practice of feedback control, both x(t) and v(t) are not measurable directly
for which output estimators in the previous section can be employed to provide
information on x(t) and v(t). The next result provides the optimal solution to full
information control.
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Theorem 5.25. Consider the state-space system (5.110) where {v(t)} is the white
noise process satisfying (5.20). Suppose that Rt = D∗

2tD2t > 0. Let

Ãt = At −B2tR
−1
t D∗

2tCt , C̃t =
[
I−D2tR

−1
t D∗

2t

]
Ct .

Let Xt be the solution to the DRE (5.94). Then the optimal control law that
minimizes E{‖z(t)‖|UT} with UT = {u(t)}T−1

t=0 is u(t) = F1tx(t)+F2tv(t) with

F1t = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1At +D∗

2tCt) ,

F2t = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1B1t +D∗

2tD1t) . (5.111)

Theorem 5.25 for full information control is dual to Theorem 5.14 for output
estimation. Its proof is similar to that of Theorem 5.14 and is thus left as an exercise
(Problem 5.33).

It is noted that the closed-loop system for (5.110) under the full information
control law (5.111) is given by

x(t + 1) = (At +B2tF1t)x(t)+ (B1t +B2tF2t)v(t),

z(t) = (Ct +D2tF1t)x(t)+ (D1t +D2tF2t)v(t). (5.112)

The above is dual to (5.143) in Exercises for output estimation. The optimality of
the full information control shows that the static feedback gains (F1t ,F2t) in (5.111)
outperform any other controllers such as dynamic or nonlinear ones in minimization

of E
{
‖z(t)‖2 |UT

}
under the white noise disturbance {v(t)} for all t ∈ [0, T ). This

observation is important as shown in the next example.

Example 5.26. In wireless data communications, the processing burden at the
receiver site is sometimes shifted to the transmitter site which often has more
computational power for the downlink channels (from the station to the cellular
users). A precoder is designed at the transmitter site to compensate the distorted
channel so that the receivers can pick up the data directly without further digital
processing. The block diagram below shows the use of such precoders in data com-
munications where the state-space model with realization (At ,Bt ,Ct ,Dt) represents
the (downlink) wireless channel which is asymptotically stable. For simplicity, the
additive noise at the receiver site is taken to be zero, and det(D∗

t Dt) �= 0 is assumed
for each t.

Our objective is to design the linear precoder that minimizes the error variance of
es(t) under the assumption that the transmitted signal s(t) is white with zero mean
and identity covariance. It is claimed that any linear, causal, and stable precoder has
the form

xp(t + 1) = (At +BtFt)xp(t)+Btw(t), u(t) = Ftxp(t)+w(t) (5.113)
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Fig. 5.7 Precoder in data detection

for some asymptotically stabilizing Ft and w(t) = Q(t,k) � s(t) with {Q(t,k)} the
impulse response of some causal and stable LTV system at time t. Indeed, given
a linear, causal, and stable precoder with impulse response {G(t,k)}, consider the
inverse of the system in (5.113):

x̃p(t + 1) = At x̃p(t)+Btu(t), w(t) =−Ft x̃p(t)+u(t).

Denote the impulse response of the above system by L(t,k). Then Q(t,k) = L(t,k)�
G(t,k) is causal and stable. Thus, G(t,k) can be implemented by (5.113) with w(t)=
Q(t,k)� s(t). The channel is now described by

x(t + 1) = Atx(t)+Btu(t) = Atx(t)+BtFtxp(t)+BtQts(t),

ŝ(t) = Ctx(t)+Dtu(t) =Ctx(t)+DtFtxp(t)+DtQts(t),

by (5.113) and w(t) = Qts(t) where Q(t,k) = Qt is taken as a static gain for each t
temporarily. The overall system in Fig. 5.7 has a realization

⎡
⎣

At BtFt BtQt

0 At +BtFt BtQt

Ct DtFt DtQt − I

⎤
⎦ =⇒

[
At +BtFt BtQt

Ct +DtFt DtQt − I

]

after using the similarity transform

T =

[
I −I
0 I

]

to eliminate the unreachable modes. Therefore, the overall system in Fig. 5.7 is
described by

x̂(t + 1) = (At +BtFt) x̂(t)+BtQts(t),

es(t) = (Ct +DtFt) x̂(t)+ (DtQt − I)s(t),



5.3 LTI Systems and Stationary Processes 217

which has the same form as in (5.112) by taking B1t = 0, B2t = Bt , D1t = −I, and
D2t = Dt . Hence, the results in Theorem 5.25 for optimal full information control
can be applied to compute the optimal precoder gains Ft and Qt . It is noted that the
use of dynamic gains Q(t,k) do not improve its performance any further.

The closed-loop system for full information control as in Theorem 5.25 admits
the same stability properties as those for LQR control and minimum variance control
in light of the fact that they share the same DRE (5.94). Hence, all the stability
results in the previous subsection apply to the case of full information control which
will not be repeated here. In the case of stationary full information control, the
realization matrices in both the state-space model and the controlled signal are all
time invariant and the time horizon T → ∞ for the performance index. It can be
expected that the DRE (5.94) converges to the ARE

X = Ã∗ (I+XB2R−1B∗
2

)−1
XÃ+ C̃∗C̃ (5.114)

with R = D∗
2D2 which is identical to (5.106) except that B is replaced by B2 and D

by D2. In this case, the transfer matrix from v(t) to z(t) is given by

T(z) = (D1 +D2F2)+ (C+D2F1)(zI −A−B2F1)
−1(B1 +B2F2),

where F1 and F2 are the same as in (5.111) with all the time indices removed. It
is interesting to note that with the white noise disturbance {v(t)} WSS satisfying
(5.20), there holds E

{‖z(t)‖2
}
= ‖T‖2

2 where

‖T‖2 =
√

Tr{(D1 +D2F2)∗(D1 +D2F2)+ (B1 +B2F2)∗X(B1 +B2F2)}

with X the stabilizing solution to (5.114). By the optimality of the solution to full
information control, ‖T‖2 is minimized by static feedback controllers F1 and F2. In
fact, dynamic feedback controllers do not outperform static feedback controllers for
stationary full information control.

5.3 LTI Systems and Stationary Processes

This section intends to explore further optimal estimation and control for LTI state-
space models and stationary white noises. As shown in the previous two sections,
both Kalman filters and LQR controllers tend to stationary ones as the time horizon
approaches to infinity. Hence, the results for optimal estimation and control can have
frequency domain interpretations which will help deepen the understanding of the
results in the previous two sections. Several results will be presented which have
applications to various problems in design of communication and control systems
in later chapters.
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5.3.1 Spectral Factorizations

A PSD transfer matrix Ψ (z) has the form

Ψ(z) =
∞

∑
k=−∞

Γkz−k, Γ ∗
k = Γ−k, (5.115)

and Ψ (e jω)≥ 0 for all real ω . There exist spectral factorizations

Ψ(z) = HL(z)HL(z)
∼ = HR(z)

∼HR(z), (5.116)

where HL(z) and HR(z) are both causal, stable, and minimum phase. The transfer
matrices HL(z) and HR(z) are called left and right spectral factors of Ψ(z),
respectively. This section shows how Kalman filtering and LQR control can be used
to compute spectral factorizations.

Recall the random process in form of state-space model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t), (5.117)

where v(t) is the white noise satisfying (5.20) and y(t) is the observed output.
Assume that x(0) = x0 is independent of {v(t)}, has mean x0 = 0, and covariance
P satisfying the Lyapunov equation (5.47). Then the white noise hypothesis on v(t)
implies that the PSD of the observed output is

Ψy(ω) = G
(
e jω)G

(
e jω)∗ , G(z) = D+C(zI−A)−1B. (5.118)

The zero mean initial condition for x0 yields the ACS of y(t) given by

Ry(k) = E{y(t)y(t − k)∗}=
⎧
⎨
⎩

CAk−1(APC∗+BD∗), k > 0,
R+CPC∗, k = 0,
(CPA∗+D∗B)(A∗)k−1C∗, k < 0,

by Problem 5.7 in Exercises. Hence, Ψy(ω) is the Fourier transform of {Ry(k)}
which exists, if A is a stability matrix. Let Ã = A−BD∗R−1C and R = DD∗ > 0.
Then the associated filtering ARE is (5.52) which is copied below:

Σ = Ã
(
In +ΣC∗R−1C

)−1 Σ Ã∗+B
(
I−D∗R−1D

)
B∗.

Lemma 5.1. Consider the state-space system in (5.117) with v(t) of dimension m
and y(t) of dimension p. Assume that m ≥ p and R= DD∗ > 0. Let K be the Kalman
gain as in (5.51) with Σ satisfying (5.52). Then the PSD Ψy(ω) as in (5.118) has the
expression
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Ψy(ω) =
[
I−C(e jωI −A)−1K

]
(R+CΣC∗)

[
I−C(e jω I−A)−1K

]∗
. (5.119)

Proof. Direct state-space computations yield

W(z) =
[
I+C(zI−A−KC)−1K

]
G(z)

=

[
A+KC K

C I

][
A B
C D

] {
T =

[
I 0
I I

]}

=

⎡
⎣

A 0 B
KC A+KC KD
C C D

⎤
⎦=

[
A+KC B+KD

C D

]
, (5.120)

where the similarity transform T is used to eliminate the unobservable subsystem.
It is claimed that

F(z) =
[
I +C(zI−A−KC)−1K

]
=
[
I −C(zI−A)−1K

]−1
(5.121)

is a “whitening” filter in the sense that

ΦW(z) =W (z)W (z)∼ = R+CΣC∗. (5.122)

Indeed, denote AK = A+KC, BK = B+KD, and Π = BKB∗
K . Then the ARE (5.52)

can be written as

Π = BKB∗
K = (B+KD)(B+KD)∗ = Σ −AKΣA∗

K

= (zI−AK)Σ
(
z−1I−A∗

K

)
+(zI−AK)ΣA∗

K +AKΣ
(
z−1I −A∗

K

)
.

Multiplying both sides of the above equation by C(zI − AK)
−1 from left and(

z−1I−A∗
K

)−1
C∗ from right gives

ΦΠ (z) = C(zI −AK)
−1BKB∗

K

(
z−1I−A∗

K

)
C∗

= CΣC∗+C(zI−AK)
−1AKΣC∗+CΣA∗

K

(
z−1I −A∗

K

)−1
C∗.

It follows from the state-space realization of W(z) that

ΦW(z) = R+C(zI−AK)
−1BKD∗+DB∗

K

(
z−1I−A∗

K

)−1
C∗+ΦΠ (z)

= R+CΣC∗+C(zI−AK)
−1 (BKD∗+AKΣC∗)

+ (BKD∗+AKΣC∗)∗
(
z−1I−A∗

K

)−1
C∗.
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By the expression of the Kalman gain,

BKD∗+AKΣC∗ = (B+KD)D∗+(A+KC)ΣC∗

= BD∗+AΣC∗+K(DD∗+CΣC∗) = 0.

Therefore, substituting the expression of ΦΠ (z) into ΦW(z) yields (5.122) con-
cluding the fact that F(z) is a “whitening” filter. In light of (5.120) or G(z) =[
I +C(zI−A−KC)−1K

]−1
W(z) =

[
I−C(zI−A)−1K

]
W(z),

Ψy(ω) =
[
I−C

(
e jω I−A

)−1
K
]

ΦW
(
e jω)[I−C

(
e jω I−A

)−1
K
]∗

which is the same as (5.119). The proof is thus completed. �	
In the case when A is a stability matrix and the stabilizing solution to the ARE
(5.52) exits, then I −C(zI −A)−1K is not only causal and stable but also admits a
causal and stable inverse. Let R+CΣC∗ = ΩΩ ∗ be the Cholesky factorization and
Go(z) =

[
I−C(zI−A)−1K

]
Ω . Then

Φ(z) = G(z)G(z)∼ = Go(z)Go(z)
∼, (5.123)

and thus, Go(z) is the left spectral factor of Φ(z). Kalman filtering provides an
algorithm to compute spectral factorization of Φ(z) =G(z)G(z)∼. Conversely, (left)
spectral factorization can be used to compute the Kalman filtering gain K by the
expression of (5.119). It is noted that F(z) in (5.121) satisfies the following state-
space equation

x̂t+1|t = (A+KC)x̂t|t−1 −Ky(t), δy(t) = y(t)−Cx̂t|t−1, (5.124)

where x̂k|k−1 is the stationary MMSE estimate of x(k) based on the observation up
to time (k− 1). Hence, the output of F(z) is the innovation sequence.

Example 5.27. In the traditional Wiener filtering (refer to Example 5.16), a whiten-
ing filter is designed first to obtain the innovation sequence, and an estimator is then
designed for smoothing, filtering, or prediction. The whitening filter can clearly be
obtained using the spectral factorization for

Φ(z) = G1(z)G1(z)
∼+G2(z)G2(z)

∼ = Go(z)Go(z)
∼

by the fact that v1(t) and v2(t) are independent of each other and have zero means.
Thus, Ψy(ω) = G1

(
e jω)G1

(
e jω)∗+G2

(
e jω)G2

(
e jω)∗. To proceed, a realization

(A,B,C,D) for
[

G1(z) G2(z)
]

needs to be obtained before applying Lemma 5.1
for computing the whitening filter Fo(z) = G−1

o (z). It is noted that Wiener filtering
can be approached by Kalman filtering, if G2(z) = D and G1(z) =C(zI −A)−1B in
Example 5.16. In this case,

Φ(z) = R+C(zI−A)−1BB∗ (z−1I −A∗)−1
C∗
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which is identical to Ψy(ω) at z = e jω as in (5.118) provided that BD∗ = 0. Hence,
Kalman filtering can be employed to compute the whitening filter for Wiener
filtering. If in addition v1(t) = v2(t) = v(t), then Wiener filtering for m = 1 in
Fig. 5.5 coincides with Kalman filtering in Fig. 5.2. Recall that optimal output
estimation is the same as the optimal state estimation for one-step prediction or
strictly causal filtering.

The next result is dual to Lemma 5.1,and thus, the proof is omitted.

Lemma 5.2. Let G̃(z) = D +C(zI − A)−1B. Assume that R = D∗D > 0, A is a
stability matrix and the ARE (5.106) has a unique stabilizing solution X ≥ 0 so
that F in (5.107) is stabilizing. There holds factorization

G̃(z)∼G̃(z) =
[
I−F(zI −A)−1B

]∼
(R+B∗XB)

[
I−F(zI −A)−1B

]
. (5.125)

Let R+B∗XB = Ω̃ ∗Ω̃ , and G̃o(z) = Ω̃
[
I −F(zI −A)−1B

]
. Then

Φ(z) = G̃(z)∼G̃(z) = G̃o(z)
∼G̃o(z). (5.126)

Hence, G̃o(z) is a right spectral factor of Φ(z). Spectral factors Go(z) in (5.123) and
G̃o(z) in (5.126) are also called outers because both are stable and their inverses are
analytic outside the unit circle. Moreover,

Gi(z) = G−1
o (z)G(z), G̃i(z) = G̃(z)G̃−1

o (z) (5.127)

satisfy Gi(z)Gi(z)∼ = I and G̃i(z)∼G̃i(z) = I. Hence, all transmission zeros of Gi(z)
and G̃i(z) are unstable, or their inverses are analytic inside the unit circle. For this
reason, G̃i(z) is called inner and Gi(z) called co-inner. In light of (5.127) and
Lemmas 5.1 and 5.2,

G(z) = GoGi(z), G̃(z) = G̃i(z)G̃o(z)

which are termed inner-outer factorizations. The next result is thus true.

Theorem 5.28. Let A be a stability matrix and D have size p×m. (i) If p ≤ m,R =
DD∗ > 0, and the ARE (5.52) admits a unique solution Σ ≥ 0, then G(z) = D+
C(zI −A)−1B admits inner-outer factorization G(z) = GoGi(z) with

Go =

[
A KΩ
−C Ω

]
, Gi(z) =

[
A+KC B+KD
Ω−1C Ω−1D

]
, (5.128)

where K is the Kalman gain as defined in (5.51) and Ω = (R+CΣC∗)1/2. (ii) If
p ≥ m,R = D∗D > 0, and the ARE (5.106) admits a unique solution X ≥ 0, then
G̃(z) = D+C(zI−A)−1B admits inner-outer factorization G̃(z) = G̃i(z)G̃o(z) with
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G̃o =

[
A −B

Ω̃F Ω̃

]
, G̃i(z) =

[
A+BF BΩ̃−1

C+DF DΩ̃−1

]
, (5.129)

where F is defined as in (5.107) and Ω̃ = (R+B∗XB)1/2.

Remark 5.1. The hypothesis R > 0 in Theorem 5.28 can be weakened to

(i) rank
{[

C D
]}

= p, (ii) rank

{[
B
D

]}
= m, (5.130)

respectively, even if D may not have the full rank. Indeed, for (i) there holds

G(z)G(z)∼ =
[
I−C(zI−A)−1K

]
(R+CΣC∗)

[
I−C(zI−A)−1K

]∼
(5.131)

in light of (5.119) in Lemma 5.1. Hence, (i) of (5.130) implies that G(z) has normal
rank equal to p that in turn implies that (R+CΣC∗) is nonsingular. Similarly, for
(ii) there holds

G(z)∼G(z) =
[
I−F(zI −A)−1B

]∼
(R+B∗XB)

[
I −F(zI −A)−1B

]
(5.132)

that is dual to (5.131). Hence, (ii) of (5.130) implies that (R+B∗XB) is nonsingular.
Consequently, the formulas in Theorem 5.28 for computing inner-outer factoriza-
tions are valid under the weak conditions in (5.130).

5.3.2 Normalized Coprime Factorizations

Coprime factorizations have been studied in Sect. 3.2.3. For a given plant model

P(z) = D+C(zI−A)−1B (5.133)

coprime factorizations search for {M(z),N(z)} and
{

M̃(z), Ñ(z)
}

which are stable
transfer matrices such that

P(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1

and the augmented transfer matrices

G̃(z) =

[
M̃(z)
Ñ(z)

]
, G(z) =

[
M(z) N(z)

]
(5.134)

void zeros on and outside the unit circle. In other words, G̃(z) and G(z) are outers.
Normalized coprime factorizations search for coprime factors such that G̃(z) and
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G(z) are not only outers but also inner and co-inner respectively:

G̃(z)∼G̃(z) = M̃(z)∼M̃(z)+ Ñ(z)∼Ñ(z) = I,

G(z)G(z)∼ = M(z)M(z)∼ +N(z)N(z)∼ = I.

Such G(z) and G̃(z) are termed power complementary in the signal processing
literature. The following result shows that normalized coprime factorizations can
be solved via Kalman filtering and LQR control.

Theorem 5.29. Denote Ro = I +DD∗/R̃o = I+D∗D for P(z) in (5.133).

(i) Assume that (C,A) is detectable and (A,B) has no unreachable modes on the
unit circle. Let Ao = A−BD∗R−1

o C. Then the following ARE

Σ = AoΣ
(
I +C∗R−1

o CΣ
)−1

A∗
o +BR̃−1

o B∗ (5.135)

admits a unique stabilizing solution Σ = Σ∗ ≥ 0. A state-space realization of
the normalized (right) coprime factors is given by

G(z) =
[

M(z) N(z)
]
=

[
A+KC K B+KD
Ω−1

o C Ω−1
o Ω−1

o D

]
, (5.136)

where K =−(AΣC∗+BD∗)(Ro +CΣC∗)−1 and Ωo = (Ro +CΣC∗)1/2.
(ii) Assume that (A,B) is stabilizable and (C,A) has no unobservable modes on the

unit circle. Let Ão = A−BR̃−1
o D∗C. Then the following ARE

X = Ã∗
oX
(
I +BR̃−1

o B∗X
)−1

Ão +C∗R−1
o C (5.137)

admits a unique stabilizing solution X = X∗ ≥ 0. A state-space realization of
the normalized (left) coprime factors is given by

G̃(z) =

[
M̃(z)
Ñ(z)

]
=

⎡
⎣

A+BF BΩ̃−1
o

F Ω̃−1
o

C+DF DΩ̃−1
o

⎤
⎦ , (5.138)

where F =−(R̃o +B∗XB
)−1

(B∗XA+D∗C) and Ω̃o =
(
R̃o +B∗XB

)1/2
.

Proof. For (i), the pair {M(z),N(z)} in (5.136) is a pair of left coprime factors for
K is stabilizing. To show that {M(z),N(z)} is normalized, denote Bv =

[
0 B

]
and

Dv =
[

I D
]
. Let

T(z) = Dv +C(zI−A)−1Bv (5.139)
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and associate T(z) with the following Kalman filtering problem:

x(t + 1) = Ax(t)+Bvv(t), y(t) =Cx(t)+Dvv(t),

where v(t) is an independent white noise process with zero mean and identity
covariance. Applying the results of the stationary Kalman filter yields the ARE
(5.135) and the required Kalman gain K which is stabilizing by the hypothesis. In
light of the proof of Lemma 5.1, the filter

W(z) = [I +C(zI−A−KC)−1K]T(z) =
[

A+KC Bv +KDv

C Dv

]

=

[
A+KC K B+KD

C I D

]

has the white PSD. That is, W(z)W(z)∼ = ΩoΩ ∗
o = Ro +CΣC∗, and hence,

Ω−1
o W(z) is co-inner and has the same realization as in (5.136). It follows that

{M(z),N(z)} is a pair of the normalized left coprime factors. Since (ii) is dual to
(i), the proof for (ii) is similar and omitted. �	

For the given left and right normalized coprime factors in (5.136) and (5.138),
respectively, the following result gives their respective reachability and observability
gramians.

Theorem 5.30. Consider Theorem 5.29. The reachability gramian P and observ-
ability gramian Q of G(z) as in (5.136) are given respectively by:

P = Σ , Q = (I+XΣ)−1X (5.140)

while the reachability gramian P̃ and observability gramian Q̃ of G̃(z) as in (5.138)
are given respectively by

P̃ = (I +ΣX)−1Σ , Q̃ = X . (5.141)

Proof. By definition the controllability gramian of G(z) in (5.136) satisfies

P = (A+KC)∗P(A+KC)+ (Bv+KDv)(Bv +KDv)
∗

with Bv =
[

0 B
]

and Dv =
[

I D
]
. The above is the same as the ARE (5.135) if P =

Σ . Hence, Σ is indeed the controllability gramian of G(z). Now assume temporarily
that det(Ao) �= 0 and det(A+KC) �= 0. Since D∗R−1

o = R̃−1
o D∗, Ao = Ão. The ARE

in (5.137) can then be written as

[−X I
]

S

[
I
X

]
= 0, S =

[
Ao +Γ (A∗

o)
−1Π −Γ (A∗

o)
−1

−(A∗
o)

−1Π (A∗
o)

−1

]
,
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where Π =C∗R−1
o C and Γ = BR̃−1

o B∗ (refer to Appendix A). Denote

T =

[
I Σ
0 I

]
=⇒ T−1 =

[
I −Σ
0 I

]
.

Let S̃ = T ST−1. The ARE in (5.137) can be written as

[−Z I
]

S̃

[
I
Z

]
= 0, Z = (I+XΣ)−1X . (5.142)

Direction computation yields

S̃ =

[
S̃11 S̃12

S̃21 S̃22

]
=

[
Ao +(Γ −Σ)(A∗

o)
−1Π 0

−(A∗
o)

−1Π (A∗
o)

−1(ΠΣ + I)

]

due to S̃12 = −[AoΣ(I +ΠΣ)−1A∗
o +Γ −Σ

]
(A∗

o)
−1 (ΠΣ + I) = 0 by the ARE in

(5.135). On the other hand, the results on Kalman filtering with the dynamic model
in (5.139) show that

A+KC = Ao(I +ΠΣ)−1 =⇒ S̃22 = [(A+KC)∗]−1.

Since the ARE in (5.135) can be written as Γ −Σ =−AoΣ(I +ΠΣ)−1A∗
o,

S̃11 = Ao −AoΣ(I +ΠΣ)−1Π = Ao −AoΣC∗(Ro +CΣC∗)−1C = A+KC.

Finally, by the expression of S̃22,

S̃21 = −(A∗
o)

−1Π =−[(A+KC)∗]−1(I +ΠΣ)−1Π

= −[(A+KC)∗]−1C∗(Ro +CΣC∗)C =−[(A+KC)∗]−1C∗
ΩCΩ ,

where CΩ = Ω−1
o C. Substituting the above into (5.142) yields

0 =
[−Z I

]
[

A+KC 0

−[(A+KC)∗]−1C∗
ΩCΩ [(A+KC)∗]−1

][
I
Z

]

= −Z(A+KC)+ [(A+KC)∗]−1Z − [(A+KC)∗]−1C∗
ΩCΩ .

Multiplying the above by (A+KC)∗ from left leads to

Z = (A+KC)∗Z(A+KC)+C∗
ΩCΩ

which verifies that Q = Z = (I +XΣ)−1X is the observability gramian of G(z). If
A and (A+KC) are singular, then A and (A+KC) can be perturbed to Aε and AεK ,
respectively, by adding εI such that both are nonsingular. Similar proof can thus be
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adopted to obtain the observability gramian Zε . The limit ε → 0 can be taken to
conclude the proof for the case when A and (A+KC) are singular. As (5.141) is
dual to (5.140), its proof is skipped. �	

Notes and References

There are many papers and books on optimal control for continuous-time systems.
See [5, 39, 57, 58, 74, 122, 126] for a sample of references. For linear discrete-time
systems, readers are referred to [1, 7, 11, 16, 25, 68, 69] for a glimpse of work on
optimal control. For optimal estimation or filtering, most of work has been focused
on discrete-time systems, except the Kalman–Bucy filter [60]. Many books are
available with [8, 54] as the representative.

Exercises

5.1. Let X be a random vector of dimension n > 1 that is Gaussian distributed with
mean zero and covariance Σxx. Suppose that Σxx has rank m < n. Show that its PDF
has the form

pX(X = x) =
1√

(2π)m ∏m
i=1 σ2

i

exp

{
−1

2
x∗Σ+

xxx
}
,

where Σ+
xx is the pseudoinverse of Σxx and {σ2

i }m
i=1 are the m nonzero singular values

of Σxx. (Hint: Consider first Σxx = diag(σ2
1 , . . . ,σ2

m,0, . . . ,0) and then extend it to
the general case.)

5.2. Suppose that the system is described by state-space model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t),

where {v(t)} is a WSS white noise with mean zero and covariance Qv. Let H(z) =
D+C(zI−A)−1B be the transfer matrix. Show that

‖y‖P =
∥∥∥HQ1/2

v

∥∥∥
2

:=

√
Tr

{
1

2π

∫ π

−π
H(e jω)QvH(e jω)∗ dω

}

=
√

Tr{CPC∗+DQvD∗},

where P=APA∗+BQdB∗ is the covariance of the state vector x(t). Recall that ‖·‖P

is the power norm as defined by (2.49) in Chap. 2.
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5.3. Consider the nth order state-space system

x(t + 1) = Ax(t), y(t) =Cx(t)+ v(t)

with x(0) = x0 �= 0 and v(t) the measurement noise. Assume that (C,A) is
observable. Let O� be the observability matrix of size �≥ n and

Y� = vec
{[

y(0) y(1) · · · y(�− 1)
]}

.

Show that the estimate x̂0 which minimizes the estimation error ‖Y�−O�x̂0‖ is

given by x̂0 =
(
O∗
� O�

)−1
O∗
� Y�.

5.4. Prove the expression for the conditional PDF in (5.6). What modifications
are needed for the PDFs of X and Y and for the conditional PDF in (5.6), if the
dimensions of X and Y are different from each other?

5.5. Let X and Y be two jointly distributed random variables. Let x̂ be the optimal
estimate, given observation Y = y, such that

E{|X − x̂| |Y = y} ≤ E{|X − z| |Y = y} ∀ z.

That is, x̂ minimizes the absolute error of the estimation. Show that x̂ is the median
of the conditional density pX |Y (x|y); i.e.,

PX |Y [X ≤ x̂|y] = PX |Y [X ≥ x̂|y] = 0.5.

5.6. Let X and Y be jointly distributed. If E{XY∗} = 0, then X and Y are termed
orthogonal. Show that the linear MMSE estimate X̂ in (5.15) as in Theorem 5.5
satisfies the orthogonality condition

E
{(

X − X̂
)

Y ∗}= 0.

Give a geometric interpretation for the above orthogonality condition.

5.7. Suppose that BtD∗
t �= 0 for the random process in (5.19). Show that for t ≥ k,

Qt,k = E
{
[y(t)− yt ] [y(k)− yk]

∗}

= CtΦt,kPkC
∗
k +CtΦt,k+1BkD∗

k +DtD
∗
t δ (t − k),

Γt,k = E
{
[x(t)− xt ] [y(k)− yk]

∗}= Φt,kPkC
∗
k +Φt,k+1BkD∗

k .

5.8. Suppose that Ψ and Θ are both square and hermitian, which may not
necessarily have the same dimensions. Assume Ψ > 0. Show that
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Z−1 =

[
Ψ Ω ∗

Ω Θ

]−1

=

[
Ψ−1 0

0 0

]
+

[
Ψ−1Ω ∗

−I

]
∇−1 [ΩΨ−1 −I

]

whenever Z is also square and hermitian positive definite, where

∇ =Θ −ΩΨ−1Ω ∗

is called Schur complement. (Hint: Use factorization

Z =

[
Ψ Ω ∗

Ω Θ

]
=

[
I 0

ΩΨ−1 I

][
Ψ 0
0 ∇

][
I Ψ−1Ω ∗

0 I

]

to compute the inverse of Z). What if Θ > 0 but Ψ is singular?

5.9. Prove Theorem 5.7.

5.10. (i) Use the matrix inversion formula (refer to Appendix A)

(
F +HJ−1G

)−1
= F−1 −F−1H

(
J +GF−1H

)−1
GF−1

to show that with the Kalman gain in (5.35),

At +KtCt = At
(
In +ΣtC

∗
t R−1

t Ct
)−1

.

(ii) Show that the DRE (5.36) can be equivalently written as

Σt+1 = At
(
In +ΣtC

∗
t R−1

t Ct
)−1 ΣtA

∗
t +BtB

∗
t

= (At +KtCt)Σt (At +KtCt)
∗+BtB

∗
t +KtRtK

∗
t .

(iii) Show that for BtD∗
t �= 0, the DRE in (5.43) can be written as

Σt+1 = Ãt
(
In +ΣtC

∗
t R−1

t Ct
)−1 Σt Ã

∗
t +Bt

(
Im −D∗

t R−1
t Dt

)
B∗

t

= (At +KtCt)Σt (At +KtCt)
∗+(Bt +KtDt) (Bt +KtDt)

∗ ,

where Ãt = At −BtD∗
t R−1

t Ct and Kt =−(AtΣtC∗
t +BtD∗

t )(Rt +CtΣtC∗
t )

−1.

5.11. Consider linear estimator

x̃t+1 = (A+LtCt)x̃t −Lty(t), x̃0 = x0

for the process in (5.19). Let Qt = E{[x(t)− x̃t][x(t)− x̃t ]
∗} be its error covariance.

Show that Qt ≥ Σt for all t ≥ 0 with Σt the error covariance for the Kalman filter.
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5.12. (Kalman filter as a whitening filter) For the random process described in
(5.19), consider the linear estimator of the form

x̂(t + 1) = (At +LtCt)x̂(t)−Lty(t), δy(t) = y(t)− ŷ(t)

with ŷ(t) = Ct x̂(t) and x̂(0) = x0. Note that {δy(t)} is the innovation sequence.
Show that the output process {δy(t)} is white (i.e.,

E{δy(t)δy(t − k)∗}= E{δy(t)δy(t)∗}δ (k)

for all t and k), if and only if

(Bt +LtDt)D
∗
t +(At +LtCt)XtC

∗
t = 0,

where Xt = E{[x(t)− x̂(t)][x(t)− x̂(t)]∗} is the error covariance. Show also in this
case that Lt is necessarily the Kalman gain Kt as in Corollary 5.1 and x̂(t + 1) =
x̂t+1|t is the linear MMSE estimate of x(t + 1) based on Yt .

5.13. Show that the stabilizing solution to the ARE (5.50), if it exists, is unique.
(Hint: Assume Σ1 and Σ2 are both stabilizing solutions to (5.50). Show that:

ΔΣ = (A+K1C)ΔΣ (A+K2C)∗, ΔΣ = Σ1 −Σ2,

where Ki =−AΣiC∗(R+CΣiC∗)−1 for i = 1,2.)

5.14. For Example 5.12, find the optimal linear receiver in the case H0(t) �= 0
and discuss its performance in comparison with that of the optimal linear receivers
designed in Example 5.15 assuming that Hk are the same for 1 ≤ k ≤ �.

5.15. Prove Theorem 5.14 for the case BtD∗
2t �= 0.

5.16. Suppose that the random process has the state-space form:

x(t + 1) = Atx(t)+Btv(t), y(t) =Ctx(t)+Dtv(t),

where v(t) is a white process satisfying (5.20) and x(0) = x0 is random and
independent of {v(t)} with mean x0 and covariance P0. (i) Find the linear MMSE
estimator for x(t) based on observation {y(k)}t

k=0. (ii) Find the linear MMSE
estimator for v(t) based on observation {y(k)}t

k=0. (Hint: Use Theorem 5.14).

5.17. Use Simulink toolbox to program and simulate data detection for a SISO
channel with gains hk = 1/

√
5 for 0 ≤ k ≤ � = 4. The symbol detector is the

linear receiver (based on Kalman filter) followed by a quantizer Qn(·) = sign(·).
The observation noise {v(t)} can be generated by normal distributed uncorrelated
or white random variables with variance 0.1. The data block of the same size can
generated in a similar way followed by Qn(·) = sign(·) to produce ±1 sequence. It
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is emphasized that the data and noise sequences are uncorrelated. In the context of
Example 5.15, do the following:

(i) Design an MMSE estimator to estimate s(t −m) with m = 2� followed by a
quantizer based on observation of the channel output up to time t.

(ii) Simulate and access the average performance of the detector by counting the
number of detection errors in each block of 104 data assuming that the receiver
knows the first � transmitted data.

5.18. For the output estimator in Theorem 5.14, show that the output error variance
E
{‖ez(t)‖2

}
is given by

Tr{(D1t +LtD2t)(D1t +LtD2t)
∗+(C1t +LtC2t)Σt(C1t +LtC2t)

∗}

(Hint: Let e(k) = x(k)− x̂k|k−1 for k = t, t + 1. Show first that

e(t + 1) = (At +KtC2t)e(t)+ (Bt +KtD2t)v(t)
ez(t) = (C1t +LtC2t)e(t)+ (D1t +LtD2t)v(t)

(5.143)

and then compute the variance of ez(t).)

5.19. Consider the equivalent Wiener filtering as in Fig. 5.6 where G1(z) and G2(z)
are both stable and causal. Suppose that z−mG1(z) is noncausal in the case m < 0.
Decompose

z−mG1(z) = GC(z)+GA(z),

where GC(z) is causal and GA(z) is anticausal. Show that the optimal estimation for
the output of GA(z) with white noise input is zero and thus conclude that the optimal
estimate ẑt|t−m is independent of GA(z). Provide a design procedure for the optimal
output estimation. (Hint: Use the result from the solution to Problem 2.19.)

5.20. Consider the nth order state-space system

x(t + 1) = Ax(t)+Bu(t), x(0) = x0 �= 0.

Assume that (A,B) is controllable with C� the controllability matrix of size � > n.
Let

Ũ� = vec
{[

u(�− 1) u(�− 2) · · · u(0)
]}

.

Show that the control input Ũ� = −C ∗
� (C�C

∗
� )

−1A�x0 has the minimum energy∥∥Ũ�

∥∥2
among all possible control inputs which brings x(�) to the origin.

5.21. Use direct computation to show that the solution Xt to the DRE (5.86) with
boundary condition XT = 0 satisfies

X0 ≥ X1 ≥ ·· ·XT−1 ≥ XT = 0.
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5.22. Show that the closed-loop system under the LQR control (5.87) is x(t +1) =(
I+BtR−1

t B∗
t Xt+1

)−1
Atx(t). Show also that the DRE (5.86) can be written as

Xt = A∗
t Xt+1

(
I+BtR

−1
t B∗

t Xt+1
)−1

At +Qt , XT = QT .

5.23. Show that the control DRE in (5.86) can be written into:

Xt = (At +BtFt)
∗Xt+1(At +BtFt)+C∗

t Ct +F∗
t RtFt

with Ft in (5.87) being the optimal state-feedback gain for the LQR control. If the
control law u(t) = Gtx(t) is used with Gt �= Ft , show that the solution to

Yt = (At +BtGt)
∗Yt+1(At +BtGt)+C∗

t Ct +G∗
t RtGt

satisfies Yt ≥ Xt for 0 ≤ t ≤ T where XT = YT = 0 is assumed.

5.24. For the system model in (5.82), let the controlled output be z(t) = Ctx(t)+
Dtu(t) and the performance index be

JT = x(T )∗QT x(T )+
T−1

∑
t=0

‖z(t)‖2. (5.144)

Denote Ãt = At − B2tR
−1
t D∗

t Ct and C̃t =
(

I−Dt (D∗
t Dt)

−1 D∗
t

)
Ct . Show that the

control law which minimizes JT is given by u(t) = Ftx(t) where

Ft = −(Rt +B∗
t Xt+1Bt)

−1 (B∗
2tXt+1At +D∗

t Ct) , Rt = D∗
t Dt > 0

Xt = Ã∗
t Xt+1

(
I+BtR

−1
t B∗

t Xt+1
)−1

Ãt + C̃∗
t C̃t , XT = QT .

5.25. Let the state-space model be as in (5.82). Show that if the open-loop system
x(t + 1) = Atx(t) is asymptotically (exponentially) stable, then the closed-loop
system (5.95) for the LQR control as described in Theorem 5.17 is asymptotically
(exponentially) stable as T → ∞.

5.26. Prove Theorem 5.20.

5.27. For any stabilizing state-feedback gain F , show that

X = (A+BF)∗X(A+BF)+F∗RF +Q

= A∗ (In +XBR−1B∗)−1
XA+Q+Δ∗

F(R+B∗XB)ΔF ,

where ΔF = F + (R + B∗XB)−1B∗XA. Establish that (a) the LQR control law
minimizes Tr{X} and (b) the stabilizing solution to the ARE (5.96) is maximal
among all possible nonnegative solutions to the ARE (5.96).
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5.28. Consider x(t + 1) = Ax(t)+Bu(t) and assume that (A+BF) is a stability
matrix for some state-feedback gain F . (i) Let u(t) = Fx(t) be the state-feedback
control law. Show that

J(F) =
∞

∑
t=0

‖u(t)‖2 + ‖Cx(t)‖2 = x′0Xx0,

where X = (A+BF)∗X(A+BF)+F∗F+C∗C and x(0) = x0 is the initial condition.
(ii) Let Xm ≥ 0 be the stabilizing solution to

Xm = A∗Xm(I+BB∗Xm)
−1A+C∗C.

Show that Xm ≤ X .

5.29. Suppose that the ARE (5.96) admits a stabilizing solution. Show that X is
positive definite, if and only if all stable modes of (C,A) are observable where Q =
C∗C.

5.30. (i) Let Ã=A−BR−1D∗C and C̃ =
[
I−DR−1D∗]C with R=D∗D> 0. Show

that the ARE X = Ã∗X
[
I+BR−1B∗X

]−1
Ã+ C̃∗C̃ can be equivalently written

as the following ARE:

X = A∗XA− (A∗XB+C∗D)(R+B∗XB)−1(B∗XA+D∗C)+C∗C.

(ii) What are the equivalent AREs in the case of optimal estimation?

5.31. Consider the DRE

Xt(T ) = A∗Xt+1(T )
[
In +BR−1B∗Xt+1(T )

]−1
A+Q, XT (T ) = 0.

Show that {Xt(T )} satisfy Xt(T )≥ Xt+1(T ) for 0 ≤ t < T . (Hint: Use the same idea
as in the proof of Proposition 5.1).

5.32. Suppose that (A,B) is stabilizable and the condition (5.100) holds. Construct
a numerical example for which the ARE (5.96) has a solution Xu ≥ 0 that is not
stabilizing.

5.33. Prove Theorem 5.25. (Hint: Consider the augmented state vector x̆(t) =[
x(t)∗ v(t)∗

]∗
and then convert the full information control to the state-feedback

control problem as in Theorem 5.19.)

5.34. Let (A,B,C,D) be a minimal realization of G(z) with A ∈ Cn×n, B ∈ Cn×m,
and C ∈ Cp×n. Assume that D has full rank. (i) If p ≤ m, show that z = z0 is a
transmission zero of G(z), if and only if z0 is an unreachable mode of

(
Ã, B̃

)
with

Ã = A−BD∗(DD∗)−1C, B̃ = B
(
I−D∗(DD∗)−1D

)
.
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(ii) If p ≥ m, show that z = z0 is a transmission zero of G(z), if and only if z0 is an
unobservable mode of

(
C̃, Ã

)
with

Ã = A−B(D∗D)−1 D∗C, C̃ =
(

I−D(D∗D)−1 D∗
)

C.

5.35. Let G(z) in (5.118) be stable. (i) Show that

Φ(z) = G(z)G(z)∼ = DD∗+CPC∗+C(zI−A)−1L+L∗ (z−1I−A∗)−1
C∗,

where L = APC∗+BD∗ and P = APA∗+BB∗. (ii) Show that

Φ(z) = G(z)∼G(z) = D∗D+B∗QB+H(zI−A)−1B+B∗ (z−1I −A∗)−1
H∗,

where H = B∗QA+D∗C and Q = A∗QA+C∗C.

5.36. Let G(z) = D+C(zI−A)−1B with A a stability matrix, R = DD∗ nonsingular
and BD∗ = 0. (i) Show that

G
(
e jω)G

(
e jω)∗ = R+C

(
e jω I−A

)−1
BB∗ (e− jωI −A∗)−1

C∗ ≥ R.

(ii) Use Lemma 5.1 and (i) to show that for each real ω ,

[
I −C(e jωI−A)−1K

]
(R+CΣC∗)

[
I−C(e jωI −A)−1K

]∗ ≥ R.
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