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Chapter 4
Nanomaterial Design and Computational 
Modeling

Zhengzheng Chen, Rong Chen, and Bin Shan

4.1  �Introduction

Nanomaterials and nanotechnology may lead to breakthroughs in various fields 
such as VLSI circuits [1], energy storage solutions [2, 3], environmental protection 
[4, 5], and biomedical applications [6, 7]. Despite the incredible advances in char-
acterization tools and techniques, there seems to be greater than ever needs to be 
able to carry out computational simulations with atomistic resolution for nanomate-
rials. This is in part due to the fact that nanoscale properties are extremely difficult 
to measure or manipulate, but more importantly, such properties are probably very 
sensitive to subtle environmental changes and perturbations, making repeated mea-
surements more challenging. This is where computational modeling has much to 
offer in the booming nanomaterials design and nanomedicine, in that it supplies 
“virtue experimental methods” to investigate mechanisms of phenomena and even 
to design artificial structures in order to get desirable properties [8–10]. One good 
example is the design of nitrogen doped nanotube as chemical sensor which would 
have potential applications in biomedical fields. It was first proposed based on the 
gas response sensitivity analysis from first-principles calculations [11] and then a 
year later, confirmed by experiments, where fabricated CNx nanotubes have rapid 
sensing capabilities to low concentrations of toxic gases such as ammonia, acetone 
and OH groups [12]. Another example is the explanation of the presence of the 
strongest grain-size in nanocrystal metals by molecular dynamics simulations [13]. 
Computational simulations are able to present detailed insight of phenomena which 
are very difficult or even impossible to be obtained by experiments. It is clear that 
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computational modeling provides invaluable information in both cases and it is 
computational techniques that give deep insight into the structure-property and 
structure-functionality relationship in nanomaterials.

Another aspect of the rising interest in nanomaterials design and computational 
modeling is that with the ever increasing power of CPUs and better designed paral-
lel algorithms, the capability of computer simulation has greatly expanded. 
Nowadays, modern supercomputers has tera-flop computational power and full 
quantum mechanical simulations can tackle molecular systems consisting millions 
of atoms, while state-of-the-art molecular dynamics code can handle billions of 
atoms. This puts nanomaterials modelling squarely into experimentally accessible 
regions and the ability of mimicking real experimental systems has made computer 
simulations a complementary tool for understanding phenomena on the nanoscale.

Over the past few decades, we see a booming interest in computational modeling 
and the emergence of a number of new theoretical and numerical techniques.  
In order to tackle nanomaterials systems on different time and size scales, computa-
tional modeling has also developed several branches that aim to suitably describe 
various properties of assorted systems. The number one rule of thumb for computa-
tional simulation is that one has to choose the most suitable simulation method for 
a specific problem. Generally speaking, based on accuracy and size constraints, 
simulation methods can be categorized as First-Principles (FP) method (accurate,
10–1,000 atoms), tight binding (TB) (approximate electronic structure information,
102–105 atoms), and molecular dynamics (MD) (empirical potential, >106 atoms) 
(Fig. 4.1), which cover a wide area from sophisticated electronic structures to mas-
sive bulk properties. In the following sections, the fundamentals of these three simu-
lation techniques are outlined and their applications in nanomaterials modeling are 
further demonstrated in details.

Fig. 4.1  Diagram illustrating 
suitable system sizes and 
time scales of FP, TB, and
MD methods
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4.2  �First-Principles Methods

First-Principles methods, as shown in its own name, obtain electronic structure of 
materials basing on the very foundation of quantum mechanics, Schrödinger equa-
tion. Except several basic constants such as Plank constant, atomic mass, Bohr
radius and certain approximations required to simplify numerical complexity, such 
as Born-Oppenheimer approximation, local density approximation, First-Principles
methods calculate essential quantities directly without any presetting or empirical 
parameters. Therefore, this kind of methods has high accuracies, and can be used on 
most materials. On the other hand, due to the computationally demanding self-
consistent solution procedures, FP methods are very time-consuming, and can only 
treat relatively small systems.

4.2.1  �Born-Oppenheimer Approximation

The one single most important approximation employed in most FP calculations is 
the Born-Oppenheimer approximation, which effectively decouples the electronic
and nuclear degree of freedom, and thus greatly simplifying the numerical solu-
tions. By employing Hartree atomic unit, we can express the Hamiltonian of an
N-ion-n-electron system as
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Capital and lower case letters indicate ions and electrons, respectively. Since ions 
are ~104 heavier than electrons (MI ~104), it is safe to say that electrons move much 
faster than ions do.

In other words, at every moment that ions move to a new configuration, electrons 
will instantaneously relax to their new ground state. Therefore, the movements of 
electrons and ions can be separated. In mathematical terms, this separation is real-
ized by expressing the total wavefunction as follows:
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Equations 4.2 and 4.3 are called Born-Oppenheimer approximation. It realizes the
separation of movements of electrons and ions, and serves as the very foundation of 
most modern computational quantum chemistry/physics methods. Combining the 
above three equations, we can obtain the equation of χ



RI{ }( ) :
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Equation 4.4 shows that ions move in a potential field εelec. εelec is therefore also 
called “Born-Oppenheimer potential surface”. From then on, we focus our discus-
sion on solving the electronic wavefunction φ 



r
RI

i{ }( ) { }
. More information could be 

found in Grosso and Parravicini’s book [15].

4.2.2  �Density Functional Theory

Though Born-Oppenheimer approximation simplifies Schrödinger equation in solid
systems, Eq. 4.3 is still very difficult to solve. This is mainly because the coupling 
term 1/rij which makes Eq. 4.3 a non-linear n-body coupled equation. The com-
monly used technique to overcome the complication of Eq. 4.3 is to transfer this 
n-body problem to a single body problem. The rigorous demonstration is the density 
functional theory (DFT) [16, 17]. DFT does not consider concrete electronic orbital 
configurations, but focuses on the relationship between the total energy and the 
charge distribution of the system. Further, employing the variation principle with 
constrained conditions, DFT reformulates Eq.  4.3 into a single-body equation 
describing the state of a single electron moving in an effective potential field, while 
all many body interactions are lumped into a so called “exchange-correlation” func-
tional. As Hohenberg and Kohn pointed out, the ground energy of a system can be 
expressed as a universal functional as its ground charge distribution [16]:
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Terms on the right side are kinetic energy, electron-electron interaction, electron-
ion interaction, and ion-ion interaction, respectively. Let us ignore the last term by 
now for it is a constant shift for a given atomic configuration. One can in principle 
get the minimum of EHK by taking the variation of Eq. 4.5 with respect to ρ for a 
given external potential Vext. Unfortunately, this is not a practical way at least in the 
near future since we have no idea about the kinetic functional for an interacting 
electron-gas system. To overcome this difficulty, Kohn and Sham formulated the KS 
equation by mapping a non-interacting electron gas system whose charge distribu-
tion ρ0



r( )  is identical to the ground charge distribution ρ r( )  to the real system 
[17]. The key point of this ansatz is that ρ0



r( )  is able to be expresses as the sum-
mation of single electron wavefunctions ϕ j



r( ) :
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and so is ρ r( ) . The kinetic energy functional of a non-interacting electron gas 
T0 ρ r( )   can be analytically calculated. We can then take this advantage. 
Furthermore, Kohn and Sham calculated Hartree interaction E rH ρ ( )   instead of 
E ree ρ ( )  :
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Apparently, T r E rH0 ρ ρ ( )  + ( )   differs from T r E reeρ ρ ( )  + ( )   in Eq. 4.5. 
To compensate this difference, one needs an extra term:
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The importance of Exc[ρ] is that it contains all the effects from many-body interac-
tions. Combining Eqs. 4.5, 4.6, 4.7, and 4.8, and taking the variation of the total 
energy with respective to ϕ j r

( )  under the constrain condition:
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we can obtain the equation which ground state wavefunction ϕ j r
( )  satisfies:
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Explicitly, we define exchange-correlation potential as:

	

V
E r

rxc

xc





r( ) =
( ) 

( )
δ ρ

δρ
	

(4.11)

Equation  4.10 is Kohn-Sham (KS) equation. By using KS equation, the ground
energy could be rewritten as
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(4.12)

The first term in the right side is called band structure energy, and other three terms 
are called double counting terms.
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One should understand that an exact analytical formula for the exchange-correlation 
energy Exc[ρ] is generally unavailable for most cases. Its correlation component, 
however, can be numerically obtained by quantum Monte-Carlo (QMC) method,
which has been done by Ceperley and Alder [18]. Several research groups fit their 
data by different analytic functions and incorporate these functions into KS equa-
tion [18–22].

4.2.3  �Self-Consistent Field Processes in DFT

Reviewing Eq. 4.10, a paradox may be found: To build up VH and Vext of Hamiltonian 
in Eq. 4.10, one has to know ρ r( )  in advance. At the same time, ρ r( )  needs to be 
solved. In other words, ϕ j r

( )  appears at both side of Eq. 4.10. Therefore, KS equa-
tion needs to be solved self consistently. First, an initial guess of ϕ j r

( )  or ρ r( )  is 
able to be presented. Second, the Hamiltonian is built up and Eq. 4.10 is solved. 
Third, ρ r( )  is updated according to the output and input of the current step,  
re-construct Hamiltonian. The above steps are repeated until the convergence crite-
rion is satisfied. Usually, the criterion is chosen as the change of input and output 
values of total energy at current step. The whole process is called self-consistent 
field (SCF) calculations. After a set of high-quality eigenfunctions is obtained, the
electronic structures could be constructed and analyzed, i.e. charge density, energy 
band structures, and density of states, etc. Details of SCF are far beyond the scope 
of this chapter, more details could be found in the books of Martin [23] and Knhanoff 
[24], respectively.

4.2.4  �Examples

Since DFT methods, or more general, First-Principles methods, do not depend on 
availability of parameters for a given system. This character makes them very suit-
able to study materials which either is novel or has strong quantum effects [25, 26]. 
More importantly, as shown in Eqs. 4.6 and 4.10, the ground charge distribution is 
sensitive to concrete external potentials, arbitrary structural defects and/or alloying 
elements in principle are able to introduce unique electronic structures and even 
properties. Therefore, First-Principles methods can be employed to predict or even 
design new class of materials with desirable properties, which is a very important 
and vibrant aspect of modern computational materials science.

As an example, the study on the diffusion of an adatom on the Sn-alloying 
Cu(111) surface is hereby presented [14]. Figure 4.2 shows the potential energy 
surface (PES) of a Cu adatom on such an alloying surface. Clearly, Sn atoms disturb
the profile of PES in two ways: (1) they increase the value of PES at their sites, and
(2) they introduce forbidden region around each of them by transferring local val-
leys to slopes, which are shown as green areas in Fig. 4.2. These two features make 
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Sn atoms diffusion blockers to a Cu adatom because it is very energetically 
unfavorable for a Cu adatom approaching sites occupying by Sn atoms. This phe-
nomenon can be attributed to the fact that Sn atoms are larger than Cu atoms and 
therefore protrude from the surface. Besides the geometrical factor, different elec-
tronic configurations between Sn atoms and Cu atoms also contribute to the block-
ing effect of Sn. Figure 4.3 shows two minimum energy paths (MEP). When a Cu
adatom approaches Sn sites, it climbs uphill. Not only local minimums, but also 
migration barriers rise up. This feature is more apparent along the path which goes 
through the two Sn atoms (Fig. 4.3b). To explain MEPs, Fig. 4.3c presents local 
density of states (LDOS) of the surface layer at Fermi energy D(EF). D(EF) is higher 
between the two Sn atoms because of the contribution from p-orbitals of Sn, and 
thus strengthens binding interaction between the surface and the Cu adatom accord-
ing to Newns-Anderson model. The results of this First-Principles simulation are in 
good agreement with experimental observation in which alloying with Sn increases 
the serving lifetime of Cu interconnects by 10 times [27].

4.3  �Tight Binding

Tight binding method (TB) is a wide-used semi-empirical computational method.
Based on a set of well-chosen basis functions, TB builds up Hamiltonian matrix H 
of a given system and gets eigenvalues and eigen-wavefunctions by diagonalizing 
H. Further information of electronic structure, i.e. charge density, band structure, 
and optimal adsorption spectrum etc. can then be obtained. Different from 

Fig. 4.2  The landscape of 
total energy of the system 
with single Cu adatom on  
the Cu(111) surface alloyed
by 2 Sn atoms. The brighter 
(darker) area indicates weak 
(strong) adsorption sites of 
the Cu adatom. The lowest 
energy is set to zero [14]
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first-principles methods, elements in H in TB are not directly calculated through
SCF.  They are expressed as functions of atomic positions with a set of pre-
determined parameters. With high-quality parameters, TB can accurately simulate
systems of 103 ~ 104 atoms. This is important since systems with this size could 
contain complicated atomic structures or functional group. Therefore, TB method is
attractive for Nano-material simulations because objects in this area usually have 
artificial structure and peculiar electronic structures which need to be identified.

4.3.1  �Linear Combination of Atomic Orbitals

Theoretical foundation of TB can be viewed by linear combination of atomic 
orbitals (LCAO) method [28]. Suppose there is a system containing N atoms and 
there are ni orbitals belonging to the i-th atom. One eigen-wavefunction can be 
expressed as

Fig. 4.3 (a) Migration paths I and II for a Cu adatom on the Cu (111) surface with two 4th nearest
neighbor Sn surface atoms. Yellow (gray) circles denote the Cu (Sn) atoms, while the green (red) 
circles denote hcp (fcc) sites, denoted by Greek and Latin letters, respectively. (b) Migration 
energy landscape versus reaction coordinates for pathways I and II, respectively. (c) LDOS con-
tours at the Fermi level, with bright (dark) color indicating high (low) values of LDOS [38]
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where i and α are indexes of atoms and orbitals, respectively. Accordingly, the 
energy of the system E is
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The variation of E with respect to ciα
* can be easily calculated:
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To obtain the lowest value of E, Eq. 4.15 should equal to 0 for any i and α. Therefore, 
we can straightforward obtain the secular equation of cjβ:

	
H ESi j iα β α β, ,− =j 0

	
(4.16)

Equation 4.16 is called generalized eigenvalue equation. Hiα,jβ and Siα,jβ are elements 
of Hamiltonian matrix and overlapping matrix expanded by {ϕiα}, respectively. If 
{ϕiα} is a set of orthogonal functions, Eq. 4.16 is reduced to

	
H Ei j i jα β α βδ, ,− = 0

	
(4.17)

which has been familiar with in Sect.  4.2. Eqs.  4.16 and 4.17 are called LCAO 
method. If {ϕiα} are not chosen as actual atomic orbitals, this method is usually 
named as “tight binding”.

4.3.2  �Slater-Koster Two-Center Approximation

According to above discussions, the key step in TB method is to construct
Hamiltonian matrix H. Appropriate approximations are able to essentially simplify 
the construction of elements of H. In 1954, Slater and Koster suggested two-center
approximation in their classic paper [29], which expresses all Hamiltonian elements 
with a limited number of two-center integrations. The total number of all these basic 
integrations is around 30. Therefore, Slater-Koster two-center approximation makes 
TB method to be practical and is the foundation of modern TB simulating software
packages.
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Two points of Slater-Koster two-center approximation (SK approximation for
short) should be emphasized. First, let us specifically write down the expression of 
one element of H for a periodic system i.e. crystal. In this case, the basic function is 
φα, the Bloch summation of atomic orbitals ϕα:
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The superscript n is the index of cell. 


k  is the vector in reciprocal space. After some 
basic algebra calculations, we can obtain H ki jα β,

( ) :
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Because Ĥ  is a function of positions of electrons and atoms, Eq. 4.19 can be cate-
gorized as three types: (1) on-site integration, in which three integrands, ϕα, Ĥ  and 
ϕβ are at the same center; (2) two center integration, in which two of the above
integrands are at one center, and the other one is at another center; and (3) three
center integration, in which each integrand is at its own center. Because of the local
nature of ϕα and ϕβ, in most case on-site integration has the largest value while the 
three center integration is the smallest. Therefore, the contribution to H ki jα β,

( )  is 
truncated up to two center integrations. Three center integrations and higher order 
ones are ignored. This truncation essentially decreases the number of terms in 
H ki jα β,

( ) , and is the first point in SK approximation.
Two center integrations are usually understood as “bonding” between two orbit-

als centering at two atoms. They are explicit functions of the relative position 


Rij  
between two atoms. Though they could be very different from each other since 



Rij  
can be any vector, they always can be expressed as a combination of several basic 
two center terms. This is the second key point in SK approximation. These basic 
terms could be referred to “bonding terms”. These terms are showed as Vss, Vsp, Vpp 
and Vppπ, etc. The first two subscripts are the angular momentum numbers of two 
orbitals, and the third subscript indicates the bonding type, which depends on the 
relative orientations and symmetries of the two orbitals.

In Figs. 4.4 and 4.5, we show simple examples about how to express two center 
integrations in terms of bonding terms. One atom is at original point and another 
atom is at 



R , the orientation cosine with respect to xyz axis are l,m and n, respec-
tively. The s-s term is independent from orientation of 



R : s H s Vss
ˆ = σ (Fig. 4.4a). 

The py-py interaction can be decomposed as p p m V m Vy y ppĤ pp= + −( )2 21σ π
(Fig. 4.4b), and the s-py term is s H p mVy sp

ˆ = σ , (Fig. 4.5).
Therefore, four basic bonding terms can be used to express all sp-type interac-

tions. That is why SK approximation has made tremendous success. For higher 
order orbitals, i.e. d, f, and g, etc., one has to use angular momentum theory to 
calculate two center integrations, which is discussed in detail in a couple of refer-
ences [30, 31].
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Fig. 4.4  Illustration of two-center approximation of sp-type interactions. (a) is s-s term and (b) is 
py-py term

Fig. 4.5  Illustration of two-center approximation of s-py term
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4.3.3  �Total Energy in TB

By diagonalizing Hamiltonian matrix, a set of eigenvalues can be obtained. The cor-
responding energy of the system is then can be expressed as

	
Etot = ( )∑2

λ
λ λε εf

	
(4.20)

λ is the band index, the 2 comes from the spin-degeneracy of each band, and f(ελ) is 
Fermi-Dirac distribution at 0 K. However, the TB method might be challenged on
its accuracy since the above equation takes into account only on-site terms and 
“bonding” contributions. Etot should contain Coulomb repulsion of electrons and 
ions. Therefore, Eq.  4.20 severely overestimates cohesive energy of the system. 
Practically, Coulomb repulsion is dealt by adding an extra term Erep, we have
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,

exp /

	

(4.21)

A and R0 are parameters which are determined by experiments or DFT 
calculations.

4.3.4  �Examples

Compared to full self-consistent first-principles calculations, TB method does have
limitation of generality and transferability of parameters. However, its transparent 
physical picture and its approximate but reasonable way of describing electronic 
structures make it a very useful tool in analyzing the structure-electronic relation-
ship in nanomaterials. An example of how TB method is used to design a quantum
dot based on a single nanotube is illustrated here (Fig. 4.6) [32].

As is well known, a nanotube can be thought of a grapehene sheet rolled into a 
cylindrical tube. It has a tunable bandgap that is highly dependent on its topological 
structures, and this very unique electronic property may find many applications in 
nanoelectronics. For example, by changing the chirality of a single nanotube using 
topological defects, a variety of metal-semiconductor, metal-metal, and 
semiconductor-semiconductor junctions can be generated. Quantum dot (QD) can
be fabricated on a single wall nanotube (SWNT) by the mechanical deformation. 
As shown in Fig. 4.6a, kinks on a semi-conductive SWNT create dips on energy 
band gap. Together with the information of eigenstate wavefunctions, one can con-
clude that these kinks equivalently behavior like acceptor QDs. This could be an
effective and simple way of creating room-temperature quantum dot devices. On the 
other hand, for a metallic SWNT, the response of electronic structure to the defor-
mation is not very sensitive (Fig. 4.6b).
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4.4  �Molecular Dynamics

Though molecular dynamics (MD) method perform atomic simulations, it has no
quantum mechanics background, which is different from DFT and TB methods.
MD treats atoms as classic particles. Movements of atoms are determined by 
Newton equations. The atomic interaction is presented by empirical potentials, 
which shows as either analytical functions with parameters or data on grids. 

Fig. 4.6  The geometry of tubes used to create nanotube-based quantum wells. The two bending 
regions are separated by an undeformed segment (a) 6.7 nm long in the (10,0) tube and (b) 6.4 nm 
long in the (9,0) SWNT [32]
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Therefore, MD method does not perform SCF calculations or diagonalization of 
large matrix, and can be employed on study dynamical evolution of large systems 
(106 ~ 108 atoms, as shown in Fig. 4.1) in complicated loading conditions, i.e., stress, 
temperature, and ion bombardment, etc. [33–35]

4.4.1  �Empirical Potentials

4.4.1.1  �Lennard-Jones Potential

Lennard-Jones potential is a famous type of pair-potential. It describe atomic inter-
actions as
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ε and σ are parameters which are determined by fitting important properties, i.e. 
equilibrium distance, binding energy, etc. In modern MD simulations, Lennard-
Jones potential is usually used to describe interactions between gas atoms.

4.4.1.2  �Embedded Atomic Method

Embedded atomic method (EAM) presented better simulating results on bulk mate-
rials than pair-potential [36]. Besides pair potentials, EAM introduces an addition
term. Thus the total energy of the system is expressed as

	

E V R F R
i, j

ij
i j

ijtot = ( ) + ( )







∑ ∑ ∑1

2
ρ

	

(4.23)

F[ρ] is called “embedded energy”, which means the energetic gain when an atom is 
put into electron gas contributed by other atoms in vicinity. Clearly, EAM has con-
cepts similar to “atomic bonds” and density functional. V(R), ρ(R) and F[ρ] are 
usually functions with 10 ~ 20 parameters. One needs fit these parameters to repro-
duce lattice constant, cohesive energy, vacancy formation energy, surface energy, 
several elastic constants, and migration energy of a point defect, etc. Recently,
Ercolessi and Adams developed the force-matching method [37]. This method 
employs first-principles methods to obtain force acting on each atom in a serial of 
reference configurations. It then defines a target function as follows
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M is the number of reference configurations, Nk is the number of atoms in the k-th 
configuration. f is the atomic force, Ar is an abovementioned property of the mate-
rial, Wr is the assigned weight, and p is the set of parameters. By minimizing
Eq.  4.24, one can obtain desirable EAM potentials [39]. Different groups have 
applied the force-matching method to get high-qualified potentials for several metals 
and even binary systems [34, 40], which is an approval to the fidelity of this method.

4.4.2  �Integrator of Motion Equations

With a given reliable empirical potential, MD calculates the force on each atom as 
the negative derivative of potential energy with respect to the position of the atom, 
then update the velocity and the position of each atom according to Newton equa-
tion. Therefore, a mathematical interpretation of MD is to solve a second order 
ordinary partial equation:

	

d r
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f t
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(4.25)

Appropriate differential algorithms are essential for MD simulations.

4.4.2.1  �Verlet algorithm and Prediction-Correction Algorithm

The Verlet algorithm and prediction-correction algorithm are discussed here since 
they are widely used and are basis of other advanced algorithms as well. Given 
position r(t), velocity v(t), and force f(t) at time t, we can get r(t + Δt) at t + Δt and 
r(t−Δt) at t−Δt through Taylor expansion:
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By summing Eqs. 4.26 and 4.27, we have
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Equations 4.28 and 4.29 are called Verlet algorithm. Since positions and velocities 
at the time t can be obtained simultaneously, Verlet algorithm can be used to obtain 
the total energy of the system. Another key feature of Verlet algorithm is the time 
reversibility, which means if we suddenly flip the velocity of each atom at time 
t = nΔt, the system will go back to the initial positions along the same trajectory 
after n steps. Therefore, the total energy of the system is conserved in Verlet algo-
rithm. Detailed analysis demonstrates that this feature comes from Liouville equa-
tion of conserve force systems [41]. Clearly, Verlet  algorithm is ideal for 
micro-canonical ensembles. Main limitation of Verlet algorithm is that fluctuation 
of energy is large in a short period since velocities has only accuracy to the order of 
Δt2, as shown in Eqs. 4.28 and 4.29.

As shown in Eq.  4.25, MD simulation is to solve a second-order ODE.  The 
prediction-correction (PC) algorithm can be performed to get the trajectory of the
system. First, the position and the velocity at time t + Δt as the linear combination of 
forces of previous k steps are expressed, and the linear coefficients could be set to 
equal to the corresponding coefficients of Taylor expansion up to the term of Δtk, 
hence the position and velocity are updated as below:
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This is called prediction step. Second, one correction step needs to be performed. 
Calculate 



f t t+( )∆  and take it as a new point. Then re-estimate 


r t t+( )∆  and 


v t t+( )∆ :
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Table 4.1 presents PC coefficients with k = 4. PC algorithm is suitable to complex 
simulations due to its flexibility. However, total energy of the system is not a con-
serving quantity in PC algorithm because it is not time-reversible. This is not a 
severe problem in canonical ensemble simulations since the total energy needs to be 
manipulated constantly.

4.4.3  �Examples

An example of the MD simulation on interaction of a <111>/2 screw dislocation
and Cu-precipitate in BCC Fe matrix is presented here [38]. The whole system con-
tains 576,000 atoms. As shown in Fig. 4.7, the diameter of a spherical Cu-precipitate 
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with BCC structure is 2.3 nm. Under an external stress =700 MPa, the dislocation
can penetrate into the Cu precipitate, as shown in Fig. 4.7a, b. However, the disloca-
tion becomes pinned as it approaches the opposite precipitate-matrix interface, and 
hence is unable to glide outside the precipitate. Upon increasing the external stress, 
the dislocation line outside the precipitate continues to glide forward while the short 
dislocation line segments within the precipitate remains pinned, resulting to a bow-
ing out of the dislocation. The bow-out angle, θ gradually decreases upon increasing 
the external stress from 180° at  = 700  MPa until it reaches the critical value of 
θc = 144° under 1,000 MPa shear stress, where the dislocation suddenly detaches 
from the Cu precipitate and the dislocation line renders straight.

Figure 4.8 presents the dislocation core structures during the pinning process as 
shown in Fig. 4.7. Note that dislocation core in Cu-precipitate spreads along three 
directions (polarized core), while spreads along six directions in BCC Fe matrix
(non-polarized core). When the dislocation reaches to the boundary, it stops moving
and transfers its structure from polarized core to non-polarized core (Fig. 4.8b, c). 

Table 4.1  PC coefficients with k = 4

k = 4 1 2 3

Prediction αi 19/24 −10/24 3/24
αi′ 27/24 −22/24 7/24

Correction βi 3/24 10/24 −1/24
βi′ 7/24 6/24 −1/24

Fig. 4.7  MD snapshots of the dislocation core interacting with the 2.3 nm Cu precipitate as the dislo-

cation glides on the 101( )  plane along the 121  direction at (a) 243 ps, (b) 272 ps, (c) 312 ps, and 
(d) 320 ps, respectively. Green and red circles represent Cu and Fe atoms, respectively. [38]
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The transferring process corresponds the pinning. And the energy cost during the 
process is supplied by bowing-out of dislocation core. These results reveal that the 
dislocation/precipitate detachment process is accompanied with a polarized → non-
polarized core transition, which may be responsible for the pinning effect, the above 
discussion presents a plausible precipitate-size induced strengthening mechanism.

4.5  �Conclusions and Future Outlook

Computational simulations with atomistic resolution for nanomaterials has received 
an increasing interest due to the fact that nanoscale properties are extremely difficult 
to measure or manipulate, but more importantly, such properties are probably very 
sensitive to subtle environmental changes and perturbations, making repeated mea-
surements more challenging. In this chapter, the theoretical background of three 
types of widely-used material simulation methods: first-principles method, tight 
binding method, and molecular dynamics are introduced, followed by a detailed 
discussion including further theories with necessary mathematical treatments and 
examples for each method. A raw picture of applications of atomic simulation meth-
ods on material sciences could thus be generated.

Although there are some essential limitations for each kind of simulation meth-
ods, virtual material modeling/design has been made massive successes in the past 
four decades. Correction, extension and even renovation of current simulation 
methods have been or will be introduced in order to match the rapid development of 
material sciences. There are reasons to believe that virtual material modeling/design 
would become more and more important in both sciences and technologies in the 
near future.

Fig. 4.8  The dislocation  
core structure during the 
detachment process in 
Fig. 4.1 at (a) 280 ps,  
(b) 297 ps, (c) 303 ps,  
and (d) 315 ps. The red  
and green spheres represent 
Fe and Cu atoms, 
respectively. The dislocation 

glides along the 121   

direction under an external 
stress of 1,000 MPa [38]
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