
Chapter 4
Automated Reproduction and Analysis
of Bugs in Embedded Software

Hanno Eichelberger, Thomas Kropf, Jürgen Ruf
and Wolfgang Rosenstiel

4.1 Introduction

The importance of embedded software increases every year. For example, modern
cars currently contain about 100 million lines of source code in embedded software
[8]. The highest safety level of ISO26262 standards demands 109 h of operation
without failure. However, projects in history show that, even with comprehensive
testing, bugs remain undetected for years. The control computer of the space shuttle
with just 500000 lines of source code was tested overall 8years with an effort of
$1000 per source code line, i.e., with a total effort of $500 million [18]. However,
it was expected that one bug per 2000 lines of code remained in the last release in
1990. Such bugs may occur in very rare cases and may be only detected while testing
the embedded system in a real operation environment.

Static analysis is effectively used during early testing, e.g., unit testing [4]. How-
ever, static analysis of bugs is getting close to its limits for complex software. The
state space or control flow of big software is difficult to explore completely. Thus,
the analysis has drawbacks in performance or in precision. Furthermore, semantic
bugs are very application-specific and a wrong behavior cannot be detected even
with optimized static analysis tools. Things are getting more severe if a complete
and correct specification is not available as golden reference.

System testing describes the process of deploying and testing the software on
the target platform. Compared to unit or component testing, which only tests single
modules, the software is executed and tested with all integrated software and hard-
ware modules. About 60% of the bugs are not detected before system testing [30].

H. Eichelberger (B) · T. Kropf · J. Ruf · W. Rosenstiel
University of Tübingen, Tübingen, Germany
e-mail: hanno.eichelberger@uni-tuebingen.de

T. Kropf
e-mail: thomas.kropf@uni-tuebingen.de

J. Ruf
e-mail: juergen.ruf@uni-tuebingen.de

W. Rosenstiel
e-mail: wolfgang.rosenstiel@uni-tuebingen.de

© Springer Science+Business Media, LLC 2017
D. Lettnin and M. Winterholer (eds.), Embedded Software Verification
and Debugging, Embedded Systems, DOI 10.1007/978-1-4614-2266-2_4

67

68 H. Eichelberger et al.

However, depending on the software development processmodel, system testingmay
be applied only very late in the development process. Real sensors and devices are
connected to the embedded system to achieve realistic inputs during system tests.
This way, incompatibilities between sensor hardware and the software under test
may be detected.

Studies show that the later a bug is detected, the more effort is required to fix it.
Some studies present an exponential growth of bug fixing costs during development
time [30]. Thus, much more effort is required when bugs are detected during system
testing compared to unit testing, caused by close hardware interaction and certi-
fication requirements. However, a small percentage of bugs (20%) requires about
60–80% of the fixing effort [11]. When a big portion of complex bugs is detected
very late in the development process, project schedules and project deadlines are
negatively affected. Thus, the product can often not be placed on the market in time.

One cause for the high effort for bug fixing is the difficulty to reproduce bugs.
Users in field or developers during operation tests are often not able to provide enough
information to reproduce the bug in the laboratory.Different nondeterministic aspects
(e.g., thread scheduling) may make it difficult to reproduce the same execution in
the laboratory as the execution observed during operation. About 17% of the bugs
of open source desktop and server applications [26] are even not reproducible based
on bug reports of the community. The amount may be higher for embedded software
with sensor-driven input.

When the bug can be reproduced with a test case, additional effort is required for
analyzing the bug. About 8h are required for running test cases and repairing a bug
during system tests [24], if the test case is available. Open source projects likeMozilla
receive 300 bug reports a day [5]. With such high bug fixing efforts, it is difficult
to handle such high bug rates. Dynamic verification can support the developers in
fixing bugs. However, most dynamic analysis tools require the monitoring of the
software during runtime. Such monitoring tools are often only applicable on specific
platforms.

Bugs are categorized into memory bugs, concurrency bugs, and semantic bugs.
Empirical studies show that semantic bugs are the dominant root-cause [37]. The
most common semantic bugs are implementations which do not meet the design
requirements or which do not behave as expected. Tools to automatically locate root-
causes of semantic bugs are required. Memory bugs are not challenging, because
many memory profiling tools are available. Concurrency bugs are more problematic,
especially their reproduction. More than one out of ten concurrency bugs cannot be
reproduced [37].

Our own portable debugger-based approach for bug reproduction and dynamic
verification achieves the following contributions to the current state of the art in the
area of embedded software development:

• It avoids effortful manual bug reconstruction on any embedded platform by auto-
matically recording and reproducing bugs using debugger tools.

• It improves multi-threaded bug detection by forcing randomized thread switching.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 69

• It decreases the manual debugging effort by applying automated root-cause analy-
sis on reproduced bugs.

• It avoids expensive monitoring hardware by implementing performance optimiza-
tions with hierarchical analysis using low-cost debugging tools.

• It reduces porting costs of dynamic verification tools by implementing them in
extendable and easily adaptable modules.

Our approach supports developers to detect and reconstruct (mainly semantic and
concurrency) bugs faster. It further helps them to fix bugs faster by implementing
automated root-cause analyses. Our tool saves debugging costs and hardware invest-
ment costs. It is supported by most embedded platforms. It assists developer teams
to place their software products earlier on the market.

Section4.2 gives a brief overview of the normal manual debugging process.
Section4.3 presents methods for automated reproduction of bugs, followed by our
own debugger-based approach. Section4.4 shows how assertion-based verification
can be implemented using debugger tools. Section4.5 presents concepts for analyz-
ing the root-causes of bugs without assertions and concepts for the acceleration of
monitoring implementations with cheap debugger interfaces.

4.2 Overview

Theworkflow in Fig. 4.1 presents the process ofmanually locating and fixing a bug. It
starts by testing the embedded system and the included software during operation in a
system testing environment. For example, a navigation software can be executed in a
test drive connected to real sensors. During the execution, inputs are being traced and
logged into a bug report (A.). This bug report is submitted to a bug report repository.
In the laboratory, the developers try to manually reproduce the bug based on the bug
report (B.). If the bug can be reproduced, the developers have to manually locate the
root-cause of the failure in the source code (C.). After the bug is fixed, the software
can be executed with a regression test suite (D.). This way, it is possible to ensure
that no new bugs are added during the fixing process.

As presented in Sect. 4.1, all steps of the workflow are usually time-consuming.
Our approach presented in the following sections shows that most steps can be
supported by automated tools. Automated tools to support bug reproduction (B.) and

Fig. 4.1 Overview of manual debugging

70 H. Eichelberger et al.

to generate regression tests (D.) are presented in Sect. 4.3. The bug detection ofmulti-
threaded bugs (A.) is supported by tools presented in Sect. 4.3 as well. Automated
bug analyses to support manual debugging (C.) are presented in Sects. 4.4 and 4.5.

4.3 Debugger-Based Bug Reproduction

This section presents approaches of tools for the automated support of bug reproduc-
tion. For reproducing bugs, the sensor inputs have to be captured during operation.
During replay, the same sensor inputs (e.g., from a GPS or touch screen) have to
be triggered or injected to achieve the same execution or instruction sequence. The
normal execution of software is deterministic. The same instructions are executed
when a software runs with the same inputs. However, these inputs are nondetermin-
istic and are not exactly the same when executing a software twice. For example,
it is difficult to achieve the same movements on a touch screen between two test
executions. Minimal differences between executions can be determinant whether a
failure is triggered. Figure4.2 shows the different inputs of the software under test
(SUT). Zeller [41] lists the nondeterministic inputs of software which are described
below. Sensors are the most common input source for embedded software (e.g., from
a GPS sensor). User interactions are triggered with human interface devices (e.g., a
touch screen). Static data may be stored and read from a disk or flash memory (e.g.,
an XML configuration file). Access to time or randomness functions in the hardware
can change the execution and thus make reproduction difficult. Network interactions
may be used for communicating with other devices in the embedded system (e.g.,
on a CAN bus). The operating environment may be represented by an operating
system which controls schedules and memory management. Physical effects may
cause hardware changes and they are the most difficult divergence to handle. In the
perspective of the SUT, the sources of nondeterminism are categorized into [34]: OS
SDK accesses (like system calls), signals or interrupts, specific processor functions,
schedules or shared-memory access orderings as well as memory initializations and
memory allocations (presented in Fig. 4.2 in the box around the SUT box).

Fig. 4.2 Types of inputs to embedded software

4 Automated Reproduction and Analysis of Bugs in Embedded Software 71

Fig. 4.3 Different levels of
replay modules

4.3.1 State of the Art

This section presents current state-of-the-art approaches for the automated reproduc-
tion of bugs. The tracing and replaying of the different events caused by the presented
sources of nondeterminism can be implemented on different levels (see Fig. 4.3).

It is possible to record/replay the execution of the software on hardware level
(Sect. 4.3.1.1). Therefore, additional special hardware is added to support tracing
and replay. Another option is to simulate the hardware. In the simulation platform,
capturing modules can be integrated. The operating system has control between
software and hardware and can record/replay events as well (Sect. 4.3.1.2). It is
possible to modify the operating system and to install it on the target platform.
Some operating systems provide support to integrate newmodules. Furthermore, the
software can be modified to record/replay events on application level (Sect. 4.3.1.3).
Therefore, the application is modified on source code or binary code level. Debugger
tools provide a layer between software andOSand can therefore record/replay events,
like presented in Sects. 4.3.2 and 4.3.3. The different approaches are presented in the
following sections according to every level.

4.3.1.1 Hardware Level Replay

We examine three types of approaches in the area of hardware level replay: hardware-
supported replay, full circuit replay, and virtualization-based replay.Most hardware-
supported replay approaches consider multiprocessor platforms [21]. To achieve
similar executions, the access to shared memory between different cores is recorded
and brought into the same sequence during replay. The tracing of shared-memory
accesses can be implementedwith additional hardware. The advantage of thismethod
compared to software-based approaches is the low overhead achieved by hardware-
based functions. Full circuit replay approaches add debug instrumentations into the
circuits for the FPGA synthesis. This way, it is possible to record and replay the
data flow of FPGA circuits in real time [17]. However, only a portion of the program
execution can be captured in real time. Other approaches implement virtualization-
based replaywhere the hardware is simulated.Moreover, there are approaches for the
virtual prototype platformQuickEmulator (QEMU) [10]. However, virtual prototype
platforms have a large base overhead which can disturb the interaction with the
connected sensor hardware.

72 H. Eichelberger et al.

4.3.1.2 Operating System Level Replay

We examine three different approaches for operating system level replay: event
sequence replay, synchronized event replay, and cycle-accurate event replay. For
replaying the same sequence of events, some approaches use OS SDK specific
commands to trace low-level events and to trigger the same sequence during replay.
RERAN[19] uses thegetevent and anown sendevent functionof theAndroidSDKfor
tracing and replaying on Android mobile platforms. RERAN can record and replay
the top 100 Android apps without modifications. Complex gesture inputs on the
touch screen can be recorded and replayed with low overhead (about 1%). However,
there must be functions available in the OS which support event tracing and sending.
Different scheduling or parallel executions on several cores can cause another behav-
ior. Parallel executions require the synchronization of events to achieve the same
access order to shared resources. SCRIBE [27] is implemented as a Linux kernel
module for tracing and injecting. It supports multiprocessor execution and achieves
the synchronization of parallel accesses using synchronization points. Using such a
synchronization, system calls can be brought into the same order during recording
and replaying even when running on multiple cores. However, real-time systems
have strict timing requirements and require an instruction-accurate reproduction
of events, e.g., interrupts. RT-Replayer [33] instruments a real-time operating system
kernel to trace interrupts. For replaying, the instructions at memory addresses where
interrupts occurred are instrumented with trap instructions (similar to breakpoints of
a debugger). Thus, the software stops at traps during replay and the same interrupt
functions are triggered.

4.3.1.3 Application Level Replay

For tracing and injecting events on application level, we examine three different
approaches for application level replay: source code instrumented replay, binary
instrumented replay, and checkpoint-based replay. Using source code instrumen-
tation, the source code is modified to trace the control flow and the assignments of
variables. Jalangi [35] presents an approach to instrument every assignment of vari-
ables and to write the assigned values into a trace file during runtime. During replay,
the traced variable values are injected. The approachwas presented for JavaScript, but
is portable to any other programming language. Drawbacks of Jalangi are: high over-
head, big trace files as well as possible side effects of the instrumentation. Dynamic
binary code instrumentation modifies the source code during execution, e.g., the
recording. It dynamically instruments the loaded binary code during runtime, and
injects additional tracing code. The instrumented code can be highly optimized and
only a low overhead is required for the execution of the code. PinPlay [34] uses
dynamic binary code instrumentation with the Pin instrumentation framework. It
considers several sources of nondeterminism, as presented in the introduction of
this section. However, the Pin framework is only available for specific instruction
sets. Checkpointing approaches capture the current process state in high frequency

4 Automated Reproduction and Analysis of Bugs in Embedded Software 73

(e.g., [40]). Starting at a checkpoint, all nondeterministic events (like systemcalls) are
captured. Checkpoints commonly base on platform-dependent OS SDK operations.

4.3.2 Theory and Algorithms

The previous section presented the way state-of-the-art approaches record and replay
bugs on different system levels. This section describes our own approach for tracing
and replaying bugs for debugger tools. It considers two sources of nondeterministic
inputs: sensor inputs and thread schedules. We do not consider memory violation,
because this kind of bug can easily be detected withmany availablememory profiling
tools. We start by presenting the record/replay of sensor accesses followed by the
record/replay of thread schedules.

Embedded software often accesses the connected devices triggered by a timer
or an interrupt. The device state is requested in a specific frequency. A navigation
software may access the GPS sensor with 10Hz for example. Figure4.4 shows how
a sensor is accessed by a timer function.

The tracing can be implemented by pausing the execution of the software at the
location where the access to the device is finished (defined by us as Receive). Here,
the read data is written to a log file. Figure4.5 shows this concept.

During the replay the execution is being paused at a location, where the interrupt
starts the access to the device (defined by us as Request). The access to the sensor is
skipped and a jump to the receive location (defined by us as Receive) is triggered. At
this point, the data is read from the log file. These data are injected into the execution.
This way, the sensor data from the recording run is replayed. This concept can be
implemented with a debugger tool, as presented in Sect. 4.3.3. The debugger-based
replay is illustrated in the sequence diagram in Fig. 4.6.

Other sources of nondeterminism might be thread schedules. The record/replay
of thread schedules bases on the reconstruction of sequences of thread events and
IO events [28]. This way, the active threads at thread actions, like sem_wait and
sem_post, are monitored. During replay, the same sequences of the invocations of
these events are triggered. Listings 1 and 2 show examples of two threads of a

Fig. 4.4 Sequence of sensor accessing

74 H. Eichelberger et al.

Fig. 4.5 Sequence of recording

Fig. 4.6 Sequence of replaying

software component for a pedestrian recognition: the thread Proc for the recognition
of pedestrians in the pictures and the threadGUI for drawing rectangles in the pictures
where pedestrians were detected. In case the two threads are alternately executed,
no failure occurs. However, when thread Proc is executed twice, one picture is not
drawn. Additionally, when Proc is executed twice, the semaphore holds the value
two and the GUI thread can be executed twice as well. Thus, the current image is
released in the thread GUI in line 4 and the next call of drawRec is triggered with
a released image. This case occurs very rarely in normal execution, because, after a
long pedestrian recognition in the image in the thread Proc (line 2), a thread switch
is usually triggered to GUI .

Our approach implements the serializing of active threads and the randomized
switching to threads at thread actions. Therefore, the normal thread scheduler is being
locked and only one thread is active at any time. This way, the active thread cannot

4 Automated Reproduction and Analysis of Bugs in Embedded Software 75

Table 4.1 List of tool triggered thread switch actions

Breakpoint Script actions

sem_init Set initialization value to the semaphore

sem_wait If sem==0 register thread and switch thread, else continue sem––

sem_post Finish post sem++ and switch to random thread

thread_start Add available thread into list

thread_end Delete thread from list

thread_join Switch to other threads, until joined ones are finished

be preempted by other threads. In our concept, the thread switches are triggered by
our tool at thread events (e.g., sem_wait, sem_post). The scripts monitor the thread
events by pausing on the corresponding functions and triggering the thread switches.
At each thread event, our tool triggers thread switch actions (see Table4.1).

Our tool holds a counter for every semaphore sem. At every occurrence of
sem_wait, the algorithm checks whether the semaphore is higher than zero and hence
may be passed and the semaphore counter sem is decreased. If the semaphore counter
is zero, the thread is registered as waiting thread and a switch to another (nonwaiting)
thread is triggered. At the occurrence of sem_post, the post is finished and a switch
to a random thread is triggered. During replay, the same random thread switches
are invoked by setting the same seed to the random function like during the tracing.
Using this approach, thread switches are always triggered by the scripts. Therefore,
the scripts have complete control over thread scheduling.

4.3.3 Implementation

Debugger tools are used to control the execution of the SUT. A popular debugging
tool is the GNU Debugger [15], which is available on different embedded platforms.
Currently1, the GDB homepage lists 80 host platforms which are supported by the
GDB. Additionally, it is adapted to other platforms by different suppliers. During
normal use, the GDB is manually controlled by a developer who types commands
into a console terminal. Table4.2 lists the most frequently used GDB commands.

The GDB is delivered with an external API. Using this API, it is possible to take
control over the debugger executions and commands using the Python programming
language. Listing 3 shows a simple Python script that can be loaded with the GDB.
It starts loading the program to test (line 2) and sets a breakpoint on the method foo

1Status July 2016

76 H. Eichelberger et al.

Table 4.2 Thread event
actions

Command Action

file Loads the program to debug

break Sets a breakpoint at specific
method/line, where execution
pauses

run Starts the execution of the
program to debug

continue Runs the program until next
breakpoint

jump Skips the next lines and jump
to a specific location in the
code

set Injects or modifies some
variable values

where Prints current halt point

(line 3). It starts by running the program (line 4). The execution pauses at occurrences
of calls of foo. The script counts the calls to foo (lines 6–8).

This way, the debugger is controlled with scripted logic. Other debuggers provide
different APIs to control the execution of the software under test. Even when the
debugger only provides a terminal command interface, these terminal commands
can be simulated by scripts and the terminal output can be evaluated as well. Our
debugger-based approach records and replays the events using this debugger tool
API. Listing 4 shows the way we implemented the replay of GPS sensor data for the
Navit navigation software [1].

4 Automated Reproduction and Analysis of Bugs in Embedded Software 77

A breakpoint is set in the source code lines where the request to a device is
started and where the access to the device is finished (lines 1–2). For the recording,
the execution pauses at the location where the GPS data was received. In this case,
current GPS values are printed (lines 7–8) and written to a log file (line 9). For the
replaying, the execution pauses at the location where the access to the GPS is started.
The access is skipped with the jump command (line 12) and the data from the log is
injected (lines 13–14). If the debugger-based recording is too slow using breakpoints,
it can be implemented with printf statements or a trace buffer implementation.

The following paragraph presents how the program under test can be controlled to
achieve deterministic thread schedules. The GDB provides the commands listed in
Table4.3 for debuggingmulti-threaded programs. It includes the three commands we
used for our implementation. At every breakpoint pause, the developer can manually
examine the current thread or can switch to other threads that are contained in the
thread list.

Listing 5 presents an implementation for the replay of the pedestrian recognition
(and is similar for the game case study presented in Sect. 4.3.4).

Table 4.3 List of GDB commands for handling multiple threads

Command Action

info threads Shows current loaded threads

thread Switch to another thread

set scheduler-locking on This commands disables the normal thread
scheduler

78 H. Eichelberger et al.

The command "set scheduler-locking on" disables the current thread scheduler
(line 5). When this option is activated, only one thread can be executed at any
time. Similar effects can be achieved with portable non-preemptive thread libraries
[16]. This way, the parallel execution of threads is serialized. For implementing the
required thread switches, our tool sets breakpoints at the used thread actions (see
lines 4–5). At every passing of a thread action, our tool triggers the thread switches
(Listing 5, line 14–17) with the thread command of the GDB based on actions pre-
sented in Table4.1. The control of thread schedules is integrated with the sensor
replay (Listing 5, after line 18).

Using randomized switching at thread actions achieves a better thread interleav-
ing coverage than the normal thread scheduler. This way, concurrency bugs can be
manifested faster.

4.3.4 Experiments

Figure4.7 shows ourmeasurements [14] for tracing or recording the sensor input data
of the single-threaded software Navit executed on Ubuntu Linux on an X86 Intel
platform. The measurements consider a route with 1200 GPS coordinates. These
coordinates are read from a file by a Mockup GPS server. The GPS frequency was
tested at 50, 33, 20, and 10Hz, and in parallel, the user cursor inputs (e.g., from
touch screen) was captured at 100Hz. The overhead between the normal execution
(labeled as Normal) and the recorded execution (labeled as Rec) remains nearly

4 Automated Reproduction and Analysis of Bugs in Embedded Software 79

Fig. 4.7 Performance
measurements for sensor
input recording for
single-threaded Navit [14]

0
20
40
60
80

100
120
140
160
180

50 33 20 10
R

un
tim

e
in

 s
ec

on
ds

Frequency of GPS polling (in Hz)

Normal
Rec

Fig. 4.8 Performance
measurements for
deterministic scheduling
and recording

0

20

40

60

80

100

Game5 Game10 Ped60 Ped165

R
un

tim
e

in
 s

ec
on

ds

Normal
Rec

constant, since the time used to pause the execution at breakpoints is caught up
by the invocations of the polling timers. This way, our approach for timer-based
software achieves minimal overhead. Tracing optimizations are required for other
types of software, e.g., by grouping several inputs and only tracing a set of inputs at
once [13].

We tested our approach for deterministic scheduling and recording with two
embedded software examples implemented with POSIX threads. The performance
measurements for these examples are presented in Fig. 4.8. The first is an ASCII-
based fly and shoot game. The game uses two threads, one for drawing the scene and
one for reading from the keyboard. The second example is a pedestrian recognition
[38] in video data of a vehicle camera (see Sect. 4.3.2). For every example, we used
two scenarios for each measurement, a short and a long one. We measured the game
until 5 or 10 lives were lost without interaction of the user. We measured the pedes-
trian recognition with a set of 60 or 165 pictures as inputs. Our experiments were
executed five times on an NVIDIA Tegra K1 with ARM CPU and Linux OS.

During recording the scenario of the game, in average 377 thread switches are
scheduled for the short scenario and 642 thread switches are scheduled for the
longer scenario. For the pedestrian recognition example, in average 186 (short) and
475 (long) thread switches are scheduled. The recording of the pedestrian software
requires, in average, 1.22X and 1.36X overhead. The overhead for recording the

80 H. Eichelberger et al.

game is higher with, in average, 2.86X and 2.98X, because more thread switches
have to be triggered in a shorter time.

We observed that the overhead keeps similar for short and long scenarios in both
case studies. Themeasurements show that performant recording can be implemented
with minimal effort. Every recording and replay script contains less that 50 lines of
source code. Additionally, the pedestrian recognition example shows that concur-
rency bugs can be detected faster when forcing randomized switches with our tool.
Hence in our tests, the example bug is detected in a few seconds with our approach,
but it is not triggered during 10× 165 picture inputs with the normal thread sched-
uler. For the performance measurements, we triggered the alternate invocation of the
two threads for not triggering the bug.

4.4 Dynamic Verification During Replay

Even if a bug can be reproduced, it is difficult to locate the root-cause of the bug dur-
ing the replay.Manual debugging of a replay (e.g., withGDB) is effortful. The source
code is often implemented by other developers. Thus, it is difficult to comprehend
which sequence of actions (e.g., method calls) leads to the failure. Additionally, it is
difficult to understand how the faulty sequence of actions is caused. The approaches
in the area of runtime verification provide concepts for automatically analyzing exe-
cutions during runtime by comparing them against a formal specification. Runtime
verification tests whether a set of specific properties are held during the execution.
The components which observe the execution are called monitors.

4.4.1 State of the Art

The online monitors approach runs a monitor in parallel to the execution during
operation. Online monitors have to be very efficient, because the normal execution
should not be disturbed. However, online monitors may react to observed anomalies
during the execution [29].At the occurrence of anomalies, fail-safe or recoverymodes
may be activated during operation. Log monitors examine log files, captured during
a long-term execution of a software. The trace files are efficiently generated during
operation. The tracing should be lean or implemented with fast additional hardware
for not disturbing the normal execution. Offline, the trace file is analyzed in detail [6].
Wrong event sequences in the trace can be detected, pointing to the failure or even to
the root-cause of the failure. Some approaches combine record/replay and dynamic
analysis of software [32, 40, 41]. However, they do not use a framework for the
implementation of complex assertions and were not tested on embedded platforms.

Table4.4 presents the advantages and disadvantages of each mode. The two
approaches do not provide support to check whether the failure still occurs or
not (Control Test). Moreover, they cannot be applied fine-grained (Fine-grained),

4 Automated Reproduction and Analysis of Bugs in Embedded Software 81

Table 4.4 Comparison of different characteristics for the monitoring types

Type Online Log Replay

Control test ✗ ✗ ✓

Fine-grained ✗ ✗ ✓

Recovery ✓ ✗ ✗

Long term ✓ ✓ ✗

because they would disturb the normal interaction with the user or with other sys-
tems. Our replay approach fulfills the first two categories (Control Test and Fine-
grained). However, the activation of recoveries is only possible with the online mode
as summarized in Table4.4. Long-term tracing andmonitoring is, in our opinion, best
applicable with tracing logs.

4.4.2 Theory and Workflow

The concept of applying dynamic verification during replay [12] is based on the
concept of tracing only the relevant inputs to the software and replaying them offline.
During replay, fine-granular tracing can be executed. Monitors or analysis can check
these traces for anomalies. During replay, the requirements for efficient tracing and
monitoring are less compared to normal operation. Additionally, the generated replay
can be used later as a control replay, after the bug has been fixed. The replay concept
is, in our opinion, the best option for system testing, because control replays which
can be used as regression test cases later are generated. Figure4.9 shows how the
different manual steps are supported or replaced by automated tools. The detection
of multi-threaded bugs (A.) is optimized by the randomized scheduling concepts
presented in Sect. 4.3.3. The replay of bugs (B.) is automized (see Sect. 4.3) and can
be used as regression test (D.). Automated analyses during replay (B.) support the
manual bug fixing (C.). These analysis tools are presented in the following sections.

A. Systematic Bug Detection: The software is tested in real-world operation. The
incoming events to the software are captured during these tests. Recording mecha-

Fig. 4.9 Workflow for debugger-based dynamic verification during replay

82 H. Eichelberger et al.

nisms are implemented with a symbolic debugger in order to avoid instrumentation
and to achieve platform compatibility. Therefore, the debugger is controlled by a
script. The developer decides which events are relevant and have to be captured.
Thus, the recording can be kept lean. To efficiently detect multi-threaded bugs, the
thread scheduler is controlled by our scripts triggering randomized switches at any
thread event.

B. Automated Replay and Analysis: The failure sequence can be loaded and
deterministically replayed in the laboratory. The replaymechanisms are implemented
with portable debugger tools. The software is executed with the debugging interface
on the same hardware as during operation for arranging the same system behavior
as during the original run. During replay, the failure occurs again based on the
deterministic replay. Manually debugging the complete execution sequence or even
several processing paths of events is very time-consuming. Therefore, we apply
dynamic verification during replay to automatically detect potential anomalies. These
information can give a hint to the fault. Analyses performed online during operation
disturb the normal execution, but do not cause drawbacks during replay, because no
interactions with the user or with external components are required for the execution
of the replay.

C. Manual Bug Fixing: Based on the report of the dynamic verification, the
developer can manually fix the fault. The step results in a patched program.

D. Regression Replay: The modified program can be tested with a control replay.
It is executed with the recorded sequence of failure inputs to observe whether the
faulty behavior occurs again. Finally, the bug replay can be archived as a test case
for a regression test suite.

4.4.3 Implementation of Assertions During Replay

In our workflow presented in the previous section, dynamic verification is applied
during replay for detecting the cause of the bug. This section shows how this cause
of a bug can be detected using assertions. Such assertions can be easily imple-
mented with a debugger. Therefore, during debugger-based replay, the execution
can be monitored with the debugger as well. The following paragraph considers the
multi-threaded replay of a pedestrian recognition software (as presented in Sect. 4.3).
During the replay of the software, the event sequence can be analyzed using assertion-
based verification. The sequence of method calls is monitored by setting breakpoints
on the corresponding methods. In the pedestrian recognition example, three events
are relevant: recogPed(), drawRec(), and showImg(). Temporal conditions can be
checked during replay, implemented with method breakpoints or watchpoints. The
automaton in Fig. 4.10 checks whether the correct sequence for loading and process-
ing the images is called. If another transition occurs, a specification violation is
detected.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 83

Fig. 4.10 Automaton for the
action sequence of the
pedestrian recognition

S0start S1

recogPed()

drawRec()
showImg()

This kind of monitor can easily be implemented in a GDB Python script (see
Listing 6). Lines 1–3 set the breakpoints andwatchpoints on the presented conditions.
Lines 6–14 check the reached point and the current state.

4.4.4 Experiments

Figure4.11 shows our performance measurements for different monitoring scenarios
compared to the multi-threaded recording overhead.

Wemeasured the runtime when 2, 5, and 10% of all methods of the corresponding
software were monitored using the GDB (this represents the online monitor or log
monitor mode). The monitored methods can be compared to parallel running state
machines as presented in the previous section. We randomly selected a specific
percentage (2, 5, or 10%) of methods and set breakpoints on them. We measured the
runtime for executing our multi-threaded recording approach (labeled as Record)
as well. We used the same four scenarios as in Sect. 4.3: the fly and shoot game
with 5 or 10 lives and the pedestrian recognition with 60 or 165 video pictures.
In all scenarios, the monitoring of 2% of the methods is faster than the recording.

84 H. Eichelberger et al.

Fig. 4.11 Comparing the
overhead for our recording
with methods monitoring
overhead

0

50

100

150

200

250

Game5 Game10 Ped60 Ped165
R

un
tim

e
in

 s
ec

on
ds Record

2%
5%
10%

Table 4.5 Number of GDB actions for recording and methods monitoring

Scenario Record 2% 5% 10%

Game5 383 7069 13050 13333

Game10 810 7069 18252 18840

Ped60 181 910 7099 17143

Ped165 496 2117 17546 47593

The monitoring of 5% of the methods is slower than the recording, especially when
considering the game scenarios. The recording of the execution of the scenarios is in
average 2.45 times faster than the runtime for monitoring of 10%methods. However,
the performance of method monitoring mainly depends on how often every method
occurs in the execution. Table4.5 shows the amount of GDB pauses for the recording
scenarios and every method monitoring scenario (2, 5 and 10%).

The higher the number of pauses, the higher the recording or monitoring time.
However, the recording had a smaller number of pauses compared to the monitoring
scenarios, the proportional runtime overheadwas higher. The reason for this finding is
that more GDB commands are required at every breakpoint pause for implementing
the recording. Additionally, we tested the monitoring of 15% of methods of the
pedestrian recognition, but the monitoring of the first picture was not finished after
10min.

4.5 Root-Cause Analyses

In the previous section, we showed how wrong action sequences can be detected by
comparing the executed actions with a specification property. The bug was triggered
by the wrong sequence causing the program to crash. However, in many cases, a
correct or complete specification of actions is not available. Usually, this is the case,
as a specification property often already points to a potential failure, which can be
fixed manually. In this section, we consider semantic bugs (in software without a

4 Automated Reproduction and Analysis of Bugs in Embedded Software 85

specification), i.e., the root-cause of the bug is found in the value processing or
program logic. We present concepts to detect wrong or missing method calls in
processing and to identify the root-cause of the corresponding error logic.

4.5.1 State of the Art

This section presents the state of the art in the area of fault localization of noncrashing
bugs and embedded software monitoring.

4.5.1.1 Delta Debugging

The book ‘Why Programs Fail’ [41] presents different concepts for fault localization
in software. It describes several concepts for dynamic analyses, including delta
debugging and anomaly detection. Some of these concepts are similarly considered
in ourwork, e.g., for our delta computation approach. Laterwork ofBurger andZeller
[7] developed dynamic slicing for the localization of noncrashing bugs. They apply
several steps to isolate the failure location by following back the bug in the execution.
However, delta debugging bases on experiments with the program to automatically
generate passing runs and failing runs, which is difficult and runtime-consuming in
embedded contexts (like mentioned by [3]).

4.5.1.2 Dynamic Verification for Noncrashing Bugs

Zhang et al. [42] implement an approach to detect noncrashing bugs caused by
wrong configurations. It profiles the execution of failing and not failing configura-
tions. Many embedded softwares do not even require a configuration and the bugs
can be located in the source code. Liu et al. [31] apply support vector machines to
categorize passing runs and failing runs of noncrashing bugs. Their approach gener-
ates behavior graphs on method level to compare different runs. For classification,
a lot of input runs are required and only suspect methods can be detected (not the
relevant source code lines). Abreu [2] implement fault localization for embedded
software using spectrum-based coverage analyses. They apply model-based diag-
nosis to improve the results of the analyses. Similar to Tarantula [25], the coverage
of executed statements of each failing run is compared to the passing runs. They
assume that a big set of test cases of failing and passing runs are available. However,
all approaches require a set of failing runs, which can be used for classification. In
our use case for system testing, a big set of nonfailure runs and failure runs is not
available for classification.

86 H. Eichelberger et al.

4.5.1.3 Monitoring of Embedded Software

For the implementation of fault localization, the software has to be monitored. Amiar
et al. [3] use special tracing hardware to monitor embedded software. They apply
spectrum-based coverage analyses on a single trace.When detecting a failing cycle, it
is compared to previous similar ones to detect spectrum-based coverage deltas. How-
ever, they assume a tracing hardware for the specific embedded platform is available.
Such hardware is usually expensive. Several runtime verification approaches [20,
36] use cheap debugger interfaces with the GNU Debugger (GDB) [15] to achieve
platform compatibility, but they do not present a concept to detect bugs without a
specification. FLOMA [23] observes the software fine-grained using probabilistic
sampling, but it does not monitor every source code line. It randomly decides if
a specific execution step is monitored. However, probabilistic sampling can miss
important steps and FLOMA requires the instrumentation of the source code. Zuo
et al. [43] present a hierarchical instrumentation approach to accelerate monitor-
ing. Their approach instruments the software to monitor and analyze the method
call sequences. Afterwards, only the suspect parts are monitored on source code
line level. This way, the monitoring can be accelerated. Our approach extends this
approach and applies it to debugger tools.

4.5.2 Theory and Concepts

We apply root-cause analysis on a failure replay to automatically detect suspect
source code lines which are potential root-causes of the failure (based on [3, 13,
14]). This analysis results in a report, which can give the developer a hint where the
bug is located in the source code. In the following,we present aworkflowwhich bases
on a failure replay and a nonfailure replay. We split the execution of the software
into parts (see Sect. 4.5.2.1). Several executions of a partition have overlaps and can
be compared. Every execution of one partition is called a run. Afterwards, this run
in the replay which executes the failure has to be detected (see Sect. 4.5.2.2). The
failure run in the replay is compared to several runs in the replay which are similar
and which are not categorized as failing runs (see Sect. 4.5.2.3). For the comparison
of the failure run to the similar runs, we apply fine-granular analyses on source line
level, aiming at detecting the buggy source code line. We show metrics for coverage
analysis as well as invariant generation analysis (see Sect. 4.5.2.4). However, fine-
grained monitoring can be very slow using cheap debugger interfaces. Therefore, we
present an acceleration approach in Sect. 4.5.2.5.

We exemplify our own approach with a noncrashing bug in the open source
navigation softwareNavit [1]. If Navit receivesGPS sensor datawith an angle smaller
than −360, the vehicle pointer is not drawn for a short amount of time. This bug
might disturb the driver, e.g., when looking for the correct crossing on a busy street.
This bug does not throw an exception. It can just briefly be observed in the GUI.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 87

It is caused by the processing of wrong sensor data (the sensor sends angle values
<−360). Such a case occurs when the software is not compatible with the sensor
hardware outputs. The bug is caused by a wrong calculation in the Navit software
(presented in the following).

4.5.2.1 Partition Replay into Runs

The approaches of the state of the art in the area of anomaly detection provide
concepts for detecting root-causes by comparing nonfailing with failing execution
runs of the software under test [41]. However, the execution of complex embedded
software may contain parts which execute different functionalites. The comparison
of different functionalities can cause many false positives, especially when only a
small set of reference runs is available. In our approach, we split the execution of the
embedded software in several comparable parts (executing similar functionalities).
Embedded software usually processes sensor data to update the program states. This
processing is usually very similar every time it is executed. Figure4.12 exemplarily
presents the concept for the replay of Navit. A replay of Navit contains different
types of processing, e.g., GPS processing, touch screen input processing or traffic
data processing.

The processing of sensor data starts after the data has been read from the sensor
hardware (in Sect. 4.3 defined as the point receive). A processing is represented by
the following tuple:

Processing = (Start,Run,End) (4.1)

Start andEnd represent source code lines passed in the execution. Start is the position
in the executionwhere the system starts to process this sensor data.End is the position
in the execution where the processing of the sensor data is finished. The processing
Run includes a list of all operations Ops and method callsM in the processing of the
sensor data:

Run = (M,Ops) (4.2)

Fig. 4.12 Partitioning of a replay into runs

88 H. Eichelberger et al.

and

M = {m1,m2, . . . ,mN1} (4.3)

Ops = {op1, op2, . . . , opN2} (4.4)

opx = {v1, v2, . . . , vN3} (4.5)

In our approach, the execution breaks at Start. Beginning at this breakpoint, the
processing is observed either on method or on source code line level. On method
level, every method mi ∈ M is monitored (4.3). On source code line level, every
operation opi ∈ Op is monitored (4.4). The monitoring stops with the execution of
End. We consider one statement or source code line as operation opi. Each operation
opx holds several global, local, and argument variables v1, v2, . . . , vN3 (4.5). The
runs of the same type can be compared by detecting differences considering the
executed methods, the executed operations or the observed variable values. In our
current approach, Start and End have to be specified with debugger scripts. Other
approaches implement automated cycle detection [3], which can be similarly applied
to our approach.

4.5.2.2 Detect the Failure Run

Every execution of the partition of the software is considered a run of a replay.
When running the failure replay, one or more runs of a specific sensor processing
cause the observed failure. We present a lightweight concept for the detection of the
failure run in the replay. It classifies those runs as failing which are most different
to the runs in a nonfailure replay (as described in the following). Every run of a
replay can be compared to other runs, because similar operations and methods are
executed. Differences in the run may point to the failure. To detect the failure run,
our approach expects two replays. One replay which causes the failure and a second
replay which does not cause the failure. The runs of a replay with a failure can be
compared to the runs of a replay not causing an observed failure. Two runs can be
compared by checking which source code lines or methods are covered by a run.
As being presented in Sect. 4.5.2.5, it is more efficient to consider the coverage of
methods in this stage.

Table4.6 shows an example matrix (representing the Navit bug), which contains
the coverage of methods of every run of a replay (like presented by [3] for traces).

The callable methods are represented in the rows. The runs are represented in the
columns. The value 1 in a cell means that themethod in this row is executed by the run
in the corresponding column. The difference of two runs can be compared using the
hamming distance, i.e., by counting the differences in rows between the two columns
of runs. In our example: distance(Run1,Run7) = 2, distance(Run2,Run7) = 3 and
distance(Run3,Run7) = 3. For a straightforward presentation, we consider some
pseudo-methods m1 − m4 and the draw method.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 89

Table 4.6 Coverage matrix for monitored runs of a replay

Methd/run Run1 Run2 Run3 ... Run7

m1 1 1 1 … 1

m2 1 0 1 … 1

m3 1 1 0 … 1

m4 1 1 1 … 0

draw 1 1 1 … 0

… … … … … …

Fig. 4.13 Detect the failure run

The failure is detected by comparing every run in the failure replay with every run
in the nonfailure replay using the matrix presented above and the hamming distance.
The run in the failure replay which is not similar (or most different) to all runs
in nonfailure replay is considered a failure run. Figure4.13 shows how Run7 in the
failure replay is compared to every run in the nonfailure replay.Run7 ismost different
to the nonfailure runs, because the call of the draw method of the vehicle pointer
is missing. The number of occurrences of every method can be combined with the
hamming distance as well. Differences between two cells higher than a threshold
threshold can be counted as 1 and else as 0. This way, one method of two runs can
be categorized as different if one run executes a method many more times than the
other run. It is possible to consider the call sequence as well. However, the method
coverage can be monitored faster than source code line coverage (see Sect. 4.5.4).
Additionally, it is possible to categorize several runs as failing runs. For example, it
is possible to categorize those ones as failure runs which show 20% differences when
compared to the runs of a nonfailure replay. However, the following explanations
base on one failure run. Note: If several runs are ranked with same distance, the latest
is chosen (because the bug is expected to be near the end of the replay).

Here, Run7 in the failure replay is most different to all other runs in the nonfailure
replay. Thatmeans:Run5,Run6, andRun8 have a corresponding run in the nonfailure
replaywith a hammingdistance,which is smaller than the hammingdistances ofRun7
to each run of the nonfailure replay.

90 H. Eichelberger et al.

Fig. 4.14 Detect the similar
runs

4.5.2.3 Detect Similar Runs

In the previous section, we described the concept for detecting the failure run. Anom-
alies can be detected by comparing this failure run to runs with no failure. Therefore,
our approach detects several runs in the failure replay which are similar to the failure
run, but which are not categorized as failing runs, i.e., it detects those runs which
have similar method coverage to the failing run using the hamming distance (bases
on [3]). Figure4.14 shows the failure replay. In this example, the most similar run
to the failure run Run7 is Run5. This way, the failure run is compared in detail to the
runs which are most similar to it. This concept bases on the nearest neighbor model,
which was similarly applied to log files of a tracing hardware [3]. Our approach
detects similar runs in the same replay where the failure run occurs at, these similar
runs being executed under the same context as the failure run (e.g., considering the
configuration context).

In our tests, we detected three runs which are similar to the failure run. These runs
and the failing run are compared in detail using delta analysis.

4.5.2.4 Delta Computation

The failing run and the similar runs are compared in detail to detect deltas which can
point to the failure root-cause. When comparing the similar runs to the failing run
in the failure replay, different metrics can be applied to identify suspect source code
lines. We present the concepts and metrics for the delta analyses based on the Navit
bug example.

The Navit bug is based on a wrong calculation in the GPS processing (pseudocode
presented in Listing 7). If the angle is smaller than 0, the value 360 is added to the
angle in line 2. However, in the case the angle is smaller than −360, the angle keeps
a negative value after line 2 and lines 5 + 6 are skipped and the vehicle pointer is
not drawn. In a correct implementation, a mathematical modulo operation should
be applied to the angle computation to generate a positive value. Line 5 and the
parameter variable lazy are explained in the following section.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 91

In our example, the following GPS input sequence to the vehicle_update method
triggers the bug (…{42, 9, 40, 0}, {42, 9, 55, 0}, {42, 9, −370 , 0}, {42, 9, 70, 0}).
Here, the third input sends wrong angle data, e.g., from a sensor device.

We apply fault localization metrics to detect the root-cause of such bugs in the
failure replay (in the example, the wrong calculation in line 2). We define these
metrics with three coefficients, which are generated for every executable source code
line. These coefficients count the number of runswhich fulfill a specific characteristic
for a specific source code line op. These characteristics define the amount of runs
causing a failure or not failure. And they definewhether they cover the specific source
code line op or not.

• ep: #runs with nonfailure, which execute the line.
• ef : #runs with failure, which execute the line.
• np: #runs with nonfailure, which do not execute the line.
• nf : #runs with failure, which do not execute the line.

Popular metrics for fault localization were given by Tarantula, Jaccard, and Occhiai.
The metrics are defined as follows [39]:

Tarantula : dT =
ef

ef +nf
ef

ef +nf
+ ep

ep+np

(4.6)

Jaccard : dJ = ef
ef + ep + nf

(4.7)

Occhiai : dO = ef√
(ef + ep)(ef + nf)

(4.8)

Tarantula measures which lines are primarily executed by failing runs. These
lines are considered as more likely to be the root-cause of the failure. The suspicious
ranking is decreased if many nonfailing runs execute the line as well. The Jaccard
coefficient is based on ef as well, but results in a less suspicious ranking when

92 H. Eichelberger et al.

many nonfailing runs execute the line or many failing runs do not execute the line.
Occhiai additionally weights the difference between ep and nf . Thus, the ranking
is lower, when many nonfailing runs execute the line and many failing runs do not
execute the line at the same time. The previously presented metrics mainly consider,
which source code lines are often represented in the failing runs. However, in case
of noncrashing bugs of embedded software, the error of the bug may be the missing
call to an OS SDK library. Additionally, missed source code lines in the failing run
may point to the wrong evaluation of conditional logic. A comparison of missing
code in the failing run compared to the nonfailing run can point to the failure. Thus,
in our opinion, it is required to rank missing features in the failing runs as well. The
AMPLE metrics (4.9) consider missing features in the failing run as well [9].

AMPLE : dA =
∥
∥
∥
∥

ef
ef + nf

− ep
ep + np

∥
∥
∥
∥ (4.9)

Table4.7 shows the different results of the metrics for the presented Navit bug
example (see Listing 7) for three similar runs (RunSim) and one failing run (RunFail).
The higher the resulting factor, the higher the suspiciousness of the corresponding
source code line. We observed that every metric ranks the operation with index
2 as suspect. However, operations 5 and 6, which additionally point to the wrong
conditional case, are not ranked as suspect, despite by AMPLE.

In most fault localization approaches, the metrics result in a list of source code
lines with their according suspicious rankings. However, it is difficult to evaluate the
source code manually based on this list. In our use case, our tool sets breakpoints
on the most suspect source code lines during replay. The developer can step through
the suspect lines during replay and check which lines are executed in the failing
and the nonfailing runs. Our tool only sets breakpoints on source code lines with
AMPLE suspicious ranking 1. Additionally, it notes at every suspect source code

Table 4.7 Calculation of metrics by example

Methd/op op1 op2 op3 op4 op5 op6

RunSim 1 0 1 1 1 1

RunSim 1 0 1 1 1 1

RunSim 1 0 1 1 1 1

RunFail 1 1 1 1 0 0

ep 3 0 3 3 3 3

ef 1 1 1 1 0 0

np 0 3 0 0 0 0

nf 0 0 0 0 1 1

Tarantula 0.5 1 0.5 0.5 0 0

Jaccard 0.25 1 0.25 0.25 0 0

Occhiai 0.5 1 0.5 0.5 0 0

Ample 0 1 0 0 1 1

4 Automated Reproduction and Analysis of Bugs in Embedded Software 93

line, whether it is executed in the failure run (but not in any similar run) or whether it
is executed in every similar run (but not in the failure run). Other approaches propose
the combination of suspicious metrics [39], e.g., combining AMPLE and Occhiai.
This way, machine learning algorithms generate weighted combinations of different
metrics. Studies show that better metric results are achieved with combined metrics.
However, a learning phase which is not possible in our use case is required.

Previously, we showed how delta computation is able to show coverage deltas
between the failure run in the failure replay and some similar runs in the replay.
However, root-causes which start to propagate at a wrong variable assignment can
often only be detected by monitoring all variable values in every source code line.

In our example, another sequence of GPS inputs may trigger the bug: ({42, 9,
−340, 0}, {42, 9, −355, 0}, {42, 9, −370 , 0}, {42, 9, −355, 0}). This sequence can
happen, when the sensor sends data smaller than 0 and incrementally switches to
an angle smaller than −360. Applying coverage-based analyses during the replay of
this sequence, the wrong source code line (line 2 in Listing 7) cannot be detected,
because line 2 is executed in every run. However, the root-cause can be detected
when monitoring all variable values in every source code line.

Anomalies in variable values can be detected using invariants. Invariants are char-
acteristics of variable/value pairs which are stored for each run. The invariants being
held by the nonfailing run can be compared with invariants stored from the failing
run. Therefore, we automatically generate invariants for the nonfailing and failing
run. Range invariants check, which ranges of variable values are observed during a
run. In our Navit example, the invariant in Eq. (4.10) is stored by every nonfailure
run. This invariant can be checked in the failure run, where it is violated. In our
implementation, we generate invariants for every single passed source code line.

invline(angle) = −360 ≤ angle ≤ 360 (4.10)

However, with few reference runs, it is difficult to build range invariants. Rela-
tion invariants between variable/value pairs check the relation between two numeric
variables. Variable relations are often checked in conditional branches. This relation
may be that a variable angle is always bigger than a variable lazy in a specific source
line (4.11).

invline(angle) = lazy < angle (4.11)

Our analysis compares each variable value to all other variable values to detect the
relations between the variables. In our Navit example, the method vehicle_update is
always called with the fourth variable lazy which defines the drawing mode and is,
for most cases, 0 or 1. Comparing the variable angle against the variable lazy, shows
that, before operation 2, angle < lazy. After operation 2, lazy < angle is fulfilled for
every nonfailure run. However, for the failing run, angle < (lazy == 0) still holds.
Figure4.15 shows the sequence of variable relations between the variables angle and
lazy.

94 H. Eichelberger et al.

Fig. 4.15 Detecting
invariant deltas between two
Navit GPS processing

In Fig. 4.15 thewrong relations in lines 3 and 4 in the failure run point exactly to the
root-cause of the failure. The resulting analysis report includes anomalies detected
by comparing the coverage of the failing run to the similar runs. Additionally, the
report includes the generated relation invariants which differ between the failing run
and the similar runs.

4.5.2.5 Accelerated Monitoring

This section presents how to accelerate software monitoring based on [13, 43]. Many
approaches use special hardware to monitor the embedded software under test. How-
ever, this hardware can be expensive or is even not available for new platforms.
Therefore, we present an approach on how to optimize the monitoring to achieve fast
dynamic verification results. Most developers already use an incremental approach
to manually debug software. They first set breakpoints on methods starting to detect
anomalies in the method call sequence. Afterwards, they examine suspect methods
and they stepwise refine their examination. Our tool achieves accelerated monitoring
for bug root-cause analyses, by applying this concept in an automated way. First, we
define the basic concept for single-level (SL) monitoring.

Single-Level Monitoring—SL: Monitoring single steps through every exe-
cuted source code line during a (processing) run. It monitors the current vari-
able values for every monitored source code line.

The analyses presented in the previous section can be applied on the traces gener-
ated by SL monitoring. However, running single-level monitoring can be slow. The
methods of the software are usually executed much less frequently than the source
code lines. Therefore, it is usually faster tomonitor themethods instead ofmonitoring
every source code line.

4 Automated Reproduction and Analysis of Bugs in Embedded Software 95

MultiLevel Monitoring—ML: In the first replay, the method calls are moni-
tored. The following activities can be applied on this method calls trace:Detect
Failure Run andDetect Similar Runs. In a second replay, the failure run as well
as the similar runs are monitored in detail with single-step monitoring. The
Delta Computation can be applied on this generated trace. This way, all runs
despite the failure and the similar runs do not have to be monitored in detail.

The concept is illustrated in Fig. 4.16. It shows two replays: one for method level
monitoring and one for monitoring the relevant runs in detail with single-stepping.
On method level, first, the failure run is detected (A.) by comparing it to a nonfailure
replay, as presented in Sect. 4.5.2.2. The failure run in Fig. 4.16 is Run7. Afterwards,
the similar runs to the failing run are identified on method level (B.), as presented in
Sect. 4.5.2.3. Here, the similar run is Run5. However, our approach can detect and
handle several similar runs. The difference between the failing run and the similar
runs (Run5 and Run7) is implemented by single-step monitoring (same as SL) and
analyzing every source code line as presented in Sect. 4.5.2.4. Thus, in the example,
Run6 and Run8 are not monitored in detail.

However, pausing at every passing of method causes a high monitoring time as
well (like presented in Sect. 4.5.4), especially when short methods are called in high
frequency. Thus, in the following, we propose a concept for debugger-based efficient
monitoring of the method coverage of a run.

ML Method Monitoring—MLMethd: Method coverage monitoring traces
every executed method in a run only once.

Fig. 4.16 Multi-level (ML) monitoring

96 H. Eichelberger et al.

Algorithm 1 shows the concept for MLMethd in pseudocode. This way, the moni-
toring of method coverage is efficient, because the monitoring tool only has to trace
every method once.

Algorithm 1 Efficient method coverage monitoring for a run
Require: allmethods = List of all methods to monitor
Require: context = Monitoring context
Ensure: methodcov = Set of covered methods in the run

∀m∈allmethodscontext.setBreakpoint(m)

while context.nextBreak() do
where = context.where()
methodcov = methodcov ∪ where
context.removeBreakpoint(where)

end while

However, after the failure run is detected and the similar runs are computed, the
delta computation step requires a fine-grained trace. The monitoring of this trace can
be very slow. A stepwise refinement can accelerate the monitoring.MLMethd results
in a list of suspect methods (relmethds) which are either executed in the failing run
or in the similar runs.

ML Backtrace Monitoring—MLBack: The backtraces of the methods in
relmethds are identified. Every method which occurs in those backtraces is
first monitored without stepping into the called methods (side steps). Methods
which are executed either in the similar runs or the failing run are notmonitored
(no comparison is possible). MLBack includes MLMethd.

For our Navit example, we consider five different methods:

• update: Updates the current vehicle state based on GPS input data.
• route: Represents the routing calculation.
• vehi.: Represents the vehicle_draw method.
• set: Changes the drawing mode.
• draw: Invokes the draw of the vehicle pointer.

Figure4.17 presents the concept of MLBack for the Navit bug. Every black line (or
solid line) represents a monitored method. Every red line (or dotted line) represents
a not monitored method.

First, a replay monitors the method coverage and detects that the draw method
misses in the failing run. Several similar runs to the failing run are detected based on
method monitoring. During MLBack, the methods which occurred in the backtrace
of the invocation of draw in the nonfailure runs are collected in relmethds. During
a second replay, the methods in relmethds are monitored in the similar runs and the
failing run without stepping into the called (or side step) methods. During stepping

4 Automated Reproduction and Analysis of Bugs in Embedded Software 97

Fig. 4.17 Multi-level backtrace (MLBack) monitoring

through these methods, the values of local variables and method parameter vari-
ables are monitored. MLBack results in a list of methods which contain anomalies
suspectmethd. The methods update and vehi. are monitored without stepping into
side steps (here, route and set). This way, the routing calculation which is not rele-
vant for our considered bug, but would require a lot of operations, is not monitored.
Additionally, draw is not monitored, because it does only occur in the similar runs,
but does not occur in the failure run (and cannot be compared). A first anomaly in
the variable values can be detected after the calculation angle+ = 360 in vehi.

Definition ML Step Monitoring—MLStep: This monitoring concept has a
list of suspect methods suspectmethd as input. These methods are monitored
in an additional replay with the called side steps. Methods which are executed
either in the similar runs or the failing run are still not monitored.

In the Navit example, a third replay is executed to additionally monitor the side steps
in suspect methods (see Fig. 4.18).

Here, the method vehi. is additionally monitored with side steps. This includes
the stepping into the method set (and some other methods not presented in Fig. 4.18).
In an alternative implementation of Navit, the method set (or another method even
which is called by vehi.)may include thewrong source code linewith angle+ = 360,
after which wrong relations between angle and lazy are detected.

4.5.3 Implementation

This section presents how a set of runs in a replay is monitored by single-stepping
over every source code line (Single-Stepping Monitoring). On source code level,

98 H. Eichelberger et al.

Fig. 4.18 Multi-level step (MLStep) monitoring

the variable values are monitored for every executed source code line in a run. This
implementation is required for SL as well as for ML in the second replay. We show
how method level monitoring (Method Coverage Monitoring) is implemented. On
method level, the coverage of executed methods in a run is monitored. Additionally,
we show howMLBack andMLStep can be implemented using GDB Python scripts.

4.5.3.1 Single-Stepping Monitoring

Listing 8 shows the implementation for single-stepping monitoring for the Navit
example (considering the GPS processing). Lines 1–2 set breakpoints at the locations
in the source code where the GPS processing starts and ends. In case the location
where the processing starts is reached (line 7), the monitoring is activated (line 8).
If the monitoring is activated, every step in the processing is monitored by printing
local and argument variables (lines 13–14). The next source code line in the software
under test is reached by executing the GDB step command (line 16).

4.5.3.2 Method Coverage Monitoring

Listing 9 shows the implementation for method coverage monitoring for the Navit
example (considering the GPS processing). Lines 1–2 set breakpoints at the loca-
tions in the source code where the GPS processing starts and ends. Additionally,
breakpoints are set on every method of the Navit software (lines 5–6); they are dis-
abled at the beginning of the execution (line 7). If the location where the processing
starts is reached (line 10), the monitoring is activated (line 11) and, additionally, the
breakpoints for every method in the Navit software are enabled (line 12). If only
the coverage of executed methods should be monitored, every breakpoint could be
disabled after first passing (lines 18–19).

4 Automated Reproduction and Analysis of Bugs in Embedded Software 99

100 H. Eichelberger et al.

4.5.3.3 Method Backtrace Monitoring

Listing 10 shows the implementation for method backtrace monitoring for the Navit
example (considering the GPS processing). Lines 2–3 set breakpoints on all methods
in relmethds reported from previousmethodmonitoring and analysis. Thesemethods
are stepped through with the command next of the GDB (line 14), while monitoring
variable values and without stepping into called methods (side steps). The imple-
mentation ofMLStep is similar, but monitors the methods reported from theMLBack
analysis. It uses the command step of the GDB instead of the command next.

4.5.4 Experiments

The previous sections showed how dynamic verification supports the developer to
analyze the root-causes of bugs. In Sect. 4.5.2.5, we presented optimization tech-
niques to accelerate the monitoring for those analyses. We tested the multi-level
monitoring (ML) concept for the Replace tool of the Siemens Test Suite [22]. The
Replace program is delivered in 32 different versions and with several test cases. We
tested 19 of the first 20 versions, which all contain one bug (we could not manually
detect a bug in version 19). To generate a possible random replay, we implemented
a replay generator which randomly selects 99 test cases from the 5542 test cases in
the Siemens Test Suite fault matrix which do not cause the failure. In the end of the
replay, we added as run 100 a failing run which executes the bug. For the random
selection of test cases, we used the Python random function with seed 100 for every
generated replay. We generated a second replay with 200 nonfailing runs to simulate

4 Automated Reproduction and Analysis of Bugs in Embedded Software 101

0

50

100

150

200

250

1 3 4 5 6 7 8 12 13 14 15 16 17 18 20

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Version

ML
SL

Fig. 4.19 Monitoring runtime for multi-level analyses for replace

noise (using same seed 100). We used this replay as nonfailure replay for the failing
run detection presented in Sect. 4.5.2.2. For SL, we monitored the execution of the
100 replay runs collecting source code line coverage as well as numeric local and
argument variable values. For ML, the failing run was detected based on method
coverage. For this implementation, we additionally used the count of occurrences of
a specific method for building hamming words (as presented in Sect. 4.5.2.3 using
threshold = 5). The three most similar runs to the failure run were determined based
on method coverage as well. In a second replay, the failing run and the similar ones
were monitored and compared considering line coverage and variable relations. We
observed that ML monitoring is much faster than SL monitoring. Figure4.19 shows
the runtime for single-level (SL) monitoring compared to multi-level (ML) monitor-
ing for Replace (for those versions where we could detect the respective bug, using
our algorithms).

For a general evaluation, only the monitoring runtimes were included, because
the runtimes for analyzing the monitoring result depend on the type of analysis. ML
consists of a first replay monitoring on method level and a second replay monitoring
on line level. ML and SL monitored all local variables, arguments, and macros for
the delta computation for the failing run and the three most similar runs. We found
that ML monitoring is much faster than SL monitoring. For Replace, a monitoring
acceleration of∅ 9.5Xwas achieved. Table4.8 shows the number of reported suspect
lines of SL andML and the hamming distance from the failing run to the three similar
runs for the different Replace versions.

δ-ML/SL presents the count of reported suspect lines. Fail Detect shows whether
the failing run could be detected onmethod level.Dist. Meth. andDist. Line show the
hamming distances to the computed similar runs.Detect presents whether the buggy
lines are detected with the coverage delta computation or the variable relation delta
computation. In six versions (3, 4, 7, 13, 14, 16), the detected similar runs were the
same forMLandSL. In these cases, the reported suspect lineswere the same. In the 15
experiments, every bug of the version was detected with SL and ML, either pointing
to the coverage delta (Cov) or to a delta in variable relations (Rel). Four reports for
bugs indirectly pointed to the failure (Version 12—many occurrences of MAXPAT

102 H. Eichelberger et al.

Ta
bl

e
4.

8
R
ep
or
te
d
de
lta

lin
es

fo
r
re
pl
ac
e
an
d
ha
m
m
in
g
di
st
an
ce
s

E
xa
m
pl
e

V
1

V
3

V
4

V
5

V
6

V
7

V
8

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
20

δ
-M

L
89

10
9

11
7

34
83

71
50

10
2

11
9

11
9

62
71

47
10
5

47

Fa
il
de
te
ct

✓
✓

✓
✓

✗
✓

✓
✓

✓
✗

✓
✓

✓
✗

✓

D
is
t.
M
et
h.

0,
0,
1

0,
0,
0

1,
1,
1

0,
1,
1

0,
0,
0

5,
5,
5

2,
2,
2

6,
6,
6

0,
0,
0

0,
0,
0

3,
3,
3

5,
5,
5

0,
0,
0

0,
0,
0

0,
0,
0

D
is
t.
lin

e
18

,3
6,
36

13
,1
1,
11

22
,2
4,
24

44
,2
2,
11

19
,3
7,
11

48
,5
1,
51

39
,1
5,
45

53
,5
1,
66

15
,1
7,
17

9,
21

,1
7

36
,4
6,
43

48
,5
1,
51

26
,2
,9

16
,9
,2
1

26
,2
,9

δ
-S
L

11
8

10
9

11
7

66
73

71
53

97
11
9

11
9

41
71

51
13
1

51

D
is
t.
lin

e
18

,1
9,
23

11
,1
1,
13

22
,2
4,
24

11
,2
2,
22

9,
11

,1
1

48
,5
1,
51

15
,1
5,
15

49
,5
1,
53

15
,1
7,
17

9,
17

,2
1

36
,3
6,
38

48
,5
1,
51

2,
2,
5

9,
10

,1
2

2,
2,
5

D
et
ec
t

C
ov

R
el

R
el

R
el

C
ov

R
el

R
el

iR
el

C
ov

iR
el

iR
el

R
el

R
el

iR
el

R
el

4 Automated Reproduction and Analysis of Bugs in Embedded Software 103

in relation deltas, Versions 15 and 18—relation difference of other variables in buggy
line, Version 14—difference of relations in enclosed line of if-clause). We tested our
tooling with the four other versions of Replace (2, 9, 10, 11), but in these tests, the
buggy source code line could not be detected with our delta analysis with ML and
SL. Here, the bugs are mainly caused by predicates in if-clauses which access arrays
(which are only available in registers). The row Fail Detect shows the versions, for
which the failing run could be detected on method level. The failing run could not be
detected for the versions 6, 14, and 18 with the optimized lightweight classification
presented in Sect. 4.5.2.2 based on a randomized selected nonfailure replay. Thus,
63% of the bugs could be automatically and efficiently localized with ML based on
one failure replay with 100 runs and one nonfailure replay with 200 runs.

In some cases, delta computation for ML reported less false positives, because the
similar runs detected by SL coincidentally caused more variable relation differences.
In general, the report quality difference between SL and ML mainly depends on the
composition of different runs in the replay. Note: Delta computation (cov+rel) for
SL between the failing and every run in the replay would cause higher runtime for
parsing and comparison of monitoring results (delta computation runtime without
monitoring of three runs was ∅ 13.7 s for Replace).

However, the ML monitoring can still be too slow for monitoring instruction-
intensive calculations. For example, the monitoring of a routing calculation of Navit
on method level (which calls transformation methods in high frequency), can be
very slow when the execution pauses at every method call. We measured the method
monitoring for 20 GPS coordinates processing including the routing calculation,
which required more than 50h on an NVIDIA Tegra K1 ARM platform.

Figure4.20 shows our experiments for the acceleration of the monitoring for root-
cause analyses using refinement for the Navit software (MLBack and MLStep).

We measured a replay with 20 GPS and one with 30 GPS coordinates, both con-
taining the Navit bug from the previous sections. In these experiments, each analysis
(MLBack, MLStep and SL) detected the root-cause of the bug. These measurements
include the routing calculation of the Navit GPS processing.

MLBack is 1354X faster than SL for the 20 GPS scenario.MLStep is 334X faster
than SL for the 20 GPS scenario. For the 30 GPS scenario, the acceleration factors

Fig. 4.20 Acceleration of
monitoring using refinement
for root-cause analyses for
the Navit software [13]

1

10

100

1,000

10,000

100,000

1,000,000

Navit20 Navit30

R
un

tim
e

in
 s

ec
on

ds MLBack
MLStep
SL

104 H. Eichelberger et al.

are: MLBack 1292X and MLStep 405X. The acceleration does not increase with
the longer sequence, because some GPS processing at the beginning take longer
(for recalculating and redrawing of the routing line). The Navit measurements show
that analyses with high monitoring overhead can be accelerated with hierarchical
refinement, resulting in practicable dynamic verification performance.

4.6 Summary

The approach presented in this chapter showed how the manual debugging process
can be supported by automated tools. We presented state-of-the-art approaches for
automated bug reproduction. However, these approaches are mainly developed for
specific platforms. Therefore, we developed the debugger-based approach which is
portable to different embedded platforms. It reproduces sensor inputs and implements
randomized thread scheduling for efficient concurrency bug localization. The chapter
described how assertions can be implementedwith a debugger tool to locate the cause
of reproduced concurrency bugs. Afterwards, we showed how the root-cause of bugs
can be located without needing specifications or assertions. The root-cause can be
tracked down to changes in variable values which cause the bug. Based on a naviga-
tion software, we demonstrated how these root-cause localization techniques can be
accelerated. This way, the application of slow monitoring tools can be optimized to
make them applicable in practice.

The presented approach requires little adaptations for other software. However,
the implemented scripts are all very short (every record/replay or monitoring script
is shorter than 200 LOC). Thus, the tooling is highly extendable. Additionally, the
GDB is supported by most embedded platforms and our script implementations are
applicable on most embedded platforms. With few modifications, we could run all
our scripts on an ARM Linux the same way as on an X86 Linux.

References

1. Navit-car navigation system. http://www.navit-project.org. Accessed Aug 2016
2. Abreu R (2009) Spectrum-based fault localization in embedded software. PhD thesis, Univer-

sity Delft
3. Amiar A, Delahaye M, Falcone Y, du Bousquet L (2013) Fault localization in embedded

software based on a single cyclic trace. In: ISSRE ’13: proceedings of the 24th international
automated reproduction and analysis of bugs in embedded software 39 symposium on software
reliability engineering. IEEE, pp 148–157

4. Anderson P (2008) The use and limitations of static-analysis tools to improve software quality.
CrossTalk J Defence Softw Eng 42(4):18–21

5. Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: ICSE ’06: proceedings of
the 28th international conference on software engineering. ACM, pp 361–370

6. Barringer H, Havelund K (2011) Tracecontract: a scala dsl for trace analysis. In: FM ’11:
proceedings of the 17th international symposium on formal methods. Springer, pp 57–72

7. Burger M, Zeller A (2011) Minimizing reproduction of software failures. In: Proceedings of
2011 international symposium on software testing and analysis, pp 221–231

http://www.navit-project.org

4 Automated Reproduction and Analysis of Bugs in Embedded Software 105

8. Charette RN (2009) This car runs on code. IEEE Spectr 21(6)
9. Dallmeier V, Lindig C, Zeller A (2005) Lightweight bug localization with ample. In: AADE-

BUG ’05: proceedings of the sixth international symposium on automated analysis-driven
debugging. ACM, pp 99–104

10. Dovgalyuk P (2012) Deterministic replay of system’s execution with multi-target qemu sim-
ulator for dynamic analysis and reverse debugging. In: CSMR ’12: proceedings of the 16th
European conference on software maintenance and reengineering. IEEE, pp 553–556

11. Ebert C, Jones C (2009) Embedded software: facts, figures and future. Computer 42(4):42–52
12. EichelbergerH,KropfT,GreinerT,RosenstielW (2013)Runtimeverification driven debugging

of replayed errors. In: ICTSS ’13: proceedings of the PhD workshop of ICTSS’13
13. Eichelberger H, Kropf T, Ruf J, Greiner T, Rosenstiel W (2015) Efficient fault localization dur-

ing replay of embedded software. In: SEAA ’15: proceedings of the 41th euromicro conference
series on software engineering and advanced applications. IEEE, pp 43–52

14. Eichelberger H, Ruf J, Kropf T, Greiner T, Rosenstiel W (2014) Debugger-based record replay
and dynamic analysis for in-vehicle infotainment. In: ICCSA ’14: Proceedings of the 14th
international conference on computational science and its applications. Springer, pp 387–401

15. FoundationG (2016)Gdb: the gnuproject debugger. http://www.sourceware.org/gdb.Accessed
Aug 2016

16. Foundation G (2016) Gnu pth—the gnu portable threads. http://www.gnu.org/software/pth/.
Accessed Aug 2016

17. Goeders J, Wilton S (2014) Effective fpga debug for high-level synthesis generated circuits.
In: FPL ’14: proceedings of the 24th international conference on field programmable logic and
applications. IEEE, pp 1–8

18. Goll J (2012) Methoden des software engineering. Springer, Wiesbaden
19. Gomez L, Neamtiu I, Azim T,Millstein T (2013) Reran: timing- and touch-sensitive record and

replay for android. In: ICSE ’13: proceedings of the 35th international conference on software
engineering. ACM, pp 72–81

20. Heckeler P, Eichelberger H, Schlich B, Kropf T, Ruf J, Huster S, Burg S, Rosenstiel W (2013)
Accelerated model-based robustness testing of state machine implementations. ACM Appl
Comput Rev 13(03):50–67

21. Hower D, Hill M (2008) Rerun: exploiting episodes for lightweight memory race recording.
In: ISCA ’08: proceedings of the 35th international symposium on computer architecture.
ACM/IEEE, pp 265–276

22. Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In: ICSE ’94: proceedings of the 16th
international conference on software engineering. IEEE, pp 191–200

23. Jiang B, Long X, Gao X, Liu Z, Chan W (2011) Floma: statistical fault localization for mobile
embedded system. In: ICACC ’11: proceedings of the 3rd international conference on advanced
computer control. IEEE, pp 396–400

24. Jones C (2012) A short history of the cost per defect metric. http://www.ifpug.org/Documents/
Jones-CostPerDefectMetricVersion4.pdf. Accessed Aug 2016

25. Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localiza-
tion. In: Proceedings of 2002 international conference on software engineering, pp 467–477

26. Joorabchi ME, Mirzaaghaei M, Mesbah A (2014) Works for me! characterizing non- repro-
ducible bug reports. In: MSR ’14: proceedings of the 11th working conference on mining
software repositories. IEEE, pp 62–71

27. Laadan O, Viennot N, Nieh J (2010) Transparent, lightweight application execution replay on
commodity multiprocessor operating systems. In: SIGMETRICS ’10: proceedings of the 2010
ACM SIGMETRICS international conference on measurement and modeling of computer
systems. ACM, pp 155–166

28. Lee YH, Song YW (2010) Replay debugging for multi-threaded embedded software. In: EUC
’10: proceedings of the 2010 IEEE international conference on embedded and ubiquitous
computing. IEEE, pp 15–22

http://www.sourceware.org/gdb
http://www.gnu.org/software/pth/
http://www.ifpug.org/Documents/Jones-CostPerDefectMetricVersion4.pdf
http://www.ifpug.org/Documents/Jones-CostPerDefectMetricVersion4.pdf

106 H. Eichelberger et al.

29. Leucker M, Schallhart C (2009) A brief account of runtime verification. J Logic Algebraic
Program 78(5):293–303

30. Liggesmeyer P (2009) Software-qualitaet. Spektrum Akademischer Verlag, Heidelberg
31. Liu C, YanX, YuH, Han J, Yu P (2005)Mining behavior graphs for “backtrace” of noncrashing

bugs. In: SDM ’05: proceedings of the 2005 SIAM international conference on data mining
32. LiuX, LinW, PanA, ZhangZ (2007)Wids checker. In: Proceedings of 4thUSENIX conference

on networked systems design and implementation, pp 257–270
33. Maeng J, Kwon JI, SinMK, RyuM (2009) Rt-replayer: a record-replay architecture for embed-

ded real-time software debugging. In: SAC ’09: proceedings of the 2009 ACM symposium on
applied computing. ACM, pp 1670–1675

34. PatilH, PereiraC, StallcupM,LueckG,Cownie J (2010) Pinplay: a framework for deterministic
replay and reproducible analysis of parallel programs. In: CGO ’10: proceedings of the 8th
international symposium on code generation and optimization. IEEE/ACM, pp 2–11

35. Sen K, Kalasapur S, Brutch T, Gibbs S (2013) Jalangi: a selective record-replay and dynamic
analysis framework for javascript. In: ESEC/FSE ’13: proceedings of the 9th joint meeting on
foundations of software engineering. ACM, pp 488–498

36. Shin H, Endoh Y, Kataoka Y (2007) Arve: aspect-oriented runtime verification environment.
In: Proceedings of 2007 runtime verification, pp 87–96

37. Tan L, Liu C, Li Z,WangX, ZhouY, Zhai C (2014) Bug characteristics in open source software.
Imperical Softw Eng 19(6):1665–1705

38. Wu J, Geyer C, Rehg JM (2011) Real-time human detection using contour cues. In: ICRA
’11: proceedings of the 2011 international conference on robotics and automation. IEEE, pp
860–867

39. Xuan J, Monperrus M (2014) Learning to combine multiple ranking metrics for fault localiza-
tion. In: ICSME ’14: proceedings of the 30th international conference on softwaremaintenance
and evolution. IEEE, pp 191–200

40. Yasushi S (2005) Jockey: a user-space library for record-replay debugging. In: AADEBUG ’05:
proceedings of the sixth international symposium on automated analysis-driven debugging.
ACM, pp 69–76

41. Zeller A (2009) Why programs fail: a guide to systematic debugging, 2nd edn. Morgan Kauf-
mann Publishers

42. Zhang S, Ernst MD (2013) Automated diagnosis of software configuration errors. In: Proceed-
ings of 2013 international conference on software engineering, pp 312–321

43. Zuo Z, Khoo SC, Sun C (2014) Efficient predicated bug signature mining via hierarchical
instrumentation. In: ISSTA ’14: proceedings of the 2014 international symposium on software
testing and analysis. ACM, pp 215–224

	4 Automated Reproduction and Analysis of Bugs in Embedded Software
	4.1 Introduction
	4.2 Overview
	4.3 Debugger-Based Bug Reproduction
	4.3.1 State of the Art
	4.3.2 Theory and Algorithms
	4.3.3 Implementation
	4.3.4 Experiments

	4.4 Dynamic Verification During Replay
	4.4.1 State of the Art
	4.4.2 Theory and Workflow
	4.4.3 Implementation of Assertions During Replay
	4.4.4 Experiments

	4.5 Root-Cause Analyses
	4.5.1 State of the Art
	4.5.2 Theory and Concepts
	4.5.3 Implementation
	4.5.4 Experiments

	4.6 Summary
	References

