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    Chapter 10   
 Pharmaceutical Nanotechnology: Overcoming 
Drug Delivery Challenges in Contemporary 
Medicine 

                Srinivas     Ganta    ,     Amit     Singh    ,     Timothy     P.     Coleman    ,     David     Williams    , 
and     Mansoor     Amiji    

10.1             Challenges in Delivery of Contemporary Therapeutics 

 Drug discovery process has been in forefront utilizing recent advances in molecular 
biology, -together with medicinal chemistry, protein structure based screening, and 
computational analysis, as part of rational approach to discovering drug molecules 
that will address unmet clinical needs. For example, proteins identifi ed from struc-
tural biology platform can serve as targets for discovering new drug molecules. The 
discovery of antisense oligonucleotides (ASN), plasmid DNA (pDNA), peptides and 
protein therapeutics has also shown a greater potential in treating several complex 
diseases. A recent development in drug discovery is RNA interference (RNAi) which 
uses small stretches of double stranded RNA with 21–23 nucleotides in length, to 
inhibit the expression of a gene of interest bearing its complementary sequence [ 1 ]. 
Small interfering RNA (siRNA) can induce RNAi in human cells. This RNAi tech-
nology has many advantages over other posttranscriptional gene silencing methods, 
such as gene knockouts and antisense technologies [ 2 ]. In addition, only a few mol-
ecules of siRNA need to enter a cell to inactivate a gene at almost any stage of devel-
opment. MicroRNA (miRNA), advancement from siRNA, is a new class of drugs still 
in the investigative stage based on nucleic acid chemistry. miRNA with 19–25 nucle-
otides in length, interfere pathways that involve in disease process [ 3 ]. In general, all 
these recent drugs have shown a great potential in the clinical management of several 
complex diseases like cancer, metabolic diseases, auto-immune diseases, cardiovas-
cular diseases, eye diseases, neurodegenerative disorders and other illness [ 1 ]. 
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 Despite the diversity and size of therapeutic libraries are continually increasing, 
delivering them to the disease sites has been hampered by physico-chemical 
attributes of drugs and physiological barriers of the body. For example, many small 
and macromolecular drugs (ASN, pDNA, peptides, proteins, siRNA and miRNA) 
often fail to reach cellular targets because of several chemical and anatomical 
barriers that limit their entry into the cells [ 4 ,  5 ]. Therefore, the outcome of therapy 
with that contemporary therapeutics is often unpredictable, ranging from benefi cial 
effects to lack of effi cacy to serious adverse effects. These challenges have been 
discussed in the following sections with an attempt to apply nanotechnology-based 
concepts in designing of drug delivery systems (DDS) that overcome barriers in 
drug delivery. 

10.1.1     Chemical Challenges 

 Physico-chemical properties impact on both pharmacokinetics and 
pharmacodynamics of the drug in vivo, and must be considered when selecting a 
suitable delivery method. The chemical challenges faced by small and 
macromolecular drugs (ASN, pDNA, peptides, proteins, siRNA and miRNA) are 
many folds, which mainly include:

    (i)    Molecular size   
   (ii)    Charge   
   (iii)    Hydrophobicity   
   (iv)    In vivo stability   
   (v)    Substrate to effl ux transporters     

  Size, Charge and Hydrophobicity     The chemical properties that mainly affect 
drug permeability through anatomical barriers are molecular size and solubility. 
High molecular size and increased hydrophobicity are the predominant problems 
particularly associated with combinatorial synthesis and high throughput screening 
methods [ 6 ]. These methods allow for identifi cation of lead molecules faster based 
on their best fi t into receptors, but shift the molecules towards high molecular size 
and increased hydrophobicity, resulting in poor aqueous solubility [ 6 ]. One estimate 
shows that around 40 % of the newly discovered molecules are poorly aqueous 
soluble, thus need a suitable delivery method to achieve pharmacologically relevant 
concentrations in the body [ 7 ,  8 ]. Oral route for drug delivery remains popular due 
to ease of administration and patient compliance. However, oral absorption can be 
hindered by poor aqueous solubility of therapeutics in GI fl uids. The rate of 
dissolution, which is a prerequisite for oral absorption, depends on the drug 
solubility in the GI fl uids. In addition, drug molecule must possess adequate 
lipophilicity (logP) in order to effi ciently permeate across intestinal epithelial cells 
[ 9 ]. This is one of the reasons for hydrophilic macromolecules such as proteins, 
peptides, and nucleic acid constructs do not show any oral bioavailability and 
resulting in limited clinical success [ 10 ].  
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 Drug transport mechanisms involving in intestinal epithelium are transcellular 
and paracellular transport [ 11 ]. Transcellular mechanism involving in transport of 
drug molecules across the cell membrane, which occurs by (1) passive diffusion, (2) 
facilitated diffusion, (3) active transport, and (4) transcytosis. Lipophilic drug 
molecules can diffuse freely across the epithelial membrane barrier while hydrophilic 
and charged molecules need specialized transport carriers to facilitate cellular 
uptake. Transcytosis process involving endocytosis and exocytosis mechanisms is 
mainly for macromolecular (proteins, peptides) drugs. Recent studies show that 
orally given nanoparticles can pass through the epithelial membranes in GI tract 
through the endocytosis process [ 12 ,  13 ], and this can be a potential route for 
transport of macromolecular therapeutics. 

 Paracellular route, on the other hand, involves diffusion of hydrophilic drugs 
between the cells of epithelial or endothelial membrane through sieving mechanism. 
The formation of tight junction between the epithelial and endothelial cells strictly 
limits the paracellular drug transport. Molecular cut-off for the paracellular transport 
is approximately 400–500 Da [ 14 ]. Molecular mass less than the cell junction can 
easily pass through paracellular route regardless of polarity, for example, water and 
ions. It has been observed that the diffusion of drugs with molecular size <300 Da 
is not signifi cantly affected by the physicochemical properties of the drug, and 
which will mostly pass through aqueous channels of the membrane. However, the 
rate of permeation is highly dependent on molecular size for compounds with 
MW > 300 Da. The Lipinski rule of fi ve suggest that an upper limit of 500 Da as 
being the limit for orally administered drugs [ 15 ]. Numerous studies are focused on 
identifying the nature of cellular tight junctions and the signaling molecules involved 
in preserving the barrier function in order to fi nd right approach to promote oral 
drug absorption. 

 Increased hydrophobicity of a molecule also causes greater protein binding. 
Protein binding is both help and hindrance to the disposition of drugs in the body 
[ 16 ]. Elimination and metabolism may be delayed because of highly protein bind. 
Therefore, protein binding affects both the duration and intensity of drug action 
in the body. 

  Stability     In vivo stability is also a critical chemical property of the drug that affects 
drug levels in the body. For example, the extent of drug ionization, stability in the 
acidic environment of the stomach or stability in the presence of gut enzymes, as 
well as presence of food and gastric emptying can reduce oral bioavailability of 
many small and macromolecular drugs. On the other hand, drugs are subjected to 
metabolism in the body by different sequential and competitive chemical 
mechanisms involving oxidation, reduction, hydrolysis (phase I reactions) and 
glucouronidation, sulfation, acetylation and methylation (phase II reactions). 
Cytochorme P450 enzymes which catalyze oxidation reaction are mainly responsi-
ble for fi rst-pass biotransformation of majority of the drugs in the body, thus limit-
ing oral absorption and systemic availability of the drugs [ 17 ]. Cytochrome 
P450 abundantly present in the intestinal epithelium and liver tissue, and metabo-
lizes several chemically unrelated drugs from major therapeutic classes [ 17 ]. 
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Besides this, macromolecular drugs such as proteins and peptides, ASN, pDNA, 
siRNA and miRNA have poor biological stability and a short half-life resulting in 
unpredictable pharmacokinetics and pharmacodynamics. Proteins and peptidal 
drugs are highly prone to enzymatic cleavage in the blood circulation and tissues, 
whereas nucleic acid therapeutics are highly susceptible to degradation by intra- 
and extra-cellular nucleases, leading to degradation and a short biological half-life 
[ 5 ,  18 ]. DDS have the potential to overcome the challenges of degradation and short 
biological half- life, and can provide safe and effi cient delivery of macromolecular 
therapeutics.  

  Expression of Membrane-Bound Drug Effl ux Pumps     If the drug molecules are 
substrates to effl ux pumps, their transport through cellular membranes is severely 
restricted [ 20 – 21 ]. The    ATP-binding cassette (ABC) effl ux pumps are trans- 
membrane proteins present at various organ sites within the body, and use ATP as a 
source of energy to actively transport drug molecules across the lipid cell membranes 
[ 23 ]. Among the ABC family of effl ux pumps, P-glycoprotein (P-gp) is highly 
expressed in epithelial cells of the small intestine, which is the primary site of 
absorption for the majority of the orally given drugs [ 24 ]. Effl ux pumps also present 
on the luminal side of the endothelial cells of BBB, and restrict entry of hydrophobic 
molecules into the brain [ 25 ,  26 ]. The multi-drug resistance in many cancers is 
linked to the ABC effl ux transporters which express on cell membranes and produce 
intracellular drug levels below the effective concentrations necessary for cytotoxicity 
[ 19 ]. All these effl ux transporters preset a broad overlap in substrate specifi cities 
and act as a formidable barrier to drug absorption and availability at target sites [ 24 ].  

 DDS can be employed to overcome most of these chemical challenges. For 
example, paclitaxel is a potent anticancer drug, is poorly absorbed after oral 
administration and its bioavailability is <6 % [ 27 ]. The obvious reason for its low 
bioavailability are high molecular weight, poor aqueous solubility, the affi nity to 
drug effl ux pumps, and rapid metabolism by cytochrome P450 enzymes in the gut 
[ 24 ]. Nanoemulsions and self-emulsifying DDS have been employed recently for 
the successful oral and parenteral delivery of paclitaxel [ 20 – 22 ,  28 ,  29 ]. Similarly, 
to protect RNA based therapeutics from enzymatic cleavage, several DDS have 
been proposed and they are at different stages of preclinical and clinical development.  

10.1.2     Remote Disease Targets 

 Anatomical and physiological barriers involved in the body restrict the direct entry 
of small and macromolecular drugs into the target extracellular or intracellular tis-
sue locations [ 4 ,  30 ] resulting in sub-optimal doses at target site and reduced effi -
cacy. However, cytotoxic drugs and RNA therapeutics have their target sites inside 
the cells, therefore need to be delivered intracellular in suffi cient doses to produce 
therapeutic effect. The fi rst limiting anatomical barrier for orally administered drugs 
is epithelial lining of gut walls, where from drugs will permeate through either by 
transcellular or paracellular transport. This transport is in turn dictated by the chem-
ical properties of drugs as alluded above. Therefore, altering the chemical properties 
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by making the drugs in salt form, encapsulating in DDS based on cyclodextrins, 
lipid or polymeric carriers, or using permeability enhancers could promote bioavail-
ability of drugs [ 20 – 22 ,  29 ]. Cytochrome P450 and effl ux transporters present in the 
enterocytes of intestinal walls also forms as another limiting barrier to drug perme-
ability [ 24 ]. Use of cytochrome P450 and effl ux pump inhibitors can promote oral 
drug absorption. For example, pre-treatment with curcumin results in inhibition of 
P-gp and cytochrome P450 expression in the GI tract, leading to increased oral bio-
availability and effi cacy of drugs [ 20 – 22 ,  31 ]. 

 For the drug molecules given intravenously, the limiting anatomical barrier is 
that of vascular endothelium and basement membrane. In addition, blood serum 
proteins, proteolytic enzymes, RNases etc. limit the effective drug delivery to the 
target sites [ 4 ,  30 ]. CNS disease are likely to rise to 14 % by 2020 mainly due to the 
ageing population, however, many newly discovered small and macromolecular 
therapeutics do not cross into the brain after systemic delivery [ 32 ]. Because brain 
is protected by blood-brain-barrier (BBB), which is composed of very tight 
endothelial cell junction and presence of several effl ux transporters, resulting in 
formation of dynamic formidable barrier to drug transport [ 33 ]. However, once at 
the BBB, hydrophobic drugs with the size below <500 Da generally do transport 
through lipid cell membranes by passive diffusion, but if they are substrates to drug 
effl ux pumps, they will be pumped out from the brain. Hydrophilic molecules also 
cannot transport effi ciently as there is very limited paracellular transport present in 
the tight junctions of the BBB [ 20 – 22 ]. 

 Cancer mass is another complex anatomical barrier in drug delivery. For example, 
solid tumor microenvironment is heterogeneous and structurally complex and pres-
ents a challenging barrier in drug delivery. The cytotoxic drugs which are intended to 
kill a large proportion of tumor cells in a solid tumor, must uniformly distribute 
through the vascular network, pass through capillary walls, and traverse the tumor 
tissue [ 34 ]. Nevertheless, the drug distribution in tumors is not uniform, and only a 
fraction of tumor cells is exposed to lethal doses of cytotoxic agents [ 34 ]. Tumor 
microenvironment is composed of tumor cells with varying proliferation rate and 
stromal cells (fi broblasts and infl ammatory cells) that are surrounded in an extracel-
lular matrix and nourished by a vascular network, and regions of hypoxia and acidity 
[ 34 – 37 ]. Each of these components may different from one site to another in the same 
tumor mass, and all of these factors effects tumor cell sensitivity to drug treatment 
[ 34 ]. In addition, stromal components in tumors contribute to an increase in interstitial 
fl uid pressure, which limit the penetration of macromolecular drugs [ 38 ]. Furthermore, 
the three-dimensional nature of solid tumor tissue itself affects the sensitivity of con-
stituent cells to chemo and radiation treatments [ 34 ,  39 ]. For instance, the tumor cells 
grown as spheroids in cell culture or tumors grown in animals, are more resistant to 
cisplatin and alkylating agents than the corresponding cell dispersions [ 40 ]. 

 In addition, certain intracellular infections, like leishmaniasis and listeria, where 
macrophages are directly involved in the disease are not accessible to drug delivery, 
thus necessitating specifi c drug delivery strategies [ 41 ]. To overcome all these chal-
lenges, it is highly important to develop DDS that render protection to the drug from 
biodegradation in the body, while allowing their transport through the anatomic and 
physiological barriers to increase their bioavailability at the target tissue.   
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10.2     Nanotechnology Solutions 

 The science of nanotechnology has begun just in the last decade, but in this short 
time, it has been successfully applied in several fi elds ranging from electronics to 
engineering to medicine. Recent understanding of cellular barriers and molecular 
profi le of diseases, and controlled manipulations of material at the nanometer length 
scale, nanotechnology offers great potential in the disease prevention, diagnosis, 
and treatment [ 30 ,  31 ]. Nanotechnology has also allowed for challenging innovations 
in drug delivery, which are in the process of transforming the delivery of drugs. 
Nanosystems fabricated using controlled manipulation of material are exploited for 
carrying the drug in a controlled manner from the site of administration to the target 
site in the body. They are colloidal carriers with dimensions <1,000 nm and can 
traverse through the small capillaries into a targeted organ down to target cell and 
intracellular compartments, which represent the most challenging barrier in drug 
targeting. The critical attributes of any nanoparticle DDS are to (1) protect a labile 
drug molecule from both in vitro and in vivo degradation, (2) maintain the effective 
pharmacokinetic and biodistribution pattern, (3) promote drug diffusion through the 
epithelium, and/or (4) enhance intracellular distribution. However, the specifi city, 
sensitivity and simplicity are very important for any nanosystem to be clinically 
successful as a DDS. Several types of nanoparticle DDS have been evaluated for 
their potential drug delivery applications are in various stages of clinical 
development, these are discussed in the next sections. 

10.2.1     Enhancing Solubility and Permeability 

 Solubility and permeability are two of the most critical biopharmaceutical 
characteristics impacting the successful delivery of drug molecules through 
anatomical membranes in the body. If the drug molecule is not a substrate to effl ux 
transporters and metabolizing enzymes, then the solubility (hydrophilic and 
hydrophobic) plays a major role in determining oral intestinal permeability. 
Biopharmaceutical Classifi cation System (BCS) is proposed based on the solubility 
and permeability properties of the drugs [ 42 ] which classifi es drugs into one of four 
classes. Class I drugs are highly soluble and permeable in the GI tract, therefore, 
bioavailability is not an issue with Class I drugs. Class II drugs are poorly aqueous 
soluble but highly lipophilic. They are well permeable across the GI tract due to 
high lipophilicity, but the bioavailability is likely to dissolution rate limited due to 
low aqueous solubility. Class III drugs are highly soluble but have low permeability 
due to their low lipophilicity. In both Class II and Class III examples, DDS plays a 
critical role in overcoming poor solubility and permeability. On the other hand, 
Class IV drugs show low solubility and low permeability, and exhibit poor and 
variable bioavailability. Methods to enhance both solubility and permeability should 
be adopted for these drugs. 
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 To improve solubility and permeability, several methods have been employed 
over the years. Such as preparation of prodrugs, use of chemical or physical perme-
ability enhancers to transient openings of the tight junctions, or direct administra-
tion to the target site. However, formulation efforts can best exemplify in improving 
poor solubility and permeation profi les of both small and macromolecular drugs. 
Nanoparticle DDs like, liposomes, nanoemulsions, nanosuspensions, solid- lipid 
nanoparticles (SLN), micelles or polymeric nanoparticles are highly useful over the 
current methods to deliver the highly hydrophilic or highly lipophilic molecules 
across the intestines and BBB. For example, drug nanocrystal suspensions (nano-
suspension) allow for increased dissolution velocity and saturation solubility of 
poorly aqueous soluble drugs, which is accompanied of an increase in oral bioavail-
ability [ 43 ]. In addition, nanocrystals can be delivered intravenously for controlled 
drug release, and their surface can be tailored for both passive and active targeting. 
On the other hand, lipid-based systems like nanoemulsions and SLN could allow for 
the delivery of lipophilic drugs, by incorporating them in the lipid core of the for-
mulation. These DDS can enable direct transfer of drug to the intestinal membranes 
and excluding the dissolution of drugs in aqueous fl uids in GI tract. In once such 
study, we have formulated highly lipophilic paclitaxel into deoxycholic acid modi-
fi ed nanoemulsion, which showed increased oral bioavailability compared to pacli-
taxel solution [ 20 – 22 ,  44 ]. In another example, saquinavir, an anti-HIV protease 
inhibitor incorporated in nanoemulsion, showed enhanced oral absorption [ 45 ]. 

 Recent studies show that nanoemulsions made using oils rich in omega-3 and 
omega-6 polyunsaturated fatty acids (PUFA) can promote drug delivery to the brain 
[ 45 ]. This is some extent attributed to the presence of PUFA transporters on the 
abluminal membrane side of the endothelial cells of BBB [ 46 ]. Tissue and cell 
permeability also altered by surface modifi cation of the nanoparticles with targeting 
ligands which can facilitate the nanoparticle uptake along with its payload into the 
cells. These aspects have been discussed in the next sections.  

10.2.2     Targeted Delivery to Disease Sites 

 Targeted delivery exploiting the structural changes and cellular markers of a given 
pathophysiology can potentially reduce the toxicity and increase the effi cacy of 
drugs. This is highly important in case of diseases like cancer, where dose-limiting 
toxicities and drug resistance constitute major barriers to drug success. General 
targeting mechanisms consists of passive and active targeting [ 30 ]. 

 Upon parenteral delivery, passive targeting depends on the size of the DDS and 
the disease vascular pathophysiology in order to preferentially accumulate the drug 
at the site of interest and avoid distribution to normal tissue [ 30 ]. For example, 
nanosystems escape from the blood circulation and accumulate in sites where the 
blood capillaries have open fenestrations as in the sinus endothelium of the liver 
[ 47 ] or when the integrity of the vascular endothelial membrane is perturbed by 
infl ammation due to infections, rheumatoid arthritis or infarction [ 48 ] or by tumors 
[ 49 ]. In the liver, the size of capillary fenestrae can be as large as 150 nm [ 50 ] and 
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liposomal nanocarriers showed extravasation to hepatic parenchyma [ 47 ]. 
Nanosystems in the size range of 50–200 in size can extravasate and accumulate 
inside the tumor tissue and infl ammatory sites [ 51 ,  52 ]. Therefore, the nanomedicine 
in the size range is expected to provide therapeutic benefi ts for treating these 
diseases. In case of solid tumors, passive targeting involves in the transport of 
nanosystems through a newly formed leaky tumor microvasculature into the tumor 
interstium and cells (Fig.  10.1 ). This phenomenon has named as “enhanced 
permeability and retention” (EPR) effect, fi rst discovered in murine tumors for 
macromolecules accumulation by Maeda and Matsumura [ 53 ]. EPR effect is 
observed in many human solid tumors with the exception of hypovascular tumors 
(prostate or pancreatic cancer) [ 54 ,  55 ]. This effect will be optimal if nanosystems 
can escape reticulo-endothelial system (RES) and show longer circulation half-life 
in the blood. Poly(ethylene glycol) (PEG) grafting on nanosystems will evade RES 
uptake, allow for prolonged circulation in the blood and enhance tumor accumulation 
through EPR. Besides, the RES uptake of non-PEG grafted nanosystems also offers 
an opportunity for passive targeting against intracellular infections such as 
leishmaniasis, candiasis, and listeria which reside in macrophages [ 41 ].  

 The specifi city of passive targeting can be remarkably improved when the 
targeting ligands are used with nanosystems, which selectively bind to cellular 
markers overexpressed on the disease site [ 56 ] termed as active targeting (Fig.  10.1 ). 
For example, folic acid-nanoparticles can be used to target tumor cells that over 
express folate receptors, such particles internalize via folate receptor mediated 
endocytosis [ 57 ]. In another example, arginine-glycine-aspartic acid (RGD) 
sequence containing peptides can be conjugated to nanoparticle to target α 5 β 5  or 
α 5 β 3  integrin receptors over express on endothelial cells of the newly formed 
angiogenic blood vessels and also on tumor cells. Furthermore, the targeting ligands 
anchored to nanosystems will allow for carrying of many drug molecules compared 
to direct conjugation of targeting ligands with drug molecules.  

Normal tissue 
vasculature

Leaky tumor 
vasculature

PEGylated 
nanosystem

Small molecules/drugs

Nanosystem with 
targeting  moiety

1. Endocytosis
2. Internalized targeted nanosystem
3. Endosomal release
4. Ncuclear transport
5. Recylcing endosome

1

3

2
4

5

Passive Targeting Active Targeting

  Fig. 10.1    Schematic illustration of passive and active targeting strategies in tumor drug delivery       
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10.2.3     Intracellular and Subcellular Delivery 

 The nanosystems once in the disease vicinity, they need to enter the cells and trans-
fer the payload to sub-cellular organelles. There are two mechanisms playing a role 
in intracellular and subcellular delivery are non-specifi c or specifi c uptake of nano-
systems by cells [ 30 ,  58 ]. In case of non-specifi c uptake, cells surround the nanosys-
tems and forms a vesicle in the cell called an endosome. The endosomes then fuse 
with the highly acidic organelles called lysosome, which are rich in degrading 
enzymes. Endosomes usually travels in a specifi c direction and join at the nuclear 
membrane. Specifi c uptake on the other hand, involves receptor mediated endocy-
tosis, where the actively targeted nanosystem binds to the cell-surface receptor, 
resulting in internalization of the entire nanoparticle-receptor complex and vesicu-
lar transport through the endosomes. The receptor can be re-cycled back to the cell 
surface following dissociation of complex. After the cellular internalization, stabil-
ity of the payload in the cytosol and delivery to specifi c organelles, such as mito-
chondria, nucleus etc, is also essential for therapeutic activity. However, many drugs 
do not survive in the lysosomal environment. For example, 99 % of the internalized 
gene molecules undergoes degradation in endosomes. Thus buffering the endo-
somes for safe release of its contents helps in effi cient gene delivery. Towards this, 
polycationic nanosystems have been explored, which causes endosomes to swell 
and burst, leading to the safe release of trapped content [ 59 ]. In another strategy, 
instead of traffi cking drug carrier to the lysosome, the endosomal contents were 
released into the cytoplasm, thus bypassing the lysosomal degradation of the drug 
molecules [ 60 ,  61 ]. For example, a cyclic RGD functionalized polyplex micelles 
were taken into the cellular perinuclear space selectively through caveolae mediated 
endocytosis, thus escaping the lysosomal degradation of its active content [ 61 ]. 

 Cellular uptake could be enhanced using of arginine rich cell penetrating pep-
tides (CPP’s) [ 62 ]. For example, HIV-1 Tat peptide was used to promote non-spe-
cifi c intracellular delivery of various therapeutics following systemic administration 
[ 63 ]. A number of cationic CPP’s like penetratin also have been identifi ed to 
promote intracellular drug delivery. In addition to intracellular delivery, use of 
delocalized cationic amphiphiles or mitochondriotropic nanosystems can promote 
mitochondrial drug delivery    [ 64 ,  65 ].  

10.2.4     Enabling Non-invasive Delivery 

 Non-invasive delivery is an alternate to systemic delivery of drugs, and mainly 
includes drug delivery via intranasal, pulmonary, transdermal, buccal/sublingual, 
oral and trans-ocular routes [ 66 ,  67 ]. Patient compliance has been found to be much 
higher when drugs given by non-invasive routes and therefore they are considered 
to be a preferred route of drug delivery. However, the preferred route of administration 
for a given drug selected based on several factors, such as biopharmaceutical 
properties (solubility, permeability and stability) of a drug molecule, disease state, 
onset of action, dose frequency and adverse effects. For example, sumatriptan and 
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zolmitriptan administered via intranasal route provide rapid-onset of relief from 
migraine related pain in minutes compared to oral tablet in hours. Similarly, potent 
peptidal drugs like calcitonin, desmopressin allows therapeutic blood levels that are 
not achieved with oral route of administration. In another example, selegiline and 
fentanyl transdermal products eliminate GI related adverse effects. In addition, non- 
invasive insulin products for inhalation and buccal administration improve patient 
compliance by reducing multiple daily injections. 

 In general, oral route is much convenient for high doses of administration. 
However, macromolecular drugs are not stable in the GI fl uids, where intranasal, 
buccal/sublingual or pulmonary offers a non-invasive route of choice. These routes 
also favor treatments that need faster absorption of drug and where a rapid systemic 
exposure is well tolerated. Transdermal delivery is useful in chronically adminis-
tered treatments (chronic pain, depression, Parkinson’s, dementia, attention defi cit- 
hyperactivity disorder and hormonal therapies), where sustained plasma profi les 
and low C max  to C min  ratio are required.   

10.3     Illustrative Examples of Nanotechnology Products 

 Nanotechnology based concepts have been extensively applied in engineering of 
nanosystems for delivery of contemporary therapeutics in a controlled manner from 
the site of administration to the target disease in the body. The history of nanosys-
tems reaches back to 1950s when the fi rst polymer-drug conjugate was reported 
with N-vinyl pyrrolidine conjugated to glycyl-L-leucine-mescaline [ 68 ]. However, 
the most relevant nanosystems were conceptualized only after the fi rst report of 
liposomal preparations in 1964 [ 69 ] and their subsequent use as vehicle for drug 
delivery application [ 70 ]. Soon after, synthesis of albumin nanoparticle was reported 
in early 1970s [ 71 ] with a subsequent early attempt of exploiting them as the fi rst 
protein based DDS [ 72 ]. The pharmacological effects of polymer-based nanoparti-
cles were studied [ 73 ] and their application as DDS envisioned around the same 
time [ 74 ]. As alluded earlier, ground breaking discovery of EPR effect in tumors by 
Matsumura and Maeda further emphasized on relevance of the size of delivery vehi-
cle [ 53 ]. These seminal works drew tremendous attention on nanosystems for a 
sustained and controlled delivery of drugs. It was realized that for an optimized 
delivery system, the size of the payload vehicle should be between 10 and 100 nm. 
Kidneys easily clear off particles smaller than 10 nm while the particles larger than 
100 nm are removed by the RES [ 73 ]. Since then, several different types of nano-
systems have been researched and much focus has specifi cally been on tailoring the 
size, physical properties and surface functionality of the delivery systems for vary-
ing therapeutic applications. The collective research input on the nanotechnology 
based improvement of DDS has enabled several products in to the market in the past 
two decades (Table  10.1 ).

   Sandimmune® and Taxol® are US Food and Drug Administration (FDA) 
approved dosage forms of cyclosporine and paclitaxel respectively, formulated 
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using Cremophor®EL as solubilizing nonionic surfactant. However, due to hyper-
sensitivity reactions associated with these products, Cremophor®-free formulations 
based on nanosystems have been developed and commercialized. Genexol PM  is one 
such example of Cremophor-free polymeric micelles formulated paclitaxel where 
poly-(ethylene glycol) is used as a nonimmunogenic carrier while biodegradable 
poly-(D,L-Lactic acid) forms the drug solubilizing hydrophobic core [ 75 ,  76 ]. 
Several such DDS including liposomes, nanoemulsions, polymeric nanoparticles, 
micelles and nanocrystals (Fig.  10.2 ) have been developed, granted regulatory 
approval and have been marketed since then. The following section will focus on 
each of such DDS with illustrative examples of commercialized products.  

     Table 10.1    Nanotechnology-based products in clinical application   

 Nanotechnology 
platform  Trade name  Active agent  Indication(s) 

 Approval 
year 

 Liposomes  Abelcet  Amphotericin B  Fungal infection  1995 
 AmBisome  Amphotericin B  Fungal infection  1997 
 Amphotec  Amphotericin B  Fungal infection  1996 
 Daunoxome  Daunorubicin  Antineoplastic  1996 
 DepoCyt  Cytarabin  Lymphomatous 

meningitis 
 1999 

 Doxil/Caelyx  Doxorubicin  Antineoplastic  1995 
 Myocet  Doxorubicin  Antineoplastic  2000 
 OncoTCS  Vincristine  Non-Hodgkin’s 

lymphoma 
 2004 

 Micelles  Estrasorb  Estradiol  Vasomotor symptoms  2003 
 Nanocrystal  Emend  Aprepitant  Antiemetic  2003 

 Tricor  Fenofi brate  Hypercholesterolemia 
and hypertriglyceridemia 

 2004 

 Triglide  Fenofi brate  Hypercholesterolemia 
and hypertriglyceridemia 

 2005 

 Megace ES  Magesterol 
acetate 

 Anorexia, cachexia or an 
unexplained signifi cant 
weight loss in AIDS 
patients 

 2005 

 Rapamune  Sirolimus  Immunosuppressant  2000 
 Nanoemulsion  Tocosol  Paclitaxel  Nonsuperfi cial urothelial 

cancer 
 2003 

 Nanoparticle  Abraxane  Paclitaxel  Metastatic breast cancer  2005 
 Nanotube  Somatuline 

depot 
 Lanreotide  Acromegaly  2007 

 Superparamagnetic 
iron oxide 

 Feraheme 
injection 

 Ferumoxytol  Treatment of iron 
defi ciency anemia in 
patients with chronic 
kidney disease 

 2009 

 Feridex  Ferumoxide  MRI contrast agent  1996 
 GastroMARK  Ferumoxsil  Imaging of abdominal 

structures 
 1996 

10 Pharmaceutical Nanotechnology…



202

10.3.1     Lipid-Based Nanosystems 

 Lipid based carriers are extremely popular since they facilitate a controlled admin-
istration of both small and macromolecular drugs at therapeutically relevant doses. 
Liposomes and nanoemulsions are two most commonly used lipid based nanosys-
tems for drug delivery application. 

  Liposomes     Liposomes are vesicles formed of a lipid bi-layer, fi rst developed by 
Alec Bangham in 1961, and their lipid bi-layer membrane is similar to that of cel-
lular membranes. The lipid bi-layer of liposomes is composed of phospholipids 
with a hydrophilic head and a hydrophobic long-chain tail [ 77 ]. The hydrophilic 
core of the liposomes facilitates in compartmentalizing water-soluble drugs into the 
aqueous core while the hydrophobic bi-lipid membrane has been exploited to load 
water-insoluble drugs. Initial attempts using liposomes as nanosystems focused 
largely on improving their circulation time in the blood and targeting effi ciency. 
PEG-modifi cation of liposomes, fi rst reported in 1990 [ 78 ] has by far been the most 
promising approach to achieve longer circulation of the liposomes in the blood. 
There has been a plethora of literature since then on the application of PEG-modifi ed 
liposomes to achieve a selective delivery of drugs post-administration [ 79 – 81 ]. 
However, several other surface modifi cations of liposomes such as poly[N-(2- 
hydroxypropyl) methacrylamide] [ 81 ] poly-N-vinylpyrrolidones [ 82 ] polyvinyl 

  Fig. 10.2    Different types of pharmaceutical nanosystems used in drug and gene delivery       
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alcohol [ 83 ] and amino acid-based polymer–lipid conjugates [ 84 ] have been 
explored. Many studies showed that the opsonization of the liposomes might be 
dependent on the hydrophobicity of the surface, charge of the lipid and the molecu-
lar weight of the modifying polymer [ 85 ]. Antibody [ 86 ], folate [ 87 ] and peptide 
[ 88 ] mediated surface receptor targeting has been primarily enabled directing the 
liposome based drug delivery to the target organ.  

 The fi rst liposome based formulation, PEG-liposome encapsulated doxorubicin 
was approved in 1995 (Doxil™, Orthobiotech) initially for the treatment of HIV- 
related Kaposi Sarcoma [ 89 ,  90 ] and later for ovarian cancer and myeloma. Doxil 
has remarkably reduced the cardiotoxicity by lowering cardiac exposure to free 
doxorubicin [ 77 ,  91 ]. Besides, it also increased half-life and tumor accumulation 
compared to free doxorubicin [ 92 ]. Furthermore, antibody modifi cation of Doxil 
has shown a much higher tumor accumulation and enhances the cytoxicity of the 
doxorubicin [ 93 ]. In a study conducted on 53 patients suffering from advanced 
Kaposi’s sarcoma, 19 patients showed partial and 1 patient showed complete 
response on administration of Doxil™ once every 3 weeks [ 94 ]. The success of 
liposomal doxorubicin has led to several liposomal-based drug formulations that are 
either approved for clinical application or are undergoing different phases of clini-
cal trial. Some of the key drugs that have been exploited for liposomal formulation 
are shown in Table  10.1 . 

  Nanoemulsions     Nanoemulsions are heterogeneous system of two immiscible 
liquids; typically oil-in-water (o/w) or water-in-oil (w/o) with a droplet size in the 
range of 50–200 nm. These kinetically stabilized nano-sized droplets have several 
advantages over macroemulsions such as higher surface area and hence more free 
energy, higher stability with lower creaming effects, coalescence, fl occulation and 
sedimentation [ 95 ]. The formation of nanoemulsions however requires an external 
shear force to decrease the droplet size to desired range and their productions 
methods are broadly classifi ed as high-energy and low-energy methods. The high- 
energy methods could include laboratory or industrial scale high-pressure 
homogenization, microfl uidization or laboratory scale ultrasonication [ 96 ]. 
However, these methods may not be conducive for applications involving thermo- 
labile drugs, nucleic acids and proteins. Low-energy methods such as spontaneous 
emulsifi cation, the solvent-diffusion method and the phase-inversion temperature 
(PIT) method are used for such payloads [ 95 ,  97 ]. The nanoemulsions serve as an 
excellent vehicle for solubilizing lipophilic drugs into the oil phase or hydrophilic 
drugs in the aqueous phase. The application of nanoemulsions as DDS has been 
envisaged only in the past decade and several attempts have been realized to increase 
their stability, circulation time and achieve a targeting effi ciency [ 20 – 22 ,  98 ,  99 ]).  

 For example, propofol was fi rst formulated in Cremophor® EL by Imperial 
Chemical Industries as ICI35868, and went into clinical use. However, due to the 
toxicity of Cremophor®, it was withdrawn from the market, reformulated in oil-in- 
water emulsion and launched by the trade name Diprivan® (ICI, now AstraZeneca). 
Apart from propofol as active pharmaceutical ingredient, the formulation contains 
generally regarded as safe grade excipients (GRAS) such as soyabean oil, glycerol, 
egg lecithin and disodium edetate [ 100 ]. Diprivan® is used as a short acting, 

10 Pharmaceutical Nanotechnology…



204

intravenous sedative used in intensive care medicine. It is known to have low 
toxicity, controlled sedation effect, rapid onset, a short duration of action and quick 
recovery despite prolonged usage [ 100 ,  101 ] TOCOSOL is another Cremophor® 
EL-free nanoemulsion formulation of paclitaxel that was approved by FDA in 2003 
for the treatment of nonsuperfi cial urothelial cancer. Dexamethasone (Limethason®, 
Mitsubishi Pharmaceuticals), alprostadil palmitate (Liple®, Mitsubishi 
Pharmaceuticals), fl urbiprofen axetil (Ropion®, Kaken Pharmaceuticals) and Vit A, 
D, E, K (Vitalipid®, Fresenius Kabi) are some other examples of therapeutically 
relevant compounds that have been formulated in nanoemulsions for clinical 
applications. Recently, NanoBio Corporation has formulated an emulsion-based 
antiviral drug NB 001 that shows potent activity against HSV-1 virus and antifungal 
drug NB 002 for the treatment of distal subungual onychomycosis (DSO). Both 
these formulations are currently in phase II/III trails.  

10.3.2     Polymer-Based Nanosystems 

 Polymeric nanoparticles clearly are the most studied system for drug delivery appli-
cations. Different polymeric materials, natural, semi-synthetic and synthetic, have 
been exploited as polymer-drug conjugate or polymer-based nanoparticle for drug 
encapsulation to facilitate therapeutic applications. It is important to realize that 
while polymer-drug conjugate is a system which involves a single polymer chain 
conjugate to the drug, polymer-based nanoparticles are actually made up of several 
polymer chains which encapsulate the drug of interest. 

  Polymer-drug Conjugate     Polymer-drug conjugates preparation date back to early 
1950 [ 68 ] and the fi eld has rapidly evolved since then [ 102 ]. Most drug molecules 
suffer from permeability through biological membranes, short half-life, non-specifi c 
distribution and dose dependent toxicities. Polymer conjugates on the contrary not 
only tremendously improves the in vivo circulation time of the drug but also 
facilitates passive delivery of these conjugates through leaky vasculature in diseases 
like cancer and infl ammation [ 103 ]. They however also suffer from certain 
drawbacks such as polymer dependent toxicity, immunogenicity, rapid drug release, 
conjugate instability and poor drug loading. Several endeavors have been taken to 
overcome some of these shortcomings with much success. Besides, many bio- 
inspired polymers such as proteins (albumin, antibodies etc.) have also been looked 
upon as promising candidates for drug delivery applications.  

 The fi rst polymer conjugate to undergo clinical trial was SMANCS where anti- 
tumor protein neocarzinostatin was (NCS) was covalently conjugated to two styrene 
maleic anhydride (SMA) [ 53 ]. SMANCS was approved subsequently in Japan in 
1994 to treat advanced and recurrent hepatocellular carcinoma [ 104 ]. PEG-conjugate 
were the fi rst candidate to get US FDA approval when PEG-L-asparaginase conju-
gate (Oncaspar) was accepted to treat acute lymphoblastic leukaemia [ 105 ]. Several 
other PEG -onjugates of drugs such as Neulasta (PEG-G-CSF; neutropaenia associ-
ated with cancer chemotherapy), PEG-asys (PEG-IFNα2a; Hepatitis B and C), 
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PEG-Intron (PEG-IFNα2b; Hepatitis C) have been approved to clinical treatment 
while several others are under various preclinical development. Besides, several 
other polymers (or their derivatives) conjugates (products names) such as polyglu-
tamate (CT-2103, CT-2106), dextran (DOX-OXD, DE-310), N-(2- hydroxypropyl)
methacrylamide (PK1, PK2, MAG-CPT, AP-5280, AP-4346) are being looked upon 
as promising candidates in their preclinical trial stages. 

 Though fi rst protein nanoparticle based drug conjugation was reported in as early 
as 1974 [ 72 ] the fi rst approved conjugate was realized only in 2005 when paclitaxel 
bound to albumin (Abraxane, AstraZeneca) was approved by FDA for treatment of 
metastatic breast cancer [ 106 ]. It is a non-targeted formulation with particle size 
around 130 nm, which is localized into the tumor partly through EPR effect and 
partly through albumin-binding protein. Clinical studies have demonstrated that 
Abraxane increases the therapeutic response, reduces the rate of disease progression 
and improves the survival rate among the patients. Antibodies have also been 
explored for drug conjugation and some examples of products from this class of 
nanovector includes Gemtuzumab (Mylotarg), Tositumomab and ibritumomab 
tiuxetan (Zevalin) [ 107 ,  108 ]. 

  Micellar Delivery Systems     Micelles are submicroscopic structures formed in an 
aqueous phase by amphiphilic surfactants or polymers that have a polar and a non- 
polar group. The typical size of these structures for delivery application ranges from 
10 to 100 nm. These structures have a hydrophobic core, which facilitates the 
solubility of a lipophilic therapeutic agent and a hydrophilic corona that is exploited 
for surface functionalization to improve their tumor accumulation. These properties 
render them an attractive choice as carriers for drug delivery applications. 
Conventional surfactants however have a very high critical micellar concentration, 
and therefore are prone to disintegration on dilution in the blood stream [ 109 ]. 
Alternatively, polymeric micelles are usually prepared by self-assembly of a 
copolymer having hydrophobic moiety forming the biodegradable core while 
hydrophilic component for the surface. These polymers form micelles in aqueous 
media but at a much lower concentration compared to conventional surfactants 
[ 110 ]. Such polymeric micelles have been extensively researched for drug 
encapsulation, enhanced tumor targeting and longer in vivo circulation to aid an 
improved delivery system. Various approaches have been utilized to prepare 
polymeric micelles of desired properties using block copolymer, their lipid [ 111 ] or 
cyclodextrin [ 112 ] derivatives, diblock copolymers [ 113 ], triblock copolymers 
[ 114 ], pluronic polymer [ 115 ] and graft polymers [ 116 ].  

 Genexol-PM, a cremophor-free PLA-PEG copolymer-based micellar formula-
tion completed its preclinical Phase I trial in 2004 [ 75 ]. Currently, the formulation 
is in its Phase II trial for the treatment of the patients suffering from taxane-pre-
treated recurrent breast cancer. SP1049C is another doxorubicin encapsulated plu-
ronic polymer micelle based formulation that is under Phase II preclinical trial for 
the treatment of advanced level inoperable adenocarcinoma of esophagus [ 117 ]. 
NK911 is yet another example of a micellar formulation of PEG and doxorubicin 
conjugated poly (aspartic acid) which is under preclinical development [ 118 ]. 
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  Dendrimer Delivery System     Dendrimers are roughly spherical nanoparticles 
made of several monomers, which branch out radially from the center. The 
advantages associated with dendrimers such as their controlled size, multiple 
valency, water solubility, modifi able functionality and an internal core render them 
a promising choice as drug carriers. They are therefore applied as delivery vehicles 
in several administration routes such as intra-venous, ocular, dermal and oral [ 119 ]. 
Their biocompatibility and immunogenicity has been studied in vitro as well as 
in vivo and similar to cationic macromolecules like liposomes and micelles, cationic 
surface groups render dendrimers cytotoxic to cells [ 120 ,  121 ]. Surface 
functionalization of dendrimers with PEG [ 122 ] or fetal calf serum [ 123 ] however 
has shown to reduce the cytotoxicity effects. The drug could be loaded on the 
dendrimers mainly by physical interaction or by covalent attachment. Physical 
adsorption of drug could suffer from poor drug loading and less control on drug 
release kinetics. Alternatively, the pro-drug approach is far more viable where the 
drug is chemically attached to the dendrimer directly or using a linker giving a much 
better pharmacokinetic and pharmacodynamic profi le [ 124 ].  

 The fi eld of dendrimer-based DDS has evolved greatly in the last decade and 
several dendrimer-drug conjugates are in their preclinical testing. One of the key 
examples is conjugation of PEO modifi ed 2,2-bis (hydroxymethyl) propionic acid 
based biodegradable dendrimer to doxorubicin, which shows 9-fold higher tumor 
accumulation and 10-fold less cytotoxicity than free drug. The intra-venous 
administration of prodrug to doxorubicin-nonresponsive tumor showed a rapid 
tumor regression in a single dose [ 125 ]. Poly(glycerol-succinic acid) dendrimer 
(PGLSA)-camptothecin prodrug similarly has shown an enhanced solubility, 
cellular uptake and retention [ 126 ]. Since these initial success reports, several drugs 
such as artemether, cisplatin, diclofenac, mefenamic acid, dimethoxycurcumin, 
difl unisal, etoposide, ibuprofen, 5-fl orouracil, indomethacin and many more have 
been conjugated to dendrimer and are undergoing preclinical/clinical trials [ 127 ].  

10.3.3     Nano-sized Drug Crystals 

 Poor aqueous solubility is one of the key problems with many small drug molecules, 
which affects their delivery and therapeutic applications. It is a well-established fact 
that with size reduction to nanometer scale, the properties of a material is governed 
by quantum laws and entirely different from its macro/micro size counterpart. A 
drug nanocrystal is therefore drug particle with its size in the nano-range i.e. 
10–100 nm, and a suspension of such nanocrystals is popularly known as nanosus-
pension [ 219 ]. The suspension of these nanocrystals can be achieved in aqueous 
solutions as well as non-aqueous medium (liquid PEG, oil) with help of stabilizers 
like amphiphilic surfactants (poloxamers, PVP, phospholipids, polysorbate 80) or 
polymeric (hydroxypropyl methyl cellulose) materials. The hallmark of drug nano-
crystals is that these crystals are pure drug particles with no carrier system. Similar 
to typical nanoparticle preparation, drug nanocrystals could be prepared by a 
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“bottom-up approach” (molecular level to nanocrystals) such as precipitation 
method or “top-down approach” (macro/micro level to nanocrystals) such as pearl 
milling (technology owned by Elan Nanosystems), high-pressure homogenization 
in water (technology owned by Skyepharma as well as Baxter) and in non-aqueous 
medium (technology owned by Pharmasol). Sometimes, a combination of the two 
approaches is used for nanocrystal production e.g. Nanoedge® (Baxter) that uses 
precipitation followed by homogenization. The major advantages of nanocrystal-
lized drug are increased rate of drug dissolution and saturation solubility, improved 
oral bioavailability, reduced dose variations and general applicability to all routes of 
administration. 

 Rapamune® was the fi rst nanocrystalline drug to obtain FDA approval in 2000 
and was licensed to Wyeth Pharmaceuticals. It was produced by pearl milling 
method developed by Elan Nanosystems and contains rapamycin as the active drug. 
The formulation is marketed in two forms as tablets and oral suspensions. Soon 
after, Emend® was approved in 2003, which contains Aprepitant and is marketed 
by Merck. The production process has been developed by Elan Nanosystems and it 
is used for the treatment of emesis. Tricor® (drug Fenofi brate), Megace ES® (drug 
Megestrol acetate) and Theralux® (drug Thymectacin) are three other drugs which 
have been developed by Elan Nanosystems and have been licensed to Abbott, Par 
Pharmaceuticals and Celmed respectively. Several other products have however 
been introduced by other companies which include Semapimod® (Guanylhydrazone, 
Cytokine Pharmasciences), Paxceed® (Paclitaxel, Angiotech) and Nucryst® 
(Silver, Nucryst Pharmaceuticals).   

10.4     Multifunctional Nanotechnology 

 As detailed in previous sections, biological system presents several barriers to 
effective drug delivery. It is therefore germane to develop drug delivery strategies to 
circumvent these barriers. This could be achieved by making the right choice of 
material as delivery vehicle, surface modifi cation to increase targeting and 
intracellular availability of the drug and improving the functionality of the delivery 
system to achieve the diagnostic applications [ 128 ]. The nanosystem with these 
multifunctional abilities (Fig.  10.3 ) offer new possibilities in diagnosis, treatment 
and disease monitoring. The following sections will provide an in depth discussion 
on these aspects of drug delivery systems.  

10.4.1     Choice of Materials for Nanotechnology 

 The material property of the delivery system is essentially the most important 
factor that governs the biocompatibility of formulation, stability and bioavailability 
of the drug and its clearance from the body. It is also equally important to 
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understand the microenvironment of the target where the drug has to be delivered 
to achieve an effective therapeutic concentration. Design of nanosystems governed 
by microenvironment of the disease site results into a class of delivery systems that 
are popularly known as stimuli-responsive DDS. The delivery payload, route of 
administration and material safety profi le, would also govern the components of 
such delivery vehicles. 

  pH Responsive Delivery Systems     The physiological profi le of an infected, can-
cerous or infl ammatory body tissues differ drastically compared to the normal tis-
sue. It has also been noted that various cellular compartments maintain their own 
characteristic pH levels; such as a lysosomal pH is around 4.5 where as in a mito-
chondria, the pH is around 8. These physiological differences result into a trans-
membrane pH gradient within the cellular compartments in a cell as well as among 
the cells. Such subtle differences in physiological environment could be actively 
exploited to design a pH responsive delivery system, which would be stable at phys-
iological pH of 7.4 but actively degrade to release the drug under other conditions 
[ 129 ]. For example, a tumor is composed of rapidly dividing and metabolizing cells 
that are always short of the desired food and oxygen supply and thus rely on glyco-
lytic pathways for harvesting energy to sustain [ 130 ]. The lack of oxygen in the 
tissue results in development of acidic condition within the tumor cells that could be 
exploited to achieve the delivery of a desired payload. The physicochemical proper-
ties of the delivery vehicles in response to difference in pH therefore are important 
characteristic, which has been actively focused in the past two decades.  

  Fig. 10.3    A conceptual 
model of multifunctional 
nanomedicine with targeting 
ability, imaging capability, 
and drug/gene delivery in a 
single platform       
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 Poly(β-amino ester) (PbAE) is a biodegradable cationic polymer which has been 
used for pH stimuli responsive delivery of drug. The polymer rapidly degrades 
under acidic environment with pH levels below 6.5 to release its payload into the 
cells. Signifi cantly enhanced accumulation of drugs in the tumors has been demon-
strated using PbAE polymer, leveraging pH stimuli-responsive delivery compared 
to a non-responsive polymer based delivery [ 131 – 133 ]. It has also been shown that 
the pH sensitivity of the polymeric delivery systems can be tailored by altering the 
length of the hydrophobic carbon chain length [ 134 ]. The pH responsiveness of poly 
(alkyl acrylic acid) polymer can be controlled by the choice of the monomer as well 
as the ratio of carboxylated to non-carboxylated alkylacrylate monomer. This poly-
meric system has been used for enhanced and effective in vitro transfection of lipo-
plex formulations. In yet another study, pullulan acetate- sulfadimethoxine polymer 
conjugate has been utilized to develop pH responsive, self-assembled hydrogels for 
an enhanced delivery of doxorubicin [ 135 ]. 

 Polymers have also been directly conjugated to the target drug using pH 
responsive spacers, which would degrade under the low pH environment inside the 
tumors or lysosomes/endosomes to release the drug. In one such attempt, poly 
(vinylpyrrolidone-co-dimethyl maleicanhydride) (PVD) was conjugated to 
doxorubicin and its pH responsive controlled release increased the accumulation of 
the drug in to the tumor site [ 136 ]. Similarly, copolymer N-(2-hydroxypropyl)
methacrylamide (HPMA) [ 137 ] and linear PEG based nanosystems are other 
candidates which have shown promise in delivery of drug to the tumor targets [ 138 , 
 139 ]. Hydrolytically labile hydrazone linkage has been used for the drug release by 
enzymatic action in the lysosomes/endosomes from the polymeric or protein-based 
conjugate [ 138 ]. Serum albumin conjugates of anticancer drugs such as chlorambucil 
and anthracyclines have shown an enhanced antiproliferative activity compared to 
free drug [ 140 ]. Polyacetals are other pH labile candidates, which have been 
exploited for developing polymer based pH-responsive DDS [ 141 ]. 

 Liposomes have similarly been suitably modifi ed to achieve pH stimuli and con-
trolled drug delivery. The intact pH-sensitive liposomes are internalized into the 
cells by endocytosis and fuse to the endosomes to deliver its contents inside the 
cytoplasm [ 77 ]. The desired modifi cation of the liposomes is mainly achieved by 
using new lipid candidates, which provides acid sensitivity to liposomes or by con-
jugation of pH sensitive polymers on liposome surface to render them prone to pH 
sensitive degradation. Mildly acidic amphiphiles have been used to design such 
phosphotidylethanolamine based liposomes where at physiological pH, these amphi-
philes act as stabilizers [ 142 ] but get protonated under acidic conditions causing a 
destabilization of the liposome and facilitating the delivery of the payload [ 143 ]. 
These delivery systems have been successfully researched to show in vitro delivery 
of antitumor drugs, toxins, DNA, antisense oligonucleotides and antigens [ 144 ]. 
Other lipids such as cholesteryl hemisuccinate (CHEMS), poly(organophosphazenes) 
and dioleoyl phosphatidyl ethanolamine (DOPE) have also been used for pH-sensi-
tive liposomal formulations [ 145 – 147 ]. 

 Micelles are yet another class of nanocarriers which have been extensively inves-
tigated to develop pH-responsive delivery. One approach to realize this aim has 
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been the employment of titratable amines or carboxylic groups on the copolymer 
surface such that the micelle formation relies on the protonation of these groups 
[ 148 ,  149 ]. In certain cases, water-soluble block copolymers exist in different forms 
depending on the pH of their aqueous solution and thus have been manipulated for 
drug delivery applications [ 150 ]. Besides, several other water-soluble copolymers 
have been extensively used to develop long circulating, pH responsive micelles. 
Some of the common examples include block copolymers based on poly[4- vinyl-
benzoic acid (VBA) and 2-N-(morpholino)ethyl methacrylate (MEMA), poly 
(acrylic acid)-b-polystyrene-b-poly(4-vinyl pyridine) (PAA-b-PS-b-P4VP), Poly[2 
(dimethylamino)ethylmethacrylate]-block-poly[2-(N-morpholino)ethyl methacry-
late] (DEA-MEMA), poly(L-lactide)-b poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) 
(PLLA-PEOz-PLLA) ABA triblock copolymers and diblock copolymers (PEOz-
PLLA) etc., have been used for such applications [ 30 ]. 

 Dendrimers are relatively new class of materials that are being investigated to 
develop pH-responsive delivery systems. One promising report has been the use of 
dendrimer composed of 2,2-bis(hydroxymethyl)propanoic acid monomer which 
has been conjugated to doxorubicin to produce a pH responsive delivery [ 151 ]. In 
another recent attempt, the terminal ends of core-forming PEO dendrimers have 
been modifi ed with hydrophobic groups using acid-sensitive acetal groups. The 
hydrophobic groups are cleaved off the dendrimer in acidic environment resulting 
in the release of the drug [ 152 ]. 

  Thermo-responsive Delivery Systems     The cancerous cells are known to be highly 
fragile and sensitive to heat-induced damage (compared to normal cells) largely due 
to their rapid dividing nature. Incorporation of components that facilitate heat 
induction in presence of external stimuli such as magnetic fi eld has therefore been 
looked upon as attractive choices to pursue. These facts have led to the development 
of hyperthermia as an adjunct to the radiation and chemotherapy for treatment of 
cancer cells. Several recent research efforts have shown that loading of 
superparamagnetic iron oxide particles to a delivery system leads to hyperthermia 
induced cell death at tumor sites [ 153 ,  154 ]. Use of drug delivery vehicle to localize 
these magnetic particles in the tumor sites ensure that only cancerous cells are 
subjected to elevated temperatures without affecting the normal cells. The tumor 
ablation by hyperthermia coupled with incorporation of an antitumor drug in the 
formulation leads to enhanced effi cacy and accumulation of the drug [ 155 ,  156 ].  

 The thermo-sensitive polymers display a low critical solution temperature 
(LCST) in aqueous solution, below which they are water-soluble but become 
insoluble above it. This interesting property makes them an exciting choice as 
thermo-responsive DDS. One such example has been the accumulation of rhoda-
mine– poly(N-isopropyl acrylamide-co-acrylamide) conjugate at the tumor site 
using targeted hyperthermia [ 156 ]. Certain amphiphilic polymers exhibit thermo-
sensitivity where they have a temperature sensitive hydrophilic component and a 
hydrophobic component. Poly (N-isopropylacrylamide) (NIPAAm) and its other 
copolymers have been the most researched thermo-sensitive amphiphilic polymers 
[ 157 ]. In an interesting report, gold nanoparticles coated cross-linked Pluronic ®  
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(poloxamer) micelles that showed a thermo-sensitive reversible swelling- shrinking 
behavior caused by hydrophobic interactions of copolymer chains in the micells 
[ 158 ]. Several other illustrations of such polymer based thermo-responsive nanocar-
riers have been accounted in details in literature for further reading [ 27 ]. 

 Fabrication of temperature-sensitive liposomes has been an area of tremendous 
interest to the researchers due to the simple known fact that the membranes of dif-
ferent phospholipids are known to undergo phase-transition from gel-to-liquid crys-
talline and lamellar-to-hexagonal transition and are release small water-soluble 
components during such transitions. One popular example is use of dipalmi-
toylphosphatidylcholine as primary lipid for liposome formation. It shows a leaky 
behavior at gel-to-liquid transition at 41 °C and this transition can be tailored by 
adding distearoylphosphatidylcholine as a co-lipid [ 159 ]. Polymers have also been 
employed to design thermo-sensitive liposomes that also show LCST. These poly-
mer chains exhibit a coil-to-globule transition with a change in temperature and thus 
impart temperature-regulated functionality to the liposomes [ 160 ]. Such polymers 
stabilize the liposomes in their hydrated form below the LCST but their dehydrated 
form destabilizes the liposomal structural integrity resulting in delivery of the drug 
[ 161 ]. Several reports exploit the modifi cation of liposomes with NIPAAm copoly-
mers for the fabrication of thermo-responsive substitutes [ 160 ,  162 ]. 

  Redox-Responsive Delivery Systems     Nucleic acid based therapeutics has acquired 
considerable interest lately and numerous attempts have been made to deliver ASN, 
pDNA, siRNA and miRNA, peptides and proteins for treatment of many genetic 
diseases. However, successful delivery of these biomolecules to the target cells is an 
important challenge considering the fact that these agents are highly prone to degra-
dation. A stimuli-responsive system will be of tremendous application as DDS for 
these biomolecules to ascertain their structural integrity and therefore the therapeu-
tic functionality. It has been established that there is a redox potential difference 
between the reducing extracellular space and the oxidizing intracellular compart-
ment, which can be potentially exploited to guide the DDS into the cells [ 163 ]. 
Redox-sensitive delivery systems largely rely on components containing disulfi de 
linkage that are taken up in the cell by endocytosis and the disulfi de linkage is dis-
rupted in the lysosomes to facilitate payload delivery [ 164 ]. The glutathione path-
way plays a key role in reduction of the disulfi de linkage in the reducing intracellular 
environment by maintaining an elevated level of reducing glutathione. Besides, the 
disulfi de crosslinking also ensures more stable and robust structural integrity of the 
nanosystem that decreases the chances of early release of the payload.  

 One of the strategies to exploit the redox stimuli has been the use of polyaspar-
tamide that uses positively charged groups in the polymer to electrostatically entrap 
DNA while the thiol groups on the polymer chain form the disulfi de linkage result-
ing in formation of thiopolyplexes [ 165 ]. Thiolated gelatin particles have also been 
shown to form gelatin thiopolyplexes and have been used as potential redox- 
responsive nanosystem for pDNA delivery [ 166 ,  167 ]. Thiolated polyethylene 
imine has been directly conjugate to DNA to form polyplexes [ 168 ,  169 ] or have 
been used with a crosslinking agent [ 170 ] to successfully delivery DNA into the 
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cells with high transfection effi ciency. In yet another report, glutathione sensitive 
polymer coated chitosan particles were used for designing of nanosystems stabilized 
by disulfi de bond to provide gene delivery [ 171 ]. FDA has recently approved redox- 
responsive anti-DC33 antibody conjugate (Mylotarg®) for the treatment of acute 
myeloid leukemia [ 172 ]. 

 Disulfi de bond based redox-responsive liposomes have also been explored to 
enhance liposomal stability and delivery effi ciency. Such liposomes are formed by 
a standard phospholipid along with a small chain lipid of which the hydrophobic 
and hydrophilic ends are linked by disulfi de bond. These liposomes show tremendous 
structural stability until they reach the reducing environment inside the cells where 
the disulfi de bond cleavage results in destabilization and delivery of the gene [ 173 ]. 
Thiocholesterol lipid based liposomes have been shown to successfully delivery 
gene into the cell in the reducing environment of the cells [ 174 ]. Mitomycin C 
conjugate with a cleavable disulfi de bond incorporated into liposomes has shown 
lesser toxicity and better therapeutic potential than the free drug [ 175 ].  

10.4.2     Surface Modifi cation to Increase Availability 
at Tissue and Cell Levels 

 A careful designing of the nanosystems will enable them to deliver the drugs suc-
cessfully to the target disease through active or passive targeting. However, to do so 
successfully, the DDS should be available in the blood stream for longer period of 
time by avoiding recognition by the components of immune system, circumventing 
the process of opsonization and preventing subsequent clearance by the RES. The 
longevity of nanosystem in the circulation not only allows their deposition at the 
target site through EPR effect but also improves targeting ligand to interact to its 
receptor. Suitable surface modifi cations of the nanocarriers for a prolonged and 
sustained presence in the body have therefore garnered tremendous interest. 

 Water-soluble polymers have been most commonly used to improve the retention 
time of the nanosystem in the blood and PEG is found to be most effi cient in this 
regard. The PEG coating on the nanosystem surface provides a steric hindrance that 
prevents the interaction and binding of blood proteins to nanoparticle surface. The 
fact that RES recognition of a foreign object in the body largely depends on the 
binding on these plasma proteins to the surface, the sterically stabilized nanocarriers 
successfully escape body clearance [ 176 ]. This property to evade the immune 
system is popularly known as the “stealth” effect of the polymer. PEG is an excellent 
choice as surface protection moiety due to its high solubility in aqueous medium, 
fl exibility of chain length, low immunogenicity and low toxicity. Besides, it does 
not interfere with the biological performance of the drug loaded in the delivery 
vehicle. PEG therefore by far is the most studied surface modifying agent to improve 
the residence time of the pharmaceutically relevant nanosystems. It has also been 
observed that while the particles modifi ed with brush-like PEG effectively escape 
the immune response, surfaces modifi ed with mushroom-like PEG molecules seem 
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to activate the immune system against the particles [ 177 ,  178 ]. Literature serves 
several derivatives of PEG that have actively been used to enable the surface func-
tionalization of the delivery vehicles [ 179 ]. 

 Besides PEG alone, copolymers of PEG have also been explored for surface 
modifi cation of drug delivery constructs. Block copolymer of PEG-polylactide 
glycolide (PLGA) forms a hydrophobic core of PLGA and a hydrophilic shell of 
PEG that shows a longer residence time in the blood circulation [ 180 ]. Such 
polymeric preformed particles of PLGA could also be functionalized by PEG 
derivatives to prevent recognition by the immune system and therefore an enhanced 
retention time in the body. For example, the PLGA particles functionalized with 
polylysine-PEG copolymers shows a considerably reduced opsonization [ 181 ] 
while PEG modifi ed poly (cyanoacrylate) particles provided longer-circulation as 
well as permeation into the brain tissue [ 182 ]. In a similar attempt, surface 
modifi cation of polystyrene nanosystems by hydrophobically-modifi ed dextran and 
PEG-dextran was studied to show that the stability of construct could be tailored by 
the density and also the nature of the surface modifying polymer [ 183 ]. Lipid 
derivatives of PEG have similarly been used to prepare PEG modifi ed liposomes for 
enhanced circulation and improved performance of the delivery system [ 184 ]. 

 Even though use of PEG has largely dominated the surface modifi cation of DDS 
to increase retention time, several other alternatives have also been explored. The 
pre-requisite for a substitute of PEG has to be a water-soluble, biocompatible and 
non-immunogenic material. Polyoxomers, polyoxamines, polysorbate 80 and many 
more polymers have been used to modify the surface of nanoparticles to improve 
the bioavailability inside body. Lipid derivatives of poly (acryl amide) and poly 
(vinyl pyrrolidone) as well as other amphiphilic polymers such as poly (acryloyl 
morpholine) (PAcM), phospholipid (PE)-modifi ed poly(2-methyl-2-oxazoline) or 
poly(2-ethyl-2-oxazoline), phosphatidyl poly glycerols, and polyvinyl alcohol have 
been successfully employed for surface modifi cation of the liposomes.  

10.4.3     Image-Guided Therapy 

 Imaging is an indispensable component of therapy and has been routinely used in 
hospitals and clinics for diagnosis of diseases and defects in the body. Conventional 
methods such as computerized axial tomography (CAT), magnetic resonance imag-
ing (MRI), X-Ray imaging etc. have been employed in medical science for past 
several decades. Therefore, it was only fi tting that with the advent of nanotechnol-
ogy and more specifi cally nano-pharmaceutics, the concept of “molecular imaging” 
has been envisioned. Ability to image a DDS has therefore been an integral aspect 
of drug delivery application since it provides a visual feature to locate the site and 
extend of a disease in the body. Besides, it also enables a real- time assessment of the 
site of localization of a delivery vehicle in the body, its extent of sequestration in a 
particular organ and more specifi cally within a cell in question. For instance, pres-
ence of an imaging modality in a delivery vehicle customized to target a metastatic 
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tumor could be essentially tracked to the end site of its localization providing a 
direct visual evidence of the effi ciency of a targeted or non-targeted system as well 
as the location of the tumor in the patient. Owing to the versatility of such a delivery 
system, extensive endeavors have been exercised to develop multifunctional nano-
system (Fig.  10.3 ) comprising of targeting ligands, therapeutic agent(s) as well as 
imaging agents. To this date, several organic and inorganic imaging agents have 
been explored including liposomes [ 185 ], dye-conjugated silica [ 186 ], quantum 
dots [ 187 ], gold nanoparticle and nano-shells [ 188 ] magnetic nanoparticles [ 189 ] 
and many other contrast enhancing agents. Along with advances in conventional 
techniques like CAT and MRI scan, many new molecular imaging approaches such 
as radioactivity-based imaging (gamma scintigraphy, positron emission tomogra-
phy (PET), single-photon emission computed tomography (SPECT)), surface 
enhanced raman scattering (SERS), optical coherence tomography (OCT), near-
infrared fl uorescence imaging etc., are been actively researched. 

 Radiolabelled probes are the most commonly used imaging agents in the drug 
delivery systems. Gamma scintigraphy provides a 2-dimension imaging ability 
while SPECT and PET enable a 3-D scanning. These techniques have their own 
advantages and disadvantages [ 190 ]. However, radioactivity based imaging systems 
are plagued by diffi culties such as handling radioactive material, regulations 
concerned with their administration, their residence and clearance time from the 
body. Alternatively, improvement in MRI by the use of magnetic nanoparticles 
[ 191 ] or contrast enhancing agents [ 192 ] in the delivery system has been explored 
with vigor because of the non-invasive nature of the technique. Complexes of 
gadolinium, manganese, ferrofl uids as well as superparamagnetic iron oxide are 
some of the most commonly applied contrast enhancing agents in MRI scans. Other 
popular imaging modalities include application of fl uorescent dyes and quantum 
dots [ 193 ], SERS agents such as gold and silver nanoparticles [ 194 ].  

10.4.4     Combination Therapeutics 

 Reports of multiples drug resistance (MDR) against antibacterial, antiviral, 
antifungal and anticancer drugs have become regularity in the previous decade. 
Numerous research endeavors have been applied to understand the origin of MDR 
and design therapeutic agents against them. However, the more we strive to 
overcome the medical enigmas by new drug discovery, the more complex the 
problem of MDR becomes. The gravity of the situation can be envisaged by a fact 
that the probability of MDR tuberculosis infection in acquired immunodefi ciency 
syndrome (AIDS) patient is many folds more than a normal person. The inception 
of drug resistance has triggered the use of combination of drugs targeting a disease 
causing organism/process. The components of combination therapy may impact 
different independent targets, complement each other effect on the same target or 
bind independent of each other to give a combined effect for containment of the 
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disease. Such combination therapy has successfully been realized in the treatment 
of cancer, diabetes, bacterial and viral infections and asthma. 

 Co-administration of paclitaxel and ceramide using nanosystems has been 
proven to be extremely effective against MDR ovarian cancer [ 131 ,  132 ] as well as 
brain tumor cells [ 195 ] compared to the effect of individual drugs. Similarly, the 
use of a combination of paclitaxel and curcumin [ 28 ,  196 ] as well as doxorubicin 
and curcumin [ 197 ] enables to overcome the MDR in cancer cells. Several com-
mercialized drugs such as Vytorin®, Caduet®, Lotrel®, Glucovance®, 
Avandamet®, Truvada®, Kaletra®, Rebetron®, Bactrim® and Advair® are actu-
ally a combination of two drugs [ 198 ]. Celetor Pharmaceuticals have developed 
CombiPlex® technology to launch combination chemotherapies for treatment of 
cancer. The technology uses high throughput screening, mathematical algorithm 
for synergy analysis and advanced nanosystems to predict right drug combination 
for therapy. This platform is meant to design chemotherapies so as to maintain an 
optimized ratio of the drugs in the body for enhanced effi cacy. Their formulation 
CPX-1 is a fi xed ratio combination of irinotecan and fl oxuridine that has shown 
positive results in its Phase-1 trial and is currently under Phase-2 trial for treatment 
against colorectal cancer [ 199 ]. CPX-351 similarly is a combination of cytarabine 
and daunorubicin and is under Phase-1 trial for the treatment of acute myeloid 
leukemia [ 200 ].   

10.5     Regulatory Issues in Nano-pharmaceuticals 

10.5.1     Approval of Pharmaceutical Products in the US 

 Despite the advances in nanomaterial application in disease diagnosis and drug 
delivery, signifi cant amount of work still to be done in terms of characterizing nano-
medicine safety and long term effects on biological system. Currently, all nano-
medicine go through the FDA’s traditional regulatory pathway within the Center for 
Drug Evaluation and Research (CDER) or Center for Devices and Radiological 
Health (CDRH). This pathway includes the following general requirements prior to 
approval.

    (i)    CDER reviews applications for new drugs.   
   (ii)    Prior to clinical testing, laboratory and animal testing is performed to deter-

mine pharmacokinetic and pharmacodynamic attributes of the drug to deter-
mine a likely safety and toxicology profi le in humans.   

   (iii)    Clinical trials are performed in stages to determine if the drug is safe in healthy, 
then sick patients, and whether it provides a signifi cant health benefi t.   

   (iv)    A team of FDA physicians, chemists, toxicologists, pharmacologists, and other 
pertinent scientists evaluates clinical data, and if safety and effi cacy are estab-
lished, the drug is approved for marketing.     
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 Prior to the initiation of clinical trials, pre-clinical testing and manufacturing are 
regulated by several levels of regulation or guidance. These are FDA internally 
generated guidance documents, codifi ed regulations listed in Title 21 Code of 
Federal Regulations (CFR) and International Conference on Harmonization (ICH) 
guidelines. Guidance documents are not codifi ed law, but represent the Agency’s 
current thinking on a particular subject. They do not create or confer any rights for, 
or on any person and do not operate to bind FDA or the public. An alternative 
approach may be used if such approach satisfi es the requirements of the applicable 
statute, regulations, or both [ 201 ]. 

 Title 21 is the portion of the CFR that governs food and drugs within the United 
States for the FDA. It is divided into three chapters: Chapter I – Food and Drug 
Administration, Chapter II – Drug Enforcement Administration, and Chapter III – 
Offi ce of National Drug Control Policy. 

 Most of the Chapter I regulations are based on the Federal Food, Drug, and 
Cosmetic Act. Notable sections in Chapter I are:

    (a)    11 Electronic records and electronic signature related   
   (b)    50 Protection of human subjects in clinical trials   
   (c)    54 Financial Disclosure by Clinical Investigators [ 33 ]   
   (d)    56 Institutional Review Boards that oversee clinical trials   
   (e)    58 Good Laboratory Practices (GLP) for nonclinical studies     

 The 200 and 300 series sections are regulations pertaining to pharmaceuticals:

    (a)    202–203 Drug advertising and marketing   
   (b)    210 cGMP’s for pharmaceuticals   
   (c)    310 Requirements for new drugs   
   (d)    328 Specifi c requirements for over-the-counter (OTC) drugs     

 The 600 series covers biological products (e.g. vaccines, blood):

    (a)    601 Licensing under section 351 of the Public Health Service Act   
   (b)    606 cGMP’s for human blood and blood products     

 The 700 series includes the limited regulations on cosmetics:

    (a)    701 Labeling requirements     

 The 800 series are for medical devices:

    (a)    803 Medical Device Reporting   
   (b)    814 Premarket Approval of Medical Devices [ 104 ]   
   (c)    820 Quality system regulations (analogous to cGMP, but structured like ISO) 

[ 128 ]   
   (d)    860 Listing of specifi c approved devices and how they are classifi ed     

 ICH guidelines are the result of The International Conference on Harmonization 
of Technical Requirements for Registration of Pharmaceuticals for Human Use and 
are unique in bringing together the regulatory authorities and pharmaceutical indus-
try of Europe, Japan and the US to discuss scientifi c and technical aspects of drug 
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registration. Since its inception in 1990, ICH has evolved, through its ICH Global 
Cooperation Group, to respond to the global face of drug development, so that the 
benefi ts of international harmonization for better global health can be realized 
worldwide [ 202 ]. The FDA has adopted ICH guidance within four main categories 
as described below.

    1.     ICH – Effi cacy 

    (a)    Clinical Safety E1–E2F   
   (b)    Clinical Study Reports E3   
   (c)    Dose-response Studies E4   
   (d)    Ethic factors E5   
   (e)    Good Clinical Practice E6   
   (f)    Clinical Trials E7–E11   
   (g)    Clinical Evaluation by therapeutic Category E12   
   (h)    Clinical Evaluation E14   
   (i)    Pharmacogenomics E15–E16    

      2.     ICH – Joint Safety/Effi cacy (Multidisciplinary) 

    (a)    MedDRA Terminology M1   
   (b)    Electronic Standards M2   
   (c)    Nonclinical Safety Studies M3   
   (d)    Common Technical Document M4   
   (e)    Data Elements and Standards for Drug Dictionaries M5   
   (f)    Gene Therapy M6   
   (g)    Genotoxic Impurities M7   
   (h)    Electronic Common Technical Document (eCTD) M8    

      3.     ICH – Quality 

    (a)    Stability Q1A–Q1F   
   (b)    Analytical Validation Q2   
   (c)    Impurities Q3A–Q3D   
   (d)    Pharmacopoeias Q4–Q4B   
   (e)    Quality of Biotechnological Products Q5A–Q5E   
   (f)    Specifi cations Q6A–Q6B   
   (g)    Good Manufacturing Practice Q7   
   (h)    Pharmaceutical Development Q8   
   (i)    Quality Risk Management Q9   
   (j)    Pharmaceutical Quality System Q10   
   (k)    Development and Manufacture of Drug substance Q11    

      4.     ICH – Safety 

    (a)    Carcinogenicity Studies S1A–S1C   
   (b)    Genotoxicity Studies S2   
   (c)    Toxicokinetics and Pharmacokinetics S3A–S3B   
   (d)    Toxicity Testing S4   
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   (e)    Reproductive Toxicology S5   
   (f)    Biotechnology Products S6   
   (g)    Pharmacology Studies S7A–S7B   
   (h)    Immunotoxicology Studies S8   
   (i)    Nonclinical Evaluation for Anticancer Pharmaceuticals S9   
   (j)    Photo-safety Evaluations S10    

      The most relevant FDA regulatory document associate with nanomedicine manu-
facturing is the ‘Liposome Drug Products’ guidance document proposed in 
August of 2002 [ 203 ] This document currently guides development of liposomal 
based drugs, which generally fall into the defi nition of nanomedicine based on 
particle size. The guidance provides recommendations for drug development 
applicants on chemistry, manufacturing and controls (CMC), human pharmacoki-
netics and bioavailability; and labeling documentation for liposome drug prod-
ucts submitted in new drug applications (NDAs). The guidance recommendations 
are segmented as follows.

    1.     Chemistry, Manufacturing, and Controls 

    (a)    Description and composition   
   (b)    Physiochemical Properties   
   (c)    Description of Manufacturing Processes and Controls   
   (d)    Control of excipients: Lipid Components   
   (e)    Control of Drug Product Specifi cations   
   (f)    Stability   
   (g)    Changes in Manufacturing    

      2.     Human Pharmacokinetics and Bioavailability 

    (a)    Bioanalytical Methods   
   (b)    In Vivo Integrity (Stability) Considerations   
   (c)    Protein Binding   
   (d)    In Vitro Stability   
   (e)    Pharmacokinetics and Bioavailability    

      3.     Labeling 

    (a)    Product Name   
   (b)    Cautionary Notes and Warnings   
   (c)    Dosage Administration    

      Nanomedicine platforms have a number of common issues that are related to 
regulatory oversight. Some of these include functional qualities such as signifi cantly 
different chemical properties than corresponding small or large molecules, different 
PK/PD/ADMET properties, delivery, targeting, release, stabilization, and 
bioavailability. Characterization, in terms of physiochemical attributes and general 
CMC issues (stability, sterility, etc.), are also common to many of the nanomedicine 
platforms, but differ greatly from the traditional small/large molecule drug [ 204 ]. 
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While nanomedicine are becoming more prevalent in the areas of cancer, AIDS, and 
brain disorders, there are concerns that the unique properties of nanoparticles, such 
as size, shape, affi nity, and surface chemistry may not fi t the traditional safety and 
quality evaluation protocol proposed under current regulations. 

 The FDA and European Medicines Agency (EMA) have begun to address the 
lack of a more comprehensive regulatory framework for nanomedicine through the 
establishment of international scientifi c workshops such as the EMA 1st International 
Workshop on Nanomedicine in September of 2010 [ 205 ]. The FDA has also 
recognized the need for specifi c nanomedicine guidance, and is working toward that 
goal. In August 2006, the FDA established a Nanotechnology Task Force to deter-
mine the regulatory framework needed to develop safe and effective FDA- regulated 
products that use nanotechnology materials. The resulting Nanotechnology Task 
Force Report recommended that the FDA pursue the development of nanotechnol-
ogy guidance for manufacturers and researchers, and that because of the emerging 
and uncertain nature of nanotechnology and the potential for multiple medical 
applications, there was a requirement for transparent, consistent and predictable 
regulatory pathways. 

 Current FDA recommendations, until specifi c guidance documents are devel-
oped, are to follow current FDA guidance including all normal testing procedures, 
normal drug stability testing, and those associated with CMC, in vivo, and in vitro 
analysis. Though understanding specifi c technical and scientifi c aspects of the 
drug product, tests should be designed accordingly. All parts of the drug product 
should be tested for stability, both individually and formulated. It will be critical 
for nanomedicine drug companies to communicate and develop acceptable proce-
dures in concert with the FDA as early in the product development process as pos-
sible [ 204 ].  

10.5.2     Preclinical and Clinical Development 

 There are more than twenty FDA approved products that contain nanomaterials 
(Table  10.1 ). To date, all of these products have been approved through the tradi-
tional regulatory pathway. As previously described nanomedicines are becoming 
more prevalent in the areas of cancer, AIDS, and brain disorders. There are cur-
rently hundreds of nanotechnology companies and research facilities trying to ben-
efi t from the emerging nanomedicine marketplace. Within the life sciences industry 
sector, funding has been primarily focused on those companies that apply nanotech-
nologies to ‘conventional’ therapeutics (i.e. drugs as either chemicals or biologics) 
to increase or extend their application; for example, targeted drug delivery systems 
(Nemucore Medical Innovations, BioDelivery Sciences International, CytImmune 
Sciences Inc., NanoBioMagnetics Inc., Nanobiotix, Nanotherapeutics Inc.), diag-
nostics (Nanosphere Inc., Oxonica Ltd) and medical imaging systems (Life 
Technologies Inc.- Qdots). These products and applications have a relatively 
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well-defi ned route to commercialization (subject to the regulatory hurdles facing 
nanotechnologies in general) [ 206 ]. 

 Most notable of the nanomedicine products are the combinatorial drugs that 
combine targeting, drug delivery, stability, protection, and imaging. Figure  10.3  
illustrates a typical combinatorial nanomedicine unit. The multifunctional 
nanoparticle is by nature a complex mixture of hydrophobic/hydrophilic molecules, 
inorganic components, peptides, and/or small molecule organic drug molecules. 
Many issues, regarding in vivo and in vitro assays need to be developed to segregate 
different properties of a multifunctional drug product. Some of these are:

    (a)    Synergies or interactions between the nanoparticle components   
   (b)    Biocompatibility   
   (c)    Long-term/chronic exposure assays/data   
   (d)    General toxicology assays and analytics   
   (e)    Animal models   
   (f)    Molecular weight   
   (g)    Particle size   
   (h)    Charge distribution   
   (i)    Purity   
   (j)    Contaminants   
   (k)    Stability – individual components and formulated   
   (l)    Consistency in manufacturing   
   (m)    PK/PD/ADMET assays/profi les   
   (n)    Aseptic processing/sterilization   
   (o)    Immunogenicity      

10.5.3     Knowledge Management, Manufacturing and Scale-Up 

 Process development and manufacturing of nanomedicine is at its early stages of 
development and thus is also in its seminal stages of preparing to respond to the 
guidance of the FDA. With FDA’s push to move from quality by testing to quality-
by- design (QbD) (Fig.  10.4 ) for nanomedicine community to succeed in this new 
environment it is imperative to develop robust documented, process knowledge 
for the fabrication of nanomedicine. Acquisition and development of process 
knowledge will enable practitioners to bring novel therapies to the clinic with 
unique multifunctional capabilities. Articulation of the key variables (equipment, 
materials, idiosyncratic protocols etc.) at an early stage (i.e. the discovery lab) 
involved in production process will lead to a better understanding of how to trans-
late good lab scale synthesis into scale processes for future clinical translation and 
assist manufacturing partners to produce material according to FDA’s QbD 
principles.  

 QbD fi rst implemented in pilot capacity by the FDA in 2005 has been formally 
adopted as a way to harmonize the development lifecycle of biopharmaceuticals and 
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move away from sampling to fi nd product defects to an environment were “in con-
trol” validated processes drive a data rich environment where variations within spec-
ifi cation are acceptable. QbD is based on the underlying principle that quality, safety 
and effi cacy must be designed into a product and that quality specifi cally  cannot be 
tested or inspected into a product. Offi cially defi ned as “a systematic approach to 
development that begins with predefi ned objectives and emphasizes product and 
process understanding and process control, based on sound science and quality risk 
management” [ 207 ]. We consider QbD to be essential for the development of manu-
facturing processes for nanomedicine. QbD creates a continuous knowledge cycle, 
an important concept for advancing beyond the seminal steps for identifying innova-
tive means to scale production of complex nanomedicine products [ 208 ]. The FDA 

Quality
by

Design

  Fig. 10.4    The United States Food and Drug Administration recommended quality-by-design 
(QdB) approach to link product knowledge with process knowledge and create a continuous 
improvement product development environment       

 

10 Pharmaceutical Nanotechnology…



222

has come out with guidance that covers Pharmaceutical Development, Quality Risk 
Management, and Quality System with a predisposition that the future state of bio-
pharmaceutical manufacturing, of which nanomedicine will be a part, will be an 
environment governed by QbD [ 207 ,  209 ]. Table  10.2  illustrates the differences in 
approach and the information requirements of QbD over traditional biopharmaceu-
tical manufacturing which is dependent upon inspection, testing, locked processes 
and reproducibility [ 207 ].

   It is important that nanomedicine manufacturers understand that QbD is knowl-
edge rich environment dependent upon user defi nition of critical quality attributes 
(CQA), such that the physical, chemical, or biological property or characteristic of the 
intended nanomedicine should be within a proper range or distribution to ensure prod-
uct quality. Linking CQA to process inputs (raw materials, chemicals, biologics etc), 
and process parameters (temperature, pressure, pH, etc) is performed in the early 
stage experimentation defi ned as the “design space” which is defi ned as the range of 
input variables or parameters for a single operation or it can span multiple operations. 
Early articulation of the design space, CQA and process inputs can provide a very 
fl exible operational environment with the desired attributes for scale-up 
manufacturing. 

  Importance of Knowledge Management in Nanomedicine     Nanomedicine holds 
the promise to cure complex diseases like cancer and save lives [ 213 ]. Today, aca-
demic scientists lead the development of the complex multifunctional nanomedi-
cine, but for all their promise, there is a striking lag in clinical translation. This lag 
rests on the fact that nanomedicine investigators under appreciate the value of target 
product profi les (TPP), a key component of QbD, for ensuring that processes used 
in the laboratory are compatible with commercial scale-up processes and regulatory 
guidance [ 210 ]. A solution to this problem is at very early stage, put information 
into the hands of investigators to guide efforts towards nanomedicine that will have 
a chance to make it to the clinic. Innovation in informatics is another essential area 
and is complementary to the NIH’s proposed investment to create National Center 
for Advancing Translational Sciences [ 211 ].  

 Nanomedicine translation faces substantial challenges related to managing the 
complex data streams emerging from the work at the bench, from process 
development work, and from preclinical studies all with important attributes 
required to drafting a TPP. The critical information developed during these activities 
is required to navigate a complex regulatory environment. Without effective data 
capture solutions and subsequent translation of large quantities of data into shared 
information, it will be “challenging” to coordinate the bench level process with 
scale-up process development, risk management and regulatory compliance. We are 
currently developing a software package, Fig.  10.5 , designed to assist academics in 
overcoming this translational bottleneck for nanomedicine by consolidating exist-
ing drug development best practices into a single package for use as a guide to fur-
ther advance nanomedicine development.  

 “Nanolytics”, developed by Nemucore Medical Innovations, Inc. (NMI) is a 
knowledge management system for information pertinent to development of TPP, 
processes development plans, validation plans and risk management assessment 
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needed to support effective nanomedicine translation. Nanolytics allows academic 
investigators early in research to contextualize how a nanomedicine could move to 
the clinic. Unlike either small molecule or biologic development the creation of 
nanomedicine, which are complex molecular entities, is very process and design 
intensive. A manual process already demonstrated value of an informatics approach 
to identify barriers (use of equipment not compatible with scale-up) and risks (regu-
latory, material, etc.) to translating these nanomedicine to the clinic. Nanolytics 
software consists of three suites: a TPP Suite, a Process Suite and Validation Suite. 
These suites and the knowledge they will manage should mitigate cost and reduce 
time of development of scale-up processes, lower barriers to clinical development 
for nanomedicine and leverage research costs more effectively [ 211 ,  212 ]. Nanolytics 
allows for the input of key information based on initial research and outputs docu-
mentation on how to achieve for the pilot scale production of the target nanomedi-
cine. As always is the case, better information, begets a more realistic product 
development plans. This development of information “outside” of the typical areas 
of focus of a nanomedicine researcher will reduce risk and clarify efforts in translat-
ing nanomedicine from bench to bedside. 

  Signifi cance to Nanomanufacturing Practices     Developing manufacturing capa-
bility in the past has been capital intensive and typically relegated to a commercial 

Validation
Planning

Data
Packages

Risk
Profiling

Target Product
Profile

Process Map
Development

Stakeholder Working Groups

Nanolytics
Core Functions

Web-Enabled
Nanolytics

  Fig. 10.5    “ Nanolytics ”: Conceptual framework for combination of informatics with processing 
technology for optimization of nano-pharmaceutical formulations       
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responsibility. But with many of the advances happening in nanomedicine there is a 
discreet need to lower the barrier to access manufacturing capabilities on a molecule 
agnostic platform. In an effort to create such an environment we have begun the 
process to establish the fi rst in the nation FlexFactory™ nanomedicine manufactur-
ing facility compliant with QbD principles. FlexFactory™ was developed by 
Xcellerex, Inc, (Marlborough, MA) to transition from single molecule manufactur-
ing footprint to a modular, single use backbone which is agnostic to molecule. 
FlexFactory™ provides the ideal manufacturing environment for nanomedicine as 
the controlled environmental units (CEMs) are able to maintain a single unit opera-
tion of a manufacturing process with the ability to grow with the progress of the 
molecule from preclinical thru commercial launch. The innovation of the 
FlexFactory™, briefl y, is if a unit operation needs to change for the development of 
a new nanomedicine manufacturing process the modular CEMs can be opened a 
new unit operation installed, the new step and the new process validated allowing 
for the production of a nanomedicine that conforms to different CQA. While there 
are other modular platforms that can be used in a similar manner they often have to 
be pieced together. The FlexFactory™ system has withstood numerous FDA audits, 
inspections, and license applications for a variety of biologics. The sophistication 
required for biologic therapeutic manufacturing is suspected to be similar to the 
complexity required for multifunctional nanomedicines. This level of complexity 
and novelty of scaling nanomedicine production is why we have taken a two-step 
approach to aggregate knowledge using Nanolytics and the molecule agnostic man-
ufacturing platform FlexFactory™, Fig.  10.6 .     

  Fig. 10.6    NMI FlexFactory™ footprint shown to illustrate that data captured in Nanolytics serves 
as foundation for manufacturing Information and knowledge about product characteristics, pro-
cess, and systems drive manufacturing design to optimize manufacturing of nanomedicine       
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10.6     Conclusions and Future Outlook 

 With greater understanding of chemical and physiological barriers associated in 
drug delivery and advances in nanomedicine design, there is an opportunity to effi -
cient delivery of small and macromolecular drugs to complex diseases. Along these 
lines, the nanosystems have been engineered with specifi c attributes such as bio-
compatibility, suitable size and charge, longevity in blood circulation, targeting 
ability and image guided therapeutics, which can deliver the drug/imaging agent to 
the specifi c site of interest, based on active and passive targeting mechanisms. These 
systems cannot only improve the drug delivery to the target disease, but also the 
resolution of detection at cellular and sub-cellular levels. 

 To fully realize the potential of nanosystems for delivery of contemporary thera-
peutics in clinical setting, it is imperative that researchers also address the material 
safety, scale-up and quality control issues. Scale-up and quality control becomes 
extremely challenging especially when dealing with nanosystem designed to carry 
multiple drugs, imaging agents and targeting moieties. Furthermore, in vivo fate of 
nanomedicine engineered using novel nanomaterials are need to be fully assessed 
before being used in clinical application.     
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