
Chapter 5

Engineering

5.1 Microelectronics

5.1.1 Enzymes as “Soft-State” Nanotransistors

Molecular and cell biologists may benefit conceptually from a generalized notion of

the transistor, an abbreviated combination of “transconductance” and “resistance,”

that includes any physical device that can activate a physicochemical process when
energized. Given such a generalization, we can readily recognize two distinct

classes of transistors – (1) artificial transistors made out of solid-state materials
and (2) natural transistors, that is, enzymes, made out of deformable (or soft)
heteropolymers of amino acids, namely, proteins and polypeptides.

Solid-state transistors conduct electricity when energized by applied voltage,

while soft-state transistors enable or cause chemical reactions to occur when

energized by substrate binding (Ji 2006e; Jencks 1975). Just as transistors are the

basic building blocks of the digital computer, so enzymes are the basic building

blocks of the living cell, the smallest molecular computer in Nature (Ji 1999a). This

provides a theoretical framework for comparing the properties of and the physical

principles underlying solid-state transistors and enzymes (see Table 5.1). A similar

table was discussed in NECSI Discussion Forum (Ji 2006e).

The content of Table 5.1 is mostly self-explanatory, but the following items

deserve special attention:

1. Process. The process enabled by a solid-state transistor when energized is the

flow of electrons through it. In contrast, the process enabled by an enzyme when

energized is the flow of electrons from one atomic grouping to another within a

givenmolecule (most often a substrate) or from onemolecule to another (Row 1).

2. Size. The linear dimension of the cell is at least 103 times smaller than that of the

digital computer, and this is reflected in the physical dimension of enzymes

relative to that of typical transistors (see Row 2).
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3. Deformability. Traditional transistors are rigid and large enough to resist the

randomizing effects of thermal motions of the structural components of a

transistor. Enzymes are flexible (i.e., soft) and small enough to undergo thermal

fluctuations or Brownian motions that are essential for their functions (Ji 1974a,

1991) (Row 3). This is why enzymes can be viewed as “soft-state transistors,”

the study of which may be referred to as “soft-state physics” (e.g., enzymology)

in contrast to solid-state physics. Examples of soft-state physics include the

study of protein folding, single-molecule enzymology (Xie and Lu (1999);

2001), the informatics of biopolymers, and artificial polymers with mechanically

activatable chemical moieties (Lenhardt et al. 2010).

4. Self-organizing circuits. Solid-state transistors are fabricated by humans, while

soft-state transistors have resulted from spontaneous chemical reaction-diffusion

processes or self-organizing processes (Prigogine 1977, 1980) selected by

biological evolution. The principle of self-organization is rooted in (1) the

dissipation of free energy and (2) the principle of structural complementarity as

exemplified by theWatson-Crick base pairing and the enzyme-substrate complex

Table 5.1 Enzymes as self-organizing soft-state nanotransistors. Important items are highlighted

Solid-state transistor

(artificial transistor) Soft-state transistor (natural transistor)

1. Process Conducts electricity when

energized

Catalyzes chemical reactions when

energized by substrate binding

2. Size Microns (10�6 m) Nanometers (10�9 m)

3. Mechanical
property

Rigid (thermally immobile) Deformable/soft (thermally
fluctuating)

4. Field of study Solid-state physics “Soft-state physics,” i.e., enzymology

5.Mechanism of
energization

Current or voltage applied
to gate

Substrate-binding-induced activation
of conformational substates of

Frauenfelder et al. (2001)

6. Terminals Input (source, emitter) Reactants

Trigger (gate, base) Enzyme

Output (drain, collector) Products

7. Electron flow 105 electrons per switching

event (mega-electron

transistor)

One electron per switching event

(single-electron transistor)

8. Component
connection

Static and artificially
organized
(covalent bonds,
50–100 kcal/mol)

Dynamic and self-organizing
(Sect. 3.1) (noncovalent bonds,
1–5 kcal/mol)

9. Mobile objects Electrons Molecules

Holes Ions

Phonons Conformons (Chap. 8)

10. Number of units

in a logical gate

~20 1 ~ 50

11. Number of units

in a processor

~1011 ~109

12. Behavior Deterministic (binary,
crisp logic)

Nondeterministic (multivalued, fuzzy
logic)
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formation and applies not only to the interactions among the components of a

soft-state transistor (Row 8) but also to the interactions among a set of soft-state

transistors needed to construct logical gates and processors (Rows 10 and 11).

In both intra- and inter-transistor interactions, solid-state transistors utilize

strong, covalent bonds (50 ~ 100 kcal/mol), whereas soft-state transistors depend

mainly on weak, noncovalent bonds (1–5 kcal/mol) (Row 8).

These weak interactions, coupled with the principle of structural complemen-

tarity, appear to be necessary and sufficient for the production, operation, and

destruction (after their task is completed) of self-organizing biological circuits of

soft-state transistors which then can be identified with hyperstructures and

SOWAWN machines (Sect. 2.4) or bio-quantum dots (see Table 4.7).

5. Logic. The behavior of solid-state transistors are deterministic, obeying the

Aristotelian or binary logic of the excluded middle. The behavior of a soft-

state transistor, however, is nondeterministic and fuzzy (Sect. 4.6) (Ji 2004a)

because of its structural deformability and thermal fluctuations, giving rise to not

one but a range of rate constants per enzyme distributed nonrandomly (see the

histogram of waiting times in Fig. 11.24) (Lu et al. 1998) (Row 12).

5.2 Computer Science

5.2.1 The Principle of Computational Equivalence
and a New Kind of Science (NKS)

This principle proposed by Dr. Stephen Wolfram in 2002 states that all rule-

governed processes, whether natural or artificial, can be viewed as computations.
According to Wolfram (2002), it is possible to model any complex structure or

phenomena in nature using simple computer programs (or algorithms) based on

cellular automata that can be applied n times repeatedly (or recursively), where n
ranges from 103 to 106. In other words, underlying all complex phenomena (includ-

ing living processes), there may exist surprisingly simple sets of rules, the repetitive

application of which inevitably leads to the complex phenomena or structures found

in living systems. The following set of quotations from his book, A New Kind of
Science (Wolfram 2002), illustrate his ideas:

Three centuries ago science was transformed by the dramatic new idea that rules based on

mathematical equations could be used to describe the natural world. My purpose in this

book is to initiate another such transformation, and to introduce a new kind of science that

is based on the much more general types of rules that can be embodied in simple computer

programs. . . . If theoretical science is to be possible at all, then at some level the systems it

studies must follow definite rules. Yet in the past throughout the exact science it has usually

been assumed that these rules must be ones based on traditional mathematics. But the

crucial realization that led me to develop the new kind of science in this book is that there is

in fact no reason to think that systems like those we see in nature should follow only such

traditional mathematical rules [p. 1]. (5.1)
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When mathematics was introduced into science it provided for the first time an abstract

framework in which scientific conclusions could be drawn without direct reference to

physical reality. Yet, despite all its development over the past few thousand years, mathe-

matics itself has continued to concentrate only on rather specific types of abstract systems –

most often ones somehow derived from arithmetic or geometry. But the new kind of science

that I describe in this book introduces what are in a sense much more general abstract

systems, based on rules of essentially any type whatsoever.

One might have thought that such systems would be too diverse for meaningful general

statements to be made about them. But the crucial idea that has allowed me to build a

unified framework for the new kind of science that I describe in this book is that just as the

rules for any system can be viewed as corresponding to a program, so also its behavior can

be viewed as corresponding to a computation.

Traditional intuition might suggest that to do more sophisticated computations would

always require more sophisticated underlying rules. But what launched the whole computer

revolution is the remarkable fact that universal systems with fixed underlying rules can be

built that can in effect perform any possible computation. . ..
But on the basis of many discoveries I have been led to a still more sweeping

conclusion, summarized in what I call the Principle of Computational Equivalence

(PCE): that whenever one sees behavior that is not obviously simple – in essentially any

system – it can be thought of as corresponding to a computation of equivalent sophistication

. . . it immediately gives a fundamental explanation for why simple programs can show

behavior that seems to us complex. For like other processes our own processes of percep-

tion and analysis can be thought of as computation. But though we might have imagined

that such computations would always be vastly more sophisticated than those performed by

simple programs, the Principle of Computational Equivalence implies that they are not.

And it is this equivalence between us as observers and the systems that we observe that

makes the behavior of such system seem to us complex [pp. 4–6]. (5.2)

The key unifying idea that has allowed me to formulate the Principle of Computational

Equivalence is a simple but immensely powerful one: that all processes, whether they are

produced by human effort or occur spontaneously in nature, can be viewed as computations.

. . . it is possible to think of any process that follows definite rules as being a computation –

regardless of the kinds of elements it involves. . ..
So in particular this implies that it should be possible to think of processes in nature as

computations. And indeed in the end the only unfamiliar aspect of this is that the rules such

processes follow are defined not by some computer program that we as humans construct

but rather by the basic laws of nature.
But whatever the details of the rules involved the crucial point is that it is possible to

view every process that occurs in nature or elsewhere as a computation. And it is this

remarkable uniformity that makes it possible to formulate a principle as broad and powerful

as the Principle of Computational Equivalence. . .. For what the principle does is to assert

that when viewed in computational terms there is a fundamental equivalence between many

different kinds of processes. . .. [pp. 715–716]. (5.3)

[This statement is almost identical to the idea of universal computation advocated

by S. Lloyd (2006).]

The traditional mathematical approach to science has historically had its great success in

physics – and by now it has become almost universally assumed that any serious physical

theory must be based on mathematical equations. Yet with this approach there are still

many common physical phenomena about which physics has had remarkably little to say.

But with the approach of thinking in terms of simple programs that I develop in this book it

finally seems possible to make some dramatic progress. And indeed in the course of the

book we will see that some extremely simple programs seem able to capture the essential

122 5 Engineering



mechanisms for a great many physical phenomena that have previously seemed completely

mysterious [p.8]. (5.4)

. . . traditional mathematical models have never seemed to come even close to capturing the

kind of complexity we see in biology. But the discoveries in this book show that simple

programs can produce a high level of complexity. And in fact it turns out that such

programs can reproduce many features of biological systems – and seem to capture some

of the essential mechanisms through which genetic programs manage to generate the actual

biological forms we see. [p. 9]. (5.5)

Over and over again we will see the same kind of thing: that even though the underlying

rules for a system are simple, and even though the system is started from simple initial

conditions, the behavior that the system shows can nevertheless be highly complex. And I

will argue that it is this basic phenomenon that is ultimately responsible for most of the

complexity that we see in nature. [p. 28]. (5.6)

. . . intuitions from traditional science and mathematics have always tended to suggest that

unless one adds all sorts of complications, most systems will never be able to exhibit any

very relevant behavior. But the results so far in this book have shown that such intuition is

far from correct, and that in reality even systems with extremely simple rules can give rise

to behaviors of great complexity. [p. 110]. (5.7)

It may be asserted here that Statements (5.6) and (5.7) apply to biology. If so, these

statements would represent the most important contributions that Wolfram has

made to biology. Based on his numerous computer experiments, often involving

millions of iterations of a set of simple rules applied to simple initial conditions,

Wolfram concluded that complex structures can arise from simple programs. For

example, he was able to simulate complex structures and processes such as the

shapes of shells (Fig. 5.1) and trees and turbulence, using simple rules governing

the behavior of cellular automata, from which he inferred that all complex

structures and phenomena in nature can originate from recursive operations of

sets of simple rules. The similarity between the computer-generated shell shapes

and the real ones shown in Fig. 5.1 is striking and seems to provide credibility to

Wolfram’s assertions, i.e., Statements (5.1)–(5.7).

Although I do agree with Wolfram that his NKS does have the ability to

represent or simulate certain complex phenomena in nature that could not even

be approached using traditional mathematical tools, I suggest that both the tradi-

tional mathematics and NKS may still be subject to the constraints of the cookie-
cutter paradigm described in Sect. 2.3.9. That is, no matter which model one

adopts, either traditional mathematical or NKS, models always cut out only those

aspects of reality that fit the model (i.e., the cookie cutter) and leave behind “holes”

and the rest of in the dough that are beyond the capability of the models employed.

We may depict this idea as shown in Fig. 5.2.

5.2.2 Complexity, Emergence, and Information

Ricard (2006) defines a complex system as a composite system whose properties or

degrees of freedom cannot be predicted from those of its components. In other
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Fig. 5.1 Shell shapes generated by the simple cellular automaton models (see the top four rows)
and found in nature (see bottom four rows). Two parameters are systematically changed: (a) the
overall factor by which the size increases in the course of each revolution and (b) the relative

amount by which the opening is displaced downward at each revolution (Reproduced from

Wolfram 2002, p. 416. With permission)
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words, a complex system, according to Ricard, is a system that has “more potential

wealth, or more degrees of freedom” than its component sub-systems or displays

“properties that are emergent relative to those of the component sub-systems.” He

represents his idea formally as follows:

H(X;Y) > H(X)þ H(Y) (5.8)

where H(X,Y) is a mathematical function that describes the properties of a system

XYmade up of two sub-systems X and Y, and H(X) and H(Y) are the mathematical

functions that describe the properties of X and Y, respectively. In short, the system

XY is complex because its properties cannot be explained in terms of the sum of the

properties of X and Y.

Since the concept of emergence is intrinsic to any complex system, according to

Ricard, it would follow that the mechanisms of emergence would be synonymous

with the mechanisms of complexification. So, Inequality 5.8 can be re-expressed

using the concept of mechanisms:

Xþ Y�!Mechanism
XY (5.9)

Thus, Process 5.9 can be viewed either as the mechanism of emergence or that of

complexification.

One major difference between Inequality 5.8 and Process 5.9 may be that the

former emphasizes the phenomenological and information-theoretic aspects, while

the latter brings out the mechanisms and kinetic/dynamic aspects of the process of

emergence and complexification that entails dissipation of free energy.

The terms, complexity, emergence, and information, frequently occur together in
many contemporary discourses in natural, computer, and social sciences, but the

relation among them appears not to have been clearly defined as yet, to the best of

my knowledge. To rigorously define the relation among these terms, it may be

helpful to utilize a table organized according to the triadic metaphysics of Firstness,

Secondness, and Thirdness of C. S. Peirce (see Sect. 6.2) as shown in Table 5.2. The

table is constructed on the basis of the assumption that complexity can be identified
with Firstness, emergence with Secondness, and information with Thirdness.

Reality 
(Dough)

Modelable Reality                             Unmodelable Reality
(Cookie)                              (Hole plus the remaining dough)

Fig. 5.2 Reality as the complementary union of the modelable and unmodelable
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Table 5.2 is a 3 � 3 matrix which is symmetric with respect to the diagonal

because the relation between any two elements of the table is commutative (e.g., the

relation between complexity and information is the same as the relation between

information and complexity). This leaves only three cells or relations in the interior

of the table (out of the total of 3 � 3 ¼ 9) left to be defined:

1. Evolution ¼ It is the relation between complexity and emergence. Evolution
refers to the mechanism by which certain properties of material entities are

manifested both synchronically and diachronically (Sect. 4.5), which are novel

relative to the properties of the interacting entities. In this view, what emerges

may be thought to be not complexity but rather novelty, since complexity as the

Firstness of Peirce is intrinsic to reality itself.
2. Subjective information ¼ The information that depends on the workings of the

human mind. For example, UV photons cannot carry any information to the

human eye but can do so to the UV-sensing eyes of certain nonhuman brains.

The historical information contained in the Bible is understood only by humans

but not by nonhuman species and is furthermore temperature-independent. That

is, raising the temperature of the Bible from room temperature by, say, 30�C
would not change the biblical information content whereas the entropy content of

the book will increase (see the “Bible test” described in Footnote c in Table 4.3).

3. Objective information ¼ The information that exists independently of the

human mind. Examples include the information encoded in the universal

constants such as the speed of light and the electronic charge, the information

encoded in the microstates of matter which is temperature-dependent to varying

degrees.

One of the reasons for the difficulty in defining the three terms appearing on the

margins of Table 5.2 may be traced to the fact that one of these terms, “information,”

occurs both on the margins and the interior of the table. What makes the situation

even more difficult is the appearance of the two different kinds of information in the

interior of the table – Objective and Subjective information. Thus, there are three

different kinds of informations appearing in Table 5.2, reminiscent of the numerous

Table 5.2 A Peircean triadic relation among complexity, emergence, and information suggested

based on Peircean metaphysics. According to Peirce, all phenomena (or appearances) have three

inseparably fused aspects termed Firstness (e.g., feeling, potentiality), Secondness (e.g., actuality,

interactions), and Thirdness (e.g., relation, representation). The symbol “1” stands for the identity

relation

Firstness

(Complexity)

Secondness

(Emergence) Thirdness (Information)

Complexity 1 Evolution Subjective information (formal information,

temperature-independent)

Emergence Evolution 1 Objective information (physical information,

temperature-dependent)

Information Subjective

information

Objective

information

1
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kinds of energies in physics – thermal, kinetic, potential, chemical, mechanical,

nuclear, Gibbs free energy, and Helmholtz free energy, etc. Little confusion arises in

distinguishing different kinds of energies in physics because of the availability of the

principles of classical mechanics, quantum mechanics, statistical mechanics, and

thermodynamics. To be able to differentiate among different kinds of information in

biology, computer science, and philosophy on the one hand and between

informations and energies on the other, it may be essential to utilize not only the

laws and principles of physics and chemistry but also those of semiotics, the study of
signs as developed by Peirce (1903) more than a century ago (see Sect. 6.2).

5.2.3 Two Kinds of Complexities in Nature:
Passive and Active

We can recognize two kinds of “complexities” in nature – active and passive, in
analogy to active and passive transport. For example, snowflakes (Fig. 5.3) exhibit

passive complexity or complexification, while living cells (see the book cover)

exhibit active complexity in addition to passive complexity. Unlike passive com-

plexity, active complexity is exhibited by living systems utilizing free energy, and

organisms with such a capability is thought to be more likely to survive complex
environment than those with passive complexity only. According to the Law of

Requisite Variety (LRV) (Sect. 5.3.2), no simple machines can perform complex

tasks. Applying LRV to cells, it can be inferred that

No simple cells can survive complex environment. (5.10)

If this conjecture is true, it is not only to the advantage of cells (both as individuals

and as a lineage) but also essential for their survival to complexify (i.e., increase the

complexity of) their internal states.

One strategy cells appear to be using to complexify their internal states is to vary

the amino acid sequences of a given enzyme or of the subunits of an enzyme

complex such as ATP synthase and electron transfer complexes, each containing a

dozen or more subunits. This strategy of increasing the complexity of sequences

may be forced upon cells because they cannot increase, beyond some threshold

imposed by their physical dimensions, the variety of the spatial configurations of

the components within their small volumes. In other words, it is impossible to pack

in more than, say 109, enzyme particles into the volume of the yeast cell, about

1015 m3, but the yeast cells can increase the variety of their internal states by

increasing the variety of the amino acid sequences of their enzymes and enzyme

complexes almost without limit, as a simple combinatorial calculus would show.

For example, there would be at least 2100 ¼ 1033 different kinds of 100-amino acid-

residue polypeptides if each position can be occupied by one of at least two

different amino acid residues. This line of thought led me to infer that there may

be a new principle operating in living systems, here referred to as the “Maximum
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Variation Principle (MVP)” or the “Maximum Complexity Principle (MCP),”

which states that:

The variety of the internal states of living systems increases with evolutionary time.

(5.11)

or

The complexity of the internal states of living systems increase with evolutionary time.

(5.12)

Statement (5.12) resembles that of the Second Law (“The entropy of an isolated

system increases with time.”), which may lead conflating MVP with the Second

Law unless care is taken. MVP cannot be derived from the Second Law, because

MVP embodies the evolutionary trajectories (or contingencies) of living systems

(i.e., slowly changing environmental variations encountered by rapidly changing

Fig. 5.3 Just as the shape of snowflakes reflect their trajectories through the atmosphere, so the

different RNA trajectories measured from yeast cells are postulated to reflect the different

microenvironmental conditions (see Fig. 12.28) under which RNA molecules are synthesized in

the nucleus and degraded in the cytosol. Snowflakes are equilibrium structures or equilibrons
whose sixfold symmetry are determined by the geometry of the water molecule, while RNA

trajectories are dissipative structures or dissipatons (Sect. 3.1) whose shapes reflect the fact that

cells are themselves dissipative structuresmaintaining their dynamic internal structures (including

RNA trajectories) by continuously dissipating free energy. For the experimental details concerning

the measurement of the RNA trajectories shown above, see Sect. 12.2 (Figure 5.3 was drawn by

one of my undergraduate students, Ronak Shah, in April, 2009)
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short-lived organisms during evolution) just as the shapes of snowflakes (see

Fig. 5.3) cannot be derived or predicted from the Second Law because these

embody the trajectories (or a series of boundary conditions of Polanyi 1968)

traversed by incipient snowflakes through the atmosphere, the information about

which being lost to the past, except whatever is recorded in snowflakes.

Although all snowflakes exhibit a sixfold symmetry due to the unique structure

of the water molecule (see the lower panels in Fig. 5.3), no two snowflakes

look alike, and this phenomenon has now been well understood as the result

of experimental works on artificial snowflakes produced in laboratories (see

Sect. 15.1) (Libbrecht 2008): No two snowflakes look alike because no two

snowflakes traverse the same trajectories from the atmosphere to the ground as

they evolve from the incipient clusters of a few water molecules formed high up in

the atmosphere to the final macroscopic snowflakes seen on the ground (see the

left-hand panel in Fig. 5.3). Similarly, no two RNA trajectories measured from

the yeast cell undergoing the glucose-galactose shift look exactly alike (see the

bottom of the right-hand panel in Fig. 5.3), most likely because (1) no two RNA

polymerases inside the nucleus and (2) no two RNA molecules in the cytosol

experience identical microenvironments (see the RNA localizations in Drosophila

embryios, Fig. 15.3). Consequently, no two RNA molecules are associated with

identical rates of production (through transcription) and degradation (catalyzed by

RNases or ribonucleases). In analogy to the sixfold symmetry exhibited by all

snowflakes reflecting the geometry of the water molecule, all RNA trajectories

share a common feature of being above the zero concentration levels reflecting

the fact that the yeast cell is a dissipative structure, continuously dissipating free

energy to maintain its dynamic internal structures, including RNA trajectories.

Most of the discussions on complexity in the past several decades in the field

of computer science and physics concern “passive complexity,” which was taken

over by biologists apparently without realizing that living systems may exhibit a

totally new kind of complexity here dubbed “active complexity.” The time- and

space-dependent heterogeneous distributions of RNA molecules observed in

developing Drosophila embryo (Fig. 15.1) provide a prototypical example of

“active complexity,” since depriving energy supply to the embryo would certainly

abolish most of the heterogeneous RNA distributions.

5.2.4 The Principle of Recursivity

A “recursive definition,” also called “inductive definition,” defines something

partly in terms of itself, that is, recursively. A clear example of this is the definition

of the Fibonacci sequence:

F(n) ¼ F(n� 1Þ þ F(n� 2Þ ¼ 1; 1; 2; 3; 5; ; ::::::::::::::::::::::::: (5.13)
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where n is a natural number greater than or equal to 2. As can be seen, Eq. 5.13

defines the (n + 1)th Fibonacci number in terms of two previous Fibonacci num-

bers. A linguistic example of recursivity is provided by the acronym GNU whose

definition implicates itself: “GNU is not Unix.” A biological example of recursivity
may be suggested to be the self-relication of the DNA double helix, since it

implicates replicating the DNA double helix using the original DNA as the tem-

plate: Self-replication of the DNA double helix is self-referential, or recursive. The
growth of an organism from a fertilized egg cell can be viewed as recursive process

in the sense that the fertilized egg serves as a template to form its daughter cell, the

daughter cell in turn serving as the template for the production of the next genera-

tion cell, etc. The cell division is recursive or results from a series of recursive

actions. On the basis of these analyses, it may be concluded that life itself is

recursive.

Many physical, chemical, biological, engineering, and logical principles are

mutually inclusive and intertwined in the sense that it is impossible to separate

them completely. This principle is represented in the familiar Yin-Yang symbol of

the Taoist philosophy (Fig. 5.4): The dot of the Yin (dark) is embedded in the sea of

the Yang (light) and the dot of the Yang is embedded in the sea of the Yin. The

embeddedness of the Yin in Yang (and vice versa) is reminiscent of the

embeddedness of a sentence within a sentence in human language or the

embeddedness of an algorithm within an algorithm in computer programming,

both of which exemplify the recursivity (or the recursion and self-similarity) widely

discussed in computer science (Hofstadter 1980).

The complementarity principle of Bohr seems to embody the principle of

recursivity as the following argument shows. As is well known, Bohr in 1947

inscribed on his coat of arms the following motto:

Contraria sunt complementa. or (5.14)

Contraries are complementary. (5.15)

Fig. 5.4 The Yin-Yang

symbol visualizing the

concept of embeddedness
(i.e., the black dot in the white
background, and the white dot
in the black background)
and the intertwining (between

the white and black tear-drop
shapes) http://commons.

wikimedia.org/wiki/File:

Yin_yang.svg

130 5 Engineering

http://commons.wikimedia.org/wiki/File:Yin_yang.svg
http://commons.wikimedia.org/wiki/File:Yin_yang.svg
http://commons.wikimedia.org/wiki/File:Yin_yang.svg


It is interesting to note that Statement 5.15 can be interpreted as either of the

following two contrary statements, P and not-P:

All contraries are complementary. (5.16)

Not all contraries are complementary. (5.17)

Statement 5.17 is synonymous with 5.18:

Only some contraries are complementary. (5.18)

Statement 5.16 reflects the views of Kelso and EngstrØm (2006) and Barab (2010)

who list over 100 so-called complementary pairs in their books. I favor Statements

(5.17) and (5.18) based on the complementarian logic discussed in Sect. 2.3.3.

Since 5.16 and 5.17 are contraries, they must be COMPLEMENTARY to each

other according to 5.15. That is, defining the relation between 5.16 and 5.17 as

being complementary entails using Statement 5.15. This, I suggest, is an example of

“recursive definition,” similar to the definition of the Fibonacci sequence 5.13. To

rationalize this conclusion, it appears necessary to recognize the three definitions of

complementarities as shown below (where B, KE, and J stand for Bohr, Kelso and

Engstrom, and Ji, respectively):

B-Complementarity (B-C) ¼ Contraries are complementary. (5.19)

KEB-Complementarity (KEB-C) ¼ All contraries are complementary. (5.20)

J-Complementarity (J-C) ¼ Not all contraries are complementary. (5.21)

Since, depending on whether or not the complementarian logic is employed, the B-

complementarity can give rise to either the KEB-or the J-complementarity, respec-

tively, it appears logical to conclude that the KEB- and J-complementarities are

themselves the complementary aspects of the B-complementarity. This idea can be

represented diagrammatically as shown in Fig. 5.5.

After formulating the idea of the “recursivity of complementarity,” I was

curious to find out if anyone else had a similar idea. When I googled the quoted

phrase, I was surprised to find that Sawada and Caley (1993) published a paper

entitled “Complementarity: A Recursive Revision Appropriate to Human Science.”

This paper may be viewed as an indirect support for the conclusion depicted in

Fig. 5.5. However, upon further scrutiny, there is an important difference between

the perspective of Sawada and Caley (1993) and mine: Sawada and Caley believe

that, in order to introduce the idea of recursivity to complementarity, Bohr’s

original complementarity must be revised (by taking the observer into account

explicitly). In contrast, my view is that Bohr’s original complementarity is

B-C

KEB-C J-C

C/P

Fig. 5.5 A diagrammatic

representation of the

complementarity

of complementarities, or the

“recursive complementarity”
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intrinsically recursive, due to its ability to generate two contrary statements, P and

not-P, that is, Statements 5.16 and 5.17.

Finally, it should be pointed out that, if not all contraries are complementary (as I

originally thought in contrast to the views of Kelso and EngstrØm (2006) and Barab

(2010)), there must be at least one other relation operating between contraries. In

fact, there may be at least three noncomplementary relations operating between

contraries:

1. SUPPLEMENTARITY ¼ C is the sum of A and B (e.g., energy and matter).

2. DUALITY ¼ A and B are separate entities on an equal footing (e.g., Descartes’

res cogitans and res extensa).
3. SYNONYMY ¼ A and B are the same entity with two different labels or names

(e.g., Substance and God in Spinoza’s philosophy; the Tao and the Supreme

Ultimate in Lao-Tzu’s philosophy).

5.2.5 Fuzzy Logic

There are two kinds of logic – classical (also called Aristotelian, binary, or

Boolean) logic where the truth value of a statement can only be either crisp yes

(1) or no (0), and multivalued logic where the degree of truthfulness of a statement

can be vague or fuzzy and assume three or more values (e.g., 0, 0.5, and 1). Fuzzy

logic is a form of multivalued logic based on fuzzy set theory and deals with

approximate and imprecise reasoning. In fuzzy set theory, the set membership

values (i.e., the degree to which an object belongs to a given set) can range between

0 and 1 unlike in crisp set where the membership value is either 0 or 1. In fuzzy

logic, the truth value of a statement can range continuously between 0 and 1. The

concept of fuzziness in human reasoning can be traced back to Buddha, Lao-tze,

Peirce, Russell, Lukasiewicz, Black, Wilkinson (1963), and others (Kosko 1993;

McNeill and Freiberger 1993), but it was Lotfi Zadeh who axiomatized fuzzy logic

in the mid-1960s (Zadeh 1965, 1995, 1996a).

Variables in mathematics usually take numerical values, but, in fuzzy logic, the

non-numeric linguistic variables are often used to express rules and facts (Zadeh

1996b). Linguistic variables such as age (or temperature) can have a value such as

young (warm) or old (cold). A typical example of how a linguistic variable is used

in fuzzy logic is diagrammatically illustrated in Fig. 5.6.

5.2.6 Fuzzy Logic and Bohr’s Complementarity

In Sect. 5.2.4, it was shown that the principle of Bohr’s complementarity embodies

the principle of recursivity as well, which may be seen as an example of the

intertwining among principles as symbolized by the dark and white objects in the

Yin-Yang diagram (Fig. 5.4). Bohr’s complementarity exhibits fuzziness.
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According to fuzzy/vague/multivalence theorists, including Peirce, Russell, Black,

Lukasiewicz, Zadeh, and Kosko (1993), words are fuzzy sets. The word “young” is

an example of the fuzzy set. I am neither “young” (0) or old (1) but both young (to a

degree of say 0.2) and old (to a degree of say 0.8). In other words I am both “young”

and “not-young” (i.e., old) at the same time to certain degrees. Similarly, it can be

suggested that the word “complementary” or “complementarity” is also a fuzzy set,

since what is complementary to some scholars may not be complementary to others.

For example, Kelso and EngstrØm list hundreds of complementary pairs in their

book, The Complementary Nature (2006). Although their complementary pairs do

satisfy Bohr’s definition of complementarity, Statement (5.16), they certainly do

not satisfy the definition of complementarity given in Sect. 2.3.3, which is based on

three criteria of the complementarian logic:

1. Exclusivity (A and B are mutually exclusive)

2. Essentiality (A and B are both essential to account for C)

3. Transcendentality (C transcends the level where A and B have meanings)

M
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 (%

)

100

0

50 60 70 50 60 70

Nonfuzzy set
Cool

Fuzzy set
Cool

Fuzzy Set and its Complement

Not Cool Cool Not Cool

50 60 70

Air Temperature  (°F)

M
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b
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Fig. 5.6 Diagrammatic representations of binary logic and fuzzy logic. In standard logic, objects

belong to a set completely (100%) or not at all (0 %) (see top left). In fuzzy logic, objects belong to a
fuzzy set only to some degree (top right) and to the complement of the set to some other extent

(bottom), the sum of the partial memberships always summing up to unity. For example, the air

temperature of 50�F is 0% cool and 100%not cool; 55�F is 50% cool and 50% not cool; 60�F is 100%
cool and 0% not cool; 65�F is 50% cool and 50% not cool; and 70�F is 0% cool and 100% not cool

5.2 Computer Science 133

http://dx.doi.org/10.1007/978-1-4614-2152-8_2


Thus, some of the complementary pairs of Kelso and EngstrØm satisfy only one

and some two of the above three criteria, and only a small number of them satisfy all

of the three criteria. We may designate these complementary pairs as the 0-, 0.3-,

0.6-, and 1.0- complementary pairs, respectively, the fractions indicating the degree

of membership to the complementary set (see the dotted lines in Fig. 5.7) calculated

as the ratio of the number of the criteria satisfied over the total number of the

criteria. Some examples of complementary pairs having different degrees of

complementarities are listed in Table 5.3.

5.2.7 The Knowledge Uncertainty Principle (KUP)

The first line of the Taoist text, The Lao-Tze, states that

The Tao, once expressed, is no longer the permanent Tao. (5.22)

Table 5.3 Some examples of the complementary pairs of Kelso and EngstrØm whose degree of

complementarity has been calculated on the basis of the three criteria of the complementarian logic

discussed in Sect. 2.3.3 (These calculations are somewhat subjective)

Complementary pairs

of Kelso and EngstrØm

Criteria of the complementarian logic Degree of

complementarityExclusivity Essentiality Transcendentality

Wave ~ particle + + + 1.0

Information ~ energy + + + 1.0

Energy ~ matter � + � 0.3

Energy ~ time + + � 0.6

Space ~ time + + + 1.0

Mind ~ body + + + 1.0

Object ~ subject + + + 1.0

Abrupt ~ gradual � + � 0.3

Even ~ odd � + � 0.3

Perception ~ action � + � 0.3

Vitalism ~ mechanism + � + 0.6

Fig. 5.7 The concept of complementarity as a fuzzy set
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which in Chinese can be written with just six characters that read in Korean thus:

Doh Gah Doh, Bee Sahng Doh.

We may refer to Statement 5.22 as the “Principle of Ineffability,” probably one of

the most important principles of the Taoist philosophy.

The purpose of this section is to formulate an “algebraic geometric” version of

the Principle of Ineffability, which will be referred to as the “Knowledge Uncer-

tainty Principle (KUP)” in analogy to the Heisenberg Uncertainty Principle (HUP)

in quantum mechanics. For the purpose of the present discussion, I will differentiate

“knowledge” from “information” as follows: Knowledge refers to actuality and

information to potentiality, just as physicists differentiate between the probability

wave functionC symbolizing “possible information” and its squareC2 referring to

measured information or probability (Herbert 1987; Morrison 1990). It may well

turn out that KUP subsumes HUP as suggested by Kosko (1993). The KUP is based

on the following considerations:

1. All human knowledge (including scientific knowledge) can be represented as

sets of answers to N binary questions (i.e., questions with yes or no answers

only), where N is the number of questions that defines the universe of discourse

or the system plus its environment under observation/measurement. This

resonates with Wheeler’s “It from bit” thesis (1990) that information is as

fundamental to physics as it is for computer science and that humans participate

in producing all scientific information by acquiring the apparatus-elicited
answers to yes-or-no questions as in the game of 20 questions (Sect. 4.15).

Recently Frieden (2004) has claimed that all major scientific laws can be

derived from maximizing the Fisher information of experimental data.

2. As shown in Table 5.4, each answer in (1) can be represented as a string of N

0’s and 1’s, for example (0, 1, 1, . . ., 0 ) for Answer #1, and (1, 0, 0, . . ., 0) for
Answer #3, etc.

3. There will be a total of 2N N-bit strings as the possible answers to a set of N

questions (see the last row in Table 5.4).

4. The N-bit strings in Table 5.4 can be represented geometrically as the vertices

of an N-dimensional hypercube (Kosko 1993, p. 30). An N-dimensional

hypercube is a generalization of an ordinary cube which can be viewed as a

Table 5.4 The question

and answer (QA) matrix.

1 ¼ Yes; 0 ¼ No

Answers Binary questions

1 2 3 . . . N

1 0 1 1 . . . 0

2 0 0 1 . . . 1

3 1 0 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

2N 0. 0 0 . . . 1
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three-dimensional hypercube (see Fig. 5.8). A square (e.g., one of the six aspects

of a cube) can be treated as a two-dimensional hypercube. To generate a cube

from a square, it is necessary only tomove a square in a new direction (i.e., along

the z-axis) perpendicular to the preexisting axes, the x- and y-axes in the case of a
square. This operation can be repeated to generate an N-dimensional hypercube

from an (N� 1)-dimensional one, where N can be any arbitrarily large number.

5. According to the principle of excluded middle, also called the Aristotelian logic
or crisp logic (McNeill and Freiberger 1993; Kosko 1993), an answer is either

true (1) or false (0), and no answer can have any truth values intermediate

between 0 and 1. That is, no “crisp” answer can reside in the interior or on the

edges of the hypercube, only on the vertices.

6. In contrast, the theory of fuzzy sets or the fuzzy logic (Zadeh 1965, 1995,

1996a, b; Kosko 1993) allows the truth value of an answer to be any positive

number between 0 and 1, inclusive. For example, an answer with a truth value

(i.e., the degree of membership to a set of true answers) of 3/4 is more true (1)

than false (0); an answer with a truth value of 1/2 is both true and not-true at the

same time, etc. The unit of fractional truth values is referred to as “fits” or

“fuzzy units” (Kosko 1993).

7. Based on (5) and (6), we can conclude that “crisp” answers (expressed in bits)

reside at the vertices or nodes of an N-dimensional hypercube, while fuzzy or

vague answers (expressed in fits) reside in the interior or on the edges of the

N-dimensional hypercube. For example, a fuzzy answer with a truth value of

(1/2, 1/2, 1/2) will be found at the center of the cube (see point A in Fig. 5.8),

whereas a fuzzy answer with truth value of (1/3, 3/4, 7/8) will be located at

point F in Fig. 5.8.

8. It is postulated here that when the human mind is challenged with a set of N

questions, it generates a fuzzy answer (say, F in Fig. 5.8) unconsciously (guided
by intuition and previous experience), but, in order to communicate (or articu-

late) it to others, the human mind consciously search for the nearest vertex, say
(0, 1, 1) in Fig. 5.8. Thus, articulated or represented crisp answers can be

C (0, 1, 1) (1, 1, 1)

*  F
(1/3, 3/4, 7/8)

(0, 0, 1) (1, 0, 1)
*  A

(1/2, 1/2, 1/2)

(0, 1, 0)      (1, 1, 0)

(0, 0, 0) CC (1, 0, 0)

Fig. 5.8 A three-dimensional

hypercube. One of the eight

vertices is arbitrarily located

at the origin (0, 0, 0) of the

(x, y, i) coordinate system.

Point A denotes the center

of the hypercube. The closest

vertex to point F is C(0, 1, 1),

whose complement is vertex

CC(1, 0, 0)
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assigned degrees of truthfulness or certainty measured as a ratio of two

numbers, that is, D1/D2, where D1 is the distance between the fuzzy answer

(located at coordinate F) in the N-dimensional hypercube and its nearest vertex

located at C and D2 is the distance between F and the vertex, CC, that is

irreconcilably opposite to C. (CC is called the complement of C.) The bit values
of crisp CC are obtained by subtracting the corresponding bit values of C from 1.

For example, the complement of C(1, 0, 1) is CC (1-1, 1-0, 1-1), or CC (0, 1, 0).

The distance, DAB, between the two points, A (a1, a2, a3, . . ., ak) and B (b1, b2, b3,

. . ., bk), can be calculated using the Pythagorean theorem:

DAB ¼ ða1 � b1Þ2 þ ða2 � b2Þ2 þ ða3 � b3Þ2 þ :::; þ ðak � bkÞ2
h i1=2

(5.23)

Applying Eq. 5.23 to points C and F, andCC and F in Fig. 5.8, the ratio of D1 over

D2 can be calculated, which Kosko referred to as fuzzy entropy (Kosko 1993,

pp. 126–135), one of many fuzzy entropies defined in the literature. For conve-

nience, we will refer this ratio as the Kosko entropy, denoted by SK, in recogni-
tion of Kosko’s contribution to the science of fuzzy logic. SK now joins the list of

other well-known entropies in physics and mathematics – the Clausius (which

may be denoted as SC), Boltzmann (as SB), Shannon (as SS), Tsalis entropies (as

ST), etc. The Kosko entropy of a fuzzy answer is then given by:

SK ¼ DCF=DFC
c (5.24)

where DCF is the distance between crisp point C and fuzzy point F and DFC
c is

the distance between crisp point CC and fuzzy point F. Formally, Eq. 5.24

constrains the numerical values of SK to the range between 0 and 1:

1 � SK � 0 (5.25)

However, both the Principle of Ineffability, Statement 5.22, and the Einstein’s

Uncertainty Thesis, Statement 5.38 (see below), strongly indicate that SK
cannot be equal to 1 or to 0, leading to Inequality 2.26:

1 > SK > 0 (5.26)

According to Inequality 5.26, the maximum value of SK is less than 1 and its

minimum value is greater than 0. If we designate the minimum uncertainty that

no human knowledge can avoid with u (from uncertainty) in analogy to the

Planck constant h below which no action (i.e., the energy integrated over time)

can exist, Inequality 5.26 can be rewritten as:

1>SK � u (5.27)

where u is a positive number whose numerical values probably depend on the

measurement system involved.
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9. The Kosko entropy of fuzzy answer F in Eq. 5.28 is given by:

SKðFÞ¼ ð0�1=3Þ2þð1�3=4Þ2þð1�7=8Þ2
h i1=2

=
h
ð1�1=3Þ2þð0�3=4Þ2

þð0�7=8Þ2
i1=2

¼ ð2=3Þ2þð1=4Þ2þð1=8Þ2
h i1=2

= ð2=3Þ2þð�3=4Þ2þð�7=8Þ2
h i1=2

¼ ½4=9þ1=16þ1=64�1=2=½4=9þ9=16þ49=64�1=2

¼ ½0:4444þ0:0625þ0:016�=½0:4444þ0:5625þ0:7656�
¼ 0:5229=1:7725

¼ 0:2950 (5.28)

10. As evident in (8) and (9), it is possible to calculate the numerical value of the

Kosko entropy of any fuzzy answer F, SK(F). But what is the meaning of SK(F)?

It is here suggested that the Kosko entropy, SK, of fuzzy answer F is a quantita-
tive measure of the uncertainty that F is C (or C is F, for that matter). By

multiplying SK(F) with 100, we can express this uncertainty in the unit of %:

SK(F) �100 ¼ The percent uncertainty that F is C (or C is F) (5.29)

Applying Eq. 5.29 to the result in Eq. 5.28, we can conclude that

It is 29.5% certain that fuzzy answer located at (1/3, 3/4, 7/8) is equivalent to (and hence

can be represented by) the crisp answer located at (0, 1, 1). (5.30)

If we assume that

All crisp answers are approximations of their closest fuzzy answers (5.31)

we can reexpress Statement 5.30 as follows:

The uncertainty of crisp answer C (0,1,1) is (100 - 29.5) ¼ 70.5 %. (5.32)

11. Statements 5.31 and 5.32 would gain a strong support if we can associate the

interior of the N-dimensional hypercube defined in Table 5.4 with reality or the
source of the apparatus-elicited answers of Wheeler (1990) and its vertices with

possible, theoretical, or represented answers. The apparatus-elicited answers

may have two aspects – the “registered” aspect when artificial apparatuses are

employed and “experienced” aspect when living systems are involved as

measuring agents. Frieden (2004) associates the former with Fisher informa-
tion (I) and the latter with what he refers to as “bound information” (J), that is,

the algorithmic information needed to characterize the “source effects” that

underlie registered data or crisp answers. In the case of Frieden (2004), it seems

clear that the registered answers (carrying Fisher information, I) belong to the

vertices of the N-dimensional hypercube and the “experienced” answers or
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“bound information,” J, belong to the interior of the N-dimensional hypercube.

If these identifications are correct, the following generalizations would follow:

All crisp answers are uncertain. (5.33)

All crisp answers have non-zero Kosko entropies. (5.34)

No crisp answers can be complete. (5.35)

Reality cannot be completely represented. (5.36)

The ultimate reality is ineffable. (5.37)

12. Einstein stated (cited, e.g., in Kosko 1993, p. 29) that

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are

certain, they do not refer to reality. (5.38)

Since Statement 5.38 is very often cited by physicists and seems to embody

truth, it deserves to be given a name. I here take the liberty of referring to

Statement 5.38 as the Einstein’s Uncertainty Thesis (EUT).
EUT can be accommodated by the Knowledge Uncertainty Principle (KUP)

as expressed in Statements 5.33–5.38, if we identify the volume or the interior
of the N-dimensional hypercube with “reality” as already alluded to in (11) and
its surface (i.e., some of its vertices) as the “laws of mathematics”. Again, we
may locate crisp articulations of all sorts (including mathematical laws and

logical deductions) on the vertices of the N-dimensional hypercube and the

“ineffable reality” in the interior or on the edges of the hypercube. If this

interpretation is correct, at least for some universes of discourse, we may have

here a possible algebraic-geometric (or geometro-algebraic) rationale for

referring to the N-dimensional hypercube defined in Table 5.4 as the “reality

hypercube (RH)” or as “a N-dimensional geometric representation of reality,”

and Inequality 5.27 and Statement 5.38 as the keystones of a new theory that

may be called the “Algebraic Geometric Theory of Reality (AGTR).” It is

hoped that RH and AGTR will find useful applications in all fields of inquiries

where uncertainties play an important role, including not only physics (see (13)

below) but also biology, cognitive neuroscience, risk assessment, pharmacol-

ogy and medicine (see Chap. 20), epistemology, and philosophy, by providing

an objective and visual theoretical framework for reasoning.

13. The wave-particle duality of light (see Sect. 2.3.1) served as a model of the

complementarity pair in the construction of the philosophy of complementarity

by N. Bohr in the mid-1920s (Plotnitsky 2006; Bacciagaluppi and Valenti

2009), although it was later replaced with the more general “kinematics-

dynamics complementarity pair” (Murdoch 1987). Assuming that the wave-

particle duality of light embodies an uncertainty principle (in addition to a

complementarity principle to a certain degree), it will be analyzed based on the

KUP, Eq. 5.29. The analysis involves the following steps:

1. Classical concepts: The concepts of waves and particles have been well

established in human language, having developed over thousands of years as

a means to facilitate communication among humans about physical processes.
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2. Observations: Light has been found to exhibit the dual properties of both

waves and particles, depending on the measuring apparatus employed,

which cannot be readily combined into one picture.

3. Binary questions: The paradoxical observation in (2) can be summarized in

the form of two binary questions.

Is light wave ? Yes ¼ 1, No ¼ 0

Is light a particle? Yes ¼ 1, No ¼ 0

4. The QA matrix: The binary questions (Qs) have a finite number of possible

answers (As) suggested by existing knowledge which can be represented as

a QA matrix defined in (2) (Table 5.5).
5. N-Dimensional hypercube: The QA matrix can be transformed into an

N-dimensional hypercube (Fig. 5.9), where N is the number of the binary

questions related to the wave-particle duality of light. That is, the QA matrix

and its associated N-dimensional hypercube are isomorphic in the sense that
they obey the same set of common logical principles, including the principle

of fuzzy logic (Kosko 1993).

6. Apparatus-elicited answers (AEAs): To choose among the theoretically

possible answers, experiments are designed and carried out to register

AEAs, that is, the answers provided by nature (including the observer

which, with Bohr, is thought to comprise a part of the experimental

Table 5.5 The QA matrix for

the wave-particle duality of

light. N ¼ the number of

questions

Possible answers (N2) Binary questions (N ¼ 2)

1 2

[1] 0 0

[2] 0 1

[3] 1 0

[4] 1 1

D1

* [E] (0.2, 0.3)

D2

(0,0)                                             (1,0)
[1] [3]

(0,1)                                             (1,1)
[2] [4]Fig. 5.9 The N-dimensional

hypercube (where N ¼ 2)

representation of the QA

matrix concerning the

wave-particle duality of light
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arrangement and the registering device). Three AEAs are indicated in

Fig. 5.9, two of which are well established and the third is hypothetical:

Photoelectric experiment ¼ [2]

Two-slit experiment ¼ [3]

A novel experiment ¼ [E] (0.2, 0.3).

7. Kosko entropy, SK: The Kosko entropy, defined in (8) above, of the

fuzzy answer [E] can be calculated from the coordinates given in the two-

dimensional hypercube, Fig. 5.9:

SK(E) ¼ D1=D2

¼ ð0� 0:2Þ2 þ ð1� 0:3Þ2
n o1=2

= ð1� 0:2Þ2 þ ð00:3Þ2
n o1=2

¼ 4� 10�2 þ 49� 10�2
� �1=2

= 64� 10�2 þ 9� 10�2
� �1=2

¼ ð0:531=2Þ=ð0:731=2Þ
¼ 0:7261=2 ¼ 0:852 (5.39)

8. Uncertainties of crisp (or nonfuzzy) statements: Applying Eq. 5.29 to crisp

answers [2] and [3], the associated uncertainties, defined in (10), can be

calculated as:

SK ½2�ð Þ � 100 ¼ 0:85� 100 ¼ 85% (5.40)

SK ½3�ð Þ � 100 ¼ ð1� 0:85Þ � 100 ¼ 15% (5.41)

Equations 5.40 and 5.41 indicate that crisp answers [2] and [3] are 85% and

15% uncertain, respectively, relative to the apparatus-elicited answer [E].

Applying Eq. 5.29 to theAiry experiment (AE) (Herbert 1987, pp. 62–63),

two calculations are possible:

The Airy pattern is an experimental evidence that light is both waves and

particles, that is, crisp answer [4] (1, 1), supporting the de Broglie equation,

l ¼ h/p:

SK ½4�ð Þ ¼ 0 (5.42)

Uncertainty ½4�ð Þ ¼ 0% (5.43)

The Airy pattern demonstrates that light is particles when observed over a

short time period and waves when observed over a long period of time:

SK(AE) ¼ 1; since D1 ¼ D2; and Uncertainty ¼ SK(AE)� 100

¼ 1� 100 ¼ 100% (5.44)
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Equation 5.44 indicates that the Airy experimental result is 100% uncertain as

to whether light is wave or a particle. In other words, the crisp answers [2], [3],

and [4] are all 100% uncertain with respect to the question whether they are true

relative to the Airy experimental data.

14. In Sect. 2.3.4, the logical relation between the HUP and Bohr’s Complemen-

tarity Principle (BCP) was substantially clarified based on a geometric argu-

ment which may be viewed as a species of the so-called table method (Ji 1991,

pp. 8–13). The result is that

The HUP presupposes Bohr’s complementarity principle (BCP) and BCP can give rise to

uncertainty principles including HUP. (5.45)

Statement 5.45 may be referred to as the non-identity of the uncertainty and
complementarity principles (NUCP).

5.2.8 The Universal Uncertainty Principle

Although the quantitative form of the uncertainty principle was discovered by

Heisenberg in physics in 1926 (Lindley 2008), the essential notion behind the

uncertainty principle appears to be more general. Theoretical support for such a

possibility can be found in the so-called “spectral area code” (Herbert 1987,

pp. 87–89),

DW� DM >1 (5.46)

where DW and DM are the spectral widths (or bandwidths) of conjugate waves W

and M, respectively. A spectral width is defined as the number of waveforms into

which a wave can be decomposed. The size of a bandwidth is inversely related to

the closeness with which a wave resembles its component waveforms. Inequality

5.46 is called the “spectral area code,” since the product of two numbers (i.e.,

bandwidths DM and DW) can be viewed as an area (vis-à-vis lines or volumes).

When wave X is analyzed with the W prism (or software), a particular bandwidth

DW of the output W waveforms is obtained, which is an inverse measure of how

closely the input wave X resembles the members of the W waveform family.

Similarly, when X is analyzed with the M prism, another bandwidth DM is

obtained, which is an inverse measure of how closely the input wave X resembles

the members of the Mwaveform family. SinceW andM are mutual conjugates (i.e.,

polar opposites), it is impossible for wave X to resemble W and M both. Hence,

there exists some restriction on how small these two spectral widths can get for the

same input wave. Such a restriction is given by Eq. 5.46.

To relate the spectral area code to the Universal Uncertainty Principle, it is

necessary to make two additional assumptions: (1) All human knowledge can be

quantitatively expressed in terms of waves (each wave having three characteristic

parameters, amplitude, frequency, and phase) and (2) The Fourier theorem and its

142 5 Engineering

http://dx.doi.org/10.1007/978-1-4614-2152-8_2


generalization known as the synthesizer theorem (Herbert 1987, pp. 82–84) can be

used to decompose any wave, either physical or nonphysical, into a sum of finite set

of component waveforms. The difference between the “physical wave” such as

water waves and “nonphysical wave” such as quantum wave is this: The square of

the amplitude of a physical wave is proportional to energy, whereas the square of

the amplitude of nonphysical wave is proportional to the probability of the occur-
rence of some event.

Herbert (1987, pp. 87–89) provides an example of the spectral area code in

action, namely, the complementary abilities of analog and digital synthesis

techniques. An analog synthesizer can construct a sound wave X out of a range of

sine waves with different frequencies k. Each wave X, depending on its shape,

requires a certain spectral width Dk of sine waveforms for its analog synthesis. The

sine wave’s conjugate waveform is the impulse wave, which is the basis of digital

music synthesis. A digital synthesizer forms a wave X out of a range of impulse

waves with different values of position x. Each wave requires a certain spectral

width Dx of impulse waves for its digital synthesis. According to the spectral area

code, Eq. 5.46, the product of the spectral bandwidth of sine waves ant that of

impulse waves must satisfy the spectral area code, leading to:

Dk� Dx>1 (5.47)

Short musical sounds (such as from a triangle or a woodblock) have a narrow

impulse spectrum. According to Inequality 5.47, to analog-synthesize such crisp

sounds (i.e., with small Dx) requires a large range of sine waves (i.e., with large

Dk). To synthesize an infinitely short sound, that is, the impulse wave itself,

requires all possible since waveforms. In contrast, musical sounds that are nearly

pure tones such as from a flute, an organ, or a tuning fork have a narrow sine

spectrum. To digitally synthesize such pure tones, the spectral area code requires a

large range of impulse waves. The spectral area code informs us that analog and

digital music synthesizers are complementary: One is good for synthesizing long

waveshapes, the other for short ones. Analogously, it may be stated that the

photoelectric effect devices and optical interference devices are complementary

to each other: One is good for measuring the particle nature of light, the other is

good for measuring the wave nature of light. Thus, it may be concluded that the

complementarity principle of Bohr is a natural consequence of the spectral area
code, Inequality 5.46.

These considerations based on the synthesizer theorem and the spectral area
code provide theoretical support for the notion that there are at least three kinds

of uncertainty principles in nature – (1) the Heisenberg Uncertainty Principle
in physics (see Inequalities 2.38 and 2.39), (2) the Cellular Uncertainty Principle
in cell biology formulated in the late 1990s based on the molecular model of the cell

known as the Bhopalator (Ji 1985a, b, 1990, 1991, pp. 119–122) as explained in

Fig. 5.10 below, and (3) the Knowledge Uncertainty Principle in philosophy (see

Sect. 5.2.7). One question that naturally arises is “What, if any, is the connection

among these three uncertainty principles?” Is the HUP perhaps ultimately
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responsible for the other two uncertainty principles? I do not think so. Rather I think

it is more likely that these three uncertainty principles are mutually exclusive and

constitute special cases of a more general principle, here termed the Universal
Uncertainty Principle that operates in the Universe, leading to the following

assertion:

There exists a principle in this universe that manifests itself as the Heisenberg Uncertainty

Principle, the Cellular Uncertainty Principle, or the Knowledge Uncertainty Principle,

depending on whether the system under consideration is the quantum object, the living
cell, or the human brain. (5.48)

Statement (5.48) will be referred to as the Postulate of the Universal Uncertainty
Principle (PUUP). As already alluded to above, the ultimate basis for the validity of

PUUP may be found in the synthesizer theorem and the spectral area code (Herbert
1987).

One utility of PUUP may be its ability to protect philosophers, literary critics,

anthropologists, journalists, artists, and others from being criticized for invoking

Heisenberg’s Uncertainty Principle to describe “uncertain” situations/scenarios

encountered in their own fields of specializations. For example, Lindley (2008),

in his otherwise insightful and informative book on the history of the uncertainty

principle in physics, chastised one editorialist who invoked the Heisenberg Uncer-

tainty Principle by claiming that “the more precisely the media measures individual

events in a war, the more blurry the warfare appears to the observer.” Had the

editorialist under attack invoked the PUUP instead of Heisenberg’s uncertainty

principle, he would have avoided Lindley’s criticism on a sound logical basis.

The Cellular Uncertainty Principle (CUP) mentioned above is derived as follows

(Ji 1991, pp. 118–122). It is assumed that the complete characterization of life

Fig. 5.10 The cellular uncertainty principle derived from living processes represented in the five-

dimensional space, four dimensions of spacetime and one additional dimension for biological

information (Reproduced from Ji 1991, p. 121)
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entails specifying the behavior of the smallest unit of life, the cell. The cell behavior

is depicted as a curvy line denoted as R (from “river,” the symbol of life) in

Fig. 5.10. The genetic program responsible for the cell behavior is indicated as

the projection Rg of R onto the internal coordinate (or genetic information) space

(see the vertical plane on the left in Fig. 5.10). The projection of R onto the

spacetime plane produces its spacetime trajectory denoted as Rs.

The trajectory R is postulated to be composed of N sub-trajectories called

“streams,” where N is the number of biopolymers inside the cell. Each stream

represents the behavior of one biopolymer inside the cell. The uncertainty about the

behavior about the cell cannot be less than the uncertainty about the behavior of one

of the N biopolymers. The uncertainty about the behavior of a biopolymer inside the

cell can be estimated as follows:

1. There is a finite amount of uncertainty that is associated with the determination

of the Gibbs free energy change underlying a given intracellular process

catalyzed by a biopolymer. This uncertainty is designated as DG. Since driving
any net biological process necessitates dissipating Gibbs free energy at least as

large as thermal energies, kT, it would follow that the smallest uncertainty about

the measurement of the Gibbs free energy change attending a biopolymer-

catalyzed process inside the cell can be estimated to be

DG � kT kcal=mol (5.49)

2. Due to DG, the cross section of the behavior trajectory R of the biopolymer

possesses a finite size. This leads to an uncertainty about the internal coordinate

(i.e., the genetic information) of the biopolymer, since there are at least two

internal coordinates that can be accommodated within the cross section ofR (see

1, 1’, and 1” and their projections, not shown, onto the information space).

Therefore, the uncertainty concerning the genetic information associated with

the biopolymer behavior is at least one bit:

DI � 1 bit (5.50)

3. Inequalities 5.49 and 5.50 can be combined by multiplication to obtain what was

referred to as the Cellular Uncertainty Principle in (Ji 1991, pp. 119–122):

ðDGÞðDIÞ � kT bit kcal=mol (5.51)

The three uncertainty principles discussed above are given in the first rows of

Tables 5.6, 5.7, and 5.8, the first two of which are the modified forms of Tables 2.9

and 2.10 in Sect. 2.3. The two forms of the HUP are reproduced in the first row of

Table 5.6, that is, Inequalities 2.38 and 2.39. These inequalities are displayed in the

table as the horizontal and vertical margins, respectively. As pointed out in

Sect. 2.3.5, the uncertainty relations are located on the margins of the table and
the complementary relations such as the kinematics-dynamics duality are located in
the diagonal boxes (or the interior) of the table, suggesting that the uncertainty
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principles and the complementary principles belong to two different logical classes

in agreement with Murdoch (1987, p. 67). Although the wave-particle duality is

widely regarded as the empirical basis for Bohr’s complementarity principle, this

view is considered invalid since Bohr’s complementarity principle has been found

to be upheld in the so-called which-way experiments even when the HUP is not

applicable (Englert et al. 1994). Therefore, the wave-particle duality must be

viewed as valid only under some specified experimental situations such as the

gamma-ray microscopic experiment (Murdoch 1987, p. 50) and not universally.

Similarly, all of the complementary pairs listed in the diagonal boxes of Table 5.6

may hold true only under appropriate experimental or observational situations and

not universally.

Table 5.6 The relation between the uncertainty principles and complementary relations in

physics, all thought to result from the numerical values of the critical parameters, h and c

Physics

Dq � Dp� h=2p . . . . . . . (2.38)

Dt � DE� h=2p . . . . . . . (2.39)

h, c Position (q) Momentum (p)

Time (t) 1. Wave

2. Spacetime

3. Kinematics

4. Globality

5. Continuity

6. Group (or superposition)

Energy (E) 1. Particle

2. Momenergy

3. Dynamics

4. Locality

5. Discontinuity

6. Individuality

Table 5.7 The postulated relation between the cellular uncertainty principle and the liformation-
mattergy complementarity in biology

Biology

DG � DI � kT . . . . . . . (5.51)

DL � Dm � kT . . . . . . . (5.52)

kT Life (L) Matter (m)

Information (I) 1. Wave

2. Kinematics

3. Liformation

4. Structure

Energy (E) 1. Particle

2. Dynamics

3. Mattergy

4. Function
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If the Symmetry Principle of Biology and Physics (SPBP) described in Table 2.5

is valid, it may be predicted that the relation between the uncertainty principle and
the complementarity principle as depicted in Table 5.6 may have a biological

counterpart. One such possibility is shown in Table 5.7, which is almost identical

with Table 2.7, except for the inclusion of the postulated uncertainty relations,

Inequalities 5.51 and 5.52. In Inequality 5.51, which was derived on the basis of a

geometric argument (Ji 1991, pp. 120–122), DG is the uncertainty about the

measurement of the Gibbs free energy change accompanying an intracellular

process at temperature T, DI is “the uncertainty about the biological significance

of the cellular processes under study, for example, the uncertainty about the

‘fitness’ value of the cellular processes involved” (Ji 1991, p. 120), and k is the

Boltzmann constant. It is assumed that the critical parameter in biology is the

thermal energy per degree of freedom, that is, kT, which is thought to be analogous
to h (see Statement (4.36)). Again, in analogy to the canonical conjugates in physics

(i.e., the q–p and t–E pairs), it is assumed in Table 5.7 that the canonical conjugates

in biology are information-life (I-L) and energy and matter (E–m) pairs. If this

conjecture is valid, we can derive another uncertainty relation in biology, namely,

DL ∙ Dm � kT, where DL is the uncertainty about whether the object under

investigation is alive or death, and Dm is the uncertainty about the material

constitution or configuration of the living object under consideration.

Finally, if the complementarity principle revealed in physics and biology can be

extended to philosophy as envisioned by Bohr (1934) and myself (Ji 1993, 1995,

2004b), it should be possible to construct a table similar to Tables 5.6 and 5.7 that

applies to philosophy. One possibility is shown in Table 5.8. Just as the extension of

the uncertainty and complementarity principles from physics to biology entailed

recognizing a new complementary pair (i.e., liformation vs mattergy in Table 5.7),

so it is postulated here that there exists a novel kind of complementarity observable

at the philosophical level, and that complementary pair is here suggested to be the

crisp versus fuzzy logics (see the diagonal boxes in Table 5.8).

Associated with the crisp versus fuzzy logics complementarity are suggested to

be two uncertainty relations, Inequalities 5.53 and (5.54), where DM is the

Table 5.8 The extension of the principles of uncertainty and complementarity from physics and

biology to philosophy. M ¼ mind, B ¼ body, S ¼ soul, and P ¼ personality. The symbol u

denotes the postulated minimum uncertainty below which no human knowledge can reach

Philosophy

DM � DB � u . . . . . . . (5.53)

DS � DP � u . . . . . . . (5.54)

u Soul (S) Personality (P)

Mind (M) 1. Wave

2. Liformation

3. Fuzzy logic

Body (B) 1. Particle

2. Mattergy

3. Crisp logic
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uncertainty associated with defining the mind, DB is the uncertainty associated with

defining the body, DS is the uncertainty about what constitutes soul, DP is the

uncertainty about what determines one’s personality, and u expressed in fits, the

fuzzy units (Kosko 1993), is thought to be the minimum amount of uncertainty that

necessarily accompanies all human knowledge and communication. “Knowledge”

is here defined simply as the ability to answer questions, and the amount of the

knowledge a person possess can be measured by the number of questions that can

be answered by a person possessing the knowledge. Inequality (5.53) may be

interpreted as stating that the more precisely one determines what mind is in

nonmaterial terms, the less precisely can one define the role of the body in the

phenomenon of mind. Similarly, the more precisely one determines what the body

is from the biochemical and physiological perspectives, the less precisely can one

determine what mind is from the psychological perspective. This complementarity-

based view of mind appears to be consistent with the hologram-based theory of

mind proposed by Pribram (2010). Inequality (5.54) may be interpreted to mean

that the more precisely one determines what soul is, the less precisely can one

determine what personality is. The more precisely one can determine what person-

ality is, the less precisely can one determine what soul is. This conjecture was

motivated by the statement made by a Japanese theologian in Tokyo in the mid-

1990s to the effect that “it is relatively easy to know whether a human being has a

personality but it is very difficult to know whether he or she has a soul.”

The three kinds of the uncertainty principles described in Tables 5.6, 5.7, and 5.8

are recapitulated in Table 5.9, along with their associated complementarity

principles.

Several features emerge from Table 5.9:

1. Although the first mathematical expression of the uncertainty principle was

discovered in physics by Heisenberg in 1926 (Lindley 2008), the qualitative

concept of uncertainty in human knowledge is much older, going back to Lao-

tse, for example (see Statement 5.22). The mathematical expressions for the

uncertainty principle applicable to cell biology and psychology/philosophy are

formulated for the first time in this book (see the first and second rows in

Table 5.9).

2. The intense discussions on Heisenberg’s uncertainty principle in physics and

philosophy of science during the past seven decades (Murdoch 1987; Plotnitsky

2006; Lindley 2008) have created the impression that there exists only one

overarching principle of uncertainty, namely, that of Heisenberg. But Table 5.9

suggests that there exists a multiplicity of uncertainty principles, each reflecting

specific mechanisms of interactions among the components of the system under

consideration, from the atom to the cell to the human brain. Just as the comple-

mentarity principle advocated by Bohr on the basis of quantum mechanical

findings was postulated to have counterparts in fields other than physics (Bohr

1933, 1958; Pais 1991; Ji 1991, 1993, 1995; Kelso and EngstrØm 2006; Barab

2010), so it appears that the uncertainty principle first recognized in quantum

mechanics has counterparts in fields other than physics.
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3. The uncertainty inequality differs from systems to systems as evident in the

second row. The numerical value of the minimum uncertainty associated with a

given system appears to increase approximately linearly with its material vol-

ume (compare the first two rows).

4. The complementarity pairs associated with their associated uncertainty

inequalities also vary depending on systems (see the second and third rows).

5. The key principles underlying each uncertainty inequality and its associated

complementarity pair depend on systems, the principle of self-organization for

cells (discussed in Sect. 3.1) being a prime example (see the fourth row).

6. Just as the action is quantized in physics, so it is proposed here that life and

knowledge are quantized in cell biology and psychology/philosophy (see the

fifth row).

7. Somewhat simplifying, physics may be viewed as the study of energy (or

ergons), cell biology as the study of gnergy, and philosophy/psychology as the

study of information (or gnons) (see the sixth row).

8. One of the most significant conclusions suggested by Table 5.9 is that there is no

overarching uncertainty principle nor is there an associated complementarity

principle but these principles are all system-dependent, giving rise to a multi-

plicity of uncertainty principles and complementarity principles:

Uncertainty principles and complementarity principles are system-dependent. (5.55)

Statement (5.55) may be referred to as the System-Dependency of Uncertainty

and Complementarity Principles (SDUCP).

9. Table 5.9 strongly indicates that the principles of uncertainty and complemen-

tarity are not confined to physics but are universal. Since complementarism

(Sect. 2.3.4) is a philosophical framework based on the universality of comple-

mentarity and since the principle of complementarity is in turn thought to be

related to that of uncertainty (see the second and third rows, Table 5.9), the

question naturally arises as to how complementarism may be related not only to

uncertainties but also to other cognate terms such as information (or liformation
more generally, Sect. 2.3.1), energy (or mattergy more generally), and measure-

ment (Plotnitsky 2006). One possible way to characterize the multifaceted

relations among these terms is suggested in Fig. 5.11, utilizing the language of

networks and the Peircean triadic template (see Fig. 4.6):

Gnergy

Complementarism  =

Mattergy                   Liformation
BPB

3 2

1

Fig. 5.11 A three-node network representation of complementarism
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In Fig. 5.11, complementarism is suggested to be a network of three

nodes – Gnergy, Mattergy, and Liformation – and three edges – Complementarity

(1), Uncertainty (2), and Measurement (3). BPB stands for the Bernstein-Polanyi

boundaries (explained in Sect. 3.1.5) that provides the context of discourses or

specifies the system-dependency entailed by Statement (5.55). Just as “mattergy”

embodies the intimate relation between energy andmatter through Einstein’s special
relativity theory (Shadowitz 1968), so “liformation” embodies the inseparable rela-

tion postulated to exist between life and information in the gnergy theory of biology
(Ji 1991, 2004b). Thus, as first suggested in (Ji 2004b), it may be concluded that:

Just as matter is regarded as a highly condensed form of energy, so life can be viewed as a

highly condensed form of information. (5.56)

Statement 5.56 may be referred to as the information-life identity principle (ILIP)

just as E ¼ mc2 can be referred to as the energy-matter identity principle (EMIP).

5.3 Cybernetics

The term “cybernetics” comes from the Greek КubernZ�t� or kybernētēs, meaning

“steersman,” “governor,” “pilot,” or “rudder.” Plato used the term to refer to

government, but the term became widely used in modern times after Nobert Wiener

published his book in 1948 entitled “Cybernetics, or control and communication in

the animal and machine” (Wiener 1948). As the subtitle suggests, cybernetics is the

science of control and communication in machines, both artificial and biological,

that are endowed with the ability to achieve specific goals through feedback

interactions. Both control and communication implicate information. Communica-

tion is concerned with encoding, transmitting, and decoding information, while

control utilizes information. Hence, cybernetics can be considered to subsume

information theory (see Sect. 4.3 for the concept of information).

5.3.1 Control Theory

Control theory is the science of controlling dynamical systems to achieve desired

outcomes. It originated in engineering and mathematics but is now used in biology

and social sciences. The concepts and principles developed in the control theory of

artificial machines have been found useful in describing the behaviors of living

systems and their components such as enzymes, metabolic pathways, and living

cells themselves. Some of these concepts and terms are illustrated in Fig. 5.12. The

desired output of a machine is referred to as reference. When one or more output

variables of a machine must follow a certain reference, the controller of the machine

manipulates the inputs to the system to obtain the desired output. A part of the output

is directed to the sensor of the machine which feeds it back to the controller to adjust
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the new input either negatively (leading to negative feedback) or positively (leading

to positive feedback). In other words, feedback control is achieved when a portion of
the output signal is operated on and fed back to the input in order to obtain a desired

effect. A controller monitors its effect on the system and modifies its output

accordingly. As an example, consider a thermostat. It has two inputs: the desired

temperature or the reference and the current temperature (the latter is the feedback).

The output of the thermostat changes in order to equalize the two inputs.

A more detailed diagram of the control system is given in Fig. 5.13. It consists of

two subsystems – the controller or controlling system (denoted as C) and the
controlled or controlled system (S). The interaction between C and S is asymmetric

in that C has a complete control over S, to the extent of destroying the controlled.

Fig. 5.12 A diagrammatic representation of a system with feedback control (Reproduced from

http://en.wikipedia.org/wiki/File:Feedback_loop_with_descriptions.svg)

Representation Agentinformation

Goal

Controller

Observed
Variable

Affected
Variable

Dynamics

Action

Disturbance

Controlled

Perception

Control System

Fig. 5.13 The structure and function of a control system (Adapted from http://pespmc1.vub.ac.be/

REQVAR.HTML)
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But S has only a small effect on C through the formation of perception. The

controller consists of two components – representation of the controlled system

and the agent responsible for the action of the controller. The relation between

representation and agent is the flow of information which determines the actions of

the agent. The controlled system can be described in terms of two variables – the

affected variable that is altered by the action of the agent and the observed variable
that is observed by the controller through perception. The observed variable also

includes uncontrollable disturbances on the controlled system.

Just as thermodynamics is defined as the scientific study of the thermodynamic
system (TS), control theory or cybernetics can be viewed as the scientific study of

the control system (CS). In Table 5.10, TS and CS are compared in detail, treating

them as sets of elements. The second and third rows of the table list two different

classes of the elements of TS and CS. The second row lists system characteristics

and the third row lists the laws and the principles being obeyed. Of the 5 elements of

the TS set in the second row, only 2 are found in the CS set, while none of the 12

unique elements of the CS set is found in the TS set. All of the elements of TS in the

third row are included as the elements of CS but none of the four unique elements of

Table 5.10 A comparison between thermodynamic and control systems

Thermodynamic

system (TS) Control system (CS)

Scientific discipline Thermodynamics Cybernetics

Key characteristicsa (1) Energy, (2) Entropy,

(3) T, (4) P, and

(5) V

(1) Energy, (2) Entropy, (3) Controller, (4)

Controlled, (5) Representation, (6) Agent,

(7) Information, (8) Goal/Aim/ Teleonomy,

(9) Action, (10) Perception, (11) Affected

variable, (12) Observed variable,

(13) Dynamics, and (14) Disturbances

Principles obeyedb (1) First Law, and

(2) Second Law

(1) First Law, (2) Second Law, (3) Principle

of feedback control (Sect. 5.3.1), (4) Principle

of the minimum energy requirement for

information flow (Sect. 4.8), (5) Law

of requisite variety (Sect. 5.3.2), and

(6) Principle of Information and Energy

Requirement for Organization (PIERO)

(Sect. 3.1), which may be referred to as

the Law of Requisite Information (LRI)

Relationc TS > CS or TS < CS

(depending on whether sets are defined extensionally or intensionally,

respectively)
a Some of the same concepts, factors and parameters essential for describing TS are also required

to describe CS in addition to those unique to CS
b Thermodynamic laws are universal and hence obeyed by all material systems including CS. But

there are the laws, rules or regularities found uniquely in control systems. These may be named as

follows: (3)¼ the First Law of Cybernetics, (4)¼ the Second Law of Cybernetics, (5)¼ the Third

Law of Cybernetics, and (6)¼ the Fourth Law of Cybernetics (see the second row and third column)
c All control systems are thermodynamic systems but not all thermodynamic systems are control

systems
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CS are found in TS. Thus, at both these levels, more elements of TS are found to be

the elements of CS than the other way around, which may be expressed as

Inequality (5.57):

TS < CS (5.57)

Inequality 5.57 may be interpreted as reflecting the relative complexities of TS

and CS in the sense that

It takes a longer bit-string to describe a system viewed as a CS than as a TS. (5.58)

Based on the content of the third row of Table 5.10, it is clear that:

All control systems are thermodynamic systems; but not all thermodynamic systems are

control systems. (5.59)

We may refer to Statement 5.59 as the “Principle of the Insufficiency of

Thermodynamics for Controlled Processes” (PITCP). Statement 5.59 establishes

that there are more thermodynamic systems than there are control systems or that

CS is a subset of TS, leading to Inequality 5.60:

TS > CS (5.60)

On the surface (i.e., on the syntactic or formal level), Inequalities 5.57 and 5.60

appear contradictory. However, on the semantic level, that is, if we take into

account the different contexts under which the TS and CS sets are defined, no

contradiction appears. There are two ways of defining a set – (1) extensionally, by
listing sample members of a set, and (2) intensionally, by listing the characteristics

of, or the rules obeyed by, the members of a set. It is here claimed that

If A is a subset of B, A is less complex than B extensionally and more complex than B

intensionally. (5.61)

We may refer to Statement 5.61 as the “Complementarity of the Extensional

and Intensional Definitions of a Set” (CEIDS), or, more briefly, the “Extension-

Intension Complementarity” (EIC). Since the extensional definition of a set is akin

to viewing a set globally and the intensional definition akin to viewing a set locally,
EIC may be regarded as a species (or token) of what is often referred to as the

“Forest-Tree Complementarity”. Based on EIC, we can now account for the

apparent contradiction between Inequalities 5.57 and 5.60 as a natural consequence

of the complementarity between the extensional and intensional definitions of a set.

5.3.2 The Law of Requisite Variety

One of the most useful laws to be imported from engineering into biology is what is

known in cybernetics as the Law of Requisite Variety (LRV). There are many ways
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to state this law Heylighen and Joslyn (2001a, b) but the following definition

adopted from Ashby (1964) is suitable for application to molecular and cell

biology:

When a machine (also called a system or a network) is influenced by its environment in a

dominating manner (i.e., the environment can affect the machine but the machine cannot

influence its environment to any significant degree), the only way for the machine to reduce

the degree of the influence from its environment is to increase the variety of its internal

states. (5.62)

The complexity of biological systems (or bionetworks), from enzymes to protein

complexes to metabolic pathways and to genetic networks, is well known. One

way to rationalize the complexity of bionetworks is to invoke the Law of Requisite

Variety. We can express LRV quantitatively as shown in Eq. 5.63. If we designate

the variety of the environment (e.g., the number of different environmental

conditions or inputs to the system) as VE and the variety of the internal states of the

machine as VM, then the variety of outputs of the machine, VO, can be expressed as

VO � VE=VM (5.63)

One interpretation of Eq. 5.63 is that, as the environmental conditions become

more and more complex (thus increasing VE), the variety of the internal states of the

machine, VM, must increase proportionately to maintain the number of outputs, VO,

constant (i.e., keep the system homeostatic). Another way to interpret this equation

is that, in order for a bionetwork to maintain its functional homeostasis (e.g., to keep

the numerical value of VO constant) under increasingly complexifying

environments (i.e., increasing VE), the bionetwork must increase its variety or

complexity, namely, VM.

The term “variety” appearing in LRV can be expressed in terms of either (1) the

number of distinct elements, or (2) the binary logarithm of that number. When

variety is measured in the binary logarithmic form, its unit is the bit. Taking the

binary logarithm to the base 2 of both sides of Inequality 5.63 leads to Inequalities

5.64 and 5.65:

log VO � log (VE=VMÞ or (5.64)

log VO � logVE � logVM (5.65)

which is identical with the equation for LRV used by F. Heylighen and C. Joslyn

(2001), except that the buffering capacity of the machine, K, is assumed to be zero

here, that is, the machine under consideration is assumed to respond to all and every

environmental perturbations. Since logVx is defined as Shannon entropy Hx (see

Eqs. 4.2 and 4.3), Inequality 5.65 can be transformed into a more convenient form:

HO � HE � HM (5.66)
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where HO is the Shannon entropy of the machine outputs, HE is the Shannon

entropy of the environmental inputs, and HM is the Shannon entropy of the state

of the machine or its controller. Two cautionary remarks are in order concerning

Inequality 5.66:

1. The symbols for Shannon entropy, H, should not be confused with the symbol

for enthalpy, H, in thermodynamics, and

2. The same term “entropy” is represented by H in information theory and by S in

thermodynamics. In other words, there are two kinds of entropies – the informa-
tion-theoretic entropy (referred to by some as “intropy”) and thermodynamic
entropy. There are two schools of thought about the relation between intropy, H,
and entropy, S (Sect. 4.7). One school led by Jaynes (1957a, b) maintains that H

and S are in principle identical up to a constant factor, whereas the other schools

represented by Wicken (1987), myself (Ji 2004c), and others assert that H and S

are distinct and cannot be quantitatively related (see Sect. 4.7).

Just as the Second Law of thermodynamics can be stated in many equivalent

ways, so LRV can be expressed in more than one ways, including the following:

Simple machines cannot perform complex tasks. (5.67)

To accomplish a complex tasks, it is necessary to employ complex machines. (5.68)

Nature does not employ complex machines to accomplish simple tasks. (5.69)

If the internal structure of a biological machine is found to be complex, it is very likely that

the task performed by the machine is complex. (5.70)

Thus, LRV provides one way to explain the possible biological role of the

complex biological structures such as signal transduction pathways,

transcriptosomes, nuclear pore complexes, both of which can implicate 50 or

more proteins (Halle and Meisterernst 1996; Dellaire 2007). For example, it is

possible that nuclear pore complexes had to increase the variety of their internal

states to maintain functional homeostasis (e.g., transport right RNA-protein

complexes in and out of the nuclear compartment at right times and at right speeds)

in response to increasingly complexifying environmental (e.g., cytoplasmic) inputs

or perturbations. In other words, nuclear pore complexes (viewed as molecular

computers or molecular texts) had to become complex in their internal structures so

as to process (or carry out computations on) more and more complex input signals

from their microenvironment in order to produce the desired outputs without fail.

5.3.3 Principles of After-Demand Supply (ADS)
and Before-Demand Supply (BDS)

There are three distinct ways for a system to interact with its environment or three

distinct types of supply and demand: (1) The system adjust its internal states in
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response to environmental demand (in which case the environmental demand must

precede the internal state changes), (2) the system adjust its internal states simulta-

neously with the environmental demand, and (3) the system can readjust its internal

state in anticipation of environmental demand (in which case the internal state

changes must precede the environmental demand). We may refer to these

mechanisms as (1) the “after-demand supply” (ADS), (2) the “synchronous demand

and supply” (SDS), and (3) the “before-demand supply” (BDS), respectively. There

are two rate processes involved – the rate, RS, of internal state changes, and the rate,

RE, of the change in environmental demand. There are three possible scenarios

regarding the relative magnitudes of these rates as shown in Table 5.11, which also

includes the suggested mechanisms for each scenario.

An example of SDS would be the uncertainty associated with a lion catching a

deer because their running speeds are comparable, that is, RS ¼ RE: Sometimes the

lion succeeds in catching a deer and other times the deer gets away safely. An

example of BDS is provided by the phenomenon of conformational rearrangements

of enzymes (S) before they bind their substrates (E) since RS << RE, in agreement

with the generalized Franck–Condon principle and in contradiction to the induced

fit model of enzymic catalysis (Koshland 1958) (Sect. 2.2.3). Finally, an example of

ADS would be the biological evolution where the life cycle of organisms (S) are

faster than the rate of change of their environment (E), that is, RS>> RE, so that, in

order for organisms to evolve, the changes in their environment must first take place

before better fit organisms survive and less fit ones get removed in order for the

group (or lineage or taxon) to change its genome. Again this is the prediction

consistent with the generalized Franck–Condon principle (Sect. 2.2.3).

Table 5.11 Three mechanisms of interactions between systems and their environment predicted

by the generalized Franck–Condon principle (Sect. 2.2.3). RS rate of change of the system, RE rate

of change of environment, BDS before-demand supply, SDS synchronous demand and supply,

ADS after-demand supply

Rates RS << RE RS ¼ RE RS >> RE

Mechanisms BDS SDS ADS

Examples Enzymic catalysis Predator–prey interactions Biological evolution
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