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Abstract. This paper discusses how to build a solver for mixed integer quadrati-
cally constrained programs (MIQCPs) by extending a framework for constraint integer
programming (CIP). The advantage of this approach is that we can utilize the full power
of advanced MILP and CP technologies, in particular for the linear relaxation and the
discrete components of the problem. We use an outer approximation generated by lin-
earization of convex constraints and linear underestimation of nonconvex constraints to
relax the problem. Further, we give an overview of the reformulation, separation, and
propagation techniques that are used to handle the quadratic constraints efficiently.

We implemented these methods in the branch-cut-and-price framework SCIP. Com-
putational experiments indicating the potential of the approach and evaluating the im-
pact of the algorithmic components are provided.
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1. Introduction. In recent years, substantial progress has been made
in the solvability of generic mixed integer linear programs (MILPs) [2, 12].
Furthermore, it has been shown that successful MILP solving techniques
can often be extended to the more general case of mixed integer nonlinear
programs (MINLPs) [1, 6, 13]. Analogously, several authors have shown
that an integrated approach of constraint programming (CP) and MILP
can help to solve optimization problems that were intractable with either
of the two methods alone, for an overview see [17].

The paradigm of constraint integer programming (CIP) [2, 4] combines
modeling and solving techniques from the fields of constraint programming
(CP), mixed integer programming, and satisfiability testing (SAT). The
concept of CIP aims at restricting the generality of CP modeling as little
as needed while still retaining the full performance of MILP solving tech-
niques. Such a paradigm allows us to address a wide range of optimization
problems. For example, in [2], it is shown that CIP includes MILP and
constraint programming over finite domains as special cases.

The goal of this paper is to show, how a framework for CIPs can be
extended towards a competitive solver for mixed integer quadratically con-
strained programs (MIQCPs), which are an important subclass of MINLPs.
This framework allows us to utilize the power of already existing MILP and
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Fig. 1. Flowchart of the main solving loop of SCIP.

CP technologies for handling the linear and the discrete parts of the prob-
lem. The integration of MIQCP is a first step towards the incorporation
of MINLP into the concept of constraint integer programming.

We extended the branch-cut-and-price framework SCIP (Solving Con-
straint Integer Programs) [2, 3] by adding methods for MIQCP. SCIP incor-
porates the idea of CIP and implements several state-of-the-art techniques
for solving MILPs. Due to its plugin-based design, it can be easily cus-
tomized, e.g., by adding problem specific separation, presolving, or domain
propagation algorithms.

The framework SCIP solves CIPs by a branch-and-bound algorithm.
The problem is recursively split into smaller subproblems, thereby creating
a search tree and implicitly enumerating all potential solutions. At each
subproblem, domain propagation is performed to exclude further values
from the variables’ domains, and a relaxation may be solved to achieve
a local lower bound – assuming the problem is to minimize the objective
function. The relaxation may be strengthened by adding further valid
constraints (e.g., linear inequalities), which cut off the optimal solution
of the relaxation. In case a subproblem is found to be infeasible, conflict
analysis is performed to learn additional valid constraints. Primal heuristics
are used as supplementary methods to improve the upper bound. Figure 1
illustrates the main algorithmic components of SCIP. In the context of this
article, the relaxation employed in SCIP is a linear program (LP).

The remainder of this article is organized as follows. In Section 2, we
formally define MIQCP and CIP, in Sections 3, 4, and 5, we show how
to handle quadratic constraints inside SCIP, and in Section 6, we present
computational results.
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2. Problem definition. An MIQCP is an optimization problem of
the form

min dT x (2.1)
s.t. xT Aix + bi

T x + ci ≤ 0 for i = 1, . . . , m

xL
k ≤ xk ≤ xU

k for all k ∈ N

xk ∈ Z for all k ∈ I,

where I ⊆ N := {1, . . . , n} is the index set of the integer variables, d ∈ Q
n,

Ai ∈ Q
n×n and symmetric, bi ∈ Q

n, ci ∈ Q for i = 1, . . . , m, xL ∈ Q
n

and xU ∈ Q
n
, with Q := Q ∪ {±∞}, are the lower and upper bounds of

the variables x, respectively (Q denotes the rational numbers). Note that
we do not require the matrices Ai to be positive semidefinite, hence we
also allow for nonconvex quadratic constraints. If I = ∅, we call (2.1) a
quadratically constrained program (QCP).

The definition of CIP, as given in [2, 4], requires a linear objective
function. This is, however, just a technical prerequisite, as a quadratic (or
more general) objective f(x) can be modeled by introducing an auxiliary
objective variable z that is linked to the actual nonlinear objective function
with a constraint f(x) ≤ z. Thus, formulation (2.1) also covers the general
case of mixed integer quadratically constrained quadratic problems.

In this article, we use a definition of CIP which is slightly different from
the one given in [2, 4]. A constraint integer program consists of solving

min dT x

s.t. Ci(x) = 1 for i = 1, . . . , m

xk ∈ Z for all k ∈ I,

with a finite set of constraints Ci : Q
n → {0, 1}, for i = 1, . . . , m, the index

set I ⊆ N of the integer variables, and an objective function vector d ∈ Q
n.

In [2, 4], it is required that the subproblem remaining after fixing all
integer variables be a linear program in order to guarantee termination
in finite time. In this article, we, however, require a subproblem with all
integer variables fixed to be a QCP. Note that, using spatial branch-and-
bound algorithms, QCPs with finite bounds on the variables can be solved
in finite time up to a given tolerance [18].

3. A constraint handler for quadratic constraints. In SCIP, a
constraint handler defines the semantics and the algorithms to process con-
straints of a certain class. A single constraint handler is responsible for all
the constraints belonging to its constraint class. Each constraint handler
has to implement an enforcement method. In enforcement, the handler has
to decide whether a given solution, e.g., the optimum of a relaxation1, sat-

1For this section, we assume that the LP relaxation is bounded. In our implemen-
tation, the so-called pseudo solution, see [2, 3] for details, will be used in the case of
unbounded LP relaxations.
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isfies all of its constraints. If the solution violates one or more constraints,
the handler may resolve the infeasibility by adding another constraint, per-
forming a domain reduction, or a branching.

For speeding up computation, a constraint handler may further im-
plement additional features like presolving, cutting plane separation, and
domain propagation for its particular class of constraints. Besides that,
a constraint handler can add valid linear inequalities to the initial LP re-
laxation. For example, all constraint handler for (general or specialized)
linear constraints add their constraints to the initial LP relaxation. The
constraint handler for quadratic constraints adds one linear inequality that
is obtained by the method given in Section 3.2 below.

In the following, we discuss the presolving, separation, propagation,
and enforcement algorithms that are used to handle quadratic constraints.

3.1. Presolving. During the presolving phase, a set of reformula-
tions and simplifications are tried. If SCIP fixes or aggregates variables,
e.g., using global presolving methods like dual bound reduction [2], then
the corresponding reformulations will also be realized in the quadratic con-
straints. Bounds on the variables are tightened using the domain prop-
agation method described in Section 3.3. If, due to reformulations, the
quadratic part of a constraint vanishes, it is replaced by the corresponding
linear constraint. Furthermore, the following reformulations are performed.

Binary Variables. A square of a binary variable is replaced by the
binary variable itself. Further, if a constraint contains a product of a binary
variable with a linear term, i.e., x

∑k

i=1 aiyi, where x is a binary variable,
yi are variables with finite bounds, and ai ∈ Q, i = 1, . . . , k, then this
product will be replaced by a new variable z ∈ R and the linear constraints

yLx ≤ z ≤ yUx
k∑

i=1

aiyi − yU (1 − x) ≤ z ≤
k∑

i=1

aiyi − yL(1 − x), where

yL :=
k∑

i=1,
ai>0

aiy
L
i +

k∑
i=1,
ai<0

aiy
U
i , and

yU :=
k∑

i=1,
ai>0

aiy
U
i +

k∑
i=1,
ai<0

aiy
L
i .

(3.1)

In the case that k = 1 and y1 is also a binary variable, the product xy1 can
also be handled by SCIP’s handler for AND constraints [11].

Second-Order Cone (SOC) constraints. Constraints of the form

γ +
k∑

i=1

(αi(xi + βi))2 ≤ (α0(y + β0))2, (3.2)
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with k ≥ 2, αi, βi ∈ Q, i = 0, . . . , k, γ ∈ Q+, and yL ≥ −β0 are recog-
nized as SOC constraints and handled by a specialized constraint handler,
cf. Section 4.

Convexity. After the presolving phase, each quadratic function is
checked for convexity by computing the sign of the minimum eigenvalue
of the coefficient matrix A. This information will be used for separation.

3.2. Separation. If the current LP solution x̃ violates some con-
straints, a constraint handler may add valid cutting planes in order to
strengthen the formulation.

For a violated convex constraint i, this is always possible by linearizing
the constraint function at x̃. Thus, we add the valid inequality

ci − x̃T Aix̃ + (bT

i + 2x̃T Ai)x ≤ 0 (3.3)

to separate x̃. In the important special case that xT Aix ≡ ax2
j for some

a > 0 and j ∈ I with x̃j /∈ Z, we generate the cut

ci + bT

i x + a(2�x̃j�+ 1)xj − a�x̃j��x̃j� ≤ 0, (3.4)

which is obtained by underestimating xj ∈ Z �→ x2
j by the secant defined

by the points (�x̃j�, �x̃j�2) and (�x̃j�, �x̃j�2). Note that the violation of
(3.4) by x̃ is larger than that of (3.3).

For a violated nonconvex constraint i, we currently underestimate each
term of xT Aix separately. A term ax2

j with a > 0, j ∈ N , is underesti-
mated as just discussed. For the case a < 0, however, the tightest linear
underestimation for the term ax2

j is given by the secant approximation
a(xL

j + xU
j )xj − axL

j xU
j , if xL

j and xU
j are finite. Otherwise, if xL

j = −∞
or xU

j =∞, we skip separation for constraint i. For a bilinear term axjxk

with a > 0, we utilize the McCormick underestimators [21]

axjxk ≥ axL
j xk + axL

k xj − axL
j xL

k ,

axjxk ≥ axU
j xk + axU

k xj − axU
j xU

k .

If (xU
j − xL

j )x̃k + (xU
k − xL

k )x̃j ≤ xU
j xU

k − xL
j xL

k and the bounds xL
j and

xL
k are finite, the former is used for cut generation, elsewise the latter is

used. If both xL
j or xL

k and xU
j or xU

k are infinite, we skip separation for
constraint i. Similar, for a bilinear term axjxk with a < 0, the McCormick
underestimators are

axjxk ≥ axU
j xk + axL

k xj − axU
j xL

k ,

axjxk ≥ axL
j xk + axU

k xj − axL
j xU

k .

If (xU
j − xL

j )x̃k − (xU
k − xL

k )x̃j ≤ xU
j xL

k − xL
j xU

k and the bounds xU
j and xL

k

are finite, the former is used for cut generation, elsewise the latter is used.
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In the case that a linear inequality generated by this method does
not cut off the current LP solution x̃, the infeasibility has to be resolved
in enforcement, see Section 3.4. Besides others, the enforcement method
may apply a spatial branching operation on a variable xj , creating two
subproblems, which both contain a strictly smaller domain for xj . This
results in tighter linear underestimators.

3.3. Propagation. In the domain propagation call, a constraint han-
dler may deduce new restrictions upon local domains of variables. Such
deductions may yield stronger linear underestimators in the separation
procedures, prune nodes due to infeasibility of a constraint, or result in
further deductions for other constraints. For quadratic constraints, we im-
plemented an interval-arithmetic based method similar to [16]. To allow
for an efficient propagation, we write a quadratic constraint in the form

∑
j∈J

djxj +
∑
k∈K

(
ek + pk,kxk +

∑
r∈K

pk,rxr

)
xk ∈ [�, u], (3.5)

such that dj , ek, pk,r ∈ Q, �, u ∈ Q, J ∪K ⊆ N , J ∩K = ∅, and pk,r = 0
for k > r. For a given a ∈ Q, an interval [bL, bU ], and a variable y with
domain [yL, yU ], we denote by q(a, [bL, bU ], y) the set {by + ay2 : y ∈
[yL, yU ], b ∈ [bL, bU ]}. This set can be computed analytically [16].

The forward propagation step aims at tightening the bounds [�, u]
in (3.5). For this purpose, we replace the variables xj and xr in (3.5) by
their domain to obtain the “interval-equation”∑

j∈J

dj [xL
j , xU

j ] +
∑
k∈K

([fL
k , fU

k ]xk + pk,kx2
k) ∈ [�, u],

where [fL
k , fU

k ] := [ek, ek] +
∑

r∈K pk,r[xL
r , xU

r ]. Computing [hL, hU ] :=∑
j∈J dj [xL

j , xU
j ] +

∑
k∈K q(pk,k, [fL

k , fU
k ], xk) yields an interval that con-

tains all values that the left hand side of (3.5) can take w.r.t. the current
variables’ domains. If [hL, hU ]∩ [�, u] = ∅, then (3.5) cannot be satisfied for
any x ∈ [xL, xU ] and the current branch-and-bound node can be pruned.
Otherwise, the interval [�, u] can be tightened to [�, u] ∩ [hL, hU ].

The backward propagation step aims at inferring domain deductions
on the variables in (3.5) using the interval [�, u]. For a “linear” variable xj ,
j ∈ J , we can easily infer the bounds

1
dj

(
[�, u]−

∑
j′∈J,j =j′

dj′ [xL
j′ , x

U
j′ ]−

∑
k∈K

q(pk,k, [fL
k , fU

k ], xk)
)

.

For a “quadratic” variable xk, k ∈ K, one way to compute potentially
tighter bounds is by solving the quadratic interval-equation
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j∈J

dj [xL
j , xU

j ] +
∑

k′∈K,k′ =k

q(pk′,k′ , [ek′ , ek′ ] +
∑

r∈K,r =k′

pk,r[xL
r , xU

r ], xk′)

+ ([ek, ek] +
∑
r∈K

(pk,r + pr,k)[xL
r , xU

r ])xk + pk,kx2
k ∈ [�, u].

However, since evaluating the argument of q(·) for each k ∈ K may pro-
duce a huge computational overhead, especially for constraints with many
bilinear terms, we compute the solution set of∑

j∈J

dj [xL
j , xU

j ] +
∑

k′∈K
k′ =k

(
q(pk′,k′ , [ek′ , ek′ ], xk′ ) +

∑
r∈K
r =k′

pk′,r[xL
k′ , x

U
k′ ][xL

r , xU
r ]
)

+ ([ek, ek] +
∑
r∈K

(pk,r + pr,k)[xL
r , xU

r ])xk + pk,kx2
k ∈ [�, u], (3.6)

which can be performed more efficiently. If the intersection of the current
domain [xL

k , xU
k ] of xk with the solution set of (3.6) is empty, we can deduce

infeasibility and prune the corresponding node. Otherwise, we may be able
to tighten the bounds of xk.

As in [16], all interval operations detailed in this section are performed
in outward rounding mode.

3.4. Enforcement. In the enforcement call, a constraint handler has
to check whether the current LP solution x̃ is feasible for all its constraints.
It can resolve an infeasibility by either adding cutting planes that separate
x̃ from the relaxation, by tightening bounds on a variable such that x̃ is
separated from the current domain, by pruning the current node from the
branch-and-bound tree, or by performing a branching operation.

We have configured SCIP to call the enforcement method of the quadra-
tic constraint handler with a lower priority than the enforcement method for
the handler of integrality constraints. Thus, at the point where quadratic
constraints are enforced, all integer variables take an integral value in the
LP optimum x̃. For a violated quadratic constraint, we first perform a
forward propagation step, see Section 3.3, which may prune the current
node. If the forward propagation does not declare infeasibility, we call the
separation method, see Section 3.2. If the separator fails to cut off x̃, we
perform a spatial branching operation. We use the following branching rule
to resolve infeasibility in a nonconvex quadratic constraint.

Branching rule. We consider each unfixed variable xj that appears in
a violated nonconvex quadratic constraint as a branching candidate. Let xl

j ,
xu

j ∈ Q be the local lower and upper bounds of xj , and xb
j ∈ (xl

j , x
u
j ) be the

potential branching point for branching on xj . Usually, we choose xb
j = x̃j .

If, however, x̃j is very close to one of the bounds, xb
j is shifted inwards the

interval. Thus, for xl
j , x

u
j ∈ Q, we let xb

j := min{max{x̃j , λxl
j + (1−λ)xu

j },

λxu
j + (1− λ)xl

j}, where the parameter λ is set to 0.2 in our experiments.
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As suggested in [6], we select the branching variable w.r.t. its pseudo-
cost values. The pseudocosts are used to estimate the objective change in
the LP relaxation when branching downwards and upwards on a particular
variable. The pseudocosts of a variable are defined as the average objective
gains per unit change, taken over all nodes, where this variable has been
chosen for branching, see [8] for details.

In classical pseudocost branching for integer variables, the distances
of x̃j to the nearest integers are used as multipliers of the pseudocosts.
For continuous variables, we use another measure similar to “rb-int-br-rev”
which was suggested in [6]: the distance of xb

j to the bounds xL
j and xU

j for a
variable xj . This measure is motivated by the observation that the length of
the domain determines the quality of the convexification. If the domain of
xj is unbounded, then the “convexification error of the variable xj” will be
used as multiplicator. This value is computed by assigning to each variable
the gap evaluated in x̃ that is introduced by using a secant or McCormick
underestimator for a nonconvex term that includes this variables.

As in [2], we combine the two estimates for downwards and upwards
branching by multiplication rather than by a convex sum.

4. A constraint handler for Second-Order Cone constraints.
Constraints of the form√√√√ k∑

i=1

γ + (αi(xi + βi))2 ≤ α0y + β0, α0y ≥ −β0, (4.1)

where αi, βi ∈ Q, i = 0, . . . , k, γ ∈ Q+ are handled by a constraint handler
for second-order cone constraints. Note that SOC constraints are con-
vex, i.e., the nonlinear function on the left hand side of (4.1) is convex.
Therefore, unlike nonconvex quadratic constraints, SOC constraints can
be enforced by separation routines solely. First, the inequality α0y ≥ −β0

is ensured by tightening the bounds of y accordingly. Next, if the current
LP solution (x̃, ỹ) violates some SOC constraint (4.1), then we add the
valid gradient-based inequality

η +
1
η

k∑
i=1

α2
i (x̃i + βi)(xi − x̃i) ≤ α0y + β0,

where η :=
√∑k

i=1 γ + (αi(x̃i + βi))2. Note that since (x̃, ỹ) violates (4.1),
one has η > α0ỹ + β0 ≥ 0. For the initial linear relaxation, no inequalities
are added.

We also experimented with adding a linear outer-approximation as
suggested in [7] a priori, but did not observe computational benefits. Thus,
this option has been disabled for the experiments in Section 6.
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5. Primal heuristics. When solving MIQCPs, we still make use of
all default MILP primal heuristics of SCIP. Most of these heuristics aim at
finding good integer and LP feasible solutions starting from the optimum
of the LP relaxation. For details and a computational study of the primal
MILP heuristics available in SCIP, see [9].

So far, we have implemented two additional primal heuristics for solv-
ing MIQCPs in SCIP, both of which are based on large neighborhood search.

QCP local search. There are several cases, where the MILP primal
heuristics already yield feasible solutions for the MIQCP. However, the
heuristics usually construct a point x̂ which is feasible for the MILP relax-
ation, i.e., the LP relaxation plus the integrality requirements, but violates
some of the quadratic constraints. Such a point may, nevertheless, provide
useful information, since it can serve as starting point for a local search.

The local search we currently use considers the space of continuous
variables, i.e., if there are continuous variables in a quadratic part of a
constraint, we solve a QCP obtained from the MIQCP by fixing all integer
variables to the values of x̂, using x̂ as starting point for the QCP solver.
Each feasible solution of this QCP also is a feasible solution of the MIQCP.

RENS. Furthermore, we implemented an extended form of the relax-
ation enforced neighborhood search (RENS) heuristic [10]. This heuristic
creates a sub-MIQCP problem by exploiting the optimal solution x̃ of the
LP relaxation at some node of the branch-and-bound-tree. In particular,
it fixes all integer variables which take an integral value in x̃ and restricts
the bounds of all integer variables with fractional LP solution value to the
two nearest integral values. This, hopefully much easier, sub-MIQCP is
then partially solved by a separate SCIP instance. Obviously, each feasible
solution of the sub-MIQCP is a feasible solution of the original MIQCP.

Note that, during the solution process of the sub-MIQCP, the QCP
local search heuristic may be used along with the default SCIP heuris-
tics. For some instances this works particularly well since, amongst oth-
ers, RENS performs additional presolving reductions on the sub-MIQCP –
which yields a better performance of the QCP solver.

6. Computational experiments. We conducted numerical experi-
ments on three different test sets. The first is a test set of mixed integer
quadratic programs (MIQPs) [22], i.e., problems with a quadratic objec-
tive function and linear constraints. Secondly, we selected a test set of
mixed integer conic programs (MICPs) [27], which have been formulated
as MIQCP. Finally, we assembled a test set of 24 general MIQCPs from
the MINLPLib [14] and six constrained layout problems (clay*) from [15].

We will refer to these test sets as Miqp, Micp, and Minlp test sets.
In Tables 1–3, each entry shows the number of seconds a certain solver
needs to solve a problem. If the problem was not solved within the given
time limit, the lower and upper bounds at termination are given. For
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each instance, the fastest solution time or – in case all solvers hit the time
limit – the best bounds, are depicted in bold face. Further, for each solver
we calculated the geometric mean of the solution time (in which unsolved
instances are accounted for with the time limit), and collected statistics on
how often a solver solved a problem, computed the best dual bound, found
the best primal solution value, or was the fastest among all solvers.

For our benchmark, we ran SCIP 1.2.0.7 using CPLEX 11.2.1 [19] as
LP solver, Ipopt 3.8 [28] as QCP solver for the heuristics (cf. Section 5),
and LAPACK 3.1.0 to compute eigenvalues. For comparison, we ran BA-

RON 9.0.2 [26], Couenne 0.3 [6], CPLEX 12.1, LindoGlobal 6.0.1 [20], and
MOSEK 6.0.0.55 [23]. Note that BARON, Couenne, and LindoGlobal can
also be applied to general MINLPs. All solvers were run with a time limit
of one hour, a final gap tolerance of 10−4, and a feasibility tolerance of 10−6

on a 2.5GHz Intel Core2 Duo CPU with 4 GB RAM and 6MB Cache.

Mixed Integer Quadratic Programs. Table 6 presents the 25 in-
stances from the Miqp test set [22]. We observe that due to the refor-
mulation (3.1), 15 instances could be reformulated as mixed integer linear
programs in the presolving state.

Table 1 compares the performance of SCIP, BARON, Couenne, and
CPLEX on the Miqp test set. We did not run LindoGlobal since many
of the Miqp instances exceed limitations of our LindoGlobal license. Note
that some of the instances are nonconvex before applying the reformulation
described in Section 3.1, so that we did not apply solvers which have only
been designed for convex problems. Instance ivalues is the only instance
that cannot be handled by CPLEX due to nonconvexity. Altogether, SCIP

performs much better than BARON and Couenne and slightly better than
CPLEX w.r.t. the mean computation time.

Mixed Integer Conic Programs. The Micp test set consists of
three types of optimization problems, see Table 5. The classical XXX YY

instances contain one convex quadratic constraint of the form
∑k

j=1 x2
j ≤ u

for some u ∈ Q, where XXX stand for the dimension k and YY is a problem
index. The robust XXX YY instances contain one convex quadratic and one
SOC constraint of dimension k. The shortfall XXX YY instances contain
two SOC constraints of dimension k.

Table 2 compares the performance of BARON, Couenne, CPLEX, MO-

SEK, LindoGlobal, and SCIP on the Micp test set. We observe that on
this specific test set SCIP outperforms BARON, Couenne, and LindoGlobal.
It solves one instance more but is about 20% slower than the commercial
solvers CPLEX and MOSEK.

Mixed Integer Quadratically Constrained Programs. The in-
stances lop97ic, lop97icx, pb302035, pb351535, qap, and qapw were
transformed into MILPs by presolving – which is due to the reformula-
tion (3.1). The instances nuclear*, space25, space25a, and waste are
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Table 1
Results on Miqp instances. Each entry shows the number of seconds to solve a

problem, or the bounds obtained after the one hour limit.

instance BARON Couenne CPLEX SCIP

iair04 [−∞,∞] fail 37.52 228.27
iair05 [−∞,∞] [25886,∞] 30.71 113.65
ibc1 [1.792, 3.72] [1.696, 3.98] 895.54 43.06
ibell3a 58.95 198.90 3.96 14.59
ibienst1 1048.04 [−∞, 49.11] 2836.05 31.53
icap6000 [−2448496,−2441852] fail 6.28 6.10
icvxqp1 [324603, 613559] fail [327522, 410439] [0, 4451398]
ieilD76 [729.5, 1081] [808.3, 898.5] 13.50 41.28
ilaser0 [−∞,∞] fail [2409925, 2412734] fail
imas284 [89193, 92241] 3139.12 4.36 27.33
imisc07 [2432, 2814] [1696, 3050] 70.02 30.52
imod011 [−3.823,−3.843] fail [−∞,∞] [−∞, 0]
inug06-3rd [177.8, 1434] fail [527.2, 1434] [1152,∞]
inug08 [1451, 14696] [683.1,∞] 2126.68 24.83
iportfolio [−∞, 0] [−0.4944,∞] [−0.4944,−0.4937] [−0.5251, 0]
iqap10 [−∞,∞] [329.8,∞] 1411.26 657.71
iqiu [−402.5,−108.6] [−357.5,−126.3] 91.77 64.53
iran13x13 [2930, 3355] [3014, 3476] 20.02 68.44
iran8x32 [5013, 5454] [5034, 5629] 25.24 8.31
isqp0 [−∞,∞] [−∞,−20137] [−20338,−20320] [−∞,−19895]
isqp1 [−∞,∞] [−∞,−18801] [−19028,−18993] [−∞,−17883]
isqp [−∞,∞] [−∞,−20722] [−21071,−21001] [−∞,∞]
iswath2 [335.6, 661.9] [335.9, 411.8] 212.15 121.29
itointqor [−∞,−1146] fail [−1150,−1147] [−∞, 0]
ivalues [−12.88,−0.4168] [−6.054,−1.056] – [−172.6,∞]

mean time 2923.78 3193.55 423.387 303.013
#solved 2 2 15 15
#best dual bound 4 5 21 16
#best primal sol. 5 3 23 15
#fastest 0 0 6 9

particularly difficult since they contain continuous variables that appear in
quadratic terms with at least one bound at infinity. This prohibits to use
the reformulation (3.1) for products of binary variables with a linear term.
Further, generating secant and McCormick cuts for nonconvex terms is not
possible. Thus, if the propagation algorithm cannot reduce domains for
such unbounded variables, it may require many branching operations until
reasonable variable bounds and a lower bound can be computed.

Table 3 compares the performance of BARON, Couenne, LindoGlobal,
and SCIP on the Minlp test set. Figure 2 shows a performance profile
for this particular test set. Regarding the number of solved instances,
LindoGlobal performs best: it could solve two instances more than BARON

and SCIP, which both solved six instances more than Couenne. SCIP was,
however, significantly faster than the other solvers.

BARON wrongly declared the instance product to be infeasible and
hit the time limit while parsing the instances pb302035 and pb351535.
Couenne wrongly declared the instances product and waste to be infeasible.
Using a time limit of 3600 seconds, LindoGlobal and Couenne did not stop
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Table 3
Results on Minlp instances. Each entry shows the number of seconds to solve a

problem, or the bounds obtained after the one hour limit.

instance BARON Couenne LindoGlobal SCIP

clay0203m 1.56 2.03 43.13 0.15
clay0204m 48.25 4.79 85.50 0.52
clay0205m 971.83 27.73 1162.00 6.49
clay0303m 1.29 [−∞, 29911] 62.17 0.37
clay0304m 14.77 16.31 187.38 0.90
clay0305m 3584.73 27.65 1112.42 7.45
du-opt 137.39 [−8727,∞] 2204.70 1.07
du-opt5 150.54 [−2437, 9.012] 697.10 0.47
lop97ic [2549,∞] [3826,∞] [−∞,∞] [3069, 4547]
lop97icx [2812, 4415] [3903, 4272] [0, 5259] [3763, 4099]
nous1 641.19 [1.345, 1.567] 41.44 [1.195, 1.567]
nous2 0.97 2.69 0.36 1349.72
nuclear14a [−12.26,∞] [−12.26,∞] [−∞,∞] [−228.2,−1.105]
nuclear14b [−2.078,−1.107] [−2.234,∞] [−∞,∞] [−198.3,−1.118]
nuclear14 [−∞,∞] [−∞,−1.12] [−∞,−1.126] [−∞,−1.122]
nuclearva [−∞,∞] [−∞,−1.005] [−∞,∞] [−∞,∞]
nvs19 12.14 778.31 457.04 0.21
nvs23 44.54 [−1380,−1109] 2533.14 0.40
pb302035 [−∞,∞] fail [622588,∞] [1138613, 4019210]
pb351535 [−∞,∞] fail fail [1710093, 4976433]
product fail fail [−2200,−2092] 326.76
qap [103040, 388250] [0,∞] [−∞,∞] [24761, 410450]
qapw [265372, 391210] [0,∞] [0, 405354] [32191, 400150]
space25a [99.99, 490.2] [35.09,∞] [330.6, 489.2] [72.46,∞]
space25 [84.91, 520.9] [42.68,∞] [33.07, 638.8] [72.46,∞]
tln12 [32.73,∞] [16.19,∞] [85.8, 139.1] [16.41, 91.6]
tln5 798.56 [6.592, 10.3] 174.02 32.56
tln6 [13.75, 15.3] [7.801, 15.3] 182.23 [10.21, 15.3]
tln7 [12.38, 15.6] [5.038, 16.1] [14.2, 15.6] [7.016, 15]
waste [306.7, 712.3] fail 1532.71 [306.7, 670.6]

mean time 755.466 1215.11 995.697 400.464
#solved 13 7 15 13
#best dual bound 18 10 18 15
#best primal sol. 17 11 17 23
#fastest 0 0 4 12

after 4000 seconds for pb351535 and for pb302035, pb351535, respectively.
Further, no bounds were reported in the log file.

CPLEX can be applied to 11 instances of this test set. The clay* and
du-opt* instances were solved within seconds; 4 times CPLEX was fastest,
4 times SCIP was fastest. For the instances pb302035, pb351535, and qap,
CPLEX found good primal solutions, but very weak lower bounds.

Evaluation of implemented MIQCP techniques. In order to
evaluate the computational effects of the implemented techniques, we com-
pare the default settings of SCIP with a series of settings where a single
technique has been turned off at a time. The methods we evaluated are
the reformulation (3.1) for products that involve binary variables, cf. Sec-
tion 3.1, the handling of SOC constraints by the SOC constraint handler,
cf. Section 4, the domain propagation for quadratic constraints during
branch-and-bound, cf. Section 3.3, the detection of convexity for multi-
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Fig. 2. Performance profile for Minlp test set.

variate quadratic functions, cf. Section 3.1, the QCP local search heuristic,
cf. Section 5, and the extended RENS heuristic, cf. Section 5.

For each method, we evaluate the performance only on those instances
from the test sets Miqp, Micp, and Minlp where the method to evaluate
may have an effect (e.g., disabling the reformulation (3.1) is only evaluated
on instances where this reformulation can be applied). The results are
summarized in Table 4. For a number of performance measures we report
the relative change caused by disabling a particular method.

We observe that deactivating one of the methods always leads to more
deteriorations than improvements for both, the dual and primal bounds at
termination. Except for one instance in the case of switching off binary
reformulations, the number of solved instances remains equal or decreases.

Recognizing SOC constraints and convexity allows to solve instances
of those special types much faster. Disabling domain propagation or one
of the primal heuristics yields a small improvement w.r.t. computation
time for easy instances, but results in weaker bounds for those instances
which could not be solved within the time limit. We further observed that
switching off the QCP local search heuristic increases the time until the first
feasible solution is found by 93% and the time until the optimal solution
is found by 26%. For RENS, the numbers are 12% and 43%, accordingly.
Therefore, we still consider applying these techniques to be worthwhile.

7. Conclusions. In this paper, we have shown how a framework for
constraint integer programming can be extended towards a solver for gen-
eral MIQCPs. We implemented methods to correctly handle the quadratic
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Table 4
Relative impact of implemented MIQCP methods. Percentages in columns 3–9 are

relative to the size of the test set. Percentage in mean time column is relative to the
mean time of SCIP with default settings.

primal sol. dual bound running time

disabled feature size solved better worse better worse better worse mean

binary reform. 32 +3% 13% 22% 6% 25% 22% 34% +3%
SOC upgrade 16 −69% 0% 69% 0% 100% 0% 69% +1317%
domain prop. 48 ±0% 4% 8% 6% 17% 29% 15% −4%
convexity check 10 −20% 20% 20% 0% 30% 10% 30% +159%
QCP local search 48 ±0% 2% 17% 2% 4% 38% 17% −6%
RENS heuristic 56 ±0% 5% 9% 7% 7% 41% 11% −3%

constraints. In order to speed up computations we further implemented
MIQCP specific presolving, propagation, and separation methods. Further-
more, we discussed two large neighborhood search heuristics for MIQCP.
The computational results indicate that this already suffices for building a
solver which is competitive to state-of-the-art solvers like CPLEX, BARON,
Couenne, and LindoGlobal. SCIP performed particularly well on the Miqp
and Micp test sets, which contain a large number of linear constraints and
a few quadratic constraints. These results meet our expectations, since
SCIP already features several sophisticated MILP technologies.

We conclude that the extension of a full-scale MILP solver for handling
MIQCP is a promising approach. The next step towards a full-scale MIQCP
solver will be the incorporation of further MIQCP specific components into
SCIP, e.g., more sophisticated separation routines [5, 24] and specialized
constraint handlers, e.g., for bilinear covering constraints [25].

Acknowledgments. We like to thank Ambros M. Gleixner and Marc
E. Pfetsch for their valuable comments on the paper. We further thank the
anonymous reviewers for their constructive suggestions.
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Laird, J. Lee, A. Lodi, F. Margot, N.W. Sawaya, and A. Wächter, An
algorithmic framework for convex mixed integer nonlinear programs, Discrete
Optim., 5 (2008), pp. 186–204.

[14] M.R. Bussieck, A.S. Drud, and A. Meeraus, MINLPLib - a collection of test
models for mixed-integer nonlinear programming, INFORMS J. Comput., 15
(2003), pp. 114–119.

[15] CMU-IBM MINLP Project. http://egon.cheme.cmu.edu/ibm/page.htm.
[16] F. Domes and A. Neumaier, Quadratic constraint propagation, Constraints, 15

(2010), pp. 404–429.
[17] J.N. Hooker, Integrated Methods for Optimization, International Series in Oper-

ations Research & Management Science, Springer, New York, 2007.
[18] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer,

1990.
[19] IBM, CPLEX. http://ibm.com/software/integration/optimization/cplex.
[20] Y. Lin and L. Schrage, The global solver in the LINDO API, Optimization

Methods and Software, 24 (2009), pp. 657–668.
[21] G. McCormick, Computability of global solutions to factorable nonconvex pro-

grams: Part I-Convex Underestimating Problems, Math. Program., 10 (1976),
pp. 147–175.

[22] H. Mittelmann, MIQP test instances. http://plato.asu.edu/ftp/miqp.html.
[23] MOSEK Corporation, The MOSEK optimization tools manual, 6.0 ed., 2009.
[24] A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed in-

teger quadratically constrained programs: Projected formulations, Tech. Rep.
RC24695, IBM Research, 2008. to appear in Math. Program.

[25] M. Tawarmalani, J.-P.P. Richard, and K. Chung, Strong valid inequalities
for orthogonal disjunctions and bilinear covering sets, Math. Program., 124
(2010), pp. 481–512.

[26] M. Tawarmalani and N. Sahinidis, Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications, Kluwer Academic Publishers, 2002.

http://plato.asu.edu/ftp/miqp.html
http://ibm.com/software/integration/optimization/cplex
http://egon.cheme.cmu.edu/ibm/page.htm


EXTENDING A CIP FRAMEWORK TO SOLVE MIQCPs 443

[27] J.P. Vielma, S. Ahmed, and G.L. Nemhauser, A lifted linear programming
branch-and-bound algorithm for mixed integer conic quadratic programs, IN-
FORMS J. Comput., 20 (2008), pp. 438–450.
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APPENDIX
In this section, detailed problem statistics are presented for the three

test sets, Micp (Table 5), Miqp, and Minlp (both in Table 6). The
columns belonging to “original problem” state the structure of the origi-
nal problem. The “presolved problem” columns show statistics about the
MIQCP after SCIP has applied its presolving routines, including the ones
described in Section 3.1. The columns “vars”, “int”, and “bin” show the
number of all variables, the number of integer variables, and the num-
ber of binary variables, respectively. The columns “linear”, “quad”, and
“soc” show the number of linear, quadratic, and second-order cone con-
straints, respectively. The column “conv” indicates whether all quadratic
constraints of the presolved MIQCP are convex or whether at least one of
them is nonconvex.

Table 5
Statistics of instances in Micp test set.

original problem presolved problem

instance vars int bin linear quad vars int bin linear quad soc

classical_40_0 120 0 40 82 1 120 0 40 82 1 0
classical_40_1 120 0 40 82 1 120 0 40 82 1 0
classical_50_0 150 0 50 102 1 150 0 50 102 1 0
classical_50_1 150 0 50 102 1 150 0 50 102 1 0
classical_200_0 600 0 200 402 1 600 0 200 402 1 0
classical_200_1 600 0 200 402 1 600 0 200 402 1 0
robust_40_0 163 0 41 124 2 163 0 41 124 1 1
robust_40_1 163 0 41 124 2 163 0 41 124 1 1
robust_50_0 203 0 51 154 2 203 0 51 154 1 1
robust_50_1 203 0 51 154 2 203 0 51 154 1 1
robust_100_0 403 0 101 304 2 403 0 101 304 1 1
robust_100_1 403 0 101 304 2 403 0 101 304 1 1
robust_200_0 803 0 201 604 2 803 0 201 604 1 1
robust_200_1 803 0 201 604 2 803 0 201 604 1 1
shortfall_40_0 164 0 41 125 2 164 0 41 125 0 2
shortfall_40_1 164 0 41 125 2 164 0 41 125 0 2
shortfall_50_0 204 0 51 155 2 204 0 51 155 0 2
shortfall_50_1 204 0 51 155 2 204 0 51 155 0 2
shortfall_100_0 404 0 101 305 2 404 0 101 305 0 2
shortfall_100_1 404 0 101 305 2 404 0 101 305 0 2
shortfall_200_0 804 0 201 605 2 804 0 201 605 0 2
shortfall_200_1 804 0 201 605 2 804 0 201 605 0 2
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Table 6
Statistics of instances in Miqp (first part) and Minlp (second part) test set.

original problem presolved problem

instance vars int bin linear quad vars int bin linear quad conv

iair04 8905 0 8904 823 1 12848 0 7362 17464 0 �

iair05 7196 0 7195 426 1 10574 0 6117 14218 0 �

ibc1 1752 0 252 1913 1 866 0 252 1438 0 �

ibell3a 123 29 31 104 1 129 29 31 161 1 �

ibienst1 506 0 28 576 1 473 0 28 592 0 �

icap6000 6001 0 6000 2171 1 7323 0 5865 6362 0 �

icvxqp1 10001 10000 0 5000 1 10003 9998 2 5006 1 �

ieilD76 1899 0 1898 75 1 2685 0 1898 3168 0 �

ilaser0 1003 151 0 2000 1 1003 151 0 1000 1 �

imas284 152 0 150 68 1 228 0 150 299 0 �

imisc07 261 0 259 212 1 360 0 238 598 0 �

imod011 10958 1 96 4480 1 8963 1 96 2730 1 �

inug06-3rd 2887 0 2886 3972 1 3709 0 2886 7779 0 �

inug08 1633 0 1632 912 1 2217 0 1632 3076 0 �

iportfolio 1201 192 775 201 1 1201 192 775 201 1 �

iqap10 4151 0 4150 1820 1 5879 0 4150 9047 0 �

iqiu 841 0 48 1192 1 871 0 48 1285 0 �

iran13x13 339 0 169 195 1 468 0 169 585 0 �

iran8x32 513 0 256 296 1 651 0 256 713 0 �

isqp0 1001 50 0 249 1 1001 50 0 249 1 �

isqp1 1001 0 100 249 1 1068 0 100 480 1
isqp 1001 50 0 249 1 1001 50 0 249 1 �

iswath2 6405 0 2213 483 1 8007 0 2213 5631 0 �

itointqor 51 50 0 0 1 51 50 0 0 1 �

ivalues 203 202 0 1 1 203 202 0 1 1

clay0203m 30 0 18 30 24 27 0 15 27 24 �

clay0204m 52 0 32 58 32 48 0 28 54 32 �

clay0205m 80 0 50 95 40 75 0 45 90 40 �

clay0303m 33 0 21 30 36 31 0 19 29 36 �

clay0304m 56 0 36 58 48 54 0 34 57 48 �

clay0305m 85 0 55 95 60 81 0 51 93 60 �

du-opt 21 13 0 9 1 21 13 0 5 1 �

du-opt5 21 13 0 9 1 19 11 0 4 1 �

lop97ic 1754 831 831 52 40 5228 708 708 11521 0 �

lop97icx 987 831 68 48 40 488 68 68 1138 0 �

nous1 51 0 2 15 29 47 0 2 11 29
nous2 51 0 2 15 29 47 0 2 11 29
nvs19 9 8 0 0 9 9 8 0 0 9
nvs23 10 9 0 0 10 10 9 0 0 10
pb302035 601 0 600 50 1 1199 0 600 1847 0 �

pb351535 526 0 525 50 1 1048 0 525 1619 0 �

product 1553 0 107 1793 132 446 0 92 450 82
qap 226 0 225 30 1 449 0 225 702 0 �

qapw 451 0 225 255 1 675 0 225 930 0 �

space25 893 0 750 210 25 767 0 716 118 25
space25a 383 0 240 176 25 308 0 240 101 25
nuclear14 1562 0 576 624 602 986 0 576 48 602
nuclear14a 992 0 600 49 584 1568 0 600 2377 560
nuclear14b 1568 0 600 1225 560 1568 0 600 1225 560
nuclearva 351 0 168 50 267 327 0 144 24 267
tln12 168 156 12 60 12 180 144 24 85 11
tln5 35 30 5 25 5 35 30 5 20 5
tln6 48 42 6 30 6 48 42 6 24 6
tln7 63 56 7 35 7 63 56 7 28 7
waste 2484 0 400 623 1368 1238 0 400 516 1230
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