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Abstract. This paper surveys results on the NP-hard mixed-integer quadratically
constrained programming problem. The focus is strong convex relaxations and valid
inequalities, which can become the basis of efficient global techniques. In particular, we
discuss relaxations and inequalities arising from the algebraic description of the problem
as well as from dynamic procedures based on disjunctive programming. These methods
can be viewed as generalizations of techiniques for mixed-integer linear programming.
We also present brief computational results to indicate the strength and computational
requirements of these methods.

1. Introduction. More than fifty years have passed since Dantzig et.
al. [25] solved the 50-city travelling salesman problem. An achievement
in itself at the time, their seminal paper gave birth to one of the most
succesful disciplines in computational optimization, Mixed Integer Linear
Programming (MILP). Five decades of wonderful research, both theoretical
and computational, have brought mixed integer programming to a stage
where it can solve many if not all MILPs arising in practice (see [43]).
The ideas discovered during the course of this development have naturally
influenced other disciplines. Constraint programming, for instance, has
adopted and refined many of the ideas from MILP to solve more general
classes of problems [2].

Our focus in this paper is to track the influence of MILP in solving
mixed integer quadratically constrained problems (MIQCP). In particu-
lar, we survey some of the recent research on MIQCP and establish their
connections to well known ideas in MILP. The purpose of this is two-fold.
First, it helps to catalog some of the recent results in a form that is accessi-
ble to a researcher with reasonable background in MILP. Second, it defines
a roadmap for further research in MIQCP; although significant progress
has been made in the field of MIQCP, the “breakthrough” results are yet
to come and we believe that the past of MILP holds the clues to the future
of MIQCP.

Specifically, we focus on the following mixed integer quadratically con-
strained problem

min xT Cx + cT x (MIQCP)
s.t. x ∈ F
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where

F :=

⎧⎨⎩ x ∈ R
n :

xT Akx + aT
k x ≤ bk ∀ k = 1, . . . , m

l ≤ x ≤ u

xi ∈ Z ∀ i ∈ I

⎫⎬⎭ .

The data of (MIQCP) is
• (C, c) ∈ Sn × R

n

• (Ak, ak, bk) ∈ Sn × R
n × R for all k = 1, . . . , m

• (l, u) ∈ (R ∪ {−∞})n × (R ∪ {+∞})n

• I ⊆ [n]
where, in particular, Sn is the set of all n × n symmetric matrices and
[n] := {1, . . . , n}. Without loss of generality, we assume l < u, and for all
i ∈ I, (li, ui) ∈ (Z∪ {−∞})× (Z∪ {+∞}). Note that any specific lower or
upper bound may be infinite.

If all Ak = 0, then (MIQCP) reduces to MILP. So (MIQCP) is
NP-hard. In fact, the continuous variant of MIQCP, namely a non-convex
QCP, is already NP-hard and a well-known problem in global optimization
[45, 46]. The computational intractability of MIQCP is quite notorious
and can be traced to the result of Jeroslow [30] from the seventies that
shows that the variant of MIQCP without explicit non-infinite lower/upper
bounds on some of the varibles is undecidable. (MIQCP) is itself a special
case of mixed integer nonlinear programming (MINLP); we refer the reader
to the website MINLP World [41] for surveys, software, and test instances
for MINLP. We also note that any polynomial optimization problem may
be reduced to (MIQCP) by the introduction of auxiliary variables and
constraints to reduce all polynomial degrees to 2, e.g., a cubic term x1x2x3

could be modeled as x1X23 with X23 = x2x3.
Note that if the objective function and constraints in MIQCP are con-

vex, then the resulting optimization problem can be solved using standard
techniques for solving convex MINLP (see [16] for more details). Most of
the ideas and methods discussed in this paper specifically exploit the non-
convex quadratic nature of the objective and constraints of (MIQCP). In
fact, our viewpoint is that many ideas from the solution of MILPs can be
adapted in interesting ways for the study of (MIQCP). In this sense, we
view (MIQCP) as a natural progression from MILP rather than, say, a
special case of MINLP.

We are also not specifically concerned with the global optimization of
(MIQCP). Rather, we focus on generating strong convex relaxations and
valid inequalities, which could become the basis of efficient global tech-
niques.

In Section 2, we review the idea of lifting, which is commonly used to
convexify (MIQCP) and specifically the feasible set F . We then discuss
the generation of various types of linear, second-order-cone, and semidefi-
nite valid inequalities which strengthen the convexification. These inequali-
ties have the property that they arise directly from the algebraic form of F .
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In this sense, they generalize the basic LP relaxation often used in MILP.
We also catalog several known and new results establishing the strength
of these inequalities for certain specifications of F . Then, in Section 3,
we describe several related approaches that shed further light on convex
relaxations of (MIQCP).

In Section 4, we discuss methods for dynamically generating valid in-
equalities, which can further improve the relaxations. One of the funda-
mental tools is that of disjunctive programming, which has been used in
the MILP community for five decades. However, the disjunctions employed
herein are new in the sense that they truly exploit the quadratic form
of (MIQCP). Recently, Belotti [11] studies disjunctive cuts for general
MINLP.

Finally, in Section 5, we consider a short computational study to give
some sense of the computational effort and effect of the methods surveyed
in this paper.

1.1. Notation and terminology. Most of the notation used in this
paper is standard. We define here just a few perhaps atypical notations.
For symmetric matrices A and B of conformable dimensions, we define
〈A, B〉 = tr(AB); a standard fact is that the quadratic form xT Ax can
be represented as

〈
A, xxT

〉
. For a set P in the space of variables (x, y),

projx(P ) denotes the coordinate projection of P onto the space x. clconv P

is the closed convex hull of P . For a square matrix A, diag(A) denotes the
vector of diagonal entries of A. The vector e is the all-ones vector, and ei

is the vector having all zeros except a 1 in position i. The notation X � 0
means that X is symmetric positive semidefinite; X ' 0 means symmetric
negative semidefinite.

2. Convex relaxations and valid inequalities. In this section,
we describe strong convex relaxations of (MIQCP) and F , which arise
from the algebraic description of F . For the purposes of presentation, we
partition the indices [m] of the quadratic constraints into three groups:

“linear” LQ := {k : Ak = 0}
“convex quadratic” CQ := {k : Ak �= 0, Ak � 0}

“nonconvex quadratic” NQ := {k : Ak �= 0, Ak �� 0}.

For those k ∈ CQ, there exists a rectangular matrix Bk (not necessarily
unique) such that Ak = BT

k Bk. Using the Bk’s, it is well known that
each convex quadratic constraint can be represented as a second-order-cone
constraint.

Proposition 2.1 (Alizadeh and Goldfarb [5]). Let k ∈ CQ with
Ak = BT

k Bk. A point x ∈ R
n satisfies xT Akx + aT

k x ≤ bk if and only if∥∥∥∥( Bkx
1
2 (1 + aT

k x− bk)

)∥∥∥∥ ≤ 1
2
(1− aT

k x + bk).



376 SAMUEL BURER AND ANUREET SAXENA

So F ⊆ (n may be rewritten as

F =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x :

aT
k x ≤ bk ∀ k ∈ LQ∥∥∥∥( BT

k x
1
2 (aT

k x− bk + 1)

)∥∥∥∥ ≤ 1
2 (1 − aT

k x + bk) ∀ k ∈ CQ

xT Akx + aT
k x ≤ bk ∀ k ∈ NQ

l ≤ x ≤ u

xi ∈ Z ∀ i ∈ I

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

If so desired, we can model the bounds l ≤ x ≤ u within the linear con-
straints. However, since bounds often play a special role in approaches for
(MIQCP), we leave them separate.

2.1. Lifting, convexification, and relaxation. An idea fundamen-
tal to many methods for (MIQCP) is lifting to a higher dimensional
space. The simplest lifting idea is to introduce auxiliary variables Xij ,
which model the quadratic terms xixj via equations Xij = xixj for all
1 ≤ i, j ≤ n. The single symmetric matrix equation X = xxT also cap-
tures this lifting.

As an immediate consequence of lifting, the quadratic objective and
constraints may be expressed linearly in (x, X), e.g.,

xT Cx + cT x
X=xxT

= 〈C, X〉+ cT x.

So (MIQCP) becomes

min 〈C, X〉+ cT x (2.1)

s.t. (x, X) ∈ F̂

where

F̂ :=

⎧⎪⎪⎨⎪⎪⎩ (x, X) ∈ R
n × Sn :

〈Ak, X〉+ aT
k x ≤ bk ∀ k = 1, . . . , m

l ≤ x ≤ u

xi ∈ Z ∀ i ∈ I

X = xxT

⎫⎪⎪⎬⎪⎪⎭ .

This provides an interesting perspective: the “hard” quadratic objective
and constraints of (MIQCP) are represented as “easy” linear ones in the
space (x, X). The trade-off is the nonconvex equation X = xxT , and of
course the non-convex integrality conditions remain.

The linear objective in (2.1) allows convexification of the feasible region
without change to the optimal value. From standard convex optimization:

Proposition 2.2. The problem (2.1), and hence also (MIQCP), is
equivalent to

min
{
〈C, X〉+ cT x : (x, X) ∈ clconv F̂

}
.
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Thus, many lifting approaches may be interpreted as attempting to
better understand clconv F̂ . We adopt this point of view.

A straightforward linear relaxation of clconv F̂ , which is analogous to
the basic linear relaxation of a MILP, is gotten by simply dropping X = xxT

and xi ∈ Z:

L̂ :=
{

(x, X) ∈ R
n × Sn :

〈Ak, X〉+ aT
k x ≤ bk ∀ k = 1, . . . , m

l ≤ x ≤ u

}
.

There are many ways to strengthen L̂ as discussed in the following three
subsections.

2.2. Valid linear inequalities. The most common idea for con-
structing valid linear inequalities for clconv F̂ is the following. Let αT x ≤
α0 and βT x ≤ β0 be any two valid linear inequalites for F (possibly the
same). Then the quadratic inequality

0 ≤ (α0 − αT x)(β0 − βT x) = α0β0 − β0 αT x− α0 βT x + xT αβT x

is also valid for F , and so the linear inequality

α0β0 − β0 αT x− α0 βT x +
〈
βαT , X

〉
≥ 0

is valid for clconv F̂ .
The above idea works with any pair of valid inequalities, e.g., ones

given explicitly in the description of F or derived ones. For those explicitly
given (the bounds l ≤ x ≤ u and the constraints corresponding to k ∈ LQ),
the complete list of derived valid quadratic inequalities is

(xi − li)(xj − lj) ≥ 0
(xi − li)(uj − xj) ≥ 0
(ui − xi)(xj − lj) ≥ 0
(ui − xi)(uj − xj) ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ∀ (i, j) ∈ [n]× [n], i ≤ j (2.2a)

(xi − li)(bk − aT
k x) ≥ 0

(ui − xi)(bk − aT
k x) ≥ 0

}
∀ (i, k) ∈ [n]× LQ (2.2b)

(b� − aT
� x)(bk − aT

k x) ≥ 0
}

∀ (�, k) ∈ LQ× LQ, � ≤ k. (2.2c)

The linearizations of (2.2) were considered in [37] and are sometimes re-
ferred to as rank-2 linear inequalities [33]. So we denote the collection of
all (x, X), which satisfy these linearizations, as R2, i.e.,

R2 := { (x, X) : linearized versions of (2.2) hold }.

In particular, the linearized versions of (2.2a) are called the RLT in-
equalities after the “reformulation-linearization technique” of [55], though
they first appeared in [3, 4, 40]. These inequalities have been studied exten-
sively because of their wide applicability and simple structure. Specifically,
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the RLT constraints provide simple bounds on the entries of X , which
otherwise may be weakly constrained in L̂, especially when m is small. Af-
ter linearization via Xij = xixj , the four inequalities (2.2a) for a specific
(i, j) are

lixj + xilj − lilj
uixj + xiuj − uiuj

}
≤ Xij ≤

{
xiuj + lixj − liuj

xilj + uixj − uilj .
(2.3)

Using the symmetry of X , the entire collection of RLT inequalities in matrix
form is

lxT + xlT − llT

uxT + xuT − uuT

}
≤ X ≤ xuT + lxT − luT . (2.4)

It can be shown easily that the original inequalities l ≤ x ≤ u are implied
by (2.4) if both l and u are finite in all components.

Since the RLT inequalities are just a portion of the inequalities defin-
ing R2, it might be reasonable to consider R2 generally and not the RLT
constraints specifically. However, it is sometimes convenient to study the
RLT constraints on their own. So we write (x, X) ∈ RLT when (x, X)
satisfies (2.4) but not necessarily all rank-2 linear inequalities, i.e.,

RLT := { (x, X) : (2.4) holds }.

2.3. Valid second-order-cone inequalities. Similar to the deriva-
tion of the inequalities defining R2, the linearizations of the following
quadratic inequalities are valid for clconv F̂ : for all (k, �) ∈ LQ× CQ,

(bk − aT
k x)

(
1
2
(1− aT

� x + b�)−
∥∥∥∥( BT

� x
1
2 (aT

� x− b� + 1)

)∥∥∥∥) ≥ 0. (2.5)

We call the linearizations rank-2 second-order inequalities and denote by
S2 the set of all satisfying (x, X), i.e.,

S2 := { (x, X) : linearized versions of (2.5) hold }.

As an example, suppose we have the two valid inequalities x1 +x2 ≤ 1
and x2

1 + x2
2 ≤ 2/3, the second of which, via Proposition 2.1, is equivalent

to the second-order cone constraint ‖x‖ ≤
√

2/3. Then we multiply 1 −
x1 − x2 ≥ 0 with

√
2/3− ‖x‖ ≥ 0 to obtain the valid inequality

0 ≤ (1 − x1 − x2)(
√

2/3− ‖x‖)

=
√

2/3(1− x1 − x2)− ‖(1− x1 − x2)x‖,

which is linearized as∥∥∥∥(x1 −X11 −X12

x2 −X21 −X22

)∥∥∥∥ ≤√2/3(1− x1 − x2).
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2.4. Valid semidefinite inequalities. The application of SDP to
(MIQCP) arises from the following fundamental observation:

Lemma 2.1 (Shor [56]). Given x ∈ R
n, it holds that(

1 xT

x xxT

)
=
(

1
x

)(
1
x

)T

� 0.

Thus, the linearized semidefinite inequality

Y :=
(

1 xT

x X

)
� 0 (2.6)

is valid for clconv F̂ . We define

PSD := { (x, X) : (2.6) holds }.

Instead of enforcing (x, X) ∈ PSD, i.e., the full PSD condition (2.6),
one can enforce relaxations of it. For example, since all principal submatri-
ces of Y � 0 are semidefinite, one could enforce just that all or some of the
2 × 2 principal submatrices of Y are positive semidefinite. This has been
done in [32], for example.

2.5. The strength of valid inequalities. From the preceding sub-
sections, we have the following result by construction:

Proposition 2.3. clconv F̂ ⊆ L̂ ∩ RLT ∩R2 ∩ S2 ∩ PSD.
Even though R2 ⊆ RLT, we retain RLT in the above expression for em-

phasis. We next catalog and discuss various special cases in which equality
is known to hold in Proposition 2.3.

2.5.1. Simple bounds. We first consider the case when F is defined
by simple, finite bounds, i.e., F = {x ∈ R

n : l ≤ x ≤ u} with (l, u) finite
in all components. In this case, R2 = RLT ⊆ L̂ and S2 is vacuous. So
Proposition 2.3 can be stated more simply as clconv F̂ ⊆ RLT ∩ PSD.
Equality holds if and only if n ≤ 2:

Theorem 2.1 (Anstreicher and Burer [6]). Let F = {x ∈ R
n : l ≤

x ≤ u} with (l, u) finite in all components. Then clconv F̂ ⊆ RLT∩PSD
with equality if and only if n ≤ 2.

For n > 2, [6] and [19] derive additional valid inequalities but are still
unable to determine an exact representation by valid inequalities even for
n = 3. ([6] does give an exact disjunctive representation for n = 3.)

We also mention a classical result, which is in some sense subsumed by
Theorem 2.1. Even still, this result indicates the strength of the RLT in-
equalities and can be useful when one-variable quadratics Xii = x2

i are not
of interest. The result does not fully classify clconv F̂ but rather coordinate
projections of it.

Theorem 2.2 (Al-Khayyal and Falk [4]). Let F = {x ∈ R
n : l ≤

x ≤ u} with (l, u) finite in all components. Then, for all 1 ≤ i < j ≤ n,
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proj(xi,xj,Xij)(clconv F̂) = RLTij, where RLTij := {(xi, xj , Xij) ∈ R
3 :

(2.3) holds}.

2.5.2. Binary integer grid. We next consider the case when F is a
binary integer grid: that is, F = {x ∈ Z

n : l ≤ x ≤ u} with u = l + e and l

finite in all components. Note that this is simply a shift of the standard 0-1
binary grid and that clconv F̂ is a polytope. In this case, R2 = RLT ⊆ L̂
and S2 is vacuous. So Proposition 2.3 states that clconv F̂ ⊆ RLT ∩ PSD.
Also, some additional, simple linear equations are valid for clconv F̂ .

Proposition 2.4. Suppose that i ∈ I has ui = li + 1 with li finite.
Then the equation Xii = (1 + 2 li)xi − li − l2i is valid for clconv F̂ .

Proof. The shift xi−li is either 0 or 1. Hence, (xi−li)2 = xi−li. After
linearization with Xii = x2

i , this quadratic equation becomes the claimed
linear one.

When I = [n], the individual equations Xii = (1 + 2 li)xi − li − l2i can
be collected as diag(X) = (e + 2 l) ◦ x − l − l2. We remark that the next
result does not make use of PSD.

Theorem 2.3 (Padberg [44]). Let F = {x ∈ Z
n : l ≤ x ≤ u} with

u = l + e and l finite in all components. Then

clconv F̂ ⊆ RLT ∩
{
(x, X) : diag(X) = (e− 2 l) ◦ x− l− l2

}
with equality if and only if n ≤ 2.

In this case, clconv F̂ is closely related to the boolean quadric polytope
[44]. For n > 2, additional valid inequalities, such as the triangle inequal-
ities described by Padberg [44], provide an even better approximation of
clconv F̂ . For general n, a full description should not be easily available
unless P = NP .

2.5.3. The nonnegative orthant and standard simplex. We now
consider a case arising in the study of completely positive matrices in opti-
mization and linear algebra [13, 23, 24]. A matrix Y is completely positive
if Y = NNT for some nonnegative, rectangular matrix N , and the set of
all completely positive matrices is a closed, convex cone. Although this
cone is apparently intractable [42], it can be approximated from the out-
side to any precision using a seqence of polyhedral-semidefinite relaxations
[26, 47]. The simplest approximation is by the so-called doubly nonnegative
matrices , which are matrices Y satisfying Y � 0 and Y ≥ 0. Clearly, every
completely positive matrix Y is doubly nonnegative. The converse holds if
and only if n ≤ 4 [39].

Let F = {x ∈ R
n : x ≥ 0}. Then, since RLT = R2 and S2 is vacuous,

Proposition 2.3 states clconv F̂ ⊆ L̂∩RLT ∩PSD. Note that, because u is
infinite in this case, (x, X) ∈ RLT does not imply x ≥ 0, and so we must
include L̂ explicitly to enforce x ≥ 0. It is easy to see that

L̂ ∩ RLT ∩ PSD =
{

(x, X) ≥ 0 :
(

1 xT

x X

)
� 0

}
(2.7)



OLD WINE IN A NEW BOTTLE: THE MILP ROAD TO MIQCP 381

which is the set of all doubly nonnegative matrices of size (n + 1)× (n + 1)
having a 1 in the top-left corner.

For general n, it appears that equality in Proposition 2.3 does not hold
in this case. However, it does hold for n ≤ 3, which we prove next. As far
as we are aware, this result has not appeared in the literature.

We first characterize the difference between conv F̂ and L̂∩RLT ∩PSD
for n ≤ 3. The following lemma shows that this difference is precisely the
recession cone of L̂ ∩ RLT ∩ PSD, which equals

rcone(L̂ ∩ RLT ∩ PSD) = {(0, D) ≥ 0 : D � 0} . (2.8)

Lemma 2.2. Let F = {x ∈ R
n : x ≥ 0} with n ≤ 3. Then

L̂ ∩ RLT∩PSD = conv F̂ + rcone(L̂ ∩ RLT ∩ PSD).

Proof. To prove the statement, we show containment in both direc-
tions; the containment ⊇ is easy. To show ⊆, let (x, X) ∈ L̂ ∩RLT ∩PSD
be arbitary. By (2.7),

Y :=
(

1 xT

x X

)
is doubly nonnegative of size (n + 1)× (n + 1). Since n ≤ 3, the “n ≤ 4”
result of [39] implies that Y is completely positive. Hence, there exists a
rectangular N ≥ 0 such that Y = NNT . By decomposing each column N·j
of N as

N·j =
(

ζj

zj

)
, (ζj , zj) ∈ R+ × R

n
+

we can write

Y =
(

1 xT

x X

)
=
∑

j

(
ζj

zj

)(
ζj

zj

)T

=
∑

j:ζj>0

ζ2
j

(
1

ζ−1
j zj

)(
1

ζ−1
j zj

)T

+
∑

j:ζj=0

(
0
zj

)(
0
zj

)T

=
∑

j:ζj>0

ζ2
j

(
1 ζ−1

j zT
j

ζ−1
j zj ζ−2

j zjz
T
j

)
+

∑
j:ζj=0

(
0 0T

0 zjz
T
j

)
.

This shows that
∑

j:ζj>0 ζ2
j = 1 and, from (2.8), that (x, X) is expressed as

the convex combination of points in F̂ plus the sum of points in rcone(L̂ ∩
RLT ∩ PSD), as desired.

Using the lemma, we can prove equality in Proposition 2.3 for n ≤ 3.
Theorem 2.4. Let F = {x ∈ R

n : x ≥ 0}. Then clconv F̂ ⊆
L̂ ∩ RLT∩PSD with equality if n ≤ 3.
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Proof. The first statement of the theorem is just Proposition 2.3. Next,
for contradiction, suppose there exists (x̄, X̄) ∈ L̂ ∩RLT∩PSD \ clconv F̂ .
By the separating hyperplane theorem, there exists (c, C) such that

min{〈C, X〉+ cT x : x ∈ clconv F̂} ≥ 0 > 〈C, X̄〉+ cT x̄.

Since (x̄, X̄) ∈ L̂ ∩ RLT∩PSD, by the lemma there exists (z, Z) ∈ conv F̂
and (0, D) ∈ rcone(L̂ ∩ RLT∩PSD) such that (x̄, X̄) = (z, Z + D). Thus,
〈C, D〉 < 0.

Since D ≥ 0, D � 0, and n ≤ 3, D is completely positive, i.e., there
exists rectangular N ≥ 0 such that D = NNT . We have 〈C, NNT 〉 < 0,
which implies dT Cd < 0 for some nonzero column d ≥ 0 of N . It follows
that d is a negative direction of recession for the function xT Cx + cT x. In
other words,

min{〈C, X〉+ cT x : x ∈ clconv F̂} = −∞,

a contradiction.
A related result occurs for a bounded slice of the nonnegative orthant,

e.g., the standard simplex {x ≥ 0 : eT x = 1}. In this case, however, the
boundedness, the linear constraint, and R2 ensure that equality holds in
Proposition 2.3 for n ≤ 4.

Theorem 2.5 (Anstreicher and Burer [6]). Let F := {x ≥ 0 : eT x =
1}. Then clconv F̂ ⊆ L̂ ∩ RLT ∩ R2 ∩ PSD with equality if and only if
n ≤ 4.

[36] and [6] also give related results where F is an affine transformation
of the standard simplex.

2.5.4. Half ellipsoid. Let F be a half ellipsoid, that is, the intersec-
tion of a linear half-space and a possibly degenerate ellipsoid. In contrast
to the previous cases considered, [57] proved that this case achieves equality
in Proposition 2.3 regardless of the dimension n. On the other hand, the
number of constraints is fixed. In particular, all simple bounds are infinite,
|LQ| = 1, |CQ| = 1, and NQ = ∅ in which case Proposition 2.3 states
simply clconv F̂ ⊆ L̂ ∩ S2 ∩ PSD.

Theorem 2.6 (Sturm and Zhang [57]). Suppose

F =
{

x ∈ R
n : aT

1 x ≤ b1

xT A2x + aT
2 x ≤ b2

}

with A2 � 0 is nonempty. Then clconv F̂ = L̂ ∩ S2 ∩ PSD.

As far as we are aware, this is the only case where Proposition 2.3
is provably strengthened via use of the rank-2 second-order inequalities
enforced by S2.
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2.5.5. Bounded quadratic form. The final case we consider is that
of a bounded quadratic form. Specifically, for a given quadratic form
xT Ax + aT x and bounds −∞ ≤ bl ≤ bu ≤ +∞, let F be the set of
points such that the form falls within the bounds, i.e., F = {x : bl ≤
xT Ax + aT x ≤ bu}. No assumptions are made on A, e.g., we do not as-
sume that A is positive semidefinite. As far as we are aware, the result
proved below is new, but closely related results can be found in [57, 61].

Since there are no explicit bounds and no linear or convex quadratic
inequalities, Proposition 2.3 states simply that clconv F̂ ⊆ L̂∩PSD, where

L̂ ∩ PSD =

⎧⎨⎩(x, X) :
bl ≤ 〈A, X〉+ aT x ≤ bu(

1 xT

x X

)
� 0

⎫⎬⎭ . (2.9)

In general, it appears that equality in Proposition 2.3 does not hold in this
case. However, we can still characterize the difference between clconv F̂
and L̂ ∩ PSD. As it turns out in the theorem below, this difference is
precisely the recession cone of L̂ ∩ PSD, which equals

rcone(L̂ ∩ PSD) =

⎧⎨⎩(0, D) :
0 ≤ 〈A, D〉 if −∞ < bl

〈A, D〉 ≤ 0 if bu < +∞
D � 0.

⎫⎬⎭ .

In particular, if rcone(L̂ ∩PSD) is trivial, e.g., when A ) 0 and bl = bu are
finite, then we will have equality in Proposition 2.3. The proof makes use
of an important external lemma but otherwise is self-contained. Related
proof techniques have been used in [10, 18].

Lemma 2.3 (Pataki [48]). Consider a consistent feasibility system in
the symmetric matrix variable Y , which enforces Y � 0 as well as p linear
equalities and q linear inequalities. Suppose Ȳ is an extreme point of the
feasible set, and let r̄ := rank(Y ) and s̄ be the number of inactive linear
inequalities at Ȳ . Then r̄(r̄ + 1)/2 + s̄ ≤ p + q.

Theorem 2.7. Let F = {x ∈ R
n : bl ≤ xT Ax + aT x ≤ bu} with

−∞ ≤ bl ≤ bu ≤ +∞ be nonempty. Then

clconv F̂ ⊆ L̂ ∩ PSD = conv F̂ + rcone(L̂ ∩ PSD).

Proof. Proposition 2.3 gives the inclusion clconv F̂ ⊆ L̂ ∩PSD. So we
need to prove L̂ ∩ PSD = clconv F̂ + rcone(L̂ ∩ PSD). The containment ⊇
is straightforward by construction.

For the containment ⊆, recall that any point in a convex set may be
written as a convex combination of finitely many extreme points plus a
finite number of extreme rays. Hence, to complete the proof, it suffices to
show that every extreme point of L̂ ∩ PSD is in F̂ .

So let (x̄, X̄) be any extreme point of L̂∩PSD. Examining (2.9) in the
context of Lemma 2.3, L̂∩PSD can be represented as a feasibility system in
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Y :=
(

1 xT

x X

)
under four scenarios based on the values of (bl, bu):

(i) (p, q) = (1, 0) if both bl and bu are infinite;
(ii) (p, q) = (1, 1) if exactly one is finite;
(iii) (p, q) = (1, 2) if both are finite and bl < bu; or
(iv) (p, q) = (2, 0) if both are finite and bl = bu.

Define Ȳ according to (x̄, X̄) and (r̄, s̄) as in the lemma. In the three cases
(i), (ii), and (iv), p + q ≤ 2, and since s̄ ≥ 0, we have

r̄(r̄ + 1)/2 ≤ r̄(r̄ + 1)/2 + s̄ ≤ p + q ≤ 2,

in which case r̄ ≤ 1. In the case (iii), p + q = 3 but s̄ ≥ 1 since bl < bu,
and so

r̄(r̄ + 1)/2 ≤ p + q − s̄ ≤ 2,

which implies r̄ ≤ 1 as well. Overall, r̄ ≤ 1 means that (x̄, X̄) satisfies
X̄ = x̄x̄T , in which case (x̄, X̄) ∈ F̂ , as desired.

We remark that, if one were able to prove rcone(clconv F̂) = rcone(L̂∩
PSD), then one would have equality in general. Using Lemma 2.3, it is
possible to show that rcone(L̂ ∩ PSD) = D̂, where

D :=
{

d ∈ R
n : 0 ≤ dT Ad if −∞ < bl

dT Ad ≤ 0 if bu < +∞

}
D̂ :=

{
(0, ddT ) ∈ R

n × Sn : d ∈ D
}

,

but the relationship between D̂ and rcone(clconv F̂) is unclear.

3. Convex relaxations and valid inequalities: Related topics.

3.1. Another approach to convexification. We have presented
Section 2 in terms of the set clconv F̂ . Another common approach [29, 58] is
to study the so-called convex and concave envelopes of nonconvex functions.
For example, in the formulation (MIQCP), suppose f(x) := xT Cx + cT x

is nonconvex, and let f−(x) be any convex function that underestimates
f(x) in F , i.e., f−(x) ≤ f(x) holds for all x ∈ F . Then one can relax f(x)
by f−(x). Considering all such f−(x), since the point-wise supremum of
convex functions is convex, there is a single convex f̂−(x) which most closely
underestimates the objective. By definition, f̂−(x) is the convex envelope
for f(x) over F . The convex envelope is closely related to the closed convex
hull of the graph or epigraph of f(x), i.e., clconv{(x, f(x)) : x ∈ F} or
clconv{(x, w) : x ∈ F , f(x) ≤ w}. Concave envelopes apply similar ideas
to overestimation.

One can obtain a convex relaxation of (MIQCP) by relaxing the ob-
jective and all nonconvex constraints using convex envelopes. This can be
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seen as an alternative to lifting via X = xxT . Either approach is generi-
cally hard. Another alternative is to perform some mixture of lifting and
convex envelopes as is done in [36].

Like the various results in Section 2 with clconv F̂ , there are relatively
few cases (typically low-dimensional) for which exact convex envelopes are
known. For example, the following gives another perspective on Theorem
2.2 and equation (2.3) above:

Theorem 3.1 (Al-Khayyal and Falk [4]). Let F = {x ∈ R
n : l ≤ x ≤

u} with (l, u) finite in all components. For all 1 ≤ i < j ≤ n, the convex
and concave envelopes of f(xi, xj) = xixj over F are, respectively,

max{lixj + xilj − lilj , uixj + xiuj − uiuj}

min{xiuj + lixj − liuj, xilj + uixj − uilj}.

These basic formulas can be used to construct convex underestimators
(not necessarily envelopes) for any quadratic function by separating that
quadratic function into pieces based on all xixj . Such techniques are used
in the software BARON [51]. Also, [21] generalizes the above theorem to
the case where f is the product of two linear functions having disjoint
support.

3.2. A SOCP relaxation. [31] proposes an SOCP relaxation for
(MIQCP), which does not explicitly require the lifting X = xxT and is
related to ideas in difference-of-convex programming [28].

First, the authors assume without loss of generality that the objective
of (MIQCP) is linear. This can be achieved, for example, by introducing
a new variable t ∈ R as well as a new quadratic constraint xT Cx+ cT x ≤ t

and then minimizing t. Next, for each k ∈ NQ, Ak is written as the
difference of two (carefully chosen) positive semidefinite A+

k , A−k � 0, i.e.,
Ak = A+

k −A−k , so that k-th constraint may be expressed as

xT A+
k x + aT

k x ≤ bk + xT A−k x.

Then, an auxiliary variable zk ∈ R is introduced to represent xT A−k x but
also immediately relaxed as xT A−k x ≤ zk resulting in the convex system

xT A+
k x + aT

k x ≤ bk + zk

xT A−k x ≤ zk.

Finally, zk must be bounded in some fashion, say as zk ≤ μk ∈ R, or else the
relaxation will in fact be useless. Bounding zk depends very much on the
problem and the choice of A+

k , A−k . [31] provides strategies for bounding zk.
The relaxation thus obtained can be modeled as a problem having only

linear and convex quadratic inequalities, which can in turn be represented
as an SOCP. In total, the relaxation obtained by the authors is
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x ∈ R

n :

aT
k x ≤ bk ∀ k ∈ LQ

xT Akx + aT
k x ≤ bk ∀ k ∈ CQ

xT A+
k x + aT

k x ≤ bk + zk ∀ k ∈ NQ

xT A−k x ≤ zk ∀ k ∈ NQ

l ≤ x ≤ u, z ≤ μ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

This SOCP model is shown to be dominated by the SDP relaxation L̂∩PSD,
while it is not directly comparable to the basic LP relaxation L̂.

The above relaxation was recently revisited in [53]. The authors stud-
ied the relaxation obtained by the following splitting of the Ak matrices,

Ak =
∑

λkj>0

λkjvkjv
T
kj −

∑
λkj<0

λkjvkjv
T
kj ,

where {λk1, . . . , λkn} and {vk1, . . . , vkn} are the set of eigenvalues and
eigenvectors of Ak, respectively. The constraint xT Akx+aT

k x ≤ bk can thus

be reformulated as,
∑

λkj>0 λkj

(
vT

kjx
)2

+aT
k x ≤ bk +

∑
λkj<0 λkj

(
vT

kjx
)2

.

The non-convex terms
(
vT

kjx
)2

(λkj < 0) can be relaxed by using their se-
cant approximation to derive a convex relaxation of the above constraint.
Instances of (MIQCP) tend to have geometric correlations along those
vkj with λkj < 0, which can be captured by projection techniques, and
embedded within the polarity framework to derive strong cutting planes.
We refer the reader to [53] for further details.

3.3. Results relating simple bounds and the binary integer
grid. Motivated by Theorems such as 2.1 and 2.3 and the prior work of
Padberg [44] and Yajima and Fujie [60], Burer and Letchford [19] studied
the relationship between the two convex hulls

clconv
{
(x, xxT ) : x ∈ [0, 1]n

}
(3.1a)

clconv
{
(x, xxT ) : x ∈ {0, 1}n

}
. (3.1b)

The convex hull (3.1a) has been named QPBn by the authors because of
its relationship to “quadratic programming over the box.” The convex hull
(3.1b) is essentially the well known boolean quadric polytope BQPn [44].
In fact, the authors show that BQPn is simply the coordinate projection
of (3.1b) on the variables xi (1 ≤ i ≤ n) and Xij (1 ≤ i < j ≤ n). Note
that nothing is lost in the projection because Xii = xi and Xji = Xij are
valid for (3.1b).

We let π represent the coordinate projection just mentioned, i.e., onto
the variables xi and Xij (i < j). The authors’ result can be stated as
π(QPBn) = BQPn, which immediately implies the following:

Theorem 3.2 (Burer and Letchford [19]). Any inequality in the vari-
ables xi (1 ≤ i ≤ n) and Xij (1 ≤ i < j ≤ n), which is valid for BQPn, is
also valid for QPBn.
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For proper interpretation of the theorem, it is important to keep in
mind that QPBn still involves the variables Xii, while those same vari-
ables have been projected out to obtain BQPn. So another way to phrase
the theorem is as follows: a valid inequality for BQPn becomes valid for
QPBn when the variables Xii are introduced into the inequality with zero
coefficients.

This result shows that, in a certain sense, describing QPBn is at least
as hard as describing BQPn, and since many classes of valid inequalities
are already known for BQPn, it also gives many classes of valid inequalities
for QPBn. Indeed, the authors prove many classes of facets for BQPn are
in fact facets for QPBn. The authors also demonstrate that PSD and the
RLT inequalities for pairs (i, i) help describe QPBn beyond BQPn.

3.4. Completely positive programming. Burer [18] has recently
studied a special case of (MIQCP) having

F =

⎧⎨⎩x ≥ 0 :
Ax = b

xixj = 0 ∀ (i, j) ∈ E

xi ∈ {0, 1} ∀ i ∈ I

⎫⎬⎭ , (3.2)

where, in particular, A is a rectangular matrix and E ⊆ [n] × [n] is sym-
metric. The author considers this specific form because it is amenable to
analysis and yet is still fairly general. The results in [18] do not appear to
hold, for example, under the general quadratic constraints of (MIQCP).

Proposition 2.3 and similar logic as in Theorem 2.3 show that

clconv F̂ ⊆ ĤPSD := L̂ ∩ RLT ∩R2 ∩ PSD ∩ {(x, X) : Xii = xi ∀ i ∈ I}.

The following simplifying proposition is fairly easy to show:
Proposition 3.1 (Burer [17]). It holds that

ĤPSD =

⎧⎪⎪⎨⎪⎪⎩(x, X) ∈ PSD :

(x, X) ≥ 0
Ax = b, diag(AXAT ) = b2

Xij = 0 ∀ (i, j) ∈ E

Xii = xi ∀ i ∈ I

⎫⎪⎪⎬⎪⎪⎭ .

Actually, (x, X) ∈ clconv F̂ satisfies a stronger convex condition than
(x, X) ∈ PSD. Recall that (x, X) ∈ PSD is derived from(

1 xT

x xxT

)
=
(

1
x

)(
1
x

)T

� 0.

Using that x ∈ F has x ≥ 0, the above matrix is completely positive, not
just positive semidefinite; see Section 2.5.3. We write

(x, X) ∈ CPP ⇐⇒

(
1 xT

x X

)
is completely positive
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and define ĤCPP := ĤPSD ∩ CPP. The result below establishes that
clconv F̂ = ĤCPP.

Theorem 3.3 (Burer [18], Bomze and Jarre [15]). Let F be defined as
in (3.2). Define J := {j : ∃ k s.t. (j, k) ∈ E or (k, j) ∈ E}, and suppose xi

is bounded in {x ≥ 0 : Ax = b} for all i ∈ I ∪ J . Then clconv F̂ = ĤCPP.
We emphasize that the result holds regardless of the boundedness of

F as a whole; it is only important that certain variables are bounded.
Completely positive representations of clconv F̂ for different F , which are
not already covered by the above theorem, can also be found in [49, 50].

Starting from the above theorem, Burer [17] has implemented a spe-
cialized algorithm for optimizing the relaxation ĤPSD. We briefly discuss
this implementation in Section 5.

3.5. Higher-order liftings and projections. Whenever it is not
possible to capture clconv F̂ exactly in the lifted space (x, X), it is still
possible to lift into ever higher dimensional spaces and to linearize, say,
cubic, quartic, or higher-degree valid inequalities there. This is quite a
deep and powerful technique for capturing clconv F̂ . We refer the reader
to the following papers: [9, 14, 33, 34, 35, 37, 54].

One of the most famous results in this area is the sequential convexi-
fication result for mixed 0-1 linear programs (M01LPs). Balas [8] showed
that M01LPs are special cases of facial disjunctive programs which possess
the sequential convexifiability property. Simply put, this means that the
closed convex hull of all feasible solutions to a M01LP can be obtained by
imposing the 0-1 condition on the binary variables sequentially, i.e., by im-
posing the 0-1 condition on the first binary variable and convexifying the
resulting set, followed by imposing the 0-1 condition on the second variable,
and so on. This is stated as the following theorem.

Theorem 3.4 (Balas [8]). Let F be the feasible set of a M01LP, i.e.,

F =
{
x ∈ {0, 1}n : aT

k x ≤ bk ∀ k = 1, . . . , m
}

and define L to be its basic linear relaxation in x. For each i = 1, . . . , n,
define Ti := {x : xi ∈ {0, 1}}. and

S0 := L
Si := clconv (Si−1 ∩ Ti) ∀ i = 1, . . . , n.

Then Sn = clconvF .
There exists an analogous sequential convexficiation for the continuous

case of (MIQCP) for general quadratic constraints.
Theorem 3.5 (Saxena et al. [52]). Suppose that the feasible region F

of (MIQCP) is bounded with I = ∅, i.e., no integer variables. For each

i = 1, . . . , n, define T̂i := {(x, X) : Xii ≤ x2
i }. Also define

Ŝ0 := L̂ ∩ PSD

Ŝi := clconv
(
Ŝi−1 ∩ T̂i

)
∀ i = 1, . . . , n.
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Then Ŝn = clconv F̂ .
Part of the motivation for this theorem comes from the fact that

PSD∩
n⋂

i=1

T̂i = {(x, X) : X = xxT }

i.e., enforcing all T̂i along with positive semidefiniteness recovers the non-
convex condition X = xxT . This is analogous to the fact that

⋂n

i=1 Ti

recovers the integer condition in Theorem 3.4.
There is one crucial difference between Theorems 3.4 and 3.5. Note

that a M01LP with a single binary variable is polynomial-time solvable;
Balas [8] gave a polynomial-sized LP for this problem. On the other hand,
the analogous problem in the context of (MIQCP) involves minimizing a
linear function over a nonconvex set of the form

L̂ ∩ PSD ∩ {(x, X) : Xii ≤ x2
i }.

It is not immediately clear if this is a polynomial-time solvable problem.
Indeed, it is likely to be NP-hard [38].

An immediate consequence of any sequential convexification theorem
is that it decomposes the non-convexity of the original problem (M01LP
or MIQCP) into a set of simple atomic non-convex conditions, such as
xj ∈ {0, 1} or Xii ≤ x2

i that can be handled separately. For instance, Balas,
Ceria and Cornuéjols [9] studied a lifted LP formulation of M01LP with a
single binary variable and combined it with projection techniques to derive
a family of cutting planes for M01LP, widely known as lift-and-project
cuts. In order to apply the same idea to (MIQCP) we need systematic
techniques for deriving valid cutting planes for the set L̂ ∩PSD ∩{(x, X) :
Xii ≤ x2

i }; a disjunctive programming based approach is described in the
following section.

Theorems 3.4 and 3.5 can actually be combined to convexify any
bounded F having a mix of binary and continuous variables. Also, The-
orem 3.5 holds if the sets T̂i are defined with respect to any orthonormal
basis {v1, . . . , vn}, i.e., T̂i = {(x, X) :

〈
viv

T
i , X

〉
≤ (vT

i x)2}, not just the
standard basis {e1, . . . , en}. We refer the reader to [52] for proofs of these
results.

4. Dynamic approaches for generating valid inequalities. Our
starting point in this section is the lifted version F̂ of the feasible set F ,
whose convex hull can be relaxed, for example, as clconv F̂ ⊆ L̂ ∩ RLT ∩
R2 ∩ S2 ∩ PSD (see Proposition 2.3). We are particularly interested in
improving this relaxation through valid inequalities coming from a certain
disjunctive programming approach.

Besides the presence of the integrality constraints xi ∈ Z, the only
nonconvex constraint in F̂ is the nonlinear equation X = xxT which can
be represented exactly by the pair of SDP inequalities X − xxT � 0 and
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X − xxT ' 0. In fact, by the Schur complement theorem, the former is
equivalent to the inequality (2.6), which is enforced by PSD. However, the
latter is nonconvex. So relaxing F̂ to L̂ ∩ PSD can be viewed as simply
dropping X−xxT ' 0. Said differently, F̂ = L̂∩PSD ∩{(x, X) : X−xxT '
0}. Harnessing the power of the inequality X − xxT ' 0 constitutes the
emphasis of this section.

As an aside, we would like to mention that all the results presented
in this section exploit the continuous non-convexities in (MIQCP) to
generate cutting planes. Non-convexities arising from presence of inte-
ger variables can be handled in a manner that is usally done in MILP; we
refer the reader to [52] for computational results on disjunctive cuts for
(MIQCP) derived from elementary 0-1 disjunctions, and to [7] for mixed
integer rounding cuts for conic programs with 0-1 variables.

4.1. A procedure for generating disjunctive cuts. For any or-
thonormal basis {v1, . . . , vn} of R

n,

F̂ = L̂ ∩ PSD ∩ {(x, X) : X − xxT ' 0} (4.1)

= L̂ ∩ PSD ∩
{
(x, X) : 〈X, viv

T
i 〉 ≤ (vT

i x)2 ∀ i = 1, . . . , n
}

. (4.2)

Given an arbitrary incumbent solution (x̂, X̂), say, from optimizing over
L̂ or L̂ ∩ PSD, we would like to choose a basis {v1, . . . , vn} whose corre-
sponding reformulation most effectively elucidates the infeasibility of (x̂, X̂)
with respect to (4.1). The problem of choosing such a basis can be formu-
lated as the following optimization problem that focuses on maximizing
the violation of (x̂, X̂) with respect to the set of nonconvex constraints
〈X, viv

T
i 〉 ≤

(
vT

i x
)2:

max maxi=1...n〈X̂, viv
T
i 〉 −

(
vT

i x̂
)2

s.t. {v1, . . . , vn} is an orthonormal basis.

Clearly, a set of orthonormal eigenvectors of X̂ − x̂x̂T is an optimal solu-
tion to the above problem. This exercise of choosing a reformulation that
hinges on certain characteristics of the incumbent solution (in this case the
spectral decomposition of (x̂, X̂)) can be viewed as a dynamic reformula-
tion technique that rotates the coordinate axes so as to most effectively
highlight the infeasibility of the incumbent solution.

Having chosen an orthonormal basis, we need a systematic technique
to derive cutting planes for clconv F̂ using (4.2). We use the framework
of disjunctive programming to accomplish this goal. Classical disjunctive
programming of Balas [8] requires a linear relaxation P̂ of F̂ and a disjunc-
tion that is satisfied by all (x, X) ∈ F̂ . The linear relaxation P̂ could be
taken equal to L̂ but could also incorporate cutting planes generated from
previous incumbent solutions. As for the choice of disjunctions, we seek
the sources of nonconvexities in (4.2). Evidently, (4.2) has two of these,
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namely, the integrality conditions on the variables xi for i ∈ I and the non-
convex constraints 〈X, viv

T
i 〉 ≤

(
vT

i x
)2. Integrality constraints have been

used to derive disjunctions in MILP for the past five decades; examples
of such disjunctions include elementary 0-1 disjunctions, split disjunctions,
GUB disjunctions, etc. We do not detail these disjunctions here. For con-
straints of the type 〈Y, vvT 〉 ≤

(
vT x

)2 for fixed v ∈ R
n, Saxena et. al. [52]

proposed a technique to derive a valid disjunction, which we detail next.
Following [52], we refer to 〈X, vvT 〉 ≤

(
vT x

)2 as a univariate expression.

Let

ηL(v) := min
{
vT x | (x, X) ∈ P̂

}
ηU (v) := max

{
vT x | (x, X) ∈ P̂

}
θ ∈ (ηL(v), ηU (v)) .

In their computational experiments, Saxena et. al. [52] chose θ = vT x̂,
where (x̂, X̂) is the current incumbent. Every (x, X) ∈ F̂ satisfies the
following disjunction:

[
ηL(v) ≤ vT x ≤ θ

−(vT x)(ηL(v) + θ) + θηL(v) ≤ −〈X, vvT 〉

]∨
[

θ ≤ vT x ≤ ηU (v)

−(vT x)(ηU (v) + θ) + θηU (v) ≤ −〈X, vvT 〉

]
. (4.3)

This disjunction can be derived by splitting the range [ηL(v), ηU (v)] of the
function vT x over P̂ into the two intervals [ηL(v), θ] and [θ, ηU (v)] and
constructing a secant approximation of the function −(vT x)2 in each of
the intervals, respectively (see Figure 1 for an illustration).

The disjunction (4.3) can then be embedded within the framework of
Cut Generation Linear Programs (CGLPs) to derive disjunctive cuts as
discussed in the following theorem.

Theorem 4.1 ([8]). 1Let a polyhedral set P = {x : Ax ≥ b}, a
disjunction D =

∨q

k=1 (Dkx ≥ dk) and a point x̂ ∈ P be given. Then
x̂ ∈ Q := clconv ∪q

k=1 {x ∈ P | Dkx ≥ dk} if and only if the optimal value
of the following Cut Generation Linear Program (CGLP) is non-negative:

1We caution the reader that the notation used in this theorem is not specifically tied
to the notation for F and related sets.
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ηL(c) ηU (c)θ

L1

L2

Fig. 1. The constraint −(vT x)2 ≤ −〈X, vvT 〉 and the disjunction (1) represented
in the space spanned by vT x (horizontal axis) and −〈X, vvT 〉 (vertical axis). The fea-
sible region is the grey area above the parabola between ηL(v) and ηU (v). Disjunction
(4.3) is obtained by taking the piecewise-linear approximation of the parabola, using a
breakpoint at θ, and given by the two lines L1 and L2. Clearly, if ηL(v) ≤ vT x ≤ θ

then (x, X) must be above L1 to be in the grey area; if θ ≤ vT x ≤ ηU (v) then (x, X)
must be above L2.

min αT x̂− β (CGLP)

s.t. AT uk + DT
k vk = α k = 1, . . . , q

bT uk + dT
k vk ≥ β k = 1, . . . , q

uk, vk ≥ 0 k = 1, . . . , q
q∑

k=1

(
ξT uk + ξT

k vk
)

= 1

where ξ and ξk (k = 1, . . . , q) are any non-negative vectors of conformable
dimensions that satisfy ξk > 0 (k = 1, . . . , q). If the optimal value of
(CGLP) is negative, and (α, β) are part of an optimal solution, then αT x ≥
β is a valid inequality for Q which cuts off x̂.

Next, we illustrate the above procedure for deriving disjunctive cuts
on a small example. Consider the following instance of (MIQCP) derived
from the st ph11 instance from the GLOBALLib repository [27]:

min x1 + x2 + x3 −
1
2
(
x2

1 + x2
2 + x2

3

)
s.t. 2x1 + 3x2 + 4x3 ≤ 35

0 ≤ x1, x2, x3 ≤ 4.
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An optimal solution to the linear-semidefinite relaxation

min
{

x1 + x2 + x3 −
1
2
(X11 + X22 + X33) : (x, X) ∈ L̂ ∩ PSD

}
is

x̂ =

⎛⎝ 4
4

3.75

⎞⎠ , X̂ =

⎛⎝16 16 15
16 16 15
15 15 15

⎞⎠
and so

X̂ − x̂x̂T =

⎛⎝0 0 0
0 0 0
0 0 0.9375

⎞⎠
has exactly one non-zero eigenvalue. The associated eigenvector and uni-
variate expression are given by cT = (0, 0, 1) and X33 ≤ x2

3, respectively.
Note that (x̂, X̂) satisfies the secant approximation X33 ≤ 4x3 of X33 ≤ x2

3

at equality; hence the secant inequality does not cut off this point. Choosing
θ = 2 in (4.3), we get the following disjunction which is satisfied by every
feasible solution (x, X) ∈ F̂ for this example:[

0 ≤ x3 ≤ 2
2x3 −X33 ≥ 0

]∨[
2 ≤ x3 ≤ 4

6x3 −X33 ≥ 8

]
.

In order to derive a disjunctive cut, for each term in the disjunction we
sum a non-negative weighted combination of its constraints together with
the original linear constraints of F̂ to construct a new constraint valid for
that term in the disjunction. If the separate weights in each term can be
chosen in such a way that the resulting constraints for both terms are the
same, then that constraint is a disjunctive cut. In particular, using the
weighting scheme⎡⎢⎢⎣

2x3 − y33 ≥ 0 (14.70588)
−x1 ≥ −4 (15.68627)
−x2 ≥ −4 (23.52941)

x3 ≥ 0 (27.45098)

⎤⎥⎥⎦∨
[

6x3 − y33 ≥ 8 (14.70588)
−2x1 − 3x2 − 4x3 ≥ −35 (7.84314)

]
,

we arrive at the disjunctive cut

−15.68627x1− 23.52941x2 + 56.86275x3 − 14.70588y33 ≥ −156.86274.

This disjunctive cut is violated by (x̂, X̂).
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This example highlights a very important aspect of disjunctive pro-
gramming: its ability to involve additional problem constraints in deriving
strong cuts for clconv F̂ . For illustration, consider the same example and
the relaxation L̂∩RLT ∩PSD. Note that this relaxation only incorporates
the effect of the general linear constraint 2x1 + 3x2 + 4x3 ≤ 35 via the set
L̂. Defining

x1 =

⎛⎝4
4
4

⎞⎠ , X1 = x1(x1)T x2 =

⎛⎝4
4
0

⎞⎠ , X2 = x2(x2)T

and (x̂, X̂) := 15
16 (x1, X1)+ 1

16 (x2, X2), i.e., the same (x̂, X̂) is in the exam-
ple, it holds that (x̂, X̂) ∈ L̂∩RLT ∩PSD. Note, however, that the endpoint
(x1, X1) is not in clconv F̂ since x1 �∈ F , which implies (x1, X1) �∈ L̂ in
this case. So it remains possible that (x̂, X̂) is not in clconv F̂ . Indeed,
by explicitly involving the linear constraint in a more powerful way during
the convexification process, disjunctive programming cuts off (x̂, X̂) from

clconv F̂ .
In fact, something stronger can be said. For this same example, define

Flu := {x : 0 ≤ x1, x2, x3 ≤ 4} so that F = Flu ∩ {x : 2x1 + 3x2 + 4x3 ≤

35}; also define F̂lu accordingly. Now consider the stronger relaxation
L̂ ∩ clconv F̂lu of clconv F̂ , which completely convexifies with respect to
the bounds l ≤ x ≤ u. Still, even this stronger relaxation contains (x̂, X̂),
and so we see that convexifying with respect to the bounds is simply not
enough to cut off (x̂, X̂). One must incorporate the general linear inequality
in a more aggressive fashion such as disjunctive programming does.

4.2. Computational insights. In [52], the authors report compu-
tational results with a cutting plane procedure based on these ideas. For
instances of (MIQCP) coming from GLOBALLib, the authors solved five
separate relaxations of

v∗ := min
{
〈C, X〉+ cT x : x ∈ clconv F̂

}
.

These relaxations were (with accompanying “version numbers” and optimal
values for reference)

(V0) vRLT := min 〈C, X〉+ cT x

s.t. x ∈ L̂ ∩ RLT ,

(V1) vPSD := min 〈C, X〉+ cT x

s.t. x ∈ L̂ ∩ RLT ∩ PSD ,
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(V2) vdsj := min 〈C, X〉+ cT x

s.t. x ∈ L̂ ∩ RLT ∩ PSD ∩ “disjunctive cuts”,

(V2-SI) vsec := min 〈C, X〉+ cT x

s.t. x ∈ L̂ ∩ RLT ∩ PSD ∩ “secant cuts”,

(V2-Dsj) v′dsj := min 〈C, X〉+ cT x

s.t. x ∈ L̂ ∩ RLT ∩ “disjunctive cuts”.

The secant-cut referred to in the description of V2-SI is obtained by con-
structing the convex envelope of the non-convex inequality 〈Y, vvT 〉 ≤(
vT x

)2; using the notation introduced above, the corresponding secant
inequality is given by, 〈Y, vvT 〉 ≤ (ηL(v) + ηU (v))vT x− ηL(v)ηU (v). Since
the secant inequality can be obtained cheaply once ηL(v) and ηU (v) have
been computed, variant V2-SI helps us assess the marginal importance of
using the computationally expensive disjunctive cut as compared to readily
available secant inequality.

Note that v∗ ≤ vdsj ≤ vsec ≤ vPSD ≤ vRLT and v∗ ≤ vdsj ≤ v′dsj ≤
vRLT. V0 was used as a base relaxation by which others were judged. In
particular, for each of the four remaining relaxations, the metric

percent duality gap closed :=
vRLT − v

vRLT − v∗
× 100

was recorded on each instance using the optimal value v for that relaxation.
Only instances having vRLT > v∗ were selected for testing (129 instances).
We remark that, when present, constraint PSD was enforced with a cutting-
plane approach based on convex quadratic cuts rather than a black-box
SDP solver.

Table 1
Summary of computational results.

V1 V2 V2-SI V2-Dsj
>99.99 % 16 23 24 1
98-99.99 % 1 44 4 29
75-98 % 10 23 17 10
25-75 % 11 22 26 29
0-25 % 91 17 58 60
Average Gap Closed 24.80% 76.49% 44.40% 41.54%

Table 1 summarizes the authors’ key results on the 129 instances.
Each of the main columns gives, for that version, the number of instances
in several bins of the metric “percentage gap closed.” Some comments are
in order.
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First, the variant V2 code that uses disjunctive cuts closes 50% more
duality gap than the SDP relaxation V1. In fact, relaxations obtained
by adding disjunctive cuts close more than 98% of the duality gap on 67
out of 129 instances; the same figure for SDP relaxations is 17 out of 129
instances. Second, the authors were able to close 99% of the duality gap
on some of the instances such as st qpc-m3a, st ph13, st ph11, ex3 1 4,
st jcbpaf2, ex2 1 9, etc., on which the SDP relaxation closes 0% of the
duality gap.

Third, the variant V2-SI of the code that uses the secant inequal-
ity instead of disjunctive cuts does close a significant proportion (44.40%)
of the duality gap. However, using disjunctive cuts improves this statis-
tic to 76.49% thereby demonstrating the marginal benefits of disjunc-
tive programming. Fourth, it is worth observing that both variants V2
and V2-SI have access to the same kinds of nonconvexities, namely, uni-
variate expressions 〈X, vvT 〉 ≤ (vT x)2 derived from eigenvectors v of
X̂ − x̂x̂T . Despite this commonality, why does V2, which has access to
the CGLP apparatus, outperform V2-SI? The answer to this question lies
in the way the individual frameworks process the nonconvex expression
〈X, vvT 〉 ≤ (vT x)2. While V2-SI takes a local view of the problem and
convexifies 〈X, vvT 〉 ≤ (vT x)2 in the 2-dimensional space spanned by vT x

and 〈X, vvT 〉, V2 takes a global view of the problem and combines disjunc-
tive terms with other problem constraints. It is precisely this ability to
derive stronger inferences by combining disjunctive information with other
problem constraints that allows V2 to outperform its local counterpart
V2-SI.

Fifth, it is worth observing that removing PSD has a debilitating effect
on the cutting plane algorithm presented in [52] as demonstrated by the
performance of V2-Dsj relative to V2. While the CGLP apparatus allows
us to take a global view of the problem, its ability to derive strong disjunc-
tive cuts is limited by the strength of the initial relaxation. By removing
PSD, the relaxation is significantly weakened, and this subsequently has a
deteriorating effect on the strength of disjunctive cuts later derived.

Table 2
Selection criteria.

% Duality Gap closed by
V1 V2 Instance Chosen

< 10 % > 90 % st jcbpaf2
> 40% < 60% ex9 2 7
< 10% < 10% ex7 3 1

The basic premise of the work in [52] lies in generating valid cutting
planes for clconv F̂ from the spectrum of X̂ − x̂x̂T , where (x̂, X̂) is the
incumbent solution. In order to highlight the impact of these cuts on
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Fig. 2. Plot of the sum of positive and negative eigenvalues for st jcbpaf2
with V1–V2.
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Fig. 3. Plot of the sum of positive and negative eigenvalues for ex 9 2 7 with V1–V2.

the spectrum itself, the authors presented details on three instances listed
in Table 2 which we reproduce here for the sake of illustration. Figures
2–4 report the key results. The horizontal axis represents the number of
iterations while the vertical axis reports the sum of the positive eigenvalues
of X̂−x̂x̂T (broken line) and the sum of the negative eigenvalues of X̂−x̂x̂T

(solid line) . Some remarks are in order.
First, the graph of the sum of negative eigenvalues converges to zero

much faster than the corresponding graph for positive eigenvalues. This is
not surprising because the problem of eliminating the negative eigenvalues
is a convex programming problem, namely an SDP; the approach of adding
convex-quadratic cuts is just an iterative cutting-plane based technique to
impose the X −xxT � 0 condition. Second, V1 has a widely varying effect
on the sum of positive eigenvalues of X − xxT . This is to be expected
because the X − xxT � 0 condition imposes no constraint on the positive
eigenvalues of X − xxT . Furthermore, the sum of positive eigenvalues rep-
resents the part of the nonconvexity of F̂ that is not captured by PSD.
Third, it is interesting to note that the variant that uses disjunctive cuts,
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Fig. 4. Plot of the sum of the positive and negative eigenvalues for ex 7 3 1
with V1–V2.

namely V2, is able to force both positive and negative eigenvalues to con-
verge to 0 for the st jcbpaf2 thereby generating an almost feasible solution
to this problem.

4.3. Working with only the original variables. Finally, we would
like to emphasize that all of the relaxations of clconv F̂ discussed until now
are defined in the lifted space of (x, X). While the additional variable
X enhances the expressive power of the formulation, it also increases the
size of the formulation drastically, resulting in an enormous computational
overhead which would be, for example, incurred at every node of a branch-
and-bound tree. Ideally, we would like to extract the strength of these
extended reformulations in the form of cutting planes that are defined only
in the space of the original x variable. Systematic approaches for construct-
ing such convex relaxations of (MIQCP) are described in a recent paper
by Saxena et. al. [53]. We briefly reproduce some of these results to expose
the reader to this line of research.

Consider the relaxation L̂ ∩RLT ∩ PSD of clconv F̂ , and define Q :=
projx(L̂ ∩ RLT ∩ PSD), which is a relaxation of clconvF (not clconv F̂ !)
in the space of the original variable x—but one that retains the power of
L̂∩RLT ∩PSD. Can we separate from Q, hence enabling us to work solely
in the x-space? Specifically, given a point x̂ that satisfies at least the simple
bounds l ≤ x ≤ u, we desire an algorithmic framework that either shows
x̂ ∈ Q or finds an inequality valid for Q which cuts off x̂. Note that x̂ ∈ Q
if and only if the following system is feasible in X with x̂ fixed:

〈Ak, X〉+ aT
k x̂ ≤ bk ∀ k = 1, . . . , m

lx̂T + x̂lT − llT

ux̂T + x̂uT − uuT

}
≤ X ≤ x̂uT + lx̂T − luT(

1 x̂T

x̂ X

)
� 0.

As is typical, if this system is infeasible, then duality theory provides a cut
(in this case, a convex quadratic cut) cutting off x̂ from Q. Further, one



OLD WINE IN A NEW BOTTLE: THE MILP ROAD TO MIQCP 399

can optimize to obtain a deep cut. We refer the reader to [53] for further
details where the authors report computational results to demonstrate the
computational dividends of working in the space of original variables possi-
bly augmented by a few additional variables. We reproduce a slice of their
computational results in Section 5.

5. Computational case study. To give the reader an impression of
the computational requirements of the relaxations and techniques proposed
in this paper, we compare three implementations for solving the relaxation

min{〈C, X〉+ cT x : (x, X) ∈ L̂ ∩ RLT ∩ PSD} (5.1)

of the following particular case of (MIQCP), which is called quadratic
programming over the box :

min{xT Cx + cT x : x ∈ [0, 1]n}. (5.2)

We compare a black-box interior-point-method SDP solver (called ipm for
“interior-point method”), the specialized completely-positive solver of [17]
mentioned in Section 3.4 (called cp for “completely positive”), and the
projection cutting plane method of [53] discussed in Section 4.3 (called
proj for “projection”). We refer the reader to the original papers for full
details of the implementations.

Methods ipm and cp work with the formulation (5.1). On the other
hand, proj first reformulates (5.2) as

min
{

t :
x ∈ [0, 1]n

xT Qx + cT x ≤ t

}
(5.3)

and then, in a pre-processing step, calculates several convex quadratic con-
straints as cutting planes for the relaxation proj(t,x)(L̂∩RLT ∩PSD) of the
reformulation. The procedure for calculating the cutting planes is outlined
briefly in Section 4.3. Theoretically, if all possible cuts are generated, then
the power of (5.1) is recovered. In practice, however, it is hoped that a
few deep cuts will recover most of the power of (5.1) but save a significant
amount of computation time. Finally, letting αkt2+βkt+xT Akx+aT

k x ≤ bk

represent the derived convex cuts, proj solves the relaxation

min
{

t :
x ∈ [0, 1]n

αkt2 + βkt + xT Akx + aT
k x ≤ bk ∀ k

}
. (5.4)

Nine instances from [20] are tested. Their relevant characteristics un-
der relaxations (5.1) and (5.4) are given in Table 3, and the timings (in
seconds) are give in Table 4. Also, in Table 5, we give the percentage gaps
closed by the three methods relative to the pure linear relaxation L̂ ∩RLT
(see Section 4.2 for a careful definition of the percentage gap closed). A
few comments are in order.
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Table 3
Sizes of tested instances.

# Constraints
# Variables Linear Convex

Instance ipm/cp proj ipm/cp proj ipm/cp proj
(SDP) (quad)

spar100-025-1 5151 203 20201 156 1 119
spar100-025-2 5151 201 20201 151 1 95
spar100-025-3 5151 201 20201 150 1 114
spar100-050-1 5151 201 20201 150 1 98
spar100-050-2 5151 201 20201 150 1 113
spar100-050-3 5151 201 20201 150 1 97
spar100-075-1 5151 201 20201 150 1 131
spar100-075-2 5151 201 20201 150 1 109
spar100-075-3 5151 199 20201 147 1 90

Table 4
Computational utility of projected relaxations.

Time (sec)
Instances ipm cp proj (pre-process + solve)
spar100-025-1 5719.42 59 670.15 + 1.14
spar100-025-2 10185.65 54 538.03 + 1.52
spar100-025-3 5407.09 58 656.59 + 1.24
spar100-050-1 10139.57 76 757.14 + 1.07
spar100-050-2 5355.20 92 929.91 + 1.26
spar100-050-3 7281.26 76 747.46 + 0.82
spar100-075-1 9660.79 101 1509.96 + 2.00
spar100-075-2 6576.10 100 936.61 + 1.23
spar100-075-3 10295.88 81 657.84 + 0.87

First, on each instance, ipm is not competitive with either cp or proj.
This illustrates a recognized trend in solving relaxations of this sort, namely
that, at this point in time, specialized solvers perform better than black-box
ones. Perhaps this will change as black-box solvers become more robust.
Second, cp performs best in terms of overall time on each instance, but
proj, discounting its pre-processing phase, solves its relaxation the quick-
est while still closing most of the gap that ipm and cp do. Within the
context of using proj within branch-and-bound, this accrues significance
due to two observations: (i) most contemporary branch-and-bound proce-
dures generate cutting planes primarily at the root node and only sparingly
at other nodes; and (ii) such a relaxation would be solved hundreds or thou-
sands of times within the tree. So the pre-processing time of proj can be
effectively amortized over the entire branch-and-bound tree.
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Table 5
Computational utility of projected relaxations.

% Gap Closed
Instances ipm/cp proj
spar100-025-1 98.93% 92.36%
spar100-025-2 99.09% 92.16%
spar100-025-3 99.33% 93.26%
spar100-050-1 98.17% 93.62%
spar100-050-2 98.57% 94.13%
spar100-050-3 99.39% 95.81%
spar100-075-1 99.19% 95.84%
spar100-075-2 99.18% 96.47%
spar100-075-3 99.19% 96.06%

We also mention that, while proj is currently being solved by a non-
linear programming algorithm, the convex quadratic constraints of proj
could actually be approximated by polyhedral relaxations introduced by
Ben-Tal and Nemirovski [12] (also see [59]) yielding LP relaxations of these
problems. Such LP relaxations are extremely desirable for branch-and-
bound algorithms for two reasons. One, they can be efficiently re-optimized
using warm-starting capabilities of LP solvers thereby reducing the com-
putational overhead at nodes of the enumeration tree. Two, these LP re-
laxations can easily avail techniques, such as branching strategies, cutting
planes, heuristics, etc., which have been developed by the MILP commu-
nity in the past five decades (see [1] for application of these techniques in
the context of convex MINLPs).

6. Conclusion. Table 6 catalogues the results covered in this paper.
The first column lists the main concepts while the following two columns list
their manifestations for M01LP and MIQCP, respectively. Some remarks
are in order.

First, while linear programming based relaxations are almost univer-
sally used in M01LP, the same does not hold for MIQCP. There is a wide
variety of relaxations for MIQCP that can be used, starting from the ex-
tended RLT+SDP relaxations to the compact eigen-reformulations (see
[53]) defined in the original space of variables. It must be noted that all of
these relaxations are currently solved by interior point methods that lack
efficient re-optimization capabilities making them bottlenecks in a branch-
and-bound procedure.

Second, there is a well established theory of exact formulations in
M01LP (see [22]). Many of these results were obtained as byproducts of
the tremendous amount of research that went into proving the perfect
graph conjecture. Unfortunately, the progress in this direction in MIQCP
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Table 6
M01LP vs. MIQCP.

Concept M01LP MIQCP
bL ∩RLT ∩R2 ∩ S2 ∩ PSD

Relaxation LP relaxation projected SDP
eigen-reformulation

total unimodularity;
Exact Description perfect, ideal, and theorems in Section 2.5

balanced matrices
Elementary xj ∈ {0, 1} Xii ≤ x2

i

Non-Convexity
Linear Transformed (πx ≤ π0)∨ 〈X, vvT 〉 ≤

(
vT x

)2
Non-Convexity (πx ≥ π0 + 1)

Sequential Balas [8] Saxena et al. [52]
Convexification

has been rather slow, and exact descriptions are unknown for most classes
of problems except for some very small problem instances.

Third, there is an interesting connection between cuts derived from the
univariate expression 〈X, vvT 〉 ≤

(
vT x

)2 for MIQCP and split cuts de-
rived from split disjunctions (πx ≤ π0)∨(πx ≥ π0 + 1) (π ∈ Z

n) in M01LP.
To see this, note that 〈X, vvT 〉 ≤

(
vT x

)2 can be obtained from the el-
ementary non-convex constraint Xii ≤ x2

i by the linear transformation
(x, X) −→ (vT x, 〈X, vvT 〉) where the linear transformation is chosen de-
pending on the incumbent solution; for example, Saxena et al. [52] derive
the v vector from the spectral decomposition of X̂−x̂x̂T . Similarly, the split
disjunction (πx ≤ π0)∨(πx ≥ π0 + 1) can be obtained from elementary 0-1
disjunction (xj ≤ 0)∨(xj ≥ 1) by the linear transformation x −→ πx where
the linear transformation is chosen depending on the incumbent solution;
for instance, the well known mixed integer Gomory cuts can be obtained
from split disjunctions derived by monoidal strengthening of elementary
0-1 disjunctions, wherein the monoid that is chosen to strengthen the cut
depends on the incumbent solution (see [9]).

Acknowledgements. The authors are in debt to two anonymous ref-
erees for many helpful suggestions that have improved the paper signifi-
cantly.
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