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5.1 Introduction

Software engineering has gone through several paradigm shifts (assembly lan-
guage → structural programming → object-oriented → model-driven development
(MDD)), driven by the requirements for building more complex systems. The inher-
ent necessity to achieve reliable systems, inline with these paradigm shifts, has ush-
ered in copious verification and validation techniques.

However, debugging and runtime monitoring remains the widely used process for
finding and resolving defects (bugs) that prevent correct operation of the underlying
software system. Debugging tools, in general, help to identify errors at the various
stages of the software development process. Some of the commonly used traditional
debugging tools involve “printf” statements, data monitors, and operating system
monitors [17]. On the other hand, some sophisticated techniques available in the
embedded software development tools are profilers, memory testers, and execution
tracers [5, 8, 32], to mention a few.
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Observing and examining the behavior of software execution at runtime can be
termed as runtime or online software monitoring and verification. Embedded sys-
tems present particular challenges for monitoring, which necessitate a nonintrusive
or a minimally intrusivemonitoringmethodology. This is especially true for resource
constrained, deeply embedded systems (e.g., 16-bit systems with 64 KiByte mem-
ory). Runtimemonitoring techniques used for several application purposes [5, 8, 32]
often employ a target output/computer to diagnose and interpret the results in formats
such as plain text and graphs. However, with the advent of model-driven method-
ologies, the applicability and usage of models, such as Unified Modeling Language
(UML) [4] diagrams, are under evaluation for model-based runtime monitoring and
debugging of software systems.

In the field of real-time embedded software systems, model-based debugging and
visualizing embedded software systems, using diagrams, such as sequence and tim-
ing diagrams, presents an exciting outlook. Model-based visualization of embedded
software system behavior (at runtime), using sequence diagrams and state charts, is
possible in proprietary MDD tools, such as Rhapsody [14]. However, such existing
runtime monitoring and debugging methodologies are not well-suited for applica-
bility in deeply embedded systems, primarily because of the monitoring overhead
involved. The following section enumerates the drawbacks of debugging, runtime
monitoring, and visualization of target behavior in real time, in the state-of-the-art
tools and methodologies.

5.1.1 Problem Statement

The drawbacks of model-based debugging and runtime monitoring, which involve
extensive source code instrumentation in the underlying software, are discussed
below. The crux lies in the applicability of such techniques in deeply embedded
software systems. An example of such a resource constrained embedded system is a
16-bit system with less than 64 KiByte memory.

• Significant instrumented code size The instrumented code (for debugging and
monitoring) increases with an increase in the application size. The instrumented
code varies based on the application size and complexity. Hence, there arises a
question of scalability and applicability of such an approach in debugging small
embedded software systems. For instance, an existing MDD tool [14], while sup-
porting model-based monitoring of embedded systems, makes use of techniques
such as dynamic source code instrumentation or downloading a significant instru-
mented code on the target.

• Requirement for sophisticated interfaces: Often, sophisticated interfaces and
communication protocols are required to download the instrumented code and
visualize the behavior of the target in real time at the host computer. For
instance, let us consider the MDD tool Rhapsody [14], which provides a “live-
animation” feature formodel-based visualization of the target behavior in real time.
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It introduces significant (and dynamic) source code instrumentation overhead. Fur-
ther, it requires sophisticated debug communication interfaces (e.g., TCP/IP over
Ethernet) to download the debug code on the target and visualize the behavior at the
host, usingUMLdiagrams. It is intuitive to perceive that such techniqueswould fur-
ther result in protocol and performance overhead during debugging and/or runtime
monitoring. Moreover, such interfaces are not necessarily available in memory-
size constrained, deeply embedded targets.

• What you verify is not what you deliver: The instrumented code is not only sig-
nificant, it is often removed after the debugging process/verification is completed.
This implies that the behavior of the RTESS during debugging may not remain
the same after the debugging process is complete. For instance, there could be a
change in the program-instructions or clock cycles before which the specific sys-
tem code is executed (because of the execution cycles of the instrumented code).
This necessarily means that the system that is debugged/verified is not the same
system that is delivered as the end-product.

Thus, the existing tools introduce unbounded overhead and highly intrusive moni-
toring mechanisms for model-based debugging and visualization of real-time behav-
ior of targets, using UML diagrams. Clearly, such approaches are not suitable for
applicability in deeply embedded systems.

5.1.2 Contribution

Based on the problems stated above, it is clear that there is a need for an inte-
gratedmodel-based debugging framework andmonitoring approach, which provides
scalable model-based debugging for deeply embedded systems. Such a monitoring
methodology is referred to in this paper as the time and memory-size aware runtime
monitoring.

One such model-based debugging approach, which addresses the aforementioned
limitations, is discussed in [20]. With this model-based debugging approach, the
behavior of memory-size constrained RTESS can be visualized in real time, using
UML sequence and timing diagrams (at the design level using a minimally intrusive
target monitor). Performance metrics and evaluation of the debugging approach pro-
posed in [20] is discussed in [19]. This book chapter elaborates on the debugging
approach presented in [19, 20] and extends it with the following novel contributions.

• A brief outline of the model-based debugging approach is provided.
• The requirements of a time and memory-aware runtime monitoring methodology,
toward applicability for model-based visualization of target behavior, are elabo-
rated.

• Two variants of the proposed monitoring methodology, i.e., (a) software and
(b) on-chip monitoring are presented and their prototype implementation is dis-
cussed.
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• Frame formats for sending the trace data between host and target in the proposed
model-based debugging approach is elaborated.

• An experimental evaluation of the proposed monitoring mechanisms is provided.
A discussion and evaluation of the proposed approach, in comparison with the
existing approaches, is presented.

The remainder of this paper is organized as follows. Section5.2 deals with related
work. Themodel-based debugging methodology is outlined in Sect. 5.3. The runtime
monitoring methodologies are discussed in Sect. 5.4. A prototype of the monitoring
methodologies and an experimental evaluation are discussed in Sect. 5.5. The per-
formance metrics of the proposed approach are discussed in Sect. 5.6. A discussion
on the salient features of the proposed approach is presented in Sect. 5.7. Section5.8
concludes this paper.

5.2 Related Work

The exponential growth of the embedded software systems necessitates the use of
advanced and automatedmethods of development and testing. In this context,Model-
Driven Architecture (MDA), proposed by the OMG [28], promises several advan-
tages and superiority, superseding the traditional way of developing the embedded
systems. This is supported by the studies conducted in [3, 9, 22, 23].

The MDA model is related to multiple standards including the UML. UML com-
prises of general purpose diagrams and profiles. UML profiles introduced by the
OMG consist of a set of new stereotypes for a particular domain. The widespread
applicability of UML (general purpose diagrams and profiles) as a modeling lan-
guage for embedded systems is evident from the numerous studies in the literature
[20, 22]. In our proposed model-based debugging methodology we use UML to
specify the design model (e.g., class diagram, state charts, etc.). UML interaction
diagrams, such as timing diagram and sequence diagram, are used for visualizing
the target behavior in real time at the design level in our approach.

Irrespective of the evolution in embedded software engineering, the model-based
tools for embedded systems continue to use monitoring approaches for applications
such as debugging and testing. Software monitoring has been in use for over 35
years for a variety of domains and application purposes [5, 29]. Some of the domains
in which runtime monitoring is applied include, distributed systems, fault-tolerant
systems, real-time critical systems, and embedded systems [32].

Domains such as the embedded systems present particular challenges formonitor-
ing, as the system internals may not be easily observable and have limited resources
or real-time constraints. Hence, utmost care must be taken to avoid incurring exten-
sive runtime overhead in the form of additional resources (e.g., memory, time).
A technique for time-aware instrumentation of embedded software is discussed in
[8]. It demonstrates how instrumentation can be used to maximize trace reliability
and computing the minimal trace buffer size. However, most of the aforementioned
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monitoring approaches, except [8], concentrate on applications running on desktop
computers. They do not consider their impact on the time or memory requirement of
the applications.

Monitoring systems are classified according to the probes/instrumentation used,
as hardware, software, hybrid, and on-chip monitoring. This classification is used
both in early and late surveys on monitoring [32]. A time-aware, software-based
instrumentation methodology is presented in [8]. Similarly, a software-based moni-
toring approach discussed in [20] is used for visualizing the behavior of targets in real
time, using UML diagrams. Software monitoring with controllable overhead is dis-
cussed in [13]. A hybrid monitoring approach using a proprietary tool and In-Circuit
Emulator (ICE) for testing of embedded systems software against UML models is
discussed in [11]. A survey on monitoring approaches is presented in [32]. However,
the applicability of the monitoring approach for visualizing target behavior in real
time (esp. in deeply embedded targets) is missing in [8, 11, 13, 20, 32].

In this paper, a model-based debugging mechanism, which makes use of a tar-
get monitor in the embedded system and a target debugger at the host computer
(design level), is discussed. Two variants of the target monitor, namely (a) software
and (b) on-chip monitoring mechanisms, are presented. The target monitor sends
trace data pertinent to the behavior of the target to the host side by back annotation.
Some related work pertaining to target monitor and back annotation of trace data
from target to host are discussed here. A study conducted in [12] deals with back
annotations and continuous feedback about target behavior to the host side. This
study is conducted on Java-based microprocessors for worst-case execution time
(WCET) analysis. However, Java-based microprocessors are not necessarily the pre-
ferred choice in a memory-size constrained RTESS. In [21], an implementation of
an event-driven hardware/software collaborative monitor system, enabling system-
level monitoring on target at different abstraction levels is presented. In this work,
the monitor system is claimed to collaborate seamlessly with other components in
a model-driven testing tool chain. Though [12, 21] deal with back annotation and
monitor systems respectively, a collaborative approach toward model-based debug-
ging using a model-based target debugger is unavailable. Similarly, the suitability of
runtime verification and monitoring approaches for embedded systems is discussed
in [32]. Nevertheless, monitoring approaches for supporting model-based runtime
visualization of embedded system behavior is missing in [32].

Commercial MDD-based tools such as [2, 7, 14] are limited in terms of debug-
ging in real time at the design level for RTESS. Moreover, these tools and their
model-based debugging feature cannot be used for small RTESS, because of mem-
ory, performance and protocol overhead (TCP/IP over Ethernet, etc.) with the target
system. All these result in potentially inefficient communication between the target
and the host. The dynamic source code instrumentation introduced by these tools
could also result in affecting the real-time behavior of the RTESS.

Thus, it is evident that even though model-based development and debugging is
beingused forRTESS, applicability ofmodel-baseddebugging approaches for deeply
embedded systems is still in fledgling stages (both in academia and commercial tools).
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5.3 Model-Based Debugging Framework

The proposed framework for model-based, design level debugging of deeply embed-
ded systems discussed in this paper, is shown in Fig. 5.1. An outline of the proposed
framework is provided here to place in context the main focus of this paper. This
paper concentrates on a time and memory-aware runtime monitoring methodology
for debugging and visualizing the (deeply embedded) target behavior in real time
(on the host).

5.3.1 Overview

The proposed framework comprises of a target debugger on the host side with a
runtime monitoring solution on the target side as seen in Fig. 5.1.

Design Model
(MDD tool)

Requirements

Model-based Target Debugger GUI
[UML Sequence & Timing diagrams]

(Qt)

Code Generation
(MDD tool)

Model Driven 
Development (MDD)

Target side
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System Code
(Platform Specific)

Fig. 5.1 Model-based design level debugging for embedded systems
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5.3.1.1 MDD Phase and System Code

Based on the requirements, the design model for the embedded software application
to be developed is specified (Fig. 5.1) using a modeling language (e.g., UML using a
MDD toolRhapsody [14]). Themain functionality of the application can be specified,
for example, inUMLclass diagrams. The detailed functionality and reactive behavior
of each class can be represented as a state diagram, for example, using UML state
charts. The next step is the automatic code generation process, which is most often
supported in MDD tools (e.g., [14]). In the prototype, the system code is generated
in C. The system code thus obtained can be executed on the target after cross-
compilation. During the compilation of the system code, an XML file is generated at
the host side (Fig. 5.1) using an AWK script (which parses the linker map file, source,
and header files for a given project). The generated code is deployed using a deploy
interface (such as the Keil Ulink [27] adapter) on the target, which runs a real-time
operating system (RTOS). An RTOS framework suitable for resource constrained
embedded systems, namely OORTX-RXF [33], is used in the prototype. However,
this approach can also be applied to other UML-based modeling tools (e.g., [7])
and modeling alternatives, such as Matlab/Simulink [26] and LabView [24]. In the
prototype, the system code is generated in the programming language C. Note that
this approach is independent of the modeling language, the language in which the
system code is generated and the underlying RTOS in the embedded system.

5.3.1.2 Target Debugger Graphical User Interface (GUI)

The model-based, design level target debugger graphical user interface (GUI) on the
host side receives back-annotated trace data from the target monitor using a debug
communication interface. The trace data provides details about the target behavior in
real time. The target debugger reconstructs the behavior of the target in real time using
UML interaction diagrams, such as the sequence diagram and the timing diagram in
the GUI. The target debugger is implemented in the User Interface (UI) framework
Qt [30].

The target debugger GUI consists of three blocks as shown in Fig. 5.2. Block (a)
shows the classes, objects, states, and attributes available in the embedded software
running on the target system. Block (b) displays the sequence of events and the
temporal behavior of the target using UML sequence diagrams with time stamps
(sequence diagram tab) and UML timing diagrams (timing diagram tab). Block (c)
displays the reconstructed messages on the host side (based on back-annotated data
from target and the XML file).
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Fig. 5.2 Model-based target debugger GUI

5.3.1.3 Target Monitor

The target monitor is primarily used for runtime monitoring, i.e., to send pertinent
trace data to the host about target behavior in real time. Two variants of the runtime
monitoring methodology, (a) software and (b) on-chip monitoring are discussed in
detail in Sect. 5.4.

5.3.1.4 Visualizing Target Behavior in Real Time

On the host computer, the animation program in the target debugger GUI is started.
TheXMLfile generated for the corresponding project is loaded in the target debugger.
A debug communication interface (for the communication between target and host)
is chosen. The target debugger is now ready for receiving the trace data from the
target.
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Fig. 5.3 Visualizing target behavior in real time using UML sequence diagrams in the target
debugger GUI

Once the system code is deployed in the target, the target monitor (bundled with
the RTOS framework, e.g., RXF) starts sending state, event and temporal information
pertinent to the behavior of the target. This trace data is sent via the chosen debug
communication interface to the host computer.

The animation program in the target debugger receives and decodes this trace
information with the aid of the XML file. It reconstructs the target behavior on the
host computer, at the design level, using UML sequence diagrams with time stamps
and timing diagrams (Figs. 5.3 and 5.4). Thus, with the aid of this approach the target
behavior can be visualized and debugged in real time at the host computer.
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Fig. 5.4 Visualizing target behavior in real time using UML timing diagrams in the target debugger
GUI

5.4 Runtime Monitoring

Toperceive a time- andmemory size-aware runtimemonitoring approach, this section
begins with a brief outline on the classification of runtime monitoring approaches
and a discussion on their pros and cons. The requirements for a time-and memory-
aware monitoring approach, which is capable of sufficiently observing the target
behavior in real time, are outlined. Based on the trace data generated by the runtime
monitoring approach, the target behavior is visualized/debugged using UML inter-
action diagrams on the host side. The requirements are discussed in the context of
two variants of the runtime monitoring mechanism proposed in this paper, namely,
(a) generic software-based and (b) on-chip monitoring.

5.4.1 Classification of Runtime Monitoring

Monitoring can be coarsely defined as the use of probes for producing data traces to
help the developer/tester gain insight into the origins of misbehavior in the system
under test (SUT). Based on the type of a probe used, runtime monitoring is classified
into software, hardware, hybrid, and on-chip monitoring. In software monitoring,
additional code is added to the target software to obtain the trace data. This is also
termed as software instrumentation. In hardware monitoring a dedicated monitoring
hardware is attached to the target system for obtaining the trace data. The use of
a combination of additional software and hardware to monitor a target is termed
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as hybrid monitoring. On-chip monitoring refers to the use of additional built-in,
on-chip debugging hardware incorporated in the target to obtain the trace data.

5.4.1.1 Pros and Cons

A drawback of software monitoring is the overhead incurred by executing the addi-
tional code, at the target, to obtain the trace data. This incurs memory and time
overhead in the target. Interference with the target system’s normal operation may
arise if the execution of the target software is delayed because of the time spent in
the monitoring code. For example, model-based tools, such as [15, 16], make use
of software monitoring by instrumentation of the source code to debug, visualize
target behavior (using UML diagrams) or execute test cases. Since the debug code
is downloaded on the target, the instrumentation overhead is significant. To gain a
deeper understanding, consider a simple experiment comprising of application sce-
narios with 2, 4, 6, and 8 classes in the design model. To visualize the behavior of the
target, the instrumented code generated for these examples in [14] shows an increase
of 150–250%1 of source code in comparison with the respective application code
size. Clearly, such approaches are not suitable for resource constrained embedded
systems. Hence, when using a software monitoring mechanism, it is imperative to
minimize the monitoring overhead (e.g., [8]).

The significant advantage of hardware monitoring arises from the nonintrusion
benefits obtained byusing additional hardware [31].However, scalability of hardware
monitors is affected with respect to monitoring more complex systems [32]. On
the other hand, hybrid monitoring makes use of advantages of each approach (i.e.,
software and hardware monitoring) while at the same time attempts to mitigate their
disadvantages.

The key advantage for on-chip monitoring is the presence of an on-chip trace unit,
which provides watch points, data tracing, and system profiling for the processor [4].
This can be treated as the major enabling technology, in the future, for target mon-
itoring and testing. A prerequisite is that the underlying processor in the embedded
system should support this feature.Whereas, the trace data obtained from the on-chip
trace units is in a standardized format (e.g., Manchester encoding) a disadvantage,
at this juncture, is the lack of open source/standard tools for communicating the
real-time trace data. For example, the real-time trace data from the microcontroller
(e.g., MCB1700 evaluation board with Cortex-M3) can be sent to the host only by
using proprietary tools (e.g., ULINKpro [6] for Cortex-M3 [4] architecture).

1Obtained by measurement.
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5.4.2 Time-and Memory-Aware Runtime Monitoring
Approaches

In the case of embedded systems, the main factor influencing the usage of a monitor-
ing mechanism is the monitoring overhead [32]. Toward this direction, this section
focuses on proposing a time-and memory-aware monitoring approach for debugging
and visualizing the target behavior in real time. In this context, the requirements
of the two variants of runtime monitoring, relating to the main scope of this paper,
are discussed. The two variants are the (a) generic software-based and (b) on-chip
(software) monitoringmethodology for debugging/visualizing the target behavior on
the host side.

5.4.2.1 Software Monitoring

For a software-based monitoring approach to be applicable for deeply embedded
systems, with minimal or ideally no overhead, it is imperative that it satisfies the
following constraints:

• Generic monitoring routine i.e., independent of the application (size, complexity)
• Minimally intrusive runtime monitoring routine (e.g., a few bytes of memory)
• Modular software monitoring approach, independent of the debug communication
interface used

• Minimizing communication overhead between the monitoring routine and the
application (e.g., target debugger), which is decoding and interpreting the trace
data at the host

With a minimal, generic monitoring routine and bounded, measurable/predeter-
mined overhead (memory, time), the software-based target monitor can be deliv-
ered along with the final production code. Now, the additional monitoring overhead
(memory, time), which is known beforehand, can be accommodated during the sys-
tem design phase. This can be achieved by allocating additional resources (memory)
or adjusting the scheduling properties (time).

5.4.2.2 On-Chip (Software) Monitoring

Another alternative of runtime monitoring is the on-chip monitoring methodology.
However, open source standards for communicating the real-time trace data from
the microcontroller to the host, i.e., accessing real-time trace data without the use
of proprietary debug adaptors (e.g., ULINKpro [6] for Cortex-M3 [4]) is currently
unavailable. On the other hand, on-chipmonitoring can be treated as amajor enabling
technology for the future in the context of minimally intrusive debugging/testing
of embedded systems. Hence, the on-chip monitoring approach is chosen as an
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alternative for visualizing the target behavior in real time, using the model-based
debugging approach proposed in this paper.

However, at this juncture, in order to insert the test stimuli/input data to the
embedded system and receive the test results using the real-time trace functional-
ity, without proprietary tools, additional hardware, and/or software components are
necessitated. In this paper, such an approach (of adding additional software com-
ponents) is followed in the experimental evaluation for debugging using on-chip
monitoring (Sect. 5.5). Hence, this approach is denominated as on-chip (software)
monitoring in the following section. On the other hand, to apply a memory and
time-aware runtime monitoring methodology, such an additional software compo-
nent, if included, should be a generic monitoring routine with minimal, bounded,
and measurable overhead parameters.

An example of on-chip monitoring is available in the recently introduced Cortex-
M3 processor/architecture (e.g., used in an evaluation board [27]) that supports real-
time tracing using a built-in debug unit called Data Watchpoint and Trace (DWT)
and Debug Access Port (DAP). However, to inject the test stimuli from the host com-
puter (e.g., using the test framework approach) additional hardware and/or software
components need to be developed.

5.5 Experimental Evaluation

An experimental evaluation based on the twomonitoring approaches described above
is presented in this section.

5.5.1 Software Monitoring

A prototype implementation of the proposed software-based runtime monitoring
approach is described in this section. The aforementioned generic, software-based
target monitor can be implemented in programming languages such as C and bundled
with the RTOS framework in the embedded system. The target monitor routine is
then either invoked by the host or the RTOS (and the generated code from the model)
to send and receive debug data respectively. For example, the target monitor routine
is invoked by the host (e.g., by the target debugger in the proposed model-based
debugging approach) to inject the debug stimuli, in the form of events to the target,
i.e., host input−−−→ target monitor.

Similarly, the target monitor is invoked whenever an event is consumed at the
target, to send an event-consumed notification to the host, i.e., target monitor
result−−−→ host. This trace data is then reconstructed at the host by the target debugger,
as UML sequence/timing diagrams to visualize the target behavior in real time.
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Fig. 5.5 Software-based runtime monitoring at the target side and XML file creation at the host
side

Thus, the generic target monitor routine in the prototype (Fig. 5.5.) comprises of
two main functionalities, namely, (a) communicating with the RTOS framework and
(b) communicating with the host.

The target monitor implementation is modularized based on these two functional-
ities inMonitor.h/.c andMonitorIO.h/.c routines respectively. The RTOS framework
used in the prototype (OORTX-RXF [33]) comprises of a scheduler that handles the
events. The target monitor functionality is used at this point by invoking (a send
function in) Monitor.c in the RTOS framework for consumed events. The module
Monitor.c in turn uses the functions inMonitorIO.c to send and receive data between
the host computer and the embedded system via a debug communication interface
(Fig. 5.5). MonitorIO.h/.c is configurable and implemented based on the APIs and
functionalities available in a given debug communication interface (e.g., EIA-232 [1]
or JTAG-based). The monitor implementation uses a configurable buffer to handle
the trace data.

For example, when an event is processed and dispatched to its respective receiver
in the embedded system, Monitor_sendEvent(unsigned int* pEventData) function
inMonitor.c is used to notify the host about the event consumption at the embedded
system. This in turn invokes the respective function in MonitorIO.c to send the
trace data to the host computer, which is decoded by the target debugger in the host
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computer. The target monitor prototype using a RS-232 debug interface requires a
total memory size of approximately 1Kbyte (1061 bytes ROMplus 135 bytes RAM).
A comparison of the target monitor implementation for various debug interfaces and
their experimental evaluation is described in Sect. 5.5.

5.5.1.1 Target Debugger

A prototype of the target debugger comprises of a decoding and animation program.
The target debugger is implemented in the programming language C++ using the
user interface framework Qt [30]. The target debugger decodes and interprets the
trace data which is sent via a debug communication interface as seen in Fig. 5.5.

5.5.1.2 XML File Creation

During the compilation of the (application) system code, an AWK script parses the
linker map file, source files, header files (of the application), and creates a symbol
table data. This is stored in an intermediary format such as an XML file as seen in
Fig. 5.5. The decoding program at the host makes use of this XML file (Fig. 5.5) to
decode and interpret the incoming trace datawhich is sent via a debug communication
interface as seen in Fig. 5.5. Significant overhead involved in sending trace data back
and forth between the host and the target system is avoided by the use of the XML
file at the host and predefined frame format for notifications [18].

5.5.1.3 Predefined Frame Format for Notifications

The predefined frame format for notifications, i.e., debug-input data (e.g., inject
event) from the host computer and the debug results (e.g., event consumed notifica-
tion) to the host computer are shown in Fig. 5.6.

The predefined frame format is based on the following design considerations,
namely, (a) compactness, (b) minimum number of operations on the target and
(c) extensibility. The frame format in the prototype implementation is shown in
Fig. 5.6. The “length” field is mandatory, one byte in length and indicates the length
of the parameters. The mandatory “command_id” field is also one byte in length.
It denotes the command corresponding to the frame sent. The “parameters” field is
optional and can be between 0 and 255 bytes in length. It denotes the data about
the current command. The minimum length of the monitor frame is two bytes (1
byte each for length and command_id). The frame format for injecting events (from
host to target) and the trace data format for sending the event-consumed notification
(from target to host) is shown in Fig. 5.6. To inject an event (i.e., debug-input data)
the required parameters are the destination of the event, the event to be injected,
source of the event, and event parameters (if any). In this frame format, the event,
source, and destination values occupy 4 bytes each.
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Fig. 5.6 Trace data frame format

For example, to inject an event, evToggle(int LedNr) from classController to class
LED, to turn on an LED indicated by LedNr, i.e., Controller evToggle(LedNr)−−−−−−−−−−−−−→
LED, the parameters for the debug-input data in predefined format is<LED evToggle
Controller LedNr>. However, in the proposed approach, since the object addresses
of the above parameters are available at the host computer in the XML file, the
debug-input data is <0X18097098 0X00004374 0X18074897 0X00000001>. This
is received by the MonitorIO.c/h routine in the target. The Monitor.c/h routine, in
turn, decodes, and inserts the corresponding debug-input data to the target. Simi-
larly, the parameters for the debug result for this example in the predefined frame
format (Fig. 5.6) are <evToggle Controller LED CurrentTime ON LedNr>. In other
words, the 21 bytes for the parameters, for the event-consumed notification indicat-
ing the debug result, are <0X00004374 0X18074897 0X18097098 0X00009870 02
0X00000001>. Note that all events described at the design level, i.e., available in
the system code, can be monitored.

Hence by this generic, software-based runtime monitoring methodology, only the
debug-input data is injected to the target and the corresponding debug results are
obtained as trace data from the target. This implies that the only instrumentation
overhead required for debugging in the target is the software-based runtime moni-
toring overhead. However, note that by optimizing the software monitoring routine
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and/or further minimizing the memory requirement, the generic software-based run-
time monitor can also be part of the final production code.

5.5.2 On-Chip (Software) Monitoring

An example of on-chip monitoring is available in the recently introduced Cortex-M3
processor/architecture (e.g., used in an evaluation board [27]) that supports real-
time tracing using built-in debug units such as DWT and DAP. The real-time trace
functionality in this microcontroller can be used readily with proprietary tools such
asµVision [6].Whereas such proprietary tools cannot be used for inserting the debug
stimuli or monitoring the target behavior.

To realize this goal and in order to provide a generic approach toward on-chip
monitoring in this paper, a minimal (generic) software monitoring routine is intro-
duced in the target. This can be termed as on-chipmonitoringwith additional software
instrumentation. On the other hand, a trace adaptor (hardware circuit) is necessitated
to forward the trace data from the on-chip unit to the host (without the use of any
proprietary tools). The aforementioned trace adaptor unit and the generic software
instrumentation used in the prototype evaluation are discussed below.

5.5.2.1 Trace Adaptor

Figure5.7 provides an overall view of the on-chip monitoring arrangement in the
prototype. It comprises of a DWT unit that provides support for monitoring data as it
is being changed at the target. An additional trace adaptor circuit, with a FIFO buffer,
is developed in the prototype. The trace adaptor, as the name implies, is necessary
to adapt the trace data from the microcontroller (i.e., serial data stream to UDP data
stream) and forward the trace data to the host. This arrangement provides sufficient
time to process the data stream (byte-wise) at the FIFO buffer and eventually decode
the trace data by the end application at the host computer (i.e., the target debugger
in this paper). The DAP debug unit is used to provide support for inserting the input
data (debug stimuli) to the embedded system.

There exist two paths for data transfer (Fig. 5.7) between the target and the host
(indicated by two different line formattings). Each path is responsible for one func-
tionality, namely injecting the debug input/stimuli to the target and sending the trace
data to the host respectively. For example, the debug-input data in the form of events
is injected to the embedded system with the aid of the DAP unit, using the JTAG
interface. The debug-input data (e.g., regarding an event) comprises of an event, its
source, destination and event parameters. The debug data result (i.e., the trace data)
from the DWT unit is sent via a Serial Wire Output (SWO) interface, which is part
of the on-chip debug unit. This is processed by the trace adaptor circuit for further
usage at the host. The trace data indicating the debug results (i.e., an event-consumed
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Fig. 5.7 On-chip (software) monitoring arrangement

notification) comprises of an event (consumed on target), its source, destination and
event parameters.

5.5.2.2 Software Instrumentation

Software monitoring is necessitated at the target for writing the trace data in data
structures, such as predefined (debug) variables of the given application. These vari-
ables are monitored by the comparators of the DWT unit. The trace data is sent to the
host, when the (debug) variables, monitored by the comparator units, are changed
in the target. Thus, the major advantage in the on-chip monitoring approach is that
no additional functionality is required to transfer the trace data from the embedded
system to the host. Hence, the software instrumentation (in the case of the on-chip
monitoring approach) is limited to a few write operation cycles at the target. Then,
the trace data, which is now stored in variables/comparators at the DWT unit, is
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available at the serial interface (SWO) (Fig. 5.7). Therefore, no additional software
routines are required for sending the trace data to the host.

Similarly, to inject the debug-input data (comprising an event, its source, destina-
tion, and event parameters) sent from the host, software instrumentation is required.
The debug-input data is written to the data structures such as predefined (debug)
variables monitored by the DWT comparator units. An inject event flag is set after
sending the debug-input data to the target. The RTOS used in the prototype detects
that an event has to be injected by polling (during idle cycles) the status of the flag
(injectEvent) at the target, as seen below.

1 i f ( injectEvent==1){/∗check flag , generate event∗/
2 EVT_gen(source , destination , eventId) ;
3 injectEvent=0;/∗reset flag∗/ }
4

Note that EVT_gen(source, destination, eventId) is a macro to generate an event
in the underlying RTOS framework. Thus, additional software routines to convey
the debug-input data from the host or debug results from the target are eliminated
by the on-chip debug units such as DWT and DAP in the on-chip (software) runtime
monitoring methodology.

5.6 Performance Metrics

Performance metrics such as memory and time overhead of the runtime monitoring
mechanisms are discussed here.

5.6.1 Software Monitoring

The monitoring overhead for the software monitoring approach, such as target mon-
itor size, event (bursts) handling, target monitor buffer overflow, time spent in the
target monitor routine, and a comparison with the instrumentation overhead in the
existing approaches, is presented here.

5.6.1.1 Debug Communication Interface and Target Monitor Size

The software monitoring mechanism introduced in this paper, for debugging, is
intended to be independent of the application, its size and complexity. Moreover a
modularized implementation of the monitoring routine is proposed in this paper such
that the communication of the monitoring routine with the RTOS ((i.e., in Monitor
routine) and the debug interface (MonitorIO routine) are available in two separate
routines.
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Table 5.1 Memory requirement on target for various debug interfaces using software-based runtime
monitoring

Interface Memory requirement

RAM (byte) ROM (byte)

Generic-EIA-232 112 1290

JTAG-Keil (µVision) 84 1194

JTAG-Lauterbach (Trace32) 84 1396

The implementation of theMonitorIO routine is dependent on the debug interface
under consideration (e.g., APIs available). In the prototype, theMonitorIO routine is
implemented for the generic EIA-232 [1] serial interface and two industry standard
JTAG-based interfaces, such as Keil-µVision [6] and Lauterbach-Trace32 [25]. The
memory requirement for the monitor routine in the prototype for these three debug
interfaces is shown in Table5.1.

From Table5.1, it is clear that the total memory (RAM, ROM) requirement is
approximately 1 KiByte for all the three debug interfaces. Thus, this software-based
monitoring routine, which is independent of the application, can also be accommo-
dated in the final production code.

5.6.1.2 Time Spent in the Monitoring Routine

The time spent in the monitoring routine for sending an event-consumed notification
obtainedbymeasurement (using a logic analyzer), is shown inTable5.2. It is clear that
the time spent in the monitor routine can be predetermined and is independent of the
application and its complexity. The differences in the time spent in themonitor routine
for various debug interfaces is based on the implementation and the functionality
supported by the APIs for the various debug interfaces [19]. Thus, by the proposed
software monitoring technique, the memory (approx. 1 KiByte) and time overhead
(in the order of µs), known beforehand, can be accommodated in the earlier phases
of the development cycle.

To summarize, target behavior can be visualized online (at the host side), in
resource constrained embedded systemswithout downloading any debug/test harness
on the embedded system, using the proposed software-based runtime monitoring
mechanism. This is a significant advantage over the existing approaches. The only

Table 5.2 Time spent in
software-based target monitor
for sending an event
consumed notification

Interface Time in monitor (µs)

EIA-232 74.52

µVision 265

Trace32 16.5
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Table 5.3 Number of events
handled per interface

Debug interface Events per second

EIA-232 556

µVision 3770

Trace 32 3268

space requirement in the target is the memory requirement of the software-based
runtime monitoring routine.

5.6.1.3 Event (Bursts) Handling

Events consumed at a higher frequency in a short period of time by the target can
be termed as event bursts. Since the target monitor implementation depends on the
debug interface used, the number of events (and event bursts) the target monitor
can handle, also depends significantly on the debug interface under consideration.
However, in order to handle the event bursts, the target monitor is implementedwith a
send/receive buffer interface (Fig. 5.5). The applicability of the target monitor buffer
and its dimensioning is again dependent on the debug interface used.

The values shown in Table5.3 provide a comparison of the number of events
that each debug interface can handle theoretically before the use of target monitor
send/receive buffers (in our prototype implementation). For example, for theEIA-232
interface, the theoretical maximum number of events that it can handle per second is
556 (115200 [baud rate]/9 [8bit+stop bit]/23 [number of bytes per event-consumed
notification]). However, when there is a burst mode in the target system (i.e., number
of events per second higher than the theoretical estimation in Table5.3), this can be
handled with the use of a target monitor buffer. Handling of burst-mode data can also
be taken over by the APIs provided by the debug interface used. Thus, when there
is a consistent burst of events, appropriate dimensioning of the target monitor buffer
size and/or selection of a debug interface by the end user is necessary.

5.6.1.4 Target Monitor Buffer Overflow and Real-Time Characteristics
of the Target

In the prototype, the target monitor is handled as a lower priority task in comparison
with the system tasks. This implies that the target monitor is invoked during the
“idle” state of the main loop of the RTOS framework. Let us consider a burst-mode
scenario, in which there is a possibility that the target monitor buffer overflows. The
target monitor buffer is implemented as a ring buffer. This implies that whenever
there is a buffer overflow, the data in the ring buffer could be overwritten. This can
lead to a loss of data (notifications about target behavior) stored in the monitor buffer.
This is also because of the fact that the target monitor is assigned as a lower priority
task and can access the system resources once they are freed by the higher priority
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(system) tasks. In this case, whenever the target monitor buffer is full, the target
debugger is notified about the possible loss of data.

For this scenario there are two possible configuration options, whereby the end
user has to compromise between target monitor buffer size and the influence on
real-time characteristics of the embedded target. For instance, since the buffer size
is configurable, it is up to the end user to allocate a smaller/larger buffer size. As the
target monitor implementation is dependent on the debug interface used, the buffer
size and its usage is also dependent on the debug interface under consideration. On
the other hand, the user could also assign the target monitor as a higher priority task.
However, when the end user gives a higher priority to the target monitor (and/or
increases the buffer size), he has to compromise between the influence on the real-
time characteristics and the loss of target behavior data/notifications.

5.6.1.5 Traditional Versus Proposed Approach–Memory Overhead

The proposed approach has been evaluated for four example scenarios. Similarly, the
existing model-based debugging feature (live animation) in the MDD tool [14] was
applied to the same evaluation scenarios. Note that the four application scenarios
consist of increasing system code (size) and complexity.

For instance, application scenarios 1, 2, and 3 consist of 2, 4, and 8 classes respec-
tively (based on the small “blinky” example [20]). Scenario 4 is based on a more
sophisticated case study involving a MIDI system (15 classes). Detailed description
of the MIDI system evaluation for the proposed approach is available in [18, 20].
The complexity of the system also varies based on the number of events handled and
dependencies on other modules.

The memory overhead incurred (in the target) using both the approaches for the
four scenarios (for model-based debugging) are shown in Fig. 5.8. From Fig. 5.8, it
is evident that the memory overhead increases with an increase in the application
size using the model-based (live animation feature) approach in an MDD tool such
as Rhapsody [14]. On the other hand, the size (and the percentage increase) of the
target monitor memory footprint is negligible in comparison with the increasing
application size as seen in Fig. 5.8 for our proposed approach.

5.6.2 On-Chip (Software) Monitoring

In this case, the only monitoring overhead (time & memory) is that of the addi-
tional software instrumentation used to write the test input stimuli/trace data in the
debug variables (of the application) monitored by the comparators in the DWT.
The additional memory required for the software instrumentation in this approach
is approximately 100 bytes (Table5.4). The time taken to write the trace data
for an event-consumed notification (with 23 bytes of trace data denoting the test
result), is 360 ns (obtained by measurement using a logic analyzer). The on-chip
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Fig. 5.8 Memory overhead (in target) for model-based debugging of various application scenarios

Table 5.4 Memory
requirement on target for
software instrumentation

RAM (byte) ROM (byte)

24 74

monitoring mechanism is also independent of the application and its complexity.
Thus, the overhead parameters for executing the test cases using this monitoring
methodology (memory approx. 100 bytes and time = 360 ns) is also known and
measurable beforehand.

5.7 Discussion and Evaluation

Debugging RTESS is a challenging task in comparison with debugging desktop sys-
tems. While there are some traditional and model-based tools for debugging RTESS,
these have limitations. Model-based debugging techniques in the existing tools usu-
ally involve dynamic source code instrumentation. This instrumented code increases
with the increase in the application size and necessitates sophisticated debug inter-
faces. The protocol and performance overhead incurred during debugging could also
result in modifying the temporal behavior of the embedded system. All these factors
make the existingmodel-based debugging techniques unsuitable for thememory-size
constrained RTESS.

In order to overcome the aforementioned limitations, a model-based debugging
methodology for small RTESS was outlined in this paper. Using the proposed
methodology, RTESS behavior can be visualized in real time using UML sequence
and timing diagrams. Some salient features in the proposed approach, which over-
come the limitations of the existing approaches, are discussed below.
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5.7.1 Salient Features in the Proposed Approach

• Dynamic source code instrumentation is eliminated with the introduction of an
optimized monitoring software routine in the target monitor (implemented in the
programming language ‘C’). The targetmonitor (library) is bundledwith theRTOS
used (RXF [33]). The target monitor is now independent of the application, its size,
complexity, and source code. The target monitor occupies approximately 1 KiByte
of memory, which is accommodative for small embedded platforms. Moreover,
because of its size, the target monitor can be bundled along the final production
code as well.

• In addition to the optimized target monitor size, the information exchange between
the target debugger and the targetmonitor is handled via a custom-defined protocol.
The protocol design is extensible, compact, and requires a minimum number of
operations. For example, the minimum frame-size for the protocol is 2 bytes and
an event consumed notification requires 23 bytes of data. The frame format of this
protocol is described in detail in Sect. 5.5.

• A major factor influencing the real-time behavior of the embedded system is the
communication overhead between the target system and the host computer (i.e.,
huge debug data being sent back and forth between the target and the host com-
puter). In order to minimize this, an AWK script parses the source files, header
files, and linker map file (for a given project) and creates a symbol table at the host
computer in our approach (Figs. 5.5 and 5.6). This symbol table enables identify-
ing each element in the system code, such as class, instance, event, etc., by an ID.
This symbol table data is stored in an intermediary format, such as an XML file, at
the host computer. On receiving the trace data from the target, the target debugger
decodes the trace data with the aid of this XML file. The trace data from the target
is translated and the animation program in the target debugger GUI re-constructs
the target behavior in the form of UML sequence and timing diagrams in real time.

• Based on the runtime monitoring mechanisms discussed above, it can be stated
that the proposed techniques are time-and-memory aware (supported by the per-
formance metrics discussed in Sect. 5.6). This is primarily because, the overhead
(time & memory) introduced by the two variants of the monitoring technique is
measurable beforehand, minimal, bounded, and independent of the application.
On the other hand, tools such as [14] introduce unbounded and variable overhead
for debugging and/or visualizing the target behavior (using UML diagrams) in real
time for different application scenarios. These features eliminate the risks due to
the change in program behavior before and/or after debugging the system code.
Therefore, the proposed time-& memory-aware runtime monitoring mechanisms
provide a significant improvement over the existing techniques.

• The proposed mechanisms also address the aspect of scalability and applicability
for resource constrained targets and industrially relevant examples. For example,
the solution proposed in this paper already concentrates on resource constrained
embedded systems, thereby addressing the question of scalability. For industrial
applications involving several complex interactions and entities, the overhead
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parameters can be accommodated in the earlier phases of the development cycle.
A robust implementation of the software instrumentation may further reduce the
overhead parameters.

5.8 Conclusion

Whilemonitoring/testing an embedded system and acquiring the trace data, one often
faces the so-called “Heisenberg’s effect”: Inspecting a system tends to influence the
system’s behavior [10].Whereas a time&memory-aware runtimemonitoringmech-
anism is introduced in this paper, a runtime monitoring mechanism which introduces
(ideally) no overhead in the target is an ambitious goal. Therefore, while employ-
ing a generic software-based runtime monitoring approach, the goal should be to
minimize the monitoring overhead as far as possible. An example of this approach
is discussed with a prototype in this paper. For embedded systems with microcon-
trollers supporting the real-time trace functionality [10] (i.e., on-chip debug units),
the overhead parameters can be further minimized using an on-chip mechanism such
as the one introduced in this paper. When the nature of the embedded software
described requires the system to meet real time requirements in debugging/testing
mode, the overhead parameters frommonitoring can be included in the earlier stages
of the development cycle. By doing so, the influence on the real-time characteristics
of the embedded system because of the overhead introduced by monitoring can be
eliminated.

Application of the proposed time-&memory-aware runtimemonitoring, to indus-
trial case studies, adding UML state chart diagrams in the target debugger GUI for
visualizing the target behavior and evaluation on other target platforms are some
items for future work.
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