Chapter 3
The Use of Dynamic Temporal Assertions
for Debugging

Ziad A. Al-Sharif, Clinton L. Jeffery and Mahmoud H. Said

3.1 Introduction

The growth in the software industry is rapid and the size of programs is becoming
larger and larger. In contrast, the rate of advances in the debugging literature is
relatively slow. Most debuggers are well suited for a specific class or set of bugs.
Program bugs can be caused by numerous circumstances and revealed long after
their root cause. Understanding the source code and the execution behavior of the
program is essential to locate and find the cause of most bugs. This understanding can
be achieved by different means; one is to employ different debugging sessions that
capture, depict, analyze, and investigate the state of the program at, and in between,
different points of execution.

A typical interactive source-level debugger is one of the most valuable debugging
tools, but it relies heavily on the user’s ability to conduct a live investigation. It helps
programmers locate and find the root cause of bugs by stepping through the source
code and examining the current state of execution.

Source-level debugging techniques such as conditional breakpoints and watch-
points are dynamically inserted during the debugging session. They can check execu-
tion properties and stop the execution whenever a condition is satisfied. Even though
such breakpoints may have the advantage of being conditional and dynamic with on-
the-fly insertion, deletion, and modification, they are still bounded to their locations;
the exact line number in the source code of the target program and the current state
of the referenced variables and objects at that location on that execution time. For
instance, a class variable may be assigned a bad value in a method that is not on the
stack when the bug that caused the crash or core dump is revealed. This may force
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a user to run multiple debugging sessions on the same bug before it is understood.
Typically, a user can investigate the current state. If there is no evidence of the bug’s
root cause, he/she may restart the execution hoping to stop at an earlier point where
the cause of the bug is still accessible [6]. In contrast, Temporal Assertions are logical
expressions that use Temporal Logic (TL) in order to validate, not one state, but a
sequence of execution states, such as a sequence of variable values changed within
a block of code [8-10].

In order to introduce Dynamic Temporal Assertions (DTA) into conventional
source-level debugging sessions, for this research a source-level debugger named
UDB [1, 4] was extended with on-the-fly temporal assertions (made from within the
live debugging session). UDB is the source level debugger for the Unicon program-
ming language; it is packaged with the Unicon language distribution on Source Forge
and downloaded from unicon.org. Aside from the temporal assertions extension,
UDB’s command set is that of GDB. UDB was used instead of GDB for this research
because its higher level execution monitoring abstractions allow UDB to be more
easily extended than is GDB [2, 3].

The new DTA assertions that UDB supports are not bounded by the limitations of
ordinary breakpoints such as locality and temporality. UDB’s DTA assertions serve
three purposes:

1. Extend the usability of conventional source-level debuggers’ conditional break-
points and watchpoints. This simplifies the ability to validate relationships that
may extend over the entire execution and check information beyond the state of
evaluation.

2. Reduce the number of times a user has to stop and single step the execution for
state-based investigation.

3. Augment a traditional breakpoint-based debugging session with testing and ver-
ification capabilities [7].

3.1.1 DTA Assertions Versus Ordinary Assertions

Standard in-code assertions are inserted into the source code to validate pre- and
post-conditions or to check the value of some variables and expressions. In general,
typical ordinary assertions suffer from three limitations:

e Locality: An ordinary in-code assertion is bounded by its location (scope); it cannot
reference a variable from another scope even if it is live based on the current
execution state. Assertions live in one of the functions; each can reference local
and global variables. If the scope is a method, it can reference any of the class
variables. In fact, typical assertions cannot check or validate local variables in other
functions or methods, even if that foreign local is static or still live somewhere
on the stack of the current program’s execution state. For example, what if a user
needs to check the value of variable x fromprocedure foo () against variable
y from procedure bar ()?see Figs.3.1 and 3.2.
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10 procedure foo( )

11 local a,b,c
12 x:=10

16 bar()

19 end

20 procedure bar()
21 locala, b, c
22 y:=20

26 y:=(y*a)/b-c
27 Il virtually assert always() { y >= foo:x }

30 end

Fig. 3.1 The possibility of a temporal assertion over two live procedures

10 procedure foo()
11 staticx:=0
12 X +:=1

30 end

31 procedure bar()
32 staticy :=0
33 y+:=1

60 end

61 procedure baz()
62 foo()

74 bar()
75 Il virtually assert always() { bar:y >= foo:x }

- end

Fig. 3.2 The possibility of a temporal assertion over two sibling procedures

e Temporality: An ordinary in-code assertion is bounded by the current state of
execution. It can check only the current value of the referenced variables. For
example, what if a user needs to check the value of variable x against the previous
or even the initial value of x? Ordinary assertions are found to be useless once
more.
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e Dynamicity: An ordinary in-code assertion is bounded to the source code, where
it is written and compiled; any change or modification requires the ability to
recompile and rebuild the executable. If the ordinary assertion evaluates to false,
it may provide a warning statement or terminate the execution. If the user wants
to investigate, he/she may modify the assertion by tightening or loosening the
condition, or adding nearby assertions.

3.1.2 DTA Assertions Versus Conditional Breakpoints

Conditional breakpoints and watchpoints are dynamically inserted during the debug-
ging session. They can check execution properties and stop the execution whenever
a condition is satisfied. Even though such breakpoints may have the advantage of
being conditional and dynamic with on-the-fly insertion, deletion, and modification,
they are still bounded to their locations; the exact line number in the source code of
the target program and the current state of the referenced variables and objects at
that location on that execution time. Whereas, DTA assertions are able to reference
variables that are not accessible (not active in the current execution state) at evalu-
ation time. This feature solves the problem provided in Fig.3.2, which shows that
procedure foo () and bar () are siblings in baz ().

3.2 Debugging with DTA Assertions

In general, users of source-level debuggers suffer from:

1. The limited information provided about the execution history, and
2. The lack of automated trace-based and analysis-based debugging techniques,
which may help users validate various execution states.

DTA assertions, within a typical source-level debugger, provide an extension
of conditional breakpoints and watchpoints. They employ agents that implement
temporal logic operators, each with an automatic tracing mechanism. Traced data are
assertion-driven; relevant information is gathered and analyzed in real time. Different
DTA assertions can be applied on different execution properties with dynamicity and
flexibility. Each assertion is capable of validating program properties that may extend
over a sequence of execution states [14].

For example, a debugging process may include checking variable values from
different scopes. Figure 3.3 shows a program that prints out the prime numbers from
1 to some x. The procedure main () calls isPrime (), which returns true
when the passed argument is a primary number. The temporal assertion provided in
#1 of Fig.3.3 shows how to check the current local value of variable i against the
last value of variable i of the procedure main () (denoted by main:i). This
DTA assertion assumes that the value of parameter i should not change during the
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1 procedure main()

2 local x, i

3

4 writes(“ Please enter a positive integer number : “)
5 x = read()

6

7 write("\n The following are the primary numbers <= ", x)
8 everyi:=1toxdo

9 if isPrime(i) then

10 write( i, “ is a primary number “)

11 end

12

13 procedure isPrime(i)

14 local k

15

16 k =i

17 i =1

18 assert always() { i == main:i } }#1
19 while (i> 1) do

20 {

21 if k%i =0 then

22 fail

23 i-=1

24 }

25 return k

26 end

Fig. 3.3 Using temporal assertions to check variables from various scopes

execution of 1sPrime (). However, because the program is modifying the value
of i, this assertion will evaluate to false at every change to i (temporal-state) in
this isPrime () function, and it will evaluate to false at every return from this
isPrime () function (temporal-interval).

3.3 Design

DTA assertions do not replace traditional breakpoints or watchpoints, instead they
provide a technique to reduce their number, which means they are used to reduce the
number of execution stops and improve the overall process of investigation. These
temporal assertions advance breakpoints with agents of temporal logic operators
(temporal agents). At a stop, besides the source-level debugging functionalities, the
user can delete, enable, disable, and modify existing assertions, or even insert new
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# prints odd numbers in [x .. 1]

s procedure printOddNumbers(x)

locali:=0

if x%2=0then x-=1
while (x ~= 0) do

{
write(" x =", x)
X-=2
i+=1

}

returni
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Fig. 3.4 Temporal assertions: scope and interval

Table 3.1 Atomic data related agents

Agent name Return type Description

initial (x) Any The initial value of x

final(x) Any The final value of x

old (x) Any The previous value of x

current(x) Any The current value of x

new(x) Any The next value of x

max(x) Numeric The maximum of all x values

min(x) Numeric The minimum of all x values

newmax(x) True/false Evaluate True if x has new max, False otherwise
newmin(x) True/false Evaluate T'rue if x has new min, False otherwise
sum(x) Numeric The sum of all x values

avg(x) Numeric The average of all x values

DTA assertions at any location in the buggy program source code; all without the
need to recompile the target program source code or to reload it under the debugger.

UDB supports three kinds of DTA assertions, see Fig. 3.4. Each of these kinds has
its own set of temporal agents. All these DTAs can reference execution properties and
other internal extension agents such as the atomic data agents described in Table 3.1
and the behavioral agents described in Table 3.2.
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Table 3.2 Atomic execution behavior-related agents

Agent name Return type Description

call(proc) Integer The number of times proc is been called

return(proc) Variable The current value returned by proc

initialized(x) True/false True if x was assigned at first reference, False
otherwise

dead(x) True/false True if x is never referenced at least once, False
otherwise

reference(x) Integer The number of times x is been read and written

assign(x) Integer The number of times x is been assigned

read(x) Integer The number of times x is been read only

alias(x) List All current x aliases

iterations(loop) |Integer The number of actual iterations of loop

3.3.1 Past-Time DTA Assertions

This category consists of four Past-Time Operators. These operators utilize informa-
tion retained between entering an assertion’s scope and a reaching assertion’s source
code location. At insertion time, the debugger starts retaining relevant information
to be used during the assertion’s evaluation. When the execution reaches the virtual
execution point, where the assertion is hooked in the buggy program space, the asser-
tion temporal interval is evaluated. If the evaluation is not able to complete due to
some missing information (maybe out-of-scope referenced data is never used during
an assertion’s lifetime), the assertion evaluation is tagged with Not Valid. These
four DTA assertions are:

1. alwaysp () {expr}:assertsthatan expression must always hold (evaluate to
true) for each, temporal state, temporal interval, and during the whole execution.

2. sometimep () {expr}: assertsthatan expression must hold at least once for
each temporal interval, and during the whole execution.

3. previous () {expr}: asserts that an expression must hold right at the last
state before the end of the temporal interval.

4. since() {condition ==> expr}: asserts that an expression must hold
right after condition is true up until the end of the temporal interval and for each
interval.

3.3.2 Future-Time DTA Assertions

This category consists of four Future-Time Operators. These operators utilize infor-
mation retained between reaching an assertion’s source code location and leaving
an assertion’s scope. The agents of those operators start watching for referenced
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objects when the evaluation is triggered, where the debugger starts retaining rele-
vant information until the assertion’s temporal interval is evaluated completely. If
the execution is terminated before the assertion’s interval is complete, the user is
able to check temporal states in that incomplete temporal interval. These four DTA
assertions are:

1. alwaysf () {expr}:assertsthat an expression must always hold (evaluate to
true) for each, state, temporal interval, and during the whole execution.

2. sometimef () {expr}: assertsthat an expression must hold at least once for
each temporal interval, and during the whole execution.

3. next () {expr}: asserts that an expression must hold right at the very first
state in the temporal interval.

4, until () {condition ==> expr}: asserts that an expression must hold
from the beginning of the temporal interval up until condition is true or the
end of the temporal interval and for each interval.

3.3.3 All-Time DTA Assertions

This category consists of two All-Time Operators. These two operators are based
on the time interval between entering an assertion’s scope and exiting an assertion’s
scope. When the assertion scope is entered, the assertion starts retaining relevant
information and evaluates its temporal states. When the execution exits the assertion
scope, the assertion temporal interval is evaluated. These two DTA assertions are:

1. always () {expr}: asserts that an expression must always hold (evaluate to
true) for each, state, temporal interval, and during the whole execution.

2. sometime () {expr}: asserts that an expression must hold at least once for
each temporal interval, and during the whole execution.

3.4 Assertion’s Evaluation

Each reached (evaluated) assertion has at least one temporal interval. This interval
consists of a sequence of temporal states. Temporal interval is defined by the asser-
tion scope and kind. Assertion’s scope is defined based on the source code location
provided in the assert command. This scope is the procedure or method surround-
ing the assertion location. Figure 3.4 shows the temporal interval for all three kinds
of temporal assertions in reference to the provided location. Together, the assertion’s
scope and kind define the temporal interval. In particular:

e Temporal Intervals of Past-Time DTA assertions start at entering the assertion’s
scope (calling the scope procedure) and end at reaching assertion’s source code
location for the very first time after entering the scope.
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Fig. 3.5 Sample Temporal Assertion’s Evaluation: An assertion is hit ¢ times [ H;..H;]. Each hit
represents a Temporal Interval, which consists of a various number of states; each state is evaluated
to True or False. Each Temporal Interval is evaluated based on the conjunctive normal form
of its state-based evaluations (on that particular hit /; ) . Finally, on the overall temporal level, the
assertion is evaluated once more based on the conjunctive normal form of all previous interval-based
evaluations

e Temporal Intervals of Future-Time DTA assertions start at reaching an assertion’s
source code location for the very first time after entering the assertion’s scope and
end at exiting the assertion’s scope (returning from the scope procedure). In this
kind of temporal assertions, the source code location can be hit more than once
before the interval is closed.

e Temporal Intervals of All-Time DTA assertions start at entering assertion’s scope
and end at exiting that scope; regardless of the provided source code location.

During a debugging session, it is possible for a user to have multiple assertions,
each with multiple temporal intervals, and each interval with multiple temporal states.
See Figs. 3.5 and 3.6. Each DTA assertion runs through three levels of evaluations:

1. State-based: temporal level (single state change). This evaluation is triggered by
any change to the assertion referenced objects.

2. Interval-based: a sequence of consecutive states. This evaluation is triggered by
reaching the end of assertion’s temporal interval (exiting the assertion scope).

3. Overall execution-based: a sequence of consecutive temporal intervals. This eval-
uation is triggered by the end of execution.
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Fig. 3.6 Sample evaluation of various temporal assertions (n DTA assertions) during a debugging
session

UDB’s DTA assertions are evaluated in the debugger side. By default, whenever
an assertion evaluates to false, the source-level debugger stops execution in a
manner similar to a breakpoint. The debugger transfers control to the user with an
evaluation summary.

3.4.1 Temporal Cycles and Limits

A temporal cycle defines the maximum number of consecutive temporal intervals
(maximum number of temporal level evaluation times), which defines the overall
evaluation. The default value of cycle is unlimited number of evaluations. Temporal
1limit defines the maximum number of temporal states considered in each temporal
interval. The definition of temporal limit is changed based on the kind of temporal
assertion in reference. In particular:

1. In Past-Time DTA assertions: 1imit defines the maximum number of consecu-
tive states before reaching assertion’s source code location and after entering the
assertion’s scope.

2. In Future-Time DTA assertions: 1imit defines the maximum number of con-
secutive states after assertion’s source code location is reached and before exiting
the assertion’s scope.
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3. In All-Time DTA assertions: 1imit defines the maximum number of states
before and after an assertion’s source code location is reached, all within the
assertion’s scope.

The default limit is defined by whatever temporal states (temporal-interval) are
encountered during the execution of an assertions’ scope and based on its temporal
interval. The user can reduce the number of temporal states considered in each
temporal interval by setting this limit using the 1imit command.

3.4.2 Evaluation Log

Furthermore, the assertion’s log gives the user the ability to review the evaluation
behavior of each assertion (evaluation history). The debugger maintains a hash table
for each assertion. It maps assertions’ intervals into lists with information about
their temporal state base evaluation. Each list reflects a temporal interval, which
maintains the evaluation order and result for each temporal state. Each list reflects
one temporal interval, also maintained based on their order. Completely evaluated
intervals are tagged with True or False. If the evaluation process is already started,
but the final result is still incomplete, perhaps the end of the interval is not reached yet,
these intervals are tagged with Pending until they are complete. This will convert
Pending into True or False. However, some assertions may never be triggered
for evaluation; this may occur because the execution never reached the assertion’s
insertion point during a particular run. These assertions have the hit counter set to
Zero.

3.4.3 DTA Assertions and Atomic Agents

Atomic agents are a special kind of extension agents (nontemporal logic agents) [1,
3, 4]. They expand the usability of DTA assertions and facilitate the ability to validate
more specific data and behavioral relationships over different execution states, see
Tables 3.1 and 3.2. When an atomic agent is used within a DTA assertion, it retains
and processes data and observes behaviors in relevance to the used assertions. The
assertion scope is what determines when the agent should start to work and what
range of data it should be able to retain and process. For example, if the assertion
uses the max (var) or min (var) atomic agents, the agent always retains the
maximum or minimum respectively over the assertion temporal interval.

Those atomic agents add more advancement and flexibility to the usefulness of
DTA assertions and their basic temporal logic operators. In particular, DTA asser-
tions that reference atomic agents can easily check and compare data obtained by
these atomic agents, which encapsulate simple data processing such as finding the
minimum, maximum, sum, number of changes, or average. For example, suppose
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1. (udb) assert test.icn:50 sometimep() { x <y}

. (udb) assert test.icn:50 alwaysp() { old(x) != current(x) }

. (udb) assert test.icn:50 alwaysf() { return(foo) > 0}

. (udb) assert test.icn:50 always() { iteration(while) < 100 }

. (udb) assert test.icn:50 always() { call(baz) < 1000 }

Fig. 3.7 Sample of different UDB’s temporal assertions

that a static variable is changed based on a conditional statement where it is incre-
mented when the condition is t rue and decremented when the condition fails. What
if the user is interested in the point at which this variable reaches a new maximum
or minimum? DTA assertions provide a simple solution for such situations.

For example, the assertion number 1 of Fig.3.7 will pause the execution when
variable x becomes greater than or equal to y. As another example, suppose the user
is interested in the reasons behind an infinite recursion; perhaps a key parameter
in a recursive function is not changing. DTA assertions provide a mechanism to
retain the parameter value from the last call and compare it with the value of the
current call, see assertion number 2 of Fig.3.7. If o1d (x) == current (x), the
assertion will stop the execution and hand control to the debugger where the user
can perform further investigation. Of course, there are other reasons that may cause
infinite recursion, such as the key parameter value changing in the opposite directions
on successive calls.

Moreover, DTA assertions simplify the process of inserting assertions on pro-
gram properties such as functions’ return values, and loops’ number of iterations.
For example, a user may insert a breakpoint inside a function in order to investigate
its return value, or place an in-code assertion on the value of the returned expression.
A DTA assertion provides a simpler mechanism; see assertion number 3 of Fig. 3.7.
Assertion number 4 of Fig. 3.7 states that the while loop at line 50in file test .icn
always iterates less than 100 times. Finally, assertion number 5 of Fig.3.7 shows
how to place a DTA assertion on the number of calls to a function; the assertion will
stop execution at call number 1000. This particular assertion is difficult to accom-
plish using conventional source-level debugging features such as breakpoints and
watchpoints.
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3.5 Implementation

DTA assertions are virtually inserted into the buggy program source code on-the-
fly during the source-level debugging session. UDB’s static information is used to
assist the user and check the syntax and the semantic of the inserted assertion. Each
assertion is associated with two sets of information (1) event-based and (2) state-
based. The debugger automatically analyzes each assertion at insertion time in order
to determine each set. It finds the kind of agents that are required to be encountered
in the evaluation process. If any extension agent is used, the debugger establishes an
instance of that agent and associates it with its relevant object.

The host debugger maintains a hash table that maps each assertion source code
location into its related object (agent). The assertion object is responsible for main-
taining and evaluating its assertion. It contains information such as (1) the parsed
assertion, (2) a list of all referenced variables (3) a list with all temporal intervals
and their temporal states, and (4) the assertion event mask: a set of event codes to
be monitored for each assertion; this event mask includes the event masks for any
of the referenced agents. Execution events are acquired and analyzed in real time.
Some events are used to control the execution whereas others are used to obtain
information in support of the state-based technique [2, 5].

Each assertion has its own event and value masks, which are constructed automat-
ically based on the assertion, see Fig.3.8. A union set of all enabled assertion event
masks is unified with the debugging core event mask. The result is a set of events
requested by the debugging core during the execution of the buggy program. This
set is recalculated whenever an assertion is added, deleted, enabled, or disabled. On-
the-fly, UDB’s debugging core starts asking the buggy program about this new set of
events. A change on any assertion event mask alters the set of events forwarded by the
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Fig. 3.8 UDB’s use of event mask and event value within the Unicon virtual machine
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debugging core to that assertion object. Temporal logic agents automatically obtain
the buggy program state-based information to evaluate DTA assertions. Each agent
automatically watches assertion referenced variables and retains their information in
the debugger space.

3.6 Evaluation

DTA assertions provide the ability to validate relationships that may extend over the
entire execution and check information beyond the current state of evaluation. DTA
assertions’ temporal logic operators are internal agents. Those agents can reference
other atomic agents, which provide access to valuable execution data and behavior
information. UDB’s DTA assertions have the following features:

e Dynamic insertion, deletion, enabling, disabling, and modification. Assertions are
managed on-the-fly during the debugging session without source or executable
code alteration.

¢ A nondestructive way of programming supported by an assertion-free source code.
In general, debugging information is needed only during program development,
testing, verification, validation, and debugging.

e Assertions are virtually inserted and evaluated as part of the buggy program source
code. All assertions live in the debugging session configuration; each is evaluated
by the debugger in the debugger execution space. The debugger automatically
maintains state-based techniques to determine what information is needed to eval-
uate each assertion, and it uses event-based techniques to determine when and
where to trigger each assertion evaluation process. Some program state-based
information is collected before assertion evaluation, while other information is
obtained during the evaluation process. All DTA assertions are evaluated as if they
were part of the target program space

e Optional evaluation suite, where a user can specify an evaluation action such as
stop, show, and hide. The show action enriches assertions with the sense of
in-code tracing and debugging with print statements, where a user can ensure that
the evaluation has reached some points and the referenced variables satisfy the
condition.

e The ability to log the assertion’s evaluation result. This lets the user review the
assertion evaluation history for a specific run. Evaluated assertions are marked
with True or False. Some DTA assertions may reference data in the future;
those assertions are marked with Not Valid for that exact state-based evalua-
tion. Assertions’ intervals are marked with a counter that tracks their order in the
execution. If an assertion has never been reached, it is distinguished by its counter
value, which is zero in this case. Log comparison of different runs is considered
in future works.

e Mostimportantly, DTA assertions can go beyond the scope of the inserted location.
Each assertion may refer to variables or objects that were living in the past during
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previous states, but not at evaluation point, and each assertion may compare previ-
ous variable values against current or future values. Each DTA assertion implicitly
employs various agents to trace referenced objects and retains their relevant state
information in order to be used at evaluation time.

3.6.1 Performance

In consideration of the performance in terms of time, the implementation of temporal
assertions utilizes a conservative assertion-based event-driven tracing technique. It
only monitors relevant events; the event mask and value mask are generated automat-
ically for each assertion at insertion time. Temporal assertions are evaluated in three
levels. First is the state-based level, which depends on any change to the referenced
execution property. Second is the interval-based level, which is determined by the
assertion scope and kind. Third is the overall evaluation level, which occurs once
per each execution. Different assertions can reference different execution properties.
For this reason various assertions will differ in their cost.

However, in order to generally assess the role of the three evaluation levels in the
complexity of these temporal assertions, let us assume that Eg is the maximum cost of
monitoring and evaluating a state change within a temporal assertion. Furthermore,
let us assume that n is the maximum number of state changes during a temporal
interval and m is the maximum number of temporal intervals during an execution.
See Figs. 3.5 and 3.6. This means, the maximum cost of evaluating a temporal interval
for this assertion is Eg*n and the maximum cost of an assertion during the whole
execution is (Eg*n) * m which is equal to Eg*n * m. However, Eg includes the cost
of event forwarding. This means that part of Eg is (2E; + 2E.), where E. is the
cost of reporting an event to UDB and E; is the cost of forwarding an event to the
temporal logic agent (internal agent). This means the E5 dominates both n and m;
state change is the main performance issue in temporal assertions.

Furthermore, retained information is limited and driven by assertions’ referenced
execution properties. Assertions are virtually evaluated because they are in another
execution space. The evaluation occurs in the debugger space with data collected
and obtained from the buggy program space. The assertion log gives the user the
ability to review the evaluation behavior of each assertion. Temporal assertions use
in-memory tracing. A table is allocated for all assertions; it maps each assertion
source code location to the instance object of the actual assertion. Another table is
allocated for each assertion; it tracks temporal intervals, each of which is a list (stack)
with each of the state-based evaluation result. A third table is used to map assertion
temporal intervals with their evaluation result, each of which is one value True,
False, or Not Valid. Then one variable is holding the up to the point result
which is either true or false. The dominating part in the used space is the number
of state changes, E. Each state base evaluation is tracked with a record that keeps
information about the line number, file name, and the result.



62 Z.A. Al-Sharif et al.

=&—Ave Real =~ Ave User Ave Sys

._.._._.._._.
- WaA W,

Time in Seconds

—
O o b WL O =] 00O O

Fig. 3.9 UDB'’s temporal assertions evaluation time

In order to find the impact of temporal assertions on the execution of the target
program and the debugging time, a simple temporal assertion is applied on a simple
program. The program prints numbers between 1 and 100,000; see Fig.3.9. The
temporal assertion is applied with various sizes of temporal intervals. These intervals
start at size 1, 100, 1000, 10,000, 50,000, and 100,000. The experiment is based on
eight kinds of runs, each is observed for five times and the average of these times
is reported. These kinds of runs range from measuring the time for the program in
the standalone mode (no monitoring is involved), monitored under UDB with no
assertion applied, then with an assertion that has various intervals. Figure 3.9 shows
the impact of these temporal assertions on the execution time.

3.7 Challenges and Future Work

Debugging with DTA assertions provides advantages over typical assertions and con-
ditional breakpoints and watchpoints. At the same time, it faces some challenges and
limitations, some of which are based on associating assertions with the executable’s
source code, evaluating assertions in the debugger, and the source-level debugger’s
ability to obtain and retain relevant event-based and state-based information with
reasonable performance.
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First, if an assertion makes a reference to a variable, which is not accessible from
within the assertion’s scope, the debugger should automatically trace those variables
and retain their relevant state information to be used at the assertion evaluation time.
This allows a DTA assertion to access data that is not live at the assertion’s evaluation
time.

Second, what if the assertion source code location is overlapping with a statement?
Which one should be evaluated first, the assertion or the statement? A conservative
approach may consider the assertion evaluation after the statement only if the state-
ment has no variables referenced by the assertion, or if the statement does not assign
to any of the assertion referenced variables. However, if the statement will assign
to any of the assertion referenced variable, the assertion can be evaluated before
and after the statement evaluation. If the two evaluations are different such as one
is true and the other is false, or both are false, the assertion will stop the
execution and hand the control to the debugger and the user to investigate. The work
presented in this paper, takes the simplest approach which is to evaluate the asser-
tion before the statement. Furthermore, if an assertion is not overlapping with an
executable statement, the AlamoDE framework cannot report a line number event
from a nonexecutable line. A line number event is only reported when a statement in
that line number is fetched to be executed. This is reached by checking the assertion
source code location before confirming that the assertion is inserted successfully. It
checks whether the line number is empty or it is commented out.

Finally, if a referenced variable is an object or a data structure such as a list,
this can cause two problems. First, the object is subject to changes under other
names because of aliasing. Second, if the object is local, it may get disposed by the
garbage collector before the evaluation time. The implementation could be extended
to implement trapped variables that would allow us to watch an element of a structure
or utilize an aliasing tracing mechanism to retain all changes that may occur under
different names. The implementation of temporal assertions presented in this paper
does not go after heap variables, which is left for future work.

3.8 Conclusion

DTA assertions bring an extended version of in-code assertion techniques, found in
mainstream languages such as C/C++, Java, and C#, into a source-level debugging
session. These temporal assertions help users test and validate different relationships
across different states of the execution. Furthermore, assertion evaluation actions
such as show provide the sense of debugging and tracing using print statements
from within the source-level debugging session. They give the user a chance to know
that the execution has reached that point and the asserted expression evaluated to
true; it also gives the user the ability to interrupt and stop the execution for more
investigation. The ability to log the assertion evaluation result provides the user with
the ability to review the evaluation process. A user can check a summary result of
what went wrong and what was just fine.
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Source-level debuggers provide the ability to conditionally stop the execution
through different breakpoints and watchpoints. At each stop, a user will manually
investigate the execution by navigating the call stack and variable values. Source-
level debuggers require a user to come up with assumptions about the bug and let
him/her manually investigate those assumptions through breakpoints, watchpoints,
single stepping, and printing. In contrast, DTA assertions require the user to come up
with logical expressions that assert execution properties related to a bug’s revealed
behavior and the debugger will validate these assertions. Asserted expressions can
reference execution properties from different execution states, scopes, and over vari-
ous temporal intervals. Furthermore, unlike conditional breakpoints and watchpoints,
which only evaluate the current state, DTA assertions are capable of referencing vari-
ables that are not accessible at evaluation time (not active in the current execution
state).

DTA assertions do not replace traditional breakpoints or watchpoints, but they
offer a technique to reduce their number and improve the overall investigation
process. DTA assertions reduce the amount of manual investigation of the execu-
tion state such as the number of times a buggy program has to stop for investigation.

Finally, debugging with temporal assertions is not new. In 2002 Jozsef Kovacs
et al. has integrated Temporal Assertions into a parallel debugger to debug parallel
programs [12]. In 2005 Volker Stolz et al. used LTL over Aspect]J pointcuts to validate
properties during program execution that are triggered by aspects [11]. In 2008 Cemal
Yilmaz et al. presented an automatic fault localization technique using time spectra
as abstractions for program execution [13]. However, to the best of our knowledge,
we are the first to extend a typical source level debugger’s features of conditional
breakpoints and watchpoints with commands based on temporal assertion that capture
and validate a sequence of execution states (temporal states and temporal intervals).
Furthermore, these assertions can reference out-of-scope variables, which may not
be live in the execution state at evaluation time.
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