
Chapter 4

Mathematical Programming Problems with

Vanishing Constraints

We study mathematical programming problems with vanishing constraints (MPVC)
from the topological point of view. The critical point theory for MPVCs is presented.
For that, we introduce the notion of a T-stationary point for the MPVC.

4.1 Applications and examples

We consider the mathematical programming problem with vanishing constraints
(MPVC)

MPVC: min f (x) s.t. x ∈M[h,g,H,G], (4.1)

with

M[h,g,H,G] := {x ∈ Rn | Hm(x)≥ 0, Hm(x)Gm(x)≤ 0, m= 1, . . . ,k,
hi(x) = 0, i ∈ I, g j(x)≥ 0, j ∈ J},

where h := (hi, i ∈ I)T ∈ C2(Rn,R|I|), g := (g j, j ∈ J)T ∈ C2(Rn,R|J|), H :=
(Hm, m= 1, . . . ,k)T ,G := (Gm, m= 1, . . . ,k)T ∈C2(Rn,Rk), f ∈C2(Rn,R), |I| ≤ n,
k≥ 0, |J|< ∞. For simplicity, we write M for M[h,g,H,G] if no confusion is possi-
ble.

The MPVC was introduced in [1] as a model for structural and topology opti-
mization. It is motivated by the fact that the constraint Gm does not play any role
whenever Hm is active. We refer the reader to [43, 44, 45, 46, 56, 55] for more de-
tails on optimality conditions, constraint qualifications, sensitivity, and numerical
methods for the MPVC. Note that additional constraints Gm(x) ≥ 0, m = 1, . . . ,k
would restrict the MPVC to a so-called mathematical program with complementar-
ity constraints (MPCC). In addition to an MPCC feasible set, M is glued together
from manifold pieces of different dimensions along their strata. Indeed, a typical
MPVC feasible set

V := {(x,y) |x≥ 0, xy≥ 0}

 ,
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is depicted in Figure 21.
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Figure 21 V solution set of the basic vanishing constraint relation

It represents the solution set of the basic vanishing constraint relations and exhibits
one- and two-dimensional parts glued together at (0,0).

Truss topology optimization

The following application of truss topology optimization is from [1]. The problem is
to construct the optimal design of a truss structure. Let us consider a set of potential
bars that are defined by the coordinates of their end nodes. For each potential bar,
material parameters are given (Young’s modulus Ei, relative moment of inertia si,
and stress bounds σ ti > 0 and σ ci < 0 for tension and compression, respectively).
These parameters are needed for the formulation of constraints to prevent structural
failure when the potential bar is realized as a real bar. This the case if the calculated
cross-sectional area ai is positive. Finally, boundary conditions and external loads
at some of the nodes are given. The problem now is to find cross-sectional areas
ai for each potential bar such that failure of the whole structure is prevented, the
external load is carried by the structure, and a suitable objective function is minimal.
The latter is usually the total weight of the structure or its deformation energy. In
view of a practical realization of the calculated structure after optimization, one
hopes that the optimal design will make use of only a few of the potential bars.
Such behavior is typical in applied truss topology optimization problems. The main
difficulty in formulating (and solving) the problem lies in the fact that constraints
on structural failure can be formulated in a well-defined way only if there is some
material giving mechanical response. However, most potential bars will possess a
zero cross section at the optimizer. Hence, the truss topology optimization problem
might be formulated as an MPVC:

Truss-Top: minimize
(a,u)∈RM×Rd

f (a,u) s.t.

g(a,u)≤ 0, K(a)u= f ext,

ai ≥ 0, i= 1, . . . ,M,

σ ci ≤ σ(a,u)≤ σ ti if ai > 0, i= 1, . . . ,M,

f int
i (a,u)≥ f buck

i (a,u) if ai > 0, i= 1, . . . ,M.
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Here, the vector a ∈ RM contains the vector of cross-sectional areas of the potential
bars and u ∈ Rd denotes the vector of nodal displacements of the structure under
load, where d is the so-called degree of freedom of the structure, the number of free
nodal displacement coordinates. The state variable u serves as an auxiliary variable.
The objective function f expresses structural weight. The nonlinear system of equa-
tions K(a)u= f ext symbolizes force equilibrium of (given) external loads f ext ∈Rd
and internal forces expressed via Hooke’s law in terms of displacements and cross
sections. The matrix K(a) ∈ Rd×d is the global stiffness matrix corresponding to
the structure a. The constraint g(a,u) ≤ 0 is a resource constraint. If ai > 0, then
σi(a,u) ∈ R is the stress along the i-th bar. Similarly, if ai > 0, f int

i (a,u) ∈ R de-
notes the internal force along the i-th bar, and f buck

i (a) corresponds to the permitted
Euler buckling force. Then the constraints on stresses and on local buckling make
sense only if ai > 0. Therefore, they must vanish from the problem if ai = 0.

4.2 Critical point theory

Our goal is the investigation of the MPVC from a topological point of view. To this
end, we introduce the new notion of a T-stationary point for the MPVC (see Defi-
nition 29). It turns out that the concept of T-stationarity is an adequate stationarity
concept for topological considerations. In fact, we introduce the letter “T” for a sta-
tionarity concept that is topologically relevant rather than giving a tight first-order
condition for local minimizers (see also the discussion below).

Furthermore, we study the behavior of the topological properties of lower-level
sets

Ma := {x ∈M | f (x)≤ a}
for the MPVC as the level a∈R varies. In particular, within this context, we present
two basic theorems from Morse theory (see [63, 93] and Section A.1). First, we show
that, for a< b, the set Ma is a strong deformation retract of Mb if the (compact) set

Mb
a := {x ∈M |a≤ f (x)≤ b}

does not contain T-stationary points (see Theorem 40(a)). Second, if Mb
a contains

exactly one (nondegenerate) T-stationary point, then Mb is shown to be homotopy-
equivalent to Ma with a q-cell attached (see Theorem 40(b)). Here, the dimension q
is the T-index (see Definitions 29 and 31). We refer the reader to [20] for details.

T-stationarity

Given x̄ ∈M, we define the (active) index sets

J0 = J0(x̄) := { j ∈ J |g j(x̄) = 0},
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I0+ = I0+(x̄) := {m ∈ {1, . . .k}|Hm(x̄) = 0,Gm(x̄)> 0},
I0− = I0−(x̄) := {m ∈ {1, . . .k}|Hm(x̄) = 0,Gm(x̄)< 0},
I+0 = I+0(x̄) := {m ∈ {1, . . .k}|Hm(x̄)> 0,Gm(x̄) = 0},
I00 = I00(x̄) := {m ∈ {1, . . .k}|Hm(x̄) = 0,Gm(x̄) = 0}.

We call J0(x̄) the active inequality index set and I00(x̄) the biactive index set at x̄.
Note that, locally around x̄, for m ∈ I0+, the function Hm behaves like an ordinary
equality constraint (Hm(x) = 0). For m ∈ I0− or m ∈ I+0, the functions Hm and Gm
behave locally like inequality constraints (Hm(x)≥ 0 or Gm(x)≤ 0, respectively).

Furthermore, we recall the well-known linear independence constraint qualifica-
tion (LICQ) for the MPVC (e.g., [1]), which is said to hold at x̄ ∈M if the vectors

DThi(x̄), i ∈ I,DTHm(x̄), m ∈ I0+,
DTg j(x̄), j ∈ J0, DTHm(x̄), m ∈ I0−, DTGm(x̄), m ∈ I+0,
DTHm(x̄), DTGm(x̄), m ∈ I00

are linearly independent.
We introduce the notion of a T-stationary point, which is crucial for the following.

Definition 29 (T-stationary point). A point x̄ ∈ M is called T-stationary for the
MPVC if there exist real numbers λ̄i, i ∈ I, ᾱm, m ∈ I0+, μ̄ j, j ∈ J0, β̄m, m ∈ I0−,
γ̄m, m ∈ I+0, δ̄Hm , δ̄Gm , m ∈ I00 (Lagrange multipliers) such that

D f (x̄) = ∑
i∈I
λ̄iDhi(x̄)+ ∑

m∈I0+
ᾱmDHm(x̄)

+ ∑
j∈J0

μ̄ jDg j(x̄)+ ∑
m∈I0−

β̄mDHm(x̄)+ ∑
m∈I+0

γ̄mDGm(x̄)

+ ∑
m∈I00

(
δ̄Hm DHm(x̄)+ δ̄GmDGm(x̄)

)
, (4.2)

μ̄ j ≥ 0 for all j ∈ J0, (4.3)

β̄m ≥ 0 for all m ∈ I0−, (4.4)

γ̄m ≤ 0 for all m ∈ I+0, (4.5)

δ̄Gm ≤ 0 and δ̄Hm · δ̄Gm ≥ 0 for all m ∈ I00. (4.6)

In the case where the LICQ holds at x̄ ∈M, the Lagrange multipliers in (4.2) are
uniquely determined.

Given a T-stationary point x̄ ∈M for the MPVC, we set

M(x̄) := {x ∈ Rn | hi(x) = 0, i ∈ I,Hm(x) = 0, m ∈ I0+, g j(x) = 0, j ∈ J0,
Hm(x) = 0, m ∈ I0−, Gm(x) = 0, m ∈ I+0,
Hm(x) = 0, Gm(x) = 0, m ∈ I00}.
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Obviously, M(x̄)⊂M and, in the case where the LICQ holds at x̄, M(x̄) is locally at
x̄ aC2-manifold.

Definition 30 (Nondegenerate T-stationary point). A T-stationary point x̄ ∈ M
with Lagrange multipliers as in Definition 29 is called nondegenerate if the fol-
lowing conditions are satisfied:

ND1: LICQ holds at x̄.
ND2: μ̄ j > 0 for all j ∈ J0, β̄m > 0 for all m ∈ I0−, γ̄m < 0 for all m ∈ I+0.
ND3: D2L(x̄) |Tx̄M(x̄) is nonsingular.
ND4: δ̄Hm < 0 and δ̄Gm < 0 for all m ∈ I00.

Here, the matrix D2L stands for the Hessian of the Lagrange function L,

L(x) := f (x)−∑
i∈I
λ̄ihi(x)− ∑

m∈I0+
ᾱmHm(x)

−∑
j∈J0

μ̄ jg j(x)− ∑
m∈I0−

β̄mHm(x)− ∑
m∈I+0

γ̄mGm(x)

− ∑
m∈I00

(
δ̄Hm Hm(x)− δ̄GmGm(x)

)
, (4.7)

and Tx̄M(x̄) denotes the tangent space of M(x̄) at x̄,

Tx̄M(x̄) := {ξ ∈ Rn | Dhi(x̄)ξ = 0, i ∈ I,
DHm(x̄)ξ = 0, m ∈ I0+,
Dgj(x̄)ξ = 0, j ∈ J0,
DHm(x̄)ξ = 0, m ∈ I0−,
DGm(x̄)ξ = 0, m ∈ I+0,
DHm(x̄)ξ = 0, DGm(x̄)ξ = 0, m ∈ I00}.

Condition ND3 means that the matrix VTD2L(x̄)V is nonsingular, where V is
some matrix whose columns form a basis for the tangent space Tx̄M(x̄).

Definition 31 (T-index). Let x̄ ∈ M be a nondegenerate T-stationary point with
Lagrange multipliers as in Definition 30. The number of negative eigenvalues of
D2L(x̄) |Tx̄M(x̄) in ND3 is called the quadratic index (QI) of x̄. The number of nega-
tive pairs (δ̄Hm , δ̄Gm ), m ∈ I00 in ND4 equals |I00| and is called the biactive index (BI)
of x̄. The number (QI+BI) is called the T-index of x̄.

Note that in the absence of biactive vanishing constraints, the T-index has only
the QI part and coincides with the well-known quadratic index of a nondegener-
ate Karush-Kuhn-Tucker point in nonlinear programming or, equivalently, with the
Morse index (see [63, 83, 93] and Section 1.4). Also note that the biactive index BI
is completely determined by the cardinality of I00, in contrast to, for example, the
biactive index for MPCCs as defined in Section 2.3 (see also [69]).

The following proposition uses the T-index for the characterization of a local
minimizer.
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Proposition 8. (i) Assume that x̄ is a local minimizer for the MPVC and that the
LICQ holds at x̄. Then, x̄ is a T-stationary point for the MPVC.

(ii) Let x̄ be a nondegenerate T-stationary point for the MPVC. Then, x̄ is a local
minimizer for the MPVC if and only if its T-index is equal to zero.

Proof. (i) From [1] it is known that under the LICQ a local minimizer x̄ for the
MPVC is a strongly stationary point,meaning (4.2)–(4.5) hold and

δ̄Gm = 0 and δ̄Hm ≥ 0 for all m ∈ I00. (4.8)

Clearly, a strongly stationary point is T-stationary as well.
(ii) Let x̄ be a nondegenerate T-stationary local minimizer for the MPVC. As in

(i), we claim that x̄ is also strongly stationary. Comparing ND4 and (4.8), we see that
BI = |I00|= 0. Then, locally around x̄, the MPVC behave like an ordinary nonlinear
program, and using standard results on the quadratic index, we obtain that QI = 0.
The other direction is trivial. ��

The next genericity and stability results justify the LICQ assumption as well as
the introduction of nondegeneracy for T-stationary points in the MPVC.

Theorem 38 (Genericity and Stability).

(i) LetF denote the subset of

C2(Rn,R|I|)×C2(Rn,R|J|)×C2(Rn,Rk)×C2(Rn,Rk)

consisting of those (h,g,H,G) for which the LICQ holds at all points x ∈
M[h,g,H,G]. Then,F is C2

s -open and -dense.
(ii) Let D denote the subset of

C2(Rn,R)×C2(Rn,R|I|)×C2(Rn,R|J|)×C2(Rn,Rk)×C2(Rn,Rk)

consisting of those problem data ( f ,h,g,H,G) for which each T-stationary
point is nondegenerate. Then, D is C2

s -open and -dense.

Proof. (i) We define the set

MDISJ := {x ∈ Rn | max{Hm(x),Gm(x)} ≥ 0, m= 1, . . . ,k,
h j(x) = 0, i ∈ I, g j(x)≥ 0, j ∈ J}.

MDISJ is the feasible set of a disjunctive optimization problem (see [71]). We obtain
from the corresponding results on disjunctive optimization that the subset of prob-
lem data for which the LICQ holds for all x ∈MDISJ is C2

s -dense and C2
s -open (see

[71], Lemmas 2.4 and 2.5). Recalling that the notions of the LICQ for disjunctive
optimization problems and MPVCs are the same, and that M is a subset of MDISJ,
the desired result follows immediately.

(ii) The proof is based on the application of the jet transversality theorem, for de-
tails, see, for example, [63] and Section B.2. For subsets J̃⊆ J and H̃, G̃⊆{1, . . . ,k},
and sets DJ̃ ⊆ J̃, DH̃ ⊆ H̃, and DG̃ ⊆ G̃ and r ∈ {0, . . . ,dim(Tx̄M(x̄))}, we consider
the set Γ of x such that the following conditions are satisfied:
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(m1) g j(x) = Hi(x) = Gl(x) = 0 for all j ∈ J̃, i ∈ H̃, l ∈ G̃.

(m2) Df (x) ∈ span

⎧⎨
⎩
Dgj(x), j ∈ J̃ \DJ̃ ,
DHi(x), i ∈ H̃ \DH̃ ,
DGl(x), l ∈ G̃\DG̃

⎫⎬
⎭.

(m3) The matrix D2L(x)|Tx̄M(x̄) has rank r.

Now it suffices to show that Γ is generically empty whenever one of the sets DJ̃ ,
DH̃ , or DG̃ is nonempty or the rank r of the matrix in (m3) is not full. This would
mean, respectively, that a Lagrange multiplier in the equality (4.2) vanishes (see
ND2, ND4) or the rank condition ND3 fails to hold.

In fact, the available degrees of freedom of the variables involved in Γ are n. The
loss of freedom caused by (m1) is at least d := |J̃|+ |H̃|+ |G̃|, and the loss of free-
dom caused by (m2) is at least (supposing that the gradients on the right-hand side
are linearly independent (ND1) and the setsDJ̃ ,DH̃ ,DG̃ are empty) n−d. Hence, the
total loss of freedom is n. We conclude that a further nondegeneracy would exceed
the total available degrees of freedom n. By virtue of the jet transversality theorem,
generically the set Γ must be empty.

For the openness result, we can argue in a standard way (see, for example, [63]).
Locally, T-stationarity can be rewritten via stable equations. Then, the implicit func-
tion theorem for Banach spaces can be applied to follow nondegenerate T-stationary
points w.r.t. (local) C2-perturbations of defining functions. Then a standard global-
ization procedure exploiting the specific properties of the strongC2-topology can be
used to construct a (global) C2

s -neighborhood of problem data for which the nonde-
generacy property is stable.�

Morse lemma for the MPVC

For the proof of the results mentioned above we locally describe the MPVC feasible
set under the LICQ (see Lemma 24). Moreover, an equivariant Morse lemma for the
MPVC is derived in order to obtain suitable normal forms for the objective function
at nondegenerate T-stationary points (see Theorem 39).

Without loss of generality, we assume that at the particular point of interest x̄∈M
it holds that

J0 = {1, . . . , |J0|},
I0+ = {1, . . . , |I0+|},

I0− = {|I0+|+1, . . . , |I0+|+ |I0−|},
I+0 = {|I0+|+ |I0−|+1, . . . , |I0+|+ |I0−|+ |I+0|},

I00 = {|I0+|+ |I0−|+ |I+0|+1, . . . , |I0+|+ |I0−|+ |I+0|+ |I00|}.
We put s := |I|+ |I0+| , r := s+ |J0|+ |I0−| , q := r+ |I+0| , p := n−q−2 |I00| .

For the proof of Theorem 40, we need a local description of the MPVC feasible
set under the LICQ.
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Definition 32. The feasible set M admits a localCr-coordinate system of Rn (r≥ 1)
at x̄ by means of aCr-diffeomorphism Φ :U −→V with open Rn-neighborhoodsU
and V of x̄ and 0, respectively, if it holds that

(i) Φ(x̄) = 0,
(ii) Φ(M∩U) =

(
{0s}×H|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp

)
∩V .

Lemma 24. Suppose that the LICQ holds at x̄ ∈ M. Then M admits a local C2-
coordinate system of Rn at x̄.

Proof. Choose vectors ξl ∈ Rn, l = 1, . . . , p, which form, together with the vectors

DThi(x̄), i ∈ I,DTHm(x̄), m ∈ I0+,
DTg j(x̄), j ∈ J0, DTHm(x̄), m ∈ I0−, DTGm(x̄), m ∈ I+0,
DTHm(x̄), DTGm(x̄), m ∈ I00,

a basis for Rn. Next we put

yi := hi(x), i ∈ I,
y|I|+m := Hm(x), m ∈ I0+,
y|I|+|I0+|+ j := g j(x), j ∈ J0,
y|I|+|J0|+m := Hm(x), m ∈ I0−,
y|I|+|J0|+m := Gm(x), m ∈ I+0,
y|I|+|J0|+2m−1 := Hm(x), m ∈ I00,
y|I|+|J0|+2m := Gm(x), m ∈ I00,
yn−p+l := ξ Tl (x− x̄), l = 1, . . . , p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

or, for short,
y=Φ(x). (4.10)

Note that Φ ∈C2(Rn,Rn), Φ(x̄) = 0, and the Jacobian matrix DΦ(x̄) is nonsingular
(by virtue of the LICQ and the choice of ξl , l = 1, . . . , p). By means of the implicit
function theorem, there exist open neighborhoods U of x̄ and V of 0 such that Φ :
U −→ V is a C2-diffeomorphism. By shrinking U if necessary, we can guarantee
that J0(x)⊂ J0, I0−(x)⊂ I0−, I+0(x)⊂ I+0 and I00(x)⊂ I00 for all x ∈M∩U . Thus,
property (ii) in Definition 32 follows directly from the definition of Φ . �

Definition 33. We will refer to theC2-diffeomorphismΦ defined by (4.9) and (4.10)
as the standard diffeomorphism.

Remark 29. It follows from the proof of Lemma 24 that the Lagrange multipliers at
a nondegenerate T-stationary point are the corresponding partial derivatives of the
objective function in new coordinates given by the standard diffeomorphism (see
[65], Lemma 2.2.1). Moreover, the Hessian with respect to the last p coordinates
corresponds to the restriction of the Lagrange function’s Hessian on the respective
tangent space (cf. [65], Lemma 2.2.10).

We derive an equivariant Morse lemma for the MPVC in order to obtain suitable
normal forms for the objective function at nondegenerate T-stationary points.
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Theorem 39 (Morse lemma for MPVC). Suppose that x̄ is a nondegenerate T-
stationary point for the MPVC with quadratic index QI, biactive index BI, and T-
index = QI + BI. Then, there exists a local C1-coordinate systemΨ :U −→V of Rn

around x̄ (according to Definition 32) such that

f ◦Ψ−1 (0s,ys+1, . . . ,yn) =

f (x̄)+
|J0|+|I0−|

∑
i=1

yi+s−
|I+0|
∑
j=1

y j+r−
|I00|
∑
m=1

(
y2 j−1+q+ y2 j+q

)
+

p

∑
k=1
± y2

k+n−p, (4.11)

where y ∈ {0s}×H|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp. Moreover, in (4.11) there are
exactly BI = |I00| negative linear pairs and QI negative squares.
Proof. Without loss of generality, we may assume f (x̄) = 0. Let Φ :U −→ V be a
standard diffeomorphism according to Definition 33. We put f̄ := f ◦Φ−1 on the
set

(
{0s}×H|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp

)
∩V . We may assume s = 0 from

now on. In view of Remark 29, we have at the origin

(i)
∂ f̄
∂yi

> 0, i= 1, . . . , |J0|+ |I0−|,

(ii)
∂ f̄
∂y j+r

< 0, j = 1, . . . , |I+0|,

(iii)
∂ f̄

∂y2m−1+q
< 0 and

∂ f̄
∂y2m+q

< 0 for exactly BI indices m= 1, . . . , |I00|,

(iv)
∂ f̄

∂yk+n−p
= 0, k = 1, . . . , p and

(
∂ 2 f̄

∂yk1+n−p∂yk2+n−p

)
1≤k1,k2≤p

is a nonsin-

gular matrix with QI negative eigenvalues.

We denote f̄ by f . Under the following coordinate transformations the set
H
|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp will be transformed in itself (equivariance).

As an abbreviation, we put y = (Yn−p,Y p), where Yn−p = (y1, . . . ,yn−p) and Y p =
(yn−p+1, . . . ,yn). We write

f (Yn−p,Y p) = f (0,Y p)+
∫ 1

0

d
dt
f (tYn−p,Y p)dt = f (0,Y p)+

n−p
∑
i=1

yidi(y),

where di ∈C1, i= 1, . . . ,n− p.
In view of (iv), we may apply the Morse lemma on theC2-function f (0,Y p) (see

Theorem 2.8.2 of [63]) without affecting the coordinates Yn−p. The corresponding
coordinate transformation is of class C1. Denoting the transformed functions f , d j
again by f , d j, we obtain

f (y) =
n−p
∑
i=1

yidi(y)+
p

∑
k=1
± y2

k+n−p.
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Note that di(0) =
∂ f
∂yi

(0), i= 1, . . . ,n− p. Recalling (i)–(iii), we have

yi|di(y)|, i= 1, . . . ,n− p, y j, j = n− p+1, . . . ,n, (4.12)

as new local C1-coordinates. Denoting the transformed function f again by f and
recalling the signs in (i)–(iii), we obtain (4.11). Here, the coordinate transformation
Ψ is understood as the composite of all previous ones.�

Deformation and Cell-Attachment

We state and prove the main deformation and cell-attachment theorems for the
MPVC. Recall that for a,b ∈ R, a< b, the sets Ma and Mb

a are defined as

Ma := {x ∈M | f (x)≤ a}

and
Mb
a := {x ∈M |a≤ f (x)≤ b}.

Theorem 40. Let Mb
a be compact, and suppose that the LICQ is satisfied at all

points x ∈Mb
a .

(a) (Deformation theorem) If Mb
a does not contain any T-stationary point for the

MPVC, then Ma is a strong deformation retract of Mb.
(b) (Cell-attachment theorem) If Mb

a contains exactly one (nondegenerate) T-
stationary point for the MPVC, say x̄, and if a < f (x̄) < b and the T-index of
x̄ is equal to q, then Mb is homotopy-equivalent to Ma with a q-cell attached.

Proof. (a) Let x̄ ∈Mb
a . After a coordinate transformation with the standard diffeo-

morphism from Definition 32 and Remark 29, we may assume that x̄= 0 and locally
M = {0s}×H|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp. From Remark 29 and the fact that
x̄ is not a T-stationary point (see Definition 29), one of the following cases holds:

(a) There exists j ∈ {1, . . . , p} with
∂ f

∂yn−p+ j
(0) �= 0.

(b) There exists j ∈ {1, . . . , |J0|+ |I0−|} with
∂ f
∂ys+ j

(0)< 0.

(c) There exists j ∈ {1, . . . , |I+0|} with
∂ f
∂yr+ j

(0)> 0.

(d) There exists m ∈ I00 with
∂ f

∂yq+2m
(0)> 0.

(e) There exists m ∈ I00 with
∂ f

∂yq+2m−1
(0)> 0 and

∂ f
∂yq+2m

(0)< 0.

We set

D := {x ∈Mb
a | one of cases a)–d) holds} and L :=Mb

a \D.
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The proof consists of the local argument and its globalization.
Local argument. We prove that for each x̄∈Mb

a there exists anRn-neighborhood
Ux̄ of x̄, a tx̄ > 0, and a flow

Ψ x̄ : [0, tx̄)×Mb∩Ux̄→M, (t,x) →Ψ x̄(t,x),

with:

1. Ψ x̄(0,x) = x for all x ∈Mb∩Ux̄.
2. Ψ x̄(t2,Ψ x̄(t1,x)) =Ψ x̄(t1 + t2,x) for all x ∈Mb∩Ux̄ and t1, t2 ≥ 0 with t1 + t2 ∈

[0, tx̄).
3. f (Ψ x̄(t,x))≤ f (x)− t for all x ∈Mb∩Ux̄ and t ∈ [0, tx̄).
4. If x̄ ∈ D, thenΨ x̄ is a C2-flow corresponding to a C1-vector field. If x̄ ∈ L, then
Ψ x̄ is a Lipschitz flow.

We consider the constructions of the local flows in Cases a)–e).
Cases (a)–(c). We can use standard methods to construct a local flow induced

by a C1-vector field. To see this, note that the behavior of partial derivatives in
Cases (a)–(c) give us a descent direction that—due to the structure of M in local
coordinates—is feasible for tx̄ > 0. (This is a standard construction for generalized
manifolds with boundary; see Theorems 2.7.6 and 3.2.26 of [63] for details and also
the proof of Theorem 20).

If the violation of T-stationarity is exclusively due to the coordinates belonging
to the set V|I00| (i.e. one of the cases (d) and (e) holds), we have to construct a new
flow.

Case (d). Using an (additional) local coordinate transformation leavingM invari-
ant, analogous to the proof of Theorem 39, we obtain

f (y) = yq+2m+ f (y1, . . . ,yq+2m−1,0,yq+2m+1, . . . ,yn).

We define a local vector field as F̃ x̄(y) := (0, . . . ,0,−1,0, . . . ,0)T . After the inverse
change of local coordinates, F̃ x̄ induces the flow, which fits the local argument.

Case e). Again, as in the proof of Theorem 39, we may assume that

f (y) = yq+2m−1− yq+2m+ f (y1, . . . ,yq+2m−2,0,0,yq+2m+1, . . . ,yn).

We define a two-dimensional flow Φ(t,z) for z= (z1,z2) ∈ V as

Φ(t,z1,z2) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ max

{
0,
(

1− t
z1−z2

)
· z1

}
[(

1− t
z1−z2

)
· z2

]−
+[t− (z1− z2)]

+

⎞
⎠ for z2 < 0,

(
0

t− (z1− z2)

)
for z2 ≥ 0.

Here, [·]− is the negative and [·]+ the positive part of a real number.
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Note that the flow Φ is Lipschitz on R×V. Moreover, due to the definition of Φ ,
we get that the flowΨ x̄ defined (again in new coordinates) by

Ψi(y) :=

⎧⎪⎨
⎪⎩
yi for i ∈ {1, . . . ,n}\{q+2m−1,q+2m},
Φ1(yq+2m−1) for i= q+2m−1,
Φ2(yq+2m) for i= q+2m.

fits the local argument. Here,Ψi and Φi stands for the i-th components ofΨ and Φ ,
respectively.

Globalization. Now we construct a global flowΨ on Mb
a . Suppose for a moment

that there exists a flow ΨL on a neighborhood UL of L with the properties (i) to
(iv). We choose a smaller neighborhood WL of L such that the closure WL of WL
is contained in UL. Furthermore, we choose an arbitrary open covering {Ux | x ∈
Mb
a \UL} of Mb

a \UL induced by the domains of the C2-flows corresponding to
cases (a)–(d). Since Mb

a \UL is compact we find a finite subcovering {Ux | x ∈ D̄}.
Here D̄ is a finite subset of D. Without loss of generality, we may assume that for
all x ∈ D̄ the closure Ux of Ux is disjoint with WL. By construction, it holds that
{Ux | x ∈ D̄}∪ (UL \WL) is a finite open covering of Mb

a \WL. The crucial argument
is now that outside the set L the flowΨL is induced by a C1-vector field. (Note that
Φ only has a singularity for t = z1 − z2.) Therefore, we can construct a flow on
Mb
a \WL by using aC∞-partition of unity subordinate to the open covering {Ux | x ∈

D̄}∪ (UL \WL). This enables us to construct a global C1-vector field. The flowΨD
obtained by integration fulfills the desired properties. (See Theorem 3.3.14 of [63]
for details on this procedure.) By construction,ΨL andΨD can be glued together into
one flowΨ on Mb

a .
We obtain for x∈Mb

a a unique ta(x)> 0 withΨ(ta(x),x)∈Ma from the properties
of Ψ (which are induced by local properties of the flows Ψ x). It is not hard (but
technical) to realize that ta : x → ta(x) is Lipschitz. Finally, we define r : [0,1]×
Mb→Mb as

r(τ,x) :=

{
x for x ∈Ma, τ ∈ [0,1],
Ψ(τ · ta(x),x) for x ∈Mb

a , τ ∈ [0,1].

The mapping r provides that Ma is a strong deformation retract of Mb.
It remains to construct the flow ΨL. Since this construction is highly technical,

we only present a short outline. The main idea is to construct the flow along strata
inside L; here the strata are induced by all possible subsets of active constraints
H1,G1, . . . ,Hm,Gm. Along a given stratum, we find a differentiable family of stan-
dard coordinate systems (see Lemma 24). This enables us to define a flow along
this stratum just by applying flows like Φ on fixed components that depend on the
coordinate system. By introducing notions of a distance from a point in the embed-
ding space to the strata, we can construct homotopies (via Lipschitz continuous time
scaling) between the different branches of the stratification and the corresponding
flows. (For details on such constructions with the aid of tube systems, we refer to
[27].)
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(b) From the deformation theorem (Theorem 40(a)), we may assume that, w.l.o.g.,
a and b are small enough that we can work in local coordinates. Therefore, we con-
sider the normal form (2.19) from Theorem 39,

f (y) =
|J0|+|I0−|

∑
i=1

ys+i−
|I+0|
∑
j=1

yr+ j−
|I00|
∑
m=1

(yq+2m−1 + yq+2m)+
p

∑
l=1
±y2

n−p+l ,

with y ∈M := {0s}×H|J0|+|I0−| × (−H)|I+0| ×V|I00| ×Rp.
We set

MMPCC := {0s}×H|J0|+|I0−| × (−H)|I+0| × (∂H2)|I00| ×Rp.

Note that MMPCC differs from M by the appearance of (∂H2)|I00| instead of V|I00|.
For c∈R, it holds thatMc

MPCC := {y∈MMPCC | f (y)≤ c} is a strong deformation
retract of Mc := {y ∈M | f (y)≤ c}. In fact, we define a mapping g : Mc→Mc

MPCC
with

yi →
{

0 i ∈ {q+2m | m= 1, . . . , |I00|} and yi < 0,
yi else.

We see that there is a (convex combination) homotopy between g and the identity
on Mc. If (yq+2m−1,yq+2m) ∈V, then (yq+2m−1,0) ∈ ∂H2 and, moreover, f (g(y))≤
f (y) for all y ∈Mc (i.e., g in fact maps to Mc

MPCC). Hence, Mc
MPCC is a strong defor-

mation retract of Mc.
According to Definition 11, it holds that ȳ = 0 is a nondegenerate C-stationary

point of the MPCC defined by f and the set MMPCC. Since ȳ = 0 is the only C-
stationary point, Theorem 20(b) implies that Mb

MPCC is homotopy-equivalent to
Ma

MPCC with a q̃-cell attached. Note that q̃ is the so-called C-index for the corre-
sponding MPCC. Here, we have that the C-index q̃ w.r.t. the MPCC coincides with
the T-index q w.r.t. the MPVC. Hence

Mb
MPCC � (Ma

MPCC with a q-cell attached).

We know from the considerations above that Mc is homotopy-equivalent to Mc
MPCC

for c= a,b. Furthermore, we note that the cell attachment on a homotopy-equivalent
space is induced via the corresponding homotopy mapping. Finally, using the
fact that homotopy equivalence is an equivalence relation, we obtain that Mb is
homotopy-equivalent to Ma with a q-cell attached.�

Different stationarity concepts

We briefly review well-known definitions of various stationarity concepts and con-
nections between them (see [1, 43, 44, 45, 46, 56]).

Definition 34. Let x̄ ∈M.

(i) x̄ is called weakly stationary if (4.2)–(4.5) hold and
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δ̄Gm ≤ 0 for all m ∈ I00.

(ii) x̄ is called M-stationary if (4.2)–(4.5) hold and

δ̄Gm ≤ 0 and δ̄Gm · δ̄Hm = 0 for all m ∈ I00.

(iii) x̄ is called strongly stationary if (4.2)–(4.5) hold and

δ̄Gm = 0 and δ̄Hm ≥ 0 for all m ∈ I00.

Note that a strongly stationary point is M-stationary and the latter is T-stationary.
We see that M- and strongly stationary points describe local minima tighter than
T-stationary points. Moreover, strong stationarity is the tightest condition for a local
minimizer under the LICQ. It is worth mentioning that M-stationarity exhibits a
full calculus in the sense of Mordukhovich (see [94]). The scheme in Figure 22
illustrates the stationarity concepts above.

δG

T-STATIONARITY
δH

TOPOLOGY

δG

M-STATIONARITY
δH

CALCULUS

δG

S-STATIONARITY
δH

OPTIMALITY

Figure 22 Stationarity concepts in MPVC

However, M- and strong stationarity exclude T-stationary points with BI > 0.
These points are also crucial for the topological structure of the MPVC (see the cell-
attachment theorem). For global optimization, points of T-index 1 play an important
role. We emphasize that among the points of T-index 1 from a topological point of
view there is no substantial difference between the points with BI = 1, QI = 0 and
BI = 0, QI = 1. It is worth mentioning that a linear descent direction might exist
in a nondegenerate T-stationary point with positive T-index. In particular, at points
with BI = 1, QI = 0 there are exactly two directions of linear descent. Both of
them are important from a global point of view. On the other hand, among weakly
stationary points, there are those with negative and positive Lagrange multipliers
corresponding to the same bi-active vanishing constraint. Due to the deformation
theorem, such points are irrelevant for the topological structure of the MPVC.

We mention that the nondegeneracy assumption (as in Definition 30, ND4) can-
not be stated for M- and strongly stationary points w.r.t. biactive vanishing con-
straints. This means that these points are singularities. Moreover, local minima for
MPVC with bi-active vanishing constraints do not occur generically. We claim that
their classification is sophisticated and might be established via singularity theory.
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Links to MPCC

We point out that in Section 2.3 (see also [69]) the analogous stationarity concept
for MPCCs turned out to be C-stationarity. Indeed, the MPCC feasible set can be de-
scribed by nonsmooth equality constraints of minimum type. Moreover, generically
the MPCC feasible set is a Lipschitz manifold of an appropriate dimension; that is,
each nonsmooth equality constraint causes loss of one degree of freedom (see Sec-
tion 2.2.2 and [70]). This permits the use of Clarke subdifferentials of these equality
constraints to formulate the stationarity conditions, namely the C-stationarity. As
C-stationarity is the topologically relevant stationarity concept for MPCCs, we con-
sider it T-stationarity in the MPCC setting.

In contrast to the MPCC case, the MPVC feasible set (under the LICQ) is not
a Lipschitz manifold but a set glued together from manifold pieces of different

dimensions along their strata. Rather than by applying a general stationarity concept
to MPVCs, like C-stationarity for MPCCs, T-stationarity for MPVCs is motivated by
understanding the geometrical properties of a typical MPVC feasible set V directly,
where V represents the solution set of the basic vanishing constraint relations x ≥
0, xy≥ 0.

A further analogy between C-stationarity for MPCCs and T-stationarity for
MPVCs is established via convergence theory of certain regularization methods. In
fact, the MPCC regularization method from [108] yields C-stationary points as lim-
its of KKT points of the regularized problems ([108, Theorem 5.1]). The analogous
limit points of an adaptation of this method to MPVCs from [47] are T-stationary.
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