
Chapter 8
Scalable and Optimized Hybrid Verification
of Embedded Software

Jörg Behrend, Djones Lettnin, Alexander Grünhage, Jürgen Ruf,
Thomas Kropf and Wolfgang Rosenstiel

8.1 Introduction

Embedded software (ESW) is omnipresent in our daily life. It plays a key role in
overcoming the time-to-market pressure and providing new functionalities. There-
fore, a high number of users are dependent on its functionality [1]. ESW is often used
in safety critical applications (e.g., automotive, medical, avionic), where correctness
is of fundamental importance. Thus, verification and validation approaches are an
important part of the development process.

The most commonly used approaches to verify embedded software are based on
simulation or formal verification (FV). Testing, co-debugging and/or co-simulation
techniques result in a tremendous effort to create test vectors. Furthermore, critical
corner case scenarios might remain unnoticed. An extension of simulation is the
assertion-based verification (ABV) methodology that captures a design’s intended
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behavior in temporal properties. This methodology has been successfully used at
lower levels of hardware designs, which are not suitable for software. ESW has no
timing reference and contains more complex data structures (e.g., integers, point-
ers) requiring a new mechanism to apply an assertion-based methodology. In order
to verify temporal properties in ESW, formal verification techniques are efficient,
but only up to medium sized software systems. For more complex designs, formal
verification using model checking often suffers from the state space explosion pro-
blem. Therefore, abstraction techniques (e.g., predicate abstraction [2]) are applied
to reduce the load of the back-end model checker.

Semiformal or hybrid approaches have been proposed many times before with
only limited success. In this paper we present VERIFYR [3], an optimized and scal-
able hybrid verification approach using a semiformal algorithm and taking advantage
of automated static parameter assignment (SPA). This technique reduces the model
size by assigning a static value to at least one function parameter. Information gained
during simulation (dynamic verification) is used to assign values to the parameters in
order to reduce the formal model (static verification). One issue is the selection of the
best function parameter. This is important due to the different impact of parameters on
the resulting state space. Until now, it was a manual or randomized task to assign the
parameter values. The selection of the parameter values may influence the program
flow and therefore, the resulting model size. This work describes a new approach
in order to rank function parameters depending on their impact on the model size.
The ranking is based on estimation according to the usage of the parameters in the
function body. Finally, SPA can be automatically applied to select parameters in an
optimized way in order to reduce the model complexity in a controlled manner.

The paper is organized as follows. Section8.2 describes the related work.
Section8.3 details the verification methodology and the technical details. Section8.4
summarizes our case studies and presents the results. Section8.5 concludes this paper
and describes the future work.

8.2 Related Work

Bounded model checking (BMC) is an approach to reduce the model size using
bounded execution paths. The key idea is to build a propositional formula, whose
models correspond to program traces (with bounded length) that might violate some
given property using state-of-the-art SAT and SMT solvers [4]. For instance, C
bounded model checker (CBMC) [5–7] has proven to be a successful approach for
automatic software analysis. Codeiro et al. [8] have implemented ESBMC based on
the front-end of CBMC and a new back-end based on SMT. All the above-mentioned
work fail when the bound is not automatically determinable.
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The optimization of formal models has been the reason to use abstraction meth-
ods. The automatic predicate abstraction [9] introduced a way to construct abstracted
models and allowed to introduce automated constraints like loop invariants [10].
Based on abstraction, Clarke et al. developed a refinement technique to generate
even smaller models using counterexamples [11, 12]. BLAST [13] and SATABS
[14] are formal verification tools for ANSI-C programs. Both tools use predicate
abstraction mechanisms to enhance the verification process and to reduce the model
size successfully. Semiformal/hybrid verification approaches have been applied suc-
cessfully to hardware verification [15–17]. However, the application of a current
semiformal hardware model checker to verify embedded software is not viable for
large industrial programs [18]. In the area of embedded software using C language,
Lettnin et al. [19] proposed a semiformal verification approach based on simula-
tion and symbolic model checker (SymC) [20]. However, SymC was the bottleneck
for the scalability of the formal verification, since it was originally developed for
the verification of hardware designs. Cordeiro et al. [21] have published a semifor-
mal approach to verify medical software, but they have scalability problems caused
by the used model checker. The aforementioned related works have their pros and
cons. However, they still have scalability limitations in the verification of complex
embedded software with or without hardware dependencies.

Concolic testing was first introduced by Godefroid et al. [22] and Cadar et al. [23]
independently. Koushik et al. [24] extended this methodology to a hybrid software
verification technique mixing symbolic and concrete execution. They treat program
variables as symbolic variables along a concrete execution path. Symbolic execution
is used to generate new test cases to maximize the code coverage. The main focus
is finding bugs, rather than proving program correctness. The resulting tools DART,
EXE, and CUTE apply concolic testing to C programs. But concolic testing has prob-
lems when very large symbolic representations have to be generated, often resulting
in unsolvable problems. Other problems like imprecise symbolic representations or
incomplete theorem proving often result in a poor coverage. ULISSE [25] is a tool
to support system-level specification testing based on extended finite state machines
(EFSM). The KLEE [26] framework compiles the source code to LLVM [27] byte
code. The code under test has to be compatible with LLVM and user interaction
(which is essential for our verification approach) is not supported. PEX [28] was
developed at Microsoft Research to automate structural testing of .NET code but not
C code. Frama-C [29–31] is an integrated development environment for C code with
focus on static verification only and Frama-C needs special code annotations for the
used “design by contract” approach.

Behrend et al. used SPA [3] to reduce the model size during semiformal verifi-
cation. By assigning a static value to a function parameter the automatic predicate
abstraction algorithm can generate a different abstraction that may lead to a smaller
model. If a parameter is assigned, the parameter is no longer handled as full range
variable, but as statically assigned variable. However, the previous approach the
function parameter for SPA was selected manually.
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8.2.1 Contributions

Our main contribution in this current work is a novel semiformal approach for the
verification of embedded software with temporal properties based on VERIFYR.
We provide a new methodology to extract both dynamic and static verifiable models
from C programs to perform both assertion-based and formal verification. On the
formal side, we are able to extend the formal engine with different state-of-the-art
software model checkers (SMC). On the simulation side, simulation models (C or
SystemC) and the testbench environment can be automatically generated including
randomization policies for input variables. Concerning our hybrid approach, on one
hand, the formal verification is able to guide the simulation process based on the
counterexamples. On the other hand, the simulation engine supports the formal ver-
ification, for instance, with the assignment of automated static parameters in order
to shrink the state space. In previous work [3], the SPA was determined by hand or
using a random selection, that is, a try-and-error method. In this work, we enable
for the first time the automated assignment of static parameters via a new ranking
algorithm with the following specific contributions:

• Automated SPA: An automatic usage of SPA is possible using this heuristic.
• Testbench: Automatic generation of testbenchs and simulation/formal models.
• Code quality and safety: The ranking can be used to detect dead parameters as
well as high complex functions based on high rated parameters.

• Minimize time/costs: The effort of brute-forcing all parameters using SPA can be
reduced by testing specific and promising parameters.

• Maximized coverage: Using this heuristic the smallest restriction and therefore
the widest coverage can be determined.

8.3 VERIFYR Verification Methodology

Figure8.1 and Algorithm 4 delineates the semiformal verification algorithm. Our
approach is based on the analysis of the embedded software structure via a function
call graph (FCG), as shown in Fig. 8.1a. The FCG represents the calling relationships
between functions of embedded software. The verification strategy is divided in three
phases: preprocessing (Algorithm 4, lines 2–8), formal exploration phase (a.k.a.
bottom-up) (Algorithm 4, lines 10–17), and semiformal verification phase (a.k.a.
top-down) (Algorithm 4, lines 18–29). In summary, the Formal Exploration (bottom-
up) phase identifies which functions are too complex to be verified by standalone
software model checkers. After identifying these functions we start the Semiformal
(top-down) phase combining simulation, SPA and formal verification in order to
overcome the software complexity.
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Fig. 8.1 VERIFYR verification approach

The VERIFYR verification methodology starts with the Formal Exploration
phase. It uses state-of-the-art software model checkers (SMC) with built-in and user-
defined properties specified in LTL to verify all functions of the FCG. It begins with
the leaves (e.g., functions F3, F4, F5, F6 in Fig. 8.1) and continues in the next upper
levels until the verification process reaches the function main (Algorithm 4, lines
11–12). If it is not possible to verify a function with the SMCs, it is marked in the
FCG (Algorithm 4, line 13) (e.g., function main, F1, and F2 in Fig. 8.1). This means
that these functions are too complex to be verified by a standalone model checker
due to time out (TO) or out of memory (MO) constraints and that it is required to
perform the semiformal/hybrid phase. Finally, a marked FCG (mFCG) is returned
including all functions that failed during the Formal Exploration phase, however, if
mFCG is empty then all function were formally verified and the verification process
is completed (Algorithm 4, lines 15–16).
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The Semiformal phase starts the simulation run with the assertion-based approach
(ABV) (Algorithm 4, line 19), which requires one simulation model (or original C
program wrapped in SystemC model) and testbench, one or many properties in LTL
to be checked. We use a simulation approach based on SystemC. Thus, we derive a
SystemCmodel from the embedded software and to be applied to SystemCTemporal
Checker (SCTC) [32], which supports specification of user-defined properties in
LTL [33].

During the Semiformal phase the marked FCG (mFCG) is analyzed. All functions
that were not yet verified due to failed verification (in the Formal Exploration phase)
are marked as point of interest (POI). POIs are basically the initial states of the local
functions (F2 in Fig. 8.1b4). Therefore, the mFCG is used as a guiding mechanism
in order to determine which function should be verified at the formal verification
phase.

The Simulation engine monitors the simulation process (i.e., properties and vari-
ables) to start a new formal verification process at every POI (Algorithm 4, line 21).
ABV is responsible for finding the POIs as well as the error states (F2 in Fig. 8.1b3).
We use the monitored information to initialize variables (interaction with formal) to
statically assign parameters (Algorithm 4, lines 23–24). It will lead to different access
points for the software model checkers and it will help shrinking the state space of
the function (Fig. 8.1b). This heuristic avoids an over-constraining of the state space
in formal verification. As a result, SMC has not only a unique starting state (as usual
by simulation), but an initial state set, which will improve the state space coverage
of the semiformal verification. Therefore, the formal verification benefits from the
simulation, as show in Fig. 8.1(F2).

Finally, a temporary version of the source code of the function under test (FUT) is
created and is checked with the formal SMCs (Algorithm 4, lines 25). If a counterex-
ample is reported, this information is used to guide the simulation (learning process).
For instance, the randomization of input variables in our testbench is constrained in
order to generate more efficient test vectors. Additionally, if desired, the user can set
randomization constraints manually. Currently, when a counterexample should be
reported to the user we save the global variable assignment of the used simulation
run (“seed”) to trace back from the counterexample given by the SMC to the entry
point of the simulation run. Then we translate the CIL generated information back
to the original C code.

When the simulation run reaches the return operation of the main function, a
new simulation run is started. The global interaction between simulation and formal
verification will continue until all the properties were evaluated or, a time bound or
maximum number of simulation runs is reached or no more marked functions are
available (Algorithm 4, line 20).

In the next sections, the SPA heuristic as well as themodeling details of embedded
software will be presented.
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Algorithm 4 VERIFYR algorithm

1 VERIFYR(Cprog,PropSet)
2 doPreProcessing()
3 C3AC = 3ACGen(Cprog)
4 CTestbench = testbenchGen(Cprog)
5 C3AC = propToAssertionSMC(C3AC, PropSet)
6 CTestbench = propToAssertionSim(CTestbench,

PropSet)
7 FCG = FCGgen(C3AC)
8 end doPreProcessing
9 startOrchestrator()
10 doFormalExploration() //BOTTOM-UP
11 for each CFunction in C3AC
12 VStatus = startSMC(CFunction)
13 if VStatus == FAIL then
14 mFCG += markFunction(CFunction)
15 if mFCG == NULL then
16 return VCOMPLETE
17 end doFormalExploration
18 doSemiformal() //TOP-DOWN
19 startSimulation(CTestbench, Cprog)
20 while NoTimeBound or NoMaxSimRuns or !Empty(

mFCG)
21 POIFunction = watchSimFunctions(mFCG)
22 if POIFunction in mFCG then
23 assessParameterScore(POIFunction)
24 CFunction = doSPA(POIFunction)
25 VStatus = startSMC(CFunction)
26 if VStatus == COUNTEREXE then
27 guideSimulation()
28 unmarkFunction(mFCG)
29 end doHybridFormalSimulation
30 doComputeCoverage()
31 doShowCounterexample()
32 end startOrchestrator
33 end VERIFYR

8.3.1 SPA Heuristic

The SPAheuristic assumes that there is a function list containing all functionswith all
their parameters in a structured way. The algorithm iterates through the statements of
each function body in the function list, inspecting each statement. If a statement con-
tains one of the function parameters, this statement is inspected in more details. The
analysis covers 11 aspects of the statement called properties. More details on these
properties are in Sect. 8.3.1.2. Based on these properties the statement is assessed
and a score is computed. The scores are summed up and stored for each parame-
ter. The statement is examined for introducing a parameter value-dependent variable
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(PVDV). This is done after the property check since the first statement of this PVDV
is not rated. They are queued in the parameter list marked with their depending para-
meter. The achieved score of a PVDV is added to the score of the parameter the
PVDV depends on.

8.3.1.1 Parameter Value-Dependent Variables

Variables that are initialized using a parameter are directly affected by SPA. This
observation led to the concept of PVDV. Applying SPA on a function parameter
reduces the model size because the model is not required to cover the full range of
possible values. This effect is passed down to PVDV as they are directly depending
on the parameter value. They passed the effect on to their value-dependent variables.

In order to cover this effect this technique monitors the value dependencies by
analyzing assignments. If a PVDV is found, the variable is queued in the list of
parameters. Any impact on the model size (such as PVDV) is added to the impact of
the function parameter on which value the PVDV was initialized. Keeping track of
these PVDVs is an essential part of this technique. This is because it is a common
practice to make copies of parameters if those are used at multiple locations. And
the parameters that are used in multiple locations have a huge impact.

8.3.1.2 Context Properties

Every statement that contains a parameter is evaluated against a set of internal prop-
erties. These properties describe the context in which the parameter is usedwithin the
statement. Therefore, the properties cover all context aspects of a statement that are
used to state an assessment. All properties are determined by inspecting the code and
are the base for the later assessment. Following eleven properties reflect the aspects
of a statement regarding the usage as a variable:

• Reading: True if the parameter is on the right hand side of an assignment.
• Writing: True if the parameter is on the left hand side of an assignment.
• Compare: True if there is a comparison.
• Loop: True if statement contains the keyword “for” or “while.”
• Function: True if the parameter is in brackets, as it would bewhen used as function
parameter.

• Conditional: True if the statement contains the keyword “if,” “switch,” or “case.”
• Return: True if the statement starts with the keyword “return.”
• Command: True if the statement ends with a semicolon.
• Multiple use: True if the statement contains one parameter multiple times.
• Indirect use: True if themonitored parameter is not a direct parameter but a PVDV.
• First use: True only at the first appearance of a parameter.
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8.3.1.3 Assessing Function

The assess function estimates the model size based on the usage of a parameter in a
statement. The estimation is based on the properties and is implemented as a Boolean
clause. The number of cases with significant impact on the model size is limited. In
this heuristic the four following special cases are used:

• Dead parameter: If a parameter is written on the first appearance the parameter
is considered dead. SPA may already be applied.

• Return: Actual function parameters (not PVDV) that are returned have lesser
impact.

• Switch statement: Conditional parameters control the programflowand therefore,
impact heavily on the model size.

• Loop boundary: Loops are commonly unwound within the formal model, so the
loop boundary has a major impact on the model size.

Each case is rewarded with a score. The number of points per case is reflecting
the impact on the model size. As every statement has a basic impact every statement
receives one point. If variations of a parameter value do not impact themodel size, the
parameter is called a dead parameter. These dead parameters are mainly parameters
that already have SPA applied. This case is rewarded with a negative score to lower
the ranking to a minimum. In addition dead parameters are not assessed anymore.
Return parameters are mainly data containers that have lesser impact on the model
size than not returned parameters. This is an observation made while testing the
heuristic on the available benchmark. An implementation should use a low negative
score to cover this effect. Parameters that are used in conditional statements have
great impact on the model size as they control the program flow. The score should be
set to a high value to ensure that parameters that are not used in conditional or loop
statements cannot reach a higher rank. Loop boundary parameters are parameters that
control the boundary of a loop. As loops are commonly unwound in the formal model
the impact of those parameters on the model size are huge. Experiments using the
available benchmark showed that the impact on the model size of three conditional
statements can surpass the impact of one loop boundary parameter. In order to cover
this fact the score should be set to twice the score of a conditional statement.

8.3.2 Preprocessing Phase

Basically the preprocessing phase considers the generation of testbench and simula-
tionmodels, preprocessing the C program to the softwaremodel checker, defining the
temporal properties to both formal and simulation models, and finally the generation
of the control flow graph, as shown in (Algorithm 4, lines 2–8).
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8.3.2.1 3-AC and FCG Generation

In order to extract the formalmodelweuse theCIL [34] tool in the front-end to convert
the C program (compatible with MISRA [35]) into three-address code (3-AC) (Fig.
8.2b). 3-AC is normally used by compilers in order to support code transformations
and it is easier to handle compared to the degrees of freedomof a user implementation.

A function call graph (FCG) is generated based on [36]. We use this FCG as input
to guide our Formal Exploration phase (bottom-up) verification.

8.3.2.2 Testbench Generation

For automatic testbenchgeneration (Fig. 8.2c),weuseour ownXML-based approach.
The objective of our testbench generator is to extract all input variables out of any
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C source code and provide them in a portable overview easy to modify by hand or
by using supported automatic manipulation methods. In order to reach these goals
we generate a XML representation of the C code. Afterwards we analyze the cor-
responding XML, such as, macros, function monitoring, identification of local and
input variables, value ranches of variables and loop analysis. After this step we
generate the testbench using either C++ executable or SystemC model.

During the simulation we measure the coverage of the loop behavior and value
ranges of all variables. The results of static XML analysis and the dynamic testbench
execution are sent to the VERIFYR to enhance the automatic SPA with value ranges
for variables and bounds for loop unrolling. All gathered information is presented to
the user. The user can access the testbench XML description to update or manipulate
the behavior.

8.3.2.3 SystemC Model

The derived simulation model is automatically generated using no abstractions.
The derived model consists of one SystemC class (ESW_SC) mapped to a corre-
sponding C program. The main function in C is converted into a SystemC process
(SC_THREAD). Since software itself does not have any clock information, we pro-
pose a new timing reference using a program counter event (esw_pc_event) [37].
Additionally the wait(); statement is necessary to suspend the SystemC process.
The program counter event will be notified after every statement and will be respon-
sible to trigger the SCTC.

The automatically generated testbench includes all input variables and it is pos-
sible to choose between different randomization strategies like constrained random-
ization and different random distributions, supported by the SystemC Verification
Library (SCV) [38].

8.3.2.4 Temporal Properties Definition

The C language does not support any means to check temporal properties in soft-
ware modules during the simulation. Therefore, we use the existing SCTC, which
is a hardware oriented temporal checker based on SystemC. SCTC supports specifi-
cation of properties either in PSL (Property Specification Language), LTL or FLTL
(Finite Linear time Temporal Logic) [32], an extension to LTL with time bounds
on temporal operators. SCTC has a synthesis engine which converts the plain text
property specification into a format that can be executed during system monitoring.
We translate the property to Accept-Reject automata (AR) (Fig. 8.2d) in the form of
an Intermediate Language (IL) and later to a monitor in SystemC. The AR can detect
validation (i.e., True) or violation (i.e., False) of properties (Fig. 8.2g) on finite
system traces, or they stay in a pending state if no decision can be made yet.
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For the software model checkers, we include the user-defined properties into the
C code translating the LTL-style properties into assert/assume statements based on
[39] (Fig. 8.2d).

8.3.3 Orchestrator

The orchestrator has as main function the coordination of the interaction between the
assertion-based (i.e., simulation) and formal verification engines (Fig. 8.2h). Con-
cerning that each SMC has their pros and cons, the formal verification is performed
by the available state-of-the-art SAT/SMT based model checkers (e.g., CBMC,
ESBMC). The simulation is performed by the SystemC kernel.

Additionally, the orchestrator collects the verification status of the softwaremodel
checkers in order to “mark” the FCG. The mFCG is passed to the simulation engine
to start the simulation process to determine values to the function parameters. Also,
SPA is performed in order to identify the most important function parameter. The
marked C function is updated with the static parameters and the SMC is executed
in order to verify the properties. If a counterexample occurs, it will be used to guide
the test vector randomization. Additionally, the orchestrator is responsible to collect
the coverage data in order to determine the verification quality.

Finally, the orchestrator can distribute the computation of every function to a dif-
ferent verification instance of the supported SMCs (Fig. 8.3). The default distribution
heuristic is a “try-all” approach, which means that all functions are checked with all
supported SMCs. Furthermore, the user can orchestrate the distribution (e.g., in a
cluster) of the functions manually and choose between the different SMCs by using
a graphical user interface (GUI).

Fig. 8.3 Verification process
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8.3.4 Coverage

Our hybrid verification approach combines simulation-based and formal verification
approaches. However, techniques to measure the achieved verification improvement
have been proposed either to simulation-based or to formal verification approaches.
Coverage determination for semiformal (hybrid) verification approaches is still in
its infancy. For this work (Fig. 8.2j) we used a specification-based coverage metric
to quantify the achieved verification improvement of hybrid software verification.
Our semiformal coverage metric is based on “property coverage,” which determines
the total number of properties from a set of properties that were evaluated by both
simulation-based or formal verification engines. Additionally, the simulation part
is monitored using Gcov [40] in order to measure further implementation-based
coverage inputs (e.g., line coverage, branch coverage). It is also important to point
out, that due to the use of the simulation in our hybrid verification approach we
still might not cover 100% of the state space, as in formal verification, as shown in
Fig. 8.1b5).

8.3.5 Technical Details

The main objective of this new approach is to provide a scalable and extendable
hybrid verification service. We have implemented our new approach as a verification
platform called VERIFYR, which can verify embedded software in a distributed and
hybrid way. To make use of the advantage of several compute nodes we have to split
the whole verification process into multiple verification jobs. Furthermore, VERI-
FYR is platform independent and extendable by using a standard communication
protocol to exchange information. The VERIFYR framework provides a service to
verify a given source code written in C language. It consists of a collection of formal
verification tools (such as CBMC and ESBMC), simulation tools (e.g., SCTC), and
a communication gateway in order to invoke verification commands and to exchange
status information of the hybrid verification process. These commands are passed to
the orchestrator using the simple object access protocol (SOAP) over HTTP respec-
tively HTTPS as shown in Fig. 8.4. The whole set of the SOAP calls are stored in
the web service description language (WSDL) file for the verification service. The
client application passes the SOAP document including the name of the command
and its parameters such as function name, verification information and authorization
credentials. As shown in Fig. 8.5 the verification clients have to send their verification
requests to a super node (orchestrator). The super node distributes the requests to
different verification servers. At the moment VERIFYR supports multicore compute
nodes and clusters. It is possible to setup any number of verification nodes to reach
the desired scalability.
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Fig. 8.4 VERIFYR client and server overview

Fig. 8.5 Verification process of different clients on different servers
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8.4 Results and Discussion

8.4.1 Testing Environment

We performed two sets of experiments based on two different case studies (cf.,
Sects. 8.4.2 and 8.4.4) conducted on a cluster with one Intel® CoreTM 2 Quad CPU
Q9650 @ 3.00GHz and two Intel® CoreTM 2 Duo CPU E8400 @ 3.00GHz all with
8GB RAM and Linux OS. The first set of experiments represents the results of the
SPA heuristic based on Motorolas Benchmark Suite [41] and the verification results
of our new hybrid verification methodology (VERIFYR) using this new heuristic.
The second set of experiments represents the results of the SPA heuristic based on
EEPROM emulation software from NEC Electronics and the verification results of
the hybrid verification methodology (VERIFYR) using this new heuristic.

The scores were set according to the rules given in Sect. 8.3.1.3. The empirically
gained scores are −200 points for dead parameter, −20 points for return parameters,
1025 points for conditional parameters and 2050 points for loop parameters. Then
two adjustments had to be made. The first adjustment was the score of conditional
parameters. Those can easily be set too low. Setting the score too low leads to awrong
ranking compared to parameters that are often used, but not as conditional or loop
parameters. The actual number 1025 is an empirical choice based on the case studies.
The second adjustment is the score for loop parameters. This score is reflecting used
the coding style. Using many and long conditional code blocks the score for a loop
decreases, while using wide loops or conditional constructions with else case the
score increases. For the Motorola Powerstone Benchmark Suite the score twice the
score of conditional parameters showed to be fitting. Adjusting the scores slightly
will have only a small effect, but it may swap parameters that are close.

8.4.2 Motorola Powerstone Benchmark Suite

For our first case study we used Motorola’s Powerstone Benchmark Suite [41]
and tried to verify the built-in properties (e.g., division-by-zero) from CBMC and
ESBMC. To exemplify these results the search_dict function from theMotorola
Powerstone Benchmark module V.42 was used. The function has two parameters
string and data. With these two parameters in the parameter list the algorithm
proceeds through the function body. Table8.1 shows the result for each statement.
That would be 2 points for data and string and 7 points for kid. The score of
each parameter is summed up including the appearance points. The resulting rank-
ing is 1007 points for data, 3077 points for string and 2057 points for kid.
However, as kid is inherited by string the score is combined to a final result of
1007 points for data and 5134 points for string.

As the score represents the impact of each parameter, it can be expected that the
string parameter has a much bigger impact than the data parameter. To test the
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Table 8.1 Statement scoring

Line: statement Parameter Points Reason

l2: if (!string) String 1025 Switch statement

l3: return (data+3); Data −20 Return statement

l4: for (kid =
dict[string].kids; …

String 2050 Loop statement, also
introduces new
parameter “kid”

l4: kid; … Kid 0 Not a statement, not a
loop statement as the
loop defines “kid”

l4: kid =
dict[kid].sibling)

Kid 0 Not a statement still
part of the “for”
instruction

l5: if (kid != last &&
…

Kid 1025 Switch statement

l5: dict[kid].data ==
data)

Kid 1025 Switch statement
actually it is the same
switch statement

l5: dict[kid].data ==
data)

Data 1025 Switch statement two
parameter, scored
twice

l6: return (kid); Kid 0 One point for use not a
return statement
because “kid” is
inherited

impact of the ranking, the function has been verified using CBMCwith an unwinding
option of 20 and again for each parameter. Using SPA on the parameter data does
not change that result. The verification run resulted in about 5 s and with a memory
usage of up to 175MB. Using SPA on the parameter string results in a runtime of
4 s and a maximum memory usage of 65MB. So the memory usage has been more
than halved and the runtime reduced when SPA is used on the parameter the heuristic
suggests. This experiment shows that SPA on the parameter improves the memory
usage and the runtime. In order to show the power of SPA in more detail the function
memcpy of the V.42 module is a good example. This function has three parameters
with a scoring printed in Table8.2. Using CBMC without unwinding this function
needs more than 3GB of memory, which leads to an out-of-memory exception in the
used test environment.

Using the ranking provided by this heuristic the first parameter is a dead parameter,
so applying SPA on it should lead to no further information. Applying SPA to the
first parameter leads indeed to an out-of-time exception after one hour of runtime.
The second parameter has a low impact on the model size. Applying SPA on the
second parameter leads to another out-of-memory exception. The final parameter
with the highest score has the highest impact on the model size. After applying SPA
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Table 8.2 SPA results for V.42

Function Parameter Score CPUa Memb Vmemb Comment

memcpy 458,318 276,558 2935,808 MOc

void *d −218 3599,565 107,089 35,652 MOc

void *s 2 120,324 101,972 2931,712 MOc

long t 1029 6,464 0,197 59,488 51d

strncmp 212,686 185,147 2928,64 MOc

char *s1 2052 233,442 201,603 2939,904 MOc

char *s2 2052 244,351 210,341 2921,472 MOc

long n 8207 1,503 0,013 35,668 10704d

aseconds of runtime
bmegabyte (virtual) memory used
cmemory out
dnumber of clauses, all results are retrieved using CBMC with no unwind bound

on that parameter CBMC, returns “verification failed.” The second experiment is
the strncmp function of the V.42 module. This function has three parameters with
the scoring shown in Table8.2. Unlike the memcpy function the scoring of two
parameters are close by. This suggests similar results when using SPA on either of
them. Table8.2 shows that this assumption is correct in this case. The third parameter
with the highest score indeed has the highest impact on the model size and leads to
a final result.

8.4.3 Verification Results Using VERIFYR

We combined the new SPA heuristic with the VERIFYR platform. We focused our
interests on Modem Encoding/Decoding (v42.c). In total, the whole code comprises
approximately 2,700 lines of C code and 12 functions. We tried to verify the built-in
properties (e.g., division-by-zero, array out of bounds) from CBMC and ESBMC. It
was not possible to verify thewhole programusing one of the above-mentionedSMCs
with a unwinding parameter (bound) bigger than 4. For every function we used a
different instance ofCBMCorESBMC in parallel. The results are shown inTable8.3.
Based on this Formal Exploration analysis, we switched to our top-down verification
phase triggered by the simulation tool. At every entry point (POI), SCTC exchanges
the actual variable assignment with the orchestrator, which uses this information to
create temporary versions of the source code of the function under test with static
assigned variables. Table8.3 shows the comparison betweenCBMC (SAT), ESBMC,
and our VERIFYR platform. The used symbols are P (passed), F (failed), MO (out
of memory), TO (time out, 90min), and PH (passed using hybrid methodology).
PH means that it was possible to verify this function with our hybrid methodology
using simulation to support formal verification with static parameter assignment.
This table shows that VERIFYR presented the same valid results as CBMC (SAT)
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Table 8.3 Verification results v42.c

Function CBMC (SAT) ESBMC VERIFYR

Result Time (s) Result Time (s) Result Time (s)

Leaves

putcode P 2 P 2 P 2

getdata P 2 P 2 P 2

add_dict MO 135 MO 155 PH 535

init_dict MO 152 P 40 P 40

search_dict MO 161 MO 234 PH 535

putdata P 1 P 1 P 1

getcode P 1 P 1 P 1

puts MO 163 MO 134 PH 535

Parents level 1

checksize_dict TO TO PH 535

encode MO 354 MO 289 PH 2

decode P 1 P 1 P 1

ALL

main MO 351 MO 274 PH 535

P (passed), F (failed), MO (out of memory),
TO (time out, 90min) and PH (passed using hybrid methodology)

and ESBMC, and no MO or TO has occurred. Furthermore, the Table8.3 presents
the verification time in seconds in order to reach P, MO, or PH results. The time for
PH consist of the time for the simulation runs plus formal verification using static
parameter assignment. We have used 1000 simulation runs. In total, 20 properties
were evaluated by both simulation and formal verification. All tested properties were
safe, that is, a property coverage of 100%.

Overall, we have simulated the whole modem encoding/decoding software using
our automatically generated testbench and beyond that we are able to verify 6 out
of 12 observed functions using formal verification and the 6 remaining with hybrid
verification. However, VERIFYR outperforms the single state-of-the-art tools in
complex cases where they are not capable to reach a final verification result.

8.4.4 EEPROM Emulation Software from NEC Electronics

Our second case study is an automotive EEPROM Emulation software from NEC
Electronics [42], which emulates the read and write requests to a nonvolatile mem-
ory. This embedded software contains both hardware-independent and hardware-
dependent layers. Therefore, this system is a suitable automotive industrial
application to evaluate the developed methodologies with respect to both abstraction
layers. The code used is property ofNECElectronics (Europe)GmbH, embedded and
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marked confidential. Therefore, the details of the implementation are not discussed.
The EEPROM emulation software uses a layered approach divided into two parts:
the Data Flash Access layer (DFALib) and the EEPROMEmulation layer (EEELib).
The Data Flash Access layer is a hardware-dependent software layer that provides an
easy-to-use interface for the FLASH hardware. The EEPROM Emulation layer is a
hardware-independent software layer and provides a set of higher level operations for
the application level. These operations include:Format,Prepare,Read,Write,
Refresh, Startup1 and Startup2. In total, the whole EEPROM emulation
code comprises approximately 8,500 lines of C code and 81 functions. We extracted
from the NEC specification manual two property sets (LTL standard). Each property
in the EEELib set describes the basic functionality on each EEELibs operation (i.e.,
read, write, etc.). A sample of our LTL properties is as follows:

F (Read → X F(EEE_OK|| . . .)) (A)

The property represents the calling operations in the EEELib library (e.g., Read) and
several return values (e.g., EEE_OK) that may be received. For CBMCwe translated
the LTL properties to assert/assume style properties based on [39]. For the SPA
heuristic the same scoring as in the Motorola Powerstone Benchmark Suite was
used. The verification was done on the same computer as the previous testing and the
verification runs were unbounded. We present three functions to provide evidence
that the concept of this heuristic is valid and the scoring is balanced. In Table8.4 the
measured results are shown.

The function DFA_Wr is successfully verified using SPA on the length para-
meter. This result is suggested by the heuristic. In the function DFA_WrSec the
parameter val has the highest score. And the function also finishes using SPA on
that parameter. Unlike in the two other functions the function DFALib_SetWr is
valid from the beginning. CBMC verifies the function in half a second using 1341
clauses. Still using SPA shows that if the score of the parameters increase then the
number of clauses generated and proven by CBMC decreases. This shows that the
score is representing the complexity of parameters concerning the resulting state
space. Unbounded model checking can be restricted in order to gain a partial result.
The case studies above show that the increased complexity of software can be handled
using SPA.

We have selected for both EEELib and DFALib (hardware-dependent) two leaf
functions and two corresponding parent functions in relation to the corresponding
FCG. We have renamed the selected functions for convenience. Table8.5 shows that
VERIFYR presented the same valid results as CBMC (SAT) and ESBMC, and no
MOor TO has occurred. In total, 40 properties were evaluated by both simulation and
formal verification, which corresponds five properties for each of the eight functions.
All tested properties were safe, that is, a property coverage of 100%.
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Table 8.4 SPA results for NEC

Function Parameter Score CPUa Mem.b Vmem.b Comment

DFA_Wr 127,576 107,435 2917,376 MOc

void
*addSrc

15 127,964 106,242 2929,664 MOc

void
*addDest

15 138,541 116,533 2934,784 MOc

u32 length 3093 0,534 0 0 VSd

DFA_WrSec 129,523 109,166 2939,904 MO

u08
volatile
*sec

−199 129,826 106,599 2934,784 MOc

u08
volatile
*dest

829 133,273 111,806 2936,832 MOc

u08 mask 1852 123,984 105,334 2922,496 MOc

u08 val 4115 0,521 0,002 21,141 51e

DFA_SetWr 0,552 0,003 21,148 1341e

u32
*pWrite-
data

19 0,541 0 0 1031e

u32 cnt 1853 0,5 0 0 29e

aseconds of runtime
bmegabyte (virtual) memory used
cmemory out
dverification successful
enumber of clauses, all results are retrieved using CBMC with no unwind bound

Table 8.5 Verification Results NEC

Function CBMC (SAT) ESBMC VERIFYR

Result Time (s) Result Time (s) Result Time (s)

EEELib

Eee_Leaf01 P 1 P 1 P 1

Eee_Leaf02 P 1 P 1 P 1

Eee_Parent01 MO 231 MO 174 PH 1840

Eee_Parent02 MO 110 MO 119 PH 1840

DFALib

DFA_Leaf01 P 1 P 1 P 1

DFA_Leaf02 MO 109 MO 90 PH 1840

DFA_Parent01 MO 112 MO 92 PH 1840

DFA_Parent02 MO 125 MO 100 PH 1840

P (passed), F (failed), MO (out of memory),
TO (time out, 90min) and PH (passed using hybrid methodology)
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Overall, when we look at the results, we have simulated the whole NEC software
using our generated testbench and beyond that we were able to verify 3 out of 8
observed functions using formal verification and the remaining using hybrid verifi-
cation. VERIFYR outperforms the state-of-the-art tools in this complex application
where they are not able to reach a final verification result for all functions.

8.5 Conclusion and Future Work

We have presented our scalable and extendable hybrid verification approach for
embedded software. We have described our new semiformal verification methodol-
ogy and have pointed out the advantages. Furthermore we have shown our new SPA
heuristic, which shows promising results on the Motorola Powerstone Benchmarks
Suite and on the EEPROM emulation software from NEC Electronics. SPA is an
automated process that optimizes the interaction between bounded model checking
and simulation for semiformal verification approaches. It is possible to use differ-
ent strategies for the whole or parts of the verification process. We start with the
formal phase and end up with hybrid verification based on simulation and formal
verification. During the formal exploration phase the SMC tries to verify all possible
functions under test based on a FCG until a time bound or memory limit has been
reached. The FCG is marked to indicate the Points-of-Interest. Then, we start with
simulation and whenever one of the POIs is reached, the orchestrator generates a
temporary version of the function under test with initialized/pre-defined variables in
order to shrink the state space of the formal verification. Our results show that the
whole approach is best suited for complex embedded C software with and without
hardware dependencies. It scales better than standalone softwaremodel checkers and
reaches deep state spaces. Furthermore, our approach can be easily integrated in a
complex software development process. Currently, we are working on assessing the
scores automatically and on quality metrics for hybrid verification.
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