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Abstract. This paper deals with outer approximation based approaches to solve
mixed integer second order cone programs. Thereby the outer approximation is based
on subgradients of the second order cone constraints. Using strong duality of the sub-
problems that are solved during the algorithm, we are able to determine subgradients
satisfying the KKT optimality conditions. This enables us to extend convergence results
valid for continuously differentiable mixed integer nonlinear problems to subdifferen-
tiable constraint functions. Furthermore, we present a version of the branch-and-bound
based outer approximation that converges when relaxing the convergence assumption
that every SOCP satisfies the Slater constraint qualification. We give numerical results
for some application problems showing the performance of our approach.
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1. Introduction. Mixed Integer Second Order Cone Programs (MIS-
OCP) can be formulated as

min cT x

s.t. Ax = b

x � 0
(x)j ∈ [lj, uj ] (j ∈ J),
(x)j ∈ Z (j ∈ J),

(1.1)

where c = (cT
1 , . . . cT

noc)
T ∈ R

n, A = (A1, . . . Anoc) ∈ R
m,n, with ci ∈ R

ki

and Ai ∈ R
m,ki for i ∈ {1, . . . noc} and

∑noc

i=1 ki = n. Furthermore, b ∈ R
m,

(x)j denotes the j-th component of x, lj , uj ∈ R for j ∈ J and J ⊂ {1, . . . n}
denotes the integer index set. Here, x � 0 for x = (xT

1 , . . . xT
noc)

T with
xi ∈ R

ki for i ∈ {1, . . . noc} denotes that

x ∈ K, K := K1 × · · · × Knoc,

where

Ki := {xi = (xi0, x
T
i1)

T ∈ R× R
ki−1 : ‖xi1‖2 ≤ xi0}
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is the second order cone of dimension ki. Mixed integer second order cone
problems have various applications in finance or engineering, for example
turbine balancing problems, cardinality-constrained portfolio optimization
(cf. Bertsimas and Shioda in [17] or Vielma et al. in [10] ) or the problem of
finding a minimum length connection network also known as the Euclidean
Steiner Tree Problem (ESTP) (cf. Fampa, Maculan in [15]).

Available convex MINLP solvers like BONMIN [22] by Bonami et al. or
FilMINT [25] by Abhishek et al. are in general not applicable for (1.1),
since the occurring second order cone constraints are not continuously dif-
ferentiable.

Branch-and-cut methods for convex mixed 0-1 problems have been dis-
cussed by Stubbs and Mehrotra in [2] and [9] which can be applied to solve
(1.1), if the integer variables are binary. In [5] Çezik and Iyengar discuss
cuts for general self-dual conic programming problems and investigate their
applications on the maxcut and the traveling salesman problem. Atamtürk
and Narayanan present in [12] integer rounding cuts for conic mixed-integer
programming by investigating polyhedral decompositions of the second or-
der cone conditions and in [11] the authors discuss lifting for mixed integer
conic programming, where valid inequalities for mixed-integer feasible sets
are derived from suitable subsets.

One article dealing with non-differentiable functions in the context of
outer approximation approaches for MINLP is [1] by Fletcher and Leyffer,
where the authors prove convergence of outer approximation algorithms for
non-smooth penalty functions. The only article dealing with outer approx-
imation techniques for MISOCPs is [10] by Vielma et al., which is based on
Ben-Tal and Nemirovskii’s polyhedral approximation of the second order
cone constraints [13]. Thereby, the size of the outer approximation grows
when strengthening the precision of the approximation. This precision and
thus the entire outer approximation is chosen in advance, whereas the ap-
proximation presented here is strengthened iteratively in order to guarantee
convergence of the algorithm.

In this paper we present a hybrid branch-and-bound based outer ap-
proximation approach for MISOCPs. The approach is based on the branch-
and-bound based outer approximation approach for continuously differen-
tiable constraints – as proposed by Bonami et al. in [8] on the basis of
Fletcher and Leyffer [1] and Quesada and Grossmann [3]. The idea is to
iteratively compute integer feasible solutions of a (sub)gradient based lin-
ear outer approximation of (1.1) and to tighten this outer approximation
by solving nonlinear continuous problems.

Thereby linear outer approximations based on subgradients satisfying
the Karush Kuhn Tucker (KKT) optimality conditions of the occurring
SOCP problems enable us to extend the convergence result for continuously
differentiable constraints to subdifferentiable second order cone constraints.

Thus, in contrast to [10], the subgradient based approximation induces
convergence of any classical outer approximation based approach under the
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specified assumptions. We also present an adaption of the algorithm that
converges even if one of these convergence assumptions is violated.

In numerical experiments we show the applicability of the algorithm
and compare it to a nonlinear branch-and-bound approach.

2. Preliminaries. In the following int(Ki) denotes the interior
of the cone Ki, i.e. those vectors xi satisfying xi0 > ‖xi1‖,
bd(Ki) denotes the boundary of Ki, i.e. those vectors xi satisfy-
ing xi0 = ‖xi1‖. By ‖ · ‖ we denote the Euclidean norm.
Assume g : R

n �→ R is a convex and subdifferentiable function on R
n.

Then due to the convexity of g, the inequality g(x) ≥ g(x̄) + ξT (x − x̄)
holds for all x̄, x ∈ R

n and every subgradient ξ ∈ ∂g(x̄) – see for ex-
ample [19]. Thus, we obtain a linear outer approximation of the region
{x : g(x) ≤ 0} applying constraints of the form

g(x̄) + ξT (x− x̄) ≤ 0. (2.1)

In the case of (1.1), the feasible region is described by constraints

gi(x) := −xi0 + ‖xi1‖ ≤ 0, i = 1, . . . noc, (2.2)

where gi(x) is differentiable on R
n \ {x : ‖xi1‖ = 0} with ∇gi(xi) =

(−1,
xT

i1
‖xi1‖

) and subdifferentiable if ‖xi1‖ = 0. The following lemma gives
a detailed description of the subgradients of (2.2).

Lemma 2.1. The convex function gi(xi) := −xi0 + ‖xi1‖ is subdiffer-
ential in xi = (xi0, x

T
i1)

T = (a, 0T )T , a ∈ R, with ∂gi((a, 0T )T ) = {ξ =
(ξ0, ξ

T
1 )T , ξ0 ∈ R, ξ1 ∈ R

ki−1 : ξ0 = −1, ‖ξ1‖ ≤ 1}.
Proof. Follows from the subgradient inequality in (a, 0T )T .

The following lemma investigates a complementarity constraint on two el-
ements of the second order cone that is used in the subsequent sections.

Lemma 2.2. Assume K is the second order cone of dimension k and
x = (x0, x

T
1 )T ∈ K, s = (s0, s

T
1 )T ∈ K satisfy the condition xT s = 0, then

1. x ∈ int(K) ⇒ s = (0, . . . 0)T ,
2. x ∈ bd(K) \ {0} ⇒ s ∈ bd(K) and ∃γ ≥ 0 : s = γ(x0,−xT

1 ).
Proof. 1.: Assume ‖x1‖ > 0 and s0 > 0. Due to x0 > ‖x̄1‖ it holds

that sT x = s0x0 + sT
1 x1 > s0‖x1‖ + sT

1 x1 ≥ s0‖x1‖ − ‖s1‖‖x1‖. Then
xT s = 0 can only be true, if s0‖x1‖ − ‖s1‖‖x1‖ < 0 ⇔ s0 < ‖s1‖ which
contradicts s ∈ K. Thus, s0 = 0⇒ s = (0, . . . 0)T . If ‖x1‖ = 0, then s0 = 0
follows directly from x0 > 0.
2.: Due to x0 = ‖x1‖, we have sT x = 0 ⇔ −sT

1 x1 = s0‖x1‖. Since
s0 ≥ ‖s1‖ ≥ 0 we have −sT

1 x1 = s0‖x1‖ ≥ ‖x1‖‖s1‖. Cauchy -Schwarz’s
inequality yields −sT

1 x1 = ‖x1‖‖s1‖ which implies both s1 = −γx1, γ ∈ R

and s0 = ‖s1‖. It follows that −xT
1 s1 = γxT

1 x1 ≥ 0. Together with
s0 = ‖s1‖ and ‖x1‖ = x0 we get that there exists γ ≥ 0, such that s1 =
(‖ − γx1‖,−γxT

1 )T = γ(x0,−xT
1 )T .
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We make the following assumptions:
A1. The set {x : Ax = b, xJ ∈ [l, u]} is bounded.
A2. Every nonlinear subproblem (NLP (xk

J)) that is obtained from
(1.1) by fixing the integer variables to the value xk

J has nonempty
interior (Slater constraint qualification).

These assumptions comply with the assumptions made by Fletcher and
Leyffer in [1] as follows. We drop the assumption of continuous differen-
tiability of the constraint functions, but we assume a constraint qualifica-
tion inducing strong duality instead of an arbitrary constraint qualification
which suffices in the differentiable case.

Remark. A2 might be expected as a strong assumption, since it is
violated as soon as a leading cone variable xi0 is fixed to zero. In that
case, all variables belonging to that cone can be eliminated and the Slater
condition may hold now for the reduced problem. Moreover, at the end of
Section 5, we present an enhancement of the algorithm that converges even
if assumption A2 is violated.

3. Feasible nonlinear subproblems. For a given integer configura-
tion xk

J , we define the SOCP subproblem

min cT x

s.t. Ax = b,

x � 0,

xJ = xk
J .

(NLP (xk
J))

The dual of (NLP (xk
J)), in the sense of Nesterov and Nemirovskii [18] or

Alizadeh and Goldfarb [7], is given by

max (bT , x
k,T
J )y

s.t. (AT , IT
J )y + s = c,

s � 0,

(NLP (xk
J)-D)

where IJ = ((IJ )1, . . . (IJ )noc) denotes the matrix mapping x to the integer
variables xJ where (IJ )i ∈ R

|J|,ki is the block of columns of IJ associated
with the i-th cone of dimension ki. We define

I0(x̄) := {i : x̄i = (0, . . . 0)T },
Ia(x̄) := {i : gi(x̄) = 0, x̄i �= (0, . . . 0)T },

(3.1)

where Ia(x̄) is the index set of active conic constraints that are differentiable
in x̄ and I0(x̄) is the index set of active constraints that are subdifferen-
tiable in x̄. The crucial point in an outer approximation approach is to
tighten the outer approximation problem such that the integer assignment
of the last solution is cut off. Assume xk

J is this last solution. Then we will
show later that those subgradients in ∂gi(x̄) that satisfy the KKT condi-
tions in the solution x̄ of (NLP (xk

J )) give rise to linearizations with this
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tightening property. Hence, we show now, how to choose elements ξ̄i in the
subdifferentials ∂gi(x̄) for i ∈ {1, . . . noc} that satisfy the KKT conditions

ci + (AT
i , (IJ )T

i )μ̄ + λ̄iξ̄i = 0, i ∈ I0(x̄),
ci + (AT

i , (IJ )T
i )μ̄ + λ̄i∇gi(x̄i) = 0, i ∈ Ia(x̄),

ci + (AT
i , (IJ )T

i )μ̄ = 0, i �∈ I0(x̄) ∪ Ia(x̄)
(3.2)

in the solution x̄ of (NLP (xk
J )) with appropriate Lagrange multipliers μ̄

and λ̄ ≥ 0. This step is not necessary if the constraint functions are
continuously differentiable, since ∂gi(x̄) then contains only one element:
the gradient ∇gi(x̄).

Lemma 3.1. Assume A1 and A2. Let x̄ solve (NLP (xk
J)) and let

(s̄, ȳ) be the corresponding dual solution of (NLP (xk
J)-D). Then there exist

Lagrange multipliers μ̄ = −ȳ and λ̄i ≥ 0 (i ∈ I0 ∪ Ia) that solve the KKT
conditions (3.2) in x̄ with subgradients

ξ̄i =
(
−1
− s̄i1

s̄i0

)
, if s̄i0 > 0, ξ̄i =

(
−1
0

)
, if s̄i0 = 0 (i ∈ I0(x̄)).

Proof. A1 and A2 guarantee the existence of a primal-dual solution
(x̄, s̄, ȳ) satisfying the primal dual optimality system (cf. Alizadeh and
Goldfarb [7])

ci − (AT
i , (IJ )T

i )ȳ = s̄i, i = 1, . . . noc, (3.3)
Ax̄ = b, IJ x̄ = xk

J , (3.4)
x̄i0 ≥ ‖x̄i1‖, s̄i0 ≥ ‖s̄i1‖, i = 1, . . . noc, (3.5)

s̄T
i x̄i = 0, i = 1, . . . noc. (3.6)

Since (NLP (xk
J )) is convex and due to A2, there also exist Lagrange mul-

tipliers μ̄ ∈ R
m, λ̄ ∈ R

noc, such that x̄ satisfies the KKT-conditions (3.2)
with elements ξ̄i ∈ ∂gi(x̄). We now compare both optimality systems to
each other.

First, we consider i �∈ I0 ∪ Ia and thus x̄i ∈ int(Ki). Lemma 2.2, part
1 induces s̄i = (0, . . . 0)T . Conditions (3.3) for i �∈ I0 ∪ Ia are thus equal to
ci − (AT

i , (IJ )T
i )ȳ = 0 and thus μ̄ = −ȳ satisfies the KKT-condition (3.2)

for i �∈ I0 ∪ IA.
Next we consider i ∈ Ia(x̄), where xi ∈ bd(K) \ {0}. Lemma 2.2, part

2 yields

s̄i =
(
‖ − γx̄i1‖
−γx̄i1

)
= γ

(
x̄i0

−x̄i1

)
(3.7)

for i ∈ Ia(x̄). Inserting ∇gi(x̄) = (−1,
x̄T

i1
‖x̄i1‖

)T for i ∈ Ia into (3.2) yields
the existence of λi ≥ 0 such that

ci + (AT
i , (IJ )T

i )μ = λi

(
1

− x̄i1
‖x̄i1‖

)
, i ∈ Ia(x̄). (3.8)
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Insertion of (3.7) into (3.3) and comparison with (3.8) yields the exis-
tence of γ ≥ 0 such that μ̄ = −ȳ and λ̄i = γx̄i0 = γ‖x̄i1‖ ≥ 0 satisfy the
KKT-conditions (3.2) for i ∈ Ia(x̄).

For i ∈ I0(x̄), condition (3.2) is satisfied by μ ∈ R
m, λ̄i ≥ 0 and

subgradients ξ̄i of the form ξ̄i = (−1, vT )T , ‖v‖ ≤ 1. Since μ̄ = −ȳ

satisfies (3.2) for i �∈ I0, we look for a suitable v and λ̄i ≥ 0 satisfying
ci − (AT

i , (IJ )T
i )ȳ = λ̄i(1,−vT )T for i ∈ I0(x̄). Comparing the last con-

dition with (3.3) yields that if ‖s̄i1‖ > 0, then λ̄i = s̄i0,−v = s̄i1
s̄i0

satisfy
condition (3.2) for i ∈ I0(x̄). Since s̄i0 ≥ ‖s̄i1‖ we obviously have λ̄i ≥ 0
and ‖v‖ = ‖ s̄i1

s̄i0
‖ = 1

s̄i0
‖s̄i1‖ ≤ 1. If ‖s̄i1‖ = 0, the required condition (3.2)

is satisfied by λ̄i = s̄i0,−v = (0, . . . 0)T .

4. Infeasible nonlinear subproblems. If the nonlinear program
(NLP (xk

J)) is infeasible for xk
J , the algorithm solves a feasibility problem

of the form

min u

s.t. Ax = b,

−xi0 + ‖xi1‖ ≤ u, i = 1, . . . noc,

u ≥ 0,

xJ = xk
J .

(F (xk
J ))

It has the property that the optimal solution (x̄, ū) minimizes
the maximal violation of the conic constraints. The dual program of
(F (xk

J )) is

max (bT , x
k,T
J )y

s.t. −(AT , IT
J )y + s = 0,

su +
∑noc

i=1 si0 = 1,

‖si1‖ ≤ si0, i = 1, . . . noc,

su ≥ 0.

(F (xk
J )-D)

We define the index sets of active constraints in a solution (x̄, ū) of
(F (xk

J )),

IF := IF (x̄) := {i ∈ {1, . . . noc} : −x̄i0 + ‖x̄i1‖ = ū},
IF0 := IF0(x̄) := {i ∈ IF : ‖x̄i1‖ = 0},
IF1 := IF1(x̄) := {i ∈ IF : ‖x̄i1‖ �= 0}.

(4.1)

One necessity for convergence of the outer approximation approach
is the following. Analogously to the feasible case, the solution of the fea-
sibility problem (F (xk

J )) must tighten the outer approximation such that
the current integer assignment xk

J is no longer feasible for the linear outer
approximation. For this purpose, we identify subgradients ξi ∈ ∂gi(x̄) at
the solution (ū, x̄) of (F (xk

J )) that satisfy the KKT conditions of (F (xk
J ))
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AT
i μA + (IJ )T

i μJ = 0, i �∈ IF , (4.2)
∇gi(x̄i)λgi

+ AT
i μA + (IJ )T

i μJ = 0, i ∈ IF1, (4.3)
ξiλgi

+ AT
i μA + (IJ )T

i μJ = 0, i ∈ IF0, (4.4)∑
i∈IF

(λg)i = 1. (4.5)

Lemma 4.1. Assume A1 and A2 hold. Let (x̄, ū) solve (F (xk
J )) with

ū > 0 and let (s̄, ȳ) be the solution of its dual program (F (xk
J )-D). Then

there exist Lagrange multipliers μ̄ = −ȳ and λ̄i ≥ 0 (i ∈ IF ) that solve the
KKT conditions in (x̄, ū) with subgradients

ξi =
(
−1
− s̄i1

s̄i0

)
, if s̄i0 > 0, ξi =

(
−1
0

)
, if s̄i0 = 0 (4.6)

for i ∈ IF0(x̄).

Proof. Since (F (xk
J )) has interior points, there exist Lagrange multi-

pliers μ ∈ R
m, λ ≥ 0, such that optimal solution (x̄, ū) of (F (xk

J )) satisfies
the KKT-conditions (4.2) - (4.5) with ξi ∈ ∂gi(x̄i) plus the feasibility con-
ditions. We already used the complementary conditions for ū > 0 and
the inactive constraints. Due to the nonempty interior of (F (xk

J )), (x̄, ū)
satisfies also the primal-dual optimality system

Ax = b,

u ≥ 0,

−AT
i yA − (IT

J )iyJ = si, i = 1, . . . noc, (4.7)

xi0 + u ≥ ‖x̄i1‖,
noc∑
i=1

si0 = 1, (4.8)

si0 ≥ ‖s̄i1‖, i = 1, . . . noc, (4.9)
si0(xi0 + u) + sT

i1xi1 = 0, i = 1, . . . noc, (4.10)

where we again used complementarity for ū > 0.
First we investigate i �∈ IF . In this case x̄i0 + ū > ‖x̄i1‖ induces

si = (0, . . . 0)T (cf. Lemma 2.2, part 1). Thus, the KKT conditions (4.2)
are satisfied by μA = −yA and μJ = −yJ .

Next, we consider i ∈ IF1 for which by definition x̄i0 + ū = ‖x̄i1‖ > 0
holds. Lemma 2.2, part 2 states that there exists γ ≥ 0 with si0 = γ(x̄i0 +
ū) = γ‖x̄i1‖ and si1 = −γx̄i1. Insertion into (4.7) yields

−AT
i yA − (IJ )iyJ + γ‖x̄i1‖

(
−1
x̄i1
‖x̄i1‖

)
= 0, i ∈ IF1.

Since ∇gi(x̄i) = (−1,
x̄T

i1
‖x̄i1‖

)T , we obtain that the KKT-condition (4.3) is
satisfied by μA = −yA, μJ = −yJ and λgi

= si0 = γ‖x̄i1‖ ≥ 0.
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Finally, we investigate i ∈ IF0, where x̄i0 + ū = ‖x̄i1‖ = 0. Since
μA = −yA, μJ = −yJ satisfy the KKT-conditions for i �∈ IF0, we derive a
subgradient ξi that satisfies (4.4) with that choice. In analogy to Lemma
3.1 from Section 3 we derive that ξi = (−1, ξT

i1)
T with ξi1 = −si1

si0
, if si0 > 0

and ξi1 = 0 otherwise, are suitable together with λi = si0 ≥ 0.

5. The algorithm. Let T ⊂ R
n contain solutions of nonlinear sub-

problems (NLP (xk
J)) and let S ⊂ R

n contain solutions of feasibility prob-
lems (F (xk

J )). We build a linear outer approximation of (1.1) based on
subgradient based linearizations of the form (2.1). Thereby we use the
subgradients specified in Lemma 3.1 and 4.1. This gives rise to the mixed
integer linear outer approximation problem

min cT x

s.t. Ax = b

cT x < cT x̄, x̄ ∈ T, x̄J ∈ Z
|J|,

−‖x̄i1‖xi0 + x̄T
i1xi1 ≤ 0, i ∈ Ia(x̄), x̄ ∈ T,

−‖x̄i1‖xi0 + x̄T
i1xi1 ≤ 0, i ∈ IF1(x̄) x̄ ∈ S,

−xi0 ≤ 0, i ∈ I0(x̄), s̄i0 = 0, x̄ ∈ T,

−xi0 −
1

s̄i0
s̄T

i1xi1 ≤ 0, i ∈ I0(x̄), s̄i0 > 0, x̄ ∈ T,

−xi0 −
1

s̄i0
s̄T

i1xi1 ≤ 0, i ∈ IF0(x̄), s̄i0 > 0, x̄ ∈ S,

−xi0 ≤ 0, i ∈ IF0(x̄), s̄i0 = 0, x̄ ∈ S,

xj ∈ [lj , uj], (j ∈ J)
xj ∈ Z, (j ∈ J).

(MIP(T,S))

The idea of outer approximation based algorithms is to use such a
linear outer approximation (MIP(T,S))of the original problem (1.1) to
produce integer assignments. For each integer assignment the nonlinear
subproblem (NLP (xk

J)) is solved generating feasible solutions for (1.1) as
long as (NLP (xk

J)) is feasible. We define nodes Nk consisting of lower
and upper bounds on the integer variables that can be interpreted as
branch-and-bound nodes for (1.1) as well as (MIP(T,S)). We define the
following problems associated with Nk:

(MISOCk) mixed integer SOCP with bounds of Nk

(SOCk) continuous relaxation of (MISOCk)
(MIP k(T, S)) MIP outer approximation of (MISOCk)
(LP k(T, S)) continuous relaxation of (MIP k(T, S))

Thus, if (LP k(T, S)) is infeasible, (SOCk), (MISOCk) and
(MIP k(T, S)) are also infeasible. The optimal objective function value
of (LP k(T, S)) is less or equal than the optimal objective function val-
ues of (MIP k(T, S)) and (SOCk) respectively, and these are less or equal
than the optimal objective function value of (MISOCk). Thus, the algo-
rithm stops searching the subtree of Nk either if the problem itself or
its outer approximation becomes infeasible or if the objective function
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value of (MIP k(T, S)) exceeds the optimal function value of a known
feasible solution of (1.1). The latter case is expressed in the condition
cT x < cT x̄, ∀x̄ ∈ T in (MIP k(T, S)). The following hybrid algorithm in-
tegrates branch-and-bound and the outer approximation approach as pro-
posed by Bonami et al. in [8] for convex differentiable MINLPs.

Algorithm 1 Hybrid OA/B-a-B for (1.1)

Input: Problem (1.1)
Output: Optimal solution x∗ or indication of infeasibility.

Initialization: CUB :=∞, solve (SOC0) with solution x0,
if ((SOC0) infeasible) STOP, problem infeasible
else set S = ∅, T = {x0} and solve (MIP(T,S))
endif

1. if ( (MIP(T,S))infeasible) STOP, problem infeasible
else solution x(1) found:

if (NLP (x(1)
J ) feasible)

compute solution x̄ of (NLP (x(1)
J )), T := T ∪ {x̄},

if (cT x̄ < CUB) CUB = cT x̄, x∗ = x̄ endif.
else compute solution x̄ of F (x(1)

J ), S := S ∪ {x̄}.
endif

endif
Nodes := {N0 = (lb0 = l, ub0 = u)}, ll := 0, L := 10, i := 0

2. while Nodes �= ∅ do select Nk from Nodes , Nodes := Nodes \Nk

2a. if (ll = 0 mod L) solve (SOCk)
if ((SOCk) feasible): solution x̄, T := T ∪ {x̄}

if (x̄J integer):
if (cT x̄ < CUB) CUB = cT x̄, x∗ = x̄ endif
go to 2.

endif
else go to 2.
endif

endif
2b. solve (LP k(T, S)) with solution xk

while ((LP k(T, S)) feasible) & (xk
J integer) & (cT xk < CUB)

if (NLP (xk
J)is feasible with solution x̄) T := T ∪ {x̄}

if (cT x̄ < CUB) CUB = cT x̄, x∗ = x̄ endif
else solve F (xk

J ) with solution x̄, S := S ∪ {x̄}
endif
compute solution xk of updated (LP k(T, S))

endwhile
2c. if (cT xk < CUB) branch on variable xk

j �∈ Z,
create N i+1 = Nk, with ubi+1

j = �xk
j �,

create N i+2 = Nk, with lbi+2
j = �xk

j �,
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set i = i + 2, ll = ll + 1.
endif
endwhile

Note that if L = 1, xk is set to x̄ and Step 2b is omitted, Step 2
performs a nonlinear branch-and-bound search. If L = ∞ Algorithm 1
resembles an LP/NLP-based branch-and-bound algorithm. Convergence
of the outer approximation approach in case of continuously differentiable
constraint functions was shown in [1], Theorem 2. We now state conver-
gence of Algorithm 1 for subdifferentiable SOCP constraints.

For this purpose, we first prove that the last integer assignment xk
J is

infeasible in the outer approximation conditions induced by the solution of
a feasible subproblem (NLP (xk

J)).
Lemma 5.1. Assume A1 and A2 hold. If (NLP (xk

J)) is feasible with
optimal solution x̄ and dual solution (s̄, ȳ). Then every x with xJ = xk

J

satisfying the constraints Ax = b and

−‖x̄i1‖xi0 + x̄T
i1xi1 ≤ 0, i ∈ Ia(x̄),
−xi0 ≤ 0, i ∈ I0(x̄), s̄i0 = 0,

−xi0 −
1

s̄i0
s̄T

i1xi1 ≤ 0, i ∈ I0(x̄), s̄i0 > 0, x̄ ∈ T,
(5.1)

where Ia and I0 are defined by (3.1), satisfies cT x ≥ cT x̄.
Proof. Assume x, with xJ = x̄J satisfies Ax = b and (5.1), namely

(∇gi(x̄))T
J (xJ̄ − x̄J̄)≤ 0, i ∈ Ia(x̄), (5.2)

(ξ̄i)T
J (xJ̄ − x̄J̄ ) ≤ 0, i ∈ I0(x̄), (5.3)
A(x− x̄) = 0, (5.4)

with ξ̄i from Lemma 3.1 and where the last equation follows from Ax̄ = b.
Due to A2 we know that there exist μ ∈ R

m and λ ∈ R
|I0∪Ia|
+ satisfying

the KKT conditions (3.2) of (NLP (xk
J)) in x̄, that is

−ci = AT
i μ + λiξ̄i, i ∈ I0(x̄),

−ci = AT
i μ + λi∇gi(x̄), i ∈ Ia(x̄),

−ci = AT
i μ, i �∈ I0(x̄) ∪ Ia(x̄)

(5.5)

with the subgradients ξ̄i chosen from Lemma 3.1. Farkas’ Lemma (cf. [20])
states that (5.5) is equivalent to the fact that as long as (x − x̄) satisfies
(5.2) - (5.4), then cT

J̄
(xJ̄ − x̄J̄ ) ≥ 0 ⇔ cT

J̄
xJ̄ ≥ cT

J̄
x̄J̄ must hold.

In the case that (NLP (xk
J)) is infeasible, we can show that the subgra-

dients (4.6) of Lemma 4.1 together with the gradients of the differentiable
functions gi in the solution of (F (xk

J )) provide inequalities that separate
the last integer solution.

Lemma 5.2. Assume A1 and A2 hold. If (NLP (xk
J)) is infeasible and

thus (x̄, ū) solves (F (xk
J )) with positive optimal value ū > 0, then every x

satisfying the linear equalities Ax = b with xJ = xk
J , is infeasible in the

constraints
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−xi0 + x̄T

i1
‖x̄i1‖

xi1 ≤ 0, i ∈ IF1(x̄),

−xi0 −
s̄T

i1
s̄i0

xi1 ≤ 0, i ∈ IF0, s̄i0 �= 0,

−xi0 ≤ 0, i ∈ IF0, s̄i0 = 0,

(5.6)

where IF1 and IF0 are defined by (4.1) and (s̄, ȳ) is the solution of the dual
program (F (xk

J )-D) of (F (xk
J )).

Proof. The proof is done in analogy to Lemma 1 in [1]. Due to assump-
tion A1 and A2, the optimal solution of (F (xk

J )) is attained. We further
know from Lemma 4.1, that there exist λgi

≥ 0, with
∑

i∈IF
λgi

= 1, μA

and μJ satisfying the KKT conditions∑
i∈IF1

∇gi(x̄)λgi
+
∑

i∈IF0

ξn
i λgi

+ AT μA + IT
J μJ = 0 (5.7)

in x̄ with subgradients (4.6). To show the result of the lemma, we assume
now that x, with xJ = xk

J , satisfies Ax = b and conditions (5.6) which are
equivalent to

gi(x̄) +∇gi(x̄)T (x− x̄) ≤ 0, i ∈ IF1(x̄),

gi(x̄) + ξ
n,T
i (x− x̄) ≤ 0, i ∈ IF0(x̄).

We multiply the inequalities by (λg)i ≥ 0 and add all inequalities.
Since gi(x̄) = ū for i ∈ IF and

∑
i∈IF

λgi
= 1 we get∑

i∈IF1

(λgi
ū + λgi

∇gi(x̄)T (x− x̄)) +
∑

i∈IF0

(λgi
ū + λgi

ξ
n,T
i (x− x̄)) ≤ 0

⇔ ū +

(∑
i∈IF1

λgi
∇gi(x̄) +

∑
i∈IF0

(λgi
ξn
i )

)T

(x − x̄) ≤ 0.

Insertion of (5.7) yields

ū + (−AT μA − IT
J μJ)T (x− x̄)≤ 0

⇔Ax=Ax̄=b ū− μT
J (xJ − x̄J) ≤ 0

⇔xJ=xk

J
=x̄J ū ≤ 0.

This is a contradiction to the assumption ū > 0.
Thus, the solution x̄ of (F (xk

J )) produces new constraints (5.6) that
strengthen the outer approximation such that the integer solution xk

J is
no longer feasible. If (NLP (xk

J )) is infeasible, the active set IF (x̄) is not
empty and thus, at least one constraint (5.6) can be added.

Theorem 5.1. Assume A1 and A2. Then Algorithm 1 terminates in a
finite number of steps at an optimal solution of (1.1) or with the indication,
that it is infeasible.

Proof. We show that no integer assignment xk
J is generated twice by

showing that xJ = xk
J is infeasible in the linearized constraints created in
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the solutions of (NLP (xk
J )) or (F (xk

J )). The finiteness follows then from
the boundedness of the feasible set. A1 and A2 guarantee the solvability,
validity of KKT conditions and primal-dual optimality of the nonlinear
subproblems (NLP (xk

J )) and (F (xk
J )). In the case, when (NLP (xk

J)) is
feasible with solution x̄, Lemma 5.1 states that every x̃ with x̃J = x̂J

must satisfy cT x̃ ≥ cT x̄ and is thus infeasible in the constraint cT x̃ <

cT x̄ included in (LP k(T, S)). In the case, when (NLP (xk
J )) is infeasible,

Lemma 5.2 yields the result for (F (xk
J )).

Modified algorithm avoiding A2. We now present an adaption of
Algorithm 1 which is still convergent if the convergence assumption A2
is not valid for every subproblem. Assume Nk is a node such that A2 is
violated by (NLP (xk

J )) and assume x with integer assignment xJ = xk
J is

feasible for the updated outer approximation. Then the inner while-loop
in step 2b becomes infinite and Algorithm 1 does not converge. In that
case we solve the SOCP relaxation (SOCk) in node Nk. If that problem
is not infeasible and has no integer feasible solution, we branch on the
solution of this SOCP relaxation to explore the subtree of Nk. Hence, we
substitute step 2b by the following step.

2b’. solve (LP k(T, S)) with solution xk, set repeat = true.
while (((LP k(T, S)) feasible) & (xk

J integer) & (cT xk < CUB) & repeat)
save xold

J = xk
J

if (NLP (xk
J)is feasible with solution x̄)

T := T ∪ {x̄},
if (cT x̄ < CUB) CUB = cT x̄, x∗ = x̄ endif

else compute solution x̄ of F (xk
J ), S := S ∪ {x̄}

endif
compute solution xk of updated (LP k(T, S))
if (xold

J == xk
J ) set repeat = false endif

endwhile
if(!repeat)

solve nonlinear relaxation (SOCk) at the node Nk with solution x̄

T := T ∪ {x̄}
if (x̄J integer): if cT x̄ < CUB: CUB = cT x̄, x∗ = x̄ endif
go to 2.
else set xk = x̄.
endif

endif

Note that every subgradient of a conic constraint provides a valid linear
outer approximation of the form (2.1). Thus, in the case that we cannot
identify the subgradients satisfying the KKT system of (NLP (xk

J )), we
take an arbitrary subgradient to update the linear outer approximation
(LP k(T, S)).
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Lemma 5.3. Assume A1 holds. Then Algorithm 2, which is Algorithm
1, where Step 2b is replaced by 2b’, terminates in a finite number of steps
at an optimal solution of (1.1) or with the indication that it is infeasible.

Proof. If A2 is not satisfied, we have no guarantee that the lineariza-
tion in the solution x̄ of (NLP (xk

J)) separates the current integer solution.
Hence, assume the solution of (LP k(T, S)) is integer feasible with solu-
tion xk and the same integer assignment xk

J is optimal for the updated
outer approximation (LP k(T ∪ {x̄}, S)) or (LP k(T, S ∪ {x̄})). Then the
nonlinear relaxation (SOCk) is solved at the current node Nk. If the prob-
lem (SOCk) is not infeasible and its solution is not integer, the algorithm
branches on its solution producing new nodes N i+1 and N i+2. These nodes
are again searched using Algorithm 1 as long as the situation of repeated
integer solutions does not occur. Otherwise it is again branched on the
solution of the continuous relaxation. If this is done for a whole subtree,
the algorithm coincides with a nonlinear branch-and-bound search for this
subtree which is finite due to the boundedness of the integer variables.

Remarks. The convergence result of Theorem 5.1 can be directly ex-
tended to any outer approximation approach for (1.1) which is based on the
properties of (MIP(T,S))(and thus (LP k(T, S))) proved in Lemma 5.1 and
Lemma 5.2. In particular, convergence of the classical outer approximation
approach as well as the Generalized Benders Decomposition approach (cf.
[6], [4] or [27]) is naturally implied.

Furthermore, our convergence result can be generalized to arbitrary
mixed integer programming problems with subdifferentiable convex con-
straint functions, if it is possible to identify the subgradients that satisfy
the KKT system in the solutions of the associated nonlinear subproblems.

6. Numerical experiments. We implemented the modified version
of the outer approximation approach Algorithm 2 (’B&B-OA’) as well as
a nonlinear branch-and-bound approach (’B&B’). The SOCP problems are
solved with our own implementation of an infeasible primal-dual interior
point approach (cf. [26], Chapter 1), the linear programs are solved with
CPLEX 10.0.1.

We report results for mixed 0-1 formulations of different ESTP test
problems (instances t 4*, t 5*) from Beasley’s website [21] (cf. [16]) and
some problems arising in the context of turbine balancing (instances Test*).
The data sets are available on the web [29]. Each instance was solved using
the nonlinear branch-and-bound algorithm as well as Algorithm 2, once for
the choice L = 10 and for the choice L = 10000 respectively.

We used best first node selection and pseudocost branching in the
nonlinear branch-and-bound approach and depth first search as well as
most fractional branching in Algorithm 2, since those performed best in
former tests.

Table 1 gives an overview of the problem dimensions according to
the notation in this paper. We also list for each problem the number of



54 SARAH DREWES AND STEFAN ULBRICH

Table 1
Problem sizes (m, n, noc, |J |) and maximal constraints of LP approximation (m oa).

Problem n m noc |J | m oa m oa
(L=10) (L=10000)

t4 nr22 67 50 49 9 122 122
t4 nrA 67 50 49 9 213 231
t4 nrB 67 50 49 9 222 240
t4 nrC 67 50 49 9 281 272
t5 nr1 132 97 96 18 1620 1032
t5 nr21 132 97 96 18 2273 1677
t5 nrA 132 97 96 18 1698 998
t5 nrB 132 97 96 18 1717 1243
t5 nrC 132 97 96 18 1471 1104
Test07 84 64 26 11 243 243
Test07 an 84 63 33 11 170 170
Test54 366 346 120 11 785 785
Test07GF 87 75 37 12 126 110
Test54GF 369 357 131 12 1362 1362
Test07 lowb 212 145 153 56 7005 2331
Test07 lowb an 210 145 160 56 1730 308

Table 2
Number of solved SOCP/LP problems.

Problem B&B B&B-OA B&B-OA
(L=10) (L=10000)

(SOCP) (SOCP/LP) (SOCP/LP)
t4 nr22 31 9/15 9/15
t4 nrA 31 19/39 20/40
t4 nrB 31 20/40 21/41
t4 nrC 31 26/43 25/43
t5 nr1 465 120/745 52/720
t5 nr21 613 170/957 88/1010
t5 nrA 565 140/941 50/995
t5 nrB 395 105 /519 64/552
t5 nrC 625 115/761 56/ 755
Test07 13 8/20 8/20
Test07 an 7 5/9 5/9
Test54 7 5/9 5/9
Test07GF 41 5/39 2/35
Test54GF 37 11/68 9/63
Test07 lowb 383 392/3065 115/2599
Test07 lowb an 1127 128/1505 9/1572
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Table 3
Run times in seconds.

Problem B&B B&B-OA B&B-OA
(L=10) (L=10000)

t4 nr22 2.83 0.57 0.63
t4 nrA 2.86 1.33 1.44
t4 nrB 2.46 1.72 1.71
t4 nrC 2.97 1.54 2.03
t5 nr1 128.96 42.22 29.58
t5 nr21 139.86 61.88 20.07
t5 nrA 128.37 53.44 17.04
t5 nrB 77.03 36.55 18.94
t5 nrC 150.79 44.57 16.11
Test07 0.42 0.28 0.26
Test07 an 0.11 0.16 0.14
Test54 4.4 1.33 1.40
Test07GF 2.26 0.41 0.24
Test54GF 32.37 6.95 5.53
Test07 lowb 244.52 499.47 134.13
Test07 lowb an 893.7 128.44 14.79

constraints of the largest LP relaxation solved during Algorithm 2 (’m oa’).
As depicted in Algorithm 2, every time a nonlinear subproblem is solved,
the number of constraints of the outer approximation problem grows by
the number of conic constraints active in the solution of that nonlinear
subproblem. Thus, the largest fraction of linear programs solved during
the algorithm have significantly fewer constraints than (’m oa’).

For each algorithm Table 2 displays the number of solved SOCP nodes
and LP nodes whereas Table 3 displays the run times. A comparison of
the branch-and-bound approach and Algorithm 2 on the basis of Table 2
shows, that the latter algorithm solves remarkable fewer SOCP problems.
Table 3 displays that for almost all test instances, the branch-and-bound
based outer approximation approach is preferable regarding running times,
since the LP problems stay moderately in size.

For L = 10, at every 10th node an additional SOCP problem is solved
whereas for L = 10000, for our test set no additional SOCP relaxations
are solved. In comparison with L = 10000, for L = 10 more (11 out
of 16 instances) or equally many (3 out of 16 instances) SOCP problems
are solved, whereas the number of solved LP problems is decreased only
for 6 out of 16 instances. Moreover, the number of LPs spared by the
additional SOCP solves for L = 10 is not significant in comparison with
L = 10000 (compare Table 2) and the sizes of the LPs for L = 10000
stay smaller in most cases, since fewer linearizations are added (compare
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Table 1). Hence, with regard to running times, the version with L = 10000
outperforms L = 10 for almost all test instances, compare Table 3. Thus,
for the problems considered, Algorithm 2 with L = 10000, i.e., without
solving additional SOCPs, achieves the best performance in comparison to
nonlinear branch-and-bound as well as Algorithm 1 with L = 10.

In addition to the above considered instances, we tested some of the
classical portfolio optimization instances provided by Vielma et al. [28]
using Algorithm 2 with L = 10000. For each problem, we report in Table 4
the dimension of the MISOCP formulation, the dimension of the largest
relaxation solved by our algorithm and the dimension of the a priori LP
relaxation with accuracy 0.01 that was presented in [10]. For a better
comparison, we report the number of columns plus the number of linear
constraints as it is done in [10]. The dimensions of the largest LP relax-
ations solved by our approach are significantly smaller than the dimensions
of the LP approximations solved by [10]. Furthermore, in the lifted linear
programming approach in [10], every LP relaxation solved during the algo-
rithm is of the specified dimension. In our approach most of the solved LPs
are much smaller than the reported maximal dimension. In Table 5 we re-
port the run times and number of solved nodes problems for our algorithm
(Alg.2). For the sake of completeness we added the average and maximal
run times reported in [10] although it is not an appropriate comparison
since the algorithms have not been tested on similar machines. Since our
implementation of an interior SOCP solver is not as efficient as a commer-
cial solver like CPLEX which is used in [10], a comparison of times is also
difficult. But the authors of [10] report that solving their LP relaxations
usually takes longer than solving the associated SOCP relaxation. Thus,
we can assume that due to the low dimensions of the LPs solved in our
approach and the moderate number of SOCPs, our approach is likely to be
faster when using a more efficient SOCP solver.

7. Summary. We presented a branch-and-bound based outer approx-
imation approach using subgradient based linearizations. We proved con-
vergence under a constraint qualification that guarantees strong duality of
the occurring subproblems and extended the algorithm such that this as-
sumption can be relaxed. We presented numerical experiments for some ap-
plication problems investigating the performance of the approach in terms
of solved linear and second order cone subproblems as well as run times.
We also investigated the sizes of the linear approximation problems.

Comparison to a nonlinear branch-and-bound algorithm showed that
the outer approximation approach solves almost all problems in signifi-
cantly shorter running times and that its performance is best when not
solving additional SOCP relaxations. In comparison to the outer approx-
imation based approach by Vielma et al. in [10], we observed that the
dimensions of our LP relaxations are significantly smaller which makes our
approach competitive..
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Table 4
Dimension (m+n) and maximal LP approximation (m oa + n) (portfolio instances).

Problem n + m |J | n+ m oa nums+cols
[Alg.2] [10]

classical 20 0 105 20 137 769
classical 20 3 105 20 129 769
classical 20 4 105 20 184 769
classical 30 0 155 30 306 1169
classical 30 1 155 30 216 1169
classical 30 3 155 30 207 1169
classical 30 4 155 30 155 1169
classical 40 0 205 40 298 1574
classical 40 1 205 40 539 1574
classical 40 3 205 40 418 1574
classical 50 2 255 50 803 1979
classical 50 3 255 50 867 1979

Table 5
Run times and node problems (portfolio instances).

Problem Sec. [Alg.2] Nodes [Alg.2] Sec. [10] Sec. [10]
(SOCP/LP) (average) (max)

classical 20 0 2.62 10/75 0.29 1.06
classical 20 3 0.62 2/9 0.29 1.06
classical 20 4 5.70 32/229 0.29 1.06
classical 30 0 52.70 119/2834 1.65 27.00
classical 30 1 16.13 30/688 1.65 27.00
classical 30 3 8.61 20/247 1.65 27.00
classical 30 4 0.41 1/0 1.65 27.00
classical 40 0 46.07 51/1631 14.84 554.52
classical 40 1 361.62 292/15451 14.84 554.52
classical 40 3 138.28 171/5222 14.84 554.52
classical 50 2 779.74 496/ 19285 102.88 1950.81
classical 50 3 1279.61 561/36784 102.88 1950.81
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