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Preface

Linear system theory and optimal estimation and control are taught at the graduate
level in many universities. This book is written primarily for graduate students
in electrical engineering who specialize in control. Yet, the mathematical theory
applies not only to feedback control systems but also to communication and signal
processing. Indeed, from two decades of my teaching in the advanced digital
control class at LSU, I found that whenever I introduced applications to digital
communications and signal processing such as equalization and precoding, more
graduate students came to attend my class. Teaching of this new application
stimulated more interests from students. Control students were eager to learn
applications of control theory to communications that had more actions in the high-
tech boom time, while students from communication and signal processing saw
the new prosect of the mathematical system theory in their specialized area. These
observations motivated me to seriously consider expansion of my teaching material
to include new applications other than feedback control. However, it is also true that
control and communication seldom interact in the last century, in spite of being two
of the most successful areas in engineering system design. The two areas are more
or less isolated from each other in terms of teaching and research.

Two major technological developments, namely, wireless communications and
the Internet, in the last decade have changed the aforementioned isolatory phe-
nomenon. Because of the existence of multipath and fading, the dynamic and
random behaviors of the wireless channel cannot be ignored. And because of the
multiuser nature for Internet, the communication channel is shared by more than one
user. As such, the emergence of the wireless Internet has brought in design issues
for dynamic multivariable communication systems. On the other hand, wireless
communications and Internet have made remote and networked control systems
possible, in which feedback controllers and physical processes are situated in two
different locations and connected via wireless channels or Internet. Therefore,
communication issues also need be addressed in control system design. It is felt
strongly by this author that a unified approach is necessary to design of optimal
MIMO dynamic systems in both control and communications. This text provides
a platform for graduate students and researchers in these two different areas to

vii
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study and work together. Such multidisciplinary interactions will greatly benefit
each other and further advance the research frontier in engineering system design.

This text is focused on system and control theory with applications to design
of feedback control systems and the signal processing aspect of the design issues.
It is written for the first or second year graduate students, who are interested in
general areas of control, or communications, and signal processing. The readers are
assumed to have some basic knowledge on random processes and linear algebra,
and have taken some basic undergraduate courses in discrete-time control, or
digital communications and digital signal processing from electrical engineering.
The appendices provide a quick review for the required mathematical background
materials. Students are encouraged to read the related texts to strengthen their
background knowledge.

This book consists of two parts. The first part presents linear system theory and
theory of optimal estimation and optimal control for linear systems. State space is
the main subject that provides not only the mathematical insight into the structure of
linear systems but also the computational tool for obtaining the solution to optimal
estimation and optimal control. The second part presents the design methodology for
linear systems with feedback control and data communications as application areas.
The design issues in modeling, system identification, channel estimation, symbol
detection in data communications, and disturbance rejection in feedback control are
addressed based on the theories from the first part.

It is observed by this author that design has been overlooked for the past two
decades in engineering curricula at the graduate level. While courses on advanced
research topics are important in training graduate students, the lack of design
experience for graduate students may weaken the quality of our research programs.
This text represents an effort to teach engineering system design at the graduate
level, in hope to bring design into the graduate curriculum. The author welcomes
any comments and suggestions regarding the materials in this text.

Baton Rouge, LA Guoxiang Gu
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SNR Signal-to-noise ratio
SVD Singular value decomposition
TLS Total LS
TMA Target motion analysis
WSS Wide-sense stationary
ZF Zero forcing



Chapter 1
Introduction

Digital technology has taken over many aspects of our society. From iPod to iPhone,
and from eCommerce to eBook, such a digital take over has been one of the most
fundamental changes in our time. Although digital take over began at the birth of
digital computer, it has been accelerated in the past a few decades by the invention
of personal computer (PC) and the development of Internet. Digital technology has
conquered us all and changed not only our industry but also our daily life.

This textbook is aimed at covering both the theory and design for linear discrete-
time systems built upon the digital technology with applications focusing on
feedback control and wireless communications. The material of the book covers
from mathematical models of discrete-time signals and systems to design of
feedback control systems and wireless transceivers which are fairly extensive and
are organized into eight different chapters. In order to help readers’ mathematical
background, three additional appendix chapters are prepared which make this text
quite self-contained. While different opinions exist, it is believed that mathematics
can and should be learned together with application examples for at least students
in engineering.

Discrete-time/digital systems are originated from the continuous-time/analog
world, the world we live in. It is the digital technology that transforms analog
systems in continuous time into the digital ones in discrete time with the offer of
unprecedented reliability and efficiency in large economic scale. We are compelled
to get into the digital world without which we will not be able to compete in the
global economy. For this reason, every college student in engineering needs to have
some knowledge on linear discrete-time/digital systems. However, this textbook is
not for every one. It is prepared for those readers who wish to have more solid
theoretical understanding and more advanced design techniques than what they
learned in their undergraduate studies. Even though this book can also be used as
a text for senior undergraduate students specialized in control or communications,
more suitable readers are first and second year graduate students. Because of the
technological advances in the past half century, physical systems from controls
and communications become increasingly multivariable and involve multi-input and
multi-output (MIMO). MIMO systems are more difficult to analyze, and their design

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 1, © Springer Science+Business Media, LLC 2012
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2 1 Introduction

poses considerable more challenges than single-input/single-output (SISO) systems.
This textbook studies MIMO discrete-time systems, their mathematical properties,
and various design issues. This introductive chapter presents some MIMO examples
arising from controls and communications, and discretization of continuous-time
systems.

1.1 Control Systems

Control is essential to modern technologies. Without it, there would be no running
transportation vehicles in air or on ground or under water and no operating industrial
machines, power plants, etc. In one word, no modern technology would function
properly without control.

A physical system is a man-made device or machine. Control of the system
requires understanding of its properties, its purpose, and its environment. In
addition, sensors capable of measuring its state will have to be employed, and
actuators capable of adjusting its state will have to be installed. These rough
descriptions can all be made precise using mathematics. This section will present
several physical processes. Moreover, discretization of continuous-time systems will
be investigated in order that digital control can be applied.

1.1.1 MIMO Dynamic Systems

SISO control systems are abundant which can be traced back to ancient Greeks
of 2,000 years ago who invented float regulators of water clocks. MIMO feedback
control systems have a much shorter history which are the result of insatiable needs
of our industry and ultimately our society. Consider an inverted pendulum mounted
on a cart that is driven by a motor. See the schematic diagram in Fig. 1.1. The system
shares similar dynamics to those of cranes in construction sites and rocket vehicles
used in space exploration. Initially, the objective is confined to stabilization of the
inverted pendulum by regulating the angle variable θ (t) to near zero. Later, people
began to consider control of the position of the cart in addition to stabilization of
the inverted pendulum which makes it a special MIMO system with one input/two
output.

θ

θ

M

L

p

v

vp

vz

u(t)

m

Fig. 1.1 Inverted pendulum



1.1 Control Systems 3

How can the inverted pendulum be controlled? Our past experience of education
and practice in control indicates the necessity of the mathematical model that
describes the pendulum-cart dynamics. A commonly adopted approach employs
the Lagrange mechanics in modeling that is illustrated with a step by step
procedure next.

Step 1 involves computation of the total kinetic energy (KE) of the system.
Because of no vertical or rotational movement for the cart,

KEcart =
1
2

Mṗ2

with p the position of the cart. The KE for the pendulum is found to be

KEpen =
1
2

m
(
v2

p + v2
z

)
.

In light of the schematic diagram in Fig. 1.1,

vz = Lsin(θ )θ̇ , v2
p = ṗ2 +L2 cos2(θ )θ̇ 2,

due to both rotational and translational movement in p direction. Thus

KEpen =
1
2

m
(

ṗ2 +L2θ̇ 2 − 2 ṗLcos(θ )θ̇
)
.

Since the total KE is the sum of KEcart and KEpen, there holds

KE =
1
2

{
Mṗ2 +m

(
ṗ2 +L2θ̇ 2 − 2 ṗLcos(θ )θ̇

)}
.

Step 2 computes the total potential energy (PE). Clearly, only the pendulum
admits the PE, and thus, PE = mgLcos(θ ).

Step 3 forms LE = KE−PE, the Lagrange of the system, as

LE =
1
2

{
Mṗ2 +m

(
ṗ2 +L2θ̇ 2 − 2 ṗLcos(θ )θ̇

)}−mgLcos(θ ),

and then computes the equations of motion in accordance with the following general
principle:

d
dt

[
∂LE

∂ ṗ

]
−
[
∂LE

∂ p

]
= u, (1.1)

d
dt

[
∂LE

∂ θ̇

]
−
[
∂LE

∂θ

]
= 0. (1.2)
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The right-hand side consists of “generalized forces” or external forces correspond-
ing to each degree of freedom: θ and p. The only external force is u(t) applied in
direction of p. By direct calculations,

∂LE

∂θ
= mLsin(θ )ṗθ̇ +mgLsin(θ ),

∂LE

∂ θ̇
= mL2θ̇ −mLcos(θ )ṗ,

∂LE

∂ p
= 0,

∂LE

∂ ṗ
= (M+m)ṗ−mLcos(θ )θ̇ ,

d
dt

[
∂LE

∂ θ̇

]
= mL2θ̈ −mLcos(θ )p̈+mLsin(θ )θ̇ ṗ,

d
dt

[
∂LE

∂ ṗ

]
= (M+m)p̈−mLcos(θ )θ̈ +mLsin(θ )θ̇ 2.

Substituting the above into (1.1) and (1.2) gives

(M+m)p̈−mLcos(θ )θ̈ = u−mLsin(θ )θ̇ 2,

mL2θ̈ −mLcos(θ )p̈ = mgLsin(θ ),

which can be written into the matrix form:
[−mLcos(θ ) M+m

mL2 −mLcos(θ )

][
θ̈
p̈

]
=

[
u−mLsin(θ )θ̇ 2

mgLsin(θ )

]
. (1.3)

The matrix on left is called inertial matrix, and its determinant is given by

Δ = (M+m)mL2 −m2L2 cos2(θ ) = (M +msin2(θ ))mL2. (1.4)

Solving θ̈ and p̈ in (1.3) yields

θ̈ =
mL
Δ
(
cos(θ )u−mLsin(θ )cos(θ )θ̇ 2 +(M+m)gsin(θ )

)
, (1.5)

p̈ =
mL2

Δ
(
u−mLsin(θ )θ̇ 2 +mgsin(θ )cos(θ )

)
. (1.6)

The three steps as described above are very general that applies not only to
modeling of the inverted pendulum but also to modeling of other mechanical
systems. The example of inverted pendulum alludes the ordinary different equations
(ODEs) in describing the dynamic motions of physical systems. For the inverted
pendulum, the ODEs are nonlinear functions of θ and p, but independent of time.
For other mechanical systems, the ODE model may depend on time as well. More
complex systems may have to be described by partial different equations (PDEs)
which are beyond the scope of this text.
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In design of MIMO control systems, state-space form of the mathematical model
is more convenient. Denote vector by boldfaced letter and =⇒ for “imply.” The state
vector for the inverted pendulum can be defined as

x(t) =

⎡

⎢
⎢
⎢
⎢
⎣

x1(t)

x2(t)

x3(t)

x4(t)

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

θ (t)
θ̇(t)
p(t)

ṗ(t)

⎤

⎥
⎥
⎥
⎥
⎦

=⇒ ẋ(t) = f[x(t)]+ g[x(t),u(t)]. (1.7)

Let fi(x) and gi(x,u) be the ith element of f(·) and g(·), respectively. It is easy to
verify that f2(x) and f4(x) are given in (1.6) and (1.5), respectively,

f1(x) = x2, f3(x) = x4, g1(x,u) = g3(x,u) = 0,

and g2(x,u) = mLucos(x1)/Δ ,g4(x,u) = mL2u/Δ with Δ in (1.4).
In the general case, a MIMO system is described by state-space model of

ẋ = f(t,x,u), y = h(t,x,u), (1.8)

where u and y are input and output vectors, respectively. For the inverted pendulum,
input is scalar and output is a vector consisting of θ and p. The argument of t
indicates the possible dependence of f(·) and h(·) on time.

Control of general nonlinear systems in form of (1.8) is extremely difficult.
A tractable approach employs small signal analysis to obtain an approximate
linear system prior to design of feedback controllers. This method computes the
equilibrium points of f(t,xe,ue) = 0 first and then chooses some pair of the
roots (xe,ue) as the desired operating point. Selection of (xe,ue) depends on control
objectives, system properties and other possible factors. A first-order approximation
can be applied to linearize the system in (1.8). Define

At =
∂ f
∂x

∣
∣
∣
∣
x=xe,u=ue,

Bt =
∂ f
∂u

∣
∣
∣
∣
x=xe,u=ue,

Ct =
∂h
∂x

∣
∣∣
∣
x=xe,u=ue,

Dt =
∂h
∂u

∣
∣∣
∣
x=xe,u=ue.

Let δx = x− xe and δu = u−ue. Then the linear state-space system

δ ẋ = Atδx+Btδu, y =Ctδx+Dtδu (1.9)

represents a first-order approximation or linearization to the nonlinear system in
(1.8). Such an approximation works well for small perturbations. The quadruplet
(At ,Bt ,Ct ,Dt) is called realization of the linearized system.
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Fig. 1.2 Feedback control system for inverted pendulum

For inverted pendulum, the equilibrium point of xe = 0 and ue = 0 is the
meaningful one. Carrying out the linearization about the equilibrium point shows
that the realization matrices are time invariant given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
(M+m)g

ML
0 0 0

0 0 0 1
mg
M

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1

ML
0
1
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

C =

[
1 0 0 0
0 0 1 0

]
, D =

[
0
0

]
,

by output measurements x1 = θ and x3 = p. The inverted pendulum tends to
fall down in the case of large signal sizes of x(t) which is captured by unstable
eigenvalues of A. The linearized model works well for controlled pendulum in both
Matlab simulations and in laboratory experiments.

Example 1.1. If the motor dynamics are included, the linearized state-space model
has realization matrices given in Problem 1.2 of Exercises. The transfer functions
from uin to θ and to p can be obtained, respectively, as

Gup(s) =
KmKg
MRr

(
s2 − g

L

)

s
(

s3 +
K2

mK2
g

MRr2 s2 − (M+m)g
ML s− gK2

mK2
g

MLRr2

) ,

Guθ (s) =
KmKg
MLRr s

s3 +
K2

mK2
g

MRr2 s2 − (M+m)g
ML s− gK2

mK2
g

MLRr2

.

The block diagram of the pendulum control system is shown in Fig. 1.2. For the
laboratory setup of the inverted pendulum system by the Quanzer Inc., the two
transfer functions are given, respectively, by

Gup(s) =
2.4805(s+ 5.4506)(s−5.4506)

s(s+ 12.2382)(s− 5.7441)(s+4.7535)
, (1.10)
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Guθ (s) =
7.512s

(s+ 12.2382)(s− 5.7441)(s+4.7535)
. (1.11)

If the following two simple dynamic compensators

Dpu(s) = Kdy
s+ zy

s+ pd
, Dθu(s) = Kdθ

s+ zθ
s+ pd

, (1.12)

are implemented in feedback block diagram of Fig. 1.2 with parameters specified
in Problem 1.3 of Exercises, then the inverted pendulum is stabilized. This example
exhibits the resilience of the linearization method. In fact, it is difficult to push down
the inverted pendulum by hands in the lab experiment unless excessive forces are
exerted to the pendulum.

While the linearization method works well for the control system of the inverted
pendulum, it may not work well for other nonlinear control systems because of the
large dynamic ranges of the equilibrium points. In this case, a set of linear feedback
controllers can be designed for linearized systems at a number of equilibrium points
which are then scheduled in operation. The actual controller is an interpolation of
several controllers designed for equilibrium points close to the operating point.
Such a method is often referred to as gain schedule which is widely used. The
performance of the gain scheduled system is clearly hinged to that of each linear
feedback control system. For this reason, linear systems play a fundamental role in
feedback control design that is the focus of this text.

1.1.2 System Discretization

By definition, a discrete-time signal takes its values at only a set of discrete-time
samples and is undefined elsewhere. This text considers signal samples taken at only
equally spaced time instants. While continuous-time signals are abundant, discrete-
time signals are often obtained from discretization of continuous-time ones. The
ideal sampler is employed to take samples of the continuous-time signal sc(t) in
accordance with

s(k) = sc(kTs), k = 0,±Ts,±2Ts, . . . , (1.13)

where Ts > 0 is the sampling period. Discrete-time signals in practice involve
quantization as well that is not addressed in this text.

For a given discrete-time signal s(k) = sc(kTs), its frequency response is defined
as the discrete-time Fourier transform (DTFT) given by

S
(
e jω)= Fd [s(k)] :=

∞

∑
k=−∞

s(k)e− jkω . (1.14)
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A natural question is the relationship between the DTFT and continuous-time
Fourier transform (CTFT) defined by

Sc( jω) = Fc[sc(t)] :=
∫ ∞

−∞
sc(t)e

− jω dω . (1.15)

The Dirac delta function, denoted by δD(t), turns out to be useful. This special
function satisfies the following two properties:

(i) δD(t) = 0 ∀ t �= 0, (ii)
∫ ∞

−∞
δD(t) dt = 1. (1.16)

It is a continuous-time signal but has some discrete-time flavor by noting that it takes
zero value everywhere except at the origin. More importantly, it helps to connect the
DTFT and CTFT as shown in the next result.

Lemma 1.1. Denote ωs = 2π/Ts as the sampling frequency. The DTFT as defined
in (1.14) is related to the CTFT as defined in (1.15) according to

S
(
e jTsω

)
=

1
Ts

∞

∑
k=−∞

Sc( jω− jkωs). (1.17)

Proof. Consider the periodic extension of the Dirac delta function

pδ (t) =
∞

∑
k=−∞

δD(t − kTs). (1.18)

Its Fourier series expansion is given by

pδ (t) =
1
Ts

∞

∑
i=−∞

e− jiωs . (1.19)

See Problem 1.4 in Exercises. Let sp(t) = sc(t)× pδ (t). There holds

sp(t) =
1
Ts

∞

∑
k=−∞

sc(t)e
− jkωst (1.20)

by (1.19). Applying the CTFT to sp(t) yields

Fc[sp(t)] =
1
Ts

∞

∑
k=−∞

Fc

[
sc(t)e

− jkωst
]
=

1
Ts

∞

∑
k=−∞

Sc ( jω− jkωs) (1.21)

by Problem 1.5 in Exercises. On the other hand, there holds

sp(t) =
∞

∑
k=−∞

sc(kTs)δD(t − kTs) =
∞

∑
k=−∞

s(k)δD(t − kTs). (1.22)
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Fig. 1.3 Discretization with zero-order holder and ideal sampler

Hence applying the CTFT to sp(t) yields

Fc[sp(t)] =
∞

∑
k=−∞

s(k)e− jkTsω = S
(
e jTsω

)
. (1.23)

The proof is complete. ��
The well-known sampling theorem can be derived based on Lemma 1.1 by noting

that S(e jTsω) consists of a train of shifted images of Sc( jω). Hence, if Sc( jω) admits
low-pass characteristic, i.e., |Sc( jω)| is symmetric about ω = 0 and admits finite
cut-off frequency ωc < ωs/2, then the train of shifted images of Sc( jω) in (1.17)
does not overlap. In practice, ωc is taken as the first frequency beyond which the
magnitude response |Sc( jω)| falls within 3% of its peak.

Discretization of the continuous-time system takes more than the ideal sampler
at the plant output. A zero-order holder is often employed at the plant input to
convert the discrete-time signal into the continuous-time one. See the block diagram
in Fig. 1.3. The zero-order holder is mathematically defined by

uc(t) = u(k), kTs ≤ t < (k+ 1)Ts, (1.24)

where k = 0,±1,±2, . . .. The above can also be written as

uc(t) =
∞

∑
k=−∞

u(k) [1(t − kTs)− 1(t−Ts − kTs)] , (1.25)

where 1(t) is the unit step function specified by

1(t) =
{

1, t ≥ 0,
0, t < 0.

(1.26)

Hence, the continuous-time signal at the output of the holder consists of piecewise
constants and may have discontinuity at each sampling instant. The following result
presents characterization of the zero-order holder. The proof is left as an exercise
(Problem 1.6).

Lemma 1.2. For the ideal holder defined in (1.24), there holds

Uc( jω) = R( jω)U
(
e jTsω

)
, R( jω) =

(
1− e− jTsω

jω

)
. (1.27)
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The discretization shown in Fig. 1.3 is also referred to as step-invariant transform
(SIT), because it preserves the step response in the sense that its step response is
sampling of the step response of the corresponding continuous-time system. This is
shown in the next result.

Theorem 1.2. Let G(s) be the transfer function of the continuous-time system and
Gd(z) be the transfer function for the corresponding discretized system in Fig. 1.3.
Then there holds

Gd
(
e jω)=

∞

∑
k=−∞

G( jω+ jkωs)R( jω + jkωs). (1.28)

Proof. In reference to Fig. 1.3 and in light of Lemma 1.2, there holds

Yc( jω) = G( jω)Uc( jω) = G( jω)R( jω)U
(
e jTsω

)
.

The discretized signal after the ideal sampler is y(k) = yc(kTs), and thus

Y (e jω) =
∞

∑
k=−∞

Yc( jω+ jkωs) =
∞

∑
k=−∞

G( jω+ jkωs)R( jω+ jkωs)U
(
e jTsω

)

by the periodicity of U
(
e jTsω

)
with ωs = 2π/Ts as the period and in light of

Lemma 1.1. Hence, (1.28) holds that concludes the proof. ��
Again, by the periodicity of e jTsω with ωs as the period, the step response of the

discretized system in frequency domain is given by

Ys
(
e jTsω

)
=

Gd
(
e jTsω

)

1− e− jTsω
=

∞

∑
k=−∞

G( jω+ jkωs)

jω+ jkωs
. (1.29)

The right-hand side is the step response of the continuous-time system after the
ideal sampling by Lemma 1.1. Hence, the discretization in Fig. 1.3 is indeed SIT and
preserves the step response. Next, a numerical procedure is presented for computing
the discretized system in Fig. 1.3 based on state-space models.

Consider the MIMO continuous-time state–space system described by

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t).

It is known that for any t2 > t1, there holds

x(t2) = eA(t2−t1)x(t1)+
∫ t2

t1
eA(t2−t1)Bu(τ) dτ.

Taking t1 = kTs, and t2 = (k+ 1)Ts yields

x[(k+ 1)Ts] = eAhx(kTs)+

∫ (k+1)Ts

kTs

eA[(k+1)Ts−τ]Bu(τ) dτ.
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If a zero-order holder is employed at the input, then u(t) = u(kTs) for kTs ≤ t <
(k+ 1)Ts, and thus

x[(k+ 1)Ts] = eATsx(kTs)+

∫ Ts

0
eAτ dτBu(kTs)

= Adx(kTs)+Bdu(kTs).

The ideal sampling at the output yields

y(kTs) =Cx(kTs)+Du(kTs).

Hence, under SIT, a realization of the continuous-time system is mapped to a
realization (Ad ,Bd ,C,D) for the discretized state-space system where

Ad = eATs , Bd =

∫ Ts

0
eAτ dτB. (1.30)

If |A| �= 0, then Bd = A−1(eATs − I)B. Although discretization was discussed for
SISO systems earlier, the above shows that SIT is applicable to MIMO systems by
employing the zero-order holder in each of the input channels and the ideal sampler
in each of the output channels.

Example 1.3. Consider G(s) = 1
s3 . It admits a realization (A,B,C,D) with C =

[
1 0 0

]
, D = 0, and

A =

⎡

⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎦ , B =

⎡

⎣
0
0
1

⎤

⎦ .

Since A3 = 0, it is nilpotent. So for Ts = h > 0,

Ad = eAh = I+Ah+
A2h2

2
=

⎡

⎢
⎣

1 h h2/2

0 1 h

0 0 1

⎤

⎥
⎦ ,

Bd =

∫ h

0

(
I+Aτ+

A2τ2

2

)
dτB =

⎡

⎢
⎣

h3/3!

h2/2!

h

⎤

⎥
⎦ .

Via direct calculations, it can be verified that

Gd(z) =C(zI −Ad)
−1Bd =

h3(z2 + 4z+ 1)
3!(z− 1)3 . (1.31)

Matlab command [Ad ,Bd ] = c2d(A,B,h) can be used to obtain numerical values of
(Ad ,Bd) for a given h > 0.
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Discretization under SIT can also be carried out directly for transfer function
models that is given in the following result.

Corollary 1.1. Assume that G(s) is strictly proper. Then under the same hypothesis
of Theorem 1.2, there holds

Gd(z) = (1− z−1)Res

[
esTs z−1

1− z−1esTs

G(s)
s

]
, (1.32)

where Res[ · ] denotes operation of residues computed at poles of 1
s G(s).

Proof. In light of (1.29), the proof amounts to showing

Ys
(
e jTsω

)
=

∞

∑
k=−∞

G( jω+ jkωs)

jω+ jkωs
= Res

[
esTs z−1

1− z−1esTs

G(s)
s

]
(1.33)

at z = e jTsω . By the inverse Laplace transform,

ys(k) =
1

2π j

∫ σ+ j∞

σ− j∞

G(s)
s

eskTs ds

for k ≥ 1 by strict proper G(s). Hence, for
∣∣esTs z−1

∣∣< 1, there holds

Ys(z) =
∞

∑
k=1

ys(k)z
−k =

1
2π j

∫ σ+ j∞

σ− j∞

G(s)
s

∞

∑
k=1

eskTs z−kds

=
1

2π j

∫ σ+ j∞

σ− j∞

esTs z−1

1− z−1esTs

G(s)
s

ds. (1.34)

The relative degree of at least two for 1
s G(s) implies that

Ys(z) =
1

2π j

∮

Γ−

esTs z−1

1− z−1esTs

G(s)
s

ds, (1.35)

where Γ− is the closed contour consisting of the vertical line s = σ + jω for ω ∈
(−∞, ∞) and the semicircle to the left of the vertical line. Hence, (1.33) holds that
completes the proof. ��
Example 1.4. Consider discretization of G(s) = 1

s3 using Corollary 1.1 with Ts =

h > 0. Then G(s)
s = 1

s4 , and thus

Gd(z) =
z− 1

z
Res

[
esh

z− esh

1
s4

]
(1.36)
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where the residue is computed at s = 0 with multiplicity 4. It follows that

Gd(z) =
z− 1
3!z

d3 f (s)
ds3

∣
∣
∣
∣
s=0

, f (s) =
esh

z− esh . (1.37)

Direct calculation shows that

d f (s)
ds

=
hz2

(z− esh)2 − hz
z− esh ,

d2 f (s)
ds2 =

2h2z3

(z− esh)3 − h2eshz
(z− esh)2 ,

d3 f (s)
ds3

∣
∣∣
∣
s=0

=
6h3z3

(z− 1)4 −
6h3z2

(z− 1)3 +
h3z

(z− 1)2 .

After substituting the above into (1.37) yields

Gd(z) =
h3(z2 + 4z+ 1)

3!(z− 1)3

that is identical to the expression in (1.31).

A consequence of the SIT discretization is the nonminimum phase system under
the high sampling frequency as shown next.

Corollary 1.2. Consider SIT discretization for the continuous-time system repre-
sented by its transfer function G(s) that has relative degree � ≥ 2. Then as the
sampling period Ts → 0, (�− 1) zeros of Gd(z) tend to be unstable.

Proof. Under the SIT, the Z transform of the discretized step response is given
in (1.34). Instead of closing the contour to the left as in the proof of Corollary 1.1,
consider closing contour to the right of s = σ , where σ is real and all poles of 1

s G(s)
locate on left of s = σ . Recall that the relative degree � ≥ 2. Hence, (1.35) is now
replaced by

Ys(z) =
1

2π j

∮

Γ+

esTs z−1

1− z−1esTs

G(s)
s

ds, (1.38)

where Γ+ is the closed contour consisting of the vertical line s = σ + jω for ω ∈
(−∞, ∞) and the semicircle to the right of the vertical line. As a result, the residues
associated with the above contour integral are those due to roots of z = esTs , i.e.,

sk = (log(z)+ j2kπ)/Ts, k = 0,±1, . . . .

Hence, in this case, by employing the L’Hospital’s rule,

Gd(z) =
1− z−1

Ts

∞

∑
k=−∞

G(sk)

sk
.
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Note that if Ts ≈ 0, then sk ≈ ∞. For the given G(s), it has the form

G(s) =
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)
,

with relative degree �= n−m ≥ 2. Let G1(s) = s−� and

G2(s) =
s�(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)
=⇒ G2(∞) = 1.

Now take |z− 1| ≥ δ > 0 with δ ≈ 0, and |z| ≥ 1. Then

Gd(z) =
1− z−1

Ts

∞

∑
k=−∞

G1(sk)G2(sk)

sk

≈ 1− z−1

Ts

∞

∑
k=−∞

G1(sk)

sk
= G1d(z),

where G2(sk) ≈ G2(∞) = 1 for each k. Since G1d(z) is discretization of s−�, it has
the form

G1d(z) =
T �

s z−1α�(z)
(1− z−1)�

, α�(z) =
�

∑
i=0

αiz
−i,

which has unstable roots for � ≥ 2. The case with � = 3 is given in Example 1.3 in
which α�(z) indeed has unstable roots. ��

Traditionally, SIT is associated with discretization of continuous-time systems
based on which discrete-time feedback controllers are designed and implemented.
However, continuous-time controllers are sometime designed first and discretized
later prior to their implementation. Although SIT can be used, one may wish
to preserve the frequency response, rather than step response, of the feedback
controller. This gives rise to the bilinear transform (BT) method for discretization.

Let Ts be the sampling period. Consider approximation of integral 1
s :

y(kTs +Ts) = y(kTs)+

∫ (k+1)Ts

kTs

u(τ) dτ

= y(kTs)+ 0.5h[u(kTs)+ u(kTs +Ts)].

Applying the Z transform to the above difference equation yields

Y (z)
U(z)

=
Ts

2

(
z+ 1
z− 1

)
=⇒ s ≈ 2

Ts

(
z− 1
z+ 1

)
.
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The above leads to the BT for discretization:

Gbt(z) = G

(
γ

z− 1
z+ 1

)
, γ =

2
Ts
. (1.39)

If G(s) has realization (A,B,C,D) and γ is not an eigenvalue of A, then

Abt = (γI+A)(γI−A)−1,Bbt =
√

2γ(γI −A)−1B,

Cbt =
√

2γC(γI −A)−1,Dbt = D+C(γI−A)−1B, (1.40)

are realization matrices for Gbt(z). The verification of the above expressions is left
as an exercise (Problem 1.7).

Example 1.5. Consider first G(s) = 1
s+1 . Then the discretized transfer function

based on BT is given by

Gbt(z) =
1

γ
(

z−1
z+1

)
+ 1

=
z+ 1

γ(z− 1)+ (z+ 1)

=
z+ 1

(γ+ 1)z− (γ− 1)
=

1
γ+ 1

z+ 1

z− γ−1
γ+1

.

Substituting the relation γ = 2
Ts

yields

Gbt(z) =
Ts

2+Ts

z+ 1

z− 2−Ts
2+Ts

. (1.41)

If the SIT method is used to discretize G(s), then by noting the poles of 1
s G(s) at

0,−1, and in light of Corollary 1.1, there holds

Gd(z) =
(
1− z−1)Res

[
esTs z−1

1− z−1esTs

G(s)
s

]∣∣∣
∣
s=0,−1

=
(1− z−1)esTs z−1

(s+ 1)(1− esTsz−1)

∣
∣
∣
∣
s=0

+
(1− z−1)esTs z−1

s(1− esTsz−1)

∣
∣
∣
∣
s=−1

= z−1 − (1− z−1)e−Ts z−1

1− e−Tsz−1 =
1− e−Ts

z− e−Ts
.

Clearly, Gbt(z) and Gd(z) are very different from each other.

While SIT-based discretization involves frequency distortion, it preserves step
response. On the other hand, the BT-based discretization involves both frequency
distortion and step response distortion. Specifically under the BT, the discretized
frequency response is given by
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Fig. 1.4 Feedback control system in continuous time

Gbt
(
e jω)= G

(
j

2
Ts

tan
ωTs

2

)
.

The distortion is caused by the nonlinear map in frequency termed as frequency
warping. It is interesting to note that if ωc =

2
Ts

tan ωTs
2 were the continuous-time

frequency, then there would be no error in frequency domain. The error in frequency
response is given by

∣
∣
∣
∣G( jω)−G

(
j

2
Ts

tan
ωTs

2

)∣∣
∣
∣

which is zero at ω = 0. The error at other frequencies is caused by frequency
warping. The frequency warping can be avoided at ω = ω0 �= 0, if

s �→ ω0

(
tan

ω0Ts

2

)−1 z− 1
z+ 1

is used for BT-based discretization, in which case the frequency response at ω = ω0

is preserved. This is the so-called frequency-prewarping BT.
Although the BT is different from the SIT in discretizing the continuous-time

system, its implementation can be the same in the sense of the block diagram in
Fig. 1.3 by using the zero-order holder and ideal sampler for the plant model. That
is, the discrete-time controller is obtained via the BT based on the continuous-
time controller and is implemented to control the discretized plant in Fig. 1.3.
Since in this case the continuous-time controllers are often designed using the
frequency domain technique, caution needs to be taken in frequency prewarping.
For instance, one may wish to preserve the phase margin or gain margin of
the continuous-time feedback system at certain critical frequency by using the
frequency prewarping. However, because the frequency response of the discretized
plant in Fig. 1.4 is altered (see Problem 1.8 in Exercises for the ideal case), the
design of the continuous-time controller in frequency domain needs to take the
frequency response error of the plant into consideration so that the phase margin or
gain margin of the continuous-time feedback system at the chosen critical frequency
can indeed be preserved.

Example 1.6. Consider the same transfer function P(s) = 1
s+1 as in Example 1.5

for the plant model. An integral controller with K(s) =
√

2
s in continuous time
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is designed that achieves the phase margin of 45◦ at the crossover frequency
ω0 = 1 radian per second. The feedback control system in continuous time is shown
in Fig. 1.4. The BT is used to discretize the continuous-time controller for its
implementation in discrete time, while the SIT is employed to discretize the plant
yielding

Pd(z) =
1− e−Ts

z− e−Ts
, Kd(z) =

(
tan

Ts

2

)
z+ 1
z− 1

,

where the frequency prewarping at ω0 = 1 is employed. If Ts = 0.25 is taken,
i.e., the sampling frequency is 4 Hz, then the gain of |P( jωs/2)| is −22 dB at
half the sampling frequency. Hence, possible aliasing due to sampling of the
plant is suppressed significantly. However,

∣
∣Kd
(
e jω)Pd

(
e jω)∣∣ = 1 takes place at

ω1 = 0.786 rather than at ω0 = 1. If the gain of Kd(z) is increased to assure the
crossover frequency at 1 for the discretized feedback system, then the phase margin
will be reduced to 37.54◦. On the other hand, if 45◦ phase margin is required for the
discretized feedback system, then the crossover frequency has to be smaller than 1,
unless a more complicated controller is used.

Before ending this subsection, let us briefly discuss the pathological sampling as
illustrated in the following example.

Example 1.7. Let Ts be the sampling period. Consider

G(s) =
ωss

s2 +ω2
s
, ωs =

2π
Ts

.

With step input U(s) = 1/s, the output of the plant is

Y (s) = G(s)U(s) =
ωs

s2 +ω2
s

=⇒ y(t) = sin(ωst).

Hence, the sampling yields y(kh) = 0 for all integer-valued k. This is so-called
pathological sampling. Note that G(s) admits a realization:

G(s) =

[
A B
C D

]
=

⎡

⎣
0 1 0

−ω2
s 0 1

0 ωs 0

⎤

⎦,

and thus, A has eigenvalues at ± jωs. It can be verified that

Ad = eAh =

[
cos(2π) ω−1

s sin(2π)
−ωs sin(2π) cos(2π)

]
= I,

Bd =

∫ h

0
eAtB dt = A−1[eAh − I] = 0.

Hence, sampling destroys the controllability.
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Definition 1.1. The sampling frequency ωs is pathological, if A or poles of the
plant model has two eigenvalues with equal real parts and imaginary parts that
differ an integral multiple of ωs. Otherwise, the sampling frequency ωs is called
nonpathological.

The pathological can be easily avoided by taking the sampling frequency strictly
greater than ρ(A), the spectral radius of A. In fact, the sampling frequency smaller
or equal to ρ(A) causes the aliasing which should be avoided.

1.2 Communication Systems

Communication has enjoyed tremendous growth in the past century. The telephones
invented by Bell have grown into communication networks and are now transformed
into wireless handheld devices which can surf internet, play videos, and connect to
computer networks. An important application content of this text focuses on design
of wireless transceivers which are the building block and the physical layer of the
wireless networks.

A digital communication system is linear and operates in discrete time. Its
purpose lies in communication of digital data or symbols which have finite alphabet
table. These data cannot be transmitted and received directly. They have to be
modulated with continuous-time waveforms and converted to radio frequency (RF)
signals prior to transmission and reception, leading to linear discrete-time systems
for wireless data communications. A mathematical description is outlined next
without providing the full detail.

1.2.1 Channel Models

Let s̃(t) be the continuous-time waveforms carrying the data information. Its
frequency response exhibits low-pass property normally which is often referred to
as baseband signal. The RF signal to be transmitted has the form

s(t) = Real
[
e jωct s̃(t)

]
, (1.42)

whereωc is the carrier frequency and s̃(t) is the complex envelope of the transmitted
signal. Thus, the RF signal s(t) admits bandpass property. Let s̃(t) = s̃I(t)+ js̃Q(t)
with s̃I(t) the real or in-phase part and s̃Q(t) the imaginary or quadrature part of the
envelope signal. Simple calculation shows

s(t) = cos(ωct)s̃I(t)− sin(ωct)s̃Q(t).
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Fig. 1.5 Baseband signal model with Tx for transmitter and Rx for receiver antennas

Since cos(ωct) and sin(ωct) are orthogonal over the period Tc =
ωc
2π , s̃(t) can be

reconstructed uniquely based on s(t). Indeed, the in-phase component of s̃(t) can be
obtained by multiplying s(t) with cos(ωct) and by integration over [0, Tc] in light
of the fact that s̃(t) is almost constant over [0, Tc] due to the low-pass property
of s̃(t) and very high value of ωc. Similarly, the quadrature component of s̃(t)
can be obtained by multiplying s(t) with −sin(ωct) and by the same integration.
Consequently, s(t) and s̃(t) are equivalent in terms of communication.

Assume vertical polarization, plane waves, and N propagation paths for the RF
signal transmitted over the space. The received signal in the kth path may experience
magnitude distortion Ck, time delay dk, and Doppler shift ωD,k (that is positive if the
motion is in the direction of the plane waves). Hence, the RF signal at the receiver
in absence of the noise is specified by

r(t) =
N

∑
k=1

Real
[
Cke j(ωc+ωD,k)(t−dk)s̃(t − dk)

]
. (1.43)

Let φk(t) = ωcdk −ωD,k(t −dk). Then r(t) = Real
[
e jωct r̃(t)

]
is in the same form of

(1.42). The received complex envelope can find to be

r̃(t) =
N

∑
k=1

Cke− jφk(t)s̃(t − dk). (1.44)

The above baseband signal can be obtained by first multiplying e− jωct to the RF
signal r(t) in the receiver’s antenna and then by filtering with a low-pass analog
filter tailored to r̃(t). The aforementioned discussions lead to the conclusion that
there is no loss of generality to consider data communications in baseband with
complex envelope signals as illustrated in Fig. 1.5 next.

The expression in (1.44) shows that the channel can be modeled by a linear time-
varying (LTV) system with the complex impulse response:

g(t;τ) =
N

∑
k=1

Cke− jφk(t)δD(τ − dk). (1.45)
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See Problem 1.12 in Exercises. Recall that δD(·) is the Dirac delta function
satisfying (1.16). Under the impulse response in (1.45), the output y(t) due to input
s̃(t) has the following expression:

y(t) =
∫ ∞

−∞
g(t;t − τ)s̃(τ) dτ. (1.46)

Hence, g(t;τ) is interpreted as the impulse response at time t due to the impulse
input applied at time 0.

A channel represented by its impulse response in (1.45) suffers from both
magnitude attenuation and phase distortion which are generally referred to as
channel fading. Denote the duration of a modulated symbol by Ts. If Ts�|di − dk|
for each pair of (i,k), then all frequency components of the transmitted signal
experience the same random attenuation and phase shift due to multipath fading.
Let μd be the mean of {dk}. Then multipath delay spreads fluctuate about μd and

g(t;τ)≈
N

∑
k=1

Cke− jφk(t)δD(τ− μd) = g(t)δD(τ− μd). (1.47)

In this case, the channel experiences flat fading and can be characterized by
transmission of an unmodulated carrier. For this reason, s̃(t) = 1 can be assumed
for (1.42), and r(t) in (1.43) can be expressed as

r(t) = gI(t)cos(ωct)− gQ(t)sin(ωct), (1.48)

where gI(t) and gQ(t) are the in-phase and quadrature components of the received
signal, respectively, specified by

gI(t) =
N

∑
k=1

Ck cos[φk(t)], gQ(t) =
N

∑
k=1

Ck sin[φk(t)]. (1.49)

The carrier frequency is often very high for data communications. Hence, small
changes of the path delays {dk} will cause large variations in the phases {φk(t)}
due to the terms ωcdk�1. At each time instant t, the random phases may result in
constructive or destructive addition of the N multipath components. Consequently,
φi(t) and φk(t) can be treated as uncorrelated random variables whenever i �= k. It
follows that for large N, gI(t) and gQ(t) are independent and approximately Gauss
distributed with the same mean and variance in light of the central limit theorem.
In the case of mean zero and variance σ2, the magnitude G = |g(t)| has a Rayleigh
distribution with the probability density function (PDF) given by

pG(x) =
x
σ2 exp

{
− x2

2σ2

}
, x ≥ 0. (1.50)
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Denote E{·} as the expectation. The average envelope power is given by

CP = E
{

G2}= E
{|gI(t)|2 + |gQ(t)|2

}
= 2σ2. (1.51)

This type of fading with PDF in (1.50) is called Rayleigh fading. If the means of
gI(t) or gQ(t) are nonzero and denoted by μI and μQ, respectively, then G is Ricean
distributed or

pG(x) =
x
σ2 exp

{
−x2 + μ2

2σ2

}
I0

(μx
σ2

)
(1.52)

for x ≥ 0 where μ2 = μ2
I + μ2

Q and

I0(x) :=
1

2π

∫ 2π

0
excos(θ) dθ (1.53)

is the zero-order modified Bessel function of the first kind. The type of fading as
described in (1.52) is called Ricean fading.

Rayleigh and Ricean fading channels are common when line of sight (LoS) exists
between the transmitter and receiver. On the other hand, complete obstructions often
result in log-normal fading channels in which ln(G) is normal distributed. Another
widely used channel is Nakagami fading in which the magnitude of the received
envelope is described by the PDF

pG(x) =
2mmx2m−1

Γ (m)Cm
P

exp

{
−mx2

CP

}
, m ≥ 1

2
, (1.54)

where Γ (·) is the Gamma function satisfying

Γ (x) =
∫ ∞

0
ux−1e−u du (1.55)

that reduces to n!, if x = n is an integer.
Nakagami fading is more versatile. In the case of m = 1, Nakagami distribution

becomes Rayleigh distribution. For m > 1, it provides a close approximation to
Ricean fading by taking

m =
(K + 1)2

2K + 1
⇐⇒ K =

√
m2 −m

m−√
m2 −m

, (1.56)

where K = μ2

2σ2 is called Rice factor and ⇐⇒ stands for “equivalence.” In the case of
m→∞ or K →∞, the PDF approaches an impulse, and thus, the channel experiences
no fading at all.

Recall that flat fading is associated with large Ts that is the duration of the
modulated symbol. Since continuous-time waveforms are low-pass, the transmitted
signal has narrowband if Ts is considerably greater than multipath delay spreads.
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However, as Ts decreases, signal bandwidth increases. In the case of wide band
signals, the frequency components in the transmitted signal experiences different
phase shifts along the different paths. Under this condition, the channel introduces
both magnitude and phase distortion into the message waveform. Such a channel
exhibits frequency-selective fading.

When delay spreads are considerable greater than the symbol duration, the
impulse response in (1.45) cannot be approximated as in (1.47). Instead, it is more
conveniently represented by

g(t;τ) =
N

∑
k=1

gk(t)δD(τ− dk), (1.57)

where gk(t) = Cke− j[ωD,kdk−ωc(t−dk)]. Experimental tests show uncorrelated scatter-
ing (US) in the sense that {gk(t)} are uncorrelated for all time t. In addition, each
path gain gk(t) is wide-sense stationary (WSS), i.e.,

Rgk(t,τ) = E{gk(t)ḡk(τ)}= Rgk(t − τ), (1.58)

with ·̄ for complex conjugation. While wide-sense stationary and uncorrelated
scattering (WSSUS) channels are very special, many radio channels satisfy the
WSSUS assumption.

The wireless channels discussed thus far involve only single transmit/receive
antenna. More and more mobile radio systems nowadays begin to employ antenna
diversity by using multiple spatially separated antennas at both the transmitter and
the receiver which result in MIMO channels. These antennas provide multiple
faded replica of the same information bearing signal thereby increasing the channel
capacity. The impulse response for the MIMO channel has the similar form as in
(1.57), but the scalar path gain gk(t) is now replaced by the matrix function Gk(t) of
size P×M, assuming M antennas at the transmitter and P antennas at the receiver,
yielding the impulse response

G(t;τ) =
N

∑
k=1

Gk(t)δD(τ− dk). (1.59)

It is important to note that the impulse responses in (1.57) and (1.59) describe the
channels in continuous time. Channel discretization will have to be carried out prior
to processing the digital data which will be studied in the next subsection.

1.2.2 Channel Discretization

One of the fundamental issues in data communications is retrieval of the transmitted
data at the receiver. Consider the schematic block diagram shown in Fig. 1.5.
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t

s~ (t)Fig. 1.6 A typical binary
data signal and its associated
waveform

At the transmitter site, the data are coded, modulated, and frequency shaped by
the continuous-time waveform, and then sent through the channel. The transmitted
signal experiences random distortion in the channel Ch due to various fading phe-
nomena. At the receiver site, the observed noisy signal is processed, demodulated,
and decoded by the receiver, in hope of recovering the original data.

The channel is a physical entity that cannot be altered by designers, even though
no physical devices exist for channels in the case of wireless communications. In
the case of wide band signals, the channel experiences frequency-selective fading. If
channel distortions are function of time, then the channel experiences time-selective
fading. Channel fading is one of the main impediments to data communications. In
contrast to the channel, the transmitter and receiver can be altered by designers. For
simplicity, it is assumed that both the transmitter and the receiver are linear. The
nonlinear effects of modulation and codings are omitted, in order for us to focus
on the basic issues in data communication. An objective of this text is design of
wireless transceivers, i.e., the transmitters and receivers, to detect the transmitted
data at the output of the receiver with the minimum achievable error probability.

The simplest data set consists of binary symbol of ±1. Let {b(k)} be coded and
binary valued data. The transmitted signal shown in Fig. 1.5 is continuous and has
the form of:

s̃(t) =
∞

∑
k=−∞

b(k)ψ(t − kTs), (1.60)

where ψ(·) is the continuous-time waveform with support [0, Ts] and Ts > 0 is
the symbol period. Typical ψ(·) includes sinusoidal and rectangular functions (see
Fig. 1.6).

Let g(t;τ) be the channel impulse response (CIR) in (1.45). The physical nature
of the channel implies causality of g(t;τ), i.e., g(t;τ) = 0 for τ < 0. It follows that

r̃(t) =
∫ t

−∞
g(t;t − τ)s̃(τ) dτ+η(t)

=
∞

∑
k=−∞

b(k)
∫ t

−∞
g(t;t − τ)ψ(τ− kTs) dτ+η(t) (1.61)

is the signal at the receiver with η(t) additive noises. For wireless communication
systems with high data rate, Ts is rather small, and thus,

g(t;τ)≈
Lh−1

∑
i=0

hi(t)δD(τ− τi), (1.62)
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where 0 ≤ τ0 < τ1 < · · · < τLh−1. The change of notation from (1.57) is due to
possible regrouping of those terms with delay spreads close to each other.

It is easy to see that τi = (�i + εi)Ts for some integer �i and εi ∈ [0, 1). Upon
substituting (1.62) into (1.61) yields:

r̃(t) =
∞

∑
k=−∞

b(k)
Lh−1

∑
i=0

hi(t)ψ(t − (�i+ k)Ts − εiTs)+η(t). (1.63)

In order to recover the digital data {b(k)}, a common approach applies the matched
filter to r̃(t). Assume that hi(t)≈ hi(n) over [nTs,(n+1)Ts), by an abuse of notation
and the fact of small Ts due to high data rate. Thus

y(n) =
∫ (n+1)Ts

nTs

r̃(t)ψ(t − nTs) dt =
∞

∑
k=−∞

b(k)
Lh−1

∑
i=0

hi(n)Ji(n)+ v(n) (1.64)

with Ji(n) the ith integral given by

Ji(n) =
∫ (n+1)Ts

nTs

ψ(t − (�i+ k)Ts − εiTs)ψ(t − nTs) dt,

and v(n) the integral of ψ(t − nTs)η(t) over [nTs,(n+ 1)Ts].
Denote δk as the Kroneker delta function specified by

δk =

{
1, if k = 0,
0, otherwise.

It can be verified that the integral Ji(n) admits the expression

Ji(n) = δn−k−�i

∫ Ts

εiTs

ψ(τ− εiTs)ψ(τ) dτ

+ δn−k−�i−1

∫ εiTs

0
ψ(τ+(1− εi)Ts)ψ(τ) dτ

= αi(n)δn−k−�i +βi(n)δn−k−�i−1.

Substituting the above into (1.64) yields

y(n) =
∞

∑
k=−∞

b(k)
Lh−1

∑
i=0

hi(n)[αi(n)δn−k−�i +βi(n)δn−k−�i−1]+ v(n)

=
Lh−1

∑
i=0

hi(n)[αi(n)b(n− �i)+βi(n)b(n− �i− 1)]+ v(n).
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Let L = 1+max{�i : 0 ≤ i < L}. Then

y(n) =
L

∑
k=0

φ(n;k)b(n− k)+ v(n), (1.65)

where φ(n;k) is the impulse response of the discretized channel at time index n and
depends on {αi(n)}, {βi(n)}, and {hi(n)}. See Problem 1.16 in Exercises. In the
MIMO case, the discretized CIR consists of matrices Φ(n;k). Both input and output
are vector-valued, denoted by b(n), v(n), and y(n), respectively, leading to dynamic
equation of

y(n) =
L

∑
k=0

Φ(n;k)b(n− k)+ v(n).

Generically, the wireless channel has the form of transversal filters. This fact is
attributed to the finite duration of the CIR for wireless channels, contrast to the
plant model in control systems.

1.3 Organization of the Book

This textbook is aimed at presentation of theory and design of linear discrete-time
systems with applications to feedback control systems and wireless transceivers, al-
though the primary audience is from the control area. This book probably represents
the first attempt to present feedback control systems and wireless communication
systems together, motivated by MIMO and linearity of the underlying dynamic
systems. The author believes that readers from these two different areas will learn
more by showing them new perspectives in linear systems. The book begins with
warm-up examples and discretization in Chap. 1. Various signal and system models
are introduced in Chap. 2. The core materials are Chaps. 3 and 5 in which the main
results in linear system theory and optimal control/filtering are presented. These
two are the most important chapters and are also the most theoretic part of this
text. Chapter 4 is concerned with model reduction that is more oriented to feedback
control systems. Compared with undergraduate control textbooks, this text clearly
has more mathematical depth. The main reason lies in the MIMO nature of the
modern control systems that are difficult to analyze and control. Chapters 3 and 5
provide mathematical notions and theory for us to understand MIMO linear systems.

While most textbooks on linear systems are focused on theory, this textbook
makes an effort to present design, that is a tremendous challenge. Chapter 6
considers design of feedback control systems, while Chap. 7 is focused on design
of wireless transceivers in data communications. Although the author wishes to
present the state-of-art design techniques, these two chapters may not fulfill this
wish. Design is not science. Various objectives arising from engineering practice
are difficult to be modeled by a single performance index, and minimization of
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some mathematical functional may not lead to the desired feedback control system.
However, the author hopes that Chap. 6 provides some guidelines for readers
to learn design of MIMO feedback control systems, and Chap. 7 provides some
mathematical tools for design of wireless transceivers. Chapter 8 is the final chapter
that is aimed at modeling and identification of linear systems. It helps readers to
know where the linear models come from and how to obtain them given input
and output measurements of the MIMO systems. The textbook also includes three
appendix chapters that are aimed at helping readers to prepare their mathematical
background.

This book can be used as a textbook for the first and second year graduate
students, although sophisticated senior students can also be the audience. It can be
used either for one semester or for two semesters, dependent on the curriculum.
If the book is used as a textbook for one semester, then the author suggests to
focus on Chaps. 1–3, and 5. The instructors can use related material from other
chapters as supplements. For instance, a class oriented to control may wish to use
the control system design material from Chaps. 4 and 6, while a class oriented to
DSP may wish to use the wireless transceiver design material from Chaps. 7 and 8.
However, if a second semester is needed, then Chaps. 4, 6–8 can be taught together
with suitable design projects. The author has taught several times at LSU as a one
semester course, tested with different focuses, which result in this textbook. Many
control students like the course that helps to diversify their background and to seek
jobs in wireless communications and DSP. Indeed, many of them, including my own
students, have taken other courses in digital and wireless communications afterward,
and are currently working in high-tech companies such as Qualcomm, Broadcom,
etc. Their control background actually helps them to do well in their new careers
which is also one of the motivations for the author to write this textbook.

Each chapter of this book has a section of exercises. Problems in these exercise
sections are carefully designed to help readers get familiar with the new concepts
and knowledge presented in the main text. Some of the problems are part of the
topics studied in different chapters. The author hopes that this will help readers
study the material more actively. Some of the problems can be very hard. A solution
manual will be worked out to aid instructors and readers in the future.

Notes and References

Discretization of continuous-time signals and systems are covered by many books.
See for instance [23, 73, 90] and [64, 83–85]. The flight control example can be
found in [80, 81]. The modeling of inverted pendulum employs the principle from
Lagrange mechanics [17,108]. For discretization and modeling of wireless commu-
nication channels, many papers and books are available. The books [19,98,107,111]
are recommended for further reading.
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Exercises

1.1. For the inverted pendulum as described in (1.6) and (1.5), assume that the
control force is generated by the actuator via

u(t) =
K
Rr

[
uin(t)− K

r
ṗ(t)

]
, K = KmKg. (1.66)

The above is a simple model for DC motor with uin(t) as the armature voltage. Show
that the dynamic system is now described by

θ̈ =
mL
Δ

(
K cos(θ )

Rr
uin +(M+m)gsin(θ )− mLsin(2θ )

2
θ̇ 2 − K2 cos(θ )

Rr2 ṗ

)
,

p̈ =
mL
Δ

(
K
Rr

uin(t)+
mgsin(2θ )

2
−mLsin(θ )θ̇ − K2

Rr2 ṗ

)
,

where Δ =
(
M+msin2(θ )

)
mL2.

1.2. For the nonlinear ODE in Problem 1.1, assume that θ and p are output
measurements. Denote x(t) in (1.7) as the state vector. Show that its linearized
system has realization matrices (A,B,C,D) given by

A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 1 0 0

(M+m)g
ML

0 0 − K2

Rr2

0 0 0 1

mg
M

0 0 − K2

Rr2

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0
K

MLRr
0
K

MRr

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

,

C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0
0

]
.

1.3. Use Matlab Simulink toolbox to simulate the controlled pendulum system in
Example 1.1 by using parameters

Kdy =−524.4300, zy = 0.8200,
Kdθ = 334.2439, zθ = 6.2589,

and pd = 14.9672.

1.4. For Dirac delta function defined in (1.16), show that

∫ ∞

−∞
f (t)δD(t − τ) dt = f (τ)
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for any function f (t) that is continuous at t = τ . In addition, show that the periodic
Dirac delta function with period T satisfies

pδ (t) =
∞

∑
k=−∞

δD(t − kT ) =
1
T

∞

∑
i=−∞

e jiωt ,

where ω = 2π/T .

1.5. Prove the CTFT for sp(t) in (1.21).

1.6. Prove Lemma 1.2 by first finding the impulse to the zero-order holder and then
its CTFT.

1.7. Verify the expression in (1.40) for BT-based discretization.

1.8. Show that under the SIT discretization, the frequency response error between
the continuous-time transfer function G(s) and the discretized transfer function
Gd(z) is given by

∣
∣G( jω)−Gd

(
e jω)∣∣= |G( jω) [R( jω)− 1]| ,

where R(s) =
(
1− e−sTs

)/
s, provided that the cutoff frequency of G(s) is smaller

than half of the sampling frequency.

1.9. Suppose that A has eigenvalues at 0,0,± j,1± 2 j. Show that the pathological
sampling frequency ωs is in the set of

{ 4
k : k integers

}
.

1.10. For the inverted pendulum plant model in (1.11) and (1.10), do the following:

(i) Discretize Gup(s) and Guθ (s) with sampling frequency fs = 10 Hz.
(ii) Discretize the above transfer functions with one sampling frequency fs < 10

and the other fs > 10.
(iii) Recommend one sampling frequency and detail your reason. In addition, make

frequency domain analysis for the sampling frequency you recommend.

(Note: Matlab command “c2d” can be used to discretize the plant.)

1.11. Consider a flight control system with 3-input/3-output. This model is lin-
earized from an aircraft motion in the vertical plane when small perturbations about
a flight condition are considered. The linearized model is described by state-space
realization given by

A =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

0 0 1.132 0 −1

0 −0.0538 −0.1712 0 0.0705

0 0 0 1 0

0 0.0485 0 −0.8556 −1.013

0 −0.2909 0 1.0532 −0.6859

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,
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B =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 0

−0.0012 1 0

0 0 0

0.4419 0 −1.6646

0.1575 0 −0.0732

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, C =

⎡

⎢
⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

⎤

⎥
⎦ .

Repeat (i)–(iii) in the previous problem except that 10 Hz is replaced by 20 Hz, plus
zero/pole plots.

1.12. For the time-varying impulse response in (1.45), show that the output
response due to input s̃(t) is given in (1.44).

1.13. For r(t) in (1.48), assume that r(t) is WSS, {ωD,k} are identically distributed,
and {φk(t)} are independent and uniformly distributed over [−π ,π ]. Show that

Rr(τ) = E[r(t)r(t + τ)] = A(τ)cos(ωcτ)−B(τ)sin(ωcτ),

where expectation is taken for Vk = ωcdk which is uniformly distributed over
[−π , π ] and for the Doppler frequency. The expressions of A(τ) and B(τ) are
given by

A(τ) =CPE[cos(ωD,kτ)], B(τ) =CPE[sin(ωD,kτ)],

with expectation taken for only the Doppler frequency and CP as in (1.51).

1.14. Suppose that X1 and X2 are independent Gauss with zero mean and common
variance σ2. Let

G =
√

X2
1 +X2

2 , P = tan−1(X2/X1). (1.67)

Show that G is Rayleigh distributed as in (1.50) and P is uniformly distributed.

1.15. Consider the same X1 and X2 as in the previous problem except that E{X1}=
μ1 and E{X2} = μ2. Define G and P as in (1.67), and t = tan−1(μ2/μ1). Let μ =√
μ2

1 + μ2
2 . Show that

pRP(r, p) =
r

2πσ2 exp

{
− r2 + μ2 − 2rμ cos(p− t)

2σ2

}

and then verify the Ricean PDF in (1.52) using

pR(r) =
∫ 2π

0
pRP(r, p) dp.

1.16. Find the expression of φi(n;k) in (1.65) in terms of {αi(n)}, {βi(n)}, and
{hi(n)}, assuming �i = i for each i.



Chapter 2
Signals and Systems

It is a fact that signals and systems in feedback control are in continuous time and
multivariable in nature. This is a contrast to data communications where the signals
and systems are discrete time with single transmitter/receiver. But the wide use of
digital computers in control systems and the emergence of wireless internet have
diminished such differences between feedback control and data communications.
Both are now in discrete time and both are MIMO systems. More importantly, they
tend to use increasingly the same mathematical descriptions in modeling and share
more and more mathematical tools in design. This text is aimed to provide the design
theory and computational algorithms for MIMO dynamical systems in which either
optimal disturbance rejection or optimal data detection is the main objective. This
chapter introduces the background material for signals and systems.

Mathematical models are indispensable in design of both communication and
control systems. To accommodate to data communications, signals are assumed to
be discrete time and complex-valued. For MIMO systems, signals of interest are
those having more than one component, each of which is random. Such signals are
sequences of random vectors, assumed to be WSS, and have bounded power spectral
densities (PSDs). Linear time-invariant (LTI) systems are capable of altering signals
through modifying their PSDs in a transparent way. Commonly used dynamical
models will be described and analyzed. LTV systems are also covered, albeit at a
less degree. Although signals include noises in a larger sense, noise models will be
discussed separately in this chapter, together with the bit error rate (BER) analysis
in data communications.

2.1 Signals and Spectral Densities

For simplicity, the discrete-time variable t is measured in units of the sampling
interval, and is thus integer-valued. That is, if s(t) is a discrete-time signal obtained
through sampling of the continuous-time signal sc(·), then s(t) = sc(tTs) for

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 2, © Springer Science+Business Media, LLC 2012
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t = 0,±1,±2, . . ., with Ts the sampling period. In other words, a discrete-time signal
can be viewed as a complex sequence {s(t)} indexed by integer-valued time t.

2.1.1 Scalar Signals

Suppose that {s(t)} is deterministic and has finite energy. Then

Es :=
∞

∑
t=−∞

|s(t)|2 < ∞, (2.1)

where Es is the energy of {s(t)}. In this case, there exists DTFT for {s(t)}, defined as

S
(
e jω) :=

∞

∑
t=−∞

s(t)e− jωt , j =
√−1. (2.2)

The corresponding inverse DTFT of S
(
e jω) is given by

s(t) :=
1

2π

∫ π

−π
S
(
e jω)e jωt dω . (2.3)

The angular frequency ω = ωcTs is normalized and measured in radians per
sampling period where ωc is the physical frequency variable measured in radians
per second. Occasionally, f = ω/(2π) will be used, which has unit Hertz (Hz). If
(2.1) holds, then by the well-known Parseval’s theorem,

Es =
∞

∑
t=−∞

|s(t)|2 = 1
2π

∫ π

−π

∣
∣S(e jω)

∣
∣2 dω . (2.4)

It follows that Φs(ω) =
∣∣S(e jω)

∣∣2 represents the energy distribution of the sequence
over frequency and is thus termed energy spectral density (ESD).

The ESD can be obtained through a different path. Define

γs(k) =
∞

∑
t=−∞

s(t)s̄(t − k), k = 0,±1,±2, . . . . (2.5)

The sequence {γ(k)} resembles autocovariance sequence for random signals. For
any energy-bounded signals {x(t)} and {y(t)}, there holds

∣∣
∣
∣
∣

∞

∑
t=−∞

x(t)ȳ(t)

∣∣
∣
∣
∣
≤√ExEy, (2.6)
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which is the well-known Schwarz inequality. See Problem 2.2 in Exercises.
Substituting x(t) = s(t) and y(t) = s(t − k) into (2.6) yields

Es = γs(0)≥ γs(k) for k =±1,±2, . . . , (2.7)

by noting Ex = Ey = Es. Applying DTFT to {γs(k)} yields

∞

∑
k=−∞

γs(k)e− jωk =
∞

∑
k=−∞

∞

∑
t=−∞

[
s(t)e− jωt]

[
s̄(t − k)e jω(t−k)

]

= S
(
e jω)S

(
e jω)∗ =

∣
∣S(e jω)

∣
∣2 =Φs(ω)

with ∗ for conjugate transpose. Hence, the ESD is the DTFT of the sequence {γs(k)}.
In engineering practice, signals are often described by their probabilistic state-

ments and are thus random sequences. Such a signal sequence consists of an
ensemble of possible realizations, each of which has some associated probability
to occur. However, even if the signal is taken to be deterministic, which is one
realization from the whole ensemble, it may not have finite energy over the infinite
time horizon. In particular, signals in data communications do not possess DTFTs
in general. On the other hand, a random signal usually has a finite average power
and thus admits PSD.

Denote E{·} as the expectation operator which averages over the ensemble of
realizations. The discrete-time signal {s(t)} is assumed to be a complex sequence
of random variables, or random process with zero mean:

E{s(t)}= 0, t = 0,±1,±2, . . . . (2.8)

If, in addition, its ACS is given by

rs(k) := E{s(t)s̄(t − k)}, t = 0,±1,±2, . . . , (2.9)

which is independent of t, then {s(t)} is called WSS. It is easy to see that rs(k) =
r̄s(−k) and is left as an exercise to show that

rs(0)≥ |rs(k)| for k =±1,±2, . . . . (2.10)

The PSD is defined as DTFT of ACS:

Ψs(ω) :=
∞

∑
k=−∞

rs(k)e− jkω . (2.11)

The inverse DTFT recovers {rs(k)} from the givenΨs(ω) via

rs(k) =
1

2π

∫ π

−π
Ψs(ω)e jωk dω . (2.12)
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The averaged power of {s(t)} is thus

Ps := E
{|s(t)|2}= rs(0) =

1
2π

∫ π

−π
Ψs(ω) dω , (2.13)

which is also called mean-squared value of s(t).

Example 2.1. Let ω0 be real. Consider random signal

s(t) = Acos(ω0t +Θ), 0 < ω0 < 2π , (2.14)

where A andΘ are often employed to carry information bits in data communications.
This example examines the case when A andΘ are real random variables, indepen-
dent to each other, and uniformly distributed over [0, 1] and [0, 2π), respectively.
The ensemble is a set of sinusoids with random amplitude and phase angle. Simple
calculation shows

E{s(t)} = E{Acos(ω0t +Θ)}
= E{Acos(ω0t)cos(Θ)−Asin(ω0t)sin(Θ)}
= cos(ω0t)E{A}E{cos(Θ)}− sin(ω0t)E{A}E{sin(Θ)} = 0,

by independence, and E{cos(Θ)}= E{sin(Θ)} = 0. In addition,

E{s(t)s̄(t − k)} = E
{

A2 cos(ω0t +Θ)cos(ω0(t − k)+Θ)
}

=
1
2

E
{

A2}E{cos(ω0k)+ cos(2ω0t −ω0k+ 2Θ)}

=
1
2

E
{

A2}cos(ω0k) = rs(k).

It follows that {s(t)} is WSS. By the hypothesis on A, E
{

A2
}
= 1/3. Thus,

Ψs(ω) =
1
6

∞

∑
k=−∞

cos(ω0k)e− jωk =
1

12
[δD(ω+ω0)+ δD(ω−ω0)]

with δD(·), the Dirac delta function, satisfying

(i) δD(x) = 0 for x �= 0, (ii)
∫ ∞

∞
δD(x) dx = 1. (2.15)

The above indicates that there are two spectrum lines at ±ω0, respectively. The
analytical expression of rs(k) is useful in computing PSD of {s(t)}.

In practice, there is a difficulty in evaluating the PSD as defined in (2.11).
Infinitely, many terms need be computed for ACS, which is not feasible. An
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approximate PSD is employed, consisting of finitely many signal samples:

Ψ (n)
s (ω) = E

⎧
⎨

⎩
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2
⎫
⎬

⎭
. (2.16)

A natural question is whether or not Ψ (n)
s (ω) converges to Ψs(ω) as n → ∞. By

straightforward calculation,

Ψ (n)
s (ω) =

1
n

n−1

∑
t=0

n−1

∑
τ=0

E{s(t)s̄(τ)}e− jω(t−τ)

=
n

∑
k=−n

(
1− |k|

n

)
rs(k)e− jkω .

Since multiplication in time domain is the same as convolution in frequency-
domain, the above yields

Ψ (n)
s (ω) =

1
2π

∫ π

−π
Fn(θ )Ψs(ω−θ ) dθ , (2.17)

where Fn(ω) is the nth order Fejér’s kernel given by

Fn(ω) :=
n

∑
k=−n

(
1− |k|

n

)
e− jkω =

1
n

(
sin n

2ω
sin 1

2ω

)2

. (2.18)

Verification of the Fejér’s kernel is left as an exercise (Problem 2.5). Before
investigating the convergence issue for the approximate PSD in (2.17), it is
illuminating to learn the useful properties of the Fejér’s kernel.

Lemma 2.1. Let Fn(ω) be defined as in (2.18). Then

(i) Fn(ω)≥ 0 ∀ω ∈ [0, 2π ];

(ii)
1

2π

∫ 2π

0
Fn(ω) dω = 1 for every n > 0;

(iii) For any closed interval I in (0, 2π), lim
n→∞

sup
ω∈I

|Fn(ω)|= 0.

The proof of this lemma is again left as an exercise (Problem 2.5). The next
theorem is the main result of this section.

Theorem 2.2. Suppose that the random signal {s(t)} has a finite averaged power.
Then it admits the PSD as defined in (2.11). Let Ψs(ω) be continuous over [0, 2π)
andΨs(0) =Ψs(2π). DefineΨ (n)

s (ω) as in (2.17). Then
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lim
n→∞

Ψ (n)
s (ω) = lim

n→∞
E

⎧
⎨

⎩
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2
⎫
⎬

⎭
=Ψs(ω)

for all ω ∈ [0, 2π ]. In other words,Ψ (n)
s (ω) converges uniformly toΨ(ω).

Proof. By the expression of Φ(n)
s (ω) in (2.17) and (ii) of Lemma 2.1,

Ψ (n)
s (ω)−Ψs(ω) =

1
2π

∫ π

−π
[Ψs(ω−θ )−Ψs(ω)]Fn(θ ) dθ .

SinceΨs(ω) is a continuous function ofω , there exists an M > 0 such that |Ψs(ω)| ≤
M for all ω ∈ [−π , π ]. Take δ > 0 and write

Ψ (n)
s (ω)−Ψs(ω) =

1
2π

∫ δ

−δ
[Ψs(ω−θ )−Ψs(ω)]Fn(θ ) dθ

+
1

2π

∫

δ≤|θ |≤π
[Ψs(ω−θ )−Ψs(ω)]Fn(θ ) dθ .

It follows from Lemma 2.1 that
∣
∣
∣Ψ (n)

s (ω)−Ψs(ω)
∣
∣
∣≤ sup

|θ |≤δ
|Ψs(ω−θ )−Ψs(ω)|+ 2M sup

δ≤|θ |≤π
Fn(θ ). (2.19)

According to property (3) of Lemma 2.1, and by the continuity of Ψs(ω), there
exists an N > 0 such that for all n ≥ N and ω ∈ [0, 2π ],

∣
∣∣Ψ (n)

s (ω)−Ψs(ω)
∣
∣∣≤ ε

for any given ε > 0. Therefore,Ψ (n)
s (ω) converges uniformly toΨs(ω). ��

There is no loss of generality in using only the causal part of the signal for

approximate PSDΨ (n)
s (ω) due to the WSS assumption for the random signal {s(t)}.

In fact, (2.17) is also useful in the case when the PDF of s(t) is unknown, in which
case the PSD is often estimated using time averages instead of the ensemble average,
by assuming ergodic process for {s(t)}. Since the measured signal data are always
finitely many, they can be assumed to begin at time t = 0.

Theorem 2.2 reveals an important property of the PSD:

Ψs(ω)≥ 0 ∀ω . (2.20)

That is, PSDs are positive real functions of frequency, even thoughΨs(ω) =Ψs(−ω)
may not hold in the case of complex signals. If the random signals are real, then there
holdsΨs(ω) =Ψs(−ω)≥ 0 for all ω .



2.1 Signals and Spectral Densities 37

2.1.2 Vector Signals

For MIMO communication channels, the data signals are vector-valued, denoted by
boldfaced letters, at each sampling time t. Consider the vector signal {s(t)} with
size p > 1. If {s(t)} is deterministic, then it is assumed that the energy of the vector
signal is bounded. That is,

Es :=
∞

∑
t=−∞

‖s(t)‖2 < ∞, (2.21)

where ‖s(t)‖=√s(t)∗s(t) is the Euclidean norm of s(t). In this case, the DTFT of
{s(t)} exists and has the same expression as (2.2):

S
(
e jω) :=

∞

∑
t=−∞

s(t)e− jωt . (2.22)

Define the p× p matrices

Γs(k) =
∞

∑
t=−∞

s(t)s(t − k)∗, k = 0,±1,±2, . . . . (2.23)

Although each term in the summation has rank one, Γs(k) may have a rank greater
than one and even be nonsingular. Moreover, {Γs(k)} is a bounded matrix sequence.
There holds

Es = Tr{Γs(0)} ≥ |Tr{Γs(k)}| for k =±1,±2, . . . . (2.24)

Similar to the scalar case, the ESD can be defined as the DTFT of {Γs(k)}:

Φs(ω) =
∞

∑
k=−∞

Γs(k)e− jωk = S
(
e jω)S

(
e jω)∗ . (2.25)

The above can be obtained with a similar derivation as in the scalar case. It is
interesting to observe that Φs(ω) always has rank one for all ω , even though Γs(k)
may have a rank greater than one for each k. Consequently,

Tr{Φs(ω)} = Tr
{

S
(
e jω)S(e jω)∗

}
= S
(
e jω)∗ S

(
e jω)=

∥
∥S(e jω )

∥
∥2

,

by properties of the trace. Parseval’s theorem is extended to

Es =
∞

∑
t=−∞

‖s(t)‖2 =
1

2π

∫ π

−π

∥
∥S(e jω )

∥
∥2

dω . (2.26)
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For the case of random vector signals, it is assumed that {s(t)} is WSS with mean
E{s(t)}= 0p for all t. Then its ACS is given by

Rs(k) := E{s(t)s(t − k)∗} , k = 0,±1,±2, . . . , (2.27)

which is independent of t and has size p× p. Similar to the deterministic case, Rs(k)
can be nonsingular. It can be shown that (Problem 2.7 in Exercises)

(i) Rs(k)
∗ = Rs(−k), (ii) Tr{Rs(0)} ≥ |Tr{Rs(k)}|. (2.28)

Assume that Rs(0) exists and is bounded. Then the PSD of {s(t)} can be easily
extended from (2.11) via the DTFT of ACS:

Ψs(ω) :=
∞

∑
k=−∞

Rs(k)e− jkω . (2.29)

Different from the ESD in the deterministic case, the PSD Ψs(ω) is nonsingular
generically. The inverse DTFT recovers {Rs(k)} via

Rs(k) =
1

2π

∫ π

−π
Ψs(ω)e jωk dω . (2.30)

The averaged power of {s(t)} is generalized as follows:

Ps := E{s(t)∗s(t)} = Tr{Rs(0)}= Tr

{
1

2π

∫ π

−π
Ψs(ω) dω

}
. (2.31)

Example 2.3. Consider random vector signal

s(t) = Ax(t), x(t) =
[

cos(ω0t +Θ)

sin(ω0t +Θ)

]
, (2.32)

where A and Θ are real independent random variables uniformly distributed over
[0, 1] and [0, 2π), respectively, as in Example 2.1. It is easy to show that E{s(t)}= 0
and

E{x(t)x(t − k)∗}= 1
2

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
=: Rx(k).

See Problem 2.6 in Exercises. Thus, by independence and E
{

A2
}
= 1/3,

E{s(t)s(t − k)∗}= E
{

A2}E{x(t)x(t − k)∗}= 1
6

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
.

It follows that {s(t)} is WSS with Rs(k) = E{s(t)s(t − k)∗} as above, which is
nonsingular for all k. Direct calculation yields
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Φs(ω) =
1
6

∞

∑
k=−∞

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
e− jωk

=
1

12

(
δD(ω+ω0)

[
1 − j
j 1

]
+ δD(ω−ω0)

[
1 j

− j 1

])
.

Thus, each element of the PSD matrix Ψs(ω) contains two spectrum lines at
±ω0, respectively, as in the scalar case. The power of the signal is given by
Ps = Tr{Rs(0)}= 1/3.

Approximate PSD can be employed if there are only finitely many terms of ACS
available. The following

Ψ (n)
s (ω) = E

{
1
n

(
n−1

∑
t=0

s(t)e− jωt

)(
n−1

∑
τ=0

s(τ)e− jωτ

)∗}

(2.33)

is generalized from (2.16). Straightforward calculation gives

Ψ (n)
s (ω) =

1
n

n−1

∑
t=0

n−1

∑
τ=0

E{s(t)s(τ)∗}e− jω(t−τ)

=
n

∑
k=−n

(
1− |k|

n

)
Rs(k)e− jkω

=
1

2π

∫ π

−π
Fn(θ )Ψs(ω−θ ) dθ ,

where Fn(·) is the nth order Fejér’s kernel as defined in (2.18). Because Fejér’s
kernel is a scalar function, the matrix-valued ACS and PSD do not pose any
difficulty in extending Theorem 2.2 to the following.

Theorem 2.4. Suppose that the random vector signal {s(t)} has a finite averaged
power. Then it admits the PSD as defined in (2.29). Let Ψs(ω) be continuous over

[0, 2π) andΨs(0) =Ψs(2π). DefineΨ (n)
s (ω) as in (2.33). Then

lim
n→∞

Ψ (n)
s (ω) =Ψs(ω) ∀ ω ∈ [0, 2π ].

Example 2.5. As an application example, consider estimation of the PSD based on
a given set of N data samples {s(t)}N−1

t=0 in the absence of the statistical information

of the underlying signal. To employ Ψ (n)
s (ω) in (2.33) as an approximation, it is

assumed that N = nm with n and m integers. The data set is partitioned into m
disjoint subsets {si(t)}n−1

t=0 , where i = 0,1, . . . ,m− 1. A simple partition is

si(t) = s(in+ t), 0 ≤ i ≤ m− 1, 0 ≤ t ≤ n− 1.
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Let Wn = e− j2π/n. For i = 0,1, . . . ,m− 1, compute

Si(k) =
1√
n

n−1

∑
t=0

si(t)W
tk
n , k = 0,1, . . . ,n− 1, (2.34)

which is a modified discrete Fourier transform (DFT). That is, it computes n
frequency response samples uniformly distributed over [0, 2π ] for {si(t)}n−1

t=0
modified by a factor of 1√

n . The FFT (fast Fourier transform) algorithm can be used
to implement the computation in (2.34). Now the ensemble average in (2.33) at
ω = ωk =

2kπ
n is replaced by the time average as follows:

Ψ (n) (ωk)≈ 1
m

m−1

∑
i=0

Si(k)Si(k)
∗, k = 0,1, . . . ,n− 1. (2.35)

If {s(t)} is an ergodic process, the right-hand side converges toΨ (n) (ωk) as m→∞,
which in turn converges to the true PSDΨ(ω) uniformly as n → ∞. Theorem 2.4 is
the basis for such a spectral estimation technique.

2.2 Linear Systems

Systems can be viewed as operators which map input signals to output signals
according to some mathematical mechanisms. A linear system is a linear map
whose output is a linear function of the input. This text focuses on LTI systems
that provide transparent relations between spectral densities of the input signals and
output signals. In fact, LTI systems shape the spectral densities of the input signals
through a simple multiplicative operation capable of producing entirely different
spectral densities at the output. LTV systems will also be studied in this section,
albeit at a less degree.

2.2.1 Transfer Functions and Matrices

An LTI scalar system can be represented by its transfer function which is the Z
transform of its impulse response, as illustrated below (see Fig. 2.1).

Fig. 2.1 An LTI system represented by its transfer function
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That is, if u(t) = δ (t), which is the Kroneker delta function, then y(t) = h(t) for
t = 0,±1,±2, . . ., with {h(t)} the impulse response. The transfer function of the
system is given by

H(z) :=
∞

∑
t=−∞

h(t)z−t , z ∈ C. (2.36)

For any input {u(t)}, the output of the system is the convolution of the impulse
response with the input:

y(t) = h(t)� u(t) :=
∞

∑
k=−∞

h(t − k)u(k). (2.37)

The system is said to be causal, if h(t) = 0 for t < 0, and strictly causal, if h(t) = 0
for t ≤ 0. Physical systems are causal in general, and often strictly causal. The
following defines the notion of stability.

Definition 2.1. A system is said to be stable, if for every bounded input {u(t)}
(i.e., |u(t)| ≤ Mu < ∞ for all t, and some Mu > 0), the corresponding output {y(t)}
is bounded (i.e., |y(t)| ≤ My <∞ for all t, and some My > 0).

The above stability is also termed BIBO (bounded-input/bounded-output) stabil-
ity. The next result provides the stability criterion.

Theorem 2.6. An LTI system with transfer function as in (2.36) is stable, if and
only if

∞

∑
t=−∞

|h(t)|< ∞. (2.38)

Proof. For any bounded input {u(t)} satisfying |u(t)| ≤ Mu <∞ for all t, and some
Mu > 0, the output satisfies

|y(t)|=
∣
∣
∣
∣
∣

∞

∑
k=−∞

h(t − k)u(k)

∣
∣
∣
∣
∣
≤
(

∞

∑
k=−∞

|h(k)|
)

Mu =: My < ∞

for t = 0,±1,±2, . . .. Hence, (2.38) implies stability of the given LTI system.
Conversely for the stable LTI system in (2.36), consider input {u(t)} given by

u(k) =

{
h̄(t0 − k)/|h(t0 − k)|, h(t0 − k) �= 0,

0, h(t0 − k) = 0,

with t0 an integer. Then |u(t)| ≤ 1 for all t and

y(t0) =
∞

∑
k=−∞

h(t0 − k)u(k) =
∞

∑
k=−∞

|h(t0 − k)|=
∞

∑
t=−∞

|h(t)|<∞

by the stability assumption. Thus, stability implies (2.38). ��
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Notice that if the LTI system is both stable and causal, then

H(z) =
∞

∑
t=0

h(t)z−t (2.39)

is analytic at z∈ C such that |z|> 1 and continuous on the unit circle. In other words,
the region of convergence (ROC) is |z| ≥ 1. In the interest of this text, only a subset
of causal and stable LTI systems will be studied. This is the set of causal and stable
LTI systems that admit rational transfer functions, or have finitely many poles and
zeros. The causality of such a system is equivalent to the properness of its transfer
function. Moreover, there exists a positive number r < 1 such that its ROC is |z|> r.
That is, it is also analytic on the unit circle. Various system models will be presented
in the next subsection.

For MIMO LTI systems, both input and output are vector signals. Capital letters,
for example, {H(t)}, are used to denote impulse responses. The Z transform of
the impulse response {H(t)} is a transfer function matrix, or simply called transfer
matrix, denoted by boldfaced capital letter and defined by

H(z) :=
∞

∑
t=−∞

H(t)z−t . (2.40)

If the input signal {u(t)} has dimension m and the output signal {y(t)} has
dimension p, then H(z) has size p×m for each z ∈ C. The input and the output
are again governed by the convolution relation:

y(t) = H(t)�u(t) :=
∞

∑
k=−∞

H(t − k)u(k). (2.41)

A vector signal {s(t)} is said to be bounded, if ‖s(t)‖ ≤ Ms for all t and some
bounded Ms > 0. The stability notion in Definition 2.1 can be easily generalized to
MIMO systems.

Definition 2.2. A MIMO system is said to be stable, if for every bounded input
{u(t)}, the corresponding output {y(t)} is bounded.

Note that for vector equation w = Av with A a fixed matrix, ‖w‖ is a function of
v. Recall that ‖ · ‖ is the Euclidean norm. There holds

sup
‖v‖=1

‖w‖= sup
‖v‖=1

‖Av‖= σ(A) (2.42)

with σ(·) the maximum singular value (refer to Appendix A). The next result is
extended from Theorem 2.6 by noting the equality (2.42) and by the fact that there
exists v0 with ‖v0‖= 1 such that ‖Av0‖= σ(A).
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Theorem 2.7. The LTI system with transfer matrix as in (2.40) is stable, if and
only if

∞

∑
t=−∞

σ (H(t))< ∞. (2.43)

The proof is left as an exercise (Problem 2.20). For deterministic input signals,
output signals are deterministic as well. The convolution in time domain is translated
into multiplication in Z -domain or frequency domain:

Y(z) = H(z)U(z), Y
(
e jω)= H

(
e jω)U

(
e jω) . (2.44)

Let Φu(ω) = U
(
e jω)U

(
e jω)∗ be the ESD of the input. Then

Φy(ω) = Y
(
e jω)Y

(
e jω)∗ = H

(
e jω)Φu(ω)H

(
e jω)∗ (2.45)

is the ESD of the output. As such, the frequency response of the system shapes the
ESD of the input. It is appropriate to define the energy norm:

‖s‖E :=
√

Es =

√
∞

∑
t=−∞

‖s(t)‖2. (2.46)

In light of (2.44), the energy norm of the output is given by

‖y‖E =

√

Tr

{
1

2π

∫ π

−π
H(e jω)Φu(ω)H(e jω)∗ dω

}
. (2.47)

Generically, ‖y‖E �= ‖u‖E , if H(z) �= I. Thus, the energy norm serves as an indicator
on the frequency-shaping effect of the system frequency response.

For random signals, their DTFT may not exist and thus (2.44) may not hold, if the
input is a random signal. Suppose that the input {u(t)} is a WSS random process
with zero means and {Ru(k)} as the ACS. Then {y(t)} is a random process with
zero mean due to E{u(t)}= 0 for all t and

E{y(t)}=
∞

∑
k=−∞

H(t − k)E{u(k)}= 0 ∀ t.

In fact, the output is also a WSS random process. Specifically,

E{y(t)y(t − k)∗} =
∞

∑
α=−∞

∞

∑
β=−∞

H(t −α)E{u(α)u(β )∗}H(t − k−β )∗

=
∞

∑
α=−∞

∞

∑
β=−∞

H(t −α)Ru(α−β )H(t − k−β )∗.
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With variable substitution γ = α−β , the above results in

E{y(t)y(t − k)∗} =
∞

∑
β=−∞

∞

∑
γ=−∞

H(t −β − γ)Ru(γ)H(t −β − k)∗

=
∞

∑
β=−∞

R̃y(t −β )H(t −β − k)∗

=
∞

∑
τ=−∞

R̃y(τ)H(τ − k)∗ = Ry(k),

which is independent of time t, where R̃y(τ) = H(τ)�Ru(τ) with τ = t −β . Hence,
it is concluded that the output of an LTI system is a WSS random process, provided
that the input is. Let Ψu(ω) be the PSD associated with input. Applying DTFT to
the ACS of {y(t)} shows that the PSD of the output is given by (Problem 2.9 in
Exercises)

Ψy(ω) = H
(
e jω)Ψu(ω)H

(
e jω)∗ . (2.48)

The resemblance of (2.48) to (2.45) is obvious, implying that LTI systems are
capable of shaping the PSD of the input signal through multiplicative operations.
The frequency response of the underlying system determines how much frequency
shaping the system can exert to the input PSD. A useful measure is the power norm:

‖s‖P =
√

Ps =
√

E{‖s(t)‖2}=
√

Tr{Rs(0)}. (2.49)

Thus, the power norm of the output is

‖y‖P =

√

Tr

{
1

2π

∫ π

−π
H(e jω)Ψu(e jω)H(e jω)∗ dω

}
, (2.50)

which indicates the shaping effect of the system frequency response to the input
PSD. More investigation will be carried out in later sections. If the input is white
noise with zero mean and identity covariance, i.e., Φu(e jω )≡ I, then (2.49) provides
one way to compute the system norm defined by

‖H‖2 :=

√

Tr

{
1

2π

∫ π

−π
H(e jω)H(e jω)∗ dω

}
=

√√
√
√Tr

{
∞

∑
t=−∞

H(t)H(t)∗
}

(2.51)

in light of the Parseval’s theorem. Such a system norm is sometime called Frobenius
norm of the system. A more general system norm is

‖H‖p :=

[
1

2π

∫ π

−π

(√
Tr{H(e jω)H(e jω)∗}

)p

dω
]1/p

for 1 ≤ p < ∞, which reduces to ‖H‖2 for p = 2.
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Example 2.8. Consider the scalar system with transfer function

H(z) = K
(
1− 2cos(ωh)z

−1 + z−2)= K
(
z− e jωh

)(
z− e− jωh

)
,

where K is a real constant gain. Simple calculations show that

∣
∣H(e jω)

∣
∣= 2|K|

√∣
∣
∣∣sin

(
ω+ωh

2

)
sin

(
ω−ωh

2

)∣∣
∣∣

and ‖H‖2 = 2|K|√1+ cos2(ωh)/2. If the input to the system is u(t) = s(t) with s(t)
as given in Example 2.1, then the input PSD is

Ψu(ω) =
1
12

[δD(ω+ω0)+ δD(ω−ω0)] .

In the scalar case, (2.48) reduces toΨy(ω) =
∣
∣H
(
e jω)∣∣2Ψu(ω), and thus,

Ψy(ω) =
K2

3

∣
∣∣
∣sin

(
ω+ωh

2

)
sin

(
ω−ωh

2

)∣∣∣
∣ [δD(ω+ω0)+ δD(ω−ω0)]

=
K2

3

∣
∣
∣
∣sin

(
ω0 +ωh

2

)
sin

(
ω0 −ωh

2

)∣∣
∣
∣ [δD(ω+ω0)+ δD(ω−ω0)]

is the output PSD. It follows that the amplitude of the two spectrum lines of the
input PSD is shaped by the frequency response H

(
e jω) at frequency ω0. Indeed, if

ωh = ±ω0, thenΨy(ω)≡ 0 and there are no spectrum lines for the output PSD. On
the other hand, if ωh �= ±ω0, the maximum amplitude of the two spectrum lines at
the output is given by (with either ωh = 0, or ωh = π)

K2

3
max

{
cos2(ω0/2), sin2(ω0/2)

}≥ K2

6
,

which can be large if the gain K is large.

2.2.2 System Models

The systems under consideration are causal and stable LTI systems, which have
finitely many poles. Such systems form a dense set in the class of all causal
and stable systems having continuous frequency responses. In other words, any
causal and stable LTI system which admits continuous frequency response can
be approximated arbitrarily well by a causal and stable LTI system which has
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finitely many poles, provided that the number of poles is adequately large in light of
Weierstrass Theorem from calculus. Such systems are also called finite-dimensional
due to their finitely many poles and, more importantly, that they can be implemented
or realized with finitely many arithmetic and delay operations. This subsection
will provide a brief review of commonly used mathematical models for finite-
dimensional LTI systems.

FIR or MA Models

For MIMO systems with m input and p output, the FIR model, also called transversal
filter, refers to the transfer matrices of the form

H(z) =
�

∑
k=0

H(k)z−k, (2.52)

where H(k) is a matrix of size p×m and is the impulse response at time t = k. In
obtaining the impulse response of the system, the m impulse inputs need be applied
one by one. The corresponding m output signals of size p can then be packed
together column-wise to form {H(t)}�t=0. Since the impulse response dies out in
finitely many samples, it acquires the name FIR (finite impulse response).

Consider the system with FIR model in (2.52). Let {u(t)} and {y(t)} be the
associated input and output signals, respectively. Then

y(t) =
�

∑
k=0

H(k)u(t − k) =
t

∑
k=t−�

H(t − k)u(k). (2.53)

That is, the output is the (weighted) moving average (MA) of the input. Hence,
the input/output description in (2.53) for the FIR model is also called the MA
model. FIR or MA models are the simplest, yet extremely important, for wireless
communication systems. The wireless channels are characterized by multipath, of
which gains of each path can be regarded as the impulse responses of the channels
and are often complex valued.

IIR or ARMA Models

The IIR model for SISO systems has the fractional form

H(z) =
N(z)
M(z)

=
ν0 +ν1z−1 + · · ·+νnν z−nν

1− μ1z−1 −·· ·− μnμ z−nμ
, (2.54)

where μk �= 0 for at least one integer k > 0 and M(z) �= 0 for all z outside and on the
unit circle. It follows that the system is stable and has a causal and infinite impulse
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response (IIR). Let {u(t)} and {y(t)} be the associated input and output signals,
respectively. Then

y(t) =
nμ

∑
k=1

μky(t − k)+
nν

∑
k=0

νku(t − k). (2.55)

That is, the output y(t) consists of two parts: the autoregressive (AR) part in the first
summation and the MA part in the second summation. If νk = 0 for k = 1,2, . . . ,nν ,
then the ARMA model reduces to the AR model, in which case the system admits
an all-pole model. Hence, the ARMA model includes the AR model as a special
case. In light of (2.55), the computational complexity in computing the output y(t)
is dependent on the degrees of the numerator and denominator polynomials in the
ARMA model (2.54). There is an incentive to minimize nν and nμ , which can be
carried out through cancelation of the common factors or common roots of M(z)
and N(z). If M(z) and N(z) do not share common roots, then {M(z),N(z)} is called
relative coprime or simply coprime. In this case, the roots of N(z) are called zeros,
the roots of M(z) are called poles, and n = max{nν ,nμ} is called the degree of the
system.

For MIMO systems with m input and p output, the transfer matrices for the IIR
model can be extended to the left fractional form

H(z) = M(z)−1N(z) =

(

M0 −
nμ

∑
k=1

Mkz−k

)−1( nν

∑
k=0

Nkz−k

)

, (2.56)

where Mk is a p× p matrix and Nk is a p×m matrix for each integer k. Again,
Mk �= 0p×p for at least one integer k > 0, assuming M0 is nonsingular. If M0 is an
identity, then the following describes the MIMO ARMA model:

y(t) =
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=0

Nku(t − k), (2.57)

where {u(t)} and {y(t)} are the input and output signals, respectively. For MIMO
systems, there exists right fractional form

H(z) = Ñ(z)M̃(z)−1 =

(
ñν

∑
k=0

Ñkz−k

)(

M̃0 −
ñμ

∑
k=1

M̃kz−k

)−1

, (2.58)

which can be entirely different from the one in (2.56).
Several notions need be introduced for MIMO systems. For the left fraction in

(2.56), {M(z),N(z)} is called left coprime, if

rank
{[

M(z) N(z)
]}

= p ∀ z ∈ C. (2.59)
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For the right fraction in (2.58),
{

Ñ(z),M̃(z)
}

is called right coprime, if

rank

{[
M̃(z)
Ñ(z)

]}
= m ∀ z ∈ C. (2.60)

In practice, it is unnecessary to test the rank conditions in (2.59) and (2.60) at all
z ∈ C. For the left fraction, one needs test (2.59) only at those z which are roots of
det(M(z)) = 0, and in the case of the right fraction, one needs test (2.60) only at
those z which are roots of det

(
M̃(z)

)
= 0.

Suppose that {M(z),N(z)} and
{

Ñ(z),M̃(z)
}

are left and right coprimes,
respectively. A complex number p0 is called pole of H(z), if:

lim
z→p0

rank{M(z)} < p ⇐⇒ lim
z→p0

rank
{

M̃(z)
}
< m. (2.61)

That is, some elements of H(z) become unbounded as z → p0. A complex number
z0 is called zero of H(z), if with ρ = min{p,m},

lim
z→z0

rank{N(z)}< ρ ⇐⇒ lim
z→z0

rank
{

Ñ(z)
}
< ρ . (2.62)

That is, rank{H(z)}< ρ = min{p,m} as z → z0. The system is stable, if H(z) has
all its poles strictly inside the unit circle. The system is called minimum phase, if
H(z) has no zeros outside the unit circle, and called strict minimum phase, if H(z)
has no zeros on and outside the unit circle.

Example 2.9. For systems with single input (m = 1), their right coprime fractions
can be easily obtained, which amounts to computing the greatest common divisor
(GCD). Specifically, consider the case of p = 2 with

H(z) = Ñ(z)M̃(z)−1 =

[
a1 + b1z−1 + c1z−2

a2 + b2z−1 + c2z−2

]
(
1−αz−1 −β z−2)−1

=

[
a1
(
1− s1,1z−1

)(
1− s1,2z−1

)

a2
(
1− s2,1z−1

)(
1− s2,2z−1

)
]
[(

1− p1z−1)(1− p2z−1)]−1
.

The system has a zero at zo, if and only if zo �= p1, zo �= p2, and zo = s1,i = s2,k for
some i and k. The right coprimeness condition in (2.60) is equivalent to whether or
not the two numerator and one denominator polynomials have common roots. Thus,{

Ñ(z),M̃(z)
}

is not right coprime, if and only if

H(z) =

[
a1
(
1− s1z−1

)

a2
(
1− s2z−1

)
] (

1− sz−1
)

(1− sz−1) (1− pz−1)

=

[
a1
(
1− s1z−1

)

a2
(
1− s2z−1

)
]

1
1− pz−1 ,
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u(t−1)
u(t−2)

u(t−3)

ν0
ν1

ν2

ν3
u(t) y(t)

z−1 z−1 z−1

Fig. 2.2 Block diagram for
FIR models of degree n = 3

for some s. If
(
1− sz−1

)
is the GCD, then the last expression of the above equation

provides a right coprime fraction, which has a zero if and only if s1 = s2. This
procedure can be easily generalized to other single input systems. As a result,
the procedure for obtaining the right coprime fractions for single-input systems is
quite similar to that for SISO systems, which can be extended to compute the left
coprime fractions for single output (p = 1) systems.

It is possible for H(z) to have common poles and zeros while its fractions are
coprime. Generically, it is difficult to obtain coprime fractions for MIMO systems,
and coprime fractions are not possible, if M0 = Ip and M̃0 = Im are required.
Consequently, it is considerably more difficult to minimize the computational
complexity associated with the right-hand side of (2.57) than the case of SISO
systems. For this and other reasons, state-space models are more preferred for
MIMO systems to be discussed next.

State-Space Models

State-space models describe dynamic systems with state variables. Let FIR models
of degree 3 be realized as in the following block diagram.

Then the input/output relation in Fig. 2.2 satisfies (2.55) for n = nν = 3 and
μk = 0 ∀ k ≥ 1. A common practice in the state-space description is to take the
output of each delay device as the state variable. Thus, for the SISO MA model, one
may define n = nν state variables {xk(t)}n

k=1 via

x(t) =

⎡

⎢
⎢⎢
⎣

x1(t)
x2(t)

...
xn(t)

⎤

⎥
⎥⎥
⎦
=

⎡

⎢
⎢⎢
⎣

u(t − 1)
u(t − 2)

...
u(t − n)

⎤

⎥
⎥⎥
⎦

=⇒ x(t + 1) =

⎡

⎢
⎢⎢
⎣

u(t)
x1(t)

...
xn−1(t)

⎤

⎥
⎥⎥
⎦
. (2.63)

Let d = ν0. Then the state-space equations

x(t + 1) = Ax(t)+bu(t), y(t) = cx(t)+ du(t) (2.64)

hold, where (A,b,c,d) is called a realization of the system, given by

A =

[
0∗n−1 0
In−1 0n−1

]
, b =

[
1

0n−1

]
, c =

[
ν1 · · · νn

]
, (2.65)
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in light of (2.63). The vector space spanned by state vectors x(t) at different time t
is called state space and is determined by the pair (A,b).

For the IIR model or ARMA model, it is assumed that

H(z) = d+
ν̃1z−1 + ν̃2z−2 + · · ·+ ν̃nz−n

1− μ1z−1 −·· ·− μnz−n , (2.66)

where n = max{nν ,nμ}. The conversion from (2.54) to (2.66) is always possible
by zero-padding either the AR coefficients or MA coefficients. In this case, H(z)
admits a realization (A,b,c,d) with

A =

[
vn−1 μn

In−1 0n−1

]
, b =

[
1

0n−1

]
, c =

[
ν̃1 · · · ν̃n

]
, (2.67)

where vn−1 =
[
μ1 · · · μn−1

]
. The above is termed canonical controller form or

simply controller form. To verify that (A,b,c,d) is indeed a realization for H(z) in
(2.66), denote {xk(t)} as the corresponding state variables. Then for 1 ≤ k < n,

xk+1(t + 1) = xk(t) =⇒ xk(t) = x1(t − k+ 1).

Hence, for d = 0, the expressions in (2.67) and (2.64) yield

x1(t + 1) =
n

∑
k=1

μkxk(t)+ u(t) =
n

∑
k=1

μkx1(t − k+ 1)+ u(t),

y(t) =
n

∑
k=1

ν̃kxk(t) =
n

∑
k=1

ν̃kx1(t − k+ 1).

Applying Z transform to the above with zero initial conditions yields

X1(z) =
z−1U(z)

1− μ1z−1 −·· ·− μnz−n ,

Y (z) =
(
ν̃1 + ν̃2z−1 + · · ·+ ν̃nz−n+1)X1(z),

which verifies that the transfer function from u(t) to y(t) is indeed H(z).
For MIMO FIR systems, a simple realization (A,B,C,D) is given by

A =

[
0m×(n−m) 0m×m

I(n−m)m 0(n−m)×m

]

, B =

[
Im

0(n−m)×m

]
,

C =
[

H1 H2 · · · H�

]
, D = H0, n = m�,

(2.68)

which is generalized from (2.65) and termed block controller form. Extension of
the above realization to include the IIR MIMO system in (2.56) is left as an exercise
(Problem 2.23). Its state-space system is described by

x(t + 1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t), (2.69)
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where A,B,C and D have appropriate dimensions. Applying Z transform to (2.69)
with zero initial condition x(0) = 0n yields the transfer matrix

H(z) = D+C (zIn −A)−1 B. (2.70)

Its impulse response {H(t)} is given by

H(0) = D, H(t) =CAt−1B, t ≥ 1. (2.71)

State-space realizations are not unique. For the state-space equation (2.69), let
the linear transform be xT (t) = T x(t) with T square and nonsingular. Then x(t) =
T−1xT (t), which upon substituted into (2.69), yields

xT (t + 1) = TAT−1xT (t)+TBu(t), y(t) =CT−1xT (t)+Du(t). (2.72)

Hence, a different realization
(
TAT−1,T B,CT−1,D

)
is obtained for the same

system. The transform in (2.72) is called similarity transform. Since T is an arbitrary
nonsingular matrix, a system can have infinitely many different realizations. More-
over, realizations with different state dimensions may exist. Minimal realizations
are preferred due to the obvious reason of complexity. The dimension of the state
vector x(t) is called order of the state-space system. If the order n is minimum
among all possible realizations for the same system, then (A,B,C,D) is called a
minimal realization.

Let p0 be a pole of H(z). Then it is an eigenvalue of A. The converse may not be
true in general unless the realization is minimal. Let z0 be a zero of H(z). Then

rank

{[
A− z0 In B

C D

]}
< n+min{p,m}. (2.73)

Again, the converse holds for only minimal realizations in general. The state-space
system (2.69) is said to be internally stable, if all eigenvalues of A are strictly inside
the unit circle. A formal definition for stability will be delayed to the next chapter.
It is worth pointing out that the stability notion for state-space systems is stronger
than the stability notion for ARMA models or transfer functions and matrices. The
two coincide with each other when the state-space system has a minimal realization.

Example 2.10. The following transfer function

H(z) =
−3z−1 + 6z−2

1− 2z−1 =
−3z+ 6
z2 − 2z

(2.74)

admits a realization (A,b,c,d) with

A =

[
2 0
1 0

]
, b =

[
1
0

]
, c =

[−3 6
]
, d = 0.
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The state-space system is unstable as A has two eigenvalues with one at 2 and the
other at 0. In absence of the input, the recursive computation yields

x(t + 1) =

[
x1(t + 1)
x2(t + 1)

]
= Ax(t) =

[
2
1

]
x1(t) =

[
2t+1

2t

]
x1(0)

with x1(0) the first component of x(0). Hence, if x1(0) �= 0, each element of x(t)
diverges as t → ∞. On the other hand,

y(t) = cx(t) =
[−3 6

]
x(t) =−3× 2t + 6× 2t−1 = 0.

So the unstable mode 2t does not show up at the output. Alternatively, H(z) in (2.74)
admits a different realization with

A =

[
2 1
0 0

]
, b =

[−3
6

]
, c =

[
1 0
]
, d = 0.

Again, A has eigenvalues at 2 and 0. Moreover, x1(t) = 2tx1(0)− 3u(t) and y(t) =
x1(t) based on the recursive state-space equation. In this case, the unstable mode 2t

does show up at the output, but cannot be removed from both x1(t) and x2(t), i.e.,
stabilized by any bounded control input {u(t)}.

It is important to note H(z) =−3z−1 after canceling the common factor (z− 2).
Thus, the system is BIBO stable. The unstable eigenvalue at 2 is not a pole of
H(z). In fact, a minimal realization of H(z) is (A,b,c,d) = (0,1,−3,0), which
is stable, coinciding with the stability of H(z). This example illustrates a serious
issue in realizations: It is possible for a system to be internally unstable while being
externally or BIBO stable. Such realizations are harmful in the sense that unstable
modes of the state-space system are either not detectable via the measured output or
not stabilizable via the control input, which will be investigated thoroughly in the
next chapter.

To summarize, the LTI models can be basically classified into two categories.
The first one includes FIR or MA and IIR or ARMA models, which emphasizes
input/output descriptions for dynamic systems. Its advantages lie in the simplicity
and clear notions of poles, zeros, and stability. Such models are well studied for
SISO systems. However, the coprime fractions for MIMO systems such as ARMA
or IIR models are not easy to obtain, especially if M0 = Ip or M̃0 = Im is required.
The second category is the state-space models, which provide internal descriptions
for dynamic systems in terms of state vectors. The dynamic behavior of the system is
completely specified by the state variables and the input. Although more parameters
are used, minimal realizations are always possible. Thus, poles, zeros, and stability
can be characterized as well. More importantly, state-space models reveal internal
structural information of the underlying systems and introduce new concepts and
results for system design, which are especially suitable to MIMO systems. Hence,
this text will focus on state-space models.
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Fig. 2.3 Impulse response for SISO LTV systems

2.2.3 Time-Varying Systems

A LTV system can be viewed as a family of LTI systems parameterized by the
time index t. As such, its impulse response is denoted by {h(t;k)}. Basically,
{h(t0;k)} is an impulse response of the system at time t0 with the impulse input
applied at k = 0. An illustrative plot is shown in Fig. 2.3. At each integer-valued
time t, h(t;k) is shown horizontally from left to right. For MIMO systems, impulse
responses are denoted by {H(t;k)}. Let {u(t)} and {y(t)} be the input and output,
respectively. Then

y(t) = H(t;k)�u(t) =
∞

∑
k=−∞

H(t;t − k)u(k) =
∞

∑
k=−∞

H(t,k)u(k). (2.75)

In the control literature, H(t,k) = H(t;t − k) is the standard notation. If the impulse
responses are all the same at different time index t, then (2.75) becomes the same as
in (2.41) for LTI systems (see Fig. 2.3).

For LTV systems, transfer functions or transfer matrices do not exist. As a conse-
quence, notions of poles and zeros are lost, and frequency-domain analysis is inap-
plicable, which are negative. On the positive side, the BIBO stability condition can
be derived in a similar way to that for LTI systems, as shown in the following result.

Theorem 2.11. The LTV system with impulse response {H(t;k)} is BIBO stable, if
and only if

∞

∑
k=−∞

σ(H(t;k))< ∞, ∀ t. (2.76)

Basically, the stability condition in Theorem 2.11 treats the LTV impulse
response as a “frozen time” LTI system indexed by time t. Thus, its proof is
similar to that for LTI systems and is left as an exercise (Problem 2.26). While the
stability condition for LTV systems is simple and resembles that for LTI systems,
difficulties exist to apply it in practice due to the lack of analytic form of {H(t;k)}
and verification of (2.76) for each t. It needs to be pointed out that for causal LTV
systems, H(t;k) = 0 for k < 0, which is assumed in the rest of this subsection.
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As shown earlier, outputs of LTI systems are WSS processes, provided that the
inputs are also. However, this statement does not hold for LTV systems, even though
E{u(t)} = 0 for all time t implies E{y(t)} = 0 for all t, in light of (2.75). Indeed,
for white noise input with the identity covariance, the power of the output is time
dependent and given by

Py(t) = Tr

(

E

{
t

∑
k=−∞

t

∑
i=−∞

H(t;t − k)u(k)u(i)∗H(t; t − i)∗
})

= Tr

{
t

∑
k=−∞

H(t;t − k)H(t;t − k)∗
}

= Tr

{
∞

∑
k=0

H(t;k)H(t;k)∗
}

. (2.77)

Basically, Py(t) quantifies the energy of the impulse response at time t. The above
suggests that the system norm in (2.51) for LTI systems be generalized to LTV
systems as

‖Ht‖2 =

√√
√
√Tr

{
∞

∑
k=0

H(t;k)H(t;k)∗
}

(2.78)

which is time dependent.
Even though LTV systems are considerably more difficult to analyze, MA,

ARMA, and state-space models are still effective for the class of systems empha-
sized in this text. Specifically, the ARMA model in (2.57) for MIMO systems can
be adapted to

y(t) =−
nμ

∑
k=1

Mk(t)y(t − k)+
nν

∑
k=0

Nk(t)u(t − k), (2.79)

where the AR and MA coefficient matrices are function of time t. If Mk(t) = 0 for
1 ≤ k ≤ nμ and all time t, then the above is collapsed to the MA model

y(t) =
nν

∑
k=0

Nk(t)u(t − k)

and {Nk(t)} can be viewed as an impulse response of the LTV system at time t. That
is, {H(t,k) = Nk(t)} is parameterized by time index t. It is noted that MA models,
time varying or not, are always stable.

For state-space descriptions, state-space models are adapted to

x(t + 1) = Atx(t)+Btu(t), y(t) =Ctx(t)+Dtu(t), (2.80)

where (At ,Bt ,Ct ,Dt) can be viewed as a realization for the underlying MIMO sys-
tem at time t. For LTV MA models, a realization with time-invariant A can be used.
But for general LTV systems, a time-varying At needs to be assumed. Similarity
transform can also be applied to obtain a new realization

(
TAtT−1,T Bt ,CtT−1,Dt

)
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for the same system, where T is square and nonsingular. If a time-varying nonsin-
gular matrix Tt is used as transform, then similarity

(
Tt+1AtT

−1
t ,Tt+1Bt ,CtT

−1
t ,Dt

)

is a new realization.
Different from LTI systems, a clear relation is lacking between the impulse

response {H(t;k)} and the realization (At ,Bt ,Ct ,Dt). Hence, “frozen time” analysis
as in Theorem 2.11 cannot be used to study stability for LTV state-space systems. In
fact, the stability notion for LTI state-space models is generalized to the following.

Definition 2.3. The state-space system (2.80) is said to be exponentially stable, if
there exist some α and β with α > 0 and 0 < β < 1 such that

ρ (At+NAt+N−1 · · ·At+1At)≤ αβN

for all time t and N > 0, where ρ(·) denotes the spectral radius.

In general, stability for each At , i.e., ρ(At)< 1 for each t, does not ensure stability
of the state-space system (refer to Problem 2.27 in Exercises). It is worth to pointing
out that if the state-space system is exponentially stable, then the state response to
zero input with initial condition x(t0) �= 0n is given by

x(T ) =
(
At0+T−1At0+T−2 · · ·At0+1At0

)
x(t0)→ 0n

for any x(t0) �= 0n, as T →∞. It is noted that in the case At = A for all t, exponential
stability reduces to the known condition that all eigenvalues of A are strictly inside
the unit circle.

2.3 Noise Processes and BER Analysis

One of the impediments to data detection is the contamination of random noises
at the receiver site. In most situations, observation noises can be assumed to
be additive, white, and Gaussian noise (AWGN). Consider the signal model as
illustrated below (see Fig. 2.4).

Let {v(t)} be AWGN. Then for each time index t, v(t) is a Gaussian random
vector, i.e., v(t) is normal distributed. It is assumed that E[v(t)] = 0 for all t. The
white assumption implies that the autocovariance matrix is given by

Fig. 2.4 Observed signal
with contaminated noise
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fR(r)

r
Eb Eb

Fig. 2.5 PDF for received
signal

E{v(t)v(t − k)∗}= Rv(t)δ (k) =
{

Rv(t), if k = 0,
0, if k �= 0.

(2.81)

If Rv(t) ≡ Rv is a constant nonnegative matrix, then the AWGN {v(t)} is WSS.
Otherwise, the AWGN is nonstationary.

For the simple case of scalar signals and noises, s(t) = ±√
Eb and v(t) is a

Gaussian random variable with zero mean and variance σ2
v . That is, s(t) carries only

one bit of information which is either +1 or −1, and Eb is the bit energy of s(t).
The data detection problem aims to detect the sign of s(t) based on the observed
signal r(t) at each time index t. Clearly, r(t) is also a Gaussian random variable and
has PDF

fR(r) =
1√

2πσv
exp

{
− (r− s)2

2σ2
v

}
,

where the time index t is skipped due to the stationarity of s(t) and v(t). The figure
below shows the PDFs of the received signal r(t) for both s(t) =

√
Eb and s(t) =

−√
Eb. Note that there is a symmetry about r(t) = 0 (see Fig. 2.5).

For the case of equal probable s(t), i.e., s(t) takes equal number of positive and
negative values, a moment of reflection indicates that the optimal detection rule is

s̆(t) =

{
+1, if r(t)> 0,
−1, if r(t)< 0.

(2.82)

Indeed, by symmetry, the probability of the BER is given by

εb =

∫ ∞

0

1√
2πσv

exp

{
− (r+

√
Eb)

2

2σ2
v

}
dr

=
∫ ∞
√

Eb/σ2
v

1√
2π

exp

{
− r2

2

}
dr =: Q

(√
Eb/σ2

v

)
(2.83)

that is the minimum. The quantity Eb/σ2
v is called signal-to-noise ratio (SNR). It is

important to observe that the BER performance is determined solely by the SNR.
Large SNR implies small BER and vice versa. If s(t) is taken to be random, then Eb

needs be replaced by bit power Pb = E{|s(t)|2}.
The case when s(t) carries more than one bit information is not pursued in this

text due to two reasons. First, any data can be represented by binary codes. There is
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no loss of generality in investigating the case of binary data. Second, generalization
from binary data to the case of multiple bits does not involve new concepts and
knowledge for data detection. Focusing on the binary case will help illuminate the
basic issues and the essential difficulties and understand the approaches to optimal
data detection.

For vector signals of size m, the noise v(t) is again assumed to be AWGN with
mean zero and covariance Σv. Suppose that Σv is nonsingular. Then the observed
signal r(t) admits Gaussian distribution with PDF

fR(r) =
1

√
(2π)m det(Σv)

exp

{
−1

2
(r− s)∗Σ−1

v (r− s)
}
. (2.84)

Let si(t) and ri(t) be the ith component of s(t) and r(t), respectively. For the equal
probable case, the detection rule (2.82) can be adapted to

s̆i(t) =

{
+1, if ri(t)> 0,
−1, if ri(t)< 0,

1 ≤ i ≤ m. (2.85)

Unfortunately, the above detection rule is not optimal anymore. The reason lies
in the correlation of the noise components. For instance, the detected symbol,
if correct, may help to detect other symbols. This problem will be studied in

Chap. 7. Assume temporarily that Σv is diagonal. With Ps(i) = E
{
|si(t)|2

}
and

σ2
v (i) = E

{
|vi(t)|2

}
(the ith diagonal element of Σv), the corresponding BER is

given by

εb(i) = Q
(
Ps(i)/σ2

v (i)
)
, i = 1,2, . . . ,m, (2.86)

under the detection rule (2.85) where Q(·)-function is defined as in (2.83). The
average BER for detection of s(t) can be calculated according to

εb =
1
m

m

∑
i=1

Q
(
Ps(i)/σ2

v (i)
)
. (2.87)

Gauss noise is a legitimate assumption in data communications, but the white
assumption may not be, due to frequency-selective fading and the presence of the
receiver. A common hypothesis is that the noise v(t), if colored, is generated by an
LTI filter driven by a Gaussian white noise process w(t) of zero mean and identity
covariance. That is, the PSD of v(t) is given by

Ψv(ω) = G(e jω)Ψw(ω)G(e jω )∗, Ψw(ω)≡ I,

where G(z) can be assumed to be stable and minimum phase without loss of
generality. It should be clear that the transmitted signal at the receiver site is also
distorted, giving rise to the following signal model for data detection in Fig. 2.6.
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Fig. 2.6 Baseband signal
model for data detection

This signal model is quite general in which b(t) is the original binary data
signal at the transmitter, and w(t) is the AWGN with zero vector mean and identity
covariance. The transfer matrices T(z) and G(z) are both causal, stable, and rational.
Assume that b(t) and s(t) have the same size m > 1. Then

r(t) = b(t)+ [T (t)− δ (t)Im]�b(t)+G(t)�w(t), (2.88)

where {T (t)} and {G(t)} are impulse responses of T(z) and G(z), respectively.
Even though v(t) = G(t) �w(t) can be treated as Gaussian distributed, the second
term on the right-hand side of (2.88) does not have a normal distribution, in general.

Denote D(t) = T (t)−δ (t)Im and d(t) =D(t)�b(t). Let Di,�(t) denote the (i, �)th
element of D(t) and di(t) the ith element of d(t). Then

di(t) =
t

∑
k=−∞

m

∑
�=1

Di,�(k)b�(t − k), 1 ≤ i ≤ m, (2.89)

where b�(t) is the �th element of b(t), assumed to be equal probable and independent
with respect to both � and t. As such, one may conjecture that {di(t)} is Gaussian
distributed for each i by the central limit theorem. Unfortunately, it is not. The main
reason is stability and rationality of T(z), two good properties as entailed for data
communications, which imply the existence of M > 0 such that |di(t)| ≤ M < ∞ for
all i and t by the boundedness of the input b(t). It follows that the support of PDF
for di(t) in (2.89) is finite precluding it from having normal distribution.

Although {d(t)} does not have a Gaussian distribution, it is close to being normal
distributed, provided that impulse response {D(t)} or equivalently {T (t)} does not
die out too quickly. Otherwise, m, the size of the data vector, needs to be adequately
large. The next example illustrates this fact.

Example 2.12. Let Z be a random variable generated via

Z =
n−1

∑
k=0

ρkYk, ρ = 0.8, n = 50,

where {Yk} is an i.i.d. sequence with an equal probability of 0.5 at ±1. Clearly,
Z has a zero mean and a variance

E
{
|Z|2
}
=

n−1

∑
k=0

ρ2kE
{
|Yk|2

}
=

n−1

∑
k=0

ρ2k ≤ 1
1−ρ2 =

1
0.36

.
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Fig. 2.7 Approximate PDF compared with normal distribution

One million samples of Z are obtained with Matlab, which produce an approximate
PDF in Fig. 2.7, plotted with “o,” based on the periodogram method. It can be
observed that the curve is close to the Gaussian PDF with zero mean and variance

1
0.36 , plotted in solid line.

The aforementioned discussions are summarized next.

Proposition 2.1. Suppose that G(z) and T(z) as in Fig. 2.6 are causal, stable, and
rational. Let {w(t)} be AWGN of mean zero and covariance identity and {b(t)} be
equal probable and independent. Denote D(z) = T(z)− Im and Σb = E{b(t)b(t)∗}.
If the impulse response of D(z) does not die out too quickly or the size of the data
vector is adequately large, then the observed signal r(t) in Fig. 2.6 consists of two
parts: the transmitted data signal b(t) and a fictitious additive noise {n(t)} which
has an approximate normal distribution with mean vector zero and covariance

Σn =
1

2π

∫ π

−π

[
G
(
e jω)G

(
e jω)∗+D

(
e jω)ΣbD

(
e jω)∗

]
dω . (2.90)

In light of (2.88), the fictitious additive noise is given by

n(t) = D(t)�b(t)+G(t)�w(t)

with D(t) = T (t)− δ (t)Im. Its covariance matrix Σn can be computed according
to (2.90) by the fact that {b(t)} and {w(t)} are independent of each other. Even
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though {n(t)} is approximately Gaussian with zero vector mean, the detection rule
in (2.85) cannot be used for data detection with ŝi(t) replaced by b̂i(t). There are two
reasons. The first one is the poor SNR in terms of the new noise n(t), considering
that D(z) = T(z)− I has large power norm in absence of equalization or precoding.
The second one is the nonwhite nature for {n(t)} and its dependence on b(t) in
general. But if the SNR is high and the PSD is near flat for the new noise n(t), then
the detection rule in (2.85) is approximately optimal. In this case, {n(t)} is close
to being normal distributed, the formulas in (2.86) and (2.87) can be employed
to estimate approximate BER values with Ps(i) replaced by Pb(i) and σv(i) by
σn(i), which are the ith diagonal elements of Σb and Σn, respectively. It is worth
pointing out that, if T(z) and G(z) in Fig. 2.6 are replaced by time-varying systems
with impulse responses {T (t,k)} and {G(t,k)}, respectively, then the covariance in
(2.90) is time dependent and given by:

Σn(t) =
∞

∑
k=0

[G(t;k)G(t;k)∗+D(t;k)ΣbD(t;k)∗] (2.91)

with D(t,k) = T (t,k)− δ (k)Im in light of (2.77).
BER is the most important performance indicator for data detection, but it can

be difficult to minimize in design of optimal receivers. It can also be difficult to
compute, if the detection error does not have normal distribution. As shown earlier,
the BER is hinged to the error variance, if the signal power is kept constant. For this
reason, a closely related performance indicator, root-mean-squared error (RMSE),
is often employed for data detection, which does not require the knowledge of
distribution of the noise, provided that the PDF of the noise is symmetric about
the origin. For the case in Proposition 2.1, the RMSE is simply εp =

√
Tr{Σn}, i.e.,

εp =

√

Tr

{
1

2π

∫ π

−π
[
G(e jω)G(e jω)∗+D(e jω )ΣbD(e jω)∗

]
dω
}
. (2.92)

A receiver design algorithm that achieves the minimum RMSE is called minimum
mean-squared-error (MMSE) algorithm. Although the RMSE performance is dif-
ferent from the BER performance, they are closely related. In the case of Gaussian
processes, they are equivalent to each other in the sense that the detection rule
remains the same. Data detection is often carried out after equalization or precoding
which will be studied in Chap. 7.

Notes and References

Many books provide excellent coverage of signals and systems in the case of
discrete-time. A sample of such textbooks are [7, 8, 69, 90, 100]. The BER analysis
is based on textbooks for digital communications such as [92, 116].
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Exercises

2.1. Prove (2.4) by assuming that {s(t)} is deterministic and has finite energy.

2.2. Prove the Schwarz inequality (2.6).

2.3. Compute ESD for the discrete-time signal

s(t) = e−α |t| cos(ω0t +π/2), α > 0, ω0 �= 0.

Compute energy of {s(t)} in both time domain and frequency domain.

2.4. Let {rs(k)} be ACS of {s(t)} as defined in (2.9). Show that for each integer k,
|rs(k)| ≤ rs(0).

2.5. Verify the expression of the nth order Fejér’s kernel in (2.18) and prove
Lemma 2.1. (Hint: Note that for deterministic {s(t)},

Ψ (n)(ω) =
1
n

∣
∣∣
∣
∣

n−1

∑
t=0

s(t)e− jωt

∣
∣∣
∣
∣

2

which is the same as Fn(ω) for s(t)≡ 1).

2.6. Suppose that Θ is a uniformly distributed random variable over [0, 2π ]. Show
that

(a) E
{

cos2(Θ)
}
= E
{

sin2(Θ)
}
= 1

2 ,
(b) E{cos(Θ)}= E{sin(Θ)}= E{cos(Θ)sin(Θ)}= 0, and
(c) for x(t) =

[
cos(ω0t +Θ) sin(ω0t +Θ)

]′
,

Rx(k) = E{x(t)x(t − k)∗}= 1
2

[
cos(ω0k) −sin(ω0k)
sin(ω0k) cos(ω0k)

]
.

2.7. Let {Rs(k)} be ACS of the WSS vector process {s(t)} as defined in (2.27).
Show that for each integer k,

(i) Rs(k)
∗ = Rs(−k), (ii) Tr{Rs(0)} ≥ |Tr{Rs(k)}|.

(Hint: Note that Tr{Rs(0)}=E{s(t)∗s(t)}=E{s(t−k)∗s(t−k)}, and |Tr{Rs(k)}|=
|E{s(t − k)∗s(t)}|= |E{s(t)∗s(t − k)}|, as well as

E

{[
s(t)∗

s(t − k)∗

][
s(t) s(t − k)

]}≥ 0

for each integer k).
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2.8. For Example 2.3, set ω0 = 0.25π . Use Simulink to generate a set of N = 214

data samples for {s(t)} in (2.32):

1. Follow the estimation scheme outlined in Example 2.5 with n = 28 and m = 26

to estimate the PSD with comparison to the true PSD.
2. Consider the use of ω0 = 0.25π+π/n with different values of (n,m), but with

N = nm = 214 and the same data samples set. Compare the estimation results
with that in (i).

The quantity π/n is called resolution in spectrum estimation which is the possible
maximum error for the location of the spectrum lines.

2.9. Consider the system in Fig. 2.1. Let

ryu(k) = E{y(t)u(t − k)∗}

be the cross covariance sequence and Ψyu(ω) be the DTFT of {ryu(k)}. Let Ψu(ω)
andΨy(ω) be the DTFT of ACS {ru(k)} and {ry(k)}, respectively. Show that

Ψyu(ω) = H
(
e jω)Ψu(ω), Ψy(ω) =Ψyu(ω)H

(
e jω)∗ .

Generalize the above to MIMO systems.

2.10. Let {y(t)}n−1
t=0 and {u(t)}n−1

t=0 be input and output measurement data. Approx-
imate ryu(k) as in the previous problem by

r̂yu(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
n

n−1

∑
t=k

y(t)u(t − k)∗, k ≥ 0,

1
n

n+k−1

∑
t=0

y(t)u(t − k)∗, k ≤ 0.

Show that the DTFT of {r̂yu(k)} is given by

Ψ̂yu(ω) =
1
n

(
n−1

∑
t=0

y(t)e− jtω

)(
n−1

∑
k=0

u(k)e− jkω

)∗
.

2.11. For the system in Fig. 2.1, propose an algorithm to estimate the system fre-
quency response

∣
∣H(e jω)

∣
∣ and ∠H(e jω). (Hint: Use the results in Problems 2.8, 2.9,

and 2.10).

2.12. For the block diagram in Fig. 2.8, the block with L is an interpolator or upper
sampler where L > 1 is an integer. The output of the interpolator is governed by

s(t) =

{
u(k), if t = Lk,

0, if t �= Lk.
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Fig. 2.8 Interpolator
followed by filter

Fig. 2.9 Filtering followed
by modulation

Show that (i) the system in Fig. 2.8 is linear but not time invariant, and (ii)Ψs(ω) =

Ψu(Lω) andΨy f (ω) =
∣
∣F(e jω)

∣
∣2Ψu(Lω) whereΨ (·) is PSD.

2.13. Compute impulse responses for BIBO stable systems which admit the
following transfer functions:

H1(z) =
2.5

z2 + 1.5z− 1
, H2(z) =

z+ 1
z2 + 3.5z− 2

.

2.14. Let H(z) be a causal transfer function matrix of size p × p. Let D(z) =
diag

(
z−d1 ,z−d2 , . . . ,z−dp

)
with di ≥ 0 integers. Show that H̃(z) = D(z)−1H(z)D(z)

may not be causal.

2.15. Consider the two systems in Figs. 2.8 and 2.9. Suppose that the impulse
responses of F(z) and H(z) are { f (t)}n

t=0 and {h(t)}n
t=0, respectively, where n > 1,

and (� > 0 is any integer)

f (t) = h(t)cos

(
2π�t

L

)
. (2.93)

(i) Show that for L > 1, the two system block diagrams are equivalent, or y f (t) =
yh(t) for all time t. That is, filtering followed by cosine modulation has the same
effect as filtering with cosine-modulated impulse response.

(ii) Show that, if we remove the interpolator, the two signal block diagrams are not
equivalent or y f (t) �= yh(t) for at least some time t.

2.16. Consider again the systems in Figs. 2.8 and 2.9 where the impulse responses
of H(z) and F(z) are {h(t)}n

t=0 and { f (t)}n
t=0, respectively, satisfying (2.93) and

∣
∣H
(
e jω)∣∣≈

{
1, |ω | ≤ π/5,
0, elsewhere.

For L = 5, �= 1, and the input PSD

Ψu(ω) = |ω | for |ω | ≤ π ,

give rough sketches for the output PSDs for {y f (t)} and {yh(t)}.
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2.17. Suppose that H(z) in (2.39) is stable. Show that (i) it is analytic outside the
unit circle, and (ii) H(z) is continuous on the unit circle, i.e., H(e jω) is a continuous
function of ω . (Hint: A transfer function H(z) is analytic at z = z0, if it admits the
(continuous) derivative at z = z0).

2.18. Suppose that H(z) and G(z) are BIBO stable with impulse response {H(t)}
and {G(t)}, respectively. Show that

1
2π

∫ π

−π
H
(
e jω)G

(
e jω)∗ dω =

∞

∑
t=−∞

H(t)G(t)∗

and conclude (i) the Parseval’s relation (2.51), and (ii) if H(z) is causal and G(z) is
anticausal, then there holds the orthogonality relation

1
2π

∫ π

−π
H
(
e jω)G

(
e jω)∗ dω = 0.

2.19. Suppose that H(z) is BIBO stable. Show that H(z) = HA(z) +HC(z) with
HA(z) anticausal, HC(z) causal, and

‖H‖2
2 = ‖HA‖2

2 + ‖HC‖2
2.

2.20. Prove Theorem 2.7.

2.21. (i) If there exists a square polynomial matrix R(z) such that

M(z) = R(z)Mc(z), N(z) = R(z)Nc(z),

where det(R(z)) = 0 for some z∈C, show that {M(z),N(z)} is not left coprime.
If R(z) is the GCD, show that {Mc(z),Nc(z)} is left coprime.

(ii) If there exists a square polynomial matrix R̃(z) such that

M̃(z) = M̃c(z)R̃(z), Ñ(z) = Ñc(z)R̃(z),

where det(R̃(z)) = 0 for some z ∈ C, show that {Ñ(z),M̃(z)} is not right
coprime. If R̃(z) is the GCD, show that {Ñc(z),M̃c(z)} is right coprime.

2.22. Find the relation between the two IIR models in (2.54) and (2.66), and draw a
similar block diagram to the one in Fig. 2.2 for the state-space realization in (2.67)
with n = 3.

2.23. Extend the realization in (2.68) (canonical controller form) to cover the
MIMO IIR model (2.58) by assuming that M̃0 = Im, Ñ0 = 0, and �= max

{
ñν , ñμ

}
.
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2.24. Consider a 2× 2 MIMO IIR model

H(z) =
z−1

3+ 2.5z−1+ 0.5z−2

[
3(z−1 + 2) 6(1+ 0.5z−1)

3z−1 3(1+ 0.5z−1)

]
.

(i) Find an ARMA description in the form of (2.57) and the corresponding IIR in
the form of left fraction.

(ii) Show that a right fraction is given by

H(z) =

[
z−2 + 2z−1 2z−1

z−2 z−1

][
1+ 2.5

3 z−1 + 1
6 z−2 0

0 1+ 1
3 z−1

]−1

which is coprime.
(iii) Compute poles and zeros of H(z).
(iv) Show that with

A =

⎡

⎣
− 2.5

3 − 1
6 0

1 0 0
0 0 − 1

3

⎤

⎦ , B =

⎡

⎣
1 0
0 0
0 1

⎤

⎦ , C =

[
2 1 2
1 0 1

]
,

and D = 02×2, (A,B,C,D) is a minimal realization.

2.25. (i) Find a right coprime fraction for

H1(z) =

[
1− z−2

1− 3z−1+ 2z−2

]
2

1− 1.8z−1+ 0.8z−2 .

(ii) Find a left coprime fraction for

H2(z) =
2

1+ 0.4z−1− 0.6z−2

[
2+ 3z−1+ z−2 1− z−2

]
.

(iii) Find minimal realizations for H1(z) and H2(z). (Hint: Use canonical controller
form.)

2.26. (i) For an LTV system with impulse response {h(t;τ)}, show that it is BIBO
stable, if and only if

∞

∑
τ=−∞

|h(t;τ)|< ∞ ∀ t.

(ii) Prove the similar result in (2.76) for MIMO systems.
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2.27. Let |a|> 1 and |b|< 1. Consider state-space model

x(t + 1) = Atx(t), At =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
0 a

ba−1 0

]
, if t is even,

[
0 ba−1

a 0

]
, if t is odd.

(a) Compute eigenvalues of At and verify that ρ(At)< 1 ∀ t. (b) Show that

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
(b/a)2k 0

0 a2k

]
x(0), if t = 2k,

[
0 a2k+1

(b/a)2k+1 0

]
x(0), if t = 2k+ 1.

That is, ‖x(t)‖→ ∞ as t → ∞, if the second element of x(0) is nonzero.

2.28. Consider the signal model as in Fig. 2.4, where the noise is AWGN with
zero mean and variance σ2

v . Suppose that the binary data source {s(t)} is not equal
probable and has probability distribution

PS[s(t) = +1] = p > 0, PS[s(t) =−1] = 1− p > 0,

and thus, E{|s(t)|2}= 1. Modify the detection rule in (2.85) as

ŝ(t) =

{
+1, if r(t)> ρ ,
−1, if r(t)< ρ ,

with ρ a threshold. Then the BER is a function of ρ . Show that

ρ = ρopt =
σ2

v

2
loge

(
1− p

p

)

minimizes the BER. It is noted that for equal probable case, ρopt = 0 which coincides
with the detection rule (2.85). (Hint: Show that

εb = (1− p)PR|S[r(t)> ρ |s(t) =−1]+ pPR|S[r(t)< ρ |s(t) = +1]

is a function of ρ . Find its expression and then compute its minimum).



Chapter 3
Linear System Theory

For SISO systems, input/output descriptions, such as FIR/IIR or MA/ARMA
models, have been effective in modeling, analysis, and design of LTI systems.
Coprime fractions and impulse responses are easy to obtain for given transfer
functions. Poles and zeros determine not only stability but also performance of the
system completely. Many analytical and empirical methods have been developed
and are powerful design tools for LTI systems. Nonetheless, such design tools are
not as effective for MIMO systems. For instance, two MIMO systems may have
the same poles and zeros but behave entirely differently as shown in the following
example.

Example 3.1. Consider two transfer matrices of size 2× 2:

H1(z) =

[
2 z−1

z+r 0

0 2 z+1
z−r

]

, and H2(z) =

[
z+1
z+r 0

0 z−1
z−r

]

.

These two transfer matrices have identical poles {±r} and zeros {±1}. Due to
the decoupling between the two inputs and the two outputs, each system basically
represents two SISO systems. For r ≈ 1 and |r|< 1, both transfer matrices are stable,
and at z = e jω ,

∣
∣
∣∣2

z− 1
z+ r

∣
∣
∣∣=

2|sin(ω2 )|√
1+ r2 + 2r cos(ω)

,

∣
∣
∣∣
z+ 1
z+ r

∣
∣
∣∣≈ 1,

∣
∣∣
∣2

z+ 1
z− r

∣
∣∣
∣=

2|cos(ω2 )|√
1+ r2− 2r sin(ω)

,

∣
∣∣
∣
z− 1
z− r

∣
∣∣
∣≈ 1.

It follows that the two diagonal transfer functions of H1(z) are approximately high-
pass and low-pass filters, respectively, while the two diagonal transfer functions of
H2(z) behave like allpass filters.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 3, © Springer Science+Business Media, LLC 2012
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The above example is notwithstanding. Traditional approaches based on input
and output descriptions have their limitations, in addition to the difficulty of
computing coprime fractions as discussed in Sect. 2.2.2. What it lacks is the
structural information of the system, which are unimportant to SISO systems but
crucial to MIMO systems. Such structural information is more suitably described
by internal descriptive models of state space.

Linear system theory is developed for state-space models and centered right at
the intrinsic structural properties of linear systems in relation to their inputs and
outputs. It examines basic issues such as realization, observation, and control, and
studies system structures from inputs to state vectors and from state vectors to
outputs via rigorous mathematical analysis. However, it is the conceptual notions
of reachability, observability, and Lyapunov stability that are at the heart of the
linear system theory and are the central theme of this chapter.

3.1 Realizations

Given a transfer function or transfer matrix, how to realize it with a digital circuit
composed of delays, multipliers, and adders? More importantly, how to search for a
realization which deploys the minimum number of delay devices? These realization
issues are investigated in this section.

Example 3.2. Consider a realization of the transfer function

H(z) =
ν1z−1 +ν2z−2 +ν3z−3

1− μ1z−1 − μ2z−2 − μ3z−3 , (3.1)

which is shown in the following block diagram:
It can be verified that the transfer function for Fig. 3.1 is indeed the same as H(z)

in (3.1). Moreover

x1(t + 1) = μ1x1(t)+ x2(t)+ν1u(t),

x2(t + 1) = μ2x1(t)+ x3(t)+ν2u(t),

x3(t + 1) = μ3x1(t)+ν3u(t).

Fig. 3.1 Block diagram for implementation of H(z)
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Fig. 3.2 Block diagram for state-space systems

Hence, with x(t) =
[

x1(t) x2(t) x3(t)
]′

where ′ stands for transpose, the dy-
namic system in Fig. 3.1 satisfies the state-space equation

x(t + 1) = Ax(t)+bu(t), y(t) = cx(t)+ du(t),

where (A,b,c,d) is a realization of H(z), given by d = 0 and

A =

⎡

⎣
μ1 1 0
μ2 0 1
μ3 0 0

⎤

⎦ , b =

⎡

⎣
ν1

ν2

ν3

⎤

⎦ , c =

⎡

⎣
1
0
0

⎤

⎦

′

. (3.2)

The above can be extended to MIMO systems of size p×m. Let

H(z) =
(
Ip −M1z−1 −M2z−2 −M3z−3)−1 (

N1z−1 +N2z−2 +N3z−3) .

Then H(z) admits a realization (A,B,C,D) with D = 0p×m, and

A =

⎡

⎢
⎣

M1 Ip 0p×p

M2 0p×p Ip

M3 0p×p 0p×p

⎤

⎥
⎦ , B =

⎡

⎣
N1

N2

N3

⎤

⎦ , C =

⎡

⎣
Ip

0
0

⎤

⎦

′

. (3.3)

It can also be verified that H(z) = D+C(zIn −A)−1B with n = 3p.

In general, a rational transfer matrix admits a realization (A,B,C,D) and can be
described by the state-space model

x(t + 1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t).

The following block diagram illustrates its implementation.
As seen in Fig. 3.2, the matrix D represents a direct transmission from the input to

the output. The matrix B maps the input to the state-space spanned by state vectors,
the matrix C maps the space space to the output, and the matrix A is a map from the
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state-space to itself. Hence, the structural information of the system is fully captured
by its realization (A,B,C,D).

The order of the state-space model is the same as the dimension of the state
vector, or the number of time delays deployed in Fig. 3.2 which is n. A realization
having the minimum order is said to be minimal. If the numerator and denominator
polynomials of H(z) in (3.1) are relatively coprime, then the realization as given
in (3.2) is minimal. However, coprime fractions, and thus minimal realizations,
are difficult to obtain for MIMO systems in general. Redundancies are likely to
exist for the corresponding realizations. It turns out that such redundancies are
associated with either (C,A) in terms of the observation of the state vector at the
output or (A,B) in terms reaching the desired state vector from the input which
can be removed via numerically efficient algorithms. The notions of observability
and reachability play the pivotal role and help to deepen the understanding of the
structural properties of linear systems as studied in this section.

3.1.1 Observability

Consider the unforced state-space system described by

x(t + 1) = Ax(t), y(t) =Cx(t), x(0) = x0. (3.4)

An important problem for the unforced system (3.4) is the reconstruction of the
initial state vector x0 based on the output measurements for t ≥ 0, which gives rise
of the notion of observability as defined next.

Definition 3.1. The system (3.4), or simply (C,A), is observable, if given true
output data {y(t)}�−1

t=0 , the initial state x0 can be reconstructed uniquely for some
� > 0.

The following result is well known in the linear system theory.

Theorem 3.3. The pair (C,A) is observable, if and only if

rank{On(C,A)} = n, On(C,A) =

⎡

⎢
⎢
⎢
⎣

C
CA

...
CAn−1

⎤

⎥
⎥
⎥
⎦
,

where n is the dimension of the state vector x(t).

Proof. For simplicity, On(C,A) is denoted by On. Direct computation gives

y(0) =Cx0, y(1) =CAx0, . . . , y(n− 1) =CAn−1x0.
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Let vec(M) be the column vector by stacking columns of M sequentially. Then

Yn = vec
([

y(0) y(1) · · · y(n− 1)
])

= Onx0. (3.5)

Let the dimension of the output be p. Then On has size pn × n. The full rank
condition for On and the hypothesis on {y(t)} imply that there is a unique solution
x0 to (3.5) from which the observability follows. Conversely, assume that (C,A)
is observable. Then Y� = O�x0 has a unique solution x0 for some � > 0, implying
that O� has the full column rank. In light of the Cayley Hamilton Theorem (refer to
Appendix A), Ak is a linear combination of {Ai}n−1

i=0 for any k ≥ n, i.e.,

Ak =
n−1

∑
i=0

αiA
i, k ≥ n,

where {αi} are not identically zero. Thus, each row of CAk is in the row space
spanned by row vectors of CAi for 0 ≤ i < n. Consequently,

rank{O�}= rank{On}= n

for all �≥ n, which completes the proof. ��
The matrix O� is called the observability matrix of size �. It is noted that there

is no loss of generality in studying the observability for unforced system (3.4).
Specifically for the general state-space system

x(t + 1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t) (3.6)

with x(0) = x0, the observability can be modified to reconstructability of the initial
state x0, based on the true input/output data {u(t)}�−1

t=0 and {y(t)}�−1
t=0 for some � > 0.

In this case, (3.5) needs to be replaced by

Y� = O�x0 +T�U�, (3.7)

where � > 0 is a given integer and

T� =

⎡

⎢
⎢
⎢
⎢
⎣

D 0 · · · 0

CA0B D
. . .

...
...

. . .
. . . 0

CA�−2B · · · CA0B D

⎤

⎥
⎥
⎥
⎥
⎦
, U� =

⎡

⎢
⎢
⎢
⎣

u(0)
u(1)

...
u(�− 1)

⎤

⎥
⎥
⎥
⎦
. (3.8)

The matrix T� is lower block triangular, called Toeplitz matrix, and is uniquely
specified by its first block column. Hence, the uniqueness of the solution x0 is
tied to the full rank condition of O� for all � ≥ n, which is equivalent to the full
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rank condition of On by again the Cayley Hamilton Theorem. The existence of
the solution to (3.7) or (3.5) should be clear, because the measurement noises are
assumed to be zero, and {u(t)}�−1

t=0 and {y(t)}�−1
t=0 are the true input and output data,

respectively.

Example 3.4. A simple state-space realization for the SISO IIR model

H(z) = d+
ν1z−1 +ν2z−2 + · · ·+νnz−n

1− μ1z−1 − μ2z−2 −·· ·− μnz−n (3.9)

is (Ao,bo,co,do) generalized from (3.2) and given by

Ao =

[
vn−1 In−1

μn 0∗n−1

]
, vn−1 =

⎡

⎢
⎣

μ1
...

μn−1

⎤

⎥
⎦ , bo =

⎡

⎢
⎣

ν1
...
νn

⎤

⎥
⎦ ,

co =
[

1 0 · · · 0
]
, do = d.

A direct computation shows that the observability matrix is

On =

⎡

⎢
⎢⎢
⎢
⎣

1 0 · · · 0

∗ 1
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 1

⎤

⎥
⎥⎥
⎥
⎦

and nonsingular where the elements marked with ∗ are not relevant to the observabil-
ity. Thus, the state-space system with realization (Ao,bo,co,do) is always observable
even if the numerator and denominator polynomials are not relative coprime. For
this reason, realization (Ao,bo,co,do) is called canonical observer form, or simply
observer form. For the p×m transfer matrix

H(z) = D+

(

Ip −
�

∑
k=1

Mkz−k

)−1(
�

∑
k=1

Nkz−k

)

, (3.10)

a realization (Ao,Bo,Co,Do) in block observer form can be obtained with

Ao =

[
V�−1 I(�−1)p

M� 0�×(�−1)p

]

, V�−1 =

⎡

⎢
⎣

M1
...

M�−1

⎤

⎥
⎦ , Bo =

⎡

⎢
⎣

N1
...

N�

⎤

⎥
⎦ ,

Co =
[

Ip 0p×(�−1)p

]
, Do = D.
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The above is a generalization of the realization in (3.3). It can be verified that the
observability matrix On is again lower triangular with 1 on the diagonal and n = p�.
Hence, the state-space system with realization (Ao,Bo,Co,Do) is always observable
as well.

Example 3.4 shows that any rational transfer function or matrix admits a state-
space realization. In fact, observable realizations can always be obtained even if the
fractions are not coprime. On the other hand, for a given transfer matrix H(z), not all
its realizations are observable. If the given realization is unobservable, is it possible
to obtain a different realization for the same transfer matrix which is observable?
This question is answered by Kalman decomposition as given next.

Theorem 3.5. Let (A,B,C,D) be a realization of H(z) with size n× n for A and
p×m for H(z). Suppose that (C,A) is unobservable. Then there exists a similarity
transform T such that

(i) Ã = TAT−1 =

[
Ão 0r×(n−r)

Ãoō Ãō

]

, B̃ = T B =

[
B̃o

B̃ō

]

,

(ii) C̃ =CT−1 =
[

C̃o 0p×(n−r)

]
, D̃ = D,

where
(
C̃o, Ão

)
is observable with r× r the dimension of Ão. Moreover

H(z) = D+C(zIn −A)−1B = D̃+ C̃o
(
zIr − Ão

)−1
B̃o. (3.11)

Proof. Since (C,A) is unobservable, the observability matrix On has rank r < n.
By singular value decomposition (SVD), On = USnV ∗ where U and V are unitary
matrices and Sn of size pn× n has nonzero singular values {σk}r

k=1 on its diagonal
with the rest elements zero. Hence, OnV =

[
Õnr 0

]
, and Õnr has r columns with

r the rank of On. Let T =V ∗. Then with Ã = TAT−1 and C̃ =CT−1,

OnV = OnT−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CT−1

CAT−1

...

CAn−1T−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C̃

C̃Ã
...

C̃Ãn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=
[
Õnr 0

]
.

Therefore, the expression of C̃ in (ii) follows. Partition Ã into a 2×2 block matrix
compatibly with

{
Ãi,k
}

, the block at the (i,k)th position for i,k = 1,2, and Ã1,1 of
size r× r. Then by induction, there holds

OnT−1 =
[
Õnr Õnr Ã12

]
=
[
Õnr 0

]
,
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Fig. 3.3 Observability
Kalman decomposition

where Õnr is the observability matrix of
(
C̃o, Ã1,1

)
of size np× r. Since Õnr has

full column rank, Ã12 = 0r×(n−r). The expression of Ã in (i) follows by taking Ão =

Ã1,1, Ãoō = Ã2,1, and Ãō = Ã2,2. The full column rank condition for Õnr implies the
observability of

(
C̃o, Ão

)
. The expression for the transfer matrix in (3.11) can then

be verified via straightforward computations. ��
Let x(t) be the state vector associated with realization (A,B,C,D). Then Theo-

rem 3.5 illustrates that the linear transform

x̃(t) = T x(t) =
[

x̃o(t)∗ x̃ō(t)∗
]∗

decomposes the state vector into two parts: One is x̃o(t) with dimension r which
is observable, and the other is x̃ō(t) with dimension (n− r) which is unobservable.
Such a decomposition via similarity transforms is called Kalman decomposition
as illustrated in Fig. 3.3. As it is seen, the subsystem

(
Ão, B̃o,C̃o,D

)
is observable

from the output y(t), while the subsystem with inputs u(t) and x̃o(t) and with
realization

(
Ãō,
[

B̃ō Ãoō
]
,0,0

)
is unobservable. It is now clear why the expression

for the transfer matrix in (3.11) is true. Kalman decomposition offers a procedure
to eliminate the unobservable states, or unobservable subsystem of the state-space
model.

It is noted that testing of observability via the rank condition of On suffers a
numerical problem, if n is large. The following PBH test is more convenient.

Theorem 3.6. (PBH test) The state-space system (3.6) or simply (C,A) is unob-
servable, if and only if there exists a vector v �= 0 such that

Av = λv, Cv = 0. (3.12)

Proof. If there exists v �= 0 such that (3.12) holds, then for any k > 0,

CAkv = λCAk−1v = λ 2CAk−2v = · · ·= λ kCv = 0.

As a consequence, Onv = 0 and (C,A) is unobservable. Conversely, if (C,A)
is unobservable, then Kalman decomposition in Theorem 3.5 can be applied to
obtain a new realization

(
Ã, B̃,C̃, D̃

)
in (i) and (ii) with

(
C̃o, Ão

)
observable. Set

ṽ =
[

0∗ ṽ∗̄o
]∗

with ṽō an eigenvector of Ãō. Then
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C̃ṽ = 0, Ãṽ =

[
Ão 0
Ãoō Ãō

][
0
ṽō

]
= λ

[
0
ṽō

]
= λ ṽ.

Thus, (3.12) holds by taking v = T−1ṽ. The theorem is true. ��
The PBH test converts the observability test into an equivalent eigenvalue and

eigenvector problem for which effective algorithms exist. Furthermore, it offers a
powerful tool for theoretical analysis because A and C appear linearly in the PBH
test. If (3.12) holds for some v �= 0, then λ is often loosely called an unobservable
eigenvalue of (C,A). Assume that all eigenvalues of A are distinct. The subspace
spanned by those eigenvectors satisfying (3.12) is termed unobservable subspace.
If matrix A has multiple eigenvalues, then the unobservable subspace may contain
generalized eigenvectors.

3.1.2 Reachability

The notion of reachability is dual to that of observability. However, its physical
meanings are rather different.

Definition 3.2. The pair (A,B), or the state-space system

x(t + 1) = Ax(t)+Bu(t), x(0) = x0, (3.13)

is reachable, if given any desired state target xT , there exists a bounded control input
{u(t)}�−1

t=0 such that x(�) = xT for some � > 0.

The following result holds for which the proof is left as an exercise.

Theorem 3.7. The pair (A,B) is reachable, if and only if

rank{Rn(A,B)}= n, Rn(A,B) =
[

B AB · · · An−1B
]
,

where n is the dimension of the state vector x(t).

For simplicity, Rn(A,B) is denoted by Rn, which is called reachability matrix
of size n. If the input u(t) has size m, then Rn has dimension n× nm. The result
in Theorem 3.7 shows that (A,B) is reachable, if and only if (B′,A′) or (B∗,A∗) is
observable. Hence, notions of reachability and observability are dual to each other.

Example 3.8. Consider the SISO transfer function H(z) in (3.9). Let

Ac =

[
ṽn−1 μn

In−1 0n−1

]

, bc =

[
1

0n−1

]
, dc = d

cc =
[
ν1 · · · νn

]
, ṽn−1 =

[
μ1 · · · μn−1

]
.
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Then (Ac,bc,cc,dc) is dual to (Ao,bo,co,do) in the sense that

Ac = A′
o, bc = c′o, cc = b′

o, dc = do.

It is recognized that (Ac,bc,cc,dc) is the canonical controller form or simply
controller form. Reachability matrix Rn is upper triangular with 1 on the diagonal.
It follows that the state-space system with realization (Ac,bc,cc,dc) is always
reachable. For the p×m transfer matrix

H(z) = D+

(
�

∑
k=1

Ñkz−k

)(

Im −
�

∑
k=1

M̃z−k

)−1

, (3.14)

a realization (Ac,Bc,Cc,Dc) in block controller form can be obtained with

Ac =

[
Ṽ�−1 M̃�

I(�−1)m 0(�−1)m×m

]
, Bc =

[
Im

0(�−1)m×m

]
,

Ṽ�−1 =
[

M̃1 · · · M̃�−1
]
, Cc =

[
Ñ1 · · · Ñ�

]
,

and Dc = D. It can be verified that the reachability matrix Rn is again upper
triangular with 1 on the diagonal and n = m�. Hence, the state-space system with
realization (Ac,Bc,Cc,Dc) is always reachable as well.

For a given transfer matrix H(z), not all its realizations are reachable. As in
the previous subsection, Kalman decomposition can be applied to unreachable
realizations to eliminate the unreachable subsystem. The following is dual to
Theorem 3.5 for which the proof is again left as an exercise.

Theorem 3.9. Let (A,B,C,D) be a realization of H(z) with size n× n for A, and
p×m for H(z). Suppose that (A,B) is unreachable. Then there exists a similarity
transform T such that

(i) Ã = TAT−1 =

[
Ãc Ãcc̄

0(n−r)×r Ãc̄

]
, B̃ = T B =

[
B̃c

0(n−r)×m

]
,

(ii) C̃ =CT−1 =
[

C̃c C̃c̄
]
, D̃ = D,

where
(
Ãc, B̃c

)
is reachable with r× r the dimension of Ãc. Moreover

H(z) = D+C(zIn −A)−1B = D̃+ C̃c
(
zIr − Ãc

)−1
B̃c.

Let x(t) be the state vector associated with realization (A,B,C,D). Similar to
Sect. 3.1.1, Theorem 3.9 illustrates that the linear transform

x̃(t) = Tx(t) =
[

x̃c(t)∗ x̃c̄(t)∗
]∗
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Fig. 3.4 Reachability Kalman decomposition

decomposes the state vector into two parts. The reachable one is x̃c(t) with dimen-
sion r. The unreachable one is x̃c̄(t) with dimension (n− r). Such a decomposition
is shown in Fig. 3.4.

As it is seen, the subsystem
(
Ãc, B̃c,C̃c,D

)
is reachable from the input u(t), while

the subsystem with realization
(
Ãc̄,0,C̃c̄,0

)
is unreachable. Kalman decomposition

offers a procedure to eliminate the unreachable states or unreachable subsystem of
the state-space model. The next result is dual to Theorem 3.6, and thus, the proof is
omitted.

Theorem 3.10. (PBH test) The state-space system (3.13), or simply (A,B), is
unreachable, if and only if there exists a row vector q �= 0 such that

qA = λq, qB = 0. (3.15)

Example 3.11. Let α be a real parameter and

H(z) =

[
−z−1 +αz−2

2z−1 − 2αz−2

]
1

1− 2.5z−1+ z−2 .

The poles of H(z) are roots of 1 − 2.5z−1 + z−2 = 0 which are at 0.5 and 2.
A realization in the canonical controller form for H(z) is given by

A =

[
2.5 −1
1 0

]
, B =

[
1
0

]
, C =

[
C1

C2

]
=

[−1 α
2 −2α

]
,

and D = 0. Clearly, (A,B) is reachable. To determine the observability of (C,A), its
associated observability matrix is computed as follows:

On =

[
C

CA

]
=

⎡

⎢⎢
⎣

−1 α
2 −2α

−2.5+α 1
5− 2α −2

⎤

⎥⎥
⎦ .
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Because C2 =−2C1, the rank of On is the same as

rank

{[ −1 α
−2.5+α 1

]}
.

The above loses the rank at α = 2 or α = 0.5, causing the pole/zero cancellation in
H(z). It follows that (C,A) is observable, if and only if α �= 2 and α �= 0.5. For α =
0.5, the unobservable eigenvalue is 0.5 that is stable. For α = 2, the unobservable
eigenvalue is 2 that is unstable. Since unstable and unobservable eigenvalues can
cause severe problems in system design, Kalman decomposition is employed to
eliminate the unobservable eigenvalue at 2 via SVD On = USV ∗ and taking the
similarity transform T =V ∗. Hence, it yields a new state-space realization for H(z)
at α = 2:

TAT−1 =

[
0.5 0

−2.0 2

]
, TB =

[
0.45

−0.89

]
, CT−1 =

[−2.24 0
4.47 −0

]
,

which has the same form as in Theorem 3.5. Consequently,

Ao = 0.5, Bo = 0.45, Co =

[−2.24
4.47

]
, D =

[
0
0

]

constitute a minimal realization for H(z) in the case α = 2, in light of the fact that
H(z) still has another pole at 0.5.

3.1.3 Minimal Realization

As discussed at the beginning of the section, a minimal realization refers to the
realization which has the minimal order among all realizations for the same transfer
function or matrix. For SISO systems, coprime fractions are easy to obtain. One
may simply cancel out the common poles and zeros to arrive at coprime fractions.
As such, minimal realizations can also be obtained rather easily by employing either
the observer form (refer to Example 3.4) or the controller form (refer to Sect. 2.2.2)
for the coprime fractions. Clearly, such realizations employ the minimum number
of time delays, and are thus minimal. However, coprime fractions are much more
difficult to obtain for MIMO systems. As a result, minimal realizations are difficult
to obtain directly from transfer matrices. The following observation is crucial.

Theorem 3.12. A realization (A,B,C,D) is not minimal, if and only if either (A,B)
is unreachable, or (C,A) is unobservable, or both.

Proof. If (A,B) is unreachable, or (C,A) is unobservable, or both, Kalman decom-
position can be applied to find a different state-space realization with a smaller
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order for the same transfer matrix. This implies that (A,B,C,D) is not a minimal
realization. Conversely assume that A has dimension n× n and (A,B,C,D) is not
a minimal realization. Then a different realization

(
Ã, B̃,C̃, D̃

)
exists for the same

transfer matrix, say, H(z), with order ñ < n. Because physical systems are causal,
there holds, for z in the region of convergence,

H(z) = D+
∞

∑
i=1

CAi−1Bz−i = D+
∞

∑
i=1

C̃Ãi−1B̃z−i.

It is noted that the impulse response H(t) = CAt−1B = C̃Ãt−1B̃ for t > 0 is
independent of realizations. Hence, its Hankel matrix of size n× n satisfies

Hn =

⎡

⎢
⎢
⎢⎢
⎢
⎣

CB CAB · · · CAn−1B

CAB CA2B · · · CAnB
... · · · · · · ...

CAn−1B · · · · · · CA2(n−1)B

⎤

⎥
⎥
⎥⎥
⎥
⎦

(3.16)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C̃B̃ C̃ÃB̃ · · · C̃Ãn−1B̃

C̃ÃB̃ C̃Ã2B̃ · · · C̃ÃnB̃
... · · · · · · ...

C̃Ãn−1B̃ · · · · · · C̃Ã2(n−1)B̃

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

Then it can be verified that there holds factorization

Hn = On(C,A)Rn(A,B) = On
(
C̃, Ã
)
Rn
(
Ã, B̃
)
.

The rank of Hn is thus no more than ñ, implying that either On(C,A), Rn(A,B),
or both have rank smaller than n. As a consequence, there is a redundancy in its
corresponding state vector, which is either unreachable, or unobservable, or both.
The proof is now completed. ��

Theorem 3.12 indicates that a realization (A,B,C,D) is minimal, if and only if
it is both reachable and observable. The next example serves to illustrate minimal
realizations in relation to reachability and observability.

Example 3.13. (Gilbert realization) This example considers the case when all poles
of H(z) are distinct. Thus, there holds partial fraction

H(z) =Θ0 +
�

∑
i=1

Θi

z− pi
,
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where Θi has the same size as H(z) and {pi} are all distinct. If � = 1, then the
order of minimal realizations is the same as n1, the rank of Θ1. In this case, there
holds decomposition Θ1 = C1B1 where C1 and B1 have n1 columns and n1 rows,
respectively. Setting A1 = p1In1 yields a minimal realization (A1,B1,C1,Θ0) of order
n1. Since both C1 and B1 have rank n1,

rank{On1} ≥ n1, rank{Rn1} ≥ n1.

It follows that the realization (A1,B1,C1,Θ0) is both reachable and observable. For
� > 1, decompositionΘi =CiBi holds for 1≤ i≤ �, where Ci and Bi have ni columns
and ni rows, respectively, and ni is the rank ofΘi. Let

A = diag(A1, . . . ,A�), B =
[

B∗
1 · · · B∗

�

]∗
, C =

[
C1 · · · C�

]
,

and D=Θ0 with Ai = piIni for 1≤ i≤ �. Because (Ai,Bi,Ci) is a minimal realization
for each i, and {pi} are all distinct, (A,B,C,D) is a minimal realization for H(z).
Thus, (A,B) is reachable, and (C,A) is observable. Such realizations are called
Gilbert realization.

Suppose that (A,B,C,D) is both unreachable and unobservable. Then a similarity
transform can be applied to eliminate the unreachable and the unobservable
subsystems to obtain a minimal realization as shown next.

Theorem 3.14 (Kalman canonical decomposition). Let (A,B,C,D) be a realiza-
tion of H(z) with order n. If it is unreachable and unobservable, then there exists a
similarity transform T such that

Ã = TAT−1 =

⎡

⎢
⎢⎢
⎢
⎣

Ãco 0 Ã13 0

Ã21 Ãcō Ã23 Ã24

0 0 Ãc̄o 0

0 0 Ã43 Ãc̄ō

⎤

⎥
⎥⎥
⎥
⎦
, B̃ = T B =

⎡

⎢
⎢⎢
⎢
⎣

B̃co

B̃cō

0

0

⎤

⎥
⎥⎥
⎥
⎦
,

C̃ =CT−1 =
[

C̃co 0 C̃c̄o 0
]
, D̃ = D,

where the subsystem
(
Ãco, B̃co,C̃co, D̃

)
is both reachable and observable and H(z) =

D̃+ C̃co
(
zIn − Ãco

)−1
B̃co.

The proof can proceed in two steps. The first step employs the similarity
transform T1 to convert the system into two subsystems with one reachable and the
other unreachable. The second step uses the similarity transform T2 to convert each
of the subsystems into two parts with one observable and the other unobservable.
The similarity transform T = T2T1 can then accomplish the Kalman decomposition
in Theorem 3.14. The details are omitted.

Let x(t) be the state vector associated with (A,B,C,D). The similarity transform
T in Theorem 3.14 yields
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Fig. 3.5 Kalman canonical
decomposition

x̃(t) = T x(t) =
[

x̃∗co(t) x̃∗cō(t) x̃∗̄co(t) x̃∗̄cō(t)
]∗

with compatible partitions to those of Ã, B̃, and C̃. The above results in the
complete Kalman decomposition in Fig. 3.5. The first subsystem with state vector
x̃co is both reachable and observable. The other three subsystems with state vectors
x̃cō(t), x̃c̄o(t), and x̃c̄ō(t) are unreachable, unobservable, and both unreachable and
unobservable, respectively. It is emphasized that only x̃co or

(
Ãco, B̃co,C̃co, D̃

)
has

contributions to the input/output behavior of the system, while the other three do not
due to their unreachability, unobservability, or both.

The complete Kalman decomposition in Theorem 3.14, illustrated in Fig. 3.5, is
important. It offers a numerically efficient procedure to obtain minimal realizations,
given any initial realization regardless of its reachability and observability, and
is considerably simpler than coprime fractions for transfer matrices. Moreover,
Kalman decomposition demonstrates the pivotal role of the conceptual notions of
reachability and observability, which are also crucial to future developments of this
text in later sections and chapters.

3.1.4 Sampling Effects

This subsection considers the effect of sampling on controllability and observability
of the continuous-time state-space systems. Consider the following system

ẋ(tc) = Ax(tc)+Bu(tc), y(tc) =Cx(tc)+Du(tc)

that is in continuous time where tc is real-valued. Its realization matrices are
{A,B,C,D}. It is well known that (A,B) is controllable, if and only if
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rank
{[

sI −A B
]}

= full ∀ s ∈ C.

Similarly, (C,A) is observable, if and only if

rank

{[
sI −A

C

]}
= full ∀ s ∈ C.

A natural question arises: If (A,B) is controllable and (C,A) is observable, is the
discretized realization reachable and observable?

The answer to the above question depends on the sampling frequency. Recall
the pathological sampling discussed in Chap. 1. It is not difficult to see that under
the pathological sampling, the realization of the discretized state-space may become
unreachable or unobservable or both. The following provides a positive answer to
the case when the sampling is not pathological.

Theorem 3.15. Let (Ad ,Bd) be discretization of (A,B) as in (1.30) under the
nonpathological sampling period Ts. Then

(i) (A,B) being controllable implies that (Ad ,Bd) is reachable;
(ii) (C,A) being observable implies that (C,Ad) is observable.

Proof. Only the proof for (ii) is given, since (i) is dual to (ii). Let λ be an eigenvalue
of A. The proof amounts to show that

rank

[
A−λ I

C

]
= full =⇒ rank

[
Ad − eλTsI

C

]
= full.

Denote Δ = Ad − eλTsI = eATs − eλTsI. Then

Δ =
∞

∑
k=1

(
T k

s Ak

k!
− T k

s λ k

k!
I

)

=
∞

∑
k=1

T k
s

k!

(
Ak −λ kI

)
= g(A)(A−λ I),

where by induction it can be shown that

g(A) =
∞

∑
k=1

T k
s

k!

(
Ak−1 +Ak−2λ + · · ·+λ k−1I

)
=

∞

∑
k=1

T k
s

k!

(
k

∑
i=1

Ak−iλ i−1

)

.

By nonpathological sampling, g(λ ) �= 0 for any λ eigenvalue of A where

g(s) =
esTs − eλTs

s−λ
�= 0 if s = λ .
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Moreover, the set of zeros of g(s), denoted by Sg, is given by

Sg =
{

s : esTs = eTsλ , s �= λ
}

= {s : Tss = Tsλ + j2kπ , k =±1,±2, . . .}
= {s : s = λ + jkωs, k =±1,±2, . . .}

that is disjoint from any eigenvalue of A, by again the nonpathological sampling. As
a result, g(A) is nonsingular. Now it is straightforward to show that

rank

{[
eATs − eλTsI

C

]}
= rank

{[
g(A)(A−λ I)

C

]}

= rank

{[
g(A) 0

0 I

][
A−λ I

C

]}

that is full by nonsingularity of g(A) and observability of (C,A). ��
Example 3.16. For the flight control system from Problem 1.11 in Exercises of
Chap. 1, its discretized realization can be easily obtained via Matlab. By the
expressions of (A,B,C) in Problem 1.11, (A,B) is controllable and (C,A) is observ-
able. Moreover, A has eigenvalues 0, −0.7801± j1.0296 and −0.0176+ j0.1826.
Hence, the sampling period of Ts = 0.025 is nonpathological. Matlab command
[Ad ,Bd ] = c2d(A,B,Ts) yields the disctretized realization matrices given by

Ad =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 0.0001 0.0283 0 −0.0248
0 0.9986 −0.0043 0 0.0017
0 0 1 0.0247 −0.0003
0 0.0013 0 0.9785 −0.0248
0 −0.0072 0 0.0258 0.9827

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

Bd =

⎡

⎢
⎢⎢
⎢
⎢
⎣

0 0 0
0 0.0250 0

0.0001 0 −0.0005
0.0109 0 −0.0411
0.0040 −0.0001 −0.0024

⎤

⎥
⎥⎥
⎥
⎥
⎦
.

It can be easily verified that (Ad ,Bd) is reachable and (C,Ad) is observable, which
follow from Theorem 3.15.

The test of reachability and observability can be carried out with the PBH test
that is easy to implement in the Matlab environment. The next example considers
the inverted pendulum system.
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Example 3.17. The linearized model for inverted pendulum from Example 1.1 is
represented by transfer functions Gup(s) and Guθ (s) for the position of the cart,
and angle of the pendulum, respectively. For the laboratory setup of the inverted
pendulum system by the Quanzer Inc., the two transfer functions are given by

Gup(s) =
2.4805(s+ 5.4506)(s−5.4506)

s(s+ 12.2382)(s− 5.7441)(s+4.7535)
,

Guθ (s) =
7.512s

(s+ 12.2382)(s− 5.7441)(s+4.7535)
.

Since all poles are real, pathological sampling is not involved for the inverted
pendulum system. If the c2d command is used in Matlab for each of the above
transfer functions with sampling period Ts = 0.25, the following discretized models

G(d)
up (z) =

0.03833z3− 0.143z2− 0.02844z+ 0.01603
z4 − 5.556z3+ 6.048z2− 1.553z+ 0.06009

,

G(d)
uθ (z) =

0.1408z2 − 0.08757z− 0.05321
z3 − 4.556z2+ 1.493z− 0.06009

,

are resulted in. The poles of the two transfer functions are the same except that

G(d)
up (z) has an additional pole at 1. In addition, numerator polynomials of G(d)

up (z)

and G(d)
up (z) are coprime, which follow from Theorem 3.15 and the nonpathological

sampling. A minimal realization can be obtained for

Gd(z) =

[
G(d)

up (z)
(z−1)G(d)

uθ (z)
z−1

]

by employing the canonical controller form, leading to the realization matrices:

A =

⎡

⎢⎢
⎣

5.556 −6.048 1.553 −0.0601
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦ ,

C =

[
0.0383 −0.143 −0.0284 0.0160
0.1408 −0.2283 0.0344 0.0532

]
, D =

[
0
0

]
.

Clearly (C,A) is observable.
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3.2 Stability

Stability is a primary concern in dynamic system design. This section investigates
stability for state-space systems focusing on Lyapunov stability. In addition,
stabilization will be investigated for state feedback, state estimation, as well as
observer-based feedback control systems.

3.2.1 Lyapunov Criterion

Stability was briefly discussed in Chap. 2 for state-space systems. Such a stability
notion is referred to as asymptotic stability or simply internal stability, and is
different from the BIBO stability or simply external stability. The following defines
formally stability for state-space systems.

Definition 3.3. Let (A,B,C,D) be a realization. The corresponding state-space
system is asymptotically stable, or stable in the sense of Lyapunov, if the solution
x(t) to

x(t + 1) = Ax(t), x(0) = x0 (3.17)

satisfies ‖x(t)‖→ 0 as t → ∞ for each nonzero initial condition x0.

The solution to (3.17) is clearly given by x(t) = Atx(0) for t > 0. Since
eigenvalues of At are {λ t

k} with {λk} eigenvalues of A, the internal stability is
equivalent to ρ(A)< 1 with ρ(·) the spectral radius. The following result is obvious
in light of the definition and thus the proof is omitted.

Proposition 3.1. The state-space system with realization (A,B,C,D) is asymptoti-
cally stable, if and only if ρ(A)< 1.

Let (A,B,C,D) be a realization of H(z). Then its asymptotic stability implies its
BIBO stability in light of the fact that poles of H(z) are eigenvalues of A which are
all stable. However, the converse may not be true, as discussed in Sect. 2.2.2, unless
(A,B,C,D) is a minimal realization, in which case eigenvalues of A are poles of
H(z) as well. As the asymptotic stability is related to the matrix A only, it will be
referred to as stability of A for simplicity.

It needs to be pointed out that the aforementioned stability is different from
marginal stability which allows nonrepeated eigenvalues on the unit circle. In the
case of marginal stability, solution x(t) to (3.17) remains bounded as t → ∞, albeit
not approaching zero in general.

The following stability result is called Lyapunov criterion.

Theorem 3.18. A matrix A is a stability matrix, if and only if for each given matrix
Z = Z∗ > 0 (i.e., hermitian positive definite) there exists a unique matrix P = P∗ > 0
such that

P = A∗PA+Z. (3.18)
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Proof. If A is a stability matrix, then ρ(A)< 1, and

P =
∞

∑
k=0

(A∗)kZAk

exists and satisfies (3.18). The hypothesis on Z implies that P is positive definite
hermitian. To show that P is unique, suppose that Po also satisfies

Po = A∗PoA+Z.

Taking the difference between the above equation and (3.18) yields

(P−Po) = A∗(P−Po)A = (A∗)2(P−Po)A
2 = · · ·

= lim
k→∞

(A∗)k(P−Po)A
k = 0

by stability of A. It follows that Po = P which is unique. Note that a weaker
condition exists for the uniqueness of the solution P. See Problem 3.19 in Exercises.
Conversely, if (3.18) has a unique solution P which is positive definite hermitian,
then by the state-space equation (3.17), the energy function (called Lyapunov
function) V [x(t)] = x(t)∗Px(t) satisfies the difference equation

ΔV [x(t)] = x(t + 1)∗Px(t + 1)− x(t)∗Px(t)

= x(t)∗(A∗PA−P)x(t) =−x(t)∗Zx(t)< 0

whenever x(t) �= 0. Therefore, V [x(t)] is monotonically decreasing, and thus,
V [x(t)] → 0 and x(t) → 0 as t → ∞ by the hypothesis on P, concluding stability
of A. ��

Equation (3.18) is called Lyapunov equation. In the Lyapunov criterion, positive
definite Z is required which is unnecessary and restrictive. The following stability
criterion is more useful.

Theorem 3.19. Suppose that (C,A) is observable. Then A is a stability matrix, if
and only if there exists a unique matrix P = P∗ > 0 such that

P = A∗PA+C∗C. (3.19)

Proof. If A is stable, then

P =
∞

∑
k=0

(A∗)kC∗CAk = lim
�→∞

O∗
� O� (3.20)

is the solution to (3.19) with O� the observability matrix of size �. The hypothesis
on the observability implies that O� has rank n, the order of the corresponding
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state-space system, for any � ≥ n. Thus, P is positive definite hermitian. The
uniqueness of P can be shown with the same argument as in the proof of
Theorem 3.19. Conversely, assume that (3.19) holds with P positive definite. Let
λ be an eigenvalue of A with eigenvector v. Then multiplying both sides of (3.19)
with v from right and v∗ from left yields

(
1−|λ |2)v∗Pv = ‖Cv‖2. (3.21)

The PBH test implies that ‖Cv‖2 > 0, which in turn implies that |λ |< 1 by the fact
that P is positive definite. Since λ is an arbitrary eigenvalue of A, ρ(A)< 1 is true.
That is, A is a stability matrix. ��

A dual result to Theorem 3.19 is the following for which the proof is omitted.

Theorem 3.20. Suppose that (A,B) is reachable. Then A is a stability matrix, if and
only if there exists a unique positive definite hermitian matrix Q such that

Q = AQA∗+BB∗. (3.22)

The matrix P in (3.19) is called the observability gramian, and Q in (3.22) is
called the reachability gramian. In light of Theorems 3.19 and 3.20, a realization
(A,B,C,D) is minimal, if and only if their associated observability and reachability
gramians are nonsingular.

The results in Theorems 3.19 and 3.20 show that stability testing requires that
either (C,A) be observable or (A,B) be reachable. Although Kalman decomposition
can be used to obtain observable and reachable realizations, such stability criteria
are inconvenient in their usage. For this reason, it is beneficial to examine the PBH
test again. Recall that (C,A) is unobservable, if and only if there exists v �= 0 such
that

Av = λv, Cv = 0. (3.23)

Consider the case when λ is a simple eigenvalue of A. The solution x(t) to (3.17)
contains the term λ t (called mode), which does not show up at the output y(t). In
other words, the mode corresponding to eigenvalue λ is unobservable. For the case
when λ is a repeated eigenvalue of A with multiplicity m > 1, there are m modes
corresponding to eigenvalue λ , which are in the form of Pk(t)λ t shown up in the
state vector x(t) with Pk(t) a kth degree polynomial of t and k = 0,1, . . . ,m− 1. At
least one of the modes {Pk(λ )λ t}m−1

k=0 is unobservable at the output due to (3.23).

Example 3.21. Consider the unforced state-space equation (3.17) with

A =

[
α 1
0 α

]
, C =

[
0 1

]
.

Then λ = α and v =
[

1 0
]∗

satisfy (3.23), implying that the pair (C,A) is
unobservable. Simple calculations show that
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x(t + 1) = Atx0 =

[
αt tαt−1

0 αt

][
x01

x02

]
=

[
(a+ bt)

c

]
αt ,

where a = x01, b = x02/α , and c = x02. There are two modes in the state response at
time t : cαt−1 and (a+bt)αt−1. However, y(t)= cαt−1. Thus, the mode (a+bt)αt−1

does not show up at the output which is unobservable.

In general, there are n modes in an nth order state-space system. It is the
collective behaviors of the n modes that determine the dynamic behavior of the
state-space system. Some of the modes are observable while others may not be. For
stable modes (the corresponding eigenvalues are strictly inside the unit circle), their
unobservability does not hinder stability testing based on the output response. But
unstable modes have to be dealt with more carefully. The following introduces the
notion for observability of unstable modes.

Definition 3.4. The pair (C,A) is called detectable, if for any unstable eigenvalue
of A, denoted by λ , there does not exist a vector v �= 0 such that (3.23) holds.

The stability criterion in Theorem 3.19 is now generalized to unobservable
realizations.

Theorem 3.22. Suppose that (C,A) is detectable. Then A is a stability matrix, if
and only if there exists a unique positive semidefinite matrix P, denoted as P ≥ 0,
such that P = A∗PA+C∗C, i.e., (3.19) holds.

Proof. If A is stable, then P has the same expression as in (3.20). Though (C,A)
may not be observable, P is positive semidefinite in general and is unique by the
same argument as before. Conversely, assume that a positive semidefinite P exists
and satisfies (3.19). Then with the same procedure as in the proof of Theorem 3.19,
(3.21) can be obtained. Assume that |λ | ≥ 1. Since any mode corresponding to
eigenvalue λ with |λ | ≥ 1 is observable, (3.21) implies that ‖Cv‖2 > 0 leading to
|λ |< 1 by P≥ 0, which is a contradiction to the hypothesis |λ | ≥ 1. Hence, stability
of A follows. ��

A dual notion to the detectability is the following.

Definition 3.5. The pair (A,B) is called stabilizable, if for any unstable eigenvalue
of A, denoted by λ , there does not exist a nonzero row vector q such that

qA = λq, qB = 0∗.

Similarly, the stability criterion in Theorem 3.20 is now generalized to unreach-
able realizations.

Theorem 3.23. Suppose that (A,B) is stabilizable. Then A is a stability matrix, if
and only if there exists a unique positive semi-definite hermitian matrix Q such that
Q = AQA∗+BB∗.
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Theorems 3.22 and 3.23 point out that the positivity of the observability and
the reachability gramians does not necessarily imply stability of A unless the
unobservable and unreachable modes are stable, respectively. On the other hand,
if the observability or reachability gramian has strictly negative eigenvalues, then
A cannot be a stability matrix, which can be inferred from Theorem 3.22 or
Theorem 3.23, respectively.

The notions of detectability and stabilizability will be explored further in the
next subsection and help deepen the understanding of modal observability and
reachability. This subsection is concluded with the following example.

Example 3.24. Let β be a real parameter and

A =

⎡

⎣
β 1 0
0 β 0
0 1 β

⎤

⎦ , B =

⎡

⎣
1 0
0 0
0 1

⎤

⎦ , C =

[
0 1 0
0 0 1

]

be realization matrices for some given state-space system. The eigenvalues of A are
β with multiplicity 3. The observability gramian of (C,A) is

P =

[
0 0
0 Po

]
, Po =

⎡

⎣
1+(1+β−β 2)2

(1−β 2)3
1+β−β 2

(1−β 2)2

1+β−β 2

(1−β 2)2
1

(1−β 2)

⎤

⎦ .

Since P is singular, (C,A) is unobservable (refer to Problem 3.20). The question is
stability of A. It is noted that det(Po) = 1/(1−β 2)4 > 0. Thus, P ≥ 0, if and only if
the two nonzero diagonal elements of P are positive, which is in turn equivalent to
that |β |< 1 consistent with the fact that β is the only eigenvalue of A. For |β |> 1,
P ≤ 0, and thus, (C,A) is not detectable, implying that A is unstable. For |β | = 1,
elements of P are unbounded, implying that A has eigenvalues either on the unit
circle or in mirror pattern with respect to the unit circle (refer to Problem 3.19). It
can also be verified that the reachability gramian is

Q =

⎡

⎣
1 0 0
0 0 0
0 0 1

⎤

⎦ 1
1−β 2 .

So, (A,B) is not reachable by det(Q) = 0. Moreover, Q ≥ 0, if and only if |β | < 1
which is identical to that for P. In this case, A is a stability matrix, although such a
conclusion cannot be obtained from Q or P alone. For |β |> 1, Q ≤ 0, and thus, A is
not a stability matrix, consistent with the discussion earlier.



90 3 Linear System Theory

3.2.2 Linear Stabilization

Stabilization is an integral part of the linear system theory. For instance, if A is an
instability matrix in the state-space model

x(t + 1) = Ax(t)+Bu(t), x(0) = x0, (3.24)

one may wish to employ state-feedback control u(t) = Fx(t) and hope that the
resultant feedback control system

x(t + 1) = (A+BF)x(t), x(0) = x0, (3.25)

is asymptotically stable. If such a state-feedback gain F exists, then it is called
stabilizing. Clearly, stabilizing state-feedback gains do not always exist. Indeed,
when (A,B) is not stabilizable, then at least one unstable mode is unreachable,
which remains a mode for the closed-loop system in (3.25) in light of the PBH
test. A pertinent question is then whether the stabilizability of (A,B) ensures the
existence of stabilizing state-feedback control.

A dual case to the above is estimation of the state vector x(t), based on the
observation of the input u(t) and the output

y(t) =Cx(t)+Du(t). (3.26)

One may wish to consider the state estimator or observer of the form

x̂(t + 1) = Ax̂(t)+Bu(t)+L[ŷ(t)− y(t)], ŷ(t) =Cx̂(t)+Du(t), (3.27)

where x̂(0) = x̂0. Note that x̂(t) = x(t) is an equilibrium to (3.24) and (3.27),
providing some justifications for the use of such state estimators. The matrix L
is called state estimation gain. Taking difference between (3.24) and (3.27) with
xe(t) = x(t)− x̂(t) yields

xe(t + 1) = (A+LC)xe(t), xe(0) = xe0, (3.28)

which is dual to (3.25). Whether or not the estimation error ‖xe(t)‖ tends to zero as
t →∞ amounts to stability of (A+LC). Again, L is said to be stabilizing, if (A+LC)
is a stability matrix. Clearly, detectability of (C,A) is a necessary condition for the
existence of stabilizing L.

Due to the linearity of feedback gains F and L, stabilization as posed in (3.25),
and (3.28) is referred to as linear stabilization. It is related to the more general
problem of eigenvalues assignment, which investigates relocating eigenvalues of
A via state-feedback gain F and state estimation gain L. That is, eigenvalues
assignment considers shifting all eigenvalues of A, not only the unstable ones, to
the desired locations. It can be expected that reachability of (A,B) and observability
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of (C,A) play the decisive role in eigenvalues assignment as shown in the following
result.

Theorem 3.25. Let (A,B,C,D) be a realization of G(z). (i) Eigenvalues of (A+
BF) can be arbitrarily assigned by some F, if and only if (A,B) is reachable. (ii)
Eigenvalues of (A+LC) can be arbitrarily assigned by some L, if and only if (C,A)
is observable.

Proof. Because (i) and (ii) are dual to each other, only the proof for (ii) is presented.
If (C,A) is unobservable, then there exists an eigenvalueλ and an eigenvector v such
that

Av = λv, Cv = 0p

assuming dimension p for the output. Thus, for any state estimation gain L,

(A+LC)v = Av = λv.

That is, the eigenvalue λ remains an eigenvalue for (A+LC). Conversely, assume
that (C,A) is observable. An induction process will be employed to show that
eigenvalues of (A+LC) can be arbitrarily assigned with respect to the dimension of
the output. So for p = 1, a similarity transform exists which transforms (C,A) into
the observer form (refer to Problem 3.18 in Exercises):

A = Ao =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−a1 1 0 · · · 0

−a2 0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . .
. . . 1

−an 0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, C = co =
[

1 0 · · · 0
]
.

Hence, the characteristic polynomial is

a(z) = det(zIn −A) = zn + a1zn−1 + · · ·+ an.

The eigenvalues of A are identical to the roots of a(z) = 0. Let

L =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

�1

�2
...
...
�n

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

=⇒ A+LC =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1 − a1 1 0 · · · 0

�2 − a2 0 1
. . .

...
...

...
. . .

. . . 0
...

...
. . .

. . . 1
�n − an 0 · · · · · · 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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As a result, the eigenvalues of (A+LC) are roots of

det(zIn −A−LC) = zn +(a1 − �1)z
n−1 + · · ·+(an − �n),

which can be arbitrarily assigned by choosing {�i} correctly. For p = k > 1,
assume that observable (C,A) implies that eigenvalues of (A+LC) can be arbitrarily
assigned. To complete the induction process, consider the case p = k+ 1. Denote
the submatrix of C with the first k rows by C1. If (C1,A) is observable, then the proof
can be concluded by taking L =

[
L1 0n

]
, for, in this case, (A+LC) = (A+L1C1)

whose eigenvalues can be arbitrarily assigned by the hypothesis for p = k. If (C1,A)
is unobservable, then Kalman decomposition can be applied to (C1,A), leading to

CT−1 =

[
C̃11 0

C̃21 C̃22

]

, TAT−1 =

[
Ã11 0

Ã21 Ã22

]

,

where C1T−1 =
[

C̃11 0
]
, and

(
C̃11, Ã11

)
is observable. Let the dimension of Ã11

be r× r with r < n. Then L̃11 exists such that the r eigenvalues of
(
Ã11 + L̃11C̃11

)

can be arbitrarily assigned, by again the hypothesis for p= k. Note that
[

C̃21 C̃22
]

is a row vector. For (C,A) is observable,
(
C̃22, Ã22

)
is observable as well. The

procedure for p = 1 can be employed to compute L̃22 such that the remaining
(n−r) eigenvalues of Ã or eigenvalues of

(
Ã22 + L̃22C̃22

)
can be assigned arbitrarily.

Taking

L = T−1L̃ = T−1

[
L̃11 0

0 L̃22

]

yields the characteristic polynomial for the closed-loop system:

ã(z) = det[zIn − (A+LC)] = det
[
zIn −

(
Ã+ L̃C̃

)]

= det

([
zIr −

(
Ã11 + L̃11C̃11

)
0

−(Ã21 + L̃22C̃21
)

zIn−r −
(
Ã22 + L̃22C̃22

)

])

= det
[
zIr −

(
Ã11 + L̃11C̃11

)]
det
[
zIn−r −

(
Ã22 + L̃22C̃22

)]
,

concluding the fact that the eigenvalues of (A+LC) can be arbitrarily assigned for
some matrix L, provided that (C,A) is observable. ��

It is noted that the procedure employing similarity transforms and Kalman
decompositions may not be efficient in relocating eigenvalues of A. However, it
is not the intention of this text to provide an efficient algorithm for eigenvalues
assignment. Design of optimal state feedback and optimal state estimation gains will
be studied in the next chapter. Rather, Theorem 3.25 provides the insight to modal
reachability and observability in relation to shifting the corresponding eigenvalues.
The following result follows from Theorem 3.25, and thus, the proof is omitted.
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Theorem 3.26. Let (A,B,C,D) be a realization of G(z). (i) There exists a stabi-
lizing state-feedback gain F, if and only if (A,B) is stabilizable. (ii) There exists a
stabilizing state estimation gain L, if and only if (C,A) is detectable.

Theorem 3.26 is practically more useful in design of state-feedback and state
estimation gains, because the minimality of the realization is removed.

Example 3.27. Suppose that (A,B,C,D) is a realization of G(z) with

A =

⎡

⎣
−0.6 0 0

0 −0.6 2
0 0 2.2

⎤

⎦ , B =

⎡

⎣
1 0
0 1
2 1

⎤

⎦ ,

C =

[
1 −0.5 1
2 −1 2

]
, D =

[
0 0
0 0

]
.

There are two different eigenvalues {−0.6,2.2}. To determine reachability of (A,B),
the PBH test shows that

rank
{[

λ I3 −A B
]}

= rank

⎧
⎨

⎩

⎡

⎣
λ + 0.6 0 0 1 0

0 λ + 0.6 −2 0 1
0 0 λ − 2.2 2 1

⎤

⎦

⎫
⎬

⎭

is 3 at both eigenvalues λ = −0.6 and λ = 2.2. Hence, (A,B) is reachable. For
observability, the PBH test gives

rank

{[
λ I3 −A

C

]}
= rank

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢⎢
⎢
⎢
⎣

λ + 0.6 0 0
0 λ + 0.6 −2
0 0 λ − 2.2
1 −0.5 1
2 −1 2

⎤

⎥
⎥⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

{
2, at λ =−0.6,
3, at λ = 2.2.

It is thus concluded that (C,A) is detectable but unobservable. It can be verified that
both gains

F =

[
0 0 0
0 0 −2

]
, L =

⎡

⎣
0 0
−2 0
−2 0

⎤

⎦
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Fig. 3.6 Feedback control
system

are stabilizing, yielding

A+BF =

⎡

⎣
−0.6 0 0

0 −0.6 0
0 0 0.2

⎤

⎦ , A+LC =

⎡

⎣
−0.6 0.0 0.0
−2.0 0.4 0.0
−2.0 1.0 0.2

⎤

⎦ ,

which are indeed stability matrices.

3.2.3 All Stabilizing Controllers

State feedback and state estimation are fundamental to MIMO feedback control
system design. Indeed, all stabilizing controllers can be parameterized once the
stabilizing gains for state feedback and state estimation are available. Consider the
feedback control system as depicted in Fig. 3.6 where the physical plant represented
by G(z) has m input/p output and the feedback controller represented by K(z) has
p-input/m-output.

Note that the negative sign of the feedback path is absorbed in K(z), shown in its
expression later. The feedback system in Fig. 3.6 is called well posed, if

lim
z→∞

det [Im −K(z)G(z)] �= 0. (3.29)

The well-posed condition ensures that all signals in the feedback system shown in
Fig. 3.6 are causal (refer to Problem 3.27 in Exercises).

Let (A,B,C,D) be a realization of G(z) with A possibly unstable. Then the first
priority in control system design is stabilization in the sense of Lyapunov or internal
stability. For convenience, the reference input is taken to be r(t) = 0. Design of
stabilizing feedback controllers can proceed in two steps. In the first step, a state-
feedback control law u(t) = Fx(t) is designed such that it stabilizes x(t + 1) =
(A+BF)x(t). This is always possible provided that (A,B) is stabilizable. Since the
measured output is y(t) not x(t), an estimator as in (3.27) is designed in the second
step from which the control law u(t) = F x̂(t) is applied with x̂(t) the estimated
state vector. It turns out that such a design method works, if, in addition, (C,A) is
detectable for which L exists such that (A+ LC) is a stability matrix. Indeed, by
u(t) = F x̂(t) and (3.27),

x̂(t + 1) = Ax̂(t)+Bu(t)+L [ŷ(t)− y(t)]

= (A+BF +LC+LDF)x̂(t)−Ly(t). (3.30)
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Thus, K(z) = −F(zI −A−BF −LC−LDF)−1L is the feedback controller, which
is often referred to as observer-based controller.

Lemma 3.1. Let G(z) = D+C(zI −A)−1B and K(z) be in (3.30) for the feedback
system in Fig. 3.6. The closed-loop system in internally stable, if and only if (A+BF)
and (A+LC) are stability matrices.

Proof. Since u(t) = F x̂(t) and y(t) =Cx(t)+Du(t) =Cx(t)+DFx̂(t),

[
x(t + 1)
x̂(t + 1)

]
=

[
A BF

−LC A+LC+BF

][
x(t)
x̂(t)

]
. (3.31)

Internal stability of the feedback system is equivalent to asymptotic stability of the
above state-space system. Define similarity transform via

[
xs(t)
x̂s(t)

]
= T

[
x(t)
x̂(t)

]
, T =

[
I −I
0 I

]
. (3.32)

The above similarity transform yields the following equivalent “A” matrix

[
I −I
0 I

][
A BF

−LC A+LC+BF

][
I I
0 I

]
=

[
A+LC 0
−LC A+BF

]
.

for the closed-loop system. Hence, the feedback system in Fig. 3.6 is internally
stable, if and only if (A+BF) and (A+LC) are stability matrices. ��

At this moment, it is worth taking another look at the coprime fraction issue
for MIMO systems. Instead of coprime fractions over polynomials of z−1, coprime
factorizations over proper and stable transfer matrices will be pursued. That is,
factorizations

G(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1 (3.33)

are searched for with {M(z),N(z)} left coprime and
{

Ñ(z),M̃(z)
}

right coprime for
all |z| ≥ 1, and M(z),N(z),Ñ(z),M̃(z) are all proper and stable transfer matrices. By
an abuse of notation denote

G(z) = D+C(zI−A)−1B =

[
A B
C D

]
. (3.34)

The 2×2 block matrix on the right-hand side of (3.34) represents the transfer matrix
G(z) and helps related computations in terms of its realization. Suppose that G(z)
has size p×m. Then
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D =

⎡

⎢
⎣

D1,1 · · · D1,m
...

. . .
...

Dp,1 · · · Dp,m

⎤

⎥
⎦ , C =

⎡

⎢
⎣

C1
...

Cp

⎤

⎥
⎦ ,

[
B1 · · · Bm

]
.

Thus, the (i,k)th element of G(z) is given by

Gi,k(z) = Di,k +Ci(zI −A)−1Bk =

[
A Bk

Ci Di,k

]

for 1 ≤ i ≤ p and 1 ≤ k ≤ m. Note that it is considerably more difficult to compute
Gi,k(z) based on the coprime fraction model which shows the power of the state-
space method. More importantly, coprime factorization can be easily obtained
with observer-based controller in (3.30). In fact, the existence of left coprime
factorization is hinged to the detectability of (C,A) and right coprime factorization
to the stabilizability of (A,B). The following result is true.

Theorem 3.28. Let G(z) be a p×m transfer matrix as in (3.34) with a stabilizable
and detectable realization (A,B,C,D). Suppose that F and L are stabilizing, i.e.,
(A+BF) and (A+LC) are stability matrices. Define

[
V(z) U(z)

−N(z) M(z)

]

=

⎡

⎣
A+LC −(B+LD) L

F Im 0
C −D Ip

⎤

⎦ , (3.35)

[
M̃(z) −Ũ(z)

Ñ(z) Ṽ(z)

]

=

⎡

⎣
A+BF B −L

F Im 0
C+DF D Ip

⎤

⎦ . (3.36)

Then G(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1. Furthermore, there holds the double
Bezout identity

[
V(z) U(z)

−N(z) M(z)

][
M̃(z) −Ũ(z)

Ñ(z) Ṽ(z)

]

= Im+p. (3.37)

Proof. Clearly, the coprime factors are all internally stable, by stability of (A+BF)
and (A+LC). To show that G(z) = M(z)−1N(z), it is noted that

M(z)−1 =

[
A+LC L

C Ip

]−1

=

[
A L
−C Ip

]
.
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See Problem 3.22 in Exercises. It follows that

M(z)−1N(z) =

[
A L
−C Ip

][
A+LC (B+LD)

C D

]

=

⎡

⎣
A+LC 0 B+LD

LC A LD
C −C D

⎤

⎦
{

T =

[
In −In

0 In

]}

=

⎡

⎣
A 0 B

LC A+LC LD
C 0 D

⎤

⎦=

[
A B
C D

]
= G(z),

where n is the order of (A,B,C,D). The formula for cascade realizations in Prob-
lem 3.21 is employed to obtain the realization for M(z)−1N(z), and the similarity
transform T is used to arrive at the observability Kalman decomposition, which
then leads to the realization of G(z). The proof for the right coprime factorization is
similar and thus omitted. The proof for the double Bezout identity (3.37) is left as
an exercise (Problem 3.22). ��

There is an obvious difference between coprime factorizations and coprime frac-
tions. The former requires relative coprimeness for |z| ≥ 1, while the latter requires
relative coprimeness for all z ∈ C. It is claimed that coprime factorizations require
only stabilizability and detectability of the realization as shown in Theorem 3.28, but
coprime fractions require reachability and observability of the realization. Indeed,
suppose that (A,B,C,D) is a minimal realization. Then (refer to (2.73) in Sect. 2.2.2
and Problem 3.26 in Exercises)

rank

{[
zIn − (A+LC) (B+LD) L

−C D Ip

]}

= n+ p ∀ z ∈ C, (3.38)

that is equivalent to {M(z),N(z)} being left coprime ∀ z ∈ C. Similarly,

rank

⎧
⎨

⎩

⎡

⎣
zIn − (A+BF) B

−F Im

−(C+DF) D

⎤

⎦

⎫
⎬

⎭
= n+m ∀ z ∈ C (3.39)

is equivalent to
{

M̃(z), Ñ(z)
}

being right coprime ∀z∈ C. It follows that polynomial
matrices det(zIn−A−LC)M(z) and det(zIn−A−LC)N(z) are left coprime fractions
of G(z) and, dually, det(zIn − A− BF)Ñ(z) and det(zIn − A−BF)M̃(z) are right
coprime fractions of G(z). In fact, the above coprime fractions are all polynomials
of z−1 and have the least degrees (see Appendix for the definition of degree
of polynomial matrices), by the minimality assumptions. Therefore, state-space
realization theory also provides a numerical procedure in computing coprime
fractions for transfer matrices.
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Theorem 3.28 shows that the observer-based controller K(z) in (3.30) admits
coprime factorizations

K(z) =−V(z)−1U(z) =−Ũ(z)Ṽ(z)−1 (3.40)

with {V(z),U(z)} and
{

Ṽ(z), Ũ(z)
}

given in (3.35) and (3.36), respectively. The
proof is left as an exercise (Problem 3.23). More importantly, the observed-based
controller helps to parameterize all the stabilizing controllers as shown in the next
result.

Theorem 3.29. Under the same hypotheses of Theorem 3.28 and that the feedback
system in Fig. 3.6 is well posed, all stabilizing controllers are given by

K(z) = −[V(z)−Q(z)N(z)]−1[U(z)+Q(z)M(z)]

= −[Ũ(z)+ M̃(z)Q(z)
] [

Ṽ(z)− Ñ(z)Q(z)
]−1 (3.41)

for some Q(z) that is a proper and stable transfer matrix.

Proof. In light of the double Bezout identity (3.37), there hold

[V(z)−Q(z)N(z)] [Im −K(z)G(z)]M̃(z) = Im,

M(z) [Im −G(z)K(z)]
[
Ṽ(z)− Ñ(z)Q(z)

]
= Ip.

Therefore, the controller K(z) in (3.41) is indeed stabilizing. Conversely, any
stabilizing controller K0(z) admits coprime factorizations

K0(z) =−V0(z)
−1U0(z) =−Ũ0(z)Ṽ0(z)

−1. (3.42)

One may always find a stabilizable and detectable realization for K0(z) and then
calculate its left and right coprime factors by applying Theorem 3.28 to K0(z).
Furthermore, coprime factors of K0(z) can always be sought to satisfy

R(z) = V0(z)M̃(z)+U0(z)Ñ(z) = Im,

R̃(z) = M(z)Ṽ0(z)+N(z)Ũ0(z) = Ip.

If not, the well-posed assumption implies that both R(z)−1 and R̃(z)−1 are proper
and stable. Thus, R(z)−1 can be subsumed into V0(z) and U0(z), and R̃(z)−1 can be
subsumed into Ṽ0(z) and Ũ0(z). Notice that

[
V0 U0

]
[

M̃ −Ũ
Ñ Ṽ

]
=
[

Im U0Ṽ−V0Ũ
]
,

([
V U

]
+Q

[−N M
])
[

M̃ −Ũ
Ñ Ṽ

]
=
[

Im Q
]
.
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by the double Bezout identity (3.37). Taking Q(z)=U0(z)Ṽ(z)−V0(z)Ũ(z) leads to
V0(z) = V(z)−Q(z)N(z) and U0(z) = U(z)+Q(z)M(z). Dually, the double Bezout
identity (3.37) implies

[
V(z) U(z)

−N(z) M(z)

][
−Ũ0(z)

Ṽ0(z)

]

=

[
U(z)Ṽ0(z)−V(z)Ũ0(z)

Ip

]

or

[
V(z) U(z)

−N(z) M(z)

][
−Ũ(z)− M̃(z)Q̃(z)

Ṽ(z)− Ñ(z)Q̃(z)

]

=

[
−Q̃(z)

Ip

]

,

where Q̃(z) = V(z)Ũ0(z)− U(z)Ṽ0(z) = U0(z)Ṽ(z)− V0(z)Ũ(z) = Q(z) (Prob-
lem 3.31 in Exercises). Hence

Ṽ0(z) = Ṽ(z)− Ñ(z)Q(z), Ũ0(z) = Ũ(z)+ M̃(z)Q(z).

Clearly, Q(z) is proper and stable. Therefore, the stabilizing controller (3.42) has
the form in (3.41). ��

The results of this subsection highlight the fact that the state space is also a
computational tool for analysis and design of feedback control systems. The rep-
resentation of the transfer matrix G(z) as in (3.34) facilitates the computations for
coprime factorizations, coprime fractions, and parameterizations of all stabilizing
controllers. Hence, design of optimal feedback control systems is made possible by
searching stable Q(z) or Q̃(z) which are free parameters to be designed.

3.3 Time-Varying Systems

For a LTV system, its impulse response {h(t;k)} has two arguments: One is the time
index t and the other is the index of the impulse response at time t. As such, an LTV
system is a family of (frozen time) LTI systems, indexed by time t. For MIMO LTV
systems, impulse responses are denoted by H(t;k). Often it is convenient to use the
following form of the impulse response:

H(t,k) = H(t;t − k) ∀ t,k. (3.43)

If H(t,k) = H(t − k) for all t,k, then it represents an LTI system. By the causality,
the input/output relation is governed by

y(t) =
t

∑
k=−∞

H(t;t − k)u(k) =
t

∑
k=−∞

H(t,k)u(k). (3.44)
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LTV systems are more difficult to study than LTI systems mainly due to their
time-varying nature. Their impulse responses are two-dimensional arrays as shown
in Fig. 2.3. Commonly used methods include frozen time analysis for slowly time-
varying systems and short-time Fourier analysis for nonstationary signals. This
section investigates state-space representations for LTV systems rather than the
external description in (3.44). It will be shown that those familiar notions in the
previous sections can be generalized to LTV state-space systems. The emphasis
will again be placed on observability, reachability, and stability. Nevertheless, many
results in the linear system theory will have to be confined to local time intervals.

3.3.1 Realizations

A MIMO LTV state-space system is described by:

x(t + 1) = Atx(t)+Btu(t), y(t) =Ctx(t)+Dtu(t) (3.45)

in which the realization matrices are time dependent. Moreover, there does not exists
a simple relation between the realization and its impulse response.

Example 3.30. Consider the third-order ARMA model:

y(t) =
3

∑
k=1

μk(t)y(t − k)+
3

∑
k=1

νk(t)u(t − k). (3.46)

If the frozen time method is used, then the transfer function at each frozen time t is

Ht(z) =
ν1(t)z−1 +ν2(t)z−2 +ν3(t)z−3

1− μ1(t)z−1 − μ2(t)z−2 − μ3(t)z−3 . (3.47)

The impulse response {h(t;k)} is basically the inverse Z transform of Ht(z) with t
an integer parameter. Define x1(t) = y(t) and let

x3(t + 1) = μ3(t + 3)x1(t)+ν3(t + 3)u(t)

= μ3(t + 3)y(t)+ν3(t + 3)u(t),

x2(t + 1) = μ2(t + 2)x1(t)+ x3(t)+ν2(t + 2)u(t)

= μ2(t + 2)y(t)+ μ3(t + 2)y(t − 1)

+ ν3(t + 2)u(t− 1)+ν2(t + 2)u(t),

x1(t + 1) = μ1(t + 1)x1(t)+ x2(t)+ν1(t + 1)u(t)

= μ1(t + 1)y(t)+ μ2(t + 1)y(t − 1)+ μ3(t + 1)y(t − 2)

+ ν1(t + 1)u(t)+ν2(t + 1)u(t − 1)+ν3(t + 1)u(t − 2).
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Thus, x1(t + 1) = y(t + 1) has the same expression as in (3.46) except that t is
replaced by (t + 1). So setting the state vector at time t as

x(t) =
[

x1(t) x2(t) x3(t)
]′

yields a time-varying state-space model in the same form as in (3.45) with

At =

⎡

⎣
μ1(t + 1) 1 0
μ2(t + 2) 0 1
μ3(t + 3) 0 0

⎤

⎦ , Bt = bt =

⎡

⎣
ν1(t + 1)
ν2(t + 2)
ν3(t + 3)

⎤

⎦ ,

Ct = ct =
[

1 0 0
]
, Dt = dt = 0.

It is seen that the pair (At ,Bt) depends on the frozen time impulse responses at
(t + 1),(t + 2), and (t + 3). The transfer function for the frozen time state-space
realization is Dt +Ct(zI −At)

−1Bt , which is different from the frozen time transfer
function Ht(z) as in (3.47).

It can be expected that the relation between the impulse response H(t,k) and its
state-space realization (At ,Bt ,Ct ,Dt) is a complex one. For instance, it is difficult to
obtain a state-space realization based on the impulse response directly. Nevertheless,
ARMA models for LTV systems offer a procedure to obtain simple state-space
realizations similarly to those for LTI systems. The details are skipped in order to
keep the subsection concise. Interested readers are referred to other texts on linear
system theory.

For the state-space system in (3.45) with order n, it is convenient to define the
state transition matrix

ΦA(t,k) = At−1At−2 · · ·Ak, t > k. (3.48)

It is a convention thatΦA(t,k) = In whenever t = k with n the order of the state-space
system. For convenience, Φ(t,k) = ΦA(t,k) is taken. The solution x(t) to (3.45) at
t = t f with the initial time t0 < t f is given by

x(t f ) =Φ(t f , t0)x(t0)+
t f −1

∑
k=t0

Φ(t f ,k+ 1)Bku(k). (3.49)

The time-varying nature of the system indicates that notions of reachability and
observability are time dependent. Denote the input and output over the time interval
[t0, t f ) by column vectors
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Yt0,t f −1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y(t0)

y(t0 + 1)
...

y(t f − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, Ũt0,t f −1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u(t f − 1)
...

u(t0 + 1)

u(t0)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (3.50)

Then x(t f ) as in (3.49) has the expression

x(t f ) =Φ(t f , t0)x(t0)+Rt0,t f (At ,Bt)Ũt0,t f −1, (3.51)

where Rt0,t f (At ,Bt), denoted by Rt0,t f for simplicity, is the reachability matrix over
the time interval [t0, t f ) given by

Rt0,t f :=
[

Btf −1 Φ(t f , t f − 1)Btf −2 · · · Φ(t f , t0 + 1)Bt0

]
. (3.52)

It is noted that if the realization is time invariant, thenΦ(t f , t f −k) = Ak, Bt = B, and
thus, Rt0,t f (At ,Bt) reduces to R�(A,B) as in the previous sections with � = t f − t0.
The observability matrix over [t0, t f ) is defined dually as

Ot0,t f := Ot0,t f (Ct ,At) =

⎡

⎢⎢
⎢
⎢
⎢
⎣

Ct0

Ct0+1Φ(t0 + 1, t0)
...

Ctf −1Φ(t f − 1, t0)

⎤

⎥⎥
⎥
⎥
⎥
⎦
. (3.53)

There holds equality

Yt0,t f −1 = Ot0,t f x(t0)+Tt0,t f Ut0,t f −1, (3.54)

where Ut0,t f −1 is defined in the same way as Yt0,t f −1 with y(t) replaced by u(t), and
Tt0,t f is a lower block triangular matrix of size �p× �m with � = t f − t0, and p and
m the dimensions of the output and the input, respectively. Denote T (i,k) as the
(i,k)th block of Tt0,t f with size p×m. Then

T (i,k) =

⎧
⎨

⎩

0p×m, i < k,
Dt0+k−1, i = k,
Ct0+i−1Φ(t0 + i− 1, t0+ k)Bt0+k−1, i > k.

Note that (3.51) reduces to (3.7) for the case t0 = 0 and t f = �, if the realization
(At ,Bt ,Ct ,Dt) is independent of time t.

Different from LTI systems, reachability and observability are defined locally in
terms of time t.
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Definition 3.6. Consider the time-varying state-space equations in (3.45). Let t f >
t0. (i) The pair (At ,Bt) is said to be reachable over [t0, t f ), if for any given state target

xT , there exist bounded control inputs {u(t)}t f −1
t=t0 such that x(t f ) = xT . (ii) The pair

(Ct ,At) is said to be observable over [t0, t f ), if given true input and output data

{u(t)}t f −1
t=t0 and {y(t)}t f −1

t=t0 , the initial condition x(t0) can be reconstructed uniquely.

The following result regards reachability and observability for LTV state-space
systems.

Theorem 3.31. The pair (At ,Bt) is reachable over [t0, t f ), if and only if the
reachability matrix Rt0,t f as defined in (3.52) has the full row rank. The pair (Ct ,At)
is observable over [t0, t f ), if and only if the observability matrix Ot0,t f as defined in
(3.53) has the full column rank.

Proof. Suppose that the reachability matrix Rt0,t f has the full row rank. Then
Rt0,t f R

∗
t0,t f

is a nonsingular matrix of size n× n. For any target state vector xT ,

there exists control input Ũt0,t f −1 such that (3.51) holds for x(t f ) = xT . That is, the
pair (At ,Bt) is reachable over the time interval [t0, t f ). One such control input is
given by

Ũt0,t f −1 = R∗
t0,t f

(
Rt0,t f R

∗
t0,t f

)−1 [
xT −Φ(t0, t f )x(t0)

]
.

Conversely, if the pair (At ,Bt) is reachable over [t0, t f ), then there exists control

input sequence {u(t)}t f −1
t=t0 such that (3.51) holds for any target x(t f ) = xT .

Consequently, Rt0,t f has the full row rank. The proof for the observability over the
time interval [t0, t f ) is similar and is skipped. ��

Similar to time-invariant systems, Lyapunov equations are introduced:

Qt,t f = AtQt+1,t f A∗
t +BtB

∗
t , Qtf ,t f = 0, (3.55)

Pt0,t+1 = A∗
t Pt0,tAt +C∗

t Ct , Pt0,t0 = 0, (3.56)

where t0 ≤ t < t f . These are difference Lyapunov equations with opposite time
recursions: One is forward and the other backward. The solutions at the two
boundaries are given by the reachability and observability gramians:

Qt0,t f =

t f −1

∑
k=t0

Φ(t f ,k+ 1)BkB∗
kΦ(t f ,k+ 1)∗, (3.57)

Pt0,t f =

t f −1

∑
k=t0

Φ(k, t0)
∗C∗

kCkΦ(k, t0), (3.58)

over the time interval [t0, t f ), respectively. The next result is true.
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Theorem 3.32. The pair (At ,Bt) is reachable over [t0, t f ), if and only if the reacha-
bility gramian Qt0,t f in (3.57) is positive definite. The pair (Ct ,At) is observable over
[t0, t f ), if and only if the observability gramian Pt0,t f in (3.58) is positive definite.

Proof. The results in (i) and (ii) can be easily established by noting that

Qt0,t f = Rt0,t f R
∗
t0,t f

, Pt0,t f = O∗
t0,t f

Ot0,t f ,

and by applying the results in Theorem 3.31. ��
As discussed earlier, there is no simple relation between the realization and

the impulse response for the same time-varying system. However, there exists an
algebraic relation between the two as stated next.

Lemma 3.2. Let {H(t,k)} be the impulse response. Then (At ,Bt ,Ct ,Dt) is its
corresponding realization, if and only if

H(t,k) = Dtδ (t − k)+CtΦ(t,k+ 1)Bk[1− δ (t − k)], ∀ t ≥ k. (3.59)

Proof. Recall the definition of the transition matrix Φ(t,k). If (3.59) holds, then
in light of the convolution relation in (3.44), (At ,Bt ,Ct ,Dt) is a realization for
the given input/output description of the time-varying system via its impulse
response {H(t,k)}. Conversely, given a state-space realization (At ,Bt ,Ct ,Dt), its
state response has the expression in (3.49). Taking t0 →−∞ with x(t0) = 0 yields

x(t f ) =

t f −1

∑
k=−∞

Φ(t f ,k+ 1)Bku(k).

Hence, the output of the underlying state-space system at time t is given by

y(t) = Dtu(t)+
t−1

∑
k=−∞

CtΦ(t,k+ 1)Bku(k) =
t

∑
k=−∞

H(t,k)u(k).

It follows that H(t,k) in (3.59) is the corresponding impulse response. ��
Even though the algebraic relation in (3.59) is not of much help in finding

state-space realizations based on impulse responses, it does help to characterize
the minimal realizations for time-varying systems. For this purpose, it is beneficial
to consider time-dependent similarity transforms {Tt} satisfying det(Tt) �= 0 for
all t. Consider time-varying state-space model in (3.45). The similarity transform
x̃(t) = Ttx(t) yields a new realization

(
Ãt , B̃t ,C̃t , D̃t

)
=
(
Tt+1AtT

−1
t ,Tt+1Bt ,CtT

−1
t ,Dt

)
. (3.60)
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It is left as an exercise (Problem 3.33) to show that

Tt f Rt0,t f = Tt f Rt0,t f (At ,Bt) = Rt0,t f

(
Ãt , B̃t

)
=: R̃t0,t f , (3.61)

Ot0,t f T−1
t0 = Ot0,t f (Ct ,At)T

−1
t0 = Ot0,t f

(
C̃t , Ãt

)
=: Õt0,t f . (3.62)

The next result is useful.

Lemma 3.3. Let G and F be two matrices with dimensions p × n and n × q,
respectively, where q < n. Suppose that rg + q ≤ n with rg the rank of G. Then
GF = 0p×q, if and only if there exists a nonsingular matrix T such that

GT−1 =
[

Go 0p×q
]
, TF =

[
0(n−q)×q

Fo

]
. (3.63)

Proof. It is easy to see that (3.63) implies GF = 0p×q. The difficult part is the
converse. So suppose that GF = 0p×q. The proof needs show the existence of T
such that (3.63) holds. As rg is the rank of G, rg ≤ p. Let r f be the rank of F . Then
r f ≤ q. In light of QR factorizations,

G = RgV ∗, F =UR f , V ∗V = Irg , U∗U = Ir f .

Such U and V are called orthogonal matrices. Since Rg and R f have full ranks, the
assumption GF = 0p×q yields

V ∗U = 0rg×r f , r f + rg ≤ q+ rg ≤ n.

It follows that orthogonal U⊥ and V⊥ exist such that

Ũ =
[

U U⊥
]
, Ṽ =

[
V V⊥

]

are unitary matrices of size n×n. The hypothesis rg+q≤ n implies that ρ = n−rg ≥
q ≥ r f . Setting T1 = Ṽ ∗ gives

GT−1
1 = GṼ = RgV ∗ [V V⊥

]
=
[

Rg 0p×(n−rg)

]
, (3.64)

T1F = Ṽ ∗UR f =

[
V ∗

V ∗
⊥

]

UR f =

[
0rg×q

V ∗
⊥UR f

]

(3.65)

by V ∗V⊥ = 0 and V ∗U = 0. Thus, if ρ = n− rg = q, then (3.63) holds true by
taking T = T1. If ρ > q, then there exists factorization V ∗

⊥UR f = QR̃ f where Q is
an orthogonal matrix of size ρ × q and R̃ f is square. Moreover, Q⊥ exists such that
with

Q̃ =
[

Q⊥ Q
]
, T2 =

[
Irg 0

0 Q̃∗

]

,
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Q̃ is a unitary matrix and T2 is nonsingular. Setting T = T2T1 yields

GT−1 =
[

Rg 0p×(n−rg)

]
T−1

2 =
[

Rg 0p×(ρ−q) 0p×q

]
,

T F = T2

[
0rg×r f

V ∗
⊥UR f

]

=

[
Irg 0

0 Q̃∗

][
0rg×q

QR̃ f

]

=

[
0(n−q)×q

R̃ f

]

,

where (3.64), (3.65), and V ∗
⊥UR f = QR̃ f are used. The above expressions are the

same as in (3.63), thereby concluding the proof. ��
In Lemma 3.3, the hypothesis rg + q ≤ n is indispensable which ensures the

existence of some nonsingular matrix T for (3.63) to hold. The number of rows
for G is irrelevant. Lemma 3.3 is now used to prove the Kalman decomposition for
LTV systems.

Theorem 3.33. Let (At ,Bt ,Ct ,Dt) be a realization of order n. (i) Suppose that
(At ,Bt) is unreachable over [t0, t f ). Then there exist an integer rc < n and similarity

transforms {Tt}t f
t=t0 such that

Ãt = Tt+1AtT
−1

t =

[
Ãc(t) Ãcc̄(t)

0 Ãc̄(t)

]

, B̃t = Tt+1Bt =

[
B̃c(t)

0

]

(3.66)

for t0 ≤ t < t f where the pair
{

Ãc(t), B̃c(t)
}

is reachable over [t0, t f ) and Ãc(t)
and B̃c(t) have rc rows, provided that rank{Bt} ≤ rc for t0 ≤ t < t f . (ii) Suppose
that (Ct ,At) is unobservable over [t0, t f ). Then there exist an integer ro < n and

similarity transforms {St}t f
t=t0 such that

C̃t =CtS
−1
t =

[
C̃o(t) 0

]
, Ãt = St+1AtS

−1
t =

[
Ão(t) 0

Ãoō(t) Ãō(t)

]

(3.67)

for t0 ≤ t < t f where the pair
{

C̃o(t), Ão(t)
}

is observable over [t0, t f ) and Ão(t)
and C̃o(t) have ro columns, provided that rank{Ct} ≤ ro for t0 ≤ t < t f .

Proof. Because (i) and (ii) are dual to each other, only (ii) will be shown. By the
hypothesis on unobservability over [t0, t f ), the observability matrix Ot0,t f (Ct ,At) as
in (3.53) has rank r < n. That is, an elementary matrix E exists such that

Ot0,t f (Ct ,At)E = Ot0,t f

(
C̃t , Ãt

)
=
[
Õt0,t f 0pn×(n−r)

]
(3.68)

for some full column rank matrix Õt0,t f where p is the dimension of the output. The

induction process is used to show the existence of {St}t f
t=t0 such that (3.67) holds. It

is noted that (3.68) implies
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CkΦA(k, t0)E

[
0r×(n−r)

In−r

]
= 0p×(n−r) for t0 ≤ k < t f . (3.69)

For k = t0, take St0 = E−1 and note that ΦA(t0, t0) = In leading to

C̃t0 =Ct0 S−1
t0 =

[
C̃o(t) 0p×(n−r)

]
. (3.70)

For k = t0 + 1, ΦA(t0 + 1, t0) = At0 . Let

G =Ct0+1, F = At0S−1
t0

[
0r×(n−r)

In−r

]
.

Then (3.69) implies that GF = 0p×q with q = n− r. Since rank{Ct} ≤ r = n−q for
t0 ≤ t < t f by taking ro = r, Lemma 3.3 can be employed to conclude the existence
of St0+1 such that

C̃t0+1 = Ct0+1S−1
t0+1 =

[
C̃o(t0 + 1) 0p×(n−r)

]
, (3.71)

Ãt0 = St0+1At0S−1
t0 =

[
Ão(t0) 0r×(n−r)

Ãoō(t0) Ãō(t0)

]

. (3.72)

To complete the induction process assume that {St}tk−1
t=t0 exist such that

C̃i = CiS
−1
i =

[
C̃o(i) 0p×(n−r)

]
, (3.73)

Ãi−1 = SiAi−1S−1
i−1 =

[
Ão(i− 1) 0r×(n−r)

Ãoō(i− 1) Ãō(i− 1)

]

, (3.74)

where t0 < i < tk for some tk < t f . At k = tk, (3.74) implies that

ΦÃ(tk − 1, t0) =

[
Φ̃1,1 0r×(n−r)

Φ̃1,2 Φ̃2,2

]

by the fact that the product of lower block triangular matrices of the same partition
is again lower block triangular. Thus, (3.69) can be written as

Ctk Atk−1S−1
tk−1ΦÃ(tk − 1, t0)

[
0r×(n−r)

In−r

]

= 0p×(n−r)



108 3 Linear System Theory

by k = tk. Recall the expression of ΦÃ(tk − 1, t0). Taking G =Ctk and

F = Atk−1S−1
tk−1ΦÃ(tk − 1, t0)

[
0r×(n−r)

In−r

]
= Atk−1S−1

tk−1

[
0r×(n−r)

In−r

]
Φ̃2,2

implies that GF = 0p×q with q = n− r. Since rank{Ct} ≤ r = n− q for t0 ≤ t < t f

with ro = r, Lemma 3.3 can be used again to conclude the existence of nonsingular
Stk such that

C̃tk =Ctk S−1
tk =

[
C̃o(tk) 0p×(n−r)

]
, (3.75)

Stk Atk−1S−1
tk−1

[
0r×(n−r)

In−r

]

Φ̃2,2 =

[
0r×(n−r)

Ãō(tk − 1)

]

Φ̃2,2. (3.76)

That is, a nonsingular Stk exists such that C̃tk−1 = Ctk−1S−1
tk−1 and Ãtk−1 =

Stk Atk−1S−1
tk−1 have the same form as in (3.67), concluding the proof for the

observability Kalman decomposition. ��
Complete Kalman decomposition can also be carried out for time-varying

systems. The proof of the following result is left as an exercise (Problem 3.34).

Theorem 3.34. Let (At ,Bt ,Ct ,Dt) be a time-varying state-space realization which
is unreachable and unobservable over [t0, t f ) with t f > t0. Then there exists a set of

similarity transforms {Tt}t f
t=t0 such that

Ãt = Tt+1AtT
−1

t =

⎡

⎢
⎢
⎢
⎢
⎣

Ãco(t) 0 Ã13(t) 0

Ã21(t) Ãcō(t) Ã23(t) Ã24(t)

0 0 Ãc̄o(t) 0

0 0 Ã43(t) Ãc̄ō(t)

⎤

⎥
⎥
⎥
⎥
⎦
,

B̃t = Tt+1Bt =
[

B̃co(t)′ B̃cō(t)′ 0 0
]′
,

C̃t =CtT
−1

t =
[

C̃co(t) 0 C̃c̄o(t) 0
]
,

where
{

Ãco(t), B̃co(t)
}

is reachable and
{

C̃co(t), Ãco(t)
}

is observable over the time
interval [t0, t f ).

Theorem 3.34 does not indicate whether a reachable and observable realization is
minimal over the time interval [t0, t f ). In addition, there are difficulties in extending
the reachability and observability from the local time interval to the infinity time
horizon. Partition of the time axis into a collection of nonoverlapping local time
intervals does not work due to two reasons. The first is that the conventional
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realization theory requires implicitly that {At} be square. Hence, if the minimal
possible order of (At ,Bt ,Ct ,Dt) is different over each local time interval, minimal
realization is not possible over all time t. The second is the computational difficulty.
It is noted that if the kth local time interval is [t0(k), t f (k)), then Tt f (k) = Tt0(k+1)
needs hold, which is not possible in general by the fact that Tt0 and Tt f accomplish
different goals in Kalman decomposition as shown in the proof of Theorem 3.32.
The only known exception is the periodic time-varying systems with � = t f − t0 the
period. See Problem 3.35 in Exercises. As such, it is not possible to use Kalman
decomposition to search for minimal realizations over the infinite time horizon.
Instead, the emphasis is placed on characterizations of minimal realizations. For
this purpose, a new notion is needed.

Definition 3.7. (i) The pair (At ,Bt) is uniformly reachable, if there exists some
integer �c > 0 and some real number δc > 0 such that

Qt,t+�c = Rt,t+�cR
∗
t,t+�c

≥ δcIn ∀ t.

(ii) The pair (Ct ,At) is uniformly observable, if there exists some integer �o > 0 and
some real number δo > 0 such that

Pt,t+�o = O∗
t,t+�o

Ot,t+�o ≥ δoIn ∀ t.

The uniform reachability will be called �-step reachability, if �c = �. Similarly, the
uniform observability will be called �-step observability, if �o = �. The Definition 3.7
is much stronger than the local reachability and observability over [t0, t f ) because
now the local time interval [t0, t f ) with t f = t0 + � is “moving” by changing t0 so
that the time axis is covered by the collection of all such local time intervals. The
next result follows.

Theorem 3.35. Let (At ,Bt ,Ct ,Dt) be a realization for the given time-varying sys-
tem whose impulse response is {H(t,k)}. Suppose that (At ,Bt) is �-step reachable
and (Ct ,At) is �-step observable for some � > 0. Then (At ,Bt ,Ct ,Dt) is a minimal
realization.

Proof. The proof is similar to that for time-invariant systems. Assume that
(At ,Bt ,Ct ,Dt) is both �-step reachable and observable, but its order n is not minimal.
Then there exists a different realization

(
Ãt , B̃t ,C̃t ,Dt

)
with an order ñ smaller than

n for the same impulse response {H(t,k)}. Hence, for t > k,

H(t,k) =CtΦA(t,k+ 1)Bk = C̃tΦÃ(t,k+ 1)B̃k.

By the definition of the transition matrix, there holds

Φ(tk + k, tk)Φ(tk, tk − i) =Φ(tk + k, tk − i) (3.77)
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for all positive integers i,k, and tk. It follows that

Ht0,t f =

⎡

⎢
⎢
⎢⎢
⎢
⎣

H(tk + 1, ti− 1) H(tk + 1, ti − 2) · · · H(tk + 1, ti − �)

H(tk + 2, ti− 1) H(tk + 2, ti − 2) · · · H(tk + 2, tk − �)

... · · · · · · ...

H(tk + �, ti − 1) H(tk + �, ti − 2) · · · H(tk + �, ti− �)

⎤

⎥
⎥
⎥⎥
⎥
⎦

= Otk+1,t f +1(Ct ,At)ΦA(tk + 1, ti)Rt0,ti(At ,Bt)

= Otk+1,t f +1(C̃t , Ãt)ΦÃ(tk + 1, ti)Rt0,ti(Ãt , B̃t),

where t f − tk = ti − t0 = �. Hence for ti = tk + 1,

ΦA(tk + 1, ti) = In �=ΦÃ(tk + 1, ti) = Iñ.

As a result, rank{Ht0,t f }< n. Thus, at least one of the ranks of Otk+1,t f +1(Ct ,At) and
Rt0,ti(At ,Bt) is smaller than n, implying that either (At ,Bt) is not �-step reachable,
(Ct ,At) is not �-step observable, or both. This contradicts the assumption that
(At ,Bt ,Ct ,Dt) is both �-step reachable and observable. The proof is now completed.

��
As a concluding remark for this subsection, it needs to be pointed out that

the uniform reachability/observability and �-step reachability/observability play the
same role as reachability/observability for LTI systems. This point will become
more clear in the next subsection where uniform stabilizability and detectability
will be introduced. It also needs to be pointed out that the realization theory
for LTV systems is a difficult subject in general due to the time-varying nature
of the corresponding realizations. The time-dependent similarity transforms are
prohibitive in computing reachable and observable realizations over the infinite time
horizon. For this and other reasons, the results presented in this subsection are not
as complete as one wishes them to be but do capture the essentials of the realization
theory for LTV systems.

3.3.2 Stability

The notion of stability for LTV state-space systems is similar to the one for the
asymptotic stability as investigated in Sect. 3.2 for LTI systems. The following is
adapted from Definition 3.3 with a minor modification.

Definition 3.8. The state-space system (3.45) is asymptotically stable, or stable in
the Lyapunov sense, if the solution to

x(t + 1) = Atx(t), x(t0) = x0, (3.78)

satisfies ‖x(t)‖→ 0 as t → ∞ for arbitrary x0 and any t0 ≥ 0.
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It is noted that if At = 0 for some t > t0 with t0 a fixed integer, then x(t f ) =
Φ(t f , t0)x0 = 0n for all t f > t regardless of x0. Thus, the initial time t0 cannot be fixed
in defining stability for LTV state-space systems in order for it to be inclusive. For
this reason, stability as in Definition 3.8 is also termed uniform asymptotic stability.
The next result is true.

Lemma 3.4. Consider the difference Lyapunov equation

Xt0,t+1 = A∗
t Xt0,tAt +Zt , Xt0,t0 = 0, (3.79)

where Zt is positive definite for all t. Suppose that the limiting solution

Xt0 := lim
t→∞

Xt0,t =
∞

∑
k=t0

Φ(k, t0)
∗ZkΦ(k, t0)

is bounded for any t0 ≥ 0. Then the state-space system (3.78) is asymptotically
stable.

Proof. The solutions to the difference Lyapunov equation (3.79) are given by

Xt0,t =
t−1

∑
k=t0

Φ(k, t0)
∗ZkΦ(k, t0).

Each of the terms in the above summation is nonnegative. The hypothesis on Zt and
Xt0,t in the limit implies that Xt0 is bounded and positive definite. By the fact that
Zt > 0 for all t ≥ t0,

lim
k→∞

Φ(k, t0) = 0 =⇒ lim
k→∞

Φ(k, t0)x0 = 0n.

That is, ‖x(t)‖ → 0 asymptotically for any initial condition x0 and any initial time
t0 ≥ 0. As a result, the state-space system (3.78) is asymptotically stable, thereby
concluding the proof. ��

Different from LTI systems, asymptotic stability does not imply that the differ-
ence Lyapunov equation (3.79) has bounded solutions asymptotically.

Example 3.36. Consider the unforced state-space system of order 1 with

At =

√∣∣
∣
∣

t + k0

t + k0 + 1

∣∣
∣
∣, t = 0,±1,±2, . . . . (3.80)

Assume that k0 is real but not an integer. Then for t f > t0,

Φ(t f , t0) = Atf −1 · · ·At0+1At0 =

√∣∣
∣
∣
t0 + k0

t f + k0

∣∣
∣
∣ → 0 as t f → ∞.
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Thus, the asymptotic stability holds. Let Zt = 1 for all t. It follows that the limiting
solution to (3.79) is given by

Xt0 = lim
t→∞

Xt0,t =
∞

∑
k=t0

Φ(k, t0)
∗ZkΦ(k, t0) =

∞

∑
k=t0

√(
t0 + k0

k+ k0

)2

→ ∞.

That is, asymptotic stability does not necessarily imply that the limiting solution to
(3.79) is bounded. Now consider the case when

At =

∣
∣
∣
∣

t + k0

t + k0 + 1

∣
∣
∣
∣ , t = 0,±1,±2, . . . , k0 > 0. (3.81)

The asymptotic stability can be concluded similarly. Let Zt = 1 for all t. Then the
limiting solution to (3.79) is given by

Xt0 = lim
t→∞

Xt0,t =
∞

∑
k=t0

Φ(k, t0)
∗ZkΦ(k, t0) =

∞

∑
k=t0

(
t0 + k0

k+ k0

)2

< ∞.

That is, there exist bounded solutions
{

Xt0,t
}

to (3.79) as t → ∞.

A moment of reflection indicates that the deficiency in stability testing for LTV
systems lies in the lack of equivalence of the asymptotic stability and the exponential
stability (refer to Sect. 2.2.3). For convenience, the exponential stability is next
defined again with some suitable modification on its statement.

Definition 3.9. The system x(t + 1) = Atx(t) is exponentially stable, if with any
initial time t0,

‖x(t)‖ ≤ αβ (t−t0) ∀ t ≥ t0

for some α > 0 and 0 < β < 1, where α may depend on x(t0).

For LTI state-space systems, exponential stability and asymptotic stability are
equivalent to each other. On the other hand, the exponential stability is not a
necessary condition for the difference Lyapunov equation (3.79) to have bounded
solutions, which is the case when At is given in (3.81). Hence, it is the decay
rate of ‖Φ(t, t0)‖ to zero as t → ∞ that determines whether the Lyapunov stability
criterion in Lemma 3.4 can be used as a necessary and sufficient condition to test
the asymptotic stability of the LTV systems. The next result is more interesting.

Theorem 3.37. Consider the difference Lyapunov equation

Yt,t f = A∗
t Yt+1,t f At +Zt , Yt f ,t f = 0, (3.82)

where t < t f and εIn ≤ Zt ≤ δ In for all t and some δ > ε > 0. Suppose that there
exists α > 0 such that for all finite t,



3.3 Time-Varying Systems 113

Yt := lim
t f →∞

Yt,t f = lim
t f →∞

t f −1

∑
k=t

Φ(t f ,k+ 1)ZkΦ(t f ,k+ 1)∗ ≥ αIn.

Then the state-space system (3.78) is exponentially stable, if and only if the limiting
solutions {Yt} are bounded.

Proof. Suppose that the limiting solutions {Yt} are bounded. Then

αIn ≤ Yt ≤ β In ∀ t (3.83)

for some β > α > 0, which in turn implies that

A∗
t Yt+1At −Yt =−Zt ≤−εIn (3.84)

by taking the limit t f → ∞ in (3.82). Thus for any given t0 and t ≥ t0, multiplying
(3.84) by x(t)∗ from left and by x(t) from right yields

x(t + 1)∗Yt+1x(t + 1)− x(t)∗Ytx(t)≤−ε‖x(t)‖2,

where x(t + 1) = Atx(t) is used. The inequality (3.83) leads to

x(t)∗Ytx(t)≤ β‖x(t)‖2

which is equivalent to

−‖x(t)‖2 ≤−β−1x(t)∗Ytx(t).

Therefore for all t ≥ t0 there holds

x(t + 1)∗Yt+1x(t + 1)− x(t)∗Ytx(t)≤−εβ−1x(t)∗Ytx(t).

The above can be rewritten as

x(t + 1)∗Yt+1x(t + 1)≤
(

1− ε
β

)
x(t)∗Ytx(t). (3.85)

Since ε is a lower bound for Zt , it can be taken such that

0 ≤ γ2 = 1− ε
β

< 1.

It follows from (3.85) that

x(t + 1)∗Yt+1x(t + 1)≤ γ2(t+1−t0)x(t0)
∗Yt0x(t0)
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for all t ≥ t0. The bounds in (3.83) can then be used to conclude that

‖x(t + 1)‖ ≤ γt+1−t0
√
β/α‖x(t0)‖

from which the ex potential stability for (3.78) is proven. Now suppose that (3.78)
is exponentially stable. Then for all t ≥ t0, there holds

‖Φ(t, t0)‖ ≤ ξγt−t0 , ξ > 0, 0 < γ < 1.

The hypothesis on Zt and the expression of Yt yield

‖Yt‖ ≤ δξ 2 lim
t f →∞

t f −1

∑
k=t

γ2(t f −k−1) = δξ 2
∞

∑
i=0

γ2i =
δξ 2

1− γ2

which is bounded for all t ≥ t0, establishing the theorem. ��
It is easy to see that the two difference Lyapunov equations (3.79) and (3.82) are

different from each other in that one is forward recursion, and the other is backward
recursion. While the boundedness of Xt0 can only conclude the asymptotic stability,
the boundedness of Yt can in fact establish the exponential stability with the aid
of some additional mild assumptions. In fact, the lower bound Yt ≥ αIn > 0 can be
removed as shown in the next result which improves the Lyapunov stability criterion
in Theorem 3.37.

Theorem 3.38. Consider the difference Lyapunov equation

Yt,t f = A∗
t Yt+1,t f At +C∗

t Ct , Yt f ,t f = 0, (3.86)

where t < t f and (Ct ,At) is �-step observable. Let {Yt} be the limits of {Yt,t f } as
t f → ∞. Then the state-space system (3.78) is exponentially stable, if and only if
{Yt} are bounded for all finite t.

Proof. It is easy to show that exponential stability of (3.78) implies that the limiting
solution to (3.86) satisfies

Yt = lim
t f →∞

Yt,t f = lim
t f →∞

t f −1

∑
k=t

Φ(t f ,k+ 1)C∗
kCkΦ(t f ,k+ 1)∗ ≤ β In

for some β > 0 by the same argument as that in the proof of Theorem 3.37. Now
suppose that {Yt} are bounded. That is, Yt ≤ β In for some β > 0. Let V [t,x(t)] be
the Lyapunov function, defined by

V [t,x(t)] = x(t)∗[Yt + εIn]x(t), ε > 0.
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Denote Vt =V [t,x(t)]. Then direct calculations show

Vt+1 = Vt − x(t)∗[εIn +C∗
t Ct − εA∗

t At ]x(t),

Vt+� = Vt − x(t)∗[εIn +Pt,t+�− εΦ(t + �, t)∗Φ(t + �, t)]x(t),

where Pt,t+� = O∗
t,t+�Ot,t+� is the observability gramian as defined in (3.58). The

hypothesis on �-step observability implies that

Pt,t+� = O∗
t,t+�Ot,t+� ≥ αIn

for some α > 0. It follows that

Vt −Vt+� = x∗(t)[εIn +Pt,t+�− εΦ(t + �, t)∗Φ(t + �, t)]x(t)

≥ (α+ ε[1− r])‖x(t)‖2,

where r > 0 satisfies Φ(t + �, t)∗Φ(t + �, t) ≤ rIn. Hence, ε > 0 in the Lyapunov
function Vt =V [t,x(t)] can be taken sufficiently small such that

ρ = α+ ε[1− r]> 0.

Because Yt ≤ β In, ‖x‖2 ≥ (β + ε)−1Vt , which establishes

Vt −Vt+� ≥ ρ‖x(t)‖2 ≥ ρ(β + ε)−1Vt .

The above implies that Vt+� ≤ γVt with

0 < γ = 1−ρ(β + ε)−1 < 1

by 0 <Vt+� <Vt whenever ‖x(t)‖ �= 0. As a result,

Vt0+k� ≤ γk‖x(t0)‖2 → 0

exponentially as k → 0. The fact that

ε‖x(t)‖2 ≤V [x(t)]≤ (β + ε)‖x(t)‖2

establishes that ‖x(t)‖→ 0 exponentially as well. ��
In the above proof, the boundedness of At and Ct for all t is assumed im-

plicitly which holds for the section. Careful readers may notice that the proofs
for Theorems 3.37 and 3.38 are quite similar. In fact, these two proofs can be
adapted to prove further results in Lyapunov stability criteria parallel to that for LTI
systems. However, the detectability notion needs be extended first from that for LTI
systems.
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Definition 3.10. The pair (Ct ,At) is uniformly detectable, if there exist positive
integers �,k ≥ 0 and constants α,β with 0 < β < 1, 0 < α < ∞ such that whenever

‖Φ(t + k, t)v‖ ≥ β‖v‖ (3.87)

for some column vector v and time t, then

v∗Pt,t+�v ≥ αv∗v, (3.88)

where Pt,t+� is the observability gramian as defined in (3.58).

It is interesting to note how detectability is extended from that of LTI systems
without aid of modal observability. It is also interesting to observe how uniform
observability, i.e., Pt,t+� ≥ δ In > 0, is weakened to (3.88) subject to (3.87). The next
theorem is the last result of this section. Because the proof is similar to that for
Theorem 3.38, it is left as an exercise (Problem 3.38).

Theorem 3.39. Consider the difference Lyapunov equation (3.86) where t < t f , and
(Ct ,At) is uniformly detectable. Let {Yt} be the limits of {Yt,t f } as t f → ∞. Then the
state-space system (3.78) is exponentially stable, if and only if {Yt} are bounded for
all finite t.

Uniform stabilizability can be defined similarly.

Definition 3.11. The pair (At ,Bt) is uniformly stabilizable, if there exist positive
integers �,k ≥ 0 and constants α,β with 0 < β < 1, 0 < α < ∞ such that whenever

‖Φ(t + k, t)v‖ ≥ β‖v‖ (3.89)

for some column vector v and time t, then

v∗Qt,t+�v ≥ αv∗v, (3.90)

where Qt,t+� is the reachability gramian as defined in (3.57).

The next result is basically the same as Theorem 3.39 by replacing At with A∗
t ,

and Ct by B∗
t . Hence, the proof is skipped.

Corollary 3.1. Consider the difference Lyapunov equation

Xt,t f = AtXt+1,t f A∗
t +BtB

∗
t , Xtf ,t f = 0, (3.91)

where t < t f , and (At ,Bt) are uniformly stabilizable. Let {Xt} be the limits of
{

Xt,t f

}

as t f → ∞. Then the state-space system (3.78) is exponentially stable, if and only if
{Xt} are bounded for all finite t.

It is noted that if the backward recursions in the Lyapunov equations (3.86)
and (3.91) are changed into forward recursions, then the exponential stability in
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Theorem 3.39 and Corollary 3.1 cannot be claimed, and the boundedness of the
corresponding solutions is sufficient (not necessary) to ensure only asymptotic
stability. The details are omitted.

Notes and References

Realization and stability theory for MIMO system are largely owe to Kalman [55,
56, 61]. Other people also contributed to the system theory. A sample of references
includes [4,34,62,65,82,89]. Several textbooks on linear system theory are favorite
of this author, including [21,53,94]. Several other books [6,18,29,30,33] are listed
here for further reading.

Exercises

3.1. Given the pair (C,A) with C dimension p×n and A n×n, derive an algorithm
for computing the observability matrix On such that its computational complexity is
in the order of pn3. In addition, program the algorithm using Matlab and test it with
several numerical examples.

3.2. Find realizations in block canonical observer and controller form for both

H1(z) =
1

A(z)

[
B1(z) B2(z)

]
, H2(z) =

[
B1(z)
B2(z)

]
1

A(z)
,

where A(z) = zn + a1zn−1 + · · ·+ an and Bk(z) = bk,1zn−1 + · · ·+ bk,n for k = 1,2.
Answer the following: If H(z) has size p×m, which (observer or controller form)
realization has smaller order for the case p > m and p < m?

3.3. The matrix Ao in Example 3.4 for the SISO system H(z) is called left
companion matrix. (i) Show that

det(λ In −Ao) = λ n − μ1λ n−1 −·· ·− μn−1λ − μn.

(ii) Let co be the same as in Example 3.4. Show that

co (zIn −Ao)
−1 =

[
zn−1 · · · z 1

]
/det(zIn −Ao).

(iii) If all eigenvalues {λi}n
i=1 of Ao are distinct, show that

qi =
[
λ n−1

i · · · λi 1
]
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is a left eigenvector of Ao associated with eigenvalue λi. That is, qiAo = λiqi. (iv)
Suppose that all eigenvalues {λi}n

i=1 are distinct. Denote ei as a column vector of
size n with all zero elements except a one in the ith position. Let Vandermonde
matrix be defined as

Q =
[

q′
1 q′

2 · · · q′
n

]′
. (3.92)

Show that Q−1 exists, and vi = Q−1ei is the ith eigenvector corresponding eigen-
value λi.

3.4. Let co and Ao be as in Example 3.4 which have an observer form. Let Γn(μ) be
a lower triangular Toeplitz matrix defined by

Γn(μ) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

−μ1 1
. . .

...
...

. . .
. . . 0

−μn−1 · · · −μ1 1

⎤

⎥
⎥
⎥
⎥
⎦
.

Show that Γn(μ)−1 = On is the observability matrix of (co,Ao).

3.5. (Observability form) For the SISO transfer function H(z) in Example 3.4,
denote {h(t)} as its impulse response. (i) Show that

bob =

⎡

⎢
⎢
⎢
⎣

h(1)
h(2)

...
h(n)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

−μ1 1
. . .

...
...

. . .
. . . 0

−μn−1 · · · −μ1 1

⎤

⎥
⎥
⎥
⎥
⎦

−1⎡

⎢
⎢
⎢
⎣

ν1

ν2
...
νn

⎤

⎥
⎥
⎥
⎦
.

(ii) Show that with bob as above, cob =
[

1 0∗n−1

]
, and

Aob =

[
0n−1 In−1

μn ṽ′n−1

]
, ṽ′n−1 =

[
μn−1 · · · μ1

]
,

(Aob,bob,cob,d) is a realization of H(z). (iii) Show that the observability matrix
On = In, which is why it is called observability form. (iv) Find the block observabil-
ity form for the transfer matrix H(z) as in Example 3.4.

3.6. Let (A,B,C,D) be a realization of some m×m transfer matrix with n× n the
dimension of A. Show that the pair

([
C D

]
,

[
A B

0m×n 0m×m

])
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is observable, if and only if (C,A) is observable and

det

([
A B
C D

])
�= 0.

3.7. Prove Theorem 3.7. (Hint: Show first that

x(n) = Anx0 +Rn(A,B)Un

is the solution to x(t + 1) = Ax(t)+Bu(t), where

Un = vec
([

u(n− 1) · · · u(1) u(0)
])
, x(0) = x0

and then conclude that Rn(A,B) needs have full row rank.)

3.8. Prove Theorem 3.9.

3.9. (i) Show that PBH test in Theorem 3.6 is equivalent to

rank

{[
zIn −A

C

]}
= n ∀ z ∈ C.

(ii) Show that PBH test in Theorem 3.10 is equivalent to

rank
{[

zIn −A B
]}

= n ∀ z ∈ C.

3.10. (i) Show that (C,A) is unobservable, if and only if there exists a square matrix
P �= 0 such that PA = AP and CP = 0. (ii) Show that (A,B) is unreachable, if and
only if there exists a square matrix Q �= 0 such that AQ = QA and QB = 0.

3.11. (Modal observability and reachability) Let (A,B,C,D) be a realization of
order n. (i) Show that a mode corresponding to eigenvalue λ of A is unobservable,
if and only if

rank

{[
λ In −A

C

]}
< n.

(ii) Show that a mode corresponding to eigenvalue λ of A is unreachable, if and
only if

rank
{[

λ In −A B
]}

< n.

3.12. Find a minimal realization for

(i) G(z) =

⎡

⎢
⎢⎢
⎣

z+ 1

z2 − z+ 2
9

1

z− 1
3

−z2 + z+ 1

z3 + 2
3 z2 − 1

9 z− 2
27

z− 1
4

z2 + z+ 2
9

⎤

⎥
⎥⎥
⎦
,
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(ii) G(z) =

⎡

⎢
⎢
⎢
⎣

z+ 1

z2 − z+ 1
4

1

z− 1
2

−z2 + z+ 1

z3 + 1
2 z2 − 1

4 z− 1
8

z− 1
4

z2 + z+ 1
4

⎤

⎥
⎥
⎥
⎦
.

3.13. (Transmission zeros) Let (A,B,C,D) be a realization for the transfer matrix
H(z) of size p×m. Suppose that det(z0In −A) �= 0.

(i) For the case p ≥ m, show that z = z0 is an input zero of H(z), if and only if there
is a nonzero solution to

[
z0In −A B
−C D

][
x0

u0

]
=

[
0n

0p

]
.

Show that in this case there exists an initial condition x(0) = x0 and an input
u(t) = u0zt

0 for t ≥ 0 such that y(t)≡ 0 for all t ≥ 0.
(ii) For the case p ≤ m, show that z = z0 is an output zero of H(z), if and only if

there is a nonzero solution to

[
x̃∗0 ỹ∗0

]
[

z0In −A B
−C D

]
=
[

0∗n 0∗m
]
.

What is the interpretation of the transmission zero for the case p < m?

3.14. (Poles) Suppose that p0 is a pole of H(z) = D+C(zI −A)−1B. Show that
there exits an initial condition such that with input identically zero for each time
sample, the output y(t) = vpt

0 for some nonzero column vector v and each t ≥ 0.

3.15. (Parallel realization) Suppose that {Ai}�i=1 are square and (Ai,Ak) have no
common eigenvalues whenever i �= k. Show that realization (A,B,C,D), given by

A = diag(A1, . . . ,A�), B∗ =
[

B∗
1 · · · B∗

�

]∗
, C =

[
C1 · · · C�

]
,

is minimal, if and only if (Ai,Bi) is reachable and (Ci,Ai) is observable for all i.

3.16. Consider a SISO system with realization (A,b,c). (i) Let A be a stability
matrix and X be a solution to

X = AXA+bc.

Show that if (A,b,c) is not a minimal realization, then X is singular. (ii) Suppose
that Y is a unique solution to

AY +YA+bc= 0.

Show that if Y is singular, then (A,b,c) is not a minimal realization.
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Fig. 3.7 Cascade connection

3.17. Show that any two minimal realizations for the same transfer matrix are
equivalent to each other in the sense that a similarity transform exists which connects
the two realizations.

3.18. Let (A,b,c,d) be a realization of a SISO system. (i) Show that, if (c,A) is
observable, then there exists a similarity transform To such that

(
cT−1

o ,ToAT−1
o

)
is in

the observer form. (ii) Show that, if (A,b) is reachable, then there exists a similarity
transform Tc such that

(
TcAT−1

c ,Tcb
)

is in the controller form.

3.19. Show that the Lyapunov equation (3.18) can be rewritten as

[
I−A′ ⊗A∗]vec(P) = vec(Z),

where ⊗ denotes the Kroneker product, and vec(P) and vec(Z) denote column
vectors obtained by stacking columns of P and Z, respectively. Show also that the
Lyapunov equation (3.18) has a unique solution, if and only λiλ̄k �= 1 for all i �= k,
where {λk} are eigenvalues of A.

3.20. Let (A,B,C,D) be a realization of order n, and A be stable. Let P and Q be
the observability and reachability gramians, respectively. That is,

P = A∗PA+C∗C, Q = AQA∗+BB∗.

(i) Let P = UΣoU∗ be SVD where U is unitary, and Σo is diagonal and of rank
ro < n. Show that similarity transform T = U∗ yields observability Kalman
decomposition.

(ii) Let Q = VΣcV ∗ be SVD where V is unitary, and Σc is diagonal and of rank
rc < n. Show that similarity transform T = V ∗ yields reachability Kalman
decomposition.

3.21. (Cascade realization) Consider cascade connection in Fig. 3.7. Let (A1,B1,
C1,D1) be realization of H1(z), and (A2,B2,C2,D2) be realization of H2(z).

(i) Show that H(z) = H2(z)H1(z) has realization (A,B,C,D), given by

A =

[
A1 0

B2C1 A2

]
, B =

[
B1

B2D1

]
, C =

[
D2C1 C2

]
, D = D2D1.

(ii) Assume that both (A1,B1,C1,D1) and (A2,B2,C2,D2) are minimal realizations.
Show that (C,A) is unobservable, if and only if there are cancellations between
poles of H1(z) and zeros of H2(z). Similarly, show that (A,B) is unreachable,
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if and only if there are cancellations between poles of H2(z) and zeros of H1(z).
(Hint: Use coprime factorizations in Sect. 3.2.3.)

3.22. (i) Let H(z) be an m×m transfer matrix with realization (A,B,C,D), and D
nonsingular. Let Ã = A−BD−1C. Show that

H(z)−1 =
[
D+C(zI−A)−1B

]−1
= D−1 −D−1C

(
zI − Ã

)−1
BD−1.

(ii) Show that the double Bezout identity (3.37) in Theorem 3.28 is true.

3.23. Suppose that (A+ BF) and (A+ LC) are stability matrices. Show that the
observer-based controller

K(z) =−F(zI −A−BF−LC−LDF)−1L

admits coprime factorizations as in (3.40).

3.24. Consider the feedback system in Fig. 3.6 where P(z) has realization
(A,B,C,D) and K(z) is an observer-based controller as in Problem 3.23. Show
that the closed-loop transfer matrix from r(t) to y(t) is given by

−[(C+DF)(zI −A−BF)−1B+D
]

F(zI −A−LC)−1L.

3.25. Consider Theorem 3.28. Show that the realizations for

(i)
[

N(z) M(z)
]
=

[
A+LC (B+LD) L

C D Ip

]
,

(ii)

[
M̃(z)
Ñ(z)

]
=

⎡

⎣
A+BF B

F Im

(C+DF) D

⎤

⎦

are minimal, if and only if the realization (A,B,C,D) is minimal.

3.26. Suppose that (A,B,C,D) is a minimal realization for H(z) with size p×m.
Show that (3.38) and (3.39) hold true, and thus for all z∈C, except those eigenvalues
of (A+BF)/(A+LC),

rank
{[

N(z) M(z)
]}

= p, rank

{[
M̃(z)
Ñ(z)

]}
= m.

3.27. (i) Let G(z) = z/(1+ z) and K(z) = 1 in the feedback system of Fig. 3.6.
Show that y(t) = r(t +1), and the condition (3.29) fails. (ii) Assume that both K(z)
and G(z) are proper. Show that if (3.29) holds, then all signals in Fig. 3.6 are causal.

3.28. Let T(z) = D+C(zI −A)−1B. Suppose that (A,B) is stabilizable, and (C,A)
is detectable. Show that the state-space system with realization (A,B,C,D) is
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Fig. 3.8 Two-degree-of-freedom control system

internally stable, if and only if the transfer matrix T(z) has all its poles strictly
inside the unit circle.

3.29. Suppose that the feedback system in Fig. 3.6 is well posed, and the realiza-
tions of K(z) and G(z) are both stabilizable and detectable. Show that the feedback
system is internally stable, if and only if

T(z) =
[

I −K(z)
−G(z) I

]−1

is proper and stable. (Hint: Apply the result in Problem 3.28 to realization of T(z),
by assuming realizations of K(z) and G(z).)

3.30. Consider the two-degree-of-freedom control system in Fig. 3.8 where P(z) =
N(z)D(z)−1 is right coprime factorization. Show that

Try(z) = N(z)Q(z), Tru(z) = D(z)Q(z),

where Try(z) and Tru(z) are transfer matrices from r(t) to y(t) and u(t), respectively.

3.31. Refer to the proof of Theorem 3.29, show that Q(z) = Q̃(z) if and only if
X(z)Ỹ0(z)−Y(z)X̃0(z) = Y0(z)X̃(z)−X0(z)Ỹ(z) where

X0(z) = X(z)−Q(z)N(z), Y0(z) = Y(z)+Q(z)M(z),

Ỹ0(z) = Ỹ(z)+ M̃(z)Q̃(z), X̃0(z) = X̃(z)− Ñ(z)Q̃(z).

3.32. Consider the double Bezout identity in (3.37). Suppose that {M(z),N(z)} and{
M̃(z), Ñ(z)

}
are normalized coprime factors, i.e.,

M(z)M(z)∼ +N(z)N(z)∼ = Ip, M̃(z)∼M̃(z)+ Ñ(z)∼Ñ(z) = Im.

Show that Y(z)M(z)∼ −X(z)N(z)∼ = M̃(z)∼Ỹ(z)− Ñ(z)∼X̃(z).

3.33. Prove (3.61) and (3.62) by direct verifications.

3.34. Prove Theorem 3.34.
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3.35. An LTV system with realization {At ,Bt ,Ct ,0} is called periodic time vary-
ing, if

At+� = At , Bt+� = Bt , Ct+� =Ct

for all t where � > 0 is the smallest integer such that the above holds. Such an integer
� is termed the period.

1. Show that for periodic time-varying state-space systems with period � > 0, local
reachability over [t0, t0 + �) is equivalent to �-step reachability.

2. Let t f = t0 + �. Suppose that (Ct ,At) is unobservable over [t0, t f ). Show that

the similarity transforms {St}t f −1
t=t0 exist such that (3.67) holds for t0 ≤ t ≤ t f .

(Hint: Use the proof of Theorem 3.32.)
3. Show that (At ,Bt ,Ct ,0) is an �-step minimal realization, if and only if (At ,Bt) is

reachable and (Ct ,At) is observable over [t0, t f ) with t f = t0 + �.
4. Suppose that (At ,Bt ,Ct ,0) and

(
Ãt , B̃t ,C̃t ,0

)
are both �-step reachable and

observable realizations for the same LTV system. Show that there exist similarity
transforms {Ti}∞i=t0

such that

(
Ãt , B̃t ,C̃t ,0

)
=
(
Tt+1AtT

−1
t ,Tt+1Bt ,CtT

−1
t ,0

) ∀ t.

3.36. Show that x(t +1) = Atx(t) is exponentially stable, if there exists ρ > 1 such
that x(t + 1) = ρAtx(t) is asymptotically stable.

3.37. Suppose that (Ct ,At) is detectable. Let

x(t + 1) = Atx(t), y(t) =Ctx(t).

Show that lim
t→∞

‖y(t)‖= 0 =⇒ lim
t→∞

‖x(t)‖= 0.

3.38. Prove Theorem 3.39. (Hint: Use the same method as in the proof of
Theorem 3.38.)



Chapter 4
Model Reduction

Because real systems are highly complex and may involve physical phenomena
beyond mathematical description, plant models are likely to be of high order. In
addition, system models are obtained either from identification based on experi-
mental data or from modeling based on physics principles which add complexity
to state-space descriptions. Even in the case when such models do not involve pole
and zero cancellation which can be removed anyway with Kalman decomposition,
redundancies may still exist in the state-space model owing to its being nearly
unreachable or nearly unobservable or both. Hence, being minimal for realization is
not adequate. High order state-space models will lead to high order controllers and
increase overhead to analysis, design, and implementation of the feedback control
systems. For this reason, there is a strong incentive to reduce the order of the
system model. The real issue is how to quantify and remove redundancies in the
original high order model so that the reduced order model admits high fidelity in
representation of the physical process.

In the past a few decades, several techniques are emerged for order reduction
of state-space models. In this chapter, methods of balanced realization and optimal
Hankel-norm approximation will be presented. For a given state-space realization,
its Hankel singular values will be shown to provide a suitable measure of the
model redundancy. Specifically under the balanced realization, the subsystem
corresponding to small Hankel singular values contributes little to the system
behavior which can thus be truncated directly. This method can be further improved
to obtain reduced order models of higher fidelity. More importantly, upper bounds
will be derived to quantify the approximation error between the reduced model and
the original high order model. The contents of this chapter include error measures,
balanced truncation, and optimal Hankel-norm approximation, which rely heavily
on basic concepts and mathematical analysis from system theory in the previous
chapter.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 4, © Springer Science+Business Media, LLC 2012
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4.1 Performance Measures

Approximation errors are inevitable when low order models are employed to
represent the high order models. Performance of model reduction is measured by
the corresponding approximation error. The two most frequently used ones are H2

and H∞-norms.
For a given causal and rational plant P(z), it can be decomposed to

P(z) = H(z)+U(z), (4.1)

where H(z) is stable with all poles strictly inside the unit circle and all U(z) is anti-
stable in the sense that none of its poles is stable. Because feedback stabilization in
control requires the full knowledge of U(z), model reduction is normally carried out
for the stable component of P(z). The H2 norm of H(z) is defined by

‖H‖2 =

√

Tr

{
1

2π

∫ π

−π
H(e jω)H(e jω)∗ dω

}
(4.2)

that is the same as (2.51) in Chap. 2 induced by power norm. This norm is often
encountered in feedback control and signal processing due to the white nature of
noises and disturbances. Collection of all stable transfer matrices with bounded H2-
norm forms a Hardy space on the unit circle which is in fact a Hilbert space. On the
other hand, the H∞-norm of H(z) is defined by

‖H‖∞ = sup
|z|>1

σ [H(z)] . (4.3)

Collection of all stable transfer matrices with bounded H∞-norm is also a Hardy
space on the unit circle which is now a Banach space. Readers are referred to other
texts for more complete knowledge of Hardy spaces. For rational H(z), its H∞-norm
has a simpler form:

‖H‖∞ = max
ω∈IR

σ
[
H
(
e jω)] . (4.4)

Basically, H∞-norm is the maximum “magnitude response.”
The mathematical expressions in (4.2) and (4.4) suggest that transfer matrices

can be regarded as matrix-valued functions of real variable ω . Thus, Hardy spaces
of H2 and H∞ can be extended to Lebesgue spaces of L2[0, 2π ] and L∞[0, 2π ],
respectively. Indeed, let L2[0, 2π ] be the collection of all transfer matrices H(z)
such that the integration in (4.2) is bounded in the sense of Lebesgue. It includes
H2 as a subspace. Another subspace of L2[0, 2π ] consists of those transfer matrices
whose impulse responses are anticausal that is the complement of H2 and denoted
by H2⊥. In fact, each H(eω) ∈ L2[0, 2π ] can be written as
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H(z) = Hs(z)+Has, Hs(z) ∈ H2, Has(z) ∈ H2⊥, (4.5)

owing to the nice geometry property of the Hilbert space. Similarly, H∞⊥ can
be defined as the collection of all anticausal transfer matrices whose frequency
responses are essentially bounded. Both H∞ and H∞⊥ are subspaces of L∞[0, 2π ].
However, each H(eω ) ∈ L∞[0, 2π ] does not admit a similar decomposition to that
in (4.5) because of the geometry complexity of the Banach space.

In engineering practice white noises and disturbances are abundant. See many
examples presented in Chap. 2. As a result, H2 norm is often adopted to measure
the model reduction error. Let Ĥ(z) be a reduced order model. Then small

value of
∥
∥∥H− Ĥ

∥
∥∥

2
implies good quality of the reduced order model in terms of

approximation to the high order model H(z). It turns out that H2 norm is not
a good measure for applications to control systems because of the consideration
for feedback stability. Recall Nyquist criterion in classic control: It is the shortest
distance between the frequency response of the loop transfer function and the critical
point of −1 on complex plane that measures the stability margin. In other words,
if Ĥ(z) is the approximate loop transfer function, and results in stable feedback
system, then the closed-loop system with loop transfer function H(z) remains stable,

if
∥
∥
∥H− Ĥ

∥
∥
∥
∞

is strictly smaller than the stability margin. Clearly, H∞-norm is the

worst-case measure that can be conservative. However, because at which frequency
the shortest distance takes place is unknown prior to controller design, the H∞-
norm measure is indispensable for model reduction in feedback control systems, if
the controller is synthesized based on the reduced order model.

For a stable SISO system H(z), there holds ‖H‖2 ≤ ‖H‖∞. In fact, the difference
between ‖H‖2 and ‖H‖∞ can be substantial, if the magnitude response of H(z)
varies substantially implying that the H∞-norm measure can be very conservative.
In addition, optimal model reduction under either H2 or H∞-norm involves
nonlinear optimization and is thus not tractable. A different norm, termed Hankel
norm, is introduced to aid model reduction.

Let a causal signal {u(t)}∞t=0 of dimension d be energy bounded. The collection
of all such signals is denoted by �d

2+. Its complement, �d
2−, is the collection of all

anticausal and energy-bounded signals of dimension d. As such, each d-dimensional
signal {s(t)}∞t=−∞ with bounded energy admits the following decomposition:

s(t) = sc(t)+ sa(t), sc(t) ∈ �d
2+, sa(t) ∈ �d

2−.

It follows that �d
2 := �d

2+ ⊕ �d
2− is the collection of energy-bounded signals of

dimension d which is also a Hilbert space with �d
2+ and �d

2−, two complementary
complete subspaces. For each s(t) ∈ �d

2, its DTFT is defined as

S
(
e jω)=

∞

∑
t=−∞

s(t)e− jωt , ω ∈ IR.
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In light of Parseval’s theorem, there holds ‖s‖2 = ‖S‖2 where

‖s‖2 =

√
∞

∑
t=−∞

‖s(t)‖2, ‖S‖2 =

√
1

2π

∫ π

−π
‖S(e jω)‖2 dω

are called 2-norms with ‖ · ‖, the Euclidean norm.
The transfer matrix H(z) of size p×m can be viewed as a mapping from �m

2+
to �p

2+. Let δ (t) be Kroneker delta function and ek be a vector of size m with 1
at the kth entry and rest zeros. Denote {H(t)}∞t=0 the impulse response of H(z).
Then

yk(t) = H(q)δ (t)ek = H(t)ek

is the impulse response with impulse excited at the kth input channel. It can be
verified that the H2 norm has the following time-domain expression:

‖H‖2 =

√
m

∑
k=1

‖yk‖2
2 =

√
∞

∑
t=−∞

Tr{H(t)H∗(t)}.

However, the time-domain interpretation for H∞-norm is more intriguing that is
presented in the next result.

Theorem 4.1. Let {u(t)} ∈ �m
2+ and {y(t)} ∈ �p

2+ be input and output of a causal
and stable system represented by its transfer matrix H(z) under zero initial
condition. Then

‖H‖∞ = sup
0 �=u∈�m

2+

‖y‖2

‖u‖2
. (4.6)

Proof. Applying DTFT under zero initial condition yields

Y
(
e jω)= H

(
e jω)U

(
e jω) ∀ ω ∈ IR.

By the definition of H∞-norm, there holds

‖y‖2
2 = ‖Y‖2

2 =
1

2π

∫ π

−π
U
(
e jω)∗ H

(
e jω)∗ H

(
e jω)U

(
e jω) dω

≤ 1
2π

∫ π

−π
σ2 [H

(
e jω)]U

(
e jω)∗ U

(
e jω) dω

≤ ‖H‖2
∞‖U‖2

2 = ‖H‖2
∞‖u‖2

2,

where Parseval’s theorem is used twice. Hence, ‖H‖∞ is an upper bound for
‖y‖2/‖u‖2. This upper bound can be asymptotically achieved. Consider the first
case when H(z) admits continuous frequency response. Specifically, there exists ωm
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at which σ
[
H
(
e jωm

)]
= ‖H‖∞. Hence, there exists a pair of complex-valued unit

vectors {um,ym} of appropriate dimensions such that

H
(
e jωm

)
um = ‖H‖∞ym. (4.7)

If a causal input u(t) with DTFT U
(
e jω)= umψε(ω) is taken where

|ψε(ω)|2 =
{ π

ε , ω ∈ [ωm − ε, ωm + ε],
0, elsewhere,

(4.8)

and ε > 0, then u(t) ∈ �m
2+ and ‖u‖2 = ‖U‖2 = 1. For this input signal,

‖y‖2
2 = ‖Hu‖2

2 =
1

2π

∫ π

−π
|ψε(ω)|2 u∗

mH
(
e jω)∗ H

(
e jω)um dω → ‖H‖2

∞

as ε → 0 in light of (4.7) and (4.8). The proof for the case when H(z) does not
admit continuous frequency response is similar but involves more sophisticated
mathematics which is skipped. ��

It is interesting to observe that H∞-norm, defined in frequency domain, has
an interpretation as the induced �2-norm in time domain. Next consider an input
{u(t)}−1

t=−∞ ∈ �m
2−. The corresponding output is given by

y(t) = H(q)u(t) =
∞

∑
k=t+1

H(k)u(t − k) ∈ �p
2 . (4.9)

Let Π+[·] be the orthogonal projection from �2 to �2+. Then the Hankel operator ΓH,
associated with H(z) of dimension p×m, is defined via

y(t) = ΓHu =Π+[H(q)u(t)] (4.10)

that is a mapping from �m
2− to �p

2+. The Hankel norm is defined via

‖H‖H := sup
0 �=u∈�m

2−

‖Π+[y]‖2

‖u‖2
.

Hankel matrices of finite size are used in the previous chapter in studying
minimal realizations. Let (A,B,C,D) be a realization of H(z). Its impulse response
is given by H(t) =CAt−1B for t ≥ 1 and H(0) = D. The Hankel matrix of infinite
size associated with H(z) is given by

HH = lim
�→∞

⎡

⎢
⎢
⎢
⎣

H(1) H(2) · · · H(�)

H(2) H(3) · · · H(�+ 1)
... · · · · · · ...

H(�) · · · · · · H(2�− 1)

⎤

⎥
⎥
⎥
⎦
= lim

�→∞
O�R�, (4.11)
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where O� and R� are the observability and reachability matrices of size �,
respectively. For anticausal input {u(t)}−1

t=−∞ ∈ �m
2− and the projected output

{y(t)}∞t=0 ∈ �m
2+, there holds y = HH u where

u = lim
�→∞

⎡

⎢
⎢
⎢
⎣

u(−1)
u(−2)

...
u(−�)

⎤

⎥
⎥
⎥
⎦
, y = lim

�→∞

⎡

⎢
⎢
⎢
⎣

y(0)
y(1)

...
y(�)

⎤

⎥
⎥
⎥
⎦
.

Indeed, it can be verified rather easily using (4.9) that

⎡

⎢
⎢⎢
⎣

y(0)
y(1)

...
y(t)

⎤

⎥
⎥⎥
⎦
= lim

�→∞

⎡

⎢
⎢⎢
⎣

H(1) H(2) · · · H(�)

H(2) H(3) · · · H(�+ 1)
... · · · · · · ...

H(t) · · · · · · H(2�− 1)

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

u(−1)
u(−2)

...
u(−�)

⎤

⎥
⎥⎥
⎦

leading to y = HH u. As a result, ‖H‖H = σ (HH ).
A salient feature of the Hankel matrix is its finite rank being the same as the

McMillan degree of the corresponding transfer matrix. Hence, model reduction can
be carried out via approximation of the Hankel matrix with a lower rank Hankel
matrix. For H(z) = D+C(zIn −A)−1B of order n, its observability and reachability
gramians are solutions to the following two Lyapunov equations

P = A∗PA+C∗C, Q = AQA∗+BB∗, (4.12)

respectively. Stability of A ensures that

P = lim
�→∞

O∗
� O� =

∞

∑
k=0

(
CAk
)∗(

CAk
)
, (4.13)

Q = lim
�→∞

R�R
∗
� =

∞

∑
k=0

(
AkB
)(

AkB
)∗

. (4.14)

Properties of eigenvalues imply

σi (HH ) =
√
λi
(
HH H ∗

H

)
=
√
λi(PQ), i = 1,2, . . . ,n.

For this reason, square roots of eigenvalues of PQ are referred to as Hankel singular
values, which depend only on the impulse response of H(z). It is noted that neither
Hankel operator nor Hankel matrix involves D.
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Lemma 4.1. For H(z) =C(zI−A)−1B of dimension p×m with A a stability matrix,
there holds

1
min{p,m}‖H‖2 ≤ ‖H‖H ≤ ‖H‖∞.

Proof. By stability of A and definition of the Hankel and H∞-norms,

‖H‖H = sup
‖u‖2=1,u∈�2−

‖Π+[Hu]‖2 ≤ sup
‖u‖2=1,u∈�2+

‖Hu‖2 = ‖H‖∞.

For H2 norm, assuming m ≤ p has no loss of generality. It is claimed that

‖H‖2
2 = Tr{B∗PB}, P = A∗PA+C∗C. (4.15)

Stability of A ensures that P ≥ 0. In addition, there holds

(
z−1I −A∗)P(zI−A) = P− zA∗P− z−1PA+A∗PA

= 2A∗PA+C∗C− zA∗P− z−1PA

= C∗C−A∗P(zI−A)− (z−1I−A∗)PA (4.16)

in which the Lyapunov equation from (4.15) is used. It follows that

C∗C = A∗P(zI−A)+
(
z−1I−A∗)PA+

(
z−1I−A∗)P(zI −A).

Recall H(z) = C(zI −A)−1B. Multiplying the above equality by (zI −A)−1B from

right and by B∗ (z−1I−A∗)−1
from left yields

H(z)∗H(z) = B∗ (z−1I−A∗)−1
A∗PB+B∗PA(zI−A)−1B+B∗PB (4.17)

for each z on the unit circle. By Cauchy’s integral theorem, contour integration of
the above matrix function on the unit circle counterclockwise with trace operation
verifies (4.15). On the other hand, the Lyapunov equation Q = AQA∗+BB∗ shows
that BB∗ ≤ Q by again stability of A. Consequently,

1
m
‖H‖2

2 =
1
m

Tr{B∗PB}= 1
m

Tr{PBB∗}

=
1
m

m

∑
i=1

λi(PBB∗)≤ λmax(PBB∗)

≤ λmax(PQ) = ‖H‖2
H

by positivity of all the eigenvalues that completes the proof. ��
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Example 4.2. Let us examine a specific H(z) from Problem 3.12 given by

H(z) =

⎡

⎢
⎢
⎢
⎣

z+ 1

z2 − z+ 1
4

1

z− 1
2

−z2 + z+ 1

z3 + 1
2 z2 − 1

4 z− 1
8

z− 1
4

z2 + z+ 1
4

⎤

⎥
⎥
⎥
⎦
. (4.18)

Its partial fraction is obtained as

H(z) =

[
1 1

1.25 0

]
z−
[ −1 0.5

0.675 0

]

(
z− 1

2

)2 +

[
0 0

−2.25 1

]
z−
[

0 0
1.375 0.25

]

(
z+ 1

2

)2 .

The second column of the first term has only one pole at 1
2 , and the second term

is a rank 1 matrix and thus has McMillan degree 2. Hence, a minimal realization
(A,B,C,D) is constructed to be

A =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 −0.25 0 0 0
1 0 0 0 0
0 0 0.5 0 0
0 0 0 −1 1
0 0 0 −0.25 0

⎤

⎥
⎥
⎥⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1 0
0 0
0 1

−2.25 1
−1.375 −0.25

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

C =

[
1 1 1 0 0

1.25 −0.675 0 1 0

]
, D =

[
0 0
0 0

]
.

The observability and reachability gramians are given by

P =

⎡

⎢
⎢
⎢
⎢⎢
⎣

12.65 −2.404 2.667 0.826 0.381
−2.404 2.246 0.667 −0.445 −0.206

2.667 0.667 1.333 0 0
0.826 −0.445 0 2.963 −2.370
0.381 −0.206 0 −2.370 2.963

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

Q =

⎡

⎢
⎢
⎢⎢
⎢
⎣

2.963 2.370 0 −1.568 −0.944
2.370 2.963 0 0.624 0.392

0 0 1.333 0.560 −0.320
−1.568 0.624 0.560 10.27 4.329
−0.944 0.392 −0.320 4.329 2.595

⎤

⎥
⎥
⎥⎥
⎥
⎦
.

As a result, ‖H‖2 =
√

Tr{B∗PB} = 4.414, ‖H‖H =
√
λmax(PQ) = 5.539, and

‖H‖∞ = 8.28 that takes place at ω = 0.
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Lemma 4.1 and Example 4.2 show that the Hankel norm is between H2 and H∞-
norms that can be an appropriate measure for model reduction. More importantly,
the Hankel matrix has finite rank. Model reduction can thus be converted to low
rank matrix approximation that is a tractable problem. In the next two sections, two
different techniques will be developed for model reduction. Surprisingly, both admit
good approximation error in H∞ norm.

4.2 Balanced Truncation

Algorithms for model reduction in this section are based on approximation of
gramian matrices with the lower rank ones via direct truncation. However, two
gramians exist for each transfer matrix. How to approximate them with lower
rank ones becomes a problem. A moment of reflection suggests that the two
gramians need to be balanced prior to truncation in order to help minimization of
the approximation error. There are two different ways for balancing the gramian
matrices leading to two different reduction methods based on balanced truncation
which will be studied in this section.

4.2.1 Balanced Realization

Given a state-space realization (A,B,C,D) with A stable, both observability gramian
P and reachability gramian Q are positive semidefinite, which are the unique
solutions to the two Lyapunov equations in (4.12), respectively. Moreover, P is
positive definite, if and only if (C,A) is observable, and Q is positive definite, if
and only if (A,B) is reachable. The next result illustrates that a similarity transform
can be applied to obtain a minimal realization, which admits equal and diagonal
observability and reachability gramians. Such a realization is called balanced
realization.

Proposition 4.1. Let P and Q be respective observability and reachability grami-
ans associated with realization (A,B,C,D) where A is a stability matrix. There exists
a similarity transform T such that the new realization

(Ab,Bb,Cb,D) =
(
TAT−1,T B,CT−1,D

)
(4.19)

admits observability and reachability gramians given by

Pb = Qb = diag(σ1,σ2, . . . ,σn) =: Σ ≥ 0. (4.20)

Proof. Let QP = SΛS−1 be eigenvalue decomposition. Since both P and Q are
nonnegative matrices, Λ is diagonal and nonnegative. It follows that Λ = Σ2 where
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Σ is diagonal with {σi} on the diagonal. In fact, P and Q are simultaneously
diagonalizable (refer to Appendix A). Hence, a nonsingular matrix S exists such
that Σ = S−1Q(S∗)−1 = S∗PS and

Σ2 =
[
S−1Q(S∗)−1] [S∗PS] = S−1QPS.

Let (Ab,Bb,Cb) be as in (4.19) and Pb = Qb as in (4.20). Multiplying the second
Lyapunov equation in (4.12) by S−1 from left and (S∗)−1 from right yields

Qb = AbQA∗
b +BbB∗

b,

if T = S−1. Similarly, multiplying the first Lyapunov equation in (4.12) by S∗ from
left and S from right yields

Pb = A∗
bPbAb +C∗

bCb,

if T = S−1. The proposition is thus true by taking T = S−1. ��
The sequence {σi} is called Hankel singular values which can be arranged in

descending order:
σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0.

It is noted that the required similarity transform T in Proposition 4.1 may not be
the same as the S−1 matrix in eigenvalue decomposition of PQ. In this case, it
is suggested to first eliminate the unobservable and unreachable modes separately
as in Problem 3.20 and then find the similarity transform to obtain the balanced
realization. When P and Q are nonsingular, it can be verified that T = Σ−1/2U∗R
is the required similarity transform in obtaining the balanced realization where
P = R∗R is the Cholesky factorization, and

RQR∗ =UΣ2U∗

is the SVD with U a unitary matrix.
There are two reasons for studying balanced realizations. The first is their

insensitivity to rounding off errors, compared with other realizations, subsuming
the ARMA models. Recall that discrete-time signal processing requires digital
implementations. The second is model reduction which is studied in this chapter.
Even for minimal realizations, not all the modes contribute equally to the dy-
namic behavior of the system. If insignificant modes are truncated directly, then
the reduced order dynamic system approximates the original system with little
noticeable error. However, direct truncation of less significant modes is not the
right approach in terms of minimization of the approximate error. A reflection on
Kalman decomposition indicates that the approximation error is suitably small, if the
truncated subsystems or state variables are nearly unobservable and unreachable.
It needs to be emphasized that for minimal realizations, a state variable that
is nearly unobservable does not imply that it has an insignificant contribution
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to the input/output behavior of the system. In fact, because (A,B,C,D) and
(A,ρB,ρ−1C,D) describe the same input/output system with ρ �= 0, the second
realization can be made nearly unobservable by making |ρ | sufficiently large.
Hence, there needs to be some balance between the observability and reachability.
A right measure is the observability and reachability gramians, which represent the
energy functions in the Lyapunov stability criteria, leading to balanced realizations.

Suppose that (A,B,C,D) is a balanced realization with A stable. Then

Σ = A∗ΣA+C∗C, Σ = AΣA∗+BB∗, (4.21)

where Σ is both the observability and reachability gramian, given by

Σ = diag(σ1,σ2, . . . ,σn), σ1 ≥ σ2 ≥ ·· · ≥ σn (4.22)

with n the order of (A,B,C,D). Assume that there is a large gap between σr and
σr+1 with 1≤ r < n, i.e., σr�σr+1. Then Σ can be partitioned into Σ = diag(Σ1,Σ2)
with Σ1 containing the first r significant Hankel singular values and Σ2 containing
the less significant or tail of the n Hankel singular values. Partition the realization
compatibly as

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, (4.23)

where (A11,B1,C1,D) has order r, and is called balance truncated model. It follows
that the state vector can be partitioned conformally as

x(t) =
[

x∗1(t) x∗2(t)
]∗

with x2(t) much less observable and reachable as compared with x1(t) which
has size r. Kalman decomposition suggests that (A11,B1,C1,D) should be a good
approximation to (A,B,C,D). This is indeed true. The following result provides an
a priori error bound in H∞ norm for the balance truncated model.

Theorem 4.3. Let (A,B,C,D) be a balanced realization of order n for H(z),
satisfying (4.21) and partitioned as in (4.23). Suppose that σr > σr+1 with Σ as
given in (4.22). Then the balance truncated model (A11,B1,C1,D) of order r is
internally stable, and there holds error bound

∥
∥
∥H− Ĥ

∥
∥
∥
∞
≤ 2

n

∑
i=r+1

σi, (4.24)

where Ĥ(z) = D+C1(zIr −A11)
−1B1.

Proof. It is noted that the Lyapunov equations in (4.22) can be written into the
following two inequalities:

(i) A∗ΣA+C∗C ≤ Σ , (ii) AΣA∗+BB∗ ≤ Σ , (4.25)
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where X ≤ Y stands for Y −X ≥ 0, i.e., positive semidefinite. By the partitions in
(4.23) and Σ = diag(Σ1,Σ2),

A∗
11Σ1A11 +A∗

21Σ2A21 −Σ1 ≤C∗
1C1. (4.26)

Let λ be an eigenvalue of A11 with eigenvector v̂. Multiplying the above inequality
by v̂∗ from left and v̂ from right yields

(|λ |2 − 1
)
(v̂∗Σ1v̂)+ v̂∗A∗

21Σ2A21v̂ ≤−‖C1v̂‖2 .

Since Σ > 0, |λ | ≤ 1 is true. Moreover, if |λ |= 1, then

A21v̂ = 0, C1v̂ = 0

by Σ2 > 0, which implies that λ is also an eigenvalue of A by

A

[
v̂
0

]
=

[
A11v̂
A21v̂

]
= λ

[
v̂
0

]
.

Because A is a stability matrix, λ with |λ | = 1 cannot be an eigenvalue of A11 that
concludes stability of A11. Define

Ã(z) = A22 +A21(zIr −A11)
−1A21,

B̃(z) = B2 +A21(zIr −A11)
−1B1, (4.27)

C̃(z) = C2 +C1(zIr −A11)
−1A21.

It is left as an exercise (Problem 4.3) to show that

H(z)− Ĥ(z) =: E(z) = C̃(z)
[
zIr − Ã(z)

]−1
B̃(z), (4.28)

B̃
(
e jω) B̃

(
e jω)∗ ≤ Φ

(
e jω)Σ2e− jω + e jωΣ2Φ

(
e jω)∗ , (4.29)

C̃
(
e jω)∗ C̃

(
e jω) ≤ Φ

(
e jω)∗Σ2e jω + e− jωΣ2Φ

(
e jω), (4.30)

for each ω where Φ(z) =
[
zIn−r − Ã(z)

]
. To prove the error bound (4.24), assume

first that Σ2 = σ In−r. Then multiplying (4.29) by C̃
(
e jω)[Φ

(
e jω)]−1

from left and

by
(

C̃
(
e jω)[Φ

(
e jω)]−1

)∗
from right leads to

E
(
e jω)E

(
e jω)∗ ≤ σC̃

(
e jω)

(
e− jω

[
Φ
(
e jω)∗

]−1
+ e jω [Φ

(
e jω)]−1

)
C̃
(
e jω)∗ .

Therefore, at each frequency ω ,

∥
∥E
(
e jω)∥∥2 ≤ 2σ

∥
∥
∥C̃
(
e jω)[e jω In−r − Ã

(
e jω)]−1

C̃
(
e jω)∗

∥
∥
∥ .
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Denote Π
(
e jω)= C̃

(
e jω)[Φ

(
e jω)]−1

C̃
(
e jω)∗. Then

∥
∥E
(
e jω)∥∥=

√
2σ ‖Π (e jω)‖ (4.31)

at each frequency ω . Now multiplying (4.30) by
[
Φ
(
e jω)]−1

C̃
(
e jω)∗ from right

and by
([
Φ
(
e jω)]−1

C̃
(
e jω)∗

)∗
from left leads to

Π
(
e jω)∗Π

(
e jω)≤ σ

[
e jωΠ

(
e jω)+ e− jωΠ

(
e jω)∗

]
.

The above is equivalent to

[
Π
(
e jω)−σe jωIn−r

]∗ [Π
(
e jω)−σe jωIn−r

]≤ σ2In−r.

That is,
∥
∥Π
(
e jω)−σe jω In−r

∥
∥ ≤ σ from which

∥
∥Π
(
e jω)∥∥ ≤ 2σ follows. Com-

bined with (4.31) yields
∥
∥E
(
e jω)∥∥ ≤ 2σ for all ω . The error bound (4.24) is thus

true for the case Σ2 = σ In−r. Note that the balance truncated model satisfies the
same inequalities as in (4.25):

A∗
11Σ1A11 +C∗

1C1 ≤ Σ1, A11Σ1A∗
11 +B1B∗

1 ≤ Σ1

by (4.26) and its dual inequality. Hence, if Σ2 �= σ In−r and Hankel singular values
are all distinct, then balanced truncation can be applied repeatedly to each individual
Hankel singular value from σn to σr+1. Because each balance truncated model
satisfies the same inequalities as in (4.25), the truncation error is 2σn−i+1 at the ith
truncation stage with i = 1, . . . ,n− r. The error bound (4.24) is thus proven, which
can be improved if there are repeated Hankel singular values. See Problem 4.4 in
Exercises. ��

The error bound in H∞ norm is a pleasant surprise. It will be shown later
that optimal Hankel-norm approximation admits a better error bound but involves
higher computational complexity. The next result follows from the proof of The-
orem 4.3 that will be useful in the next subsection. Its proof is left as an exercise
(Problem 4.5).

Corollary 4.1. Suppose that A11 is a stability matrix. Let Ã(z), B̃(z), C̃(z) be defined

in (4.27), and T̃(z) = C̃(z)
[
zI− Ã(z)

]−1
B̃(z). If

B̃(z)B̃(z)∗ ≤ z−1 [zI− Ã(z)
]
U2 + zU2

[
zI − Ã(z)

]∗
,

C̃(z)∗C̃(z) ≤ z
[
zI − Ã(z)

]∗
V2 + z−1V2

[
zI− Ã(z)

]
,

for each z on the unit circle and U2V2 = σ2I with σ > 0, then
∥
∥T̃
∥
∥
∞ ≤ 2σ .
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Fig. 4.1 Maximum error frequency response plots

Example 4.4. Consider the same transfer matrix as in Example 4.2. A similarity
transformation matrix can be computed to yield a balanced realization for H(z)
so that

Σ = diag(5.5386,3.8150,1.3345,1.0299,0.0176) (4.32)

is both the observability and reachability gramians. The maximum singular values
of the error frequency responses are plotted in the following figure for approx-
imation with the second-order (upper solid curve), third-order (middle dot–dash
curve), and fourth-order (lower dashed curve) models based on balanced truncation
(see Fig. 4.1).

It is seen that the error bound in Theorem 4.3 holds. In fact, the error bound is
quite conservative for small r.

A SISO plant is considered in the next example.

Example 4.5. The transfer function in consideration is given by

H(z) =
1

z− 0.9

(
1+ 0.8z
z+ 0.8

)6

consisting of one subsystem having the pole at 0.9 and the subsystem with Blaschke
product1 of order 6. It can be shown that all the Hankel singular values of the

1Blaschke product is a transfer function whose poles and zeros are in mirror pattern with respect
to the unit circle.
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Fig. 4.2 Frequency response error plot

Blaschke product are 1 (Problem 4.10 in Exercises), and thus, the order of H(z)
cannot be reduced without the additional pole at 0.9. However, with the pole at 0.9
included, its Hankel singular values are given by

5.5419, 0.8323, 0.5601, 0.5352, 0.5294, 0.5274, 0.5265.

Hence, except the first Hankel singular value σ1, all others are very close to each
other and are considerably smaller than σ1. The first- and second-order balanced
truncations provide pretty good approximation with maximum error roughly 10%
of the H∞-norm of H(z) that is 10. See the frequency response error plots in the
next figure with solid line for the first-order and dashed line for the second-order
approximations. It can be seen that the error bound is again very conservative. In
fact, the actual H∞-norm error is no more than 2σ7 (see Fig. 4.2).

4.2.2 Inverse Balanced Realization

Balanced truncation yields an additive representation of the plant given by

H(z) = Ĥ(z)+Δ(z), (4.33)
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where the additive error Δ(z) is stable and satisfies an H∞-norm bound as in
Theorem 4.3. For feedback control, it is sometimes more desirable to obtain reduced
order model with multiplicative or relation errors in form of

H(z) = Ĥ(z) [I +Δmul(z)], Ĥ(z) = H(z) [I +Δrel(z)] (4.34)

with Ĥ(z) the reduced order model and Δmul(z)/Δrel(z) stable error matrices having
small H∞ norm. In fact, the results in this subsection are indispensable for controller
reduction to be studied in Chap. 6.

Consider a square transfer matrix H(z) = D+C(zI −A)−1B with D nonsingular.
Assume that both A and A−BD−1C are stability matrices. It is easily shown that

H(z)−1 =

[
A−BD−1C BD−1

−D−1C D−1

]
.

The model reduction algorithm is to balance the observability gramian of H(z)−1

against the reachability gramian of H(z). Specifically, let W and Q be solutions to
the following two Lyapunov equations:

W =
(
A−BD−1C

)∗
W
(
A−BD−1C

)
+C∗R−1C, (4.35)

Q = AQA∗+BB∗, R = DD∗. (4.36)

Stability of A and A−BD−1C implies that W ≥ 0 and Q ≥ 0. If

W = Q = S := diag
(
s1Ii1 ,s2Ii2 , . . . ,sη Iiη

)
, (4.37)

with s1 > s2 > · · · > sη ≥ 0 and i1 + i2 + · · ·+ iη = n, then the realization of H(z)
is termed inverse balanced. Let i1 + i2 + · · ·+ iρ = r for some ρ < η . Partition the
realization {A,B,C} compatibly as in (4.23) that results in

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, (4.38)

where (A11,B1,C1,D) has order r yielding the reduced order model

Ĥ(z) = D+C1 (zIr −A11)
−1 B1.

Although same notations are used, the reduced order model is different from that
in the previous subsection due to the use of inverse balanced truncation (IBT).
A different error bound in H∞ norm holds.

Theorem 4.6. Consider square transfer matrix H(z) =D+C(zIn−A)−1B of which
det(D) �= 0. Assume that both A and A−BD−1C are stability matrices. Let Ĥ(z)
of order r < n be obtained through the IBT procedure where {sk} in (4.37) are
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all distinct. Then the relations in (4.34) hold for some stable Δmul(z) and Δrel(z)
satisfying

‖Δmul‖∞ ≤
η

∏
k=ρ+1

(
1+ 2sk

√
1+ s2

k + 2s2
k

)
− 1, (4.39)

‖Δrel‖∞ ≤
η

∏
k=ρ+1

(
1+ 2sk

√
1+ s2

k + 2s2
k

)
− 1. (4.40)

Proof. The proof is similar to that for Theorem 4.3 by first recognizing that the
Lyapunov functions associated with IBT can be written as

(
A−BD−1C

)∗
S
(
A−BD−1C

)
+C∗R−1C ≤ S, (4.41)

ASA∗+BB∗ ≤ S, (4.42)

where S in (4.37) is diagonal. Next, the error matrices Δmul(z) and Δrel(z) in (4.34)
can be rewritten as

Δmul = Ĥ−1
[
H− Ĥ

]
, Δrel = H−1

[
H− Ĥ

]
.

Recall (4.27) for C(zI −A)−1B which is now modified to

Ãm(z) = A22 +A21(zIr −A11)
−1A12 =

[
A11 A12

A21 A22

]
,

B̃m(z) = B2 +A21(zIr −A11)
−1B1 =

[
A11 B1

A21 B2

]
,

C̃m(z) = D−1 [C2 +C1(zIr −A11)
−1A12

]
= D−1

[
A11 A12

C1 C2

]
, (4.43)

for D−1H(z)− I = D−1C(zI −A)−1B. It follows from (4.28) that

D−1
[
H(z)− Ĥ(z)

]
= C̃m(z)

[
zIr − Ãm(z)

]−1
B̃m(z). (4.44)

The following transfer matrices

Ãr(z) =

[
A11 −B1D−1C1 A12 −B1D−1C2

A21 −B2D−1C1 A22 −B2D−1C2

]
,

B̃r(z) =

[
A11 −B1D−1C1 B1

A21 −B2D−1C1 B2

]
,

C̃r(z) =

[
A11 −B1D−1C1 A12 −B1D−1C2

D−1C1 D−1C2

]
, (4.45)
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are then defined based on I − H(z)−1D = D−1C
(
zI −A+BD−1C

)−1
B by

appropriate modification of (4.27). The expression in (4.28) can be adapted to
suite the error matrix E1(z) =

[
I −H(z)−1D

]− [I− Ĥ(z)−1D
]

to arrive at

E1(z) = Ĥ(z)−1D−H(z)−1D = C̃r(z)
[
zIr − Ãr(z)

]−1
B̃r(z). (4.46)

It is left as an exercise (Problem 4.7) to show that

(i) Ãr(z) = Ãm(z)− B̃m(z)C̃r(z),
(ii) B̃m(z) = B̃r(z)D−1Ĥ(z),
(iii) C̃r(z) = Ĥ(z)−1DC̃m(z).

(4.47)

Multiplying (4.44) by Ĥ(z)−1D from left yields

Δmul(z) = Ĥ(z)−1DC̃m(z)
[
zI − Ãm(z)

]−1
B̃m(z)

= C̃r(z)
[
zI− Ãm(z)

]−1
B̃m(z). (4.48)

by (iii) of (4.47). Since

Δrel(z) = H(z)−1
[
H(z)− Ĥ(z)

]

=
[
Ĥ(z)−1 −H(z)−1

]
Ĥ(z) = E1(z)D

−1Ĥ(z),

multiplying (4.46) by D−1Ĥ(z) from right and using (ii) of (4.47) yield

Δrel(z) = C̃r(z)
[
zIn−r − Ãr(z)

]−1
B̃r(z)D

−1Ĥ(z)

= C̃r(z)
[
zIn−r − Ãr(z)

]−1
B̃m(z). (4.49)

The Lyapunov inequalities in (4.41) and (4.42) lead to

B̃m
(
e jω) B̃m

(
e jω)∗ ≤ Φm

(
e jω)S2e− jω + e jωS2Φm

(
e jω)∗ , (4.50)

C̃r
(
e jω)∗ C̃r

(
e jω) ≤ Φr

(
e jω)∗ S2e jω + e− jωS2Φr

(
e jω), (4.51)

for each ω where Φm(z) =
[
zIn−r − Ãm(z)

]
and Φr(z) =

[
zIn−r − Ãr(z)

]
. The above

two inequalities are similar to (4.29) and (4.30), respectively. Suppose that S2 =
sη In−r. Substituting (i) of (4.47) into inequality (4.51) gives

s−1
η C̃∗

r C̃r ≤ z−1Φm + zΦ∗
m + z−1B̃mC̃r + zC̃∗

r B̃∗
m,
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where the argument e jω is suppressed and z = e jω . Applying the inequality from
Problem 4.8 in Exercises with U = z−1B̃m and V = C̃r leads to

s−1
η C̃∗

r C̃r ≤ z−1Φm + zΦ∗
m +α−1B̃mB̃∗

m +αC̃∗
r C̃r

≤ (1+ sηα−1)(z−1Φm + zΦ∗
m

)
+αC̃∗

r C̃r

in which (4.50) is used and α > 0. For αsη < 1, the above inequality implies

C̃∗
r C̃r ≤

(
1+ sηα−1

s−1
η −α

)
(
z−1Φm + zΦ∗

m

)
.

Recall that |z|= 1 is arbitrary. Together with (4.50) yields

‖Δmul‖∞ ≤ 2sη
√
(α+ sη)/[α(1−αsη)]

in light of Corollary 4.1 and S2 = sη I. Noting that the right-hand side is minimized

by α =
√

1− s2
η − sη that satisfies αsη < 1, there holds

‖Δmul‖∞ ≤ 2sη
(√

1+ s2
η + sη

)

that agrees with (4.39) in the special case ρ + 1 = η . To prove the multiplicative
error bound for the general case, denote

Δm(k) = Ĥ−1
k−1

(
Ĥk − Ĥk−1

)
, ρ+ 1 ≤ k ≤ η ,

where H = Ĥη . Then ‖Δm(k)‖∞ ≤ 2sk

(√
1+ s2

k + sk

)
and

Ĥk = Ĥk−1[I+Δm(k)]. (4.52)

Let Ĥρ = Ĥ. Repeated use of the above equation leads to

H = Ĥη = Ĥη−1[I +Δm(η)] = · · ·
= Ĥ[I+Δm(ρ+ 1)] · · · [I +Δm(η)].

Since Δmul = Ĥ−1H− I, there holds

Δmul = [I+Δm(ρ+ 1)] · · · [I+Δm(η)]− I. (4.53)
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Fig. 4.3 Maximum error frequency response plots

Applying the inequality in Problem 4.11 in Exercises yields

‖Δmul‖∞ ≤
η

∏
i=ρ+1

(
1+ 2sk

√
1+ s2

k + 2s2
k

)
− 1

that completes the proof for (4.39). The proof for the relative error bound in (4.40)
is similar and is left as an exercise (Problem 4.12). ��

Example 4.7. Consider H(z) = C(zI −A)−1B with (A,B,C) given in Example 4.2.
Since inverse balanced realization requires proper inverse, this example examines

H̃(z) = zH(z) =

[
A B

CA CB

]
, CB =

[
1 1

−1 1

]
,

for IBT. Clearly, det(CB) �= 0. By applying the IBT algorithm to the above H̃(z), the
reduced plant with order 3 is obtained. The following figure shows the maximum
singular value plots for both the relative (solid line) and multiplicative (dashed line)
errors in frequency domain (see Fig. 4.3).

It is seen that the model reduction error based on IBT does not exceed 11.35% in
the case of r = 3. The IB singular values are given by

S = diag(3.3882,2.6863,0.3614,0.1041,0.0150).

The error bound in the case of r = 3 is 0.2686 that is considerably greater than the
actual error. On the other hand, if r = 2 is taken, then the error bound is 1.5752
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exceeding 1, even though the actual error is 54.51%, which is not plotted. So the
error bound is conservative again, but it does provide some indication on the true
error.

Although square plants are assumed, the IBT procedure is actually applicable to
nonsquare transfer matrix G(z) = D+C(zIn −A)−1B, provided that it does not have
transmission zeros on and outside the unit circle, including at ∞. Without loss of
generality assume that G(z) is wide or its dimension is p×m with p < m. Then
D has full row rank and there exists a right inverse D+ and a matrix D⊥ of size
(m− p)×m such that [

D
D⊥

]
[

D+ D+
⊥
]
= Im. (4.54)

It is left as an exercise to show that (Problem 4.14) G(z) is strictly minimum phase,
if and only if {A−BD+C,BD⊥} is stabilizable. Hence, there exists a stabilizing
state-feedback gain F such that

AF = A−BD+C+BD⊥F = A+BCF (4.55)

is a stability matrix with CF = D⊥F −D+C. Rewrite

G(z) = D

[
A B

−CF I

]
=⇒ G(z)+ =

[
AF B
CF I

]
D+. (4.56)

The IBT balances the reachability gramian against the observability gramian of
G(z)+ which are given respectively by

Q = AQA∗+BB∗, P = A∗
F PAF +C∗

FCF .

The following result is true.

Corollary 4.2. Consider G(z) =D+C(zIn−A)−1B of size p×m with p<m and D
full row rank. Suppose that both A and AF in (4.55) are stability matrices for some
F. Then G(z)+ in (4.56) is a stable right inverse of G(z). If realizations of G(z) and
G(z)+ are inverse balanced or

P = Q = S := diag(s1Ii1 ,s2Ii2 , . . . ,sη Iiη ),

with s1 > s2 > · · ·> sη ≥ 0 and i1 + i2 + · · ·+ iη = n, and Ĝ(z) is obtained through
direct truncation of the states associated with {sk}ηk=ρ+1, then

G(z) = Ĝ(z)[I +Δmul(z)], Ĝ(z) = G(z)[I +Δrel(z)] (4.57)

hold true for some stable Δmul(z) and Δrel(z), satisfying the error bounds in (4.39)
and (4.40), respectively.
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Proof. By CF = D⊥F −D+C, D⊥ in (4.54), and G(z) in (4.56),

H(z) =

[
G(z)

G⊥(z)

]
:=

[
D

D⊥

]
[
I−CF(zI −A)−1B

]

is square. Its inverse is given by

H(z)−1 =
[
I +CF(zI −AF)

−1B
][

D+ D+
⊥
]

that is also stable. More importantly, inverse balanced realization for G(z) and
G(z)+ implies that of H(z) and H(z)+ as well. An application of Theorem 4.6 leads
to the existence of Δmul(z) and Δrel(z) such that

H(z) = Ĥ(z)[I +Δmul(z)], Ĥ(z) = H(z)[I +Δrel(z)]

from which (4.57) follows, and the error bounds in (4.39) and (4.40) hold. ��
The error bounds clearly depend on P and thus the stabilizing gain F . Using the

procedure in proof of Lemma 4.1, it can be shown that

∥∥G+
∥∥2

2 = Tr
{(

D+
)∗
(I+B∗PB)D+

}
.

See also Problem 4.1 in Exercises. Hence, minimization of the error bound is hinged
to find a stable right inverse of G(z) with the minimum H2 norm. This problem
will be studied in Chap. 7 in connection with the precoder design for wireless
transceivers.

4.3 Optimal Hankel-Norm Approximation

Model reduction based on optimal Hankel-norm approximation is much more
involved than that based on balanced realizations. Recall that the rank of the Hankel-
matrix HH in (4.11) is equals to the McMillan degree of H(z), the stable and
strictly causal part of the underlying plant model P(z) in (4.1). Optimal Hankel-
norm approximation seeks a lower rank Hankel-matrix ĤH such that ‖H− Ĥ‖H =

σ(HH − ĤH ) is minimized.
For an arbitrary matrix without structural constraint, the optimal approximation

is easy to compute via an SVD procedure. Specifically, consider matrix M of size
n×m with rank q. Let M = UΣV ∗ be its SVD where U has dimension n× q, V
dimension m× q, given by

U =
[

u1 u2 · · · uq
]
, V =

[
v1 v2 · · · vq

]
,
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respectively, and Σ = diag(σ1,σ2, . . . ,σq). Then

M̂ =
[

u1 · · · ur
]

diag(σ1, . . . ,σr)
[

v1 · · · vr
]∗

with r < q is the optimal approximation to M in the sense that

σ
(

M− M̂
)
= min

rank{Mr}=r
σ (M−Mr) = σr+1. (4.58)

The proof is left as an exercise (Problem 4.17). However, if such an SVD procedure
is applied to the Hankel-matrix HH , the resultant ĤH may not admit Hankel struc-
ture and thus results in no reduced order transfer matrix Ĥ(z). It turns out that the
SVD procedure is not applicable directly, and optimal Hankel-norm approximation
needs to be developed in operator’s framework. By allowing unstable components
in Ĥ(z), optimal Hankel-norm approximation admits “allpass” characterization.
More specifically, for optimal Hankel-norm approximation of rth order, Ĥ(z) =
Ĥs(z) + Ĥas(z) can be employed where Ĥs(z) is stable and has McMillan degree
r, and Ĥas(z) is antistable, i.e., it has all its poles strictly outside the unit circle.
Since the Hankel matrix depends only on the strictly causal part of the impulse
response, the Hankel matrix associated with Ĥ(z) indeed has rank r, independent
of Ĥas(z). The key is to come up with Ĥs(z) and Ĥas(z) such that H(z)− Ĥ(z) is
“allpass” with constant amplitude. It will be shown that a similar procedure to SVD
can be developed. More importantly, an H∞-norm error bound exists for optimal
Hankel-norm approximation that beats the error bound for balanced truncation by a
factor of two.

4.3.1 Optimal Model Reduction

Let σi be the ith singular value of the Hankel matrix HH arranged in descending
order: σ1 ≥ σ2 ≥ ·· · ≥ σn. Let ui and vi be the left and right singular vectors of HH

corresponding to σi. Then for positive integer k = r+ 1 < n,

HH uk = σkvk H ∗
H

vk = σkuk, (4.59)

where uk = vec
([

uk(−1) uk(−2) · · · uk(−t) · · · ]) corresponds to the past input

and vk = vec
([

vk(0) vk(1) · · · vk(t) · · ·
])

corresponds to the present and future
output. Recall that vec(·) stacks all its columns into a single vector sequentially.
Then Y(z) = σkVk(z) and X(z) = Uk(z) satisfy the Hankel operator equation

Y(z) = ΓHX(z) :=Π+[H(z)X(z)] (4.60)
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with ΓH the Hankel operator associated with H(z), and

Uk(z) =
∞

∑
t=1

uk(−t)zt , Vk(z) =
∞

∑
t=0

vk(t)z
−t (4.61)

as Z transforms of the input and output, respectively.
Suppose that σr+1 has multiplicity ρ > 1. Then σr+1 = · · ·= σr+ρ . Each σi with

its associated Schmidt pair (ui,vi) satisfies (4.59) for k ≤ i < k + ρ − 1. Recall
k = r+ 1. There thus holds

ΓH

[
Ur+1 Ur+2 · · · Ur+ρ

]
= σk

[
Vr+1 Vr+2 · · · Vr+ρ

]

by the equivalence of (4.60) and (4.59). The remarkable result in optimal Hankel-
norm approximation is the following identity:

(
H− Ĥ

)[
Ur+1 · · · Ur+ρ

]
= σk

[
Vr+1 · · · Vr+ρ

]
, (4.62)

where Ĥ(z) has exactly r poles strictly inside the unit circle plus those outside the
unit circle. Since HUi = Π+[HUi]+Π−[HUi] for r+ 1 ≤ i ≤ r+ρ , the identity in
(4.62) yields

Π+

[
ĤUi

]
= 0, ĤUi =Π−

[
ĤUi

]
=Π− [HUi],

for the same range of index i. Althoughσi and its corresponding Schmidt pair (ui,vi)
involve SVD for HH of infinite size, they can all be obtained through computations
of finite size matrices.

Consider again H(z) =C(zIn −A)−1B with A a stability matrix. Let O∞ and R∞
be the corresponding observability and reachability matrices. Then

P = O∗
∞O∞, Q = R∞R∗

∞

are bounded, and satisfy the Lyapunov equations

(i) P−A∗PA =C∗C, (ii) Q−AQA∗ = BB∗, (4.63)

respectively. Denote λi(·) as the ith eigenvalue. Then HH = O∞R∞ implies

σi =
√
λi(QP) =

√
λi(PQ).

Let νi ∈ IRn be the eigenvector of QP corresponding to σi:

QPνi = σ2
i νi. (4.64)
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Define μi = σ−1
i Pνi. Then for 1 ≤ i ≤ n,

Qμi = σiνi, Pνi = σiμi, (4.65)

by (4.64). Hence, a dual equation to (4.64)

PQμi = σ2
i μi (4.66)

holds. Multiplying (4.66) by R∗
∞ from left yields

R∗
∞PQμi = H ∗

H
HH (R∗

∞μi) = σ2
i (R

∗
∞μi) .

The above yields the following expression for the input vector:

ui =

⎡

⎢
⎣

ui(−1)
ui(−2)

...

⎤

⎥
⎦= R∗

∞μi =

⎡

⎢
⎣

B∗μi

(AB)∗μi
...

⎤

⎥
⎦.

Similarly, by
O∞PQνi = HH H ∗

H
(O∞νi) = σ2

i (O∞νi),

the output vector has the following expression:

vi =

⎡

⎢
⎣

vi(0)
vi(1)

...

⎤

⎥
⎦= O∞νi =

⎡

⎢
⎣

Cνi

CAνi
...

⎤

⎥
⎦.

It follows that for r+ 1 ≤ i ≤ r+ρ , there hold

Ui(z) =
∞

∑
t=1

B∗(A∗)t−1ztμi = B∗ (z−1I−A∗)−1μi,

Vi(z) =
∞

∑
t=0

CA∗z−tνi = zC(zI −A)−1νi.

Denote Ũ =
[
μr+1 · · · μr+ρ

]
and Ṽ =

[
νr+1 · · · νr+ρ

]
. Then

PṼ = Ũσk, QŨ = Ṽσk. (4.67)

The optimal Hankel-norm approximation in (4.62) satisfies
[
H(z)− Ĥ(z)

]
X̃(z) = σkỸ(z), (4.68)

where X̃(z) = B∗ (z−1I −A∗)−1
Ũ , and Ỹ(z) = zC(zI −A)−1Ṽ .
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Lemma 4.2. For H(z) = C(zI − A)−1B of size p ×m, its rth or (k − 1)st order
optimal Hankel-norm approximation Ĥ(z) satisfies

Ĥ(z)B∗ (z−1I −A∗)−1
Ũ =CQA∗ (z−1I−A∗)−1

Ũ . (4.69)

If the kth Hankel singular value σk has multiplicity ρ ≥ m and p = m, then
the optimal error function Δ(z) = H(z)− Ĥ(z) is “allpass” in the sense that
Δ(z)∗Δ(z) = σ2

k Im ∀|z|= 1.

Proof. Denote G(z) = H(z)B∗ (z−1I −A∗)−1
Ũ . The equality (4.68) can be rewrit-

ten as
Ĥ(z)B∗ (z−1I −A∗)−1

Ũ = G(z)−σkzC(zI −A)−1Ṽ . (4.70)

A dual form to (4.17) in the proof of Lemma 4.1 is given by

(zI −A)Q
(
z−1I −A∗)= BB∗ −AQ

(
z−1I −A∗)− (zI−A)QA∗.

in light of (i) in (4.63). The above can be rewritten as

BB∗ = (zI −A)Q
(
z−1I −A∗)+AQ

(
z−1I −A∗)+(zI−A)QA∗ (4.71)

Recall the expression of G(z). Multiplying (4.71) from left by C(zI−A)−1 and from

right by
(
z−1I −A∗)−1

Ũ yields

G(z) = C(zI −A)−1BB∗ (z−1I −A∗)−1
Ũ

= C
[
I +(zI−A)−1A

]
QŨ +CQA∗(z−1I −A∗)−1

Ũ

= σkzC(zI −A)−1Ṽ +CQA∗ (z−1I −A∗)−1
Ũ , (4.72)

where QŨ = σkṼ is used. Substituting the above into (4.70) gives

Ĥ(z)B∗ (z−1I−A∗)−1
Ũ =CQA∗ (z−1I −A∗)−1

Ũ

that is the same as (4.69). In other words, the optimal Hankel-norm approximation
Ĥ(z) has to satisfy (4.69). Let

Ψx(z) = X̃∗ (z−1) X̃(z) = Ũ∗(zI −A)−1BB∗ (z−1I−A∗)−1
Ũ .

Then a similar derivation to (4.71) and (4.72) also gives

Ψx(z) = Ũ∗QŨ +Ũ∗A(zI−A)−1QŨ +Ũ∗Q
(
z−1I −A∗)−1

A∗Ũ . (4.73)



4.3 Optimal Hankel-Norm Approximation 151

LetΨy(z) = Ỹ∗ (z−1
)

Ỹ(z) = Ṽ ∗ (z−1I −A∗)−1
C∗C(zI −A)−1Ṽ . Then (ii) of (4.63)

gives the rise of the dual equation to (4.73):

Ψy(z) = Ṽ ∗PṼ + Ṽ ∗A∗ (z−1I−A∗)−1
PṼ + Ṽ ∗P(zI −A)−1 AṼ . (4.74)

By (4.67), Ṽ ∗PṼ = σkṼ ∗Ũ and Ũ∗QŨ = σkŨ∗Ṽ . Thus, both Ṽ ∗Ũ and Ũ∗Ṽ are
hermitian. Consequently,

Ṽ ∗PṼ = σkṼ
∗Ũ =

(
σkṼ

∗Ũ
)∗

= σkŨ
∗Ṽ = Ũ∗QŨ .

Hence, the constant term of (4.73) is the same as the one in (4.74). Furthermore, the
strictly causal term in (4.73) is, by using (4.67) again,

Ũ∗A
(
z−1I−A

)−1
QŨ = σkŨ

∗A(zI−A)−1Ṽ = Ṽ ∗P(zI−A)−1AṼ

which is the same as the strictly causal term in (4.74). It follows thatΨx(z) =Ψy(z)
for all z. Hence, with Δ(z) = Ĥ(z)−H(z) andΨδ (z) = Δ∗ (z−1

)
Δ(z), (4.68) can be

manipulated to yield

X̃∗ (z−1)Ψδ (z)X̃(z) = σ2
k Ỹ∗ (z−1) Ỹ(z) = σ2

k X̃∗ (z−1)X̃(z)

in light ofΨx(z) =Ψy(z). It follows that

X̃∗ (z−1)[σ2
k Im −Ψδ(z)

]
X̃(z) = 0.

For the case ρ ≥ m, it can be concluded thatΨδ (z) = σ2
k Im ∀|z|= 1. ��

The result in Lemma 4.2 indicates the allpass feature of the optimal Hankel-norm
approximation in the case of ρ ≥ m and p = m. It will be shown later that

Ĥ(z) = Ĥs(z)+ Ĥas(z),

where Ĥrms(z) is stable and has the McMillan degree r and Ĥas(z) is antistable.
However, (4.69) may have more than one solution in general. In fact, the optimal
Hankel-norm problem has more than one optimal solution if m > 1. Our goal in
this subsection aims to derive a particular optimal Hankel-norm approximation as a
solution to (4.69) for the case p = m = ρ .

An Optimal Solution

Several assumptions will be made in order to numerically compute the optimal
Hankel-norm approximation. The first two are:
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• A1: The realization (A,B,C) of H(z) is minimal, and balanced in the sense that
with P and Q the unique solutions to (i) and (ii) of (4.63), respectively, P =
diag(Σ2,σkIρ) and Q= diag(Σ1,σkIρ) where Σ1 and Σ2 are diagonal and positive.

• A2: m = p = ρ and det

([
A11 B1

A21 B2

])
�= 0.

Clearly, A1 can be made true and thus has no loss of generality. The nonsingular
assumption in A2 holds generically, if m = p = ρ is true. However, m = p = ρ in
A2 does not hold in general. An extension theorem will be introduced in the late
part of the subsection to address this issue.

Under A1, the two Lyapunov equations in (4.63) can be decomposed into:

Σ1 −A11Σ1A∗
11 −σkA12A∗

12 = B1B∗
1, (4.75)

−A11Σ1A∗
21 −σkA12A∗

22 = B1B∗
2, (4.76)

σkIp −A21Σ1A∗
21 −σkA22A∗

22 = B2B∗
2, (4.77)

Σ2 −A∗
11Σ2A11 −σkA∗

21A21 = C∗
1C1, (4.78)

σkIp −A∗
12Σ2A12 −σkA∗

22A22 = C∗
2C2 (4.79)

−A∗
11Σ2A12 −σkA∗

21A22 = C∗
1C2, (4.80)

where Ai j, Bi, and Ci for i, j = 1,2 are partitions of A,B, and C, such that they are
compatible with partitions of P and Q. In addition, Ũ = Ṽ =

[
0 Ip
]∗

. Thus, with

G1(z) =
[
(zIp −A∗

22)−A∗
12 (zIn−p −A∗

11)
−1 A∗

21

]−1
,

(
z−1In −A∗)−1

Ũ =

[
z−1In−p −A∗

11 −A∗
21

−A∗
12 zIp −A∗

22

]−1 [
0
Ir

]

=

[(
z−1In−p −A∗

11

)−1
A∗

21
Ip

]

G1(z)

holds. As a result, (4.69) in Lemma 4.2 is equivalent to

Ĥ(z)
[
B∗

2 +B∗
1

(
z−1I −A∗

11

)−1
A∗

21

]
=Ω2 +Ω1

(
z−1I −A∗

11

)−1
A∗

21, (4.81)

where
[
Ω1 Ω2

]
=CQA∗ given by

Ω1 =C1Σ1A∗
11 +σkC2A∗

12, Ω2 =C1Σ1A∗
21 +σkC2A∗

22. (4.82)

Lemma 4.3. Let
(
Â, B̂,Ĉ, D̂

)
be a minimal realization for Ĥ(z) that is the op-

timal Hankel-norm approximation to H(z) = C(zI − A)−1B. Under the Assump-
tion A1–A2, there exist a nonsingular solution W to

W = ÂWA∗
11 + B̂B∗

1. (4.83)
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Proof. The equality (4.81) can be rewritten as

Ĥ(z)B∗
1

(
z−1I −A∗

11

)−1
A∗

21 =Ω2 − Ĥ(z)B∗
2 +Ω1

(
z−1I −A∗

11

)−1
A∗

21.

The left-hand side involves poles of Ĥ(z) (which are eigenvalues of Â) and poles of

B∗
1

(
z−1I−A∗

11

)−1
A∗

21 (which are eigenvalues of (A∗
11)

−1) in light of the hypothesis
on minimal realizations. These two sets of poles are decomposed into the summation
form as shown on the right-hand side, implying that (4.83) has a solution W . It
follows that the next equality

B̂B∗
1 =
(
zI − Â

)
W
(
z−1I −A∗

11

)
+ ÂW

(
z−1I−A∗

11

)
+
(
zI − Â

)
WA∗

11 (4.84)

holds that can be derived in a similar way to that in (4.71). Multiplying (4.84) by

Ĉ
(
zI − Â

)−1
from left and by

(
z−1I−A∗

11

)−1
A∗

21 from right yields

Ĥ(z)B∗
1

(
z−1I−A∗

11

)−1
A∗

21 = ĈWA∗
21 + Ĉ

(
zI − Â

)−1
ÂWA∗

21

+ ĈWA∗
11

(
z−1I−A∗

11

)−1
A∗

21,

if D̂ = 0. Otherwise, the above can be modified to yield

Ttmp(z) := Ĥ(z)
[
B∗

2 +B∗
1(z

−1In−r −A∗
11)

−1A∗
21

]

= ĈWA∗
21 + D̂B∗

2 + Ĉ
(
zI − Â

)−1 (
ÂWA∗

21 + B̂B∗
2

)

+
(
ĈWA∗

11 + D̂B∗
1

)(
z−1I −A∗

11

)−1
A∗

21

= Ω2 +Ω1
(
z−1In−r −A∗

11

)−1
A∗

21

in light of (4.81). Therefore, there hold

ÂWA∗
21 + B̂B∗

2 = 0,

ĈWA∗
11 + D̂B∗

1 = Ω1,

ĈWA∗
21 + D̂B∗

2 = Ω2.

In conjunction with W = ÂWA∗
11 + B̂B∗

1 leads to

[
ÂW B̂
ĈW D̂

][
A11 B1

A21 B2

]∗
=

[
W 0
Ω1 Ω2

]
. (4.85)
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Assume on the contrary that W is singular. Then there exists a nonzero row vector
q such that qW = 0. Multiplying the augmented vector

[
q 0
]

to the equality (4.85)
from left yields

q
[

ÂW B̂
]
[

A11 B1

A21 B2

]∗
= 0.

The nonsingular assumption in A2 implies that

qÂW = 0, qB̂ = 0 =⇒ q1W = 0

by taking q1 = qÂ. Applying the same process with q replaced by q1 yields

q1ÂW = 0, q1B̂ = qÂB̂ = 0 =⇒ q2W = 0

by taking q2 = q1Â = qÂ2. By induction, qÂiB̂ = 0 holds for i = 1,2, . . ., leading to
nonreachability of (Â, B̂) that contradicts to the hypothesis on minimal realization
for Ĥ(z). The lemma is thus true. ��

By the proof of Lemma 4.3, diag
(
W−1, I

)
can be multiplied from left to

both sides of (4.85). Because
{

W−1ÂW,W−1B̂,ĈW, D̂
}

is also a realization of

Ĥ(z), W = I can be assumed that has no loss of generality, yielding the new equality:

[
Â B̂
Ĉ D̂

][
A11 B1

A21 B2

]∗
=

[
I 0
Ω1 Ω2

]
. (4.86)

Hence, a realization of the optimal Hankel-norm approximation Ĥ(z) satisfies (4.86)
under Assumptions A1 and A2, and can be easily computed by inverting the second
square matrix on left. The following illustrates the use of the optimal Hankel-norm
approximation in model reduction.

Example 4.8. Recall the transfer function in Example 4.5:

H(z) =
1

z− 0.9

(
1+ 0.8z
z+ 0.8

)6

.

This is a SISO model, and its minimal realization can be easily obtained. Assump-
tions A1 and A2 can thus be made true by noticing that p = m = ρ = 1 and
by the fact that all the Hankel singular values of H(z) are different. A minimal
realization of the optimal Hankel-norm approximation Ĥ(z) can be computed based
on the relation derived in (4.86). For each positive integer r smaller than 6, allpass

frequency responses are observed for
∣
∣
∣H
(
e jω)− Ĥ

(
e jω)

∣
∣
∣ with magnitude equal to

σk = σr+1.
It is noted that for 1 < r < 6, the Hankel-norm approximation Ĥ(z) has (n−ρ)

poles with exactly r stable poles and (n−ρ− r) unstable poles where ρ = 1. This
fact will be proven later. The extraction of the stable part of Ĥ(z) can be carried out
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in two steps. The first step uses Schur decomposition of Â. The Matlab command
“[UT ,AT ] = schur

(
Â
)
” can be used to obtain Â = UT ATU∗

T with AT upper triangle
and UA unitary. Unfortunately, the eigenvalues of AT are not ordered. Thus, Matlab
command “[UTD ,ATD ] = ordschur(UT ,AT ,“udi”)” needs to be used to obtain the
upper triangular ATD in the following ordered form:

ATD =

[
As Ax

0 Aas

]
,

where As and A−1
as are both stability matrices. The keyword “udi” stands for “interior

of unit disk” and specifies the ordering of the matrix ATD with respect to the unit
circle. There holds A =UTD ATDU∗

TD
. In the second step, the solution to the following

Sylvester equation

−AsZ +ZAx +Aas = 0

needs to be computed with the Matlab command “Z = lyap(−As,Aas,Ax).” It is left
as an exercise (Problem 4.16) to show that

S =

[
Ir Z
0 In−k

]
U∗

TD

is the required similarity transform to decompose Ĥ(z) = Ĥs(z)+ Ĥas(z) with Ĥs(z)
the stable and strictly causal part, and Ĥas(z) the anti-causal part of Ĥ(z). The next
figure shows the magnitude response of H(z)− Ĥs(z):

The solid line shows the error response based on the first-order approxima-
tion, while the dashed line shows the error response based on the second-order
approximation. Both are smaller than their respective counterpart based on balanced
truncation in Example 4.5. In fact there exits an error bound for the optimal Hankel-
norm approximation which is only half of that for balanced truncation (see Fig. 4.4).

To facilitate the derivation of the error bound associated with the optimal Hankel-
norm approximation, the last Assumption A3: det(B2) �= 0 is made temporarily. This
assumption implies A2 and has no loss of generality. If A3 fails, B2ε = B2 +εIp can
be used by taking ε > 0 a small value such that det(B2ε) �= 0. After the error bound
is proven, ε → 0 can be taken.

Under Assumption A3, the equation

[
A∗

21
C2A∗

22

]
=

[
Θ
Φ

]
B∗

2 (4.87)

has unique solutions (Θ ,Φ). It follows that

Ω2 =C1Σ1A∗
21 +σkC2A∗

22 = (C1Σ1Θ +σkΦ)B∗
2
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by (4.82). Multiplying (4.86) by
[

I 0
]∗

from right leads to

[
Â B̂
Ĉ D̂

][
A∗

21
B∗

2

]
=

[
ÂΘ + B̂
ĈΘ + D̂

]
B∗

2 =

[
0

C1Σ1Θ +σkΦ

]
B∗

2

which holds, if ÂΘ + B̂ = 0 and ĈΘ + D̂ =C1Σ1Θ +σΦ . The former gives

B̂ =−ÂΘ =⇒ Â(A∗
11 −ΘB∗

1) = I (4.88)

by substituting B̂ =−ÂΘ into ÂA∗
11 + B̂B1 = I. The latter yields

D̂ =C1Σ1Θ +σkΦ− ĈΘ . (4.89)

Substituting the above into ĈA∗
11 + D̂B∗

1 =Ω1 gives

Ĉ (A∗
11 −ΘB∗

1) =Ω1 − (C1Σ1Θ +σkΦ)B∗
1.

In light of (4.88) and the expression of Ω1 in (4.82), Ĉ can be solved as

Ĉ =C1Σ1 +σk (C2A∗
12 −ΦB∗

1) Â. (4.90)
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Substituting the expression of Ĉ into (4.89) and using the relation ÂΘ =−B̂ yield

D̂ = σkΦ+σk (C2A∗
12 −ΦB∗

1) B̂. (4.91)

Thus, under Assumption A3, the state-space realization of Ĥ(z) has more appealing
expressions in (4.88), (4.90), and (4.91).

Characterization of Allpass

The next two lemmas will be useful.

Lemma 4.4. Let Q be a solution to Q−AQA∗ = BB∗. (a) If (A,B) is reachable,
then A has no eigenvalues on the unit circle. (b) If A has no eigenvalues on the unit
circle, and Q is nonsingular, then (A,B) is reachable.

Proof. If A has an eigenvalue e jω for some real valued ω with eigenvector v, then
multiplying v from right, and v∗ from left to Q−AQA∗ = BB∗ yields

(
1−|λ |2)v∗Qv = ‖Bv‖2. (4.92)

Since λ = e jω , Bv = 0 implying that (A,B) is not reachable that proves (a) by the
contrapositive argument. For (b), let λ be any eigenvalue of A with eigenvector v
for which (4.92) again holds. Since |λ |2 �= 1, Bv �= 0, and thus, (A,B) is reachable,
in light of the PBH test. ��
Lemma 4.5. Let a square transfer matrix S(z) = D+C(zI−A)−1B have a minimal
realization with nonsingular A. If S(z) is “allpass” or S∗ (z−1

)
S(z) = I, then there

exist X and Y such that

(i) Y −A∗YA =C∗C, (ii) X −AXA∗ = BB∗, (iii) XY = I,

(iv) BD∗+AXC∗ = 0, (v) D∗C+B∗YA = 0,

(vi) D∗D+B∗YB = DD∗+CXC∗ = I.

Proof. By S∗ (z−1
)
= D∗+B∗ (z−1I−A∗)−1

C∗, direct calculation gives

S∗ (z−1)= D∗ −B∗A∗−1C∗ −B∗A∗−1 (zI −A∗)−1 A∗−1C∗.

By S∗ (z−1
)

S(z) = I, S∗ (z−1
)
= S(z)−1. Thus

lim
z→∞

S∗ (z−1)= D∗ −B∗A∗−1C∗ = lim
z→∞

S(z)−1 = D−1.
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That is, A being nonsingular implies D being nonsingular. The above yields

D∗D−B∗A∗−1C∗D = I, (4.93)

DD∗ −DB∗A∗−1C∗ = I. (4.94)

The first equality is obtained by multiplying D−1 =D∗−B∗A∗−1C∗ by D from right,
and the second by D from left. Since D is invertible,

S(z)−1 = D−1 −D−1C
(
zI −A+BD−1C

)−1
BD−1.

The minimality of the realization and S∗ (z−1
)
= S(z)−1 implies the existence of a

nonsingular matrix T such that

(α) T−1A∗−1T = A−BD−1C, (4.95)

(β ) T−1A∗−1C∗ = BD−1, (4.96)

(γ) B∗A∗−1T = D−1C. (4.97)

The equality (α) gives rise to

T = A∗TA−A∗T BD−1C, T−1 = AT−1A∗ −BD−1CT−1A∗ (4.98)

by multiplying both sides of (α) by A∗T from left and by T−1A∗ from right,
respectively. Multiplying both sides of (β ) by A∗T from left brings to

C∗ = A∗T BD−1 =⇒ C∗D = A∗TB. (4.99)

On the other hand, multiplying both sides of (γ) by T−1A∗ from right yields

B∗ = D−1CT−1A∗ =⇒ DB∗ =CT−1A∗. (4.100)

Setting Y =−T and substituting C∗D = A∗TB of (4.99) into (4.93) shows

I = D∗D−B∗A∗−1C∗D = D∗D−B∗T B = D∗D+B∗Y B.

With X =−T−1 and DB∗ =CT−1A∗ in (4.100), (4.94) can be rewritten as

I = DD∗ −DB∗A∗−1C∗ = DD∗ −CT−1C∗ = DD∗+CXC∗.

Thus, (vi) holds. Since XY =
(−T−1

)
(−T ) = I, (iii) holds as well. Substituting

A∗T B =C∗D of (4.99) into the first equality of (4.98) yields

A∗TA−A∗TBD−1C = A∗TA−C∗C = T
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which is the same as (i) by Y =−T . Substituting D−1CT−1A∗ = B∗ of (4.100) into
the second equality of (4.98) shows

AT−1A∗ −BD−1CT−1A∗ = AT−1A∗ −BB∗ = T−1

which is the same as (ii) by X =−T−1. Finally, (iv) is identical to (4.100) and (v) is
identical to (4.99) thereby concluding the proof. ��

Under Assumptions A1–A3, the allpass property for the error matrix Δ(z) =
H(z)− Ĥ(z) holds. It can be represented by

Δ(z) =
[

Ae Be

Ce De

]
=

⎡

⎣
A 0 B
0 Â B̂
C −Ĉ −D̂

⎤

⎦.

Consider Lyapunov equations for the error system:

(a) Pe −A∗
ePeAe =C∗

eCe, (b) Qe −AeQeA∗
e = BeB∗

e. (4.101)

Partition Pe and Qe compatibly with {Ae,Be,Ce} as

Pe =

[
P11 P12

P21 P22

]
, Qe =

[
Q11 Q12

Q21 Q22

]
.

Then (a) is equivalent to the following three equations:

P11 −A∗P11A =C∗C =⇒ P11 = P, (4.102)

P22 − Â∗P22Â = Ĉ∗Ĉ, (4.103)

P21 = Â∗P21A− Ĉ∗C =⇒ P21 =
[
Γ1 Γ2

]
(4.104)

with Γ1 of size (n− p)× (n− p) and Γ2 of size (n− p)× p. For (b), there hold

Q11 −AQ11A∗ = BB∗ =⇒ Q11 = Q (4.105)

Q22 − ÂQ22Â∗ = B̂B̂∗, (4.106)

Q12 = AQ12Â∗+BB̂∗ =⇒ Q12 =

[
In−p

0

]
(4.107)

The last equation can be verified by (4.88) that leads to

Q12 = AQ12Â∗ −BΘ ∗Â∗ ⇐⇒ Q12 (A
∗
11 −B1Θ ∗) = AQ12 −BΘ ∗,
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and thus, Q12 in (4.107) is true in light of A21 = B2Θ ∗ in (4.87). It is left as an
exercise to show that (Problem 4.20)

(
D̂+ ĈΘ

)
B∗+ ĈÂ−1Q21 =CQA∗ =

[
Ω1 Ω2

]
. (4.108)

Lemma 4.6. Let Ĥ(z) be an optimal Hankel-norm approximate to H(z) = C(zI −
A)−1B with its realization computed from (4.86). Under Assumptions A1–A3, there
hold

Γ1 = σ2
k In−p −Σ1Σ2, Γ2 = 0, Q22 =−Σ2Γ−1

1 , P22 =−Σ1Γ1. (4.109)

Proof. Since p = m = ρ , the error function Δ(z) is indeed “allpass” with amplitude
σk, implying that the solutions Pe and Qe to the two Lyapunov equations in (4.101),
respectively, satisfy QePe = σ2

k I2n−p, or equivalently

QePe =

⎡

⎣
Σ1 0 In−p

0 σkIp 0
In−p 0 Q22

⎤

⎦

⎡

⎣
Σ2 0 Γ ∗

1
0 σkIp Γ ∗

2
Γ1 Γ2 P22

⎤

⎦

=

⎡

⎣
Γ1 +Σ1Σ2 0 P22 +Σ1Γ ∗

1
0 σ2

k Ip σkΓ ∗
2

Q22Γ1 +Σ2 Q22Γ2 Q22P22 +Γ ∗
1

⎤

⎦= σ2
k I2n−p,

in light of Lemma 4.5. Recall that Q = diag(Σ1,σkI) and P = diag(Σ2,σkI). Hence,
(4.109) can be easily verified. ��

Since Σ1Σ2 is diagonal consisting of Hankel singular values other than σk, both
P22 and Q22 have exactly (k− 1) = r positive eigenvalues for the square “allpass”
Δ(z) (Problem 4.21 in Exercises). As a result, Ĥ(z) has no more than r poles inside
the unit circle as claimed earlier. Because the minimal achievable Hankel-norm
error is the same as σ

(
HH − ĤH

)
that is no smaller than the kth Hankel singular

value σk over all possible Ĥ(z) with (k− 1) poles inside the unit circle, the allpass
property does yield an optimal Hankel-norm approximation, which in turn implies
that Ĥ(z) has exactly r poles strictly inside the unit circle. It is noted that Γ2 = 0 as
in Lemma 4.6 converts equivalently (4.104) into

(i) A∗
12Γ1Â =C∗

2Ĉ, (ii) Γ1 +C∗
1Ĉ = A∗

11Γ1Â. (4.110)

4.3.2 Error Bound in H∞ Norm

The most salient feature of optimal Hankel-norm approximation is the H∞-norm
error bound. Specifically, for H(z) = C (zIn −A)−1 B with A a stability matrix, its
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optimal Hankel-norm approximation Ĥ(z) can be decomposed into

Ĥ(z) = Ĥs(z)+ Ĥas(z)

with Ĥs(z) and Ĥas
(
z−1
)

both stable transfer matrices. Suppose that H(z) has η
distinct Hankel singular values given by {σi j}ηj=1 with iκ = k and iη = n. Let Ĥ(z)
be the optimal Hankel-norm approximation obtained in the previous subsection.
Then there holds:

∥
∥∥H− Ĥs

∥
∥∥
∞
≤

η

∑
j=κ

σi j . (4.111)

This subsection is devoted to the proof of the above error bound.
Several issues need to be resolved first, including the McMillan degree of Ĥs(z)

and Hankel singular values of Ĥas
(
z−1
)
.

Lemma 4.7. Let Ĥ(z) = D̂ + Ĉ
(
zI − Â

)−1
B̂ be the (k − 1) = rth order optimal

Hankel-norm approximation under Assumption A1–A3. If det(Γ1) = det(σ2
k I −

Σ1Σ2) �= 0, then Â has exactly r and (n − p − r) eigenvalues inside and outside
the unit circle, respectively, and zero eigenvalue on the unit circle.

Proof. Suppose on the contrary that Â has an eigenvalue λ on the unit circle with
eigenvector x. Then multiplying x∗ from left and x from right to P22 = Â∗P22Â+Ĉ∗Ĉ
yields

(
1−|λ |2)x∗P22x =

∥
∥Ĉx
∥
∥2

= 0, (4.112)

concluding Ĉx = 0. Since
∥
∥
∥H− Ĥ

∥
∥
∥
∞
= σk by the allpass property, the assumption

on p=m = ρ reveals that Ĥ(z) has no pole on the unit circle. Hence, any eigenvalue
of Â on the unit circle is unobservable by (4.112). Multiplying (4.110) by x from
right gives

(i) λA∗
12Γ1x = 0, (ii) λA∗

11Γ1x = Γ x

The hypothesis on nonsingular Γ1 leads to

A∗
[
Γ1x
0

]
= λ−1

[
Γ1x
0

]
, |λ |= 1,

that contradicts stability of A. It is thus concluded that Â has no eigenvalue on the
unit circle. Recall that Hankel-norm of H(z) is dependent only on the strictly causal
part of H(z). There thus holds

σ
(
HH − ĤH

)
=
∥∥
∥H− Ĥ

∥∥
∥

H
=
∥∥
∥H− Ĥs

∥∥
∥

H
= σk.
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It follows that the McMillan degree of Ĥs is (k−1). A similarity transform S can be
applied so that

SÂS−1 =

[
Âs 0
0 Âas

]
, SP22S∗ =

[
X11 X12

X21 X22

]

with Âs and Â−1
as being stability matrices. It follows that Âs has dimension no smaller

than (k− 1). The Lyapunov equation P22 = Â∗P22Â+ Ĉ∗Ĉ is now converted to

X11 = Â∗
s X11Âs + Ĉ∗

s Ĉs,

X22 = Â∗
asX11Âas + Ĉ∗

asĈas,

X12 = Â∗
s X12Âas + Ĉ∗

s Ĉas,

where X11 ≥ 0 and X22 ≤ 0. The fact that P22 = −Σ1Γ1 has (k − 1) positive
eigenvalues implies that X11 has dimension (k − 1)× (k − 1) and so does Âs that
concludes the proof. ��

A crucial observation is made: For any antistable transfer matrix J(z), there holds

∥
∥
∥H− Ĥs− J

∥
∥
∥
∞
≥
∥
∥
∥H− Ĥ

∥
∥
∥
∞
= σk.

That is, the lower bound is achieved by taking J(z) = Ĥas. Optimal Hankel-norm
approximation takes Ĥs(z) as the reduced order model that is stable. Since

∥
∥
∥H− Ĥs

∥
∥
∥
∞
≤
∥
∥
∥H− Ĥ

∥
∥
∥
∞
+
∥
∥
∥Ĥas

∥
∥
∥
∞
, (4.113)

the error bound in (4.111) is hinged to bounding
∥
∥∥Ĥas

∥
∥∥
∞

.

Lemma 4.8. Let H(z) = Ĥs(z)+ Ĥas(z) be the optimal Hankel-norm approxima-
tion in Lemma 4.7 where both Ĥs(z) and Ĥas

(
z−1
)

have all poles inside the unit

circle. Then σi(J) = σi+k+p−1(H) with J(z) = Ĥas
(
z−1
)
.

Proof. Let Pe and Qe be the solutions to the two Lyapunov equations in (4.101),
respectively. Since H(z) is square and Ĥ(z) is an optimal Hankel-norm approxima-
tion, the solutions Pe and Qe are given as in (4.102)–(4.107), and as in Lemma 4.6.
By QePe = PeQe = σ2

k I2n−p, Q11P11 = σ2
k In −Q12P12, and P21Q12 = Γ1 = σ2

k In−p −
P22Q22, there holds

det(λ In −Q11P11) = det
(
λ In −

(
σ2

k In −Q12P12
))

−det
((
λ −σ2

k

)
In +Q12P12

)

=
(
λ −σ2

k

)p
det
[(
λ −σ2

k

)
In−p +Γ1

]

=
(
λ −σ2

k

)p
det(λ In−p −P22Q22) .
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In light of Q22P22 = Σ1Σ2 and Q11P11 = QP = diag
(
Σ1Σ2,σ2

k Ip
)
,

λi(Q11P11) =

⎧
⎨

⎩

λi(Q22P22), i = 1,2, . . . ,k− 1,
σ2

k , i = k,k+ 1, . . . ,k+ p− 1,
λi−p(Q22P22), i = k+ p,k+ p− 1, . . .,n.

Because the first (k− 1) eigenvalues of Q22 and P22 are positive,
√
λi(Q22P22) is

the ith Hankel singular values of Ĥs(z), for i = 1,2, . . . ,k−1. Similarly, because the
last (n− k− p+ 1) eigenvalues of Q22 and P22 are both negative,

√
λi+k−1(Q22P22) =

√
λi+k+p−1(QP)

is the ith Hankel singular values of J(z) = Ĥas
(
z−1
)

for i = 1,2, . . . ,n− k− p+ 1.
The fact that

√
λi(Q11P11) =

√
λi(QP) is the ith Hankel singular value of H(z)

concludes the proof. ��
Although the allpass property holds for the case p=m= ρ , an allpass embedding

procedure is available for the case when p �= m and for ρ ≥ 1. Due to the complexity
of the procedure, it is not presented in this textbook but will be assumed to hold in
proving the error bound.

Corollary 4.3. Let H(z) =C(zIn−A)−1B be a square transfer matrix with minimal
realization, and A a stability matrix. Suppose that H(z) has η ≤ n distinct Hankel
singular values σi j , where j = 1,2, . . . ,η . Then there exists a constant matrix D0

such that

‖H−D0‖∞ ≤
η

∑
j=1

σi j . (4.114)

Proof. Taking optimal Hankel-norm approximation Ĥ(z) = Ĥη(z) with k = n
implies that Ĥη(z) has all poles inside the unit circle. By Lemma 4.6 and
Lemma 4.8, Ĥη(z) has the same first (η − 1) distinct Hankel singular values as

H(z). Moreover,
∥∥
∥H− Ĥη

∥∥
∥
∞
= σn = σiη . Repeating the same optimal Hankel-norm

approximation to Ĥη(z) yields Ĥη−1(z) with the same first (η − 2) distinct Hankel
singular values as H(z), and

∥
∥
∥H− Ĥη−1

∥
∥
∥
∞
≤
∥
∥
∥H− Ĥη

∥
∥
∥
∞
+
∥
∥
∥Hη − Ĥη−1

∥
∥
∥
∞
= σiη +σiη−1 .

By induction, (4.114) holds for some constant matrix D0, that is the sum of all the
constant matrices from each one step optimal Hankel-norm approximation. ��

By the result and proof of Corollary (4.3), the following identity:

H(z) = D0 +
η

∑
j=1

σi j Ei j (z)
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exists with Ei j (z) allpass. Since

σ(D0)≤ sup
|z|>1

σ [H(z)−D0] = ‖H−D0‖∞ ≤
η

∑
j=1

σi j

for the same D0 as in (4.114), there holds inequality

‖H‖∞ ≤ σ (D0)+ ‖H−D0‖∞ ≤ 2
η

∑
j=1

σi j

that coincides with the one deduced from balanced truncation.

Theorem 4.9. Let Ĥ(z) = Ĥs(z)+ Ĥas(z) be an optimal Hankel-norm approxima-
tion to H(z), where both Ĥs(z) and Ĥas

(
z−1
)

have all its poles inside the unit circle,

and Ĥas
(
z−1
)

is proper. Assume that H(z) has η distinct Hankel singular values

with σk = σiκ , and Ĥs(z) has McMillan degree (k − 1). Then the error bound in
(4.111) holds.

Proof. The triangle inequality (4.113) can be used. Since Δ(z) = H(z)− Ĥ(z) is

“allpass” with modulo σk, and since
∥
∥∥Ĥas

∥
∥∥
∞

is no larger than the sum of its Hankel

singular values in light of Corollary 4.3 (note that the constant term is included in
Ĥas(z), the error bound in (4.111) is thus true, in light of Lemma 4.8. ��

4.3.3 Extension Theorem

In the previous two subsections, p = m = ρ is assumed (Assumption A2). This
subsection presents an extension theorem to fulfill A2 when it is violated. Without
loss of generality, p = m is assumed for H(z) of size p×m by adding zero rows
to C or zero columns to B. Generically, all Hankel singular values are distinct. The
extension theorem asserts the existence of H0 such that

H̃(z) = z−1 [H(z)+H0]

admits p identical Hankel singular values at σ ∈ (σk, σk−1). There are r = (k− 1)
Hankel singular values greater than σ , and the rest smaller than σ . Hence, the rth
order optimal Hankel-norm approximation from the previous subsections can be
applied to H̃(z) from which the rth order (sub)optimal Hankel-norm approximation
to H(z) can be obtained.

Let (A,B,C) be a minimal realization for the square H(z). Then

H̃(z) =

[
Ã B̃
C̃ D̃

]
:=

⎡

⎣
A 0 B
C 0 H0

0 Ip 0

⎤

⎦ .
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With P and Q the observability and reachability gramians for H(z), respectively, the
corresponding two gramians for H̃(z) are given respectively by

P̃ =

[
P 0
0 Ip

]
, Q̃ =

[
Q (H0B∗+CQA∗)∗

H0B∗+CQA∗ H0H∗
0 +CQC∗

]
.

By definition, the Hankel singular values of H̃(z), denoted by {σ̃k}, are the square
roots of the eigenvalues of

P̃1/2Q̃P̃1/2 =

[
P1/2QP1/2 P1/2(H0B∗+CQA∗)∗

(H0B∗+CQA∗)P1/2 H0H∗
0 +CQC∗

]

It follows that σ̃r > σ̃r+1 = · · · σ̃r+p > σ̃r+p+1, if and only if

Ψ = P̃1/2Q̃P̃1/2 −σ2I =

[
P1/2QP1/2 −σ2I P1/2(H0B∗+CQA∗)∗

(H0B∗+CQA∗)P1/2 H0H∗
0 +CQC∗ −σ2I

]

has r positive eigenvalues and p zero eigenvalues. Denote

R =
(
σ2I−P1/2QP1/2

)−1
(4.115)

that exists by σ ∈ (σk, σk−1). Define

L =

[
In 0

(H0B∗+CQA∗)P1/2 Ip

]
.

It can be verified by direct calculations that

LΨL∗ =
[

P1/2QP1/2 −σ2I 0
0 V

]
,

where V is given by, using (4.115),

V = H0H∗
0 +CQC∗ −σ2I− (H0B∗+CQA∗)P1/2RP1/2 (H0B∗+CQA∗)∗ .

The extension theorem holds for some H0, if and only if V = 0, in light of the fact
that Ψ and LΨL∗ have the same inertia, i.e., their respective eigenvalues have the
same signs. This congruent relation is represented by the mathematical expression
of Ψ ∼ LΨL∗. Hence, the central issue in proving the extension theorem is hinged
to the existence of H0 that zeros V . Define

E = CQA∗P1/2RP1/2AQC∗+CQC∗−σ2I,

F = CQA∗P1/2RP1/2B,

G = Ip +B∗P1/2RP1/2B. (4.116)
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Then by the expression of V , the condition for V = 0 is equivalent to

V = FH∗
0 +H0F∗+H0GH∗

0 +E = 0. (4.117)

The above is in the form of continuous-time ARE. The extension theorem amounts
to the existence of a solution H0.

Theorem 4.10. Assume that G is nonsingular. Then G and FG−1F∗ − E are
congruent, and thus, there exists at least one solution H0 to (4.117).

Proof. The proof is quite long. First, it is noted that the continuous-time ARE in
(4.117) can be written as

(
H0 +FG−1)G

(
H0 +FG−1)∗ = FG−1F∗ −E.

Hence, the existence of a solution H0 to (4.117) is equivalent to the congruent
relation between G and FG−1F∗ − E . If the congruent relation holds, then there
exists a nonsingular matrix T such that

T GT ∗ = FG−1F∗ −E =⇒ T = H0 +FG−1

from which H0 can be obtained. Next, it will be shown that

(α) FG−1F∗ −E ∼ G̃ = I+CQ1/2
(
σ2I −Q1/2PQ1/2

)−1
Q1/2C∗

that is dual to G and (β ) G̃ ∼ G, thereby concluding the congruent relation between
G and FG−1F∗ −E .

To prove (α), matrix inversion formula:

(
X +YZ−1W

)−1
= X−1 −X−1Y

(
Z +WX−1Y

)−1
WX−1 (4.118)

is useful. An application of the above formula yields

(
G̃
)−1

=
[
I +CQ1/2(σ2I −Q1/2PQ1/2)−1Q1/2C∗

]−1

= I −CQ1/2
[(
σ2I−Q1/2PQ1/2

)
+Q1/2C∗CQ1/2

]−1
Q1/2C∗.

Recalling P−C∗C = A∗PA leads to

(
G̃
)−1

= I−CQ1/2
(
σ2I−Q1/2A∗PAQ1/2

)−1
Q1/2C∗

= I−σ−2CQ1/2
[
I +Q1/2A∗P1/2

×
(
σ2I−P1/2AQA∗P1/2

)−1
P1/2A∗Q1/2

]
Q1/2C∗,
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where
(
σ2I −YY ∗)−1

= σ−2
[
I+Y

(
σ2I−Y ∗Y

)−1
Y ∗
]

is used. Note that

(
σ2I −P1/2AQA∗P1/2

)−1
=
[
R−1 +P1/2BB∗P1/2

]−1

by AQA∗ = Q − BB∗ and the expression of R in (4.115). Applying the matrix
inversion formula again leads to

(
σ2I −P

1
2 AQA∗P

1
2

)−1
= R−RP

1
2 B
(

I+B∗P
1
2 RP

1
2 B
)−1

B∗P
1
2 R

= R−RP1/2BG−1B∗P1/2R

by the definition of G in (4.116). It follows that

(
G̃
)−1

= I−σ−2CQC∗ −σ−2CQAP
1
2

[
R−RP

1
2 BG−1B∗P

1
2 R
]

P
1
2 AQC∗

= σ−2 (−E +FG−1F∗)

that concludes (α). For (β ), it is claimed that
(
−σ2I+P1/2AQA∗P1/2

)
∼
(
−σ2I+Q1/2A∗PAQ1/2

)
,

(
−σ2I+P1/2QP1/2

)
∼
(
−σ2I+Q1/2PQ1/2

)
,

[−σ2I +Q1/2PQ1/2 0
0 G∗

]
∼
[−σ2I+Q1/2A∗PAQ1/2 0

0 Ip

]
,

Mtmp :=

[−σ2I +P1/2QP1/2 0
0 G

]
∼
[−σ2I+P1/2AQA∗P1/2 0

0 Ip

]
.

Only the last congruent relation will be proven. The rest is left as an exercise
(Problem 4.23). To verify the last congruent relation, denote

L1 =

[
In 0

B∗P1/2R Ip

]
, L2 =

[
In P1/2B
0 Ip

]
.

Direct calculation shows that

L2L1MtmpL∗
1L∗

2 = L2

[−σ2I+P1/2QP1/2 −P1/2B
B∗P1/2 Ip

]
L∗

2

=

[−σ2I +P1/2QP1/2 −P1/2BB∗P1/2 0
0 Ip

]

=

[−σ2I +P1/2AQA∗P1/2 0
0 Ip

]

in which definitions of G and Q−BB∗ = AQA∗ are used. ��
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An example is worked out to illustrate the use of the extension theorem and the
optimal Hankel-norm approximation for MIMO models.

Example 4.11. Consider the same transfer matrix as in Example 4.2 with the
second- and third-order approximations (r = 2,3) based on the optimal Hankel-
norm approximation. For r = 2, σ = σ3+0.1(<σ2) is used. Applying the extension
theorem yields

H0 =

[
3.56194 −0.84895
2.37756 −3.51080

]
.

For r = 3, σ = σ4 + 0.001(< σ3) is used. The extension theorem yields

H0 =

[
5.68751 −1.69553
2.49880 −2.58960

]
.

Trial and errors are used to determine the value of σ . Normally, the closer σ is to
σr+1, the better the approximation error, but numerical problems may arise if σ is
too close to σr+1.

Once H0 is available, the optimal Hankel-norm approximation ̂̃H(z) to H̃(z) =
z−1[H(z)+H0] can be computed rather easily based on the relation derived in (4.86).

The stable and strictly proper part of ̂̃H(z), denoted by ̂̃Hs(z), can then be extracted
following the same steps as those in Example 4.8. The error responses of H̃(z)−
̂̃Hs are plotted in Fig. 4.5 that shows smaller frequency response errors than the
corresponding ones computed by the BT method. This error response plot validates
the smaller error bound for the Hankel-norm method, although it is not as much as
by half. Recall H̃(z) = z−1[H(z)+H0]. Setting

Ĥs(z) = z ̂̃Hs −H0 =⇒ H(z)− Ĥs(z) = z
[
H̃(z)− ̂̃Hs

]
.

Hence, the magnitude error responses do not change. Since ̂̃Hs(z) does not include
the constant term, Ĥs(z) is both stable and proper. In fact, for our example, the
constant term is zero for both the second- and third-order optimal Hankel-norm
approximations.

Notes and References

Balanced truncation to model reduction was first introduced in [86]. See also
[28, 36]. It also has applications to digital filters design with minimum roundoff
noises [3,88]. Optimal Hankel-norm approximation was initiated in [2] and was later
introduced to the control literature for model reduction in [70], which was further
explored in [13, 36, 40, 42, 71, 72]. Inverse balanced truncation (IBT) can be traced
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back to [28]. The algorithm presented in this chapter is generalized from [125] that
is derived for continuous-time systems. The paper [41, 76] considers application of
IBT to controller reduction.

Exercises

4.1. For H(z) = D+C(zI−A)−1B with A a stability matrix, show that

‖H‖2
2 = Tr{D∗D+B∗PB},

where P ≥ 0 solves the Lyapunov equation P = A∗PA+C∗C. (Hint: Modify the
procedure in the proof of Lemma 4.1.)

4.2. (Balanced realization) Suppose that (A,B) is reachable, (C,A) is observable,
and A is a stability matrix. Let

P = A∗PA+C∗C, Q = AQA∗+BB∗.

Show that under the similarity transform T = Σ1/2U∗R−1,

(Ab,Bb,Cb) =
(
TAT−1,T B,CT−1)
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is balanced where Q = RR∗, and R∗PR = UΣ2U∗ is the SVD. Note that this
algorithm is numerically more reliable and efficient than the one in Proposition 4.1
but assumes minimal realization.

4.3. For the proof of Theorem 4.3, show that (4.28), (4.29), and (4.30) hold true.

4.4. For Theorem 4.3, suppose that

Σ = diag(σ1Iμ1 , . . . ,σ�Iμ�), σ1 > · · ·> σ� > 0,

with n = μ1 + · · ·+ μ� the order of (A,B,C,D), and σκ�σκ+1 with 1 ≤ r = μ1 +
· · ·+ μκ < n. Show that

∥
∥∥H− Ĥ

∥
∥∥
∞
≤ 2

�

∑
i=κ+1

σi,

where Ĥ has realization (A11,B1,C1,D), which is a balance truncated model.

4.5. Prove Corollary 4.1.

4.6. Find a similarity transform to realization of

H(z) = D+C(zI−A)−1B (4.119)

that is inverse balanced, i.e., the solutions to Lyapunov equations in (4.35) and (4.36)
satisfy (4.37).

4.7. Prove the relations in (4.47).

4.8. For possibly complex valued matrices U and V such that UV is square, show
that for each α > 0, there holds

UV +V ∗U∗ ≤ 1
α

UU∗+αV ∗V.

4.9. In the proof of Theorem 4.6, show that

‖Δm‖2 ≤ 2σ
∥
∥
∥C̃r
(
zI − Ãm

)−1
C̃∗

r

∥
∥
∥ , (4.120)

‖Δr‖2 ≤ 2σ
∥∥
∥B̃∗

m

(
zI− Ãr

)−1
B̃m

∥∥
∥ . (4.121)

4.10. Consider the Blaschke product

B(z) =
n

∏
i=1

1+ p̄kz
z− pk

, |pk|< 1.

(i) Show that
∣∣B(e jω)

∣∣ = 1 for all real ω . Such a transfer function admits the
“allpass” property.
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(ii) Consider a transfer matrix T(z) = D+C(zI −A)−1B with A a stability matrix
and (A,B,C) a minimal realization for T(z). Let P and Q be the observability,
and reachability gramian, respectively. Show that T

(
e jω)∗ T

(
e jω) = I for all

ω , if and only if

(a) D∗D+B∗PB = I, (b) D∗C+B∗PA = 0,

and T
(
e jω)T

(
e jω)∗ = I for all ω , if and only if

(a) DD∗+CQC∗ = I, (b) BD∗+AQB = 0.

(iii) If T(z) is square, show that PQ = I, and thus all the Hankel singular values of
T(z) are 1. (Hint: Use similar derivation in the proof of Lemma 4.5.)

4.11. Suppose that the square transfer matrices {Δi(z)}n
i=1 are all stable satisfying

‖Δi‖∞ ≤ Δi < 1 for each i. Show that

‖(I+Δ1) · · · (I+Δn)− I‖∞ ≤ (1+ δ1) · · · (1+ δn)− 1. (4.122)

4.12. Complete the proof for relative error bound in Theorem 4.6.

4.13. Let D be of size p×m with m > p. If D has rank p, show that there exists a
right inverse D+ and a matrix D⊥ of size (m− p)×m such that

[
D

D⊥

]
[

D+ D+
⊥
]
= Im, (4.123)

where D+ = D∗(DD∗)−1 can be chosen. Show that all right inverses of D are given
by D† = D++D+

⊥Θ withΘ of size (m− p)× p a free parameter.

4.14. (Continuation of Problem 4.13) Consider the transfer matrix G(z) = D +
C(zI −A)−1B of size p×m with D the same as in Problem 4.13:

(i) Show that G(z) is strictly minimum phase, if and only if (A−BD+C,BD⊥) is
stabilizable.

(ii) Let F be stabilizing or (A−BD+C +BD⊥F) is a stability matrix. Show that
G(z) admits a stable right inverse given by

G+(z) =

[
A−BD+C+BD∗

⊥F BD+

D∗
⊥F −D+C D+

]
.

(Hint: G(z) = D
[
I − (D∗

⊥F −D+C)(zI −A)−1B
]
.)

(iii) Let G⊥(z) =D⊥−F(zI−A)−1B. Show that G⊥(z) admits a stable right inverse
given by

G+
⊥(z) =

[
A−BD+C+BD∗

⊥F BD∗
⊥

D∗
⊥F −D+C D∗

⊥

]
.
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(iv) Let A be a stability matrix. Show that for all |z| ≥ 1, there holds

[
G(z)

G⊥(z)

]
[

G+(z) G+
⊥(z)

]
= Im.

(v) Show that each stable right inverse of G(z) is given by

Ginv(z) = G+(z)+G+
⊥(z)Q(z)

for some stable transfer matrix Q(z).

4.15. Let D and D⊥ be in Problem (4.13) satisfying (4.123). Show that D+D+
D+
⊥D⊥ = I and

σ
(
D+D

)
= σ

(
D+
⊥D⊥

)
.

(Hint: Both D+D and D+
⊥D⊥ are projection matrices.)

4.16. Let G(z) = C(zI −A)−1B where A has eigenvalues strictly inside or outside
the unit circle. Show that there exists a similarity transform S such that the
transformed realization

(
SAS−1,SB,CS−1

)
can be partitioned compatibly into

SAS−1 =

[
As 0
0 Au

]
, SB =

[
Bs

Bu

]
, CS−1 =

[
Cs Cu

]
,

where As and A−1
u are both stability matrices.

4.17. Show that (4.58) holds.

4.18. Consider Assumption A2 in Sect. 4.3.1. Suppose that m = p = ρ holds.
Show that

det

([
A11 B1

A21 B2

])
�= 0,

if and only if A22(I −σkA∗
12Σ

−1
1 A12)

−1A∗
22 has no eigenvalue at 1.

4.19. Consider G(z) = Dg +Cg(zI−Ag)
−1Bg of size p×m with (Ag,Bg) reachable

and p ≥ m. Let Yg be a solution to Yg −A∗
gYgAg =C∗

gCg. Show that G∗ (z−1
)

G(z) =
Im, if and only if

(i) D∗
gCg +B∗

gYgAg = 0, (ii) D∗
gDg +B∗

gYgBg = Im.

(Hint: Use (4.17) by setting G(z) = D+H(z).)

4.20. Show that (4.108) holds, if Q21 =
[

In−p 0
]
.

4.21. Suppose that (A,B) is reachable and there exists a solution X = X∗ such that
X = AXA∗+BB∗. Show that (i) X is nonsingular and A has no eigenvalue on the unit
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circle, (ii) number of eigenvalues of A inside the unit circle is equal to the number
of positive eigenvalues of X , and number of eigenvalues of A outside the unit circle
is equal to the number of negative eigenvalues of X .

4.22. Let A and B be square matrices of the same dimension. Suppose that A and B
are congruent. Find a nonsingular matrix T such that TAT ∗ = B. (Hint: Use Schur
decomposition with the Matlab command “[Ua,Ta] = schur(A)” and “[Ua,Ta] =
ordschur(Ua,Ta,“lhp”)”, do the same for B to figure out the required matrix T .)

4.23. Consider the proof of Theorem 4.10. Show that

(
−σ2I +P1/2AQA∗P1/2

)
∼
(
−σ2I +Q1/2A∗PAQ1/2

)
,

(
−σ2I +P1/2QP1/2

)
∼
(
−σ2I +Q1/2PQ1/2

)
,

[−σ2I+Q1/2PQ1/2 0
0 G̃

]
∼
[−σ2I +Q1/2A∗PAQ1/2 0

0 I

]
.

(Hint: For the first two equalities, use the property λi(rI + M) = r + λi(M) and
λi(NM) = r + λi(MN) for eigenvalues; For, the last equality, it is dual to the
congruent relation for Mtmp in the proof of Theorem 4.10.)



Chapter 5
Optimal Estimation and Control

Estimation and control are the two fundamental problems for dynamical systems.
Many engineering design tasks can be formulated into either an estimation or control
problem associated with some appropriate performance index. In order to simplify
the design issues in practice, dynamical systems are usually assumed to be linear
and finite-dimensional. Otherwise, various approximation methods can be applied
to derive linear and finite-dimensional models with negligible modeling errors. As
such, state-space representations are made possible providing computational tools
for optimal design and enabling design of optimal estimators and controllers.

Estimation aims at design of state estimators that reconstruct the state vector
based on measurements of the past and present input and output data. Due to
the unknown and random nature of the possible disturbance at the input and the
corrupting noise at the output, it is impossible to reconstruct the true state vector in
real-time. Therefore, the design objective for state estimators will be minimization
of the estimation error variance by assuming white noises for input disturbances and
output measurement errors. The focus will be on design of optimal linear estimators.

Disturbance rejection has been the primary objective in feedback control system
design in which white noises are the main concern. The emphasis will be placed on
the design of state-feedback controllers to not only stabilize the feedback control
system but also minimize the adverse effect due to white noise disturbances. With
the variance as the performance measure, optimal control leads to linear feedback
controllers that are dual to optimal linear estimators.

Without exaggeration, optimal estimation and control are the two most celebrated
results in engineering system design. They have brought in not only the design
algorithms but also the new design methodology that has had far reaching impacts as
evidenced by the wide use of Kalman filtering and feedback control in almost every
aspect of the system engineering. Nevertheless, it is the conceptual notions from
linear system theory that empower the state-of-the-art design algorithms and allow
applications of optimal estimation and control in engineering practice. This chapter
will cover the well-known results in Kalman filtering and quadratic regulators that
have enriched engineering system design. It also covers optimal output estimators
and full information control that are developed more recently.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 5, © Springer Science+Business Media, LLC 2012
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5.1 Minimum Variance Estimation

5.1.1 Preliminaries

As a prelude to optimal estimation for state-space systems, a simpler and more
intuitive estimation problem will be investigated. Let X and Y be two random vectors
with the PDFs pX (x) and pY (y), respectively. A natural question is how knowledge
of the value taken by Y can provide information about the value taken by X . In other
words, how an estimate of X = x̂ can be made based on the observation of Y = y?
Clearly, with Y = y being observed the PDF of X is modified into the conditional
PDF given by Bayes’ rule:

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)
(5.1)

assuming that pY (y) �= 0.
The quality of estimation is better measured by maximum a posteriori (MAP).

That is, x = x̂ should maximize pX |Y (x|y). As a result, computation of the MAP
estimate involves nonlinear optimization procedures, which is not tractable in
general due to the existence of multiple peaks in pX |Y (x|y) or high dimension of x.

An alternate measure is the conditional error variance E
{
‖X − x̂‖2 |Y = y

}
. The

minimum variance estimate X = x̂ satisfies

E
{‖X − x̂‖2|Y = y

}≤ E
{‖X − x‖2|Y = y

} ∀ x. (5.2)

The left-hand side of (5.2) is often termed the minimum mean-squared error
(MMSE). The MMSE estimate or the minimum variance estimate has the closed-
form solution which is a contrast to the MAP estimate, as shown next.

Theorem 5.1. Let X and Y be two jointly distributed random vectors. The MMSE
estimate x̂ of X given observation Y = y is uniquely specified as the conditional
mean (by an abuse of the notation for integration)

x̂ = E{X |Y = y}=
∫ ∞

−∞
xpX |Y (x|y)dx. (5.3)

Proof. Let h(z) = E
{‖X − z‖2|Y = y

}
with z to be chosen. Then

h(z) =
∫ ∞

−∞
‖x− z‖2pX |Y (x|y)dx

=

∫ ∞

−∞
‖x‖2pX |Y (x|y)dx+ ‖z‖2− 2Re{z∗E[X |Y = y]}
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= ‖z−E{X |Y = y}‖2 +

∫ ∞

−∞
‖x‖2pX |Y (x|y) dx−‖E{X |Y = y}‖2

≥
∫ ∞

−∞
‖x‖2pX |Y (x|y) dx−‖E{X |Y = y}‖2.

The minimum is achieved uniquely with z = x̂ in (5.3). ��
Theorem 5.1 indicates that the MMSE estimate is the same as the conditional

mean. Its closed-form offers a great advantage in its computation compared with
the MAP estimate. In some cases, the conditional mean can be experimentally
determined which can be extremely valuable if the joint PDF of X and Y is
unavailable. Clearly, the MMSE estimate is different from the MAP estimate in
general unless the global maximum of pX |Y (x|y) takes place at the conditional mean
x = E{X |Y = y}. The next example is instrumental.

Example 5.2. Let the two random vectors X and Y be jointly Gaussian.Then the
random vector Z =

[
X∗ Y ∗ ]∗ is Gaussian distributed with

mz = E{Z}=
[

mx

my

]
, Σzz = cov{Z}=

[
Σxx Σxy

Σyx Σyy

]
.

Clearly, Σxy = E{(x−mx)(y−my)
∗} and

mx = E{X}, Σxx = cov{X} := E{(x−mx)(x−mx)
∗},

my = E{Y}, Σyy = cov{Y} := E{(y−my)(y−my)
∗}.

Suppose that the covariance matrices Σxx and Σyy are nonsingular. Then X and Y
have marginal PDFs

pX(x) =
1

√
(2π)n det(Σxx)

exp

{
−1

2
(x−mx)

∗Σ−1
xx (x−mx)

}
, (5.4)

pY (y) =
1

√
(2π)n det(Σyy)

exp

{
−1

2
(y−my)

∗Σ−1
yy (y−my)

}
, (5.5)

respectively. It is left as an exercise to show that the conditional PDF of X , given
Y = y, is

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)
=

pZ(z)
pY (y)

=
1

√
(2π)n det

(
Σ̃xx
)exp

{
−1

2
(x− m̃x)

∗ Σ̃−1
xx (x− m̃x)

}
, (5.6)
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where m̃x = mx + ΣxyΣ−1
yy (y − my) and Σ̃xx = Σxx − ΣxyΣ−1

yy Σyx. Hence, the
conditional PDF in (5.6) is also Gaussian. Its MAP estimate is identical to the
MMSE estimate given by

x̂ = m̃x = mx +ΣxyΣ−1
yy (y−my). (5.7)

Suppose that X and Y have the same dimension and are related by

Y = X +N,

where N is Gaussian independent of X with zero vector mean and Σnn the
covariance. Then by the independence of X and N,

my = mx, Σxy = Σxx, Σyy = Σxx +Σnn.

The optimal estimate in (5.7) reduces to

x̂ = mx +Σxx(Σxx +Σnn)
−1(y−my). (5.8)

The linear form (strictly speaking it is the affine form) of the estimate in terms of
the observed data Y = y is due to the Gaussian distribution which does not hold in
general.

Example 5.2 reveals several nice properties about the Gaussian random vectors.
First, one needs know only the mean and covariance matrix in order to have the
complete knowledge of the PDF. Often such statistical quantities can be experi-
mentally determined. Second, if X and Y are jointly Gaussian, then each marginal
and conditional distribution is also Gaussian. Moreover, a linear combination of
Gaussian random vectors is Gaussian as well. Finally, the Gaussian assumption
leads to the linear form of the optimal estimate for both the MMSE and MAP
criteria. Because the observed data y in (5.7) can be any value and is in fact
random, (5.7) actually gives the expression of the optimal estimator (a function of
the observation) for jointly Gaussian random vectors. More generally, the following
result on the MMSE estimator holds.

Theorem 5.3. Let X and Y be two jointly distributed random vectors. Then the
MMSE estimator X̂ of X in terms of Y is given by X̂ = E{X |Y}.

Proof. The difference between E{X |Y} and E{X |Y = y} lies in that E{X |Y} takes
the expectation over all possible values of X and Y . Hence, the MMSE estimator
is more difficult to prove than the MMSE estimate. However, the following two
properties of the conditional expectation are helpful:

EX |Y { f (X ,Y )|Y = y}= EX |Y { f (X ,y)|Y = y}, (5.9)

EY
{

EX |Y [ f (X ,Y )|Y = y]
}
= EX ,Y{ f (X ,Y )}, (5.10)
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where the subscripts indicate the variables with respect to which expectation is being
taken. Hence, by the MMSE estimate in (5.3),

EX |Y
{∥
∥X − X̂(y)

∥
∥2 |Y = y

}
≤ EX |Y

{∥
∥X − X̃(y)

∥
∥2 |Y = y

}

for any other estimator X̃(·). On the other hand, (5.9) implies that

EX |Y
{∥∥X − X̂(y)

∥∥2 |Y = y
}
≤ EX |Y

{∥∥X − X̃(Y)
∥∥2 |Y = y

}
.

The above inequality is preserved with expectation being taken with respect to Y .
Now with the aid of (5.10), there holds

EX ,Y

{∥
∥X − X̂(Y )

∥
∥2
}
≤ EX ,Y

{∥
∥X − X̃(Y )

∥
∥2
}

which establishes the desired result. ��
The next example shows that the MAP and MMSE estimators are nonlinear in

general. For convenience, the estimator X̂(Y ) is still denoted by x̂.

Example 5.4. A typical case in digital communications is when the random vari-
ables X and Y are related as Y = X +N. Suppose that the random variable X is
binary and equiprobable with the probability

PX [X = 1] = 0.5, PX [X =−1] = 0.5.

The random variable N represents the additive noise which is assumed to be
Gaussian distributed with zero mean and the variance σ2

n . Suppose that X and N
are independent. Then X and Y are jointly distributed. If X = x (x only takes values
±1) is transmitted, then the PDF of Y = y is given by

pY |X(y|x) =
1√

2πσn
exp

{
− (y− x)2

2σ2
n

}
. (5.11)

It is easy to see that the marginal PDF for Y = y is given by

pY (y) = PX [X = 1]pY |X(y|x = 1)+PX [X =−1]pY |X(y|x =−1)

= 0.5pY |X(y|x = 1)+ 0.5pY|X(y|x =−1). (5.12)

By an abuse of notation, the conditional probability for X = 1, given Y = y is
received, is given by



180 5 Optimal Estimation and Control

PX |Y [X = 1|Y = y] =
pY |X (y|x = 1)PX [X = 1]

pY (y)

=
0.5pY |X(y|x = 1)

0.5pY |X (y|x = 1)+ 0.5pY|X (y|x =−1)

=

(
1+

pY |X (y|x =−1)

pY |X (y|x = 1)

)−1

=

(
1+ exp

{
− 2y
σ2

n

})−1

in light of (5.11) and (5.12). Similarly, the conditional probability for X =−1, given
Y = y is received, is given by

PX |Y [X =−1|Y = y] =

(
1+

pY |X (y|x = 1)

pY |X (y|x =−1)

)−1

=

(
1+ exp

{
2y
σ2

n

})−1

.

It is easy to verify that PX |Y [X = 1|Y = y]+PX |Y [X =−1|Y = y] = 1. If y > 0, then

PX |Y [X = 1|Y = y]> 0.5, PX |Y [X =−1|Y = y]< 0.5.

Because X is binary, the maximum of PX |Y [X = x|Y = y] for y > 0 takes place at
X = 1. If y < 0, then

PX |Y [X = 1|Y = y]< 0.5, PX |Y [X =−1|Y = y]> 0.5,

and thus, the maximum of PX |Y [X = x|Y = y] takes place at X = −1. Consequently,
the MAP estimator is obtained as

x̂MAP =

{
1, for y > 0,

−1, for y < 0.
(5.13)

This is identical to the optimal decision rule as discussed in Sect. 2.3 in the sense
that the BER is minimized.

On the other hand, given received data Y = y the conditional mean for X is given
by (recall that X is binary valued):

x̂MMSE = E{X |Y = y}=
(

1+ exp

{
− 2y
σ2

n

})−1

−
(

1+ exp

{
2y
σ2

n

})−1

.

Different from the MAP estimate, x̂MMSE is not binary valued. Its values as function
of the received y are plotted in the following figure where the dotted line is for the
case σ2

n = 1, the dash–dotted line for σ2
n = 0.1, and the solid line for σ2

n = 0.01 (see
Fig. 5.1).

As the variance σ2
n decreases (which corresponds to increase of the SNR), the

MMSE estimate approaches the MAP estimate. It is noted that both estimators are
nonlinear functions of the received data y.
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Fig. 5.1 The conditional mean estimates x̂ as function of y

In spite of the fact that optimal estimators are nonlinear in general, the linear
estimator (strictly speaking it is the affine estimator) has its appeal owing to its
simplicity and mathematical tractability. Moreover, in the special case of Gaussian
random vectors, both MMSE and MAP estimators are linear. Hence, there is an
incentive to focus on linear estimators and search for the optimal estimator among
all the linear estimators. The next theorem contains the complete result for MMSE
estimators.

Theorem 5.5. Let X and Y be two jointly distributed random vectors with

E

{[
X
Y

]}
=

[
mx

my

]
, cov

{[
X
Y

]}
=

[
Σxx Σxy

Σyx Σyy

]
. (5.14)

Then the linear MMSE estimator for X in terms of Y is given by

X̂ = mx +ΣxyΣ−1
yy (Y −my), (5.15)

where Σ+
yy can be used if Σyy is singular (Problem 5.1 in Exercises). The error

covariance associated with X̂ is unconditioned and given by

E
{(

X − X̂
)(

X − X̂
)∗}

= Σxx −ΣxyΣ−1
yy Σyx. (5.16)
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If X and Y are jointly Gaussian, then (5.15) is also the MMSE estimate X̂ = E{X |Y}
and is optimal among all (linear and nonlinear) estimators. Its error covariance
conditioned on Y is the same as in (5.16).

Proof. For any random vector Z its covariance satisfies

cov{Z}= E{(Z −mz)(Z −mz)
∗}= E{ZZ∗}−mzm∗

z ,

where mz = E{Z}. As a consequence,

E
{‖Z‖2}= Tr{cov[Z]}+Tr{mzm∗

z}= Tr{cov[Z]}+ ‖mz‖2. (5.17)

Now parameterize linear estimators as X̃ = FY + g with matrix F and vector g free
to choose. Setting the random vector

Z = X − X̃ = X −FY − g

yields mean mz = mx −Fmy − g and the covariance

cov{Z}= Σxx +FΣyyF∗ −FΣyx −ΣxyF∗.

Hence, the error variance E
{‖Z‖2

}
= E{‖X −FY − g‖2} is given by

E
{‖Z‖2} = Tr{cov[Z]}+ ‖mz‖2 ≥ Tr{cov[Z]}

= Tr{Σxx +FΣyyF∗ −FΣyx −ΣxyF∗}
= Tr

{[
F −ΣxyΣ−1

yy
]
Σyy
[
F −ΣxyΣ−1

yy
]∗
+Σxx −ΣxyΣ−1

yy Σyx

}

≥ Tr
{
Σxx −ΣxyΣ−1

yy Σyx
}

for any F and g where (5.17) is used. By taking

F = Fopt = ΣxyΣ−1
yy and g = gopt = mx −Foptmy,

mz = 0 and E
{‖Z‖2

}
= Tr

{
Σxx −ΣxyΣ−1

yy Σyx
}
= E
{‖Z‖2

}
which is the uncondi-

tional error variance. Therefore, the error covariance in (5.16) holds and the linear
MMSE estimator is given by

X̂ = FoptY + gopt = mx +Fopt(Y −my)

which is identical to (5.15) by Fopt = ΣxyΣ−1
yy . It is noted that the linear MMSE

estimator is identical to (5.7), if Y = y, due to the fact that the linear MMSE
estimator coincides with the overall MMSE estimator (among all linear and
nonlinear estimators) for the Gaussian case. ��
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Fig. 5.2 Signal model for
Kalman filtering

It should be emphasized that (5.16) is the unconditional error covariance in
general. Only when X and Y are jointly Gaussian is it also the conditional error
covariance. In the case when Σyy is singular, Σ−1

yy needs to be replaced by its pseudo-
inverse Σ+

yy for which the results in Theorem 5.5 still hold. See Problem 5.1 in
Exercises.

5.1.2 Kalman Filters

The design of state estimators is considerably more difficult than that of the
estimator in the previous subsection due to the dynamical model for the random
processes.

Consider the time-varying state-space system

x(t + 1) = Atx(t)+ v1(t), y(t) =Ctx(t)+ v2(t), (5.18)

where both {v1(t)} and {v2(t)} are random processes. Traditionally, {v1(t)} is
called the process noise and {v2(t)} the observation noise. See the signal model
in Fig. 5.2.

It is assumed that both {v1(t)} and {v2(t)} are white random processes with
Gaussian distributions for each t and with zero means:

E{v1(t)}= 0, E{v2(t)}= 0.

Since {v1(t)} and {v2(t)} are white, the covariance matrices are given by

E{v1(t + k)v1(t)
∗} = BtB

∗
t δ (k),

E{v2(t + k)v2(t)
∗} = DtD

∗
t δ (k),

E{v2(t + k)v1(t)
∗} = DtB

∗
t δ (k),

for some matrices Bt of size n×m and Dt of size p×m where n and p are the sizes
of the state vector x(t) and the observed output y(t), respectively. For this reason,
the state-space model (5.18) can be equivalently written as

x(t + 1) = Atx(t)+Btv(t), y(t) =Ctx(t)+Dtv(t) (5.19)
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for some equivalent white Gaussian random process {v(t)} where

E{v(t)}= 0m and E{v(t + k)v(t)∗}= Imδ (k). (5.20)

Basically, substitutions of v1(t) = Btv(t) and v2(t) = Dtv(t) are employed in
arriving at the state-space model (5.19).

Suppose that the initial condition x0 = x(0) is also random, and Gaussian
distributed with mean and covariance

E{x0}= x0 and cov{x0}= P0, (5.21)

respectively. Assume further that x0 is independent of {v(t)}, and x0 and v(0) are
jointly Gaussian. Then

x(1) = A0x0 +B0v(0)

is a linear combination of two jointly distributed Gaussian random vectors. Thus,
x(1) is Gaussian distributed as well. By the white assumption on {v(t)} and
independence of x0 to {v(t)}, x(1) and v(t) are independent random vectors for
all t ≥ 1. As a result, x(1) and v(1) are jointly Gaussian. Hence, by the induction
process, the state vectors {x(t)} are Gaussian random processes. In fact, x(t) and
v(t) are jointly Gaussian for each t ≥ 0. Optimal state estimators are concerned with
the MMSE estimate of x(t + 1) for t ≥ 0, based on the observation data {y(k)}t

k=0.
Due to the Gaussian property, such an MMSE estimator is also a MAP estimator.
The solution to the optimal state estimator is the well-publicized Kalman filtering
which will be studied in this subsection.

Under the Gaussian assumption, the MMSE estimator is easy to derive for x(t)
and x(t + 1) based on {y(k)}t

k=0 using the basic result in Theorem 5.5. Specifically
in the case of x(t + 1), denote

x(t + 1) = E{x(t + 1)}, Y t = E{Yt},

where Yt is the observation up to time t ≥ 0 with an expression

Yt = vec
([

y(0) y(1) · · · y(t)
])
. (5.22)

Then x(t+1)= Atx(t). The state vector x(t+1) and the observed data Yt are jointly
Gaussian with mean

{
Atx(t),Y t

}
and covariance

cov

{[
x(t + 1)

Yt

]}
=

[
Pt+1 Zt

Z∗
t Ψt

]
. (5.23)

It is easy to see thatΨt = cov{Yt}, Pt+1 = cov{x(t + 1)}, and

Zt = E
{
[x(t + 1)− xt+1]

[
Yt −Y t

]∗}
. (5.24)



5.1 Minimum Variance Estimation 185

Note that Ψt is nonsingular provided that det
(
DkD∗

k

) �= 0 for 0 ≤ k ≤ t. Hence,
Theorem 5.5 can be applied to compute the MMSE estimate for x(t + 1) based on
Yt which is given by

x̂t+1|t = Atxt +ZtΨ−1
t

(
Yt −Y t

)
(5.25)

by x(t + 1) = Atx(t). The associated error covariance according to (5.16) is

Σt+1|t = E
{[

x(t + 1)− x̂t+1|t
][

x(t + 1)− x̂t+1|t
]∗}

= Pt+1 −ZtΨ−1
t Z∗

t . (5.26)

However, the MMSE estimator as described in (5.25) and (5.26) has no value in
practice because the associated computational complexity grow with respect to the
time index t. A remarkable feature of the Kalman filter is its recursive computation
of the MMSE estimate x̂k+1|k and recursive update of the optimal error covariance
Σk+1 with complexity dependent only on the order of the state-space model in (5.19)
rather than the time index.

Theorem 5.6. Consider the state-space model in (5.19) where {v(t)} is the white
Gaussian random process satisfying (5.20) and the initial condition x(0)= x0 is also
Gaussian distributed, independent of {v(t)}, with the mean x0 and the covariance
P0. Suppose

BtD
∗
t = 0, Rt = DtD

∗
t > 0, ∀ t ≥ 0. (5.27)

Denote x̂k|i as the MMSE estimate of x(k) based on Yi, and Σk|i as the correspond-
ing error covariance where k ≥ i ≥ 0. Then

x̂t|t = x̂t|t−1 +Lt
[
y(t)−Ct x̂t|t−1

]
, (5.28)

Lt = Σt|t−1C∗
t

(
Rt +CtΣt|t−1C∗

t

)−1
, (5.29)

Σt|t = Σt|t−1 −Σt|t−1C∗
t

(
Rt +CtΣt|t−1C∗

t

)−1
CtΣt|t−1, (5.30)

x̂t+1|t = At x̂t|t , Σt+1|t = AtΣt|t A∗
t +BtB

∗
t , (5.31)

initialized by x̂0|−1 = x0 and Σ0|−1 = P0.

Proof. Given x̂t|t−1, Σt|t−1, and observation Yt , it can be verified that

E

{[
x(t)

y(t)

]∣∣
∣
∣
∣
Yt−1

}

=

[
x̂t|t−1

Ctxt|t−1

]

, (5.32)

cov

{[
x(t)

y(t)

]∣∣
∣
∣
∣
Yt−1

}

=

[
Σt|t−1 Σt|t−1C∗

t

CtΣt|t−1 Rt +CtΣt|t−1C∗
t

]

. (5.33)

Applying Theorem 5.5 with X = x(t) and Y = Yt leads to the MMSE estimate
x̂t|t and error covariance Σt|t in (5.28)–(5.30) which are referred to as measurement
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update. Because of (5.27), the random vectors Btv(t) and Dtvt are uncorrelated or
E{Btv(t)[Dtvt ]

∗}= BtD∗
t = 0. In fact, Btv(t) and Dtvt are independent of each other

due to the Gauss assumption. It follows that Btv(t) and y(t) are independent of each
other. Hence

E{Btv(t)|Yt}= E{Btv(t)|yt}= 0.

The above leads to E{x(t + 1)|Yt}= At x̂t|t +E{Btv(t)|Yt}= At x̂t|t and

Σt+1|t = AtΣt|t A∗
t +BtB

∗
t

or (5.31) that is referred to as time update. The proof is now complete. ��
Theorem 5.6 indicates that Kalman filtering is basically an efficient and recursive

algorithm for implementing the MMSE estimator. Recall that the computational
complexity for those in (5.25)–(5.26) grows with respect to the time index. It is
surprising that the MMSE estimator is linear and finite-dimensional with the same
order as that of the signal model in (5.19), rather than nonlinear and infinite-
dimensional as one might have speculated at the beginning. Of course, such linear
and finite-dimensional properties of the MMSE estimator are owing to the Gaussian
assumption. If the noise process {v(t)} is not Gaussian, then the Kalman filter can
only be claimed to be optimal among all linear filters of arbitrary orders in light of
Theorem 5.5. In addition, its property of being an MAP estimator is lost in general.

It is observed that the Kalman filter in Theorem 5.6 actually consists of two
MMSE estimators: One is the measurement update as described in (5.28)–(5.30),
and the other is time update as described in (5.31). While Theorem 5.6 is the main
result of Kalman filtering, Kalman filter is often referred to the recursive algorithm
for computing x̂t+1|t based on x̂t|t−1. The next result shows the structure of such an
optimal one-step predictor. The proof is left as an exercise (Problem 5.9).

Theorem 5.7. Denote Σk = Σk|k−1 for each integer k ≥ 1. Under the same
hypotheses of Theorem 5.6, the MMSE estimate x̂t+1|t for x(t + 1) based on the
observation Yt = {y(k)}t

k=0 is given recursively as

x̂t+1|t = [At +KtCt ] x̂t|t−1 −Kty(t), x̂0|−1 = x0, (5.34)

Kt =−AtΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 , (5.35)

Σt+1 = AtΣtA
∗
t +BtB

∗
t +KtCtΣt A

∗
t , Σ0 = P0. (5.36)

It is interesting to observe that (5.34) can be written as

x̂t+1|t = At x̂t|t−1 −Kt
[
ŷt|t−1 − y(t)

]

with ŷt|t−1 = Ct x̂t|t−1. So, it is similar to (5.19) with only one difference in that
Btv(t) is replaced by −Kt

[
y(t)−Ct x̂t|t−1

]
. A reflection on this indicates that the

vector
(
y(t)−Ct x̂t|t−1

)
provides new information that is not contained in Yt−1.
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For this reason,
{(

y(t)−Ct x̂t|t−1
)}

is called innovation sequence which is in fact a
white process (refer to Problem 5.12 in Exercises). It is also interesting to observe
that the error covariance Σt+1|t is independent of the observation Yt . That is,
no one set of measurements helps any more than any other set to eliminate the
uncertainty in xt . For convenience, Σt+1 := Σt+1|t will be used in the rest of the
text. Equation (5.36) governing the error covariance is called the difference Riccati
equation (DRE).

The initial covarianceΣ0 =P0 measures the confidence of the a priori information
on the initial estimate x0|−1 = x0. Small P0 means high confidence whereas large P0

means low confidence. In practice, the knowledge on the a priori information of
x0 and P0 may not be available. In this case, x0 = 0 and P0 = ρIn are often taken
with ρ > 0 sufficiently large. However, so long as the Kalman filter is stable (to be
investigated in the next subsection), the impact of x0 and P0 to the MMSE estimate
x̂t+1|t will fade away as t gets large. The next result is obtained for time-invariant
systems.

Proposition 5.1. Suppose that (At ,Bt ,Ct ,Dt) = (A,B,C,D) for all t and the hy-
potheses of Theorem 5.6 hold. If Σ0 = 0, then the solution to the DRE (5.36) is
monotonically increasing, i.e., Σt+1 ≥ Σt for all t ≥ 0.

Proof. For t = 0, the DRE (5.36) gives Σ1 = BB∗ ≥ Σ0 = 0 in light of the time-
invariance hypothesis. Using the induction, assume that Σk ≥ Σk−1 for k > 1. The
proof can be completed by showing Σk+1 ≥ Σk. Denote Δt = Σt −Σt−1 for t = k and
k+ 1. The DRE (5.36) is equivalent to

Σt+1 = A
(
I+ΣtC

∗R−1C
)−1ΣtA

∗+BB∗, R = DD∗.

See Problem 5.10 in Exercises. Taking the difference Δk+1 = Σk+1 −Σk gives

Δk+1 = A
[(

I+ΣkC
∗R−1C

)−1Σk −Σk−1 (I+C∗RCΣk−1)
−1
]

A∗

= A
(
I +ΣkC

∗R−1C
)−1Δk

(
I +C∗R−1CΣk−1

)−1
A∗

= A
(
I +Σk−1C∗R−1C+ΔkC

∗R−1C
)−1Δk (I +C∗RCΣk−1)

−1 A∗

= Ak−1

[
I+ΔkC

∗ (R+CΣkC
∗)−1 C

]−1
ΔkA

∗
k−1 ≥ 0

by Δk = Σk −Σk−1 ≥ 0 where Ak−1 = A
(
I+Σk−1C∗R−1C

)−1
. ��

Before ending this subsection, the removal of the assumption (5.27) needs to be
addressed. It is noted that the difference between the estimated and the true state
vectors satisfies the difference equation

ê(t + 1) = (At +KtCt)ê(t)+ (Bt +KtDt)v(t) (5.37)
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by taking the difference of (5.19) and (5.34) where ê(t) = x(t)− x̂t|t−1. This is
the error equation for the associated Kalman filter under the assumption (5.27)
or BtD∗

t = 0 for all t. For the case BtD∗
t �= 0, it is claimed that the error equation

associated with the MMSE estimate has the form

ê(t + 1) =
(
Ãt + K̃tCt

)
ê(t)+

(
B̃t + K̃tDt

)
v(t), (5.38)

Ãt = At −BtD∗
t R−1

t Ct , B̃t = Bt
[
Im −D∗

t R−1
t Dt

]
, (5.39)

where B̃tD∗
t = 0. Specifically, the state-space system (5.19) can be written as

x(t + 1) = Ãtx(t)+ B̃tv(t)+BtD
∗
t R−1

t y(t). (5.40)

Because B̃tD∗
t = 0, and y(t) is the measured output, the Kalman filter can be adapted

to compute the MMSE estimate for x(t + 1) in accordance with

x̂t+1|t =
[
Ãt + K̃tCt

]
x̂t|t−1 − K̃ty(t)+BtD

∗
t R−1

t y(t), (5.41)

where the Kalman gain and the error covariance are given by

K̃t = −ÃtΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 , (5.42)

Σt+1 = ÃtΣt Ã
∗
t + B̃t B̃

∗
t − ÃtΣtC

∗
t (Rt +CtΣtC

∗
t )

−1 CtΣt Ã
∗
t , (5.43)

respectively. The Kalman gain K̃t is associated with
(
Ãt , B̃t

)
, but Σt is the same error

covariance as before. Subtracting (5.41) from (5.40) yields (5.38) as claimed earlier.
On the other hand, (5.41) can be equivalently written as

x̂t+1|t = (At +KtCt) x̂t|t−1 −Kty(t) Kt = K̃t −BtD
∗
t R−1

t , (5.44)

where Kt is the Kalman gain associated with (At ,Bt). There holds

Kt = K̃t −BtD
∗
t R−1

t =−(AtΣtC
∗
t +BtD

∗
t )(Rt +CtΣtC

∗
t )

−1 . (5.45)

Therefore, the Kalman filter has the same form with a slight increase in the
complexity of computing the Kalman gain and the associated DRE for the error
covariance. The next result summarizes the above discussion.

Corollary 5.1. Let Ãt and B̃t be as in (5.39). Under the same hypotheses of
Theorem 5.7, except that BtD∗

t �= 0, the Kalman filter for x(t + 1) based on the
observation Yt = {y(k)}t

k=0 is given recursively by (5.44), (5.45), and (5.43) which
collapse to those in Theorem 5.7 for the case BtD∗

t = 0.

Corollary 5.1 indicates that there is no loss of generality in focusing on the
case BtD∗

t = 0 for Kalman filtering. The case BtD∗
t �= 0 causes only some minor

computational modifications for (linear) MMSE estimators.



5.1 Minimum Variance Estimation 189

5.1.3 Stability

An immediate question regarding the Kalman filter is its stability. Are Kalman filters
always stable? What stability properties do Kalman filters possess? Such questions
will be answered first for time-varying systems and then for time-invariant systems.
The following stability result holds.

Theorem 5.8. Let the state-space model be as in (5.19) with {v(t)} the white
noise satisfying (5.20). For the case BtD∗

t = 0, assume that (At ,Bt) is uniformly
stabilizable and (Ct ,At) is uniformly detectable. Then the Kalman filter as described
in Theorem 5.7 is asymptotically stable. For the case BtD∗

t �= 0, assume that
(
Ãt , B̃t

)

is uniformly stabilizable, and (Ct ,At) is uniformly detectable where Ãt and B̃t are
as in (5.39). Then the Kalman filter as described in Corollary 5.1 is asymptotically
stable.

Proof. If BtD∗
t = 0, then the stabilizability and detectability assumptions imply the

existence of linear state estimation gains {Lt} such that

x(t + 1) = (At +LtCt)x(t)

is asymptotically stable. Hence, the difference Lyapunov equation

Qt+1 = (At +LtCt)Qt(At +LtCt)
∗+LtRtL

∗
t +BtB

∗
t

has bounded nonnegative solutions {Qt}. On the other hand, the DRE (5.36) which
governs the error covariance of the Kalman filter can be written into the same form
as the above difference Lyapunov equation:

Σt+1 = (At +KtCt)Σt(At +KtCt)
∗+BtB

∗
t +KtRtK

∗
t .

See Problem 5.10 in Exercises. It is noted that
(

A+KtCt ,
[

Bt KtR
1/2
t

])
is

stabilizable. In light of the discussions at the end of Chap. 3, stability of the Kalman
filter is hinged to the boundedness of Σt as t → ∞. But the Kalman filter is optimal
among all linear estimators. It follows that Tr{Σt} ≤ Tr{Qt}. The Kalman filter is
thus asymptotically stable. The proof for the case BtD∗

t �= 0 is similar, and is skipped.
��

For asymptotically exponentially stable systems, the assumptions of uniform
stabilizability and detectability hold. Hence, the Kalman filter preserves the stability
property that is owing to the fact Σt ≤ Pt or the error covariance for the estimated
state vector is no larger than the covariance of the state vector to be estimated,
which is in turn owing to the optimality of the Kalman filter. The hypothesis on
stabilizability of (At ,Bt) in Theorem 5.8 might seem unnecessary by the argument
on the existence of the stable linear estimators. However, it cannot be removed for
the stability result in Theorem 5.8 to hold true. Nevertheless, this hypothesis can be
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weakened for stability of Kalman filters if the underlying state-space system is time
invariant and the additive noise process is stationary. For this purpose, consider the
following signal model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t), (5.46)

where x(0) = x0 with mean x0 and covariance P0. Suppose that x0 and {v(t)} are
independently distributed and {v(t)} satisfies (5.20). Then {Bv(t)} and {Dv(t)} are
both WSS white processes. Stability of A and E{x(t)}= 0 imply that {x(t)} can be
made a stationary process, provided that P = P0 satisfies the Lyapunov equation

P = APA∗+BB∗. (5.47)

Assume that A is stable. Then there is a unique solution P≥ 0 to the above Lyapunov
equation. If P0 �= P, then {x(t)} is not a WSS process in general. But, it is WSS
asymptotically. Indeed, let Pk = cov{x(k)} for k ≥ 0. Then

Pt+1 = APtA
∗+BB∗ = At+1P0(A

∗)t+1 +
t

∑
k=0

AkBB∗(A∗)k

by P0 = cov{x0}. Stability of A implies that

P = lim
t→∞

Pt+1 =
∞

∑
k=0

AkBB∗(A∗)k

exists and is bounded that is the unique solution to (5.47). However, if A is not a
stability matrix, then {x(t)}may diverge and is thus not a WSS process in general. A
somewhat surprising fact is that the error state vectors ê(t) = x(t)− x̂t|t−1 associated
with the Kalman filter are WSS process asymptotically, provided that the Kalman
filter is asymptotically stable. Stability of A is not required. Consider the following
nth order LTI estimator

x̂t+1 = (A+KC)x̂t −Ky(t), x̂0 = x(0), (5.48)

K =−AΣC∗ (R+CΣC∗)−1 , (5.49)

Σ = A
(
In +ΣC∗R−1C

)−1ΣA∗+BB∗. (5.50)

This is the same as the Kalman filter in (5.34)–(5.36) after removing the time indexes
of the matrices. The equation for the error covariance in (5.50) is called the algebraic
Riccati equation (ARE).

Example 5.9. Consider the inverted pendulum system. Its state-space realization
after discretization with sampling period Ts = 0.25 is obtained in Example 3.16
of Chap. 3. Suppose that 0.1BB∗ is the covariance for the process noise and
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diag(0.1, 0.01) is the covariance for the measurement noise, assuming that the
noises for measurements of position and angle are uncorrelated. The Matlab
command “dare” can be used to compute the solution Σ to the ARE in (5.50) and
the stationary estimation gain K in (5.49). The numerical results are given by

Σ =

⎡

⎢
⎢
⎣

21.762 5.5171 1.6675 0.7219
5.5171 1.6269 0.6957 0.4560
1.6675 0.6957 0.4602 0.3910
0.7219 0.4560 0.3910 0.3699

⎤

⎥
⎥
⎦ , K =

⎡

⎢
⎢
⎣

0.4017 −44.5166
0.4402 −10.6004
0.4451 −2.5400
0.4330 −0.6398

⎤

⎥
⎥
⎦ .

It can be easily verified with Matlab that the eigenvalues of (A+KC) are all positive
real, and strictly smaller than 1. Hence, (A+KC) is a stability matrix, implying that
the error for estimation of the state vector approaches zero asymptotically.

The ARE solution computed in Matlab, if it exists, is called stabilizing solution
that is defined next.

Definition 5.1. The solution Σ to the ARE (5.50) is said to be stabilizing, if K as in
(5.49) is stabilizing. That is, (A+KC) is a stability matrix.

The stabilizing solution to ARE (5.50), if it exists, is unique (refer to
Problem 5.13 in Exercises). The next result regards stability of the Kalman filter.

Theorem 5.10. Suppose that (A,B) is stabilizable, BD∗ = 0, and R = DD∗ > 0 for
the random process in (5.46) where {v(t)} is WSS with zero mean and identity
covariance. If the ARE (5.50) admits a stabilizing solution, then the Kalman filter
for (5.46) is asymptotically stable and its associated state estimation error vector
ê(t) = x(t)− x̂t|t−1 is WSS asymptotically.

Proof. Let Σt be the solution to the DRE (5.36). Since the time-invariant estimator
described in (5.48)–(5.49) is a special case of the linear estimator in Problem 5.11,
its error covariance Σ ≥ Σt ≥ 0 for all t ≥ 0, provided that Σ ≥ P0 ≥ 0. In this case,
{Σt} is monotonically increasing in light of Proposition 5.1 and uniformly bounded
above by Σ . Hence, its limit Σ exists. Since the limit of the DRE (5.36) is identical
to the ARE (5.50), it can be written as

Σ =
(
A+KC

)
Σ
(
A+KC

)∗
+KRK

∗
+BB∗,

where K = −AΣC∗ (R+CΣC∗)−1
. Stabilizability of (A,B) implies that Σ is

stabilizing, and thus Σ = Σ by its uniqueness. As such the Kalman filter converges
to the linear estimator as described in (5.48)–(5.49) which is stable. The fact that the
Kalman filter is linear implies that its stability is independent of the initial condition
x̂0|−1 = x0 which in turn implies that the convergence of Σt to Σ is independent of
the boundary condition Σ0 = P0. Moreover, the conditional mean and covariance
associated with ê(t) are zero and Σ (asymptotically), respectively. So, the state error
vector ê(t) is WSS asymptotically. The proof is completed. ��
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The LTI estimator in (5.48)–(5.49) is referred to as stationary Kalman filter.
It is the state-space version of the Wiener filter. In lieu of the optimality properties
of the Kalman filter, the stationary Kalman filter outperforms all LTI estimators of
arbitrary orders. If, in addition, the noise process is Gaussian, then the stationary
Kalman filter outperforms all (linear or nonlinear) time-invariant estimators. The
premise is the existence of the stabilizing solution to the ARE (5.50) for which the
following result provides the necessary and sufficient condition.

Theorem 5.11. There exists a stabilizing solution to the ARE in (5.50), if and only
if (C,A) is detectable and

rank
{[

A− e jωIn B
]}

= n ∀ ω ∈ IR.

Different from time-varying systems with nonstationary noises, stabilizability
of (A,B) is not required so long as (A,B) does not have unreachable modes on
the unit circle. The proof is delayed to the next section. After the brain-storm of
materials on Kalman filtering in the style of theorem/proof, it will be wise to pause
for a while with readings of a few examples. It does need to be pointed out though
that the results on time-invariant systems and WSS noises are established under
the assumption that BD∗ = 0. If the assumption does not hold, then the stationary
Kalman filter is still the same as in (5.48) but the Kalman gain in (5.49) and the
ARE in (5.50) need to be replaced by

K = −(AΣC∗+BD∗)
(
R+CΣC−1)−1

, (5.51)

Σ = Ã
(
In +ΣC∗R−1C

)−1Σ Ã∗+B
(
I −D∗R−1D

)
B∗, (5.52)

respectively, where Ã = A−BD∗R−1C. Moreover, the ARE (5.52) has a stabilizing
solution, if and only if (C,A) is detectable, and

rank

{[
A− e jωIn B

C D

]}
= n+ p ∀ ω ∈ IR

with p the number of rows of C. Its proof is again delayed to the next section.
Two examples will be presented which are designed to help digest the theoretical

results in this section. The first example is modified from digital communications as
illustrated in the following Fig. 5.3 and discussed next.

Example 5.12. Consider estimation of the symbol s(t) in multiuser wireless data
communications. The multipath channel is described by

r(t) =
�

∑
k=1

Hk(t)s(t − k) (5.53)
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Fig. 5.3 Estimation of the
symbol inputs

which is an MA model. It is assumed that the channel information or the impulse
response {Hk(t)} is known at time t and has dimension p×m. The objective is to
design linear receivers that estimate the symbol s(t − d) for some d satisfying 1 <
d ≤ � with the minimum error variance. The design problem seems to be different
from Kalman filtering but is intimately related to the estimation problem in this
subsection.

First, the input symbols are assumed to be independent and have the same
(equiprobable) distributions. As such, {s(t)} is white with the zero mean and
covariance σ2

s I where σ2
s is the transmission power for each symbol. For simplicity,

σs = 1 is taken via some suitable normalization. Secondly, the channel model can
be associated with a realization with the state vector

x(t) = vec
([

s(t − 1) s(t − 2) · · · s(t − �)
])
. (5.54)

Denote v(t) =
[

s(t)∗ n(t)∗
]∗

. The observed signal y(t) at the receiver site can be
described by the same state-space model in (5.19) with

At = A =

[
0 0m×m

Im(�−1) 0

]
,Bt = B =

[
Im 0
0 0m(�−1)×p

]

Ct =
[

H1(t) · · · H�(t)
]
,Dt =

[
0 Σ

1
2

n

]
,

(5.55)

where Σn > 0 is the covariance of n assumed to be white and WSS. Hence, the
signal to be estimated is given by

s(t − d) = Jdx(t), Jd =
[

0 · · · 0 Im 0 · · · 0
]
, (5.56)

where 1 < d ≤ � and Im is the dth block of Jd . Finally, it is noted that v(t) is white
but not Gaussian. If H0(t) ≡ 0, i.e., there is a pure delay in the multipath channel,
then BD∗

t = 0. An application of Kalman filtering yields the optimal linear estimator
for s(t − d) = Jdx(t) = Jd+1x(t + 1) based on observations {y(k)}t

k=0 given by

x̂t+1|t = (A+KtCt)x̂t|t−1 −Kty(t), Kt =−AΣtC
∗
t (R+CtΣtC

∗
t )

−1 ,

Σt+1 = AΣtA
∗+BB∗−AΣtC

∗
t (R+CtΣtC

∗
t )

−1 CtΣtA
∗,
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where R = Σn. Any other linear estimator for x(t + 1) has an error variance no
smaller than Tr{Σt+1}, and the error variance for ŝ(t − d) is also the smallest
among all linear receivers. Recall that {s(t − k)}�k=1 are subsumed in x(t). It is
thus concluded that ŝ(t − d|t) = Jd x̂t|t = Jd+1x̂t+1|t is an optimal linear estimate
of s(t −d). See also Problem 5.11 in Exercises. If the channel is time invariant, then
Hk(t) = Hk, and thus, Ct =C ∀ t. In this case, the linear MMSE estimator converges
to the stationary Kalman filter:

x̂t+1|t = (A+KC)x̂t|t−1 −Ky(t), ŝ(t − d|t) = Jd+1x̂t+1|t ,

Σ = A
(
In +ΣC∗R−1C

)−1ΣA∗+BB∗, K =−AΣC∗ (R+CΣC∗)−1 .

As A is a stability matrix, the solution Σ ≥ 0 exists and is stabilizing.

Example 5.12 shows that if the signals to be estimated are output of the form
z(t) = Jx(t + 1), then the optimal output estimator is the same as the optimal state
estimator. Hence, the Kalman filter serves as the optimal linear estimator for both
state and output estimation, provided that both estimators are restricted to being
strictly causal. The following example regards the application of Kalman filtering to
system identification.

Example 5.13. Suppose that the system is described by an ARMA model

y(t) =
n

∑
k=1

αky(t − k)+
m

∑
k=1

βku(t − k)+η(t),

where {η(t)} is white and Gaussian. Suppose that

h =
[
α1 · · · αn β1 · · · βm

]∗

is also Gaussian with a priori mean h and covariance P. It is reasonable to assume
that {η(t)} and h are independent. The goal of system identification is to estimate
the true value of h based on measured data {y(t)} and the deterministic input data
{u(t)}. For this purpose, consider the fictitious state-space equation

x(t + 1) = x(t) = h, y(t) = q(t)x(t)+η(t), (5.57)

where q(t) =
[

y(t − 1) · · · y(t − n) u(t − 1) · · · u(t −m)
]

is a row vector. This cor-
responds to the random process model (5.19) with At = In+m,Bt = 0n+m,Ct = q(t)
and Dt = [cov{η(t)}]1/2. An application of the Kalman filtering with ĥt = x̂t+1|t
yields the estimator:

ĥt = ĥt−1 +Σtq(t) [Rt +q(t)Σtq∗(t)]−1 [y(t)−q(t)ĥt−1
]
,

Σt+1 = Σt −Σtq(t)∗ [Rt +q(t)Σtq(t)∗]−1 q(t)Σt , Σ0 = P, (5.58)
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where ĥ−1 = h and Rt = cov{η(t)}. It is noted that Σt+1 is not truly the error
covariance associated with ĥt by the fact that Ct = q(t) is random to which the
Kalman filter in Theorem 5.7 does not apply. Hence, the estimator in (5.58) is
not an MMSE estimator for h. This also explains why the MMSE estimator in
(5.58) is nonlinear in terms of the observed data {y(k)}t−1

k=t−n in Ct = q(t), even
though the Kalman filter is linear. On the other hand, if at time t, y(k) is treated
as deterministic containing the realization of the noise process η(k) for k < t, then
the estimator in (5.58) can be interpreted as an MMSE estimator for h. However,
this interpretation is rather far-fetched. A more interesting case is when n = 0, i.e.,
the system is an MA model. In this case, the row vector q(t) does not contain
any measured output data {y(k)}t

k=0. Since the input {u(t)} is deterministic, the
estimator in (5.58) becomes linear, and thus, the estimator in (5.58) is truly the
MMSE estimator for h outperforming any other system identification algorithms
for FIR models. Moreover, Σt+1 is truly the error covariance associated with ĥt . If
the joint Gaussian assumption is dropped, then the estimator in (5.58) is the linear
MMSE estimator outperforming any other linear algorithms for identification of FIR
models. Nonetheless, such claims do not hold for the case n > 0 or the IIR models.

5.1.4 Output Estimators

The Kalman filter estimates x(t) or x(t + 1) based on observations Yt = {y(k)}t
k=0

at time t ≥ 0. A more practical problem is the output estimation or estimation of
the linear combination of the state vector and the process noise at time t based on
observation Yt . Such an estimation problem is described by the following state-
space model:

⎡

⎣
x(t + 1)

z(t)
y(t)

⎤

⎦=

⎡

⎣
At Bt

C1t D1t

C2t D2t

⎤

⎦
[

x(t)
v(t)

]
, (5.59)

where v(t) is the white noise process as in (5.20), the initial condition x(0) = x0 is
a random vector, and z(t) is the signal to be estimated. The goal is design of a linear

estimator represented by state-space realization
(

Ât , B̂t ,Ĉt , D̂t

)
such that ẑt|t , the

estimate of z(t) based on the observation {y(k)}t
k=0, minimizes the error variance

of ez(t) = z(t)− ẑt|t . Figure 5.4 shows the schematic diagram for output estimation
that is different from the state estimation problem in Kalman filtering. In the special
case of C1t = I and D1t = 0 for all t, it aims to estimate x(t), based on observation
{y(k)}t

k=0. On the other hand, if C1t = 0 and D1t = I for all t, then it is an estimator
for the noise process v(t) based on observations {y(k)}t

k=0. Therefore, the output
estimation problem is more versatile and more useful in engineering practice. It
turns out that among all linear estimators, the MMSE estimator can be obtained
from the Kalman filter with some minor modifications.
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Fig. 5.4 Schematic diagram for linear output estimator

Theorem 5.14. Let the state-space model be as in (5.59) with {v(t)} the white
noise satisfying (5.20). Suppose that Rt = D2tD∗

2t is nonsingular and x(0) = x0 has
mean x0 and covariance P0 which is independent of {v(t)}. Let

(
Ãt , B̃t

)
be as in

(5.39), i.e.,

Ãt = At −BtD
∗
2tR

−1
t C2t , B̃t = Bt

[
I−D∗

2tR
−1
t D2t

]
. (5.60)

Then the linear MMSE estimation of z(t) based on observation {y(k)}t
k=0 is given

recursively by

x̂t+1|t = [At +KtC2t ] x̂t|t−1 −Kty(t), x̂0|−1 = x0,

ẑt|t = [C1t +LtC2t ] x̂t|t−1 −Lty(t), (5.61)

where the Kalman gains Kt and Lt are given by

[
Kt

Lt

]
= −

[
AtΣtC∗

2t +BtD∗
2t

C1tΣtC∗
2t +D1tD∗

2t

]

(Rt +C2tΣtC
∗
2t)

−1 , (5.62)

Σt+1 = Ãt
(
In +ΣtC

∗
2tR

−1
t C2t

)−1Σt Ã
∗
t + B̃tB̃

∗
t , Σ0 = P0. (5.63)

Proof. The trick of the proof is to convert the output estimation to Kalman filtering.
For simplicity, assume that BtD∗

2t = 0 and D1tD∗
2t = 0 for each t. Augment the state

vector

x̆(t) =
[

x(t)
z(t − 1)

]
, x̆(0) =

[
x0

0

]
.

Its associated a priori covariance is P̆0 = diag(P0,0). There holds

x̆(t + 1) = Ăt x̆(t)+ B̆tv(t), y(t) = C̆t x̆(t)+ D̆tv(t) (5.64)

by straightforward calculation where D̆t = D2t and

Ăt =

[
At 0
C1t 0

]
, B̆t =

[
Bt

D1t

]
, C̆t =

[
C2t 0

]
. (5.65)
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Since x(t + 1) and z(t) are subsumed in x̆(t + 1), the MMSE output estimator for
z(t) is equivalent to the MMSE estimation of x̆(t + 1), among all linear estimators,
based on {y(k)}t

k=0. Recall the discussion after Example 5.12. Hence, the optimal
solution is the Kalman filter in Theorem 5.7 for the random process in (5.64) due
to B̆t D̆∗

t = 0 by the hypothesis BtD∗
2t = 0 and D1tD∗

2t = 0 leading to the DRE and
Kalman gain:

Σ̆t+1 = Ăt
(
I+ Σ̆tC̆

∗
t R−1

t C̆t
)−1 Σ̆t Ă

∗
t + B̆tB̆

∗
t , (5.66)

K̆t = −Ăt Σ̆tC̆
∗
t

(
Rt + C̆tΣtC̆

∗
t

)−1
. (5.67)

Partition Σ̆k into a 2× 2 block matrix with Σk the (1, 1) block which is the error
covariance for x̂k|k−1 at k = t and k = t +1. Then the (1, 1) block of the DRE (5.66)
and the Kalman gain in (5.67) are obtained as

Σt+1 = At
(
I +ΣtC

∗
2tR

−1
t C2t

)−1ΣtA
∗
t +BtB

∗
t ,

K̆t =

[
Kt

Lt

]
=−

[
AtΣtC∗

2t ,

C1tΣtC∗
2t

]

(Rt +C2tΣtC
∗
2t)

−1

which are the same as in (5.63) and (5.62), respectively, for the case BtD∗
2t = 0. It

follows that the Kalman filter for x̆(t + 1) in the system (5.64) is given by

[
x̂t+1|t
ẑt|t

]

=
(
Ăt + K̆tC̆t

)
[

x̂t|t−1

ẑt−1|t−1

]

− K̆ty(t),

=

[
At +KtC2t

C1t +LtC2t

]
x̂t|t−1 −

[
Kt

Lt

]
y(t),

by substitution of the expressions in (5.65). The above are the same as the linear
MMSE output estimator in (5.61) for the case BtD∗

2t = 0. If BtD∗
2t �= 0 and

D1tD∗
2t �= 0, the same procedure can be carried out using the Kalman filtering

results in Corollary 5.1 that will lead to the linear MMSE estimator in (5.61) with
the Kalman gains in (5.62). The details are omitted here and left as an exercise
(Problem 5.15). ��

Theorem 5.14 indicates that the optimal output estimate ẑt|t is a linear function of
the optimal state estimate x̂t|t−1 in light of (5.61) and the associated error covariance
is irrelevant to C1t and D1t . In this sense, optimal output estimation is equivalent to
optimal state estimation. The realization of the linear MMSE output estimator in
(5.61) is given by

(
Ât , B̂t ,Ĉt , D̂t

)
= (At +KtC2t ,−Kt ,C1t +LtC2t ,−Lt)
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which has the same order as the original state-space model in (5.59). Its input is
y(t), and output is ẑt|t as shown in Fig. 5.4. In light of the Kalman filtering, the linear
estimator in (5.61) is optimal among all linear estimators with arbitrary orders. If, in
addition, the noise process {v(t)} and the initial condition x0 are independent, and
jointly Gaussian, then the linear estimator in (5.61) is optimal among all possible
output estimators, including those nonlinear ones. The next example is related to
Example 5.12, and illustrates the utility of output estimators.

Example 5.15. A commonly seen state-space model in applications is

x(t) = Atx(t − 1)+Btv(t), y(t) =Ctx(t)+Dtv(t) (5.68)

that appears differently from the ones discussed in this chapter thus far. It will be
shown that the results on output estimation are applicable to derive the optimal state
estimator for the model in (5.68).

For simplicity, assume that Bt+1D∗
t = 0 and Rt = DtD∗

t > 0. Under the same
hypotheses on white and Gaussian v(t), and on the initial state x(0) that has
mean x0 and covariance P0, Theorem 5.14 can be used to derive the equations for
measurement update:

x̂t|t = [I+LtCt ] x̂t|t−1 −Lty(t), (5.69)

Σt|t = Σt −ΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 CtΣt , (5.70)

initialized by x̂0|−1 = x0 and covariance Σ0 = P0 where

Lt =−ΣtC
∗
t (Rt +CtΣtC

∗
t )

−1 . (5.71)

Recall Σt = Σt|t−1. Moreover, the time update equations can be obtained as

x̂t+1|t = At+1x̂t|t , Σt+1 = At+1Σt|tA∗
t+1 +Bt+1B∗

t+1. (5.72)

Specifically, the state-space model in (5.68) can be rewritten as

x(t + 1) = At+1x(t)+Bt+1v(t + 1), y(t) =Ctx(t)+Dtv(t). (5.73)

Because Bt+1v(t + 1) and Dtv(t) are uncorrelated, replacing At by At+1 and
Bt by Bt+1 in Theorem 5.14 leads to the optimal state estimator or one-step
predictor x̂t+1|t = E{x(t + 1)|Yt}:

x̂t+1|t = [At+1 +KtCt ] x̂t|t−1 −Kty(t) (5.74)

initialized by x̂0|−1 = x0 where Kt = At+1Lt is the Kalman gain. In addition with
Σ0 = P0, the associated error covariance Σt+1 for t ≥ 0 can be computed according
to the DRE
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Σt+1 = At+1Σt
(
I+C∗

t R−1
t CtΣt

)−1
A∗

t+1 +Bt+1B∗
t+1. (5.75)

For x̂t|t = E{x(t)|Yt}, setting z(t) = x(t) leads to the optimal estimator in (5.69)
by C1t = I, D1t = 0, and C2t =Ct . The fact of Kt = At+1Lt and optimal estimate in
(5.69) yield time update equations in (5.72). A comparison of Σt+1 in (5.72) with
the one in (5.75) shows

Σt|t = Σt
(
I+C∗

t R−1
t CtΣt

)−1
(5.76)

that is the same error covariance in (5.70).

The linear MMSE output estimator as in Theorem 5.14 has the same stability
properties as those of the Kalman filter by the fact that they have the identical covari-
ance matrices for the state vectors. Hence, all the results in the previous subsection
apply to the linear MMSE output estimators, which will not be repeated here except
for the following. Suppose that the state-space realization in (5.59) is independent
of time t. Let Ã = A−BD∗

2R−1C2, R= D2D∗
2, and B̃ = B

(
I−D∗

2R−1D2
)
. If the ARE

Σ = Ã
(
In +ΣC∗

2R−1C2
)−1Σ Ã∗+ B̃B̃∗ (5.77)

has a stabilizing solution Σ ≥ 0, then the output estimator in (5.61) is asymptotically
stable, in light of Theorem 5.10. In this case, the output estimator in (5.61) converges
asymptotically to the following time-invariant system

x̂t+1|t = [A+KC2] x̂t|t−1 −Ky(t), x̂0|−1 = x0,

ẑt|t = [C1 +LC2] x̂t|t−1 −Ly(t), (5.78)

where K and L have the same expressions as in (5.62) with the time index t removed.
One may employ the time-invariant estimator (5.78) directly for output estimation
which can be computed off-line in order to reduce the computational complexity
in its implementation. Clearly, the estimator in (5.78) admits the transfer matrix,
denoted by F(z) and given by

F(z) =−
[
L+(C1 +LC2)(zIn −A−KC2)

−1 K
]
. (5.79)

This section is concluded with an example on Wiener filtering (see Fig. 5.5).

Example 5.16. (Wiener filtering) Consider the signal model as in Fig. 4.5 where
v1(t) and v2(t) are independent white noises of zero mean and identity covariance,
and G1(z) and G2(z) are causal and stable rational transfer matrices. Wiener filtering
aims to design a LTI filter W(z) which estimates z(t−m), the output of G1(z), based
on observations y(k) for all k ≤ t and some integer m. It is termed as smoothing, if
m > 0 (estimation of the past output), filtering, if m = 0 (estimation of the present
output), and prediction, if m < 0 (estimation of the future output). It is claimed
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Fig. 5.5 Signal model for
Wiener filtering

Fig. 5.6 Wiener filter as an output estimator

that these three estimation problems can all be cast into the output estimation as
illustrated in the figure below, provided that z−mG1(z) is causal.

Indeed, if z−mG1(z) is causal, then

G(z) =

[
z−mG1(z) 0

G1(z) G2(z)

]

=

⎡

⎣
A B

C1 D1

C2 D2

⎤

⎦

for some realization matrices. Let v(t) =
[

v1(t) v2(t)
]′

. Then Wiener filtering can
be converted into output estimation as shown in Fig. 5.6. Consequently, the results
on output estimation can be applied to design the stationary optimal estimator
represented by W(z) which is the required Wiener filter. If z−mG1(z) is not causal,
decompose

z−mG1(z) = GA(z)+GC(z)

with GC(z) causal and GA(z) strictly anticausal. A state-space realization of
G(z) can again be obtained with z−mG1(z) replaced by GC(z). It can be shown
(Problem 5.19 in Exercises) that the Wiener filter does not depend on GA(z).

5.2 Minimum Variance Control

A common control problem is disturbance rejection. Engineering systems are de-
signed to operate in various environments where unknown and random disturbances
are unavoidable and detrimental to the system performances. Disturbance rejection
aims to design effective control laws that suppress the devastating effects of the
disturbances and ensure that the system operates as desired. Often it results in
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feedback control laws. This section investigates the case when disturbances are
white noise processes and the variance is the performance measure for control
system design.

The system under consideration is described by the state-space model

x(t + 1) = Atx(t)+B1tv(t)+B2tu(t), z(t) =Ctx(t)+Dtu(t), (5.80)

where v(t) is the white noise disturbance with the same statistics as in (5.20), u(t) is
the control input signal, and z(t) is the output to be controlled. The initial condition
x(0) = x0 is assumed to be random and has mean x0 and covariance P0. Due to the
random nature and the dynamic impact of the initial condition, x0 is accounted as
part of the disturbance. The objective is to design a control law UT = {u(t)}T−1

t=0 that
minimizes

V[0,T) =
T−1

∑
t=0

Vt , Vt = E
{
‖z(t)‖2 |UT

}
= Tr(E{z(t)z(t)∗|UT}) (5.81)

with Vt the variance of the controlled output.
The aforementioned control problem is very different from the estimation

problem in the previous section, but the two are closely related. In fact, there
exists a duality relation between the linear minimum variance control and the linear
minimum variance estimation. As a fortiori, optimal disturbance rejection can be
obtained from the Kalman filtering. However, such a derivation may blur out the
distinctions between control and estimation and is thus not adopted in this text.
Instead, linear minimum variance control will be derived independently. The duality
will be interpreted at a later stage to deepen the understanding of the resultant
optimal feedback control.

5.2.1 Linear Quadratic Regulators

Before tackling the problem of disturbance rejection, design of linear quadratic
regulators (LQRs) will be studied. The LQR is a deterministic control problem.
Yet, its solution coincides with that for disturbance rejection. Let

x(t + 1) = Atx(t)+Btu(t), x(0) = x0 �= 0. (5.82)

It is desirable to regulate the state vector x(T ) to the origin 0 in finite time T > 0
through some suitable control action {u(t)}T−1

t=0 . However, the exact regulation to
x(T ) = 0 may not be feasible in some finite time T . Even if it is feasible, the cost
of control input can be prohibitively high. Hence, it is appropriate to consider the
quadratic performance index
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JT (t0) = x(T )∗QT x(T )+
T−1

∑
t=t0

x(t)∗Qtx(t)+u(t)∗Rtu(t) (5.83)

for t0 = 0 which provides the mechanism of trade-offs between the regulation of
x(t) and the energy constraint on u(t). The weighting matrix Qt =Q∗

t ≥ 0 represents
the penalty on the state vector and thus the quality of regulation, and Rt = R∗

t > 0
shows the penalty on the control input and thus the measure of the energy at time t.
For convenience, JT = JT (0) is used.

The hypothesis on the weighting matrices in JT implies that

Qt =C∗
t Ct , Rt = D∗

t Dt , D∗
t Ct = 0 (5.84)

for some Ct of dimension p× n and Dt of dimension p×m with n the order of the
state-space model in (5.82) and m the dimension of the control input. Let z(t) =
Ctx(t)+Dtu(t). Then together with the state-space equation (5.82),

[
x(t + 1)

z(t)

]
=

[
At Bt

Ct Dt

][
x(t)
u(t)

]
(5.85)

which represents the system model. The decomposed LQR cost at time t is

‖z(t)‖2 = x(t)∗Qtx(t)+u(t)∗Rtu(t).

For any square matrix Xt+1 = X∗
t+1 ≥ 0 with size n× n, let

Wt+1 = x(t + 1)∗Xt+1x(t + 1)+ ‖z(t)‖2

be the candidate Lyapunov function for 0 ≤ t < T . Then

Wt+1 = x(t + 1)∗Xt+1x(t + 1)+ z(t)∗z(t)

=
[

x(t + 1)∗ z(t)∗
]
[

Xt+1 0
0 I

][
x(t + 1)

z(t)

]

=

([
At Bt

Ct Dt

][
x(t)
u(t)

])∗ [
Xt+1 0

0 I

]([
At Bt

Ct Dt

][
x(t)
u(t)

])

=
[

x(t)∗ u(t)∗
]
[

A∗
t Xt+1At +Qt A∗

t Xt+1Bt

B∗
t Xt+1At Rt +B∗

t Xt+1Bt

][
x(t)
u(t)

]
,

where (5.85) and the relations Rt = D∗
t Dt , Qt = C∗

t Ct , and D∗
t Ct = 0 are used. Let

Ψt = A∗
t Xt+1At +Qt ,Ωt = B∗

t Xt+1At , and Θt = Rt +B∗
t Xt+1Bt . Because Θt > 0 by

Rt > 0, the Schur decomposition
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[
Ψt Ω ∗

t

Ωt Θt

]
=

[
I Ω ∗

t Θ−1
t

0 I

][
Xt 0
0 Θt

][
I 0

Θ−1
t Ωt I

]

holds (refer to Problem 5.8 in Exercises) with Xt =
(
Ψt −Ω ∗

t Θ−1
t Ωt

)
the Schur

complement. The Lyapunov function candidate Wt+1 can now be written into

Wt+1 =
[

x(t)∗ (u(t)−Ftx(t))
∗ ]
[

Xt 0
0 Θt

][
x(t)

u(t)−Ftx(t)

]
,

where Ft =−Θ−1
t Ωt =−(Rt +B∗

t Xt+1Bt)
−1 B∗

t Xt+1At and Xt satisfies

Xt = A∗
t Xt+1At +Qt −A∗

t Xt+1Bt (Rt +B∗
t Xt+1Bt)

−1 B∗
t Xt+1At

= A∗
t Xt+1

(
In +BtR

−1
t B∗

t Xt+1
)−1

At +Qt (5.86)

which is a DRE dual to the estimation DRE as in Theorem 5.7. BecauseΘt > 0, the
minimum value of Wt+1 is achieved by setting

u(t) = uopt(t) := Ftx(t), Ft =−(Rt +B∗
t Xt+1Bt)

−1 B∗
t Xt+1At (5.87)

for which Wt+1 = x(t)∗Xtx(t) is the minimum possible.
Let XT = QT be the boundary condition and {Xt}T−1

t=0 be the solution to
the DRE in (5.86). Then an induction process can be applied to Wt+1 with
t = T − 1,T − 2, . . . ,0 in the performance index (5.83) yielding

JT = x(T )∗XT x(T )+
T−1

∑
k=0

‖z(k)‖2 =WT +
T−2

∑
k=0

‖z(k)‖2

≥ x(T − 1)∗XT−1x(T − 1)+
T−2

∑
k=0

‖z(k)‖2

= WT−1 +
T−3

∑
k=0

‖z(k)‖2 ≥ ·· · ≥ x(0)∗X0x(0),

where the fact Wt+1 ≥ x(t)∗Xtx(t) is used to arrive at the lower bound of JT . It is
noted that the lower bound x∗0X0x0 for JT is achievable by employing the optimal

control law
{

uopt(t)
}T−1

t=0 as in (5.87) which constitutes the optimal solution to the
LQR control problem. The above derivations are summarized into the following
result.

Theorem 5.17. Suppose that Qt ≥ 0 and Rt > 0 for 0 ≤ t < T . Let {Xt}T−1
t=0 be

the solution to the DRE in (5.86) with the boundary condition XT = QT ≥ 0. Then
the optimal control law minimizing the performance index JT in (5.83) and subject
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to the dynamic equation (5.82) is given by {uopt(t)}T−1
t=0 in (5.87). The associated

minimum performance index of JT is x∗0X0x0 with x0 �= 0 the initial condition of the
state vector x(t).

It is surprising that the optimal control law for the LQR problem is linear and
static. After all, one might have expected nonlinear and dynamic control laws as
the possible optimal solution. On the other hand, the feedback structure of the
control law is more or less expected. The optimal feedback gains {Ft}T−1

t=0 as in
(5.87) are functions of the solution to the DRE in (5.86) which has the form of
backward recursion. Such a backward recursion is deeply rooted in the principle
of optimality which states that an optimal control policy over the time interval
[k, T ) for 0 < k < T constitutes the optimal control policy over the time interval
[0, T ) regardless of the states and control inputs before the time k. Indeed, denote

U[t0,t f ) = {u(t)}t f −1
t=t0 with t f > t0. There holds

min
U[0,T)

JT (0) = min
U[0,T )

{Jk(0)+ JT (k)}= min
U[0,k)

{
Jk(0)+ min

U[k,T)

JT (k)

}

for 0 < k < T in light of the causality of the state-space equation. That is, minimiza-
tion of JT (0) can be carried out in two stages with stage 1 for minimization of JT (k)
over all possible U[k,T ) and stage 2 for minimization of Jk(0)+min

{
JT (k) : U[k,T )

}

over all possible U[0,k). The repeated use of this two-stage method for k = T − 1,
T − 2, . . . is what is called dynamic programming and is employed in the derivation
of the optimal control law for the LQR problem. It is worth emphasizing that, by
again causality,

min
U[0,T )

JT (0) �= min
U[k,T)

{
JT (k)+ min

U[0,k)

Jk(0)

}
= min

U[k,T )

JT (k)+ min
U[0,k)

Jk(0).

One should also realize that the principle of optimality applies to more broad
optimal control problems beyond the LQR for linear state-space systems.

Example 5.18. As an application of the LQR control, consider the tracking problem
for the state-space system (5.82) with output y(t) = Ctx(t). Given a desired output
trajectory ỹ(·), how does one design a state-feedback control law which minimizes
the tracking error and consumes the minimum energy? A reasonable measure is the
quadratic performance index

JT =
T−1

∑
t=0

[y(t)− ỹ(t)]∗ Q1(t) [y(t)− ỹ(t)]+ x(t)∗Q2(t)x(t)+u(t)∗Rtu(t), (5.88)

where Rt > 0, Q1(t) > 0, and Q2(t) = I −C∗
t (CtC∗

t )
−1 Ct for all t assuming that

rows of Ct are linearly independent. Let the dimension of y(t) be p < n with n
the dimension of the state vector x(t). A small tracking error imposes only the p
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constraints on the state vector or in the subspace spanned by p columns of C∗
t .

The weighting matrix Q2(t) regulates the state vectors with the remaining (n− p)
constraints or in the null space of Ct . The weighting factors can be changed through
adjusting Q1(t) and Rt . The terminal penalty Q1(T ) is omitted for convenience. The
desired output trajectory ỹ(·) is assumed to be the output of a LTI model

w(t + 1) = Aww(t), ỹ(t) = Hw(t).

Such a model includes step functions, sinusoidal signals, and their linear combina-
tions. Together with the system model (5.82), there holds

x̃(t + 1) = Ãtx(t)+ B̃tu(t), δy(t) = C̃t x̃(t),

where x̃(t) =
[

x(t)∗ w(t)∗
]∗
,δy(t) = y(t)− ỹ(t), and thus,

Ãt =

[
At 0
0 Aw

]
, B̃t =

[
Bt

0

]
, δCt =

[
Ct −H

]
.

It follows that the performance index JT in (5.88) can be written into the same form
as in (5.83) with x(t) replaced by x̃(t) leading to

Qt =

[
Q2(t)+C∗

t Q1(t)Ct −C∗
t Q1(t)H

−H∗Q1(t)Ct H∗Q1(t)H

]

.

Hence, the LQR control law in Theorem 5.17 can be readily applied.

In reference to the LQR control, a similar solution approach can be adopted to the
minimum variance control. Recall the expression of Vt in (5.81) and the augmented
performance index

V[t0,T ) =Vt0 +Vt1 + · · ·+VT−1, 0 ≤ t0 < T. (5.89)

Then the control law {u(t)}T−1
t=0 minimizing V[0,T) is reminiscent of LQR control

law as shown next.

Theorem 5.19. Consider the state-space system (5.82) where {v(t)} is white
satisfying (5.20) and x(0) = x0 is a random vector independent of {v(t)} with mean
x0 and covariance P0. Suppose that Rt = D∗

t Dt > 0 and D∗
t Ct = 0 for all t. Let Qt =

C∗
t Ct , and {Xt}T−1

t=0 be the solution to the DRE in (5.86) with the boundary condition
XT = 0 and Bt = B2t . Then the optimal control law minimizing V[0,T) in (5.89) is

the same as uopt(t) in (5.87). Denote UT = {u(t)}T−1
t=0 . Let Σt = E{x(t)x(t)∗|UT}.

Then Σ0 = P0 and

Σt+1 = (At +B2tFt)Σt (At +B2tFt)
∗+B1tB

∗
1t . (5.90)
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The minimum variance for the controlled output over [0, T ) is given by

min
UT

V[0,T ) =
T−1

∑
t=0

Tr{(Ct +DtFt)Σt(Ct +DtFt)
∗} . (5.91)

Proof. It is noted that the state-space equation in (5.82) can be written as
[

x(t + 1)
z(t)

]
=

[
At B2t

Ct Dt

][
x(t)
u(t)

]
+

[
B1t

0

]
v(t) (5.92)

which is similar to (5.85). Let Wk+1 = E{x(k+ 1)∗Xk+1x(k+ 1)|UT}+Vk. Since
the solution to the DRE (5.86) with the boundary condition XT = 0 satisfies Xt ≥ 0
(refer to Problem 5.21 in Exercises), Wk+1 is nonnegative for 0 ≤ k < T . Similar to
the derivation for the LQR control, there holds

Wk+1 = E{x(k+ 1)∗Xk+1x(k+ 1)+ z(k)∗z(k)|UT }

= E

{[
x(k+ 1)∗ z(k)∗

][Xk+1 0
0 I

][
x(k+ 1)

z(k)

]∣∣
∣
∣UT

}

= Tr{B∗
1kXk+1B1k}+E

{[
x(k)
δu(k)

]∗ [
Xk 0
0 Θk

][
x(k)
δu(k)

]∣∣
∣
∣
∣
UT

}

by the independence of u(k) and x(k) to v(k) where Θk = Rk +B∗
2kXkB2k,δu(k) =

u(k)− uopt(k), and uopt(k) is defined as in (5.87) with Bk = B2k. It follows that
u(k) = uopt(k) minimizes Wk+1 for k = T − 1,T − 2, . . . ,0 and thus V[0,T) in (5.89).
Indeed, with XT = 0,

V[0,T) =
T−1

∑
k=0

Vk =WT +
T−2

∑
k=0

E{z(k)∗z(k)|UT }

≥ Tr
{

B∗
1(T−1)XT B1(T−1)

}
+WT−1 +

T−3

∑
k=0

E{z(k)∗z(k)|UT }

≥ ·· · ≥
T−1

∑
k=0

Tr{B∗
1kXk+1B1k}+E{x(0)∗X0x(0)|UT}.

The lower bound for V[0,T) is achieved by UT = {uopt(t)}T−1
t=0 which also minimizes

Vt for all t ∈ [0, T ) in light of the principle of optimality. The expression in (5.91)
can be easily verified by direct computation. ��

It is observed that B1t has no influence on the optimal feedback gain {Ft}
although it changes the performance index Vt . This feature is important and induces
the duality between the minimum variance control and the Kalman filtering for
which Ft is dual to the Kalman gain Kt , and the backward control DRE (5.86)
is dual to the forward filtering DRE (5.36). For this reason, many properties of
the Kalman filter also hold for the minimum variance control. In particular, the
condition D∗

t Ct = 0 can be removed as shown next.
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Corollary 5.2. Under the same hypotheses as in Theorem 5.19 except that D∗
t Ct �=

0, the optimal control law minimizing Vt in (5.89) is given by u(t) = uopt(t) = Ftx(t)
with

Ft = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1At +D∗

t Ct) , (5.93)

Xt = Ã∗
t Xt+1

(
In +B2tR

−1
t B∗

2tXt+1
)−1

Ãt + C̃∗
t C̃t , (5.94)

where Ãt =
(
At −B2tR

−1
t D∗

t Ct
)
, C̃t =

(
I−DtR

−1
t D∗

t

)
Ct , and XT = 0.

Again the control gain Ft in (5.93) is dual to the filtering gain Kt in (5.45), and
the control DRE in (5.94) is dual to the filtering DRE in (5.43).

Proof. Introduce the variable substitution u(t) =−R−1
t D∗

t Ctx(t)+ ũ(t) with ũ(t) to
be designed. Then (5.92) is changed into

[
x(t + 1)

z(t)

]
=

[
Ãt B2t

C̃t Dt

][
x(t)
ũ(t)

]
+

[
B1t

0

]
v(t).

The result in Theorem 5.19 can then be applied to obtain the DRE in (5.94)
and the optimal control gain as F̃t = −(Rt +B∗

2tXtB2t)
−1 B∗

2tXt Ãt . Hence, u(t) =
−R−1

t D∗
t Ctx(t)+ F̃tx(t) = Ftx(t) with

Ft = F̃t −R−1
t D∗

t Ct =−Θ−1
t

[
B∗

2tXt Ãt +(Rt +B∗
2tXtB2t)R

−1
t D∗

t Ct
]

= −Θ−1
t

[
B∗

2tXt
(
At −B2tR

−1
t D∗

t Ct
)
+D∗

t Ct +B∗
2tXtB2tR

−1
t D∗

t Ct
]

= −(Rt +B∗
2tXtB2t)

−1 (B∗
2tXtAt +D∗

t Ct)

which is identical to (5.93) whereΘt = (Rt +B∗
2tXtB2t) is used. ��

Corollary 5.2 shows that it has no loss of generality to study the minimum
variance control for the case D∗

t Ct = 0 from which the results can be easily carried
to the case D∗

t Ct �= 0. Moreover, there is no loss of generality to study the LQR
problem in place of the minimum variance control. Both result in the same linear
feedback control law. Hence, the rest of the section will focus on the LQR problem
under the condition D∗

t Ct = 0 for simplicity.

5.2.2 Stability

State-feedback control was briefly discussed in Chap. 3 in connection with the
notion of stabilizability. The LQR control is an effective way to design state-
feedback control laws for the system model in (5.82) and is aimed at minimizing the
quadratic performance index (5.83). A more general LQR control problem can be
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found in Problem 5.24 in Exercises that includes the cross term for the performance
index. It is natural to study stability of the closed-loop system for the LQR feedback
control which is governed by

x(t + 1) = [At +BtFt ]x(t), x(0) = x0 (5.95)

with Ft given in Theorem 5.17. An important question to be answered is under what
conditions the closed-loop system (5.95) is asymptotically or exponentially stable
as T → ∞ in the performance index JT . It needs to be pointed out that difficulties
exist in computing the LQR control law in the limiting case because of the time-
varying realization for the system in (5.82) and time-varying weighting matrices
in the performance index. Nevertheless, theoretical analysis can be made to obtain
similar stability results to those for the Kalman filter. The next result is dual to
Theorem 5.8 in the previous section but with strengthened stability property.

Theorem 5.20. For the state-space model in (5.82) and the performance index
in (5.83), assume that (At ,Bt) is uniformly stabilizable and (Ct ,At) is uniformly
detectable with Qt =C∗

t Ct . Then the closed-loop system (5.95) for the LQR control
as described in Theorem 5.17 is exponentially stable as T → ∞.

The proof of this theorem is again left as an exercise (Problem 5.26). It is noted
that exponential stability can be concluded for the LQR control different from that
for the Kalman filter which is only asymptotically stable. Its reason lies in the
Lyapunov stability criteria as discussed in Chap. 3. Recall that the filtering DRE
in (5.36) can be written as the forward Lyapunov difference equation (Problem 5.10
in Exercises) for which the result of Lemma 3.4 can only ensure the asymptotic
stability. On the other hand, the control DRE in (5.86) can be written as the
backward Lyapunov difference equation (Problem 5.23 in Exercises) for which the
result of Theorem 3.37 can in fact ensure the exponential stability.

While a stronger stability result holds for the LQR control than that for the
Kalman filter, optimal state-feedback gain is difficult to compute for the limiting
case T → ∞. The exception is the stationary LQR control when the realization and
the weighting matrices in the performance index JT are all time invariant, and the
time horizon T → ∞. Consider the ARE

X = A∗XA−A∗XB(R+B∗XB)−1 B∗XA+C∗C

= A∗ (In +XBR−1B∗)−1
XA+C∗C, (5.96)

where R = D∗D and D∗C = 0. The above is the same as the DRE in (5.86) except
that all the time indices are removed. It is often called the control ARE, versus the
filtering ARE (5.50) for the stationary Kalman filtering.

Example 5.21. Consider the flight control system introduced in Problem 1.11 in
Exercises of Chap. 1. Its state-space realization after discretization with sampling
period Ts = 0.025 is obtained in Example 3.17 of Chap. 3. Suppose that the LQR
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control is employed with Q =C′C and R = I. The Matlab command “dare” can be
used to compute the solution X to the ARE in (5.96) that is given by

X =

⎡

⎢
⎢
⎢⎢
⎢
⎣

112.3476 18.2824 164.7632 25.6960 −102.8198
18.2824 43.9026 38.9169 8.1070 −24.7280

164.7632 38.9169 382.4594 81.6639 −213.8244
25.6960 8.1070 81.6639 23.1625 −42.9162

−102.8198 −24.7280 −213.8244 −42.9162 129.6328

⎤

⎥
⎥
⎥⎥
⎥
⎦
.

The corresponding stationary state-feedback gain is obtained as

F =−(R+B∗XB)−1 B∗XA =

⎡

⎣
0.1230 0.0096 −0.0520 −0.0853 −0.0399

−0.4477 −1.0709 −0.9530 −0.1986 0.6062
0.8648 0.2892 2.9645 0.8771 −1.5290

⎤

⎦ .

It can be easily verified with Matlab that (A+BF) is a stability matrix by examining
its eigenvalues, implying that the state vector under this LQR control approaches
zero asymptotically.

A similar notion to that for Kalman filtering is defined next.

Definition 5.2. The solution X to the ARE (5.96) is said to be stabilizing, if the
state-feedback gain F =−(R+B∗XB)−1 B∗XA is stabilizing.

With the feedback gain F = −(R+B∗XB∗)−1 B∗XA, the ARE in (5.96) can be
written into the Lyapunov equation (refer to Problem 5.23 in Exercises)

X = (A+BF)∗X(A+BF)+C∗C+F∗RF. (5.97)

The following is the stability result for the stationary LQR control.

Theorem 5.22. Let Q =C∗C and (C,A) be detectable. If the ARE (5.96) admits a
stabilizing solution X, then the solution {Xt(T )} to the DRE

Xt(T ) = A∗Xt+1(T )
[
In +BR−1B∗Xt+1(T )

]−1
A+Q, XT (T ) = 0 (5.98)

converges to X as T → ∞. In this case, the closed-loop system

x(t + 1) = (A+BF)x(t), F =−(R+B∗XB)−1 B∗XA (5.99)

for the stationary LQR control is stable.

Proof. The solution to (5.98) satisfies (refer to Problem 5.31 in Exercises):

Xt+1(T )≤ Xt(T ) = Xt+1(T + 1),
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where Xt+1(T + 1) is the solution to the same DRE in (5.98) with T replaced by
T + 1. Hence, {Xt(T )} is monotonically increasing with respect to T . Let JT (t),
t ≥ 0, be the performance index associated with DRE (5.98). Then

0 ≤ lim
T→∞

JT (t) = lim
T→∞

x(t)∗Xt(T )x(t)≤ x(t)∗Xx(t)

implying 0≤Xt(T )=Xt(T )∗ ≤X ∀t < T by the fact that the stabilizing solution X is
maximal (Problem 5.27 in Exercises). Thus, it has a unique limit X = X

∗
satisfying

0 ≤ X ≤ X . Since the ARE (5.96) is the limit of the DRE (5.98), X is a solution to
(5.96) which is the same as the Lyapunov equation (5.97) with X replaced by X and
F replaced by F = −(R+B∗XB∗)−1

B∗XA. The detectability of (C,A) and X ≥ 0
imply that

(
A+BF

)
is a stability matrix in light of the Lyapunov stability result or

X is a stabilizing solution to the ARE in (5.96). By the uniqueness of the stabilizing
solution to the ARE (Problem 5.13 in Exercises), X = X . It follows that the closed-
loop system in (5.99) is stable. ��

Theorem 5.22 offers a numerical algorithm for computing the unique stabilizing
solution X to the ARE (5.96) through computing iteratively the solution to (5.98).
That is, one may set X (0) = XT (T ) = 0 then compute

X (i+1) = A∗
[
In +BR−1B∗X (i)

]−1
X (i)A+Q

for i = 1,2, . . . until
∥
∥
∥X (N+1)−X (N)

∥
∥
∥ ≤ ε with ε > 0 some prespecified error

tolerance and then take X = X (N+1). The next result answers under what condition
there exists a stabilizing solution to the ARE (5.96). Since the ARE (5.50) for the
stationary Kalman filter is dual to the ARE (5.96), it also provides the proof for
Theorem 5.11.

Theorem 5.23. Let Q = C∗C and R > 0. There exists a stabilizing solution to the
ARE in (5.96), if and only if (A,B) is stabilizable and

rank

{[
A− e jωIn

C

]}
= n ∀ ω ∈ IR. (5.100)

Proof. It is obvious that stabilizability of (A,B) is a necessary condition for the ARE
(5.96) to have a stabilizing solution. To confirm that (5.100) is also a necessary
condition, assume on the contrary that (5.100) does not hold but the ARE (5.96)
admits a stabilizing solution X . The Lyapunov form of the ARE in (5.97) implies
that (A+BF) is a stability matrix with F as in (5.99), and thus, X = X∗ ≥ 0. Since
(5.100) does not hold,

Aq = e jθq, Cq = 0 (5.101)

for some θ real and q �= 0. That is, (C,A) has at least one unobservable mode on the
unit circle. Multiplying both sides of the ARE in (5.96) by q∗ from left and q from
right, and using the relation in (5.101) yield



5.2 Minimum Variance Control 211

q∗XB(R+B∗XB)−1 B∗Xq = 0 =⇒ B∗Xq = 0.

By the expression of F , the above leads to

(A+BF)q =
[
A−BB∗ (R+B∗XB)−1 B∗XA

]
q = e jθq.

So e jθ remains an eigenvalue of A+BF contradicting the stabilizing assumption on
X . This concludes the necessity of (5.100).

For the sufficiency part of the proof, assume that (A,B) is stabilizable and (5.100)
holds. Then some F0 exists such that (A+BF0) is a stability matrix. It is claimed
that the following recursion

Xi = (A+BFi)
∗ Xi (A+BFi)+F∗

i RFi +Q, (5.102)

Fi+1 = −(R+B∗XiB)
−1 B∗XiA, i = 0,1, . . . , (5.103)

converges to the stabilizing solution X of the ARE (5.96). The proof of the claim
proceeds in three steps. At the first step, it will be shown that stability of (A+BFi)
implies stability of (A+BFi+1) for i ≥ 0. For this purpose, rewrite (5.102) as (refer
to Problem 5.27 in Exercises)

Xi = A∗ (In +XiBR−1B∗)−1
XiA+Q+ΔF(i)

∗ [R+B∗XiB]ΔF(i)

= (A+BFi+1)
∗ Xi (A+BFi+1)+F∗

i+1RFi+1 +Q

+ ΔF(i)
∗ [R+B∗XiB]ΔF(i) (5.104)

with ΔF(i) = Fi+1 −Fi where (5.97) is used with X replaced by Xi and F by Fi+1 to
obtain the second equality. Now suppose that

(A+BFi+1)v = λv, |λ | ≥ 1. (5.105)

Multiplying both sides of (5.104) by v∗ from left and v from right yields

(
1−|λ |2)v∗Xiv = v∗

[
F∗

i+1RFi+1 +Q+ΔF(i)
∗ (R+B∗XiB)ΔF(i)

]
v,

where (5.105) is used. Because the left-hand side ≤ 0 by |λ | ≥ 1 and positivity of Xi

due to stability of (A+BFi) and the right-hand side ≥ 0 by positivity of R, Q, and
Xi, it is concluded that |λ |= 1 and

Cv = 0, Fi+1v = 0, ΔF(i)v = 0 =⇒ Fiv = 0.
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The above together with (5.105) imply Av = λv which in turn implies

(A+BFi)v = Av = λv.

Because (A+BFi) is a stability matrix, v = 0 concluding that λ is not an eigenvalue
of (A+BFi+1). As λ with |λ | ≥ 1 is arbitrary, (A+BFi+1) is also a stability matrix.
The fact that (A+BF0) is a stability matrix implies that Fi+1 in (5.103) is stabilizing
for each i ≥ 0. As a second step, it is noted that (5.104) and the definition of Xi+1

imply

ΔX (i) = (A+BFi+1)
∗ΔX(i)(A+BFi+1)+ΔF(i)

∗(R+B∗XiB)ΔF(i)

with ΔX (i) = Xi −Xi+1. Stability of (A+BFi+1) implies that ΔX (i) ≥ 0 or {Xi} is
a decreasing matrix sequence. Since Xi ≥ 0 by stability of (A+BFi), the recursion
in (5.102) and (5.103) converges with limits X ≥ 0 satisfying the ARE (5.96) and
F as given in (5.99). Finally, as (A+BFi) is stable for all i ≥ 0, the n eigenvalues
of (A+ BFi) converge to the n eigenvalues of (A +BF) on the closed unit disk.
The condition (5.100) prohibits any eigenvalues of (A+BF) from being on the unit
circle because if it does, then

(A+BF)v = e jθv, v �= 0

for some θ real. Multiplying both sides of (5.97) by v∗ from left and v from right
leads to Fv = 0 and Cv = 0, and thus Av = e jθv with the same argument as before.
This contradicts the condition (5.100). The proof is now complete. ��
The proof of Theorem 5.23 shows that the condition (5.100) is indispensable.
Stabilizability of (A,B) alone does not ensure that the LQR problem is well posed. If
the condition (5.100) is violated, then any unobservable mode of (C,A) on the unit
circle does not contribute to the LQR performance index. Thus, in this case, even if
the ARE (5.96) admits a solution X = X∗ ≥ 0, the optimal performance index (for
the stationary LQR control)

Jopt =
∞

∑
t=0

x(t)∗Qx(t)+u(t)∗Ru(t) =
∞

∑
t=0

x(t)∗ (Q+F∗RF)x(t) = x∗0Xx0

and stability of (A+BF) cannot be achieved simultaneously. The reason lies in the
facts that stabilization of any unobservable mode of (C,A) on the unit circle will
increase the energy cost of the control input by R > 0 and that such unstable modes
of (C,A) do not contribute to the LQR performance index anyway. This is illustrated
in the following example.

Example 5.24. Consider the stationary LQR control with

A =

[−1 0
0 0

]
, B =

[
1
0

]
, C =

[
0 1
]

and R = 1. Clearly, (A,B) is stabilizable, but the condition (5.100) does not hold. It
can be verified that with F0 =

[
1
2 0
]
,(A+BF0) is a stability matrix. The recursive
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algorithm as in (5.102) and (5.103) gives

Xi =

[
1

2i+2−1
0

0 1

]

, A+BFi =

[
1

2i+1 − 1 0
0 0

]

for 0 ≤ i <∞. Hence, (A+BFi) is stable for any finite i and Xi ≥ 0 is monotonically
decreasing. However, the limits

lim
i→∞

Xi =

[
0 0
0 1

]
, lim

i→∞
Fi = lim

k→∞

[
1

2i+1 0
]
=
[

0 0
]

and thus (A+BFi)→ A as i → ∞ which is unstable.

Example 5.24 leads to the deduction that if (C,A) has unobservable modes strictly
outside the unit circle but the stabilizability of (A,B) and (5.100) hold, then the ARE
has more than one nonnegative definite solutions. One is the stabilizing solution X .
There is at least one more, denoted by Xu, which is not stabilizing. That is, the
unobservable modes of (C,A) strictly outside the unit circle are not stabilized by
Fu = −(R+B∗XuB)−1 B∗XuA. Since the unstable modes strictly outside the unit
circle do not contribute to the performance index by the hypothesis, X ≥ Xu ≥ 0.
In this case, the maximal solution of the ARE is always the stabilizing solution. It
is now clear why the detectability of (C,A) is required in Theorem 5.22, without
which XT (t) may converge to Xu as T → ∞ with t ≥ 0 finite.

The next result states the solution to the general stationary LQR control.

Corollary 5.3. For x(t + 1) = Ax(t)+Bu(t) with x(0) = x0 �= 0, let

J∞ =
∞

∑
t=0

‖Cx(t)+Du(t)‖2, R = D∗D > 0, D∗C �= 0.

Let Ã =
(
A−BR−1D∗C

)
and C̃ =

(
I−DR−1D∗)C. Suppose that the ARE

X = Ã∗ (I +XBR−1B∗)−1
XÃ+ C̃∗C̃ (5.106)

has a stabilizing solution X. Then the optimal control law is given by

u(t) = Fx(t), F =−(R+B∗XB)−1 (B∗XA+D∗C) (5.107)

which is stabilizing and minimizes J∞. Moreover, the ARE (5.106) admits a
stabilizing solution, if and only if (A,B) is stabilizable and

rank

{[
A− e jωIn B

C D

]}
= n+m ∀ ω ∈ IR, (5.108)

where m is the dimension of the input and n the dimension of the state vector.
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Proof. Since the general LQR control is the same as that for Theorems 5.22 and 5.23
with A replaced by Ã and C replaced by C̃, the proof of the first part of the
corollary is simple and skipped. For the second part of the corollary, it is noted
that stabilizability of

(
Ã,B
)

is the same as stabilizability of (A,B), and thus, the
proof can be completed by showing that the condition

rank

{[
Ã− e jω In

C̃

]}
= n (5.109)

is equivalent to (5.108). It is straightforward to compute

⎡

⎣
In −BR−1D∗

0 I −DR−1D∗

0 R−1D∗

⎤

⎦
[

A− e jωIn B
C D

]
=

⎡

⎣
Ã− e jωIn 0

C̃ 0
R−1D∗C Im

⎤

⎦ .

The first matrix on the left is an elementary matrix that does not alter the rank of the
second matrix on the left. It follows that

rank

{[
A− e jωIn B

C D

]}
= m+ rank

{[
Ã− e jωIn

C̃

]}
,

and hence, the condition (5.108) is equivalent to the one in (5.109). ��

5.2.3 Full Information Control

In minimum variance control, the controlled output z(t) in (5.80) does not involve
the disturbance input. This is the main reason why the optimal feedback control law
is a function of only x(t). Suppose that the state-space model and the controlled
output are specified respectively by

x(t + 1) = Atx(t)+B1tv(t)+B2tu(t),

z(t) = Ctx(t)+D1tv(t)+D2tu(t). (5.110)

It can be expected that the optimal feedback control law will be a function of not
only x(t) but also of v(t) which is the white noise process satisfying (5.20). Such a
control law is termed full information control. One needs to keep in mind that often,
in the practice of feedback control, both x(t) and v(t) are not measurable directly
for which output estimators in the previous section can be employed to provide
information on x(t) and v(t). The next result provides the optimal solution to full
information control.
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Theorem 5.25. Consider the state-space system (5.110) where {v(t)} is the white
noise process satisfying (5.20). Suppose that Rt = D∗

2tD2t > 0. Let

Ãt = At −B2tR
−1
t D∗

2tCt , C̃t =
[
I−D2tR

−1
t D∗

2t

]
Ct .

Let Xt be the solution to the DRE (5.94). Then the optimal control law that
minimizes E{‖z(t)‖|UT} with UT = {u(t)}T−1

t=0 is u(t) = F1tx(t)+F2tv(t) with

F1t = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1At +D∗

2tCt) ,

F2t = −(Rt +B∗
2tXt+1B2t)

−1 (B∗
2tXt+1B1t +D∗

2tD1t) . (5.111)

Theorem 5.25 for full information control is dual to Theorem 5.14 for output
estimation. Its proof is similar to that of Theorem 5.14 and is thus left as an exercise
(Problem 5.33).

It is noted that the closed-loop system for (5.110) under the full information
control law (5.111) is given by

x(t + 1) = (At +B2tF1t)x(t)+ (B1t +B2tF2t)v(t),

z(t) = (Ct +D2tF1t)x(t)+ (D1t +D2tF2t)v(t). (5.112)

The above is dual to (5.143) in Exercises for output estimation. The optimality of
the full information control shows that the static feedback gains (F1t ,F2t) in (5.111)
outperform any other controllers such as dynamic or nonlinear ones in minimization

of E
{
‖z(t)‖2 |UT

}
under the white noise disturbance {v(t)} for all t ∈ [0, T ). This

observation is important as shown in the next example.

Example 5.26. In wireless data communications, the processing burden at the
receiver site is sometimes shifted to the transmitter site which often has more
computational power for the downlink channels (from the station to the cellular
users). A precoder is designed at the transmitter site to compensate the distorted
channel so that the receivers can pick up the data directly without further digital
processing. The block diagram below shows the use of such precoders in data com-
munications where the state-space model with realization (At ,Bt ,Ct ,Dt) represents
the (downlink) wireless channel which is asymptotically stable. For simplicity, the
additive noise at the receiver site is taken to be zero, and det(D∗

t Dt) �= 0 is assumed
for each t.

Our objective is to design the linear precoder that minimizes the error variance of
es(t) under the assumption that the transmitted signal s(t) is white with zero mean
and identity covariance. It is claimed that any linear, causal, and stable precoder has
the form

xp(t + 1) = (At +BtFt)xp(t)+Btw(t), u(t) = Ftxp(t)+w(t) (5.113)
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Fig. 5.7 Precoder in data detection

for some asymptotically stabilizing Ft and w(t) = Q(t,k) � s(t) with {Q(t,k)} the
impulse response of some causal and stable LTV system at time t. Indeed, given
a linear, causal, and stable precoder with impulse response {G(t,k)}, consider the
inverse of the system in (5.113):

x̃p(t + 1) = At x̃p(t)+Btu(t), w(t) =−Ft x̃p(t)+u(t).

Denote the impulse response of the above system by L(t,k). Then Q(t,k) = L(t,k)�
G(t,k) is causal and stable. Thus, G(t,k) can be implemented by (5.113) with w(t)=
Q(t,k)� s(t). The channel is now described by

x(t + 1) = Atx(t)+Btu(t) = Atx(t)+BtFtxp(t)+BtQts(t),

ŝ(t) = Ctx(t)+Dtu(t) =Ctx(t)+DtFtxp(t)+DtQts(t),

by (5.113) and w(t) = Qts(t) where Q(t,k) = Qt is taken as a static gain for each t
temporarily. The overall system in Fig. 5.7 has a realization

⎡

⎣
At BtFt BtQt

0 At +BtFt BtQt

Ct DtFt DtQt − I

⎤

⎦ =⇒
[

At +BtFt BtQt

Ct +DtFt DtQt − I

]

after using the similarity transform

T =

[
I −I
0 I

]

to eliminate the unreachable modes. Therefore, the overall system in Fig. 5.7 is
described by

x̂(t + 1) = (At +BtFt) x̂(t)+BtQts(t),

es(t) = (Ct +DtFt) x̂(t)+ (DtQt − I)s(t),
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which has the same form as in (5.112) by taking B1t = 0, B2t = Bt , D1t = −I, and
D2t = Dt . Hence, the results in Theorem 5.25 for optimal full information control
can be applied to compute the optimal precoder gains Ft and Qt . It is noted that the
use of dynamic gains Q(t,k) do not improve its performance any further.

The closed-loop system for full information control as in Theorem 5.25 admits
the same stability properties as those for LQR control and minimum variance control
in light of the fact that they share the same DRE (5.94). Hence, all the stability
results in the previous subsection apply to the case of full information control which
will not be repeated here. In the case of stationary full information control, the
realization matrices in both the state-space model and the controlled signal are all
time invariant and the time horizon T → ∞ for the performance index. It can be
expected that the DRE (5.94) converges to the ARE

X = Ã∗ (I+XB2R−1B∗
2

)−1
XÃ+ C̃∗C̃ (5.114)

with R = D∗
2D2 which is identical to (5.106) except that B is replaced by B2 and D

by D2. In this case, the transfer matrix from v(t) to z(t) is given by

T(z) = (D1 +D2F2)+ (C+D2F1)(zI −A−B2F1)
−1(B1 +B2F2),

where F1 and F2 are the same as in (5.111) with all the time indices removed. It
is interesting to note that with the white noise disturbance {v(t)} WSS satisfying
(5.20), there holds E

{‖z(t)‖2
}
= ‖T‖2

2 where

‖T‖2 =
√

Tr{(D1 +D2F2)∗(D1 +D2F2)+ (B1 +B2F2)∗X(B1 +B2F2)}

with X the stabilizing solution to (5.114). By the optimality of the solution to full
information control, ‖T‖2 is minimized by static feedback controllers F1 and F2. In
fact, dynamic feedback controllers do not outperform static feedback controllers for
stationary full information control.

5.3 LTI Systems and Stationary Processes

This section intends to explore further optimal estimation and control for LTI state-
space models and stationary white noises. As shown in the previous two sections,
both Kalman filters and LQR controllers tend to stationary ones as the time horizon
approaches to infinity. Hence, the results for optimal estimation and control can have
frequency domain interpretations which will help deepen the understanding of the
results in the previous two sections. Several results will be presented which have
applications to various problems in design of communication and control systems
in later chapters.
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5.3.1 Spectral Factorizations

A PSD transfer matrixΨ (z) has the form

Ψ(z) =
∞

∑
k=−∞

Γkz−k, Γ ∗
k = Γ−k, (5.115)

andΨ (e jω)≥ 0 for all real ω . There exist spectral factorizations

Ψ(z) = HL(z)HL(z)
∼ = HR(z)

∼HR(z), (5.116)

where HL(z) and HR(z) are both causal, stable, and minimum phase. The transfer
matrices HL(z) and HR(z) are called left and right spectral factors of Ψ(z),
respectively. This section shows how Kalman filtering and LQR control can be used
to compute spectral factorizations.

Recall the random process in form of state-space model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t), (5.117)

where v(t) is the white noise satisfying (5.20) and y(t) is the observed output.
Assume that x(0) = x0 is independent of {v(t)}, has mean x0 = 0, and covariance
P satisfying the Lyapunov equation (5.47). Then the white noise hypothesis on v(t)
implies that the PSD of the observed output is

Ψy(ω) = G
(
e jω)G

(
e jω)∗ , G(z) = D+C(zI−A)−1B. (5.118)

The zero mean initial condition for x0 yields the ACS of y(t) given by

Ry(k) = E{y(t)y(t − k)∗}=
⎧
⎨

⎩

CAk−1(APC∗+BD∗), k > 0,
R+CPC∗, k = 0,
(CPA∗+D∗B)(A∗)k−1C∗, k < 0,

by Problem 5.7 in Exercises. Hence, Ψy(ω) is the Fourier transform of {Ry(k)}
which exists, if A is a stability matrix. Let Ã = A−BD∗R−1C and R = DD∗ > 0.
Then the associated filtering ARE is (5.52) which is copied below:

Σ = Ã
(
In +ΣC∗R−1C

)−1Σ Ã∗+B
(
I−D∗R−1D

)
B∗.

Lemma 5.1. Consider the state-space system in (5.117) with v(t) of dimension m
and y(t) of dimension p. Assume that m ≥ p and R= DD∗ > 0. Let K be the Kalman
gain as in (5.51) with Σ satisfying (5.52). Then the PSDΨy(ω) as in (5.118) has the
expression



5.3 LTI Systems and Stationary Processes 219

Ψy(ω) =
[
I−C(e jωI −A)−1K

]
(R+CΣC∗)

[
I−C(e jω I−A)−1K

]∗
. (5.119)

Proof. Direct state-space computations yield

W(z) =
[
I+C(zI−A−KC)−1K

]
G(z)

=

[
A+KC K

C I

][
A B
C D

] {
T =

[
I 0
I I

]}

=

⎡

⎣
A 0 B

KC A+KC KD
C C D

⎤

⎦=

[
A+KC B+KD

C D

]
, (5.120)

where the similarity transform T is used to eliminate the unobservable subsystem.
It is claimed that

F(z) =
[
I +C(zI−A−KC)−1K

]
=
[
I −C(zI−A)−1K

]−1
(5.121)

is a “whitening” filter in the sense that

ΦW(z) =W (z)W (z)∼ = R+CΣC∗. (5.122)

Indeed, denote AK = A+KC, BK = B+KD, and Π = BKB∗
K . Then the ARE (5.52)

can be written as

Π = BKB∗
K = (B+KD)(B+KD)∗ = Σ −AKΣA∗

K

= (zI−AK)Σ
(
z−1I−A∗

K

)
+(zI−AK)ΣA∗

K +AKΣ
(
z−1I −A∗

K

)
.

Multiplying both sides of the above equation by C(zI − AK)
−1 from left and

(
z−1I−A∗

K

)−1
C∗ from right gives

ΦΠ (z) = C(zI −AK)
−1BKB∗

K

(
z−1I−A∗

K

)
C∗

= CΣC∗+C(zI−AK)
−1AKΣC∗+CΣA∗

K

(
z−1I −A∗

K

)−1
C∗.

It follows from the state-space realization of W(z) that

ΦW(z) = R+C(zI−AK)
−1BKD∗+DB∗

K

(
z−1I−A∗

K

)−1
C∗+ΦΠ (z)

= R+CΣC∗+C(zI−AK)
−1 (BKD∗+AKΣC∗)

+ (BKD∗+AKΣC∗)∗
(
z−1I−A∗

K

)−1
C∗.
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By the expression of the Kalman gain,

BKD∗+AKΣC∗ = (B+KD)D∗+(A+KC)ΣC∗

= BD∗+AΣC∗+K(DD∗+CΣC∗) = 0.

Therefore, substituting the expression of ΦΠ (z) into ΦW(z) yields (5.122) con-
cluding the fact that F(z) is a “whitening” filter. In light of (5.120) or G(z) =
[
I +C(zI−A−KC)−1K

]−1
W(z) =

[
I−C(zI−A)−1K

]
W(z),

Ψy(ω) =
[
I−C

(
e jω I−A

)−1
K
]
ΦW
(
e jω)

[
I−C

(
e jω I−A

)−1
K
]∗

which is the same as (5.119). The proof is thus completed. ��
In the case when A is a stability matrix and the stabilizing solution to the ARE
(5.52) exits, then I −C(zI −A)−1K is not only causal and stable but also admits a
causal and stable inverse. Let R+CΣC∗ =ΩΩ ∗ be the Cholesky factorization and
Go(z) =

[
I−C(zI−A)−1K

]
Ω . Then

Φ(z) = G(z)G(z)∼ = Go(z)Go(z)
∼, (5.123)

and thus, Go(z) is the left spectral factor of Φ(z). Kalman filtering provides an
algorithm to compute spectral factorization of Φ(z) =G(z)G(z)∼. Conversely, (left)
spectral factorization can be used to compute the Kalman filtering gain K by the
expression of (5.119). It is noted that F(z) in (5.121) satisfies the following state-
space equation

x̂t+1|t = (A+KC)x̂t|t−1 −Ky(t), δy(t) = y(t)−Cx̂t|t−1, (5.124)

where x̂k|k−1 is the stationary MMSE estimate of x(k) based on the observation up
to time (k− 1). Hence, the output of F(z) is the innovation sequence.

Example 5.27. In the traditional Wiener filtering (refer to Example 5.16), a whiten-
ing filter is designed first to obtain the innovation sequence, and an estimator is then
designed for smoothing, filtering, or prediction. The whitening filter can clearly be
obtained using the spectral factorization for

Φ(z) = G1(z)G1(z)
∼+G2(z)G2(z)

∼ = Go(z)Go(z)
∼

by the fact that v1(t) and v2(t) are independent of each other and have zero means.
Thus,Ψy(ω) = G1

(
e jω)G1

(
e jω)∗+G2

(
e jω)G2

(
e jω)∗. To proceed, a realization

(A,B,C,D) for
[

G1(z) G2(z)
]

needs to be obtained before applying Lemma 5.1
for computing the whitening filter Fo(z) = G−1

o (z). It is noted that Wiener filtering
can be approached by Kalman filtering, if G2(z) = D and G1(z) =C(zI −A)−1B in
Example 5.16. In this case,

Φ(z) = R+C(zI−A)−1BB∗ (z−1I −A∗)−1
C∗
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which is identical toΨy(ω) at z = e jω as in (5.118) provided that BD∗ = 0. Hence,
Kalman filtering can be employed to compute the whitening filter for Wiener
filtering. If in addition v1(t) = v2(t) = v(t), then Wiener filtering for m = 1 in
Fig. 5.5 coincides with Kalman filtering in Fig. 5.2. Recall that optimal output
estimation is the same as the optimal state estimation for one-step prediction or
strictly causal filtering.

The next result is dual to Lemma 5.1,and thus, the proof is omitted.

Lemma 5.2. Let G̃(z) = D +C(zI − A)−1B. Assume that R = D∗D > 0, A is a
stability matrix and the ARE (5.106) has a unique stabilizing solution X ≥ 0 so
that F in (5.107) is stabilizing. There holds factorization

G̃(z)∼G̃(z) =
[
I−F(zI −A)−1B

]∼
(R+B∗XB)

[
I−F(zI −A)−1B

]
. (5.125)

Let R+B∗XB = Ω̃ ∗Ω̃ , and G̃o(z) = Ω̃
[
I −F(zI −A)−1B

]
. Then

Φ(z) = G̃(z)∼G̃(z) = G̃o(z)
∼G̃o(z). (5.126)

Hence, G̃o(z) is a right spectral factor of Φ(z). Spectral factors Go(z) in (5.123) and
G̃o(z) in (5.126) are also called outers because both are stable and their inverses are
analytic outside the unit circle. Moreover,

Gi(z) = G−1
o (z)G(z), G̃i(z) = G̃(z)G̃−1

o (z) (5.127)

satisfy Gi(z)Gi(z)∼ = I and G̃i(z)∼G̃i(z) = I. Hence, all transmission zeros of Gi(z)
and G̃i(z) are unstable, or their inverses are analytic inside the unit circle. For this
reason, G̃i(z) is called inner and Gi(z) called co-inner. In light of (5.127) and
Lemmas 5.1 and 5.2,

G(z) = GoGi(z), G̃(z) = G̃i(z)G̃o(z)

which are termed inner-outer factorizations. The next result is thus true.

Theorem 5.28. Let A be a stability matrix and D have size p×m. (i) If p ≤ m,R =
DD∗ > 0, and the ARE (5.52) admits a unique solution Σ ≥ 0, then G(z) = D+
C(zI −A)−1B admits inner-outer factorization G(z) = GoGi(z) with

Go =

[
A KΩ
−C Ω

]
, Gi(z) =

[
A+KC B+KD
Ω−1C Ω−1D

]
, (5.128)

where K is the Kalman gain as defined in (5.51) and Ω = (R+CΣC∗)1/2. (ii) If
p ≥ m,R = D∗D > 0, and the ARE (5.106) admits a unique solution X ≥ 0, then
G̃(z) = D+C(zI−A)−1B admits inner-outer factorization G̃(z) = G̃i(z)G̃o(z) with
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G̃o =

[
A −B
Ω̃F Ω̃

]
, G̃i(z) =

[
A+BF BΩ̃−1

C+DF DΩ̃−1

]
, (5.129)

where F is defined as in (5.107) and Ω̃ = (R+B∗XB)1/2.

Remark 5.1. The hypothesis R > 0 in Theorem 5.28 can be weakened to

(i) rank
{[

C D
]}

= p, (ii) rank

{[
B
D

]}
= m, (5.130)

respectively, even if D may not have the full rank. Indeed, for (i) there holds

G(z)G(z)∼ =
[
I−C(zI−A)−1K

]
(R+CΣC∗)

[
I−C(zI−A)−1K

]∼
(5.131)

in light of (5.119) in Lemma 5.1. Hence, (i) of (5.130) implies that G(z) has normal
rank equal to p that in turn implies that (R+CΣC∗) is nonsingular. Similarly, for
(ii) there holds

G(z)∼G(z) =
[
I−F(zI −A)−1B

]∼
(R+B∗XB)

[
I −F(zI −A)−1B

]
(5.132)

that is dual to (5.131). Hence, (ii) of (5.130) implies that (R+B∗XB) is nonsingular.
Consequently, the formulas in Theorem 5.28 for computing inner-outer factoriza-
tions are valid under the weak conditions in (5.130).

5.3.2 Normalized Coprime Factorizations

Coprime factorizations have been studied in Sect. 3.2.3. For a given plant model

P(z) = D+C(zI−A)−1B (5.133)

coprime factorizations search for {M(z),N(z)} and
{

M̃(z), Ñ(z)
}

which are stable
transfer matrices such that

P(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1

and the augmented transfer matrices

G̃(z) =

[
M̃(z)
Ñ(z)

]
, G(z) =

[
M(z) N(z)

]
(5.134)

void zeros on and outside the unit circle. In other words, G̃(z) and G(z) are outers.
Normalized coprime factorizations search for coprime factors such that G̃(z) and
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G(z) are not only outers but also inner and co-inner respectively:

G̃(z)∼G̃(z) = M̃(z)∼M̃(z)+ Ñ(z)∼Ñ(z) = I,

G(z)G(z)∼ = M(z)M(z)∼ +N(z)N(z)∼ = I.

Such G(z) and G̃(z) are termed power complementary in the signal processing
literature. The following result shows that normalized coprime factorizations can
be solved via Kalman filtering and LQR control.

Theorem 5.29. Denote Ro = I +DD∗/R̃o = I+D∗D for P(z) in (5.133).

(i) Assume that (C,A) is detectable and (A,B) has no unreachable modes on the
unit circle. Let Ao = A−BD∗R−1

o C. Then the following ARE

Σ = AoΣ
(
I +C∗R−1

o CΣ
)−1

A∗
o +BR̃−1

o B∗ (5.135)

admits a unique stabilizing solution Σ = Σ∗ ≥ 0. A state-space realization of
the normalized (right) coprime factors is given by

G(z) =
[

M(z) N(z)
]
=

[
A+KC K B+KD
Ω−1

o C Ω−1
o Ω−1

o D

]
, (5.136)

where K =−(AΣC∗+BD∗)(Ro +CΣC∗)−1 and Ωo = (Ro +CΣC∗)1/2.
(ii) Assume that (A,B) is stabilizable and (C,A) has no unobservable modes on the

unit circle. Let Ão = A−BR̃−1
o D∗C. Then the following ARE

X = Ã∗
oX
(
I +BR̃−1

o B∗X
)−1

Ão +C∗R−1
o C (5.137)

admits a unique stabilizing solution X = X∗ ≥ 0. A state-space realization of
the normalized (left) coprime factors is given by

G̃(z) =

[
M̃(z)
Ñ(z)

]
=

⎡

⎣
A+BF BΩ̃−1

o

F Ω̃−1
o

C+DF DΩ̃−1
o

⎤

⎦ , (5.138)

where F =−(R̃o +B∗XB
)−1

(B∗XA+D∗C) and Ω̃o =
(
R̃o +B∗XB

)1/2
.

Proof. For (i), the pair {M(z),N(z)} in (5.136) is a pair of left coprime factors for
K is stabilizing. To show that {M(z),N(z)} is normalized, denote Bv =

[
0 B
]

and

Dv =
[

I D
]
. Let

T(z) = Dv +C(zI−A)−1Bv (5.139)
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and associate T(z) with the following Kalman filtering problem:

x(t + 1) = Ax(t)+Bvv(t), y(t) =Cx(t)+Dvv(t),

where v(t) is an independent white noise process with zero mean and identity
covariance. Applying the results of the stationary Kalman filter yields the ARE
(5.135) and the required Kalman gain K which is stabilizing by the hypothesis. In
light of the proof of Lemma 5.1, the filter

W(z) = [I +C(zI−A−KC)−1K]T(z) =
[

A+KC Bv +KDv

C Dv

]

=

[
A+KC K B+KD

C I D

]

has the white PSD. That is, W(z)W(z)∼ = ΩoΩ ∗
o = Ro +CΣC∗, and hence,

Ω−1
o W(z) is co-inner and has the same realization as in (5.136). It follows that

{M(z),N(z)} is a pair of the normalized left coprime factors. Since (ii) is dual to
(i), the proof for (ii) is similar and omitted. ��

For the given left and right normalized coprime factors in (5.136) and (5.138),
respectively, the following result gives their respective reachability and observability
gramians.

Theorem 5.30. Consider Theorem 5.29. The reachability gramian P and observ-
ability gramian Q of G(z) as in (5.136) are given respectively by:

P = Σ , Q = (I+XΣ)−1X (5.140)

while the reachability gramian P̃ and observability gramian Q̃ of G̃(z) as in (5.138)
are given respectively by

P̃ = (I +ΣX)−1Σ , Q̃ = X . (5.141)

Proof. By definition the controllability gramian of G(z) in (5.136) satisfies

P = (A+KC)∗P(A+KC)+ (Bv+KDv)(Bv +KDv)
∗

with Bv =
[

0 B
]

and Dv =
[

I D
]
. The above is the same as the ARE (5.135) if P =

Σ . Hence, Σ is indeed the controllability gramian of G(z). Now assume temporarily
that det(Ao) �= 0 and det(A+KC) �= 0. Since D∗R−1

o = R̃−1
o D∗, Ao = Ão. The ARE

in (5.137) can then be written as

[−X I
]

S

[
I
X

]
= 0, S =

[
Ao +Γ (A∗

o)
−1Π −Γ (A∗

o)
−1

−(A∗
o)

−1Π (A∗
o)

−1

]

,
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where Π =C∗R−1
o C and Γ = BR̃−1

o B∗ (refer to Appendix A). Denote

T =

[
I Σ
0 I

]
=⇒ T−1 =

[
I −Σ
0 I

]
.

Let S̃ = T ST−1. The ARE in (5.137) can be written as

[−Z I
]

S̃

[
I
Z

]
= 0, Z = (I+XΣ)−1X . (5.142)

Direction computation yields

S̃ =

[
S̃11 S̃12

S̃21 S̃22

]

=

[
Ao +(Γ −Σ)(A∗

o)
−1Π 0

−(A∗
o)

−1Π (A∗
o)

−1(ΠΣ + I)

]

due to S̃12 = −[AoΣ(I +ΠΣ)−1A∗
o +Γ −Σ

]
(A∗

o)
−1 (ΠΣ + I) = 0 by the ARE in

(5.135). On the other hand, the results on Kalman filtering with the dynamic model
in (5.139) show that

A+KC = Ao(I +ΠΣ)−1 =⇒ S̃22 = [(A+KC)∗]−1.

Since the ARE in (5.135) can be written as Γ −Σ =−AoΣ(I +ΠΣ)−1A∗
o,

S̃11 = Ao −AoΣ(I +ΠΣ)−1Π = Ao −AoΣC∗(Ro +CΣC∗)−1C = A+KC.

Finally, by the expression of S̃22,

S̃21 = −(A∗
o)

−1Π =−[(A+KC)∗]−1(I +ΠΣ)−1Π

= −[(A+KC)∗]−1C∗(Ro +CΣC∗)C =−[(A+KC)∗]−1C∗
ΩCΩ ,

where CΩ =Ω−1
o C. Substituting the above into (5.142) yields

0 =
[−Z I

]
[

A+KC 0

−[(A+KC)∗]−1C∗
ΩCΩ [(A+KC)∗]−1

][
I
Z

]

= −Z(A+KC)+ [(A+KC)∗]−1Z − [(A+KC)∗]−1C∗
ΩCΩ .

Multiplying the above by (A+KC)∗ from left leads to

Z = (A+KC)∗Z(A+KC)+C∗
ΩCΩ

which verifies that Q = Z = (I +XΣ)−1X is the observability gramian of G(z). If
A and (A+KC) are singular, then A and (A+KC) can be perturbed to Aε and AεK ,
respectively, by adding εI such that both are nonsingular. Similar proof can thus be
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adopted to obtain the observability gramian Zε . The limit ε → 0 can be taken to
conclude the proof for the case when A and (A+KC) are singular. As (5.141) is
dual to (5.140), its proof is skipped. ��

Notes and References

There are many papers and books on optimal control for continuous-time systems.
See [5, 39, 57, 58, 74, 122, 126] for a sample of references. For linear discrete-time
systems, readers are referred to [1, 7, 11, 16, 25, 68, 69] for a glimpse of work on
optimal control. For optimal estimation or filtering, most of work has been focused
on discrete-time systems, except the Kalman–Bucy filter [60]. Many books are
available with [8, 54] as the representative.

Exercises

5.1. Let X be a random vector of dimension n > 1 that is Gaussian distributed with
mean zero and covariance Σxx. Suppose that Σxx has rank m < n. Show that its PDF
has the form

pX(X = x) =
1

√
(2π)m∏m

i=1σ2
i

exp

{
−1

2
x∗Σ+

xxx
}
,

where Σ+
xx is the pseudoinverse of Σxx and {σ2

i }m
i=1 are the m nonzero singular values

of Σxx. (Hint: Consider first Σxx = diag(σ2
1 , . . . ,σ2

m,0, . . . ,0) and then extend it to
the general case.)

5.2. Suppose that the system is described by state-space model

x(t + 1) = Ax(t)+Bv(t), y(t) =Cx(t)+Dv(t),

where {v(t)} is a WSS white noise with mean zero and covariance Qv. Let H(z) =
D+C(zI−A)−1B be the transfer matrix. Show that

‖y‖P =
∥
∥
∥HQ1/2

v

∥
∥
∥

2
:=

√

Tr

{
1

2π

∫ π

−π
H(e jω)QvH(e jω)∗ dω

}

=
√

Tr{CPC∗+DQvD∗},

where P=APA∗+BQdB∗ is the covariance of the state vector x(t). Recall that ‖·‖P

is the power norm as defined by (2.49) in Chap. 2.
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5.3. Consider the nth order state-space system

x(t + 1) = Ax(t), y(t) =Cx(t)+ v(t)

with x(0) = x0 �= 0 and v(t) the measurement noise. Assume that (C,A) is
observable. Let O� be the observability matrix of size �≥ n and

Y� = vec
{[

y(0) y(1) · · · y(�− 1)
]}

.

Show that the estimate x̂0 which minimizes the estimation error ‖Y�−O�x̂0‖ is

given by x̂0 =
(
O∗
� O�

)−1
O∗
� Y�.

5.4. Prove the expression for the conditional PDF in (5.6). What modifications
are needed for the PDFs of X and Y and for the conditional PDF in (5.6), if the
dimensions of X and Y are different from each other?

5.5. Let X and Y be two jointly distributed random variables. Let x̂ be the optimal
estimate, given observation Y = y, such that

E{|X − x̂| |Y = y} ≤ E{|X − z| |Y = y} ∀ z.

That is, x̂ minimizes the absolute error of the estimation. Show that x̂ is the median
of the conditional density pX |Y (x|y); i.e.,

PX |Y [X ≤ x̂|y] = PX |Y [X ≥ x̂|y] = 0.5.

5.6. Let X and Y be jointly distributed. If E{XY∗} = 0, then X and Y are termed
orthogonal. Show that the linear MMSE estimate X̂ in (5.15) as in Theorem 5.5
satisfies the orthogonality condition

E
{(

X − X̂
)

Y ∗}= 0.

Give a geometric interpretation for the above orthogonality condition.

5.7. Suppose that BtD∗
t �= 0 for the random process in (5.19). Show that for t ≥ k,

Qt,k = E
{
[y(t)− yt ] [y(k)− yk]

∗}

= CtΦt,kPkC
∗
k +CtΦt,k+1BkD∗

k +DtD
∗
t δ (t − k),

Γt,k = E
{
[x(t)− xt ] [y(k)− yk]

∗}=Φt,kPkC
∗
k +Φt,k+1BkD∗

k .

5.8. Suppose that Ψ and Θ are both square and hermitian, which may not
necessarily have the same dimensions. AssumeΨ > 0. Show that
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Z−1 =

[
Ψ Ω ∗

Ω Θ

]−1

=

[
Ψ−1 0

0 0

]
+

[
Ψ−1Ω ∗

−I

]
∇−1 [ΩΨ−1 −I

]

whenever Z is also square and hermitian positive definite, where

∇=Θ −ΩΨ−1Ω ∗

is called Schur complement. (Hint: Use factorization

Z =

[
Ψ Ω ∗

Ω Θ

]
=

[
I 0

ΩΨ−1 I

][
Ψ 0
0 ∇

][
I Ψ−1Ω ∗

0 I

]

to compute the inverse of Z). What ifΘ > 0 butΨ is singular?

5.9. Prove Theorem 5.7.

5.10. (i) Use the matrix inversion formula (refer to Appendix A)

(
F +HJ−1G

)−1
= F−1 −F−1H

(
J +GF−1H

)−1
GF−1

to show that with the Kalman gain in (5.35),

At +KtCt = At
(
In +ΣtC

∗
t R−1

t Ct
)−1

.

(ii) Show that the DRE (5.36) can be equivalently written as

Σt+1 = At
(
In +ΣtC

∗
t R−1

t Ct
)−1ΣtA

∗
t +BtB

∗
t

= (At +KtCt)Σt (At +KtCt)
∗+BtB

∗
t +KtRtK

∗
t .

(iii) Show that for BtD∗
t �= 0, the DRE in (5.43) can be written as

Σt+1 = Ãt
(
In +ΣtC

∗
t R−1

t Ct
)−1Σt Ã

∗
t +Bt

(
Im −D∗

t R−1
t Dt

)
B∗

t

= (At +KtCt)Σt (At +KtCt)
∗+(Bt +KtDt) (Bt +KtDt)

∗ ,

where Ãt = At −BtD∗
t R−1

t Ct and Kt =−(AtΣtC∗
t +BtD∗

t )(Rt +CtΣtC∗
t )

−1.

5.11. Consider linear estimator

x̃t+1 = (A+LtCt)x̃t −Lty(t), x̃0 = x0

for the process in (5.19). Let Qt = E{[x(t)− x̃t][x(t)− x̃t ]
∗} be its error covariance.

Show that Qt ≥ Σt for all t ≥ 0 with Σt the error covariance for the Kalman filter.
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5.12. (Kalman filter as a whitening filter) For the random process described in
(5.19), consider the linear estimator of the form

x̂(t + 1) = (At +LtCt)x̂(t)−Lty(t), δy(t) = y(t)− ŷ(t)

with ŷ(t) = Ct x̂(t) and x̂(0) = x0. Note that {δy(t)} is the innovation sequence.
Show that the output process {δy(t)} is white (i.e.,

E{δy(t)δy(t − k)∗}= E{δy(t)δy(t)∗}δ (k)

for all t and k), if and only if

(Bt +LtDt)D
∗
t +(At +LtCt)XtC

∗
t = 0,

where Xt = E{[x(t)− x̂(t)][x(t)− x̂(t)]∗} is the error covariance. Show also in this
case that Lt is necessarily the Kalman gain Kt as in Corollary 5.1 and x̂(t + 1) =
x̂t+1|t is the linear MMSE estimate of x(t + 1) based on Yt .

5.13. Show that the stabilizing solution to the ARE (5.50), if it exists, is unique.
(Hint: Assume Σ1 and Σ2 are both stabilizing solutions to (5.50). Show that:

ΔΣ = (A+K1C)ΔΣ (A+K2C)∗, ΔΣ = Σ1 −Σ2,

where Ki =−AΣiC∗(R+CΣiC∗)−1 for i = 1,2.)

5.14. For Example 5.12, find the optimal linear receiver in the case H0(t) �= 0
and discuss its performance in comparison with that of the optimal linear receivers
designed in Example 5.15 assuming that Hk are the same for 1 ≤ k ≤ �.

5.15. Prove Theorem 5.14 for the case BtD∗
2t �= 0.

5.16. Suppose that the random process has the state-space form:

x(t + 1) = Atx(t)+Btv(t), y(t) =Ctx(t)+Dtv(t),

where v(t) is a white process satisfying (5.20) and x(0) = x0 is random and
independent of {v(t)} with mean x0 and covariance P0. (i) Find the linear MMSE
estimator for x(t) based on observation {y(k)}t

k=0. (ii) Find the linear MMSE
estimator for v(t) based on observation {y(k)}t

k=0. (Hint: Use Theorem 5.14).

5.17. Use Simulink toolbox to program and simulate data detection for a SISO
channel with gains hk = 1/

√
5 for 0 ≤ k ≤ � = 4. The symbol detector is the

linear receiver (based on Kalman filter) followed by a quantizer Qn(·) = sign(·).
The observation noise {v(t)} can be generated by normal distributed uncorrelated
or white random variables with variance 0.1. The data block of the same size can
generated in a similar way followed by Qn(·) = sign(·) to produce ±1 sequence. It
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is emphasized that the data and noise sequences are uncorrelated. In the context of
Example 5.15, do the following:

(i) Design an MMSE estimator to estimate s(t −m) with m = 2� followed by a
quantizer based on observation of the channel output up to time t.

(ii) Simulate and access the average performance of the detector by counting the
number of detection errors in each block of 104 data assuming that the receiver
knows the first � transmitted data.

5.18. For the output estimator in Theorem 5.14, show that the output error variance
E
{‖ez(t)‖2

}
is given by

Tr{(D1t +LtD2t)(D1t +LtD2t)
∗+(C1t +LtC2t)Σt(C1t +LtC2t)

∗}

(Hint: Let e(k) = x(k)− x̂k|k−1 for k = t, t + 1. Show first that

e(t + 1) = (At +KtC2t)e(t)+ (Bt +KtD2t)v(t)
ez(t) = (C1t +LtC2t)e(t)+ (D1t +LtD2t)v(t)

(5.143)

and then compute the variance of ez(t).)

5.19. Consider the equivalent Wiener filtering as in Fig. 5.6 where G1(z) and G2(z)
are both stable and causal. Suppose that z−mG1(z) is noncausal in the case m < 0.
Decompose

z−mG1(z) = GC(z)+GA(z),

where GC(z) is causal and GA(z) is anticausal. Show that the optimal estimation for
the output of GA(z) with white noise input is zero and thus conclude that the optimal
estimate ẑt|t−m is independent of GA(z). Provide a design procedure for the optimal
output estimation. (Hint: Use the result from the solution to Problem 2.19.)

5.20. Consider the nth order state-space system

x(t + 1) = Ax(t)+Bu(t), x(0) = x0 �= 0.

Assume that (A,B) is controllable with C� the controllability matrix of size � > n.
Let

Ũ� = vec
{[

u(�− 1) u(�− 2) · · · u(0)
]}

.

Show that the control input Ũ� = −C ∗
� (C�C

∗
� )

−1A�x0 has the minimum energy
∥
∥Ũ�

∥
∥2

among all possible control inputs which brings x(�) to the origin.

5.21. Use direct computation to show that the solution Xt to the DRE (5.86) with
boundary condition XT = 0 satisfies

X0 ≥ X1 ≥ ·· ·XT−1 ≥ XT = 0.
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5.22. Show that the closed-loop system under the LQR control (5.87) is x(t +1) =
(
I+BtR−1

t B∗
t Xt+1

)−1
Atx(t). Show also that the DRE (5.86) can be written as

Xt = A∗
t Xt+1

(
I+BtR

−1
t B∗

t Xt+1
)−1

At +Qt , XT = QT .

5.23. Show that the control DRE in (5.86) can be written into:

Xt = (At +BtFt)
∗Xt+1(At +BtFt)+C∗

t Ct +F∗
t RtFt

with Ft in (5.87) being the optimal state-feedback gain for the LQR control. If the
control law u(t) = Gtx(t) is used with Gt �= Ft , show that the solution to

Yt = (At +BtGt)
∗Yt+1(At +BtGt)+C∗

t Ct +G∗
t RtGt

satisfies Yt ≥ Xt for 0 ≤ t ≤ T where XT = YT = 0 is assumed.

5.24. For the system model in (5.82), let the controlled output be z(t) = Ctx(t)+
Dtu(t) and the performance index be

JT = x(T )∗QT x(T )+
T−1

∑
t=0

‖z(t)‖2. (5.144)

Denote Ãt = At − B2tR
−1
t D∗

t Ct and C̃t =
(

I−Dt (D∗
t Dt)

−1 D∗
t

)
Ct . Show that the

control law which minimizes JT is given by u(t) = Ftx(t) where

Ft = −(Rt +B∗
t Xt+1Bt)

−1 (B∗
2tXt+1At +D∗

t Ct) , Rt = D∗
t Dt > 0

Xt = Ã∗
t Xt+1

(
I+BtR

−1
t B∗

t Xt+1
)−1

Ãt + C̃∗
t C̃t , XT = QT .

5.25. Let the state-space model be as in (5.82). Show that if the open-loop system
x(t + 1) = Atx(t) is asymptotically (exponentially) stable, then the closed-loop
system (5.95) for the LQR control as described in Theorem 5.17 is asymptotically
(exponentially) stable as T → ∞.

5.26. Prove Theorem 5.20.

5.27. For any stabilizing state-feedback gain F , show that

X = (A+BF)∗X(A+BF)+F∗RF +Q

= A∗ (In +XBR−1B∗)−1
XA+Q+Δ∗

F(R+B∗XB)ΔF ,

where ΔF = F + (R + B∗XB)−1B∗XA. Establish that (a) the LQR control law
minimizes Tr{X} and (b) the stabilizing solution to the ARE (5.96) is maximal
among all possible nonnegative solutions to the ARE (5.96).
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5.28. Consider x(t + 1) = Ax(t)+Bu(t) and assume that (A+BF) is a stability
matrix for some state-feedback gain F . (i) Let u(t) = Fx(t) be the state-feedback
control law. Show that

J(F) =
∞

∑
t=0

‖u(t)‖2 + ‖Cx(t)‖2 = x′0Xx0,

where X = (A+BF)∗X(A+BF)+F∗F+C∗C and x(0) = x0 is the initial condition.
(ii) Let Xm ≥ 0 be the stabilizing solution to

Xm = A∗Xm(I+BB∗Xm)
−1A+C∗C.

Show that Xm ≤ X .

5.29. Suppose that the ARE (5.96) admits a stabilizing solution. Show that X is
positive definite, if and only if all stable modes of (C,A) are observable where Q =
C∗C.

5.30. (i) Let Ã=A−BR−1D∗C and C̃ =
[
I−DR−1D∗]C with R=D∗D> 0. Show

that the ARE X = Ã∗X
[
I+BR−1B∗X

]−1
Ã+ C̃∗C̃ can be equivalently written

as the following ARE:

X = A∗XA− (A∗XB+C∗D)(R+B∗XB)−1(B∗XA+D∗C)+C∗C.

(ii) What are the equivalent AREs in the case of optimal estimation?

5.31. Consider the DRE

Xt(T ) = A∗Xt+1(T )
[
In +BR−1B∗Xt+1(T )

]−1
A+Q, XT (T ) = 0.

Show that {Xt(T )} satisfy Xt(T )≥ Xt+1(T ) for 0 ≤ t < T . (Hint: Use the same idea
as in the proof of Proposition 5.1).

5.32. Suppose that (A,B) is stabilizable and the condition (5.100) holds. Construct
a numerical example for which the ARE (5.96) has a solution Xu ≥ 0 that is not
stabilizing.

5.33. Prove Theorem 5.25. (Hint: Consider the augmented state vector x̆(t) =[
x(t)∗ v(t)∗

]∗
and then convert the full information control to the state-feedback

control problem as in Theorem 5.19.)

5.34. Let (A,B,C,D) be a minimal realization of G(z) with A ∈ Cn×n, B ∈ Cn×m,
and C ∈ Cp×n. Assume that D has full rank. (i) If p ≤ m, show that z = z0 is a
transmission zero of G(z), if and only if z0 is an unreachable mode of

(
Ã, B̃
)

with

Ã = A−BD∗(DD∗)−1C, B̃ = B
(
I−D∗(DD∗)−1D

)
.
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(ii) If p ≥ m, show that z = z0 is a transmission zero of G(z), if and only if z0 is an
unobservable mode of

(
C̃, Ã
)

with

Ã = A−B(D∗D)−1 D∗C, C̃ =
(

I−D(D∗D)−1 D∗
)

C.

5.35. Let G(z) in (5.118) be stable. (i) Show that

Φ(z) = G(z)G(z)∼ = DD∗+CPC∗+C(zI−A)−1L+L∗ (z−1I−A∗)−1
C∗,

where L = APC∗+BD∗ and P = APA∗+BB∗. (ii) Show that

Φ(z) = G(z)∼G(z) = D∗D+B∗QB+H(zI−A)−1B+B∗ (z−1I −A∗)−1
H∗,

where H = B∗QA+D∗C and Q = A∗QA+C∗C.

5.36. Let G(z) = D+C(zI−A)−1B with A a stability matrix, R = DD∗ nonsingular
and BD∗ = 0. (i) Show that

G
(
e jω)G

(
e jω)∗ = R+C

(
e jω I−A

)−1
BB∗ (e− jωI −A∗)−1

C∗ ≥ R.

(ii) Use Lemma 5.1 and (i) to show that for each real ω ,

[
I −C(e jωI−A)−1K

]
(R+CΣC∗)

[
I−C(e jωI −A)−1K

]∗ ≥ R.



Chapter 6
Design of Feedback Control Systems

Feedback control has triumphed for more than half a century, but its earliest
invention was dated some 2000 years ago by ancient Greeks in float regulators of
water clocks. More active use of feedback control was around the time of Industrial
Revolution in Europe when many control devices and regulators were invented.
The flourish of such control devices and regulators attracted mathematicians’
attention from Maxwell, Routh, Lyapunov, and Hurwitz, who contributed to the
stability theory for systems governed by differential equations. However, it was
until after Black reinvented negative feedback into design of amplifiers that initiated
mathematical analysis of feedback control systems in frequency domain. The role of
the Bell Lab and the market need of mass communications are essential in the birth
of classical control theory symbolized by the work of Bode and Nyquist in the late
1930s. The World War II stimulated further the development of the classical control
technology with wide applications, which proliferated to academia postwar.

While being highly successful, the classical control theory is limited in its appli-
cations to primarily SISO systems due to the graphical nature of its design tools such
as methods of Bode and root locus. For multi-input/multi-output (MIMO) systems,
it is the modern control theory that grows into a mature design methodology, termed
as linear quadratic Gaussian (LQG) optimal control. It assumes a linear state-
space model for the underlying multivariable system with stochastic descriptions
for exogenous noises and disturbances impinged on the feedback system. The
performance index is a combination of the mean powers of the control input and
error signal. Minimization of the performance index is the design objective that
admits a closed-form solution for the optimal feedback controller.

LQG control was motivated largely by the space program massively funded in
the 1950s. It had a huge success in space applications because accurate models
can be developed for space vehicles, white noise descriptions are appropriate for
external disturbances, and the fuel consumption is crucial in space missions. Owing
to the work of Kalman and other scientists, LQG control has since become an
effective design methodology for multivariable feedback control systems. This
chapter considers H2 optimal control that is modified from the LQG control

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 6, © Springer Science+Business Media, LLC 2012
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focusing on LTI systems. The optimal solution to linear quadratic control will
be derived for the case of output feedback rather than state feedback. Design of
multivariable feedback control systems will then be studied with the objective to
satisfying performance specifications in frequency and time domains. Design tools
such as frequency loop shaping and eigenvalue assignment will be developed which
can be regarded as extension of Bode and root locus in classic control, respectively.
Various other design issues such as controller reduction and stability margins will
be investigated as well.

6.1 Output Feedback Control

A familiar feedback system is shown in Fig. 6.1 with P(z), the physical system to
be controlled, and K(z), the feedback controller to be designed. Exogenous signals
are d1(t), the disturbance at the input of the system; d2(t), the noise corrupted at the
output of the system; and −r(t), the command signal for the system to track. Recall
that the negative sign of the feedback path has been absorbed into the feedback
controller K(z) as discussed in Sect. 3.2.3.

In design of feedback control systems, stability is the first priority. On the
other hand, performance measure or index is dependent on applications. Possible
performance index includes variance of the tracking error signal and the mean power
of the control signal, assuming white noises for d1(t) and d2(t), and WSS process
for r(t).

Example 6.1. Suppose that d1(t) ≡ 0, d2(t) ≡ 0, and r(t) = H(q)d(t) for some
proper and stable transfer matrix H(z) with d(t) white noise of zero mean and
identity covariance. The frequency shape of H(ejω) represents the frequency
contents of the reference signal r(t). Let α and β be positive satisfying α+β = 1.
The signal to be controlled is chosen as convex combination of the tracking error
variance and mean power of the control signal specified by

w(t) :=

[
αu(t)
βe(t)

]
=

[
αK
β I

]
(I −PK)−1Hd(t) =: Tdw(q)d(t). (6.1)

Fig. 6.1 Feedback control system in presence of disturbances
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Indeed, the variance of w(t) is the same as square of its power norm given by

‖w‖2
P = α2‖e‖2

P +β 2‖u‖2
P = E{‖Tdw(q)d(t)‖2}

= Tr
{

1
2π
∫ π
−π Tdw(ejω)Tdw(ejω )∗ dω

}
.

(6.2)

Recall definition of the power norm and its relation to variance in Chap. 2. Note that
(6.2) holds only if Tdw(z) is a stable transfer matrix in which case

‖w‖P = ‖Tdw‖2 :=

√

Tr

{
1

2π

∫ π

−π
Tdw(ejω )Tdw(ejω )∗ dω

}
.

Hence, feedback control design amounts to computing the stabilizing controller
K(z) such that ‖w‖P = ‖Tdw‖2 is minimized. Such a problem is referred to as
H2 optimal control owing to minimization of the H2 norm of Tdw(z). The scalar
weights (α,β ) provide trade-offs between minimization of the tracking error and
control power. Diagonal and frequency dependent matrices can be employed in
place of scalar weights (α,β ) to offer more freedom of trade-offs among different
output channels and different frequency bands.

Example 6.1 formulates the tracking performance mixed with control power in
absence of disturbances. The following presents an example of disturbance rejection
without taking tracking performance into consideration explicitly.

Example 6.2. Suppose that r(t)≡ 0. Define

w(t) :=

[
u(t)
d(t)

]
, d(t) :=

[
d1(t)
d2(t)

]
.

It can be verified that w(t) = Tdw(q)d(t) where

Tdw =

[
K
I

]
(I −PK)−1 [P I

]
. (6.3)

If d(t) is white with mean zero and covariance Qd , then ‖w‖P = ‖TdwQ1/2
d ‖2.

Disturbance rejection now amounts to design of the stabilizing controller K(z) such
that the following performance index

J =

√

Tr

{
1

2π

∫ π

−π
Tdw(ejω)QdTdw(ejω)∗ dω

}
(6.4)

is minimized. By noting that Tdw(z) contains (I −PK)−1 as a submatrix that is the
transfer matrix from r(t) to e(t), minimization of J in (6.4) ensures small tracking
error even though it is not minimized directly.

Two-degree-of-freedom controllers are often used in engineering practice which
are illustrated in the next figure.
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Fig. 6.2 Feedback system
with two-degree-of-freedom
controller

In comparison with Example 6.1, the extra precompensator K1 shapes the command
signal r(t) and helps to achieve better tracking performance.

Example 6.3. Let us reexamine the tracking performance by employing the feed-
back structure in Fig. 6.2. It is easy to see that

y(t) = P(I−K2P)−1K1r(t),
u(t) = (I−K2P)−1K1r(t).

Since the tracking error is e(t) = y(t)− r(t), its expression is given by

e(t) =
[
I −P(I−K2P)−1K1

]
r(t).

Consider the following signal to be controlled:

w(t) :=

[
e(t)
εu(t)

]
=

([
I
0

]
+

[−P
εI

]
(I−K2P)−1K1

)
r(t).

The parameter ε > 0 provides the trade-offs between minimization of the tracking
error and of the control power. Specifically,

‖w‖2
P = ‖e‖2

P + ε2‖u‖2
P .

Hence, the above is equivalent to the performance index in Example 6.1 by taking
α = 1/

√
1+ ε2 and β = ε/

√
1+ ε2. However, there is an extra freedom for control

or precompensator K1(z) that may help to minimize ‖w‖2
P . Consequently, a similar

H2 optimal control problem is resulted in.

The preceding examples consider minimization of linear combination of the
power norms of the tracking error and control signal. Although other signals in the
feedback system of Fig. 6.1 or Fig. 6.2 can also be considered for optimization, most
exhibits the same structure for H2 optimal control. This structure is characterized
by linear fractional transformation (LFT) that is defined by

F (G,P) = G11 +G12K(I−G22K)−1G21

where G is partitioned as

G =

[
G11 G12

G21 G22

]
.
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It can be shown that the closed-loop transfer matrix Tdw(z) in the aforementioned
three examples can all be written as LFT of the generalized plant G(z) and the
feedback controller K(z), i.e.,

Tdw(z) = F [G(z),K(z)]

for some G(z) and K(z). Indeed, in Example 6.1, the generalized plant is given by

G(z) =

⎡

⎣
0 αI

βH(z) βP(z)
H(z) P(z)

⎤

⎦ . (6.5)

In Example 6.2, the generalized plant is given by

G(z) =

⎡

⎣
0 0 I

P(z) I P(z)
P(z) I P(z)

⎤

⎦ . (6.6)

Example 6.3 is a little more subtle. Denote

K(z) =
[

K1(z) K2(z)
]
, Pa(z) =

[
0

P(z)

]
.

Recall r(t) = H(q)d(t) where H(z) is some proper and stable transfer matrix
and d(t) some white process of zero mean and identity covariance. Then w(t) =
Tdw(q)d(t) with

Tdw =

[
H
0

]
+

[−P
εI

]
(I −KPa)

−1K
[

H
0

]

=

[
H
0

]
+

[−P
εI

]
K(I−PaK)−1

[
H
0

]
. (6.7)

The generalized plant is thus given by

G(z) =

⎡

⎢
⎢
⎣

H(z) −P(z)
0 εI

H(z) 0
0 P(z)

⎤

⎥
⎥
⎦ . (6.8)

All the three preceding examples show that the related H2 optimal control
problems have the same LFT structure. The difference lies in the forms of the
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Fig. 6.3 LFT feedback
control system

generalized plant and feedback controller which are problem dependent. An optimal
solution will be presented in this section to synthesize the feedback controller K(z)
such that

Tdw(z) = F [G(z),K(z)].

is internally stable and the performance index ‖Tdw‖2 = ‖F (G,K)‖2 is minimized.
In fact, the optimal controller has the same order as that of the generalized plant that
can be high. Hence, controller reduction will also be studied in a later part of the
section.

6.1.1 Optimal Controllers

As demonstrated previously, many optimal control problems admit the LFT struc-
ture. A state-space realization is assumed for the generalized plant giving rise to

G(z) =

⎡

⎣
A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎦ (6.9)

where Gi j(z) = Di j +Ci(zI − A)−1B j for i, j = 1,2. For this reason, H2 optimal
control for the LFT feedback system in Fig. 6.3 is considered next.

The corresponding state-space system is described by

x(t + 1) = Ax(t)+B1d(t)+B2u(t), x(t0) = 0,

w(t) = C1x(t)+D11d(t)+D12u(t),

y(t) = C2x(t)+D21d(t)+D22u(t), (6.10)

where d(t) ∈ IRm1 , u(t) ∈ IRm2 , w(t) ∈ IRp1 , y(t) ∈ IRp2 , and x(t) ∈ IRn. The zero
initial condition is owing to the stationary nature of the H2 control.

Generically, both m2 and p2 are strictly smaller than n that is the state dimension.
It is thus difficult to design the optimal feedback controller K(z) directly based
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on output measurement y(t). Our strategy is to tackle the simple problem first by
considering the special case of full information when state x(t) and disturbance d(t)
are available for feedback that corresponds to

C2 =

[
In

0

]
, D21 =

[
0

Im1

]
, D22 =

[
0
0

]
. (6.11)

This strategy has the advantage in that the solution to full information control in
Chap. 5 can be utilized. More importantly, when the conditions in (6.11) fail to hold
(that is generic and corresponds to output feedback), full information control signal
can be estimated based on output measurements which will be employed in place
of the true state and disturbance. The surprising fact is that such a strategy leads to
H2 optimal control based on output feedback provided that both full information
control and output estimation are optimal. Such a nice property is referred to as
separation principle that will be made more precise.

Under full information, the feedback control law has the form

u(t) = F(q)x(t)+F0(q)d(t). (6.12)

The feedback controller K(z) =
[

F(z) F0(z)
]

is restricted to linear shift-invariant
systems so as to preserve the WSS property that is also the reason why zero initial
condition is taken in (6.10). It follows that

x(t + 1) = (A+B2F)x(t)+ (B1 +B2F0)d(t), x(t0) = 0,

w(t) = (C1 +D12F0)x(t)+ (D11 +D12F0)d(t).

The closed-loop transfer matrix under full information is given by

TFI(z) =

[
A+B2F B1 +B2F0

C1 +D12F D11 +D12F0

]
(6.13)

by a slight abuse of notation. The objective is to design the full information control
law in (6.12) that ensures internal stability of TFI(z) and minimizes ‖TFI‖2. The
optimal solution is restated next.

Theorem 6.4. Consider state-space system (6.10) satisfying the conditions in
(6.11) and R =D∗

12D12 being nonsingular. Denote AR = A−B2R−1D∗
12C1. If (A,B2)

is stabilizable and

rank

{[
zI −A B2

C1 D12

]}
= n+m2 ∀ |z|= 1, (6.14)

then the following (control) ARE

X = A∗
RX(I+B2R−1B∗

2X)−1AR +C∗
1(I−D12R−1D∗

12)C1 (6.15)
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admits a stabilizing solution X ≥ 0. In this case, the optimal full information control
gains are static and specified by

F = F =−(R+B∗
2XB2)

−1 (B∗
2XA+D∗

12C1) ,

F0 = F0 =−(R+B∗
2XB2)

−1 (B∗
2XB1 +D∗

12D11) . (6.16)

The minimum performance index JFI = inf‖Tdw‖2
2 over all stabilizing feedback

controllers has the following expression:

Tr{(D11 +D12F0)
∗(D11 +D12F0)+ (B1 +B2F0)

∗X(B1 +B2F0)} . (6.17)

Theorem 6.4 is the stationary version of Theorem 5.25 in Chap. 5. Its proof is left
as an exercise (Problem 6.1). When full information is unavailable or conditions in
(6.11) fail, it is customary to introduce the variable substitution

u(t) = s(t)+Fx(t)+F0d(t) (6.18)

where F and F0 are the optimal feedback gains for full information control in (6.16).
Substituting u(t) in (6.18) to the state-space system in (6.10) leads to

x(t + 1) = (A+B2F)x(t)+ (B1 +B2F0)d(t)+B2s(t),

w(t) = (C1 +D12F)x(t)+ (D11+D12F0)d(t)+D12s(t).

It follows that w(t) =TFI(q)d(t)+Ttmp(q)s(t) where TFI(z) is the same as in (6.13)
with F and F0 replaced by F and F0 in (6.16), respectively, and

Ttmp(z) =

[
A+B2F B2

C1 +D12F D12

]
. (6.19)

The following lemma is important and shows that TFI(z) and Ttmp(z) are orthogonal
in the sense that

1
2π

∫ π

−π
TFI(e

jω )∗Ttmp(e
jω) dω = 0. (6.20)

Lemma 6.1. Let F = F and F0 = F0 be the optimal feedback gains for full
information control as in (6.16). Then AF = A + B2F is a stability matrix and
H(z) = TFI(z)∼Ttmp(z) is a strictly proper transfer matrix given by

H(z) = (B∗
F XAF +D∗

FCF)(zI −AF)
−1B2 (6.21)

where DF = D11 +D12F0, BF = B1 +B2F0, and CF =C1 +D12F. Moreover,

Ttmp(z)
∼Ttmp(z) = D∗

12D12 +B∗
2XB2. (6.22)
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Proof. The optimality hypothesis implies that AF = A+B2F is a stability matrix.
The expression of the feedback gains F and F0 in (6.16) yields

MF0 := D∗
12DF +B∗

2XBF = (D∗
12D11 +B∗

2XB1)+ (R+B∗
2XB1)F0 = 0,

MF := D∗
12CF +B∗

2XAF = (D∗
12C1 +B∗

2XA)+ (R+B∗
2XB2)F = 0.

In addition, the stabilizing solution X ≥ 0 to the ARE (6.15) is the observability
gramian of both TFI(z) and Ttmp(z) or

X = A∗
FXAF +C∗

FCF . (6.23)

Denote TF (z) =CF(zI −AF)
−1. Then

TF(z)
∼TF(z) = X +XAF(zI −AF)

−1 +(z−1I −A∗
F)

−1A∗
F X . (6.24)

Similar equations to (6.23) and (6.24) are used in proof of Lemma 5.1 of the pre-
vious chapter. Verifications of (6.23) and (6.24) are left in Exercises (Problem 6.3).
By the expression of TF(z),

TFI(z) = DF +TF(z)BF , Ttmp(z) = D12 +TF(z)B2.

It follows from (6.24) that

H(z) = (B∗
F XAF +D∗

FCF)(zI −AF)
−1B2 +M∗

F0
+B∗

J(z
−1I −A∗

F)
−1M∗

F

after lengthy calculations. Because MF = 0 and MF0 = 0, H(z) is indeed strictly
proper as given in (6.21). On the other hand, (6.24) yields

T∼
tmpTtmp = D∗

12D12 +B∗
2XB2 +B∗

2(z
−1I −A∗

F)
−1M∗

F +MF(zI−AF)
−1B2

that verifies (6.22) due to MF = 0. In fact, Ttmp(z)(R + B∗
2XB2)

−1/2 is inner as
already shown in (ii) of Theorem 5.28 from the previous chapter. ��

In light of stability of H(z) or AF ,

1
2π

∫ π

−π
‖H(ejω)‖F dω < ∞

where ‖ · ‖F is the Frobenius norm. The orthogonality in (6.20) thus follows from
the absolute integrability of H(z) on the unit circle and the fact that H(z) is strictly
proper by

H(ejω) = TFI(e
jω )∗Ttmp(e

jω ) =
∞

∑
k=1

Hke−jω
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for some {Hk}∞k=1. Because the LFT system in Fig. 6.3 assumes linear and time-
invariant feedback controller K(z) that is stabilizing,

s(t) = u(t)− [Fx(t)+F0d(t)] (6.25)

is causal and has bounded variance. As a result, s(t) = Q(q)d(t) for some proper
and stable transfer matrix Q(z), and hence,

w(t) = [TFI(q)+Ttmp(q)Qtmp(q)]d(t).

Recall that d(t) is the only exogenous signal that is a white process with zero mean
and identity covariance. The result in Lemma 6.1 or orthogonality in (6.20) implies
that the variance of the output is given by

E{‖w(t)‖2}= ‖TFI‖2
2 + ‖TtmpQ‖2

2 (6.26)

where the minimum JFI = ‖TFI‖2
2 is specified in (6.17). The remaining problem is

minimization of the second term in (6.26) or

‖TtmpQ‖2
2 = E{‖Ttmp(q)s(t)‖2}= E{‖(D∗

12D12 +B∗
2XB2)

1/2s(t)‖2}

in light of (6.22) in Lemma 6.1. Therefore, minimization of ‖TtmpQ‖2
2 amounts to

minimization of variance of the augmented error signal

w̃(t) = (D∗
12D12 +B∗

2XB2)
1/2 [u(t)−uFI(t)]

by designing u(t) as the optimal estimate to the full information control law
uFI(t) = Fx(t)+F0d(t). This is recognized as (stationary) output estimation. The
nonsingular matrix (D∗

12D12 +B∗
2XB2)

1/2 does not alter the solution to the problem
of output estimation but changes its error variance.

Specifically, consider first the case

D22 = 0, det(D21D∗
21) �= 0. (6.27)

The corresponding problem of output estimation is described by

x(t + 1) = Ax(t)+B1d(t)+B2u(t),
uFI(t) = Fx(t)+F0d(t),

y(t) = C2x(t)+D21d(t).
(6.28)

In accordance with the results in Sect. 5.1.4 of the previous chapter, the output
estimator has the form

x̂(t + 1) = (A+LC2)x̂(t)−Ly(t)+B2u(t),
ûFI(t) = (F +L0C2)x̂(t)−L0y(t)

(6.29)
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for some (L,L0) with L stabilizing. The next result is obtained from extending
Theorem 5.14 in Sect. 5.1.4 to the stationary case.

Theorem 6.5. Consider output estimation for the system described in (6.28) with
R̃ = D21D∗

21 being nonsingular. Denote AR̃ = A − B2D∗
21R̃−1D21C2. If (C2,A) is

stabilizable and

rank

{[
zI −A B1

C2 D21

]}
= n+ p2 ∀ |z|= 1, (6.30)

then the following (filtering) ARE

Y = AR̃Y (I +C∗
2R̃−1C2Y )−1A∗̃

R +B1(I −D∗
21R̃−1D21)B

∗
1 (6.31)

admits a stabilizing solution Y ≥ 0. In this case, the optimal output estimation gains
are static and specified by

L = −(AYC∗
2 +B1D∗

21) (R̃+C2YC∗
2)

−1,

L0 = −(FYC∗
2 +F0D∗

21)(R̃+C2YC∗
2)

−1. (6.32)

The minimum performance index JOE = infE{‖w̃(t)‖2} over all stabilizing feedback
estimators is given by

JOE = Tr{(D∗
12D12 +B∗

2XB2)(F0 +L0D21)(F0 +L0D21)
∗

+ (D∗
12D12 +B∗

2XB2)(F +L0C2)Y (F +L0C2)
∗} . (6.33)

Proof. By the assumption x0 = 0, x̂(0) = 0 with covariance P0 = Y can be taken
for the output estimator in (6.29) where Y ≥ 0 is the stabilizing solution to ARE
(6.31). Hence, an application of Theorem 5.14 concludes that the corresponding
DRE solutions agree with Y at each time index t leading to the stationary output
estimator in (6.29) with L and L0 as specified in (6.32) that is optimal over all L and
L0 subject to stability of (A+LC2). Denote

ex(t) = x(t)− x̂(t), eu(t) = uFI(t)− û(t).

It is left as an exercise (Problem 6.5) to show that

ex(t + 1) = (A+LC2)ex(t)+ (B1 +LD21)d(t),

eu(t) = (F +L0C2)ex(t)+ (F0 +L0D21)d(t), (6.34)

as D22 = 0 is assumed. The associated reachability gramian is precisely the solution
Y ≥ 0 to ARE in (6.31). It follows that the minimum variance is given by
E{‖eu(t)‖2}= Tr(E{eu(t)eu(t)∗}) or

E{‖eu(t)‖2}= Tr{(F0 +L0D21)(F0 +L0D21)
∗+(F +L0C2)Y (F +L0C2)

∗} .
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See also Problem 5.18 in Exercises of the previous chapter. Consequently, the
minimum of JOE is given by

JOE = Tr([D∗
12D12 +B∗

2XB2]E{eu(t)eu(t)
∗})

that is the same as in (6.33). ��
Our results in Theorems 6.4 and 6.5 show that the optimal H2 control system

in Fig. 6.3 can be designed with full information control and output estimation
separately that is referred to as separation principle. That is, if full information is
available or the conditions in (6.11) hold, then full information control in Sect. 5.2.3
is the optimal H2 control that completes the design of optimal H2 feedback control
system in Fig. 6.3. If full information is unavailable or the conditions in (6.11)
fail to hold, the optimal output estimator needs to be synthesized to estimate the
full information control law according to the result in Sect. 5.1.4. Together, they
produce the optimal H2 controller K(z) by taking u(t) = ûFI(t), i.e., by taking the
estimated full information control law as the control signal. Indeed, by substituting
u(t) = ûFI(t) in the second equation into the first equation of (6.29) gives the state-
space description of the feedback controller

x̂(t + 1) = (A+B2F +LC2 +B2L0C2)x̂(t)− (L+B2L0)y(t),

u(t) = (F +L0C2)x̂(t)−L0y(t).

For convenience, denote K0(z) = −[D̂ + Ĉ(zI − Â)−1B̂] in the case D22 = 0.
That is,

Â = (A+B2F +LC2 +B2L0C2),

B̂ = (B2L0 +L), Ĉ = F +L0C2, (6.35)

and D̂=L0. The optimal feedback controller K(z) for D22 �= 0 can be easily obtained
based on K0(z). Indeed, K0(z) is recognized as the optimal feedback controller for
the case when the output measurement is

yd(t) := y(t)−D22u(t) =C2x(t)+D21d(t).

In other words, u(t) = K0(q)yd(t) is the optimal control law or

u(t) = K0(q)[y(t)−D22u(t)]. (6.36)

The equivalent state-space description is given by

x̂(t + 1) = Âx̂(t)+ B̂[y(t)−D22u(t)],

−u(t) = Ĉx̂(t)+ D̂[y(t)−D22u(t)]. (6.37)

Recall that the feedback controller K(z) has y(t) as input and u(t) as output. Solving
u(t) from the second equation of (6.37) yields

u(t) =−(I − D̂D22)
−1[Ĉx̂(t)+ D̂y(t)],
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assuming det(I + D̂D22) �= 0. Thus, the state-space equations in (6.37) can be
rewritten as

x̂(t + 1) = [Â+ B̂D22(I− D̂D22)
−1Ĉ]x̂(t)+ B̂(I−D22D̂)−1y(t),

−u(t) = (I − D̂D22)
−1Ĉx̂(t)− (I− D̂D22)

−1D̂y(t).

The above gives the optimal feedback controller as

K(z) =−
[

Â+ B̂D22(I− D̂D22)
−1Ĉ B̂(I −D22D̂)−1

(I − D̂D22)
−1Ĉ (I− D̂D22)

−1D̂

]
. (6.38)

Remark 6.1. The conventional LQG control aims at state feedback and state
estimation without considering disturbances. It results in a strictly proper controller
in the form of observer as follows:

K(z) =−F(zI −A−B2F −LC2 −LD22F)−1L. (6.39)

Such an LQG controller can be obtained by setting L0 = 0 in (6.35) and by setting
D̂ = 0 in (6.38), if D22 �= 0. The LQG controller in (6.39) is optimal among all
strictly proper and stabilizing feedback controllers.

Example 6.6. Consider Example 6.2. The corresponding generalized plant model
G(z) is given in (6.6). Assume that P(z) =C(zI −A)−1B. Then

G(z) =

[
G11(z) G12(z)
G21(z) G22(z)

]
=

⎡

⎣
0 0 I

P(z) I P(z)
P(z) I P(z)

⎤

⎦

=

⎡

⎣
0 0 I
0 I 0
0 I 0

⎤

⎦+

⎡

⎣
0
C
C

⎤

⎦(zI −A)−1 [B 0 B
]
.

It can be verified that the conditions in Theorems 6.4 and 6.5 hold, if (A,B) is
stabilizable and (C,A) is detectable. These conditions imply the existence of the
stabilizing solutions to the following two AREs:

X = A∗X(I+B2B∗
2X)−1A+C∗

2C2, (6.40)

Y = AY (I +C∗
2C2Y )−1A∗+B2B∗

2, (6.41)

with B2 = B and C2 =C. The controller and estimator gains are given by

F =−(I+B∗XB)−1B∗XA,

[
L
L0

]
=−

[
A
F

]
YC∗(I +CYC∗)−1,
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respectively. The expression of the gain F0 is skipped, because it is not used in the
construction of the following optimal H2 controller:

K(z) =−
[

A+BF +LC+BL0C L+BL0

F +L0C L0

]
.

Let P(z) be the same as in Example 4.2 from Chap. 4. Straightforward calculation
using Matlab yields

F =

[−0.5706 0.0852 −0.1319 −0.2414 0.2625
−0.8030 0.1610 −0.1633 0.3420 −0.3745

]
,

L −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−0.3926 0.2038
−0.4369 0.1754
−0.0825 −0.0542
−0.0265 0.6595
−0.0949 0.2663

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, L0 =

[
0.2570 0.0552
0.3469 −0.3538

]
.

It is interesting to observe that (A+BF) and (A+LC) have the same eigenvalues,
which are eigenvalues of the closed-loop system. In addition, D11 is not involved in
design of the optimal feedback controller, but contributes to the performance index.

The H2 control in the previous example is very close to the normalized H2

control, referred to the case when the generalized plant is given by

G(z) =

⎡

⎣
0 0 I
0 P(z) P(z)
I P(z) P(z)

⎤

⎦

=

⎡

⎣
0 0 I
0 0 0
0 I 0

⎤

⎦+

⎡

⎣
0
C
C

⎤

⎦(zI −A)−1 [ 0 B B
]
.

It is left as an exercise (Problem 6.7) to show that the H2 optimal controller is the
same as the one in Example 6.6. If L0 in the optimal controller is set to zero, then
the normalized H2 control reduces to normalized LQG control that is commented
in Remark 6.1.

6.1.2 Controller Reduction

The optimal feedback controller K(z) is basically an output estimator that is built
upon the state estimation. Hence, the order of the optimal controller can be high
leading to high complexity in its implementation. For this reason, model reduction
is often a necessary step in design of feedback control systems.
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There are two considerations in controller reduction. The first is stability. That
is, the reduced order controller is required to stabilize the full order plant. The
second is performance. The error variance or the H2 performance needs to be
close to the optimal one achieved by the full order controller. This section focuses
on stability and derives the a priori bounds that ensure closed-loop stability. The
common methods in controller reduction include reduction of the plant order first
and design of reduced order controller later or design of the full controller first and
reduction of the controller later. Both will be studied in this text, but the focus will
be on simultaneous reduction of the plant and controller.

Generically, G22(z) = P(z) that holds for the three examples discussed at the
beginning of the chapter. Thus, stability requirement is translated to stabilization
of G22(z) by the feedback controller that is why stabilizability of (A,B2) and
detectability of (C2,A) are assumed in design of the optimal H2 controller K(z).
Since the discretized system is strictly causal, D22 = 0 often holds. Even if D22 �= 0,
reduction of K0(z) with realization in (6.35) can be considered that is synthesized
for the case D22 = 0. For these reasons, D22 = 0 has no loss of generality and will be
assumed throughout this subsection and next. It follows that coprime factorization
results from Sect. 3.2.3 can be used to compute left and right coprime factors of
G22(z) and K(z). Specifically, let F and L be the optimal state-feedback and state
estimation gains, respectively, which are computed as in Theorems 6.4 and 6.5,
respectively. Then both (A+B2F) and (A+LC2) are stability matrices. Accordingly,
G22(z) = P(z) and K(z) admit coprime factorizations

P(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1,

−K(z) = V(z)−1U(z) = Ũ(z)Ṽ(z)−1,

where −K(z) admits a state-space representation

−K(z) =

[
A+B2F +LC2 +B2L0C2 L+B2L0

F +L0C2 L0

]
. (6.42)

It is left as an exercise (Problem 6.8) to show that

H̃(z) =
[

H̃P(z) H̃K(z)
]

:=

[
M̃(z) −Ũ(z)
Ñ(z) Ṽ(z)

]

=

⎡

⎣
A+B2F B2 −(L+B2L0)

F I −L0

C2 0 I

⎤

⎦ , (6.43)

H(z) =

[
HK(z)
HP(z)

]
:=

[
V(z) U(z)
−N(z) M(z)

]

=

⎡

⎣
A+LC2 −B2 L

F +L0C2 I L0

C2 0 I

⎤

⎦ , (6.44)
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satisfy the double Bezout identity

H(z)H̃(z) =

[
HK(z)
HP(z)

]
[

H̃P(z) H̃K(z)
]
= I. (6.45)

It follows that H̃K(z) is a stable right inverse of HP(z) or H̃K(z) = HP(z)+ and
HK(z) is a stable left inverse of H̃P(z) or HK(z) = H̃P(z)+.

Our model reduction method focuses on simultaneous reduction of H̃(z) and
H(z) through inverse balanced truncation (IBT). Since both H̃(z) and H(z) consist
of the coprime factors of the plant and controller, it results in simultaneous reduction
of the plant and controller models. While the performance is quantified by H2 norm,
stability and stability margin are difficult to be ensured and to be studied using H2

norm. Instead, H∞ norm is often employed to study robust stability or stability in
presence of model error due to either modeling error of the plant or reduction error
of the controller. Recall that for a stable rational transfer matrix T(z), its H∞ norm
is defined by

‖T‖∞ := sup
|z|≥1

σ [T(z)] = sup
ω
σ [T(ejω )].

The following is the well-known small gain theorem.

Lemma 6.2. Let T(z) be a square stable rational transfer matrix. Its inverse [I +
T(z)]−1 exists and is a stable transfer matrix, if ‖T‖∞ < 1.

Proof. The condition ‖T‖∞ < 1 implies that [I +T(z)]−1 exists and is bounded for
each |z| ≥ 1. In fact, its H∞ norm satisfies

‖[I+T(z)]−1‖∞ ≤ 1
1−‖T‖∞ (6.46)

that is bounded. Thus, [I +T(z)]−1 is rational and stable. ��
Let S(z) =Ds+Cs(zIn−As)

−1Bs be a square matrix with det(Ds) �= 0. Its inverse
is given by

S(z)−1 =

[
As −BsD−1

s Cs BsD−1
s

−D−1
s Cs D−1

s

]
. (6.47)

Assume that both As and (As −BsD−1
s Cs) are stability matrices, i.e., S(z) is both

stable and strictly minimum phase. The IBT algorithm balances the reachability
gramian of S(z) against the observability gramian of S(z)−1, or vice versa, prior to
truncation (refer to Chap. 4). Let Qs and Ps be respective solutions to the following
Lyapunov equations:

Qs = AsQsA
∗
s +BsB

∗
s , Rs = DsD

∗
s , (6.48)

Ps = (As −BsD
−1
s Cs)

∗Ps(As −BsD
−1
s Cs)+C∗

s R−1
s Cs. (6.49)
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Then Qs ≥ 0 is the reachability gramian of S(z) and Ps ≥ 0 is the observability
gramian of S(z)−1. The realization matrices {As,Bs,Cs,Ds} are called inverse
balanced, if

Ps = Qs = diag(s1Ii1 ,s2Ii2 , · · · ,sη Iη) (6.50)

where s1 > s2 > · · ·> sη > 0 and i1 + i2+ · · ·+ iη = n. Suppose that r = i1 + · · ·+ iρ
for ρ < η , and the reduced model

Ŝ(z) = Ds + Ĉs(zIr − Âs)
−1B̂s

of order r is obtained via direction truncation:

Âs =
[

Ir 0
]

As

[
Ir

0

]
, B̂s =

[
Ir 0
]

Bs, Ĉs =Cs

[
Ir

0

]
.

The above is the IBT algorithm studied in Chap. 4. The model reduction error
associated with IBT has the relative and multiplicative forms and admits an H∞-
norm bound. Specifically, the following relations

S(z) = Ŝ(z) [I +Δmul(z)] , Ŝ(z) = S(z) [I +Δrel(z)] (6.51)

hold where Δmul(z) and Δrel(z) represent the multiplicative and relative error,
respectively, and satisfy

‖Δmul‖∞ ≤
η

∏
i=ρ+1

(
1+ 2si

(√
1+ s2

i + si

))
− 1,

‖Δrel‖∞ ≤
η

∏
i=ρ+1

(
1+ 2si

(√
1+ s2

i + si

))
− 1, (6.52)

in light of Theorem 4.6. Recall that the multiplicative and relative errors are
explicitly given by

Δmul(z) = Ŝ(z)−1
(

S(z)− Ŝ(z)
)
, (6.53)

Δrel(z) = S(z)−1
(

Ŝ(z)−S(z)
)
. (6.54)

Model reduction with multiplicative/relative error bounds takes a crucial role in
controller reduction. Indeed, applying the IBT algorithm to H(z) and H(z)−1 = H̃(z)
yields the following observability and reachability gramians:

P = (A+B2F)∗P(A+B2F)+F∗F +C∗
2C2, (6.55)

Q = (A+LC2)Q(A+LC2)
∗+LL∗+B2B∗

2. (6.56)
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It can be shown (Problem 6.10 in Exercises) that under the assumption

D∗
12

[
D12 C1

]
=
[

I 0
]
,

[
B1

D21

]
D∗

21 =

[
I
0

]
, (6.57)

and the matching condition

B1B∗
1 = B2B∗

2, C∗
1C1 =C∗

2C2, (6.58)

P = X is the stabilizing solution to ARE (6.40), and Q = Y is the stabilizing
solution to ARE (6.41). Feedback control for this special case corresponds to either
normalized H2 control or normalized LQG control. Recall the discussion in or after
Example 6.6 in the previous subsection.

Suppose that the realization of H(z) is inverse balanced, i.e.,

P = Q = diag(s1Ii1 ,s2Ii2 , · · · ,sη Iη) (6.59)

where s1 > s2 > · · · > sη ≥ 0 and i1 + i2 + · · ·+ iη = n. Since D22 = 0 and L0 is a
direct transmission matrix. Partition

⎡

⎣
A L B2

F
C2

⎤

⎦=

⎡

⎢
⎢
⎣

A11 A12 L1 B21

A21 A22 L2 B22

F1 F2

C21 C22

⎤

⎥
⎥
⎦ (6.60)

where A11 has size r× r and r = i1 + · · ·+ iρ < n. Denote

ÂK = A11 +B21F1 +L1C21 +B21L0C21,

B̂K = B21L0 +L1, ĈK = F2 +L0C21. (6.61)

The reduced plant and controller of order r are given, respectively, by

Ĝ22(z) =

[
A11 B21

C21 0

]
, K̂(z) =

[
ÂK B̂K

ĈK L0

]

. (6.62)

The next result states under what condition the feedback system in Fig. 6.3 is
stable when the optimal feedback controller K(z) is replaced by its reduced order
model K̂(z).

Theorem 6.7. Consider H̃(z) in (6.43) and H(z) in (6.44) for the optimal H2

feedback control system in Fig. 6.3. Let P and Q be the observability and reach-
ability gramians in (6.55) and (6.56), respectively, which are balanced in the sense
of (6.59). Let Ĝ22(z) and K̂(z) in (6.62) be reduced plant and controller of order
r = i1 + · · ·+ iρ < n, respectively, obtained through applying the IBT algorithm to
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H(z) and H̃(z). Then the feedback control system in Fig. 6.3 remains stable when
K(z) is replaced by K̂(z), provided that

η

∏
i=ρ+1

(
1+ 2si

(√
1+ s2

i + si

))
< 1+ γ−1 (6.63)

where γ := ‖H̃PHK‖∞ = ‖H̃KHP‖∞.

Proof. If H(z) and H̃(z) are inverse balanced as in (6.59), direct truncation yields

Ĥ(z) and ̂̃H(z) leading to the expressions of the reduced order plant and controller
in (6.62). Moreover, Theorem 4.6 in Chap. 4 asserts that

Ĥ(z) = H(z) [I +Δrel(z)] .

Substituting the partition of H(z) in (6.44) into the above equality leads to

[
ĤK(z)
ĤP(z)

]
=

[
HK(z)
HP(z)

]
(I+Δrel(z)) . (6.64)

With K(z) in Fig. 6.3 replaced by K̂(z) in (6.62), the closed-loop stability is
equivalent to

det[ĤK(z)H̃P(z)] �= 0 ∀ |z| ≥ 1 (6.65)

in light of the feedback stability in Sect. 3.2.3. It follows from (6.64) that

det[ĤK(z)H̃P(z)] = det[HK(z)(I +Δrel(z)) H̃P(z)]

= det[I+HK(z)Δrel(z)H̃P(z)]

= det[I+ H̃P(z)HK(z)Δrel(z)]

where HK(z)H̃P(z) = I in (6.45) is used. Hence, (6.65) holds if

‖H̃PHKΔrel‖∞ ≤ γ‖Δrel‖∞ < 1, (6.66)

in light of the small gain theorem in Lemma 6.2 and γ = ‖H̃PHK‖∞. The
multiplicative property in (i) of Problem 6.11 is used in arriving at the inequality
(6.66). The stability condition in (6.63) can be obtained rather easily by using the
bound for ‖Δrel‖∞ from Theorem 4.6. For each z on the unit circle, H̃P(z)HK(z) and
H̃K(z)HP(z) are projection matrices and

H̃P(z)HK(z)+ H̃K(z)HP(z) = I

by the double Bezout identity (6.45). The equality ‖H̃PHK‖∞ = ‖H̃KHP‖∞ holds by
using the result in Problem 6.12 for each z on the unit circle and by the definition on
H∞ norm. ��
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Theorem 6.7 shows that γ = ‖H̃PHK‖∞ = ‖H̃KHP‖∞ affects adversely the
stability condition in (6.63). By direct calculation,

H̃PHK =

[
I
P

]
(I −KP)−1 [ I K

]
,

H̃KHP =

[−K
I

]
(I −PK)−1 [−P I

]
.

So it is desirable to minimize γ in feedback control system design, but this is
beyond the scope of this book. Note that ‖H̃KHP‖∞ = ‖Tdw‖∞ with Tdw(z) given in
Example 6.2.

The next result derives an equivalent stability condition to that in Theorem 6.7.
The proof is left as an exercise (Problem 6.13).

Corollary 6.1. Under the same hypotheses/conditions in Theorem 6.7, the feed-
back control system in Fig. 6.3 remains stable when the H2 optimal controller K(z)
is replaced by K̂(z), provided that

‖H̃P(HK − ĤK)‖∞ = ‖H+
K (HK − ĤK)‖∞ < 1.

The above result is especially attractive for normalized H2 control. Indeed, for
the plant model P(z) =C(zIn −A)−1B, the feedback controller

K(z) =−F(zI −A−BF−LC)−1L

is obtained by setting F = −(I + B∗XB)−1B∗XA and L = −AYC∗(I +CYC∗)−1

where X ≥ 0 and Y ≥ 0 are stabilizing solutions to

X = A∗X(I+BB∗X)−1B+C∗C, Y = AY (I +C∗CY )−1A∗+BB∗,

respectively. Let Ω = (I +B∗XB)1/2. Then H̃P(z)Ω−1 is an orthogonal matrix for
each z on the unit circle that is referred to as normalized coprime factorization
(refer to Sect. 5.3.2 in the previous chapter). Hence,

‖H̃P(HK − ĤK)‖∞ = ‖Ω(HK − ĤK)‖∞.

Direct balanced truncation can be applied to ΩHK(z) to obtain the reduced order
controller represented by ΩĤK(z), and thus, the inequality

‖H̃P(HK − ĤK)‖∞ ≤ 2
η

∑
k=ρ+1

σk
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holds true where σk is the kth distinct Hankel singular value of ΩHK(z). Recall the
notation in Chap. 4. Consequently,

2
η

∑
k=ρ+1

σk < 1

ensures the feedback stability. If K(z) is not a normalized H2 controller, balanced
truncation can still be applied to HK(z) to obtain the reduced order controller but
the above stability condition is weakened to

2
η

∑
k=ρ+1

σk < ‖H̃P‖−1
∞ .

Optimal Hankel-norm approximation is not employed here because it may not
preserve the structure of the feedback controller that is in contrast to balaned
truncation.

Example 6.8. Consider the plant model P(z) and the controller K(z) in
Example 6.6. It can be verified by Matlab that γ = 4.8376 in the case of normalized
H2 control and γ = 5.3 in the case of normalized LQG control (L0 = 0). Under the
inverse balanced realization,

X = Y = diag(2.3703,2.3061,0.4234,0.3090,0.0089).

Hence, the left-hand side of (6.63) in Theorem 6.7 is equal to 0.0180, if the order
of the controller is reduced by only 1 which satisfies the stability condition in
Theorem 6.7. However, the left-hand side of (6.63) is equal to 1.871, if the order
of the controller is reduced by 2, which violates the stability condition in (6.63). It
is important to notice that the stability condition established in Theorem 6.7 is only
sufficient. In fact, even if the order of the controller is reduced to all the way to 1,
stability of the closed-loop system remains intact, owing probably to stability of the
plant.

The results in Theorem 6.7 and Corollary 6.1 assume that the full order controller
is designed first and reduced later, even though the plant and controller are reduced
simultaneously. A dual scenario is the case when the plant is reduced first, and the
reduced order controller K̂(z) is then designed based on the reduced order plant
P̂(z) = Ĝ22(z) in which the multiplicative error, rather than the relative error, helps
to derive the stability condition.

Theorem 6.9. Let Ĝ22(z) = C21(zIr − A11)
−1B21 be the reduced order model

obtained through applying the IBT algorithm to G22(z) and

Ĝ(z) =

⎡

⎣
A11 B11 B21

C11 D11 D12

C21 D21 D22

⎤

⎦
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where B21 and C21 are obtained via direct truncation in (6.60) and D22 = 0. Let K̂(z)
be the optimal H2 controller for Ĝ(z) with F̂, L̂ the state-feedback and estimation
gains, respectively, and L̂0 the output estimation gain. Then

Ĝ22 = M̂(z)−1N̂(z), K̂(z) =− ̂̃U(z)̂̃V(z)−1

are coprime factorizations as specified by

ĤP(z) =
[−N̂(z) M̂(z)

]
=

[
A11 + L̂C21 −B21 L̂

C21 0 I

]
,

H̃K̂(z) =

[
− ̂̃U(z)
̂̃V(z)

]

=

⎡

⎣
A11 +B21F̂ −(L̂+B21L̂0)

F̂ −L̂0

C21 I

⎤

⎦ ,

satisfying ĤP(z)H̃K̂(z)≡ I. The H2 controller K̂(z) stabilizes G22(z), if

n

∏
i=r+1

(
1+ 2si

(√
1+ s2

i + si

))
< 1+ γ̂−1 (6.67)

where γ̂ := ‖H̃K̂ĤP‖∞ = ‖ĤPH̃K̂‖∞ and {si} are the same as in (6.59).

Proof. The hypotheses and Theorem 4.6 imply

HP(z) = ĤP(z) [I+Δmul(z)] (6.68)

with HP(z) as in (6.43) and ‖Δmul‖∞ bounded as in (6.52). Similar to the proof for
Theorem 6.7, K̂(z) stabilizes G22(z), if and only if

det
(
HP(z)H̃K̂(z)

) �= 0 ∀ |z| ≥ 1. (6.69)

It follows from (6.68) and ĤP(z)H̃K̂(z)≡ I that

det
(
HP(z)H̃K̂(z)

)
= det

(
ĤP(z) [I+Δmul(z)] H̃K̂(z)

)

= det
(

I + ĤP(z)Δmul(z)H̃K̂(z)
)

= det
(

I + H̃K̂(z)ĤP(z)Δmul(z)
)
.

Hence, the inequality (6.69) holds if (6.67) is true in light of the small gain theorem
in Lemma 6.2 that concludes the proof. ��

The following is a similar stability condition to Corollary 6.1, and its proof is
again left as an exercise (Problem 6.14).
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Corollary 6.2. Under the same hypotheses/conditions in Theorem 6.9, the feed-
back control system in Fig. 6.3 remains stable when the H2 optimal controller K(z)
is replaced by K̂(z), provided

∥∥
∥H̃K̂

(
HP − ĤP

)∥∥
∥
∞
=
∥∥
∥Ĥ+

P

(
HP − ĤP

)∥∥
∥
∞
< 1. (6.70)

The above result suggests that balanced truncation can be applied to HP(z) that
results in an additive model error or

HP(z) = ĤP(z)+Δadd(z), ‖Δadd‖∞ ≤ 2
η

∑
k=ρ+1

σk,

where σk is the kth distinct Hankel singular value of HP(z). Recall again the notation
in Chap. 4. The reduced order controller K̂(z) can be synthesized by computing
H̃K̂(z) = ĤP(z)+ or stable left inverse of ĤP(z) that has as small H∞ norm as
possible in order to maximize the stability margin. Hence, the stability condition
in (6.70) is ensured by

2
η

∑
k=ρ+1

σk <
∥∥
∥Ĥ+

P

∥∥
∥
−1

∞
.

Even though the stability condition is less conservative than the previous one due to
the additive form of the error bound, it is still a sufficient condition for the closed-
loop stability. The error bound on left can again be considerably greater than the
true error.

6.2 Control System Design

Design of the feedback control system in Fig. 6.1 begins with analysis of the plant
model, performance objective, and exogenous disturbances/noises. Because of the
difference in engineering practice, design objectives differ from one control system
to another. More importantly, there is no single magic index that covers all design
tasks which, if it is true, would actually trivialize control system design. Hence,
the optimal solution to H2 control alone does not fulfill the design objective. In
fact, analysis plays a major role in control system design. The goal of this chapter
is to provide tools and guidelines for designing MIMO feedback control systems.
Two methods which will be studied in this section are (frequency) loop shaping
and eigenvalue assignment, akin to Bode plot and root locus in classic control,
respectively. Special cases such as state feedback or state estimation will be treated
first. Loop transfer recovery (LTR) will then be employed to deal with the case of
output feedback.



258 6 Design of Feedback Control Systems
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1−δi

Fig. 6.4 Magnitude response
of the desired sensitivity

6.2.1 Loop Shaping via Frequency Weighting

The synthesis method of loop shaping has its origin in the classic Bode design.
The difference lies in its applicability to MIMO systems. It assumes that the
performance requirement of the feedback system is specified in frequency domain
with magnitude response replaced by singular value plots. For instance, the design
objective can be the ith singular value of the desired sensitivity in frequency domain
as shown in the next figure where the maximum ripples in low and high frequency
bands specify the design specification.

Alternatively, the desired frequency shape can be imposed on the loop transfer
matrix to ensure the desired sensitivity. For instance, low gain of the sensitivity can
be ensured by high gain or high singular values of the loop transfer matrix while gain
close to 1 for the sensitivity can be ensured by low gain or low singular values of the
loop transfer matrix. Let P(z) =C(zI−A)−1B be the plant. The problem is design of
K(z) such that the MIMO feedback control system in Fig. 6.1 is not only internally
stable but also meets the frequency domain specification such as the one specified
in Fig. 6.4. The state-space approach suggests the estimator structure for K(z) and
to begin with the synthesis of the state-feedback or state estimation gain. The output
feedback controller K(z) can then be obtained by designing the other gain.

A problem arises in multivariable systems because the sensitivity at the plant
input is different from that at the plant output given by

Sin(z) = [I−K(z)P(z)]−1, Sout(z) = [I−P(z)K(z)]−1,

respectively. Let p×m be the size of P(z). In the case of p < m, the sensitivity
magnitude responses σi[Sin(ejω )] cannot be made smaller than 1 for the first (m− p)
singular values due to rank{K(z)P(z)} ≤ p for all |z| = 1. Hence, if p < m,
sensitivity optimization needs to be carried out at the plant output rather than at
the plant input. Similarly, in the case of p > m, the sensitivity magnitude responses
σi[Sout(ejω)] cannot be made smaller than 1 for the first (p−m) singular values due
to rank{P(z)K(z)} ≤ m for all |z| = 1. Hence, if p > m, sensitivity optimization
needs to be carried out at the plant input rather than at the plant output. Fortunately,
it is often unnecessary to optimize the frequency shape of the sensitivity at both the
plant input and output in practice.
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Fig. 6.5 State feedback and output injection

Consider first when the state is accessible by the controller as depicted in block
diagram (a) of Fig. 6.5. Then with F as the state-feedback gain, the sensitivity at the
plant input (p ≥ m is normally assumed) and overall transfer matrix are given by

SF (z) = I+F(zI −A−BF)−1B,

TF (z) = C(zI −A−BF)−1B, (6.71)

respectively. On the other hand, block diagram (b) of Fig. 6.5 corresponds to state
estimation in which sensitivity at the plant output (p ≤ m is normally assumed) and
overall transfer matrix are given by

SL(z) = I +C(zI−A−LC)−1L,

TL(z) = C(zI −A−LC)−1B, (6.72)

respectively, with L the state estimation gain. However, strictly speaking, (b) of
Fig. 6.5 does not represent a state estimator which is often referred to as output
injection. By convention, the overall transfer matrix is referred to as complementary
sensitivity inherited from the case of output feedback.

It is interesting to observe that (refer to Theorem 3.28 in Chap. 3)

P(z) = TF (z)SF (z)
−1 = SL(z)

−1TL(z) =C(zI −A)−1B,

and thus, sensitivity and complementary sensitivity constitute the coprime factors
of the plant model, if F and L are stabilizing. Moreover, state feedback corresponds
to right coprime factorization and output injection corresponds to left coprime
factorization of the plant. A particular set of coprime factors that interest us is the set
of normalized ones. Recall Sect. 5.3.2 in the previous chapter. The following result
can be stated.

Corollary 6.3. Consider the plant model P(z) = C(zI − A)−1B where (A,B) is
stabilizable and (C,A) is detectable. (i) If F = −(I +B∗XB)−1B∗XA with X ≥ 0
being the stabilizing solution to

X = A∗X(I +BB∗X)−1A+C∗C, (6.73)
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then for all |z|= 1, there holds the identity

SF (z)
∗SF (z)+TF (z)

∗TF (z) = I +B∗XB; (6.74)

(ii) If L =−AYC∗(I +CYC∗)−1 with Y ≥ 0 being the stabilizing solution to

Y = AY (I+C∗CY )−1A∗+BB∗, (6.75)

then for all |z|= 1, there holds the identity

SL(z)SL(z)
∗+TL(z)TL(z)

∗ = I +CYC∗. (6.76)

Let I+B∗XB=USU∗ be its SVD. Then I+B∗XB=Ω 2
F

by takingΩF =U
√

SU∗.
In light of (6.74),

{M̃(z), Ñ(z)} = {SF (z)Ω
−1
F

,TF (z)Ω
−1
F

}
constitutes the pair of normalized right coprime factorization of P(z). Let
Ω 2

L
= I +CYC∗. The equality (6.74) implies that

{M(z),N(z)} = {Ω−1
L

SL(z),Ω
−1
L

TL(z)}

constitutes the pair of normalized left coprime factorization of P(z). More impor-
tantly, the normalization property yields

M̃(ejω)M̃(ejω)∗ =
[
I+P(ejω)∗P(ejω)

]−1
,

M(ejω )∗M(ejω ) =
[
I+P(ejω)P(ejω )∗

]−1
. (6.77)

Hence, if σi[P(ejω)] admits the same shape as that of the desired loop transfer
matrix, then for each integer i,

σi[M̃(ejω )] = σi[SF (e
jω)Ω−1

F
]

represents the ideal sensitivity shape at the plant input and

σi[M(ejω )] = σi[Ω−1
L

SL(e
jω)]

represents the ideal sensitivity shape at the plant output. In addition, by the
normalization property there hold

Ñ(ejω )Ñ(ejω)∗ = P(ejω)
[
I+P(ejω)∗P(ejω )

]−1
P(ejω)∗,

N(ejω )∗N(ejω) = P(ejω)∗
[
I +P(ejω)P(ejω )∗

]−1
P(ejω). (6.78)
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Fig. 6.6 Feedback controller
K(z) = W1(z)KW (z)W2(z)

Hence, under the same hypothesis on σi[P(ejω )] for each i, both

σi[Ñ(ejω)] = σi[TF (e
jω)Ω−1

F
], σi[N(ejω )] = σi[Ω−1

L
TL(e

jω )]

represent the ideal shape of the complementary sensitivity.
The desired loop shape for the plant model is rarely true in practice. A procedure

to modify the frequency shape of P(z) is by means of frequency weighting functions.
Simple compensators such as static gains, accumulators, and lead/lag transfer
functions can be introduced to each row or column of P(z) so as to shape its singular
value plots. That is, stable and minimum phase transfer matrices W1(z) and W2(z)
are searched for such that

PW (z) = W2(z)P(z)W1(z) (6.79)

admits the desired loop shape. A feedback controller KW (z) is then designed for
the weighted plant PW (z). The feedback controller K(z) as in Fig. 6.1 can then be
recovered via

K(z) = W1(z)KW (z)W2(z). (6.80)

This is illustrated in Fig. 6.6.
The following example illustrates the loop shaping procedure.

Example 6.10. Consider the flight control example in Problem 1.11 from Chap. 1.
Under the sampling frequency of 40 Hz, the discretized model has the following
singular value plots in frequency domain (Fig. 6.7).

In order to have zero steady-state error for step inputs, weight function with
pole at 1 is employed. After a few trials, W(z) = diag(−2,1,−2)W(z) is taken
where W (z) = 24.12+0.24/(z−1). The singular value plots for the weighted plant
PW (z) = P(z)W(z) are shown in Fig. 6.8.

It can be seen that the magnitudes of the shaped plant are raised greatly at low
frequencies. In addition, it maintains good roll-off at high frequencies. In fact, all
the three singular values are below 0 dB after ω ≥ 0.2 or 8π rad/s in terms of the
physical frequency, since ω = 1 corresponds to 40π rad/s. With Ts = 0.025 s, the
discretized realization matrices are found to be

Ad =

⎡

⎢
⎢
⎢
⎢⎢
⎣

1 0.0001 0.0283 0.0000 −0.0248
0 0.9986 −0.0043 −0.0000 0.0017
0 0.0000 1.0000 0.0247 −0.0003
0 0.0013 −0.0000 0.9785 −0.0248
0 −0.0072 0.0000 0.0258 0.9827

⎤

⎥
⎥
⎥
⎥⎥
⎦
,
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Fig. 6.7 Plant singular value plots versus normalized frequency
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Fig. 6.8 Plant weighted singular value plots vs. normalized frequency
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Bd =

⎡

⎢
⎢
⎢
⎢⎢
⎣

−0.0000 0.0000 0.0000
−0.0000 0.0250 −0.0000

0.0001 0.0000 −0.0005
0.0109 0.0000 −0.0411
0.0040 −0.0001 −0.0024

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

and Cd remains the same as that of the continuous-time one.

6.2.2 LQR Design via Root Locus

Root locus in classic control aims at placing the closed-loop poles to the desired
locations dictated by performance specifications. The LQR method, on the other
hand, reassigns the eigenvalues for multi-input systems to which the graphical
method of root locus is inapplicable. A significant problem in LQR design is how to
select the weighting matrices Q and R in order to achieve the desired locations for
closed-loop eigenvalues under state feedback. The answer turns out to be the root
locus.

Let the plant model be represented by P(z) = C(zI −A)−1B that has size p×m
and is of order n. In general, eigenvalues of A are not in the right locations to ensure
the performance. Feedback controllers need to be designed to reassign eigenvalues
for the closed-loop system in order to achieve the desirable output responses to
exogenous inputs such as step or disturbances. Control system design in the case of
p ≥ m begins with the LQR performance index

J =
∞

∑
t=0

‖u(t)‖2 +ρ2‖C0x(t)‖2 =
∞

∑
t=0

‖w(t)‖2,

assuming that the state vector of P(z) is available for feedback. Thus, the LQR
problem admits the following state-space description:

x(t + 1) = Ax(t)+Bu(t), x(0) = x0,

w(t) =

[
ρC0

0

]
x(t)+

[
0
I

]
u(t). (6.81)

Selection of C0 impacts eigenvalue assignment directly.
Specifically, the corresponding LQR state-feedback control law is u(t) = Fρx(t)

that is parameterized by ρ and specified by

Fρ = −(I+B∗XρB)−1B∗XρA,

Xρ = A∗Xρ(I+BB∗Xρ)
−1A+ρ2C∗

0C0, (6.82)
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with Xρ ≥ 0 the stabilizing solution. Eigenvalues associated with the closed-loop
system are poles of

[I −Fρ(zI −A)−1B]−1 = I +Fρ(zI −A−BFρ)
−1B.

Denote G0(z) =C0(zI −A)−1B and

G(z) =

[
0
I

]
+ρ
[

C0

0

]
(zI −A)−1B.

Recall that L(z) := Fρ(zI − A)−1B is the loop transfer matrix under the state
feedback in (a) of Fig. 6.5, which is often termed as the return difference. It is left
as an exercise (Problem 6.15) to show that for all |z|= 1, there holds

G(z)∗G(z) = I+ρ2G0(z)
∗G0(z)

= [I−L(z)]∗ (I+B∗XρB) [I−L(z)] . (6.83)

In the case of m = 1, the above equality implies

|1−L(ejω)| ≥ r := (1+B∗XρB)−1/2 ∀ ω . (6.84)

Hence, the Nyquist plot of −L(ejω ) for ω ∈ [−π ,π ] does not intersect the disk of
radius r centered at −1 as shown next.

Consequently, the system admits phase margin of 2sin−1(r/2) and gain margin
of either (1+r) or (1−r)−1. See Problem 6.16 in Exercises. If m > 1, the inequality
(6.84) is replaced by

σ [I−L(ejω)]≥ r := σ [(I +B∗XρB)−1/2] ∀ ω (6.85)

where σ(·) denotes the minimum singular value. Similar interpretation of the
stability margins can also be obtained.

Denote a(z) = det(zI−A) whose roots are eigenvalues of A and aF(z) = det(zI−
A−BFρ) whose roots are eigenvalues of (A+BFρ). If m = 1,

G0(z) =C0(zI −A)−1B =
b0(z)
a(z)

.

For real rational G(z), the equality (6.83) leads to

1+ρ2 b0(z−1)b0(z)
a(z−1)a(z)

=
aF(z−1)aF(z)
r2a(z−1)a(z)

.

It follows from the above equation that

r−2aF(z
−1)aF(z) = a(z−1)a(z)+ρ2b0(z

−1)b0(z). (6.86)



6.2 Control System Design 265

Fig. 6.9 Stability margins
represented by the disk on
Z -plane

Root locus of znaF(z−1)aF(z) = 0 can be sketched for 0 ≤ ρ2 ≤ ∞ where n is the
dimension of the state vector x(t). The root locus of aF(z) = 0 are those inside the
unit circle.

The case of ρ → 0 corresponds to low state weighting that is equivalent to
expensive control. In this case, roots of aF(z) = 0 are stable roots of a(z) = 0 plus the
mirror images of unstable roots of a(z) = 0 about the unit circle that is less inspiring.
The case that enlightens the design is when ρ →∞. Let d be the degree difference or
(n−d) be the degree of b0(z). For ρ → ∞, roots of aF(z) = 0 approach stable roots
of b0(z) = 0, the mirror images of unstable roots of b0(z) = 0 about the unit circle,
and plus d roots approaching the origin. Because roots of b0(z) = 0 are transmission
zeros of G0(z) = C0(zI − A)−1B, eigenvalue assignment can be conveniently
achieved through synthesis of C0 such that G0(z) has transmission zeros in some
special locations of the complex plane plus those at the origin. These zeros are used
to attract the n stable root loci of the right-hand side in (6.86) with parameter ρ2 so
that the desired eigenvalues of (A+BFρ) can be achieved at some ρ > 0.

An important issue worth discussion is that large ρ yields small r, the radius of
the circle in Fig. 6.9. Indeed, by replacing Xρ with ρ2X and taking limit ρ → ∞, the
ARE in (6.82) can be written as

X = A∗XA−A∗XB(B∗XB)+B∗XA+C∗
0C0

in which B∗XB may be singular, and thus, the generalized inverse is used. The
stabilizing solution X exists and is finite under the stabilizability of (A,B) and
observability of (C0,A) on the unit circle. If in addition B∗XB is invertible, then
Xρ → ρ2X → ∞ as ρ → ∞. As a result, r = [σ(I + B∗XB)]−1/2 → 0. That is,
the stability margin shrinks to zero as ρ → ∞. For this reason, the value of ρ is
prohibited from being large. But if zeros of C0(zI−A)−1B can be arbitrarily assigned
with C0, a reasonable value of ρ > 0 can be used to place roots of aF(z) = 0
to the desired locations including those near the origin, provided that zeros of
C0(zI −A)−1B are assigned to some suitable locations obtained through trials and
errors. It is important to observe that there is an inherent conflict between stability
margins and the performance. In fact, desired eigenvalue locations are achieved at
the expense of stability margins. In the case of m > 1, the root locus needs to be
carried out for

det
[
I +ρ2B∗(z−1I−A∗)−1C∗

0C0(zI −A)−1B
]
= 0 (6.87)
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where ρ = 0 → ∞. The above can be converted to computation of eigenvalues
(Problem 6.17 in Exercises). The next result answers the question when the
transmission zeros of C0(zI −A)−1B can be arbitrarily assigned with C0.

Lemma 6.3. Let A and B be matrices of size n×n and n×m, respectively. Suppose
that B has rank m. Then (i) the transmission zeros of G0(z) = C0(zI − A)−1B
can be arbitrarily assigned with C0 of size m× n, if and only if (A,B) is reachable;
(ii) the transmission zeros of G0(z) = C0(zI −A)−1B are all strictly inside the unit
circle for some C0 of size m× n, if and only if (A,B) is stabilizable.

Proof. Without loss of generality, (A,B) can be assumed to be of the following
form:

A =

[
A11 A12

A21 A22

]
, B =

[
RB

0

]
(6.88)

where A11 and RB are square and of the same size m×m. If it is not, QR factorization
can be applied to B to yield B = QBRB where QB is orthogonal and RB is square and
upper triangular matrix. Hence, an orthogonal Q⊥ exists such that Qa =

[
QB Q⊥

]

is square and unitary. A similarity transform T = Q∗
a can be applied to obtain

(TAT ∗,T B) which have the same form as (A,B) in (6.88).
Let C0 =

[
C01 C02

]
with C01 = I. Then the transmission zeros of G0(z) are the

roots of

λB(z) := det

([
A− zI B

C0 0

])
= 0.

Substituting the expressions of C0 and (A,B) in (6.88) gives

λB(z) = det

⎛

⎝

⎡

⎣
A11 − zI A12 RB

A21 A22 − zI 0
I C02 0

⎤

⎦

⎡

⎣
I −C02 0
0 I 0
0 0 I

⎤

⎦

⎞

⎠

= det

⎛

⎝

⎡

⎣
∗ ∗ RB

∗ A22 −A21C02 − zI 0
I 0 0

⎤

⎦

⎞

⎠

= ±det(RB)det(A22 −A21C02 − zI).

Hence, the transmission zero assignment with C0 is the same as eigenvalue
assignment of (A22 −A21C02) with −C02 as the “state-feedback gain” and A21 as
the equivalent “B” matrix. Since

rank
{[

A− zI B
]}

= rank

{[
A11 − zI A12 RB

A21 A22 − zI 0

]}

= m+ rank
{[

A22 − zI A21
]}

,
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the reachability and stabilizability of (A,B) are equivalent to those of (A22,A21),
respectively. Therefore, Theorem 3.25 can be applied to conclude (i), and
Theorem 3.26 can be applied to conclude (ii). ��
Example 6.11. Consider the flight control example in Chap. 1. Its discretized plant
model is computed in Example 6.10 under the sampling frequency of 40 Hz. Let
A = Ad and B = Bd . The QR factorization yields

T = Q∗
a =

⎡

⎢
⎢
⎢
⎢⎢
⎣

−0.0042 −0.0023 0.0118 0.9372 0.3486
−0.0000 −1.0000 −0.0000 −0.0034 0.0026
−0.0118 0.0036 −0.0043 −0.3486 0.9372

0.9287 0.0000 −0.3705 0.0045 0.0117
0.3705 0.0000 0.9287 −0.0117 0.0046

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

The above similarity transform results in

A22 =

[
0.9900 0.0244

−0.0039 1.0094

]
, A21 =

[−0.0162 −0.0000 −0.0188
0.0188 −0.0001 −0.0169

]
.

Suppose that the desired damping ratio is ζ = 0.5901, corresponding to 10%
overshot, and ωn = 10, which yield the settling time of 0.6779 s (within 2% of
the final value). The desired closed-loop poles are thus −5.9010± j8.0733 that are
mapped to 0.8453± j0.1730 in discrete time under the sampling frequency of 40 Hz.
By taking

C02 =−A∗
21(A21A∗

21)
−1S0 (6.89)

for some square matrix S0, it leads to

A22 −A21C02 = A22 + S0 =

[
0.8453 0.1730

−0.1730 0.8453

]

that admits the desired eigenvalues at 0.8453± j0.1730. The above yields

S0 =

[
0.8453 0.1730
−0.1730 0.8453

]
−A22 =

[−0.1446 0.1486
−0.1691 −0.1641

]

and C02 in (6.89). It follows from C0 =
[

I C02
]

Q∗
a that

C0 =

⎡

⎣
4.3962 −0.0022 7.8782 0.8377 0.4034

−0.0390 −1.0000 −0.0057 −0.0033 0.0021
−8.0280 0.0035 3.4316 −0.3903 0.8365

⎤

⎦ .

It can be verified that C0(zI −A)−1B has finite transmission zeros only at 0.8453±
j0.1730 and det(C0B) �= 0.
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As discussed in the previous subsection, state feedback as depicted in (a) of
Fig. 6.4 focuses on the sensitivity at the plant input that is given by

SF (z) = I +Fρ(zI −A−BFρ)
−1B.

But if the design objective is the sensitivity at the plant output, then output injection
in (b) of Fig. 6.4 will be under consideration that is dual to LQR. In this case, the
state estimation gain Lρ is computed first according to

Yρ = AYρ(I+C∗CYρ)
−1A∗+ρ2B0B∗

0,

Lρ = −AYρC∗(I +CYρC∗)−1, (6.90)

where B0 is chosen such that transmission zeros of C(zI −A)−1B0 are in the right
place to help assign eigenvalues of (A+LρC) to the desirable locations with the aid
of the parameter ρ ≥ 0. The computation of Lρ is dual to that of Fρ in (6.82) and
previous discussions on selections of C0 and ρ are applicable to selections of B0 and
ρ here. As a result, the sensitivity at the plant output is given by

SL(z) = I+C(zI−A−LρC)−1Lρ .

In the next subsection, the design procedure of LTR will be introduced to recover
the desired sensitivity in the case of output feedback.

6.2.3 Loop Transfer Recovery

Consider the feedback system in Fig. 6.1. LTR is a design procedure for the output
feedback controller K(z) to recover the desired transfer matrix achieved under state
feedback or output injection. As such, the desired sensitivity and stability margins
are also recovered under LTR. The key lies in the estimator structure of K(z). In
fact, the control signal is based on the estimated state from a Kalman filter or its
dual, to be precise.

Suppose that the desired sensitivity is at the plant input. Let the state-feedback
gain F be synthesized with either the frequency loop shaping or LQR-based
eigenvalue assignment. LTR aims at synthesis of the state estimation gain for the
output feedback control system to recover the same performance achieved under
state feedback. Perfect recovery is possible only under some restrictive conditions.
This problem is dual to state feedback by considering the associated filtering ARE:

Y = AYA∗ −AYC∗(q−2I +CYC∗)−1CYA∗+BB∗. (6.91)

By denoting Y = q2Y , the above ARE can be rewritten as

Y = AYA∗ −AYC∗(I +CYC∗)−1CY A∗+ q2BB∗

= AY (I+CC∗Y )−1A∗+ q2BB∗

that is similar to (6.75) or (6.90).
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Lemma 6.4. Assume that the plant P(z) = C(zI − A)−1B has an equal number
of inputs and outputs and det(CB) �= 0. If, in addition, the realization of P(z) is
strictly minimum phase, then Y = BB∗ is the stabilizing solution to the filtering ARE
(6.91) in the limiting case of q → ∞.

Proof. In the limiting case of q → ∞, ARE (6.91) is reduced to

Y = AYA∗ −AYC∗(CYC∗)−1CYA∗+BB∗. (6.92)

Since det(CB) �= 0, Y = BB∗ clearly satisfies the above ARE. The corresponding
state estimation gain is given by

L =−AYC∗(CYC∗)−1 =−AB(CB)−1. (6.93)

It follows that A+ LC = A[In − B(CB)−1C]. Since det(CB) �= 0, the plant model
P(z) = C(zI −A)−1B has precisely (n−m) finite zeros that are strictly inside the
unit circle in light of the hypotheses. By noting that

zC(zI −A)−1B = CB+C(zI−A)−1AB
=
[
I+C(zI−A)−1AB(CB)−1

]
CB

=
[
I−C(zI−A)−1L

]
CB,

there holds the equality

z−1 [C(zI −A)−1B
]−1

= (CB)−1 [I +C(zI−A−LC)−1L
]
.

Hence, eigenvalues of (A+LC) are (n−m) zeros of P(z) plus the remaining m at the
origin which are all stable. It is thus concluded that Y = BB∗ is indeed the stabilizing
solution to the filtering ARE (6.91). ��

It is commented that the hypothesis of strictly minimum phase on realization
of square P(z) in Lemma 6.4 implies stabilizability of (A,B) and detectability of
(C,A). Hence, the existence of the stabilizing solution to ARE (6.91) is ensured and
is given by Y = BB∗.

Let L be the estimation gain obtained in accordance with (6.93). The LTR design
method sets the output feedback controller to be

K(z) =−zF1(zI −A−LC)−1L, F1 =−(I +B∗XB)−1B∗X , (6.94)

where X ≥ 0 is the stabilizing solution to the control ARE in either (6.73) or in (6.82)
dependent on which design method is used. There holds F = F1A. The controller in
(6.94) is of the dual form to the state estimator that will be clarified at a later stage.
The following result demonstrates that

K(z)P(z) = F(zI −A)−1B, (6.95)

if P(z) is square, strictly minimum phase, and det(CB) �= 0.
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Theorem 6.12. Consider the square plant P(z) =C(zI −A)−1B. If (i) det(CB) �= 0
and (ii) the realization of P(z) is strictly minimum phase, then the equality (6.95)
holds where K(z) is the output feedback controller in (6.94).

Proof. It is recognized that Π = B(CB)−1C is a projection matrix, and there hold
LC =−AΠ and (I −Π)B = 0. Denote

Δ(z) = F(zI −A)−1B−K(z)P(z).

The proof is hinged to proving Δ(z)≡ 0 that is equivalent to the equality (6.95). By
direct calculation,

Δ(z) = F1A(zI−A)−1B+ zF1(zI −A−LC)−1LC(zI −A)−1B

= F(zI −A)−1B− zF1(zI −A+AΠ)−1AΠ(zI −A)−1B

= F(zI −A)−1B− zF[zI − (I−Π)A]−1Π(zI −A)−1B

= F[zI − (I−Π)A]−1[zI − (I−Π)A− zΠ ](zI−A)−1B

= F[zI − (I−Π)A]−1[(I −Π)(zI−A)](zI−A)−1B ≡ 0,

in light of the fact (I−Π)B = 0. ��
Theorem 6.12 shows that the loop transfer properties in the case of state feedback

can be perfectly recovered by the output feedback controller provided that the two
assumptions in the theorem hold. Roughly speaking, K(z) has m hidden modes at
the origin which are canceled by m zeros at the origin due to z in the front. The
remaining (n−m) poles of K(z) are canceled by the (n−m) finite zeros of P(z)
which are all stable under the given assumptions. Because the loop transfer matrix
is the same as in (6.95), the closed-loop poles are eigenvalues of (A+BF) which lie
in the desired locations.

The LTR procedure requires that the open-loop plant P(z) be square with full
normal rank. The root locus argument in the previous subsection can also be used
to fulfill this requirement in the case of p �= m that is called square down. Cautions
need to be taken without increasing the number of unstable zeros of the plant in the
process of square down.

Example 6.13. Consider the inverted pendulum discussed in Chap. 1. Under the
sampling frequency of 4 Hz, the discretized plant is obtained as

Pd(z) =

[
P1(z)
P2(z)

]
:=

[
0.0383z3 − 0.1430z2− 0.0284z+ 0.0160
0.1408z3 − 0.2283z2+ 0.0344z+ 0.0532

]

z4 − 5.5556z3+ 6.0481z2− 1.5526z+ 0.0601
.

The transfer function P2(z) is discretization of Guθ (s) and has a zero at 1 due to
the zero of Guθ (s) at the origin. For this reason, P1(z) and P2(z) are low pass and
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Fig. 6.11 Root locus showing zeros of the squared-down plant

high pass, respectively. To better illustrate its frequency response, magnitude
responses of the two transfer functions in Pd(z) are plotted separately below with
the solid line for the first and the dashed line for the second (Fig. 6.10).

Hence, the sampling frequency of 4 Hz is warranted by well below −20 dB for
both of the magnitude responses at half of the sampling frequency. To square down
the plant, let Pd(z) = C(zI −A)−1B with C consisting of C1 and C2 as the first and
second row of C, respectively. By taking Cγ =C2 − γC1, the root locus for Pγ(z) =
Cγ(zI −A)−1B = 0 with respect to γ > 0 can be sketched. From Fig. 6.11, it can be
seen that the squared-down plant model Pγ(z) is not minimum phase for all γ > 0.
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Fig. 6.12 Root locus showing zeros of the squared-down plant

In fact, Pγ(z) is not minimum phase even for γ < 0. There are two ways to bypass
the problem. By noticing that P2(z) = C2(zI − A)−1B has two zeros at 1, P2ε =
C2ε(zI −A)−1B can be taken as an approximate squared-down plant that moves the
zero at 1 to (1− ε) for some very small ε ∈ (0, 1). The state-feedback gain Fρ can
be synthesized based on P2ε(z). The second way involves more effort by considering
dynamic square down as shown next:

Psd(z) =
[−γ(1− az−1) (1− bz−1)

]
Pd(z).

By taking a = −0.42 that is on left of the zero of P2(z) at −0.419, and b = −0.37
that is on right of the zero of P1(z) = C1(zI −A)−1B at −0.378, the root locus for
Psd(z) = 0 for γ > 0 can be sketched as shown in Fig. 6.12.

The dynamically squared-down plant Psd(z) = Csd(zI − Asd)
−1Bsd is indeed

strictly minimum phase and satisfies CsdBsd �= 0 at γ ≈ 0.45. ��
Under the equality (6.95), the transfer matrix

Sin(z) = [I−K(z)P(z)]−1 = I +F(zI −A−BF)−1B

is the sensitivity at the plant input for the feedback system in Fig. 6.1 that is identical
to SF (z) in (6.71) under state feedback. It is important to note the difference of
Sin(z) from the sensitivity at the plant output. That is, the desired performance and
stability margins are achieved at the plant input rather than at the plant output. If,
instead, the stability margin at the plant output are the design goal due to the tracking
performance or disturbance rejection at the plant output, then state estimation gain
needs to be synthesized first.
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Suppose that L is synthesized via either frequency loop shaping or eigenvalue
assignment with the dual LQR. That is,

L =−AYC∗(I +CYC∗)−1

where Y ≥ 0 is the stabilizing solution to the filtering ARE either in (6.75) for the
case of loop shaping or in (6.90) with Y =Yρ for the case of eigenvalue assignment.
Let y(t) be the plant output at time t. The corresponding Kalman filter is given by

x̂t+1|t = (A+LC)x̂t|t−1 −Ly(t)+Bu(t)

x̂t|t = (I+L1C)x̂t|t−1 −L1y(t), (6.96)

where L1 =−YC∗(I+CYC∗)−1 and thus L = AL1.
Under the same two assumptions as in Theorem 6.12, the dual LTR method

computes the state-feedback gain F = −(CB)−1CA with X = C∗C the stabilizing
solution to the control ARE

X = A∗XA−A∗XB(B∗XB)−1B∗XA+C∗C.

The control input signal is set as u(t) = F x̂t|t that results in a feedback controller
based on Kalman filter. Indeed, by time update,

x̂t+1|t = Ax̂t|t +Bu(t) = (A+BF)x̂t|t .

In conjunction with the second equation in Kalman filter (6.96), it yields

x̂t+1|t = (A+BF)(I +L1C)x̂t|t−1 − (A+BF)L1y(t),

u(t) = F x̂t|t = F(I +L1C)x̂t|t−1 −FL1y(t), (6.97)

that is the state-space description for the output feedback controller K(z).

Remark 6.2. The output feedback controller described in (6.97) admits the transfer
matrix K(z) = −[D̂+ Ĉ(zI − Â)−1B̂] and has the same form as the H2 controller
specified in (6.35) for the case D22 = 0. Indeed, by noting AL1 = L and setting
L0 = FL1, there hold

Â = (A+BF)(I +L1C) = A+BF +LC+BL0C,

B̂ = L+BL0, Ĉ = F +L0C, D̂ = L0,

that has the identical from to the realization of the H2 controller in (6.35).

Now recall the expression of F =−(CB)−1CA leading to BF =−ΠA with Π =
B(CB)−1C a projector. It follows that A+BF = (I −Π)A and

(I +L1C)(A+BF) = (A+BF)+L1C(I −Π)A = A+BF (6.98)
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by C(I −Π) = 0. Multiplying the first equation of (6.97) by (I + L1C) from left
and setting x̂(k) = (I +L1C)x̂k|k−1 for k = t + 1 and k = t lead to a new state-space
description for K(z):

x̂(t + 1) = (A+BF)x̂(t)− (A+BF)L1y(t)

u(t) = F x̂(t)−FL1y(t) (6.99)

in light of (6.98). The transfer matrix of K(z) is obtained as

K(z) = −[FL1 +F(zI −A−BF)−1(A+BF)L1]

= −zF(zI −A−BF)−1L1 (6.100)

that is dual to the feedback controller in (6.94) and provides the estimator interpreta-
tion for the output feedback controller. The next result follows from Theorem 6.12,
and thus, the proof is skipped.

Corollary 6.4. Consider the square plant P(z) =C(zI −A)−1B. If (i) det(CB) �= 0
and (ii) the realization of P(z) is strictly minimum phase, then the feedback
controller K(z) in (6.100), with F = −(CB)−1CA and Lρ = AL1 computed from
(6.90), achieves perfect LTR, that is,

P(z)K(z) =C(zI −A)−1L. (6.101)

Under the equality (6.101), the transfer matrix

Sout(z) = [I −K(z)P(z)]−1 = I+C(zI−A−LC)−1L

is the sensitivity at the plant output for the feedback system in Fig. 6.5, identical to
SL(z) in (6.72) under output injection. Hence, performance and stability margins are
perfectly recovered at the plant output, which is dual to the preceding LTR method.

It is noted that perfect LTR is achieved under the two assumptions in
Theorem 6.12 and Corollary 6.4 which are questionable. Clearly, the minimum
phase assumption is violated under high sampling rate that is a known fact. On
the other hand, the assumption det(CB) �= 0 can also be violated if the underlying
continuous-time system has pure time delay exceeding the sampling period. It is
intuitive that perfect LTR is not possible when both assumptions fail to hold. Two
questions will be answered next. The first one is how the LTR design method should
be modified so that it is applicable to feedback design for more general systems. The
second one is how the recovery error can be characterized in terms of the desirable
loop transfer matrix. The following result in instrumental.

Lemma 6.5. Consider the square plant model P(z) = C(zI −A)−1B with stabiliz-
able and detectable realization. If P(z) has full normal rank void zeros on the unit
circle, then there holds following factorization:

P(z) = Ca(z)Pm(z), Pm(z) =Cm(zI −A)−1B, (6.102)
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where Ca(z) is a square inner (all pass and stable), the realization of Pm(z) is
strictly minimum phase, and det(CmB) �= 0.

Proof. By the hypothesis, there exists an integer κ ≥ 0 such that

zκ+1P(z) = Dκ +Cκ(zI −A)−1B, Dκ =CAκB �= 0.

In light of Remark 5.1 and (ii) of Theorem 5.28 in the previous chapter,

zκ+1P(z) = Pi(z)Po(z)

with Pi(z) an inner and Po(z) an outer if A is a stability matrix. If A is not a stability
matrix, then Po(z) is strictly minimum phase. Specifically, let Rκ =D∗

κDκ and Z ≥ 0
be the stabilizing solution to the ARE

Z = A∗ZA+C∗
κCκ − (A∗ZB+C∗

κDκ)(Rκ +B∗ZB)−1(B∗ZA+D∗
κCκ).

The full normal rank condition for P(z) implies thatΩ 2 =Rκ+B∗ZB is nonsingular.
The state-feedback gain Fκ = −(Rκ + B∗ZB)−1(D∗

κCκ + B∗ZA) is stabilizing.
Moreover, Pi(z) and Po(z) have the following expressions:

Pi(z) =

[
A+BFκ B

Cκ +DκFκ Dκ

]
Ω−1, Po(z) =Ω

[
A B

−Fκ I

]
.

It is noted that Fκ = F̂κA where

F̂κ =−(Rκ +B∗ZB)−1(D∗
κCAκ +B∗Z).

The expressions of Rκ and Dκ lead to

Rκ +B∗ZB = B∗(A∗κC∗CAκ +Z)B,
D∗
κCAκ +B∗Z = B∗(A∗κC∗CAκ +Z).

It follows that I =−F̂κB, and thus:

Po(z) =−Ω
[

A B
F̂κA F̂κB

]
=−zΩ F̂κ(zI −A)−1B.

Setting Ca(z) = z−κPi(z) and Cm = −Ω F̂κ leads to the factorization in (6.102).
Since det(CmB) = det(Ω) �= 0, and zeros of Po(z) are eigenvalues of (A+ BFκ)
which are all stable, Pm(z) = Cm(zI −A)B is indeed strictly minimum phase that
completes the proof. ��
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Example 6.14. Consider the plant model

P(z) =
z− 2

z(z+ 1.5)(z− 0.5)
.

A simple realization is obtained as

A =

⎡

⎣
−1 1 0

0.75 0 1
0 0 0

⎤

⎦ , B =

⎡

⎣
0
1

−2

⎤

⎦ , C =
[

1 0 0
]
.

Taking κ = 1 and carrying out the calculations in the proof of Lemma 6.5 yield
Z = zz∗ with z∗ =

[−0.9073 0.4124 −0.6598
]
. As a result,

F̂κ =
[

0.6429 −0.4286 0.2857
]
,

Fκ =
[−0.9643 0.6429 −0.4286

]
.

Hence, Pi(z) and Po(z) can be easily computed accordingly. Both do not admit
minimum realizations. Specifically, Pi(z) has two unobservable modes at the origin,
while Po(z) has two unobservable modes with one at the origin and the other at 0.5.
After eliminating these unobservable modes, it leads to

Ca(z) =
0.5z− 1

z(z− 0.5)
, Pm(z) =

2z− 1
z+ 1.5

.

Recall Ca(z) = z−κPi(z) and Pm(z) = z−1Po(z).

The dual LTR design method synthesizes the estimation gain L = AL1 in
accordance with either (6.75) or (6.90) regardless of the assumptions on minimum
phase and det(CB) �= 0. However, the state-feedback gain is replaced by F =
−(CmB)−1CmA based on the plant model Pm(z) rather than P(z), because Pm(z)
satisfies the two assumptions in Theorem 6.12 and Corollary 6.4. As discussed
earlier, perfect LTR is not possible. The next result characterizes the recovery error.

Theorem 6.15. Suppose that P(z) is factorized as in Lemma 6.5 and the dual LTR
is applied to Pm(z). Under the stabilizability and detectability condition,

P(z)K(z) = [H(z)−E(z)][I −E(z)]−1 (6.103)

where H(z) = C(zI − A)−1L is the target loop transfer matrix and E(z) = [C −
Ca(z)Cm](zI −A)−1L is the error function.

Proof. In light of (6.97), the dual LTR feedback controller is given by

K(z) =−zF[zI − (I+L1C)(A+BF)]−1L1
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by taking x̂(t) = (I+L1C)x̂t|t−1 as the state vector where L = L1A, L1 =−YC∗(I+
CYC∗)−1 with Y ≥ 0, the stabilizing solution to some filtering ARE, and F =
−(CmB)−1CmA. Denote Φ = (zI −A)−1 for convenience. The feedback controller
can be written as

K(z) = −zF(zI −A−BF−L1CA−L1CBF)−1L1

= −zF(I −ΦBF −ΦL1CA−ΦL1CBF)−1ΦL1.

Since ΦL1CAΦBF − zΦL1CΦBF =−ΦL1CBF , there holds

Ψ := (I −ΦL1CA)(I −ΦBF)− zΦL1CΦBF
= I −ΦBF −ΦL1CA−ΦL1CBF.

Consequently, K(z) =−zFΨ−1ΦL1 is given by

K(z) =−zF [(I −ΦL1CA)(I −ΦBF)− zΦL1CΦBF ]−1ΦL1.

Using identity (I −ΦL1CA)−1ΦL1 =ΦL1(I−CAΦL1)
−1 yields

(I −ΦL1CA)−1ΦL1 =ΦL1(I−CΦL)−1 =ΦL1(I −H)−1

by AL1 = L where H(z) is the desired loop transfer matrix. It follows that

K(z) =−z[I−FΦB−FΦL1(I −H)−1(zCΦB)F ]−1FΦL1(I −H)−1.

A similar notation is Hm(z) =Cm(zI−A)−1L =CmAΦL1. Upon substitution of F =
−(CmB)−1CmA into the above K(z) with suitable rearrangement yields

K(z) = z[CmB+CmAΦB+Hm(I−H)−1(zCΦB)]−1Hm(I −H)−1.

It is recognized that CmB+CmAΦB = zCmΦB and recall that CΦB = CaCmΦB
where Ca(z) is inner (stable and allpass). The following expression of K(z) is
obtained as

K(z) = [CmΦB+Hm(I−H)−1CaCmΦB]−1Hm(I −H)−1.

The loop transfer matrix under output feedback is

P(z)K(z) = Ca(z)CmΦBK(z).

Upon substituting the previous expression of K(z) gives

P(z)K(z) = Ca[I −Hm(z)(I −H)−1Ca]
−1Hm(I−H)−1

= CaHm(I−H+CaHm)
−1

= [H− (H−CaHm)][I − (H−CaHm)]
−1.
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By recognizing H − CaHm = (C − CaCm)(zI − A)−1L = E(z) to be the error
function, the proof is concluded. ��

The equality in (6.103) can be rewritten as

E(z) = [I −P(z)K(z)]−1[H(z)−P(z)K(z)]

providing an alternative expression for the error function. For the dual LTR
design method, the overall transfer matrix or the complementary sensitivity for the
feedback system in Fig. 6.1 is obtained as

Try(z) = PK(I−PK)−1 = CaCm(zI −A−LC)−1L (6.104)

that is simpler than the corresponding one obtained with the original LTR design
method. In addition, the sensitivity at the plant output is given by

Sout(z) = [I −E(z)][I+L(zI −A−LC)−1B]. (6.105)

Its proof and its dual are left as an exercise (Problem 6.18 in Exercises). While

(C−CaCm)(zI −A)−1B ≡ 0,

the error function E(z) = (C −CaCm)(zI −A)−1L is not identically zero. In fact,
magnitude response of E(z) determines the recovery performance.

It is worth to mentioning that good tracking performance also depends on the
frequency shape of the loop transfer matrix P(z)K(z). Accumulators and lead/lag
compensators can be employed to shape the plant model prior to carrying out the
LTR design that will be clarified with design examples. Since Theorem 6.15 is
concerned with the dual LTR design procedure, there is a need to provide the LTR
design procedure that is summarized in the following without proof.

Given a square plant P(z) =C(zI −A)−1B and the state-feedback gain F = F1A
obtained via either the loop shaping method in (6.73) or the LQR method in (6.82)
where F1 =−(I+B∗XB)−1B∗X , the LTR controller is synthesized as follows:

• Compute factorization P(z) = Pm(z)Ba(z) where Ba(z) is square inner and the
realization of Pm(z) = C(zI − A)−1Bm is strictly minimum phase and satisfies
det(CBm) �= 0:

– Find integer κ ≥ 0 such that CAiB = 0 for 1 ≤ i < κ and CAκB �= 0; Set
Dκ =CAκB and Bκ = Aκ+1B. Thus,

zκ+1P(z) = Dκ +C(zI−A)−1Bκ .

– Compute the stabilizing solution to the ARE

Z = AZA∗+BκB∗
κ −Lκ(DκD∗

κ +CZC∗)L∗
κ

where Lκ =−(BκD∗
κ +AZC∗)(DκD∗

κ +CZC∗)−1.
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– Set Ω = (DκD∗
κ +CZC∗)1/2 that is nonsingular and

Ba(z) = z−κΩ−1
[

A+LκC Bκ +LκDκ
C Dκ

]
.

– Set Bm =−L̂κΩ where

L̂κ =−(AκBD∗
κ +ZC∗)(DκD∗

κ +CZC∗)−1.

• Set K(z) =−zF1[zI − (A+LC)(I+BF1)]
−1L with L =−ABm(CBm)

−1.

It is commented that if the two assumptions in Theorem 6.12 hold, then Ba(z)≡ I
for all z, and thus, the factorization step can be skipped.

Remark 6.3. A similar H2 interpretation to that in Remark 6.2 holds for the
feedback controller. Specifically, by taking L0 =F1L and noting F =F1A, realization
of the LTR controller K(z) is given by

−K(z) =

[
(A+LC)(I+BF1) L

F1(A+LC)(I+BF1) BF1

]

=

[
(I+BF1)(A+LC) (I +BF1)L

F1(A+LC) L0

]

=

[
A+BF +LC+BL0C L+BL0

F +L0C L0

]

that indeed has the form of H2 controller in (6.35) for the case D22 = 0. However,
the closed-loop transfer matrix Try(z) for the feedback system in Fig. 6.1 is not as
nice as that of the dual case in (6.104). For this reason, the following two-degree-
of-freedom control system is suggested:

where V(z) is the left coprime denominator of K(z) given by

V(z) = I− (F +L0C)[zI − (A+LC)]−1B,

copied from (6.44) and ΩF = (I +B∗XB)1/2. It follows that

Try(z) = P(I−KP)−1V−1Ω−1
F

= C(zI −A−BF)−1BΩ−1
F

by the double Bezout identity and the expression of the coprime factors in (6.43).
Hence, good tracking performance achieved by state-feedback control is carried to
the case of output feedback control.
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Fig. 6.13 Two-degree-of-
freedom control system

Often the feedback controller KW (z) is synthesized based on the weighted plant
PW (z). The weighted form of PW (z) = P(z)W(z) is more preferred, because it does
not alter the output to be controlled. Hence, the feedback system in Fig. 6.13 remains
the same by setting

K(z) = W(z)KW (z), V(z)−1 = W(z)VW (z)−1.

If the controller reduction is carried out, then the simple expression of the overall
transfer matrix Try(z) in Remark 6.3 does not hold anymore. It is left as an exercise
(Problem 6.22) to derive the new expression of Try(z).

6.3 Design Examples

Two design examples are presented in this section with one for a flight control
system and the other for the inverted pendulum. Both loop shape and eigenvalue
assignment methods will be used to synthesize the MIMO feedback controller.
Detailed steps are worked out to illustrate the synthesis procedure. These steps
include reduction of the feedback controller.

6.3.1 Design of Flight Control System

The first design example is the flight control system considered in Example 6.10.
The state variables and control inputs are

x1 −relative altitude (m), u1 −spoilder angle (o × 10−1),

x2 −forward speed (m/s), u2 −forward acceleration (m/s2),
x3 −pitch angle (o), u3 −elevator angle (o),
x4 −pitch rate (o/s), x5 −vertical speed (m/s).

The three outputs are simply the measurements of the first three states, and thus,
C =

[
I3 02×2

]
. The discretized plant under the sampling frequency of 40 Hz has

one real pole at 1 and four complex poles at

0.9804± j0.0252, 0.9995± j0.0046.
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Fig. 6.14 Step responses under input 1 (left) and input 3 (right)

The continuous-time plant has no finite zeros, but the discretized model introduces
two transmission zeros at −0.9960 and −0.9912.

The design specifications require that the percentage overshot is no more than
5%, the settling time for the first output be no more than 2.5 s, or 100 sampling
periods, and be as small as possible for the other two outputs.

Using the same weighting as in Example 6.10 obtained after several trials,
singular values of the frequency response for the shaped plant is plotted in Fig. 6.8.
The resulting state-feedback gain F for the shaped plant is given by

⎡

⎣
−0.958 −0.0004 0.0055 −0.922 −0.006 −0.348 0.0028 0.43
−0.015 −0.9881 −0.0043 −0.027 −0.739 −0.010 −0.0009 0.01
−0.036 0.0015 −0.9972 −0.261 −0.002 −1.017 −0.1396 0.16

⎤

⎦

The step responses under the state feedback are plotted next which satisfy the design
requirements.

The three step responses under input 2 are not shown because they are much
better than the two in Fig. 6.14 and have no overshot with settling time no more than
0.5 s. In light of the Remark 6.3, the overall transfer matrix is the same as

Try(z) =CW (zI−AW −BW F)−1BWΩ−1
F

with (AW ,BW ,CW ) the realization for PW (z) =P(z)W(z) due to the use of weighting
to shape the plant. Hence, the step responses under output feedback control are
identical to those under state-feedback control.

For the LTR step, it is noted that the plant P(z) = C(zI − Ad)
−1Bd is strictly

minimum phase and det(CBd) �= 0. In addition, the weighting functions are also
strictly minimum phase. Hence, the ideal loop transfer matrix can be perfectly
recovered. The output feedback controller can be computed according to (6.94),
but the expressions of its realization are omitted.
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Remark 6.4. In MIMO control system design, decoupling of the controlled outputs
is always an important issue. It is desirable to have little interaction between outputs.
In fact, the step responses in Fig. 6.14 satisfy the decoupling requirement. The trick
in achieving the decoupling lies in ΩF . Since X ≥ 0 is the stabilizing solution to the
control ARE, SVD can be used to arrive at

I +B∗
W XBW =USU∗ =Ω 2

0F
, Ω0F =U

√
SU∗.

Thus, each ΩF has the form ΩF =VΩ0F for some unitary matrix V by

Ω ∗
F
ΩF =Ω 2

0F
= I+B∗

W XBW .

The above results in the overall transfer matrix:

Try(z) =CW (zI −AW −BW F)−1BWΩ−1
0F

V ∗.

Recall the normalized coprime factors in Sect. 6.2.1 and in particular (6.78). Since
Try(z) = ÑW (z) due to the use of the weighted plant, there holds ω ,

Try(ejω)Try(ejω)∗ = PW (ejω )
[
I+PW (ejω)∗PW (ejω)

]−1
PW (ejω )∗

at each frequency. Since both the plant and weighting do not have transmission zero
at 1, and PW (z) has pole at 1 for each of its entry due to the use of weighting,

lim
ω→0

Try(ejω)Try(ejω )∗ = lim
z→1

Try(z)Try(z)
∼ = I.

That is, Try(1) is a unitary matrix. By taking V appropriately, Try(1) = I can be
made true. Hence, the output responses of the closed-loop system are asymptotically
decoupled. It is left as an exercise to show that the procedure for asymptotic
decoupling works for other types of the weighted plant models as well. ��

The IBT algorithm from Sect. 6.2 is employed to reduce the order of the feedback
controller KW (z), designed based on the shaped plant PW (z) using LQR/LTR. The
inverse balanced singular values are

3156,472.1,3.1516,1.7677,1.5887,0.0465,0.0076,0.0017.

Truncation of three modes based on IBT yields very small loss of performance.
However, the controller KW (z) cannot be reduced to lower than 5th order, since
it results in unstable feedback system. Singular values of the frequency response
of the loop transfer matrix based on the reduced 5th order controller K̂W (z) is
plotted in Fig. 6.15, together with step responses. It can be seen that the reduced
controller performs very well. In fact, both frequency and time responses are very
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Fig. 6.15 Loop shape and step responses based on the reduced controller

close to those obtained with the full order controller. The actual feedback controller
K̂(z) = W(z)K̂W (z) is of 8th order after including the weighting function which is
still greater than the order of the plant.

6.3.2 Design of Inverted Pendulum Control System

The discretized plant model under the sampling frequency of 4 Hz is given in
Example 6.13. The objective is to stabilize the inverted pendulum with the dominant
poles at −1.5± j that correspond to damping ratio of 0.832 and natural frequency
of 1.803 for the continuous-time system. Under the sampling period of Ts = 0.25s,
the desired dominant poles for the discretized closed-loop system are at p1,2 =
0.6659± j0.1700.

Different from the previous example, this control system design employs eigen-
value assignment to compute the state-feedback gain Fρ . Moreover, the plant has
two inputs and one output. Thus, square down of the plant model is necessary and is
discussed in Example 6.13. Let us consider first P2ε(z) as the approximate squared-
down plant. The goal is to assign eigenvalues of (A+BFρ) at p1,2 with the rest close
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to the origin. To ensure the dominance of the modes corresponding to p1,2, the rest
of the eigenvalues needs to have magnitude e−1.5Ts×(3∼5) = 0.1534∼ 0.3247. Since
m = 1 (single input) and n = 4,

b0(z) = z3 + b1z2 + b2z+ b3

with {bi}3
i=1 free parameters. Roots of b0(z) are initially chosen at p1,2 plus the one

at 0.2. Let a(z) = det(zI−A). Root locus for

1+ρ2 b0(z)b0(z−1)

a(z)a(z−1)
= 0

is sketched which results in large ρ value in order to have two dominant stable
roots close to p1,2. By moving the two dominant roots of b0(z) = 0 away from p1,2,
smaller value of ρ is resulted in. After a few trials,

b1(z) = z3 − 2.125z2+ 1.6441z− 0.3109

is obtained, and has roots at 0.9259± j0.53 plus the one at 0.2731. Although b1(z)
is unstable, a stable b0(z) exists such that

b0(z)b0(z
−1) = b1(z)b1(z

−1).

The corresponding root locus is shown next.
It is seen from Fig. 6.16 that at ρ2 = 9.65, the dominant stable roots are at 0.656±

j0.17. Although these roots are not exactly the same as p1,2, they are very close to
each other, respectively. The other two stable roots of the loci are at 0.238 and
0.2731 that do not affect the dominant poles.

Next, C0 is synthesized such that

G0(z) =C0(zI −A)−1B =
b0(z)
a(z)

.

The procedure demonstrated in the proof of Lemma 6.3 and Example 6.11 can be
followed. By using the canonical controller realization,

A21 =

⎡

⎣
1
0
0

⎤

⎦ , A22 =

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ ,

and RB = 1. Thus, (A22,A21) is in canonical controller form as well. Hence, for
C01 = 1 and C02 =

[
b1 b2 b3

]
,

det(zI −A22 +A21C02) = z3 + b1z2 + b2z+ b3 = b0(z).
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Fig. 6.16 Root locus for inverted pendulum design

After C0 is available, the stabilizing solution to the ARE in (6.82) can be computed
yielding the state-feedback gain

Fρ =
[−3.9561 5.1981 −1.4140 0.0585

]
.

The eigenvalues of (A + BFρ) are at 0.6580± j0.2016 and 0.2715,0.0121. The
discrepancy from the stable roots of the root locus is probably caused by the
numerical problem in computing root locus.

It needs to be pointed out that r = 1/
√

1+B′XρB = 0.1607 that is rather small.
The gain and phase of −Fρ(zI−A)−1B are plotted in Fig. 6.17. The phase margin at
ωc is about 11.65o that is close to 2sin−1(r/2) = 9.1975o.

The root locus method is very different from the loop-shaping method. In fact,
for the flight control system example, eigenvalues of (I +B′XB)−1/2 are between
0.74084 and 0.9588 that are considerably greater than 0.1607, indicating large gain
and phase margins for the loop-shaping method. These attributes do not exist for
the root locus method. On the other hand, the mathematical model for the inverted
pendulum is very accurate, implying that the small gain and phase margins do not
destroy the performance under modeling error. It will be seen next that the step
response of the inverted pendulum control system is actually very decent.

It is noticed that Pd(z) = C(zI −A)−1B and P2ε(z) = C2ε(zI −A)−1B share the
same A and B. Hence, the value of ε is not used in the LQR part but is needed
for the LTR part of the design. By taking ε = 0.001, P2ε(z) is strictly minimum
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Fig. 6.17 Loop gain/phase plots under state feedback

phase. Applying the LTR procedure based on the squared-down plant P2ε(z) leads
to Y = BB∗ as the stabilizing solution to ARE (6.92) with C replaced by C2ε , and
L =−[39.463 7.1034 0 0

]∗
.

Let the LQR/LTR controller designed based on P2ε(z) be

Kε (z) = zF1ρ(zI −A−LC2ε)
−1L, Fρ = F1ρA.

Then the two-degree-of-freedom control system in Fig. 6.13 can be used to imple-
ment K(z) = Kε (z)W with W =

[
0 1
]
, yielding

Try(z) = P(I+KεWP)−1V−1
ε Ω−1 ≈C(zI −A−BFρ)

−1BΩ−1

for the closed-loop system, in light of the perfect LTR. By taking

Ω = [C1(I −A−BFρ)
−1B]−1

with C1 the first row of C corresponding to the position of the cart, near perfect
tracking for the cart position can be achieved. The step responses of the closed-loop
system with transfer matrix Try(z) are given in Fig. 6.18.

The solid line shows the step response of the position output, while the dashed
line shows the response of the angle position. Small overshot and fast settling time
are due to relatively large damping ratio and natural frequency used for the dominant
pole location. Unfortunately, the order of the feedback controller cannot be reduced.
In fact, the reduced order controller based on the IBT algorithm does not stabilize
the inverted pendulum. The reason probably lies in the poor stability margin and
near unit circle zero for the squared-down plant P2ε(z).

A second design is based on the dynamically squared-down plant Psd(z) studied
in Example 6.13. Let

W(z) =
[−γ(1+ 0.42z−1) (1+ 0.37z−1)

]
= Dw +Cw(zI −Aw)

−1Bw
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Fig. 6.18 Step responses for the closed-loop inverted pendulum system

with γ = 0.45. The squared-down plant admits the following expression:

Psd(z) = W(z)Pd(z) =

⎡

⎣
A 0 B

BwC Aw 0
DwC Cw 0

⎤

⎦ .

Denote the realization of Psd(z) by (Asd,Bsd,Csd). By taking C̃0 =
[

C0 0
]

as the new
“C0” matrix,

G0(z) = C̃0(zI −Asd)
−1Bsd =

b0(z)
a0(z)

remains the same. Hence, the same root locus procedure as earlier can be used.
However, the state-feedback gain Fρ is now replaced by F̃ρ =

[
Fρ 0

]
with Fρ the

same as that in the first design. See Problem 6.23 in Exercises.
The LTR design part is more different from that of the first design. Its main reason

lies in the higher order of the squared-down plant Psd(z). Nevertheless, the model
Psd(z) is strictly minimum phase, and CsdBsd = DwCB is nonzero. Hence, perfect
LTR can be achieved. The required state estimation gain Lsd can also be easily
computed based on Ỹ = BsdB∗

sd that is the stabilizing solution to the corresponding
ARE in the LTR step. The LQR/LTR controller for the second design is obtained as

Ksd(z) = zF̃1ρ(zI −Asd −LsdCsd)
−1Lsd,
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where F̃1ρ = −(I + B∗XB)−1B∗ [X 0
]
=
[

F1ρ 0
]
. The same two-degree-of-

freedom control system in Fig. 6.13 can be used to implement K(z) = Ksd(z)W(z)
leading to

Try(z) = P(I+Ksd(z)WP)−1V−1
sd Ω−1 ≈C(zI −A−BFρ)

−1BΩ−1.

The step response of the closed-loop system with transfer matrix Try(z) is very close
to that of the previous design. Hence, the step response plot is omitted.

The two different designs for the inverted pendulum control system result in
two very similar feedback control systems, even though the second one employs
dynamic square down. While both admit decent step responses, some problems exist
in its design method with the stability margin as the major one. Due to the difficulty
in using the root locus method for discrete-time systems, synthesis of Fρ to achieve
both eigenvalue assignment and good stability margin is considerably harder than its
counterpart for continuous-time systems. Readers are encouraged to practice more
in order to gain more experience with root locus which will help to improve the
stability margin of the closed-loop system in future design of the feedback control
system based on the eigenvalue assignment method.

Notes and References

LQG control has been studied in many papers and books. The presentation in
this chapter is translated from H2 control [27, 126]. The design method of loop
shaping is based on [81, 115] which is developed for continuous-time systems.
The LQR/LTR design has been studied in [20, 26, 123], and is generalized to
discrete-time systems in [79, 124]. See also [9, 44, 99, 105, 109]. This chapter also
provides the state-space formula for factorizing the unstable zeros and H2 controller
interpretation.

Exercises

6.1. Verify the expressions in (6.5) and (6.6).

6.2. Prove Theorem 6.4.

6.3. Verify (6.23), (6.24), and (6.17).

6.4. Show that the stabilizing solution X ≥ 0 to ARE (6.15) is the reachability
gramian of TFI(z) in (6.13) or of Ttmp(z) in (6.19).

6.5. Prove the error equations in (6.34) and show that Y ≥ 0 to ARE in (6.31) is the
associated reachability gramian.
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6.6. Write Matlab function or m-file to compute the optimal feedback controller
K(z) for the LFT feedback system in Fig. 6.3 under the assumptions of
Theorems 6.4 and 6.5. The m-file needs to take realization of the generalized plant
G(z) as input variables and realization of the controller K(z) as output variables.

6.7. Show that the normalized H2 control after Example 6.6 has the identical
optimal controller to the one in Example 6.6.

6.8. Verify the realizations in (6.43) and (6.44) and the double Bezout identity

[
V(z) U(z)

−N(z) M(z)

][
M̃(z) −Ũ(z)
Ñ(z) Ṽ(z)

]
= I

(Hint: Consider P̂(z) = −K(z) = D̂+ Ĉ(zI − Â)−1B̂ with (Â, B̂,Ĉ, D̂) the same as
in (6.35) and K̂(z) =−G22(z) with D22 = 0. Show that

K̂(z) =−
[

Â+ B̂F̂ + L̂Ĉ+ L̂D̂F̂ L̂
F̂ 0

]

where F̂ = −C2 and L̂ = −B2, and then use the results in Sect. 3.2.3 to derive the
expressions in (6.43) and (6.44) for the feedback system consisting of P̂(z) and
K̂(z).)

6.9. Prove inequality in (6.46) by first proving

σ [(I + S)−1]≤ 1
1−σ(S)

for each square matrix S satisfying σ(S)< 1.

6.10. Show that under the assumption in (6.57) plus (6.58), the observability
gramian P in (6.55) is the same as X to the ARE in (6.15) and the reachability
gramian Q in (6.56)is the same as Y to the ARE in and (6.31).

6.11. For T(z) = T1(z)T2(z) with T(z), T1(z), and T2(z), all stable proper transfer
matrices, show that

(i) ‖T‖∞ ≤ ‖T1‖∞‖T2‖∞, (ii) ‖T‖2 ≤ ‖T1‖∞‖T2‖2

6.12. Let H and W be square complex matrices of the dimension. Partition H and
W compatibly as

H =
[

H1 H2
]
, W =

[
W1

W2

]

Suppose that WH = I, and thus, HW =H1W1+H2W2 = I. Show that σmax(H1W1) =
σmax(H2W2) with σmax(·) the maximum singular value.

6.13. Prove Corollary 6.1.
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6.14. Prove the stability condition (6.70) in Corollary 6.2.

6.15. Let G12(z) = D12 +C1(zI−A)−1B2 satisfying the condition

D∗
12

[
D12 C1

]
=
[

R 0
]

Let X ≥ 0 be the stabilizing solution to the ARE (6.15) and F be as in (6.16). Show
that for each real ω , G12(ejω )∗G12(ejω )≥ R and

[I−F(ejω I −A)−1B2]
∗(R+B∗

2XB2)[I −F(ejω I−A)−1B2]≥ R

(Hint: This is dual to Problem 5.36 and thus one may begin by showing that the
left-hand side is the same as G12(ejω)∗G12(ejω ) for each real ω .)

6.16. Show that if the Nyquist plot does not intersect the disk of radius r > 0
centered at −1 as shown in Fig. 6.7, then the feedback system admits phase margin
of 2sin−1(r/2) and gain margins of (1+ r) or ((1− r)−1.

6.17. Consider root locus for (6.87). Suppose that det(A) �= 0 and λi(A)λ̄ j(A) �= 1
for all i �= j. Let Q0 be the unique solution to

Q0 = A∗Q0A+C∗
0C0.

Show that the roots of (6.87) are eigenvalues of the following matrix:

[
A 0
0 (A∗)−1

]
−ρ2

[
B

Q0B

]
[

B∗Q0A −(A−1B)∗
]
.

(Hint: Use the result in Problem 5.35 of Chap. 5 to show that

G0(z)
∼G0(z) = B∗Q0B+B∗Q0A(zI −A)−1B+B∗(z−1I −A)−1A∗Q0B.

The zero eigenvalues of A correspond to z−1 which can removed, but eigenvalues
on the unit circle can be difficult to deal with.)

6.18. (i) Verify the expression of the complementary sensitivity and sensitivity at
the plant output in (6.104) and (6.105), respectively. (ii) Find the results dual to
(6.104) and (6.105).

6.19. (i) Given (A,b) that is reachable with b a column vector, show that there
exists a nonsingular similarity transform T such that

TAT−1 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

−a1 −a2 · · · · · · −an

1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

, T b =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

1
0
...
...
0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦
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6.20. Let C and A be matrices of size p× n and n× n, respectively. Suppose that C
has rank p. Show that (i) the transmission zeros of G0(z) = C(zI −A)−1B0 can be
arbitrarily assigned with B0 of size n× p, if and only if (C,A) is observable; (ii) the
transmission zeros of G0(z) = C(zI −A)−1B0 are all strictly inside the unit circle
for some B0 of size n× p, if and only if (A,B) is stabilizable. (The proofs are dual
to those for (i) and (ii) in Lemma 6.3.)

6.21. Suppose that PW (z) is square and has neither poles nor zeros at 1. Generalize
the result in Remark 6.4 to the case when all singular values of PW (1) are
considerably greater than 1.

6.22. Let P(z) =C(zI −A)−1B and K(z) = V(z)−1U(z) with

[
V(z) U(z)

]
=

[
AK BV BU

CK DV DU

]

for the feedback system in Fig. 6.13. Show that

Try(z) =

⎡

⎣
A−BD−1

V DUC BD−1
V CK BD−1

V
BV D−1

V DUC−BUC AK −BV D−1
V CK −BV D−1

V

C 0 0

⎤

⎦Ω−1
F

.

(Hint: Consider Pε(z) =C(zI−A)−1B+D and find realization for

Try(z) = [V(z)Pε (z)
−1 +U(z)]−1Ω−1

F

and then take D = εI → 0.)

6.23. For the second design of the inverted pendulum control system, the squared-
down plant is given by Psd(z). Assume that Aw is a stability matrix. Show that the
stabilizing solution to

Xsd = A∗
sdXsd(I +BsdB∗

sdXsd)
−1Asd +ρ2C̃∗

0C̃0

has the form

Xsd =

[
X 0
0 0

]

where X ≥ 0 is the stabilizing solution to

X = A∗X(I+BB∗X)−1A+ρ2CC∗.

Use the above to obtain the expression of the state-feedback gain

F̃ρ =
[

Fρ 0
]
, Fρ =−(I+B∗XB)−1B∗XA.



Chapter 7
Design of Wireless Transceivers

Wireless communications have undergone a remarkable development since, early
1980s when the first cellular and coreless systems were introduced. Indeed, users
have experienced three different generations of cellular and coreless systems, which
are now being evolved into the fourth generation (4G). From initial narrowband
circuit-switched voice services based on FM (frequency modulation) technology of
1G to broadband wireless access with asymmetric bit rate approaching 1 gigabits per
second (Gb/s) of 4G, the wireless systems nowadays provide not only voice, but also
data and multimedia services seamlessly and ubiquitously. The wireless Internet and
online videos/games are increasingly part of our daily life, and smart phones and
other mobile devices are becoming essential components of our professional life.

The rapid development of wireless communications is not possible without
advancement of the wireless transceiver technology. Regardless the wide area
network (WAN) or local area network (LAN), wireless transceivers constitute the
physical layer of any wireless network. Their implementations usually involve a
combination of different technologies from CMOS (complementary metal oxide
semiconductor) to silicon bipolar or BiCMOS. Notwithstanding the hardware
progress, algorithms for digital signal processing in wireless transceivers have also
experienced major developments in the past two decades. Notables include those
for MIMO wireless channels in order to increase the data rate and to satisfy the
more stringent quality of service (QoS) requirements. This text focuses on signal
processing side of the wireless transceiver technology, including channel estimation,
equalization, precoding, and data or symbol detection which are fundamental to
design of wireless transceivers.

In this chapter, several wireless systems will be introduced, with emphasis
on DS (direct sequence) spread sequence CDMA (code division multiple access)
systems and OFDM (orthogonal frequency-division multiplex) modulated systems
over fading channels. Optimal algorithms will be presented for zero-forcing channel
equalization, precoding, and linear receivers. These algorithms are developed for
MIMO channels due to the multiuser nature of the wireless communication system
and multiple antenna technology. Finally, optimal multiuser symbol detection will

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 7, © Springer Science+Business Media, LLC 2012
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be considered jointly with decision feedback. It will be seen that Kalman filtering
and LQR control play pivotal roles in developing optimal design algorithms for
wireless transceivers.

7.1 MIMO Wireless Communication Systems

There are quite a few different systems available for wireless communications. This
chapter is aimed at illustrating the application of optimal estimation and control,
and thus, the focus will be placed on CDMA and OFDM which dominate 3G
and 4G wireless systems. Since multirate signal processing underlies the wireless
transceiver technology, our presentation will begin with multirate devices and
filterbanks.

7.1.1 Multirate Transmultiplexer

Multirate digital signal processing has been widely used in telecommunications.
The following depicts the two frequently used sampling converters where L and M
are integers.

The L-fold expander on the left is the upsampling converter that increases the
sampling rate by a factor of L. Mathematically, the input and output are related
according to

yE (t) =

{
x(t/L), t = 0,±L,±2L, · · · ,

0, otherwise.

In Matlab when {x(t)} is given, its L-fold upsampled version can be easily created
with

y = zeros(1,L∗ length(x)); yE (1 : L : length(y)) = x.

That is, with the sampling frequency ωs for {x(t)}, the output signal {yE (t)} of the
expander admits a new sampling frequency of ωnew = Lωs.

For the M-fold decimator on the right of Fig. 7.1, there holds yD(t) = x(tM). The
downsampled version of {x(t)} can be easily created with the Matlab command:

yD = x(1 : M : length(x)).

Clearly, the sampling frequency of {y(t)} is only the Mth sampling frequency of
{x(t)}. That is, 100× (1− 1

M

)
% of total samples are discarded during the down-

sampling conversion with a factor of M.

Fig. 7.1 L-fold expander (left) and M-fold decimator (right)
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−π−2π 2ππ

π 2π−π−2π 0

0

AX(ω)

AY(ω)

Fig. 7.2 Frequency
responses showing imaging
for L = 2

Fig. 7.3 L-fold interpolator with
[− π

L ,
π
L

]
the passband of F(z)

Fig. 7.4 M-fold decimator precedent by the low-pass filter F(z)

Suppose that the input signal has frequency response X(ejω). The frequency
response after the upsampling is found to be

YE (e
jω ) =

∞

∑
t=−∞

y(t)e−jtω =
∞

∑
k=−∞

x(k)e−jkLω = X(ejLω).

Hence, the frequency response images over the interval of length 2Lπ are com-
pressed to fit in the interval of length 2π as shown in the following Fig. 7.2 for the
case L = 2 in which AX (ω) = |X(ejω)| and AY (ω) = |YE (e

jω)|. This phenomenon is
called “imaging effect.”

In order to preserve the original signal, a low-pass filter is often employed at the
output of the expander to remove the duplicated images in YE (ω).

The expander followed by low-pass filter in Fig. 7.3 is now called interpolator,
because it replaces the added zeros in {yE (t)} by the “interpolated” values.
Specifically, when the discrete-time signal {x(t)} satisfies the condition of the
sampling theorem and the filter is ideal, the output signal {yE (t)} will be no
different from the sampled signal of the original continuous-time signal under the
new sampling frequency ωnew. See Problem 7.1 in Exercises.

For decimator, the downsampled signal may violate, even if the input signal
satisfies, the condition of the sampling theorem. For this reason, the low-pass filter
is often employed to filter the input signal first prior to downsampling as shown in
Fig. 7.4.
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−π π

π 2π

2π

−π−2π

−2π

0

0

AY (ω)

AX (ω)Fig. 7.5 Frequency
responses showing aliasing
for M = 2

The frequency response of yD(t) is more difficult to derive than that of yE (t).
Nonetheless, it can be shown that (Problem 7.2 in Exercises)

YD(e
jω ) =

1
M

M−1

∑
i=0

X
(

ejω−2iπ
M

)
=

1
M

M−1

∑
i=0

X
(

W i
Mej ωM

)
(7.1)

in the case F(z) ≡ 1 where WM = e−j2π/M. The above hints that a decimator in
absence of F(z) may result in aliasing as seen in Fig. 7.5.

The above figure shows that the low-pass filter F(z) needs to have passband
[− π

M , π
M ] with magnitude M, instead of 1, in order to avoid aliasing and restore the

amplitude of the signal.
A discrete-time signal {s(t)} can be put into block form to obtain a vector-valued

signal, that is, a vector-valued signal

s(t) =

⎡

⎢
⎢
⎢
⎢⎢
⎣

s0(t)

s1(t)
...

sM−1(t)

⎤

⎥
⎥
⎥
⎥⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢⎢
⎣

s(tM)

s(tM + 1)
...

s(tM +M− 1)

⎤

⎥
⎥
⎥
⎥⎥
⎦

(7.2)

for t = 0,±1, · · · , with M the block size. The following figure illustrates the
operation of blocking with z standing for the unit advance operation:

Clearly, the blocking does not lose information. The kth subsignal {sk(t)} is
called kth polyphase component of {s(t)}. Applying DTFT to {sk(t)} yields

Sk(e
jω ) =

∞

∑
t=−∞

sk(t)e
−jtω . (7.3)

It follows that Sk(ejω) is the kth entry of S(ejω) which is the DTFT of {s(t)}.
Moreover, there holds polyphase decomposition

S(ejω) =
∞

∑
t=−∞

s(t)e−jtω =
M−1

∑
k=0

e−jkωSk(e
jMω ). (7.4)
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Fig. 7.6 Blocking a signal
with size M

The interpolator and decimator are the elementary devices in filter banks, widely
used in telecommunications. In Fig. 7.6, {Hi(z)}M−1

i=0 on left are called analysis
filters, and {Gi(z)}M−1

i=0 on right are synthesis filters. The signal s(t) is first filtered
by {Hi(z)} and split into M subband signals {vi(t)} which are then coded and
individually transmitted. The bits are judiciously allocated to each subband signal
vi(t) according to its energy which is termed subband coding. On the receiver
side, the M signals are first upsampled, then decoded and filtered which are finally
summed together to form ŝ(t). If

ŝ(t) = αs(t −β )

for some nonzeroα and integer β , then the filterbank is said to have achieved perfect
reconstruction (PR).

For downsampled signals, there holds

Vk(z) =
1
M

M−1

∑
i=0

Hk

(
z

1
M W−i

M

)
S
(

z
1
M W−i

M

)

for 0 ≤ k < M in light of (7.1). The received signal at the output is

Ŝ(z) =
M−1

∑
k=0

Fk(z)Vk(z
M)

=
1
M

M−1

∑
i=0

M−1

∑
k=0

Fk(z)Hk(zW
i
M)S(zW i

M).

The terms {S(zWi
M)} for i �= 0 represent aliasing, and need to be eliminated, leading

to the condition
M−1

∑
k=0

Fk(z)Hk(zW
i
M) = H(zW i

M)F(z) = 0 (7.5)
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Fig. 7.7 Multirate quadrature mirror filter (QMF) bank

for i �= 0 where

H(z) =
[

H0(z) · · · HM−1(z)
]
, F(z) =

⎡

⎢
⎣

F0(z)
...

FM−1(z)

⎤

⎥
⎦ .

For i = 0, the PR condition requires H(z)F(z) = αz−β for some β ≥ 0 and α �= 0. It
follows that the quadrature mirror filter (QMF) bank in Fig. 7.7 is PR, if and only if

HAC(z)

⎡

⎢
⎢
⎢⎢
⎢
⎣

F0(z)

F1(z)
...

FM−1 (z)

⎤

⎥
⎥
⎥⎥
⎥
⎦
=

⎡

⎢
⎢
⎢⎢
⎢
⎣

cz−d

0
...

0

⎤

⎥
⎥
⎥⎥
⎥
⎦

(7.6)

where HAC(z) is called aliasing component matrix given by

HAC(z) =

⎡

⎢
⎢
⎢
⎢⎢
⎣

H0(z) H1(z) · · · HM−1 (z)

H0(zWM) H1(zWM) · · · HM−1 (zWM)

...
...

...

H0(zW
M−1
M ) H1(zW

M−1
M ) · · · HM−1 (zW

M−1
M )

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

Alternatively, the PR is possible, if and only if the first column of z−βHAC(z)−1 is
stable and causal for some β ≥ 0. Normally, design of QMF bank begins with design
of the analysis filters {Hk(z)}, focusing on the filtering specification in order to split
the signals into M subbands as perfectly as possible. The synthesis filters {Fk(z)} are
then designed based on whether or not HAC(z) admits a causal and stable inverse. In
general, analysis filters designed to satisfy the filtering specification does not yield
PR. Synthesis filters will then be designed to minimize the reconstruction error. It is
also possible to minimize the filtering error and reconstruction error simultaneously.
See Problems 7.4 and 7.5 of Exercises in the case of M = 2.
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Fig. 7.8 Block diagram for transmultilexer

In high-speed transmission over noisy channels, DMT (digital multitone modu-
lation) is a widely used technique. See the illustrative block diagram of DMT next.
The M input signals are M symbol sequences to be transmitted. In the DMT scheme,
the channel, rather than signal, is divided into subbands, each with a different
frequency band. The transmission power and bits are judiciously allocated according
to the SNR in each band. This is similar to the water pouring scheme for discrete
transmission channels: more bits are sent over the strong SNR subband channels,
while few bits are transmitted over the weak SNR subband channels. The realization
of the DMT scheme relies on the design of a transceiver that effectively divides the
channel into subbands. Band separation is of particular importance when the SNRs
of different bands exhibit large differences. This can happen when the channel or
the channel noise is highly frequency selective or non-flat.

For the model in Fig. 7.8, denote the input and output vector signals as

s(t) =

⎡

⎢
⎢
⎣

s0(t)
s1(t)
· · ·

sM−1(t)

⎤

⎥
⎥
⎦, ŝ(t) =

⎡

⎢
⎢
⎣

ŝ0(t)
ŝ1(t)
· · ·

ŝM−1(t)

⎤

⎥
⎥
⎦. (7.7)

Block the input and output of the channel with size P according to

u(t) =

⎡

⎢
⎣

u(tP)
...

u(tP+P− 1)

⎤

⎥
⎦, y(t) =

⎡

⎢
⎣

y(tP)
...

y(tP+P− 1)

⎤

⎥
⎦. (7.8)

Then u(t), and y(t) have the same sampling rate as the symbol rate for {si(t)}M−1
i=0 .

Let η(t) be column vector of size P with η(tP+ i− 1) as the ith element. Each
Gk(z) and Fk(z) admit polyphase decomposition as

Gk(z) =
P−1

∑
i=0

z−iGk,i(z
P), Fk(z) =

P−1

∑
i=0

z−iFk,i(z
P), (7.9)
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for 0 ≤ k < M. Similarly,

H(z) =
P−1

∑
i=0

z−iHi(z
P) (7.10)

is the polyphase decomposition of H(z). There holds

ŝ(t) = F (t)�H (t)�G (t)� s(t)+F(t)�η(t), (7.11)

where G (t),F (t), and H (t) are the impulse responses of the blocked filters whose
Z transform are given, respectively, by

G(z) =

⎡

⎢
⎢
⎢
⎢⎢
⎣

G0,0(z) G1,0(z) · · · GM−1,0(z)

G0,1(z) G1,1(z) · · · GM−1,1(z)
...

... · · · ...

G0,P−1(z) G1,P−1(z) · · · GM−1,P−1(z)

⎤

⎥
⎥
⎥
⎥⎥
⎦
, (7.12)

F(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

F0,0(z) z−1F0,1(z) · · · z−1F0,P−1(z)

F1,0(z) z−1F1,1(z) · · · z−1F1,P−1(z)
...

... · · · ...

FM−1,0(z) z−1FM−1,1(z) · · · z−1FM−1,P−1(z)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

H(z) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

H0(z) z−1HP−1(z) · · · z−1H1(z)

H1(z) H0(z)
. . .

...
...

. . .
. . . z−1HP−1(z)

HP−1(z) · · · H1(z) H0(z)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

. (7.13)

Clearly, the PR condition in absence of the noise amounts to

F(z)H(z)G(z) = diag
(

z−d0 ,z−d1 , · · · ,z−dM−1

)
(7.14)

for some nonnegative integers di with 0 ≤ i < M, leading to

ŝi(t) = si(t − di), 0 ≤ i < M.

7.1.2 Direct Sequence CDMA Systems

The wireless communication system based on code division multiple access
(CDMA) allows M multiple asynchronous users to share the same frequency
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Fig. 7.9 Schematic diagram
of CDMA modulation

channel, rather than dividing it into P ≥ M subbands. The advantages of such a
system mainly lie in (a) spreading the transmission power over a wide bandwidth
lowers spectral density, including less interference to another narrowband signals,
and (b) By giving each user proper spreading codes, near orthogonality of
waveforms can be achieved, allowing multiple users to coexist without mutual
interference. This subsection presents the mathematical description of the CDMA
modulation scheme.

Let {sm(k)} be the symbol stream of the mth user at the kth symbol sampling
instant. Each user is given a unique spread chip sequence {cm(i)}P−1

i=0 where P ≥ M
with M the total number of users. The use of spread chip sequence is equivalent to
the upsampling with filter

Cm(z) =
P−1

∑
i=0

cm(i)z
−i,

as shown in the following Fig. 7.9 with Hm(z) the channel model.
By adopting the convention that cm(i) = 0 for i < 0, or i ≥ P, there holds

um(k) =
∞

∑
i=−∞

sm(i)cm(k− iP).

Indeed, for k = �P+ j with 0 ≤ j < P,

um(k) = um(�P+ j) =
∞

∑
i=−∞

sm(i)cm [(�− i)P+ j)] = sm(�)cm( j)

for j = 0,1, · · · ,P− 1. Let ψ(·) be the chip waveform with support [0, Tc] where
Tc = Ts/P is the chip period, and Ts is the symbol period. The transmitted signal
waveform from the mth user is given by

wm(t) =
∞

∑
k=−∞

um(k)ψ(t − kTc)

for m ∈ {0,1, · · · ,M − 1}. In light of Sect. 1.2, the transmitted waveform will be
(match) filtered and then sampled, leading to the equivalent discretized channel
model Hm(z), assuming time invariance of the channel. For this reason, the CDMA
model is identical to the transmultiplexer in Fig. 7.8 with Gi(z) = Ci(z)Hi(z) and
H(z) ≡ 1 for 0 ≤ i < M. However, the subband interpretation is lost in the context
of CDMA. In fact, narrowband symbol sequences are spread into wideband signals.
On the receiver site, the received signals are filtered and downsampled in hope of
recovering the desired symbol for each user. It is clear that H(z)≡ IP.
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There are two cases to consider. The first case assumes synchronous users, and
each channel involves only an attenuation factor, i.e., Hm(z) ≡ amz−d for the same
integer delay d ≥ 0. Then G(z)≡Cdiag(a0, · · · ,aM−1) with

C :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c0(0) c1(0) · · · cM−1(0)

c0(1) c1(1) · · · cM−1(1)
... · · · ...

...

c0(P− 1) c1(P− 1) · · · cM−1(P− 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

and F(z)≡CT diag(a−1
0 , · · · ,a−1

M−1) yields the optimal receiver under the assumption
that the spread codes are orthogonal, and thus, C becomes an orthogonal matrix. As
a result, the mth user can retrieve only his/her symbol sequence {sm(k)}.

The second case assumes that

Hm(z) = hm,0z−nm + hm,1z−(nm−1) + · · ·+ hm,nm , hm,0 �= 0.

Even if the continuous-time channel is flat and involves only an attenuation factor
and a time delay, asynchronous users may result in the above frequency fading
channel (Problem 7.8 in Exercises). Hence, this case is generic. The discretized
channel admits polyphase decomposition according to

Hm(z) =
M−1

∑
i=0

z−iHm,i(z
P)

for 0 ≤ m < M. It follows that

Gm(z) = Hm(z)Cm(z) =

(
P−1

∑
i=0

z−iHm,i(z
P)

)(
P−1

∑
k=0

cm(k)z
−k

)

=
P−1

∑
i=0

P−1

∑
k=0

z−(i+k)cm(k)Φm,i(z
P)

=
2P−2

∑
�=0

z−�

(
�

∑
k=0

cm(k)Hm,�−k(z
P)

)

=
P−1

∑
�=0

z−�

(
�

∑
k=0

cm(k)Hm,�−k(z
P)

)

+
P−2

∑
�=0

z−�

(

z−P
P−1

∑
k=�+1

cm(k)Hm,P+�−k(z
P)

)

=
P−1

∑
�=0

z−�Gm,�(z), Gm,�(z) =
P−1

∑
k=0

G̃(k)
m,�(z)cm(k)
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where

G̃(k)
m,�(z) =

{
Hm,�−k(z), 0 ≤ k ≤ �,

z−1Hm,P+�−k(z), � < k ≤ P− 1.

By slight abuse of notation, denote

cm =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cm(0)

cm(1)
...

cm(P− 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, Gm(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Gm,0(z)

Gm,1(z)
...

Gm,P−1(z)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

Gm(z) =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

Hm,0(z) z−1Hm,P−1(z) · · · z−1Hm,1(z)

Hm,1(z) Hm,0(z)
. . .

...
...

. . .
. . . z−1Hm,P−1(z)

Hm,P−1(z) · · · Hm,1(z) Hm,0(z)

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

.

There holds Gm(z) = Gm(z)cm for 0 ≤ m < M, and thus, G(z) in (7.12) admits the
following expression:

G(z) =
[

G0(z) G1(z) · · · GM−1(z)
]
. (7.15)

In the special case of the identical channel transfer functions, Gm(z) = TG(z) for
some TG(z) at each m, in which case G(z) = TG(z)C.

7.1.3 OFDM Model

The OFDM model is developed to cope with the multipath phenomenon. Let
the sequence of symbols be {b̂k}N−1

k=0 to be transmitted over the wireless channel
represented by H(z). These symbols are complex, assumed to be in the frequency
domain, and transformed into the time domain via inverse DFT prior to transmis-
sion. Specifically, denote WN = e−j2π/N ,

TF =
1√
N

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
1 WN · · · W N−1

N
...

...
...

...

1 W N−1
N · · · W (N−1)2

N

⎤

⎥
⎥
⎥
⎥
⎦

as the DFT matrix and b̂ as a vector of size N with b̂i as the ith entry. Then s = T ∗
F ŝ

is the signal vector to be transmitted sequentially.
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Let si be the ith entry of s and

H(z) = h0 + h1z−1 + · · ·+ hn−1zn−1

be the channel transfer function. Prior to transmitting {si}N−1
i=0 sequentially over the

channel, the last (n− 1) data are added to the beginning of the sequence, which is
termed prefix. That is, the data transmitted are arranged in order according to

sN−n+1, · · · ,sN−2,sN−1,s0,s1, · · · ,sN−2,sN−1.

Normally, N�n, and thus, the overhead due to the redundant (n − 1) data is
negligible. At the receiver site, the first (n − 1) received signals are discarded,
and the remaining N data are packed into a column vector y. By the linear
convolution relation and prefix, there holds y=Chs+v where v is the additive noise
vector, and

Ch =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0 0 · · · 0 hn−1 · · · h1

h1
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . hn−1

hn−1
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0

0 · · · 0 hn−1 · · · h1 h0

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

is the circulant matrix, consisting of the CIR.
There are several interesting features about the circulant matrix. The first one is

its Toeplitz structure. The second one is the shift property in that each row after
the first row is the right circular shift of the previous row. The final one is the
diagonalizability by the DFT matrix:

TFChT ∗
F = Dh := diag(H0,H1, · · · ,HN−1) (7.16)

where {Hk}N−1
k=0 are the N-point DFT of {hi}n−1

i=0 . See Problem 7.10 in Exercises. It
follows from the unitary property of the DFT matrix that

TF y = (TFChT ∗
F )(TF s)+TFv

by multiplying TF to y = Chs + v from left. Recall that ŝ = TFs is the symbol
vector from the transmitter. Thus, ŷ = TF y and v̂ = TFv can be regarded as the
received symbol and noise vectors, respectively, in the frequency domain. The
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OFDM scheme removes the intersymbol interference (ISI) induced by multipath,
and results in

ŷk = Ĥkŝk + v̂k, k = 0,1, · · · ,N − 1. (7.17)

The number of bits can be judiciously assigned to ŝk according to the ratio of
E{|Ĥk|2}/E{|v̂k|2}. Large value of this ratio implies high SNR, and more number
of bits can be assigned to meet the requirement of the same bit error probability, and
vice versa.

Recovery of the symbol ŝk involves detection based on noisy observation ŷk

and requires the channel information. It is customary to employ n pilot symbols
inserted into {ŝk} for channel estimation. For simplicity, assume that N = nm
for some integer m > 1. The pilot symbols are those given by {ŝim+�}n−1

i=0 where
� ∈ {0,1, · · · ,m− 1} is an integer. In light of (7.17),

ŷim+� = Ĥim+�ŝim+�+ v̂im+�

for 0 ≤ i < n. Hence, n uniform samples of the channel frequency response data
{Ĥim+�}n−1

i=0 can be estimated based on the pilot symbols {ŝim+�}n−1
i=0 and noisy

measurements {ŷim+�}n−1
i=0 . Since for each i,

Ĥim+� =
1√
N

n−1

∑
k=0

hkW
k(im+�)
N =

1√
N

n−1

∑
k=0

(hkW
k�
N )W ik

n ,

the CIR {hk} can be obtained from the inverse DFT:

W k�
N hk =

1√
N

n−1

∑
i=0

Ĥim+�W
−ik
n , 0 ≤ k < n,

from which the rest of {Ĥk} can be obtained. Channel estimation and its optimality
are important research topics in wireless communications, and will studied in more
detail in the next chapter.

Orthogonal frequency-division multiplexing can also be described by the block
diagram for the transmultiplexer in Fig. 7.8 by using M = N. However, there are
some variations. The first is that {si(t)} for 0 ≤ i < M = N originate from the
same signal {s(t)} which are the N polyphase components of {s(t)}. That is, for
0 ≤ i < N,

si(t) = s(tN + i), t = 0,±1, · · · .
In other words, from {s(t)} to {s(t)} involves serial to parallel conversion where s(t)
is the same as defined in (7.7). The second regards the analysis filters that are imple-
mented with inverse DFT, specified by T ∗

F . Thus, s(t) can be regarded as a complex
vector of size N in the frequency domain for each t. The most crucial one is the third
that adds a cyclic prefix to the sequence of data {u(t)} prior to its transmission.
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7.2 Linear Receivers

Multiple antennas have been employed in the past decade to increase the channel
capacity. These antennas are placed well apart from each other so that the channel
gains are approximately uncorrelated, giving rise to receiver design for MIMO
channels. This section considers design of linear receivers for wireless transceivers
over MIMO channels. A schematic block diagram is shown in Fig. 7.10 where
H(z) of size P×M represents the channel transfer matrix, and F(z) of size M ×P
represents the linear receiver. As a result, s(k) having dimension M is the symbol
vector to be transmitted at time index k, v(k) of dimension P is the additive white
noise, and ŝ(k − d) is the detected symbol vector after d samples of delay. The
DMT and CDMA represented by the transmultiplexer in the previous section can be
regarded as virtual MIMO systems, in which case H(z) contains both channel and
subband analysis filters (DMT), or spreading codes (CDMA). Hence, the design
algorithms presented in this section also apply to these virtual MIMO systems.

The focus of this section is design of linear receivers and study of how and
why optimal estimation and control theory in Chap. 5 provide design tools in
synthesizing optimal linear transceivers. To simplify the presentation, complete
channel information is assumed.

7.2.1 Zero-Forcing Equalizers

Zero-forcing (ZF) equalizers aim at synthesizing the receiver F(z) that achieves

F(z)H(z) = diag(z−d1 ,z−d2 , · · · ,z−dM ) (7.18)

for some di ≥ 0 and 1 ≤ i ≤ M. The above is the same as the PR condition. Recall
that ISI and interchannel interference (ICI) are major impediments for symbol
detection. The PR condition effectively removes both ISI and ICI and thus has been
an important approach to design of MIMO receivers.

However, ZF alone is not adequate for optimal symbol detection. The noise
impact on the output of the ZF equalizer has to be minimized. By the convention,
the additive white noise {v(k)} are assumed to be Gauss and have mean zero and
covarianceΣv = I. The case when Σv �= I is left as an exercise (Problem 7.12). Under
ZF equalization in (7.18), there holds

ŝ(k) = s(k−d)+ v̂(k), v̂(k) = F(q)v(k),

Fig. 7.10 Schematic diagram
for MIMO linear receivers
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where by an abuse of notation, s(k−d) is the same as s(k), except that its ith entry
is delayed by di samples with di the ith entry of d. Hence, v̂(k) is again Gauss,
although it is not white anymore. Optimal detection of s(k−d) requires to minimize
the variance of v̂(k), given by

JF = ‖F‖2
2 := Tr

{
1

2π

∫ π

−π
F(ejω)F(ejω )∗ dω

}
.

The synthesis of the optimal ZF equalizer seeks a causal and stable F(z) to satisfy
the ZF condition (7.18) and to minimize JF . Next, lemma provides an equivalent
condition for the ZF condition.

Lemma 7.1. Consider H(z) in Fig. 7.10 with size P×M and P > M. There exists a
causal and stable F(z) such that (7.18) holds for some di ≥ 0 and 1 ≤ i ≤ M, if and
only if

rank
{

H(z)diag(zd1 ,zd2 , · · · ,zdM )
}
= M ∀ |z| ≥ 1 ∪ z = ∞.

Proof. Since multiplication by another matrix does not increase rank, the failure of
the above rank condition implies the failure of the ZF condition (7.18). Conversely,
if the above rank condition holds, then there exist more than one causal and stable
F(z) such that (7.18) holds. In fact, all causal and stable ZF equalizers will be
parameterized in the next lemma, and thus, the detailed proof for the sufficiency
of the rank condition is skipped. ��

The nonnegative integers {di} can be obtained from the inner-outer factorization
(Problem 7.14 in Exercises). For convenience, a state-space realization is assumed
for the P×M transfer matrix:

T(z) := H(z)diag(zd1 ,zd2 , · · · ,zdM ) = D+C(zI−A)−1B. (7.19)

The rank condition in Lemma 7.1 is translated to rank{D} = M and strictly
minimum phase of (A,B,C,D). There exists an orthogonal D⊥ of size P× (P−M)
such that Da =

[
D D⊥

]
is square and nonsingular. Let

D+ = (D′D)−1D∗, D⊥D∗
⊥ = I−D(D∗D)−1D∗.

It is easy to verify that

[
D+

D∗
⊥

]
[

D D⊥
]
=

[
IM 0
0 IP−M

]
. (7.20)

The following presents parameterization of all causal and stable ZF equalizers.

Lemma 7.2. Suppose that T(z) of size P × M in (7.19) has a stabilizable and
detectable realization (A,B,C,D) and P > M. Let A0 = A− BD+C and D+ and
D⊥ be specified in (7.20). If T(z) is strictly minimum phase, i.e., rank{T(z)} = M
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for all |z| ≥ 1, including z =∞, then (D∗
⊥C,A0) is detectable, and thus, a stabilizing

estimation gain L exists such that (A0 +LD∗
⊥C) is a stability matrix. Define

[
T(z)+

T⊥(z)+

]
:=

[
D+

D∗
⊥

][
A0 +LD∗

⊥C LD∗
⊥ −BD+

C I

]
. (7.21)

All causal and stable channel equalizers are parameterized by

F(z) = Tinv(z) := T(z)+ +Q(z)T⊥(z)+

=

[
A0 +LD∗

⊥C LD∗
⊥−BD+

(D++QD∗
⊥)C (D++QD∗

⊥)

]

(7.22)

where Q(z) is an arbitrary proper and stable transfer matrix.

Proof. Stabilizability of (D∗
⊥C,A0) is left as an exercise (Problem 7.13). Since

D+D = I and D∗
⊥D = 0,

T(z) =
[
I +C(zI−A)−1(BD++LD∗

⊥)
]

D

where (A0 +LD∗
⊥C) is a stability matrix by the hypothesis on L. A proper and stable

left inverse of T(z) is thus given by

T(z)+ = D+
[
I +C(zI−A)−1(BD++LD∗

⊥)
]−1

yielding the upper part expression in (7.21). With

T⊥(z) =
[
I+C(zI−A)−1(BD++LD∗

⊥)
]

D⊥,

its proper and stable left inverse T⊥(z)+ can be obtained as in the lower part
expression in (7.21). There thus holds

[
T(z)+

T⊥(z)+

]
[

T(z) T⊥(z)
]
=

[
IM 0
0 IP−M

]
,

identical to the constant case in (7.20). It follows that Tinv(z) in (7.22) is indeed a
proper and stable left inverse, provided that Q(z) is proper and stable. Conversely,
for a given left proper and stable inverse T(z)†, it satisfies

T(z)† [T(z) T⊥(z)
]
=
[

I T(z)†T⊥(z)
]
.

On the other hand, F(z) = Tinv(z) in (7.22) yields

F(z)
[

T(z) T⊥(z)
]
=
[

I Q(z)
]
.
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Since
[

T(z) T⊥(z)
]

is square and admits a stable and proper inverse, setting Q(z) =
T(z)†T⊥(z) yields F(z) = T(z)† with proper and stable Q(z), thereby proving the
parameterization in (7.22). ��

Lemma 7.2 indicates that each ZF channel equalizer indeed achieves

F(z)H(z) = diag(z−d1 ,z−d2 , · · · ,z−dM).

In addition, the optimal channel equalizer can be synthesized via minimization of
‖F‖2 over all proper and stable Q(z). While this is feasible, a more efficient method
employs the optimal solution to output estimation from Chap. 5, in which case L can
be chosen as the optimal state estimation gain and Q(z) reduces to the (constant)
optimal output estimation gain Q. Specifically, consider the random process

x(t + 1) = A0x(t)−BD+v(t),

z(t) = D+Cx(t)+D+v(t),

y(t) = D∗
⊥Cx(t)+D∗

⊥v(t), (7.23)

where v(t) is white and Gauss, independent of x(t), with mean zero and
covariance I. The problem of stationary output estimation aims to estimate z(t)
based on observations {y(k)}t

k=−∞. Compared with the problem setup in Chap. 5,
B1 =−BD+ and

D1 = D+, D2 = D∗
⊥, C1 = D+C, C2 = D∗

⊥C.

Hence, D1D∗
2 = 0, B1D∗

2 = 0, and D2D∗
2 = I in light of (7.20). Define Y ≥ 0 as the

stabilizing solution to

Y = A(I +YC∗D⊥D∗
⊥C)−1YA∗+B(D∗D)−1B∗. (7.24)

According to Chap. 5, the optimal output estimator is described by

x̂t+1|t = [A0 +LD∗
⊥C]x̂t|t−1 −Ly(t),

ẑt|t = [D+C+QD∗
⊥C]x̂t|t−1 −Qy(t), (7.25)

where the optimal state and output estimation gains L and Q are given by

[
L
Q

]
=−

[
A0YC∗D⊥

D+CYC∗D⊥

]
(I +D∗

⊥CC∗D⊥)−1, (7.26)

respectively. The next theorem shows that the above estimation gains minimizes
JF = ‖F‖2

2.

Theorem 7.1. Consider the causal and stable ZF channel equalizers represented
by F(z) in (7.21). Let Y ≥ 0 be the stabilizing solution to the ARE in (7.24). Then
‖F‖2 is minimized by L,Q specified in (7.26).
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Proof. As discussed earlier, the estimator in (7.25) is optimal with L,Q in (7.26) in
the sense that it minimizes the variance of ez(t) = z(t)− ẑt|t among all estimators,
including the dynamic ones. Denote ex(t) = x(t)− x̂t+1|t . Taking difference of the
equations in (7.23) and (7.25) leads to

ex(t + 1) = [A0 +LD∗
⊥C]êx(t)+ [LD∗

⊥−BD+]v(t),

ez(t) = [D+C+QD∗
⊥C]êx(t)+ [D++QD∗

⊥]v(t).

The above admits transfer matrix F(z) = Tinv(z) in form of (7.21). The optimality
of the output estimator concludes the minimum of JF = ‖F‖2

2 among all causal and
stable ZF channel equalizers. ��
Example 7.2. The ZF channel equalizer presented in this chapter will be illustrated
by a toy example in the sense that both M and P are small. The transmultiplexer-
based wireless transceiver is used. The channel model is described by

H(z) = 1− 0.3z−1+ 0.5z−2 − 0.4z−3+ 0.1z−4 − 0.02z−5+ 0.3z−6− 0.1z−7,

and P = 4 > M = 3 are chosen. The analysis filters {Gm(z)}M−1
m=0 are designed such

that T(z) = H(z)G(z) is both inner and outer. Recall the expressions of G(z) and
H(z) in (7.12) and (7.13), respectively. The design of {Gm(z)} is carried out by
computing spectral factorization of

[
IM 0

]
H(z)∼H(z)

[
IM

0

]
= R(z)∼R(z),

where both R(z) and R(z)−1 are proper and stable, and by setting

G(z) =
[

IM 0
]∗

R(z)−1.

Since each entry corresponds to some polyphase of some Gm(z), {Gm(z)}M−1
m=0 can be

readily obtained so long as G(z) is available. It can be verified that T(z) =H(z)G(z)
is strictly minimum including at z = ∞.

In design of the ZF-based synthesis filters {Fm(z)}, a state-space realization is
set up first for T(z). Theorem 7.1 is then used to compute the optimal ZF channel
equalizer. The optimal receiver filters {Fm(z)}3

m=0 are obtained subsequently. The
mean-squared-error JF to the optimal receivers is JF = 1.7856 that is minimum
among all causal and stable ZF channel equalizers, assuming v(t) is white both
spatially and temporally. The average frequency responses of the transmitter and
receiver filters are plotted using

|G ( f )| :=
1
M

M−1

∑
m=0

|Gm(ej2 fπ)|, |F ( f )| :=
1
M

M−1

∑
m=0

|Fm(ej2 fπ)|. (7.27)
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Fig. 7.11 |G ( f )| versus |H(ej2 fπ)|

See Fig. 7.11 next for |G ( f )| (solid line) versus the channel frequency response
(dashed line).

Figure 7.12 plots |F ( f )| (solid line) versus the channel frequency response. All
curves are normalized with respect to their respective maximum.

The strictly minimum phase condition in Theorem 7.1 usually holds due to P>M
and often P�M. The drawback of the ZF channel equalizer lies in the possible near
singularity of [T(ejω )∗T(ejω )] at some frequency ω . For this reason, Example 7.2
composes T(z) in a way that [T(ejω )∗T(ejω )]≡ I to remove near frequency nulls.

7.2.2 Zero-Forcing Precoders

ZF channel equalization is effective in removing both ISI and ICI. However, the
equalizer can be too complex to implement in the downlink mobile receiver because
of the desire to keep the receiver units as simple as possible. The block precoding is
a different transmission technique that shifts the signal processing burden from the
mobile receiver to the transmitter in the more resourceful base station. In this case,
a precoding filter (precoder) is designed at the transmitter side and is applied prior
to transmission to equalize the signal at the output of the receive filter. Precoding is
used in transmitters to compensate for distortion introduced by the channel response,
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Fig. 7.12 |F ( f )| versus |H(ej2 fπ )|

Fig. 7.13 Wireless
transceiver with precoder

and to reduce the effects of ISI and ICI, thereby allowing for more reliable data
transmission at high data rates. Precoder design is expected to allow the receiver
to be considerably simplified, which in turn reduces computational complexity and
power consumption in the mobile receiver.

The schematic block diagram for precoder receiver is illustrated in Fig. 7.13
that is rather different from the equalizer in Fig. 7.10. First, the channel transfer
matrix H(z) has size M × P with P > M. Second, the precoder G(z) maps M
dimensional input vector symbols {s(k)} to P dimensional vector signals {b(k)} at
the transmitter site. The precoded P signal streams {b(k)} are transmitted through
the MIMO channel H(z). The received signal consists of M dimensional data vectors
{ŝ(k)} corrupted by additive white noise.

Assume that {s(k)} are uncorrelated and white. If not, a prewhitening operation
can be performed over the symbol blocks prior to precoding. Hence, both input
symbols and additive noise are assumed to be zero mean with covariance matrices
given by

Σs = σ2
s I, Σv = σ2

v I, (7.28)
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respectively. It follows that the SNR equals to σ2
s /σ2

v for each subchannel, which is
a constant. The goal is to design precoder G(z) to eliminate the ISI and ICI and to
minimize the bit error rate (BER) of a downlink MIMO communication system by
preprocessing the transmitted signal. An effective method is the use of ZF precoders
that achieve the PR condition

H(z)G(z) = diag(z−d1 ,z−2, · · · ,z−dM ) (7.29)

for some positive integers {di}. Since H(z) is a wide matrix at each z, inner-outer
factorization H(z) = Hi(z)Ho(z) needs to be carried out as in Problem 7.14. The
square inner matrix Hi(z) contains z−di or 0 as entries. With

T(z) = diag(zd1 ,z2, · · · ,zdM )H(z), (7.30)

there holds the ZF condition T(z)G(z) ≡ I, in which case G(z) is termed as ZF
precoder.

Suppose that (7.29) holds for some causal and stable precoder G(z). Then

ŝ(k) = s(k−d)+ v(k).

with di as the ith entry of d, by an abuse of notation. In other words,

ŝi(k) = si(k− di)+ vi(k), 1 ≤ i ≤ M.

Assume constant signal power and white noise, the SNR for subchannel i at the
receiver site is given by

SNR =
σ2

s (i)
σ2

v (i)
=

σ2
s

σ2
v
=

1
M

M

∑
i=1

σ2
s (i)

σ2
v (i)

= Average SNR. (7.31)

As a result, the SNR for each subchannel is the same at the receiver site. Under
additive Gauss noise, BER is given by

BER =
1√
2π

∫ ∞

σs
σv

exp(−τ2/2) dτ,

by assuming the binary phase shift keying (BPSK) modulation. Hence, minimiza-
tion of BER is equivalent to maximization of σ2

s . However, the total transmission
power at the transmitter site is limited and given by

σ2
b = E{b(k)∗b(k)} = Tr{E[b(k)b(k)∗]}

= Tr

{
1

2π

∫ π

−π
G(ejω )E{s(k)s(k)∗}G(ejω)∗ dω

}
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= Tr

{
1

2π

∫ π

−π
G(ejω )G(ejω)∗ dω

}
σ2

s = ‖G‖2
2σ

2
s .

Let σ2
b = MEb with Eb the average bit energy at each transmitter. It follows that the

SNR at the receiver site is bounded as

SNR =
σ2

s

σ2
v
=

σ2
b

σ2
v ‖G‖2

2

=
MEb

σ2
v ‖G‖2

2

(7.32)

with the right-hand side the maximum SNR achievable, yielding the smallest BER.
Hence, minimization of BER is equivalent to maximization of SNR, i.e., the right-
hand side of (7.32), which is in turn equivalent to minimization of JG = ‖G‖2

2.
Consequently, design of the optimal ZF precoder requires not only the ZF condition
in (7.29) but also minimization of ‖G‖2. This conclusion carries through to the
case when s(k) is not composed of binary symbols, due to the constraint of the
transmission power.

Associate T(z) with realization (A,B,C,D). Then D has dimension M ×P with
P > M. Hence, D+ = D∗(DD∗)−1 is a right inverse of D under the full rank
condition for D. There exists D⊥ of dimension (P−M)× P such that D∗

⊥D⊥ =
I−D∗(DD∗)−1D and

[
D

D⊥

]
[

D+ D∗
⊥
]
=

[
IM 0
0 IP−M

]
. (7.33)

Lemma 7.3. Suppose that the transfer matrix T(z) = C(zI −A)−1B+D has size
M ×P with M < P and A is a stability matrix. There exists a proper and stable
transfer matrix G(z) of size P×M such that the ZF condition T(z)G(z) ≡ I holds,
if and only if rank{D}= M and (A−BD+C,BD∗

⊥) is stabilizable.

Since this result is dual to the one in the previous subsection, the proof is left as
an exercise (Problem 7.15). Denote A0 = A−BD+C. Stabilizability of (A0,BD∗

⊥)
implies the existence of state-feedback gain F such that (A0 +BD∗

⊥F) is a stability
matrix. Hence,

T(z) = D
[
I+(D+C−D∗

⊥F)(zI −A)−1B
]

Taking right inverse of T(z) yields

T(z)+ =

[
A0 +BD∗

⊥F B
−D+C+D∗

⊥F I

]
D+ (7.34)

that is proper and stable. It follows that

T⊥(z)+ =

[
A0 +BD∗

⊥F B
−D+C+D∗

⊥F I

]
D∗
⊥ (7.35)
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is a proper and stable right inverse of

T⊥(z) = D⊥
[
I+(D+C−D∗

⊥F)(zI −A)−1B
]
.

There thus holds the identity

[
T(z)

T⊥(z)

]
[

T(z)+ T⊥(z)+
]
=

[
IM 0
0 IP−M

]
. (7.36)

The following result is dual to that of Lemma 7.2, and thus, the proof is skipped.

Lemma 7.4. Suppose that T(z) of size M × P in (7.19) has a stabilizable and
detectable realization (A,B,C,D) with D full rank and P > M. There exist D+ and
D⊥ such that (7.33) holds. If (A0,BD∗

⊥) is stabilizable where A0 = A−BD+C, there
exists an F such that (A0 +BD∗

⊥F) is stability matrix. Let T(z)+ and T⊥(z)+ be
defined in (7.34) and (7.35), respectively. All causal and stable precoders satisfying
the ZF condition are parameterized by Tinv(z) = T(z)+ +T+

⊥(z)Q(z) or by state-
space form

Tinv(z) =

[
A0 +BD∗

⊥F B(D++D∗
⊥Q)

−D+C+D∗
⊥F (D++D∗

⊥Q)

]
(7.37)

where Q(z) is an arbitrary stable transfer function matrix.

Now consider the state-space system

x(t + 1) = A0x(t)+BD+v(t)+BD∗
⊥u(t),

w(t) = −D+Cx(t)+D+v(t)+D∗
⊥u(t),

where u(t) = Fx(t)+Q(q)v(t) is the full information control law. Then the closed-
loop transfer matrix is the same as Tinv(z) in (7.37). It follows that the optimal ZF
precoder can be designed using the result from Chap. 5 by taking A= A0, B1 =BD+,
B2 = BD∗

⊥, D1 = D+, D2 = D∗
⊥, and C = −D+C. The next theorem follows and is

dual to Theorem 7.1. The proof is left as an exercise (Problem 7.16).

Theorem 7.3. Under the hypotheses of Lemma 7.4, the optimal precoder has the
same form as in (7.37) with

F = −(I+D⊥B∗XBD∗
⊥)

−1D⊥B∗XA0,

Q = −(I+D⊥B∗XBD∗
⊥)

−1D⊥B∗XBD+,

where X ≥ 0 is the stabilizing solution to the ARE

X = A∗
0X(I+BD∗

⊥D⊥B∗X)−1A0 +C∗(DD∗)−1C.

The next example illustrates the advantage of the optimal precoder based on full-
information control.
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Example 7.4. The channel is assumed to be specified by

H(z) =
1
9
(1+ 2z−1 + 2.5z−2+ 2z−3 + z−4).

The blocked channel matrix with P = 3 defined in (7.13) is obtained as

H(z) =
1
9

⎡

⎣
1+ 2z−1 2.5z−1 2z−1 + z−2

2+ z−1 1+ 2z−1 2.5z−1

2.5 2+ z−1 1+ 2z−1

⎤

⎦

In order to illustrate the advantage of the optimal precoder, it is assumed that the
linear receiver admits the transfer matrix

R(z) = 9

⎡

⎢
⎢
⎣

− 16
35 − 56

35 z−1 − 24
35 z−2 4

7 +
12
7 z−1

68
35 +

130
35 z−1 + 48

35 z−2 − 17
7 − 24

7 z−1

− 34
35 − 96

35 z−1 − 36
35 z−2 12

7 + 18
7 z−1

⎤

⎥
⎥
⎦

T

.

It can be verified that the virtual P-input/M-output channel has the combined
transfer matrix H(z) = R(z)H(z) of size 2× 3 given by

H(z) =

[
1 0 −0.971− 0.742z−1− 0.896z−2− 1.z−3 − 0.686z−4

0 1 1.714+ 1.071z−1+ 0.571z−2+ 1.714z−3

]
.

A naive precoder is clearly G(z)=G=
[

I 0
]∗

of size P×M = 3×2 which results in

‖G‖2 =
√

2. However, if the optimal ZF precoder Gopt(z) =Hinv(z) is employed that
has the smallest H2 norm among all right inverses of H(z), then ‖Gopt‖2 = 1.2292.
The BER performance for these two designs is evaluated, and the BER curves are
plotted in Fig. 7.14 with solid line for the optimal precoder and dashed line for the
naive precoder. It can be easily seen that the optimal design outperforms the naive
one regarding the average BER.

If P = 4 and M = 2 are chosen, then the blocked channel transfer matrix defined
in (7.13) is given by

H(z) =
1
9

⎡

⎢
⎢
⎣

1+ z−1 2z−1 2.5z−1 2z−1

2 1+ z−1 2z−1 2.5z−1

2.5 2 1+ z−1 2z−1

2 2.5 2 1+ z−1

⎤

⎥
⎥
⎦ .

Assume a simple receiver given by the following constant matrix:

R(z) = R =

[
0 0 10 −8
0 0 −8 10

]
. (7.38)
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Fig. 7.14 BER comparison for the case P = 3 and M = 2

In this case, the virtual P-input/M-output channel has the combined transfer matrix
H(z) given by

H(z) = R(z)H(z) =
1
9

[
9 0 −6+ 10z−1 −8+ 12z−1

0 9 12− 8z−1 10− 6z−1

]
.

For the naive design, ‖G‖2 =
√

2 remains the same. However, for the optimal
precoder, ‖Gopt‖2 = 1.179 that becomes smaller. It can be expected that the
corresponding BER curves as plotted in Fig. 7.15 demonstrate more clearly the
superiority of the optimal ZF precoder.

7.2.3 Linear MMSE Transceivers

In the previous two subsections, some ZF condition needs to be assumed. While the
ZF condition often holds especially for virtual MIMO channels, it may results in ZF
equalizers or ZF precoders with excessive large gains in frequency domain, due to
near loss of rank for H(ejω) at some frequency bands. In fact, it is possible for H(z)
to have frequency nulls so that exact ZF is not possible, especially when P ≈ M.
This section considers design of linear MMSE transceivers without imposing the
ZF condition.
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First, consider the case when the channel transfer matrix H(z) has size P×M
with P ≥ M. In the time domain, the received signal has the form:

y(t) = H(q)s(t)+ v(t),

where s(t) is the symbol vector of dimension M, v(t) is the additive Gauss noise of
dimension P, and q is the unit advance operator. Both s(t) and v(t) are temporally
white, but may not be spatially white with Σs and Σv as their respective covariance.
Since a causal and stable left inverse of H(z) is not possible, or undesirable, an
alternative is to synthesize the linear receiver model F(z) that minimizes

JF = ‖(FH−D)Σ1/2
s ‖2

2 + ‖FΣ1/2
v ‖2

2,

where D(z) = diag(z−d1 ,z−d2 , · · · ,z−dM ) for some di ≥ 0. Note that

es(t) = [F(q)H(q)−D(q)]s(t−d)+F(q)v(t) (7.39)

is the error signal at the receiver site, and thus,

JF = E{‖es(t)‖2}= Tr{E[es(t)es(t)
∗]}
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Fig. 7.16 Schematic diagram
for linear MMSE receiver

by the temporal white assumption for both signal and noise, and by the indepen-
dence of the signal and noise. If F(z) is taken to be causal and stable left inverse of
H(z), then JF reduces to the performance index for ZF channel equalizer. An MMSE
receiver minimizes the mean-squared-error or JF . It is recognized that minimization
of JF is an output estimation problem studied in Chap. 5. Indeed, a schematic block
diagram is shown next:

The above is the same as the one in Fig. 5.4 by assuming

T(z) =
[

D(z) 0
H(z) I

]
=

[
D1 0
D2 I

]
+

[
C1

C2

]
(zI −A)−1 [B1 0

]
. (7.40)

There holds D(z) = D1 +C1(zI −A)−1B1 and H(z) = D2 +C2(zI − A)−1B1. The
order of the state-space model for T(z) clearly depends on {di}. If the integer di > 0
for each i, then the output estimator in Fig. 7.16 is in fact a smoother. The larger
the integers {di}, the smaller the JF . However, large {di} increase complexity of
the receiver. Hence, there is a trade-off between the complexity and optimality of
the linear MMSE receiver. For given {di}, the linear optimal receiver can be easily
obtained as follows.

Theorem 7.5. Consider T(z) in (7.40) with A a stability matrix. Let R = (I +
D2D∗

2), Ã = A−B1D∗
2R−1C2, and Y ≥ 0 be the stabilizing solution to

Y = Ã(I+YC∗
2R−1C2)

−1YÃ∗+B1(I −D∗
2R−1D2)B

∗
1.

Then the optimal receiver in the sense of MMSE is given by

F(z) =
[

A+LC2 L
C1 +QC2 Q

]

where the stationary estimation gains are given by

[
L
Q

]
=

[
AYC∗

2 +B1D∗
2

C1YC∗
2 +D1D∗

2

]
(R+C2YC∗

2)
−1.

The proof is left as an exercise (Problem 7.17). It is important to emphasize that
the receiver F(z) in Theorem 7.5 is optimal among all linear receivers. For this
reason, the non-ZF receiver in Theorem 7.5 is referred to as LE equalizer. The next
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section will introduce a nonlinear receiver that significantly outperforms the linear
MMSE receivers in this section.

A similar result can be derived for precoders that admit performance index

JG = ‖(HG−D)Σ1/2
s ‖2

2 +ρ2‖GΣ1/2
s ‖2

2 (7.41)

for some ρ > 0 where H(z) now has dimension M × P and M ≤ P. If the ZF
condition H(z)G(z) = D(z) holds, then ZF precoders will be resulted in. Due to
possible frequency nulls, ZF is often not preferred. Since the error signal at the
receiver is given by

e(t −d) = [H(q)G(q)−D(q)]s(t)+ v(t)

and s(t) and v(t) are independent, there holds

E{‖e(t)‖2}= ‖(HG−D)Σ1/2
s ‖2

2 +E{‖v(t)‖2}.

An MMSE criterion leads to minimization of ‖(HG− D)Σ1/2
s ‖2

2. In light of the

argument in the previous subsection, ‖GΣ1/2
s ‖2

2 needs to be minimized as well in
order to maximize the SNR, leading to the performance index JG in (7.41) with
ρ > 0 a trade-off parameter.

Thus far, it is unclear how JG can be minimized by synthesizing a causal and
stable precoder G(z). Denote

P(z) =

[
(H(z)G(z)−D)(z)Σ1/2

s

ρG(z)Σ1/2
s

]

=⇒ JG = ‖P‖2
2.

Moreover, P(z) = F�[T(z),G(z)] by taking

T(z) =
[

T11(z) T12(z)
T21(z) T22(z)

]
=

⎡

⎢
⎣
−D(z)Σ1/2

s H(z)
0 ρI

Σ1/2
s 0

⎤

⎥
⎦ (7.42)

Hence, the design algorithm in Chap. 6 can be employed. To proceed, a realization
is assumed for T(z) as follows:

T(z) =

⎡

⎢
⎣

D1 D2

0 ρI

Σ1/2
s 0

⎤

⎥
⎦+

⎡

⎣
C
0
0

⎤

⎦ (zI −A)−1 [B1 B2
]
. (7.43)

The next result provides the optimal solution to minimization of JG.
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Theorem 7.6. Consider T(z) in (7.43) of which A is a stability matrix and Σs is
nonsingular. Let AR = A−B2R−1

ρ D∗
2C, Rρ = ρ2I +D∗

2D2, X ≥ 0 be the stabilizing
solution to

X = A∗
RX(I+B2R−1

ρ B2X)−1 +C∗(I −D2R−1
ρ D∗

2)C. (7.44)

Then the optimal precoder G(z) that minimizes JG is given by

G(z) =

[
A+B2F (B2F0 +B1)Σ

−1/2
s

F F0Σ
−1/2
s

]

(7.45)

where
[

F F0
]
=−(Rρ +B∗

2XB2)
−1
(
B∗

2X
[

A B1
]
+D∗

2

[
C D1

])
.

Proof. The hypotheses imply that (A,B2) is stabilizable and

rank

⎧
⎨

⎩

⎡

⎣
A− ejωI B2

C D2

0 ρI

⎤

⎦

⎫
⎬

⎭
= full

for all real ω . Hence, there exists a stabilizing solution X ≥ 0 to the ARE in (7.44),
and the full information feedback gains F and F0 can be readily obtained. For output
estimation, stability of A implies detectability of (C2,A) even though C2 = 0, and

rank

{[
A− ejωI B1

0 Σ1/2
s

]}

= full

holds as well for all real ω . However, the corresponding filtering ARE has Y = 0 as
the stabilizing solution. It follows that

L =−B1Σ
−1/2
s , L0 =−F0Σ

−1/2
s

are the output estimation gains. The expression of the optimal controller in (7.45)
follows from Sect. 6.1. ��

The performance index JG of the non-ZF precoder also depends on {di}. Recall
that D(z) = diag(z−d1 ,z−d2 , · · · ,z−dM ). Hence, there is again a trade-off between the
performance index JG and the complexity of G(z).

7.3 Decision Feedback Receivers

Recall the results in the previous section. In the case of ZF precoders, the received
signal has the form of ŝ(t) = s(t) + v(t) where v(t) is the additive white Gauss
noise. If the noise covariance is given by Σv = σ2

v I, then each symbol in the symbol
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vector s(t) can be detected individually. In fact, optimal symbol detection amounts
to quantization for each entry of ŝ(t). See Problem 7.18 in Exercises. However, if
Σv �= σ2

v I and symbol vector has large dimension, then optimal detection becomes
not only difficult, but also too complex to implement in practice. This section will
present a Kalman filtering approach to vector symbol detection using the notion of
decision feedback. A more complex situation is when the additive Gauss noise v(t)
is not even temporal white. This is the case for ZF channel equalizers and also for the
non-ZF transceivers in the previous subsection. Clearly, the past information can be
utilized to improve symbol detection. An interesting method, termed as decision
feedback equalization, will be presented in this section to show that significant
improvement can be achieved using decision feedback equalization over linear
MMSE receivers.

7.3.1 Vector Symbol Detection

Consider the received vector ŝ = s+ v with dimension M. Assume that v is Gauss
distributed with mean zero and covariance Σv, and each entry of s is from a finite
alphabet table. While optimal detection amounts to quantization in the case of Σv =
σ2

v I, it becomes much more complex in the case of Σv �= σ2
v I when M is large.

This subsection develops a Kalman filtering method for vector symbol detection
augmented by decision feedback.

Consider the following fictitious state-space process:

s(m+ 1) = s(m) = s, y(m) = s̆(m) = ems (7.46)

for 0 < m < M where ek is a row vector consisting of zeros except the kth
element equal to one and s̆(m) is the detected symbol. The simple idea of decision
feedback assumes that the detected symbol s̆(m) = sm := ems and is fed back in
the form of output measurement y(m) = s̆(m). Since Σv is a full matrix, detected
symbol will be beneficial to estimation of the state vector, i.e., the symbol vector
s, thereby improving detection of the subsequent symbol. This idea indeed works
through successive improvement for estimation of s based on feedback of each
detected symbol. Let Σ̂0 = Σv and ŝ1|0 = ŝ which are prior data. Set y(1) = s̆(1) =
Quan[e1ŝ1|0]. An application of the state estimator in Theorem 5.6 leads to the spatial
Kalman filter:

ŝm+1|m = ŝm|m−1 −Km[y(m)− emŝm|m−1],

Km = −Σ̂me∗m(emΣ̂m−1e∗m)−1,

Σ̂m+1 = (I +Kmem)Σ̂m, y(m+ 1) = Quan[em+1ŝm+1|m], (7.47)
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for m = 1,2, · · · ,M− 1. The above skips the calculation of ŝm|m due to

ŝm|m = em+1ŝm|m−1 − em+1Km
(
y(m)− emŝm|m−1

)

= em+1
[
ŝm|m−1 −Km

(
y(m)− emŝm|m−1

)]

= em+1ŝm+1|m.

The estimator in (7.47) is obtained by noting that x(t)→ s is the state to estimate,
and y(t)→ y(m) = s̆m is the observation. Thus, with time index t replaced by spatial
index m, Theorem 5.6 can be readily applied using

At → Am = I, Bt → Bm = 0,

Ct → C2m = em, Dt → 0,

Lt → Lm = Km, Rt → Rm = 0.

The spatial Kalman filter in (7.47) will be termed as sequential interference
cancellation (SIC), or Kalman SIC in short, due to its ability to mitigate the noise
effect in vector symbol detection. Its weakness lies in the possible error propagation
if a detection error occurs. A moment of reflection prompts the idea of ordering by
detecting the symbol with the least error probability first. Two different orderings
will be considered. The first is based on SNR. Denote κ(·) as the new ordering.
Then

κ(1) = argmin{eiΣve∗i : 1 ≤ i ≤ M} .
In addition, the spatial Kalman SIC in (7.47) will be replaced by

ŝm+1|m = ŝm|m−1 −Km[s̆κ(m)− eκ(m)ŝm|m−1],

Km = −Σ̂me∗κ(m)

(
eκ(m)Σ̂me∗κ(m)

)−1
,

Σ̂m+1 = (I +Kmeκ(m))Σ̂m,

κ(m+ 1) = argmin
{

e jΣ̂m+1e∗j : j /∈ {κ(i)}m
i=1

}
,

s̆κ(m+1) = Quan[eκ(m+1)ŝm+1|m], (7.48)

initialized by Σ̂0 = Σv, ŝ1|0 = ŝ, and s̆(1) = Quan[eκ(1)ŝ1|0].
The second ordering is log-likelihood ratio (LLR). Denote Tw = {wi} f

i=1 as the
set of finite alphabetical words. Then sm ∈ Tw for each m, and ŝm = sm + vm for
some Gauss random variable vm with mean zero and variance emΣve∗m. At each m,
the MAP decision for s(i) given ŝi|m has the expression

s̆i = argmax
wk

Pr{si = wk|ŝi|m}

where Pr{·} stands for probability. Denote

γi|m(wk) = ln

(
Pr{si = s̆(i)|ŝi|m}
Pr{si = wk|ŝi|m}

)
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as the pairwise LLR. It is left as an exercise (Problem 7.19) to show that the
probability of symbol error after knowing ŝi|d is given by

Pr{s̆i �= si}= 1− 1

∑ f
k=1 e−γi|m(wk)

. (7.49)

The above holds even if the noise is not Gauss distributed. The LLR-based ordering
chooses to first detect the symbol that minimizes ∑ f

k=1 e−γi|m(wk) over {wk} f
k=1 at

each iteration of the spatial Kalman filter. This choice minimizes the symbol error
probability and thus the probability of error propagation. In the case of Gauss noise
as assumed in this subsection, there holds

γi|m(wk) =
|ŝi|m −wk|− |ŝi|m − s̆i|

emΣ̂me∗m
.

The spatial Kalman filter remains the same except the index at the mth step in (7.48)
that is replaced by

κ(m+ 1) = argmin
j

{
Pr{s̆ j �= s j|ŝ j|m}, j /∈ {κ(i)}m

i=1

}
.

Example 7.7. This example considers the output estimate of the LE receiver from
Sect. 2.3 as the symbol vector. For simplicity, BPSK is assumed, and thus, the each
symbol takes value of ±σs with σ2

s the symbol power. The estimate of the LE
receiver at time t is

ŝ(t − d) = s(t − d)+ v̂(t)

with d = 1. Note that v̂(t) represents the estimation error, different from the noise
process at the input of the LE receiver. Although the Gauss assumption does not
hold, the LE receiver implies approximate Gauss distribution of the estimation error,
provided that the channel order is high or M and P are large, in light of Example 2.12
in Chap. 2. This example employs the MIMO channel with M =P= 8 (input/output)
and L = 1 (channel length) to demonstrate the results for both the LE receiver from
Sect. 7.2.3 and for the SIC-based vector symbol detection. Whereas such M,P, and
L are not high enough, the simulation results do help to illustrate the improvement
due to Kalman SIC. A total of 30 channel models are randomly generated in which
each coefficient is Rayleigh distributed with the total variance normalized to one.
The BER performance are then averaged over these 30 channel models. Combining
the LE with the Kalman SIC in this subsection yields the BER curves shown in
Fig. 7.17 below.

The SNR is defined as 20log10(σ2
s /σ2

v ) with σ2
s I as the covariance of the symbol

vector and σ2
v I as the covariance of the noise at the input of the receiver (different

from v̂ that is the error noise at the output of the receiver). The improvement due to
ordering is also obvious.
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Fig. 7.17 BER performance of the combined Kalman LE and Kalman SIC

Fig. 7.18 Block diagram of
the DFE receiver

7.3.2 Decision Feedback Equalization

The previous subsection shows the BER improvement when the detected symbol
is fed back to aid the detection of the subsequent symbol. This improvement is
achieved by taking advantage of the correlated nature of the noise vector. Now
consider the LE receiver studied in the previous section in which the noise is colored
temporally. Hence, there is an incentive to feedback the detected symbol vector in
the previous time instant to help estimation of the current symbol vector. This is
indeed the case. To be specific, the LE receiver having the structure of the output
estimator is shown in Fig. 7.16. When the detected symbol is fed back, the input to
the estimator includes s̆(t−d−1), in addition to the received signal y(t). Figure 7.18
shows the structure of the time-invariant decision feedback equalizer (DFE).

The process model for output estimation in Fig. 7.16 is now changed to

T(z) =

⎡

⎣
z−dI 0

z−(d+1)I 0
H(z) I

⎤

⎦=

[
D1

D2

]
+

[
C1

C2

]
(zI −A)−1B
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=

⎡

⎣
0 0
0 0
D I

⎤

⎦+

⎡

⎣
C1

C21

C22

⎤

⎦ (zI −A)−1 [B1 0
]

(7.50)

for the case d ≥ 1 due to the additional observation of s̆(t − d − 1) = s(t − d − 1).
The optimal estimator in the sense of MMSE can be easily derived.

Theorem 7.8. Consider T(z) in (7.50). Let

R =

[
0 0
D I

][
0 0
D I

]∗
=

[
0 0
0 (I +DD∗)

]
,

Ã = A−B1D∗(I+DD∗)−1C22, and Y ≥ 0 be the stabilizing solution to

Y = Ã[I+YC∗
22(I+DD∗)−1C22]

−1Y Ã∗+B1(I +D∗D)−1B∗
1.

Then the optimal DFE receiver in the sense of MMSE is given by

F(z) =
[

Fb(z) F f (z)
]
=

[
A+L1C21 +L2C22 L1 L2

C1 +Q1C21 +Q2C22 Q1 Q2

]

where the stationary estimation gains are given by

[
L
Q

]
=

[
L1 L2

Q1 Q2

]
=

[
AYC∗

21 AYC∗
22 +B1D∗

C1YC∗
21 0

][
C21YC∗

21 C21YC∗
22

C22YC∗
21 DD∗+C22YC∗

22

]−1

.

Proof. Since R is singular, pseudoinverse has to be used leading to

R+ =

[
0 0
0 (I +DD∗)−1

]
.

By using the stationary version of the output estimation result in Theorem 5.14,

Ã = A−BD∗
2R+C2 = A−B1D∗(I+DD∗)−1C22, (7.51)

B̃ = B[I−D∗
2R+D2] = B1(I +D∗D)−1 [ I −D∗ ] ,

B̃B̃∗ = B1(I+D∗D)−1B∗
1, C∗

2R+C2 =C∗
22(I +DD∗)−1C22. (7.52)

Hence, the filtering ARE in the theorem can be verified, and expressions of the state
and output estimation gains in (7.51) can be easily derived. ��

In light of Theorem 7.8, the estimator F(z) =
[

Fb(z) F f (z)
]

has an IIR structure
in general. However, this is not the case for DFE, if the channel model is FIR, which
holds in the case for wireless channels. Recall the derivation of the channel model
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in Chap. 1. For the sake of generality, consider the time-varying channel model of
length L with M input/P output:

Ht(q) =
L

∑
i=0

Hi(t)q
−i. (7.53)

The next result is surprising and shows that the optimal DFE receiver in the sense of
MMSE has an FIR structure, even if the channel experiences time-selective fading.

Theorem 7.9. Let the P×M channel model be the same as in (7.53) and

y(t) =
L

∑
i=0

Hi(t)s(t − i)+ v(t)

be the received signal where the symbol vector s(t) and noise vector v(t) are
temporally white and uncorrelated to each other. Consider the DFE receiver

ŝ(t − d) =
Lg

∑
i=0

Fi(t)y(t − i)+
Lb

∑
j=1

G j(t)s̆(t − d− j). (7.54)

If s̆(t − d − i) = s(t − d − i) for all integer i ≥ 1, then the MSE of the estimation
error E{‖s(t − d)− ŝ(t − d)‖2} is minimized by the FIR DFE receiver in form of
(7.54) among all linear receivers, provided that Lg ≥ d and Lb ≥ L.

Proof. Assume Lg = d, Lb = L, and s̆(t − d − i) = s(t − d − i) for i ≥ 1. Then the
estimate ŝ(t − d) in (7.54) can be written as

r(t) = ŝ(t − d) =
d

∑
i=0

Fi(t)y(t − i)+
L

∑
j=1

G j(t)s(t − d− j)

=
d

∑
i=0

Fi(t)

(
L

∑
k=0

Hk(t − i)s(t − i− k)+ v(t− i)

)

+
L+d

∑
j=d+1

G j−d(t)s(t − j)

=
L+d

∑
�=0

Γ�(t)s(t − �)+
L+d

∑
j=d+1

G j−d(t)s(t − j)+
d

∑
i=0

Fi(t)v(t − i)

=
d

∑
�=0

Γ�(t)s(t − �)+
L+d

∑
j=d+1

[Γj(t)+G j−d(t)]s(t − j)+
d

∑
i=0

Fi(t)v(t − i),

where Γ�(t) = ∑�
i=0 Fi(t)H�−i(t − i) by defining Fi(t) = 0 ∀ i > d. Taking

G j(t) =−Γj+d(t) =−
d

∑
i=0

Fi(t)Hj+d−i(t − i) (7.55)
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for all j ∈ {i}L
i=1 concludes that

r(t) = ŝ(t − d) =
d

∑
�=0

Γ�(t)s(t − �)+
d

∑
i=0

Fi(t)v(t − i).

Let es(t − d) = s(t − d)− ŝ(t − d) be the error signal. The above implies

E{e(t − d)s(t − d− i)∗}= 0 ∀ i ≥ 1 (7.56)

by E{s(t)s(τ)∗}= 0 whenever t �= τ and E{s(t)v(τ)∗}= 0 for all (t,τ). If {Fi(t)}d
i=0

are chosen such that

E{e(t − d)y(t − i)∗}= 0 ∀ i ≥ 0, (7.57)

then the output estimate ŝ(t−d) satisfies the orthogonality condition required for the
MMSE estimate. See Problem 5.6 in Chap. 5. Hence, the estimate (7.54) is indeed
optimal provided that (7.57) has a unique solution {Fi(t)}d

i=0, since then {Q j(t)}L
j=1

can be obtained according to (7.55). For this purpose, denote Ω =
[

0 · · · 0 I
]

and

sd(t) =

⎡

⎢
⎣

s(t)
...

s(t − d)

⎤

⎥
⎦ , vd(t) =

⎡

⎢
⎣

v(t)
...

v(t − d)

⎤

⎥
⎦ . (7.58)

Thus, s(t − d) =Ωsd(t). In addition, denote F(t) =
[

F0(t) · · · Fd(t)
]

and

Hd(t) =

⎡

⎢
⎢⎢
⎣

H0(t) H1(t) · · · Hd(t)
0 H0(t − 1) · · · Hd−1(t − 1)
...

. . .
. . .

...
0 · · · 0 H0(t − d)

⎤

⎥
⎥⎥
⎦

by the convention H�(k) = 0 if � > L. Then under the relation in (7.55) and
es(t − d) = s(t − d)− ŝ(t − d), there holds

es(t − d) = Ωsd(t)−F(t) [Hd(t)sd(t)+ vd(t)]

= [Ω −F(t)Hd(t)] sd(t)−F(t)vd(t). (7.59)

In light of the assumption for s(t) and v(t),

E{s(k)s(i)∗}= Σsδ (k− i), E{v(k)v(i)∗}= Σvδ (k− i)
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where δ (·) is the Kronecker delta function. Recall the Kronecker product symbol
⊗. It is now claimed that (7.57) holds, if and only if

F(t) =Ω (Id ⊗Σs)Hd(t)
∗ [Id ⊗Σv +Hd(t)(Id ⊗Σs)Hd(t)

∗]−1 . (7.60)

Indeed, denoting y
�+1

(t) =
[

y(t)∗ · · · y(t − �− 1)∗
]∗

with � > d yields

y
�+1

(t) =

[
Hd(t)

0

]
sd(t)+

[
vd(t)

v�−d(t − d− 1)

]
+HR(t)sL+�−d(t − d− 1)

for some HR(t) dependent on the channel coefficients where sL+�−d(t − d − 1)
and v�−d(t − d − 1) are defined along the lines of (7.58). Hence, the orthogonality
condition (7.57) holds, if and only if

E{e(t − d)y
�+1

(t)∗}= 0

for each integer � > d. The above is equivalent to

[Ω −F(t)Hd(t)] (Id ⊗Σs)
[

Hd(t)
∗ 0
]
= F(t)

[
Id ⊗Σv 0

]

by substituting the expression of y
�+1

(t) and that of es(t−d) in (7.59), and by noting
that E{sd(t)sd(t)

∗}= Id ⊗Σs, E{vd(t)vd(t)
∗}= Id ⊗Σv, and mutual orthogonality of

sd(t), vd(t), sL+�−d(t −d−1), and v�−d(t −d−1). The above has a unique solution
identical to the one in (7.60). Since � > d is an arbitrary integer, (7.57) holds that
concludes the proof. ��

In the case of the time-invariant channel model, the feedforward filter (FFF) and
feedback filter (FBF) are time invariant as well and are given by {Fi} and {Gi},
respectively. The proof of Theorem 7.9 shows that the roles of FFF and FBF are
different. The former is designed to satisfy the orthogonality condition (7.57) and
the latter to (7.56). Together, they achieve the same MMSE performance as the
Kalman DFE in Theorem 7.8, provided that Lg ≥ d and Lb ≥ L. In fact, Lg = d and
Lb = L can be chosen which are of the minimum order. Moreover, the Kalman DFE
has an FIR structure, if the channel model has an FIR structure.

Example 7.10. Consider a 2-input/2-output (M = 2, P = 2) system over the nor-
malized Rayleigh fading channels with L = 2. Similar to the previous example,
BPSK symbols are again assumed and 30 channel models are randomly generated.
Figure 7.19 shows the BER performance of the Kalman DFE in Theorem 7.8 and
the finite length DFE (FLDFE) in Theorem 7.9. The results are averaged over 30
randomly generated channels. The lower four curves illustrate the BER performance
of the Kalman DFE with respect to the detection delay d. The performance
improvement is clearly seen as the detection delay increases. It is emphasized
that there is only one parameter, the detection delay d, can be adjusted. Since
the detection delay is directly related to the dimension of the state vector, better
performance (larger delay) is achieved at the expense of higher complexity.



330 7 Design of Wireless Transceivers

5 10 15 20 25
SNR (dB)

B
E

R

FLDFE w/ d=2, Lg=0, Lb=2

FLDFE w/ d=2, Lg=2, Lb=1

FLDFE w/ d=2, Lg=2, Lb=0
FLDFE w/ d=2, Lg=1, Lb=2

Kalman DFE w/ d=2
Kalman DFE w/ d=3
Kalman DFE w/ d=4
Kalman DFE w/ d=5

FLDFE w/ d=2
Lg>=2, Lb>=2

10−6

10−5

10−4

10−3

10−2

10−1

100

Fig. 7.19 BER performance of the combined Kalman receiver

Fig. 7.20 Combined Kalman
DFE and SIC receiver

For comparison, Fig. 7.19 also shows the BER performance of the FLDFE. It
is seen that the FLDFE never outperforms the Kalman DFE, and its performance
improves with the increase of the FFF and the FBF lengths. When Lg ≥ d and
Lb ≥ L, the FLDFE has the identical performance as the Kalman DFE, which
confirms Theorem 7.9. It is also observed that reducing the FFF length causes much
more performance loss than reducing the FBF length. In fact, when the FBF length
reduces to zero, a DFE becomes an LE that is still able to suppress the ISI to some
extent.

While the FLDFE in (7.54) is attractive, the Kalman DFE in Theorem 7.8
has some advantages. It can be easily generalized to time-varying channels using
Theorem 5.14. Moreover, both DRE and ARE associated with Kalman DFE are easy
to compute. Finally, Kalman DFE provides the error covariance matrix for ŝ(t − d)
that can be utilized in its quantization by using the SIC method in the previous
subsection. See the schematic block diagram in Fig. 7.20 in which q−1

m denotes unit
spatial delay.
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For simplicity, consider time-invariant channel model

H(z) = H0 +H1z−1 + · · ·+HLz−L.

A block state-space realization (A,B1,C,D) is given by

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0

IM
. . .

...
. . .

. . .
...

∗ IM 0

⎤

⎥
⎥
⎥
⎥
⎦
, B1 =

⎡

⎢
⎢
⎢
⎣

IM

0
...
0

⎤

⎥
⎥
⎥
⎦
,

C =
[

H1 · · · HL 0 · · · 0
]
, D = H0.

The associated state vector can be easily identified as

x(t) =
[

s(t − 1)∗ s(t − 2)∗ · · · s(t − n)∗
]∗

with n > L and n > d > 0 giving rise to the state-space equation

x(t + 1) = Ax(t)+
[

B1 0
]
[

s(t)
v(t)

]
, y(t) =Cx(t)+

[
D I
]
[

s(t)
v(t)

]
.

The above agrees with T(z) in (7.50) by taking C1 and C21 such that

C1x(t) = s(t − d), C21x(t) = s(t − d− 1),

and by taking C22 =C. The following result shows more than just the performance
improvement when the Kalman DFE and SIC are combined.

Theorem 7.11. Let the FFF F f (z) and FBF Fb(z) be specified in Theorem 7.8 with
Y ≥ 0 be the stabilizing solution to the corresponding filtering ARE. The linear
MMSE estimator for ŝ(t − d) is given by

[
x̂(t + 1)
ŝ(t − d)

]
=

[
A+LC2

C1 +QC2

]
x̂(t)+

[
L1

Q1

]
s̆(t − d− 1)+

[
L2

Q2

]
y(t), (7.61)

where L =
[

L1 L2
]
, Q =

[
Q1 Q2

]
, and C2 =

[
C∗

21 C∗ ]∗. Assume that s̆m(t − d) =
Quan[ŝm(t − d)] = sm(t − d) is correct for each m where the subscript m denotes
the mth entry of the corresponding vector. Then ŝm(t − d) can be obtained from the
spatial Kalman filter:
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b̂m+1|m = b̂m|m−1 −Lm[b̆m − emb̂m|m−1],

Lm = −Σ̂me∗m(emΣ̂me∗m)
−1,

Σ̂m+1 = (I +Lmem)Σ̂m, b̆m+1 = Quan[em+1b̂m+1|m], (7.62)

for m = 1,2, · · · ,M − 1, initialized by Σ̂0 = C1YC∗
1 and b̂1|0 = ŝ(t − d) = C1x̂(t).

Moreover, the combined Kalman receiver in Fig. 7.20 based on Kalman DFE in
(7.61) and the above recursive SIC is jointly optimal in the sense of achieving
MMSE.

Proof. Because the M symbols of ŝt−d are detected and fed back sequentially, a
fictitious upsampling with ratio of M can be assumed. For each integer m such
that 1 ≤ m < M, the state vector remains the same, but observations are replaced
by sm(t − d), the mth element of st−d , in light of the assumption of the correct
detection of the previous symbols. Since x̂(t) = x(t)+ v̂x(t) for some error vector
v̂x(t) with covariance Y being the stabilizing solution to the corresponding ARE
in Theorem 7.8, an equivalent MMSE estimation problem arises for the following
state-space model:

x̂(t|m+ 1) = x̂(t|m), y(t|m) = emC1x̂(t|m)− emC1v̂x(t) (7.63)

for m = 1,2, · · · ,M− 1 that is initialized by a priori estimate x̂(t|1) = x̂(t). Similar
to (7.47), the above leads to the Kalman SIC:

x̂m+1|m(t) = [I+Km(t)emC1]x̂m|m−1(t)−Km(t)b̆m,

Km(t) = −Ym−1(emC1)
∗[(emC1)Ym−1(emC1)

∗]−1,

Ym+1 = [I+Km(t)emC1]Ym,

b̆m+1 = Quan[em+1C1x̂m+1|m(t)] (7.64)

for m = 1,2, · · · ,M−1, initialized by x̂1|0 = x̂(t), b̆1 = Quan[e1C1x̂1|0], and Y0 = Y .
Multiplying C1 from left to the first three equations of (7.64) and multiplying C∗

1
from right to the third yield the spatial Kalman filter in (7.62) by taking Lm =
C1Km(t) and Σ̂i = C1YiC∗

1 for i = m and i = m− 1. Joint optimality follows from
the fact that quantized symbols are fed back to the Kalman DFE as input in vector
form, and thus, the Kalman DFE has no access of s̆m(t − d) until m = M which
preserves the optimality of the Kalman DFE as well. ��

The combined Kalman DFE and SIC will be referred to as combined Kalman
receiver. Recall that the SIC part can be improved, if SNR or LLR orderings
are employed. The use of ordering will alter the Kalman SIC in Fig. 7.20, but
its joint optimality remains for the combined Kalman receiver with ordering. The
next example illustrates the performance improvement when the combined Kalman
receiver is employed.
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Fig. 7.21 BER performance of the combined Kalman receiver

Example 7.12. This example considers time-varying 8× 8 channels with

Ht(q) = H0(t)+H1(t)q
−1.

Thus, the channel length L = 1. Each of the channel coefficient, denoted by hi(t), is
assumed to be Rayleigh random variable, generated via

hi(t + 1) = αihi(t)+βiηi(t)

where η(t) has mean 0 and variance 1, αi = 0.9999, and α2
i +β 2

i = 1. This is the
result of the so called WSSUS, and autoregressive model in time evolution, observed
from large number of experiments. It is assumed that the full channel information
is known at the receiver, in which case the Kalman DFE is a time-varying output
estimator (Problem 7.21 in Exercises). Figure 7.21 shows the BER performance
averaged again over 30 randomly generated channels.

For any given detection delay, it is observed that the Kalman SIC improves
the performance of the Kalman DFE. Detection ordering further improves the
performance of the Kalman SIC. It is also observed that the LLR-based detection
ordering outperforms the SNR-based detection ordering consistently. As expected,
increasing the detection delay d improves the performance of each receiver at the
cost of complexity. Our numerical results show that the performance gain due to
detection ordering is influenced more by the channel length L than by the detection
delay d, but this gain becomes smaller as the channel length L becomes larger.
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Notes and References

Many textbooks are available on multirate DSP. A good source to begin is [47,112].
CDMA and OFDM are covered by almost every wireless communication book [98,
107,111]. For transceivers based on filter banks, [96,97,119] provide a good sample
of research papers and references therein. The design methods presented in this
chapter are unconventional. Optimal control and estimation play a major role in
synthesis of the channel equalizers, precoders, DFEs, and vector symbol detectors.
Many results in this chapter are based on [45, 46, 48, 75]. Background material can
be found in [10, 14, 15, 31, 37, 77, 93].

Exercises

7.1. Consider continuous-time signal s(t) that has cutoff frequency ωc > 0. Let

x1(k) = s(kT1), x2(t) = s(kT2)

be two sampled version of s(t) where k = 0,±1, · · · . Suppose that T1 = LT2 with L
integer and sampling frequency

ωs1 = 2π/T1 > 2ωc, ωs2 = Lωs1.

Show that if an ideal interpolator is employed with {x1(k)} as input, then the output
is identical to {x2(k)}. Also, test this fact in Matlab by using s(t) as a combination
of sinusoidal signals.

7.2. Prove the equality in (7.1). (Hint: Note first the following representation for
the periodic Kroneker delta function:

δp(k) =
1
M

M−1

∑
i=0

W ik
M =

{
1, k = 0,±M, · · · ,
0, elsewhere.

Note next that the frequency response of yD(k) is given by

YD(e
jω ) =

∞

∑
k=−∞

δp(k)x(k)e−jkω/M

from which the equality in (7.1) can be derived.)

7.3. (Resampling) Fig. 7.22 in next page shows the fractional sampling rate con-
verter termed resampling in which L and M are coprime. Show that the low-pass
filter in ideal resampler has passband [− Lπ

M , Lπ
M ] in the case M > L. The Matlab

command “resample” can be used to implement the resampler.
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Fig. 7.22 Resampling with expander, low-pass filter, and decimator

Fig. 7.23 Two-channel QMF
bank

7.4. For the case M = 2, the QMF bank is shown in Fig. 7.23.

(i) Assume H0(z) is a low-pass filter. Show that

H1(z) = H0(−z), F1(z) =−2H0(−z)

are both high-pass filters, F0(z) = 2H1(z) is low-pass filter, and

Ŝ(z) = [H0(z)H0(z)−H0(−z)H0(−z)]S(z).

The above reduces the design of four filters into that of H0(z) only.
(ii) Let H0(z) be FIR having the form

H0(z) =
n

∑
i=0

h0(i)z
−i, h0(i) = h0(n− i),

where i = 0,1, ..., n+1
2 with n odd. Show that the DTFT of {h0(i)} has a linear

phase and

[
H0(e

jω)
]2

= |H0(e
jω)|2e−jnω =⇒

Ŝ(ejω) = e−jnω
[
|H0(e

jω)|2 + |H0(e
j(ω+π))|2

]
S(ejω).

(iii) Show that |H0(ejω)|= 2|h∗0C(ω)| with m = n+1
2 and

h0 =

⎡

⎢
⎢
⎣

h0(0)
h0(1)
··

h0(m− 1)

⎤

⎥
⎥
⎦ , C(ω) =

⎡

⎢
⎢
⎣

cos(m− 1/2)ω
cos(m− 3/2)ω

··
cos(1− 1/2)ω

⎤

⎥
⎥
⎦ ,

and thus, the stopband filtering error is given by

Es :=
1
π

∫ π

ωs

|H0(e
jω )|2 dω = h∗0Qsh0
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where the (i, j)th element of Qs given by

Qs(i,k) =

⎧
⎨

⎩

− 1
2π

(
sin(k−i)ωs

k−i + sin(2m−i−k+1)ωs
2m−i−k+1

)
, i �= k,

1
2π

(
π−ωs − sin2(m−i+0.5)ωs

2(m−i+0.5)

)
, i = k.

(iv) The reconstruction error Er is defined by

Er =
1
π

∫ π

0

([
|H0(e

jω )|2 + |H0(e
j(ω+π))|2

]
− 1
)2

dω .

Show that Er = (1− 2h∗h)2 + 8∑m−1
i=1

(
h∗S2ih

)2
where

S =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

...
... · · · 0 1

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

, h =

⎡

⎢
⎢
⎢
⎢⎢
⎣

h0(0)
h0(1)
··

h0(2m− 2)
h0(2m− 1)

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

(Hint: See Ref. [43].)

7.5. For the two-channel QMF bank in the previous problem, consider the total
error E = (1−α)Er +αEs where 0 < α < 1 is a design parameter.

(i) Show that

E = (1−α)

[

(1− 4h∗0h0)
2 + 8

m−1

∑
i=1

(
h∗0M∗S2iMh0

)2

]

+αh∗0Qsh0

where h = Mh0, M =
[

Im Ĩm
]∗

, and

Ĩm =

⎡

⎢
⎢
⎢
⎢
⎣

0 · · · 0 1
... · · · 1 0
... · · · · · · ...
1 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
.

(ii) Define the design index J(h0) = E − (1−α). Show that

J(h0) = h∗0P[h0,h0]h0 + h∗0Qh0, P[h0,h0] =
m−1

∑
k=0

Pkh0h∗0Pk

where Q = Q++Q− with Q+ = αQs, Q− =−8(1−α)I, and

P0 = 4
√

1−αI, Pk =
√

2(1−α)M∗
(

S2k +(S∗)2k
)

M.
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(iii) Use Matlab to design H0(z) that minimizes E = (1−α)Er +αEs where 0 <
α < 1 is a design parameter withωs = 0.55π and n= 55. An iterative algorithm
can be adopted. Denote x = h0. The algorithm searches for the optimal x as
follows:

• Step 1: Choose initial guess x = x0 �= 0 such that J0 = J̃(x0)< 0.
• Step 2: For i = 0,1,2, ..., do the following:

– Step 2a: Find x = xi+1 such that it minimizes the auxiliary index function

J̃i[xi](x) = x∗
(

P[xi,xi]+
1
2

Q+

)
x+ x∗i Q−x+

1
2

x∗i Q+xi.

The optimal solution is given by

x = xi+1 =−(2P[xi,xi]+Q+)
−1 Q−xi. (7.65)

– Step 2b: If ‖xi+1 − xi‖ ≤ ε , with ε a prespecified error tolerance, stop;
otherwise, set i := i+ 1 and repeat Step 2a.

(Hint: See Ref. [43].)

7.6. Two block diagrams are equivalent, if the same input produces the same output.
Show the following:

(i) The M-fold decimator followed by a filter F(z) is equivalent to the filter F(zM)
followed by the M-fold decimator.

(ii) The L-fold expander followed by a filter F(zL) is equivalent to the filter of F(z)
followed by the L-fold decimator.

7.7. Prove the relation in (7.11).

7.8. Suppose that the continuous-time channel is flat with impulse response
amδ (t − τm) where τm = (κm + εm)Tc with κm ≥ 0 an integer and 0 ≤ εm < 1. For
simplicity, assume that p(t) = [1(t)−1(t−Tc)] is the chip wave function with 1(t),
the unit step function. Show that the impulse response of the discretized channel is
given by

hm,k =

{
am(1− εm)Tc, k = κm,

amεmTc, k = κm + 1.

(Hint: Using the matched filter in Chap. 1, the impulse response of the discretized
channel can be shown to be

hm,k = am

∫
p(τ− τm)p̄(τ− k) dτ

from which the expression of hm,k can be derived.)



338 7 Design of Wireless Transceivers

7.9. For Gm(z), the mth column of G(z) in (7.15), show that

Gm(z) = Gm(z)cm = Cm(z)G
(1)
m (z)

where G(1)
m (z) is the first column of Gm(z) and

Cm(z) =

⎡

⎢⎢
⎢
⎢
⎣

cm(0) z−1cm(P− 1) · · · z−1cm(1)

cm(1) cm(0)
. . .

...
...

. . .
. . . z−1cm(P− 1)

cm(P− 1) · · · cm(1) cm(0)

⎤

⎥⎥
⎥
⎥
⎦
.

7.10. Prove the relation in (7.16) where {Hk}N−1
k=0 are the N-point DFT of {hi}n−1

i=0 .

7.11. (i) Let {vi}N−1
i=0 be i.i.d. Gauss random variables of mean zero and variance

σ2. Show that its normalized DFT, denoted by {v̂k}N−1
i=0 , is also i.i.d. Gauss

with the same mean and variance.
(ii) Repeat (i) for the case when vi is complex and has i.i.d. real and imaginary

parts with mean zero and variance σ2/2.
(iii) Consider detection of b̂ based on noisy observation:

ŷ = Ĥb̂+ v̂.

Assume that Ĥ �= 0 is known, v̂ is the same as in (ii), and both real and
imaginary parts of b̂ are binary. Show that the above is the same as

[
ŷr

ŷi

]
=

[
Hr −Hi

Hi Hr

][
b̂r

b̂i

]

where ŷ = ŷr + jŷi and b̂ = b̂r + jb̂i.

7.12. Consider ZF equalization in Sect. 7.2.1 in which v(k) has mean zero but
covariance Σv �= I. Find the optimal ZF equalizer that minimizes

JF = Tr

{
1

2π

∫ π

−π
F(ejω )ΣvF(ejω )∗ dω

}
.

7.13. Consider H(z) =D+C(zI−A)−1B with size P×M, P> M, and A, a stability
matrix. Assume that rank{D} = M and D+D = I for some left inverse D+. Show
that H(z) is strictly minimum phase, if and only if (D∗

⊥C,A0) is detectable, where
A0 = A−BD+C and D⊥ is the same as the one in (7.20).
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7.14. Consider H(z) = D+C(zI−A)−1B with size P×M and A, a stability matrix.
Assume that (A,B,C,D) is strictly minimum phase, except that D �= 0 is not full
rank, i.e., H(z) has zeros at z = ∞.

(i) Let P < M, and X ≥ 0 be the stabilizing solution to

X = A∗XA+C∗C− (A∗XB+C∗D)(D∗D+B∗XB)+(B∗XA+D∗C).

The stabilizing solution X ≥ 0 can be obtained as the limit of the iteration:

Fi = −(D∗D+B∗XB)+(B∗XA+D∗C),

Xi+1 = (A+BFi)
∗Xi(A+BFi)+ (C+DFi)

∗Xi(C+DFi),

initialized by X0 ≥ 0 satisfying X0 = A∗X0A+C∗C. Let

F =−(D∗D+B∗XB)+(B∗XA+D∗C),

and Ω of size P×M satisfy Ω ∗Ω = (D∗D+B∗XB). Show that

Hi(z) =

[
A+BF B
C+DF D

]
Ω+, Ho(z) =Ω

[
A B

−F I

]

satisfy inner-outer factorization relation H(z) = Hi(z)Ho(z) with Hi(z) square
inner, consisting of only z−di or zeros, and Ho(z) of size P×M has full rank P
at z = ∞. Note that Ω has rank M.

(ii) Let P > M, and Y ≥ 0 be the stabilizing solution to

Y = AYA∗+BB∗− (AYC∗+BD∗)(DD∗+CYC∗)+(CYA∗+DB∗).

The stabilizing solution Y ≥ 0 can be obtained as the limit of the iteration:

Li = −(AYiC
∗+BD∗)(DD∗+CYiC

∗)+,

Yi+1 = (A+LiC)Yi(A+LCi)
∗+(B+LiD)Yi(B+LiD)∗,

initialized by Y0 ≥ 0 satisfying Y0 = AYA∗+BB∗. Let

L =−(AYC∗+BD∗)(DD∗+CYC∗)+,

and Ω of size P×M satisfy ΩΩ ∗ = (DD∗+CYC∗). Show that

Hi(z) =Ω+

[
A+LC B+LD

C D

]
, Ho(z) =

[
A −L
C I

]
Ω
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satisfy inner-outer factorization relation H(z) = Ho(z)Ho(z) with Hi(z) square
inner satisfying det[Hi(z)] = z−(d1+···+dM), and Ho(z) of size P×M has full rank
M at z = ∞. Note that Hi(z) can be a permutation of diag(z−d1 , · · · ,z−dM ).

7.15. Prove Lemma 7.3.

7.16. Prove Theorem 7.3.

7.17. Prove Theorem 7.5 by using the stationary version of Theorem 5.14.

7.18. Suppose that ŝ = s + v where s is from a finite alphabet table T and v is
Gauss distributed with mean zero and variance σ2

v . Show that the optimal detection
is given by

s̆ = Quan(ŝ) := argmin
s∈T

|ŝ− s|.

7.19. (i) Prove (7.49) in the general case when the noise is not Gauss distributed.
(ii) For BPSK modulation, T = {±σs} with σ2

s the symbol power. Show that
(7.49) can be simplified to

Pr{s̆i �= si}= 1

1+ e|γi| , γi =
4σsRe{ŝi|m}

emΣ̂me∗m
.

(Hint: The proof can be found in Ref. [67].)

7.20. Consider the received signal given by

ŝ = Hs+ v,

where the channel matrix H has the full column rank, and v is gauss distributed with
mean zero and covariance σ2

v I. Show that the SIC in (7.47) can be generalized to
the following:

ŝm+1|m = ŝm|m−1 −Km[y(m)− emŝm|m−1],

Km = −Σ̂me∗m(emΣ̂m−1e∗m)
−1,

Σ̂m+1 = (I +Kmem)Σ̂m, y(m+ 1) = Quan[em+1ŝm+1|m],

for m = 1,2, · · · ,M−1, initialized with ŝ1|0 = (H∗H)−1H∗ŝ and Σ̂0 = σ2
v (H

∗H)−1.
(Hint: Use the transform ŝ = (H∗H)−1H∗ŝ to obtain the new model ŝ = s+ v̂ that is
the same as in Sect. 7.3.1, and then apply Theorem 5.6 to the fictitious state-space
model x(m + 1) = x(m) = s with y(m) = s̆m = sm as the observation. Note that
H+ = (H∗H)−1H∗ has the smallest Frobenius norm among all left inverses of H,
and thus the smallest covariance for the new noise vector v̂.)



Exercises 341

7.21. Suppose that the channel model is time varying given by

Ht(q) =
L

∑
�=0

Hi(t)q
−i.

Derive the optimal Kalman DFE by generalizing the result in Theorem 7.8.



Chapter 8
System Identification

Mathematical models are essential to modern science and engineering, and have
been very successful in advancing the technology that has had profound impact to
our society. A serious question to be addressed in this chapter is how to obtain
the model for a given physical process. There are two basic approaches. The first
one is based on principles in physics or other sciences. The inverted pendulum in
Chap. 1 provides an example to this approach. Its advantage lies in its capability to
model nonlinear systems and preservation of the physical parameters. However, this
approach can be costly and time consuming. The second approach is based on input
and output data to extrapolate the underlying system model. This approach treats
the system as a black box and is only concerned with its input–output behaviors.
While experiments need to be carried out and restrictions on input signals may
apply, the second approach overcomes the weakness of the first approach.

This chapter examines the input/output approach to modeling of the physical
system which is commonly referred to as system identification. In this approach, the
mathematical model is first parameterized and then estimated based on input/output
experimental data. Autoregressive moving average (ARMA) models are often used
in feedback control systems due to their ability to capture the system behavior with
lower order and fewer parameters than the MA models or transversal filters. On
the other hand, wireless channels are more suitable to be described by MA models
due to the quick die out of the CIR. Many identification algorithms exist, and
most of them uses squared error as the identification criterion. The squared error
includes energy or mean power of the model matching error that results in least
squares (LS), or total LS (TLS), or MMSE algorithms. These algorithms will be
presented and analyzed in two different sections. For ease of the presentation, only
real matrices and variable are considered, but the results are readily extendable to the
case of complex valued signals and systems. A very important result in estimation
is the well-known Cramér–Rao lower bound (CRLB). See Sect. 6 in Appendix B for
details.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5 8, © Springer Science+Business Media, LLC 2012
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8.1 Least-Squares-Based Identification

Consider an m-input/p-output system with plant model

H(z) = M(z)−1N(z) =

(

I−
nμ

∑
k=1

Mkz−k

)−1( nν

∑
k=1

Nkz−k

)

.

The parameter matrices are those of {Mk}nμ
k=1 with dimension p× p, and of {Nk}nν

k=1
with dimension p×m. Due to the existence of measurement error, the input and
output are related through the following difference equation:

y(t) =
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=1

Nku(t − k)+ v(t), (8.1)

where v(t) is a WSS process with mean zero and covariance σ2I. Define

Θ =
[

M1 · · · Mnμ N1 · · · Nnν

]

as the true parameter matrix of dimension p× (nμ+ nν)m, and

φ (t) =
[

y(t − 1)′ · · · y(t − nμ)′ u(t − 1)′ · · · u(t − nν)′
]′

as the regressor vector of dimension (nμ + nν)m. There holds

y(t) =Θφ(t)+ v(t). (8.2)

The linearity is owing to the linearity of the system. Although the above signal
model is derived from the input/output model (8.1), this section assumes temporarily
that φ (t) is noise-free. This assumption holds for the FIR model, including wireless
channels. The dependence of the signal model (8.2) on input/output model (8.1) will
be revisited in the next section.

8.1.1 LS and RLS Algorithms

The LS algorithm is perhaps the most widely adopted in the practice of system
identification. It has an interpretation of maximum likelihood estimate (MLE), if
the observation noise is Gauss distributed. Consider Gauss-distributed v(t) that is
temporally white with mean zero and covariance Σv = σ2I that is known. The MLE
is equivalent to minimizing the squared error index

JΘ (t0, t f ) =
1

2σ2

t f

∑
t=t0

[y(t)−Θφ(t)]′[y(t)−Θφ(t)]
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by noting that MLE maximizes the PDF given by

fV (y;Θ) =
1

√
(2πσ2)(t f −t0+1)p

exp
{−JΘ (t0, t f )

}
,

and by noting the independence of {v(t)}. For convenience, denote

Y0, f =
[

y(t0) y(t0 + 1) · · · y(t f )
]
,

Φ0, f =
[
φ (t0) φ (t0 + 1) · · · φ (t f )

]
.

(8.3)

Then the squared error index can be rewritten as

JΘ (t0, t f ) =
1

2σ2 Tr
{(

Y0, f −ΘΦ0, f
)(

Y0, f −ΘΦ0, f
)′}

. (8.4)

The LS solutionΘ =ΘLS minimizes JΘ (t0, t f ) and is the MLE.
Recall the definition in (B.50). It is left as an exercise to show (Problem 8.1)

∂Tr{AXB}
∂X

= A′B′,
∂Tr{AX ′B}

∂X
= BA,

∂Tr{AXBX ′}
∂X

= A′XB′+AXB.

See Sect. B.5 in Appendix B. The next result provides the MLE in the general case.

Theorem 8.1. Consider the signal model in (8.2) where v(t) is Gauss distributed
with mean zero and covariance Σv = diag(σ2

1 , · · · ,σ2
p). Then the MLE estimate

based on {(y(t),φ(t)}t f
t=t0 is the LS solution and given by

ΘLS = Y0, fΦ ′
0, f (Φ0, fΦ ′

0, f )
−1, (8.5)

provided that (Φ0, fΦ ′
0, f ) is invertible. Moreover, let θ i be the ith row of Θ . Then

σ−2
i Φ0, fΦ ′

0, f is the FIM associated with estimation of θ ′
i for 1 ≤ i ≤ p, and thus,

σ2
i (Φ0, fΦ ′

0, f )
−1 is the corresponding CRLB.

Proof. Suppose that Σv is known. Then the Gauss assumption and (8.3) imply that
the MLE minimizes

JΘ =
1
2

Tr
{
Σ−1

v

(
Y0, f −ΘΦ0, f

)(
Y0, f −ΘΦ0, f

)′}

=
1
2

Tr

{
Σ−1

v

(
Y0, fY

′
0, f −ΘΦ0, fY

′
0, f −Y0, fΦ ′

0, fΘ
′+ΘΦ0, fΦ ′

0, fΘ
′
)}

.
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Direct calculation shows

∂JΘ
∂Θ

= Σ−1
v

(
ΘΦ0, fΦ ′

0, f −Y0, fΦ ′
0, f

)
.

Setting the above to zero yields the MLE in (8.5). Since the MLE is independent of
Σv, ΘLS is indeed the MLE. With partition row-wise,

Y0, f =

⎡

⎢
⎢
⎣

y
1
(t0, t f )

...
y

p
(t0, t f )

⎤

⎥
⎥
⎦, Θ =

⎡

⎢
⎣

θ 1
...
θ p

⎤

⎥
⎦,

and ε i = y
i
(t0, t f )−θ iΦ0, f for 1 ≤ i ≤ p. There holds

ln fV (y;Θ) = −JΘ (t0, t f ) =−1
2

p

∑
i=1

σ−2
i ε iε

′
i

= −1
2

p

∑
i=1

σ−2
i

(
y

i
(t0, t f )−θ iΦ0, f

)(
y

i
(t0, t f )−θ iΦ0, f

)′

by Σv = diag(σ2
1 , · · · ,σ2

p). It can be easily verified that

∂ ln fV (y;Θ)

∂θ ′
i

=−σ−2
i Φ0, f

(
y

i
(t0, t f )−θ iΦ0, f

)′
=−σ−2

i Φ0, f ε ′i.

By recognizing E{(y
i
(t0, t f )−θ iΦ0, f )

′(y
i
(t0, t f )−θ iΦ0, f )}= σ2

i I, the above yields
the FIM for θ ′

i:

FIM(θ ′
i) = E

{
∂ ln fV (y;Θ)

∂θ ′
i

∂ ln fV (y;Θ)

∂θ i

}
= σ−2

i Φ0, fΦ ′
0, f .

The corresponding CRLB is thus σ2
i (Φ0, fΦ ′

0, f )
−1 that concludes the proof. ��

It needs to keep in mind that the LS solution may not have the MLE interpreta-
tion, if φ (t) involves random noises. Consider the case when the covariance of v(t)
is Σv(t), and thus, {v(t)} is not a WSS process. Suppose that Σv(t) = σ2

t I that is
known for all t. Then JΘ is replaced by

JΘ =
1
2

t f

∑
t=t0

Tr
{
σ−2

t [y(t)−Θφ(t)][y(t)−Θφ(t)]′
}
. (8.6)

The MLE minimizes the above JΘ and satisfies

t f

∑
t=t0

σ−2
t

[
ΘLSφ(t)φ (t)′ − y(t)φ(t)′

]
= 0.
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Hence, the MLE is the weighted LS with weighting {σ−2
t }. Without loss of

generality, assume that t0 = 0. For k > 0, denote

Pk =

[
k−1

∑
t=0

σ−2
t φ (t)φ (t)′

]−1

, Qk =
k−1

∑
t=0

σ−2
t y(t)φ(t)′. (8.7)

By the proof of Theorem 8.1, Θ̂t f =ΘLS = Qtf +1Ptf +1 is the MLE.
The simplicity form of the LS solution allows its recursive computation with low

complexity. To be specific, denote Θ̂k as the LS solution based on the measurement
data over the time horizon [0, k) for some k > 0. Suppose that new input and output
measurements are obtained at k. There hold

Θ̂k = QkPk, Θ̂k+1 = Qk+1Pk+1.

The recursive LS (RLS) algorithm is aimed at computing Θ̂k+1 based on Θ̂k and the
updated regressor φ(k) without explicitly computing Qk+1Pk+1. In this regard, RLS
is similar to Kalman filtering in Theorem 5.6. The key is computation of Pk+1 based
on Pk and φ(k).

First, it is noted that the covariance type matrix Pk+1 can be written as

Pk+1 = [P−1
k +σ−2

k φ (k)φ (k)]−1

= Pk −Pkφ(k)[σ2
k +φ(k)′Pkφ(k)]−1φ (k)′Pk

by the matrix inversion formula in Appendix A. See also Problem 8.4 in Exercises.
The above can be rewritten as

Pk+1 = Pk −Pkφ (k)gk, gk = [σ2
k +φ(k)′Pkφ (k)]−1φ (k)′Pk. (8.8)

The derivation next shows the relation between φ(k)′Pk+1 and gk:

φ (k)′Pk+1 = φ (k)′Pk −φ(k)′Pkφ (k)[σ2
k +φ(k)′Pkφ (k)]−1φ(k)′Pk

= {I−φ(k)′Pkφ (k)[σ2
k +φ(k)′Pkφ (k)]−1}φ(k)′Pk

= σ2
k [σ

2
k +φ(k)′Pkφ(k)]−1φ(k)′Pk = σ2

k gk.

It follows from Qk+1 = Qk +σ−2
k y(k)φ (k)′ that

Θ̂k+1 = Qk+1

[
Pk −Pkφ(k)gk

]

= Θ̂k −Θ̂kφ (k)gk +σ−2
k y(k)φ(k)′Pk+1

= Θ̂k −Θ̂kφ (k)gk + y(k)gk = Θ̂k +[y(k)− ŷ(k)]gk,
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where ŷ(k) = Θ̂kφ (k) can be regarded as the predicted output. The above and (8.8)

form the RLS algorithm. If no knowledge is available at k = 0, then Θ̂0 = 0 and
P0 = ρ2I with large ρ can be employed which admit a similar interpretation to that
in Kalman filter.

An important problem in parameter estimation is the convergence of the estimate.
Consider the case when σ2

t = σ2 > 0 is a constant. Then the signal is called
persistent exciting (PE), if Pt → 0 as t → ∞. Accordingly, the PE condition implies
Θ̂t →Θ asymptotically based on the facts that gt → 0 as t →∞ and that LS algorithm
yields the MLE. As a result Θ̂t stops updating eventually. In fact, the LS estimate Θ̂t

may stop updating very quickly when the signal is rich in its information content.
While the convergence is welcomed, it does not suit to estimation of the time-

varying parameter matrix. Basically, the RLS algorithm fails to track the underlying
parameter matrix, when the PE condition holds. One may periodically reset Pt to
prevent it from being zero. However, this method is not suggested due to the loss of
past information. A more sophisticated method considers the following performance
index:

JΘ (t f ) =
1
2
‖y(t f )−Θφ(t f )‖2 + γt f JΘ (t f − 1), (8.9)

where γt ∈ (0, 1) is referred to as the forgetting factor at time t. In the case when
γt = γ is a constant and 0 < γ < 1,

JΘ (t f ) =
1
2

t f

∑
t=0

γt f −t‖y(t f )−Θφ(t f )‖2.

Thus, the terms in the distant past decay exponentially with respect to the time
duration. The resultant minimizer is very similar to the RLS algorithm derived
earlier with an appropriate modification.

To derive the RLS with the forgetting factor, it is noted that

JΘ (t − 1) =Ct +ΘP−1
t Θ ′ −ΘQ′

t −QtΘ ′

for some time-dependent constant matrices Pt , Qt , and Ct . Consequently,

JΘ (t) =
γt

2
Tr
{

Ct +ΘP−1
t Θ ′ −ΘQ′

t −QtΘ ′}+
1
2
‖y(t f )−Θφ(t f )‖2.

Its partial derivative can be easily computed and is given by

∂JΘ (t)
∂Θ

∣
∣
∣∣
Θ=Θ̂t+1

= Θ̂t+1[γtP
−1
t +φ(t)φ (t)′]− [γtQt + y(t)φ(t)′].

Setting the above to zero yields Θ̂t+1 = Q̃t+1P̃t+1 with

P̃t+1 = γtPt +φ(t)φ (t)′, Q̃t+1 = γtQt + y(t)φ(t)′.
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It is interesting to observe that

P̃t+1 = γtPt+1, Q̃t+1 = γtQt+1

where Pt and Qt are defined in (8.7) by taking γt = σ2
t . It is left as an exercise

(Problem 8.6) to show that the RLS with forgetting factor is given by

Θ̂t+1 =Θt +[y(t)− ŷ(t)]gt , ŷ(t) = Θ̂tφ(t), (8.10)

Pt+1 = γ−1
t

[
Pt −Ptφ(t)gt

]
, gt = [γt +φ(t)′Ptφ(t)]−1φ (t)′Pt . (8.11)

Two examples are used to illustrate the LS algorithm next.

Example 8.2. Let {Hi}2
i=0 be the CIR with one input and two outputs. Thus, each

Hi has dimension 2× 1, specified by

H0 =

[
0.6360
0.0636

]
, H1 =

[−0.3552
0.2439

]
, H2 =

[
0.5149

−0.3737

]
. (8.12)

Hence, ‖H‖2 = 1. The training sequence of binary symbols ±Pb is transmitted with
length ranging from 10 to 20 bits. The received signals are corrupted by i.i.d. Gauss
noises with variance σ2. Since ‖H‖2 = 1, the SNR is the same as the ratio of Pb

to σ2. Numerical simulations are carried out for the cases when SNR = 10 dB and
when SNR =20 dB. A total of 500 ensemble runs are used to evaluate the channel
estimation performance. Let {Ĥ(k)

i } be the estimated CIR at the kth ensemble run.
The RMSE is computed according to

RMSE =

√√
√
√ 1

T

T

∑
k=1

Tr

{
2

∑
i=0

(
Hk − Ĥ(k)

i

)(
Hk − Ĥ(k)

i

)′
}

.

The results are plotted in the following figure.
The upper two curves correspond to the case of SNR = 10 dB. The dashed line

marked with diamond shows the RMSE, while the solid line marked with circle is

the corresponding CRLB curve, defined by
√

Tr{FIM−1} that is the lower bound
for RMSE. These two curves are close to each other. In fact, the two curves overlap
for large T (Problem 8.5 in Exercises). The lower two curves in Fig. 8.1 correspond
to the case of SNR = 20 dB. The dashed line marked with square shows the RMSE,
while the solid line marked with ∗ shows the corresponding CRLB.

The simulation result validates the MLE nature of the LS solution in the case of
FIR models that hold for the wireless channels (Problem 8.8 in Exercises). However,
if the temporary assumption on noise-free {φ (t)} is removed that is the case for IIR
models (refer to (8.1) in which Mk �= 0 for at least one k), the MLE interpretation of
the LS solution will be lost. Specifically, the physical systems in feedback control
are generically described by IIR models. Figure 8.2 illustrates the plant model with
input/output signals together with observation noises.
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Fig. 8.1 RMSE plots for LS-based channel estimation

Fig. 8.2 Plant model with
noisy measurement data

It is clear that both observations u(t) and y(t) are no longer the actual input and
output of the plant. In fact, the signal model in (8.1) is replaced by

y(t) = vy(t)+
nμ

∑
k=1

Mky(t − k)+
nν

∑
k=1

Nk[u(t − k)+ vu(t − k)]. (8.13)

Hence, when the LS algorithm is applied to estimate the system parameters, the
estimation performance is different from the case for FIR models. The next example
illustrates the identification results.

Example 8.3. Consider identification of a SISO plant represented by its transfer
function

P(z) =
0.3624z+ 0.1812

z2 − 1.5z+ 0.7
.

The input u(t) is chosen as white Gauss with variance 1 that results in output
variance about 4 dB. Observation noises are added to input, or output, or both in
the same way as shown in Fig. 8.2. The corrupting noises are white and Gauss
distributed with variance 0.1, or −20 dB. The corresponding RMSE curves are
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Fig. 8.3 RMSE curves for LS-based IIR model estimation

plotted in Fig. 8.3 with a larger observation interval than the previous example,
in order to illustrate the trend of the identification error. It is clearly seen that
the RMSE curves do not monotonically decline anymore. The simulation results
indicate that the LS solution is biased for identification of IIR models in the presence
of output observation noises. In fact, the corruption noise at the output impacts more
negatively than at the input in terms of the estimation performance.

It needs to be pointed out that the CRLB curve used in the figure is the same as

σv

√
Tr{(Φ0, fΦ ′

0, f )
−1}. This expression is actually not the true CRLB anymore due

to the observation noise involved in Φ0, f . The derivation of the CRLB for the case
of noisy Φ0, f will be investigated in a later subsection.

8.1.2 MMSE Algorithm

For the signal model y(t) =Θφ(t)+ v(t) studied in the previous section, {φ(t)} is
likely to involve observation noises, in which case the LS solution is not the MLE,
and the MLE solution is difficult to compute in general. An alternative to MLE is
the MMSE estimate that minimizes E{‖y(t)−Θφ(t)‖2}. Assume that both φ (t) and
v(t) are WSS processes, and denote

Ry = E{y(t)y(t)′}, Rφ = E{φ(t)φ (t)′}, Ry,φ = E{y(t)φ(t)′}.
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The following provides the MMSE estimate.

Theorem 8.4. Suppose that both φ(t) and v(t) are WSS processes, and Rφ

is nonsingular. Then ΘMMSE = RyφR−1
φ is the MMSE estimate and minimizes

E{‖y(t)−Θφ(t)‖2}. Moreover, the MSE associated with ΘMMSE is given by

εMMSE = min
Θ

E{‖y(t)−Θφ(t)‖2}= Tr
{

Ry −RyφR−1
φ R′

yφ

}
. (8.14)

Proof. Let εMSE = E{‖y(t)−Θφ(t)‖2} be the performance index for the MMSE
estimation. Then

εMSE = Tr
{

Ry +ΘRφΘ ′ −RyφΘ ′ −ΘR′
yφ

}
.

Since the MMSE estimate minimizes εMSE , it can be computed from

∂εMSE

∂Θ
= 2
(
ΘRφ −Ryφ

)
= 0 (8.15)

that shows ΘMMSE = RyφR−1
φ . SubstitutingΘ =ΘMMSE into the expression of εMSE

yields (8.14). ��
The autocorrelation matrices Rφ and Ryφ are often unavailable in practice.

Estimates based on N samples of measurements over [0, t f ] with t f = N − 1 can
be used:

Rφ ≈ 1
N

N−1

∑
t=0

φ(t)φ (t)′ =
P−1

N

N
, Ryφ ≈ 1

N

N−1

∑
t=0

y(t)φ(t)′ =
QN

N
(8.16)

where PN and QN are the same as defined in (8.7). If

Rφ = lim
N→∞

1
N

N−1

∑
t=0

φ(t)φ (t)′, Ryφ = lim
N→∞

1
N

N−1

∑
t=0

y(t)φ (t)′,

then {φ(t)} and {y(t)} are called ergodic processes. The PE condition is clearly
necessary for Rφ to be nonsingular. Under both WSS and ergodic assumptions, the
RLS solution approaches the MMSE estimate, i.e.,

Θ̂N = PNQN =

(
1
N

N−1

∑
t=0

φ (t)φ(t)′
)−1(

1
N

N−1

∑
t=0

y(t)φ (t)′
)

→ ΘMMSE

as N → ∞. It follows that (cf. Problem 8.10 in Exercises)

Θ̂N → Θ + lim
N→∞

E
{

V0, fΦ ′
0, f

}(
E
{
Φ0, fΦ ′

0, f

})−1
(8.17)
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Fig. 8.4 Schematic
illustration for channel
estimation

where N = t f − t0 +1. Hence, if E{V0, fΦ ′
0, f }→ 0 as N →∞, then the LS algorithm

is asymptotically unbiased. Otherwise, the LS solution is biased in which case large
number of samples does not help to eliminate the bias in the LS solution.

The next example illustrates the use of MMSE estimation.

Example 8.5. In wireless communications, channel information is essential for
reliable data detection. While pilot tones such as training sequence can be used
to estimate the CIR, it is desirable to estimate the CIR based on statistical
information of the data sequence. Consider MIMO channel estimation in Fig. 8.4
with E{s(t)s(t −k)′}= Rs(k) assumed to be known for each integer k. The received
signal at the output of the channel is given by

y(t) =
L

∑
k=1

His(t − i)+ v(t) =Θφ(t)+ v(t)

for some white Gauss noise v(t) where

Θ =
[

H1 · · · HL
]
, φ(t) =

⎡

⎢
⎣

s(t − 1)
...

s(t −L)

⎤

⎥
⎦ .

It follows from E{s(t)s(t − k)′}= Rs(k) that

Rφ = Rs = E{φ(t)φ (t)′}= [ Rs(k− i) ]L,Li,k=1,1

is a block Toeplitz matrix known at the receiver. However, Ryφ has to be estimated
using

Ryφ ≈ 1
N

N−1

∑
t=0

y(t)φ(t)′

for some integer N >> 1. In this case, the MMSE estimate for CIR can be obtained
fromΘMMSE = RyφR−1

φ . If {Rs(k)}L−1
k=0 are not available at the receiver, they need to

be estimated as well. A commonly seen method employs the past detected symbols,
assumed to be correct, which yields effective way to estimate Rφ .
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It is worth to pointing out the difference between the MMSE estimation in this
section and that in Chap. 5. Recall that in Chap. 5, the state vector under estimation
is random, whereas the parameters under estimation in this section are deterministic.

8.2 Subspace-Based Identification

For the signal model y(t) =Θφ(t)+ v(t) studied in the previous section, the MLE
interpretation for the LS algorithm does not hold in general, if the noise sequence
{v(t)} is not Gauss distributed. Although the LS solution can still be used to
extrapolate the system model, the estimate is not unbiased anymore for IIR models,
because φ(t) involves {y(k)} for k < t (Problem 8.10 in Exercises). It turns out that
it is the TLS algorithm that yields the unbiased estimate asymptotically which will
be used for system identification in this section.

8.2.1 TLS Estimation Algorithm

The TLS algorithm arises from the class of error-in-variable (EIV) models. Let Θ
be the parameter matrix of interest satisfying ΘA0 = B0 where A and B are
wide matrices. The precise values of A0 and B0 are not available. Instead, only
their measurements, denoted by A and B, respectively, are available given by the
EIV model

[
A
B

]
=

[
A0

B0

]
+MΔ . (8.18)

To be specific, the dimensions of A, B, and M are L×N, p×N, and p× � with
N > (L+ p). Thus, Δ has dimension �×N. The elements of Δ are assumed to be
independent and identically distributed (i.i.d.) random variables with mean zero and
variance σ2. The goal is to estimate Θ of dimension p×L based on A, B, and M.

The previous section studied the estimation problem for the case of A = A0. The
only measurement error comes from B. Recall the deterministic assumption forΦ0, f

by taking A = A0 = Φ0, f and B = Y0, f �= B0. The LS algorithm finds B̂ closest to B
such that

rank

{[
A
B̂

]}
= rank{A},

and then solve for Θ̂ from ΘA = B̂. It is noted that B = B̂+ B̂⊥ of which each row
of B̂ lies in the row space of A, and B̂⊥A′ = 0. That is, the row spaces of B̂ and
B̂⊥ are orthogonal to each other. Consequently,ΘAA′ = BA′ = B̂A′ yielding the LS
solution ΘLS = BA′(AA′)−1. If the measurement errors are Gauss distributed, then
the LS algorithm yields the MLE estimate.
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When A �= A0 in addition to B �= B0, both Â and B̂ closest to A and B, respectively,
are searched for such that

rank

{[
Â
B̂

]}
= rank{Â}

prior to solving for Θ from Θ Â = B̂ that is the essence of the TLS. Let M = I to
begin with. The TLS algorithm is aimed at minimizing

JA,B :=

∥∥
∥
∥

[
A
B

]
−
[

Â
B̂

]∥∥
∥
∥

F

subject to rank

{[
Â
B̂

]}
= L (8.19)

with ‖X‖F =
√

Tr{X ′X} the Frobenius norm. A similar problem is encountered
in Hankel-norm approximation. See (4.58) in Sect. 4.3 and the discussion therein.
Hence, SVD can be used to compute such a pair of Â and B̂. As a result, there exists
a unique solution pair (X1,X2) with X2 of dimension p× p to X1Â = X2B̂. If X2 is
nonsingular, then Θ̂ = X−1

2 X1 is the TLS solution.
A formal procedure for TLS is stated next. Define

W :=

[
A
B

]
[

A′ B′ ] , (8.20)

and let W = G′ΛG be the eigenvalue decomposition with

Λ = diag(λ1,λ2, · · · ,λL+p)

arranged in descending order. Partition the eigenvector matrix G and eigenvalue
matrix Λ according to

G =

[
G11 G12

G21 G22

]
, Λ =

[
Λ1 0
0 Λ2

]
, (8.21)

where G11 and Λ1 have the same dimension of L×L. Then

ΘTLS = G21G−1
11 =−(G′

22)
−1G′

12 (8.22)

is the TLS estimate, provided that G22 is nonsingular. It can be shown that
det(G22) �= 0 has probability 1, but the proof is skipped because of the involvement
of more specialized mathematical background. The next result shows the MLE
property when the elements of Δ are Gauss distributed.

Theorem 8.6. Suppose that M = I and elements of Δ are normal i.i.d. with mean
zero and variance σ2. Let W be defined in (8.20), W = G′ΛG be the eigenvalue
decomposition with diagonal elements ofΛ arranged in descending order. Partition
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G and Λ as in (8.21) where G11 and Λ1 are of dimension L×L. Then G11 and G22

are nonsingular w.p. 1 (with probability 1), and

Θ̂ = G21G−1
11 =−(G′

22)
−1G′

12, σ̂2 =
Tr{Λ2}
(L+ p)N

(8.23)

are MLEs for Θ and σ2, respectively.

Proof. The PDF for the measurement data A and B is given by

fΔ ({δi j}) = 1
(√

2πσ̂2
)(L+p)N

exp

{

− 1
2σ̂2

∥∥
∥
∥

[
A
B

]
−
[

Â
B̂

]∥∥
∥
∥

2

F

}

.

The MLE searches Â, B̂ and σ̂2 which maximize fΔ ({δi j}). Since JA,B defined in
(8.19) is independent of σ2, its minimum is Tr{Λ2} by taking Θ̂ = G21G−1

11 . See
Problem 8.13 in Exercises. Hence,

max fΔ ({δi j}) = max
σ̂2

1
(√

2πσ̂2
)(L+p)N

exp

{
− 1

2σ̂2 Tr{Λ2}
}
.

Taking derivative with respect to σ̂ and setting it to zero yield

(L+ p)N
σ̂

− Tr{Λ2}
σ̂3 = 0.

Hence, σ̂2 in (8.23) is the MLE for σ2 that concludes the proof. ��
Theorem 8.6 shows the MLE of the TLS, but whether or not it is unbiased,

estimate remains unknown. The following shows that the TLS solution is asymp-
totically unbiased.

Theorem 8.7. Suppose that the same hypotheses of Theorem 8.6 hold, and
assume that

(i) Π0 := lim
N→∞

A0A′
0

N
> 0, (ii) lim

N→∞

Δ
[

A′
0 B′

0

]

N
= 0. (8.24)

Then the TLS estimate ΘTLS →Θ as N → ∞. In addition, there holds

lim
N→∞

W
N

= σ2I+

[
I
Θ

]
Π0
[

I Θ ′ ] . (8.25)

Proof. By the EIV model (8.18), M = I, W in (8.20), andΘA0 = B0,

W
N

=
1
N

[
A0

B0

][
A′

0 B′
0

]
+
ΔΔ ′

N
+
Δ
N

[
A′

0 B′
0

]
+

1
N

[
A0 B0

]
Δ ′.
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Taking limit N → ∞ and using the two assumptions in (8.24) arrive at

lim
N→∞

W
N

= lim
N→∞

1
N

[
A0

B0

]
[

A′
0 B′

0

]
+
ΔΔ ′

N

= σ2I +

[
I
Θ

]
Π0
[

I Θ ′ ]

by the assumption on the i.i.d. of elements of Δ , which verifies (8.25). Hence,
λL+i → σ2 as N → ∞ for 1 ≤ i ≤ p. Denote R(·) for the range space. Then

R

([
G11

G12

])
−→ R

([
I
Θ

])

as N → ∞. The asymptotic convergence of Θ̂TLS to Θ thus follows. ��
Two comments are made. The first regards the assumption in (8.24): Statement

(ii) is in fact implied by (i). But because the proof is more involved, it is skipped.
The second is the convergence of the MLE for the noise variance σ2. The proof of
Theorem 8.7 indicates that

lim
N→∞

(L+ p)σ̂2

p
= lim

N→∞

Tr{Λ2}
pN

=
Tr{σ2Ip}

p
= σ2 (8.26)

where σ̂2 is the MLE for σ2 in Theorem 8.6. Therefore, the MLE for the σ2 is
not an asymptotically unbiased estimate. The regularity condition breaks down for
estimation of σ2.

Theorems 8.6 and 8.7 address the estimation problem for the EIV model in the
case of M = I. If M �= I is a full rank and possibly wide matrix, it can be converted
to the estimation problem of M = I.

Corollary 8.1. Under the same conditions and hypotheses of Theorem 8.6 except
that M(�= I) has the full row rank, the expressions of MLEs in (8.23) hold, provided

that the eigenvalue decomposition of W is replaced by that of W0 = Σ−1/2
0 WΣ−1/2

0

where MM′ = Σ0. In addition, the MLE Θ̂ is an asymptotically unbiased estimate

forΘ , and (L+p)σ̂2

p is an asymptotically unbiased estimate for σ2.

Proof. It is important to note that σ2Σ0 = σ2MM′ can be regarded as the common
covariance for each column of ΔM, and thus,

Σ−1/2
0

[
A
B

]
= Σ−1/2

0

[
A0

B0

]
+UΔ (8.27)
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with Σ1/2
0 symmetric and U = Σ−1/2

0 M satisfying UU ′ = I. Theorem 8.6 can now
be applied, leading to

(
λiI −Σ−1/2

0 WΣ−1/2
0

)
vi = 0 (8.28)

for i = 1,2, · · · ,L+ p. Hence, by setting

G =
[

v1 · · · vL+p
]
, Λ = diag(λ1, · · · ,λL+p),

the proof of the corollary can be concluded. ��
It is noted that the eigenvalue/eigenvector equation in (8.28) is the same as the

following generalized eigenvalue/eigenvector equation:

(λiΣ0 −W )gi = 0 (8.29)

by taking gi = Σ−1/2
0 vi for i = 1,2, · · · ,L + p. The above is more convenient to

compute than (8.28), and avoids the potential numerical problem associated with

the inversion of Σ1/2
0 .

In the case when M(�= I) is a wide and full rank matrix, the MLE for Θ
corresponds to the generalized TLS solution. It requires to compute the p smallest
(generalized) eigenvalues and their respective eigenvectors in (8.29) in order to
obtain the MLE. Let diag(X) be a diagonal matrix using diagonal elements of X .
It is interesting to observe that the p eigenvectors associated with the p smallest
(generalized) eigenvalues in (8.29) solve the following minimization problem
(Problem 8.12 in Exercises):

min
H

{
Tr{H ′WH} : diag

(
H ′Σ0H

)
= Ip

}
. (8.30)

Indeed, by denoting hi as the ith column of H, and by setting the cost index

J =
p

∑
i=1

[
h′

iWhi + γi(1−h′
iΣ0hi)

]
(8.31)

with {γi}p
i=1 Lagrange multipliers, the constrained minimization in (8.30) is equiv-

alent to the unconstrained minimization of J in (8.31). Carrying out computation of
the necessary condition leads to (γiΣ0 −W )hi = 0 that has the same form as (8.29).
Hence, the optimality is achieved by taking γi = λL+i and hi = gL+i for 1 ≤ i ≤ p
that are the p smallest (generalized) eigenvalues and their respective eigenvectors in
(8.29). In the next two subsections, the results of the TLS solution will be applied
to channel estimation in wireless communications, and also to system identification
in feedback control systems.
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8.2.2 Subspace Method

In wireless communications, the CIR has finite duration. Let {Hi} be the CIR of a
MIMO channel with M input and P output. The received signal is mathematically
described by

y(t) =
L

∑
i=0

His(t − i)+ v(t), (8.32)

where {s(k)} is the sequence of the transmitted symbols and {v(k)} is the sequence
of i.i.d. with normal distribution. Denote

y(t) =

⎡

⎢
⎢
⎢
⎣

y(t)
y(t − 1)

...
y(t − q)

⎤

⎥
⎥
⎥
⎦
, v(t) =

⎡

⎢
⎢
⎢
⎣

v(t)
v(t − 1)

...
v(t − q)

⎤

⎥
⎥
⎥
⎦
, s(t) =

⎡

⎢
⎢
⎢
⎣

s(t)
s(t − 1)

...
s(t −Lq)

⎤

⎥
⎥
⎥
⎦

with LN = L+ q. Let TH be a block Toeplitz matrix defined by

TH =

⎡

⎢
⎢
⎢
⎢
⎣

H0 · · · HL 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 H0 · · · HL

⎤

⎥
⎥
⎥
⎥
⎦

(8.33)

that has dimension (q+ 1)P× (q+L+ 1)M. There holds

y(t) = TH s(t)+ v(t). (8.34)

Training signals are often employed to estimate the CIR. However, the use of
training signals consume precious channel bandwidth. There is thus a strong
incentive to estimate the channel blindly, given the statistics of the symbol sequence
{s(t)}. A common assumption is that s(t) is a WSS process and has mean zero
and covariance Σs that is known at the receiver site. This subsection considers the
subspace method for blind channel estimation.

Suppose that P > M. Then TH is a strictly tall matrix, if (q+ 1)(P−M) > LM.
Since L and M are fixed for each MIMO channel, the block Toeplitz matrix TH can
be made strictly tall by taking large q.

Lemma 8.1. Let TH of dimension (q+ 1)P× (q+ L+ 1)M be the block Toeplitz
matrix defined in (8.33) with P > M and (q+ 1)(P−M)> LM. Suppose that both
H0 and HL have the full column rank. Then TH has the full column rank, if

rank{ H(z) }= M ∀ z ∈ C (8.35)

where H(z) = H0 +H1z−1 + · · ·+HLz−L is the channel transfer matrix.
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Proof. The contrapositive argument will be used for the proof. Suppose that TH has
the full column rank, but the rank condition (8.35) fails. Since H(z) losses its rank
for some z = z0, there exists s �= 0 such that H(z0)s = 0. The hypothesis that both
H0 and HL have the full column rank implies that z0 �= 0 and z0 �= ∞. As a result,

L

∑
i=0

Hiz
−(i+k)
0 s = 0

for each positive integer k. By taking s(t − k) = z−k
0 s for each element of s(t) in

(8.34) yields TH s(t) = 0, contradicting to the full column rank assumption for TH

at the beginning. The proof is now complete. ��
A common assumption on the measurement noise is that it is not only temporally

but also spatially white. Hence, E{v(t)v(t)′}= σ2
v I. Under the condition that {s(t)}

and {v(t)} are independent random processes,

Σy = E
{

y(t)y(t)′
}
= TH ΣsT

′
H +σ2I.

Both {s(t)} and {v(t)} are assumed to be not only WSS, but also ergodic.
Consequently, there holds

Σ̂y =
1
N

N−1

∑
t=0

y(t)y(t)′ −→ Σy = TH ΣsT
′
H +σ2I, (8.36)

as N → ∞. Applying eigenvalue decomposition to Σy yields

Σy =

[
G11 G12

G21 G22

][
Λ1 0
0 σ2

v Iν

][
G′

11 G′
21

G′
12 G′

22

]

where the partitions are compatible and ν = (q+1)(P−M)−LM > 0. Recall R{·}
for the range space and N {·} for the null space. There hold

R{TH }= R

{[
G11

G21

]}
, N {T ′

H }= R

{[
G12

G22

]}
. (8.37)

The former is termed signal subspace and the latter termed noise subspace. The
orthogonality of the two subspaces leads to the subspace method for channel
estimation. Specifically, TH = TH ({Hi}), and there holds

[
G′

12 G′
22

]
TH ({Hi}) = 0. (8.38)

However, the precise Σy is not available due to finitely many samples of the received
signal and the existence of the measurement error. Hence, the relation in (8.38) does
not hold, if the eigen-matrix G is computed based on the estimated Σy. Nevertheless,
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(8.38) suggests an effective way for channel estimation by searching for {Ĥi} to
minimize

JF =
∥
∥
∥
[

G′
12 G′

22

]
TH ({Ĥi})

∥
∥
∥

F
subject to

L

∑
i=0

Ĥ ′
i Ĥi = I. (8.39)

The normalization constraint is necessary to prevent the CIR estimates {Ĥi} from
being the meaningless zero. Although other norms and normalization constraints
can be adopted, the constrained minimization of JF in (8.39) leads to a simpler
solution for the CIR estimates {Ĥi}.

Specifically, let C =
[

G′
12 G′

22

]
that has dimension ν × (q + 1)P. It can be

partitioned into (q+ 1) blocks of the same size as follows:
[

G′
12 G′

22

]
=
[

C0 C1 · · · Cq
]
.

Thus, each Ci has dimension ν × P. Let F = [G′
12 G′

22 ]TH ({Ĥi}). Recall that

TH ({Ĥi}) has dimension (q+ 1)P× (q+L+ 1)M. There exists a partition
[

G′
12 G′

22

]
TH ({Ĥi}) =

[
F0 F1 · · · Fq+L+1

]
(8.40)

with {Fi} of the same dimension of ν ×M. Denote Θ as the parameter matrix of
dimension (L+1)P×M with Hi being the (i+1)th block, F as a (q+L+1)ν×M
matrix with Fi as the (i+ 1)th block, and TC as a block Toeplitz matrix consisting
of {Ci} as shown next:

Θ̂ =

⎡

⎢
⎢
⎢
⎣

Ĥ0

Ĥ1
...

ĤL

⎤

⎥
⎥
⎥
⎦
, F =

⎡

⎢
⎢
⎢
⎣

F0

F1
...

FN+L+1

⎤

⎥
⎥
⎥
⎦
, TC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

C0 0 · · · 0
...

. . .
. . .

...
...

. . . 0
... C0

CN
...

0
. . .

...
...

. . .
. . .

...
0 · · · 0 CN

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

assuming that q ≥ L. It can be verified that F = TC Θ̂ and

JF =
∥
∥
∥
[

G′
12 G′

22

]
TH

({
Ĥi
})∥∥
∥

F
=

q+L+1

∑
i=0

Tr
{

F ′
i Fi
}
= F ′F .

Therefore, the constrained minimization of JF is the same as minimization of

JF = Tr
{
Θ̂ ′T ′

C TC Θ̂
}

subject to Θ̂ ′Θ̂ = I. (8.41)



362 8 System Identification

500 1000 1500 2000
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Time samples

R
M

S
E

q=L
q=L+3
q=L+6

Fig. 8.5 RMSE for blind channel estimation

It is important to observe that T ′
C TC is a block Toeplitz matrix. The minimizer

consists of the M right singular vectors {vi} corresponding to the M smallest
nonzero singular values {σi} that can be obtained via SVD of TC = USV ′ and
V = [v1 v2 · · · v(L+1)M ]. Since the true second-order statistics Σy is not available, its

sampled version Σ̂y defined in (8.36) has to be used. As a result, Θ̂opt �=Θ in general

with Θ̂opt the solution to the constrained minimization in (8.41). The performance of
the subspace algorithm depends on SNR and on the estimation of the noise subspace.

Example 8.8. Consider the same CIR in Example 8.2 with P= 2, M = 1, and L = 2.
The transmitted signal consists of binary symbols that is white. The SNR, defined
as the ratio of the signal power to the noise power, is taken to be 0 dB. The received
signal is measured at 2000 times samples and used to compute the sampled second-
order statistics Σy. The constrained minimization of (8.39) is employed to compute

the estimated CIR. Let {Ĥ(k)
i } be the estimated CIR for the kth emsemble run. The

RMSE is computed according to

RMSE =

√√
√√ 1

T

T

∑
k=1

Tr

{
L

∑
i=0

(
Hi − Ĥ(k)

i

)′(
Hi − Ĥ(k)

i

)
}

with a total of T = 2500 ensemble runs. The simulation results are plotted in the
Fig. 8.5 that shows the improvement when N increases. However the improvement
due to large N diminishes as SNR increases that is why a small SNR is used in this
example.
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The subspace algorithm for blind channel estimation is closely related to the TLS
algorithm studied in the previous subsection. Both compute the sampled second-
order statistics, and both use eigenvalue decomposition. The difference lies in the
Toeplitz structure of the second-order statistics for blind channel estimation that
prevents the subspace algorithm from being MLE. Nonetheless, the following result
is true.

Theorem 8.9. Let Θ̂opt be the channel estimate for blind channel estimation based
on the subspace algorithm. If the input signal is both temporally with nonsingular
Σs, then the estimate Θ̂opt converges to the true Θ as the number of time samples
approaches infinity w.p.1.

Proof. The assumption on the input signal implies that (8.36) holds. In addition,
the convergence has probability 1 which is the same as that for the TLS algorithm.
Hence, the strong convergence holds. ��

Thus far, the optimality of the subspace method is not addressed. The main hurdle
lies in the structure of the signal model that is not in the same form as the EIV model.
It will be shown in the next subsection that the subspace is asymptotically optimal
in the sense of MLE.

8.2.3 Graph Space Method

For identification of the plant model in feedback control, the subspace method can
also be used to estimate the plant parameters. Let P(z) be the transfer matrix with m
input/p output. It is assumed that P(z) = B(z)A(z)−1 with

A(z) = I+
L

∑
k=1

Akz−k, B(z) =
L

∑
k=0

Bkz−k. (8.42)

Even though the physical system is strictly causal, B0 �= 0 is assumed which can
help to reduce the modeling error. It is further assumed that

rank

{[
A(z)
B(z)

]}
= m ∀ z ∈ C.

The above ensures that {A(z),B(z)} are right coprime. Because physical systems in
practice are more complex than the linear finite dimensional models, this assumption
holds for most real systems.

Let {u(t)}, and {y(t)} be the input and output of the system, respectively. The
graph space associated with the plant model P(z) is defined as

GP :=

{
z(t) =

[
u(t)
y(t)

]∣∣∣
∣ : ∃ w(t) : z(t) =

[
A(q)
B(q)

]
w(t)

}
. (8.43)
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The unknown signal {w(t)} will be referred to auxiliary input. For this reason, an
FIR transfer matrix G(z) can be defined via

G(z) =
L

∑
k=0

Gkz−k, Gk =

[
Ak

Bk

]
, (8.44)

where A0 = Im is taken. By taking z(t) as the observation and w(t) as the unknown
input, system identification for the plant model P(z) is converted to parameter
estimation for {Gk}. As a result, the subspace method from the previous subsection
can be employed to estimate the system parameters. To emphasize the graph space of
the system and to distinguish it from blind channel estimation, the subspace method
used for control system identification is termed as the graph space method.

Denote Θ = [G′
0 G′

1 · · · G′
L ]

′ as the parameter matrix of the system. The
constraintΘ ′Θ = I from the subspace method is replace by the first square block of
Θ being A0 = I. However, this constraint does not change the estimation algorithm.
Let v(t) be the noise vector comprising both measurement errors at the plant input
and output. There holds

z(t) =
L

∑
k=0

Gkw(t − k)+ v(t) (8.45)

that is almost identical to (8.32). Define the block Toeplitz matrix TG of dimension
(q+ 1)(p+m)× (L+ q+1)m as

TG =

⎡

⎢⎢
⎢
⎢
⎣

G0 · · · GL 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 G0 · · · GL

⎤

⎥⎥
⎥
⎥
⎦

(8.46)

that is identical to (8.33), except that Hi is replaced by Gi for 0 ≤ i ≤ L. Similarly,
denote

z(t) =

⎡

⎢
⎢⎢
⎣

z(t)
z(t − 1)

...
z(t − q)

⎤

⎥
⎥⎥
⎦
, v(t) =

⎡

⎢
⎢⎢
⎣

v(t)
v(t − 1)

...
v(t − q)

⎤

⎥
⎥⎥
⎦
, w(t) =

⎡

⎢
⎢⎢
⎣

w(t)
w(t − 1)

...
w(t −Lq)

⎤

⎥
⎥⎥
⎦

with Lq = L+ q. It follows that at each time sample t,

z(t) = TG w(t)+ v(t). (8.47)
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The observation noise vector v(t) is assumed to be both spatially and temporally
white with noise variance σ2. The sampled second-order statistics can be computed
via

Σ̂z =
1
N

N−1

∑
t=0

z(t)z(t)′ −→ Σz = TGΣwT ′
G +σ2I

as N → ∞. The above convergence has probability 1, and is similar to that for blind
channel estimation.

For the graph space method, the persistent excitation (PE) for the input signal
{u(t)} needs to be assumed which ensures strictly positivity of Σw. Hence, under
the PE condition and μ = (q+1)p−Lm > 0, the covariance matrix Σz has precisely
μ zero eigenvalues. Let {xi}μi=1 be the corresponding eigenvectors that span the
noise subspace of the sampled second-order statistics. Denote

X =
[

x1 x2 · · · xμ
]
.

The graph space method is aimed at searching for {Ĝi} to minimize

JF =
∥
∥
∥X ′TG

({
Ĝi
})∥∥
∥

2

F
subject to

[
Im 0

]
Ĝ0 = Im. (8.48)

The matrices X and F = X ′TG ({Ĝi}) have dimensions of (q+ 1)(p+m)× μ and
μ× (L+ q+ 1)m, respectively. Partition these two matrices in accordance with

X ′ =
[

X0 X1 · · · Xq
]
,

F =
[

F0 F1 · · · FL+q+1
]
,

of which each Xi has the dimension μ × (p+m) and each Fi has the dimension
μ×m. There holds F = TX Θ̂ where

Θ̂ =

⎡

⎢
⎢⎢
⎣

Ĝ0

Ĝ1
...

ĜL

⎤

⎥
⎥⎥
⎦
, F =

⎡

⎢
⎢⎢
⎣

F0

F1
...

Fq+L+1

⎤

⎥
⎥⎥
⎦
, TX =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

X0 0 · · · 0
...

. . .
. . .

...
...

. . . 0
... X0

Xq
...

0
. . .

...
...

. . .
. . .

...
0 · · · 0 Xq

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,
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assuming that q ≥ L. As a result,

JF =
∥
∥
∥X ′TG

({
Ĝi
})∥∥
∥

2

F
=

q+L+1

∑
i=0

Tr
{

F ′
i Fi
}
= F ′F.

Therefore, the constrained minimization of JF in (8.48) is the same as minimiza-
tion of

JF = Tr
{
Θ̂ ′T ′

X TX Θ̂
}

subject to
[

Im 0
]
Θ̂ = Im. (8.49)

The minimizer is given by Θ̂opt =
[

vLm+1 vLm+2 · · · v(L+1)m

]
Ω−1, consisting of

the m right singular vectors {vi}(L+1)m
i=Lm+1 corresponding to the m smallest nonzero

singular values {σi}(L+1)m
i=Lm+1. The normalization matrix Ω is used to satisfy the

constraint
[

Im 0
]
Θ̂ = Im. Similar to the subspace algorithm, the right singular

vectors can be computed via SVD.

Theorem 8.10. Consider square transfer matrix P(z) = B(z)A(z)−1 with
{A(z),B(z)} specified in (8.42). Suppose that G(z) defined in (8.44) is right
coprime, the input {u(t)} is PE, and the noise vectors {v(t)} in (8.45) are both
spatially and temporally white and Gauss with variance σ2. If the auxiliary input
{w(t)} is also spatially and temporally white with covariance identity, then the
graph space algorithm in this subsection is asymptotically optimal in the sense of
MLE, and the estimate Θ̂opt converges to the true system parameter matrix Θ with
probability 1.

Proof. By the hypothesis, p = m, although the result is true for p �= m. The right
coprime assumption implies the existence of

G�(z) =
L

∑
i=0

[
A�k B�k

]
z−k

such that G�(z)JG(z) ≡ 0 where

J =

[
0 Ip

−Im 0

]
, A�0 = I.

That is, A�(z)B(z) = B�(z)A(z) with

A�(z) = I+
L

∑
i=1

A�k z−k, B�(z) =
L

∑
i=0

B�k z−k,

and thus, {A�(z),B�(z)} are left coprime and P(z) = A�(z)−1B�(z). Since A�0 = A0

by p = m, the left coprime factors {A�(z),B�(z)} are uniquely determined by right
coprime factors {A(z),B(z)} up to a unitary matrix, and vice versa. As a result,
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identification of the right coprime factors is the same as that of the left coprime
factors. Consider the case q = L. Denote

zJ(t) = Jz(t) =
[

y(t)
−u(t)

]
.

In the noise-free case, there holds the relation

[
I Θ�

]
zJ(t) = 0, Θ� =

[
B�0 A�1 B�1 · · · A�L B�L

]

where zJ(t) is the blocked column vector of zJ(t) with size (L+1)(p+m). Clearly,
zJ(t) is permutation of z(t). In the noisy case, an EIV model is resulted in but the
elements of the noise matrix are not i.i.d. anymore.

Without loss of generality, the measurements zJ(t)} at times samples [t0, t f ] are
assumed. Hence, the corresponding EIV model is given by

[
zJ(t0) · · · zJ(t f )

]
=
[

z(0)J (t0) · · · z(0)J (t f )
]
+
[

vJ(t0) · · · vJ(t f )
]

with z(0)J (t) the noise-free blocked graph signal at time t. Indeed, the elements of the
noise matrix are not i.i.d., because vJ(t) is a blocked column vector of vJ(t) = Jv(t)
consisting of {v(t − i)}N

i=0. It follows that the TLS solution is not an MLE for Θ�.
On the other hand, let

ε2
N =

1
N

tf

∑
t=t0

∥
∥
∥zJ(t)− z(0)J (t)

∥
∥
∥

2
, N = t f − t0 + 1.

Since vJ(t) = zJ(t)− z(0)J (t), it can be verified that

ε2
N =

q
N

tf −q

∑
t=t0

‖vJ(t)‖2 +
1
N

q−1

∑
i=1

[
(q− i)‖vJ(t0 − i)‖2 + i‖vJ(t f − i+ 1)‖2] .

Recall q= L that is fixed and finite. The second summation on the right-hand side of
the above equation approaches zero as N → ∞. Hence, the TLS solution minimizes
ε2

T asymptotically in the same spirit of MLE. In addition, the white assumption on
w(t) leads to

1
N

tf

∑
t=t0

z(t)z(t)′ −→ QJTG T ′
G Q′

J +σ2I

for some permutation matrix QJ dependent on J. The right-hand side is determinis-
tic. Consequently, the TLS solution for Θ̂�, and thus the graph space estimate Θ̂opt,
are indeed the asymptotic MLE. The convergence with probability 1 follows from
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the PE condition and identity covariance of {w(t)}. The proof for the case of q > L
can be covered by adding zero blocks toΘ�. The proof is now complete. ��

It is known that the error covariance for MLE approaches the CRLB asymp-
totically under certain regularity condition. To compute the CRLB, it is necessary
to obtain first the corresponding FIM. Denote fV ({z(t)}) as the joint PDF. By the
Gauss assumption and the signal model in (8.45),

ln fV ({z(t)})∼ J =− 1
2σ2

t f

∑
t=t0

Tr
{[

z(t)−Θ̃w(t)
][

z(t)−Θ̃w(t)
]′}

, (8.50)

where Θ̃ =
[

G0 G1 · · · GL
]
. Denote

ϑ =

⎡

⎢
⎣

vec(G0)
...

vec(GL)

⎤

⎥
⎦, zN =

⎡

⎢
⎣

z(t f )
...

z(t0)

⎤

⎥
⎦,

wT+L =

[
w(t f )

...
w(t0 −L)

]

, vN =

⎡

⎢
⎣

v(t f )
...

v(t0)

⎤

⎥
⎦.

Direct calculation yields

∂J
∂ϑ

=
1
σ2

⎡

⎢
⎣

w1(t f )Ip+m · · · w1(t0)Ip+m
... · · · ...

w(L+1)m(t f )Ip+m · · · w(L+1)m(t0)Ip+m

⎤

⎥
⎦

⎡

⎢
⎣

v(t f )
...

v(t0)

⎤

⎥
⎦

=:
1
σ2 MwvN (8.51)

where wk(t) is the kth component of w(t). A caution needs to be taken to that the
first m rows of ϑ are the same as Im which are known. Let ϑ̃ be obtained from ϑ by
deleting the m2 known elements. Then

∂J(Θ̃)

∂ϑ̃
=

1
σ2 M̃wvN , M̃w =

[
Z 0
0 ImpL

]
Mw, (8.52)

and Z = Im ⊗ [0 Ip
]
.

It is important to notice that the auxiliary input {w(t)} is also unknown. Its
impact to the CRLB needs to be taken into account. Let TG (Θ) be the same as
in (8.46) but with blocking size q = N. There holds

zN = TG (Θ)wN+L + vN .
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Then the likelihood function in (8.50) can be written alternatively as

J(Θ ,w) =− 1
2σ2

[
zN −TG (Θ)wN+L

]′ [zN −TG (Θ)wN+L

]
. (8.53)

Thus, the partial derivative of J(Θ ,w) with respect to wN+L is given as

∂J(Θ ,w)

∂wN+L
=

1
σ2 TG (Θ)′

[
zN −TG (Θ)wN+L

]
=

1
σ2 TG (Θ)′vN . (8.54)

To compute the FIM, the following matrices

FIM(Θ) = E

{
∂J(Θ ,w)

∂ϑ̃
∂J(Θ ,w)

∂ϑ̃ ′

}
=

1
σ2 M̃wM̃′

w,

E

{
∂J(Θ ,w)

∂ϑ̃
∂J(Θ ,w)

∂w′

}
=

1
σ2 M̃wTG (Θ),

FIM(w) = E

{
∂J(Θ ,w)

∂w
∂J(Θ ,w)

∂w′

}
=

1
σ2 TG (Θ)′TG (Θ)

are useful. The CRLB for estimation ofΘ can be obtained according to

CRB(Θ) = σ2
(

FIM(Θ)− M̃wTG (Θ)
[
TG (Θ)′TG (Θ)

]−1
TG (Θ)′M̃′

w

)−1
. (8.55)

The above CRLB can be difficult to compute, if N, the number of time samples,
is large, in light of the fact that the blocked Toeplitz matrix TG (Θ) has size
(N + 1)(p+m)× (N+L+ 1)m. It is left as an exercise to derive an efficient
algorithm for computing the CRLB (Problem 8.16).

Example 8.11. Consider the SISO plant model given by

P(z) =
1.4496z−1+ 0.7248z−2

1− 1.5z−1+ 0.7z−2 .

This plant model has the same poles and zeros as the one in Example 8.3. The
difference lies in the gain factor of 4. A total of N=3,000 input and output
measurements are generated by taking the auxiliary input {w(t)} as white Gauss of
variance one. The resulting {u(t)} and {y(t)} are WSS and admit variance of 5.672
and 4.264 dB, respectively. The measurement error {v(t)} is also taken as white
Gauss with variance one, implying that the SNR for the input and output signals
is 5.672 and 4.264 dB, respectively. Using the graph space method, the estimation
errors are plotted against the CRLB similar to that in Example 8.8. A total of 2500
ensemble runs are used to compute the RMSE value of the estimation error. The
RMSE is seen to converge to the CRLB, albeit slowly. In fact, a larger number of
time samples are used in order to see such a convergence.
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Fig. 8.6 RMSE curves for identification using the graph space method

The simulation results show that as q increases, the RMSE value decreases.
However, the largest drop of the RMSE value occurs at q = L+ 1. As N increases
beyond L+1, the decrease of the RMSE values slows down dramatically that is why
the RMSE values are shown for only the cases of q = L,L+ 1,L+ 5. It needs to be
pointed out that the white assumption for auxiliary input {w(t)} is important in order
to achieve asymptotic MLE. Figure 8.6 shows the case when the input signal {u(t)}
is white with variance one, and both {y(t)} and {w(t)} become colored signals
with variances 15.78 and 9.28, respectively. Under the same statistical noise {v(t)},
the total SNR is greater than the previous case. However, the simulation results in
Fig. 8.7 shows that the RMSE values resulted from the graph space method do not
converge to the CRLB. In fact, the larger the q, the worse the RMSE performance.
The simulation results in this example indicates the importance of the auxiliary
input being white, in order to obtain asymptotic MLE, which is consistent with
the theoretical result in Theorem 8.10. Since white auxiliary input is not possible
to generate prior to system identification, it is suggested to apply the LS algorithm
first for system identification. After a reasonably good plant model is identified,
white {w(t)} can be generated, and the plant input u(t) = Â(q)w(t) can be obtained
using the estimate model, which can then be applied as the exogenous input. Once
the output measurements are available, the graph space algorithm can be applied to
obtain more accurate identification results.
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Fig. 8.7 RMSE curves for (graph space) identification with white input

Let σ2
u and σ2

y be the noise variances of the input and output, respectively. This
subsection assumes σu = σy = σ thus far. In the case when σu �= σy,

zr(t) =

[
ru(t)
y(t)

]
, r =

σy

σu
,

can be employed to replace z(t) in (8.45). The noise vectors associated with {zr(t)}
admit covariance σ2

y I, and thus, the graph space method can be applied to {zr(t)}
which estimates rA(z) and B(z). A more serious issue is how to estimate the
variances σ2

u and σ2
y . Methods have been developed in the research literature, and

are not pursued in this book.

Notes and References

LS algorithm is presented in almost every textbook on system identification. See for
instance [78,102]. The RLS algorithm can not only be found in system identification
books but also in adaptive control books [7, 38]. The TLS algorithm has a shorter
history. A good source is [35, 113]. It is basically the same as the bias elimination
LS [49, 103, 104]. Blind channel estimation based on subspace in [87] is connected
to TLS. See also [51, 110] for blind channel estimation. The graph space method in
this chapter is generalized from the subspace method in [87].
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Exercises

8.1. Let A, B, and X be real matrices with compatible dimensions. Show that

∂Tr{AXB}
∂X

= A′B′,
∂Tr{AX ′B}

∂X
= BA,

∂Tr{AXBX ′}
∂X

= A′XB′+AXB.

8.2. Suppose that p = m = 1, and thus, (8.2) is reduced to y(t) = φ(t)′θ where
Θ = θ ′. Show that the RLS algorithm in Sect. 8.1.1 can be derived with Kalman
filter. (Hint: Use x(t) = θ as the state vector, and thus,

x(t + 1) = Atx(t), y(t) = ctx(t)+ v(t)

with At = I, ct = φ(t)′, and σ2
t = E

{|v(t)|2}.)

8.3. Let Pt be updated in (8.8). Show that the RLS algorithm in the previous
problem can be obtained from minimizing

Jθ =
(
θ̂t+1 − θ̂t

)′
P−1

t

(
θ̂t+1 − θ̂t

)
+σ−2

t

[
y(t)−φ(t)′θ̂t+1

]2
.

8.4. Show that (D−CA−1B)−1 = D−1+D−1C(A−BD−1C)−1BD−1. (Hint: Recall
the inverse of the square transfer matrix:

[D+C(zI−A)−1B]−1 = D−1 −D−1C(zI −A+BD−1C)−1BD−1

and then set z = 0.)

8.5. For the LS solution ΘLS = Y0, fΦ ′
0, f (Φ0, fΦ ′

0, f )
−1 in Theorem 8.1, denote θ i

and θ̂ i as the ith row of Θ and ΘLS, respectively. Assume that Φ0, f is noise-free.
Show that

(i) E
{
θ̂ i

}
= θ i, (ii) E

{(
θ̂ i −θ i

)′(
θ̂ i − θ̂ i

)}
= σ2

i (Φ0, fΦ ′
0, f )

−1.

8.6. Prove the RLS algorithm with the forgetting factor in (8.10) and (8.11).

8.7. Program the RLS algorithm, and the RLS algorithm with forgetting factor. Use
the following transfer function as a testing example:

P(z) =
1.4496z−1+ btz−2

1− 1.5z−1+ atz−2

where both at and bt lie in the interval of [0.6, 0.8] and change slowly. The forgetting
factor can be generated via γt = γ0γt−1 +(1− γ0) with γ0 ∈ [0.95, 0.99].
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8.8. Consider the input/output measurement model in Fig. 8.2. Show that the LS
solution to system identification is MLE, if the plant model has an FIR structure and
input is noise-free. What happens when the plant input is not noise-free?

8.9. Consider the input/output measurement model in Fig. 8.2. (i) If the plant input
is noise-free, show that the LS solution is asymptotically unbiased, and (ii) if the
plant input involves noise, show that the corresponding RMSE depends on the
system parameters.

8.10. For the signal model in (8.2) for t ∈ [t0, t f ], arising from the system
input/output description in (8.1) in which the observation noises corrupt both input
and output signals, show that

1. The matrix Φ0, f in Y0, f =ΘΦ0, f +V0, f involves observation noises if Mk �= 0 for
at least one k > 0.

2. The LS solution can be written as

ΘLS =Θ +V0, fΦ ′
0, f (Φ0, fΦ ′

0, f )
−1.

3. Show that ΘLS is a biased estimate ofΘ , if Mk �= 0 for at least one k > 0.

(Hint: E{V0, fΦ ′
0, f (Φ0, fΦ ′

0, f )
−1} �= 0, because the noise components of {v(t)}

corrupted to {y(t)} cannot be removed from Φ0, f , if Mk �= 0 for at least one k > 0.)

8.11. Consider partition of the eigenvector matrix G and eigenvalue matrix Λ in
(8.21).

(i) Show that
G′

12G11 +G′
22G21 = 0.

(ii) Show that G11 is nonsingular, if and only if G22 is nonsingular.
(iii) Show thatΘTLS in (8.22) is indeed the TLS solution.

8.12. Show that the optimal solution to (8.30) is the generalized TLS solution.

8.13. Consider minimization of JA,B in (8.19). Show that minJA,B = Tr{Λ2} where
Λ2 of dimension p× p is defined in (8.21).

8.14. For the case p = 1, the bias-eliminating LS estimate is given by

Θ̂ = Y0, fΦ ′
0, f (Φ0, fΦ ′

0, f − λ̂ 2
minI)−1

where λ̂min is the minimum eigenvalue of

Σ̂z =
1
N

N−1

∑
t=0

z(t)z(t)′

with z(t) the same as in (8.43). Show that the bias-eliminating LS estimate is the
same as the TLS solution.
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8.15. Show that the TLS solution to Y0, f ≈ΘΦ0, f minimizes

JTLS(T ) := Tr
{(

Y0, f −ΘΦ0, f
)′ (

I+ΘΘ ′)−1 (
Y0, f −ΘΦ0, f

)}
.

8.16. The CRLB in (8.55) is difficult to compute, if the time horizon [t0, t f ] is
large. This exercise provides a guideline on an efficient algorithm for computing the
CRLB in (8.55) in the case of large time horizon:

1. Show that TG (Θ)′TG (Θ) = T̃G (Θ)′T̃G (Θ)−T ′
GTG where

T̃G (Θ) =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

GL
...

. . .
... GL

G0
...

. . .
...

G0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

TG =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

GL
...

. . .

G1 · · · GL

G0 · · · GL−1
. . .

...
g̃0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

are of dimension (t f − t0 +2L+1)(p+m)× (t f − t0 +L+1)m and 2(p+m)L×
(t f − t0 +L+ 1)m, respectively.

2. DenoteΨ = T̃G (Θ)′T̃G (Θ). Show that

[TG (Θ)′TG (Θ)]−1 = (Ψ −T ′
GTG)

−1

=Ψ−1 +Ψ−1T ′
G(I2(p+m)L −TGΨ−1T ′

G)
−1TGΨ−1.

3. Let Ψ−1 = T̃ ′
−1T̃−1 be Cholesky factorization such that T̃−1 is block lower

triangular with block size m×m. Denote Ω = TGT̃ ′
−1 and Γ = M̃wTG (Θ)T̃ ′

−1.
Show that

CRB(Θ) = σ2 (FIM(Θ)−ΓΓ ′ −ΓΩ ′(I −ΩΩ ′)−1ΩΓ ′)−1
.

The efficient computation of CRB(Θ) is hinged to the Cholesky factorization of
Ψ−1 = T̃ ′

−1T̃−1 that will be worked out in the next problem.
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8.17. (i) For {A(z),B(z)} in (8.42) which are right coprime, show that the
existence of the spectral factorization

A(z)∼A(z)+B(z)∼B(z) = C(z)∼C(z)

where C(z) is the right spectral factor with size m×m and given by

C(z) =
L

∑
k=0

Ckz−k.

(ii) Show that the Toeplitz matrix Ψ = TG (Θ)′TG (Θ) in the previous problem
corresponds to spectral factorization of (Sect. C.3 in Appendix C)

[
z−LG

(
z−1)]∼ [z−LG

(
z−1)]=

[
z−LC

(
z−1)]∼ [z−LC

(
z−1)] .

(iii) Show that T̃−1 in the previous problem is lower block Toeplitz, and consists of
the impulse response of [z−LC(z−1)]−1.



Appendix A
Linear Algebra

The purpose of this appendix is to provide a quick review on the related materials in
linear algebra used in the text. The exposition will be concise and sketchy. Readers
are encouraged to read the more complete mathematical texts in the subject area.

A.1 Vectors and Matrices

A vector of dimension n is denoted by boldfaced letter, say, x, which has n elements
in IF. The field IF is either IR, the collection of all real numbers, or C, the collection of
all complex numbers. A vector space, also called linear space, over IF is a nonempty
set V for which addition and scalar multiplications (these are familiar element-wise
operations) are closed:

x,y ∈ V =⇒ x+ y ∈ V , αx ∈ V ,

where α is a scalar in IF. The “length” of the vector x is measured by the Euclidean
norm: ‖x‖=√

x∗x. Its location in the vector space V is uniquely determined by its
n components. For convenience, V is denoted by IFn.

Two vectors, x and y, are linearly independent, if αx + βy �= 0 whenever
αβ �= 0. The m vectors {xk}m

k=1 with m ≤ n and n the dimension of xk are linearly
independent, if no nontrivial linear combination of xk’s is a zero vector. A set of n
linearly independent vectors {xk}n

k=1 forms a basis for all n× 1 vectors, in which
each is a unique linear combination of {xk}n

k=1.
A matrix A of size n×m over IF can be viewed as a linear map from IFm to IFn.

That is, y = Ax ∈ IFn for x∈ IFm, and the map: x �→ y is linear. It is noted that y= Ax
is a set of n linear equations:

⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦=

⎡

⎢
⎣

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

⎤

⎥
⎦

⎡

⎢
⎣

x1
...

xm

⎤

⎥
⎦ . (A.1)
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A natural question is: Given y ∈ IFn, does there exist a (unique) solution to (A.1)?
The following notions are introduced.

Definition A.1. For A ∈ IFn×m, let ak be its kth column. Its range space, denoted by
R(A), and the null space, denoted by N (A), are defined as

R(A) =

{

y ∈ IFn : y =
m

∑
k=1

αkak

}

, N (A) = {x ∈ IFm : Ax = 0} ,

respectively, where {αk} range over IF.

By definition, R(A) is a vector space spanned by the linearly independent column
vectors of A as the basis, which is a closed subspace of IFn. On the other hand
N (A) is a vector space composed of all vectors x∈ IFm such that Ax= 0, which is a
closed subspace of IFm too (Problem A.1 in Exercises). The next result answers the
question regarding the solution to y = Ax, or (A.1). Its proof is left as an exercise
(Problem A.4).

Lemma A.1. Given y ∈ IFn, the linear equation y = Ax, or (A.1), admits a solution
x ∈ IFm, if and only if y ∈ R(A). In addition, the solution is unique, if and only if
N (A) = /0.

The collection of all matrices of the same dimensions is also a vector space.
One may associate A with vector vec(A), which stacks the column vectors of A
sequentially into a single column. Different from vectors, multiplication of two
different matrices is possible with C = AB well defined, if the number of columns
of A is the same as the number of rows of B. In general, AB �= BA, even if both
multiplications make sense. The Kronecker product of the two matrices A ∈ IFn×m

and B of any other dimension is defined as

A⊗B =

⎡

⎢
⎣

a1,1B · · · a1,mB
...

. . .
...

an,1B · · · an,mB

⎤

⎥
⎦ .

If A and B are square of sizes n and m, respectively, then the Kronecker sum of A
and B is defined as

A⊕B := (A⊗ Im)+ (In ⊗B) ∈ IFnm×nm.

For square matrices, Ak for positive integer k defines the power of matrices with
the convention A0 = I. If Ak = 0 for some integer k > 0, then A is called nilpotent.
The trace of A, denoted by Tr{A}, is defined as the sum of the diagonal elements of
A. If AB and BA are both square, then

Tr{AB}= Tr{BA}. (A.2)
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In addition, det(A), the determinant of A, can be defined, and A−1 exists, if and only
if det(A) �= 0, in which case A is said to be nonsingular. If A and B are both square
of the same dimensions, there holds:

det(AB) = det(A)det(B) = det(BA). (A.3)

A matrix norm, termed Frobenius norm can be defined by

‖A‖F := ‖vec(A)‖ =
√

Tr{A∗A}=
√

Tr{AA∗} (A.4)

which measures the “size” of A.
Let rank{A} be the maximum number of linearly independent column vectors

of A, or the maximum number of linearly independent row vectors of A. The next
result is concerned with the rank of the product of two matrices.

Lemma A.2 (Sylvester inequality). Let A ∈ IFn×m and B ∈ IFm×�. Then

rank{A}+ rank{B}−m ≤ rank{AB} ≤ min{rank[A], rank[B]} .

For a given subspace S , the dimension of S is denoted by dim{S }, which is
defined as the maximum number of linearly independent vectors in S . Lemma A.1
indicates that N (A) = /0 implies that rank{A} = m, and thus, Ax = 0 admits no
solution x �= 0. In fact, there holds

dim{R(A)}= rank{A}, dim{N (A)}= m− rank{A}. (A.5)

If rank{A} = r, then the matrix A has r linearly independent column vectors
{aki}r

i=1, where 1≤ ki ≤ r. If dim{N (A)}= ρ , then there exits a maximum number
of ρ linearly independent vectors {xk}ρk=1 ∈ N (A) and ρ = m − rank{A}. The
following result is true.

Lemma A.3. Let A ∈ IFn×m. Suppose that rank{A}= r ≤ min{n,m}. Then A = T F
where T has size n× r, F has size r×m, and there hold

R(A) = R(T ),N (A) = N (F),

R (A∗) = R (F∗) ,N (A∗) = N (T ∗) .

Proof. Since A has rank r, there exist r column vectors of A, denoted by {aki}r
i=1,

which are linearly independent. It follows that

A =
[

ak1 · · · akr

]

⎡

⎢
⎣

α1,1 · · · α1,m
...

. . .
...

αr,1 · · · αr,m

⎤

⎥
⎦= T F,
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where T is a “tall” matrix with size n×r and F a “fat” matrix with size r×m. Hence,
R(A) =R(T ). Because T has full column rank, Ax= 0, if and only if Fx= 0. Thus,
N (A)=N (F). By noting that A∗=F∗T ∗, R(A∗)=R(F∗) and N (A∗)=N (T ∗)
follow accordingly. ��

Let S1 and S2 be two closed subspaces of the same vector space V , which do
not have common elements, except 0. The direct sum, denoted by ⊕, is defined by:

S1 ⊕S2 := {x = x1 + x2 : x1 ∈ S1,x2 ∈ S2} . (A.6)

Theorem A.1. For A ∈ IFn×m, there hold

R(A)⊕N (A∗) = IFn, R (A∗)⊕N (A) = IFm.

Proof. By Lemma A.3, A = TF with T and F full column and row ranks,
respectively, and R(A) = R(T ). Hence, there exists T⊥ such that

[
T T⊥

]
is a

square nonsingular matrix with size n× n and T ∗T⊥ = 0. It follows that R(T⊥) =
N (T ∗) = N (A∗), and thus, R(T )⊕R(T⊥) = R(A)⊕N (A∗) = IFn, in light of
the fact that columns of T and T⊥ are all linearly independent, and form the basis
of IFn. Applying the same procedure to A∗ shows that R(A∗)⊕N (A) = IFn is true
as well. ��

A.2 Projections and Generalized Inverses

Let S be a closed subspace of IFn. That is, S is itself a vector space over the filed
IF. Let dim(S ) = r < n. Then it has r linearly independent vectors {si}r

i=1. Any
element of S is a linear combination of si. Hence, {si}r

i=1 form a basis for S . It is
a fact that the basis can be chosen such that

s∗i sk = δ (k− i), ‖sk‖= 1.

(Problem A.14 in Exercises). Such a basis is called orthonormal basis of S .
Since r < n, there exists an orthogonal complement of the subspace S defined by

S⊥ := {x ∈ IFn : x∗si = 0 for 1 ≤ i ≤ r} .
It follows that IF = S ⊕S⊥ and dim(S⊥) = n− r. As such, there exist linearly
independent vectors {sr+k}n−r

k=1 which form a basis of S⊥ and which can be chosen
as an orthonormal basis of S⊥. Define

S =
[

s1 · · · sr
]
, S⊥ =

[
sr+1 · · · sn

]
.

Both S and S⊥ are orthogonal matrices satisfying

[
S S⊥

]
[

S∗

S∗⊥

]
=

[
S∗

S∗⊥

]
[

S S⊥
]
= In. (A.7)
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Therefore, Sa =
[

S S⊥
]

is a unitary matrix, and S−1
a = S∗a.

A matrix P ∈ IFn×n is a projection, if P2 = P. Let r < n be the rank of P. Then
P = T F with T ∈ IFn×r and F ∈ IFr×m full rank matrices by Lemma A.3. Hence,

P = P2 ⇐⇒ TFT F = T F =⇒ FT = Ir. (A.8)

That is, F is a left inverse of T and T is a right inverse of F . Moreover, there exists
T⊥ such that FT⊥ = 0 and

[
T T⊥

]
is both square and nonsingular. As a result, there

exists F⊥ with an appropriate dimension such that
[

F
F⊥

]
[

T T⊥
]
= I ⇐⇒ T F +T⊥F⊥ = I. (A.9)

Thus, F⊥ is a left inverse of T⊥. It follows that

R(T )⊕N (F) = R(P)⊕N (P) = IFn.

Geometrically, P projects x∈ IFn into the subspace R(P) along the subspace N (P):
Any x ∈ IFn can be decomposed into x = x1 +x2 with x1 ∈ R(P) and x2 ∈N (P) =
N (F), and

Px = x1 ∈ R(P), Px2 = 0.

In other words, the four tuples (0,x1,x2,x) form a parallelogram. If, in addition,
R(P) and N (P) are orthogonal and complement to each other, then P is an
orthogonal projection. Thus, the four tuples (0,x1,x2,x) form a rectangle. Note that
P = T F satisfying (A.8) implies that

Q = I−P = T⊥F⊥

is also a projection. On the other hand, for S and S⊥ satisfying (A.7), both PS =
SS∗ and PS⊥ = S⊥S∗⊥ are orthogonal projections, and PS +PS⊥ = In.

Let A ∈ IFn×m and B ∈ IFn×r be given, and X ∈ IFm×r be unknown. The more
general linear equation AX = B admits a solution X , if and only if

R(B)⊆ R(A) ⇐⇒ N (A∗)⊆ N (B∗),

in light of Lemma A.1 and Theorem A.1. Two scenarios arise: The solution X does
not exits, or there are more than one solution X . In the former, it is natural to seek X
such that ‖AX −B‖F is minimized, and in the latter, there is an interest in searching
for X which has the minimum Frobenius norm among all possible solutions.

Lemma A.4. Let A ∈ IFn×m and B ∈ IFn×r. (i) Suppose that R(B) is not a subset of
R(A) and rank{A}= m ≤ n. Then X = Xm := (A∗A)−1A∗B minimizes ‖AX −B‖F

over all X ∈ IFm×r. (ii) Suppose that R(B)⊆R(A), N (A) �= /0, and rank{A}= n ≤
m. Then X = Xn := A∗(AA∗)−1B has the minimum Frobenius norm over all solutions
to AX = B.
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Proof. For (i), let S be an orthogonal matrix of size n×m, whose columns form an
orthonormal basis of R(A). Then

A = SF, B = SB1 + S⊥B2

for some nonsingular matrix F of size m×m, where S⊥ satisfies (A.7). By the fact
that unitary matrices do not change the Frobenius norm, there holds

‖AX −B‖F =

∥
∥∥
∥

[
S∗

S∗⊥

]
(SFX − SB1 − S⊥B2)

∥
∥∥
∥

F

=
√
‖FX −B1‖2

F + ‖B2‖2 ≥ ‖B2‖F .

On the other hand, there holds

‖AXm −B‖F =
∥
∥[I−A(A∗A)−1A∗]B

∥
∥

F

= ‖(In − SS∗)B‖F = ‖S⊥S∗⊥B‖F = ‖B2‖F .

That is, X = Xm = A∗(AA∗)−1B minimizes the error ‖AX −B‖F . For (ii), it is noted
that AXn = AA∗(AA∗)−1B = B. So, Xn is a solution to AX = B. Because N (A) �= /0,
there exists an orthogonal matrix U whose columns form an orthonormal basis of
N (A). Moreover, all solutions to AX = B is parameterized by X = Xn +UR with
R an arbitrary matrix of the appropriate dimensions. Now direct calculation shows
that (by noting that AU = 0)

‖X‖2
F = ‖A∗(AA∗)−1B+UR‖2

F = Tr
{

B∗ (AA∗)−1 B+R∗R
}

≥ Tr
{

B∗ (AA∗)−1 B
}
= ‖Xn‖2

F .

Hence, Xn is the minimum norm solution. The lemma is true. ��
In (i) of Lemma A.4, A admits a left inverse A+ = (A∗A)−1A∗, and all left inverses
of A are parameterized by

A† = (A∗A)−1A∗+ΘS∗⊥ = A++ΘS∗⊥, (A.10)

where Θ ∈ IFm×(n−m) is arbitrary and R(S⊥) is the orthogonal complement of
R(S) = R(A). It is noted that P = AA† is a projection and P = AA+ is an
orthogonal projection. Hence, orthogonal projection matrices are always hermitian,
but projection matrices are nonhermitian in general. The proof of Lemma A.4 also
shows that

‖A†‖F =

√
‖A+‖2

F +
∥∥ΘS∗⊥

∥∥2
F ≥ ‖A+‖F .
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In (ii) of Lemma A.4, A admits a right inverse A+ = A∗(AA∗)−1, and all right
inverses of A are parameterized by

A† = A∗(AA∗)−1 +U∗R = A++U∗R, (A.11)

where R ∈ IF(n−m)×m is arbitrary and U is an orthogonal matrix whose columns
form an orthonormal basis of N (A). Again, P = A†A is a projection which is
nonhermitian in general, and P = A+A is an orthogonal projection which is always
a hermitian matrix. Similarly,

‖A†‖F =
√
‖A+‖2

F + ‖UR‖2
F ≥ ‖A+‖F .

More generally for any matrix A of arbitrary rank, generalized inverses or
pseudoinverses of A are denoted by A† and defined as satisfying

(a) AA†A = A, (b) A†AA† = A†. (A.12)

Clearly, A† is not unique. It is left as an exercise to derive a general expression of
A† (Problem A.16). The one that minimizes ‖A†‖F among all possible A† is called
Moore–Penrose pseudoinverse and is given by

A+ = F∗(FF∗)−1(T ∗T )−1T ∗,

where A = T F is the canonical factorization as in Lemma A.3. Again, both AA†

and A†A are projections, and AA+ and A+A are orthogonal projections. Often A+ is
computed via the SVD to be discussed in the next section.

A.3 Decompositions of Matrices

A.3.1 Eigenvalues and Eigenvectors

For A ∈ IFn×n, its eigenvalues are the n roots of the characteristic polynomial

a(λ ) = det(λ In −A) = λ n + a1λ n−1 + · · ·+ an. (A.13)

The set of n eigenvalues, denoted by {λk}n
k=1, is called spectrum of A, and

ρ(A) = max
1≤k≤n

|λk|

is the spectral radius of A. Let λ be an eigenvalue of A. Then there exist a row
vector q and a column vector v such that

qA = λq, Av = λv,
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and q and v are left and right eigenvectors of A, respectively. Moreover, A admits
the decomposition termed as Jordan canonical form as follows. However, its proof
is nontrivial and skipped in this text.

Theorem A.2. For A ∈ IFn×n, there exists a nonsingular matrix T such that A =
T JT−1 and J = diag(J1, . . . ,J�) where,

Ji =

⎡

⎢
⎢⎢
⎢
⎣

λki 1
. . .

. . .

. . . 1
λki

⎤

⎥
⎥⎥
⎥
⎦
, 1 ≤ ki ≤ n.

The Jordan canonical form in Theorem A.2 does not rule out the possibility that
λki �= λk j for i �= j. On the other hand, if {λki}�i=1 are all distinct, then A is called
cyclic, and Ji the Jordan block. If in addition {λk}n

k=1 are all distinct, then each
Jordan block has size one, and A is diagonalizable by a nonsingular matrix T with
J =Λ = diag(λ1, . . . ,λn).

The following Cayley–Hamilton theorem is useful in linear system theory.

Theorem A.3. Let A ∈ IFn×n and det(λ In −A) be as in (A.13). Then

An + a1An−1 + · · ·+ anIn = 0.

The proof is left as an exercise (Problem A.17).

A.3.2 QR Factorizations

Let v ∈ IRn be nonzero. A square matrix

P = In − 2vvT/‖v‖2 (A.14)

is both symmetric and unitary, i.e., P = PT and P2 = In. Such a matrix is called
Householder reflection, or Householder transformation and v the Householder
vector. Let x ∈ IRn, and denote e1 as the vector with the first entry 1 and the rest
zeros. If Px ∈ R(e1), then v ∈ R([ x e1 ]), and

Px =

(
In − 2

vvT

‖v‖2

)
x =∓‖x‖e1. (A.15)

The Householder reflection sets the elements of Px to zeros except the first one. It
sets v = x±‖x‖e1 with ± sign so chosen that ‖v‖ has a larger value to avoid the
possible rounding-off error. Furthermore, for A ∈ IFn×m,

PA =

(
In − 2

vvT

‖v‖2

)
A = A+ vqT , (A.16)
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where q = αAT v with α = −2/‖v‖2. That is, a Householder update of a matrix
involves a matrix–vector multiplication followed by an outer product update, which
avoids the multiplication of P and A directly. For this reason, Householder transfor-
mation is widely used in triangularization of matrices such as QR factorizations.

Lemma A.5. Let A ∈ IRn×m. Then there exists QR factorization A = QR where Q is
an orthogonal matrix and R is an upper triangular matrix.

Proof. Applying (A.15) with the first column of A as x eliminates the elements
of the first column of PA, except the first one. Record such a Householder
transformation as H1. Now applying (A.15) with the last (n− 1) elements of the
second column of H1A as x eliminates the second column of H2H1A except the first
two elements. By induction,

Hm · · ·H1A = HA =

[
R
0

]
, Hk =

[
Ik−1 0

0 Pk

]
=⇒ Q = H∗

[
I
0

]
,

where Pk is a Householder matrix. Thus, R is upper triangular. Since product of
unitary matrices is unitary, QT Q = I or Q is an orthogonal matrix. ��

In light of (A.16), multiplication of a Householder matrix with another matrix
can be easily implemented. The use of the unitary matrices improves the numerical
property of QR factorizations. Moreover, R can be made full row rank by taking Q
comprised of the minimum number of columns. It is noted that the QR factorization
also holds for complex matrices.

A.3.3 Schur Decompositions

For the Jordan canonical form as in Theorem A.2, partition

T =
[

Tk1 Tk2 · · · Tk�

]

compatibly with that of J. The decomposition A= TJT−1 gives the rise of AT = T J,
implying that

ATki = TkiJi, 1 ≤ i ≤ �. (A.17)

It follows that for any vector v ∈ R(Tki), Av ∈ R(Tki). In other words, R(Tki) is
A invariant for each i. Moreover, the direct sum of any pair of {R(Tki}�i=1 is also
A invariant. It is left as an exercise to estimate the number of distinct A-invariant
subspaces (Problem A.20).

Suppose that J1 has size m > 1. Then

Av1 = λ1v1, Avk = λ1vk + vk−1, 1 < k ≤ m.
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Hence, both R(v1) and R
([

v1 · · · vm
])

are invariant subspaces of A. The same
holds true for other Ji’s. Let S ⊂ IFn be an A-invariant subspace with dim{S }> 0.
Then there is at least one v ∈ S such that Av = λv. If all eigenvalues of
A constrained into S are strictly inside the unit circle, then S is a stable A-invariant
subspace. The following Schur decomposition is useful.

Theorem A.4. For A∈ Cn×n, there exists a unitary matrix Q such that A = QRAQ∗,
where RA is an upper triangular matrix with eigenvalues of A on the diagonal.

Proof. By Theorem A.2, AT = T J with J in the Jordan canonical form, and T
nonsingular. Applying QR factorization to T yields

T = QR =⇒ AQR = QRJ ⇐⇒ Q∗AQ = RJR−1 = RA.

Since both R and J are upper triangular matrices, RA is also an upper triangular
matrix (Problem A.19 in Exercises). The fact that Q is orthogonal and square implies
that Q is unitary. Thus, A and RA have the same eigenvalues which are on the
diagonal of RA and can be arranged in any order. ��

Schur decomposition can be computed directly without going through the Jordan
form. In fact, due to the use of unitary matrices, the Schur decomposition is
numerically reliable and efficient. It is a preferred method in computing eigenvalues
as well as invariant subspaces.

In general, eigenvalues are complex, even if A is a real matrix. However, if A is
real and has a real eigenvalue λ , then its corresponding eigenvector can be chosen
as real too. Moreover, if A is real, then real Schur form exists in which Q and
RA are both real, but RA is now block upper triangular to account for the complex
eigenvalues. For the case when all eigenvalues of A are real, λk(A) denotes the kth
largest eigenvalue of A, and the real Schur form can place eigenvalues of A in the
diagonal of RA arranged in descending order.

A.3.4 Singular Value Decompositions

Singular value decomposition (SVD) is widely used in matrix analysis and linear al-
gebra. Roughly speaking, singular values measure the “size,” and the corresponding
singular vectors the “directions” for the underlying matrix.

Theorem A.5. Let A ∈ IFn×m. There exists SVD: A = USV ∗ where U ∈ IFn×n and
V ∈ IFm×m are unitary matrices and S ∈ IFn×m contains nonzero elements {σk}ρk=1
on the diagonal in descending order where ρ = min{n,m}.

Proof. Applying Schur decomposition to AA∗ and A∗A gives

AA∗ = QnD2
nQ∗

n, A∗A = QmD2
mQ∗

m,
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where Qn ∈ IFn×n and Qm ∈ IFm×m are unitary matrices, and Dn and Dm are upper
triangular matrices. By the hermitian of AA∗ and A∗A, and the fact that nonzero
eigenvalues of AA∗ and A∗A are identical, D2

n and D2
m are in fact diagonal and

positive real of the form

D2
k = diag

(
d2

1 ,d
2
2 , . . . ,d

2
k

)
, k = n,m.

If n ≥ m, then there exists an orthogonal matrix Q ∈ IFn×m such that

AQm = QDm =
[

Q Q⊥
][Dm

0

]
= QaD,

by Q∗
mA∗AQm = D2

m and thus N (AQm) = N (Dm). Hence, the SVD holds with
U = Qa, S = D, and V = Qm. If n ≤ m, a similar procedure leads to

Q∗
nA = DnQ∗ =

[
Dn 0

][
Q Q⊥

]∗
= DQ∗

a

with Q orthogonal. Hence, the SVD holds with U = Qn, V = Qa, and S = D. The
nonzero diagonal elements of S are {|dk|}ρk=1 = {σk}ρk=1, which are called singular
values of A and which can be arranged in descending order. ��

Denote uk and vi as the kth and ith column of U and V , respectively. Then the
SVD of A implies that

Avk = σkuk, A∗uk = σkvk (A.18)

for 1 ≤ k ≤ r = rank{A}. For this reason, uk and vk are called kth left and right
singular vectors of A. The relations in (A.18) also show that

A∗Avk = σ2
k vk, AA∗uk = σ2

k uk.

It follows that σk =
√
λk(AA∗) =

√
λk(A∗A) for 1 ≤ k ≤ min{n,m}.

The next result is concerned with the induced norm for matrices, and shows that
the induced norm is the maximum achievable “gain.”

Corollary A.1. Let σ(A) = σ1 be the maximum singular value of A. Then

‖A‖ := sup
x �=0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖= σ(A).

Proof. By SVD, A =USV ∗ with V a unitary matrix. Hence, any nonzero vector is a
linear combination of vk, the kth column of V . That is,

x =
m

∑
k=1

βkvk =V b, b =
[
β1 · · · βm

]T
,
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where A ∈ IFn×m. It follows that ‖x‖= ‖b‖. Let ρ = min{n,m}. Then

Ax = AV b =USb =
n

∑
k=1

βkσkuk,

with uk the kth column of U . The fact that U is unitary implies that

‖Ax‖2 =
ρ

∑
k=1

σ2
k β

2
k ≤ σ2

1 ‖b‖2 = σ2
1 ‖x‖2.

Thus, σ(A) = σ1 is the upper bound for the induced norm ‖A‖. Choosing x = v1

shows that ‖x‖= 1 and ‖Ax‖= σ(A). ��

A.4 Hermitian Matrices

In light of the Schur decomposition A = QRAQ∗, there hold

AA∗ = QRAR∗
AQ∗, A∗A = QR∗

ARAQ∗.

Hence, if a square matrix A of size n is normal, i.e., AA∗ = A∗A, then

R∗
ARA = RAR∗

A = diag
(
σ2

1 , . . . ,σ2
n

)
.

It follows that for a normal matrix A, it is necessary that RA be diagonal. That is,
normal matrices are diagonalizable with unitary matrices.

Hermitian matrices are clearly normal matrices. If A is hermitian, then

A = QRAQ∗ = A∗ = QR∗
AQ∗,

leading to the conclusion that RA is a real diagonal matrix. Consequently, eigenval-
ues of a hermitian matrix are all real. If in addition all eigenvalues of a hermitian
matrix are positive or strictly positive, then A is called positive semidefinite or
positive definite, denoted by A ≥ 0 and A > 0, respectively.

If A = A∗ ≥ 0, then there exists a “square root” R = A1/2 such that A = R2. One
may take the square root of A as R = US1/2U∗ with A = USU∗ as the SVD of A.
Suppose that A > B ≥ 0. Then

0 < I−A−1/2BA−1/2 = I−A−1/2BA−1A1/2.

Hence, ρ
(
BA−1

)
< 1, and all eigenvalues of BA−1 are strictly positive real.

Two results will be presented for positive semidefinite matrices with one on
Cholesky factorizations, and the other on simultaneous diagonalization of two
positive semidefinite matrices.
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Proposition A.1. LetΘ1 =Θ ∗
1 ≥ 0 andΘ3 =Θ ∗

3 ≥ 0, which may not have the same
dimension. If

Θ =

[
Θ1 Θ ∗

2
Θ2 Θ3

]
≥ 0,

then ∇1 =Θ1 −Θ ∗
2Θ

+
3 Θ2 ≥ 0, ∇3 =Θ3 −Θ2Θ+

1 Θ
∗
2 ≥ 0, and

(i) R(Θ2)⊆ R(Θ3), (ii) R(Θ ∗
2 )⊆ R(Θ1). (A.19)

There hold factorizations of the form

Θ =

[
I Θ ∗

2Θ
+
3

0 I

][
∇1 0
0 Θ3

][
I 0

Θ+
3 Θ2 I

]
(A.20)

=

[
I 0

Θ2Θ+
1 I

][
Θ1 0
0 ∇3

][
I Θ+

1 Θ
∗
2

0 I

]
. (A.21)

Proof. As (ii) of (A.19) and (A.21) are dual to (i) of (A.19) and (A.20), respectively,
only (i) of (A.19) and (A.20) will be proven. Because Θ ≥ 0, choose a nonzero
vector v and set w =−Θ+

3 Θ2v. Then

[
v∗ w∗ ]

[
Θ1 Θ ∗

2
Θ2 Θ3

][
v
w

]
= v∗Θ1v+w∗Θ3w+ 2v∗Θ ∗

2 w

= v∗(Θ1 −Θ ∗
2Θ

+
3 Θ2)v = v∗∇1v.

SinceΘ ≥ 0, ∇1 ≥ 0. If w =−Θ+
1 Θ

∗
2 v is chosen, then similar calculations show that

∇3 ≥ 0. Now if R(Θ2) ⊆ R(Θ3) is false, then there exists a nonzero vector v such
that v∗Θ2 �= 0 and v∗Θ3 = 0. Hence, v∗∇3v = −v∗Θ2Θ+

1 Θ
∗
2 v < 0, contradicting

to ∇3 ≥ 0. As a result, R(Θ2) ⊆ R(Θ3), and Θ2 = Θ3Γ for some matrix Γ of
appropriate size. It follows that

Θ3Θ+
3 Θ2 =Θ3Θ+

3 Θ3Γ =Θ3Γ =Θ2.

The above implies the decomposition in (A.20). The proof is complete. ��
The factorizations in (A.20) or (A.21) have the form Θ = LDL∗ or Θ = L∗DL

with L lower block triangular and D ≥ 0 block diagonal. Hence, it is the Cholesky
factorization in block form. Note that D = I can be taken in Cholesky factorizations.

Theorem A.6. Let P and Q be two positive semidefinite matrices. Then there exists
a nonsingular matrix T such that

T PT ∗ =

⎡

⎢
⎢
⎣

Σ1

Σ2

0
0

⎤

⎥
⎥
⎦, (T ∗)−1QT−1 =

⎡

⎢
⎢
⎣

Σ1

0
Σ3

0

⎤

⎥
⎥
⎦,

where Σ1, Σ2, and Σ3 are diagonal and positive definite.
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Proof. Since P ≥ 0, there exists a transformation T1 such that

T1PT ∗
1 =

[
I 0
0 0

]
.

Compute (T ∗
1 )

−1 QT−1
1 , and partition compatibly as

(T ∗
1 )

−1 QT−1
1 =

[
Q1 Q2

Q∗
2 Q3

]
.

By the SVD, there exists a unitary matrix U1 such that

U1Q1U∗
1 =

[
Σ2

1 0
0 0

]
, Σ1 > 0.

Setting T−1
2 = diag(U∗

1 , I) implies that

(T ∗
2 )

−1 (T ∗
1 )

−1 QT−1
1 T−1

2 =

⎡

⎣
Σ2

1 0 Q̂2,1

0 0 Q̂2,2

Q̂∗
2,1 Q̂∗

2,2 Q3

⎤

⎦.

Since Q ≥ 0, Q̂2,2 = 0. Let

(T ∗
3 )

−1 =

⎡

⎣
I 0 0
0 I 0

−Q̂∗
2,1Σ

−2
1 0 I

⎤

⎦.

Direct computation yields

T3T2T1PT ∗
1 T ∗

2 T ∗
3 =

⎡

⎣
Σ2

1 0 0
0 I 0
0 0 0

⎤

⎦,

(T ∗
3 )

−1 (T ∗
2 )

−1 (T ∗
1 )

−1 QT−1
1 T−1

2 T−1
3 =

⎡

⎣
Σ2

1 0 0
0 0 0
0 0 Q3 − Q̂∗

2,1Σ
−2
1 Q̂2,1

⎤

⎦.

Finally, a unitary matrix U2 can be obtained such that

U2
(
Q3 − Q̂∗

2,1Σ−2
1 Q̂2,1

)
U∗

2 =

[
Σ3 0
0 0

]
, Σ3 > 0.

Setting T = T4T3T2T1 yields the desired expressions for T PT ∗ as well as for
(T ∗)−1QT−1 with Σ2 = I. ��
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The proof of Theorem A.6 shows that if Q is nonsingular, then P and Q−1 are
simultaneously diagonalizable in the sense that there exists a nonsingular matrix
M such that M∗PM and M∗Q−1M are both diagonal. In fact the positivity is not
required. See Problem A.28 in Exercises.

A.5 Algebraic Riccati Equations

In Chap. 5, the necessary and sufficient conditions to the ARE (5.96) are obtained
for the existence of the stabilizing solution. This section will present a numerical
algorithm to obtain the unique stabilizing solution when the existence conditions
hold. For simplicity, it is assumed that det(A) �= 0. The case of det(A) = 0 will be
commented at the end of the section.

Let R = R∗ > 0, G = BR−1B∗, and Q = Q∗ ≥ 0. Denote

S =

[
A+G(A∗)−1Q −G(A∗)−1

−(A∗)−1Q (A∗)−1

]
, J =

[
0 −In

In 0

]
. (A.22)

Then X is a solution to the ARE (5.96) such that det(In +XG) �= 0, if and only if
(refer to Problem A.29 in Exercises)

[−X In
]

S

[
In

X

]
= 0. (A.23)

It can be verified that J−1S∗J = S−1. Such matrices are called simplectic. Thus,
λ = re jθ is an eigenvalue of S implies that λ̄−1 = r−1e jθ is also an eigenvalue of S.
As a result, the 2n eigenvalue of S form a mirror image pattern about the unit circle.
Moreover, the following result is true.

Lemma A.6. Let G = BR−1B∗, and Q = C∗C. If (A,B) is stabilizable and (C,A)
has no unobservable modes on the unit circle, i.e., (5.100) holds, then the simplectic
matrix S in (A.23) has no eigenvalues on the unit circle.

Proof. By the contradiction argument, assume that S has an eigenvalue e jθ . Then
there exist vectors q and v of dimension n such that

S

[
q
v

]
= e jθ

[
q
v

]
�=
[

0
0

]
.

The above is equivalent to

[A+G(A∗)−1Q]q−G(A∗)−1v = e jθq, (A.24)

−(A∗)−1Qq+(A∗)−1v = e jθv. (A.25)
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Multiplying (A.25) by G from left and adding it to (A.24) give

Aq− e jθGv = e jθq, (A.26)

−Qq+ v = e jθA∗v. (A.27)

Premultiplying (A.26) by e− jθv∗ and (A.27) by q∗ yield

e− jθv∗Aq = v∗Gv+ v∗q,

−q∗Qq+q∗v = e jθq∗A∗v.

It follows that q∗Qq+ v∗Gv = 0, and thus,

v∗B = 0 =⇒ v∗G = 0, Cq = 0 =⇒ Qq = 0.

Substituting the above into (A.26) and (A.27) leads to

Aq = e jθq, A∗v = e− jθv.

Since q and v are not zero simultaneously, e jθ is either an unobservable mode of
(C,A), contradicting to (5.100), or uncontrollable mode of (A,B), contradicting to
the stabilizability of (A,B). Hence, the lemma is true. ��

If S has no eigenvalues on the unit circle, then its 2n eigenvalues are split into
evenly inside and outside the unit circle, in light of the property of the simplectic
matrix. Let T be the 2n×n matrix, whose columns consist of the basis vectors of the
stable eigensubspace of S, i.e., eigensubspace of S corresponding to the eigenvalues
of S inside the unit circle. Then

ST = TΛ−, T =

[
T1

T2

]
, (A.28)

where T1, T2, andΛ− are all n×n matrices, and eigenvalues ofΛ− coincide with the
stable eigenvalues of S.

Lemma A.7. Let S be the simplectic matrix in (A.23). Under the same hypotheses
as in Lemma A.6, the stable eigenspace represented by T as in (A.28) satisfies
T ∗

1 T2 ≥ 0 and det(T1) �= 0.

Proof. Define {Uk}= {TΛ k−} where T is defined as in (A.28). Then

U0 = T, Uk+1 = (TΛ−)Λ k
− = STΛ k

− = SUk.

With T1 and T2 as in (A.28),

T ∗
1 T2 =U∗

0 VU0, V =

[
0 I
0 0

]
.
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Hence, recursive computations and Uk+1 = SUk yield

Yk =U∗
0 VU0 −U∗

k VUk =
k−1

∑
i=0

(
U∗

i VUi −U∗
i+1VUi+1

)
=

k−1

∑
i=0

U∗
i (V − S∗VS)Ui.

Because Q ≥ 0 and G ≥ 0,

V − S∗VS =

[
I −Q
0 I

][
Q 0
0 A−1G(A∗)−1

][
I 0

−Q I

]
≥ 0

from which Yk ≥ 0 follows. Stability of Λ− implies that Uk = TΛ k− → 0 as k → ∞,
and thus, U ′

0VU0 = Y∞ = T ∗
1 T2 ≥ 0. Now write (A.28) as

[
A+G(A∗)−1Q −G(A∗)−1

−(A∗)−1Q (A∗)−1

][
T1

T2

]
=

[
T1

T2

]
Λ−,

which is in turn the same as

AT1 +G
[
(A∗)−1QT1 − (A∗)−1T2

]
= T1Λ−, (A.29)

−(A∗)−1QT1 +(A∗)−1T2 = T2Λ−. (A.30)

The expression of (A.30) implies that (A.29) is the same as

AT1 −GT2Λ− = T1Λ−. (A.31)

Using contradiction argument, assume that T1 is singular. Let v ∈ N (T1). Pre-
multiplying (A.31) by v∗Λ∗−T ∗

2 and postmultiplying by v give

−v∗Λ∗
−T ∗

2 GT2Λ−v = v∗Λ∗
−T ∗

2 T1Λ−v,

where T1v = 0 is used. Since Λ∗−T ∗
2 GT2Λ− ≥ 0, and T ∗

2 T1 ≥ 0,

GT2Λ−v = 0 ⇐⇒ B∗T2Λ−v = 0, (A.32)

by G = BR−1B∗. Postmultiplying (A.31) by v concludes that T1Λ−v = 0, by
GT2Λ−v = 0. That is, v ∈ N (T1) implies that Λ−v ∈ N (T1), and thus, N (T1)
is an Λ−-invariant subspace. As a result, there exists an eigenvector 0 �= v ∈ N (T1)
such that Λ−v = λv and |λ | < 1 due to stability of Λ−. Rewrite (A.30) into
−QT1 +T2 = A∗T2Λ−. Then multiplication by v from right yields

T2v = λA∗T2v ⇐⇒ A∗T2v = λ−1T2v.
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In connection with (A.32), 0 = B∗T2Λ−v = λB∗T2v. By the PBH test with q = T2w
and the fact that |λ−1|> 1, (A,B) is not stabilizable, contradicting to the hypothesis
of the lemma. Hence, det(T1) �= 0 is true. ��

With the established results, it is ready to show that X = T2T−1
1 is the stabilizing

solution to the ARE in (5.96) which is the ARE

X = A∗(I+XG)−1XA+Q (A.33)

under the notations in (A.23). Indeed, under the condition that S has no eigenvalues
on the unit circle and that (A,B) is stabilizable, T1 is nonsingular and T ∗

1 T2 ≥ 0,
which implies that

X = T2T−1
1 = T1(T

∗
1 T1)

−1(T ∗
1 T2)(T

∗
1 T1)

−1T ∗
1 ≥ 0.

By multiplying, T−1
1 from right on both sides of (A.28) obtains

S

[
T1

T2

]
=

[
T1

T2

]
Λ− ⇐⇒ S

[
I
X

]
=

[
I
X

]
Ac, (A.34)

where Ac = T1Λ−T−1
1 is a stability matrix. If premultiplying the equation on the

right of (A.34) by
[

I 0
]

from left, then

Ac = A+G(A∗)−1Q−G(A∗)−1X = A+G(A∗)−1(Q−X)

= A−G(I+XG)−1XA = A+BF,

where (Q−X) =−A∗(I +XG)−1XA from the ARE (A.33) is used and:

F = −R−1B(I+XBR−1B)−1XA =−R−1(I+B∗XBR−1)−1BXA

= −(R+B∗XB)−1BXA

is the state-feedback gain. Stability of Ac implies that F is a stabilizing feedback
gain, and thus, X = T2T−1

1 is the stabilizing solution to the ARE (5.96), i.e., (A.33).
In summary, the stabilizing solution to the ARE (A.33) can be obtain by

computing the stable eigensubspace of S as in (A.28) under the condition that (A,B)
is stabilizable and (C,A) has no unobservable modes on the unit circle. Clearly, the
Schur decomposition is well suited for such a task, which is numerically reliable and
efficient. The stabilizing solution X = T2T−1

1 can then be obtained. If A is singular,
then the generalized eigenvalue/eigenvector problem (which is also referred to as
matrix pencil)

(
λ
[

I G
0 A∗

]
−
[

A 0
−Q I

])
x = 0 (A.35)
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needs be solved for each stable eigenvalue λ and its corresponding eigenvector x. If
λ has multiplicity μ , then (A.35) needs be added by

(
λ
[

I G
0 A∗

]
−
[

A 0
−Q I

])
xi +

[
I G
0 A∗

]
xi−1 = 0,

for i = 2, . . . ,μ with x = x1. Such generalized eigenvectors are called generalized
principle vectors.

Exercises

A.1. A subset S ⊂ IFn is said to be a closed subspace, if S is itself a vector space.
Show that both range space and null space associated with a given matrix are closed
subspaces.

A.2. Show that the Euclidean norm ‖ · ‖ satisfies (i) ‖x‖ ≥ 0, (ii) ‖x‖ = 0, if and
only if x = 0, (iii) ‖αx‖ = |α|‖x‖, and (iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. Note: Any map:
x �→ IR+ satisfies the properties (i)–(iv) defines a norm, which can be different from
the Euclidean norm.

A.3. For x ∈ IFn and p ≥ 1, define

‖x‖p =

(
n

∑
k=1

|xk|p
)1/p

, ‖x‖∞ = sup
k≥1

|xk|.

Show that ‖ · ‖p defines the norm, i.e., ‖ · ‖p satisfies properties (i)–(iv) as in
Problem A.2. Draw the unit circle in the case p = 1,2,∞ for IR2.

A.4. Prove Lemma A.1.

A.5. (i) Show that

rank{AB}=
{

rank{A}, if det(BB′) �= 0
rank{B}, if det(A′A) �= 0

(ii) Show that rank{ARB}= rank{R} if det(A′A) �= 0 and det(BB′) �= 0.

A.6. Prove Lemma A.2.

A.7. (i) Prove (A.2). (ii) Let A∈ IFn×m and B∈ IFm×n and show that A(Im+BA)−1 =
(In +AB)−1A.

A.8. Show that (A.3) is true for the case when both A and B are square of the
same dimension. (Hint: If E be an elementary matrix which performs some row
operations to A, then det(EA) = det(E)det(A).)
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A.9. (Laplace expansion) Let A = {ai,k}n,n
i,k=1,1. Show that

det(A) =
n

∑
k=1

ai,kγi,k, γi,k = (−1)i+k det(Mi,k),

where Mi,k is the (n− 1)× (n− 1) matrix obtained by deleting the ith row and kth
column of A and 1 ≤ i ≤ n. (Note: γi,k is called cofactor corresponding to ai,k, and
det(Mi,k) is called the (i,k)th minor of the matrix; if i = k, det(Mi,k) is called leading
or principle minor.)

A.10. (i) If A is nonsingular, show that

det

([
A B
C D

])
= det(A)det(D−CA−1B).

(ii) If D is nonsingular, show that

det

([
A B
C D

])
= det(D)det(A−BD−1C).

(iii) Show that det(I+AB) = det(I+BA), if AB and BA are both square.

A.11. Suppose that A = A∗ > 0. Show that

x∗Ax− x∗b−b∗x+ c ≥ c−b∗A−1b.

A.12. (i) Suppose that A−1 exists. Show that

[
A B
C D

]−1

=

[
A−1 +A−1BΔ−1CA−1 −A−1BΔ−1

−Δ−1CA−1 Δ−1

]
,

where Δ = D−CA−1B is known as the Schur complement of A.
(ii) Suppose that D−1 exists. Show that

[
A B
C D

]−1

=

[
∇−1 −∇−1BD−1

−D−1C∇−1 D−1 +D−1C∇−1BD−1

]
,

where ∇= A−BD−1C is known as the Schur complement of D.
(iii) If both A−1 and D−1 exist, prove the matrix inversion formula:

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1.

A.13. Let A ∈ Cn×r, B ∈ Cm×k, and X ∈ Cr×m. Show that

vec(AXB) =
(
BT ⊗A

)
vec(X),

and thus, vec(AX +XB) = (BT ⊕A)vec(X).



Exercises 397

A.14. (Gram–Schmidt orthogonalization) Given m linearly independent vectors
{xk}m

k=1, develop a procedure to obtain an orthonormal basis {vk}m
k=1 which span the

same range space of {xk}m
k=1. (Hint: One may proceed as follows. Step 1: Choose

v1 = x1/‖x1‖. Step 2: Set

v2 =
x2 −αv1

‖x2 −αv1‖ , α = v∗1x2.

Step k (2 < k ≤ m): For 1 ≤ i < k, compute αi,k = v∗i xk. Set

vk =

(

xk −
k−1

∑
i=1

αi,kvi

)/∥∥
∥
∥
∥

xk −
k−1

∑
i=1

αi,kvi

∥∥
∥
∥
∥
.

Show that such a set of {vk}m
k=1 is indeed an orthonormal basis.)

A.15. Let S be an orthogonal matrix, whose columns form an orthonormal basis for
the projection P. Let S⊥ be the complement of S, i.e., satisfying (A.7). Show that
P = S

(
S∗+ΘS∗⊥

)
for someΘ , and

PP∗ = S(I+ΘΘ ∗)S∗, (I−P)∗(I −P) = S⊥(I +Θ ∗Θ)S∗⊥.

Show also that Q = I−P is a projection, and ‖Q‖F = ‖P‖F .

A.16. Let A ∈ Cn×m have rank r. Show that A = SRV ∗ where R of size r × r is
nonsingular, and both S and V are orthogonal matrices. Show also that all pseudo-
inverses of A, satisfying (A.12), are parameterized by

A† = (V +V⊥Θv)R
−1 (S∗+ΘsS

∗
⊥) ,

and the Moore-Penrose pseudoinverse are given by A+ =VR−1S∗ whereΘv andΘs

are arbitrary, and
[

S∗

S∗⊥

]
[

S S⊥
]
= In,

[
V ∗

V ∗
⊥

]
[

V V⊥
]
= Im.

A.17. Prove Theorem A.3. (Hint: Use (A.13) and

(λ In −A)−1 =
1

det(λ In −A)

(
R1λ n−1 +R2λ n−2 + · · ·+Rn

)

to show that det(λ In −A)In =
(
R1λ n−1 +R2λ n−2 + · · ·+Rn

)
(λ In −A). By match-

ing the coefficient matrices of λ k on both sides, show that

a1 = −Tr{A}, R1 = In,

a2 = −1
2

Tr{R2A}, R2 = R1A+ a1In,

...
...

an−1 = − 1
n− 1

Tr{Rn−1A}, Rn = Rn−1A+ an−1In,

an = −1
n

Tr{RnA}, 0 = RnA+ anI.
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Finally, show that the recursive formulas on the right-hand side lead to

0 = RnA+ anIn = An + a1An−1 + · · ·+ anIn,

which concludes the proof for the Cayley–Hamilton theorem.)

A.18. Let P be a Householder reflection matrix in (A.14). Verify (A.15) and (A.16).

A.19. For square matrices, show that (i) the product of upper triangular matrices is
upper triangular, (ii) the inverse of a triangular matrix is upper triangular, and (iii)
the equality in (A.17) can be converted into AQi = QiRi, where Qi is an orthogonal,
and Ri is a triangular matrix.

A.20. Consider Theorem A.3. (i) Show that there are at least 2� distinct A-invariant
subspaces. (ii) Show that if κ of {Ji}�i=1 has sizes greater than 1, then there are at
more (2�+κ) distinct A-invariant subspaces. (Note: IFn and 0 are also A invariant).

A.21. Suppose that A,B∈ Cn×n and A has n distinct eigenvalues. Show that if A and
B are commute, i.e., AB = BA, then A and B are simultaneously diagonalizable, i.e.,
there exists a nonsingular matrix T such that both ΛA = T−1AT and ΛB = T−1BT
are diagonal.

A.22. Suppose that A,B ∈ Cn×n are diagonalizable. Show that A and B are
simultaneously diagonalizable, if and only if A and B are commute. (Note: When
A and B are not diagonalizable, eigenvalue decomposition can be replaced by Schur
decomposition as follows: There exists a unitary matrix Q such that TA = Q∗AQ and
TB = Q∗BQ are both upper triangular, if and only if A and B commute. See p. 81 in
[50].)

A.23. Let A ∈ Cn×n be a hermitian matrix. Then all eigenvalues of A are real.
Denote n+, n−, and n0 as the number of strictly positive, strictly negative, and
zero eigenvalues of A, respectively. Then (n+,n−,n0) is called the inertia of A. (i)
Show that S∗AS does not change the inertia of A whenever S is nonsingular. (ii)
Assume that A is nonsingular and B ∈ Cn×n is also a hermitian. Show that A and B
are simultaneously diagonalizable, if and only if A−1B is diagonalizable. (Note:
Hermitian matrices A and B are simultaneously diagonalizable, if there exists a
nonsingular matrix S such that both S∗AS and S∗BS are diagonal.)

A.24. Given A ∈ Cn×n, use the Schur decomposition to show that for every ε > 0,
there exists a diagonalizable matrix B such that ‖A−B‖2 ≤ ε . This shows that the
set of diagonalizable matrices is dense in Cn×n and that the Jordan canonical form
is not a continuous matrix decomposition.

A.25. Let A and A+E be in IRn×m with m ≥ n. Show that

(i) |σk(A+E)−σk(A)| ≤ σ1(E) = ‖E‖2,

(ii)
n

∑
k=1

[σk(A+E)−σk(A)]
2 ≤ ‖E‖2

F .
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Let ak be the kth column of A and Ar =
[

a1 · · · ar
]
. Show that

σ1(Ar+1)≥ σ1(Ar)≥ σ2(Ar+1)≥ ·· · ≥ σr(Ar+1)≥ σr(Ar)≥ σr+1(Ar+1),

where 1 < r < n.

A.26. (Condition number) Let A ∈ IRn×n be nonsingular. Consider

(A+ εE)x(ε) = y+ εv, x = x(0).

(i) Show that x(ε) is differentiable at ε = 0 and

ẋ(0) = A−1(v−Ex).

(ii) Let x(ε) = x+ ε ẋ(0)+O
(
ε2
)
. Show that

‖x(ε)− x‖
‖x‖ ≤ ε

∥
∥A−1

∥
∥
(‖v‖
‖x‖ + ‖E‖

)
+O

(
ε2) .

(iii) Define the condition number κ(A) = ‖A‖ ∥∥A−1
∥
∥. Show that

κ(A) = ‖A‖ ∥∥A−1
∥
∥=

σmax(A)
σmin(A)

.

(iv) Denote ρA = ε‖E‖/‖A‖ and ρy = ε‖v‖/‖y‖. Show that

‖x(ε)− x‖
‖x‖ ≤ κ(A)(ρA +ρy)+O

(
ε2) .

A.27. Suppose that Θ is a hermitian matrix. PartitionΘ as

Θ =

[
Θ1 Θ ∗

2
Θ2 Θ3

]
, Θ1 ∈ IFn1×n1 , Θ3 ∈ IFn3×n3 .

(i) IfΘ1 > 0, andΘ3 < 0, show thatΘ has n1 strictly positive and n3 strictly negative
eigenvalues. (ii) If Θ1 ≥ 0 and Θ3 ≤ 0 with one of them singular, show that the
numbers of positive, and negative eigenvalues of Θ cannot be concluded based on
Θ1 andΘ3 alone.

A.28. Let A and B be hermitian matrices of the same size. Suppose that P =
αA+βB is positive definite for some real α and β . Show that A and B are simul-
taneously diagonalizable. (Hint: Hermitian matrices A and B are simultaneously
diagonalizable, if and only if A and P or B and P are simultaneously diagonalizable.)
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A.29. Assume that det(A) �= 0. Denote

S =

[
A+G(A∗)−1Q −G(A∗)−1

−(A∗)−1Q (A∗)−1

]
, J =

[
0 −In

In 0

]
,

where G = BR−1B∗, Q = C∗C, and R > 0. (i) Show that J−1S∗J = S−1. Such a
matrix is called simplectic. (ii) Show that X is a solution to the ARE (5.96) such
that (In +XG)−1 exists, if and only if X satisfies

[−X In
]

S

[
In

X

]
= 0.



Appendix B
Random Variables and Processes

This appendix gives an overview for some of the materials from probability theory
and theory of random processes which are used in this text. The focus is on real
random variables. This appendix serves to refresh the reader’s memory, or to fill in
a few gaps in the reader’s knowledge, but, by no means, replaces a formal course
on probability theory and random processes. Readers are advised to consult more
extensive textbooks on this subject.

B.1 Probability

An experiment may result in several possible outcomes. The collection of all
possible outcomes from an experiment forms a sample space Ω . An event A is a
subset of Ω . If A = Ω , then it is the sure event. If A is empty, denoted by /0, then
it is the impossible event. Let F be the collection of all events. It is assumed that
F is a σ -filed, meaning that it contains /0 and is closed under complements and
countable unions. A probability measure P(·) is a mapping from F into IR satisfying
the following three axioms:

(i) P(A)≥ 0, (ii) P(Ω) = 1,
(iii) P(Ai ∪Ak) = P(Ai)+P(Ak) if Ai ∩Ak = /0. (B.1)

Furthermore, it is required in the infinity countable case,

P

(
∞⋃

k=1

Ak

)

=
∞

∑
k=1

P(Ak) (B.2)

provided that the events are pairwise disjoint. The triplet (Ω ,F ,P) is called a
probability space.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
DOI 10.1007/978-1-4614-2281-5, © Springer Science+Business Media, LLC 2012

401



402 B Random Variables and Processes

The joint probability of two events A and B is P(A∩B). By the elementary set
operations and the axioms of probability, there holds

P(A∪B) = P(A)+P(B)−P(A∩B)≤ P(A)+P(B). (B.3)

More generally, there holds union bound

P

(
∞⋃

k=1

Ak

)

≤
∞

∑
k=1

P(Ak). (B.4)

The conditional probability of A given the occurrence of B is defined as

P(A|B) = P(A∩B)
P(B)

, if P(B) �= 0.

It follows that the joint probability of two events A and B is given by

P(A∩B) = P(A|B)P(B). (B.5)

In fact, the above holds even if P(B) = 0. Since P(A∩B) = P(B∩A) = P(B|A)P(A),

P(A|B) = P(B|A)P(A)
P(B)

(B.6)

which is the well-known Bayes rule. By repeated applications of (B.5),

P(A1 ∩A2 · · · ∩An) = P(A1|A2 · · ·An) · · ·P(An−1|An)P(An)

can be obtained which is the chain’s rule for probabilities.
The events {Ai}m

i=1 are said to form a partition of B, if

B = ∪m
i=1Ai ∩B, Ai ∩A j = /0 ∀ i �= j.

In this case, the law of total probability states that

P(B) =
m

∑
i=1

P(B∩Ai) =
m

∑
i=1

P(B|Ai)P(Ai). (B.7)

This law enables the computation of the probability of an event by analyzing disjoint
constituent events and allows Bayes rule to be written as

P(Ai|B) = P(B|Ai)P(Ai)
m

∑
j=1

P(B|A j)P(A j)

. (B.8)
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Two events A and B are independent, if and only if

P(A∩B) = P(A)P(B) (B.9)

implying that P(A|B) = P(A) by (B.6), i.e., the conditioning upon B does not alter
the probability of the occurrence of A, if A and B are independent. The multiple
events {Ai}m

i=1 are jointly independent, if for every choice of subsets of these events{
Aki

}μ
i=1,

P
(
Ak1 ∩Ak2 · · · ∩Akμ

)
= P
(
Ak1

)
P
(
Ak2

)
P
(
Akμ

)
. (B.10)

Joint independence implies pairwise independence of the underlying events, but the
converse is not true in general.

B.2 Random Variables and Vectors

For a discrete r.v. (random variable), its sample space Ω is discrete in the sense that
there exists an invertible map between Ω and a discrete subset of IR. As such, it
can be represented by X with values xi ∈ IR and specified by the probability mass
function (PMF):

P[X = xi] := P[ω ∈Ω : X(ω) = xi], i = 1,2, . . . . (B.11)

Clearly, P[X = xi] ≥ 0, and ∑i P[X = xi] = 1. It can also be described by the
cumulative distribution function (CDF):

PX(x) = P[X ≤ x] = ∑
i:xi≤x

P[X = xi] =∑
i

P[X = xi]1(x− xi), (B.12)

where 1(x) is the unit step function. Thus, PX(−∞) = 0, and PX(∞) = 1.
For the continuous r.v., its CDF is the same as PX(x) = P[X ≤ x] but is continuous

and nondecreasing in x. If PX(x) is differentiable at all x, then

pX(x) =
dPX(x)

dx
≥ 0 (B.13)

is the PDF and satisfies

P[a < X ≤ b] =
∫ b

a
pX(x) dx = PX(b)−PX(a) (B.14)

for b > a. In particular, pX(x)dx is the probability for x ∈ (x, x+ dx).

Example B.1. Consider the toss of a coin. One side of the coin is mapped to 0, and
the other side to 1. The sample space is taken as

Ω = {Ai}3
i=0 = {(0,0),(0,1),(1,0),(1,1)}.
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Under the equal probable assumption, P(Ai) = 0.25. Let X be a discrete r.v. with
xi = i for i = 0,1,2,3, the elements of the corresponding sample space, and
P[X = xi] = 0.25. Then this experiment of tossing a coin can be represented by
X . Its CDF is given by

PX(x) = 0.25 [1(x)+ 1(x− 1)+ 1(x− 2)+1(x−3)].

Next, consider the continuous r.v. with Gaussian distribution or the PDF

pX(x) =
1√

2πσX
exp

{
− (x−mX)

2

2σ2
X

}
.

The PDF pX (x) has the shape of a bell, and is symmetric with respect to x = mX

which is the peak of pX(x). If mX = 0, and σ2
X = 1, then

PX(x) =
∫ x

−∞
pX(x) dx = 1−

∫ ∞

x

1√
2π

e−y2/2 dy = 1−Q(x), (B.15)

where Q(·) is the Q function or the tail integration.

It is possible for outcomes to be a collection of several r.v.’s. In this case,
X denotes random vector of dimension n > 1 with components {Xi}n

i=1 random
variables. Its joint CDF is defined by

PX(x) = P[X ≤ x] = P[X1 ≤ x1, . . . ,Xn ≤ xn]. (B.16)

Clearly, the joint CDF is nonnegative, nondecreasing in each of its n arguments, and
bounded above by 1. The joint PDF is given by

pX(x) = pX1,...,Xn(x1, . . . ,xn) =
∂ nPX1,...,Xn(x1, . . . ,xn)

∂x1 · · ·∂xn
, (B.17)

provided that the partial derivatives exist.
The marginal distributions can be introduced. In the case of n = 2, the marginal

PDF and CDF for X1 are given, respectively, by

pX1(x1) =

∫ ∞

−∞
pX1,X2(x1,x2) dx2, (B.18)

PX1(x1) = PX1,X2(x1,∞) = P[X ≤ x1,X2 < ∞]. (B.19)

In addition, the conditional CDF for X1, given X2 ≤ x2, is

PX1|X2≤x2
(x1) =

P[X1 ≤ x1,X2 ≤ x2]

P[X2 ≤ x2]
=

PX1,X2(x1,x2)

PX2(x2)
. (B.20)
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The conditional CDF PX1|X2≤x2
(x1) is itself CDF, satisfying

PX1|X2≤x2
(−∞) = 0, PX1|X2≤x2

(∞) = 1,

and the nondecreasing property in x1. Taking derivative with respect to x1 in (B.20)
yields the conditional PDF

pX1|X2≤x2
(x1) =

∂PX1|X2≤x2
(x1)

∂x1
. (B.21)

On the other hand, the conditional PDF for X1, given X2 = x2, is defined by

pX1|X2
(x1|x2) := pX1|X2=x2

(x1) =
pX1,X2(x1,x2)

pX2(x2)
, if pX2(x2) �= 0. (B.22)

Note that pX1|X2
(x1|x2) is a PDF of X1 with X2 = x2 fixed. The above marginal and

conditional distributions can be extended easily to random vectors of dimension
n > 2. The details are skipped.

The n random variables Xi are independent, if and only if

PX1,...,Xn(x1, . . . ,xn) = PX1(x1) · · ·PXn(xn).

The above is equivalent to

pX1,...,Xn(x1, . . . ,xn) = pX1(x1) · · · pXn(xn).

The independence of n random variables implies that any pair or subset of these are
independent, but the converse is not true in general.

Often the random vector of interest is a transformation of another. Its general
form is Y = f (X) with X dimension of n and Y dimension of m. Given the
distribution of X , how to find the distribution of Y is the question to be answered
next. A general procedure is computing the CDF of Y via

PY (y) = P[Y ≤ y] = P[X : f (x)≤ y]. (B.23)

Example B.2. Let X1 and X2 be two identical and independent Gaussian r.v.’s of
zero mean and variance σ2. Define transformation

Y = f (X) =
√

X2
1 +X2

2 .

By PY (y) = P[Y ≤ y] = P
[
x :
√

x2
1 + x2

2 ≤ y
]
, the CDF for Y is

PY (y) =
1

2πσ2

∫ ∫
exp

{
−x2

1 + x2
2

2σ2

}
dx1dx2
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over
√

x2
1 + x2

2 ≤ y. The polar transform x1 = r cos(θ ) and x2 = r sin(θ ) gives

PY (y) =
1

2πσ2

∫ 2π

0

∫ y

0
re−

r2

2σ2 drdθ = 1− e−
y2

2σ2 .

It follows that the PDF for Y is pY (y) = 0 for y < 0 and

pY (y) =
dFY (y)

dy
=

y
σ2 e−

y2

2σ2 , for y ≥ 0,

which is termed Rayleigh distribution. For the case when X1 or X2 have nonzero
mean, Y is Rician distributed (Problem B.4 in Exercises).

B.3 Expectations

For a given r.v. X , its expectation is defined as

E{X} :=

{∫ ∞
−∞ xpX(x) dx, if X is a continuous r.v.,

∑i xiP[X = xi], if X is a discrete r.v. .
(B.24)

Expected values are simply probabilistic averages of random variables in an exper-
iment, which are also termed mean values. For transformed r.v.’s, their expectations
are defined by

E{ f (X)} :=

{∫ ∞
−∞ f (X)pX (x) dx, for continuous r.v.’s,

∑i f (xi)P[X = xi], for discrete r.v.’s.
(B.25)

B.3.1 Moments and Central Moments

The expected value in (B.24) is also called the first moment of r.v. X and denoted
by X . The nth moment for positive integer n is defined by

Xn := E{ f (X)}= E{Xn} .

The second moment X2 is commonly referred to as mean-squared value of X .
Often r.v.’s may not have zero means. Hence, it makes sense to define central

moments for the case n > 1:

∣
∣X −X

∣
∣n = E

{∣∣X −X
∣
∣n} . (B.26)
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The second central moment reduces to the familiar variance

var{X}= E
{∣
∣X −X

∣
∣2
}
= X2 −X

2
. (B.27)

The operation of expectation is linear in the sense that

E{X1 +X2 + · · ·+Xn}= E{X1}+E{X2}+ · · ·+E{Xn}. (B.28)

However, var{·} is not linear in general. But if Xi’s are independent, then there holds

var{X1 + · · ·+Xn}= var{X1}+ · · ·+ var{Xn}. (B.29)

Let X be a continuous random vector and Y = f (X). Then the expected value of
Y is given by (the discrete counterpart is left as an exercise)

E{Y}=
∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x)pX (x) dx. (B.30)

The conditional expectation can be defined similarly:

E{ f (X)|Y = y}=
∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x)pX |Y (x|y) dx. (B.31)

The quantity E{X |Y = y} can be randomized to E{X |Y} by taking value
E{X |Y(ω) = y} as the experimental outcome ω leads to Y (ω) = y. Hence, E{X |Y}
is a function of r.v. Y , and there holds

E{E[X |Y ]}= E{X}.

If X and Y are conditionally independent for a given Z, then

E{XY |Z}= E{X |Z}E{Y |Z}.

B.3.2 Correlation and Covariance

If two r.v.’s X and Y have zero mean and are not independent, then

cor{X ,Y}= E{XY}=
∫ ∞

−∞

∫ ∞

−∞
xypXY (x,y) dxdy (B.32)

defines the correlation between the two. If cor{X ,Y} = E{X}E{Y}, then X and Y
are termed uncorrelated, and if cor{X ,Y} = 0, then they are termed orthogonal. A
more accurate quantity is the covariance between X and Y :

cov{X ,Y}= E{(X −mX)(Y −mY )}= cor{X ,Y}−mXmY , (B.33)
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where mX = E{X} and mY = E{Y} may not be zero. Clearly, cov{X ,Y}= 0 implies
that X and Y are uncorrelated. The degree of the correlation between X and Y is
measured by correlation coefficient

ρXY =
cov{X ,Y}

√
cov{X}cov{Y} =

E{(X −mX)(Y −mY )}√
E{(X −mX)2}E{(Y −mY )2} . (B.34)

It can be easily shown that 0 ≤ |ρXY | ≤ 1. Independent r.v.’s are uncorrelated, but
the converse does not hold in general except Gaussian r.v.’s for which independence
is equivalent to being uncorrelated.

Example B.3. The random vector X with n tuple is Gaussian, if the joint PDF is
given by

pX(x) =
1

√
(2π)n det(Σ)

exp

{
− (x−mX)

∗Σ−1(x−mX)

2

}
, (B.35)

where mX is the mean and Σ is the covariance matrix. The (i,k)th element of Σ
represents the correlation between Xi and Xk, and has the expression

Σi,k = E{(Xi −mXi)(Yk −mYk)}.
If Σi,k = 0 for all i �= k, then Σk,k = diag(σ2

X1
, . . . ,σ2

Xn
), and thus,

pX(x) =
n

∏
k=1

1
√

2πσ2
Xk

exp

{

− (xk −mXk)
2

2σ2
Xk

}

pX1(x1) · · · pXn(xn).

That is, for Gaussian r.v.’s, being uncorrelated is equivalent to independence. It is
left as an exercise (Problem B.8) to show that linear transform of Gaussian random
vectors and conditional (Gaussian) r.v.’s conditioned on Gaussian r.v.’s are also
Gaussian-distributed.

Let Y = X1X2 · · ·Xn. Then its expectation is

E{Z}= E{X1X2 · · ·Xn}=
∫ ∞

−∞
· · ·
∫ ∞

−∞
x1x2 · · ·xn pX(x)dx.

If Xi’s are independent, then E{Z}= E{X1}· · ·E{Xn}.

B.3.3 Characteristic Functions

For r.v. X , its characteristic function is defined by:

ΦX (ω) = E
{

e jωX}=
∫ ∞

∞
e jωx pX(x) dx. (B.36)
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So, ΦX (ω) is the (conjugate of the) Fourier transform of the PDF. For n r.v.’s
X1, . . . ,Xn, the joint characteristic function is

ΦX (ω1, . . . ,ωn) = E

{

exp

[

j
n

∑
i=1

ωiXi

]}

.

It follows that Φ(0) = 1 and |ΦX (ω1, . . . ,ωn)| ≤ 1. Moreover, the PDF can be
recovered via inverse Fourier transform of the characteristic function.

In regard to moments, it is noted that

dΦX(ω)

dω
=

∫ ∞

∞
jxe jωx pX(x) dx.

Multiplying − j to both sides yields

X = − j
dΦX(ω)

dω

∣∣
∣
∣
ω=0

=

∫ ∞

∞
xe jωx pX(x) dx. (B.37)

By an induction argument, the nth moment of X is obtained as

Xn = (− j)n dnΦX (ω)

dωn

∣
∣∣
∣
ω=0

=

∫ ∞

∞
xne jωx pX(x) dx. (B.38)

If X and Y are jointly distributed, then ΦX (ω) =ΦX ,Y (ω ,0). They are independent,
if and only if

ΦX ,Y (ω1,ω2) =ΦX(ω1)ΦY (ω2).

Let {Xi} be a set of n independent r.v.’s and Z = X1 +X2 + · · ·+Xn. Then

ΦZ(ω) =ΦX1(ω)ΦX2(ω) · · ·ΦXn(ω). (B.39)

It is left as an exercise to show that the PDF of Z is convolution of {pXi(xi)}’s.

B.4 Sequences of Random Variables

Let {Xk} be a sequence of random vectors. If Xn(ω) → X(ω) for all ω ∈ Ω , then
Xk is said to be convergent to X everywhere as n → ∞. Convergence everywhere is
usually too restrictive. The commonly used notions are:

(C1) Xk converges to X almost surely or with probability 1, if Xn(ω) → X(ω) for
almost all ω (i.e., for all ω ∈ A ⊂Ω such that P(A) = 1).

(C2) Xk converges to X in mean square, if E{‖Xk −X‖2}→ 0.
(C3) Xk converges to X in probability, if P[‖Xk −X‖> ε]→ 0 ∀ε > 0.
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Both (C1) and (C2) imply (C3). As a result, (C1) and (C2) are called the strong law
of convergence, while (C3) is called the weak law of convergence. Conversely, (C3)
implies that a subsequence of {Xk} satisfies (C1). If, in addition, ‖Xk‖< α for some
α > 0 and all n ≥ n0 for some n0 > 0, and almost all ω , then (C2) holds.

Example B.4. Let {Xi}∞i=1 be independent and identically distributed (i.i.d.) r.v.’s
with PDF fX (x), mean mX , and variance σ2

X . Then

Sn =
1
n

n

∑
i=1

Xi, n = 1,2, . . . , (B.40)

form a sequence of r.v.’s although Sk are now strongly correlated. By the Chebyshev
inequality (Problem B.11 in Exercises),

P[|Sn −mX | ≥ ε]≤ σ2
X

nε2 → 0 as n → ∞,

for all ε > 0. Hence, Sn converges to the constant mX in probability. It is also noted
that the assumption on Xi gives

E{Sn}= 1
n

E{Xi}= mX , var{Sn}= 1
n

var{Xi}= σ2
X

n
→ 0

as n →∞. Thus, Sn converges to mX in mean square as well. It can be shown that Sn

also converges to mX with probability 1.

The next result is the well-known central limit theorem.

Theorem B.5. Suppose that {Xi}∞i=1 are i.i.d. r.v.’s with mean mX and variance σ2
X ,

and higher-order moments are all finite. Then the random variable

Zn =
n

∑
i=1

Xi −mX√
nσX

(B.41)

converges in distribution to the Gaussian r.v. having zero mean and unit variance,
i.e., FZn(z)→ [1−Q(z)] as n → ∞ with Q(x) as in (B.15).

The proof is left as an exercise (Problem B.12). Let

Yi =
Xi −mX

σX
, i = 1,2, . . . . (B.42)

Then {Yi} are i.i.d. with zero mean and unit variance, which imply that

Zn =
Y1 +Y2 + · · ·+Yn√

n
.
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Thus, Zn does not degenerate into a constant, as in Example B.4. In fact, Zn has a
unit variance for each n. Because Zn converges to the standard Gaussian r.v., it is
approximately Gaussian distributed for large n.

B.5 Random Processes

Discrete-time random processes are basically sequences of r.v.’s or random vectors
of the same dimension, indexed by discretized time. One has a mapping fromω ∈Ω
to a sequence of values Xω(t) where time index t = 0,±1, . . .. Normally, the notation
{X(t)} denotes the process in general. As such {x(t)} is a sample or realization of
the random process {X(t)}. However, {x(t)} is also used to denote the random
process in the main body of the text in order to avoid the cumbersome notations.

Clearly, X(t) is a random vector at each time instant t. Assume that any
k random vectors X(t1),X(t2), . . . ,X(tk) at k distinct time indexes are jointly
distributed. Then the set of all joint PDFs (at all possible k distinct time in-
dexes) pX(t1)X(t2)···X(tk)(x(t1),x(t2), . . . ,x(tk)) defines the kth order densities of
{X(t)}. The set of densities of all orders serves to define the probability structure of
the random process. The conditional PDFs can be obtained in the usual way.

Markov processes are examples of random processes. Roughly speaking, a
process is called Markov, if given that the present is known, the past has no influence
on the future. That is, if t1 > t2 > · · ·> tk, then

pX(t1)|X(t2)···X(tk)[X(t1)|X(t2) · · ·X(tk)] = pX(t1)|X(t2)[X(t1)|X(t2)].

For a given random process {X(t)}, its expectation and autocovariance are
defined respectively by

X(t) = E{X(t)}, RX(t;k) := E
{[

X(t)−X(t)
][

X(t − k)−X(t − k)
]}

, (B.43)

which are functions of time t in general. If {X(t)} admit constant mean X and
covariance RX(k), then {X(t)} is called WSS. If the kth densities satisfy

pX(t1),...,X(tk)(x(t1), . . . ,x(tk)) = pX(t1+n),...,X(tk+n)(x(t1 + n), . . . ,x(tk + n))

for any integers k and n, then {X(t)} is called strict-sense stationary.
For WSS processes, the PSDs are defined as the DTFT of the ACS:

ΨX(ω) =
∞

∑
k=−∞

RX (k)e
− jωk. (B.44)

If X(t) has zero mean for all t, then the power of the random process is

PX = E{X(t)X∗(t)}= RX (0) =
1

2π

∫ 2π

0
ΨX(ω) dω (B.45)



412 B Random Variables and Processes

by the inverse DTFT. Hence ,ΨX(ω) is indeed the power density function of the
random process distributed over frequency.

A WSS process {X(t)} is called white process, if its mean is zero and its
autocovariance is RX(k) = RXδ (k) with RX ≥ 0 and δ (·) the Kronecker delta
function. In this case, its PSD is RX for all frequency. The notion of white processes
can be generalized to nonstationary processes. A random process {X(t)} is called
white process, if

X(t) = E{X(t)}= 0, RX (t;k) := E{X(t)X∗(t − k)}= RX(t)δ (k). (B.46)

So far, random processes are characterized by their ensemble averages. That
is, a random process is treated as collection of random vectors at various time
instants. A natural question is whether the ensemble averages are equivalent to time
averages for WSS processes. Unfortunately, not all stationary processes possess
such equivalence properties, but those that do so are called ergodic processes. If
{X(t)} is ergodic, then there holds

E{ f [X(t)]}= lim
T→∞

1
2T + 1

T

∑
t=−T

f [x(t)]. (B.47)

In the case, WSS processes, one may take f [X(t)] = X(t) and

f [X(t)] =
[
X(t)−X

][
X(t)−X

]∗
.

If {X(t)} is Gaussian process with RX(k) as covariance, then

∞

∑
k=−∞

‖RX(k)‖< ∞

is sufficient for ergodicity.
Suppose that a LTI system represented by its impulse response {H(t)} is excited

by a WSS process {X(t)}. Then

y(t) = H(t)� x(t) =
∞

∑
k=−∞

H(k)x(t − k). (B.48)

Thus, the output is also a random process with mean

Y = E{y(t)}=
[

∞

∑
k=−∞

H(k)

]

X = H(1)X ,
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where H(z) is the Z transform of {H(t)} and X is the mean of {X(t)}. It is left
as an exercise to show that {Y (t)} is also a WSS process (Problem B.13) with PSD
given by

ΨY (ω) = H
(
e jω)ΨX(ω)

[
H
(
e jω)]∗ . (B.49)

B.6 Cramér–Rao Lower Bound

This last section presents a well-known result in estimation, namely, the CRLB. The
CRLB characterizes the minimum error covariance for unbiased estimates. Before
proceeding, partial derivative with respect to matrix variables is defined first. Let X
be a real matrix of dimension n×m, and g(X) be a scalar function of X . The partial
derivative of g(X) with respect to X is defined as

∂g
∂X

= gX :=

[
∂g
∂xi j

]n,m

i, j=1,1

(B.50)

that is a matrix of dimension n×m where xi j is the (i, j)th entry of X . If

F(X) =

[
a(X) b(X)

c(X) d(X)

]

with a(·), b(·), c(·), d(·) all scalar functions of X , then

FX =
∂F
∂X

=

[
aX bX

cX dX

]
.

Hence, if F(X) is a column vector of dimension α with each element a function of
X , and X is a row vector of dimension β , then, FX is a matrix function of X with
dimension α×β .

Generically, the unknown parameters of the given system are deterministic. How-
ever, the measurements obtained from experiments are random due to observation
errors and unpredictable disturbances. Let y be noisy observations. Then y is a
random vector. Denote the corresponding PDF by f (y;θ ) with θ the parameter
vector under estimation. As a result, the estimate θ̂ is also random. The estimate θ̂
is said to be unbiased, if E

{
θ̂
}
= θ that is the true parameter vector.

Unbiased estimates are clearly more preferred. Let the error covariance associ-
ated with the unbiased estimate θ̂ be defined by

Ce := E

{(
θ̂ −θ

)(
θ̂ −θ

)′}
(B.51)
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where ′ denotes transpose. The CRLB claims that

Ce ≥ FIM(θ )−1, FIM(θ ) := E

{
∂ ln f (y;θ )

∂θ
∂ ln f (y;θ )

∂θ ′

}
. (B.52)

The matrix FIM(θ ) is called Fisher information matrix (FIM).
To prove the CRLB in (B.52), it is first noted that if y has dimension N with yi

being the ith entry of y, then

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (y;θ ) dy1 · · ·dyN = 1

in light of the well-known property of PDF. Denote
∫ · · ·∫ by

∫
and dy1 · · ·dyN by

dy. Taking partial derivative of the above equality with respect to θ yields

∫ ∞

−∞
∂ f (y;θ )

∂θ
dy =

∫ ∞

−∞
f (y;θ )

∂ ln f (y;θ )
∂θ

dy = E

{
∂ ln f (y;θ )

∂θ

}
= 0. (B.53)

Next, the hypothesis on unbiased estimate θ̂ implies that

E
{
θ̂
}
=
∫ ∞

−∞
θ̂ f (y;θ ) dy = θ .

Taking partial derivative of the above equality with respect to θ yields

∫ ∞

−∞
θ̂
∂ f (y;θ )
∂θ ′ dy =

∫ ∞

−∞
θ̂ f (y;θ )

∂ ln f (y;θ )
∂θ ′ dy = E

{
θ̂
∂ ln f (y;θ )

∂θ ′

}
= I.

It follows from (B.53) and the above equation that

E

{(
θ̂ −θ

) ∂ ln f (y;θ )
∂θ ′

}
= I.

Consequently, there holds the following matrix equality:

E

⎧
⎨

⎩

⎡

⎣

(
θ̂ −θ

)

∂ ln f (y;θ )
∂θ

⎤

⎦
[(

θ̂ −θ
)′ ∂ ln f (y;θ )

∂θ ′

]
⎫
⎬

⎭
=

[
Ce I
I FIM(θ )

]
(B.54)

that is nonnegative definite from which the CRLB in (B.52) follows.
The simplest case to compute the FIM and the corresponding CRLB is when

y = Aθ + v where v is Gauss-distributed. See Problem B.15 in Exercises. The next
example illustrates computation of the FIM and CRLB for a more complicated
estimation problem.
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Target

β

x

Fig. B.1 Illustration of
bearing in the
two-dimensional plane

Example B.6. Target motion analysis (TMA) is an important problem in localiza-
tion and tracking of the moving target where the target moves at the constant speed
and in fixed direction. Hence, the motion of the target is uniquely determined by the
initial position (x0,y0), and velocity (vx,vy), assuming two-dimensional motion. It
follows that the target coordinate at time tk is given by (xk,yk) = (x0 + kδT vx,y0 +
kδT vy) with δT the sampling period. The bearing β is defined as the angle between
the positive y-axis and the straight line from the observer at the origin to the
target where the angle is positive to the clockwise direction and negative to the
counterclockwise direction. See Fig. B.1.

The bearing measurements
{
β̂k
}N−1

k=0 can be obtained with the aid of the antenna
array. It is assumed that for 0 ≤ k < N,

β̂k = tan−1
(

x0 + kδT vx

y0 + kδT vy

)
+ηk,

where {ηk} are uncorrelated Gaussian noises having mean zero and variance σ2
n .

Bearing-only TMA aims at estimation of the parameter vector θ =
[

x0 y0 vx vy
]′

based on N bearing measurements
{
β̂k
}N−1

k=0 . The uncorrelated Gauss assumption on

{ηk}N−1
k=0 gives the likelihood function

ln f (β ;θ ) =C0 − 1
2σ2

n

N−1

∑
k=0

[
β̂k − tan−1

(
x0 + kδT vx

y0 + kδT vy

)]2

for some constant C0. It can be verified by direct calculation that

∂ ln f (β ;θ )
∂x0

=
1
σ2

n

N−1

∑
k=0

ηk sinβk

Rk
,

∂ ln f (β ;θ )
∂y0

= − 1
σ2

n

N−1

∑
k=0

ηk cosβk

Rk
,

∂ ln f (β ;θ )
∂vx

=
1
σ2

n

N−1

∑
k=0

ηkkδT sinβk

Rk
,

∂ ln f (β ;θ )
∂vy

= − 1
σ2

n

N−1

∑
k=0

ηkkδT cosβk

Rk
,
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where Rk =
√
(x0 + kδT vx)2 +(y0 + kδT vy)2. By the definition in (B.52),

FIM(θ ) =
N−1

∑
k=0

1

σ2
n R2

k

⎡

⎢
⎢
⎣

sinβk

−cosβk

kδT sinβk

kδT cosβk

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

sinβk

−cosβk

kδT sinβk

kδT cosβk

⎤

⎥
⎥
⎦

′

,

and thus, E{(θ̂ −θ )(θ̂ −θ )′} ≥ FIM(θ )−1 can be explicitly calculated.

A natural question regarding the CRLB is whether or not the CRLB is achievable.
For the linear signal model with Gauss noise such as in Problem B.15, the answer is
affirmative. However, the CRLB is not achievable for most of the other models and
estimation algorithms. An exception is the maximum likelihood estimation (MLE).
Under certain regularity condition, its associated error covariance converges to the
CRLB asymptotically as the number of measurements approaches infinity. This fact
indicates that the MLE is asymptotically unbiased as well. While MLE algorithms
are important, they are difficult to develop in practice except for some simple signal
models. Readers are referred to Chap. 8 for further reading.

Exercises

B.1. Show that the probability measure satisfies

P(A)≤ 1, P( /0) = 0, P(Ac) = 1−P(A), P

(
∞⋃

i=1

Ai

)

≤
∞

∑
i=1

P(Ai)

with Ac the compliment of A. Show also that

P(A∪B) = P(A)+P(B)−P(A∩B).

B.2. For a binary symmetric channel with the signal set {0,1},

P(B0|A0) = P(B1|A1) = 0.9, P(B0|A1) = P(B1|A0) = 0.1,

where Ai denotes the event that i is transmitted and B j the event of j that is received.
Suppose that P(A0)=P(A1)= 0.5. Compute the a posteriori probability P(A0|B0)=
P(A1|B1) and P(A1|B0) = P(A0|B1).

B.3. Let A and B be two independent and uniformly distributed r.v.’s over [0, 1].
Consider the transformation

X =
√
−2log(A)cos(2πB), Y =

√
−2log(A) sin(2πB).

Show that X and Y are independent, zero mean, and unity variance Gaussian random
variables.
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B.4. Suppose that X1 and X2 in Example B.2 have nonzero mean μ . Let I0(·) be the
modified Bessel function of zeroth order. Show that

fY (y) =
y
σ2 I0

(μy
σ2

)
exp

{
−y2 + μ2

2σ2

}
, y ≥ 0.

B.5. Let X be a discrete random vector and Y = g(X). Find the expression of
E{g(X)} which is the counterpart of (B.30).

B.6. Verify (B.28) for the general case and (B.29) for the case when Xi’s are
independent.

B.7. Let X be a Gaussian random variable with mean zero and variance σ2. Let
k > 0 is an integer. Show that

E
{

X2k
}
= 1× 3× 5×·· ·× (2k− 1)σ2k.

B.8. (i) Suppose that
[
Ψ Ω ∗

Ω Θ

]

is a positive definite matrix withΨ andΘ positive definite. Show

[
Ψ Ω ∗

Ω Θ

]−1

=

[
I −Ψ−1Ω ∗

0 I

][
Ψ−1 0

0 ∇−1
�

][
I 0

−ΩΨ−1 I

]

=

[
I 0

−Θ−1Ω I

][
∇−1

u 0
0 Θ−1

][
I −Ω ∗Θ−1

0 I

]
,

where ∇� =Ψ −Ω ∗Θ−1Ω and ∇u =Θ −ΩΨ−1Ω ∗.
(ii) Show that if X and Y are jointly Gaussian, the marginal PDF of X or Y is

Gaussian distributed, and the conditional PDF of X conditioned on Y is also
Gaussian distributed. (Hint: Use (i) for the proof.)

(iii) Suppose that X is a Gaussian random vector. Show that Y = AX + b is
also Gaussian random vector where A and b are constant matrix and vector,
respectively.

B.9. Let X be Gaussian r.v. with mean mX and variance σ2
X . Show that its

characteristic function is

ΦX (ω) = e jmXω−σ2
Xω

2/2.

B.10. Let {Xi} be a set of n independent r.v.’s, and Z =X1+X2+ · · ·+Xn. Show that

pZ(z) = pX1(z)� pX2(z)� · · ·� pXn(z),
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where the convolution is defined by

pZ(z) = pX(z)� pY (z) =
∫ ∞

−∞
pX(u)pY (z− u) du.

B.11. Let X be a nonnegative r.v., and a > 0. (i) Show that

P [X ≥ a]≤ E{X}
a

.

The above is called Markov inequality. (ii) Show also that

P [|X −mX | ≥ b]≤ var{X}
b2 ,

where mX = E{X} and b > 0. The above is termed Chebyshev inequality.

B.12. Prove Theorem B.5. (Hint: Use characteristic function

ΦZn(ω) = E
{

e jωZn
}
=

n

∏
i=1

E
{

e jYi/
√

n
}
=
[
ΦY
(
ω/

√
n
)]n

,

where Yi is the same as in (B.42). Next, use Taylor series to show that

ΦZn(ω) = 1− ω2

n
+

1√
n3

r(n),

where r(n) involves third- or higher-order moments of Yi.)

B.13. Show that the output of an LTI system is WSS process, provided that the
input is WSS process, and prove the relation in (B.49).

B.14. Let FIM(θ ) be defined in (B.52). Show that

FIM(θ ) =−E

{
∂ 2ln f (y;θ )
∂θ∂θ ′

}
.

B.15. Consider y = Aθ + v where y is the observation and v is Gauss-distributed
noise with mean zero and covariance Σv:

(i) Show that FIM(θ ) = A′Σ−1
v A.

(ii) Show that the MLE is given by θLS =
(
A′Σ−1

v A
)−1 (

A′Σ−1
v y
)
.

(iii) Show that the CRLB is achievable by proving that:

E

{(
θ̂LS −θ

)(
θ̂LS −θ

)′}
=
(
A′Σ−1

v A
)−1

.



Appendix C
Transfer Function Matrices

Multivariable LTI systems can be represented by transfer matrices. The most
important class of such matrices are the rational ones which are fractions of
polynomial matrices. This appendix covers various forms of polynomial and rational
matrices, introduces poles and zeros of the systems, and proves the existence of
spectral factorizations for positive para-hermitian matrices. Only the basic elements
on transfer matrices are presented which are the integral part of this text.

C.1 Polynomial Matrices

A polynomial matrix of z is represented by

P(z) = P0z�+P1z�−1 + · · ·+P� =
�

∑
k=0

P�−kzk, (C.1)

where {Pk} are matrices of the same dimension. Each element of P(z) is a
polynomial of z with degree no more than � with (�+ 1) referred to as length of
the polynomial. A square polynomial matrix is singular, if det[P(z)]≡ 0.

Example C.1. Consider polynomial matrices

P1(z) =

[
z2 + 3z+ 2 z+ 1
z2 + z− 2 z+ 1

]
,

P2(z) =

[
z2 + 3z+ 2 z+ 1
z2 + z+ 2 z+ 1

]
.

G. Gu, Discrete-Time Linear Systems: Theory and Design with Applications,
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The coefficient matrices of P1(z) and P2(z) can be easily obtained by the following
alternate expressions:

P1(z) =

[
1 0
1 0

]
z2 +

[
3 1
1 1

]
z+

[
2 1

−2 1

]
,

P2(z) =

[
1 0
1 0

]
z2 +

[
3 1
1 1

]
z+

[
2 1
2 1

]
.

It can be verified that det[P1(z)] = 0 for all z, but det[P2(z)] = −4(z+ 1). Even
though det[P2(z)] = 0 at z =−1, it is nevertheless nonzero for all other z ∈ C.

Example C.1 indicates a difference between P1(z) and P2(z) termed as normal
rank. For a given polynomial matrix, its normal rank is defined as the rank for almost
all z except at some finitely isolated points in C. Thus, P1(z) has normal rank 1 while
P2(z) has normal rank 2.

Suppose that Q1(z) and Q2(z) are two polynomial matrices with the same
number of columns. A polynomial matrix R(z) is called right divisor of Q1(z), if
Q1(z) = Q̃1(z)R(z) for some polynomial matrix Q̃1(z). It is called a common right
divisor of Q1(z) and Q2(z), if, in addition, Q2(z) = Q̃2(z)R(z) holds as well for
some polynomial matrix Q̃2(z). Moreover, R(z) is called the greatest common right
divisor (GCRD), if for any other right divisor R̃(z), R(z) = P(z)R̃(z) with P(z) a
polynomial matrix.

A convenient way to obtain the GCRD is through some elementary row
operations which can be represented by a special class of square matrices, called
unimodular matrices. For instance, given a polynomial matrix P(z) of dimension
3× 3, multiplication of P(z) by either of the following matrices

U1 =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ , U2(z) =

⎡

⎣
1 0 0
0 1 a(z)
0 0 1

⎤

⎦

from left carries out an elementary row operation. Specifically, multiplying P(z) by
U1 from left places the first row of P(z) to the last and moves the second and third
rows up by one. On the other hand, U2(z)P(z) adds the product of the third row
of P(z) and a(z) to the second row of P(z). Elementary row operations also include
scaling of some rows by nonzero real or complex numbers that can be represented by
a diagonal matrix. It is noted that det(U1) = det[U2(z)] = 1. Any square polynomial
matrix with determinant a nonzero constant is called unimodular matrix. It is left as
an exercise to show that a polynomial matrix is unimodular, if and only if its inverse
is a polynomial matrix. Thus, matrices representing elementary row operations are
unimodular. A consequence of the elementary row operations is the column hermite
form, to be used later for computing the GCRD.
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Theorem C.2. Any p×m polynomial matrix P(z) of normal rank r can be reduced
by elementary row operations to a quasi-triangular form in which:

(a) If p > r, then the last (p− r) rows are identically zero.
(b) If the diagonal element is unity, then all the elements above it are zero.
(c) In column k, 1 ≤ k ≤ r, the diagonal element is monic (i.e., unity leading

coefficient) and of higher degree than any element above it.

Proof. Assume that the first column of P(z) is not identically zero. Then by
exchanging rows, the element of the lowest degree in the first column, denoted by
p̃1,1(z), can be moved to the (1,1) position. It follows that any other element p̃1,k(z)
for k > 1 in the first column can be written as

p̃1,k(z) = qk(z)p̃1,1(z)+ rk(z)

uniquely for some polynomials qk(z) and rk(z) with degree of rk(z) strictly smaller
than that of p̃1,1(z) in light of the Euclidean division algorithm. Applying again
elementary row operations removes qk(z)p̃1,1(z) for k > 1, and thus, none of the
elements in the first column has degree higher or equal to that of p̃1,1(z). Now
similar elementary row operations can be applied to the first column for the second
time and repeatedly until all the elements, except the first one, in the first column
are zero. After then, the same procedure can be used for the second column without
affecting the element in the first row that will eliminate the elements below the
(2,2) position. Continuing this procedure with the next column and so on leads to
the upper triangular hermite form. The statements (a) and (b) thus hold. If (c) is not
true for some column, then elementary row operations can be applied to eliminate
the higher degree terms above the element on the diagonal via the Euclidean
division algorithm. Hence, (c) can be made true as well through elementary row
operations. ��

Lower triangular hermite form can also be obtained by interexchanging the rows
of the upper triangular hermite form which is skipped. The next is an illustrative
example for Theorem C.2.

Example C.3. The following shows the steps in reduction of a given P(z) to the
column hermite form:

P(z) =

⎡

⎣
1− z z2 − z+ 1
−z2 z3 − z

1 −z+ 1

⎤

⎦ →
⎡

⎣
1 −z+ 1

−z2 z3 − z
1− z z2 − z+ 1

⎤

⎦

→
⎡

⎣
1 −z+ 1
0 z2 − z
0 z

⎤

⎦ →
⎡

⎣
1 −z+ 1
0 z
0 z2 − z

⎤

⎦ →
⎡

⎣
1 1
0 z
0 0

⎤

⎦ .
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The corresponding unimodular matrix is

U(z) =

⎡

⎣
1 1 0
0 1 0
0 1− z 1

⎤

⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦

⎡

⎣
1 0 0
z2 1 0

z− 1 0 1

⎤

⎦

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

=

⎡

⎣
1 0 z
1 0 z− 1

1− z 1 2z− 1

⎤

⎦ ,

that represents four elementary row operations on P(z) and has a determinant 1 for
any value of z.

The row hermite form can be obtained similarly by elementary column opera-
tions represented by multiplication of some unimodular matrices from right and by
simply interchanging the roles of rows and columns in Theorem C.2. Another way
to compute the row hermite form is to compute the column hermite form for the
transpose of the given polynomial matrix, and then, transpose it back. An exercise
is given (Problem C.3) for computing the row hermite form.

For given two polynomial matrices P1(z) and P2(z) with the same number of
columns, a unimodular matrix U(z) can be obtained to compute the column hermite
form as

U(z)P(z) =
[

U1,1(z) U1,2(z)
U2,1(z) U2,2(z)

][
P1(z)
P2(z)

]
=

[
R(z)

0

]
(C.2)

with compatible partition where R(z) is upper triangular. If P(z) has full normal
column rank, then R(z) is both square and nonsingular. It is claimed that R(z) is a
GCRD of P1(z) and P2(z). Indeed, since U(z) is unimodular,

[
U1,1(z) U1,2(z)
U2,1(z) U2,2(z)

]−1

=

[
V1,1(z) V1,2(z)
V2,1(z) V2,2(z)

]

is a polynomial matrix. It follows that

[
P1(z)
P2(z)

]
=

[
V1,1(z) V1,2(z)
V2,1(z) V2,2(z)

][
R(z)

0

]
.

The above implies the relation

P1(z) = V1,1(z)R(z), P2(z) = V2,1(z)R(z).

Hence, R(z) is a common right divisor of P1(z) and P2(z). To see that R(z) is a
GCRD, assume that R̃(z) is any other common right divisor of P1(z) and P2(z).
Then

P1(z) = P̃1(z)R̃(z), P2(z) = P̃2(z)R̃(z) (C.3)
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for some polynomial matrices P̃1(z) and P̃2(z). In light of (C.2), there holds

R(z) = U1,1(z)P1(z)+U1,2(z)P2(z) (C.4)

=
[
U1,1(z)P̃1(z)+U1,2(z)P̃2(z)

]
R̃(z),

and thus, R̃(z) is a right divisor of R(z), concluding the fact that R(z) is a GCRD of
P1(z) and P2(z).

It is noted that GCRDs are not unique. In particular, R(z) does not have to be in
column hermite form. Moreover, any two GCRDs R1(z) and R2(z) are related by

R1(z) = Q2(z)R2(z), R2(z) = Q1(z)R1(z),

where Q1(z) and Q2(z) are unimodular.
Polynomial matrices P1(z) and P2(z) in (C.2) are said to be relatively right

prime, or right coprime, if any of their GCRDs is unimodular. If in addition P(z)
in (C.2) has full column rank for all z ∈ C, then the polynomial matrix P(z) is called
irreducible. The next result regards Bezout identity.

Lemma C.1. Polynomial matrices P1(z) and P2(z) are right coprime, if and only
if there exist polynomial matrices X1(z) and X2(z) such that

X1(z)P1(z)+X2(z)P2(z) = I. (C.5)

Proof. Given P1(z) and P2(z), (C.4) holds in light of (C.2). If P1(z) and P2(z) are
right coprime, then R(z) is unimodular. Multiplying (C.4) by R(z)−1 from left yields

R(z)−1U1,1(z)P1(z)+R(z)−1U1,2(z)P2(z) = I.

Hence, Xk(z) = R(z)−1U1,k(z) is a polynomial matrix for k = 1,2 that verifies the
Bezout identity (C.5). Conversely, assume that (C.5) is true with X1(z) and X2(z)
polynomial matrices. Let R̃(z) be any GCRD of P1(z) and P2(z), i.e., (C.3) holds
for some polynomial matrices P̃1(z) and P̃2(z). Then

I = X1(z)P1(z)+X2(z)P2(z) =
[
X1(z)P̃1(z)+X2(z)P̃2(z)

]
R̃(z)

=⇒ R̃(z)−1 = X1(z)P̃1(z)+X2(z)P̃2(z)

which is a polynomial matrix. Hence, R̃(z) is unimodular, implying that P1(z) and
P2(z) are right coprime. ��

A square polynomial matrix R(z) is said to be a common right divisor of poly-
nomial matrices {Pk(z)}L

k=1, each having the same number of columns, if Pk(z) =

P̃k(z)R(z) for k = 1,2, . . . ,L where
{

P̃k(z)
}L

k=1 are also polynomial matrices. It is
a GCRD of {Pk(z)}L

k=1, if for any other right divisor R̃(z), R(z) = Q(z)R̃(z) with
Q(z) a polynomial matrix. The set of polynomial matrices {Pk(z)}L

k=1 are said to
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be right coprime, if any of their GCRDs is unimodular. In particular, a polynomial
matrix P(z) is said to be irreducible, if all its rows are right coprime.

Common left divisor, the greatest common left divisor (GCLD), and left coprime
can be defined dually, by interchanging the roles of columns and rows as well as left
and right. Problems C.4, C.5, and C.6 are left as exercises.

C.2 Rational Matrices

C.2.1 Matrix Fractional Descriptions

A p×m rational transfer matrix T(z) has all its its elements rational functions of z.
It can be represented by fractions of two polynomial matrices

T(z) = M(z)−1N(z) = Ñ(z)M̃(z)−1. (C.6)

Because T(z) is a matrix, left fraction matrices {M(z),N(z)} are different from
right fraction matrices

{
M̃(z), Ñ(z)

}
in general. Specifically, N(z) and Ñ(z) have

the same dimension as T(z), but M(z) and M̃(z) are square of size p× p and m×m,
respectively. The representation in (C.6) is termed as matrix fractional descriptions
(MFDs).

Clearly, M(z) and M̃(z) are nonsingular. The left MFD {M(z),N(z)} are called
irreducible left MFD, if they are left coprime. Dually,

{
M̃(z), Ñ(z)

}
are called

irreducible right MFD, if the right coprime condition holds. Given a transfer matrix
T(z), how to obtain an irreducible left and right MFDs is partially answered by the
following lemma.

Lemma C.2. Suppose that {M(z),N(z)} is a left MFD for T(z). Then there exists
a unimodular matrix V(z) such that

[
M(z) N(z)

]
[

V1,1(z) V1,2(z)
V2,1(z) V2,2(z)

]
=
[

R(z) 0
]

(C.7)

with compatible partitions where R(z) is square. Moreover, the following hold:

(a) The polynomial submatrix V2,2(z) is square and nonsingular.
(b) The polynomial matrices V2,2(z) and V2,1(z) are right coprime, and

T(z) = M(z)−1N(z) =−V2,1(z)V2,2(z)
−1. (C.8)

(c) If M(z) and N(z) are left coprime, then

deg{det[M(z)]} = deg{det[V2,2(z)]}. (C.9)
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Proof. Applying elementary column operations leads to equality (C.7) that in turn
yields N(z)V2,2(z) =−M(z)V2,1(z) or

M(z)−1N(z)V2,2(z) =−V2,1(z).

Thus, for each z ∈ C, the range space of V2,2(z) is the same as that of V2,2(z).
Because all columns of V(z) are linearly independent for all z ∈ C, (a) holds, and
(b) follows. Since V(z) is unimodular

U(z) =

[
U1,1(z) U1,2(z)
U2,1(z) U2,2(z)

]
=

[
V1,1(z) V1,2(z)
V2,1(z) V2,2(z)

]−1

(C.10)

is also a polynomial matrix. By (ii) of Problem A.12 in Appendix A,

U1,1(z) =
[
V1,1(z)−V1,2(z)V2,2(z)

−1V2,1(z)
]−1

.

It follows from unimodular of V(z) and (ii) of Problem A.10 in Appendix A,

det[V(z)] = det[V2,2(z)]det
[
V1,1(z)−V1,2(z)V2,2(z)

−1V2,1(z)
]

= det[V2,2(z)]/det[U1,1(z)] = constant.

If {M(z),N(z)} are left coprime, then R(z) is unimodular. Multiplying (C.7) by
U(z) from right leads to M(z) = R(z)U1,1(z), and thus,

deg{det[M(z)]} = deg{det[U1,1(z)]} = deg{det[V2,2(z)]},

that concludes (c). ��
Lemma C.2 provides a procedure for computing irreducible left and right MFDs

for a given transfer matrix T(z). It begins with any left MFD and elementary
column operations embodied in (C.7). Then {V2,2(z),−V1,2(z)} constitute an
irreducible right MFD as shown in (C.8). The computation of V(z)−1 as in (C.10)
gives an irreducible left MFD {U1,1(z),U1,2(z)} by M(z) = R(z)U1,1(z), N(z) =
R(z)U1,2(z), and the fact that R(z) is a GCLD of M(z) and N(z). The next result
states the generalized Bezout identity.

Theorem C.4. Let M(z)−1N(z) = Ñ(z)M̃(z)−1 be irreducible left and right
MFDs of p × m transfer matrix T(z). Then there exist polynomial matrices{

X(z),Y(z), X̃(z), Ỹ(z)
}

such that the generalized Bezout identity

[
M(z) N(z)
Y(z) −X(z)

][
X̃(z) Ñ(z)
Ỹ(z) −M̃(z)

]
=

[
Ip 0
0 Im

]
(C.11)

holds in which both of the 2× 2 block matrices on the left are unimodular.
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Proof. The hypothesis on the left and right MFDs implies the existence of
polynomial matrices

{
X(z),Y(z), X̂(z), Ŷ(z)

}
such that

M(z)X̃(z)+N(z)Ỹ(z) = Ip, X̂(z)M̃(z)+ Ŷ(z)Ñ(z) = Im,

and Ŷ(z)X̃(z)− X̂(z)Ỹ(z) = Q(z) is a polynomial matrix, leading to

[
M(z) N(z)
Ŷ(z) −X̂(z)

][
X̃(z) Ñ(z)
Ỹ(z) −M̃(z)

]
=

[
Ip 0

Q(z) Im

]
.

Multiplying the above equation from left by the inverse of the right-hand side matrix
verifies the generalized Bezout identity in (C.11) by taking

X(z) = X̂(z)+Q(z)N(z), Y(z) = Ŷ(z)−Q(z)M(z). (C.12)

Because all submatrices in (C.11) are polynomials with the right-hand side identify,
both of the 2× 2 block matrices are unimodular. ��

C.2.2 Row- and Column-Reduced Matrices

A p×m transfer matrix T(z) is said to be proper, or strictly proper, if

lim
z→∞

T(z)< ∞ or lim
z→∞

T(z) = 0,

respectively. A proper or strictly proper transfer matrix represents a causal or strictly
causal multivariable discrete-time system, respectively. Suppose that T(z) is given
by its left MFD, i.e., T(z) = M(z)−1N(z). How can we determine if it is proper or
strictly proper? In order to answer this question, a couple of new notions is needed.

The first is the degree of a polynomial row vector, which is defined as the highest
degree of all elements in the vector. The second is the row-reduced matrices. Let
ki be the degree of the ith row vector of M(z). Then the square polynomial matrix
M(z) of size p× p is said to be row-reduced, if

deg{det[M(z)]} =
p

∑
i=1

ki = n. (C.13)

Column-reduced form can be defined similarly by replacing rows with columns.
However, row-reduced matrices may not be column-reduced and vice-versa.

Let H(z) = diag
(
zk1 ,zk2 , . . . ,zkp

)
. There exists a matrix M0 such that

M(z) = H(z)M0 + remaining terms of lower degrees. (C.14)
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It can be easily shown that M(z) is row-reduced, if and only if det(M0) �= 0.
Moreover, det[M(z)] = det(M0)zn+ terms of lower degrees in z. It needs to be
pointed out that any square polynomial matrix can be made row-reduced through
elementary row operations.

Example C.5. Consider 2× 2 polynomial matrix M(z) given by

[
2 z4 + 3z

z2 + 1 z3

]
=

[
z4 0
0 z3

][
0 1
0 1

]
+

[
2 3z

z2 + 1 0

]

=

[
0 1
1 0

][
z2 0
0 z4

]
+

[
2 3z
1 z3

]
.

In the first expression, z4 and z3 are the highest degree in the first and second row
of M(z), respectively. Since the leading coefficient matrix is singular, M(z) is not
in the row-reduced form. On the other hand, the leading coefficient matrix in the
second expression is nonsingular, and z2 and z4 are the highest degree in the first
and second column of M(z), respectively. It is thus concluded that M(z) is in the
column-reduced form. A row elementary operation can be applied to obtain

U(z)M(z) =

[−1 z
0 1

][
2 z4 + 3z

z2 + 1 z3

]

=

[
z3 + z2 − 2 −3z

z2 + 1 z3

]
=

[
z3 0
0 z3

]
+

[
z2 − 2 −3z
z2 + 1 0

]
.

Hence, the polynomial matrix U(z)M(z) is both row- and column-reduced.

Lemma C.3. If M(z) is row-reduced, then T(z) = M(z)−1N(z) is proper (strictly
proper), if and only if each row of N(z) has degree less (strictly less) than the degree
of the corresponding row of M(z).

Proof. Only the case of strictly proper T(z) will be considered, as the other case is
similar and thus omitted. Let Tk(z) and Nk(z) be the kth column of T(z) and N(z),
respectively. Then M(z)T(z) = N(z), and thus,

M(z)Tk(z) = Nk(z), k = 1,2, . . . ,m. (C.15)

For the “if” part, the ith element of Tk(z) has the expression

Ti,k(z) = det
[
M(i,k)(z)

]/
det [M(z)] ,

where M(i,k)(z) is the matrix obtained by replacing the ith column of M(z) with
Nk(z) in light of Cramer’s rule (Problem C.7 in Exercises). By (C.14)

M(z) = H(z)M0 + remaining terms of lower degrees,

M(i,k)(z) = H(z)M(i,k)
0 + remaining terms of lower degrees,



428 C Transfer Function Matrices

where M0 is nonsingular due to the assumption on row-reduced form for M(z)

and M(i,k)
0 is the same as M0 except ith column which is now zero vector by the

assumption that each row of N(z) has degree strictly less than the degree of the
corresponding row of M(z). It follows that for k = 1,2, . . . ,m,

deg{det[M(z)]} > deg
{

det
[
M(i,k)(z)

]}
,

where i = 1,2, . . . , p. Or Ti,k(z) is strictly proper. Conversely, there holds

Ni,k(z) =
p

∑
�=1

Mi,�(z)T�,k(z)

by (C.15). Thus, if T(z) is strictly proper, then each element T�,k(z) is strictly proper,
and therefore, the degree of Ni,k(z) is strictly smaller than the highest degree of{

Mi,�(z)
}p
�=1 for k = 1,2, . . . ,m. It is now concluded that the ith row of N(z) has

degree strictly less than that of the ith row of M(z). Since 1 ≤ i ≤ p, the “only if”
part of the proof is completed. ��

C.2.3 Smith–McMillan Form

Given a proper transfer matrix T(z) =M(z)−1N(z) which is in the form of left MFD.
Lemma C.2 provides a procedure for computing a unimodular matrix V(z) to obtain
an irreducible left MFD. Moreover, a unimodular matrix U(z) can be obtained to
compute a row-reduced form for irreducible left MFD. In this subsection, Smith–
McMillan form will be introduced to give further insight into multivariable systems
described by their transfer matrices. More importantly, poles and zeros can be
defined for multivariable systems.

Theorem C.6. Suppose that the p×m rational transfer matrix T(z) has normal
rank r. Then there exist unimodular matrices U(z) of size p× p and V(z) of size
m×m such that

U(z)T(z)V(z) =

⎡

⎢
⎢⎢
⎢
⎢
⎣

β1(z)
α1(z)

0
. . .

...
βr(z)
αr(z)

...

0 · · · · · · 0

⎤

⎥
⎥⎥
⎥
⎥
⎦
, (C.16)

where αk+1(z) divides αk(z), βk(z) divides βk+1(z) for 1 ≤ k < r, and {βi(z),αi(z)}
are coprime for 1 ≤ i ≤ r.

Proof. Let a(z) be the monic least common multiple of the denominators of the
entries of T(z). Then N(z) = a(z)T(z) is a polynomial matrix. It is claimed that there
exist unimodular matrices U1(z) of size p× p and V1(z) of size m×m such that
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U1(z)N(z)V1(z) =

⎡

⎢
⎢
⎢
⎣

λ1(z) 0 · · · 0
0
... N1(z)
0

⎤

⎥
⎥
⎥
⎦
,

where λ1(z) divides every element of N1(z). If not, the division algorithm and row
and column interchanges can always bring a lower-degree element to the (1, 1)
position and then applying elementary row and column operations to zero out all
other elements in the first row and first column. Repeating the same procedure
will eventually yield λ1(z) in the (1, 1) position that divides the rest of the nonzero
elements. Now repeat the same steps for N1(z) and continuing in this way ultimately
leads to the Smith form

U(z)N(z)V(z) =

⎡

⎢
⎢
⎢⎢
⎣

λ1(z) 0
. . .

...

λr(z)
...

0 · · · · · · 0

⎤

⎥
⎥
⎥⎥
⎦
, (C.17)

where λk−1(z) clearly divides λk(z) for 1 < k ≤ r. The expression in (C.16) then
follows from

U(z)T(z)V(z) = U(z)N(z)V(z)/a(z)

and from the Smith form in (C.17) by setting λi(z)/a(z) = βi(z)/αi(z) with
{βi(z),αi(z)} coprime for i = 1,2, . . . ,r. The division property for {λk(z)} implies
those for {βk(z)} and {αk(z)}. The proof is now complete. ��

In Theorem C.6, the polynomial αi(z) can be made monic. In addition, α1(z) =
a(z). If not, then β1(z)/α1(z) = λ1(z)/a(z) implying that λ1(z) and a(z) have at least
one common root that is also a common root of λk(z) and a(z) because λ1(z) divides
all other λk(z) for 1 < k ≤ r. This contradicts the assumption on a(z). Consequently,
α1(z) = a(z) holds.

Zeros and poles of multivariable systems are difficult to describe. As a matter
of fact, zeros of the system are dependent on the “direction” of the input or output
vectors. However, Theorem C.6 gives a clean view for finite zeros and poles of
the multivariable systems without referring to the “direction” of the input/output
vectors. To be specific, zeros are roots of βi(z) = 0 and poles are roots of αi(z) = 0.
Suppose that r =min{p,m}. Then z0 is called a transmission zero of T(z), if (z−z0)
is a divisor of βi(z) for some i < r. It is a block zero of T(z), if (z− z0) is a divisor
of βr(z) in light of the fact that λk(z) divides λk+1(z) for 1 ≤ k < r. The roots of
αi(z) = 0 are the poles of T(z) for 1 ≤ i ≤ r. It is thus possible for poles and zeros
of T(z) to have the same value without causing pole/zero cancellations, which is
very different from scalar transfer functions. The number of poles of T(z) is called
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McMillan degree that is the sum of the degrees of αi(z) over index i. For this reason,
the diagonal matrix in (C.16) is called Smith–McMillan form.

Example C.7. Consider a 2× 2 transfer matrix

T(z) =
1

z2 − 1

[
z z(z+ 2)

−z2 z

]
.

It can be verified easily that its Smith–McMillan form is given by

[
1 0
z 1

]
T(z)

[
1 −(z+ 2)
0 1

]
=

[
z

z2−1
0

0 z(z+1)
z−1

]

.

Hence, z = 0 is a block zero, while z = −1 is a transmission zero. It is noted that a
multivariable system can have the same pole and zero without causing cancellation.
The corresponding system has three poles with one at −1 and two at +1. Thus, its
McMillan degree is 3.

It needs to be pointed out that Smith–McMillan form does not contain any
information about the infinity poles and zeros of the system. As a point of fact,
unimodular matrices introduce poles and zeros at infinity, and thus, the Smith–
McMillan form is often nonproper, even though the given transfer matrix is proper
or strictly proper.

C.3 Spectral Factorizations

Let Φ(z) be a para-hermitian matrix of size n× n. Then it has the form

Φ(z) =
∞

∑
k=−∞

Φkz−k, Φk =Φ∗
k ∀ k. (C.18)

IfΦ
(
e jω) is continuous and positive definite for all ω ∈ IR, thenΦ(z) qualifies to be

a PSD matrix. This section will show the existence and computation of the spectral
factorization

Φ(z) = G(z)∼G(z), G(z)∼ =
[
G(z̄−1)

]∗
, (C.19)

where G(z) has all its poles and zeros strictly inside the unit circle. The results apply
to the case when Φ

(
e jω) is positive semidefinite.

Several inequalities are needed in studying the spectral factorization. The first
inequality is the arithmetic-geometry mean (AGM) inequality:

1
n

n

∑
k=1

xk ≥
(

n

∏
k=1

xk

)1/n

, xk ≥ 0. (C.20)
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Its proof makes the use of the convexity of− log(x) over x> 0. Recall that a function
f (·) is convex over the interval [a, b] with b > a, if for any x,y ∈ [a, b],

f (αx+(1−α)y)≤ α f (x)+ (1−α) f (y), 0 ≤ α ≤ 1.

By induction, f (·) being convex implies

f

(
n

∑
k=1

αkxk

)

≤
n

∑
k=1

αk f (xk), (C.21)

where xk ∈ [a, b], αk ≥ 0 and ∑kαk = 1. Since f (x) =− log(x) is convex for x > 0,
the inequality (C.21) leads to the weighted AGM inequality

n

∑
k=1

αkxk ≥
n

∏
k=1

xαk
k .

Hence, the AGM inequality (C.20) follows by taking αk = 1/n for each k.
The second inequality is Minkowski inequality as stated next.

Lemma C.4. If two square matrices A and B are positive definite with the same
size n× n, then

[det(A+B)]1/n ≥ [det(A)]1/n +[det(B)]1/n. (C.22)

Proof. Let A = D∗D. Multiplying both sides of (C.22) by

[det(A)]−1/n =
(
|det(D)|−1/n

)2

yields an equivalent inequality:

[det(I +C)]1/n ≥ [det(I)]1/n +[det(C)]1/n = 1+[det(C)]1/n,

where C = [D∗]−1BD−1. Let eigenvalues of C be {λk}n
k=1. Then λk > 0 and

n

∏
k=1

(1+λk)
1/n ≥ 1+

(
n

∏
k=1

λk

)1/n

. (C.23)

Hence, Minkowski inequality is equivalent to (C.23) which can be verified directly
by explicit multiplication of both sides and term-by-term comparisons using the
AGM inequality. ��

By induction, Minkowski inequality can also be extended to

[

det

(
N

∑
k=1

Ak

)]1/n

≥
N

∑
k=1

[det(Ak)]
1/n (C.24)
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with Ak’s all positive definite. For spectral factorizations of para-hermitian matrices,
inequalities for functions on the unit circle are needed. The next one is the Master
inequality.

Lemma C.5. Let Ψ(ω) = Φ
(
e jω) be hermitian positive definite with size n × n

that is continuous on [−π , π ]. Then

log

(
det

[
1

2π

∫ π

−π
Ψ (ω) dω

])
≥ 1

2π

∫ π

−π
log(det [Ψ(ω)]) dω . (C.25)

Proof. Since integration can be replaced by summation, (C.24) implies

(
det

[
1

2π

∫ π

−π
Ψ(ω) dω

])1/n

≥ 1
2π

∫ π

−π
(det [Ψ(ω)])1/n dω .

Taking natural logarithm on both sides for the above inequality yields

1
n

log

(
det

[
1

2π

∫ π

−π
Ψ(ω) dω

])
≥ log

[
1

2π

∫ π

−π
(det [Ψ(ω)])1/n dω

]

≥ 1
2π

∫ π

−π
1
n

log(det [Ψ(ω)]) dω

in light of the inequality (C.44) in Exercises (Problem C.11) by taking f (ω) =

(det [Ψ(ω)])1/n. Hence, the Master inequality (C.25) is true. ��
The last inequality is Jensen inequality. Denote λ = z−1. It concerns an analytic

function F(λ ) on the unit disk of the form

F(λ ) =
∞

∑
k=0

fkλ k,
∞

∑
k=0

| fk|2 < ∞. (C.26)

It follows from the Parserval theorem that |F(λ )| is square integrable on the unit
circle. For application to spectral factorizations, continuity of F(λ ) on the unit circle
is assumed, even though Jensen inequality holds for any function F(λ ) in (C.26).
As a result, Cauchy integral

1
j2π

∮

|λ |=r
λ−1F(λ ) dλ = F(0) ∀ r ≤ 1 (C.27)

holds. Let u(λ ) = Re{F(λ )} and v(λ ) = Im{F(λ )}. That is, F(λ ) = u(λ )+ jv(λ ).
It is left as an exercise (Problem C.12) to show that

1
2π

∫ π

−π
u
(

r e jθ
)

dθ = u(0),
1

2π

∫ π

−π
v
(

r e jθ
)

dθ = v(0) (C.28)

for all r such that 0 < r ≤ 1. The following is the Jensen inequality.
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Lemma C.6. Suppose that F(λ ) as in (C.26) is continuous and nonzero on the unit
circle. Then

1
2π

∫ π

−π
log
(∣∣F
(
e jω)∣∣) dω ≥ log(|F(0)|). (C.29)

Proof. Let {zk}m
k=1 be zeros of F(λ ) on the unit disk, i.e., |zk|< 1. Then

F1(λ ) = F(λ )
m

∏
k=1

(
1− z̄kλ
λ − zk

)

has no zeros on the unit disk. The first-order function

Bk(λ ) =
1− z̄kλ
λ − zk

,
∣
∣Bk
(
e jω)∣∣= 1 ∀ ω ∈ IR,

is called Blaschke factor that has a zero at zk and a pole at z̄−1
k . It follows

that log[F1(λ )] is analytic on the unit disk and its real part is

u1(λ ) = log(|F1(λ )|), log
(∣∣F1

(
e jω)∣∣)= log

(∣∣F
(
e jω)∣∣) .

Applying the first equality in (C.28) to u1(λ ) = log(|F1(λ )|) gives

1
2π

∫ π

−π
log
(∣∣F
(
e jω)∣∣) dω =

1
2π

∫ π

−π
log
(∣∣F1

(
e jω)∣∣) dω = log(|F1(0)|)

= log(|F(0)|)+
m

∑
k=1

log

(
1
|zk|
)
≥ log(|F(0)|),

by |zk|< 1 for all k. Hence, Jensen inequality (C.29) is true. ��
Although m, the number of zeros for F(λ ) on the unit disk, is implicitly assumed

finite in the proof, Jensen inequality is applicable to the case when m is unbounded.
Moreover, the proof of Jensen inequality shows that the equality holds for (C.29), if
and only if F(λ ) has no zeros on the unit disk.

Spectral factorization is rather easy if the given PSD is a scalar function and
has finitely many poles/zeros. However, it becomes much harder if neither is true
that is the case for the PSD matrix Φ(z) in (C.18). A feasible approach is through
approximation by considering approximant

Φ̂N
(
e jω)=

N

∑
k=−N

(
1− |k|

N

)
Φke− jkω =

1
2π

∫ π

−π
FN(θ )Φ

(
e jk(ω−θ)

)
dθ ,

where FN(ω) is the Nth order Fejér kernel defined in (2.18) in Chap. 2. In light of
the properties of Fejér kernel in Lemma 2.1 and Theorem 2.2,

0 ≤ Φ̂N(z)≤Φ(z) and lim
N→∞

Φ̂N(z) =Φ(z) ∀ |z|= 1. (C.30)
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Hence, spectral factorization of Φ(z) can be studied via Φ̂N(z). Denote

Tm =

⎡

⎢
⎢⎢
⎢
⎣

Φ0 Φ1 · · · Φm−1

Φ−1
. . .

. . .
...

...
. . .

. . . Φ1

Φ1−m · · · Φ−1 Φ0

⎤

⎥
⎥⎥
⎥
⎦
, Zm =

⎡

⎢
⎢⎢
⎣

I
z−1I

...
z−(m−1)I

⎤

⎥
⎥⎥
⎦

1√
m
. (C.31)

Then Tm is Toeplitz, and the approximant Φ̂N(z) can be expressed as

Φ̂N(z) = Z∼
N TNZN . (C.32)

The following describe a procedure for computing the spectral factorization:

• Step 1: Compute Cholesky factorization TN = L∗
NLN where

LN = L(m)
N :=

⎡

⎢
⎢
⎢⎢
⎢
⎣

L(N)
0,0 0 · · · 0

L(N)
1,0 L(N)

1,1
. . .

...
...

. . .
. . . 0

L(N)
m,0 · · · L(N)

m,m−1 L(N)
m,m

⎤

⎥
⎥
⎥⎥
⎥
⎦
, m = N − 1, (C.33)

is square and lower triangular with all diagonal entries positive.

• Step 2: Set G(N)
k = L(N)

k,0 and

ĜN(z) =
N−1

∑
k=0

G(N)
k z−k. (C.34)

The next theorem is the main result of this section and shows that ĜN(z) converges
to G(z), the spectral factor of Φ(z) as N → ∞.

Theorem C.8. LetΦ(z) as in (C.18) be a PSD matrix that is continuous and strictly
positive on the unit circle. Let ĜN(z) be constructed with Step 1 and Step 2. Then

lim
N→∞

ĜN(z)
∼ĜN(z) = G(z)∼G(z) =Φ(z)

is the spectral factorization. That is, both G(z) and G(z)−1 are stable.

Proof. It can be shown that the limit of LN in (C.33) is Toeplitz. Specifically, by
noting that the nN × nN block of TN+1 on the lower right corner is the same as TN

and the Cholesky factorization of TN+1 can be computed based on TN , it is seen that

L(N)
k,i = L(N+1)

k+1,i+1 ∀ i ≤ k.
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The same argument can be used to conclude that given integer q ≥ 0,

L(N)
k,i = L(N+q)

k+q,i+q ∀ i ≤ k (C.35)

as long as N is sufficiently large. In view of the above relation,

lim
N→∞

L(N+q)
k+q,i+q = Gk+q,i+q = lim

N→∞
L(N)

k,i = Gk,i.

Hence, for finite index values, Gk,i = Gk−i for k ≥ i, and thus,

lim
N→∞

L(m)
N =

⎡

⎢
⎢
⎢
⎢
⎣

G0 0 · · · 0

G1
. . .

. . .
...

...
. . .

. . . 0
Gm · · · G1 G0

⎤

⎥
⎥
⎥
⎥
⎦

(C.36)

is lower triangular Toeplitz for any fixed integer m≥ 0. It remains to show that G(z),
the limit of ĜN(z), has all its zeros strictly inside the unit circle.

Let N > m ≥ 0. Partition LN in a conformable manner:

LN =

[
L(m)

N
LN,a LN,b

]

. (C.37)

Consider the case m = 0. Then L(m)
N = L(N)

0,0 . Let P(ω) = Q
(
e− jω) be the boundary

value of

Q(λ ) = I+
N−1

∑
k=1

Qkλ k. (C.38)

It can be verified that (Problem C.13 in Exercises) the integral matrix

M(Q) =
1

2π

∫ π

−π
P(ω)∗Φ

(
e jω)P(ω) dω = Q∗TNQ, (C.39)

where Q∗ =
[

I Q∗
1

]
and Q∗

1 =
[

Q∗
1 · · · Q∗

N−1

]
. In light of Cholesky factorization of

TN and the partition in (C.37) with m = 0,

M(Q) =
[
L(N)

0,0

]∗
L(N)

0,0 +
(

LN,a +LN,bQ
1

)∗(
LN,a +LN,bQ

1

)

≥
[
L(N)

0,0

]∗
L(N)

0,0 =: ΓN,0.



436 C Transfer Function Matrices

The lower bound is achieved by taking Q1 = −L−1
N,bLN,a because TN is nonsingular

for each N > 0 (Problem C.13 in Exercises). Let Pmin(ω) be the extremizing
polynomial matrix. It follows that

[
L(N)

0,0

]∗
L(N)

0,0 = ΓN,0 =
1

2π

∫ π

−π
Pmin(ω)∗Φ

(
e jω)Pmin(ω) dω . (C.40)

Applying the Master inequality and Jensen inequality in succession yields

log[det(ΓN,0)] = log

(
det

[
1

2π

∫ π

−π
Pmin(ω)∗Φ

(
e jω)Pmin(ω) dω

])

≥ 1
2π

∫ π

−π
log
(
det
[
Pmin(ω)∗Φ

(
e jω)Pmin(ω)

])
dω

≥ 1
2π

∫ π

−π
log
(
det
[
Φ
(
e jω)])+ log

(∣∣∣det [Pmin(ω)|2
])

dω

≥ 1
2π

∫ π

−π
log
(
det
[
Φ
(
e jω)]) dω

by log(det [Qmin(0)]) = log(det [I]) = 0. Taking limit N → ∞, ΓN,0 → G∗
0G0,

ĜN(z)→ G(z), and hence the important inequality

log [det(G∗
0G0)]≥ 1

2π

∫ π

−π
log
(
det
[
Φ
(
e jω)]) dω (C.41)

holds. Moreover, inequalities (C.30) in limit and (C.46) in Exercises imply

log(det[Φ(z)]) ≥ log
(
|det [G(z)]|2

)
∀ |z|= 1. (C.42)

By invoking Jensen inequality plus (C.41) gives

1
2π

∫ π

−π
log
(
det
[
Φ
(
e jω)]) dω ≥ 1

2π

∫ π

−π
log
(

det
[∣
∣G
(
e jω)∣∣2

])
dω

≥ log[det(G∗
0G0)]

≥ 1
2π

∫ π

−π
log
(
det
[
Φ
(
e jω)]) dω .

Consequently, the above four terms are all equal, and thus,

1
2π

∫ π

−π
log
(
det
[∣∣G
(
e jω)∣∣]) dω = log[det(G0)].

Jensen equality concludes that G(z) is indeed free of zeros for |z| ≥ 1. Recall that
z = λ−1. ��
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The condition on continuity and strict positivity of the PSD matrix Φ(z) on the
unit circle is not necessary that can be weakened to positive semidefinite ∀|z| = 1
and to inclusion of the singular component (Dirac delta functions on the unit circle)
for Φ(z), provided that

1
2π

∫ π

−π
log
(
det
[
Φ
(
e jω)]) dω >−∞. (C.43)

Interested readers may consult with the research literature to expand further under-
standing on spectral factorizations. Furthermore, spectral factorization result holds
for the case when Φ(z) has nonfull normal rank by adding ε2I before computing the
spectral factorization and then taking limit ε → 0. Although a stronger assumption
is used for the PSD matrix in this section, it is adequate for engineering applications,
and more importantly, it prevents the advanced mathematics from overwhelming the
engineering significance of the spectral factorization results.

Exercises

C.1. Show that a square polynomial matrix is unimodular, if and only if its inverse
is a polynomial matrix.

C.2. Compute column hermite form for

P1(z) =

⎡

⎣
z2 0
0 z2

1 z+ 1

⎤

⎦ , P2(z) =

⎡

⎣
1 z −(z+ 1)
z2 z3 + z −z3

z− 1 z2 + z −2z+ 1

⎤

⎦

and the unimodular matrices that represent the elementary row operations.

C.3. Compute row hermite form for

P1(z) =

[
1+ z z2 1

z2 + 2z z3 + 1 z

]
, P2(z) =

[
z2 −z3 + 1 1
1 z z+ 1

]

and the corresponding unimodular matrix.

C.4. Let Q1(z) and Q2(z) be polynomial matrices having the same number of rows.
Show that Q1(z) and Q2(z) are left coprime, if and only if there exist polynomial
matrices Y1(z) and Y2(z) such that

Q1(z)Y1(z)+Q2(z)Y2(z) = I.

C.5. Suppose that polynomial matrix R(z) is a GCLD of polynomial matrices
{Pk(z)}L

k=1, each having the same number of rows. Show that any other common
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left divisor R̃(z) of {Pk(z)}L
k=1 is related to R(z) via R(z) = R̃(z)Q(z) for some

polynomial matrix Q(z). Show that if R̃(z) is also a GCLD, then Q(z) is unimodular.

C.6. Suppose that all columns of Q(z) are left coprime. Show that row vectors of
Q(z) are all linearly independent for any z ∈ C. What happens if all columns of Q(z)
are not left coprime?

C.7. (Cramer’s rule) Consider linear equation y = Ax with A square and nonsingu-
lar. Show that xk, the kth element of x, can be obtained as xk = det(Ak)/det(A) for
1 ≤ k ≤ n where Ak is the same as A except that its kth column is replaced by y.

C.8. (i) Let {M(z),N(z)} be left MFD for transfer matrix T(z) of size p×m. Show
that there exist unique polynomial matrices {Q(z),R(z)} such that

N(z) = M(z)Q(z)+R(z),

where M(z)−1R(z) is strictly proper. (ii) Develop a similar result for right MFD
of the transfer matrix T(z). (Note: This is the division theorem for polynomial
matrices, extended from the Euclidean division algorithm.)

C.9. Referring to the previous problem, compute Q(z) and R(z) with {M(z),N(z)}
given by

M(z) =

[
z+ 2 z3

z3 z2 + 1

]
, N(z) =

[
2 z4 + 3z z− 1

z2 + 1 z3 2z2

]
.

C.10. Show that f (x) =− log(x) is convex for x > 0.

C.11. Suppose that f (θ ) is continuous and positive on [−π , π ]. Show that

log

[
1

2π

∫ π

−π
f (θ ) dθ

]
≥ 1

2π

∫ π

−π
log[ f (θ )] dθ . (C.44)

(Hint: Use summation in place of integration and then apply AGM inequality to
conclude the proof.)

C.12. Prove (C.27) and mean (C.28).

C.13. Let the PSD matrix Φ(z) be given as in (C.18). Define

H(z) =
m−1

∑
k=0

Hkz−k

as a polynomial matrix with n rows. Show that

0 ≤ 1
2π

∫ π

−π
H
(
e jω)∗Φ

(
e jω)H

(
e jω) dω = H∗TmH,
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where Tm is the Toeplize matrix as in (C.31) and H∗ =
[

H∗
0 · · ·H∗

m−1

]
. Hence, Tm is

positive definite for any integer m > 0, if Φ(z) is positive definite ∀|z|= 1.

C.14. Poisson’s kernel is defined by

P(ω) =
∞

∑
k=−∞

ρ |k|e− jkω , 0 < ρ < 1. (C.45)

(i) Show that P(ω)≥ 0 for all ω ∈ IR and

1
2π

∫ π

−π
1−ρ2

1− 2ρ cos(ω)+ρ2 dω = 1.

(ii) For Φ(z) in (C.18), continuous on the unit circle, show that

∞

∑
k=−∞

ρ |k|Φke− jkω =
1

2π

∫ π

−π
Φ
(

e jθ
) 1−ρ2

1− 2ρ cos(ω−θ )+ρ2 dθ .

C.15. Suppose that both matrices A and B are hermitian nonnegative definite with
one of them positive definite. Show that A−B≥ 0 and det(A) = det(B) imply A= B.

C.16. (i) For A ≥ B ≥ 0 with A > 0, show that

det(A+B)≥ det(A)+ det(B). (C.46)

(ii) For hermitian matrix C of size n× n that is nonnegative definite, show that

[det(I +C)]1/n ≥ [det(I)]1/n +[det(C)]1/n = 1+[det(C)]1/n
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Index

A
ACS: autocovariance sequence, 33, 34, 38, 39,

43, 61, 218
ARE, 190
arithmetic-geometry mean inequality, 430
ARMA model, 46, 100
asymptotic stability, 85
autocovariance sequence, 32
AWGN: additive, white, and Gaussian noise,

55, 57

B
balanced realization, 133
Bayes’ rule, 176
Bayes’s rule, 402
Bezout identity, 423, 425
BIBO stability, 41, 53, 65, 85
bit error rate, 313
Blaschke factor, 433
Blaschke product, 138
block canonical controller form, 50
BPSK: binary phase shift keying, 313, 324
BT: bilinear transform, 14

C
canonical controller form, 50, 64, 65, 76
Cauchy’s integral, 432
causal systems, 41
Cayley Hamilton theorem, 71
Cayley-Hamilton theorem, 384
Cayly Hamilton theorem, 72
central limit theorem, 58
channel fading, 20
characteristic function, 408
Chebyshev inequality, 418

Cholesky factorization, 434
CIR: channel impulse response, 353
circulant matrix, 304
co-inner, 221
commute, 398
companion matrix, 117
Condition number, 399
conditional probability density function (PDF),

176
controller form, 77
convolution, 41, 42
coprime, 47, 72, 423
correlation, 407
correlation coefficient, 408
covariance, 407
covariance matrix, 408
Cramer’s rule, 427
CRLB: Cramér-Rao lower bound, 343
CRLB:Cramér-Rao lower bound, 413
cumulative distribution function, 403
cut-off frequency, 9
cyclic, 384

D
decision feedback equalization, 322
detectability, 88, 90, 210, 213, 249, 276, 321
DFE: decision feedback equalization or

equalizer, 325
diagonalizable, 384
difference Riccati equation, 187, 189, 191, 197,

203, 206, 207
Dirac delta, 8, 20
Dirac Delta function, 34
Dirac delta function, 437
direct sum, 380
discrete-time Fourier transform, 32
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disturbance rejection, 200, 205, 206
double Bezout identity, 96, 98, 250, 253, 279
dynamic programming, 204

E
EIV: error-in-variable, 354
energy spectral density, 32, 43
ensemble averages, 412
ergodic process, 36, 40
ergodic processes, 352, 412
Euclidean division algorithm, 421
Euclidean norm, 37, 42, 128

F
Fejér kernel, 35, 39, 61, 433
FIM: Fisher information matrix, 414
finite-dimension, 46
FIR model, 46
flat-fading, 20
forgetting factor, 348, 349, 372
frequency selective fading, 22
frequency warping, 16
frequency-selective fading, 23
Frobenius norm, 44, 243, 340, 355, 379
full information control, 175, 214, 215, 217,

232, 241, 242

G
gain schedule, 7
generalized inverse, 383
Gilbert realization, 79, 80
greatest common divisor, 48, 64
greatest common left divisor, 424, 437
greatest common right divisor, 420
greatest common right divisor (GCRD), 422

H
Hankel matrix, 129
Hankel singular values, 134
Hankel-norm, 127, 129
Hardy space, 126
hermite form, 420, 437
Household reflection, 384
Householder vector, 384

I
ICI: interchannel interference, 306
IIR model, 46, 47
impulse response, 40, 41
induced norm, 387

Industrial Revolution, 235
inner, 221, 275, 278
inner, outer, 310
inner-outer factorizations, 221
innovation sequence, 187, 220, 229
internal stability, 85
interpolator, 295
invariant subspace, 393
inverse balanced truncation, 250
irreducible, 423, 424
irreducible left MFD, 424
irreducible right MFD, 424
ISI: intersymbol interference, 305, 306

J
Jensen’s inequality, 432, 433
joint independent, 403
Jordan block, 384
Jordan canonical form, 384

K
Kalman canonical decomposition, 80
Kalman decomposition, 73, 74, 76, 87, 92, 108
Kalman DFE, 329
Kalman filtering, 175, 192, 194, 206, 208, 273,

322
Kalman SIC, 323
Kronecker delta, 128, 329, 334
Kronecker product, 329
Kroneker product, 378
Kroneker sum, 378

L
L’Hospital’s rule, 13
Lagrange mechanics, 3
Laplace formula, 396
law of total probability, 402
LE equalization, 319
Lebesgue space, 126
left coprime, 424, 437, 438
left inverse, 381
linear fractional transformation, 238
linear quadratic Gaussian, 235
linear space, 377
linear time-invariant, 40
linearly independent, 377, 438
log-likelihood ratio, 323
loop shaping, 257, 261, 273
loop transfer recovery, 257
LQR: linear quadratic regulator, 201, 203–208,

212, 263



Index 449

LTI: linear time-invariant, 199, 217
LTR: loop transfer recovery, 268, 274
LTV: linear time-varying, 40, 216
Lyapunov stability, 68, 85

M
MA model, 46
MAP: maximum a posteriori, 176
Markov inequality, 418
Markov processes, 411
Master inequality, 432
matrix fractional description, 424
matrix inversion formula, 396
maximum singular value, 42
McMillan degree, 130, 430
mean-squared-value, 406
measurement update, 186, 198
minimal realization, 70, 78, 81
minimum phase, 48, 57
minimum variance control, 201, 207, 214, 217
Minkowski’s inequality, 431
MMSE: minimum mean-squared error, 176,

178–180, 182, 184–186
mode, 87
Moore-Penrose pseudo-inverse, 383, 397
multipath fading, 20

N
Nakagami fading, 21
nilpotent matrices, 378
normal matrix, 388
normal rank, 420
normalized H2 control, 248, 252, 289
normalized coprime factorization, 222, 259,

260
normalized LQG control, 248, 252

O
observability, 68, 70, 71, 74, 75, 101, 108
observability form, 118
observability gramian, 87, 130, 138, 171, 243,

250, 251, 289
observability matrix, 71–73, 77, 86, 102, 106,

117, 118
observer form, 72
orthogonal, 407
orthogonal projection, 381
orthonormal basis, 380
outcome, 401
outer, 275
output estimation, 241, 309
output injection, 259

P
para-hermitian, 430
Parserval’s theorem, 432
Parseval’s theorem, 37, 128
parseval’s theorem, 32
PBH test, 74, 77, 87, 394
PDF: probability density function, 176
PE: persistent excitation, 365
PE: persistent exciting, 348
periodogram, 59
polyphase, 296
power complementary, 223
power-norm, 44, 226
PR: perfect reconstruction, 297, 298, 300, 306
prefix, 304
principle minor, 396
principle of optimality, 204
probability density function, 36, 403
probability mass function, 403
projection, 381
proper, 426
PSD: power spectral density, 31, 33, 35, 36,

38–40, 44, 45, 57, 60, 62, 63, 218
pseudo-inverse, 226, 383, 397

R
random process, 33
Rayleigh distribution, 406
Rayleigh fading, 21
Rayleigh fading channel, 329
reachability, 68, 75, 93, 101, 108
reachability gramian, 87, 89, 130, 138, 171,

245, 250, 251, 289
reachability matrix, 75, 76, 102, 103
region of convergence (ROC), 42
return difference, 264
Ricean fading, 21
Rician distribution, 406
right coprime, 424
right inverse, 381
root-mean-squared error, 60
row-reduced, 426, 427

S
sample space, 401
sampling theorem, 9
Schur complement, 203, 228, 396
Schwarz inequality, 33, 61
separation principle, 241, 246
SIC: sequential interference cancelation, 323
similarity transform, 51, 73, 74, 76
simultaneous diagonalization, 388, 391, 399
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simultaneously diagonalizable, 398
Singular value decomposition (SVD), 386
SIT: step-invariant transform, 10, 12
small gain theorem, 250, 253
Smith form, 429
Smith-McMillan form, 428, 430
spectral factorizations, 218
spectral radius, 18, 85
stability, 41, 42
stabilizability, 88, 207, 210, 212–214,

249, 276
State-space models, 49
stationary Kalman filter, 192
strict-sense stationary, 411
strictly proper, 426
strong law of convergence, 410
subband coding, 297
SVD: singular value decomposition, 73

T
time update, 186, 198, 199
time-selective fading, 23
TMA: target motion analysis, 415
Toeplitz, 434
Toeplitz matrix, 71, 118
transversal filter, 46
transversal filters, 25
two-degree-of-freedom, 123

U
unbiased estimate, 413
uncorrelated, 407
uniform asymptotic stability, 111

V
Vandermonde matrix, 118
variance, 407
vector space, 377

W
weak law of convergence, 410
Weierstrass Theorem, 46
well-posed, 123
white process, 412
wide-sense stationary, 411
wide-sense-stationary, 33
Wiener filter, 192, 199, 200, 220, 230
WSSUS: wide-sense station and uncorrelated

scattering, 333
WSSUS: wide-sense stationary and

uncorrelated scattering, 22

Z
zero mean, 33
zero-order holder, 9, 16
ZF precoder, 321
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