
Handbook of
Service Description

Alistair Barros · Daniel Oberle Editors

USDL and Its Methods

Handbook of Service Description

Alistair Barros • Daniel Oberle
Editors

Handbook of Service
Description

USDL and Its Methods

ar

Daniel Oberle
SAP Research
K lsruhe, Germany
d.oberle@sap.com

Alistair Barros
Queensland University of Technology
Brisbane, Australia
alistair.barros@qut.edu.au

Editors

ISBN 978-1-4614-1863-4 e-I SBN 978-1-
DOI 1 007/978-1-4614-1864-1
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012931929

© Springer Science+Business Media New York 2012

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

4614-1864-1
0.1

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

mailto:d.oberle@sap.com
http://www.springer.com
mailto:alistair.barros@qut.edu.au

To my wife Kylie, and our beautiful babies,
Marion, Thomas, Emily and Veronica — with
love from Alistair

Preface

The Positioning of Services

We are at the dawn of the long anticipated services revolution. To be sure, the no-
tion of a service is hardly new, for services have been an ostensible feature of the
way labor is organized to deliver consumer value since at least the shift to the post-
industrial age. Indeed, services, together with goods, characterize the outputs of
human organized systems, as understood by macroeconomics, no less. They have
increased in prominence, under globalization and deregulation, as units of function-
ality that influence organizational restructures and outsourcing on a global scale.
Look into most company operational plans, and services are among the key refer-
ence points for how work is coordinated both internally and externally, and against
that which productivity is measured. Technologically, it is now some 10 years since
Web services were proposed as the mechanism for unlocking valuable, often stove-
piped logic, from software applications, and interoperating these across heteroge-
neous stacks, applications, business units and company boundaries. In the interven-
ing years, the maturity towards the Service-oriented Architecture (SOA) has fol-
lowed, through considerable investments and efforts by business, technology and
research sectors.

So, why the excitement about services now? The reason is simple: the Inter-
net and mobile communications, coupled with new and disruptive business mod-
els, are lifting up the conventional barriers to service access in an unprecedented
way. Beyond familiar Web consumer services such as Facebook, Twitter, eBay,
Amazon, iTunes, Google Maps, PayPal, FlickR, technological breakthroughs, es-
pecially around smart devices and cloud computing, are ushering in a dramatic
growth of services. Mobile “Apps” and software-as-a-service are growing by the
day. Business process outsourcing on-demand, multi-enterprise business process in
the cloud, service marketplaces, service-centric business networks, and platform
and infrastructure-as-a-service, are also on the rise and remonetizing services be-
yond their original settings. Moreover, mainstream segments such as transportation
and logistics, banking and finances, public sector and manufacturing, and enterprise

vii

viii Preface

software providers, are slowly but surely following suit, when one considers the
following Web-based services entering the “long tail:” carrier bookings and track-
and-trace of shipments, world-wide tariff look-ups, news events, loan originations
and servicing, healthcare (the American Health Level 7 standard), business forma-
tion, enterprise software services, water/energy utility monitoring, platform services
such as business process management and enterprise services bus, and virtualized
IT infrastructure services.

With the growth in number and sophistication of services widely available, the
question turns to how effectively consumers can discover, understand and access
services — with relative independence and without full reliance on providers. Ex-
perience has so far shown that any attempt to describe services faces a common
stumbling block: what is a service? Despite the widespread phenomenon of “ser-
vice” in economic, political, business, communal and individual walks of life —
and, undoubtedly, because of that diversity — there are still many uncertainties and
tensions in arriving at a general conception of services.

Some services concern human endeavor or largely human interactions, such as
project management, sales, consultancy, therapy of different sorts, church worship,
and bus, train and other transportation services. These clearly don’t fit the motif
of services understood as Web services. At the other extreme are technical services
providing platform and infrastructure functionality whose complexities and resource
dependencies challenge the consumer “Apps” motif of services. In between are busi-
ness applications delivered through business units, actors and designated work cen-
ters and channels. A mix of human and automated tasks are involved, where service
knowledge is dispersed across operational procedures, transactions and the data in-
side databases. Even in this regular form encountered in businesses, the notion of
service strikes ambiguities. In the example of a travel agency offering flight book-
ings, what is the service? Is it flight bookings as a business function, the flight book-
ing application, or the flight services involving different airplanes that are sought?

The Need for Explicit Service Descriptions

In the IT community, SOA languages such as the Web Services Definition Language
(WSDL) [4], the Web Application Description Language (WADL) [10], or the Web
Services Business Process Execution Language (WS-BPEL) [1], have focused on
describing services and their interactions in a uniform way, for leveraging hetero-
geneous technologies. By consequence, other Web services specifications such as
WS-Policy [2] and Web Service Level Agreements [17], even if they concern oper-
ational issues, are fixed to the particular view of a service as software. The Universal
Description and Directory Service (UDDI) [5] specification was defined for a stan-
dard naming and directory service, as part of a Web services architecture, so that
consumers can discover and interact with services. UDDI, too, has a software focus
while allowing arbitrary non-technical and non-functional attributes (e.g., pricing)

Preface ix

to be supported through a service description scheme which has to be defined by the
user, though.

Approaches for service description in the realm of Semantic Web Services, e.g.,
OWL-S [13], Web Services Modeling Ontology (WSMO) [16], Semantic Annota-
tions for WSDL (SAWSDL) [8] or Semantic Annotations for REST (SA-REST)
[9], have anchored programmatic descriptions of services with conceptual meaning
through ontologies in order to automate Web services discovery, composition, access
and interoperability. The prospect of improving automatic discovery, interaction and
composition of services has additionally spurred efforts to conceptualize the wider
context in which services are accessed, seen through the SOA Reference Model
(SOA-RM) [7] and its semantic form [14]. Through these efforts, concepts such
as capability, to define the exposed functionality of a service, policy, to constrain
how a service can operate, and service provider, to capture the agent responsible for
delivering a service, interaction protocol etc. — have gained consensus in the com-
munity. As with the work on Semantic Web Services, the target of these languages
is on service interoperability through architectural frameworks. Thus, the form of
service under consideration remains with software.

With the emergence of on-demand applications, the notion of software-as-a-
service has arisen, covering software applications (e.g., customer relationship man-
agement on-demand) and business process outsourcing (e.g., gross-to-payroll pro-
cessing, insurance claims processing) to cloud and platform services. The emphasis
of service here implies that the consumer gets the designated functionality he/she
requested together with hosting through a consumption-based model (such as pay-
per-use). Thus, software-as-a-service is not synonymous with Web services and the
service providers need to carefully disclose non-functional aspects such as pricing
and availability and to factor these into the overall service they deliver. Services, in
other words, are more than core functions that are accessed by consumers. They are
delivered by a provider to a consumer possibly over a specified period of time, in
a particular geographic context, with a pricing model and payment structure, moni-
tored with a service level agreement, and related legal obligations of the consumer
and the provider [6]. The functionality together with constraints, rights, obligations
and penalties understood between providers and consumers for delivery, moves to-
ward an understanding of service encountered in commercial practice.

A further dichotomy in the understanding of services is the distinction between
business and software (or technical) services. Ironically enough, software practition-
ers appeal to the notion of business or enterprise services to emphasize the business
relatedness of software solutions, while business practitioners take it for granted that
their software applications are used in commercial operations. More specifically,
different parts of commercial organizations catalogue their services assets to dif-
ferent ends. The focus of governance portfolios tends to focus on business services
(and business processes) as integral to business operations — meaning their cost
centers, organizational objectives, customer segments and volumes, operating mar-
gins, profits, revenue targets etc. An explicit alignment of business and IT services
through formal mechanisms such as governance and enterprise architectures is rare
in practice. Instead, IT services are separately managed through software registries,

x Preface

which describe software services, their technical dependencies and supportive plat-
forms. The separation of concerns across business and technical portfolios largely
explains the conceptual impediment for a holistic cognizance of services; indeed,
one that is still prevalent today.

One of the first attempts at comprehensively describing services was the work of
O’Sullivan [15]. This work drew from practical insights into how everyday services
such as hotel accommodation, hair-dressing, house building and insurance, are ad-
vertised and offered, to a scheme for describing services and a variety of delivery
aspects including locative, temporal, pricing, payment, security, trust and rewards.
As O’Sullivan presciently observed: “The everyday services that surround us, and
the ways in which we engage with them, are the result of social and economic in-
teraction that has taken place over a long period of time. Any attempt to provide
automated electronic services that ignores this history will deny consumers the op-
portunity to negotiate and refine over a large range of issues, the specific details of
the actual service to be provided.”

About USDL

The need for a new stage of maturity for service conceptualization across all key
aspects, and shaping the standardization of a next generation service description
language, has paralleled a wider development.

As the different research and development efforts in SOA, software-as-a-service,
cloud computing, service management methodologies and governance, a dedicated
intellectual foundation for the services — as a field in its own right — has been
sought. In 2006, Henry Chesbrough and Jim Spohrer published A Research Mani-
festo for Services Science [3] that argues for a new multi-disciplinary academic to
integrate across academic silos and advance service innovation more rapidly. Ac-
cordingly, several strategic research initiatives and flagships were established, no-
tably the following:

• The EU Framework Programme 7 has had as a key strategic theme, viz., the
Internet of Services, leading to several millions of Euros in research investments
across at least 20 projects. These concerned different aspects of business and
IT service management, beyond single organizations, out to service-based hubs,
communities and business networks, and ultimately out to the Internet;

• Future Internet Public Private Partnership (FI-PPP) [11] with a budget of
90 million Euros aiming to advance Europe’s competitiveness in future inter-
net technologies and systems and to support the emergence of future internet-
enhanced applications of public and social relevance. It addresses the need to
make public service infrastructures and business services/processes significantly
smarter (i.e., more intelligent, more efficient, more sustainable) through tighter
integration with Internet networking and computing capabilities. The frame-
works of the Internet of Services and Internet of Things underpin the Future
Internet vision;

Preface xi

• THESEUS/TEXO [18], one of Germany’s largest publicly funded IT research
projects in recent years, addressing the fact that it has become commonplace to
sell content such as music and videos on the Internet, yet Web-based services
are not as widely used. The goal of the project is develop an infrastructure that
will make it easier to combine and utilize the electronic services in wide service-
based hubs, communities and networks, as an important step towards fostering
an Internet of Services;

• In the US, an industry consortium led by IBM sponsors the Service Research
and Innovation Institute (SRII),1 a non-profit organization aimed at improving
the productivity and transformation for the technology industry, organizations
and society at large — around services. It brings together industry, technology,
solutions, research and academic organizations to share their work and experi-
ences on all the key areas of services. It strives for shaping the science and en-
gineering for service delivery in healthcare, financial, telecom, retail, education,
government, and energy, to name just a few verticals.

• In the APJ region, a similar endeavor has been initiated called the Smart Ser-
vices CRC.2 The CRC is a commercially focused collaborative research ini-
tiative, developing innovation and productivity improvements for the services
sector, especially for small-to-medium businesses. It has drawn representations
from the enterprise service and solution specialists (Infosys), media (Fairfax Dig-
ital), government (the state governments of Queensland and New South Wales),
health (Austin Hospital) to collaborate with a number of Australian universities
in yearly projects over a seven year horizon. It aims at innovative (smart) ser-
vices, agile tools for aggregation and next-generation service delivery platforms.

Out of a number of these mega-investments, the Unified Service Description Lan-
guage (USDL) was born. It has been developed across several research institutes and
publicly funded projects across Europe and Australia, and this now extends to the
Americas as part of a standardization push through W3C.3 The overarching phi-
losophy of development has been inspired from the design science approach [12].
In addition, USDL required a highly collaborative and interdisciplinary approach.
Previously developed service description concepts, languages and experiences were
harnessed, and USDL, at the outset, was situated at the conceptual level so that a
variety of aspects could be analyzed without constraint of any one implementation
language or technology.

Clearly, the key challenge for USDL is scope: what sorts of services can be uni-
formly described? That is to say, is a uniform conception of services across political,
economic, business, entertainment, technological, individual and other spheres, in
the first place, possible or desirable? In the case of USDL, the scope of service has
been on services as understood for business and supportive IT provisioning, i.e.,
the socio-technical sense of services. In this respect, purely human, purely auto-
mated and mixed human/automated services were considered, that have a boundary

1 http://www.thesrii.org/
2 http://www.smartservicescrc.com.au/
3 http://www.w3.org/2005/Incubator/usdl/

http://www.thesrii.org/
http://www.smartservicescrc.com.au/
http://www.w3.org/2005/Incubator/usdl/

xii Preface

of cognizance that is available through the tasks of service provisioning, discovery,
access and delivery. Services from various domains including cloud computing, ser-
vice marketplaces and business networks, were investigated. Noteworthy were use
cases involving service marketplaces procuring services as complex as those from
SAP’s portfolio and ecosystem, advancing previous insights into aspects such as ser-
vice bundling and business contexts in which services are requested and consumed.
Further use cases from the corporate world shed insights into commercial manage-
ment of services, such as cost center ownership, releasing, and service granularity
validated against enterprise-grade software portfolios.

Taken together, key dichotomies, encountered in the current state-of-the art ser-
vice languages and techniques, that were addressed in USDL included: techni-
cal and business; structure and behavior; intra- and inter-organizational; single-
to third-party provisioned; single-flavored composition (process-based) to multi-
flavored composition (process, data dependency, functional inheritance/import and
bundling); singular to plural pricing models; functional to non-functional service
delivery (service level agreements).

About the Book

This book provides a state-of-the-art insight into previous developments, the design
and specific proposals of USDL, and different methods that use USDL for service
design, engineering and management.

service description approaches. The plethora of approaches is grouped into dif-
ferent strands each devoted a separate chapter. Experts were invited to survey
Product-Service System Approaches, Service Network Approaches, Service System
Approaches, Service-oriented Architecture (SOA) Approaches, as well as Semantic
Web Services, respectively.

The remaining parts of the book deal exclusively with USDL and can be read

model of USDL providing both an overview chapter on the design rationale as well
as several chapters that highlight specific aspects of the language. Contributions to
this part came from researchers in the different projects that developed the different
parts of USDL.

In light of the efforts and insights of multiple institutes and disciplines — com-
prising business management, information systems, IT and computer science (incl.
SOA, security and cloud), and law — the design rationale set the ground for a
consensual design of USDL across diverse and distributed teams that contributed.
The design proceeded through a constructivist synthesis, whereby a services dis-
course and requirements illuminating on key challenges for USDL concept forma-
tion (“signposts” model development), were established. The result is that USDL
contains:

Part I of the book provides an in-depth overview of existing state-of-the-art

independently from the state of the art. Part II is concerned with the actual meta-

Preface xiii

• concepts (either well-established or new and agreed upon) that are essential to
service descriptions, and self-contained in USDL;

• concepts that are part of USDL but serve to align service descriptions with other
artifacts, e.g., USDL should relate to, not overlap with, languages dedicated
to other organizational phenomena (e.g., business processes, organizational re-
sources, WSDL and other SOA aspects);

• concepts that can support domain-specific (e.g., industry specific) specializa-
tions, since a “silver bullet” language for all service domains and industries is
infeasible.

Given the complexity of the service domain, USDL has been designed to be con-
ceptual and modular. Specifically, USDL’s structure can be seen from the following,
broad logical arc:

• The essential descriptors of a service that are central to understanding it and that
tie together other parts (Service);

• The structural aspect of functionality (Functional);
• The behavioral aspect of functionality (Interaction);
• How a service is interfaced with for delivery (Technical);
• The participants involved in the provisioning, delivery an consumption of a ser-

vice (Participants);
• The non-functional aspects of pricing (Pricing), legal constraints (Legal), and

service level agreements (Service Level).

chapters deal with methodological aspects of USDL, e.g., basic tooling or variant

such as case studies.

Acknowledgements

The people who were instrumental in development of USDL and this book are too
numerous to mention. Nevertheless, we would like to draw attention to the following
for special mention.

To Lutz Heuser and Joachim Schaper, who as (former) leaders of SAP Research
installed “Internet of Services” as a flagship of its research and development, and
who ensured a proper dissemination and opening up of USDL for wider consolida-
tion through the community and for standardization, once it arrived at a sufficient
level of maturity. This book owes foremostly to the priority on dissemination that
they placed.

Secondly, the authors are grateful to Hervé Couturier (Executive Vice President
of SAP Business Technology and Research) and to Warren Brady (CEO of the Smart
Services CRC) for supporting the ongoing development of USDL and the develop-
ment of this book.

Knowledge about the USDL meta-model is the prerequisite for Part III whose

management. Finally, Part IV documents different evaluation endeavors of USDL

xiv Preface

Last but by no means least, the development of USDL involved many more peo-
ple from research and industry than is indicated through the authorship of the book’s
USDL chapters and in the publicly released specification of USDL (available at
www.internet-of-services.com). USDL, as it stands today, and its intel-
lectual baseline available through this book for on-going refinement and maturity,
rests of the shoulders of many “giants.”

Brisbane, Australia & Karlsruhe, Germany, Alistair Barros
September 2011 Daniel Oberle

References

1. A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guizar, N. Kartha, C.K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web Services
Business Process Execution Language Version 2.0. OASIS Standard 11 April 2007.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html .

2. S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo, C. Kaler,
D. Langworthy, A. Nadalin, N. Nagaratnam, H. Prafullchandra, C. von Riegen, D. Roth,
J. Schlimmer, C. Sharp, J. Shewchuk, A. Veadmuthu, Ü. Yalcinalp, and D. Orchard. Web
Services Policy 1.2 - Framework (WS-Policy). W3C Member Submission 25 April 2006.
http://www.w3.org/Submission/WS-Policy/ .

3. H. Chesbrough and J. Spohrer. A Research Manifesto for Services Science. Commun. ACM,
49(7):35–40, 2006.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. W3C Note 15 March 2001. http://www.w3.org/TR/wsdl .

5. L. Clement, A. Hatley, C. von Riegen, and T. Rogers. UDDI Ver-
sion 3.0.2 UDDI Spec Technical Committee Draft, Dated 20041019.
http://www.uddi.org/pubs/uddi_v3.htm .

6. B. Dietrich. Resource planning for business services. Communications of the ACM, 49(7):62–
64, 2006.

7. J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton. Reference Architecture Foundation
for Service Oriented Architecture Version 1.0. OASIS Committee Draft 02, 14 October 2009.
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf .

8. J. Farell and H. Lausen. Semantic Annotations for WSDL and XML Schema. W3C Recom-
mendation 28 August 2007. http://www.w3.org/TR/sawsdl/ .

9. K. Gomadam, A. Ranabahu, and A. Sheth. SA-REST: Semantic An-
notation of Web Resources. W3C Member Submission 05 April 2010.
http://www.w3.org/Submission/SA-REST/ .

10. M. Hadley. Web Application Description Language. W3C Member Submission 31 August
2009. http://www.w3.org/Submission/wadl/ .

11. L. Heuser and D. Woods. Is Europe Leading the Way to the Future Internet? IEEE Internet
Computing, 14:91–94, 2010.

12. A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systems
research. MIS Quarterly, 28(1):75–105, 2004.

http://www.internet-of-services.com
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/TR/wsdl
http://www.uddi.org/pubs/uddi_v3.htm
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/SA-REST/
http://www.w3.org/Submission/wadl/

Preface xv

13. D. L. Martin, M. Paolucci, S. A. McIlraith, M. H. Burstein, D. V. McDermott, D. L. McGuin-
ness, B. Parsia, T. R. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. P. Sycara. Bringing
Semantics to Web Services: The OWL-S Approach. In J. Cardoso and A. P. Sheth, editors, Se-
mantic Web Services and Web Process Composition, First International Workshop, SWSWPC
2004, San Diego, CA, USA, July 6, 2004, Revised Selected Papers, volume 3387 of Lecture
Notes in Computer Science, pages 26–42. Springer, 2004.

14. B. Norton, M. Kerrigan, A. Mocan, A. Carenini, E. Cimpian, M. Haines, J. Sci-
cluna, and M. Zaremba. Reference Ontology for Semantic Service Oriented Ar-
chitectures Version 1.0. OASIS Public Review Draft 01, 5 November 2008.
http://docs.oasis-open.org/semantic-ex/ro-soa/v1.0/see-rosoa-v1.0.html.

15. J. J. O’Sullivan. Towards a Precise Understanding of Service Properties. PhD thesis, Queens-
land University of Technology, 2006.

16. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, and D. Fensel. WWW:
WSMO, WSML, and WSMX in a Nutshell. In R. Mizoguchi, Z. Shi, and F. Giunchiglia, The
Semantic Web - ASWC 2006, First Asian Semantic Web Conference, Beijing, China, September
3-7, 2006, Proceedings, volume 4185 of Lecture Notes in Computer Science, pages 516–522.
Springer, 2004.

17. W. Sun, J. Zhang, and F. Liu. WS-SLA: A Framework for Web Services Oriented Service
Level Agreements. In Proceedings of the 10th International Conference on CSCW in Design,
CSCWD 2006, May 3-5, 2006, Southeast University, Nanjing, China, pages 714–717. IEEE,
2006.

18. O. Terzidis, A. Fasse, B. Flügge, M. Heller, K. Kadner, D. Oberle, and T. Sandfuchs. Texo: Wie
THESEUS das Internet der Dienste gestaltet — Perspektiven der Verwertung. In L. Heuser
and W. Wahlster, editors, Internet der Dienste, acatech diskutiert, pages 141–161. Springer,
2011.

http://docs.oasis-open.org/semantic-ex/ro-soa/v1.0/see-rosoa-v1.0.html

Contents

1 The Internet of Services and USDL . 1
Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch,
and Alistair Barros

Part I State of the Art

2 Product-Service System Approaches . 19
Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

3 Service Network Approaches . 45
Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans
Akkermans

4 Service System Approaches . 75
Roberta Ferrario, Nicola Guarino, Romano Trampus, Ken Laskey, Alan
Hartman, and G. R. Gangadharan

5 SOA Approaches . 111
Thomas Kohlborn and Marcello La Rosa

6 Semantic Web Services Fundamentals . 135
Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips,
and Ingo Weber

7 Semantic Web Services Approaches . 159
Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam
Panahiazar

xvii

Contents

Part II USDL — Meta-Model

8 Design Overview of USDL . 187
Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

9 Service Pricing . 227
Tom Kiemes, Francesco Novelli, and Daniel Oberle

10 Service Licensing . 243
Christian Baumann and Maria Niedziella

11 Service Functionality and Behavior . 269
Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

12 Service Levels, Security, and Trust . 295
Florian Marienfeld, Edzard Höfig, Michele Bezzi, Matthias Flügge,
Jonas Pattberg, Gabriel Serme, Achim D. Brucker, Philip Robinson,
Stephen Dawson, and Wolfgang Theilmann

13 Modeling Foundations . 327
Steffen Heinzl, Uwe Kylau, and Norman May

Part III USDL — Methods

14 Representing USDL for Humans and Tools . 357
Keith Duddy, Matthias Heinrich, Steffen Heinzl, Martin Knechtel,
Carlos Pedrinaci, Benjamin Schmeling, and Virginia Smith

15 Enabling USDL by Tools . 385
Markus Heller, Benjamin Schmeling, Steffen Heinzl, Torsten Leidig,
Keith Duddy, Thorsten Sandfuchs, Andreas Klein, and Matthias
Allgaier

16 Supporting USDL by a Governance Framework 415
Christian Janiesch and Michael Niemann

17 Managing Variants of USDL . 445
Gunther Stuhec, Daniel Oberle, Christian Baumann, Christian Janiesch,
Michael Dietrich, Jens Lemcke, Jörg Rech, and Wolfgang Karl Rainer
Schwach

xviii

Contents

Part IV USDL — Evaluation

18 Case Studies . 465
Martin Schäffler, Anke Thede, Bastian Leferink, Kay Kadner, Andrea
Horch, Maximilien Kintz, Monika Weidmann, and Moritz Weiten

19 Experience Report on Real-World Manual Service Modeling in

USDL . 487
Josef Spillner, Ronny Kursawe, and Alexander Schill

20 Requirements for a Service Description Language — Findings from

a Delphi Study . 503
Martin Matzner and Jörg Becker

21 How Complete is the USDL? . 521
Dominik Q. Birkmeier, Sven Overhage, Sebastian Schlauderer, and
Klaus Turowski

xix

List of Contributors

Hans Akkermans
VU University, Amsterdam, The Netherlands

Matthias Allgaier
SAP Research Karlsruhe, Germany

Alistair Barros
Queensland University of Technology, Australia

Christian Baumann
Berkeley Center for Law & Technology, University of California, Berkeley, School
of Law, USA
Center for Applied Legal Studies (ZAR), Karlsruhe Institute of Technology,
Germany

Jörg Becker
University of Münster, European Research Center for Information Systems,
Germany

Daniel Beverungen
University of Münster, European Research Center for Information Systems,
Germany

Michele Bezzi
SAP Research Sophia-Antipolis, France

Dominik Q. Birkmeier
University of Augsburg, Germany

Achim D. Brucker
SAP Research Karlsruhe, Germany

Stephen Dawson
SAP Research Belfast, UK

xxi

Michael Dietrich
SAP Research Karlsruhe, Germany

Keith Duddy
Queensland University of Technology, Australia

Roberta Ferrario
ISTC-CNR, Laboratory for Applied Ontology, Trento, Italy

Matthias Flügge
Fraunhofer FOKUS, Berlin, Germany

Andreas Friesen
SAP Research Karlsruhe, Germany

G. R. Gangadharan
IBM India Research, India

Jaap Gordijn
VU University, Amsterdam, The Netherlands

Nicola Guarino
ISTC-CNR, Laboratory for Applied Ontology, Trento, Italy

Alan Hartman
IBM Research Lab, Haifa, Israel

Matthias Heinrich
SAP Research Dresden, Germany

Steffen Heinzl
SAP Research Darmstadt, Germany

Markus Heller
SAP Research Karlsruhe, Germany

Stijn Heymans
SemanticBits, Herndon, VA, USA

Jörg Hoffmann
INRIA, Nancy, France

Edzard Höfig
Fraunhofer FOKUS, Berlin, Germany

Andrea Horch
University of Stuttgart, Institute IAT, Germany

Christian Janiesch
Institute of Applied Informatics and Formal Description Methods (AIFB),
Karlsruhe Institute of Technology, Karlsruhe, Germany

Kay Kadner
SAP Research Dresden, Germany

xxii List of Contributors

List of Contributors xxiii

Tom Kiemes
SAP Research Karlsruhe, Germany

Maximilien Kintz
University of Stuttgart, Institute IAT, Germany

Andreas Klein
SAP Research Karlsruhe, Germany

Martin Knechtel
SAP Research Dresden, Germany

Thomas Kohlborn
Queensland University of Technology, Australia

Ronny Kursawe
Technische Universität Dresden, Faculty of Computer Science, Germany

Uwe Kylau
SAP Research Brisbane, Australia

Ken Laskey
The MITRE Corporation, McLean, VA, USA

Pieter De Leenheer
VU University, Amsterdam, The Netherlands
Collibra nv, Brussels, Belgium

Bastian Leferink
B2M Software AG, Karlsruhe, Germany

Torsten Leidig
SAP Research Karlsruhe, Germany

Jens Lemcke
SAP Research Karlsruhe, Germany

Maria Maleshkova
Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK

Annapaola Marconi
Fondazione Bruno Kessler, Trento, Italy

Florian Marienfeld
Fraunhofer FOKUS, Berlin, Germany

Martin Matzner
University of Münster, European Research Center for Information Systems,
Germany

Norman May
SAP AG, Walldorf, Germany

xxiv List of Contributors

Oliver Müller
University of Liechtenstein, Martin Hilti Chair of Business Process Management,
Liechtenstein

Maria Niedziella
SAP Research Karlsruhe, Germany

Michael Niemann
KOM - Multimedia Communications Lab, Technische Universität Darmstadt,
Darmstadt, Germany

Francesco Novelli
SAP Research Darmstadt, Germany

Daniel Oberle
SAP Research Karlsruhe, Germany

Sven Overhage
University of Augsburg, Germany

Maryam Panahiazar
Kno.e.sis Center, Wright State University, Dayton, OH, USA

Jonas Pattberg
Fraunhofer FOKUS, Berlin, Germany

Carlos Pedrinaci
Knowledge Media Institute (KMi), The Open University, Milton Keynes, UK

Joshua Phillips
SemanticBits, Herndon, VA, USA

Ivan S. Razo-Zapata
VU University, Amsterdam, The Netherlands

Jörg Rech
SAP Research Karlsruhe, Germany

Philip Robinson
SAP Research Belfast, UK

Marcello La Rosa
Queensland University of Technology, Australia

Thorsten Sandfuchs
SAP Research Karlsruhe, Germany

Martin Schäffler
Siemens AG, Munich, Germany

Alexander Schill
Technische Universität Dresden, Faculty of Computer Science, Germany

List of Contributors xxv

Sebastian Schlauderer
University of Augsburg, Germany

Benjamin Schmeling
SAP Research Darmstadt, Germany

Wolfgang Karl Rainer Schwach
SAP Research Karlsruhe, Germany

Gabriel Serme
SAP Research Sophia-Antipolis, France

Virginia Smith
Hewlett-Packard Company, Roseville, CA, USA

Josef Spillner
Technische Universität Dresden, Faculty of Computer Science, Germany

Michael Stollberg
SAP Research Dresden, Germany

Gunther Stuhec
SAP Global Partner and Ecosystems Group, Walldorf, Germany

Orestis Terzidis
SAP Research Karlsruhe, Germany

Anke Thede
B2M Software AG, Karlsruhe, Germany

Wolfgang Theilmann
SAP Research Karlsruhe, Germany

Romano Trampus
University of Trieste, Italy

Klaus Turowski
Otto-von-Guericke University Magdeburg, Germany

Ingo Weber
The University of New South Wales, School of Computer Science & Engineering,
Sydney, Australia

Monika Weidmann
Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany

Moritz Weiten
SEEBURGER AG, Bretten, Germany

Maciej Zaremba
Digital Enterprise Research Institute (DERI), National University of Ireland,
Galway, Ireland

Chapter 1

The Internet of Services and USDL

Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair
Barros

Abstract A prominent research focus, especially in the context of EU public fund-
ing, has been the systematic use of the Internet for new ways of value creation in
the services sector. This idea of service networks in the Internet, frequently dubbed
the Internet of Services or Web service ecosystems, wants to make services tradable
in digital media. In order to enable communication and trade between providers
and consumers of services, the Internet of Services requires a standard that creates
a “commercial envelope” around a service. This is where the Unified Service De-
scription Language (USDL) comes into play as a normative and balanced unification
of service information. The unified description established by USDL is machine-
processable, considers technical and business aspects of a service as well as func-
tional and non-functional attributes.

1.1 Services Sector: Key Driver of Developed Economies

The services sector is an economic growth driver in most developed economies. As
an example, consider the Federal Republic of Germany, where the largest part of the
macroeconomic value of 2009 is generated by the service industry [15, page 637].

Orestis Terzidis, Daniel Oberle, Andreas Friesen
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: orestis.terzidis@sap.com, e-mail: d.oberle@sap.com,
e-mail: andreas.friesen@sap.com

Christian Janiesch
Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of
Technology, Englerstr. 11, Geb 11.40, 76131 Karlsruhe, Germany,
e-mail: christian.janiesch@kit.edu

Alistair Barros
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: alistair.barros@qut.edu.au

1 ,
DOI 10.1007/978- - - _1, © Springer Science+Business Media 2012
A. Barros and D. Oberle (eds.), Handbook of Service Descriptio

1 4614 1864-1
n: USDL and Its Methods

 New York

mailto:orestis.terzidis@sap.com
mailto:d.oberle@sap.com
mailto:andreas.friesen@sap.com
mailto:christian.janiesch@kit.edu
mailto:alistair.barros@qut.edu.au

2 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

As can be seen in Fig. 1.1, jobs are only created in the services sector in Germany
during recent years.

Many manufacturing firms transformed their orientation from products to hybrid
value creation through complementary services during the last two decades [5]. Fur-
thermore, a new breed of service businesses entered the stage, growing at a speed
that is unprecedented in the history, changing the rules of the existing markets, and
creating new ones. Powered by globalization, competition, and the Internet, this
process happens globally and at accelerating speed [14]. It breaks existing prod-
uct supply chains and transforms them into more volatile networks of collaborat-
ing businesses which are called business value networks or short business networks
[28]. Business networks increasingly take the form of service networks where a busi-
ness network forms around service value propositions of the participants in order to
achieve win-win situations through joint value creation [8]. A service network is a
logical collection of services whose exposure and access are subject to constraints
characteristic of business service delivery. In these networks, service consumers pro-
cure services through different distribution and delivery channels, outsourcing ser-
vice delivery functions such as payment, authentication, and mediation to specialist
intermediaries. Service networks make explicit the notion of service procurement,
separating it from that of conventional service supply. [7]

Fig. 1.1: Growth through services: Jobs created in Germany in the services sector
[15, page 87].

This trend coincides with the ongoing industrialization of the services sector in
developed economies. The industrialization, i.e., the commoditization of a good,
can be traced into the steps of innovation, bespoke, product, and service [26]. In
general, the three driving forces of every industrialization process have been au-
tomation, standardization, and specialization.1 The following paragraphs will ex-

1 As an example, consider the automotive industry. In this particular case, automation started by
introducing production lines as early as Henry Ford up to the increasing application of robots. In

1 The Internet of Services and USDL 3

plain what the three drivers mean with respect to the transition from product to
a services-focused sector. First, the Information and Communications Technology
(ICT) serves as an Automation and transformation factor. Automation is the replace-
ment of human activity by machine activities [21] in order to relieve humans from
heavy, dangerous, complex, boring and time-consuming tasks [19]. At the low end,
automation in the services sector implies, e.g., the digital brokering of physical ser-
vices such as car repair. At the high end, service automation considers services
that can be electronically consumed in wide settings, e.g., on the Web, which have
grown over the last few years. Beyond Web services and services available through
the Web, new and disruptive models have emerged that are accelerating the ubiq-
uity of services. Software-as-a-service, business process outsourcing, cloud com-
puting and infrastructure-as-a-service, platform-as-a-service, service marketplaces,
and service-centric business networks are a growing list of examples where services
are commoditized, exposed and accessed beyond conventional boundaries. In addi-
tion to Web consumers, the reach extends to mainstream industries like transporta-
tion and logistics, banking and finances, public sector, and manufacturing, when one
considers the following sorts of Web services now available: track-and-trace of ship-
ments, tariff look-ups, health insurance comparisons, medical assistance, business
formation and ERP hosting.

Second, and similar to the area of physical products, Standardization [11] is the
basis and prerequisite of every further development of an industrial sector. There-
fore, standards will play a significant role also in the services industry. Standards are
expected to drive the professionalization and industrialization of the service indus-
try, to increase the transparency, and to lead to higher value services, and, thus, to
contribute to the overall development of the service economy. [1] The need for stan-
dardization becomes apparent when one considers the uptake of service networks as
explained above. When participants in a service network specialize to play a specific
role in the provisioning and delivery of services, they act as intermediaries between
other participants in the network. Such new specialized roles need to disclose and
exchange, as well as comprehend business information about services (pricing, gen-
eral terms and conditions, service-level agreements, etc.) in a standardized way. A
standardized and machine readable description of such information will facilitate
interoperability between such roles on the business level.

Besides the emergence of specialized intermediaries, there is another aspect of
Specialization [20]: services once targeted at a specific market, are rebranded and
repurposed to fit new consumer needs or other markets in order to extend the reach.
Repurposing is facilitated by the automation, since even physical services can be
brokered digitally and might be accessed by additional markets and regions.

The ongoing industrialization of the services sector spawned many research ac-
tivities and even the call for a new discipline, viz., service science, surveyed in
Section 1.2. A particular research focus is the systematic use of the Internet for new

the beginning, each car manufacturer developed its own tires, radios, or electronic components.
By standardization of such components and their interfaces, specialization became possible. That
means, component suppliers emerged that specialize in the production of tires, radios, or electronic
components sold to a multitude of car manufacturers.

4 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

ways of value creation in the services sector — frequently called the Internet of
Services. The basic concepts of the Internet of Services are explained in Section
1.3 where the need for a standardized service description is elaborated. The latter is
represented by the Unified Service Description Language (USDL) (cf. Section 1.4).
Finally, strategic implications are given in Section 1.5.

1.2 Intense Research During the Past Years

Today, the dominating understanding of economic activities is still centered on the
product as the main focus of value exchange. A new foundation based on service-
driven principles and establishing a service-dominant mindset is required to under-
stand and exploit the innovative value proposition offered by the Service-orientation
and the On Demand paradigms to its full potential in the context of software-
based complex service systems. In 2006, Henry Chesbrough and Jim Spohrer pub-
lished A Research Manifesto for Services Science [10] that argues for a new multi-
disciplinary academic approach in order to integrate academic silos and advance
service innovation more rapidly. As we have learned in the previous section, the ser-
vices sector has grown over the last 50 years to dominate economic activity in most
advanced industrial economies. Yet, the scientific understanding of modern services
is rudimentary [10]. In 2008, a white paper proposing a framework to progress in
service science and innovation has been published as a result of the Cambridge
Service Science, Management and Engineering Symposium and a subsequent con-
sultation process with the academic community [2]. According to [23], the notion of
a service system serves as the proper basic category for systematic development of
theory and practice around service innovation. In addition, [22] identifies the notion
of service system as the basic abstraction of service science. [3] and [12] (cf. also
Chapter 4) further refined and formalized the notion of service system, respectively.

Following the research manifesto and the seminal scientific groundwork, several
initiatives, institutions, and research projects have been established in recent years
that revolve around the subject of service science. In the US, an industry consor-
tium led by IBM currently sponsors the Service Research and Innovation Institute
(SRII)2 which is a non-profit organization aiming at the improvement of productivity
and quality for the technology industry, organizations and society at large. The SRII
is accompanied by events such as the SRII Global Conference as a forum for indus-
try, research/professional organizations, and academia to share their research work
on all the key areas of services and especially connecting science and engineering to
services delivered through major verticals such as health care, financial, telecom, re-
tail, education, government, and energy, to name a few. In the APJ region, a similar
endeavor has been initiated called the Smart Services CRC.3 The CRC is a commer-

2 http://www.thesrii.org/
3 http://www.smartservicescrc.com.au/

http://www.thesrii.org/
http://www.smartservicescrc.com.au/

1 The Internet of Services and USDL 5

cially focused collaborative research initiative, developing innovation, foresight and
productivity improvements for the services sector.

In Europe, the European Union is currently spending a significant amount of
money for service research. An example is the Future Internet Public Private Part-
nership (FI-PPP) with significant budget aiming to advance Europe’s competitive-
ness in future internet technologies and systems and to support the emergence of
future internet-enhanced applications of public and social relevance. It addresses
the need to make public service infrastructures and business processes significantly
smarter (i.e., more intelligent, more efficient, more sustainable) through tighter in-
tegration with Internet networking and computing capabilities.

The term Internet of Services has been coined in the context of EU public funding
as a technology strategy for explicitly supporting service networks in the Internet.4

The observation was that the Internet provides the access mechanisms but not the re-
quired service supply technology. Service supply comes from companies and com-
munities using dedicated platforms for SOA and service delivery, and the Internet
will not magically replace that. However, Internet supportive protocols and tech-
nologies will need to be extended so that services can be accessed more seamlessly
than is currently the case. For example, when a service is being interacted with,
it should be possible through Internet supportive technologies for other potentially
relevant services and resources to be sensed through the Internet. Service discov-
ery should not be stove-piped through keyword search on particular resources, but
should be as seamless as accessing Web pages. The current barriers to matchmaking
of service needs and capabilities — whether it be for finding the cloud services that
can support the hosting needs of an application, a transportation service that works
best in a geographic locality for a certain line of goods, or a B2B gateway that has
capabilities for enabling trading partners to talk should operate on an Internet, not
an individual repository, level.

The situation throughout Europe is comparable to national spendings for research
projects. As an example, consider Germany’s largest publicly funded ICT research
programme in recent years called THESEUS [25]. The project addresses the fact
that it has become commonplace to sell content such as music and videos on the
Internet, yet Web-based services are not as widely used. The goal of the project is
develop an infrastructure that will make it easier to combine and utilize Internet ser-
vices, an important step toward creating an Internet of Services. An accompanying
event has been the International Research Forum 2008 [27] inviting top researchers
from around the world. Participants from business, academia and government ex-
amined the topic of the Internet of Services. The discussion illuminated how the
Internet of Services will change enterprise computing. It will help businesses lever-
age core strengths, find partners in new business networks, collaborate and tap new
global markets. Software as a service, cloud computing and other trends are democ-
ratizing innovation as never before. The infrastructure barriers to doing business in
the Internet of Services are falling away.

4 A synonymous term is “Web service ecosystems,” i.e., service ecosystems in the Internet intro-
duced in [7].

6 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

1.3 The Internet of Services — Basic Concepts

The basic idea of the Internet of Services is to systematically use the Internet for
new ways of value creation in the services sector. There are different angles from
which one may look at this approach. From an IT perspective, service-oriented ar-
chitectures [9], software as a service [13], as well as business process outsourcing
[24] and business process out-tasking are related trends. In this context, the concept
of service is referring to a technical understanding of software functions provided
as Web services.

But services in a broader sense are more than technical capabilities that can be
invoked by computer program interfaces. When referring to the importance of the
services economy in Section 1.1, we clearly went beyond the purely technical per-
spective. It is true that the modern service economy is already making an intense
use of information technologies, but it is also true that other factors are relevant as
well. Therefore, it is important to clarify what we mean by the term service Here is
our proposal for a definition:5

Definition 1.1. A service is a commercial transaction where one party grants tem-
porary access to the resources of another party in order to perform a prescribed
function and a related benefit. Resources may be human workforce and skills, tech-
nical systems, information, consumables, land and others.

Let us illustrate the definition with some examples. First, think about a traditional
service such as a taxi. It is a commercial transaction, as you pay for it. The taxi
company grants temporary access to a socio-technical system including the driver,
the car, the navigation system (or maps), the billing system and the call centre. The
function and the related benefit are the transportation from one point to another.

Another example may be a rating service which defines the creditworthiness of
companies. Before selling something to a company, one may want to know how
creditworthy it is, so payment conditions can be arranged accordingly. For compa-
nies with poor ratings, payment in advance will be asked for while companies with
good rating may pay on delivery. The rating service, by nature, is information. As
a consequence, the main resources involved are information systems and, most im-
portantly, their content. The temporary access to this information is identical to the
service delivery. There is some price scheme to grant the access to this information;
examples could be a flat rate or a pay-per-use model. The function is to receive a
rating and the benefit to reduce the transaction risk.

Yet other examples include business services such as event management, trans-
portation, insurances, attorney services, public services or medical services. It is
also worth noting that not all services are commercial transactions, as some may
have a social character such as nursing services that integrate family members.

5 Other definitions of the term have surfaced in diverse disciplines (a nice discussion is given in
[12]). This particular definition serves the needs to explain the basic concepts of the Internet of
Services.

1 The Internet of Services and USDL 7

1.3.1 The Digital Footprint of Services

The service definition above covers a broad range of services. It is therefore useful
to find criteria to differentiate the various kinds of services. One obvious criterion
relates to the digital footprint of a service: how and to what degree are information
technologies used to instantiate a service.

As an example, think about logistic services. The traditional service is about
granting access to some socio-technical resources to ship something from one point
to another. With digital media, the information flow associated to the material flow
became more and more important. As an example, information about delays in just-
in-time delivery is almost as important as the material flow itself. Even without
introducing a strict metric, it is intuitive to say that the digital footprint of just-in-
time logistics is higher than in traditional transportation.

In the example above, information technologies contribute to the coordination of
the core process. But digital media can also add to customer experience. Take the
example of a haircut. It is in itself a manual service. But the service may be enriched
by digital media: the appointment may be done over the web, the hair cut may be
chosen in advance at home out of a photo gallery or the hair colour may be presented
as an overlay on the portrait photo of the customer.

Another dimension of digital footprint comes from new ways of customer co-
creation. E-banking is a good example for an efficient co-creation. Here, the cus-
tomer has web access to the bank’s information systems directly over digital media.
This digital self service makes the overall process more efficient and provides more
transparency to the customer. Part of the service delivery is shifted to the service
consumer, but creates value for both the service consumer and the service provider.

In general, a simple thought experiment can help to illustrate the digital footprint
of a service. Just imagine all computer system would shut down for a given time.
To what degree would it be possible to deliver the service? If you apply this thought
experiment to the services of our daily life, it becomes quite clear that the digital
footprint in services is already significant.

Yet, as of today, there is no normative way of describing the services in a unified
and machine-readable way. Such a description would wrap a service and would
expose it in a novel way. This kind of digital footprint is what we aiming for with
the Unified Service Description Language.

1.3.2 Complementing the Service-Oriented Architecture paradigm

For Web services, the SOA paradigm including the Web Service Description Lan-
guage (WSDL) did provide standards for technical service ecosystems. Based on
these standards, the promise of SOA was to lower effort of integration of services
coming from different information systems. Even if in many practical situations
there are still organizational and technical obstacles to fully leverage the potential

8 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

of SOA, it is clear that the paradigm does indeed offer possibilities to combine and
integrate technical services in a faster, more flexible and more consistent way.

The Internet of Services and the Unified Service Description Language take this
approach to the next level. They complement the SOA approach by adding the op-
erational and business aspects to it. To illustrate this, consider the following. In
definition 1.1 above, we made clear that a service should not only be considered
as the invocation of a technical interface, but rather as an economic or social trans-
action with a broader context. A rating service may indeed be implemented as the
invocation of a technical Web service of a given information system. For the context
of this service, it is not only important to define how to technically invoke it (give
an address and the interfaces), but it is essential to define the price scheme, the ser-
vice level agreement, and the terms and conditions when consuming the service and
paying for it.

There is another extension of the SOA paradigm. It relates to the roles that come
into play in service networks. In SOA, three basic roles have been defined: the ser-
vice provider, the service consumer and the service mediator or broker. In addition to
these roles, we follow the proposal of [6] to also consider the service hoster, gateway,
aggregator, and channel maker (cf. Fig. 1.2). The service hoster is an example for
an intermediary that catalogues special types of services, namely infrastructure-as-
a-service and platform-as-a-service offerings (commonly termed cloud-computing
services). It also provides means to interface uniformly with the providers of these
services, i.e., re-hosts services through cloud computing environments. Likewise,
the service gateway is a specific intermediary that provides interoperability through
cataloguing and interfacing with a choice of a 3rd Party B2B gateway, which pro-
vides services such as message translation and store-forward processing. The ser-
vice aggregator provides additional value by packaging and combining services.
Finally, the service channel maker is positioned at the consumer end of the ser-
vice provisioning chain where services are channeled into user environments and
consumed. Other roles may emerge when service networks establish, e.g., a clear-
inghouse role.

Service
Gateway

Service
Provider

Service
Hoster

Service
Aggregator

Service
Broker

Service
Channel
Maker

Fig. 1.2: Original SOA roles and additional roles identified by [6].

What is important in our context is the fact that with the many roles involved
in the Internet of Services, the need for a common standard in the description of

1 The Internet of Services and USDL 9

operational and commercial metadata becomes important. Just think about the role
of a service aggregator. This role will aggregate atomic services to service bundles
or aggregates. As an example for aggregates, you may think about packaged tours
where airport transfers, flights, hotel booking and other services are bundled in one
package. In a similar way you could think about an export service as a bundle of lo-
gistic services, insurances, services of the customs authority, technical certifications
for the target country, export credit guarantees and the like.

The economics of bundling is defined by the cost of aggregation in relation to
the perceived benefit. Obviously, the cost is dominated by the integration cost. It
is exactly this integration cost that can be lowered by a common standard such
as USDL. Ideally, a composition of USDL-described services can be based on a
standardized tool chain and therefore be performed efficiently and at low cost.

Summarizing, the Internet of Services wants to make services tradable in digital
media. In particular, with USDL, we want to offer a standard that creates a com-
mercial envelope around the services. Technical services may be lifted to business
services, but the same standard should also be able to describe more manual or
physical services. As many services have a hybrid character with both, a digital and
physical or manual footprint, a unified service description language can facilitate
the combination and aggregation of such services.

1.3.3 Software Applications and Services

One question both for SOA and for the Internet of Services is the relationship be-
tween services and traditional applications such as Enterprise Resource Planning
Systems. Here, we suggest the following two-dimensional approach.

In one dimension, we distinguish according to the frequency of use of a certain
function. Consider an entry in an accounting system. This is something that happens
daily in a business. The frequency of use for such a function is therefore very high.
On the other side, you may have a rare business situation such as an export of your
product in some unusual country. In order to deliver to this country, you are looking
for special export services. This happens rarely, maybe only once in the history of
your company. Between these two extremes, you may have situations where your
ratings for the creditworthiness of new customers are required, which you need, e.g.,
10 times a year.

As a second dimension, we suggest the degree of integration into the existing
core processes of a business. The degree of integration concerns the amount of data
that must be exchanged and the number of interaction points within a process. As an
example, the creditworthiness check is needed at exactly one interaction point (when
defining the payment conditions); the input to the service is the customer name and
registration, while the output is a rating on some scale. This could be considered a
shallow integration, while the export example needs much more interaction points
and more data. On the scale, it can be considered to be a service with a high degree
of integration.

10 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

Fig. 1.3: Classification of services according to frequency of use and degree of inte-
gration.

The two dimensions span a function matrix as depicted in Fig. 1.3. Traditional
application suites, such as SAP’s Business Suite, with a high degree of integra-
tion are in the lower left corner, while we anticipate a whole range of services in
the other sectors of the matrix. All these functions are provided by some sort of
socio-technical system: for traditional software, the application is complemented by
consulting, maintenance, call centres and training services, while other parts of the
matrix may have an even stronger emphasis on the involvement of human resources.

Let us discuss two simple implications for this landscape. First, look at pricing.
The traditional model for software is that of a flat rate, either licensing and main-
tenance fees, or Software-as-a-Service monthly flat rates. In any case, you can use
the system as much as you like, while if you do not use it, you still pay the costs.
For services, that you rarely use, you would expect a completely different pricing
scheme. You may accept a moderate fixed rate to have access to a service ecosys-
tem, but you will be willing to pay a higher price for a special service that fulfils
your needs.

A second consequence is related to the degree of automation for exception han-
dling of a service. In highly integrated functions with frequent use, automated ex-
ception handling usually covers more than 99% of all conceivable states of a service.
This is different for services that are in other parts of the service matrix. Here, it may
be a better choice to always keep some significant social interaction (by phone, mail

1 The Internet of Services and USDL 11

or in person) deliver value. This allows for a higher flexibility and makes it possible
to also respond to less standardized requests.

According to the functional matrix, we anticipate that standard software in the
future will be complemented by some form of service delivery framework, e.g., [6],
which enables a broad ecosystem, i.e., the Internet of Services, to deliver services
on a common technological basis. We consider USDL to be one of the foundational
technologies to set up such an Internet of Services around core enterprise systems
as we know them today.

1.3.4 Applying the Internet Economy to the Services Sector

From an economic perspective, one of the basic features of the Internet is that it
connects communities at marginal communication costs. Markets that were frag-
mented without the Internet suddenly are connected. Sometimes, this phenomenon
is referred to as the long-tail opportunity [4].

A well-known example is books with a limited audience. There may be some
hundreds amateurs around the globe that appreciate a book such as “Butterflies of
the Caribbean” or similar titles. Without the Internet, it would be very hard for an
editor or a bookshop to find the people that show an interest and a willingness to pay
for such a book. The barrier to produce the book would be very high and it would
be most likely that the book never appears on the market. With the Internet, the
limited community can be reached and the long-tail books suddenly can be marketed
profitably. Products for smaller groups with special interests or needs suddenly can
be marketed profitably over Internet media.

The same situation also holds for service ecosystems. Apart from providing
highly standardized and low-priced services with economies of scale, or highly in-
dividualized premium services, we anticipate mass-customized services to play a
prominent role in future service ecosystems. As an intermediate between an econ-
omy of scale [16] and an economy of scope [18], we speak about an economy of
micro-scale. We expect new business opportunities for such services to material-
ize systematically in the future service ecosystems. The economic set-up and an
efficient channel for such services depend on service delivery platforms and a cor-
responding service ecosystem design including the right rules and business models
for such ecosystems.

1.4 The Unified Service Description Language

The previous section made clear that an Internet of Services requires a way of de-
scribing services to wrap a service and expose it in a novel way. We have learned
that a service is not only considered as the invocation of a technical interface, but
rather as an economic or social transaction with a broader context. Therefore, it is

12 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

essential to describe the price scheme, the service level agreement, or the terms and
conditions when consuming the service and paying for it. With the many roles in-
volved in service networks, the need for a common standard in the description of
operational and commercial metadata becomes important.

None of the existing approaches responds to the needs of having a comprehensive
service description in an Internet of Services setting. In particular, SOA description
efforts provided means for formally describing IT services but do not allow de-
scribing the commercial conditions under which the service is consumed or under
what operational conditions a service can be invoked. Further, SOA description ap-
proaches do not consider physical or hybrid services.

Therefore, we contribute USDL, the Unified Service Description Language, as
a standard that creates a commercial envelope around a service. Technical services
may be lifted to business services, but the same standard should also be able to de-
scribe more manual or physical services. As many services have a hybrid character
with both, a digital and physical or manual footprint, a unified service description
language can facilitate the combination and aggregation of such services. We con-
sider USDL to be one of the foundational technologies to set up such an Internet of
Services around today’s core enterprise systems.

Fig. 1.4: USDL unifies business, operational, and technical master data of a service.

USDL comes into play for the aspect of standardization (cf. Section 1.1) as a nor-
mative and balanced unification of service information, which is required to further
capitalize on the growth potential of the services industry. The unified description

1 The Internet of Services and USDL 13

established by USDL is machine-processable, considers technical and business as-
pects of a service as well as functional and non-functional attributes, and provides
both a blueprint and means for extensibility.

The Unified Service Description Language (USDL) is proposed as a normative
and comprehensive master data model for the commercial meta data of IT, physical,
or hybrid services. More specifically, USDL allows a unified description of business,
operational and technical aspects of services as depicted in Fig. 1.4. USDL aims at
a holistic service description putting a special focus on business aspects such as
ownership and provisioning, release stages in a service network, composition and
bundling, pricing and legal aspects among others, in addition to technical aspects.
It proposes a consolidated foundation for service-based systems enabling different
roles to participate in diverse aspects of provisioning in service networks.

1.5 Strategic Implications

In the previous sections, we have presented the approach of the Internet of Services,
its relevance, the state of the discussion, the basic concepts, and the Unified Service
Description Language as a standard to facilitate interoperability and fluidity of novel
service networks. What are the strategic implications of the approach?

First let us talk about the role of platforms as trust gates. Service networks will
imply many smaller players, often specialized in a small range of specific services
(e.g., export services). In most cases, a potential service consumer will not know
the party that is offering such a service. From a buying psychology point of view,
one main consideration of the service consumer will be: Can I trust this service
provider?

Bigger platforms can be trust gates in this situation. Combined with community
ranking, well known from places such as eBay or Amazon, the platform can act as
a business mediator in a double sense: it can match request and offering, but it can
also act as a trust gate for the integrity of the offerings. This can happen by some
form of checking the offerings before they are published on the platform (such as
certifications in app stores), it can make use of community based reputation and
rating systems, but it can also be done by sanctions against business partners that do
not comply with certain standards.

These measures can lead to a reasonable level of trust on the consumer’s side to
also acquire new or unknown offerings. Of course, this trust federation — from a
known platform brand to an unknown service provider — requires a strong brand of
the platform operator. This brand may build on companies, cooperatives, a regional
organization (such as a chamber of commerce) or even the public sector. In any case,
strong related brands — software companies, internet companies, telecom operators
or strong local brands — have a significant opportunity to extend their business in
their installed base.

What we have seen in the Internet Economy, is an immense concentration of the
market power of the big platforms. Some have been talking about Internet Islands

14 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

[17], where non-interoperable segments in the web are dominated by some platform
operator. We think that a similar approach in the service sector would not be sustain-
able and are looking for a more pluralistic approach. A right balance between the
service providers and the bigger platforms can lead to a powerful and sustainable
growth in the service sector, leveraging the possibilities of Internet technologies for
new forms of value creation.

In this light, the Unified Service Description Language can be seen as a conscious
choice to shift market power to the service provider. Once a provider has described
his or her service in USDL, he or she can publish it multiple times and on differ-
ent platforms. This is in contrast to proprietary platform services descriptions that
would create barriers between the platform islands imposing additional effort on the
providers if they wanted to use more than one platform as mediation and delivery
channels.

In return, we think that this will also be beneficial for the platforms, as they
will be able to expose and mediate a much wider range of services and service
bundles quickly. This is also better for the customers of the ecosystem, as there are
no artificial technical barriers to profit from a broad spectrum of service providers.
We anticipate that bigger platforms with powerful brands, combined with agile and
innovative service providers can create ecosystems that are as open as possible, and
as controlled as necessary to guarantee quality and reliability. With USDL, we want
to create the right technical basis for a win-win interplay between internet-scale
service mediation and delivery platforms and small and mid-sized service providers.

We anticipate that the basic set-up described above will develop new processes
that we have not seen in the service economy so far. An example may be the innova-
tion process around services. Most services can indeed not be protected by patents
or similar forms of IP protection. A platform with a certain market power could
of course introduce something similar — just based on the contracts with service
providers in the ecosystem. They could set-up a registration instance, where a novel
service could be registered with a time stamp. If some sort of fair decision body
acknowledges the innovative character of the service, the platform could guarantee
for a certain period (probably rather months than years) that no similar service may
be offered in the marketplace of the platform. This would create a strong incen-
tive for the service providers to create unique selling propositions through service
innovations.

We anticipate that the overall approach for the Internet of Services and USDL
will help to unlock the long tail in service networks. We think that both for the
business area and consumers this will lead to a wide range of relevant new services.
They will create tangible benefits for their users and economic growth with new
value propositions.

1 The Internet of Services and USDL 15

References

1. Grundstruktur für die Beschreibung von Dienstleistungen in der Ausschreibungsphase. PAS
1018:2002-12, Deutsches Institut für Normung (DIN), Beuth Verlag, Berlin, 2002.

2. Succeeding through service innovation: A service perspective for education, research, busi-
ness and government. A white paper based on cambridge service science, management and
engineering symposium, IfM and IBM, University of Cambridge Institute for Manufacturing
(IfM) and International Business Machines Corporation (IBM), 2008. www.ifm.eng.cam.
ac.uk/ssme.

3. S. Alter. Service system fundamentals: work system, value chain, and life cycle. IBM Systems
Journal, 47(1):71–85, 2008.

4. C. Anderson. The Long Tail: Why the Future of Business is Selling Less of More. Hyperion,
2006.

5. K. Backhaus, J. Becker, D. Beverungen, M. Frohs, R. Knackstedt, O. Müller, M. Steiner, and
M. Weddeling. Vermarktung hybrider Leistungsbündel. Springer, Heidelberg, 2010.

6. A. Barros and U. Kylau. Service delivery framework — an architectural strategy for next-
generation service delivery in business network. In P. Kellenberger, editor, Proceedings 2011
Annual SRII Global Conference SRII 2011, 30 March - 2 April 2011, San Jose, California,
USA, pages 47–58. IEEE Computer Society Conference Publishing Services (CPS), 2011.

7. A. P. Barros and M. Dumas. The rise of web service ecosystems. IT Professional, 8(5):31–37,
2006.

8. B. Blau, C. van Dinther, T. Conte, Y. Xu, and C. Weinhardt. How to coordinate value genera-
tion in service networks. Business & Information Systems Engineering, 1(5):343–356, 2009.

9. B. Bygstad and T.-M. Grønli. Service oriented architecture and business innovation. In 44th
Hawaii International International Conference on Systems Science (HICSS-44 2011), Pro-
ceedings, 4-7 January 2011, Koloa, Kauai, HI, USA, pages 1–10. IEEE Computer Society,
2011.

10. H. Chesbrough and J. Spohrer. A research manifesto for services science. Commun. ACM,
49(7):35–40, 2006.

11. P. A. David and W. E. Steinmueller. Economics of compatibility standards and competition in
telecommunication networks. Information Economics and Policy, 6:217–241, 1994.

12. R. Ferrario and N. Guarino. Towards an ontological foundation for services science. In
J. Domingue, D. Fensel, and P. Traverso, editors, Future Internet - FIS 2008, First Future
Internet Symposium, FIS 2008, Vienna, Austria, September 29-30, 2008, Revised Selected
Papers, volume 5468 of Lecture Notes in Computer Science, pages 152–169. Springer, 2008.

13. D. Hilkert, C. M. Wolf, A. Benlian, and T. Hess. The ‘as-a-service’-paradigm and its impli-
cations for the software industry - insights from a comparative case study in crm software
ecosystems. In P. Tyrväinen, S. Jansen, and M. A. Cusumano, editors, Software Business
- First International Conference, ICSOB 2010, Jyväskylä, Finland, June 21-23, 2010. Pro-
ceedings, volume 51 of Lecture Notes in Business Information Processing, pages 125–137.
Springer, 2010.

14. H. Kagermann and H. Österle. Geschäftsmodelle 2010. Wie CEOs Unternehmen trans-
formieren. Frankfurter Allgemeine Buch, Frankfurt am Main, 2nd edition, 2006.

15. S. Krings, editor. Statistisches Jahrbuch 2010 für die Bundesrepublik Deutschland mit Inter-
nationalen Übersichten. Statistisches Bundesamt, Wiesbaden, Germany, 2010.

16. P. Krugman. Scale economies, product differentiation, and the pattern of trade. The American
Economic Review, 70(5):950–959, DEC 1980.

17. K. Lischka. Internet der Zukunft — Im Netz der Giganten. Spiegel Online, JAN 2010.
18. J. C. Panzar and R. D. Willig. Economies of scope. The American Economic Review,

71(2):268–272, May 1981.
19. R. Parasuraman and M. Mouloua. Automation and Human Performance: Theory and Appli-

cations. Lawrence Erlbaum Associates, Mahwah, NJ, USA, 1996.
20. G. Richardson. The organisation of industry. Economic Journal, 82(327):883–896, 1972.
21. P. Satchell. Innovation and Automation. Ashgate Publishing, Aldershot, England, 1998.

http://www.ifm.eng.cam.ac.uk/ssme.
http://www.ifm.eng.cam.ac.uk/ssme.

16 Orestis Terzidis, Daniel Oberle, Andreas Friesen, Christian Janiesch, and Alistair Barros

22. J. Spohrer, S. L. Vargo, N. Caswell, and P. P. Maglio. The service system is the basic abstrac-
tion of service science. In 41st Hawaii International International Conference on Systems
Science (HICSS-41 2008), Proceedings, 7-10 January 2008, Waikoloa, Big Island, HI, USA,
page 104. IEEE Computer Society, 2008.

23. J. C. Spohrer, P. P. Maglio, J. H. Bailey, and D. Gruhl. Steps toward a science of service
systems. IEEE Computer, 40(1):71–77, 2007.

24. J. Tas and S. Sunder. Financial services business process outsourcing. Commun. ACM,
47(5):50–52, 2004.

25. O. Terzidis, A. Fasse, B. Flügge, M. Heller, K. Kadner, D. Oberle, and T. Sandfuchs. Texo: Wie
THESEUS das Internet der Dienste gestaltet — Perspektiven der Verwertung. In L. Heuser
and W. Wahlster, editors, Internet der Dienste, acatech diskutiert, pages 141–161. Springer,
2011.

26. S. Wardley. Innovation, the future and why nothing is ever simple. In FOWA Expo. Future of
Web Apps. London., 2008.

27. D. Woods, L. Heuser, and C. Alsdorf, editors. International Research Forum 2008. Evolved
Technologist Press, 2009.

28. J. Word. Business Network Transformation: Strategies to Reconfigure Your Business Relation-
ships for Competitive Advantage. Jossey-Bass, San Francisco, CA, 2009.

Part I

State of the Art

The first part of the book provides an overview of existing service description ap-
proaches. The plethora of approaches is grouped in different strands each devoted
a separate chapter. Chapter 2 starts off by focussing on Product-Service Systems
(PSS), i.e., a conceptual framework for the cooperative design and delivery of cus-
tomer solutions. Customer solutions can be designed and delivered by the cooper-
ation of manufacturing companies with external service providers or by manufac-
turing companies themselves. As the integration of customers is a constitutive char-
acteristic of service processes, customers are to be acknowledged as co-creators of
value that provide a variety of inputs. The chapter extracts central concepts from sev-
eral disciplines that are engaged in researching business aspects of PSS to develop a
catalogue of modeling requirements to be accounted for in service description. Con-
secutively, these requirements are utilized to assess the current state of conceptual
modeling languages for (product-related) service description.

Chapter 3 continues by discussing several approaches to design, analyze, de-
scribe and compose Service Networks. The chapter analyzes the technical and
business-related aspects of such approaches, their evolution, and the trends they
will be likely to follow. Further, Chapter 4 draws attention to the newly emerged
discipline of Services Science as an effective means to understand services and the
socio-technical systems in which they are deployed. This systemic view requires
a genuinely interdisciplinary approach to the study of services. Consequently, the
chapter reviews a number of significant approaches to analyze, understand and
model service systems, with an emphasis on showing similarities and differences
that highlight the many aspects of a rich service ecosystem.

With regards to purely technical services, different standardization efforts have
been proposed by various consortia to enable interaction among heterogeneous
environments in the paradigm of Service-oriented Architecture (SOA). Chapter 5
overviews the most prevalent of such SOA approaches and shows how technical
services can be described, how they can interact with each other and be discovered
by users.

Finally, the research area of Semantic Web Services investigates the annotation
of services, typically in a SOA, with a precise mathematical meaning in a formal
ontology. These annotations allow a higher degree of automation. The last decade
has seen a wide proliferation of such approaches, proposing different ontology lan-
guages, and paradigms for employing these in practice. Chapters 6 and 7 provide
an understanding of the fundamental techniques, from Artificial Intelligence and
Databases, on which they are built as well as an overview of such approaches, re-
spectively.

Chapter 2

Product-Service System Approaches

A Business Perspective on Service Modeling

Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

Abstract For some time, increasing importance is attached to services, both from an
economical and a managerial perspective. First, the notion of “service as basic unit
of exchange” emphasizes the application of specialized competencies for the benefit
of someone else, while disregarding if a physical good or any other resource is used
for exchanging value. Second, service-orientation allows enterprises to enter new
markets by extending their existing portfolio of products by related services or real-
izing entire new offerings that are enabled by recent advances in information tech-
nology. Service description is a key challenge in developing and providing services
to and with customers. Further it is a premise for coordinating several providers of
an integrated customer solution. This chapter is an effort to explain how concep-
tual modeling can facilitate service description. We use Product-Service Systems
(PSS) as an exemplary domain. We extract central concepts from several disciplines
that are engaged in researching business aspects of PSS to develop a catalogue of
modeling requirements to be accounted for in service description. Consecutively,
these requirements are utilized to assess the current state of conceptual modeling
languages for (product-related) service description. The review leads to the identifi-
cation of further prospects to be accounted for by service description.

Jörg Becker, Martin Matzner, Daniel Beverungen
University of Münster, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, e-mail: firstname.lastname@ercis.uni-muenster.de

Oliver Müller
University of Liechtenstein, Martin Hilti Chair of Business Process Management, Fürst-Franz-
Josef-Strasse, 9490 Vaduz, Liechtenstein, e-mail: oliver.mueller@uni.li

19 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York2

mailto:firstname.lastname@ercis.uni-muenster.de
mailto:oliver.mueller@uni.li

20 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

2.1 The Need for Conceptual Modeling of Services

2.1.1 The Trend Towards Service

Services have had a lasting effect on last decade’s business development. From
an economical perspective, we have been witnessing a transition from a primarily
goods based to a more and more service-based economy in most developed coun-
tries [53]. Today, services are ubiquitous and they account, for example, for more
than 80% of the gross domestic product (GDP) and total employment of the United
States and about 70% of the GDP in Germany [15, 38, 74]. These figures reflect
a development that has been prescribed by Vandermerwe and Rada under the term
“Servitization of Business.” In their understanding “servitization” refers to the in-
creasing offer “of ‘bundles’ of customer-focused combinations of goods, services,
support, self-service, and knowledge” [83, p. 314] — with services dominating the
bundles. As an umbrella term the notion of ‘service’ has been coined as “the appli-
cation of specialized competencies, through deeds, processes, and performances for
the benefit of another entity or the entity itself.” [84, p. 2] They coined ‘service’ to
be the new basic unit of exchange in economies [84, 85, 86].

From a managerial perspective, enterprises at the same time struggle to effi-
ciently provide adequate services to their customers. In order to generate superior
business returns and as a result of ever increasing competition, companies face the
need to specialize on their core resources and core competencies. However, at the
same time they need to address complex business needs of their customers. Previous
research [44, 69] has stated that the formation of relational ties and networks with
further suppliers is a viable means for addressing both needs at the same time.

Though the service sector now accounts “for most of the world’s economic ac-
tivity, [. . .] it’s the least-studied part of the economy” [73, p. 71]. Consistent with
this is the observation that still no general consensus of the structure and nature
of services has been reached (cf. [26] and also Chapter 4). In the recent past, re-
searchers from different disciplines have so far investigated the phenomenon from
rather distinct angles, e.g., from an economic, business, or technical perspective [4].
Only recently, an interdisciplinary research effort under the headwords of Service
Science or Service Science Management and Engineering (SSME) has been emerg-
ing.

2.1.2 Beyond Goods and Services: Customer Solutions as Value
Offers

Accordingly, many industries are today experiencing a transition from a goods-
based to a service-based focus: Traditional manufacturing companies strive to pro-
vide physical goods and services as integrated customer solutions [23], which are
delivered in relational processes with customers [82].

2 Product-Service System Approaches 21

Physical goods and services are no longer perceived to be dichotomous [25].
Instead they are rather seen as complementary vehicles to offer value propositions
to customers [84, 85]. This trend is especially recognized in the German Mechani-
cal Engineering and Electrical Engineering industries. Evaluating results from two
broad empirical studies in both sectors, Stille concludes that turnover related to ser-
vices has doubled in the Electrical Engineering sector from 9.6% (1997) to 18.5%
(2000), while significant gains from 16.8% (1997) to 22.5% (2000) could be iden-
tified in the Mechanical Engineering Sector [76]. Mercer Management Consulting
points out, that half of the growth in German Mechanical Engineering in the years
1998–2003 can be allocated to exploiting the potential of the service business. Like-
wise, the margin realized in the service business (10%) was estimated to be sig-
nificantly higher than the margin realized in the physical goods business (2.3%).
Furthermore, Mercer states that margins gained from services could be even higher
when looking at some leading edge services only, which constantly catch margins
of up to 18% [50]. Additional empirical research shows, that companies attribute a
high (38.1%) or very high (59.8%) impact on their revenues to their service busi-
ness. Services are also seen as a good means for differentiation from competitors
as well as for customer retention [23]. Consistent with these findings, 94.9% of the
examined companies plan to expand their business by offering customer solutions
[77].

Unless the matter still is heavily debated, the following characteristics have been
proposed for customer solutions:

• Customer solutions comprise separately marketable tangible goods and intangi-
ble service which are purposefully combined to solve a problem for a customer
or for a group of customers [23].

• Physical goods components and service components might (but need not) be sub-
stitutable with other components without changing the solution provided [23].

• For customers, outcomes of the solution can have tangible and intangible effects.
One goal of providing customer solutions is to create an outcome for customers
and/or providers which is superior to the simple sum of outcomes of the compo-
nents [23]. In the end, the value of a solution is co-created by the supplier and the
customer by integrating resources with other resources; the value realized from
this relational process is, therefore, determined by each of the parties [86].

• Customer solutions are value propositions offered by the supplier to a customer.
If a value proposition is accepted by a customer, customer solutions are co-
created in service processes that are closely integrated with the customer’s busi-
ness processes and, therefore, require customer input (such as information, ob-
jects, personnel or other resources) [85].

Services which are often offered as part of customer solutions may correspond to
different stages of the traditional product lifecycle, such as a start-up, operation or
disposal stage (cf. Fig. 2.1). Services in the start-up stage may constitute pre-sales
services such as engineering, consulting or technical assembly. During the operation
stage, service activities such as preventive maintenance, corrective maintenance or
spare parts logistics are mainly conducted to uphold the operability of the physical

22 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

Consulting Services
Engineering Services
Financing Services
Configuration Services
Assembly Services
[other]

Preventive Maintenance
Services
Corrective Maintenance
Services
Spare Part Services
Personnel Services
[other]

Replacement Services
Recycling Services
Reuse Services
[other]

Start-up
 stage

Operation
stage

Disposal
stage

Fig. 2.1: Exemplary services, arranged with respect to a traditional lifecycle of phys-
ical goods.

good. Referring to the disposal stage, any of the physical goods components might
be replaced, refurbished and reused, or recycled.

In practice, the most widely offered services in industrial settings are spare part
logistics, preventive maintenance/fault repair, consulting, and assembly. It is strik-
ing, that most of these services are in fact not new and have a strong physical goods
focus. In contrast to this, highly innovative services such as capacity management in
value networks, performance contracting business models, or on-demand personnel
provision are as yet seldom offered.

Some topologies have been proposed to grasp the characteristics of integrated
physical goods and services, most notably by Engelhardt, Kleinaltenkamp and
Reckenfelderbäumer [25] (cf. Fig. 2.2). The authors take a marketing dominant per-
spective and systematize outputs for customers in two dimensions, each employing
two parameters: On the one hand, the output perceived by the customer may be
rather immaterial (such as additional knowledge as the result of training to operate
a vertical lath) or rather material (such as a vertical lath, that has been delivered
and assembled). On the other hand, processes involved to deliver customer solu-
tions might have to be tightly integrated into the processes of customers (for ex-
ample processes to design and deliver an engineered-to-order vertical lath) or can
be handled rather autonomously (for example producing spare-parts and inventory
management).

In this topology, customer solutions can be systematized as being co-created in
relational processes of suppliers and customers and can provide tangible as well as
intangible results.

2.1.3 Product-Service Systems

It has been argued, that customer solutions can be designed and delivered by the
cooperation of manufacturing companies with external service providers [59] or

2 Product-Service System Approaches 23

Fig. 2.2: Customer solutions as sales objects (cf. [25]).

by manufacturing companies themselves. As the integration of customers is a con-
stitutive characteristic of service processes, customers are to be acknowledged as
co-creators of value that provide a variety of inputs [63]. Providers may not offer
value but only value proposition, while the creation of value is performed coopera-
tively with customers [85]. During this cooperation, value propositions are applied
to generate value for customers (i.e., the customer solution). Customers might be
consumers (B2C market), other companies (B2B market) or the public sector.

Drawing from existing definitions of Service Systems [46], we use the term
Product-Service System (PSS) [5, 52, 79] as a conceptual framework for the co-
operative design and delivery of customer solutions (cf. Fig. 2.3). Information flows
to integrate business processes to design and deliver customer solutions (represented
by arrows in Fig. 2.3) are of special interest to foster an efficient and effective design
of the cooperation process.

Here, service description is a means to facilitate the integration between the sev-
eral providers of a customer solution as well as to integrate the customer as co-

24 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

Fig. 2.3: Cooperative design, proposition and delivery of customer solutions in
Product-Service Systems (PSS) (see also [5]).

creator of value into processes. Further, a purposeful digital representation of a ser-
vice might allow providers for exploiting new sales channels (e.g., digital service
marketplaces), and might even lead to creating and providing entirely new offers
that arise from dynamically integrating value offers. Customers can be provided
with enhanced functionalities in searching and finding services and composing pur-
poseful solutions.

2.1.4 Analysis of Conceptual Modeling Approaches for Services

This work is an effort to explore the status-quo and prospects for further research
of service description approaches using PSS as an example. The remainder of the
chapter is organized as follows:

In the consecutive section, concepts that need to be represented in conceptual
models of services from a business perspective on customer solutions are identified
from four sub-disciplines of service science. These perspectives are ENGINEERING,
SUPPLY CHAIN MANAGEMENT, SERVICE MARKETING, and ENVIRONMENTAL
RESEARCH. We therefore review the particular needs and contributions. The iden-
tified key concepts are combined in an “evaluation sheet.”

The evaluation sheet is applied in the subsequent section to discuss the current
state of conceptual modeling approaches for service description in the context of

2 Product-Service System Approaches 25

PSS. The analysis leads to the identification of further prospects for using concep-
tual models to describe services. The conclusion and outlook section summarizes
the results and postulates directions for further research.

2.2 The Interdisciplinary Study of PSS Conceptual Modeling:

Extracting Concepts

2.2.1 Conceptual Modeling and Languages

In the field of Information Systems (IS) Research, conceptual models are often used
to describe, abstract from, emphasize and explain information concepts. On the one
hand, conceptual models are designed with respect to unambiguously defined (i.e.,
specified by means of a meta-model) modeling languages. On the other hand, they
should convey a degree of intuitive understanding for their users. Well-designed
conceptual models enable members of an interdisciplinary project team to commu-
nicate with each other more effectively, regarding concepts such as the structural
organization of a company or its business processes [19, 89].

Conceptual modeling has been argued to hold great business potential, for in-
stance to grasp and redesign business processes in the field of business process
modeling. Conceptual models used for the development of information systems may
explicitly aim at addressing targeted users, senior executives, application designers,
and programmers in software development processes. Thus, conceptual models can
simultaneously address management issues as well as aid software and business en-
gineering projects on an operational level.

Generally, a modeling language comprises a conceptual aspect and a represen-
tational aspect [35]. The conceptual language aspect (ortho-language) defines the
meaning of the modeling constructs and relationships among them and constitutes
the expressiveness of conceptual models designed with this modeling language. The
representational aspect (notation) assigns representation formalisms to the specified
constructs to make them easier to grasp and use for stakeholders by reducing the
cognitive load imposed on human interpreters. Modeling languages determine the
rules according to which conceptual models (or even reference models) can be de-
signed. Modeling languages are usually formally described by meta-models, which
represent the language concepts and their (mostly graphical) representation and can
also enable advanced model operations such as specifying a dynamic semantics of
models [34].

Using well-established modeling languages can accelerate the process of concep-
tual modeling, since modelers and users may already be familiar with the modeling
language’s constructs (think of modeling languages such as UML) and therefore
using models might facilitate more effective communication processes. The appli-
cation of well-established modeling languages may guide the modeling process and
thus decreases the risk of wrong methodological decisions. Therefore, in this chap-

26 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

ter we choose the support of current modeling languages for generating conceptual
models in a PSS context as the focus of our exploration.

Conceptual models can be used to support designers in dealing with the specific
requirements in a PSS context, such as (see also [7]):

• What are business processes in a PSS context like? How need the front-stage
and back-stage of service systems be integrated with each other to provide cus-
tomer solutions in a consistent and efficient way? How and to what extent might
business processes in PSS be improved?

• Which organizational units are involved in the process of value creation of cus-
tomer solutions? What is their role in the process of value creation and which
components of customer solutions do they provide?

• What is the overall productivity or efficiency of a service process? Which key
performance indicators should be selected to assess the performance of a service
process? Against which other processes shall a service process be benchmarked
in order to reason about its performance?

• How is a customer solution or an entire portfolio of customer solutions struc-
tured? Which components do these offerings comprise? What resources will be
necessary to create the customer solutions? What costs will be associated with
providing the customer solutions along their entire lifecycle, even if this lifecycle
spans several years or even decades?

• How might individual value propositions for customers be derived from the port-
folio by combining previously defined physical goods and service modules into
customer solutions (i.e., bundling)? Which configuration rules do exist and how
are they specified?

• How much money is a customer willing to pay for his or her configured so-
lution? What preferences, needs, wants, and demands does a customer have?
Which solutions shall providers offer to a customer from an economic point of
view? Which solutions shall not be offered to a customer, because their creation
is undesirable (e.g., non-profitable for the provider)?

• How much negative impact do alternative customer solutions impose on the envi-
ronment? Which customer solution should be selected to minimize the ecological
footprint of the value creation process?

2.2.2 Extracting Concepts from PSS Research Disciplines

The design and delivery of customer solutions is currently addressed by research in
several academic disciplines [4, 86], each of which imposes its own point of view
on the subject. We now provide a brief introduction of the main issues emphasized
by four specific disciplines and deduce criteria as requirements to be addressed by
modeling languages in a PSS context. It should be noted that these disciplines nev-
ertheless also overlap to some extent.

ENGINEERING disciplines, such as Mechanical Engineering or Electrical En-
gineering, traditionally focus on engineering, constructing, and operating physical

2 Product-Service System Approaches 27

goods. In this discipline, it is often argued that a shift towards a new service econ-
omy is taking place, since manufacturing companies have strived to professional-
ize their service business in the recent years. To account for this shift, engineering
disciplines strive to apply the common techniques of product development to the
development of services also. In this respect, they deal services as units of outputs
that have other characteristics than physical goods have. This point of view has been
criticized as being rooted in a Goods-Dominant (G-D) logic mindset that is based
on the assumption that value is created in the form of units of output rather than
focusing on the relational creation of value that is favored by the Service-Dominant
logic view [86].

Modeling languages for specifying physical goods and production processes
have long been established in research and practice. The representation of bills of
materials is one common and widespread manifestation. A bill of materials repre-
sents the model of the physical good and may break down its physical structure into
components, parts or even raw materials. Each component or part is created in a
definable manufacturing process, whose steps can be represented by work plans and
other process models.

Creating physical goods according to formalized specifications has thus long
been the focus of engineering disciplines, which has led to a considerable degree
of standardization concerning ways to formally describe manufacturing processes.
STEP (STandard for the Exchange of Product model data, ISO 10303-41: Funda-
ments of Product Description and Support; ISO 10303-42: Geometric and Topo-
logical Representation; ISO 10303-46: Visual Presentation) for example has gained
particular importance in the product engineering domain [2, 57].

Additionally, a ‘Service Engineering’ research movement has emerged in Ger-
many [29] in which engineering disciplines strive to apply engineering methods to
the design of business services [14, 67].

Drawing from modeling bills of materials in the engineering disciplines, the ser-
vice engineering discipline attempts to decompose services into sub-modules. These
components can then be described by process models which closely resemble the
work plans used in manufacturing. Fig. 2.4 depicts a bill of materials of a physical
product (left) as well as a bill of materials of a service (right). The structural analogy
of both models is striking since they both display the structure of sales objects that
can be sold to customers by utilizing different hierarchical levels.

As has been shown, from an engineering point of view, representing the struc-
ture of physical goods (product engineering) and services (service engineering) and
their components (customer solutions subdivided into components) is crucial. Based
on this specification, work plans comprising activities in production processes, se-
quence planning, and machine capacity can be designed. Work plans are one com-
mon feature of current ERP systems. Since we will deal with processes and work
plans from a Supply Chain Management (SCM) perspective in more detail, we iden-
tify three characteristics control flow, capacity, and activities arising from the engi-
neering perspective.

Choosing a mass-customization approach as the underlying business strategy of
the firm may enable companies to exploit economies of substitution by reusing

28 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

Fig. 2.4: Comparing a bill of materials for a physical good with a bill of materials
for a service (cf. [42, 64]).

modules (reuse of the components as modules) [30]. Benefits to be gained from
modularization include re-using existing knowledge associated with physical good
and service modules, reducing performance slippage when incorporating additional
modules into the bundle, reducing incorporation costs for suppliers and customers
and, perhaps most importantly, making customer solutions modularly upgradeable
to cope with changing customer demand (substitution of modules) [3, 30]. A pre-
requisite to assemble customer solutions from modules is to describe them in tax-
onomies (i.e., with is-part-of relationships) of modules as well as establishing non-
hierarchical relationships (i.e., configuration rules) between modules. These might
be inclusive (configuration rules to specify inclusion (may)) or exclusive (configu-
ration rules to specify exclusion (must not)).

Components might be described by a variety of attributes (attributes of com-
ponents), a particularly important one of which is information about the longevity
of physical good or service modules (longevity). With respect to these attributes,
services such as consulting and maintenance might differ significantly due to the
size, configuration and longevity of a physical good or its components. To provide
information in sufficient detail, product models have to account for a variety of life-
cycle phases of the traditional product lifecycle, ranging from the start-up stage to
disposal. Quality assurance is especially challenging for service processes, because
inspections at the end of the service creation process can only occur after deliv-
ery to customers. Therefore, quality standards are important to be followed during
any production or service process (quality standards). The quality of service as per-
ceived by customers might be explained by a gap-model, as the deviation between
expected and perceived service quality [54].

2 Product-Service System Approaches 29

The discipline of SUPPLY CHAIN MANAGEMENT as an integrative discipline
drawing from business, engineering, and computer science / IS points-of-view [60],
emphasizes the need for managing business processes based on information mod-
eling. The focus of study here is the actual business process that is carried out to
deliver the customer solution (G-D logic point of view), or the outline how the re-
lational process of value creation between suppliers and customers (S-D logic point
of view) is or needs to be performed.

In order to document and improve the effectiveness and efficiency of the business
processes in PSS, the information flows that are used to cooperatively create value
are analyzed and designed. This analysis is often focused on the touch points in
a service system, where value is co-created between different actors in a service
system. After analyzing the interacting at these points, business processes might be
redesigned and new IT artifacts might be designed to increase the overall quality or
efficiency of the cooperation.

In addition, setting up service processes might be aided by drawing from past
successes in disciplines such as Supply Chain Management, Materials Requirement
Planning (MRP) and Enterprise Resource Planning (ERP) [21].

The discipline of Operations Management (OM) emphasizes the need for multi-
disciplinary cooperation across several functional areas, such as Human Resources,
Marketing or Accounting, to maximize the efficiency in providing customer solu-
tions for customers. In OM, steps from customer analysis to product/service engi-
neering, delivery, and disposal are not viewed in detail, but rather seen as one output
of the cooperation [32].

Modeling languages for PSS have to account for these characteristics. Business
processes necessary to design and deliver customer solutions include the activities
to be carried out in the process (activities), the order in which they have to be car-
ried out (control flow), materials to be procured and transported (flow of materi-
als), information to be utilized (flow of information), and money for physical goods
bought or sold to customers (cash flow). For services, the most important aspect
to model is the work steps of the corresponding service process [65]. It has been
stated, that manufacturing processes and service processes differ significantly and
managerially from each other [63]. Therefore, a suitable modeling language for PSS
must not model service processes in the same way as manufacturing processes, but
should take distinctive characteristics of service processes such as customer inte-
gration into consideration. Because resources and inputs provided by customers are
individual in each service process, modeling languages must be able to represent
various customer inputs and various sequences of service processes (resources to be
introduced by customers). Also production processes for different physical goods or
their variants might be different and affect the control flow in manufacturing.

As each process uses or consumes (operand) resources in order to be carried out,
process cycle times are important attributes for managing different types of man-
ufacturing and service processes (process cycle time). These resources need to be
reserved in order to be utilized by the process. This process can be carried out by
applying techniques proposed by the discipline of production planning and con-
trol. Manufacturing as well as service processes might be subject to failure. Con-

30 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

sequently, the failure rate should be estimated and considered for planning and
scheduling the resource allocation for processes (failure rate).

Services processes per se are intangible, but might involve a variety of operant
and operand resources during their execution. Operant resources (such as person-
nel, knowledge, business processes, culture, business relationships) can be seen as
the fundamental source of competitive advantage [45, 85]. Operand resources are
the resources acted upon when conducting service processes, such as machinery,
components, parts, materials and other objects (consumption of operand resources
(economic point of view)).

In the light of services being non-storable, suppliers have to make sure they have
sufficient resources at their disposal to carry out the service process when they are
requested at the ‘moment of truth.’ Yet on the other hand, they may want to minimize
the time their resources remain idle, waiting for customer input. This optimization
problem motivates a resource planning for service processes, as has been applied
in manufacturing processes for years. Even if techniques such as yield management
and queuing strategies have been successfully applied to manage the critical re-
sources in service processes, a resource planning for services is still argued to lag
behind resource planning in manufacturing [21].

As resources for service processes are perishable, conceptual models for business
services must be able to represent resources and their capacity. Resources should
be displayed in process models, such that for each function to be carried out the
resources to be consumed are depicted and scheduled. During the service process,
some organizational units and IT systems and applications are likely to be involved.

Because PSS might comprise different actors, such as manufacturers, service
providers, and customers (as stated in Section 2.1), it is important to carry out busi-
ness processes smoothly even across business units and organizations. Integrating
information and processes found in the front-end and back-end of service systems
has already been identified to be a considerable challenge [58, 80]. For example,
to offer and deliver a managed truck fleet as a value proposition for customers, a
truck manufacturer and a consulting agency have to synchronize their businesses
by exchanging documents such as order and bidding documents, schedule dates, or
product master data. Therefore, business processes in PSS have to be able to dis-
play, which sub-processes must be carried out by manufacturers, service providers,
or customers and which activities are to be made visible to others stakeholders (see
also the consecutive section).

Due to differing needs of customers and due to different resources and inputs
to be introduced into the service process by customers, service processes might be
carried out differently each time. Standardizing services can help to provide them
more consistently across these instances.

Main points of interest from a SERVICE MARKETING PERSPECTIVE on cus-
tomer solutions (notably presented by [71][84]; as well as a Journal of the Academy
of Marketing Science special issue in 2008) comprise a relational view on how value
is created [84, 85], determining adequate prices and business models to successfully
market these value propositions [78], and integrating the customer into service pro-
cesses as a co-creator of value [55, 71, 70].

2 Product-Service System Approaches 31

The emerging research disciplines of Service Science and Service Science, Man-
agement and Engineering (SSME) respectively, focus on the design and delivery
of services in Service Systems, comprising providers (or even value networks of
providers) as well as customers as co-creators of value. This point of view is
based on the philosophical foundation of the Service-Dominant logic (of Marketing)
[86, 84]. The S-D logic view posits an alternative view on the creation of value that
is based on the application of operant resources (i.e., knowledge and skills) for the
benefit of another entity. Consequently, all value is created in relational processes
by combining operant resources with each other. Value is assumed to be determined
by the beneficiary, while a supplier cannot offer value but only value propositions.
Physical goods that are exchanged between suppliers and customers are perceived
to be vehicles for the application of operant resources. Therefore, all economies
are perceived to be service economies, whereas the emergence of a new service
economy is denied. In essence, S-D logic moves the understanding of how value is
created from a focus on what is exchanged to a focus on relational value creation
between suppliers and customers. Since Service Science is emerging as in interdis-
ciplinary research discipline, it seems to go beyond the traditional boundaries of
service marketing. However, we will still focus on the ‘inner core’ of service mar-
keting here in order to derive criteria on the co-creation of value and the marketing
on services as ‘offerings’ that can be advertised in the marketplace.

From a “traditional” service marketing perspective, a modeling language for ser-
vices must take distinctive characteristics of services into account. The distinctive
feature of service processes is the integration of customers as co-creators of value
into service processes (resources to be introduced by customers). Therefore, it is
crucial to account for the line of visibility and line of interaction towards customers
[70]. Sampson and Froehle [63] emphasize, that other often cited characteristics
of services (however critized by [85]) including perishability, simultaneity, intan-
gibility, heterogeneity [27] are caused by the integration of the customer into the
service process. Additionally, services cannot be produced in advance and thus are
non-storable and not easily patentable. In addition to the lines usually postulated by
service marketing, relationships and lines towards stakeholders can determine the
division of labor in PSS, as processes might be outsourced to external manufacturers
or service providers.

Moreover, it is difficult for customers to assess the value of a service in advance
of the service process, which makes marketing and pricing services especially chal-
lenging. Therefore, offering value propositions for customers can be supported by
adequate modeling languages. This might be achieved by providing constructs to
describe, and individually configure and price (attributes of components) customer
solutions [6]. The combination of physical objects and services is a crucial factor
to be considered here. For instance, characteristics of the physical good influence
which services can be offered concurrently. This means that a physical good is often
the platform of which services are offered to a customer. An example would be a
smart phone (i.e., a physical good) on which various services, ranging from music
downloads to location-based services, can be offered. On the other hand, the ser-
vices offered to a customer can also determine the properties of a physical good.

32 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

As an example, a complex apparatus might be integrated with value-added services
so tightly that the services contained in the bundle determine the structure of the
physical good. For instance, the general outline of a machine might be determined
by the underlying business model that is used to market the solution (e.g., function-
oriented as opposed to offered as-a-service).

The marketing lifecycle of customer solutions and its components is important
to consider, because customers often take services which are in the saturation phase
(such as assembly or maintenance services) for granted and might be unwilling to
pay for them. In contrast, rather innovative services (such as layout planning or
resource optimization services) have only recently been introduced and are more
likely to be paid for by customers (cash flow). Service level agreements (SLAs)
might be offered to define the quality level of physical goods and services more
consistently and convince customers that the value propositions offered to them will
lead to the creation of high-quality solutions that will likely be beneficial for them.
Dispatching qualified personnel (personnel allocation, qualification of personnel),
promising low failure rates and short process cycle times can be some of the ele-
ments dealt with in SLAs.

Apart from these disciplines, customer solutions from an ENVIRONMENTAL RE-
SEARCH standpoint are seen as a means to create customer solutions with less envi-
ronmental impact [51, 62, 81]. Customer solutions, if offered in performance con-
tracting business models by specialized providers, might allow for resources to be
used more efficiently due to exploiting economies of scale. Therefore, value for
customers can be created in an environmentally ‘sustainable’ way. Authors argu-
ing from this point-of-view tend to explicitly take environmental aspects into their
definitions of customer solutions and PSS (cf. the discussion in [5]).

Modeling languages for PSS should address some basic ideas that have sig-
nificance from an ecological point of view. Most importantly, the consumption of
operand resources (ecological point of view) during production and service pro-
cesses should be taken into account, because it may entail some negative environ-
mental impact, for example due to emissions. At the end of its lifecycle (longevity),
a physical good might be refurbished or recycled. In both cases, information about
the product structure and its components is necessary (customer solutions subdi-
vided into components). If modules are to be refurbished, a substitution of modules
takes place. If modules are recycled, their material might be reused to build other
physical goods (flow of materials, attributes of components).

A division of customer solutions into sub-components and raw materials in con-
nection with adequate attributes can help to quantify this impact, while a modu-
lar structure with reusable components can help to spare resources due to exploit-
ing substitution effects and economies of scale. Legal constraints (such as WEEE:
Waste Electrical and Electronic Equipment; European Union 2003) might be im-
portant to address from an ecological standpoint, since compliance with regulations
may be a binding requirement.

Table 2.1 summarizes the modeling requirements for customer solutions derived
from the four perspectives. The origin of each criterion is displayed, taking into
account that several criteria stem from more than one discipline.

2 Product-Service System Approaches 33

Table 2.1: Modeling requirements of customer solutions.

34 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

2.3 A Review of the Status-quo of PSS Conceptual Modeling and

Perspectives to Service Description

2.3.1 Identifying Relevant Modeling Languages

Several modeling languages might be applied for or are particularly catered to the
description of customer solutions in the context of PSS. In this section we identify
a choice from the multitude of approaches has that been proposed in previous re-
search, which is listed in Table 2.2 From this list, we have selected eight modeling
languages for a more thorough analysis with the help of the previously presented
requirements catalogue (grey-shaded in Table 2.2). For a more detailed overview,
cf. [7]). The selected approaches are discussed below.

Table 2.2: A compilation and selection (shaded) of modeling languages.

Source Modeling Language

Belz [8] Proplan
Bitner et al. [9]; Kingman-Brundage [39];
Fließ [28]); Shostack [72]

Service Blueprinting

Black et al. [10] ITSM-Model
Bley et al. [11] Integrated product and process model
Bossmann [12] CAD
Botta [13]; Steinbach et al. [75] PDD-Approach
Congram, Epelman [16] Structured Analysis and Design Tech-nique

(SADT)
Corsten, Gössinger [17] Framework for integrative Modeling
Dadam et al. [18] EPAT
Dietrich, Kirn [20] EwoMacs
Emmrich [24] Method for systematic development of product-

oriented services
Gu [31] General Product Modeling
Hartel [33] Collaborative Blueprinting
Scheer et al. [65]; Klein [40] ARIS / Model-based Service System Engineering
Klein, Schreiner, Seemann [40] K3-Method
Kunau, Loser, Herrmann [43] SeeMe
Manavazhi [47] Hybrid Modeling Framework
Mason [48]; Pratt [56]; Koonce and Judd [41];
IAI [36]; International Standards Organization
[37]

STEP/EXPRESS-G

Maussang, Zwolinski, Brissaud [49] Sakao’s Service Representation
Rainfurth, Tegtmeyer, Lay [61] Industrial Service Blueprinting
Schmied [66] ProMod
Schnieder [68]; Ahrens et al. [1] GMA 7.21
Shostack [70, 71, 72]) Molecular Model
Winkelmann [87, 88] Coloured Petri Nets for Service Simulation

Molecular Model The Molecular Model approach rests upon the four main “in-
gredients” of the “marketing mix.” The approach assigns to any “market entity”

2 Product-Service System Approaches 35

a distribution strategy, a pricing strategy, advertising / promotion strategy and
a hierarchical product structure. The “market entity” is the key concept of the
approach. It is intended to provide a rough overview on service offerings, partic-
ularly including their composition and internal relationships.

Service Blueprinting Service Blueprinting is a family of related approaches, all of
which focus on exposing the activities a service process comprises of in a chrono-
logical order. Its key analytical instrument is the “line of visibility” that separates
activities. It distinguishes activities that are visible to the customer (onstage ac-
tivities) from those that are not visible to the customer (backstage activities).
Products, decisions and documents can be attached to the activities.

SeeMe SeeMe is also a process-centered modeling method. Apart from the repre-
sentation of service processes it facilitates the assignment of organizational units,
of roles, resources (e.g., documents, software programs, physical objects). Activ-
ities can be combined by connectors. The method particularly stands out by its
support for assigning certain types of vagueness to roles, activities and resources.

Structured Analysis and Design Technique (SADT) SADT is grounded on the con-
cept of Structured Analysis (SA) boxes that are intended to represent hierarchical
relationships between components of a product and the idea of top-down system
design. The ultimate goal of SADT is to provide a one single graphic language
for blueprinting systems. In the 1980s the SADT approach was embedded into
the design of the IDEF0 modeling standard. Today IDEF is part of the KBSI
(Knowledge Based Systems, Inc.). Through the IDEF0 standard SADT benefits
from wide adoption and extensive tool-support.

ARIS / Model-based Service System Engineering The Model-based Service Sys-
tem Engineering approach bases upon the ARIS modeling method. It distin-
guishes a product model, a process model, and a resource model to describe a
service system. It extends the ARIS approach as it allows to model products
from an internal perspective (product tree) as well as from a customer’s perspec-
tive (product bundles). Further it introduces the concept of process module chains
that shall facilitate a timely composition of service processes out of standardized
components.

Colored Petri Nets for Service Simulation The approach is based on the Colored
Petri Nets (CPN) technique. CPN is intended be used to model and simulate
service processes. Activities are represented by transitions. Resources and events
are represented by places. Properties, requirements, competencies, measures, etc.
are represented by complex data types (color sets). By assigning complex expres-
sions to the edges it is possible to estimate if an activity can be executed or which
resources are required to execute it. Outgoing edges can be used to describe the
output of activities in service processes.

Method for systematic development of product-oriented services The method dis-
tinguishes involved objects and activities of the service development process. It
provides a modeling perspective for the (service) products that is based on the
STEP approach. Further it provides reference processes that prescribe the prod-
uct development process. Both are integrated in a procedure model that guides
the integrated product and process development.

36 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

STEP/EXPRESS-G EXPRESS is a data modeling language that allows for the
description of products structures. It is based on the standard for the exchange of
product models (STEP). EXPRESS is standardized as ISO 10303-11. Behavior
cannot be represented. Processes can be annotated as free text elements only. The
specification comprises of 122 expressions and 318 syntax products. EXPRESS-
G is a graphical notation for the EXPRESS method.

As can be inferred from this list, different modeling languages were taken into
account. On the one hand, we identified general-purpose modeling languages that
have been developed independently from any domain of application. Modeling lan-
guages belonging to this category are, for instance, the Event-Driven Process Chains
(EPC) within the ARIS method and the Structured Analysis and Design Technique
(SADT). On the other hand, we also included modeling languages that had been ex-
plicitly designed for modeling aspects in service systems, such as Service Blueprint-
ing, the modeling techniques offered by the Model-Based Service System Engineer-
ing approach, or SeeMe. These domain-specific modeling languages provide mod-
eling constructs that are custom-fit to the properties of services, whereas the general
purpose modeling languages are generic and feature constructs that can be applied
to services, however, on a more general level.

There exists a myriad of further related work, which cannot be reviewed in de-
tail within the scope of this chapter. For example there are further approaches for
standardizing the vocabulary and the processes of tendering service contracts. E.g.,
the Publicly Available Specification 1018 of the German Institute for Standardiza-
tion [22] defines 14 stages of service provision from detecting the need of a service
request to the actual fulfillment of a service contract. For each stage criteria are
provided that can be used to specify a service. Each criterion is described by a def-
inition / description of its content. The attributes are assigned either to the entire
service (the header) or to a single position (position) of the service.

2.3.2 Review of PSS Modeling Languages

The features of each of the selected modeling languages were matched with the pro-
posed modeling requirements of customer solutions. According to this exploration,
the as-is capabilities of the analyzed modeling languages are depicted in Table 2.3.
Results can be used to ascertain which features can already be displayed by current
modeling languages, while other requirements can be shown to remain unaddressed.
Gaps can be seen as potential areas for extensions with features incorporated from
other modeling languages. We continue with a brief review.

Molecular Model / Service Blueprinting

Both approaches focus on a service marketing perspective. Shostack’s Molecular
Model allows only for roughly modeling the components of a value bundle as well

2 Product-Service System Approaches 37

Table 2.3: As-is capabilities of modeling languages.

as related strategies for distribution, price and communication. Processes, resources
and the interaction with stakeholders are not (explicitly) considered. The analyzed
Service Blueprinting approaches allow for a more detailed modeling of the service
processes’ activities. These activities can be assigned to roles. Products and mate-
rials are mainly not in the focus — only Shostack’s approach allows for represent-
ing them as specific objects. Resources and legal constraints are not considered as
well as required qualification of personnel or quality attributes. Shostack’s approach

38 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

further provides attributes for benchmarking and exception handling of processes.
Kleinaltenkamp highlights interaction aspects within the service company. Bitner et
al. focus on the customer integration.

SeeMe

The SeeMe approach is also centered on the process view. It follows a modulariza-
tion strategy that allows bundling activities that can be reused in different service
modules. Physical products (and their structure) can also be represented. A specific
representation of the service (product) is not supported.

SADT

SADT is a ubiquitous modeling approach. Accordingly, SADT models tend to suffer
from complexity. Several models of the same objects would be required, e.g., in
order to represent the resource flow and to facilitate a knowledge management or
physical component perspective.

ARIS / Model-based Service System Engineering

Model-based Service System Engineering is an ARIS approach that is tailored to fit
services. It provides constructs to meet a variety of our requirements. Particularly the
service product description and the representation of the interfaces between products
and services as well as the degree of integration could be addressed more explicitly.

Coloured Petri Nets for Service Simulation (CPN)

This method strives to facilitate the simulation of service processes. Obviously the
method focusses on a process view on service systems thus it does not comprise of
specific concepts for representing static structures. Service products could be inte-
grated into the models as complex data types only. Also resource-based aspect of
the service system can be described by such data types. Dedicated software support
is available that eases reuse of model components. However, modifications and ex-
tensions of the modeling technique, versioning of models, and maintaining model
variants are not supported.

Method for systematic development of product-oriented services

The approach has a manufacturing background. Accordingly it strives to suit en-
gineering disciplines at first. While it emphasized a modular structure of service

2 Product-Service System Approaches 39

products, it disregards the relational processes of service value creation. Also, re-
quired IT systems and data objects are neglected.

STEP / EXPRESS-G

STEP and EXPRESS-G focus on representing static product structures (product def-
inition, product representation, product presentation). However, modeling of pro-
cesses and resources are not supported. Projects for further developing the method
strive for filling that gap.

Although some modeling languages provide constructs for a variety of require-
ments, none of the modeling languages is capable of accounting for all the proposed
modeling requirements. E.g., interfaces between physical goods and services as well
as the configuration and offering of customer solutions are seldom addressed. Thus,
in conceptual models derived by using these modeling languages it remains unclear,
how intense the integration of physical goods and services is and how cooperation
scenarios for offering and delivering customer solutions should be designed.

In addition to general deficiencies, the investigated modeling languages are un-
likely to display features originating from other research areas than the one from
which the modeling language emerged. We make the following observations in this
regard:

• Modeling languages not originating from an engineering background usually
lack a representation of a bill-of-materials and other product-related data, such as
lifecycle information (referring to maintenance cycles) on a component level of
detail. This information would nevertheless be helpful to guide service processes,
for example by identifying components and parts that require service activities
along their lifecycle.

• Modeling languages not originating from an SCM background tend not to display
the IT systems as well as business units involved in service and manufacturing
processes. As service processes tend to be labor intensive and require information
to be delivered at the correct moment (i.e., the ‘moment of truth’), providing these
constructs seems to hold significant potential to assign resources and information
on time.

• Modeling languages not stemming from a service marketing point-of-view are
unlikely to address the type and intensity of customer integration, e.g., by dis-
playing the line of interaction and line of visibility towards customers. Acknowl-
edging customers as important members of PSS and as co-creators of value im-
plies accounting for their information and resource input during the service pro-
cesses. Hence, customers should be representable by conceptual models in PSS.

• Environmental aspects remain largely unaddressed by all the evaluated model-
ing languages. We could not identify any formal modeling language specially
designed for this purpose.

40 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

2.4 Discussion, Limitation and Outlook

In this chapter we have introduced the creation and provision of customer solutions
as a chance and challenge to manufacturing companies. PSS here serves as an ex-
ample for the increasing importance of service from an economical as well as a
managerial perspective. Designing and delivering customer solutions is a complex
undertaking since it requires the cooperation of various business units, companies
and customers in PSS. We exhibited that the description of customer-specific solu-
tions is a crucial task in these efforts.

Conceptual modeling techniques can be used to better cope with this challenge.
Conceptual modeling benefits from sound modeling languages, which provide con-
structs for formally representing business-related aspects of a service description.
To analyze the status-quo of modeling languages for PSS, we derived an evaluation
sheet drawing from some viewpoints emphasized by four relevant academic disci-
plines involved in service research. We applied the proposed evaluation sheet on a
selection of eight modeling languages in the area of PSS, originating from these
different research areas. We found that adequate support of conceptual modeling
by modeling languages for PSS is lacking, as the modeling languages under con-
sideration tended not to adopt an interdisciplinary point of view, often restricting
themselves to the research discipline from which they originated. In the light of the
need to comprehensively describe services from several points of view (which is a
prerequisite to identify and invoke services on electronic service marketplaces) this
underlines the need of developing more advanced conceptual modeling support for
the description of services.

The approach taken in this chapter is subject to some limitations. First, the crite-
ria developed for analyzing the expressive power of conceptual modeling languages
cannot be exhaustive, but remain limited to the perspectives we have applied to iden-
tify them. In future work, a more thorough catalogue of evaluation criteria might be
developed that comprises the foci of still other research disciplines involved with
research in Service Science. Second, additional criteria originating from the four
discussed research streams might be added to the list. Another limitation is the se-
lection of the conceptual modeling languages themselves. Although we included
all conceptual modeling languages that we came across into the analysis, still oth-
ers likely exist and need to be analyzed with the proposed criteria to create a more
comprehensive overview.

Therefore, the concepts presented in this chapter are meant to act as a starting
point to develop a more advanced support of service description and with regard to
customer PSS-offered customer solutions in particular. With the results we strive to
propose directions for extensions to be made to existing modeling languages. This
might help to encourage further interdisciplinary research activities carried out in the
currently emerging disciplines of Service Science and Service Science Management
and Engineering (SSME).

2 Product-Service System Approaches 41

References

1. W. F. Ahrens, E. Schnieder, and M. Chouikha. Formale Prozessbeschreibungen - gestern,
heute und morgen. atp - Automatisierungstechnische Praxis, 42(9):24–32, 2000.

2. R. Anderl and D. Trippner. STEP: Standard for the exchange of product model data. Gabler,
Wiesbaden, Germany, 2000.

3. C. Y. Baldwin and K. B. Clark. Managing in an Age of Modularity. Harvard Business Review,
September:84–93, 1997.

4. I. R. Bardhan, H. Demirkan, P. K. Kannan, R. J. Kauffman, and R. Sougstad. An Interdisci-
plinary Perspective on IT Services Management and Service Science. Journal of Management
Information Systems, 26(4):13–64, 2010.

5. J. Becker, D. Beverungen, and R. Knackstedt. The challenge of conceptual modeling for
product-service systems: status-quo and perspectives for reference models and modeling lan-
guages. Information Systems and E-Business Management, 8(1):33–66, 2010.

6. J. Becker, D. Beverungen, R. Knackstedt, and O. Müller. Model-Based Decision Support for
the Customer-Specific Configuration of Value Bundles. Enterprise Modelling and Information
Systems Architectures, 4(1):26–38, 2009.

7. J. Becker, R. Knackstedt, D. Beverungen, S. Bräuer, D. Bruning, D. Christoph, D. Jorch,
F. Joß Bächer, H. Jostmeier, S. Wiethoff, and A. Yeboah. Modellierung der hybriden
Wertschöpfung: Eine Vergleichsstudie zu Modellierungstechniken. University of Münster, Ar-
beitsberichte des Instituts für Wirtschaftinformatik, Nr. 125, Münster, 2009.

8. C. Belz. Fit for Service: Industrie als Dienstleister. Hanser Wirtschaft, St. Gallen, 1997.
9. M. J. Bitner, A. L. Ostrom, and F. N. Morgan. Service blueprinting: A practical technique for

service innovation. California Management Review, 50(3):66–94, 2008.
10. J. Black, C. Draper, T. Lococo, F. Matar, and C. Ward. An integration model for organizing

IT service management. IBM Systems Journal, 46(3):405–422, 2007.
11. H. Bley, M. Bernardi, B. Schmitt, and C. Zenner. Assembly planning of mini and micro prod-

ucts enhanced by an integrated product and process model. In Proceedings of the International
Precision Assembly Seminar (IPAS 2003), pages 31–38, Bad Hofgastein, Austria, 2003.

12. M. Bossmann. Feature-basierte Produkt- und Prozessmodelle in der integrierten Produk-
tentstehung. 2007.

13. C. Botta. Rahmenkonzept zur Entwicklung von Product-Service Systems. Josef Eul Verlag,
Lohmar, Germany, 2007.

14. H.-J. Bullinger. Service Engineering: Ein Rahmenkonzept für die systematische Entwicklung
von Dienstleistungen. In H. .-J. Bullinger and A.-W. Scheer, editors, Service Engineering -
Entwicklung und Gestaltung innovativer Dienstleistung, pages 51–82. Springer, Berlin et al,
Germany, 2nd edition, 2003.

15. Bundeszentrale für politische Bildung (bpb). Datenreport 2008 - Ein Sozialbericht für die
Bundesrepublik Deutschland. Technical report, Bonn, Germany, 2008.

16. C. Congram and M. Epelman. How to describe your service: An invitation to the structured
analysis and design technique. International Journal of Service Industry Management, 6(2):6–
23, 1995.

17. H. Corsten and R. Gössinger. Rahmenkonzept zur integrativen Modellierung von Dienstleis-
tungen. 2003.

18. P. Dadam, K. Kuhn, M. Reichert, T. Beuter, and M. Nathe. ADEPT: Ein integrierender Ansatz
zur Entwicklung flexibler, zuverlässiger kooperierender Assistenzsysteme in klinischen An-
wendungsumgebungen. 1995.

19. N. P. Dalal, M. Kamath, W. J. Kolarik, and E. Sivaraman. Toward an integrated framework for
modeling enterprise processes. Communications of the ACM, 47(3):83–87, Mar. 2004.

20. A. J. Dietrich and S. Kirn. Flexible Wertschöpfungsnetzwerke in der kundenindividuellen
Massenfertigung — Ein serviceorientiertes Modell für die Schuhindustrie. In O. K. Ferstl,
E. J. Sinz, S. Eckert, and T. Isselhorst, editors, Wirtschaftsinformatik 2005, pages 23–42. Hei-
delberg, Germany, 2005.

42 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

21. B. Dietrich. Resource Planning for Business Services. Communications of the ACM, 49(7):62–
64, July 2006.

22. DIN. Publicly Available Specification 1018: Essential structure for the description of services
in the procurement stage. German Standards Institute, Beuth Verlag, Berlin, 2002.

23. DIN. Publicly Available Specification 1094: Product-Service Systems — Value Creation by
Integrating Goods and Services. German Standards Institute, Beuth Verlag, Berlin, 2009.

24. A. Emmrich. Ein Beitrag zur systematischen Entwicklung produktorientierter Dienstleistun-
gen. Dissertation, University of Paderborn, Germany, 2005.

25. W. H. Engelhardt, M. Kleinaltenkamp, and M. Reckenfelderbäumer. Leistungsbündel als
Absatzobjekte. Ein Ansatz zur Überwindung der Dichotomie von Sach- und Dienstleistungen.
Schmalenbachs Zeitschrift fuer betriebswirtschaftliche Forschung, 45(5):395–426, 1993.

26. R. Ferrario, N. Guarino, C. Janiesch, T. Kiemes, D. Oberle, and F. Probst. Towards an On-
tological Foundation of Services Science: The General Service Model. In 10th International
Conference on Wirtschaftsinformatik, Zürich, Switzerland, 2011.

27. J. A. Fitzsimmons and M. J. Fitzsimmons. Service Management — Operations, Strategy, and
Information Technology. McGraw-Hill, Inc, Boston, MA, USA, 3rd edition, 2001.

28. S. Fließ. Die Steuerung von Kundenintegrationsprozessen. Deutscher Universitätsverlag,
Wiesbaden, Germany, 2001.

29. W. Ganz. Germany: Service Engineering. Communications of the ACM, 49(7):79, July 2006.
30. R. Garud and A. Kumaraswamy. Technological and organizational designs for realizing

economies of substitution. In R. Garud, A. Kumaraswamy, and N. Langlois, editors, Man-
aging in the Modular Age, pages 45–77. Blackwell Publishing, Malden, MA, USA, 2003.

31. P. Gu and K. Chan. Product modelling using STEP. Computer-Aided Design, 27(3):163–179,
Mar. 1995.

32. M. Hanna and W. Newman. Integrated Operations Management: A Supply Chain Perspective.
Thomson/South-Western, Florence, KY, USA, 2006.

33. I. Hartel. Aufbau und Betrieb eines kooperativen Dienstleistungsmanagements in der In-
vestitionsgüterindustrie. In R. Kreibich, editor, Erfolg mit Dienstleistungen, pages 47–54.
Schäffer-Pöschel, Stuttgart, Germany, 2004.

34. J. Hausmann, R. Heckel, and S. Sauer. Dynamic Meta Modeling with Time: Specifying the
Semantics of Multimedia Sequence Diagrams. Software and Systems Modeling, 3(3):181–193,
Feb. 2004.

35. R. Holten. Entwicklung einer Modellierungstechnik für Data-Warehouse-Fachkonzepte. In
H. Schmidt, editor, Proceedings of the MobIS-Fachtagung, pages 3–21, Siegen, Germany,
2000.

36. IAI. International Alliance for Interoperability: Data Modeling Using EXPRESS-G for IFC
Development, 2008.

37. International Standards Organization (ISO). Product Data Interchange using STEP (PDES)
Part 11 - The EXPRESS Language Reference Manual, 1995.

38. H. Katzan. Service Science: Concepts, Technology, Management. iUniverse, New York, NY,
USA, 2008.

39. J. Kingman-Brundage, W. George, and D. Bowen. Service Logic: Achieving Service System
Integration. International Journal of Service Industry Management, 6(4):20–39, 1995.

40. L. Klein, P. Schreiner, and C. Seemann. Die Dienstleistungen im Griff — Erfolgreich Gründen
mit System. Fraunhofer IRB Verlag, Stuttgart, Germany, 2003.

41. D. Koonce and R. Judd. A visual modelling language for EXPRESS schema. International
Journal of Computer Integrated Manufacturing, 14(5):457–472, 2001.

42. W. Kraemer and V. Zimmermann. Public Service Engineering — Planung und Realisierung
innovativer Verwaltungsprodukte. In A.-W. Scheer, editor, Rechnungswesen und EDV: Kun-
denorientierung in Industrie, Dienstleistung und Verwaltung, 17. Saarbrücker Arbeitstagung,
pages 555–580. Physica, Heidelberg, Germany, 1996.

43. G. Kunau, K.-U. Loser, and T. Herrmann. Im Spannungsfeld zwischen formalen und
informellen Aspekten: Modellierung von Dienstleistungen mit SeeMe. In T. Herrmann,
U. Kleinbeck, and H. Krcmar, editors, Konzepte für das Service Engineering - Modular-
isierung, Prozessgestaltung und Produktivitätsmanagement. Springer, Heidelberg, Berlin,
Germany, 2005.

2 Product-Service System Approaches 43

44. R. F. Lusch, S. L. Vargo, and M. Tanniru. Service, value networks and learning. Journal of
the Academy of Marketing Science, 38(1):19–31, 2010.

45. S. Madhavaram and S. D. Hunt. The service-dominant logic and a hierarchy of operant re-
sources: developing masterful operant resources and implications for marketing strategy. Jour-
nal of the Academy of Marketing Science, 36(1):67–82, Aug. 2007.

46. P. P. Maglio and J. Spohrer. Fundamentals of Service Science. Journal of the Academy of
Marketing Science, 36(1):18–20, July 2008.

47. M. Manavazhi. Hybrid modelling framework for synthesizing virtual structures. Construction
Management and Economics, 18(4):415–426, June 2000.

48. H. Mason. ISO 10303 - STEP: A key standard for the global market. ISO Bulletin, January:9–
13, 2002.

49. N. Maussang, P. Zwolinski, and D. Brissaud. Design of Product-Service Systems. In 10th
European Roundtable on Sustainable Consumption and Production (ERSCP), 2005.

50. Mercer Management Consulting. Mercer-Analyse — Ungenutzte Chancen im Ser-
vicegeschäft, 2003.

51. O. Mont. Product-service systems: Panacea or myth? Phd thesis, Lund University, 2004.
52. N. Morelli. Designing Product/Service Systems: A Methodological Exploration. Design Is-

sues, 18(3):3–17, 2002.
53. OECD. Enhancing the Performance of the Services Sector. Technical report, June 2005.
54. A. Parasuraman, V. A. Zeithaml, and L. L. Berry. SERVQUAL: A multiple-item scale for

measuring consumer perceptions of service quality. Journal of Retailing, 64(1):12–40, 1988.
55. A. F. Payne, K. Storbacka, and P. Frow. Managing the Co-creation of Value. Journal of the

Academy of Marketing Science, 36(1):83–96, 2008.
56. M. J. Pratt. Introduction to ISO 10303 — the STEP Standard for Product Data Exchange.

Journal of Computer and Information Science and Engineering, 1(1):102–103, 2001.
57. ProSTEP. iViP: Architektur und Aufbau, 2007.
58. J. B. Quinn, J. Baruch, and P. Paquette. Exploiting the manufacturing-services interface. Sloan

Management Review, 29(4):45–56, 1988.
59. J. B. Quinn, T. L. Doorley, and P. C. Paquette. Beyond Products: Service-Based Strategy.

Harvard Business Review, 68(2):58–67, 1990.
60. A. Rai and V. Sambamurthy. Editorial Notes — The Growth of Interest in Services Man-

agement: Opportunities for Information Systems Scholars. Information Systems Research,
17(4):327–331, 2006.

61. C. Rainfurth, S. Tegtmeyer, and G. Lay. Organisation produktbegleitender Dienstleistungen.
In G. Lay and M. Nippa, editors, Management produktbegleitender Dienstleistungen, pages
99–119. Springer, Heidelberg, Germany, 2005.

62. T. Sakao and Y. Shimomura. Service Engineering: A novel engineering discipline for pro-
ducers to increase value combining service and product. Journal of Cleaner Production,
15(2):590–604, 2007.

63. S. E. Sampson and C. M. Froehle. Foundations and implications of a proposed unified services
theory. Production and Operations Management, 15(2):329–343, 2006.

64. A.-W. Scheer. ARIS — Vom Geschäftsprozess zum Anwendungssystem. Springer, Berlin et al.,
Germany, 4th edition, 2002.

65. A.-W. Scheer, O. Grieble, and R. Klein. Modellbasiertes Dienstleistungsmanagement. In H.-J.
Bullinger and A.-W. Scheer, editors, Service Engineering - Entwicklung und Gestaltung inno-
vativer Dienstleistungen, pages 19–52. Springer, Berlin et al., Germany, 2nd edition, 2006.

66. M. Schmied. Themenheft Service Engineering. Bonn, Germany, 2002.
67. K. Schneider, H.-J. Bullinger, and A.-W. Scheer. Service engineering — entwicklung und

gestaltung innovativer dienstleistungen. In H.-J. Bullinger and A.-W. Scheer, editors, Service
Engineering, pages 3–18. Springer Berlin Heidelberg, 2006.

68. E. Schnieder. Modellkonzepte in der Automatisierungstechnik. In G. Engels, A. Oberweis,
and A. Zündorf, editors, Modellierung 2001, pages 7–17. Bonn, Germany, 2001.

69. D. R. Shaw and C. P. Holland. Strategy, networks and systems in the global translation services
market. The Journal of Strategic Information Systems, 19(4):242–256, Dec. 2010.

44 Daniel Beverungen, Martin Matzner, Oliver Müller, and Jörg Becker

70. G. L. Shostack. Breaking Free from Product Marketing. Journal of Marketing, 41(2):73–80,
1977.

71. G. L. Shostack. How to design a service. European Journal of Marketing, 1(16):49–63, 1982.
72. G. L. Shostack. Design services that deliver. Harvard Business Review, 62(1):133–139, 1984.
73. J. Spohrer, P. P. Maglio, J. Bailey, and D. Gruhl. Steps Toward a Science of Service Systems.

Computer, 40(1):71–77, 2007.
74. J. Spohrer and D. Riecken. Service Science. Communications of the ACM, 49(7):31–34, 2006.
75. M. Steinbach, C. Botta, and C. Weber. Integrierte Entwicklung von Product-Service Systems.

Werkstatttechnik online, 95(7/8):546–553, 2005.
76. F. Stille. Product-related Services — Still Growing in Importance. DIW Economic Bulletin,

40(6):195–200, 2003.
77. F. Sturm, A. Bading, and M. Schubert. Investitionsgüterhersteller auf dem Weg zum

Lösungsanbieter — Eine empirische Studie. Fraunhofer IRB Verlag, Stuttgart, Germany, 2007.
78. C. S. Sturts and F. H. Griffis. Pricing Engineering Services. Journal of Management in

Engineering, 21(2):56–62, 2005.
79. A. Tan, T. C. McAloone, and M. M. Andreasen. What Happens to Integrated Product Develop-

ment Models with Product/Service-System Approaches. In Proceedings of the 6th Integrated
Product Development Workshop (IPD 2006), Magdeburg, Germany, 2006.

80. J. Teboul. Service is Front Stage: Positioning Services for Value Advantage. Palgrave Macmil-
lan, Basingstoke, UK, 2006.

81. A. Tukker and U. Tischner. Product-services as a research field: past, present and future.
Reflections from a decade of research. Journal of Cleaner Production, 14(17):1552–1556,
2006.

82. K. R. Tuli, A. K. Kohli, and S. G. Bharadwaj. Rethinking Customer Solutions: From Product
Bundles to Relational Processes. Journal of Marketing, 71(3):1–17, 2007.

83. S. Vandermerwe and J. Rada. Servitization of business. European Management Journal,
6(4):314–324, 1988.

84. S. L. Vargo and R. F. Lusch. Evolving to a New Dominant Logic for Marketing. The Journal
of Marketing, 68(1):1 – 17, 2004.

85. S. L. Vargo and R. F. Lusch. Service-dominant logic: continuing the evolution. Journal of the
Academy of Marketing Science, 36(1):1–10, 2008.

86. S. L. Vargo, R. F. Lusch, and M. Archpru Akaka. Advancing service science with service-
dominant logic — clarifications and conceptual development. In P. Maglio, C. Kieliszewski,
and J. Spohrer, editors, Handbook of Service Science, Service Science: Research and Innova-
tions in the Service Economy, pages 133–156. Springer, Berlin, Heidelberg, New York, 2010.

87. K. Winkelmann. Prospektive Bewertung der kooperativen Erbringung industrieller Dien-
stleistungen im Maschinenbau durch Simulation mit Petri-Netzen. Shaker Verlag, Aachen,
Germany, 2007.

88. K. Winkelmann and H. Luczak. Prospective analysis of cooperative provision of industrial
services using coloured petri nets. In S. Donatelli and P. S. Thiagarajan, editors, Petri Nets and
Other Models of Concurrency - ICATPN 2006, 27th International Conference on Applications
and Theory of Petri Nets and Other Models of Concurrency, Turku, Finland, June 26-30, 2006,
Proceedings, volume 4024 of Lecture Notes in Computer Science, pages 362–380. Springer,
2006.

89. F. Wolff and U. Frank. A Multiperspective Framework for Evaluating Conceptual Models
in Organisatinal Change. In Proceedings of the 15th European Conference on Information
Systems (ECIS 2005), St. Gallen, Switzerland, 2005.

Chapter 3

Service Network Approaches

Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Abstract This chapter discusses several approaches to design, analyze, describe and
compose service networks. We analyze the technical and business-related aspects of
these approaches, their evolution, and the trends they will be likely to follow. We
further suggest how the two major trends driving these approaches (i.e., business
and process orientation) can converge. The chapter concludes with a discussion of
future lines of research in this area.

3.1 Introduction

Value Networks consist of relationships that generate tangible and intangible added
value between individuals. Along the line of service-dominant logic in marketing (as
opposed to traditional product-dominant logic), the notion of service is becoming a
predominant instrument for actors to apply their specialized competencies (such as
knowledge and skills), through deeds, processes, and performances for the benefit
of another actor or the actor itself; hence create value [1]. A well-known example of
an established value network is Microsoft and its elaborated partner ecosystem that
provides various kinds of services around Microsoft products globally.

The Web also brought opportunities to establish short-term value networks with-
out the actors even realizing they interact across boundaries such as time, scale,
and geography. E.g., if you initiate the purchase of a second-hand book at Amazon,
you are actually initiating the formation of a short-term value network that is medi-

Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans
VU University, Department of Computer Science, De Boelelaan 1081 A, 1081 HV Amsterdam,
The Netherlands, e-mail: i.s.razozapata@vu.nl, e-mail: pieterdeleenheer@vu.nl,
e-mail: j.gordijn@vu.nl, e-mail: elly.lammers@vu.nl

Pieter De Leenheer
Collibra nv, Brussels, Belgium

45 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York3

mailto:i.s.razozapata@vu.nl
mailto:pieterdeleenheer@vu.nl
mailto:j.gordijn@vu.nl
mailto:elly.lammers@vu.nl

46 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

ated by Amazon between you (in the role of customer), the virtual bookshop, and a
packaging and delivery partner that serves at your location.

In short, within a value network it is common to observe three types of relation-
ships: 1) Customer to Customer (C2C), customers exchanging valuable outcomes
with each other. 2) Business to Customer (B2C), when service suppliers exchanges
valuable outcomes with the final customers, e.g., you and Microsoft. 3) Business to
Business (B2B), service suppliers exchanging valuable outcomes with each other,
e.g., Microsoft and the packaging and delivery partners [2].

As discussed in Chapter 1, Web services (in the technical sense) should not be
confused with commercial services as found on the real-world market place. Web
(a.k.a. software-based) services specify interfaces and communication protocols,
and by doing so implement a specific computing paradigm. Web services are still
much dominated by manual engineering, and predefined top-down composition.

Commercial services are simply not describable in terms of interface specifica-
tions, as their conception inherits from marketing and social studies. As explained
above, in a value network, services create value. E.g., the composition of an educa-
tional commercial service bundle should seek maximum value creation for all stake-
holders. Students get value from educational services by achieving certain learning
objectives and get evidence (by means of a diploma or certificate) for the acquired
competencies. Educational institutes, in return for their services get value usually in
the form of money.

Functions of a commercial service might be partly supported by Web services
such as, e.g., billing facilities. However, in order for these commercial services to
find each other and automatically bundle into economically sustainable value net-
works, we must model and analyze their valuable outcomes as well. Analogously,
customers should be able to express their needs — i.e., the value they expect from
commercial services — in human-understandable terms. Examples of value aspects
that should be taken into account include pricing, competitive service properties
such as discounts or home delivery, agreements on the extent to which services are
legally dependent or exclusive, and ratings based on user sentiment analysis.

In this chapter we present a survey of approaches addressing issues such as de-
scription, design, analysis, and composition of service networks (SNs). Although
these approaches might have some similarities such as the notion of service or the
use of standardized tools, each approach has different purpose, which influences and
drives the way in which SNs are described. Therefore, in our survey we not only de-
scribe these frameworks but we also analyze how they can provide some insights on
service value network (SVN) composition.

The chapter is organized as follows. Section 3.2 presents the foundations to un-
derstand the concept of SNs as well as the main elements to be considered when
modeling such networks. In Section 3.3 we perform an analysis of several ap-
proaches to design, analyze and compose SNs. Finally, Section 3.4 provides a dis-
cussion.

3 Service Network Approaches 47

3.2 Comparison Framework

3.2.1 Definitions

Value network methods and technologies are inspired by two main foundations:
value chains and value networks that cooperate. In 1985, Porter introduced the no-
tion of value chain, to conceive the combination of value-adding activities within a
firm to provide value to customers [3]. These activities can be classified generally as
either primary or support activities that all businesses must undertake in some form.
The value chain is defined as follows:

Definition 3.1. A Value Chain is a directed sequence of activity relationships that
generates tangible and intangible added value through bilateral static communica-
tion between organizations.

In 2000, Tapscott, introduced the notion of b-web [4]. He explains that the advent
of the Web provides a new platform for business opportunities. He identifies typical
roles stakeholders can play. Depending on how value is being created and the orga-
nizational dynamics of the b-web, he distinguishes five archetypes along all b-webs
can be categorized. Later, in 2006, he introduced the notion of wikinomics, where
he highlights the importance of collaboration/networking [5]. A value network is
defined as [6]:

Definition 3.2. A Value Network is any web of activity relationships that generates
tangible and intangible added value through complex dynamic communication be-
tween two or more individuals, groups, or organizations.

Within the notion of network marketing, Lovelock and Wirtz define good net-
workers as entities who are able to put individuals in touch with others who have
a mutual interest, e.g., providing services to a market segment [1]. In this matter, a
service network can be defined as follows:

Definition 3.3. A Service Network is a team of individuals who establish relation-
ships among homogeneous peers to provide a specific service.

By homogeneity we mean that individuals have a common business objective,
i.e., provide a service solution. Based on ideas from Hamilton [7], Verna Allee [6],
Lovelock and Witz [1], and our point of view, a service value network is defined as
follows:

Definition 3.4. A Service Value Network is a flexible and dynamic web of homoge-
neous enterprises and final customers who reciprocally establish relationships with
other peers for delivering an added-value service to a final customer.

48 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

3.2.2 Service Network Criteria

In order to provide both expressiveness and usability, the description approaches
must cover the following criteria, some of the aspects are proposed by ourselves
whereas others are taken from a previous analysis [8].

1) B2C interaction: refers to whether the approach allows interaction between
final customers and suppliers (or brokers) to co-create SNs. Since customers are not
static participants, they must be provided with some mechanism for expressing not
only service requests but also preferences and/or recommendations. In this sense,
we determine three possible situations: The customer is involved, the customer is
partially involved or the customer is not involved at all during the composition of
the SN.

2) B2B relationships: modeling how suppliers relate to each other is a required
step within SN composition. Such B2B relationships might be based on business
rules, strategic alliances among other requests or constraints. The approaches being
analyzed can model this aspect in different ways such as: inter and intra company
relationships, inter-company relationships, intra-company relationships.

3) Network Definition: at this point we evaluate whether the approach provides a
definition for an SN. It might be a formal or informal definition. A formal definition
provides meaningful descriptions not only about the SN itself but also about the
components and their relationships within the SN. In contrast, an informal definition
only provides descriptions for an SN.

4) Visualization: since internal and external relationships among network partic-
ipants might bring about hidden structures or patterns, providing a visual of the SN
is also relevant [9]. Moreover, this visualization might be also exploited for analysis
and synthesis tasks that lead to innovation based on discovered niches.

5) Orientation: the locus of attention differs from approach to approach. Some
have a process-oriented view, others focus on business-oriented issues. By business
orientation we mean that the approach takes into account economic relationships
rather than work-flow properties. It has been discussed in previous work why busi-
ness modeling is different from process modeling [10]. Briefly, an important goal in
process modeling is to reach a common understanding about how activities should
be carried out (e.g., in which order). On the contrary, business models are centered
around the notion of value, therefore it is relevant to determine who is offering what
of value to whom and what expects of value in return, i.e., economic reciprocity.

6) Tool support: this aspect describes whether the approach, design, analyze or
compose SVNs using standard tools. When applicable, we also specify the tools
being used.

3.2.3 ICT Support

Moreover, we have also identified six levels of ICT maturity on which all the ap-
proaches can be positioned:

3 Service Network Approaches 49

DesignNone Analysis MatchingBundling Composition Dynamic
Composition

E
nt

er
pr

is
e-

ce
nt

ric
:

hi
er

ar
ch

ic
al

 p
ro

ce
ss

-d
riv

en
 o

rg
an

is
at

io
n

N
et

w
or

k-
ce

nt
ric

:
de

ce
nt

ra
lis

ed
 r

el
at

io
ns

hi
p-

dr
iv

en
 o

rg
an

is
at

io
n

ICT support:

Value
Chain

(Porter,
1985)

BMO
(Oster-
walder,
2004)

e3value
(Gordijn,

2002)

e3service
(de

Kinderen,
2009)

Servigu-
ration

(Baida,
2006)

Value
Networks

(Allee,
2002)

REA
(McCarthy,

1982)

GVP
(Zlatev,
2007)

O-WSP
(Omela-
yenko,
2006)

(Razo-
Zapata et

al.,
BUSITAL,

2010)

(Gordijn et
al.,

HICCS,
2011)

(Razo-
Zapata,

BUSITAL
2011)

Wiki-
nomics

(Tapscott,
2008)

Digital
Capital

(Tapscott,
2000)

VBC
(Nakamu
ra, 2006)

(Traverso
, 2004)

Dynami-
CoS (Da

Silva,
2011)

u-
Service
(Lee,
2011)

CPC
(Letia,
2008)

(Kohl-
born,
2010)

(Becker,
2009)

Ontomat
(Agarwal,

2004)

Service
Architectu-
res (Booth,

2004)

METEOR
-S (2005)

SNN
(Bitsaki,
2008)

Fig. 3.1: Evolution of Service Network Approaches. Three dimensions: 1) Eco-
nomic context. 2) ICT maturity. 3) Orientation: solid circles represent business-
oriented approaches whereas dotted circles stand for process-oriented approaches.
Arrows represent influences among approaches.

a) Design. In this level, building SNs is seen as a design task. The network is built
by manually selecting enterprises as well as the services they offer or request.

b) Analysis. ICT tools allow to evaluate properties of a given SN such as profitabil-
ity, misalignments with business models or potential risks.

c) Bundling. At this level ICT provides tools for combining services into bundles,
which are the starting point for generating SNs. The generation of bundles might
take into account the properties offered by services, business rules or pre-defined
patterns. Indeed, this process mainly looks at the supplier perspective, i.e., what
service bundles can be generated to cover more complex customer needs.

50 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

d) Matching. ICT tools provide support such that: 1) customers provide a formal-
ization of their needs, and 2) the customer needs are matched with the offerings
coming from the supplier side, then identifying possible solutions.

e) Composition. It combines the previous steps, bundling and matching. Once a
customer need has been formalized and matched with a service bundle, the next
stage is to solve the bundle’s dependencies. For instance, a bundle providing an
streaming music service to the customer might require a software-protection ser-
vice to work safely. Actually, this is the case in the real-life bundle composed
of Spotify1 and Last.fm2 which depends on the software-protection service pro-
vided by Morpher.3 The customer only interacts with Spotify and Last.fm, never-
theless the complete SN also includes the Morpher service. Fixed templates can
achieved this step by providing a clear description of the services to be found.

f) Dynamic composition. at this level ICT tools perform on-the-fly composition.
Therefore, the SNs are composed from scratch based on a given customer need
and a pool of service suppliers that can be dynamically combined. The challenge
is to achieve self-organization among services so they can network themselves
to cover a customer need. To address this issue approaches usually explore ideas
coming from the Semantic Web area, so services can be described by means of
ontologies linked to real-world service descriptions [11].

Fig. 3.1 shows how SN approaches fit within the economic context (vertical
axes) and the ICT maturity (horizontal). Moreover, Fig. 3.1 also depicts how these
approaches have been influenced by others. For instance, the definition of a Web
service as defined by Booth et al. has influenced approaches such as OntoMat,
METEOR-S among others [12, 13, 14].

1. (vertically) the economic context in which SNs thrive is evolving from an hier-
archical process-driven organization to a decentralized and relationship-driven
organization. This evolution is enabled by the increasing social and knowledge
connectivity on the Web.

2. (horizontally) the support of ICT in the different activities towards finding the
right SNs in these organizations.

3.2.4 Illustrative Example

The next section presents different approaches for either designing, analyzing or
composing SNs. Furthermore, for each approach, an analysis is given, by means
of a table, which explains whether the mentioned approach supports the aspects
previously described in Section 3.2.2. Moreover, when applicable, we also provide
an example of how the given approach depicts an SN.

1 http://www.spotify.com/
2 http://www.last.fm/
3 http://morpher.com/

http://www.spotify.com/
http://www.last.fm/
http://morpher.com/

3 Service Network Approaches 51

Our illustrative modeling example consists of four entities: a buyer, a seller, a
tax office and an ad company. The real-world version of this example could be more
complex, e.g., including a manufacturer, a company to deliver the good among other
entities. However, due to space constrains we only consider these four entities. By
making use of the facilities offered by each approach, we tried to model this example
describing not only the entities but also the interactions among them.

3.3 Approaches for Modeling Service Networks

3.3.1 BMO

Osterwalder proposes the Business Modeling Ontology (BMO) to model inter-
company relationships within business models [15]. Whereas Table 3.1 presents
the aspects covered by BMO, Figure 3.2 depicts its main constructs. BMO pro-
vides four strategic areas: product, customer interfaces, infrastructure management
and financial aspects, which allow to describe the business model of a firm. Briefly,
product refers to the value propositions (products) offered to the market. The prod-
uct area includes one building block: value proposition. The customer interface not
only addresses issues about how the firm deliver the products or services to the cus-
tomers but also how it builds relationships with them. Customer interface includes
three building blocks: customer segments, distribution channel and customer rela-
tionships.

Table 3.1: BMO analysis.

Aspect Analysis
B2C interaction The customer is partially involved
B2B relationships Inter-company relationships
Network Definition None
Visualization Graphical representation
Orientation Business oriented
Tool support Standardized tools: XML-based language. Non-

standardized: Business Model Canvas

Infrastructure management refers to how the company performs infrastructural or
logistical issues, with whom, and as what kind of network enterprise. Infrastructure
management also includes three blocks: key resources, key activities and key part-
ners. Finally, the financial aspects describe the revenue model, i.e., the cost structure
and the business model’s sustainability. Financial aspects includes two blocks: cost
structure and revenue streams.

52 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Fig. 3.2: BMO Example.

3.3.2 REA

Initially proposed as a framework for accounting systems, the Resource-Event-
Agent (REA) approach has evolved into an enterprise ontology that allows modeling
enterprise-wide value chains [16]. Table 3.2 describes the aspects covered by REA,
which relies on three economic concepts: resources, events and agents. Shortly, eco-
nomic agents exchange economic resources by means of economic events. Exam-
ples of economic agents are: customers and suppliers. Examples of economic events
are: exchanges and processes (Figure 3.3 shows four economic processes: Buy, Sell,
Taxing and Advertising). Finally, examples of economic resources are: products and
services, which in Figure 3.3 are depicted as Good, Payment, VAT, Legal Compli-
ance and Audience.

Table 3.2: REA analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships Inter & intra company relationships
Network Definition None
Visualization Graphical representation
Orientation Business oriented
Tool support Standardized tools: ebXML and UMM meta-models

A central concept within the approach are REA activities which are either ex-
changes, trading resources between agents; or processes, consuming input resources
and producing output resources [17, 18]. REA activities are connected by stock
flows, which represent one resource moving from one activity to the next. In this
sense, the REA information flow across multiple companies is as follows:

Process → StockFlow → Exchange → StockFlow → Process (3.1)

3 Service Network Approaches 53

Fig. 3.3: REA Example.

Each event on an REA supply chain knows what other events it is connected to,
via the stock flows, which gives also to agents an organizational structure since they
know which events they control. The expression in (3.1) shows how REA focuses on
supply chain’s issues, i.e., how a directed sequence of activities exchange resources.
Although Figure 3.3 depicts value exchanges, the expression in (3.1) also denotes a
more process-oriented perspective, i.e., sequential steps. Finally, we can also con-
clude that REA models the supply chain taking into account only the supplier point
of view which does not allow interaction with the customer.

3.3.3 Value Network Analysis (VNA)

Verna Allee argues that value networks are like living systems experiencing physi-
cal exchanges and interactions [6]. Table 3.3 presents the aspects covered by VNA.
Allee proposes a graphical representation to describe these phenomena by means of
tangible and intangible deliverables. The main argument for building such represen-
tation is that any value interaction is supported by some mechanism that enables it
to happen, i.e., exchange of deliverables.

Table 3.3: VNA analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships Inter & intra company relationships
Network Definition Formal definition
Visualization Graphical representation
Orientation Business oriented
Tool support No information provided. Although VNA generates

visuals in Microsoft PowerPoint and Visio and reports
in PDF

54 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Fig. 3.4: VNA Example.

According to Verna Allee, three constructs are needed for representing value
exchanges: participants, transactions and deliverables. Participants, graphically rep-
resented as ovals, are described as real people, they are the entities performing roles
in the system. Software programs, databases or any other kind of technology are not
considered as participants since they rely on people’s decisions. In Figure 3.4 the
participants are the buyer, the seller, the tax office and the advertiser.

Transactions4 are depicted by arrows that represent the direction of something
that is happening among participants. Deliverables are the real “things” that are
exchanged from one participant to another, deliverables can be either tangible or
intangible and are represented as labels on top of the arrows (transactions). In Fig-
ure 3.4 transactions dealing with tangible deliverables are depicted by solid arrows,
whereas intangibles by dotted arrows. This basic representation allows to explore
complex behavior inside the value networks such as value creation, cost/risk analy-
sis, patterns of exchange among others [6].

3.3.4 O-WSP

One of the first attempts to achieve automatic service bundling was proposed by
Omelayenko [19]. Table 3.4 describes the main aspects of the O-WSP approach.
The author applies a Semantic Web approach called Open-World Skeletal Planning
(O-WSP). In this way the bundling problem is solved through a planning-based
reasoning which uses a skeleton to guide such process. Even though this approach
solves a bundling problem, the skeletons are process-oriented templates overseeing
value aspects. In this way, the skeletons only describe the services to be performed
following a description very similar to a flow diagram. Among all the problems
presented in his value models, the most important are the inconsistency with the
skeleton and the unnecessary generation of failed plans.

Omelayenko’s skeletons capture a basic representation of an SN [19]. Figure 3.5
shows a basic skeleton in which the activities to be performed are depicted. As can

4 Also referred as activities by Verna Allee.

3 Service Network Approaches 55

Table 3.4: O-WSP analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships Inter & intra company relationships
Network Definition Informal definition
Visualization Graphical representation
Orientation Process oriented
Tool support Standardized tools: RDF [20]. Non-standardized

tools: UPML-S [21] and e3value [22]

Fig. 3.5: O-WSP Example.

be observed, this kind of skeleton only describes what activities must be sequentially
performed missing information about the resources exchanged among participants.

3.3.5 Serviguration

Baida proposes an ontological approach for service bundling called Servigura-
tion [23]. Table 3.5 describes the main aspects of Serviguration. This approach uses
three types of ontologies, the first two represent the demand and supply perspec-
tives respectively, as a third ontology performs the composition process. Therefore,
by matching the demand and supply perspectives, it is possible to generate a set of
service bundles. An additional idea is that interactions among service suppliers can
be modeled through a set of dependencies, which describe concepts such as enhanc-
ing, supporting, exclusion, optionality, bundling among others. In this way, services
can be combined by following those dependencies. Since services can be combined
in different ways, this approach generates alternative bundles for possibly matching
customer needs. Serviguration is actually a guideline for combining services in a
multi-supplier environment. One of the main disadvantages of Serviguration is the
need for defining all those relationships among suppliers, especially when the num-
ber of suppliers grows. In addition, the approach lacks a selection mechanism to
prioritize one bundle when more than one is generated.

56 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Table 3.5: Serviguration analysis.

Aspect Analysis
B2C interaction The customer is partially involved
B2B relationships Inter & intra company relationships
Network Definition Informal definition
Visualization Graphical representation
Orientation Business oriented
Tool support Standardized tools: RDF, e3value ontology

Fig. 3.6: Serviguration Example.

The Serviguration approach provides an idea about how SN participants can in-
teract with each other by means of business dependencies. Besides, it also offers a
visual representation of what can be a basic SN. Figure 3.6 depicts a Serviguration
bundle where three services are described: selling, taxing and advertising. In this
example the customer is supposed to provide a payment in exchange of a good.

3.3.6 The e3family

In this section, we provide a short overview of the e3family of ontologies for build-
ing SVNs. Table 3.6 presents the aspects covered by the e3family.

3.3.6.1 e3value

The central ontology of the e3family ontologies is the e3value ontology [22]. The
e3value ontology is a design time tool for exploring, analyzing and evaluating value
networks. A value network is considered as a number of actors who exchange things
of economic nature with each other. The ontology comes with a graphical editor.
With the same tool, it is possible to assess economic profitability for all actors in-

3 Service Network Approaches 57

volved. The e3value ontology is not aware of the notion of service, although a value
object in e3value can be considered as a service outcome, which is valued by a cus-
tomer.

3.3.6.2 e3strategy

The e3strategy approach is used to analyze the strategic positioning of an actor in
a network of enterprises, cf. [24]. In the network suppliers can be active as well as
customers and competitors. These may exercise a force on the actor under consid-
eration. Questionnaires are used to determine the exercised forces.

3.3.6.3 e3control

For models constructed with e3value we assume a perfectly honest world; that is no
one is cheating and so is behaving honestly. In e3control we relax this constraint of
a perfectly honest world; we assume a sub-ideal world in which actors may misbe-
have. The e3control approach offers constructs and methodologies to find misbehav-
ing actors in a network of enterprises. Additionally, e3control comes with a library
of a patterns to address the misbehaving actors. The patterns include solution on the
e3value level, but also suggest solutions in terms of changed business processes.

3.3.6.4 e3alignment

While exploring an e-business cases multiple perspectives are considered including
the strategy perspective (e3strategy), the value perspective (e3value), the business
process perspective and the IT perspective. The e3alignment approach [25] ensures
that all these perspectives are aligned, or detects misaligned perspectives.

Table 3.6: e3family analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships Inter & intra company relationships
Network Definition Formal definition
Visualization Graphical representation
Orientation Business oriented
Tool support Standardized tools: RDF-S [20]

58 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Fig. 3.7: e3family Example.

3.3.6.5 e3service

The e3value ontology is the foundation of the e3family of ontologies with on top of
it e3service as an ontology to be used for the composition of SNs, and for relating
customer needs to services outcomes as available in the the market. The e3service
ontology comprises two separate ontologies for service modeling during design
time, as well as configuration of services in bundles. Based on needs, a feature
solution graph is constructed mapping needs or derived constructs onto services.
Then a set of bundles that can potentially covered the given need is retrieved. The
serviguration ontology, also known as the OBELIX ontology is used off-line for the
bundling of services [23]. Although the e3service ontology focuses on deriving a
service bundle based on a given need, e3service does not build the complete SVN
to provision the service bundle. The second generation of e3service, which is under
development [26, 27, 28, 29], will integrate serviguration ideas with e3service, such
that the resulting ontology is not only compatible with the e3value ontology but also
dynamically composes a complete SVN. Figure 3.7 depicts an SVN in which four
actors performing different activities can jointly work to provide what the customer
needs.

3.3.7 VBC

Nakamura et.al. present the Value-Based Composition (VBC) approach [30]. Ta-
ble 3.7 summarizes the aspects offered by VBC which is composed of three ele-
ments. 1) value models, 2) a value meta-model, and 3) a service broker. The idea is
to achieve composition by allowing customers to interact with a service broker who
has knowledge of service suppliers that can match customer requests. Besides, the
broker is composed of nine components. The broker has two repositories, one for
value models and one for process models. Both of them store templates, nevertheless

3 Service Network Approaches 59

the authors only give examples of the first one. The value templates are represented
through value models and their Value-based Service Description Language (VSDL)
representation. At this point it is very important to mention that the concept of value
model is different from the one specified by the e3value ontology. They conceive a
value model as a hierarchical structure in which the value of a service is described
at different levels. The broker can traverse this structure to evaluate whether the
service matches the expected values requested by the customer.

Table 3.7: VBC analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships None
Network Definition None
Visualization None
Orientation Business oriented
Tool support Standardized tools: Oracle BPEL [31]

Fig. 3.8: VBC Example

They also present an interesting idea about composing services through a pro-
cess of iteratively matching suppliers’ interfaces. Regarding the rest of the elements
within the broker, the authors do not present any example but just a description
of what is supposed to occur at each step. Moreover, the output of their prototype
shows an example where the performance of the whole process is only specified.
Therefore, it seems to be a work in progress. In this sense, from our point of view,
VBC shows two contributions: 1) the idea of a broker composed of a set of ele-
ments for matching customer requests with services, and 2) the iterative process for
composing services. Although VBC does not provide insights on SN modeling, it
provides an automatic approach for achieving composition [30]. Moreover, VBC
also offers meta-models for describing B2C interaction. Finally, Figure 3.8 depicts
how an SVN might look like under the VBC’s approach.

60 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

3.3.8 GVP

Zlatev proposes the concept of patterns to reuse knowledge and perform a semi-
automatic matching of needs, GVP [32]. Table 3.8 depicts the aspects covered by
GVP which considers a pattern as a recurrent design fragment that solves a problem
in a particular context. In this sense, Zlatev’s work focuses on designing a library of
patterns, these patterns are represented with value, process and goal models. In this
way, before starting the matching, a goal model must be defined. This model rep-
resents what goals must be covered. Later on, parts of this goal model are matched
with the goal-model representation of the patterns, which at the same time are linked
to the value and process model representation.

Table 3.8: GVP analysis.

Aspect Analysis
B2C interaction The customer is partially involved
B2B relationships Inter &. intra company relationships
Network Definition None
Visualization None
Orientation Business oriented
Tool support Non-standardized tools: e3value ontology

Fig. 3.9: GVP Example.

The whole process relies on four steps. Starting with the design of a goal model,
following with the selection of patterns that match with the goal model, continuing
with an evaluation where possible solutions are determined, and finalizing with a
synthesis step. Even though this methodology looks like a good solution, the pro-
cess requires a lot of human intervention, so there is neither automation nor imple-
mentation of this process. In the end, GVP presents a manual approach for service
composition [32]. The main contributions of the approach are: 1) Business orienta-
tion, and 2) the matching of customer desires by means of goal models. Figure 3.9
depicts an GVP model, as can be observed, GVP makes use of e3value models to
represent an SVN. Nevertheless, GVP only describes the actors involved within the
SVN omitting information about the internal activities performed by those actors.

3 Service Network Approaches 61

3.3.9 Becker

Becker et.al. present a modeling language for bundling products and services [33].
Table 3.9 summarizes the aspects covered by Becker’s approach that takes into ac-
count four main requirements (supplier’s point of view, customer’s point of view,
bundle’s functionality & structure and bundle’s economic consequences) which are
addressed by a meta-model that allows to specify three elements: the solution space,
customer-specific instances from the solution space and the economic consequences
for the customer (cf. also Chapter 2).

Table 3.9: Becker analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships Inter & intra company relationships
Network Definition Informal definition
Visualization Textual representation
Orientation Business oriented
Tool support No information provided

Fig. 3.10: Becker Example.

The generation of value bundles is performed based on the the three elements
previously described. In this sense, three steps are required to generate a value bun-
dle. First, modeling value bundle types. It involves modeling possible configura-
tions of generic value bundles. Figure 3.10 illustrates how the bundles, their internal
modules (services or products) and outcomes are defined. Second, customers con-
figure individual value instances. The process requires to indicate preferences about
parameters such as price, availability, delivery time among others. Once the pref-
erences are indicated, the configurator can make recommendations about modules

62 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

(services or products) to generate a bundle or automatically generate the bundle. Fi-
nally, the computation of the economic consequences for each bundle is performed.
Based on this information, the most adequate value bundle can be selected.

3.3.10 Traverso

Traverso and Pistore propose an approach for automatically composing Semantic
Web Services (cf. also Chapters 6 and 7), which can subsequently be transformed
into executable processes [34]. Table 3.10 describes the aspects covered by this
approach which relies on several components: OWL-S process models for each ser-
vice, a composition goal and a Model Based Planner (MBP). The first step requires
translating OWL-S process models into state transition systems (STSs) that describe
the dynamic interactions within services.

Table 3.10: Traverso analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships Inter-company relationships
Network Definition Informal description
Visualization None
Orientation Process oriented
Tool support Standardized tools: OWL-S

In the second step, a composition goal is defined. Afterwards, in the third step the
BMP generates a plan that interacts with services in such a way that the composition
goal is satisfied. Finally, the last step translates the plan to BPEL4WS executable
code. Although, the approach performs an automating generation of plans that are
supposed to deal with a specific goal, it does not say anything about the interac-
tions among customers and service suppliers. Finally, the approach lacks a visual
representation that allows analyzing structural properties of the composite service.

3.3.11 OntoMat-Service

Agarwal et al. present an approach to annotate, compose and execute Semantic Web
Services [13]. The approach provides both a software piece and a four-step frame-
work in which suppliers and users interact to generate execution plans where the
active elements are Web services. Table 3.11 summarizes the aspects provided by
OntoMat.

3 Service Network Approaches 63

Table 3.11: OntoMat-Service analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships Inter & intra company relationships
Network Definition Informal definition
Visualization Graphical representation
Orientation Process oriented
Tool support Standardized tools: WSDL

Fig. 3.11: Onto-Mat Example.

In the first step suppliers advertise their Web services by means of WSDL de-
scriptions. The second step, which is called deep annotation, is performed by a user
and it requires a mapping of rules between the WSDL-based advertised services and
concepts in a client ontology. Later on, the user interconnects the desired Web ser-
vices based on either data-flow or control-flow driven planning techniques. Finally,
a software engine takes the plan and calls the Web services in the proper order. Fig-
ure 3.11 depicts an example of such service flow. As can be observed, the customer
is all the time involved in the composition of this flow. The customer interact with
the GUI form through which s/he has to do the mapping of rules.

Even though this framework allows basic interaction between suppliers and
users, the composition process lies on the user side, which implies that the user
must have a good understanding of what s/he is building up. According to Agar-
wal et al., OntoMat-Service does not aim at completely automating the discovery,
composition and invocation of Web services. Instead, the idea is to support users’
intelligence and guides them to add semantic information such that only few valid
paths remain to be chosen from by the user.

64 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

3.3.12 METEOR-S

Sivashanmugam et al. [14] provide the METEOR-S framework for Web service
composition, which is composed of four components: the Process Builder, the Dis-
covery Infrastructure, XML repositories and the Process Execution Engine. Ta-
ble 3.12 describes the aspects supported by METEOR-S.

Table 3.12: METEOR-S analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships None
Network Definition Informal definition
Visualization None
Orientation Process oriented
Tool support Standardized tools: WSDL

The whole idea relies on designing Semantic Process Templates (SPTs). This is
achieved by the Process Builder. Such templates are collections of activities that
can be linked by using control flow constructs. The Discovery Infrastructure allows
suppliers to advertise their services by means of a registries ontology which main-
tains a categorization of services according to their domains.5 XML repositories are
mainly used for managing (storing, searching, sharing) ontologies, SPTs and WSDL
service interfaces. Afterwards, once a SPT is designed or selected from the repos-
itories, the required services are discovered and added to the data flow according
to the required activities. Later on, an executable process is generated based on the
process template and the WSDL files of the participating services. Finally, the pro-
cess is validated, deployed and it is ready for invocation on the Process Execution
Engine. Since all the idea is around STPs, Sivashanmugam et al. actually aim at a
framework for semantic web process composition in which a skilled designer or a
domain expert creates templates for composite services that might be called later
on.

3.3.13 Service Network Notation (SNN)

Bitsaki et al., [35, 36] present an approach for modeling SNs focusing on rela-
tionships and exchanges of software services among the involved parties. The au-
thors offer a formalism to model SNs by making use of graph theory and visual
modeling constructs. The main concepts are: service offering, service description,
service request, service providing, contract, service providing dependency and par-

5 The authors claim that this categorization helps for finding the right services.

3 Service Network Approaches 65

ticipant internal dependency. Table 3.13 summarizes the aspects that are covered by
SNN. Figure 3.12 depicts an SVN based on SNN constructs. Although the approach
models resource exchanges it focuses on temporal dependencies among services
and does not provide the notion of economic reciprocity which is important for a
business-oriented approach.

Table 3.13: SNN analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships Inter & intra company relationships
Network Definition Formal definition
Visualization Graphical representation
Orientation Process oriented
Tool support Standardized tools: BPMN [37]. Non-standardized

tools: SN4BPM

Fig. 3.12: SNN Example.

The authors also argue that the technology stack for enacting SNs consists of four
elements: SN models, business processes, service compositions and services. Con-
sequently, they propose a modification to the Business Process Management (BPM)
life-cycle. In short, the traditional life-cycle involves six steps: analysis, modeling,
IT refinement, deployment, execution and monitoring. In this sense, the authors pro-
pose to add an extra step called rationalization which deals with the modeling and
analysis of SNNs models. As a matter of fact, the idea is to create a bond between
the SNNs models and the abstract process models.

Once the SN is created, they map such representation to Business Process Mod-
eling Notation (BPMN). The resultant BPMN process specifies the operational de-
tails to be carried on within the SN. Although the authors offer a novel approach

66 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

for modeling SNs, they do not say anything about how such SN can be influenced
by customers. Moreover, the transformation to BPMN is made by hand which con-
straint the possibility for developing an automatic process. Finally, since the design
of SNs is also performed by hand, the approach is not suitable for automatically
composing such networks.

3.3.14 DynamiCoS

Da Silva et al., [38] describe the DynamiCoS framework for runtime discovery,
selection and composition of semantic services. The framework provides a service
registry where services are semantically described by means of ontologies. Briefly a
service is represented as a tuple s=< ID, I,O,P,E,G,NF >, where ID is the service
identifier, I and O stand for input and output respectively, E are the service effects,
G the goals that can be achieved by the service, and NF is the set of non-functional
properties and constraint values. Table 3.14 summarizes the aspects covered by this
approach.

Table 3.14: DynamiCoS analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships None
Network Definition None
Visualization None
Orientation Process oriented
Tool support Standardized tools: OWL

Service developers publish services into the service registry following the s rep-
resentation, an end-user also sends requests following the s representation.6 Once an
end-user defines a service request, DynamiCoS discovers the services that seman-
tically match such request. Later on, a graph-based algorithm compose services to
fulfill the service request. Overall DynamiCoS offers a runtime approach for com-
posing semantic services matching user requests, nevertheless the authors does not
say anything about how a user can select one composite service among the alter-
native options. Moreover, they also assume that a user is completely aware of the
services he requires to satisfy his need, which is not always the case with users
lacking of technical background. Finally, they also claim that whenever a user re-
quest cannot be matched with the services in the service registry, they can request
the user to refine the details of his request, nevertheless along the paper there is no
explanation about how they perform such action.

6 The authors do not mention whether ID is also part of the final request, but we assume that is not
the case.

3 Service Network Approaches 67

3.3.15 u-service

Lee et al., [39], describe a service bundling method which uses service complemen-
tary indexes. The idea is to bundle services according to a similarity measure. The
approach relies on a Case Based Reasoning (CBR) algorithm to determine whether
user satisfaction is met or not. Whenever user satisfaction is below a given thresh-
old, several strategies can be followed. 1) If any individual single service can meet
the requirements, according to the current context, select the individual service with
the highest similarity. If not, 2) given the user context find a bundled service with
the highest similarity and provide it to the user. 3) If there is not an existing bundled
service, then the already provided service must be bundled with other service. The
aspects covered by this approach are described in Table 3.15.

Table 3.15: u-service analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships Inter company relationships
Network Definition None
Visualization None
Orientation Process oriented
Tool support Not mentioned

This bundling requires both services have high complementary indexes. In addi-
tion, once a new bundle is generated, it is added as a new case for the current user
context. To sum up, Lee et al. propose an algorithm for bundling services based on
user context and service complementary indexes.

3.3.16 CPC

In the field of service bundling, Letia et.al. propose the idea of allowing Client-
Provider Collaboration (CPC) for achieving co-creation of service bundles [40]. Ta-
ble 3.16 describes the aspects covered by CPS, which relies on a dialogue between
the client and the supplier, such a dialogue takes the form of a persuasion whose
dynamic object is the current best composition. In order to achieve this persuasion
process, client and supplier use a common ontology for describing needs, where
quality plays an important role. According to the authors, a need has some quality
requirements that can be represented by using two sub-ontologies, one for proper-
ties and one for sacrifices. In this way in order to cover a need, a supplier should
match some quality properties while a client should sacrifice something for getting
the required quality.

68 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Table 3.16: CPC analysis.

Aspect Analysis
B2C interaction The customer is involved
B2B relationships None
Network Definition None
Visualization None
Orientation Business oriented
Tool support None

Therefore under CPC, the best bundle is the one providing a good trade-off be-
tween properties and sacrifices. The overall CPC process works as follows: once the
client submits a request, the supplier generates a possible bundle for covering such
request, giving at the same time a set of arguments supporting the proposed bundle.
Later on, the client provides either pro or counter arguments for the given proposal.
The supplier takes those arguments to either only counter argument or provide other
proposal and then counter argument. In fact there are only two ways for finishing
the dialogue, (1) the client cannot counter argument and then accepts the proposal,
or (2) the supplier cannot counter attack or improve its proposal, therefore there is
no acceptable bundle. Although CPC seems to be a good approach, the idea lacks a
real test case. Therefore, as with VBC, the main contribution is only the idea of al-
lowing client-supplier collaboration for bundling services. In addition, since all the
interaction is between one client and one supplier, it is not clear if the approach will
also work in an environment where more than one supplier compete for covering
client needs.

3.3.17 Kohlborn

Kohlborn et.al. [41] propose a set of relationships for bundling services. The aspects
covered by this approach are described in Table 3.17. In this approach, relationships
are considered as connections among services. In addition, relationships can play
two roles (or even both) as enabler and/or constraint. Furthermore, their approach
distinguishes between two types of relationships, generic and specific. In this sense
a relationship is influenced by two dimensions, the role it can play and its type.
The main idea about defining roles is to allow strategic reasoning when bundling
services.

In this way when a relationship plays the role of enabler, it can help to find ser-
vices targeting the same type of needs. In contrast, as constraint a relationship can
discard among services. On the other hand, the idea behind defining two types of
relationships aims to constrain the solution space. Indeed, the authors claim that the
process of building bundles should move through four stages. The first stage, called
Possible Bundles, includes all the possible combinations among services regarding

3 Service Network Approaches 69

Table 3.17: Kohlborn analysis.

Aspect Analysis
B2C interaction The customer is not involved
B2B relationships Inter & intra company relationships
Network Definition None
Visualization None
Orientation Business oriented
Tool support None

validity or feasibility. The second stage, Generic Bundles, contains the set of bun-
dles that can fulfill the requirements of generic relationships. In the same direction,
the next stage, Specific Bundles, includes the bundles that can cover the require-
ments of specific relationships, such relationships are supposed to take into account
a specific environment. Finally, the last stage, Feasible Bundles, applies domain
specific knowledge to extract the set of bundles that can meet internal and external
requirements. Internal requirements are features as quality, risk assessment, service
level among others. External requirements deal with aspects such as customer de-
mand, market saturation or legislation. Although Kohlborn et.al. present an inter-
esting approach for bundling services, their work lacks from both case studies and
applications, therefore the applicability of such approach remains more theoretical
than practical.

3.4 Discussion

In this chapter we have analyzed approaches to design, analyze or compose SNs.
Even though each approach models SNs for different purposes, they also share some
aspects which are described in Section 3.2.2. Moreover, we have also provide an
illustrative example for each approach to visualize how these approaches model
SNs. However, there were approaches which we could not provide a visualization
of the way SNs are modeled — either because of the lack of tools for modeling
(CPC and Kohlborn) or the complexity to represent the SN (Becker, Traverso and
u-service). Table 3.18 summarizes the aspects covered by each approach. As can be
observed it is only VNA and SNN that provide a formal definition about networks.
VNA provides a definition for value networks while SNN provides a definition for
SNs, however VNA focuses on analyzing value networks and SNN on composition
of SNs (cf. Figure 3.1).

We provide also tables to analyze business and implementation aspects for each
approach (Table 3.19 and Table 3.20). Since half of the approaches consider the
notion of value and economic reciprocity, in Section 3.2.1 we have provided a defi-
nition for SVNs that focuses on these aspects. In many approaches, value aspects of
services are ignored simply because this information is usually implicit or not rep-

70 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Table 3.18: Required Aspects. � fully supported, ≈ partially supported.

B2C B2B Network Visualization Business Tool
interaction relationships Definition Oriented Support

BMO [15] � � � � �
REA [16] � � ≈ �
Allee [6] � � � � ≈
O-WSP [19] � ≈ � �
Serviguration [23] � ≈ � � �
e3family [22] � � ≈ � � �
VBC [30] � ≈ � �
GVP [32] ≈ ≈ ≈ � �
Becker [33] � � � � �
Traverso [34] ≈ ≈ �
OntoMat-Service [13] � � ≈ � �
METEOR-S [14] ≈ �
SNN [35, 36] � � � ≈ �
DynamiCoS [38] � ≈ ≈ ≈ �
u-service [39] � ≈
CPC [40] � �
Kohlborn [41] � �

resentative enough. Yet, both the Social Web and the Semantic Web have liberated
critical amounts of linked data about people, needs, and services that provide an
actionable foundation for a Service Web to emerge from dynamic communication
within and between customer and supplier communities.

Table 3.19: Business aspects.

B2C B2B Business

interaction relationships Oriented

Customer Dialogue Inter-company Intra-company Value Economic
Need Perspective Reciprocity

BMO [15] � � � �
REA [16] � � � �
Allee [6] � � � �
O-WSP [19] � �
Serviguration [23] � � � � �
e3family [22] � � � � � �
VBC [30] � � �
GVP [32] � � � � �
Becker [33] � � � � � �
Traverso [34] �
OntoMat-Service [13] � � � �
METEOR-S [14]
SNN [35, 36] � � �
DynamiCoS [38] �
u-service [39] � �
CPC [40] � � � �
Kohlborn [41] � � � �

Indeed, currently services (such as iPhone apps) are too much pushed by sup-
pliers; anticipating mainstream needs [42]. Yet as more and more customers can
express and discuss their needs freely, niches will rather pull profitable service mar-

3 Service Network Approaches 71

Table 3.20: Implementation aspects.

Network Visualization Tool

Definition Support

Informal Formal Textual Graphical Manual Meta-model Dynamic
Composition Composition Composition

BMO [15] � �
REA [16] � �
Allee [6] � � �
O-WSP [19] � � �
Serviguration [23] � � �
e3family [22] � � �
VBC [30] � �
GVP [32] � �
Becker [33] � �
Traverso [34] � �
OntoMat-Service [13] � � �
METEOR-S [14] �
SNN [35, 36] � � �
DynamiCoS [38] �
u-service [39] �
CPC [40]
Kohlborn [41]

kets to thrive. As an example, consider a community of interest that can use collab-
orative tools to express, discuss, and detail their needs and value expectations, and
finally publish a request for proposals to the self-organizing service market. Service
suppliers can participate in proposing a reasonable offer to these needs, on which
communities in turn can critique. Therefore, a dynamic interaction between cus-
tomers and suppliers is a key aspect as depicted in Section 3.2.2. Nevertheless, as
can be observed in Table 3.20, there are still several approaches that perform a man-
ual or meta-model based composition for SNs, i.e., they follow a given template to
perform the composition. Future efforts must focus also on providing a framework
to allow dynamic composition for SNs.

Approaches such as customer interaction- or user sentiment-analysis can source
now from big enough customer communities in order to give a representable im-
age on how SNs can anticipate and evolve towards new expectations. Although the
Wikinomics bubble in the top-left corner in Figure 3.1 is still isolated from the state
of the art, Tapscott’s work may inspire future SN composition approaches [4, 5].
Along this line, Pedrinaci et al. introduce the notion of Linked Services that tap
from Linked Data initiatives to drive their composition [11]. Maamar et al. describe
how service engineers can capitalize on Web services’ interactions, namely, collab-
oration, substitution, and competition, to build social networks for service discov-
ery [43].

The highly variable customer needs emerging from the social Web stretch the
long tail of the market call; hence call for multi-supplier service bundles that cannot
be offered by single parties. One example specifically for book reselling is Amazon,
that also relies on many third-party book shops globally to have such a wide of-
fering and quick delivery to its customer. This configuration problem can be partly
automated, but will still involve a considerable amount of human-driven dialogue.

72 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

Key here is to model, analyze, and match divergent perspectives on the notion of
value, including needs and services, by customers and suppliers, respectively [29].
In order to express this knowledge unambiguously, communities agree on common
semantics of vocabularies and rules [44]. Though detailed enough to prevent misin-
terpretation, these standards should be as generative as possible to allow mass-scale
adoption. Apart from FOAF and SIOC — which are standards to link social data
— one recent successful example is GoodRelations,7 a global initiative to leverage
SMEs by publishing e-commerce data in a standardized fashion.

3.5 Acknowledgements

The authors would like to thank Dr. Carlos Pedrinaci for his valuable comments and
suggestions. This paper has been partially funded by the NWO/Jacquard project
VALUE-IT no 630.001.205 and the European FP7 project ACSI (no. 257593).

References

1. C. H. Lovelock and J. Wirtz, Services Marketing: People, Technology, Strategy - 7th Edition.
Pearson Higher Education, 2010.

2. R. C. Basole and W. B. Rouse, “Complexity of service value networks: conceptualization and
empirical investigation,” IBM Syst. J., vol. 47, pp. 53–70, January 2008.

3. M. E. Porter, Competitive Advantage - Creating and Sustaining Superior Performance. Free
Press, New York, NY., 1985.

4. D. Tapscott, D. Ticoll, and A. Lowy, Digital Capital - Harnessing the Power of Business Webs.
Nicholas Brealy Publishing, London, UK., 2000.

5. D. Tapscott and A. D. Williams, Wikinomics: How Mass Collaboration Changes Everything.
Portfolio, 2006.

6. V. Allee, “A value network approach for modeling and measuring intangibles,” in Transparent
Enterprise Conference, 2002.

7. J. Hamilton, “Service value networks: Value, performance and strategy for the services indus-
try,” Journal of Systems Science and Systems Engineering, vol. 13(4), pp. 469–489, 2004.

8. J. Gordijn, A. Osterwalder, and Y. Pigneur, “Comparing two business model ontologies for
designing e-business models and value constellations,” in BLED 2005 Proceedings, AIS Elec-
tronic Library (AISeL), 2005. http://aisel.aisnet.org/bled2005/15.

9. R. C. Basole, “Visualization of interfirm relations in a converging mobile ecosystem,” Journal
of Information Technology, vol. 24(2), pp. 144–159, 2009.

10. J. Gordijn, H. Akkermans, and H. v. Vliet, “Business modelling is not process modelling,”
in Proceedings of the Workshops on Conceptual Modeling Approaches for E-Business and
The World Wide Web and Conceptual Modeling: Conceptual Modeling for E-Business and the
Web, ER ’00, (London, UK), pp. 40–51, Springer-Verlag, 2000.

11. C. Pedrinaci and J. Domingue, “Toward the next wave of services: Linked services for the web
of data,” Journal of Universal Computer Science, vol. 16, pp. 1694–1719, jul 2010.

12. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard, “Web
services architecture,” tech. rep., W3C Working Group Note 11, February. W3C Technical
Reports and Publications, http://www.w3.org/TR/ws-arch/., 2004.

7 http://purl.org/goodrelations/

http://aisel.aisnet.org/bled2005/15
http://www.w3.org/TR/ws-arch/
http://purl.org/goodrelations/

3 Service Network Approaches 73

13. S. Agarwal, S. Handschuh, and S. Staab, “Annotation, composition and invocation of semantic
web services,” Journal of Web Semantics, vol. 33, pp. 1–24, 2004.

14. K. Sivashanmugam, J. A. Miller, A. P. Sheth, and K. Verma, “Framework for semantic web
process composition,” Int. J. Electron. Commerce, vol. 9, pp. 71–106, January 2005.

15. A. Osterwalder, The Business Model Ontology - a proposition in a design science approach.
PhD thesis, University of Lausanne, Ecole des Hautes Etudes Commerciales HEC, 2004.

16. W. E. McCarthy, “The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment,” Accounting Review, vol. 57, no. 3, p. 554, 1982.

17. R. Haugen and W. McCarthy, “Rea, a semantic model for internet supply chain collaboration.,”
in Business Objects and Component Design and Implementation Workshop VI: Enterprise
Application Integration, 2000.

18. G. L. Geerts and W. E. McCarthy, “Using object templates from the rea accounting model
to engineer business processes and tasks,” Review of Business Information Systems (RBIS),
vol. 5, no. 4, 2001.

19. B. Omelayenko, Web-Service Configuration on the Semantic Web: Exploring How Semantics
Meets Pragmatics. PhD thesis, Vrije Universiteit Amsterdam, 2005.

20. F. Manola and E. Miller, “RDF Primer.” W3C Recommendation, Feb 2004.
http://www.w3.org/TR/rdf-primer/.

21. B. Omelayenko, M. Crubézy, D. Fensel, R. V. Benjamins, B. J. Wielinga, E. Motta, M. A.
Musen, and Y. Ding, “UPML: The Language and Tool Support for Making the Semantic Web
Alive,” in Spinning the Semantic Web (D. Fensel, J. A. Hendler, H. Lieberman, W. Wahlster,
D. Fensel, J. A. Hendler, H. Lieberman, and W. Wahlster, eds.), pp. 141–170, MIT Press, 2003.

22. J. Gordijn and J. Akkermans, “Value-based requirements engineering: exploring innovative
e-commerce ideas,” Requirements Engineering, vol. 8, pp. 114–134, 2003. 10.1007/s00766-
003-0169-x.

23. Z. Baida, Software-aided service bundling. PhD thesis, Vrije Universiteit Amsterdam, 2006.
24. M. Porter, Competitive Advantage. Free Press, New York, 1985.
25. V. Pijpers, e3alignment: Exploring Inter-Organizational Business-ICT Alignment. PhD thesis,

Vrije Universiteit Amsterdam, 2010.
26. I. S. Razo-Zapata, A. Chmielowiec, J. Gordijn, M. V. Steen, and P. De Leenheer, “Generat-

ing value models using skeletal design techniques,” in 5th international BUSITAL workshop,
2010.

27. J. Gordijn, P. D. Leenheer, and I. S. Razo-Zapata, “Generating service value webs by hier-
archical configuration: A case in intellectual property rights clearing,” in 44th Hawaii Inter-
national International Conference on Systems Science (HICSS-44 2011), Proceedings, 4-7
January 2011, Koloa, Kauai, HI, USA, pp. 1–10, IEEE Computer Society, 2011.

28. I. S. Razo-Zapata, P. De Leenheer, J. Gordijn, and H. Akkermans, “Service value networks for
competency-driven educational services: A case study,” in In Proceedings of the 6th interna-
tional BUSITAL workshop, 2011.

29. I. S. Razo-Zapata, J. Gordijn, P. De Leenheer, and H. Akkermans, “Dynamic cluster-based ser-
vice bundling: A value-oriented framework,” in Commerce and Enterprise Computing (CEC),
IEEE 13th Conference on, 2011.

30. K. Nakamura and M. Aoyama, “Value-based dynamic composition of web services,” Asia-
Pacific Software Engineering Conference, vol. 0, pp. 139–146, 2006.

31. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. K. F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, “Business Process Execution Lan-
guage for Web Services Version 1.1.” Specification, Feb 2005. http://www-128.ibm.
com/developerworks/library/specification/ws-bpel/.

32. Z. Zlatev, Goal-oriented design of value and process models from patterns. PhD thesis, Uni-
versity of Twente, 2007.

33. J. Becker, D. Beverungen, R. Knackstedt, and O. Müller, “Model-based decision support for
the customer-specific configuration of value bundles,” Enterprise Modelling and Information
Systems Architectures, vol. 4, no. 1, pp. 26–38, 2009.

34. P. Traverso and M. Pistore, “Automated composition of semantic web services into executable
processes,” pp. 380–394, Springer-Verlag, 2004.

http://www.w3.org/TR/rdf-primer/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

74 Ivan S. Razo-Zapata, Pieter De Leenheer, Jaap Gordijn, and Hans Akkermans

35. M. Bitsaki, O. Danylevych, W.-J. Heuvel, G. Koutras, F. Leymann, M. Mancioppi, C. Niko-
laou, and M. Papazoglou, “An architecture for managing the lifecycle of business goals for
partners in a service network,” in Proceedings of the 1st European Conference on Towards a
Service-Based Internet, ServiceWave ’08, (Berlin, Heidelberg), pp. 196–207, Springer-Verlag,
2008.

36. O. Danylevych, D. Karastoyanova, and F. Leymann, “Service networks modelling: An soa &
bpm standpoint.,” Journal of Universal Computer Science, pp. 1668–1693, 2010.

37. D. Miers and S. A. White, BPMN Modeling and Reference Guide — Understanding and Using
BPMN. Lighthouse Pt, FL: Future Strategies Inc., Aug 2008.

38. E. G. da Silva, L. F. Pires, and M. van Sinderen, “Towards runtime discovery, selection and
composition of semantic services,” Comput. Commun., vol. 34, pp. 159–168, February 2011.

39. N. Y. Lee and O. Kwon, “A complementary ubiquitous service bundling method using service
complementarity index,” Expert Syst. Appl., vol. 38, pp. 5727–5736, May 2011.

40. I. A. Letia and A. Marginean, “Client provider collaboration for service bundling,” Advances
in Electrical and Computer Engineering, vol. 8, pp. 36–43, 2008.

41. T. Kohlborn, C. Luebeck, A. Korthaus, E. Fielt, M. Rosemann, C. Riedl, and H. Krcmar, “Con-
ceptualizing a bottom-up approach to service bundling,” in 22nd International Conference on
Advanced Information Systems Engineering (CAiSE’10), 2010.

42. H. Chesbrough and J. Spohrer, “A research manifesto for services science,” Commun. ACM,
vol. 49, pp. 35–40, July 2006.

43. Z. Maamar, P. Santos, L. Wives, Y. Badr, N. Faci, and J. de Oliveira, “Using social networks
for web services discovery,” Internet Computing, IEEE, vol. 15, pp. 48 –54, july-aug. 2011.

44. P. De Leenheer, S. Christiaens, and R. Meersman, “Business semantics management: A case
study for competency-centric hrm,” Comput. Ind., vol. 61, pp. 760–775, October 2010.

Chapter 4

Service System Approaches

Conceptual Modeling Approaches for Services Science

Roberta Ferrario, Nicola Guarino, Romano Trampus, Ken Laskey, Alan Hartman,
and G. R. Gangadharan

Abstract Over the last several years, services science has emerged as an effective
means to understand services and the socio-technical systems in which they are de-
ployed. This systemic view requires a genuinely interdisciplinary approach to the
study of services. In this chapter, we review a number of significant approaches to
analyze, understand and model service systems, with an emphasis on showing sim-
ilarities and differences that highlight the many aspects of a rich service ecosystem.
The goal of this chapter is to provide developers with an overall perspective on such
rich service system models, as a basis for choosing those which mostly fit their own
needs.

Roberta Ferrario, Nicola Guarino
ISTC-CNR, Laboratory for Applied Ontology, via alla Cascata 56C, 38123 Trento, Italy,
e-mail: roberta.ferrario@cnr.it, e-mail: nicola.guarino@cnr.it

Romano Trampus
University of Trieste, Piazzale Europa,1 34127 Trieste, Italy, e-mail: trampus@units.it

Ken Laskey
The MITRE Corporation, M/S H305, 7515 Colshire Drive, McLean, VA, 22102-7508, USA,
e-mail: klaskey@mitre.org
The author’s affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or imply MITRE’s concurrence with,

or support for, the positions, opinions or viewpoints expressed by the author.

Alan Hartman
IBM Research Lab, Haifa University Campus, Mount Carmel, Haifa, 31905, Israel,
e-mail: hartman@research.ibm.il

G. R. Gangadharan
IBM India Research, India, e-mail: gangadharan@in.ibm.com

75 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York4

mailto:roberta.ferrario@cnr.it
mailto:nicola.guarino@cnr.it
mailto:trampus@units.it
mailto:klaskey@mitre.org
mailto:hartman@research.ibm.il
mailto:gangadharan@in.ibm.com

76 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

4.1 Introduction

A relevant feature of services is that they are never given in isolation. They are
typically conceived as being composable one with the other, and they always ex-
hibit their effects in larger contexts. So, a new subject of inquiry has emerged in the
recent years: service systems. As often happens, the expression “service system,”
while being relatively popular, is understood in different ways by the various com-
munities. In some cases, it mainly refers to a set of interconnected services, while in
other cases it is used to include other entities besides the service itself, i.e., people,
artifacts, resources, the external environment. In these cases, a service system is a
complex socio-technical system.

The latter view — service systems as complex socio-technical systems — is
strongly advocated by the founders of a new science, services science [10], urg-
ing for the need of a radically interdisciplinary approach to model, understand and
control in a systemic way all the economic and social aspects behind the notion of
service. Of particular value note, the concept of co-creation is the sharing and distri-
bution of labor, investments, expertise, risk, and — most of all — knowledge. In the
last few years, the studies dedicated to this new field have multiplied ([20, 21, 26]),
involving disciplines as diverse as economics, sociology, computer science, philos-
ophy, psychology, and linguistics.

We shall review in this chapter the main service modeling approaches that bor-
row this wide services science perspective. After a recap of Steven Alter’s view of
service systems as work systems, we present Ferrario and Guarino’s foundational
ontology of services (General Service Model — GSM), which among other things
proposes a unifying definition for the general notion of service, and clarifies the
difference between services and service systems. We introduce then three differ-
ent approaches which more or less build on the notion of service system, namely
the TEXO Service Ontology, the OASIS SOA Reference Architecture Foundation
(SOA RAF), and the IBM Service Design Model (SDM), discussing their differ-
ences and similarities among themselves and with respect to the GSM. While there
are other examples in the literature (for example, [9]) that provide a representation
of service systems, the ones discussed in this chapter emphasize an ontological ap-
proach, paying explicit attention to the nature and structure of service systems, the
various entities involved with them, and their mutual relationships.

In order to facilitate understanding and comparisons, we will use a recurring
example throughout the chapter: car washing. This is indeed a very popular example
of service, thoroughly discussed in literature.

4.2 Alter’s Framework: Service Systems as Work Systems

Before defining service systems, Steven Alter considers first possible independent
definitions of services and systems, such as: “Services are acts performed for some-
one else, including providing resources that someone else will use,” and “a system

4 Service System Approaches 77

is a consciously designed combination of things or parts that perform useful work”
[6]. Quickly, however, he realizes there are problems with such definitions, and pro-
poses to go beyond a definition of service, suggesting to focus on the broader notion
of service system: whatever services are,1 they are produced through service sys-
tems. The core of Alter’s position is that service systems are work systems, where
human participants or machines perform work using information, technology, and
other resources to realize products. So the emphasis is more on how services (and
products) are produced and who is involved in the production and consumption pro-
cess, and less on what services are. Customers and customers’ issues are prominent
throughout the analysis of systems.

So, we can conclude that, according to Alter, describing a service amounts to de-
scribing the work system where the service is produced. Indeed, for him every work
system is a service system [5]. Under this assumption, he presents three interleaved
frameworks to describe a service system. The work system framework [3] provides
a system-oriented view of any system that performs work within or across an orga-
nization, described in terms of nine basic conceptual categories. The work system
framework puts customers first in the service process, and aims to indicate a path
to customer satisfaction. The service value chain framework [4] augments the work
system framework by introducing further notions that are associated specifically
with services. The work system life cycle model [20] looks at how work systems
(and therefore service systems) change and evolve over time. The three frameworks
are the basis for a comprehensive business-oriented analysis, intended to be also
used by IT professionals [3].

The work system framework is based on four general categories: processes and
activities, participants, information, and technologies. Five more specific categories
help to fill out the picture: products and services, customers, strategies, environment,
and infrastructure.

The service value chain framework outlines service-related activities and respon-
sibilities of the main parties involved (service provider and service customer) in the
form of service responsibility tables. This framework is based on a number of as-
sumptions, among which we find:

1. understanding services requires recognition of activities and responsibilities;
2. services are often co-produced by service providers and customers;
3. the idea of a service is the same regardless of whether services are directed at

internal or external customers;
4. customer satisfaction is affected by the complete set of activities, responsibili-

ties, and experiences occurring within the service system, as acquiring, receiv-
ing, and benefiting from a particular service;

5. the service is delivered as based on negotiated commitments, under which the
service may be requested and delivered repeatedly;

1 The difference between products and services has not been analyzed by Alter, who adopts a
general, business oriented definition for services provided by Vargo and Lusch [29]: a service is
“the application of specialized competencies (knowledge and skills) through deeds, processes, and
performances for the benefit of another entity or the entity itself.”

78 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

6. the service value is captured by the leftmost and rightmost portions of the ser-
vice value chain, and includes all parties experience in the service exploitation.

In order to model the service value chain framework, Alter introduces service
responsibility tables, a conceptual tool to clarify the service’s scope and context,
focus attention on activities and responsibilities, identify job roles, bring customer
responsibilities into the analysis, and identify service interactions between providers
and customers.2

The work system life cycle model (WSLC) provides a dynamic view of how work
systems change over time. It is an iterative model based on the assumption that a
service system evolves through a combination of planned and unplanned changes.
The framework distinguishes several phases, such as operation and maintenance,
initiation, development, and implementation.

All the three frameworks above can be deployed to support the analysis, design,
and improvement of service systems, helping their participants and stakeholders in
different ways, according to the different roles they play. Alter distinguishes five of
such roles:

Role 1. Executives can use the work system framework to check whether all the
relevant business aspects of the service system are properly covered.

Role 2. Strategists can use the three frameworks to provide some kind of orga-
nized access to all the relevant design variables (e.g., for performance simulation or
optimization purposes).

Role 3. Managers can use service responsibility tables to understand the essence
of main steps of service workflow without requiring detailed modeling tools such as
flowcharts or database schemes.

Role 4. Implementers of service system changes can exploit the work system life
cycle model to understand the effects of changes.

Role 5. Consultants and IT professionals, who have to deal with a large number
of technical details, can use the three frameworks to communicate effectively with
the other roles, mapping technical choices to high level business aspects.

Important characteristics of a service system can be described using a number of
service-related design dimensions. These are important in the analysis of customer-
centric service systems, and dimensions such as “product-like features” vs. “service-
like features” help understanding the different viewpoints of different stakehold-
ers. The analysis should consider dimensions that take into account the customer’s
needs, the product vs. service balance, the personalization and the coproduction
or self-service approach, the technology, the infrastructure and the environment,
among others [6].

2 Along similar lines, there are some works in business processing, as for instance the Linear
Responsibility Charts (or RASCI matrixes) that associate to each task relevant members inside the
organization that are either responsible/accountable, or must be informed and/or consulted with
respect to it.

4 Service System Approaches 79

4.3 The General Service Model

At the ISTC-CNR Laboratory for Applied Ontology in Trento, two authors of the
present chapter, Roberta Ferrario and Nicola Guarino, have explored the ontolog-
ical assumptions behind the notion of service (cf. [12, 13, 14]), by developing an
approach recently presented as the General Service Model. As this work is still on-
going, we briefly present here its most recent version.

The initial motivation behind this work was to develop an ontology of services
suitable to be used in the e-government domain, where the problem of interoperabil-
ity is particularly crucial, and multiple understandings of the word ‘service’ co-exist.
By looking at the computer science literature, it was immediately evident that most
of the available models adopt the black box view of services, describing them as
transfer functions from an input to an output state, with a strong focus on the ex-
ternal service interface.3 Under this view, the internal details concerning how the
service is performed are kept hidden, despite their relevance from the business point
of view. Business applications need not only specify what the service does, but also
how the service is performed and when the various processes involved in a service
occur. Moreover, contracts and service level agreements need to refer to internal
and contextual details (i.e., how the service interacts with its environment). In other
terms, one needs to be able to look both inside and outside of the box, i.e., we need
to adopt a glass box view, where the box is in this case, as Alter suggests, the whole
service system.

However, adopting a glass box view to model a service system forces us to face
some fundamental questions: what is there inside the box? What’s the difference
between a service system and a service? And what is a service, after all? The main
contribution of Ferrario and Guarino is that a service — as opposed to a good —
always develops in time, i.e, it has an essential temporal nature: ontologically speak-
ing, services are complex events, while goods are objects.

The complex internal structure of a service, as well as its relationship with the
broader service system, is depicted in Figure 4.1, which is a revised version of a sim-
ilar figure presented in [12]. The picture clarifies Alter’s idea of the service system
life-cycle, presenting it as a complex temporal entity involving three main com-
ponents, that are necessarily always present: the Service Commitment, the Service
Process, and the Service Value Exchange. In terms of the DOLCE [22] ontology of
temporal entities, the Service Commitment is a state, holding as long as the provider
is willing to offer the service; the other components are dynamic processes, involv-
ing a number of different activities. An ontological dependence relation holds be-
tween the service commitment and the service process, in the sense that the latter
cannot exist without the former. The interplay between service commitment, service
process and service as a whole is described by the following informal definitions,
adapted from [12]:

A service commitment is an agent’s explicit and enduring commitment to guar-
antee the execution of some type of core actions, on the occurrence of a certain

3 For a detailed description of these approaches see Chapters 5, 6, and 7 of this book.

80 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

Fig. 4.1: Service and Service system.

triggering event, in the interest of another agent and upon prior agreement, accord-
ing to a certain specification (service description) which constrains the way service
actions will be performed. In most cases, two kinds of service commitment need
to be distinguished: a generic commitment towards potential customers, whose ser-
vice description is intended to facilitate service discovery, and a specific commit-
ment towards a particular customer, where the service description takes the form of
a binding contract, resulting from a negotiation process.

A service process is the actual implementation of a service commitment, con-
sisting of a number of interdependent actions including those necessary to monitor
the triggering events, the core actions mentioned in the commitment, and any further
actions aimed at supporting or complementing the successful execution of such core
actions. What actually happens in the service process is constrained by the service
description, which defines and constrains the type of actions that must and/or can
be executed in the service process.

A service is a complex temporal entity (a complex event)4 consisting of a service
commitment and the corresponding process.

4 Generic temporal entities are called perdurants in DOLCE, and include events, states, and pro-
cesses. However, sometimes “event” is also used as synonymous of perdurant, leaving the context
to disambiguate between the generic use and the specific use of the term.

4 Service System Approaches 81

The service system is defined as the sum of all the objects anyhow involved in
a service (through a participation relationship). In other words, while a service is
a complex event, a service system is a complex object, consisting of all the ob-
jects somehow participating to any of the sub-events, processes or states constitut-
ing the service: typically, a service system includes the provider, the customers, the
resources used to produce the service, and so on.5

The service system life-cycle is a complex temporal entity corresponding to the
dynamics of a service system. So the difference between a service system and its
life-cycle is like the one existing between a person and its life.

The service value exchange is a crucial part of the service system life-cycle. It
is a complex process involving two symmetric value flows: the provider-customer
value flow accounts for provider’s costs in implementing the service process, and
the corresponding benefits on the side of customers; the customer-provider value
flow accounts for the costs customers incur in order to receive the service, and the
corresponding benefits on the side of providers. Such value flows are also events,
and, altogether, the service value exchange is also ontologically dependent on the
commitment. Note that the service value exchange is not part of the service itself,
since it involves activities occurring at the customer’s side: it is rather part of the
service system life-cycle.

Relating Figure 4.1 to the car washing example, the service commitment starts
when the car wash owner goes to the chamber of commerce to attend all the bu-
reaucratic practices that are necessary to start the commercial activity. Among these
practices, there will be some signed official declaration in which the main features of
the service are described. In this description, the car wash owner commits to certain
business intentions (to be integrated with the content of the ads he or she publicly
posts).

The service process is composed of various events, and sub-processes, including
the events that trigger the service, e.g., a request by the customer who brings his or
her car to the car wash. After the initiating event, we find the customized delivery
planning and coordination; here we can imagine that the car wash offers a range of
different possible implementations of the service, such as washing only the outside
of the car, cleaning the inside, using particular products, such as specific shampoos
or waxes etc. In the customized delivery planning phase, the customer and the car
wash personnel agree to all these details.

With respect to the service delivery, the core action is washing the car; singling
out supporting actions is a bit harder in the example, as there are many actions
that are necessarily preparatory to the service but are not explicitly mentioned as
constituting the service. Examining possible examples, we could say that the activity
of removing loose items from the car in order to be able to clean the inside could be
considered a supporting action, as well as buying the cleaning products. Enhancing
actions are actions meant to augment the value of the service. Here we could think
about an additional service that is connected but not strictly included in the service,

5 To stress that the notion of service system really includes the context it is embedded in, the
expression service ecosystem might be appropriate (see also Section 4.5). We shall stick however
to service system in the following.

82 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

such as replacing air filters or, alternatively, we could think about a luxury service in
which someone picks up the car at the customer’s location, takes it to the car wash,
washes it and then brings it back. The picking up and bringing back would be in this
case enhancing actions.

Finally, all the activities connected to the flow of value, both from the customer
to the provider (such as payment, loss of customer’s time etc.) and from provider
to customer (such as time, labor and resources implied in the service production)
constitute the service value exchange. In this case, these are the transfer of money
and the time spent to drive to the car wash, wait for the car to be washed and drive
back for what concerns the customer-provider flow and the time, labor and materials
used in washing the car for the provider-customer flow.

A UML diagram of the General Service Model is shown in Figure 4.2.6 There
are three main classes: Service system, Service system life-cycle, and Service sys-
tem description. The elements of these classes have a different ontological nature
(not shown in the figure): service systems and their parts are objects, service sys-
tem life-cycles and their parts are events (generic temporal entities), service system
descriptions and their parts are informational objects. We adopt specific relations to
account for the way an object participates to an event, called “thematic relations” in
linguistics [15, 13]. Typical thematic relations are:

Agent pointing to the entity that plays an active role in the event
Theme/Patient pointing to what undergoes the event; the patient changes

its state, the theme does not
Recipient/Beneficiary pointing to what receives the effects of the event
Instrument pointing to what is used to perform the event

This choice allows the authors to propose a formal version of Alter’s responsi-
bility tables [4, 13] where rows represent specific service sub-events, and columns
describe the specific structure of such events, in terms of thematic relations. Starting
from the center of Figure 4.2, we see that a service system life-cycle has two manda-
tory parts, the service itself and the service value co-production process. In turn, a
service has two essential parts: a commitment, and a process that realizes it. The
commitment’s theme is a service description that says what the service is supposed
to do. In particular, such description constraints the core actions to be performed
during the service process. The service description is part of a more general service
system description, which accounts for the service value co-production between the
customer and the provider, describing (among other things) the price policy and the
legal constraints which limit or regulate the service’s range of applicability. Partici-
pants to the service system life-cycle are all the parts of the service system, including
the service system context (for instance the surrounding economic, legal, and social

6 Note that Figure 4.2 provides a UML representation but additional work is ongoing to develop
models that exhibit more semantic and logical expressiveness. An example would be a GSM model
using a first order logic formalism and possibly translatable at least partially to OWL.

4 Service System Approaches 83

systems) and the various actors, such as the service provider, service customer, ser-
vice producer, and service consumer.7

Fig. 4.2: The General Service Model (revised version from [14]).

The picture explicitly shows the thematic relations characterizing the structure
of service commitment. The commitment’s agent is the service provider, while the
beneficiary is the service customer. In car wash example, the service provider is
the car wash owner, and the beneficiary is a generic (possible) customer, while the
chamber of commerce is, in a sense, acting on behalf of these possible customers.
The service description is possibly contained in a document that is stored at the
chamber of commerce and includes an explanation of the service. What is written
there is what the owner of the car wash is promising to deliver and is what can even-
tually be handled by the customers in case what was promised is not then realized.

7 We implicitly assume that participation is distributive with respect to parthood, so if the service
system participates to the service system lifecycle all its parts do the same.

84 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

In very simple terms, if the description only says that the service merely consists
in washing cars, the customer can protest just in case his or her car is dirty after
the execution of the service; but if the description specifies, for instance, that only
ecological products will be used and the customer finds out that other products are
used, he or she can claim that the commitment has not been honored. The service
commitment has also a duration and location, which are the period and place where
the owner guarantees that the service will be available. For the duration, usually it
starts the first moment in which the car wash is open and lasts until the activity is
ceased, i.e., the car wash will finally be closed. According to the modeling choices,
one could decide to restrict the availability of the service to the opening hours of the
car wash, but, as usual, this depends on what is written in the service description. In
this example the commitment location is not particularly meaningful as it is iden-
tified with the car wash location, but there are more interesting examples, such as
fire extinguishing, where the area in which the service is active must necessarily be
specified beforehand.

The service process realizes the commitment, i.e., it is the execution of the ac-
tions described in the service description, according to the constraints there stated
and is composed of two parts: the visible process (mandatory) and the hidden pro-
cess (optional); these two can be roughly identified with the front end and the back
end processes. The visible process has some mandatory core actions (those that in
a sense define the service for what it is, i.e., the core action is what the service
fundamentally does) and some optional visible process details.8 These are usually
enhancing or supporting actions, that may equally be visible or invisible. Also, the
core action has to comply with the core action description, while the visible process
details have to comply with the process details description. The core action descrip-
tion and process details description are both part of the service description (though
only the former is necessary). The hidden process does not have a correspondent
in the description because it contains all those actions that are performed but not
constrained by the description, i.e., the provider is free to perform such actions as
he or she wishes since they are not ruled by the commitment.

Note that the core action’s agent and beneficiary are the service producer and
service consumer, respectively, who may or may not coincide with the provider and
the customer, depending on the kind of service. In the car washing example, the core
action is the washing itself, whose agent is the worker who actually washes the car;
this may or may not coincide with the owner; the consumer is the guy who goes to
the car wash for having the car washed (also this may or may not be the owner of
the car: in the former case he or she is also the customer, in the latter case he or she
is not, think about someone who goes washing the car that a friend has lent him or
her for a period who, though being the customer, is not the final beneficiary, i.e., the
consumer).

The duration of the core action coincides with the time that is taken to actually
wash the car and the location is again the car wash itself. The instruments here are
the water system, the sponges, the brushes, shampoo, wax etc.

8 Here “visible” and “hidden” refer to the customer’s perspective.

4 Service System Approaches 85

Finally, the upper part of Figure 4.2 describes the service value co-production
process, which is constituted of two symmetric “flows” of value: from provider to
customer, and from customer to provider. What happens is that there is no real flow,
since increase or decrease of value are subjective events resulting from different
evaluations (from the provider’s or the customer’s side) of the same objective phe-
nomena. Consider again the car washing. While the physical action is performed,
there is in parallel a cost event on the side of the provider, while there is a benefit
event on the side of the customer, starting from the time the washing is completed,
and lasting for a while. Symmetrically, there is a cost event (a sacrifice) on the side
of the customer at the payment time, corresponding to a benefit on the side of the
provider. Modeling sacrifices and benefits as temporal entities having a non instan-
taneous duration allows us to account for different kinds of service, depending on
how value is produced at different times. So we can say that, for instance, paying for
having your car washed is a bad deal if the roads are muddy, so that you can enjoy
your car clean only for a short time.

4.4 The TEXO Service Ontology

The TEXO Service Ontology [24] has been developed in the framework of the THE-
SEUS/TEXO project [28], and has taken inspiration in its latest phases from the
ongoing work on the General Service Model, as well as from several adjacent on-
tologies for capturing information about service innovation, pricing, licenses, rating,
etc. In order to understand the rationale of the TEXO Service Ontology, one has to
have a look at the service lifecycle (Figure 4.3), which loops between the innovation,
offering, matchmaking, usage, and feedback phases.9 The innovation phase allows
for new business models and new consumption and development paradigms. In the
offering phase, services are supplied to the market. Once a service is designed and
developed, it needs to be turned into a commercial offer. In order to create a commer-
cial offer out of a service implementation, several parameters need to be described
and published on a service marketplace. The matchmaking phase denotes the pro-
cess of matching a service provider’s service offer to a service consumer’s service
need, i.e., the central application of service description. The usage phase in the ser-
vice lifecycle essentially comprises the delivery of services. Feedback for future
iterations of the service lifecycle is channeled back to the service provider during
the feedback phase. This includes the analysis of the feedback from the applications
monitoring.

It is the goal of the TEXO Service Ontology to provide a general scheme for mas-
ter and transactional data across all phases of the service lifecycle. Master data com-
prise data which seldomly change over time, e.g., a price plan or service licenses.
In contrast, transactional data grow over time, e.g., data about the service value

9 This is analogous to the notion of service system lifecycle discussed before, with an emphasis
on the fact that the way a service is conceived (and hence the service commitment) can evolve in
time, on the basis of customers’ feedback.

86 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

Fig. 4.3: Different phases in the lifecycle generate different kinds of service infor-
mation.

exchange are generated whenever a service is consumed, and multiple contract data
are generated (as transactional data) for one service master data description. Some-
thing similar happens in the usage and rating phases where specific monitoring data,
concrete service levels, or ratings are generated.10

The resulting Service Ontology is depicted by a pyramid in Figure 4.4, which is a
metaphor for the number of classes and relations that increases from top to bottom.
The Service Ontology is specified in OWL-DL and consists of several modules.
Each module basically coincides with an OWL file that imports other OWL files.
The modules are depicted as parts of the pyramid. The ontology modules can be
divided into four layers according to the requirements:

10 Transactional data correspond to the customized service content delivery phase in the GSM,
shown in Figure 4.1, which however, for the sake of simplicity, has not been considered in Figure
4.2.

4 Service System Approaches 87

Fig. 4.4: The Service Ontology as a pyramid with increasing amount of classes and
relations from top to bottom.

At the top layer, the upper level module consists of a concise foundational on-
tology providing us with a generic set of classes and relations as well as ontology
design patterns. More specifically, the DOLCE foundational ontology [16] is ap-
plied, which serves the following purposes: (a) DOLCE can be used as a modeling
starting point because it provides a basic set of generic classes and relations valid
in any domain. Using a foundational ontology as a modeling basis means relating
core classes and relations to some proposed invariant categories of human cogni-
tion. This prompts the ontology engineer to sharpen his/her notions with respect
to the distinctions made in the foundational ontology. What is typically gained is
an increased understanding of one’s own ontology as well as a cleaner design. (b)
DOLCE can also help defining general ontology design patterns as best practices
for reoccurring modeling needs.

At the middle layer, a set of core modules is built around the Core Service
Description module, which captures information common to every service (e.g.,
info on service provider, quality of service, etc.). Note that the Core Service De-
scription Module does essentially coincide with the General Service Model de-
scribed above.11 In addition, different aspects of a service description (legal, busi-

11 For this reason in this section we won’t make use of the car wash example, as it would be
essentially represented in the same way as in the GSM.

88 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

ness model, technical, rating, UI, etc.) are placed in separate modules and linked to
the classes belonging to the Core Service Description module. All modules in this
middle layer are aligned under the common roof of the DOLCE foundational ontol-
ogy. So far, several core modules have been designed to a mature state and published
in diverse literature. The enumeration below provides an overview and pointers to
the corresponding resources.

• Core Service Description Module [16]
• Idea Module [25]
• Pricing Module [18, 17]
• Legal Module [8]
• Rating Module [23, Section 9]
• Classification Module [23, Section 10]
• Documentation Module [23, Section 11]

At the third layer, industry modules (e.g., automotive, healthcare, or public ser-
vices modules) can be modeled by exploiting the aforementioned ontology modules.
The core knowledge specified in the Core Service Description module and adjacent
aspect-related core modules discussed above can be specialized for specific indus-
tries. Industries can define their own hierarchies of service categories. It is expected
that the modules will be populated at run-time by industry consortia or the like.

Finally, instances of the classes and relations (depicted as a mesh below the pyra-
mid) can potentially be distributed across the Web according to the principles of
Linked Data.

4.5 The OASIS SOA Reference Architecture Foundation

(SOA-RAF)

The OASIS SOA Reference Architecture Foundation (SOA-RAF) [2] is an abstract
realization of the service-oriented architecture (SOA), focusing on the elements and
their relationships needed to enable SOA-based systems to be used, realized and
owned, while avoiding reliance on specific concrete technologies. By use, the SOA-
RAF captures what it is meant to participate in a space in which stakeholders (hu-
man and non-human), processes, and machines act together to deliver the effects
of business functionality through services. The space with its stakeholders and the
environment (or context) within which they all operate taken together forms the
SOA ecosystem. This is consistent with Alter’s idea of the service system. The SOA
ecosystem assumes service implementations utilize capabilities to produce specific
(real world) effects that fulfill business needs.

In our car washing example, the capability is the collection of equipment and car
washing knowledge to produce the real world effect of a washed car. The service is
the access to this capability to wash the car of a specific customer.

From a software perspective, the emphasis is often on the implementation of such
business functionality such that it is accessible through a well-defined interface; this

4 Service System Approaches 89

is necessary but by no means sufficient. Our car washing example could proceed
without an explicit mention of software (or, in general, automated) interactions.
However, the customer may have made use of a browser-based interface to schedule
a time for the car wash and the custom options desired. Also, payment may have
been arranged through an electronic funds transfer (EFT). The capability of a bank
to support EFT and the car wash’s ability to access this capability fall in line with
the previously discussed concept of supporting or complementary actions.

Both those using the services, and the capabilities themselves, may be distributed
across ownership domains, with different policies and conditions of use in force.
The role of a service in the SOA context is to enable effective business solutions
in a distributed environment. SOA is thus a paradigm that guides the identification,
design, implementation (i.e., organization), and utilization of such services.

Fig. 4.5: General Description.

The SOA-RAF also discusses the realization and ownership issues involved in
the SOA ecosystem. Realization relies heavily on service description, and this will
be explored in detail below. Realization also requires sufficient visibility to establish
willingness and communications among the participants, effective interactions, and

90 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

support for policy and contract statement and enforcement. In the realm of effective
ownership, elements of governance, security, management, and testing are explored.
These aspects of realization and ownership are consistent with the ontological un-
derpinnings described in the General Services Model.

Much of the service realization and aspects of ownership rely on an accurate and
sufficiently complete service description. As discussed in the SOA-RAF, a service
description is an artifact, usually document-based, that defines or references the
information needed to use, deploy, manage and otherwise control a service. This
includes not only the information and behavior models associated with a service to
define the service interface but also includes information needed to decide whether
the service is appropriate for the current needs of the service consumer. Thus, the
service description will also include information such as service reachability, service
functionality, and the policies associated with a service.

Interactions within a SOA ecosystem rely on many resources, and the SOA-RAF
introduces a general Description class in Figure 4.5 to represent a number of de-
scription properties that are expected to be common among all specialized descrip-
tions supporting a service-oriented architecture. A registry often contains a subset
of the description instance, where the chosen subset is identified as that which fa-
cilitates mediated discovery. Additional information contained in a more complete
description may be needed to initiate and continue interaction.

Fig. 4.6: Service Description.

The major description properties for the Service Description subclass follow di-
rectly from the areas discussed in the OASIS SOA Reference Model (SOA-RM)

4 Service System Approaches 91

[19] and are shown in Figure 4.6. In particular, the service description conveys
the functionality of the service (including the real world effects that are realized
through interaction with the service), the conditions of use defined through poli-
cies, the operational characteristics captured through metrics, the particulars of the
service interface as defined by the service behavior and information models, and
the endpoints and corresponding protocols through which message exchange with a
present service is accomplished. In addition, provenance, characterization, and iden-
tity information and the ability to provide annotations are inherited from the general
description.

If we assume we have awareness, i.e., access to relevant descriptions, the service
participants must still establish willingness and presence to ensure full visibility as
defined in [2] and to interact with the service. Service description provides necessary
information for many aspects of preparing for and carrying through with interaction.
Recall the fundamental definition of a SOA service in the SOA-RM is a mechanism
to access an underlying capability; the service description describes this mechanism
and its use. It lays the groundwork for what can occur, whereas service interaction
defines the specifics through which occurrences are realized.

Figure 4.7 combines the detailed models for each descriptive element in Figure
4.6 to concisely relate Action and the relevant components of Service Description.
The purpose of Figure 4.7 is to demonstrate that the components of service de-
scription go beyond arbitrary documentation and form the critical set of information
needed to define the what and how of Action. In Figure 4.7, the leaf nodes from
Figure 4.6 are shown in differently colored boxes.

Fig. 4.7: Relationship between Action and Service Description Components.

92 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

An adequate service description must provide a consumer with information
needed to determine if the service policies and the (business) functions and service-
level real world effects are of interest and there is nothing in the technical assump-
tions that precludes use of the service.

Note at this level, the business functions are not concerned with the Action or
Process Models. These models are detailed separately. The Actions in the Action
Model and their temporal dependence as captured in the Process Model only apply
to externally facing actions with which a service consumer would interact. Internal
processes are only exposed to the extent they are reflected in policies and other
conditions of use or metrics and other measures of operational characteristics. This
is the counterpart to the GSM “glass box.”

The service description is not intended to be isolated documentation but rather
an integral part of service use. Changes in service description should immediately
be made known to consumers and potential consumers.

The description of service description indicates numerous architectural implica-
tions on the SOA ecosystem:

1. Description will change over time and its contents will reflect changing needs
and context. This requires the existence of:

a. mechanisms to support the storage, referencing, and access to normative
definitions of one or more versioning schemes that may be applied to iden-
tify different aggregations of descriptive information, where the different
schemes may be versions of a versioning scheme itself;.

b. configuration management mechanisms to capture the contents of each ag-
gregation and apply a unique identifier in a manner consistent with an iden-
tified versioning scheme;

c. one or more mechanisms to support the storage, referencing, and access to
conversion relationships between versioning schemes, and the mechanisms
to carry out such conversions.

2. Description makes use of defined semantics, where the semantics may be used
for categorization or providing other property and value information for de-
scription classes. This requires the existence of:

a. semantic models that provide normative descriptions of the utilized terms,
where the models may range from a simple dictionary of terms to an on-
tology showing complex relationships and capable of supporting enhanced
reasoning;

b. mechanisms to support the storage, referencing, and access to these seman-
tic models;

c. configuration management mechanisms to capture the normative descrip-
tion of each semantic model and to apply a unique identifier in a manner
consistent with an identified versioning scheme;

d. one or more mechanisms to support the storage, referencing, and access to
conversion relationships between semantic models, and the mechanisms to
carry out such conversions.

4 Service System Approaches 93

3. Descriptions include reference to policies defining conditions of use. This re-
quires the existence of:

a. descriptions to enable the policy modules to be visible, where the descrip-
tion includes a unique identifier for the policy and a sufficient, and prefer-
ably a machine processable, representation of the meaning of terms used to
describe the policy, its functions, and its effects;

b. one or more discovery mechanisms that enable searching for policies that
best meet the search criteria specified by the service participant; where the
discovery mechanism will have access to the individual policy descriptions,
possibly through some repository mechanism;

c. accessible storage of policies and policy descriptions, so service partici-
pants can access, examine, and use the policies as defined.

4. Descriptions include references to metrics which describe the operational char-
acteristics of the subjects being described. This requires the existence of (as
partially enumerated under governance):

a. the infrastructure monitoring and reporting information on SOA resources;
b. possible interface requirements to make accessible metrics information

generated or most easily accessed by the service itself;
c. mechanisms to catalog and enable discovery of which metrics are avail-

able for a described resource and information on how these metrics can be
accessed;

d. mechanisms to catalog and enable discovery of compliance records associ-
ated with policies and contracts that are based on these metrics.

5. Descriptions of the interactions are important for enabling auditability and re-
peatability, thereby establishing a context for results and support for understand-
ing observed change in performance or results. This requires the existence of:

a. one or more mechanisms to capture, describe, store, discover, and retrieve
interaction logs, execution contexts, and the combined interaction descrip-
tions;

b. one or more mechanisms for attaching to any results the means to identify
and retrieve the interaction description under which the results were gener-
ated.

6. Descriptions may capture very focused information subsets or can be an aggre-
gate of numerous component descriptions. Service description is an example of
a likely aggregate for which manual maintenance of all aspects would not be
feasible. This requires the existence of:

a. tools to facilitate identifying description elements that are to be aggregated
to assemble the composite description;

b. tools to facilitate identifying the sources of information to associate with
the description elements;

94 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

c. tools to collect the identified description elements and their associated
sources into a standard, referenceable format that can support general ac-
cess and understanding;

d. tools to automatically update the composite description as the component
sources change, and to consistently apply versioning schemes to identify
the new description contents and the type and significance of change that
occurred.

7. Descriptions provide up-to-date information on what a resource is, the condi-
tions for interacting with the resource, and the results of such interactions. As
such, the description is the source of vital information in establishing willing-
ness to interact with a resource, reachability to make interaction possible, and
compliance with relevant conditions of use. This requires the existence of:

a. one or more discovery mechanisms that enable searching for described re-
sources that best meet the criteria specified by a service participant, where
the discovery mechanism will have access to individual descriptions, pos-
sibly through some repository mechanism;

b. tools to appropriately track users of the descriptions and notify them when
a new version of the description is available.

4.6 The IBM Research Service Design Model

The Service Design model described in [11] was conceived as a meta-model for
a service in the widest sense of the word. There was an explicit attempt to go be-
yond the world of Web services and include services with a large element of human
involvement in their delivery and consumption. The examples that motivated this
original meta-model came from the world of IT services — outsourced support of
IT infrastructure, help desks, call centers, and the like. Subsequently, an attempt
was made to incorporate the main elements of the formal model for service deliv-
ery described in [7], and to widen the context beyond IT Services to include other
domains, including Public Services [27].

The initial model was intended primarily for recording the design parameters
of a service without explicitly stating their values at the design phase. The design
meta-model has been then extended to a solution meta-model where the parameter
values were instantiated to create a specific service instance. This approach has been
developed further with the incorporation of feature modeling techniques to describe
the design model as a service product line using concepts from the world of soft-
ware product lines [30]. The benefits of feature modeling are mainly in increasing
the accessibility of modeling to non-technical users of the system. The emphasis in
the research work has been on creating a well-defined formal representation using
UML and BPMN notations which are amenable to analysis and automated transfor-
mation into service implementation and simulation artifacts. A further focus is on

4 Service System Approaches 95

the facilitation of a participatory design methodology,12 where all stakeholders pro-
vide input and feedback on the services being designed for them. A key challenge
has always been to hide the complexity and formality from service domain experts,
service consumers, and other non-technical stakeholders.

The tooling which is being developed to accompany the design model exposes
simple form filling interfaces to gather the data necessary to populate the model,
together with a logical organization of the forms which parallels the workflow. The
artifacts produced by the tooling are presented to the stakeholders in the service
through a deliberation platform to facilitate participatory design.

The Service Design Model consists of the following elements (cf. Figure 4.8):

Fig. 4.8: Service Design Model.

12 There is an extensive literature on participatory design: see [1] for a quick summary.

96 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

Service Instances and Service Concepts

A specific service is always an instance of a well-defined ServiceConcept which
specifies the vision and the goals of the service. Each goal is mapped to one or more
Requirements. In the case of the car wash service, the concept could be one of a
franchised car washing company which provides machinery, raw materials (soap,
brushes etc.) and premises to franchise holders who pay off the initial investment to
the franchising company over a three year period. A service instance in this case is
a particular franchise with employees, and local adaptation to the environment and
customers at the franchise location.

Service Requirements

A Service has a set of Requirements that are gathered from all the Stakehold-
ers. Each Requirement can be split into sub-requirements and may also specify
Metrics to validate if the requirement is met. Stakeholders can prioritize these re-
quirements based on their importance. A Service also abides by certain compliance
constraints including legal rules and policies. These constraints which inherit all
the properties of a Requirement are high priority requirements that must be met.
Typical requirements for a car wash are safety constraints for the workers, income
requirements for the franchise company and franchise owner, speed and thorough-
ness of the cleaning service for the customer.

Service Stakeholders

A Service has a list of Stakeholders with different roles such as the owner (the
entity in charge of the service), the beneficiary (the entity that is benefited from the
service result), and the service provider (the entity responsible for provisioning the
service).13 The distinction between owner and provider is mainly relevant to the do-
main of outsourced services where the provider delivers the service under a contract
to the owner. In many cases, however, the owner and provider are the same business
entity. In the car wash, key stakeholders are the franchise company, the franchise
owner, the customer, and the employees. A Stakeholder should own one or more
Requirements, and each Requirement must have at least one Stakeholder as its
owner.

Service Request

A Service occurs as a response to ServiceRequests which are triggered by a
Stakeholder (requestor) who may or may not be the beneficiary of the results.

13 Owner and provider as defined here correspond respectively to provider and producer in the
GSM.

4 Service System Approaches 97

A ServiceRequest invokes a Process — which may invoke other Processes
during its execution. Each ServiceRequest has associated parameters such as cost
and duration of execution and value derived by the beneficiary. These parameters are
aggregated from the sub processes and tasks performed while the request is being
handled by the service delivery system. The car wash service request is initiated by
the customer who arrives at the franchise.

Service Process

A Service contains many Processes that capture the internal service workflow. A
Process has a sequence of Tasks. Each Task is associated with two sets of Capa-
bilities, at different Competency levels. The minimum Capability is the minimal
set of skills needed to complete the Task. The optimum Capability of a Task is the
set of Capabilities needed to complete the Task with best possible performance.
The Participants of a Task can be Stakeholders (e.g., for a customer submitting
an application) or Resources (e.g., for front desk employee validating the applica-
tion, or a computer system needed to complete the Task). A Task provides different
Values for different Stakeholders. As a result the containing Process, Service-
Request and hence Service have Values associated with them by aggregating the
Values provided by the constituent Tasks. The service designer uses this Value in
order to provide different design alternatives and hence achieve a balance between
the Values perceived by different Stakeholders. The car wash process consists of
payment (providing value to the owner and operator), cleaning outside and inside
the car, drying the car body, and cleaning the windows (each of which provides
value to the customer). The capabilities of the employees may include a special-
ist cashier, cleaning staff, and a sales person who approaches the customer at the
end of the process to get feedback and sell a subscription to a set of car washes. In
some cases, the cashier may also have the capability to perform some subset of the
cleaning work.

Resource Type

A Service has a set of ResourceTypes representing the resource units (human/IT)
involved in the service delivery. These ResourceTypes have instances (the actual
persons or machines) and availabilities associated with them. They also have a skill
set in the form of Capabilities at different Competency level. Aside from the hu-
man resources involved in the car wash, there is also car washing machinery, a cash
register, and a subscription database sitting on a computing resource.

98 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

4.7 Discussion

The presented approaches each reflect differences in viewpoint. Avoiding any ex-
haustive comparison, we shall focus here on the key features more or less present
in all approaches, and on the way the different solutions proposed complement each
other by focusing on different perspectives, giving altogether a reasonably complete
picture of the most important aspects of a service system.

4.7.1 Service Definition

In Alter’s works we find a definition of service system directly imported from Var-
gos and Lusch [5, 29] “the application of specialized competencies (knowledge and
skills) through deeds, processes, and performances for the benefit of another entity
or the entity itself.”

The General Service Model (GSM) adds details to this informal definition by
showing the relationship between service and service system, which is somewhat
blurred in Alter’s approach. The GSM defines a service as “a complex event com-
posed of different sub-events,” from the perspective of the whole service life-cycle.
It also analyzes the notion of service value chain, and considers all the elements
that may contribute to “value co-creation.” The service system is instead viewed as
a composite object that includes all the entities involved in the execution of interre-
lated services, such as the agents that participate in these service events, as well as
the artifacts and resources that are used and possibly transformed by such services
and that can be of different nature (physical, informational etc.). So, unlike Alter,
the complex processes and actions at the core of the service notion are not consid-
ered as parts of the service system, but as parts of the service itself. According to the
GSM, the difference between a service system and a service reflects the ontological
difference between objects and events (endurants and perdurants in DOLCE): the
service system is the complex object whose global behavior (i.e., the service system
lifecycle) “produces” the service, so to speak: to have a service, you need a service
system that produces it. To account for the dual nature of services, which always
involves a value exchange interaction with the outer environment, Figure 4.1 shows
how the service system lifecycle articulates into two main components: the service
itself, and the service value exchange.

The TEXO Service Ontology imports the definitions of concepts constituting
the core service description module directly from the General Service Model, but
adopts a broader notion of service (system) lifecycle, which accounts for changes in
the service commitment, as a consequence of interaction with the external context.

SOA-RAF discusses the inherent differences between services providing a busi-
ness function and services considered as a software artifact in a SOA ecosystem. An
important role in SOA-RAF is played by the notion of service description, defined
as “an artifact, usually document-based, that defines or references the information
needed to use, deploy, manage and otherwise control a service.” This definition is

4 Service System Approaches 99

close to the GSM definition, according to which service descriptions are informa-
tional artifacts whose contents are the constraints on the way the service is supposed
to be delivered. However, SOA-RAF does not provide a crisp definition of what a
service is, although the SOA-RM definition concerning the nature of services as
“mechanisms to access an underlying capability” fits with the GSM idea of detach-
ing the service commitment from the actual execution of the core service action.
As a matter of fact, it seems that SOA-RAF finds a crisper definition more of a
distraction than a clarification.

The IBM-SDM neither provides an explicit definition of service, nor of service
system; however, the meaning of such notions is weakly constrained by the UML
model reported in Figure 4.8. According to this diagram, a service is described as
an aggregate of several heterogeneous entities, notably including resources, which
are not explicitly mentioned in the other approaches. The inclusion of entities as
disparate as processes, resources and concepts as parts of a service is however con-
fusing from the ontological point of view, and hopefully the present analysis will
help realizing the need of some cleanup, especially from the conceptual point of
view. The main point of the IBM-SDM is to provide a clear path to practical simu-
lation models of service delivery as described in [11].

4.7.2 Service Application Perspective

To better understand the various approaches presented so far, it is useful to discuss
the different application perspectives they focus on, which determine the different
service modeling goals and motivations.

Alter’s framework models a service system as a work system, adopting explic-
itly a business perspective. His notion of work system lifecycle is pretty close to the
service system lifecycle introduced in the General Service Model, whose viewpoint
can however be better described as focusing on service interactions, i.e., on all in-
teractions taking place in the service system (so among actors, artifacts, resources
and the surrounding natural and institutional environment). Among other things, the
GSM takes also into account the legal aspects of customer interaction, which are not
considered in Alter’s framework.

The TEXO Service Ontology’s application perspective is on service evolution.
The service lifecycle loops between the innovation, offering, matchmaking, usage
and feedback phases. In each phase, both master data (that seldom change over time,
such as licenses) and transactional data (that relate to a single service transaction,
such as value exchange data) are exchanged.

SOA-RAF’s focus is on the integration between business needs and the available
information technology, as a key requirement to fully exploit a service-oriented ar-
chitecture (SOA), intended mainly as “a paradigm for organizing and utilizing dis-
tributed capabilities (. . .).” While the goal of SOA-RM (the SOA Reference Model)
is “to define the essence of service-oriented architecture, and emerge with a vocab-
ulary and a common understanding of SOA”), the Reference Architecture Founda-

100 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

tion (SOA-RAF) focuses “on the elements and their relationships needed to enable
SOA-based systems to be used, realized and owned. So, the emphasis of SOA-RAF
is on service systems as composed by distributed capabilities that belong to a larger
“ecosystem.” Both SOA-RAF and SOA-RM model the service system as a snapshot,
without referring to a service lifecycle.

IBM-SDM’s main application perspective is on reuse of service artifacts, and
on the use of simulation as a design tool. Three key stakeholders are present in the
service lifecycle: the owner, the beneficiary (sometimes also called customer), and
the service provider. The distinction between owner and provider resembles very
closely the GSM one between provider and producer, as the owner is the one in
charge of the business management of the service, while the provider is like an op-
erations manager, responsible for day-to-day delivery. The term customer is instead
more, as it may sometimes refer to the requestor and sometimes to the actual bene-
ficiary, depending on context. The service lifecycle loops between design, solution,
transition, and delivery. But only design and solution have been modeled so far.

4.7.3 Service System Perspective

While the service application perspective concerns the service system as a whole,
two different modeling perspectives can be isolated concerning how the service
system is perceived and described from its two main players, namely the own-
er/provider and the customer/consumer. Here we shall label as inside-out an ap-
proach centered on the former perspective, and outside-in an approach centered on
the latter perspective. The inside-out perspective focuses on how the service system
satisfies the provider’s needs; the outside-in perspective focuses on how the service
system satisfies the customer’s needs. Note that the choice to use the term “inside”
for the provider perspective and “outside” for the customer perspective is arbitrary.

Obviously at some point in the service lifecycle the two visions converge, but
they are initially different, since, for instance the customer awareness of the need
for a service is a completely different starting point from the provider awareness
that such a need exists. The customer often has a clear idea of what he or she wants,
while possibly ignores what is really feasible or what is economically convenient,
and vice versa for the provider. The IBM-SDM model attempts to converge between
both outside-in and inside-out by promoting a participatory style of service design,
taking into account not only the provider and customer, but also the needs and values
of the delivery organization.

Note that this distinction turns out to be orthogonal to that between glass- and
black-box models, as both the inside-out and the outside-in views can show internal
activities vs. external behavior.

It is also different from the top-down vs. bottom-up distinction, as in the former
case the two perspectives (outside-in and inside-out) are not related to how the mod-
eling activity is performed: under both perspectives one can decide to analyze the
service from details up or from the top into details.

4 Service System Approaches 101

Fig. 4.9: In-out side approach vs black-glass box.

In Figure 4.9 the relation between the inside-out/outside-in choice and the black-
box/glass-box choice is summarized. The upper (light) triangle represents the ser-
vice system modeled according to the provider’s point of view (inside-out perspec-
tive), while the bottom (dark) triangle represents the service system modeled ac-
cording to the customer’s point of view (outside-in perspective). The larger base of
each triangle represents a larger amount of details about the particular point of view
encoded in the model. The upper part of each triangle (crossing the ”box boundary
line”) represents that part of the model that accounts for the other party’s perspec-
tive.

Both approaches are compatible with the black- and the glass-box views. From
the provider’s view-point, the focus is on “internal” aspects of the service. The
model has to be considered a black-box one when only the lowest part of the up-
per (light) triangle (of the service) is shown to the customer. It is instead a glass
box when the whole (or almost the whole) upper triangle is visible to the customer.
From the customer’s viewpoint, a glass box model corresponds to the whole lower
triangle, while a black box model corresponds to the upper part of the lower triangle,
denoting a model which only picks up those customer’s details which are of interest
from the provider’s point of view.

The intersection of the two triangles — the center diamond — is the common
area of knowledge about the service; the four smaller triangles outside the inter-
section represent knowledge known to one side but not the other. The two small
not overlapping upper triangles could refer to technical and strategic aspects that
the provider wants to keep hidden to the customer. The two small not overlapping
bottom triangles represent the customer’s expectation on the service (what the ser-

102 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

vice should do and why the customer wants to use the service in his or her own
application context).

Both inside-out and outside-in approaches are important in modeling a service,
as in a glass box view, the larger is the section crossing the service border, the better
is the model for both the provider and the consumer.

With respect to the two perspectives described above, Alter’s approach lies in
the middle, because although starting from an “inside” point of view, in the work
system framework (taking into account participants, information, technologies, and
processes and activities in a context of infrastructure, strategies and environment),
he puts the customer and his/her role in the “service value chain framework,” inves-
tigating his/her responsibilities in the service process.

The GSM aims at being comprehensive, but although the customer’s perspective
is taken into account while modeling the value co-production process, it has proba-
bly a bias towards an inside-out approach, because the internal aspects of the service
process are accounted for in some more detail.

The approach of the TEXO Service Ontology is an inside-out approach, although
the distinction between master and transactional data is useful for the customer in
the understanding of the service, too.

SOA-RAF has aspects of both: the inside-out approach tries to answer the ques-
tion “what I have to build and how I promote the use of the service system with
the customer/consumer?;” the outside-in approach looks for a consumer to evalu-
ate whether the service adequately addresses a need in a manner consistent with
acceptable conditions of use.

IBM-SDM is an inside-out approach, because its focus is on how the service is
built and how it is presented (delivered) to the customer.

4.7.4 Service Science Readiness

An interesting way to compare service modeling approaches is to discuss, so to
speak, their service science readiness, i.e., the extent to which they are suitable to be
adopted within the large interdisciplinary perspective known with the term service
science. To this purpose, we shall briefly discuss the presence of interdisciplinary
aspects in the modeling proposals described so far.

Alter’s framework does not explicitly adopt an interdisciplinary approach, as it
mainly focuses on the work system under a business perspective, but certainly his
work is in the spirit of a broad service science, and can be used by multiple cate-
gories of stakeholders, including non-business professionals in some of the proposed
“roles.”

The GSM approach is deliberately interdisciplinary, as it relies on theories be-
longing to philosophy, cognitive science, linguistics, and aims at including juridical
and deontic notions as well as business process aspects and economic notions.

The TEXO Service Ontology adopts also an interdisciplinary approach, being
based on different modules which account for business, legal, and industry aspects.

4 Service System Approaches 103

Industry modules are populated at run-time to match specialized service application
contexts (automotive, healthcare, public services, . . .).

SOA-RAF (SOA-RM) is partly interdisciplinary, in the sense that it is built from
an IT perspective, but it is oriented towards ecosystems.

IBM-SDM initially lacked an interdisciplinary perspective, as it was mainly in-
tended for IT services; nonetheless, the latest works focus on a more general notion
of service, in which the organizational side is taken into account. The goal is to in-
troduce engineering rigor in the design process, not to anchor concepts to a shared
service ontology.

4.7.5 Value Modeling

Since a core aspect of services is their (co-)production of value, the ability to ac-
count for the value production (or value exchange) process is an important aspect
to consider while comparing the different modeling approaches. According to Al-
ter’s and other approaches, value production is not an exclusive responsibility of the
producer.14 Of course, we should also observe that value (as well as cost) has not
just a monetary nature, so the notions of benefit and sacrifice for the two parties
involved (service provider and service beneficiary) should be somehow considered
in a proper account of value.

Alter explicitly considers value in the service value chain framework, which aug-
ments the work system framework. Because the value of a service is co-produced by
consumer and producer, a chain of responsibility for each activity involved in the
service process can be identified.

One of the three key components of the service system according to the General
Service Model is service value co-production, seen as a complex event in which
symmetric events corresponding to provider’s or customer’s costs and benefits co-
occur. The value that is exchanged during such event is the result of positive and
negative import of value both from the side of the provider and of the customer
(value co-production) throughout all the phases of the service life-cycle, which are
inspired by Porter’s value chain.

The TEXO Service Ontology explicitly considers value exchange as generated
whenever a service is consumed.

SOA-RAF (SOA-RM) represents values as real world effects. It could be the
response to a request or a change of state for some defined entities. SOA-RAF dis-
tinguishes between social effects and physical effects as goals for the reference ar-
chitecture.

IBM-SDM associates value with every service object, as a numerical estimate
of the value provided by that object to each stakeholder. The model estimates costs

14 In the present chapter, value co-creation is seen as a process that involves the whole service
system and is mainly analyzed as one among several components of the service system life-cycle.
Chapter 3 of this book is expressly dedicated to approaches that focus on service value networks.

104 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

and values of services, focusing on the values perceived by all different stakehold-
ers. More precisely, value is represented as a vector with one component for each
stakeholder.

4.7.6 Service Contract

With the term “contract” we refer to an event in the service life cycle in which some-
thing is established that can be used by all involved parties to “judge” whether the
value delivered matches all expectations. For such reason, “contract” and “value”
are two different but related concepts, as the former could constitute a framework to
evaluate the latter (although actual value may go beyond the contractual terms). An
important part of a service contract is the Service Level Agreement (SLA). The con-
tract may also be interpreted as a legal object, which can be used by any participant
in the service process to enforce an action.

Alter’s framework includes service awareness and negotiation in the service
value chain framework. He assumes however that a service is always co-produced
by customer and provider from early stages, independently of any notion of contract.

In the General Service Model there are two events that are connected with the
idea of negotiation and contract: one is the service commitment, which in a sense
constrains the provider to guarantee that the service is executed in a certain way.
Note that such commitment is a generic one, as the service description is about
types of action and does not refer to specific customers. But there is another event,
customized planning and delivery, which is duplicated for each customer, and oc-
curs after a negotiation, which results in a customization of the general constraints
contained in the service description. So there is at least a clear room to include a
notion of service contract.

The TEXO Service Ontology explicitly envisions service contracts between ser-
vice customers and providers as part of the transactional data belonging to a par-
ticular service lifecycle. The notion of contract is however somewhat simplified,
as it doesn’t take into account the possibility that customer and consumer may be
different entities.

SOA-RAF (SOA-RM) introduces contract and policy as one of the principal con-
cepts involved. “A policy represents a constraint or condition on the use of the ser-
vice.” It is an assertion stated by one participant on the conditions of use of some
resource. “A contract represents an agreement between two or more parties.”

IBM-SDM is missing an explicit notion of service contract, apart from modeling
it as a generic quality parameter that should be numerically represented in a service
quality object. As the model allows representing service constraints, contract tar-
gets (as requirements on the quality of service) can be implemented as performance
constraints.

4 Service System Approaches 105

4.7.7 Reusability

As it happens in any engineering process, a model is considered a solid one if it
can be applied on a (relevant) number of application contexts. In the context of ser-
vice science, with “reusability” what is meant is the capability to reuse the proposed
modeling approach, rather than the capability of a model to reuse external compo-
nents. Both viewpoints are important, of course, but since service systems involve
knowledge and participants from different domains, it is even more straightforward
that any proposed model has to reuse, at least, core concepts and components of
each involved domain.

Alter’s framework describes service systems from a business viewpoint, with no
assumption whether IT is involved. The framework can be reused for any service
system, automated or not.

Reusability is an implicit goal both of DOLCE and of the General Service Model
as well. First of all, the level of generality is such that it is fairly straightforward to
specialize the primitives to adapt them for more special tasks. On the other hand, the
GSM can also be easily extended by adding elements built starting from DOLCE.

The TEXO Service Ontology is reusable in modeling any service lifecycle from
the evolution viewpoint, as long as in the setup process of the service itself the
innovation, the offering, the matchmaking, the usage, and the feedback phases are
planned.

SOA-RAF (SOA-RM) is a reference architecture and is reusable by definition.
IBM-SDM reusability concerns configurability, variability, and extensibility of

ServiceObjects used in the modeling process, at design level.

4.7.8 Service Time Frame

With the locution “Service Time Frame” we mean the overall period of time con-
sidered by a service model. For example, the time frame can span from the start of
a contract to its end. Alternatively, the evolution of a service business model could
start from initial design and proceed to final delivery. The different approaches de-
scribed here differ in the time frame they assume. In particular, it is important to
distinguish:

• the service delivery time frame concerning a service delivered to a specific cus-
tomer, within the temporal validity of a specific contract;

• the service commitment time frame where a generic service commitment (involv-
ing multiple potential customers) continues to hold, satisfying the same generic
description;

• the service evolution time frame concerning the evolution of a service sys-
tem, where the service description changes in time to account for maintenance
changes, new service policy choices, feedback from customers, and so on.

106 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

Alter’s framework clearly adopts a service evolution time frame, as it focuses
on service systems that “evolve through a combination of planned and unplanned
changes.” The temporal phases considered are “operation and maintenance,” “de-
velopment” and “implementation.”

The GSM adopts instead a service commitment time frame, as the service system
life cycle starts with the service commitment and ends with the service dismissal.
The service delivery time frame is embedded in the service commitment time frame
as a sub-event (indeed, a plurality of them, one for each customer contract), while
the service evolution time frame is not modeled explicitly. There is a possibility to
account for a service evolution time frame by allowing multiple services (at dif-
ferent temporal stages) within the same service system lifecycle, but what needs
to be clarified, from the ontological point of view, is the notion of persistence of
a service through time. Presently, in GSM a service loses its identity if the service
commitment changes.

The TEXO Service Ontology focuses on the service evolution time frame, mod-
eling a service whose generic description can change while it “loops between the
innovation, offering, matchmaking, usage, and feedback phases,” in a fashion very
similar to Alter’s model.

The SOA-RAF doesn’t apparently adopt any time frame, as it models an evolving
snapshot of a service system. For example, there are no time constraints concerning
contracts and policies.

The IBM-SDM focuses also, such as the TEXO approach, on the service evo-
lution time frame, whose phases are however slightly different from TEXO’s ones:
design, solution, transition, delivery and end of life.

4.8 Concluding Remarks

In this chapter, we have illustrated several approaches to service systems modeling.
The key point is that while the various models emphasize different aspects of a larger
system, there is consensus that the service conceptual models should account not
only for the core service activities, but also for the business and social environment
in which the service is used. While a complete comparison of the various approaches
is not feasible, we have highlighted the differentiating points of focus of each of
these approaches so as to enable designers to choose what is more suited to his/her
own needs.

Abstracting away from the specificities of every single approach, in these con-
cluding remarks we would like to make some considerations about the importance
of service systems modeling.

First, in the services domain, it is important to have reference models (and sev-
eral of the presented approaches can be considered as such) to facilitate sharing the
fundamental primitives needed to define service ecosystems. The use of reference
models enhances mutual understanding and improves the likelihood of interoper-
ability.

4 Service System Approaches 107

Second, the shift from simply modeling services to modeling service systems
helps to explicitly account for the social implications of the various aspects of ser-
vice processes, making the whole service system transparent to designers and stake-
holders.

Finally, it is noteworthy that most of these approaches make an explicit sepa-
ration between design and realization level, distinguishing the service description
and what is declared in contracts from the actual service execution. This allows one
to verify the compliance of the executed actions with those specified in the ser-
vice description, including any additional conditions agreed to in explicit contracts.
Moreover, the interplay between these two levels is at the basis of complex chains
of responsibilities, with duties and rights that can also be transferred through dele-
gation. Models including the explicit representation of responsibility chains enable
transparency and predictability, thus providing greater trustworthiness of services.

References

1. Wikipedia entry on participatory design. Accessed March 2011, http://en.
wikipedia.org/wiki/Participatory_design.

2. Reference Architecture Foundation for Service Oriented Architecture 1.0. Committee
Draft 2, OASIS, Oct 2009. http://docs.oasis-open.org/soa-rm/soa-ra/v1.
0/soa-ra-cd-02.pdf.

3. S. Alter. The Work System Method: Connecting People, Processes, and IT for Business Results.
Work System Press, Larkspur, CA, USA, Apr 2006.

4. S. Alter. Service responsibility tables: A new tool for analyzing and designing systems. In
Proceedings of the Thirteenth Americas Conference on Information Systems (AMCIS 2007)
Keystone, Colorado, August 09 - 12 2007, 2007.

5. S. Alter. Service system fundamentals: Work system, value chain, and life cycle. IBM Systems
Journal, 47(1):71–85, 2008.

6. S. Alter. Viewing systems as services: A fresh approach in the IS field. Communications of
the Association for Information Systems, 26(11), 2010.

7. G. Banavar, A. Hartman, L. Ramaswamy, and A. Zherebtsov. A formal model of service
delivery. In P. P. Maglio, C. A. Kieliszewski, and J. C. Spohrer, editors, Handbook of Service
Science, Service Science: Research and Innovations in the Service Economy, pages 481–507.
Springer US, 2010.

8. C. Baumann and C. Loës. Formalizing copyright for the internet of services. In G. Kotsis,
D. Taniar, E. Pardede, I. Saleh, and I. K. Ibrahim, editors, iiWAS’2010 - The 12th Interna-
tional Conference on Information Integration and Web-based Applications and Services, 8-10
November 2010, Paris, France, pages 714–721. ACM, 2010.

9. M. Böttcher and K.-P. Fähnrich. Service systems modeling: Concepts, formalized meta-model
and technical concretion. In H. Demirkan, J. C. Spohrer, and V. Krishna, editors, The Science
of Service Systems, Service Science: Research and Innovations in the Service Economy, pages
131–149. Springer US, 2011.

10. H. Chesbrough and J. Spohrer. A research manifesto for services science. Commun. ACM,
49(7):35–40, 2006.

11. K. A. Dhanesha, A. Hartman, and A. N. Jain. A model for designing generic services. In 2009
IEEE International Conference on Services Computing (SCC 2009), 21-25 September 2009,
Bangalore, India, pages 435–442. IEEE Computer Society, 2009.

12. R. Ferrario and N. Guarino. Towards an ontological foundation for services science. In
J. Domingue, D. Fensel, and P. Traverso, editors, Future Internet - FIS 2008, First Future

http://en.wikipedia.org/wiki/Participatory_design
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf
http://en.wikipedia.org/wiki/Participatory_design
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

108 Ferrario, Guarino, Trampus, Laskey, Hartman, and Gangadharan

Internet Symposium, FIS 2008, Vienna, Austria, September 29-30, 2008, Revised Selected
Papers, volume 5468 of Lecture Notes in Computer Science, pages 152–169. Springer, 2008.

13. R. Ferrario, N. Guarino, and M. Fernandez-Barrera. Towards an ontological foundation
for services science: The legal perspective. In G. Sartor, P. Casanovas, M. A. Biasiotti,
M. Fernandez-Barrera, P. Casanovas, and G. Sartor, editors, Approaches to Legal Ontologies,
volume 1 of Law, Governance and Technology Series, pages 235–258. Springer Netherlands,
2011.

14. R. Ferrario, N. Guarino, C. Janiesch, T. Kiemes, D. Oberle, and F. Probst. Towards an on-
tological foundation of services science: The general service model. In 10th International
Conference on Wirtschaftsinformatik, 16th - 18th February 2011, Zurich, Switzerland, pages
675–684, 2011.

15. C. Fillmore. Types of lexical information. In D. Steinberg and L. Jacobovitz, editors, Se-
mantics. An Interdisciplinary Reader in Philosophy, Linguistics and Psychology. Cambridge
University Press, London, UK, 1971.

16. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening ontologies
with dolce. In A. Gómez-Pérez and V. R. Benjamins, editors, Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, 13th International Conference,
EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings, volume 2473 of Lecture Notes
in Computer Science, pages 166–181. Springer, 2002.

17. T. Kiemes and D. Oberle. Generic modeling and management of price plans in the internet of
services. In K.-P. Fähnrich and B. Franczyk, editors, Informatik 2010: Service Science - Neue
Perspektiven für die Informatik, Beiträge der 40. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Band 1, 27.09. - 1.10.2010, Leipzig, volume 175 of LNI, pages 533–538. GI, 2010.

18. T. Kiemes, D. Oberle, and F. Novelli. Towards a reusable and executable pricing model in the
internet of services. In G. Kotsis, D. Taniar, E. Pardede, I. Saleh, and I. K. Ibrahim, editors,
iiWAS’2010 - The 12th International Conference on Information Integration and Web-based
Applications and Services, 8-10 November 2010, Paris, France, pages 722–729. ACM, 2010.

19. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz. Reference Model for
Service Oriented Architecture 1.0. Oasis standard, OASIS, Oct 2006.

20. P. Maglio and J. Spohrer. Fundamentals of service science. Journal of the Academy of Mar-
keting Science, 36:18–20, 2008.

21. P. P. Maglio, S. Srinivasan, J. T. Kreulen, and J. Spohrer. Service systems, service scientists,
ssme, and innovation. Commun. ACM, 49(7):81–85, 2006.

22. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology Library (final).
WonderWeb Deliverable D18, Dec 2003. http://wonderweb.semanticweb.org.

23. D. Oberle. Service ontology final report. Deliverable D.TEXO.9.3.2b, BMWi, Theseus Pro-
gramme, Use Case Texo, NOV 2010.

24. D. Oberle, N. Bhatti, S. Brockmans, M. Niemann, and C. Janiesch. Countering service in-
formation challenges in the internet of services. Journal of Business & Information System
Engineering (BISE), 5, 2009.

25. C. Riedl, N. May, J. Finzen, S. Stathel, V. Kaufman, and H. Krcmar. An idea ontology for
innovation management. Int. J. Semantic Web Inf. Syst., 5(4):1–18, 2009.

26. J. C. Spohrer, P. P. Maglio, J. H. Bailey, and D. Gruhl. Steps toward a science of service
systems. IEEE Computer, 40(1):71–77, 2007.

27. Y. Taher, W.-J. van der Heuvel, S. Koussouris, and C. Georgousopoulos. Empowering citizens
in public service design and delivery: a reference model and methodology. In Proceedings of
the Service Modelling And Representation Techniques Workshop (2010), 2010.

28. O. Terzidis, A. Fasse, B. Flügge, M. Heller, K. Kadner, D. Oberle, and T. Sandfuchs. Texo: Wie
THESEUS das Internet der Dienste gestaltet — Perspektiven der Verwertung. In L. Heuser
and W. Wahlster, editors, Internet der Dienste, acatech diskutiert, pages 141–161. Springer,
2011.

29. S. L. Vargo and R. F. Lusch. Evolving to a New Dominant Logic for Marketing. The Journal
of Marketing, 68(1):1 – 17, 2004.

http://wonderweb.semanticweb.org

4 Service System Approaches 109

30. E. Wittern and C. Zirpins. On the use of feature models for service design: the case of value re-
presentation. In Proceedings of the Service Modelling And Representation Techniques Work-
shop (2010), 2010.

Chapter 5

SOA Approaches

Thomas Kohlborn and Marcello La Rosa

Abstract As the service-oriented architecture paradigm has become ever more pop-
ular, different standardization efforts have been proposed by various consortia to
enable interaction among heterogeneous environments through this paradigm. This
chapter will overview the most prevalent of these SOA approaches. It will first show
how technical services can be described, how they can interact with each other and
be discovered by users. Next, the chapter will present different standards to facil-
itate service composition and to design service-oriented environments in light of
a universal understanding of service orientation. The chapter will conclude with a
summary and a discussion on the limitations of the reviewed standards along their
ability to describe service properties. This paves the way to the next chapters where
the USDL standard will be presented, which aims to lift such limitations.

5.1 Introduction

Broadly speaking, a Service-oriented Architecture (SOA) is a paradigm for arranging
and utilizing business capabilities and resources that may be under the control of dif-
ferent business domains [6], for the sake of producing business value. While SOA
does not imply the use of technology, it can help structure how technology is de-
ployed and organized within a particular organization, or across a consortium of or-
ganizations that need to interact with each other. That said, the underlying concepts
of service-orientation are typically realized by developing technical (i.e., electronic)
services that communicate with each other over the Web, as opposed to business ser-
vices, which may also be carried out manually. In this regard, SOA can also be seen
as a principle for designing software architectures which revolves around the notion
of “Web service.” A Web service is a self-contained, autonomous, reusable software

Thomas Kohlborn, Marcello La Rosa
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: t.kohlborn@qut.edu.au, e-mail: m.larosa@qut.edu.au

111 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York5

mailto:t.kohlborn@qut.edu.au
mailto:m.larosa@qut.edu.au

112 Thomas Kohlborn and Marcello La Rosa

component encapsulating discrete functionality, which is distributed and accessible
over the Internet.

Thus, the term Web service refers to a specific technology approach for imple-
menting a SOA, when the channel of communication is the Web. The following
definition of Web service has been proposed by the World Wide Web Consortium in
2004 [24]:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP-messages, typically conveyed using HTTP with an XML seri-
alization in conjunction with other Web-related standards.

As SOA and Web services have been researched by academia and applied by
practitioners for nearly a decade, multiple standards have emerged in this field.
These standards propose how a service-oriented environment can be created, how
basic service functionality can be described, and how services can be aggregated
to provide high-level functionality. In this context, the major standardization bod-
ies are the World Wide Web Consortium1 (W3C), the Organization for the Ad-
vancement of Structured Information Standards2 (OASIS), the Object Management
Group3 (OMG) and The Open Group.4 This chapter will describe the most mature
and widely-used SOA standards promoted by these four consortia, and discuss the
shortcomings of these standards when it comes to a more universal understanding
of service properties.

The chapter is organized according to Figure 5.1, which classifies these SOA
standards based on their level of abstraction. Accordingly, Section 5.2 will start by
presenting two different styles for describing basic service functionality, i.e., WS-*
and REST. These styles manifest themselves into two main description languages,
namely WSDL and WADL, which have reached different levels of maturity. Sec-
tion 5.2 will also discuss SOAP as a standard message protocol to allow commu-
nication among services, and its extensions to model non-functional aspects of a
service such as WS-Addressing and WS-Security. Section 5.3 will describe two dif-
ferent mechanisms that can be used to store and discover Web services described
in WSDL, namely UDDI and WS-Discovery. Next, Section 5.4 will overview two
different specifications (WS-BPEL and BPMN) for compositing services according
to two complementary models: orchestrations and choreographies. Focusing on the
top-level of abstraction of the SOA Stack, Section 5.5 will present a UML meta-
model (SoaML) and two reference models (SOA-RM and SOA Ontology) that can
be used to design service-oriented architectures and describe their constituent ele-
ments. The chapter will conclude with a summary and a discussion on the short-
comings of these standards along their ability to capture service properties.

1 http://w3.org
2 http://www.oasis-open.org
3 http://www.omg.org
4 http://www.opengroup.org

http://w3.org
http://www.oasis-open.org
http://www.omg.org
http://www.opengroup.org

5 SOA Approaches 113

Fig. 5.1: The SOA Stack.

5.2 Service Description

There are two different architectural styles to describe Web services, namely WS-*
and Representational State Transfer (REST). The WS-* style builds upon the idea
that each service is accessible at one ore more locations or endpoints, each described
by a Unique Resource Identifier (URI). Each service encompasses multiple opera-
tions, which in turn means that each operation is service-dependent. A message that
is exchanged between operations or services consists of some metadata (header) and
the message body (payload). This architectural style is typically realized by using
WS-* standards over SOAP as the messaging protocol. However, other protocols
such as HTTP or SMTP may be used. In fact, WS-* services can operate on top
of different protocols, which enables the delivery of infrastructure services, such as
security, transactions, routing and reliability. In scenarios where a service contract
describing the service is already available, this architectural style can be well uti-
lized. Nonetheless, on the downside it requires more specific infrastructure, which
induces overhead and can easily be misused.

On the other hand, REST is a design idiom built around the idea of exposing
services as resources identified by a URI, instead of exposing single service opera-

114

tions. The state of a resource can be manipulated by HTTP actions such as create,
read, update and delete (i.e., HTTP PUT, GET, POST and DELETE). Data to/from
a service is typically transmitted using plain old XML (POX) over HTTP, which has
the advantage of being very simple and lightweight (other languages can be used
in place of POX such as the JavaScript Object Notation — JSON). However, this
paradigm depends solely on HTTP and lacks methods for producing well-described
service contracts due to its early state of maturity. Moreover, RESTful Web services
are completely stateless, which might be a disadvantage in long-running transac-
tions.

This section will present WSDL as the standard language to describe Web ser-
vices in the WS-* style, and provide a brief overview of WS-Polity, a specification
to enrich WSDL documents with policy information. This discussion will be com-
plemented by an overview of SOAP, the standard protocol for message exchange in
this style. and of its most important extensions. The section will conclude with an
overview of WADL — an alternative language to WSDL for describing RESTful
services.

5.2.1 Web Services Description Language

The Web Service Description Language (WSDL) provides a means to describe a
Web service contract by using XML [16]. The specification is driven by the W3C
and is currently published as a recommendation in version 2.0 [27], while version
1.1 [23] is a group note, which does not have the same level of W3C endorsement.
WSDL allows one to invoke the service’s operations independently of the service’s
implementation, thereby sharing characteristics of classical interface definition lan-
guages that are commonly found in middleware technologies. Instead of utilizing
naming and directory services, as commonly found in a middleware environment,
Web services operate in rather decentralized environments. Therefore, in WSDL the
specific location of the service needs be be explicitly defined, so that other services
or applications can invoke the service’s operations.

A WSDL 2.0 document is divided into two parts, namely an Abstract part and a
Concrete part as shown in Figure 5.2.

The Abstract part contains one or more Interface elements and the Types element.
An Interface element describes a set of operations offered by the service including
the required input and output messages for each operation. For example, a Supplier
service may offer service operations to create quotes, to process orders and to gen-
erate invoices. Each of these operations needs an input document and may produce
an output document in reply. For example, the operation to create quotes accepts
‘request for quote’ documents as input and produces ‘quote’ documents as output
(synchronous operation), while the operation to process orders only accepts ‘order’
documents as input but does not produce any output document (asynchronous oper-
ation).

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 115

The Types element describes the data types of each message used in an Interface
using XML Schema [31]. One can either specify their own (complex) data types,
such as a type to describe the ‘quote’ or the ‘order’ documents, or use built-in XML
Schema simple data types, such as String or Date. However, WSDL is not bound to
XML Schema, and different data type languages may also be used by using exten-
sion elements.

The Concrete part defines the implementation details necessary to access the ser-
vice. This part contains one or more Binding elements, and one or more Service
elements. A Binding describes the mapping between the various messages speci-
fied in an Interface and a transmission protocol such as SOAP (for WS-* services)
or HTTP (for both WS-* and RESTful services). It also describes the binding style
for each message, e.g., Remote Procedure Call (RPC) or Document-style. A Service
element is used to link a Binding with a service endpoint, i.e., the URI where the ser-
vice can be accessed. Since multiple Service elements can be defined, a service may
be accessible via different endpoints, and using different transmission protocols.

WSDL 2.0 provides the capability of modeling eight different message exchange
patterns between a service and its consumer, enriching those available in WSDL
1.1. Four patterns (In-Only, Out-Only, Robust-In-Only, Robust-Out-Only) consist
of a single message being sent by the consumer to the service or vice versa, which
may be replied by a fault message in case of an error. Another four patterns (In-Out,
Out-In, In-Optional-Out, Out-Optional-In) consist of an initial message sent to ei-
ther party which is (optionally) replied by a correlated message. These message ex-
change patterns abstract out binding-specific information like timing between mes-
sages, whether the pattern is synchronous or asynchronous (an aspect which was

Fig. 5.2: Structure of a WSDL document.

116

instead predetermined in WSDL 1.1), and whether the message is sent over a single
or multiple communication channels.

There are two generic approaches to develop Web services: code-first and contract-
first. The former is a top-down approach requiring the development of classes in an
object-oriented programming language, which can then be used to generate a WSDL
document that describes the functionality offered by these classes as service oper-
ations. The latter is a bottom-up approach requiring the development of a WSDL
document first, which is then used to create the skeleton of the required classes to
be implemented. Existing web programming platforms offer ways to control the
mapping between WSDL and object oriented languages. For JAVA, for example,
open-source Web service platforms such as Apache AXIS 2 and Oracle Metro Stack
can be used. An alternative in the .NET development environment is Windows Com-
munication Foundation (WCF).

As an interface description language (IDL), WSDL offers a language-independent
description of the structural aspects of a Web service, while at the same time being
well supported by languages such as Java which need to provide or consume the
operations described in a WSDL document. Nonetheless, WSDL is a very technical
language which restricts its applicability to an IT audience only. Further, WSDL
does not provide any capabilities to link service operations to business entities such
as processes, objects and capabilities within an organization, nor does it provide
any means to specify non-functional aspects of a Web service such as pricing, legal
terms and conditions under which the service may be consumed, and service level
agreements (response time, availability, etc.).

WS-Policy is a W3C recommendation [28] that aims to partly lift such limita-
tions. It provides a mechanism for service providers to enrich WSDL artifacts with
policies on various service aspects such as security or service level agreements. It
can also be used by consumers to specify the requirements that must be met by a
service provider in order for the consumer to use its services. However WS-Policy is
too tightly-coupled to WSDL documents, and misses explicit connections to coun-
terparts in the business domain. Moreover, a Web service policy is typically spread
over different WSDL documents, so a coherent picture about what policy belongs
to what kind of services is often hard to identify.

5.2.2 SOAP and Messaging Specifications

SOAP (Simple-Object Access Protocol) is an XML-based protocol for message ex-
change between Web services, which uses various underlying transport protocols,
such as, e.g., HTTP, TCP or SMTP. SOAP can be regarded to as an asynchronous
way to support the exchange of messages between different parties by implementing
request-response interactions out of multiple one-way interactions. SOAP defines
the format of the exchanged messages as part of a transmission between sender, re-
ceiver and potential intermediaries. However, due to the nature of the protocol, it is
stateless and provides no semantic capabilities to interpret the meaning of the mes-

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 117

sages that are exchanged. W3C published SOAP in version 1.2 as a recommendation
in 2007 [26].

A SOAP message consists of an envelope containing a Header and a Body as
depicted in Figure 5.3:

Fig. 5.3: The SOAP Envelope.

The Header carries the metadata for infrastructure services, such as security,
transactions, routing and reliability. As such, it is extensible, but optional. The Body,
which is mandatory, contains the payload of a message, i.e., its content, and can be
interpreted by the targeted component, i.e., the consumer of a Web service or its
provider. Additionally, it can contain optional fault elements which hold errors and
status information for a SOAP message.

WSDL and SOAP by themselves are not enough: they just provide mechanisms
to realize basic point-to-point communications. Major shortcomings are the inability
to capture complex multi-party interactions, and to specify security, reliability, and
transactional aspects of a service. To this purpose, a number of WS-* specifications
have been defined to extend SOAP messages with various types of non-functional
information. Notably, Web Services Addressing (WS-Addressing) provides a stan-
dard mechanism to specify message routing data within a SOAP Header. Using
WS-Addressing, the network-level transport protocol (e.g., HTTP) becomes respon-
sible only of delivering the message to a dispatcher indicated in the destination ad-
dress, e.g., a Web service run-time server which can interpret the WS-Addressing
metadata, and route the message to the right service instance. This information is
contained in the Endpoint Reference, which is an XML structure defined in the
SOAP Header. It includes the destination URI of the message and any parame-
ter that is required to dispatch the message to the destination. It may also contain
optional metadata (such as WSDL) about the service. Moreover, WS-Addressing
allows request-response interactions to be decoupled from the lifetime of the un-
derlying HTTP request/response protocol. This is achieved by specifying a special
field (ReplyTo) in the SOAP Header which a service provider can use to reply to its
requester. Thus, a service does not need to rely on the network-transport level to de-
liver a response message to the specified recipient. In this way, WS-Addressing en-
ables long-running interactions that can span arbitrary periods of time. The specifi-
cation has been standardized by the W3C Web Services Addressing Working Group
in version 1.0 [25].

118

Another extension to the SOAP Header is Web Services Security (WS-Security).
This specification prescribes how to sign and encrypt SOAP messages to ensure in-
tegrity and confidentiality of a SOAP message. It also specifies how to attach secu-
rity tokens such as Security Assertion Markup Language (SAML) [5] and Kerberos
[19] to messages to ensure the sender’s identity. The specification has been driven
by OASIS and published as a standard in version 1.1 in 2006 [7].

Web Services Reliable Messaging (WS-ReliableMessaging) is also a SOAP ex-
tension that focuses on the reliable delivery of messages between distributed appli-
cations in the case of failures. The protocol provides different delivery assurances,
so that a message is for example delivered at least once, or at most once. The spec-
ification has been driven by OASIS and published as a standard in version 1.1 in
2007 [9].

Finally, transactional support for Web services is offered by the Web Service
Coordination (WS-Coordination) specification. In this context, a transaction de-
fines two or more service operations that must all be performed with a specific
workflow for the transaction to be committed successfully. WS-Coordination, pub-
lished by OASIS in version 1.2 [12], provides an extensible framework for the
support of coordination between distributed applications. Two alternative specifi-
cations, both building on top of WS-Coordination, can be used to define the bound-
aries of a transactional context. These are the Web Service Atomic Transaction
(WS-AtomicTransaction) [10], more suitable for short-lived transactions, and the
Web Service Business Activity (WS-BusinessActivity) [11], more suitable for long-
running transactions, both published by OASIS.

Many other (minor) WS-* specifications exist, however their description falls
outside the scope of this introductory chapter to SOA standards. For a consolidated
overview of existing Web service standards until 2006, the interested reader is ad-
vised to visit http://www.innoq.com/soa/ws-standards.

5.2.3 Web Application Description Language

An alternative language to WSDL for the description of Web service contracts is
the Web Application Description Language (WADL). More generally, WADL aims
to provide a machine-readable description of HTTP-based Web applications, which
is platform- and language-independent. As such, this specification can be used to
describe RESTful Web services. In this regard, WADL focuses on the resources
that are needed and provided by a service and their interrelationships, contrarily to
WSDL which focuses on the service operations.

A WADL document is described in XML, according to the structure illustrated
in Figure 5.4.

The Grammar element provides a container for the data schemas used to describe
the format of data exchanged by the service. These definitions can be included inline
or referenced from an external document. While no specific data format is mandated,

Thomas Kohlborn and Marcello La Rosa

http://www.innoq.com/soa/ws-standards

5 SOA Approaches 119

Fig. 5.4: The structure of a WADL document.

the WADL specification describes the use of XML Schema and RelaxNG [3] for this
purpose.

The Resources element is where the various resources on offer or needed by a
service can be specified. Each Resource is described by a URI where the resource
is available, by an optional set of sub-resources, and by specifying the relationships
with other (sub-)resources. Moreover, each resource has a resource type, described
in the Resource Type element, which lists all the HTTP methods that can be applied
to that resource (e.g., a GET or a POST), including the required inputs and outputs
for each method. The available methods that can be associated with a resource are
defined in the Method element, and pointed to from each resource type definition,
while the formats of the input (i.e., HTTP request) and output (i.e., HTTP response)
messages are those specified in the Grammar element. Each input message may
have a set of HTTP parameters, which are defined in the Param element. Finally, the
Representation element describes the representation of a resource’s state, e.g., an
XML document or a simple text document. The elements Resource Type, Method,
Representation and Param are optional as their content can be directly defined within
a Resource element. They are used to specify resource behavior that is expected to
be supported by multiple resources.

WADL can be regarded to as being the REST counterpart to WSDL 1.1. How-
ever, WSDL 2.0 also supports the ability to describe RESTful Web services, thus
the two specifications are competing with each other. For such reason, while WADL
is currently a W3C member submission [30], the consortium itself has “no plans to
take up work based on this submission” [1].

Similar to WSDL, there exist software packages that can generate client side
software stubs from a WADL file, such as Glassfish WADL. However, WADL suf-
fer from the same problems that affect WSDL when it comes to describing service
properties. It just limits its scope to functional aspects of Web services, and ad-
dresses them at a technical level only. As such, WADL is also an IDL that can only
be used by a technical audience.

120

5.3 Service Discovery

Once services are described, they need to be made discoverable in order for ser-
vice consumers (i.e., humans or machines) to identify and use them. Moved by this
purpose, the Universal Description, Discovery and Integration (UDDI) registry has
been developed and standardized in its current version 3.0.2 by OASIS [4]. The
registry is based on XML, is platform-independent, and allows service providers to
register their services and locate other Web services. In particular, the registry can
be queried by SOAP messages to provide access to WSDL documents, which point
out how to interact with the services registered in the directory. Therefore, UDDI is
tightly-related to WS-* service, described in WSDL.

The register consists of three components: i) White Pages, ii) Yellow Pages and
iii) Green Pages. White Pages contain information about the provider of the service,
such as their name and address. Thus, the registry can be queried for services for
which the service provider is already known. Yellow pages categorize services based
on underlying taxonomies, such as the Standard Industrial Classification,5 the North
American Industry Classification System,6 or the United Nations Standard Products
and Services Code.7 Green Pages are comparatively technical in nature as they de-
scribe how to access the Web services being stored in the repository. In particular,
they provide information about the service bindings. This includes the endpoint and
parameters of the service as well as the references to specification of relevant Inter-
faces as described in a WSDL document. As services can have multiple bindings,
a service can be related to multiple Green Pages. The OASIS Technical Committee
that was responsible for developing UDDI completed their work in 2007. Thus this
specification will not be further extended in the future [2].

UDDI is a technical discovery mechanism, which has no explicit links to ele-
ments in the business domain. And while it offers multiple extension mechanisms
to address these lacunae, it provides limited insights into their concrete utilization.
For example, pointers to other documents beyond WSDL that accompany a service
can be specified in UDDI, but search capabilities that leverage those documents are
limited due to a lack of standardization in regard to the required structure of these
documents. In other words, UDDI does not prescribe how the information that is
deposited in the White, Yellow, and Green Pages should be described.

An alternative discovery mechanism to UDDI is the Web Service Dynamic Dis-
covery (WS-Discovery), which has been standardized by OASIS in version 1.1 in
2009 [13]. Instead of utilizing a centralized registry, this specification proposes a
multicast discovery protocol to locate services in a local network. In this way, ser-
vices that match the requirements return a response directly to the requester. Un-
fortunately WS-Discovery remains a technical discovery mechanism which suffers
from the same shortcomings of UDDI.

5 http://www.sec.gov/info/edgar/siccodes.htm
6 http://www.census.gov/eos/www/naics
7 http://www.unspsc.org

Thomas Kohlborn and Marcello La Rosa

http://www.sec.gov/info/edgar/siccodes.htm
http://www.census.gov/eos/www/naics
http://www.unspsc.org

5 SOA Approaches 121

5.4 Service Composition: Orchestration and Choreography

Often the consumption of a single service is not sufficient to fulfill a certain busi-
ness goal. In this case, service composition becomes relevant. In service composi-
tion, services are no longer executed individually, but coordinated through business
processes. A business process describes the logical and temporal order in which a
number of activities have to be executed to achieve a given goal. For example, a
business process for order fulfillment describes interactions among two parties: a
Supplier and a Buyer, and examples of activities of this business process are “Make
a request for quote,” “Emit order,” etc.

Business processes are typically described in a diagrammatic fashion by means of
process models, where control-flow dependencies among activities can be enriched
with information on the resources performing these activities and the data being
exchanged by these activities. In service composition, the activities of a process
model are performed by Web service operations. This means that the execution of
an activity leads to the invocation of a specific Web service operation.

There are two types of process models, namely choreography and orchestration,
which capture two different viewpoints in a service composition. A choreography
model describes the global business process of the interactions that occur among all
participants. In the order fulfillment example, this means capturing all communica-
tion activities (i.e., send and receive) that occur among the Carrier, the Suppler and
the Buyer. An orchestration model is the projection of a choreography onto a single
participant: it describes the order in which the various service operations need be
invoked from the perspective of that participant. For example, if a communication
activity in a choreography model is “Make a request for quote,” this activity will
correspond to the communication activity “Send request for quote” in the orches-
tration model of the Buyer, and to the communication activity “Receive request for
quote” in the orchestration model of the Supplier. Furthermore, while choreogra-
phy models focus on communication activities only, an orchestration model needs
to also specify the internal activities that are required to create or consume the mes-
sages being exchanges by that particular participant. For example, activity “Send
request for quote” in the Buyer’s orchestration model needs be preceded by an ac-
tivity “Prepare request for quote” to compile the ‘request for quote’ document to
be sent, while activity “Receive request for quote” in the Supplier’s orchestration
model needs be followed by an activity “Emit quote” to create the quote that will be
sent back to the Buyer.

The restriction of an orchestration model to communication activities only is
called behavioral interface. This artifact, also known as public process or business
protocol, describes the dynamic aspects of a Web service, i.e., the order in which
its operations have to be provided or consumed, while hiding the internal activi-
ties which may contain business-sensitive information. Thus, a behavioral interface
complements a WSDL or WADL document (called structural interface), which de-
scribes the static aspects of a Web service such as its operations and the content of
its messages.

122

From a service design perspective, a choreography model could be used by busi-
ness/IT analysts to frame a B2B collaboration among various parties, and then each
involved party could create its own orchestration model by projecting the chore-
ography to the activities that are related to that specific party, and then refining this
model by adding internal activities. Vice versa, one could expose their own service’s
structural and behavioral interfaces, and once a prospective consumer for that ser-
vice has been identified, a choreography involving both participants could be framed
against these interfaces. However, as we will see in this section, languages such as
WS-BPEL and BPMN that support orchestration and choreography modeling, do
neglect important aspects such as information about delivery channels, payment de-
tails, obligations on interactions, service level agreements, and any rights that par-
ticipants may have in regard to the global business process. As such, these languages
alone are inadequate to be used in business contexts.

5.4.1 Web Services Business Process Execution Language

WS-BPEL (BPEL for short) is an XML-based language used to define behavioral
interfaces and orchestration models, which has been standardized by OASIS in ver-
sion 2.0 [8]. BPEL process models can be deployed to a BPEL engine and be auto-
matically executed.

At its core, BPEL is an imperative programming language, since it allows the
creation of process models which are essentially structured in blocks of instructions
(barring a few exceptions). It supports the typical constructs of an imperative pro-
gramming language such as Java. For example, one can create Scopes (like Java
routines) and scoped variables (like Java local variables), Assigns (to capture inter-
nal activities that manipulate data), as well as to handle exceptions (like the Throw
and Catch constructs in Java). Further, there are constructs to establish the order
of activities, such as Sequence (to sequentialize activities, like the Java semicolon),
Flow (to execute multiple activities at the same time, like Java Threads), and con-
structs to route control such as While, RepeatUntil and If-Then-Else.

In addition, BPEL has a few more features which are specifically designed to
coordinate Web service operations through business process models, thus provid-
ing an advantage over traditional object-oriented languages in this respect. First,
BPEL is built on top of WSDL 1.1. The language provides three communication
activities (Invoke, Receive and Reply) which are directly mapped to Web service
operations described in an underlying WSDL document. This is achieved by defin-
ing an extension to WSDL called partnerLink type where one can specify whether
the BPEL process acts as a provider or consumer for the particular WSDL opera-
tion. Second, BPEL supports XML natively. BPEL variables are typed according to
an XML Schema type which can be specified in an external XML Schema docu-
ment or mapped to a WSDL message type (e.g., one can have a variable whose type
is that of a ‘request for quote’ message). This eliminates the impedance between
XML and object data structures, since there there is no need to unmarshal XML

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 123

documents into objects (e.g., a Java object) to manipulate them. Third, BPEL offers
a set of activities designed to model process-specific aspects, such as asynchronous
interactions, multiple sequential or concurrent executions of a scope (ForEach), race
conditions between incoming messages and timers (Pick), explicit modeling of par-
allelism and synchronization (Flow), transactional support (Compensate), and com-
plex multi-party interactions (Correlations). Fourth, since BPEL relies on WSDL,
it supports the full stack of WS-* specifications, such as WS-Addressing or WS-
Security, which can be seamlessly integrated into BPEL processes. Finally, while
the BPEL specification does not come with a visual notation to represent BPEL
process models, many tools offer a diagrammatic view of a BPEL model which
facilitates their understanding and editing.

Fig. 5.5: An example of a BPEL executable process from Oracle JDeveloper.

124

BPEL differentiates between two levels of processes, namely abstract process
and executable process. The former captures behavioral interfaces and as such it
only contains Invoke, Receive and Reply activities, as well as routing constructs,
and cannot be executed by a BPEL engine. The latter is used to model fully-fledged
orchestrations, where communication and routing activities are interleaved with in-
ternal activities like Assigns to model the underlying process logic. As an example,
Figure 5.5 shows an extract of the executable BPEL process for the Supplier partic-
ipant in our order fulfillment example. For example, activity “prepareQuote” is an
Assign (internal activity), while activity “SendQuote” is a Reply (communication
activity). The notation used is that of the Oracle JDeveloper 11 BPEL editor.

BPEL lacks a mechanism to model user activities, i.e., those activities that re-
quire user input such as the preparation of a ‘request for quote’ document, or the
approval of an ‘invoice’ document. During the execution of an instance of a BPEL
process, these activities could be exposed to a process user via an electronic form
accessible through the user’s worklist application (an interaction paradigm typical of
workflow management systems). To obviate this limitation, OASIS is in the process
of standardizing WS-HumanTask [14], a specification that defines the scope of user
activities, including their properties, behavior and a set of operations to manipulate
their data, and a BPEL extension to support WS-HumanTask, namely WS-BPEL
Extension for People (BPEL4People) [15].

Another limitation of BPEL is that it is only suitable to a technical audience. For
example, the lack of a standard notation hampers its use among business analysts,
while its strong dependence on XML makes it hard to use for people who are not
sufficiently proficient with XML and its related specifications. For example, the only
way to manipulate variables’ data in BPEL is via XPath [22] expressions, which are
verbose and require a deep understanding of the XML structure of the variables to
be addressed.

5.4.2 Business Process Model And Notation

The Business Process Model and Notation (BPMN) provides a language and a
graphical notation for the specification of business processes. The latest version
(2.0) has been standardized by OMG in January 2011 [18] after a negotiation pro-
cess lasted over three years.

The primary objective of BPMN 2.0 is to provide a means for all stakeholders to
understand and model business processes. Thus, the standard needs to be intuitive
enough to be used by business analysts while being expressive enough to represent
complex semantics and implementation details for a technical audience. This led to
the following main innovations in BPMN over its previous version 1.2 []:

• executable semantics, similar to BPEL, the semantics of the various modeling
constructs has been formally defined, such that BPMN models which incorporate
sufficient implementation details can be deployed to a native BPMN engine and
be automatically executed;

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 125

• interchange format, the specification now provides a standard XML-based se-
rialization format which is machine-readable, thus facilitating tool interchange
while preserving semantic integrity, and automatic execution;

• support for both orchestration and choreography modeling, with the aim to facil-
itate proper integration between Business and IT people BPMN 2.0 supports new
constructs specifically designed to capture various service composition view-
points at different levels of abstraction.

Contrarily to BPEL, BPMN comes with its own visual notation, which resem-
bles common flowcharting techniques which most users are already familiar with.
However, its expressiveness goes well beyond flowcharts. The language itself is
graph-oriented and not block-structured like BPEL, and provides over 100 modeling
elements spanning from simple constructs (tasks, gateways, events, subprocesses)
to more complex constructs (exception handling, compensation, transactional sup-
port, escalation, synchronization signals and more). BPMN also offers constructs to
model organizational participants and their subdivisions (e.g., organizations, depart-
ments, roles, single persons) as well as business objects (including software systems,
information and physical artifacts). Despite the richness of its meta-model, the spec-
ification defines four conformance classes with the purpose of facilitating the use of
BPMN models and their exchange by different stakeholders and tools. These are:

1. Process Modeling, suitable at a business level for requirements analysis and
communication purposes, this class does not contain implementation details;

2. Process Execution, suitable at a technical level for automation in a BPMN en-
gine, this class must specify implementation details such as mapping to Web
service operations, format of the messages being exchanged and communica-
tion protocols;

3. BPEL Process Execution, while the aim of BPMN is to be directly executable
in its native XML format, the specification still provides a translation between
BPMN modeling constructs and their BPEL counterparts. This class is a re-
striction of the previous class to remove those BPMN constructs that cannot be
directly mapped onto BPEL constructs, due to BPEL’s block-structure nature;

4. Choreography Modeling, suitable at a business level to frame B2B collabora-
tions, this class contains the constructs for modeling choreographies.

In particular, BPMN offers different types of diagrams to model B2B collabora-
tions at different levels of abstraction. Conversation diagrams sit at the top level of
abstraction. They provide a simplified view on the order relation of the messages
being exchanged among two or more business participants. Figure 5.6 shows an
example of the conversation between the Supplier and the Buyer in our order ful-
fillment process. As we can observe, at this level of abstraction it is not possible
to distinguish mandatory messages from optional ones, nor to group messages in
interactions.

A Conversation diagram can be refined into a Choreography diagram, which
specifies the logical and temporal dependencies among the various messages being
exchanged, from the viewpoint of the single interactions. For example, at this level
one can introduce data-driven decisions between messages, race conditions between

126

Request for Quote

Quote

Order

Order Cancelation

Cancelation Act

Order Confirmation

Invoice

Payment

BuyerSupplier

Fig. 5.6: An example of Conversation diagram in BPMN 2.0.

messages and a timer, and parallel messages. Figure 5.7 shows the refinement of the
Conversation in Figure 5.6, where messages have been grouped into interactions
(e.g., message ‘Quote’ is the reply to message ‘Request for Quote’), and a race
condition has been specified between messages ‘Order confirmation’ and ‘Order
cancelation.’

Cancel Order

Order

Place OrderGet Quote

Confirm
Order

Order Cancelation

Cancelation Ack

Order
Confirmation Payment

Pay for Order

Invoice

B
uy

er
S

up
pl

ie
r

Request
for Quote

Quote

Fig. 5.7: An example of Choreography diagram in BPMN 2.0.

The next level of abstraction is represented by the Collaboration diagram, where
the choreography of the messages being exchanged is matched by the activities that

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 127

have to occur within each participant. The projection of a choreography to a specific
participant can manifest itself into two types of diagrams within a Collaboration:
Public (or abstract) process and Private (or internal) process. The former corre-
sponds to a behavioral interface since it exposes communication tasks only, while
the latter corresponds to an orchestration model where the internal tasks are also
modeled. Figure 5.8 shows the Collaboration diagram . In particular, we can observe
that the Buyer is represented as a private process (e.g., activity “Prepare request for
quote” is internal) where the Supplier is represented as a public process, without
showing any details of its internal realization.

S
up

pl
ie

r
B

uy
er

Pay for
Order

Confirm
Order

Cancel
Order

Prepare
Order

Order Order Cancelation

Cancelation
Ack

Order
Confirmation

Payment

Invoice

Get Quote

Request
for Quote

Quote

Prepare
Request

for Quote

Decide
whether to
continue

Confirm

Cancel

Fig. 5.8: An example of collaboration diagram in BPMN 2.0, with both private
process (Buyer) and public process (Supplier).

BPMN addresses BPEL’s main limitation of being skewed toward a technical
audience, by providing different types of diagrams to model B2B collaborations at
different abstraction levels. However, BPMN does not (yet) provide any concrete
mechanism to automatically derive the abstract process model of a specific partici-
pant from a choreography model, or to automatically expose a set of choreography
interactions from a private or abstract process model.

5.5 Meta and Reference Models for SOA

While by the mid 2000s the notions of service description, discovery and com-
position had reached a certain level of maturity, as evidenced by the proliferation
of standards and research approaches in these fields, there was still little support
for understanding and designing service-oriented architectures as a whole. Moved
by this purpose, OASIS defined a Reference Model for Service-oriented Architec-

128

ture (SOA-RM) in 2006. Similarly, The Open Group drafted an alternative reference
model in the form of an ontology for service-oriented architectures (SOA Ontol-
ogy) in 2010. Finally, OMG developed the Service-oriented architecture Modeling
Language (SoaML) in 2009 with the aim to facilitate the model-driven design of
service-oriented architectures. These three initiatives will be the topic of this sec-
tion.

A major shortcoming of these specifications, as it will be shown, is their lim-
ited support for describing complex (composite) services and processes that involve
multiple interacting participants in a business network.

5.5.1 Reference Model for Service-oriented Architecture

SOA-RM is promoted by OASIS with the purpose to clarify the core notions in the
SOA domain. The OASIS-RM Technical Committee was formed in 2003 with the
objective to develop a model that could put clarity in the SOA domain, and mean-
time, foster the creation of specific service-oriented architectures. The outcome, the
reference model, was approved for standardization in 2006 [6].

SOA-RM took the form of an abstract framework defining the significant rela-
tionships that exist among the entities involved in a service-oriented architecture. It
consists of a minimal set of unifying concepts, axioms and relationships and is in-
dependent of specific technologies and concrete implementation details. According
to this reference model, SOA is “a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains.” Thus,
SOA provides a mechanism for matching the needs of a service consumer to the
capabilities offered by a service provider.

The central construct of the SOA-RM is the service, which is defined as “a mech-
anism to enable access to one or more capabilities, where the access is provided us-
ing a prescribed interface and it is exercised consistent with constraints and policies
as specified by the service description.” Around this notion, three dynamic concepts
are of relevance in SOA-RM:

1. Visibility: One has to ensure that the service provider and consumer are able to
see each other. This is true for any type of relationship between service provider
and consumer regardless of the specific instantiation of these entities (e.g., ap-
plications or humans). Visibility is influenced by three factors: awareness, will-
ingness and reachability. The service consumer needs to be aware of the exis-
tence of the service provider; both need to be willing to interact with each other
and the service provider needs to be reachable by the service consumer.

2. Interaction: The interaction is dependent on the visibility because service con-
sumer and provider cannot interact if they do not see each other. In order to
understand what is needed for interacting with a service, the description needs
to cover an information model and a behaviour model. The former model de-
tails the information that will be exchanged when interacting with the service,

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 129

whereas the latter model depicts “the actions that may be invoked against the
service.”

3. Real World Effect: The result of any interaction is a real world effect, which can
instantiate itself as the information that is returned by the service or a change in
the state of entities that are involved in the interaction.

The above concepts are considered to be dynamic aspects as they relate to the
interactions with services. Besides, SOA-RM defines three additional aspects that
relate to services themselves. These are:

1. Service Description: A service description contains all the information that is
needed for a consumer to decide if the service is of relevance for the specific
context. Additionally, the description contains information that is needed to ac-
tually use the service. Thus, a service description facilitates dynamic aspects
such as visibility and interaction.

2. Contract and Policy: A contract is a formal agreement between two or more
parties, whereas a policy constrains the use, deployment, or description of a
specific entity as defined by its owner.

3. Execution Context: The execution context includes all technical and business
elements that are somehow of relevance for the interaction between service
providers and consumers, such as infrastructure elements and process entities,
as well as any policies and contracts that may be in force. Thus, each interaction
has a specific execution context.

SOA-RM also provides a notion of Process Model. Accordingly: “the process
model characterizes the temporal relationships and temporal properties of actions
and events associated with interacting with the service.” However this aspect is in-
tentionally underspecified. For example, while orchestration and choreography may
be part of a process model, the orchestration of multiple services is not addressed in
the reference model. This is because the focus of this initiative is on modeling what
services are and what key relationships are involved in modeling services.

5.5.2 Service-oriented Architecture Ontology

Moved by a similar purpose to SOA-RM, the SOA Ontology has been standardized
by The Open Group in 2010 [21]. This standard relies on the following definition of
service, which is purposefully agnostic to the context in which a service is applied,
i.e., a business domain or an IT domain:

A service is a logical representation of a repeatable activity that has a specified outcome. It
is self-contained and is a ‘black box’ to this customers.

As such, the SOA Ontology aims to be used by different user categories: i) busi-
ness people and system/software designers, to clarify on the SOA concepts and how
they can be implemented within an organization; ii) solution architects, to provide

130

metadata for architectural artifacts; and iii) architecture methodologists, to provide
a component of SOA meta-models.

The ontology itself is specified in the Web Ontology Language (OWL) [29] and
consists of a set of classes that capture the core concepts of SOA, their properties
and interrelations. There are classes to define the effects of a service interaction; the
various elements involved in an interaction (i.e., people, organizations, entire sys-
tems or single tasks), the events they generate, and the policies that may apply. Other
classes describe specific aspects of a service, such as a service interface specifying
what type of information a service can provide, and a service contract, specifying
the effects of an interaction with that service, such that guaranteed service level
agreements can be specified. Finally, a set of classes defines how services may be
composed (i.e., via an orchestration, a choreography or a more abstract collabora-
tion).

Although this ontology defines the relationships among the different classes, their
specific application remains context-generic. Applied to a specific domain or context
the ontology needs to be populated by “SOA OWL class instances of things in that
domain.” The ontology can be extended by importing other ontologies or classes.

5.5.3 Service-oriented Architecture Modeling Language

SoaML is an open-source UML profile and meta-model for designing service-
oriented architectures, which is driven by OMG [17]. The objective of SoaML is
to offer a comprehensive language to support service design within a model-driven
development approach. This initiative was moved by the observation that existing
enterprise architecture standards such as TOGAF [20], or general-purpose modeling
languages such as UML, were insufficient for capturing all required concepts proper
of a SOA in a standard and unambiguous way.

Instead of taking one specific perspective on service design, SoaML accommo-
dates different viewpoints to offer a consistent and cohesive approach to describing
service-oriented architectures. The meta-model includes constructs to identify ser-
vices, their interdependencies and requirements, for specifying service functional
capabilities, and the protocols and message exchange patterns, as well as non-
functional aspects such as service consumers and providers, consumer expectations
and the policies for using and providing services. The standard also provides an
extensibility mechanism to integrate SoaML design artifacts with other OMG meta-
models, such as BPMN 2.0, and a mechanism to define classification schemes for
services.

In line with the model-driven development paradigm proper of UML, one can
automatically generate code stubs from the various SoaML artifacts, e.g., deriving
the code for a Web service provider or for its client. However, the specification
neither limits SOA to be applicable to a purely technical level, nor a service to be
purely realized by software components.

Thomas Kohlborn and Marcello La Rosa

5 SOA Approaches 131

5.6 Summary and Discussion

This chapter provided an overview of the most mature standards in the SOA domain.
First, it described two different architectural styles to design services, namely WS-*
and REST, and their respective specifications, namely WSDL, SOAP and their ex-
tensions, and WADL. Subsequently, the chapter covered two discovery mechanisms
for Web services, i.e., UDDI and WS-Discovery, before shifting the focus from
single services to service composition, where multiple services can be organized to-
gether to provide business value. The chapter introduced different viewpoints in ser-
vice composition, i.e., behavioral interfaces, orchestration and choreography mod-
els, and discussed two different standards that can be used for capturing such views,
namely WS-BPEL and BPMN. The chapter completed the discussion on SOA stan-
dards by overviewing three specifications that provide guidance for the design of
service-oriented architectures, namely SOA-RM, SOA Ontology and SoaML.

This chapter also highlighted the limitations of these standards with regard to
their capability of describing service properties, and especially non-functional as-
pects of services and business processes, which are relevant in a business context. It
is worth noting that there has been an effort of recent standardization initiatives such
as SoaML and SOA Ontology, to move SOA away from a solely-technical domain,
despite their standardization bodies traditionally have a technical focus. SoaML, for
example, explicitly includes both technical and business aspects in its specification,
and so it does the SOA Ontology, which even uses a car-wash example that is clearly
non-technical. However, while providing valuable distinctions among the various
concepts of a SOA, these specifications do not provide sufficient depth to allow a
universal description of services. They do not consistently describe the functional
aspects of a service, in light of the link with the various entities that are involved in
the provision and consumption of such services, with the channels through which
a service can be provisioned and consumed, and especially with non-functional as-
pects such as pricing, legal terms and service level agreements. These limitations
have triggered the USDL initiative, which aims to provide a language for describing
both technical and business services.

References

1. Lafon, Y.: Team Comment on the “Web Application Description Language”
Submission (2009). URL http://www.w3.org/Submission/2009/03/
Comment(RetrievedAugust2011)

2. McRae, M.: Closure of OASIS UDDI Specification TC. Web site (2008). URL http:
//lists.oasis-open.org/archives/uddi-spec/200807/msg00000.html

3. OASIS: RELAX NG Specification. OASIS Committee Specification (2001)
4. OASIS: UDDI Version 3.0.2. UDDI Specification Technical Committee Draft, OASIS (2004)
5. OASIS: Assertions and Protocols for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS Standard (2005). URL http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf

http://www.w3.org/Submission/2009/03/Comment(RetrievedAugust2011
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.w3.org/Submission/2009/03/Comment(RetrievedAugust2011
http://lists.oasis-open.org/archives/uddi-spec/200807/msg00000.html
http://lists.oasis-open.org/archives/uddi-spec/200807/msg00000.html
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

132

6. OASIS: Reference Model for Service Oriented Architecture 1.0. OASIS Standard, OASIS
(2006). URL http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

7. OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OA-
SIS Standard, OASIS (2006). URL http://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

8. OASIS: Web Services Business Process Execution Language (WS-BPEL) Version 2.0. OASIS
Standard, OASIS (2007). URL http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.pdf

9. OASIS: Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1. OA-
SIS Standard, OASIS (2007). URL http://docs.oasis-open.org/ws-rx/wsrm/
200702/wsrm-1.1-spec-os-01.pdf

10. OASIS: Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2. OASIS
Standard wstx-wsat-1.2-spec-os, OASIS (2009)

11. OASIS: Web Services Business Activity (WS-BusinessActivity) Version 1.2. OASIS Stan-
dard, OASIS (2009)

12. OASIS: Web Services Coordination (WS-Coordination) Version 1.2. OASIS Standard, OASIS
(2009)

13. OASIS: Web Services Dynamic Discovery (WS-Discovery) Version 1.1. OASIS Standard,
OASIS (2009)

14. OASIS: Web Services – Human Task (WS-HumanTask) Specification Version 1.1.
OASIS Committee Specification (2010). URL http://docs.oasis-open.org/
bpel4people/ws-humantask-1.1.html

15. OASIS: WS-BPEL Extension for People (BPEL4People) Specification Version 1.1.
OASIS Committee Specification (2010). URL http://docs.oasis-open.org/
bpel4people/bpel4people-1.1.html

16. OMG: Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation
(2006). URL http://www.w3.org/TR/xml11

17. OMG: Service oriented architecture Modeling Languate (SoaML) - Specification for the UML
Profile and Metamodel for Services (UPMS). OMG Finalisation Task Force Beta 2 document
(2009)

18. OMG: Business Process Model and Notation (BPMN) - Version 2.0. OMG Standard (2011)
19. The Internet Society: The Kerberos Network Authentication Service (V5). RFC 4120 (2005)
20. The Open Group: The Open Group Architecture Framework (TOGAF) version 9 (2009). URL

http://www.opengroup.org/togaf
21. The Open Group: Service-Oriented Architecture Ontology (2010)
22. W3C: XML Path Language (XPath) Version 1.0. W3C Recommendation (1999). URL http:

//www.w3.org/TR/xpath
23. W3C: Web Services Description Language (WSDL) 1.1. Web Site (2001). URL http:

//www.w3.org/TR/wsdl
24. W3C: Web Services Glossary – Web service. W3C Working Group Note 11 (2004). URL

http://www.w3.org/TR/ws-gloss/
25. W3C: Web Services Addressing 1.0 – Core. W3C Recommendation (2006). URL http:

//www.w3.org/TR/2006/REC-ws-addr-core-20060509/
26. W3C: SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

W3C Recommendation (2007). URL http://www.w3.org/TR/2007/
REC-soap12-part1-20070427/

27. W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage. W3C Recommendation (2007). URL http://www.w3.org/TR/2007/
REC-wsdl20-20070626/

28. W3C: Web Services Policy 1.5 - Framework. W3C Recommendation (2007). URL http:
//www.w3.org/TR/ws-policy/

29. W3C: OWL 2 Web Ontology Language. W3C Recommendation (2009). URL http://
www.w3.org/TR/owl-overview/

30. W3C: Web Application Description Language. W3C Member Submission (2009). URL
http://www.w3.org/Submission/wadl/

Thomas Kohlborn and Marcello La Rosa

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://www.w3.org/TR/xml11
http://www.opengroup.org/togaf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/Submission/wadl/
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

5 SOA Approaches 133

31. W3C: XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C Recommenda-
tion (2011). URL http://www.w3.org/TR/xmlschema11-1/

http://www.w3.org/TR/xmlschema11-1/

Chapter 6

Semantic Web Services Fundamentals

Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo
Weber

Abstract The research area of Semantic Web Services investigates the annotation
of services, typically in a SOA, with a precise mathematical meaning in a formal
ontology. These annotations allow a higher degree of automation. The last decade
has seen a wide proliferation of such approaches, proposing different ontology lan-
guages, and paradigms for employing these in practice. The next chapter gives an
overview of these approaches. In the present chapter, we provide an understanding
of the fundamental techniques, from Artificial Intelligence and Databases, on which
they are built. We give a concise, ontology-language independent, overview of the
techniques most frequently used to automate service discovery and composition.

6.1 Introduction

Besides the SOA approach just discussed, a second thread of research on service de-
scriptions and their exploitation is the field of Semantic Web Services. The basic idea
is to describe services in the context of the Semantic Web, annotating them with a

Stijn Heymans, Joshua Phillips
SemanticBits, 13921 Park Center Road, Suite 420, Herndon, VA 20171, USA, e-mail: stijn.
heymans@semanticbits.com, e-mail: joshua.philipps@semanticbits.com

Jörg Hoffmann
INRIA Nancy – Grand Est, Equipe MAIA, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy,
France, e-mail: joerg.hoffmann@inria.fr

Annapaola Marconi
Fondazione Bruno Kessler, via Sommarive 18, 38121, Povo, Trento, Italy,
e-mail: marconi@fbk.eu

Ingo Weber
The University of New South Wales, School of Computer Science & Engineering, K17, The Uni-
versity of New South Wales, Sydney, NSW 2052, Australia,
e-mail: ingo.weber@cse.unsw.edu.au

135 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York6

mailto:heymans@semanticbits.com
mailto:joshua.philipps@semanticbits.com
mailto:joerg.hoffmann@inria.fr
mailto:marconi@fbk.eu
mailto:ingo.weber@cse.unsw.edu.au

136 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

description using a formal ontology to express their precise mathematical meaning.
This enables rich support for handling services, support that is not possible based
on less information-rich descriptions such as WSDL. In other words, the ontological
annotation serves to “explain” the services in more formal detail, and these details
allow a higher degree of automation.

The Semantic Web Services research area started in the early 2000s, amongst oth-
ers with the seminal (and emblematic) paper by McIlraith et al. [53]. As presented
in that paper, the main goal of Semantic Web Services approaches is the automation
of service discovery and service composition in a SOA. The literature of the last
decade has seen a wide proliferation of such approaches. These differ in terms of
the ontology languages proposed — there is a wide range of possible formalizations
and implementations (language syntaxes) — and in terms of the paradigms proposed
for employing these in practice. Chapter 7 is dedicated to providing an overview of
these approaches, outlining their commonalities and differences. The present chap-
ter provides an understanding of the fundamental techniques on which they are built.
These techniques are drawn from a range of research areas, prominently including
Artificial Intelligence and Databases.

We give a concise overview of the techniques most frequently used to automate
service discovery and composition. To make this accessible, most of our discussion
is informal. Where it is formal, we base it on simple mathematical notations com-
mon in the respective areas, thus disregarding the intricacies of practical ontology
languages and their implementations.

We cover Description Logics, Logic Programming, Planning for Service Chain-
ing, and Planning for Service Interactions. Table 6.1 provides an overview of these,
along with their basic distinguishing properties.

Table 6.1: Survey of techniques underlying Semantic Web Services.

Approach Purpose Annotation:
What is annotated?

Annotation:
In which form?

Output of
Approach

Description Logics Discovery WS input/output 1 logical formula Set of WS
matching query

Logic Programming Discovery WS input/output 1 logical formula Set of WS
matching query

Planning for
Service Chaining

Composition Input&prerequisites,
output&effects

2 logical formulas WS chain (com-
position template)

Planning for
Service Interactions

Composition WS Interface
State transition

system
Executable

WS composition

Discovery is similar to Web search: given a discovery query, the technology sup-
ports the detection of a (potentially ranked) subset of Web services matching the
query. Description Logics and Logic Programming offer to improve the precision
and recall of such discovery by formulating the query in a more precise way than
with keywords. The discovery query will state, formalized in the respective logic,
the kind of input the user can provide to the service, and the kind of output the user
expects from the service. This query will be matched against Web services whose

6 Semantic Web Services Fundamentals 137

input/output is annotated in the same logic, thus allowing to find the subset of ser-
vices relying on the available input, and delivering the desired output.

Composition is a more complex task, where we not only wish to find a suitable
Web service, but where we wish to create, using a subset of already available Web
services as atomic building blocks, a more complex Web service providing a more
useful functionality. This is a form of programming, thus doing it automatically is
quite a challenge. Planning for Service Chaining relaxes this challenge by viewing
Web services as one-shot applications, taking into account their input/output typing
and high-level properties (such as, available credit), but ignoring technical details
such as their interaction patterns and any data transformations needed. Thus the ap-
proach provides only a composition template, pre-selecting and arranging a subset
of relevant Web services. Planning for Service Interactions tackles the composition
challenge in full, delivering an executable software artefact. Accordingly, the ap-
proach requires more detailed annotations, involving in particular a specification of
how to interact with the Web service. This comes in the form of a transition system,
i.e., a kind of abstract program similar to BPEL abstract processes [58].

In what follows, we focus in turn on Description Logics (Section 6.2), Logic Pro-
gramming (Section 6.3), Planning for Service Chaining (Section 6.4), and Planning
for Service Interactions (Section 6.5). For each, we provide a detailed summary at
a non-technical level; some technical details are given in separate sub-sections that
the reader not interested in such details may skip. We illustrate the approaches using
examples, taken from applications where suitable.1

6.2 Description Logics

Description logics (DLs) is the most prominent formalization underlying the Seman-
tic Web, and Semantic Web Services. In what follows, we first provide an approach
synopsis giving the main facts in an informal way, then we include a detailed treat-
ment of the basic DL formalities. The reader not interested in technical details may
skip the latter sub-section.

6.2.1 Approach Synopsis

Description Logics (DLs) are a family of logical formalisms widely used for knowl-
edge representation, e.g., for the representation of terminologies in application do-
mains such as healthcare — witnessed by terminologies such as OpenGALEN2 and
SNOMED CT R©.3 Its basic language features include the notions of concepts and

1 Since the approaches are quite different in their underlying intention and scope, there is no one
unifying example suitable to illustrate them all.
2 http://www.opengalen.org/
3 http://www.ihtsdo.org/snomed-ct/

http://www.opengalen.org/
http://www.ihtsdo.org/snomed-ct/

138 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

roles which are used to define the relevant concepts and relations in some (appli-
cation) domain. Different DLs can then be identified, among others, by the set of
constructors that are allowed to form complex concepts or roles.

The combination of a formal well-understood semantics and the availability of
practical reasoners,4 has led to the adoption of DLs as the formal underpinning
of ontology languages such as OWL [59] on the Semantic Web or in the use of
Semantic Web Services [53]. In the context of Semantic Web Services they are used
with different purposes, e.g., to express the background domain ontologies, as the
language for pre- and post-condition, input and output descriptions, . . .

We give a small example showing the benefits of using (simple) Description Log-
ics in the context of Web services. Further note that we make the simplifying as-
sumption that Web services have one operation and that when given an input, they
just give an output (no choreography).

Consider two services S1-cure and S2-cause. S1-cure takes as input a particular
Allergy (one can see this as a SNOMED CT R© concept) and returns as output a
Substance (again a SNOMED CT R© concept) that can alleviate the symptoms of the
allergy. We write this as follows (using notation from [42]):

S1-cure:
INPUT x Allergy
OUTPUT y Substance

In words, given an allergy x, return the substance y that could resolve its symptoms.
Note that Allergy and Substance are simple DL concept names. The service S2-
cause takes exactly the same input and output but returns a substance that could be
a cause of the allergy symptoms.

S2-cause:
INPUT x Allergy
OUTPUT y Substance

Two immediate issues arise:

1. Assume a user has a request Q for a service that inputs a certain allergy and
would like to know a possible cause. Both Web services (described by WSDL
if you want, where Allergy and Substance would be specific message types),
are described in identical ways but do 2 entirely different things. Only S2-cause
would be a suitable Web service satisfying the user’s request, but both S1-cure
and S2-cause would be returned as suitable Web services for the user based on
the input and output types. Note that according to [42] this occurs commonly
in the biomedical domain where services often have as input and output just
strings.

2. Assume a user has a request Q that involves finding a service that takes a peni-
cillin allergy as input and gives the resolving substances. Even though every
penicillin allergy is an allergy and thus S1-cure would be able to resolve the

4 Several reasoners for expressive DLs have emerged since the 80s, e.g., Racer [34], FaCT [41],
Pellet [70], and HermiT [69].

6 Semantic Web Services Fundamentals 139

issue, it would not match as the input type of S1-cure does not correspond to
the input of the request.

Using a background domain ontology that indicates that PCNAllergy is a subclass
of Allergy (as does SNOMED CT R©), in addition to the above descriptions of S1-
cure and S2-cause, would rightfully propose S1-cure as a solution to the request Q
where Q is as follows:

Q:
INPUT x PCNAllergy
OUTPUT y Substance

Indeed, every PCNAllergy would be an Allergy according to the ontology, such that
S1-cure which takes allergies as input could propose substances. Formally, a state-
ment “every PCNAllergy is a Allergy” is called a DL (subclass) axiom, similar to a
simple is-a specification in conceptual modeling.

Note that also S2-cause is applicable: the knowledge that the user needs a res-
olution and not a causing substance is not made explicit yet (neither is it explicit
that S1-cure provides a curing substance nor that S2-cause provides a causing sub-
stance). Making this explicit can be done by pre- and post-conditions.

6.2.2 AI Formalism

We introduce a canonical version of a Description Logic; the reader can easily skip
this technical section if need be.

The semantics of DLs is given by first-order style interpretations I = (ΔI , ·I)
where ΔI is a non-empty domain and ·I is an interpretation function. The basic
building blocks are concept names, role names (abstract or concrete, possibly in-
verted in case of the former), data types, and nominals. For more details, we refer
the reader to [8].

Based on those building blocks, we define concept expressions as in Table 6.2,
where A is a concept name, R, S are abstract roles, T is a concrete role name, d ∈ D

is a data type, and C, D are concept expressions.
A DL knowledge base is a set of axioms, where an axiom is of one of the fol-

lowing three types, respectively indicating subset relations between concept expres-
sions, subset relations between roles, and transitivity of roles.

• terminological axioms C � D with C and D concept expressions,
• role axioms R � S where R,S may be inverse roles with the underlying roles both

abstract or both concrete, and
• transitivity axioms Trans(R) for an (inverse) abstract role.

140 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

Table 6.2: Syntax and Semantics of DL Constructs

Construct name Syntax Semantics

concept conj. C�D (C�D)I =CI ∩DI

concept disj. C�D (C�D)I =CI ∪DI

negation ¬C (¬C)I = ΔI \CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y : (x,y) ∈ RI and y ∈CI }
value restriction ∀R.C (∀R.C)I = {x | ∀y : (x,y) ∈ RI ⇒ y ∈CI }
atleast restriction ≥ nS.C (≥ nS.C)I = {x | #{y | (x,y) ∈ SI and y ∈CI } ≥ n}
atmost restriction ≤ nS.C (≤ nS.C)I = {x | #{y | (x,y) ∈ SI and y ∈CI } ≤ n}
data type exists ∃T.d (∃T.d)I = {x | ∃y : (x,y) ∈ T I and y ∈ dD}
data type value ∀T.d (∀T.d)I = {x | ∀y : (x,y) ∈ T I ⇒ y ∈ dD}

Traditionally, a knowledge base contains also assertional statements5 such as
C(a) (or R(a,b)) which intuitively means that the individual a is an instance of
C (a is related to b by means of the role R).

Terminological and role axioms express a subset relation: an interpretation I
satisfies an axiom C1 � C2 (R1 � R2) if CI

1 ⊆ CI
2 (RI

1 ⊆ RI
2). An interpretation

satisfies a transitivity axiom Trans(R) if RI is a transitive relation. An interpretation
is a model of a knowledge base Σ if it satisfies every axiom in Σ . A concept C is
satisfiable w.r.t. Σ if there is a model I of Σ such that CI �= /0.

As indicated above, DLs are useful for expressing knowledge in the healthcare
domain. For example, the Systematized Nomenclature of Medicine–Clinical Terms
(SNOMED CT R©) [1] is a reference terminology for clinical data that can be seen
as a particular DL knowledge base.

Example 6.1. Consider the example knowledge base Σ in Table 6.3, loosely inspired
by SNOMED CT R©.

Table 6.3: SNOMED CT R© Fragment Amoxicillin

(1) AmoxicillinTablet � ∃hasActiveIngredient.Amoxicillin
(2) Amoxicillin � Penicillin
(3) SafeForPCNAllergies � ∀hasActiveIngredient.¬Penicillin

The example indicates in axiom (1) that amoxicillin tablets have an active ingre-
dient that is an amoxicillin, which in turn is a penicillin by (2). According to (3),
we collect in the concept SafeForPCNAllergies all elements that have only active in-
gredients that are not penicillins. A possible interpretation is I with ΔI = x,y and

5 The assertional statements in a knowledge base are also referred to as the ABox, while the non-
assertional statements, the terminological statements, are referred to as the TBox.

6 Semantic Web Services Fundamentals 141

with AmoxicillinTabletI = x, hasActiveIngredientI = (x,y), AmoxicillinI =
PenicillinI = y, SafeForPCNAllergies = /0. This interpretation is clearly a model of
Σ . If we are interested in knowing whether amoxicillin tablets are safe to take when
you have a penicillin allergy, one could check whether Σ |= AmoxicillinTablet �
SafeForPCNAllergies, i.e., does SafeForPCNAllergies subsumes AmoxicillinTablet
w.r.t. Σ . As we have a model I where AmoxicillinTabletI �⊆ SafeForPCNAllergiesI ,
we can answer this negatively.

We could use such reasoning over a domain ontology (SNOMED CT R©) in the
context of discovery of Web services. For example, a user goal might be to find
all services that output medication that is safe for patients with penicillin aller-
gies. A service that has its output modeled using the concept SafeForPCNAllergies
would satisfy this exactly. One can for example deduce using standard DL rea-
soning that services that output Amoxicillin tablets are not matching this goal (as
AmoxicillinTablet is not subsumed by SafeForPCNAllergies) above.

6.3 Logic Programming

Logic Programming (LP) is the main alternative to DL, for handling Semantic Web
Services. As before, we first provide an approach synopsis, then include a detailed
treatment of the basic LP formalities (which the reader not interested in technical
details may skip).

6.3.1 Approach Synopsis

Whereas expressing knowledge in Description Logics revolves around atomic con-
cepts and roles to construct more expressive concept expressions, Logic Program-
ming traditionally has as its basic building blocks first-order atoms. In particular,
writing a DL-concept 4Door as an atom, results in 4Door(X) where X is a vari-
able and 4Door is in that context a predicate for example identifying an item X as
a 4-door car. Similarly, we have that DL roles such as car available correspond to
atoms car available(X,Y) indicating that rental company X has a car Y available.

Whereas traditional DLs have only concepts and roles as basic building blocks,
LP allows usually as well for n-ary atoms such as travels(From,To,Name) indicat-
ing that Name travels from From to To.

Combining these building blocks in DLs is done by defining syntactical struc-
tures such as exist restrictions ∃car available.4Door (the members of which all
have a 4-door car available); in LP on the other hand we combine atoms by sim-
ple conjoining or disjoining them. For example, car available(avis,X),4Door(X)
indicates that avis has some (X) car available that is a 4-door car.

Actually expressing knowledge is then done very similarly in LP as in DLs by
means of an IF-THEN structure (recall the example in the previous section that an

142 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

PCNAllergy is-a particular Allergy):

rentAt(X)← car available(X ,Y),4Door(X)

which indicates that if X has a 4-door car Y available, then one wants to rent at X .
Note that such rules would be typical rules in a Virtual Travel Agency discovery
scenario to express the preferences of a prospective renter.

In the presence of negation, different semantics have been proposed historically
for such sets of rules (viz., logic programs), two of the prominent ones being well-
founded semantics [28] and the answer set semantics [29].

Logic Programming, in particular the answer set methodology has been success-
fully applied in problem areas such as planning [47], configuration and verification
[72], diagnosis [22], and database repairs [6]. Moreover, several answer set solvers,
i.e., systems that return the answer sets of the program, have reached a mature stage
of development. E.g., SMODELS [57] and DLV [46].

Moreover, as the envisioned basis of future information systems, the Semantic
Web is a fertile ground for deploying AI techniques, and in turn raises new research
problems in AI. As a prominent example, the combination of rules with Descrip-
tion Logics (DLs), which is central to the Semantic Web architecture, has received
high attention over the past years, with approaches such as Description Logic Pro-
grams [33], DL-safe rules [56], r-hybrid KBs [67], DL+log [68], MKNF KBs [55],
Description Logic Rules and ELP [43], and dl-programs [24].

In the area of Semantic Web Services, Logic Programming plays an important
role in for example the Web Service Modeling Language (WSML), [21]. As the
backbone of WSML it plays a similar role as Description Logics, the backbone of
OWL-DL. Indeed, it is used in the expression of background ontologies, the expres-
sion of goals, pre-conditions, post-condition, capabilities of services etc.

We summarize some differences between the paradigms of Description Logics
and Logic Programming in Table 6.4. Note that there a lot of variations of the both,
so Table 6.4 should be seen more as the general case than as covering all cases.

• Logic Programming in general has a minimal model semantics. In other words,
one is interested in the minimal model (w.r.t. the subset relation) of a set of rules.

• A consequence of the minimal model semantics for LP, is that reasoning in LP
is nonmonotonic vs monotonic in DLs. In Logic Programming, entailments of a
logic program might not hold any longer after rules or facts where added to that
logic program.

• Logic programming has a closed domain assumption: only the constants appear-
ing in a logic program are relevant for the construction of models. This in contrast
with Description Logics, which are generally speaking a fragment of first-order
logic and have an open domain assumption where any non-empty domain can
potentially serve as the universe/domain of the knowledge base.

6 Semantic Web Services Fundamentals 143

Table 6.4: Differences Description Logics and Logic Programming.

DL LP

model semantics minimal model semantics
monotonic nonmonotonic

open domain closed domain

6.3.2 AI Formalism

In order to make the exposition as simple as possible, we define the language of
answer set programming as a canonical example of a logic programming paradigm;
the reader can easily skip this technical section if need be.

Note that in the case of logic programs without negation, the answer set semantics
coincides with the canonical minimal model semantics, and in the case of stratified
logic programs, the well-founded semantics coincides with the answer set seman-
tics.

Terms, atoms, literals are defined as usual (see [9] for details); an extended literal
is a literal l or a naf-literal not l, i.e., a literal preceded with the negation as failure
symbol not.

A (logic) program (LP) is a countable set of rules α ← β , where α and β are
finite sets of extended literals, respectively called the head and body of the rule. The
body of a rule is considered to be a conjunction of extended literals (denoted as a
comma-separated list) and the head as a disjunction of extended literals (denoted as
a ∨-separated list). The positive part of a set of extended literals γ is {γ+ ≡ l | l ∈
γ, l literal} and the negative part is {γ− ≡ l | not l ∈ γ}.

A ground atom, (extended) literal, rule, or program does not contain variables.
All following definitions in this section assume ground programs and ground (ex-

tended) literals. answer set of gr(P). The Herbrand Base BP of a program P is the
set of all ground atoms that can be formed using the language of P. An interpreta-
tion I of P is any consistent subset of LP, where LP is the set of all ground literals
that can be formed using the language of P, i.e., LP = BP ∪¬BP. For a literal l,
we write I |= l, if l ∈ I, which extends for extended literals not l to I |= not l if
I �|= l. In general, for a set of extended literals X , I |= X if I |= x for every extended
literal x ∈ X . A rule r : α ← β is satisfied w.r.t. I, denoted I |= r, if ∃l ∈ αI |= l, for
some extended literal l, whenever I |= β , i.e., r is applied (∃l ∈ αI |= l and I |= β)
whenever it is applicable (I |= β). The set of satisfied rules in P w.r.t. I is the reduct
PI .

For a simple program P (i.e., a program without not), an interpretation I is a
model of P if I satisfies every rule in P, i.e., PI = P; it is an answer set of P if it
is a minimal model of P, i.e., there is no model J of P such that J ⊂ I. We define
answer sets for programs with not in terms of a reduction to simple programs. The
GL-reduct6 w.r.t. an interpretation I is the simple PI , where PI contains α+ ← β+

6 Named after its inventors M. Gelfond and V. Lifschitz.

144 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

for α ← β in P, I |= α−, and I |= not β−. Thus, given an interpretation I of literals
— the items that one supposes true — the GL-reduct contains those rules for which
the negative part is consistent with the beliefs in I. If there is a naf-literal in the body
that is not true in I, then the rule is not in the GL-reduct since its whole body is then
false and cannot be used to deduce literals. If all naf-literals in the body are true, the
rule stays in the GL-reduct (depending on the naf-literals in the head), but with the
naf-literals removed (they are known to be true). A similar reasoning holds for the
head of a rule: if there is a naf-literal in the head that is true w.r.t. I, we have that
the rule is automatically true and can be removed; if all naf-literals in the head are
false, then we remove them and leave the rule in the GL-reduct.

I is an answer set of P if I is an answer set of PI . Thus, given an interpretation I,
one calculates the GL-reduct, and checks that the minimal model of the GL-reduct
is I; an answer set is thus self-motivating or stable.

For more details, we refer to [9, 20].

6.4 Planning for Service Chaining

The AI formalism we review now allows to describe services in terms of “precon-
ditions” and “effects,” serving to automatically compose service chains respecting
(amongst possibly other things) the input and output behavior of the services.

The following sub-sections provide: a brief formalism summary; a more detailed
description of the formalism (the reader not interested in technical details may skip
this sub-section); a summary of the application to service composition; an example
application; and a brief discussion of variants and their merits.

6.4.1 Formalism in a Nutshell

Planning is one of the long-standing sub-areas of AI, originating in the 1960s. In
a nutshell, the approach allows the user to describe, in a high-level language, a
problem involving an initial state, a goal, and a set of actions. The AI tool — the
planning system — then automatically finds a schedule of actions — the plan —
transforming the initial state into a goal state.

Actions are described in terms of two logical formulas, the precondition and the
effect. The former states the condition that must hold for the action to be applicable,
in a given state. The latter states the condition that holds after the action has been
applied, i.e., it specifies how the action changes the state.

6 Semantic Web Services Fundamentals 145

6.4.2 Formalism Details

Over the past four decades, the planning literature has come up with a plethora
of frameworks for planning. For a comprehensive introduction into the field, we
recommend the recent book by Ghallab et al. [31]. We describe in what follows one
of the simplest planning formalisms, called planning with finite-domain variables
[35]. A brief discussion of the wider literature follows below.

A finite-domain variable planning task is a 4-tuple (X ,s0,s∗,O). X is a finite set
of variables, where each x ∈ X is associated with a finite domain Dx. A partial state
over X is a function s on a subset Xs of X , so that s(x) ∈ Dx for all x ∈ Xs; s is a
state if Xs = X . The initial state s0 is a state. The goal s∗ is a partial state. O is a
finite set of operators. Each o ∈ O is a pair o = (preo,effo) of partial states, called its
precondition and effect. Partial states are identified with sets of variable-value pairs,
referred to as facts. The state space of the task is the directed graph whose vertices
are all states over X , with an arc (s,s′) iff there exists o ∈ O such that preo ⊆ s,
effo ⊆ s′, and s(x) = s′(x) for all x ∈ X \Xeffo . A plan is a path in the state space,
leading from s0 to a state s with s∗ ⊆ s.

Illustrating this with a simple example, say that we have a variable express-
ing the status of a flight booking, Pending vs. Confirmed. The booking is cur-
rently pending, we wish it to be confirmed, and the only operator we have is a
service confirming the booking. Expressing this in the above formalism, we get:
X = {flightStatus} with DflightStatus = {Pending,Confirmed}; s0 = {(flightStatus,
Pending)}; s∗ = {(flightStatus, Confirmed)}; O contains a single operator taking the
form ({(flightStatus, Pending)}, {(flightStatus, Confirmed)}) where {(flightStatus,
Pending)} is the precondition and {(flightStatus, Confirmed)} is the effect. The
state space contains the two vertices {(flightStatus, Pending)} and {(flightStatus,
Confirmed)}, the only arc going from the former to the latter. The plan traverses
that arc, thus confirming the flight.

Let us match this formalism against the summary given above in Section 6.4.1.
“States” are formalized in terms of (state) variables, where an assignment to all vari-
ables defines the state. Note that the number of states is exponential in the number
of variables. Thus this language allows to describe compactly a large number of
possibilities, and deciding whether or not there exists a plan is computationally hard
(PSPACE-complete). The precondition/effect “formulas” are restricted here to the
simplest possible notion of listing a subset of required/effected variable-value pairs.
“Plans” are simple sequences of actions mapping the initial state into a state that
complies with the list of variable-value pairs given in the goal.

Traditionally, planning formalisms have been rooted in propositional logics, re-
stricting the state variables to be Boolean, having exactly two possible values: True
and False. The simplest and most wide-spread formalism of this kind is called
“STRIPS” [26], which is exactly like the finite-domain variable planning tasks
above except that all variables are Boolean. Other formalisms, such as ADL [60],
allow more complex specifications of pre, eff, and s∗, involving conditional effects
and arbitrary 1st-order logic formulas (quantifiers ranging over a finite universe).

146 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

In the context of the International Planning Competition7 that has been held bi-
ennially since 1998, a common input syntax for planning systems has been defined.
This input language is called PDDL — Planning Domain Definition Language —
and has a range of variants encompassing STRIPS and ADL [52], numeric and tem-
poral planning [27], and a number of other extensions [38, 30].

Finally, it is relevant in our context to mention the field of planning under un-
certainty (e.g., [17, 73]). The above formalisms all assume perfect knowledge about
the initial state, and deterministic behavior of actions. These assumptions often do
not hold in real-world applications, including many applications of service compo-
sition. Planning under uncertainty relaxes these assumptions in a variety of ways, of
course at the cost of increased (theoretical and practical) computational costs.

6.4.3 Application to Services

The application of planning to service composition has first appeared as an idea
in the late 1990s (e.g., [13]) and has been intensively researched since the early
2000s (e.g., [54, 64, 19, 44, 63, 48, 37, 40]). The different approaches differ widely
in intention and scope, as well as underlying formalisms (see some details in Sec-
tion 6.4.5 below). The lowest common denominator is that preconditions/effects
allow to specify service behavior at an abstract level where they are understood
as atomic one-shot operations. In the OWL-S service description framework (e.g.,
[2, 18]), this abstraction level is called the “service profile;” in the WSMO frame-
work (e.g., [25]), it is referred to as the “service capability;” see also Chapter 7.

The service profile/capability encompasses of course its input and output behav-
ior, i.e., the typing of the respective service parameters. As a simple example, the
service input may be a customer-data object, and the output may be a reservation-
object. One can further express additional prerequisites or consequences that the
service may have, in a logics-based representation of the relevant surroundings. A
precondition “credit ≥ 500” may require the sufficient availability of money to cover
at least the cost of 500 money units, and an effect “credit := credit−500” may re-
duce the available money by that amount.

Planning is computationally hard in general, but AI research has come up with
a range of rather effective approaches (e.g., [39, 65]). Provided that the plans to be
created are not too large (up to 20 or so actions), practical runtime/memory perfor-
mance when using these techniques typically is not a big issue, plans being found
within a matter of seconds (e.g., [37, 40]).

A plan in this setting — some scheduling of the atomic services — is not neces-
sarily an executable software artifact. This is because we do not take into account
many technical aspects of the services involved. Most importantly, we disregard the
order of interactions required for communicating with them (making a reservation
typically involves several steps, rather than being a one-shot interaction), and we

7 See http://ipc.icaps-conference.org/

http://ipc.icaps-conference.org/

6 Semantic Web Services Fundamentals 147

disregard the actual underlying data structures or WSDL schemata (what exactly is
a “customer-data object”?).

Since plans are not guaranteed to be executable, the planning facility provided
typically accomplishes only a part of the service composition design. A typical per-
spective is that a human user is responsible for the overall design, and uses the
planning facility for easing the task of selecting and arranging a useful subset of
services from a large services database or the internet (e.g., [3, 40]). Another possi-
bility is to use this abstract planning as a pre-process to more accurate — but more
computationally expensive — service composition techniques (as will be described
in Section 6.5). This reduces the size of the input to choose from, and thereby the
computational resources required to come up with a composition [10].

In order to run the planning facility, services need be described as actions in the
first place, and the user needs to enter the initial state and goal of the desired com-
posed service. These are non-trivial tasks which need to be addressed in a clever way
in order to keep the modeling overhead at bay. Several frameworks have appeared
that allow users to conveniently design the models via user-friendly interfaces (e.g.,
[66, 32]). An alternative approach [40] suggests to instead exploit pre-existing mod-
els of software behavior, thus getting the planning model “for free,” respectively
sharing the modeling effort with other software design activities. We will now look
at this approach in a little more detail, as an application example.

6.4.4 Example

SAP widely employs model-driven software engineering. The more modern devel-
opments are designed as service-oriented architectures (SOAs). Some of the models
created in their development aim at describing the behavior of service operations.
To achieve this, the Status and Action Management (SAM) models exist for each
of over 400 business objects (BOs). BOs are software objects which have an actual
correspondence in common business scenarios, such as, e.g., a customer quote, a
sales order, an invoice, etc.

Each BO can have (vast) data structures and offers functionality on this data
as service operations in the SOA. SAM models capture the relation between the
status of a BO and the actions (operations) it offers: when can these actions be
enacted, and how do they affect the BO? Concretely, SAM models consist of a
set of finite-domain status variables and a set of actions that describe which status
values for which variables are a precondition to an action, and how the status values
may change as a result of a service execution. The original purpose of SAM is code
generation: code skeletons check if preconditions are fulfilled at runtime, and update
the status variables accordingly.

SAM is based on common business terms. For instance, the status variable “ap-
proval” may include values such as “approved” and “rejected.” Hence, its expres-
sions are understandable to business users. This is key to practical planning-based
service composition, where business users describe in terms of SAM what the com-

148 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

Table 6.5: A SAM-like example, modeling the behavior of “customer quotes” CQ.

Action name precondition effect

Create CQ (CQ.approval:necessary OR
CQ.approval:notNecessary)
AND CQ.acceptance:notAccepted
AND CQ.archiving:notArchived
AND CQ.submission:notSubmitted

CQ Approval CQ.approval:necessary CQ.approval:approved OR
CQ.approval:rejected

Submit CQ CQ.archiving:notArchived AND CQ.submission:submitted
(CQ.approval:notNecessary OR
CQ.approval:granted)

Mark CQ as Accepted CQ.archiving:notArchived AND CQ.acceptance:accepted
CQ.submission:submitted

Archive CQ CQ.archiving:notArchived CQ.archiving:archived

position should accomplish (what’s its initial state and goal). The planning func-
tionality is implemented as a prototypical research extension to the SAP NetWeaver
BPM Process Composer.

The only important difference between SAM and the basic formalism introduced
in Section 6.4.2 is that effects can be non-deterministic, i.e., the action has one out
of a set of possible outcomes. For the business context, it is quite obvious that this is
necessary. Any sensible order, booking, check, or approval action will have at least
two possible outcomes — positive vs. negative.

For illustration, Table 6.5 gives a SAM-like model for a particular BO called
“customer quote (CQ).” For confidentiality reasons, the shown object and model
are artificial, i.e., they are not contained in SAM as used at SAP. In the figure, by
“CQ.X:Y” we denote the atomic proposition stating that variable X of the customer
query has value Y. We are using a standard planner [39] — modified to appropriately
handle SAM’s non-deterministic effects — on this input.

For presentation to the user, a simple post-process transforms plans into BPMN
diagrams. Figure 6.1 shows a plan in that representation, for the above example.
Note in particular the side effect of the create operation (top): approval can be either
necessary or not. Depending on the actual outcome, an additional approval step
is executed. In turn, this approval step may have a positive or negative outcome.
Only in the positive outcome, the process continues by submitting the quote. No
procedure is specified for the negative outcome — exception handling is needed
in this case, and SAM does not contain any information about what that handling
should be, so the planner cannot compose it automatically. Clearly, the plan is also
incomplete in that not every customer quote should be approved, submitted, etc.
straight after being created. Thus the plan serves merely as a template and needs to
be completed by hand.8

8 Note also that the standard process is often implemented in the standard system. The value of
service composition here lies in convenient creation of variants of the standard.

6 Semantic Web Services Fundamentals 149

Fig. 6.1: Screenshot of the SAP NetWeaver BPM Process Composer with an auto-
matically composed process of five non-deterministic services).

6.4.5 Discussion

As indicated, the different approaches to planning-based service composition differ
widely in intention, scope, and formalization. Let us mention a few of the better-
known works. Some authors compile service composition into more or less standard
planning formalisms, e.g., [64]. Two frameworks allow the user to provide a plan
skeleton whose control structures will be filled in by the planner [54, 71].

A large strand of work addresses the handling of “input/output typing” in a rich
Semantic Web framework where the surroundings of the services are described in a
formal logics, most often in some variant of Description Logics (DL) as discussed in
Section 6.2. A main issue here is that DL contains non-trivial axiomatizations of the
domain. These axioms make it difficult to define and compute the “outcome state”
resulting from applying an action.9 One body of work circumvents this problem
by applying the axiom inferences only to the service outputs, i.e., to individuals
that didn’t exist prior to action application ([19, 48, 37]). A few works address the

9 For example, say the ontology contains the axiom A � ¬(B �C) stating (intuitively) that an
element of type A cannot be in the intersection of B and C. Say that we are in a state where we
have an individual o so that o ∈ A and o ∈ B. Say we apply an action whose effect is o ∈C. What
is the outcome state? Simply adding o ∈ C results in a conflict with the axiom. Thus we need to
“repair” this outcome state, by removing one of the previous facts, o ∈ A or o ∈ B. Which one
should we remove? This is difficult to answer in a principled manner. Most known answers have
severe consequences on the computational complexity of computing outcome states [36].

150 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

problem in full, living with the computational costs incurred (e.g., [23]). Yet others
address more feasible sub-classes of the problem (e.g., [14]).

A fundamentally different approach is the one described in Section 6.5, whose
output is actual executable code [63]. The more abstract approach described in the
section at hand can be used as a filtering method in front of process-level com-
position, reducing the choice of services to compose from, and thus the empirical
performance of the more fine-grained composition [10].

In summary, planning for service chaining allows to automatically compose ser-
vices at an abstract level taking into account their input and output typing, as well
as any other prerequisites/effects they have relative to a high-level formalization of
their surroundings. The method can be computationally quite feasible, depending
on the specifics of the surroundings and on the complexity of any (DL-) axiomatiza-
tions that should be taken into account. The outcome of planning is a composition-
template which most often is imperfect, but delivers useful input to either humans or
other more detailed composition techniques. A key problem in practice is the mod-
eling overhead. Recent work [40] suggests a connection to model-driven software
engineering that could be exploited to reduce this overhead significantly.

6.5 Planning for Service Interactions

The AI planning approach presented in this section deals with the problem of au-
tomatically composing an executable Web service that, interacting with a set of
component services, satisfies a given composition requirement.

Similarly to Section 6.4, the following sub-sections provide: a brief formalism
summary; a more detailed description of the formalism (the reader not interested in
technical details may skip this sub-section); a summary of the application to service
composition; an example application; and a brief discussion of variants and their
merits.

6.5.1 Formalism in a Nutshell

The approach is based on planning as model checking [15, 16]. It adopts “state tran-
sition systems” for the representation of the individual entities to be composed into a
plan. This allows to represent stateful processes implementing a complex interaction
protocol, exchanging asynchronous messages, and exhibiting a partially observable
and non-deterministic behavior. The input to the planning problem is a set of such
processes, as well as a “composition requirement” (a combined functionality we
wish to achieve). The solution to the planning problem then is a “controller,” another
state transition system, such that executing the controller results in an orchestration
of the processes achieving the composition requirement.

6 Semantic Web Services Fundamentals 151

6.5.2 Formalism Details

Each service is encoded as a state transition system (STS from now on) Σ =
〈S ,S 0,I ,O,R,L 〉 that can be in one of its possible states S , a subset of which
are initial S 0, and can evolve to new states as a result of performing some actions.
Actions are distinguished in input actions I , which represent the reception of mes-
sages, output actions O , which represent messages sent to external services, and a
special action τ , called internal action. The action τ is used to represent internal
evolutions that are not visible to external services, i.e., the fact that the state of the
system can evolve without producing any output, and independently from the re-
ception of inputs. The transition relation R describes how the state can evolve on
the basis of inputs, outputs, or of the internal action τ . Finally, a labeling function
associates to each state the set of properties in Prop that hold in the state. These
properties will be used to define the composition requirements. For a complete de-
scription of the translation from Web services (described in terms of their BPEL and
WSDL specification) to STS please refer to [49].

The behavior of an STS is represented by its set of possible runs, i.e., of se-
quences s0,a0,s1,a1, . . . such that s0 ∈ S 0 and (si,ai,si+1) ∈ R. In general, such
runs may be finite or infinite. A run σ is said to be completed if it is finite, and
if its last state is final. A state s ∈ S will be said reachable if there exists a run
σ = s0,a0, . . . ,an−1,sn, . . . such that sn = s. We will denote with Reachable(Σ)⊆S
the set of reachable states of Σ .

The composition problem has two inputs: the formal composition requirement ρ
and the set of component services ΣW1 , . . . ,ΣWn . The component services ΣW1 , . . . ,ΣWn

evolve independently, and in fact represent, under a planning perspective, the do-
main to be controlled. Such domain Σ‖ is obtained as the first step of the compo-
sition, by combining ΣW1 , . . . ,ΣWn by means of a parallel product operation. The
system representing (the parallel evolutions of) the component services W1, . . . ,Wn
is formally defined as Σ‖ = ΣW1 ‖ . . . ‖ ΣWn .

In a composition problem, the composite service is defined as a “controller”
Σc (also described as a STS), which interacts with the domain Σ , orchestrat-
ing the component services. The STS Σc � Σ , describing the behaviors of system
Σ = 〈S ,S 0,I ,O,R,L 〉 when controlled by Σc = 〈Sc,S 0

c ,O,I ,Rc,L /0〉, is
defined as Σc �Σ = 〈Sc ×S ,S 0

c ×S 0,I ,O,Rc �R,L 〉. The transition relation
Rc �R is such that Σc and Σ either evolve independently by executing internal τ
transitions, or evolve concurrently by executing input and output actions.

Due to the asynchronous nature of Web service interactions, and in order to guar-
antee a correct behavior of the composite service, there is the need to rule out ex-
plicitly the cases where the sender is ready to send a message that the receiver is
not able to accept. According to [62], a state s is able to accept a message a if there
exists some successor s′ of s, reachable from s through a (possibly empty) sequence
of τ transitions, such that an input transition labeled with a can be performed in s′.
This intuition is captured by the notion of τ-closure(s), defining the set of states
reachable from s through a chain of τ transitions.

152 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

In [62], the composition problem for domain Σ and composition goal ρ consists
in generating a STS Σc that controls Σ so that its behavior satisfy the requirement ρ
(according to a formal notion of requirement satisfaction).

Intuitively, a controller is a solution for a requirement ρ if it guarantees that ρ is
achieved. That is, if every run σ of the controlled system Σc �Σ‖ ends up in a state
where ρ holds.

6.5.3 Application to Services

The approach has been implemented in the ASTRO framework. Similarly to Sec-
tion 6.4, the basic idea is that existing services can be used to construct the planning
domain, composition requirements can be formalized as planning goals, and plan-
ning algorithms can be used to generate plans that compose the published services.
As outlined above, in ASTRO each service is represented as a state transition sys-
tem. These can be obtained from abstract WS-BPEL protocols, and thus are easy to
come by in practice.

The ASTRO framework has been widely adopted to deal with the different as-
pects of the Web service composition problem. In particular, ASTRO has been en-
abled to specify complex data-flow [50] and control-flow composition requirements
[11] and an abstraction-based approach for composing services that manipulate
complex, infinite-range data domains [61]. The framework has been implemented
as a prototype automated composition tool, namely WS-Compose, and integrated
in the ASTRO Toolset [7], a toolkit providing an integrated environment for the
composition of Web services.

6.5.4 Example

The example we present in this section is taken from the e-Bookstore composition
scenario [51] where the aim is to automatically synthesize an application that al-
lows to order books through the Amazon E-Commerce Services and buy them via
a secure credit card payment transaction offered by Banks of Monte dei Paschi di
Siena Group (MPS). This composition scenario is particularly challenging since all
component services are real Web services exporting complex interaction protocols
and handling structured data in messages.

In particular, we will consider the Amazon Virtual-Cart (AVC) Web service and
show its encoding as a STS. For a complete description of the e-Bookstore scenario
please refer to [49].

Figure 2(a) represents a compact representation of the abstract WS-BPEL pro-
tocol of the Amazon Virtual-Cart (AVC) service. According to this process, once
the AVC receives a request to create a new cart and the operation is successful,
the client can start to add items and eventually checkout its shopping cart. If the

6 Semantic Web Services Fundamentals 153

switch

pick

on message

cartGet()

on message

cartAdd(a)

errorcase

switch

invoke

cartAddResponse(ar)

invoke

cartAddErr(e)

assign

error:= opaque

errorcaseswitch

pick

on message

nop()

on message

clear()

receive

cartCreate(c)

START

error:= opaque
assign

checkout:= false

while
CREATE_ERR

cartCreateResponse(cr)

invokeinvoke
cartCreateErr(e)

otherwise

checkout

assign

checkout:= true

otherwise

invokeinvoke
cartGetResponse(gr) cartGetErr(e)

GET_ERR

NOT_EMPTYSUCC

(a) WS-BPEL specification

?clear ?nop

!cartGetErr !cartGetResponse

GET_ERR

NOT EMPTYSUCC

!cartAddResponse
!cartAddErr

?cartAdd

?cartGet

!cartCreateErr !cartCreateResponse

CREATE_ERR

τ

?cartCreate

START

τ

(b) STS encoding

Fig. 6.2: The Amazon Virtual-Cart Web service.

checkout is successful, the client can either clear the cart or keep its content for
future use. In all these interactions if something goes wrong the AVC sends an er-
ror message describing the reason of the fault. The final states of the protocol are
marked either as successful (symbol

√
) or as failing (symbol ×) states. These min-

imal semantic annotations are necessary to distinguish those executions that lead to
a successful completion of the interaction from those that are failed. As explained in
[51] this information are exploited in the definition of the control-flow composition
requirements.

Figure 2(b) presents the STS encoding of the AVC service. Please refer to [12] for
the complete description of a translation procedure that allows to encode WS-BPEL
processes as state transition systems.

154 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

6.5.5 Discussion

The formal framework presented in this Section is primarily motivated by the neces-
sity to provide an automated composition approach that is able to tackle real world
Web service composition problems. Among the most important characteristics are
(i) the possibility to specify both control and data flow composition requirements,
(ii) the ability to consider complex stateful processes as component services, and
(iii) the capability to produce an executable, ready to be deployed, composite ser-
vice. We briefly summarize some of the details involved in tackling these challenges.

In [50] the authors propose to specify requirements on the data flow through a set
of constraints that explicitly define the valid routings and manipulations of messages
that the new composite service can perform. In particular, data flow composition re-
quirements are defined through an intuitive graphical notation, the data net, i.e., a
graph where the input/output ports of the existing services are modeled as nodes,
the paths in the graph define the possible routes of the messages, and the arcs define
basic manipulations of these messages performed by the composed service. Finally,
the authors show how to encode these data constraints within the composition do-
main in an efficient compositional way.

Even though the data net approach allows to specify complex data flow composi-
tion requirements, it does not encode data within the composition domain (the states
of the domain simply model the evolution of the processes). As a consequence, it is
not possible to reason on data when searching for a solution and, in particular, on
the conditions ruling the flow of operations and interactions of the component ser-
vices. To face the data challenge, in [61] the authors propose an abstraction-based
approach for handling data, which possibly ranges over an infinite domain, in a fi-
nite, symbolic way.

A limitation of the presented approach is the fact that the specification of control-
flow and data-flow composition requirements may be time consuming and reduces
the applicability of the approach in more dynamic applications (e.g., requiring to
substitute/adapt on-the-fly the service components to be used). A significant step in
this direction is done by the work in [11] through the usage of business objects that
allow to detach the specification of composition requirements from the component
service implementations. With respect to the specification of data flow requirements,
an idea can be to add semantic annotations to the data used in the component ser-
vices (similarly to what is done in [5, 4, 45] and then apply semantic matching and
reasoning techniques to automatically derive the data links between message parts
in order to obtain a first version of the data net diagram that can then be refined by
hand.

Another limitation of this approach is that it scales-up well if we assume that we
already selected the subset of relevant component services participating to the com-
position. As shown in [10], the approach described in Section 6.4 can be efficiently
used to filter the component services before applying the automated synthesis pro-
posed in here.

6 Semantic Web Services Fundamentals 155

6.6 Conclusion

Automation in the handling of Web services requires their annotation with suitable
information about their content. Research into this has come up with a broad range
of approaches, drawing on several research areas, prominently on Artificial Intel-
ligence and Databases. We have herein introduced four of the most wide-spread
formalizations. Description Logics and Logic Programming serve to annotate ser-
vice input/outputs for better service discovery; Planning for Service Chaining and
Planning for Service Interactions require more detailed information about the ser-
vice behavior, and provide a form of automatic programming composing atomic
services to more complex units. All of the approaches involve a form of reasoning
and are thus computationally costly in the worst-case; but practical methods can be
designed.

Together, the paradigms just described form the basis of service discovery and
composition in the Semantic Web Services area. The next chapter gives an overview
of that area.

References

1. International health terminology standards development organisation - SNOMED CT. http:
//www.ihtsdo.org/snomed-ct/.

2. A. Ankolekar et al. DAML-S: Web service description for the semantic web. In ISWC, 2002.
3. V. Agarwal, G. Chafle, K. Dasgupta, N. Karnik, A. Kumar, S. Mittal, and B. Srivastava. Syn-

thy: A system for end to end composition of web services. J. Web Semantics, 3(4), 2005.
4. R. Akkiraju, B. Srivastava, A. Ivan, R. Goodwin, and T. Syeda-Mahmood. Semaplan: Com-

bining planning with semantic matching to achieve web service composition. In Proc. of IEEE
International Conference on Web Services (ICWS’06), 2006.

5. J. L. Ambite and D. Kapoor. Argos: a framework for automatically generating data processing
workflows. In Proc. of the 8th annual international conference on Digital government research
(dg.o’07), 2007.

6. M. Arenas, L. Bertossi, and J. Chomicki. Specifying and Querying Database Repairs using
Logic Programs with Exceptions. In Proc. of the 4th International Conference on Flexible
Query Answering Systems, pages 27–41. Springer, 2000.

7. ASTRO. Project ASTRO: Supporting the Composition of Distributed Business Processes -
http://astroproject.org.

8. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

9. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

10. P. Bertoli, J. Hoffmann, F. Lecue, and M. Pistore. Integrating discovery and automated com-
position: from semantic requirements to executable code. In Proceedings of the IEEE 2007
International Conference on Web Services (ICWS’07), 2007.

11. P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik, and M. Wagner. Control Flow
Requirements for Automated Service Composition. In Proc. of the IEEE International Con-
ference on Web Services (ICWS09), 2009.

12. P. Bertoli, M. Pistore, and P. Traverso. Automated composition of web services via planning
in asynchronous domains. Journal of Artif. Intell., 174:316–361, March 2010.

http://www.ihtsdo.org/snomed-ct/
http://astroproject.org
http://www.ihtsdo.org/snomed-ct/

156 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

13. S. Biundo, R. Aylett, M. Beetz, D. Borrajo, A. Cesta, T. Grant, L. McCluskey, A. Mi-
lani, and G. Verfaillie. PLANET Technological Roadmap on AI Planning and Scheduling.
http://planet.dfki.de/service/Resources/Roadmap/Roadmap2.pdf, Dec. 2003.

14. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The l-lite family. Journal of Automed
Reasoning, 39(3):385–429, 2007.

15. A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via model checking:
A decision procedure for ar. In Proc. of the 4th European Conference on Planning, pages
130–142, 1997.

16. A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning as model checking. In
Proc. of ECP, pages 1–20, 1999.

17. A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model checking and
heuristic search. Artificial Intelligence, 159(1–2):127–206, 2004.

18. T. O. S. Coalition. OWL-S: Semantic Markup for Web Services, 2003.
19. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composi-

tion. In 2nd International Conference on Web Services (ICWS-04), pages 506–513, 2004.
20. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys, 33(3):374–425, 2001.
21. J. de Bruijn and S. Heymans. A semantic framework for language layering in wsml. In

M. Marchiori, J. Z. Pan, and C. de Sainte Marie, editors, Proceedings of the First International
Conference on Web Reasoning and Rule Systems (RR 2007), volume 4524 of Lecture Notes in
Computer Science, pages 103–117. Springer, 2007.

22. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The Diagnosis Frontend of the dlv System. AI
Communications, 12(1-2):99–111, 1999.

23. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning, II: The DLVK system. Artificial Intelligence, 144(1-2):157–211,
2003.

24. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the Semantic Web. Artificial Intelligence, 172(12-
13):1495–1539, 2008.

25. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domingue.
Enabling Semantic Web Services– The Web Service Modeling Ontology. Springer-Verlag,
2006.

26. R. E. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

27. M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. J. Artificial Intelligence Research, 20:61–124, 2003.

28. A. V. Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general logic pro-
grams. JACM, 38(3):620–650, 1991.

29. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc. of
International Conference on Logic Programming (ICLP 1988), pages 1070–1080. MIT Press,
1988.

30. A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic planning in the
fifth international planning competition: Pddl3 and experimental evaluation of the planners.
Artificial Intelligence, 173(5-6):619–668, 2009.

31. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann/Elsevier, 2004.

32. A. Gonzalez-Ferrer, J. Fernandez-Olivares, and L. Castillo. JABBAH: a java application
framework for the translation between business process models and htn. In Proceedings of
the 3rd International Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS’09), 2009.

33. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proc. WWW 2003, pages 48–57. ACM, 2003.

34. V. Haarslev and R. Moller. Description of the RACER system and its applications. In Proc.
of Description Logics 2001, 2001.

http://planet.dfki.de/service/Resources/Roadmap/Roadmap2.pdf

6 Semantic Web Services Fundamentals 157

35. M. Helmert. Concise finite-domain representations for pddl planning tasks. Artificial Intelli-
gence, 173(5-6):503–535, 2009.

36. A. Herzig and O. Rifi. Propositional belief base update and minimal change. Artificial Intel-
ligence, 115(1):107–138, 1999.

37. J. Hoffmann, P. Bertoli, M. Helmert, and M. Pistore. Message-based web service compo-
sition, integrity constraints, and planning under uncertainty: A new connection. J. Artificial
Intelligence Research, 35:49–117, 2009.

38. J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An overview. J. Artificial
Intelligence Research, 24:519–579, 2005.

39. J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic
search. J. Artificial Intelligence Research, 14:253–302, 2001.

40. J. Hoffmann, I. Weber, and F. M. Kraft. SAP speaks PDDL. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI’10), 2010.

41. I. Horrocks. The FaCT system. In Automated Reasoning with Analytic Tableaux and Re-
lated Methods: International Conference Tableaux’98, number 1397 in LNAI, pages 307–312.
Springer, 1998.

42. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding Semantic
Matching of Stateless Services. In Proceedings, The Twenty-First National Conference on
Artificial Intelligence (AAAI) and the Eighteenth Innovative Applications of Artificial Intelli-
gence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 1319–1324, 2006.

43. M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. ECAI, pages 80–84.
IOS Press, 2008.

44. U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler. Information gathering during planning
for web service composition. J. Web Semantics, 3(2-3):183–205, 2005.

45. F. Lecue, A. Delteil, and A. Leger. Applying abduction in semantic web service composition.
In Proc. of IEEE International Conference on Web Services (ICWS’07), 2007.

46. N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Unfounded sets, Fixpoint
Semantics, and Computation. Information and Computation, 135(2):69–112, 1997.

47. V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence, 138(1-
2):39–54, 2002.

48. Z. Liu, A. Ranganathan, and A. Riabov. A planning approach for message-oriented seman-
tic web service composition. In 22nd National Conference of the American Association for
Artificial Intelligence (AAAI’07), 2007.

49. A. Marconi and M. Pistore. Synthesis and composition of web services. In Formal Methods
for Web Services, pages 89–157. Springer Berlin / Heidelberg, 2009.

50. A. Marconi, M. Pistore, and P. Traverso. Specifying Data-Flow Requirements for the Auto-
mated Composition of Web Services. In Proc. of Fourth IEEE International Conference on
Software Engineering and Formal Methods (SEFM06), 2006.

51. A. Marconi, M. Pistore, and P. Traverso. Automated Web Service Composition at Work:
the Amazon/MPS Case Study. In Proc. of IEEE International Conference on Web Services
(ICWS’07), 2007.

52. D. McDermott et al. The PDDL Planning Domain Definition Language. The AIPS-98 Plan-
ning Competition Committee, 1998.

53. S. McIlraith, T. Son, and H. Zeng. Semantic web services. Intelligent Systems, 16(2):46–53,
April 2001.

54. S. McIlraith and T. C. Son. Adapting Golog for composition of semantic Web services. In
Proc. of the 8th Int. Conf. on Principles and Knowledge Representation and Reasoning (KR-
02), Toulouse, France, 2002.

55. B. Motik and R. Rosati. A faithful integration of description logics with logic programming.
In Proc. IJCAI, pages 477–482, 2007.

56. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. Journal of Web
Semantics, 3(1):41–60, July 2005.

57. I. Niemelä and P. Simons. SMODELS - An Implementation of the Stable Model and Well-
founded Semantics for Normal Logic Programs. In Proc. of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 1997), volume 1265 of LNAI,
pages 420–429, 1997.

158 Stijn Heymans, Jörg Hoffmann, Annapaola Marconi, Joshua Phillips, and Ingo Weber

58. OASIS. Web Services Business Process Execution Language Version 2.0, Apr. 2007.
59. W. OWL Working Group. OWL 2 Web Ontology Language: Document Overview.

W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

60. E. P. Pednault. ADL: Exploring the middle ground between STRIPS and the situation cal-
culus. In Principles of Knowledge Representation and Reasoning: Proceedings of the 6th
International Conference (KR’98), pages 324–331, 1998.

61. M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web Services
by Planning at the Knowledge Level. In Proc. IJCAI’05, 2005.

62. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning
in Asynchronous Domains. In Proc. ICAPS’05, 2005.

63. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis of composite
BPEL4WS web services. In 3rd IEEE International Conference on Web Services (ICWS-05),
2005.

64. S. Ponnekanti and A. Fox. SWORD: A developer toolkit for web services composition. In
11th International World Wide Web Conference (WWW-02), 2002.

65. S. Richter and M. Westphal. The LAMA planner: Guiding cost-based anytime planning with
landmarks. J. Artificial Intelligence Research, 39:127–177, 2010.

66. M. D. Rodriguez-Moreno, D. Borrajo, A. Cesta, and A. Oddi. Integrating planning and
scheduling in workflow domains. Expert Systems Applications, 33(2):389–406, 2007.

67. R. Rosati. On the decidability and complexity of integrating ontologies and rules. Journal of
Web Semantics, 3(1):41–60, 2005.

68. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog. In Proc.
KR, pages 68–78, 2006.

69. R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-Efficient OWL Reasoner. In Pro-
ceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED
2008), 2008.

70. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical owl-dl reasoner.
Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):51 – 53, 2007.
Software Engineering and the Semantic Web.

71. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service composition
using SHOP2. J. Web Semantics, 1(4), 2004.

72. T. Soininen and I. Niemelä. Developing a Declarative Rule Language for Applications in Prod-
uct Configuration. In Proceedings of the First International Workshop on Practical Aspects of
Declarative Languages (PADL 1999), number 1551 in LNCS, pages 305–319. Springer, 1999.

73. H. Younes, M. Littman, D. Weissman, and J. Asmuth. The first probabilistic track of the
international planning competition. J. Artificial Intelligence Research, 24:851–887, 2005.

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

Chapter 7

Semantic Web Services Approaches

Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

Abstract Semantic Web Services aim to better support the life-cycle of Web ser-
vices and service-based applications by exploiting semantic descriptions of services.
Research in this field has been considerably active and has produced a large number
of ontologies, representation languages, and integrated frameworks supporting the
discovery, composition and invocation of services among other tasks. In this chapter
we provide a thorough, albeit necessarily brief, overview of the conceptual models
devised so far, giving the reader a perspective on the relationships, coverage and ap-
plicability of each of them together with pointers for gathering further insights and
details about these solutions and related software.

7.1 Introduction

Semantic Web Services (SWS), previously introduced in Chapter 6, were proposed
in order to pursue the vision of the semantic Web presented in [9] whereby intel-
ligent agents would be able to exploit semantic descriptions in order to carry out
complex tasks on behalf of humans [34]. This early work on SWS was the meeting
point between Semantic Web, Agents, and Web services technologies. Gradually,
however, research focussed more prominently on combining Web services with se-
mantic Web technologies in order to better support the discovery, composition, and

Carlos Pedrinaci, Maria Maleshkova
Knowledge Media Institute (KMi), The Open University, Walton Hall, Milton Keynes, Bucking-
hamshire, MK7 6AA, UK, e-mail: c.pedrinaci@open.ac.uk, e-mail: m.maleshkova@
open.ac.uk

Maciej Zaremba
Digital Enterprise Research Institute (DERI), National University of Ireland, Galway, Ireland,
e-mail: maciej.zaremba@deri.org

Maryam Panahiazar
Kno.e.sis Center, Wright State University, Dayton, OH, USA, e-mail: mary@knoesis.org

159 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York7

mailto:c.pedrinaci@open.ac.uk
mailto:maciej.zaremba@deri.org
mailto:mary@knoesis.org

160 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

execution of Web services, leaving aspects such as systems autonomy more typical
of agent-based systems somewhat aside, see Chapter 6 and [40] for a broader survey.

Research on SWS has been active and fruitful over the years leading to a number
of ontologies, representation languages, as well as to a plethora of software compo-
nents and even integrated execution frameworks that cover diverse tasks within the
life-cycle of Web services and service-oriented applications. Some of these frame-
works and techniques are detailed in Chapter 6. This chapter aims at providing a
thorough, albeit necessarily brief, overview of the conceptual models devised so far,
giving the reader a perspective on the relationships, coverage and applicability of
each of the models together with pointers for gathering further insights and details
about these solutions and related software. This chapter does also provide some ba-
sis that could help the reader carry out a deeper and more detailed analysis of the dif-
ferent approaches depending on the objectives sought. We do not provide a detailed
comparison between all the approaches for the very reason that this would require
addressing them from the perspective of the many tasks that can be supported with
Semantic Web Services descriptions (i.e., discovery, invocation, composition, etc)
and would also require taking into account the engines and frameworks developed.

The remainder of this chapter is organized as follows. In Section 7.2 we introduce
some preliminaries for Semantic Web Service approaches and present briefly the
vast majority of those that have been proposed over the years split into top-down and
bottom-up approaches (Sections 7.3 and 7.4). Finally, in Section 7.5 we provide both
general information upon which one could drive a more thorough comparison and
targeted evaluation. This section also provides a chronological perspective over the
state of the art in Semantic Web Service approaches that can better help understand
the evolution of the field.

7.2 Preliminaries

Early on, Sheth et al. [48, 46] introduced the four main types of semantics, that
corresponding semantic descriptions can capture:

1. Data semantics: The semantics pertaining to the data used and exposed by the
service.

2. Functional semantics: Semantics pertaining to the functionality of the service.
3. Non-Functional semantics: Semantics related to the non-functional aspects of

the service, e.g., Quality of Service (QoS), security or reliability.
4. Execution semantics: Semantics related to exceptional behaviors such as run

time errors.

The essential characteristic of SWS is therefore the use of languages with well-
defined semantics covering the subset of the mentioned categories that are amenable
to automated reasoning. On the basis of these semantic descriptions, SWS technolo-
gies seek to automate the tasks involved in the life-cycle of service-oriented appli-
cations which include the discovery and selection of services, their composition,

7 Semantic Web Services Approaches 161

their execution and their monitoring among others [40]. The different conceptual
frameworks proposed make particular emphasis on certain aspects such as better
supporting the decoupling and scalability of the solutions, on supporting the inter-
actions between agents, or on reaching a solution that appropriately fulfils humans
expectations.

In this chapter we do not aim at comparing all the different approaches with re-
spect to their capabilities for covering each of the tasks mentioned. Instead we limit
ourselves to introducing the approaches, indicate their core characteristics and ob-
jectives sought and provide pointers for the interested reader to follow up. Although,
we cannot claim this list to be exhaustive, this represents to the best of our knowl-
edge, the largest collection of approaches which we have identified through some
publication or public document online. Based on the two main trends in the area,
the approaches covered in this chapter are divided into top-down approaches, which
are driven by high-level views over Web services, and bottom-up approaches, which
provide instead an incremental enrichment of existing Web services technologies.
Within each subgroup the approaches are listed in chronological order of appear-
ance.

7.3 Top-Down Approaches

Semantic Web Services are a technology anchored on the use of formal definitions of
services and as a consequence a large body of work in the area is essentially driven
by high-level ontologies defining the main aspects that are considered relevant for
services. Most of the early work in this area thus focused on devising high-level
ontologies and developing machinery that could exploit these descriptions. Despite
the good results obtained, there has been an evident difficulty in obtaining rich de-
scriptions and on providing scalable solutions due to the complexity of this kind
of Semantic Web Services descriptions from a knowledge acquisition and computa-
tional perspectives. In recent times, although ontologies continue to be produced and
refined, one can notice a trend towards simpler models typically based on simpler
knowledge representation languages.

UPML

The Unified Problem-solving Method Development Language (UPML) is both an
approach and its corresponding language for describing and developing knowledge-
based systems based on libraries of generic problem-solving components [17].
UPML largely originated from the body of research on Knowledge Engineering
systems and Problem-Solving Methods (PSMs) research, see [45, 51]. Although
UPML was not directly aimed at modeling services and developing service-based
systems it was the basis upon which the IBROW project developed an intelligent
broker which is the precursor of considerable research on Semantic Web Services,
and has a significant overlap with service-oriented computing.

UPML provides a meta-ontology for describing knowledge-based systems. The
ontology introduces four main components, namely, Tasks, which define the prob-

162 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

lems that should be solved; PSMs, which define the reasoning process of a Knowl-
edge Based System in domain-independent terms; Domain models, which describe
the domain knowledge of the KBS; and Ontologies, which provide the terminology
used in tasks, PSMs and domain definitions. Each of these components is supposed
to be developed independently and therefore UPML identifies the notion of adapters
to adjust the (reusable) parts to each other and to the specific application problem.
UPML provides in particular two types of adapters: bridges and refiners. The for-
mer explicitly model the relationships between two distinct parts of an architecture,
e.g., between domain and task or task and PSM. The latter can be used to express
the stepwise specialization of a class of elements of a specification, e.g., a task is
refined or a PSM is refined.

DAML-S / OWL-S

OWL-S (previously known as DAML-S [4]) was the first Semantic Web Service
framework which identified key conceptual elements required to describe Web ser-
vices. OWL-S is an ontology specified using the Web Ontology Language (OWL)
[7]. Depending on the required expressivity and decidability the following lan-
guages can be used: OWL-Lite, OWL-DL and OWL-Full. The high-level objective
of OWL-S is to [33]: (1) provide a general purpose Semantic Web Service frame-
work, (2) support automated service usage and management by software agents, (3)
build on existing Web and Semantic Web standards, (4) support a complete service
lifecycle.

The main OWL-S elements include:

• Service Profile contains name of the Web service, information about the Web
service provider, non-functional properties, textual description and most impor-
tantly the formal specification of the service functionality in terms of inputs,
outputs, precondition and results. It contains functional description of what can
be achieved by executing the Web service. There is no explicit notion of a service
requester in OWL-S therefore a Service Profile can be used both as a specifica-
tion of a requested service functionality as well as a description of a provided
service.

• Service Grounding gives the details on how to access the service linking the
OWL-S service abstract definitions to an underlying Web Services Description
Language (WSDL) document. It specifies protocol and message format details
on how the underlying service should be accessed.

• Service Process describes in terms of the process how to interact with the ser-
vice. Three types of processes are available in OWL-S, namely: Atomic, Simple
and Composite. An Atomic Process is used to describe a service that expects a
single message and provides a single message in response. On the other hand,
a Composite process maintains a state of conversation allowing for many corre-
lated messages to be exchanged between service requester and service provider.
Activities within a Composite Process are chained using workflow constructs
such as Sequence, Join, Split-Join, Any-Order and Choice. A Simple Process ex-
pands to a Composite Process by providing an abstraction over the functionality
offered within a Composite Process. Each process is described in terms of inputs,
outputs, precondition and results.

7 Semantic Web Services Approaches 163

Capabilities Model

The authors [36] present an approach for explicitly describing what a service or
an agent can do. They introduce a model for capturing the capabilities in order to
be able to advertise and discover Web services. The description form is based on
a set of requirements specifying the service’s capabilities including the behavioral
aspects of a service, all the words and terms that it refers to, and providing suffi-
cient information to enable the identification of alternative services without human
intervention.

The capability description is presented as an Object Role Model (ORM), which
is very suitable for visualizing conceptual data by employing modeling technology
in combination with conceptual querying. Services are described in terms of entity
types (capabilities) and the roles played by the entities. Web services that are cap-
tured is such a way can be discovered and queried by using a conventional query
language such as ConQuer. In addition, existing natural language processing tools
can be used to ease the generation of the descriptions.

myGrid Ontology
myGrid [55] is a project that applied Semantic Web Services to the bioinformatics
domain in order to better support scientists in carrying out their analyses and ex-
periments by facilitating the discovery of services they could use to transform or
process the data they have. To this end the project produced the myGrid ontology
designed to support Web service discovery and composition in the bioinformatics
domain. The ontology contains 710 classes and 52 properties as two distinct com-
ponents, the service ontology and the domain ontology. The domain ontology acts
as an annotation vocabulary including descriptions of core bioinformatics data types
and their relationships to one another, whereas the service ontology describes the in-
formation model and functional characteristics of Web services, such as, inputs and
outputs. This ontology has also been adopted by other projects and approaches such
as SADI, which additionally provides a set of principles and infrastructure enabling
the enrichment and discovery of data by means of services [53].

The service ontology provided by myGrid solely focusses on the high-level aspect
of services which could be relevant to scientists, leaving technical issues aside. The
core entity of the service ontology in the model is the operation, which represents
a unit of functionality. Operations can be grouped into units of publication repre-
sented by a service. An operation has one or more input and output parameters. In
turn, each input and output parameters have a name, a description and belongs to a
certain namespace denoting its semantic domain type and domain-specific format.
Additionally, the domain ontology covers key concepts for data and data structures
in the domains of informatics, bioinformatics and molecular biology as well as it
provides a hierarchy describing generic tasks an operation can perform.

Active SWS

Active Semantic Web Services (ASWS) [43] is a platform based on a programming
model and language called View Design Language (VLD) and an architecture that
takes into account interaction with both human users and other services, based on
an execution model for agents. The main idea of this approach is provide proactive
software components whose actions, interaction capabilities and data manipulated

164 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

are explicitly captured. ASWS have access to the semantics of their actions, are
compatible with Web services standards, can interact with humans through HTML
web pages, and they can answer questions about their actions in natural language.

In order to cater for this ASWS are based on an active component programming
language called VDL and an execution framework based on XML tree rewriting
through dynamic analysis of the document. VDL allows one to describe the opera-
tional part of an agent or service allowing humans to interact with the ASWS and
figure out their abilities and state. In order to simplify this interaction, the framework
also provides a query language which allow humans to easily create new questions
about the activity and behavior of the VDL agents.

DIANE

DIANE is a framework for automating the discovery, composition, binding and in-
vocation of services [23, 27]. The framework is based on DIANE Elements which is
a specialized ontology language for describing service elements, and DIANE Ser-
vice Description (DSD). DIANE Elements is based on object-orientation and ex-
ploits the notions of attributes and fillers from frame languages, builds upon the the
primitive data types from XML Schema, and reuses the clean separation between
schema and instances promoted by description logics. DIANE elements includes
special constructs to describe service such as declarative and fuzzy set as well as
variables.

DSD uses the specialized constructs provided by DE to describe services. DSD
distinguishes three layers: the upper service ontology, category ontologies, and do-
main ontologies. The upper ontology used in DIANE is largely based on OWL-S
and thus includes the notion of Service Grounding and Service Profile. The latter is
defined in terms of inputs, outputs, preconditions, effect and non-functional prop-
erties. The category layer divides the space of services into clusters with similar
state transitions. Finally, the third layer are domain ontologies. They conceptualize
a certain application domain such as books, locations, files, etc. They are used to
concretize the attributes of the state change, especially to fill the entity which the
state refers to.

Semantic MOBY

Semantic MOBY first introduced in [44] as an extension of the BioMoby project
[54] focuses on providing semantic descriptions to the already captured body of
services for the biomedical domain part of BioMoby. Semantic Moby is centered
on three main tasks, namely the provision of a common syntax and semantics for
services, as well as the development of generic infrastructure that could exploit these
descriptions to provide better service discovery. The vision pursued by Semantic
MOBY is one whereby software agents interchange RDF graphs containing the data
to be manipulated by the services. Subsequently this work has continued as part of
SSWAP covered later in this chapter.

SWSO

The Semantic Web Services Ontology (SWSO) is part of the Semantic Web Services
Language (SWSL) [6], which consists of formal conceptual definitions as well as
individual Web services. SWSO provides a description of the services ontology, and
a description of a first-order logic (FOL) axiomatization (FLOWS - the First-order

7 Semantic Web Services Approaches 165

Logic Ontology for Web Services), which defines the model-theoretic semantics of
the ontology. The goal of FLOWS is to enable reasoning about the semantics under-
lying Web services, and how they interact with each other and with the “real world”.
Its goal is not to achieve a complete representation of Web services, but rather an
abstract model that is faithful to the semantic aspects of service behavior. As a re-
sult, the so created service descriptions enable automated discovery, composition,
and verification, as well as the creation of declarative descriptions of a Web service,
that can be mapped to executable specifications.

The structure of FLOWS is very similar to the one proposed in OWL-S and
also consists of three main components: Service Descriptors, Process Model and
Grounding. Service Descriptors provide basic information about a Web service
(such as name, author, contact information, URL, identifier, version, etc.) to be used
during service discovery and matching with client preferences. The Process Model
adapts PSL processes generic ontology to provide a useful framework for describ-
ing Web services. This modular nature of the Process Model in SWSO enables Web
services developers to define and use their own extensions to FLOWS-Core. Indeed,
a main design objective in SWSO is to ease the integration with other Web service
workflow models, for instance BPEL. Finally, the Grounding allows to declare the
low-level details of Web service definitions: message formats, transport protocols,
network addressing, etc. This is the mission of WSDL language, so SWSO imple-
ments mechanisms to map high-level ontology descriptions to WSDL.

USDL

Universal Service-Semantic Description Language (USDL)1 “is a language for for-
mally describing the semantics of Web services” [5]. USDL is based on OWL and
it uses WordNet as a common basis for understanding the meaning of services. It
is perhaps the first attempt to capture the semantics of web-services in a universal,
yet decidable manner [5]. USDL is a formal service documentation, which helps
to model conceptually and search for Web services. The design of USDL is based
on two languages: WSDL and OWL. USDL defines a generic class called Concept,
which is used to define the semantics of parts of messages. The USDL Concept class
denotes the conceptual objects constructed from the OWL WordNet ontology.

For most purposes, message parts and other WSDL constructs are mapped to a
subclass of USDL Concept so that useful concepts can be modeled as set theoretic
formulas of union, intersection, and negation of basic concepts. These subclasses
of Concept are Basic Concept, Qualified Concept, Inverted Concept, Conjunctive
Concept, and Disjunctive Concept. Inclusion of the USDL description, makes ser-
vice directly semantically searchable. The component services can be discovered
from existing services using their USDL descriptions. Once we have the component
services, the OWL-S description can be used to generate the new composed service
[5].

WSMO

WSMO [42, 13] is a member submission to W3C of an ontology that aims at de-

1 USDL in this case is not to be confused with the Unified Service Description Language which is
at the core of this book. To distinguish between both we shall use italics in this chapter to refer to
the one briefly introduced in this section as part of the related work.

166 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

scribing all relevant aspects for the partial or complete automation of discovery, se-
lection, composition, mediation, execution and monitoring of Web services. WSMO
has its roots in the Web Services Modeling Framework [16] and in Problem-Solving
Methods [45, 51], notably the Unified Problem Solving Method Development Lan-
guage (UPML) [17].

WSMO identifies four top-level elements as the main concepts, namely Ontolo-
gies, Web Services, Goals and Mediators. Ontologies provide the formal semantics
for the terminology used within all other WSMO components. Essentially WSMO
establishes that all resource descriptions and all data interchanged during service
usage should be semantically described. Web Services are computational entities
that provide some value in a given domain. Goals, represent clients’ perspective by
supporting the representation of users’ desires for certain functionality. Finally, Me-
diators represent elements that handle interoperability problems between any two
WSMO elements. In fact, one core principle behind WSMO, is the centrality of
mediation as a means to reduce the coupling and deal with the heterogeneity that
characterizes the Web.

The two core WSMO notions for semantically describing Web services are a
capability and service interfaces. A capability defines the functionality offered by
a service by means of pre-conditions, assumptions, post-conditions, and effects. A
service interface defines how the functionality of a service can be achieved by means
of a choreography and an orchestration. A choreography describes the behavior of
a service from the client’s point of view. An orchestration captures the control and
data-flow within a complex Web Service by interacting with other Web Services.

Finally, Goals are derived from the notion of task prevalent in previous work
including Knowledge Acquisition and Documentation Structuring (KADS) [45],
UPML [17], whereas Mediators in WSMO handle heterogeneities which can oc-
cur when two software components are put together.

The Semantic SOA Reference Ontology being devised under OASIS [37] essen-
tially revisits WSMO in the light of the OASIS SOA Reference Model [31] and
provides an RDF(S) serialization instead. The work is still ongoing and the differ-
ences are minimal for it to be included as a separate model. The technical commit-
tee also envisaged producing reference conceptualizations for the main components
conforming Semantic Web Services frameworks but at the time of this writing there
is no material in this respect.

Core Ontology of Web Services (COWS)

The Core Ontology of Web Services [38] is based on the Core Ontology of Soft-
ware Components, which is in turn based on the Core Software Ontology [38]. The
fundamental concepts are separated in a core ontology to facilitate reuse and enable
the extensibility. The Core Ontology of Software Components consists of funda-
mental concepts and associations such as software, data, users, policies and so on.
On top of that, COWS supports modeling requirements of service profiles and ser-
vice taxonomies. In particular, it includes a formalization of the term “Web service,”
while Analyzing Message Contexts, Selecting Service Functionality, Relating Com-
munication Parameters, Aggregating Service Information and Quality of Service are
defined as part of the modeling of service profiles and taxonomies. The developed

7 Semantic Web Services Approaches 167

ontology supports the semantic management of middleware and is realized as part
of an inference engine that enables querying and reasoning with the semantic de-
scriptions of components and services.

Web Service Ontology

The aim of the Web Service Ontology [22] is to support ubiquitous environments
and enable composition of Web services based on a description capturing their func-
tional and semantic aspects. The ontology is based on extracting semantic informa-
tion about actions and objects of Web services published in open repositories such
as UDDI. In particular, it enables capturing the service domain information, precon-
ditions on input parameters and post-conditions on output parameters. The descrip-
tions are divided into two parts, including functional descriptions and capability
descriptions. Services described in such a way are used for performing composi-
tion in ubiquitous environments, where data transformation and mapping between
connected services are realized with the help of mediators.

Fusion Ontology

The FUSION Ontology [26] defines different types of concepts used for modeling
a service including: exchanged messages, functional categorization and service be-
havior in stateful process execution. The FUSION Ontology is used in the FUSION
Service registry where the main aim is to support the discovery of services using
their functional and non-functional annotations.

FUSION Services are described using Functional Profile which contains the fol-
lowing elements: hasCategory (service categorization), hasInput (represents param-
eters that the service expects to receive), and hasOutput (represents parameters that
the service produces upon invocation). There are two kinds of Functional Profiles:
Advertisement Functional Profiles (AFPs) that are used for describing services and
Request Functional Profiles (RFPs) that are used for describing service requests.

Minimal Service Model

The Minimal Service Model introduced together with hRESTS [24] aims to cover
for the fact that Web API descriptions do not typically have any structure in terms
of the resources handled nor the operations exposed. MSM is a simple RDF vo-
cabulary covering what can essentially be considered the core of WSDL. In par-
ticular, it defines basically Services as having a number of Operations which have
an Input, an Output, and Faults. Although it was originally introduced to provide
structure to hRESTS, it has subsequently been used as a means to integrate het-
erogeneous services (i.e., WSDLs and Web APIs), and together with WSMO-Lite
it has been used as a means to provide a common framework covering the largest
common denominator of the most used SWS formalisms on the Web. On the basis of
MSM and WSMO-Lite generic publication and discovery machinery has been de-
veloped that supports SAWSDL, WSMO-Lite, hRESTS/MicroWSMO, and OWL-S
services [41]. The services exposed by this infrastructure, are referred to as Linked
Services [39], a new breed of Semantic Web Services where the emphasis lies on
reducing the complexity of conceptual models and integrating services with existing
Linked Data [11]. This integration serves both as a means to simplify the creation
and management of Semantic Web Services through reuse, as well as it provides a

168 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

new view over Semantic Web Services understood as a means to support generating
and processing Linked Data on the Web.

Subsequent work around the Minimal Service Model has focused on supporting
the invocation of Web APIs. Notably, an ontology has been defined for capturing
Web APIs authentication mechanisms, which is often a necessary requirement for
supporting the invocation of Web APIs [32]. This ontology thus covers the main
types of authentication mechanisms, the way to create credentials and how to send
them at authentication time. Additionally, there has been work on capturing the
grounding information, i.e., technical details concerning the actual invocation of a
Web API, including the HTTP method used, the distribution of parameters across the
HTTP packet, etc. This model has been validated with a generic Web API invocation
engine [29].

ServONT

ServONT is an ontology-based hybrid approach where different kinds of matchmak-
ing strategies are combined together to provide an adaptive, flexible and efficient
service discovery environment [10]. Semantic-enriched frameworks are considered
a key issue to enforce timely discovery and dynamic composition of services. It is
based on keyword-based approach of UDDI Registry to obtain a semantic match-
making approach based on the use of: a domain ontology, that provides the general
knowledge about concepts of the business domain in which services are used; a ser-
vice ontology, where services are organized by means of semantic relationships at
multiple levels of abstraction [10].

Different matchmaking models are: (1) a deductive model to determine the kind
of match; (2) a similarity-based approach, exploiting retrieval metrics to measure the
degree of match between services and (3) a hybrid model combining the previous
ones to mix deductive precision with similarity-based flexibility. The use of differ-
ent matchmaking models aims at improving searching results and can be used in
conjunction with optimization and ranking strategies [10]. Services are described,
according to a description logic formalism, in terms of their functional interface.
A domain ontology is used to express semantics of service description elements.
Moreover, a three-layer service ontology is defined to organize services at different
levels of abstraction. Matchmaker is able to recognize not only exact matches but
also the degree of similarity between a service request and a service advertisement
that do not match exactly. In summary, Ontologies are used to extend the functional
description of services with semantic knowledge.

ServFace

The ServFace project aims at creating a model-driven service engineering method-
ology for an integrated development process for service-based applications.2 In a
nutshell the approach pursued it to add UI-related annotations to service descrip-
tions, notably WSDLs, in order to better support building interactive service-based
applications. Driven by the user interface annotations the project is devising new
algorithms for the composition of annotated services to build interactive service-
based applications. Additionally, ServFace is designing a methodology enabling the

2 http://www.servface.eu/

http://www.servface.eu/

7 Semantic Web Services Approaches 169

development of interactive applications involving the annotation of Web services,
the presentation-oriented composition of services to form complex applications, and
the eventual generation of executable applications from these composites [21].

SSWAP

Simple Semantic Web Architecture and Protocol (SSWAP) is the driving technol-
ogy for the iPlant Semantic Web Program.3 It combines Web service functionality
with an extensible semantic framework to satisfy the conditions for high through-
put integration [18]. SSWAP originates from the Semantic MOBY project, which
is a branch of BioMOBY project [54]. Under the umbrella of BioMOBY, Semantic
MOBY defines the fundamental model for a semantic Web approach, while MOBY
Services provides the Web services approach commonly referred to as BioMOBY.
Semantic MOBY project was followed by The Virtual Plant Information Network
(VPIN) that eventually turned into SSWAP. It is a lightweight, document-centric
protocol and an architecture for the Semantic Web. Using SSWAP, users can cre-
ate scientific workflows based on the discovery and execution of Web services and
RESTful services. SSWAP utilizes OWL ontologies to describe the features and
capabilities of Web services and standard HTTP methods to invoke the services.

The SSWAP architecture is based on five basic concepts Provider, Resource,
Graph, Subject, and Object. Provider is an organization that owns and publishes
resources. Resources can be Web pages, ontologies and databases, which are used
to describe services offered on the Web. Graph defines a mapping from a SSWAP
Subject (input) to a SSWAP Object (output) [18]. The match between a service and
a query is based on the semantic relations between the resource, subject, and object
types. In particular, a discovery server is expected to return all resources that are of
the same class or a subclass of the query graph’s Resource, and superclass of the
query graph’s Subject, and subclass of the query graph’s Object.

ReLL

Resource Linking Language (ReLL) [3] is a language describing interlinked REST
resources, and thus the service that can be accessed by interacting with those re-
sources. It is based on a service description meta-model consisting of a service that
provides one or more resources that have optionally a URI pattern. The URI pattern
does not represent a fixed structure for a URI but instead describes the constraints
for resource unique identifiers. Each resource may have representations, which are
the serialization of the resource in some syntax. In turn, each representation can
contain links relating one resource to another target resource. The explicit descrip-
tion of links between resources is a unique characteristic of ReLL. The links are
typed and can be retrieved from representations through selectors that can be speci-
fied for example through XML Path Language (XPath). In addition, links follow the
rules specified by a protocol, including the method to be used for the request, plus
additional information.

ReLL is implemented as part of a crawler (RESTler) [2] that uses ReLL-based
descriptions as a format for traversing a RESTful service and produces a typed graph
of the crawled resources and the links connecting them. Services are described by

3 http://sswap.info

http://sswap.info

170 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

ReLL generating XML documents that direct the steps of a Web crawler. While
crawling, a translator component is invoked for generating RDF triples. The result
is a graph based on the links between the crawled resources. The authors envision
that ReLL may serve for guiding automated clients in the process of composing new
services (e.g., mashups) and providing a framework for programming in a strictly
resource-oriented scenario.

ROSM

The Resource-Oriented Service Model (ROSM) [14] ontology is a lightweight ap-
proach to the structural description of resource-oriented (RESTful) services, com-
patible with WSMO-Lite annotations. It enables the annotation of resources belong-
ing to a service. In turn the resources can be described as being part of collections
and having addresses (URIs) serving as endpoints for access and manipulation. The
organization of resource in collections, which again belongs to a service, allows
capturing an arbitrary number of resources and attaching service semantics to them
following the SAWSDL approach.

Furthermore, resources can have certain (HTTP) methods associated with them,
which define how it is possible to interact with a resource, which are connected
through an operation. These operations are modeled in a much-more fine-grained
way, since they basically only have to support the uniform interface of HTTP. In
addition, ROSM4 enables the explicit modeling of requests and responses with their
associated aspects (e.g., parameters, response codes, etc.). In summary, ROSM rep-
resents a simple ontology for describing resource-centered services, in terms of
resources, collection of resources, addresses and HTTP methods. The specific se-
mantics of the ROSM annotations can be described by linking to the WSMO-Lite
ontology.

7.4 Bottom-Up Approaches

After a few years of research on Semantic Web Services essentially driven by a top-
down view over services, researchers started providing approaches that take instead
as a starting point the underlying Web services. These approaches are predicated
on the extension of existing standards and technologies with semantic annotations
rather than on modeling the services entirely in terms of some ontology. Indeed,
the annotations refer to ontologies of a more or less rich nature which thus provide
a conceptual, top-down, view over services. In some cases, e.g., WSMO-Lite, it is
unclear how one should categorize it. Nonetheless, since the path followed and the
technical means differ, we herein contemplate all the approaches that start from an
underlying traditional service or process definition document as being bottom-up.

WSDL-S

WSDL-S is a lightweight approach to associating semantic annotations with Web
services. WSDL-S was proposed as a member submission to the W3C in November

4 http://www.wsmo.org/ns/rosm/0.1/

http://www.wsmo.org/ns/rosm/0.1/

7 Semantic Web Services Approaches 171

2005 [1]. “The key innovation of WSDL-S lies in the use of extensibility in elements
and attributes supported by WSDL specification” [40].

WSDL-S is independent from the language used for defining the semantic mod-
els and explicitly contemplates the possibility of using WSML, OWL and UML as
potential candidates [1].WSDL-S provides a set of extension attributes and elements
to associate the semantic annotations. The first one is the model reference, which
allows one to specify associations between a WSDL entity and a concept in a se-
mantic model. Model reference is used for annotating XML Schema complex types
and elements, WSDL operations and the extension elements precondition and effect.
Precondition and effect are two new children elements for the WSDL operation el-
ement, which facilitate the definition of the condition that hold before executing
an operation and the effect of that [40]. WSDL-S also includes the category exten-
sion attribute on the interface element in order to define categorization information
for publishing Web services in registries as defined by the Universal Description,
Discovery and Integration (UDDI) specification for example [20].

GPO/PSAM

The General Process Ontology (GPO) and the Process Semantic Annotation Model
(PSAM) [30] define business process annotations. The main aim of this work is to
enable business process discovery and sharing within and across enterprises con-
sidering process heterogeneities. GPO/PSAM approach proposes four annotation
sets for describing process models, namely: profile annotations, meta-model an-
notations, model annotations, and goal annotations. Profile annotations are basic
process description and include the following groups: administrative (e.g., creator,
publisher), descriptive (e.g., title, category), technical (modeling language), preser-
vation (documentation) and use (e.g., used in). Meta-model annotations include typ-
ical business process constructs such as: Activity, Actorrole, Input, Output, Merge,
Join, and others. Model annotations use domain specific ontologies to annotate var-
ious parts of business processes. Goal annotations are used to specify aims of busi-
ness process activities with distinction on local and global goals.

QuASAR / ISPIDER

The goal of Quality Assurance of Semantic Annotations for Services (QuASAR)5

is to support the full life-cycle of Web service annotations and to ensure trustworthi-
ness and accuracy of annotations. A beta version of the QuASAR verification tool
is available. QuASAR uses ISPIDER ontologies [8] to annotate services.

The following distinct ontologies which cover different aspects of service an-
notations are distinguished: Domain ontology, Representation ontology and Extend
ontology. Domain ontology describes common concepts relevant within a given do-
main. Domain ontologies are referred to in service annotations from similar domains
(e.g., biomedical services, geolocation services and others). Representation ontol-
ogy describes the representation format of service parameters. Parameters specified
in WSDL are augmented with information specified in the Representation ontol-
ogy. Extend ontology describes scopes of values of service parameters. Information

5 http://img.cs.man.ac.uk/quasar

http://img.cs.man.ac.uk/quasar

172 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

about scopes of values helps to detect incompatibilities between seemingly well-
formed services.

BPEL4SWS

BPEL4SWS [35] is a language for Semantic Web Service orchestration based on
Business Process Execution Language (BPEL). BPEL is the de facto standard for
Web service orchestration. BPEL4SWS extends BPEL with support for Semantic
Web Services. BPEL4SWS can be used for orchestration of both Web services
and Semantic Web Services. Semantic annotations can be attached to any part of
BPEL4SWS descriptions. However, semantic annotations of conversations (mes-
sage exchange) are advocated.

BPEL4SWS uses SAWSDL for handling data lifting and lowering. SAWSDL
introduces modelReference (identifies the semantic concept that the XML message
can be lifted to), liftingSchema (defines how XML message can be lifted to the
semantic representation), and loweringSchema (defines how the semantic represen-
tation can be lowered to the XML message).

Support for the execution of BPEL4SWS is implemented in BPEL4SWS Exe-
cution Engine which is based on the open source Apache ODE BPEL engine.6 It
supports both invocations of Web services and WSMO Semantic Web Services.

SAWSDL

The Semantic Annotations for WSDL and XML Schema is nowadays the only Se-
mantic Web Services standard. SAWSDL, which is essentially derived from WSDL-
S, supports adding semantic annotation to Web services using a set of extension
attributes for WSDL and XML Schema [15, 40]. Adding semantic annotations to
WSDL documents paves the way for providing additional details concerning the ser-
vice or for pointing to ontological definitions that capture the semantics of that ser-
vice [40]. There are two kinds of extension attributes defined by SAWSDL. The first
one, modelReference, is used to specify the association between a WSDL or XML
Schema component (e.g., operation, and input) and a concept in some semantic
model such as an ontology. The other kind of extension attributes are schemaMap-
pings. In particular, liftingSchemaMappings capture how to lift data represented in
XML to its semantic counterpart. Conversely, loweringSchemaMappings capture
how to carry out the inverse process, that is to transform data represented semanti-
cally into the XML representation the service expects. SAWSDL does not impose
nor restrict in any manner the languages that can be used to specify the schema map-
pings nor the semantic models. SAWSDL constitutes a lightweight and incremental
approach (compared to OWL-S and WSMO) to annotating WSDL services.

In summary SAWSDL does not specify a language for representing the seman-
tic models. Instead it defines some minimal extension mechanisms for WSDL and
XML Schema that allow one to define the semantics of a service or its parts by
pointing to concepts from externally defined semantic models. SAWSDL is a re-
stricted and homogenized version of WSDL-S including a few changes trying to
give a greater level of generality to the annotations and disregarding those issues,

6 http://code.apache.org

http://code.apache.org

7 Semantic Web Services Approaches 173

notably the definition of conditions and effects, for which there existed no agree-
ment among the community at the time the specification was created [40].

YASA

Yet Another Semantic Annotation for WSDL (YASA) [12] proposes an extension
of SAWSDL. It uses two types of ontologies: a Technical Ontology that contains
concepts defining service semantics and a Domain Ontology that covers a busi-
ness domain. YASA introduces a new attribute called serviceConcept that is used
together with SAWSDL modelReference attribute. serviceConcept attribute refer-
ences concepts modeled in Technical Ontologies. YASA claims that introducing
serviceConcept attribute makes SAWSDL descriptions more expressive and allows
to explicitly capture information on service pre-, post-conditions and effects.

MicroWSMO/hRESTS

In comparison to WSDL-based services, which have a somewhat longer history of
research on semantic descriptions and annotation approaches, research in the area of
semantic RESTful services is newer and therefore relatively limited. MicroWSMO
[25] is a formalism for the semantic description of RESTful services, which is based
on adapting the SAWSDL approach. MicroWSMO uses microformats for adding se-
mantic information on top of HTML service documentation, by relying on hRESTS
(HTML for RESTful Services) [24] for marking service properties and making the
descriptions machine-processable. hRESTS enables the annotation of service opera-
tions, inputs and outputs, HTTP methods and labels, by inserting HTML tags within
the HTML. In this way, the user does not see any changes in the Web page, however,
based on the tags the service can be automatically recognized by crawlers and the
service properties can directly be extracted by applying a simple XSL transforma-
tion.

hRESTS provides the syntactical structuring of the service, while MicroWSMO
[25] enables adding semantic annotations on top. It uses three main types of link re-
lations: 1) model, which can be used on any service property to point to appropriate
semantic concepts identified by URIs; 2) lifting and 3) lowering, which associate
messages with appropriate transformations (also identified by URIs) between the
underlying technical format such as XML and a semantic knowledge representation
format such as RDF. Therefore, MicroWSMO, based on hRESTS, enables the se-
mantic annotation of RESTful services in the same way in which SAWSDL, based
on WSDL, supports the annotation of Web services.

In addition, MicroWSMO can be complemented by the WSMO-Lite service
ontology specifying the content of the semantic annotations. Since both RESTful
and WSDL-based services can have WSMO-Lite annotations, this provides a ba-
sis for integrating the two types of services. Therefore, WSMO-Lite enables uni-
fied search over both WSDL-based and RESTful services and tasks such as dis-
covery, composition and mediation can be performed based on WSMO-Lite, com-
pletely independently from the underlying Web service technology (WSDL/SOAP
or REST/HTTP).

WSMO-Lite

As described in the previous section SAWSDL provides simple hooks for pointing
to semantic descriptions from WSDL and XML elements. SAWSDL does not advo-

174 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

cate a particular representation language for these documents nor does it provide any
specific vocabulary that users should adopt. WSMO-Lite continues this incremen-
tal construction of a stack of technologies for Semantic Web Services by precisely
addressing this lack [52]. WSMO-Lite identifies four main types of semantic anno-
tations for services which are a variant of those in [46], that is, functional semantics,
non-functional semantics, behavioral semantics, and the information model.

WSMO-Lite provides a minimal RDFS ontology and provides a simple method-
ology for expressing these four types of semantic annotations for WSDL services us-
ing SAWSDL hooks. In particular, to specify the annotations over a concrete WSDL
service, WSMO-Lite relies on the SAWSDL modelReference attribute for all four
semantic annotations, except for information models where liftingSchemaMapping
and loweringSchemaMapping might also be necessary.

WSMO-Lite offers two mechanisms for representing functional semantics, namely
simple taxonomies and more expressive preconditions and effects. In order to dis-
tinguish functional classifications from other types of modelReference annotations,
WSMO-Lite offers the RDFS class wsl:FunctionalClassificationRoot, where wsl
identifies the namespace for WSMO-Lite. Whenever more expressivity is neces-
sary, WSMO-Lite offers the possibility to enrich functional classification with log-
ical expressions defining conditions that need to hold prior to service execution,
and capturing changes that the service will carry out on the world by means of the
classes wsl:Condition and wsl:Effect respectively.

Non-functional semantics in WSMO-Lite are represented using external ontolo-
gies capturing non-functional properties such as the quality of service and price. To
do so WSMO-Lite includes the class wsl:NonfunctionalParameter so that ontolo-
gies defining concrete non-functional properties for a service, can refer to this class
and let the machine know what kind of information it contains.

Behavioral semantics, i.e., how the client should communicate with a service,
although they are identified are not explicitly addressed by WSMO-Lite. Instead,
clients are expected to use the existing knowledge concerning operations function-
ality in order to determine how a service’s operations should be combined.

Finally, the information model is directly covered by SAWSDL modelReference
mechanism.

SA-REST

Semantically Enhancing RESTful Services and Resources is an open, flexible, and
standards-based approach to adding semantic annotations to RESTful services and
Web APIs [28, 40, 47]. SA-REST was accepted by the W3C as a member submis-
sion on April 2010 [19]. SA-REST is a poshformat for adding additional meta-data
to REST API descriptions in HTML or XHTML. In a nutshell it allows one to em-
bed meta-data coming from different models such an ontologies or taxonomies into
Web documents describing Web APIs. The main goal pursued is to improve search,
facilitates data mediation and even helps to integrate different Web APIs [19] by
exploiting these annotations.

SA-REST defines three basic properties for the non-intrusive annotation of
HTML/ XHTML documents [19]. The domain-rel property allows one to pro-
vide domain information descriptions for a resource. This annotation is essen-

7 Semantic Web Services Approaches 175

tially thought for providing coarse grained categorizations of the HTML elements
by pointing to general domains such as “Business.” The sem-rel property, which
evolves from the popular rel tag, is used to capture the semantics of a link within an
HTML document. This kind of annotation is thus supposed to be used solely within
an anchor element (<a>). Finally, the sem-class property can be used for annotating
a single entity within a resource [19].

Semantic annotation based on ER model

Usually, Semantic Web Services are based on the definition of an ontology that cap-
tures key domain information. Since the construction and maintenance of such an
ontology requires considerable effort and the involvement of domain expects, the
authors in [56] propose to use ER (entity-relationship) models instead. ER models
are widely adopted in database management and provide a good starting point for
constructing domain ontologies, with which the Semantic Web Services are anno-
tated, reasoned and composed. In particular, the approach is based on taking the
semantic information that can be retrieved from the ER model and mapping it to
OWL or OWL DL, specifically, which has maximum expressiveness while retain-
ing computational completeness and decidability. The authors construct SWS with
OWL-S-like descriptions using the ER model, by creating a query service for single
entity, similar to a single-table query in SQL, which is then used as part of composite
processes based on multi-table queries or nested queries. The introduced Semantic
Web Service annotation based on ER models is particularly targeted at supporting
service composition.

Linked Data Services

Linked Data Services (LIDS) [49], are part of the new trend on Linked Services [39]
that aim to bridge the Linked Data and services. LIDS, in particular, focuses on in-
tegrating existing data services exposed through Web APIs, with Linked Data prin-
ciples [11]. LIDS are based on well-established Web standards such as HTTP, RDF
and SPARQL. LIDS consume and produce RDF triples and are available over HTTP
protocol. LIDS is a lightweight service description model where service inputs and
outputs are specified using SPARQL graph patterns. A simple LIDS vocabulary7 is
defined. LIDS service descriptions are mapped to and executed as SPARQL CON-
STRUCT queries. LIDS descriptions based on SPARQL are familiar to Linked Data
community and RDF triples produced by LIDS services can directly contribute to
Linked Open Data landscape.

Approach taken by LIDS follows a recent service trend of creating lightweight
semantic service descriptions using well-established Web standards. Existing non-
semantic services can be wrapped and described as LIDS by a typical Web devel-
oper. LIDS service modeling does not require background in logics in contrast to
approaches such as WSMO and OWL-S. LIDS can be directly used by Linked Data
consumers and there is no need for data lifting and lowering as it is assumed that
services consume and produce RDF.

7 http://openlids.org/vocab

http://openlids.org/vocab

176 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

7.5 Atlas and Evolution of Semantic Web Services Approaches

In the previous section we have briefly introduced the different models proposed
in the state of the art, providing a basic description and pointers for the interested
reader. Although, we can’t claim this list to be exhaustive, to the best of our knowl-
edge it represents the largest collection gathered of published models in the area.
We have purposely not made any qualifications and comparisons of these models
for both reasons of space but most importantly for such an analysis would require
addressing each of the models from the perspective of the tasks they enable or could
enable together with an educated guess or evaluation of existing support by corre-
sponding engines. Given the breadth and depth of this kind of analysis it certainly
cannot be covered within this chapter. In this section we provide instead a catego-
rization of the models with respect to the kinds of semantics they cover and the tasks
they aim to support. On the basis of this categorization one could carry out a more
thorough and deeper analysis on a per task basis. Additionally, we provide a general
view on these models in terms of the language they are represented in, their concep-
tual influences and the year they were proposed in. This information is then used to
provide a map on existing models that can help better understand the evolution of
the field over the years (cf. Figure 7.1 on page 180).

Table 7.1: General characteristics of Semantic Web Service approaches.

Approach Year Conceptual Input Representation
Lang.

Main Purpose

UPML 1999 PSMs UPML/Lisp Knowledge-Based Systems development
DAML-S / OWL-S 2001 Agents, Planning DAML+OIL/OWL Semantic annotations of WS
Capabilities Model 2003 DAML-S ORM, ontologies

and rules
Discovery, Composition

myGrid & SADI 2003 DAML-S DAML+OIL / OWL Discovery of services in bioinformatics
ASWS 2004 Agents, Rewriting

Logics
VLD/XML Agents, Human-Agent interaction

DIANE 2004 OWL-S, WSMO DIANE Elements Discovery, Invocation and Composition
Semantic MOBY 2004 Moby, RDF RDF Discovery and Invocation
SWSO 2005 OWL-S SWSL Discovery, Invocation, Composition and

Orchestration
USDL 2005 OWL-S OWL Language for formally describing the se-

mantics of Web services
WSDL-S 2005 WSMO, OWL-S,

WSDL
XML Schema Linking semantic annotations to Web ser-

vices
WSMO 2005 WSMF, UPML WSML, RDF (Se-

mantic SOA Refer-
ence Ontology)

Discovery, Invocation, Mediation, Compo-
sition and Orchestration

COWS 2006 DOLCE OWL Semantic management of middleware
GPO 2006 Unified Enterprise

Modeling Ontology
OWL Process modeling

QuASAR / ISPI-
DER

2006 myGrid OWL Integrated platform enabled as Grid and
Web services for the storage, dissemination
and management of proteomic data

Web Service Ontol-
ogy

2006 OWL-S, WSMO,
WSBPEL

OWL Service composition

BPEL4SWS 2007 BPEL4WS,
WSMO, SAWSDL

XML Schema Orchestration

SAWSDL 2007 WSDL-S XML Schema Semantic Annotations for WS WSDL and
XML Schema

FUSION Ontology 2008 SAWSDL, UDDI OWL-DL Service registry
YASA 2008 SAWSDL XML Schema Extension of SAWSDL, service discovery

7 Semantic Web Services Approaches 177

MicroWSMO/
hRESTS

2008 hRESTS/WSMO-
Lite

HTML with micro-
format tags

Semantic annotations of RESTful services
and Web APIs

MSM 2008 WSDL, WSMO-
Lite, hRESTS,
Linked Data

RDF(S) Discovery, Invocation

ServONT 2008 OWL OWL-DL Service discovery
WSMO-Lite 2008 SAWSDL, OWL-S,

WSMO
RDF(S) Discovery, Invocation, Composition

SA-REST 2009 SAWSDL, hRESTS RDFa Semantic annotations of RESTful services
and Web APIs

ServFace 2009 WSDL XML Schema For adding of UI-related Annotations to
Web service Descriptions (WSDL)

SSWAP 2009 HTML, Semantic
MOBY

OWL Data and service integration in Biology

ER Model 2010 ER, BPEL ER / OWL DL Discovery, Composition
Linked Data Ser-
vices

2010 HTTP, Linked Data SPARQL Bridging the gap between data services and
Linked Data principles. Lightweight com-
position

RELL 2010 REST RDF / OWL Description of resource-centered Web
APIs in terms of resources

ROSM 2010 WSMO-Lite, REST RDFS, SPARQL Description of resource-centered Web
APIs (RESTful services)

Table 7.1 provides some general aspects of the approaches described in the pre-
vious section. This includes the year of publication, conceptual input, representation
language and the main goals pursued. The entries are ordered with respect to the year
of publication and for those within the same year in alphabetical order. Table 7.2 on
the other hand presents some more detailed aspects such as the intended coverage in
terms of kinds of services (Web services and/or Web APIs) and the different kinds
of semantics captured. On the basis of both tables we expect the interested reader to
be able to perform more detailed and targeted comparisons driven, say, by the tasks,
kinds of services to cover, or general expressivity.

Table 7.2: SWS Approach Characteristics.

Approach For WS For
Web
APIs

Functional Non-
Functional

Informational Behavioral Processes

UPML no no yes no yes yes yes
DAML-S / OWL-S yes no yes yes yes yes yes
Capabilities Model yes yes yes no yes yes no
myGrid & SADI yes no yes yes yes no no
ASWS yes no yes no yes yes no
DIANE yes no yes yes yes yes no
Semantic MOBY yes no no yes yes no no
SWSO yes no yes yes yes yes yes
USDL no no no no yes no service compo-

sition
WSDL-S yes yes yes no yes yes no
WSMO yes no yes yes yes yes yes
COWS yes no yes yes yes yes yes
GPO no no yes yes yes yes yes
QuASAR / ISPIDER yes no yes no yes no yes
Web Service Ontology yes no yes no yes yes yes
BPEL4SWS yes no yes yes yes no yes
SAWSDL yes no not explic-

itly
not explic-
itly

yes no no

FUSION Ontology yes no yes yes yes no no

178 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

YASA yes no Via
SAWSDL

Via
SAWSDL

Via SAWSDL Via
SAWSDL

no

MicroWSMO/hRESTS no yes Via
WSMO-
Lite

Via
WSMO-
Lite

Via WSMO-
Lite

Via
WSMO-
Lite

no

MSM yes yes no no yes no no
ServONT no yes yes no yes yes not explicitly
WSMO-Lite yes no yes yes yes no no
SA-REST no yes not explic-

itly
not explic-
itly

yes no no

ServFace no yes yes no yes yes yes
SSWAP no yes yes no no yes not explicitly
ER Model yes no yes yes yes yes yes
Linked Data Services no yes yes no yes no no
RELL no yes no no no no no
ROSM no yes Via

WSMO-
Lite

Via
WSMO-
Lite

Via WSMO-
Lite

Via
WSMO-
Lite

no

7.6 Conclusions

After almost a decade, research on SWS has produced a wealth of conceptual mod-
els, languages, architectures, algorithms and engines that highlight the potential of
these technologies both for enterprise settings and for the Web. In this chapter we
have provided an initial characterization of these efforts along a number of dimen-
sions. Given the breadth of the field, notably in terms of the tasks that could be
supported by means of SWS descriptions, this chapter is to be understood as an ini-
tial step allowing to better target state of the art analyses (e.g., according to tasks
covered) and comparison in the field.

Despite the wealth of models proposed, however, the vision initially proposed
in [34] when SWS were first proposed is still to be achieved. Research on SWS
so far has focussed mostly on extending existing Web services technologies with
semantics. Yet, recent analyses estimate that the number of publicly available Web
services on the Web is around 28,6008 which contrasts with the number of pages
available on the Web and with the number of services that big companies have inter-
nally (e.g., approximately 1,500 for Verizon) [50]. Hence, despite their name, Web
services seem to be essentially enclosed within enterprises. On the Web the use of
SWS is even scarcer and it seems that the appearance of intelligent Web agents that
act of behalf of users remains an elusive target. Still, the demand for services on
the Web exists as indicated by the proliferation and popularity of publicly available
Web APIs and RESTful services.

SWS are, in many cases, particularly demanding from a knowledge acquisition
perspective. Creating a rich semantic description of a Web service requires the use
of domain ontologies, the use of services taxonomies, the definition of lifting and
lowering mechanisms, and in some cases the inclusion of complicated logical ex-
pressions. This tedious and complex annotation process has arguably hampered the

8 According to http://webservices.seekda.com/ as of August 2011.

http://webservices.seekda.com/

7 Semantic Web Services Approaches 179

adoption of SWS technologies especially in the early days of the semantic Web
when publicly available ontologies and semantic information were scarce. As a
consequence, the application of SWS technologies within real applications is usu-
ally limited to simple annotations that simplify the retrieval of services. This leaves
aside more advanced features such as the automated selection of services and there-
fore reduces the potential benefit that can be obtained.

Both the results obtained but also the objectives yet unattained by SWS research
are highly valuable for directing future efforts in automating the management of
services and thus should drive the efforts around the technology described in this
book. One fundamental limitation of past efforts has clearly been on the acquisition
of service descriptions, may this be due to the lack of publicly offered services, or
to the complexity of this endeavor. Recent efforts are aiming at addressing this by
reducing the complexity of the models and the acquisition task, notably by using
simple RDF(S) vocabularies and Linked Data. These new approaches present pre-
liminary promising results that could certainly be beneficial for the Unified Service
Description Language presented in this book.

180 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

P
S

M
s

P
la

nn
in

g

20
00

20
02

20
04

20
06

20
08

20
10

A
ge

nt
s

D
O

LC
E

B
P

E
L

M
ic

ro
F

or
m

at
s

Li
nk

ed
 D

at
a

R
E

S
T

W
S

D
L

U
E

M
O

U
D

D
I

W
S

M
F

M
ob

y
E

R

U
P

M
L

S
W

S
O

W
S

M
O

O
W

L-
S

M
S

M

m
yG

rid

M
ic

ro
W

S
M

O
S

A
-R

E
S

T

U
S

D
L

D
IA

N
E

S
em

an
tic

M

ob
y

C
ap

ab
ili

tie
s

M
od

el

A
S

W
S

C
O

W
S

F
U

S
IO

N
Y

A
S

A
S

er
vO

N
T

W
S

M
O

-L
ite

S
S

W
A

P

E
R

 M
od

el
LI

D
S

R
eL

L
R

O
S

M

B
P

E
L4

S
W

S

G
P

O
Q

uA
S

A
R

W
S

D
L-

S

S
A

W
S

D
L

hR
E

S
T

S

S
er

vF
ac

e

W
eb

 S
er

vi
ce

O

nt
ol

og
y

Fi
g.

7.
1:

Se
m

an
tic

W
eb

Se
rv

ic
es

A
tla

s.

7 Semantic Web Services Approaches 181

References

1. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma. Web
Service Semantics - WSDL-S. http://www.w3.org/Submission/WSDL-S/, November 2005.
W3C Member Submission.

2. R. Alarcón and E. Wilde. From RESTful Services to RDF: Connecting the Web and the
Semantic Web. CoRR, abs/1006.2718, 2010.

3. R. Alarcón and E. Wilde. RESTler: crawling RESTful services. In Proceedings of the 19th
international conference on World wide web, WWW ’10, pages 1051–1052, New York, NY,
USA, 2010. ACM.

4. A. Ankolekar, M. H. Burstein, J. R. Hobbs, O. Lassila, et al. DAML-S: Semantic Markup for
Web Services. In Semantic Web Working Symposium (SWWS), 2001.

5. A. Bansal, S. Kona, L. Simon, and T. D. Hite. A universal service-semantics description
language. In Proceedings of the Third European Conference on Web Services, ECOWS ’05,
pages 214–, Washington, DC, USA, 2005. IEEE Computer Society.

6. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin,
S. McIlraith, D. McGuinness, J. Su, and S. Tabet. Semantic Web Services Language (SWSL).
Member submission, W3C, 2005.

7. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, et al. OWL Web Ontology Language
Reference, W3C Recommendation, 2004.

8. K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A. Goble. Automatic annotation
of Web services based on workflow definitions. Transactions on the Web (TWEB), 2(2), 2008.

9. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, (5):34–
43, May 2001.

10. D. Bianchini, V. Antonellis, and M. Melchiori. Flexible semantic-based service matchmaking
and discovery. World Wide Web, 11:227–251, June 2008.

11. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – The Story So Far. International Journal
on Semantic Web and Information Systems, 5(3):1–22, 2009.

12. Y. Chabeb and S. Tata. Yet Another Semantic Annotation for WSDL (YASA4WSDL). In
IADIS WWW/Internet 2008 Conference, 2008.

13. J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U. Keller, M. Kifer, B. Koenig-
Ries, J. Kopecky, R. Lara, H. Lausen, E. Oren, A. Polleres, D. Roman, J. Scicluna, and
M. Stollberg. Web Service Modeling Ontology (WSMO). Member submission, W3C, June
2005.

14. F. F. and N. B. D3.4.6 MicroWSMO v2 – Defining the second version of MicroWSMO as a
systematic approach for rich tagging. Soa4all project deliverable.

15. J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema (SAWSDL).
Recommendation, W3C, August 2007.

16. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Electronic Com-
merce Research and Applications, 1(2):113–137, 2002.

17. D. Fensel, V. Richard, B. Enrico, and M. Bobwielinga. UPML: A Framework For Knowledge
System Reuse. In In Proceedings of the International Joint Conference on AI (IJCAI-99, pages
16–23. Morgan Kaufmann, 1999.

18. D. Gessler, G. Schiltz, G. May, S. Avraham, C. Town, D. Grant, and R. Nelson. SSWAP: A
Simple Semantic Web Architecture and Protocol for semantic web services. BMC Bioinfor-
matics, 10(1):309, 2009.

19. K. Gomadam, A. Ranabahu, and A. Sheth. SA-REST: Semantic Annotation of Web Re-
sources. Member submission, W3C, April 2010.

20. L. C. A. Hately, C. von Riegen, and T. Rogers. UDDI Specification Version 3.0.2, 2004.
21. P. Izquierdo, J. Janeiro, G. Hubsch, T. Springer, and A. Schill. An annotation tool for en-

hancing the user interface generation process for services. In Microwave Telecommunication
Technology, 2009. CriMiCo 2009. 19th International Crimean Conference, pages 372 –374,
sept. 2009.

http://www.w3.org/Submission/WSDL-S/

182 Carlos Pedrinaci, Maria Maleshkova, Maciej Zaremba, and Maryam Panahiazar

22. Y. S. Jeon, E.-H. Song, M. Guo, L. T. Yang, Y.-S. Jeong, J.-T. Choi, and S.-K. Han. Ontology-
based composition of web services for ubiquitous computing. In G. Min, B. D. Martino, L. T.
Yang, M. Guo, and G. Rünger, editors, ISPA Workshops, volume 4331 of Lecture Notes in
Computer Science, pages 559–568. Springer, 2006.

23. M. Klein, B. König-Ries, and M. Mussig. What is needed for semantic service descriptions? a
proposal for suitable language constructs. Int. J. Web Grid Serv., 1:328–364, December 2005.

24. J. Kopecký, K. Gomadam, and T. Vitvar. hRESTS: an HTML Microformat for Describing
RESTful Web Services. In The 2008 IEEE/WIC/ACM International Conference on Web Intel-
ligence (WI2008), Sydney, Australia, November 2008. IEEE CS Press.

25. J. Kopecky, T. Vitvar, C. Pedrinaci, and M. Maleshkova. REST: From Research to Practice,
chapter RESTful Services with Lightweight Machine-readable Descriptions and Semantic An-
notations. Springer, 2011.

26. D. Kourtesis and I. Paraskakis. Combining SAWSDL, OWL-DL and UDDI for Semantically
Enhanced Web Service Discovery. In European Semantic Web Conference (ESWC), 2008.

27. U. Küster, B. König-Ries, M. Klein, and M. Stern. Diane: A matchmaking-centered frame-
work for automated service discovery, composition, binding, and invocation on the web. Int.
J. Electron. Commerce, 12:41–68, December 2007.

28. J. Lathem, K. Gomadam, and A. P. Sheth. SA-REST and (S)mashups: Adding Semantics to
RESTful Services. In ICSC ’07: Proceedings of the International Conference on Semantic
Computing, pages 469–476, Washington, DC, USA, 2007. IEEE Computer Society.

29. N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue. Omnivoke: A frame-
work for automating the invocation of web apis. In Fifth IEEE International Conference on
Semantic Computing, Palo Alto, CA, USA, 2011.

30. Y. Lin, D. Strasunskas, S. Hakkarainen, J. Krogstie, and A. Sølvberg. Semantic annotation
framework to manage semantic heterogeneity of process models. In E. Dubois and K. Pohl,
editors, CAiSE, volume 4001 of Lecture Notes in Computer Science, pages 433–446. Springer,
2006.

31. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz. OASIS Reference Model
for Service Oriented Architecture V 1.0. Technical report, OASIS, July 2006.

32. M. Maleshkova, C. Pedrinaci, J. Domingue, G. Alvaro, and I. Martinez. Using semantics for
automating the authentication of web apis. In International Semantic Web Conference (ISWC),
Shanghai, China, 2010.

33. D. L. Martin, M. H. Burstein, D. V. McDermott, S. A. McIlraith, et al. Bringing Semantics to
Web Services with OWL-S. pages 243–277, 2007.

34. S. McIlraith, T. Son, and H. Zeng. Semantic web services. Intelligent Systems, IEEE, 16(2):46
– 53, Jan 2001.

35. J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann. BPEL for Semantic Web
Services (BPEL4SWS). In On the Move to Meaningful Internet Systems (OTM Workshops),
2007.

36. P. Oaks, A. H. M. T. Hofstede, and D. Edmond. Capabilities: describing what services can do.
In Proceedings of the 1st International Conference on Service Oriented Computing, 15–18,
2003.

37. OASIS Semantic Execution Environment (SEE) TC. OASIS Semantic Execution Environment
Specification. http://www.oasis-open.org/committees/tc home.php?wg abbrev=semantic-ex,
2007.

38. D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi. Towards ontolo-
gies for formalizing modularization and communication in large software systems. Applied
Ontology, 1(2):163–202, 2006.

39. C. Pedrinaci and J. Domingue. Toward the Next Wave of Services: Linked Services for the
Web of Data. Journal of Universal Computer Science, 16(13):1694–1719, 2010.

40. C. Pedrinaci, J. Domingue, and A. Sheth. Handbook on Semantic Web Technologies, volume
Semantic Web Applications, chapter Semantic Web Services. Springer, 2010.

41. C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecký, and J. Domingue. iServe: a
Linked Services Publishing Platform. In Proceedings of Ontology Repositories and Editors
for the Semantic Web at 7th ESWC, 2010.

http://www.oasis-open.org/committees/tc_home.php?wg abbrev=semantic-ex

7 Semantic Web Services Approaches 183

42. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web service modeling ontology. Appl. Ontol., 1:77–106, January
2005.

43. N. Sabouret. Active semantic web services: a programming model for agents in the semantic
web. In First European Workshop on Multi-Agent Systems (EUMAS), December 2003.

44. G. Schiltz, D. Gessler, and L. Stein. Semantic MOBY. In W3C Workshop on Semantic Web
for Life Sciences, 2004.

45. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. V. de Velde, and
B. Wielinga. Knowledge Engineering and Management: The CommonKADS Methodology.
MIT Press, 1999.

46. A. Sheth. Semantic Web Process Lifecycle: Role of Semantics in Annotation, Discovery,
Composition and Orchestration. Invited Talk at WWW 2003 Workshop on E-Services and the
Semantic Web, May 2003.

47. A. Sheth, K. Gomadam, and J. Lathem. SA-REST: Semantically Interoperable and Easier-to-
Use Services and Mashups. Internet Computing, IEEE, 11(6):91 – 94, Nov 2007.

48. K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web services
standards. In Proceedings of the 2003 International Conference on Web Services (ICWS’03),
pages 395–401, Las Vegas, NV, June 2003.

49. S. Speiser and A. Harth. Taking the LIDS off data silos. In I-SEMANTICS, 2010.
50. M. Stollberg. Scalable Semantic Web Service Discovery for Goal-driven Service-Oriented

Architectures. PhD thesis, Faculty of Mathematics, Computer Science and Physics Leopold-
Franzens University Innsbruck, Austria, March 2008.

51. R. Studer, R. Benjamins, and D. Fensel. Knowledge Engineering: Principles and Methods.
Data Knowledge Engineering, 25(1-2):161–197, 1998.

52. T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel. WSMO-Lite Annotations for Web Services.
In M. Hauswirth, M. Koubarakis, and S. Bechhofer, editors, Proceedings of the 5th European
Semantic Web Conference, LNCS, Berlin, Heidelberg, June 2008. Springer Verlag.

53. M. Wilkinson, B. Vandervalk, and L. McCarthy. SADI Semantic Web Services - cause you
can’t always GET what you want! pages 13–18, Dec. 2009.

54. M. D. Wilkinson and M. Links. Biomoby: An open source biological web services proposal.
Briefings in Bioinformatics, 3:331–341, 2002.

55. K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. W. Lord, R. D. Stevens, and C. A. Goble. The
mygrid ontology: bioinformatics service discovery. Int. J. Bioinformatics Res. Appl., 3:303–
325, September 2007.

56. C. Xu, P. Liang, T. G. Wang, Q. Wang, and P. C.-Y. Sheu. Semantic web services annotation
and composition based on er model. Sensor Networks, Ubiquitous, and Trustworthy Comput-
ing, International Conference on, 0:413–420, 2010.

Part II

USDL — Meta-Model

Chapter 1 made clear that an Internet of Services requires a way of describing a ser-
vice to wrap and expose it in a novel way. A service should not only be considered
as the invocation of a technical interface, but rather as an economic or social trans-
action with a broader context. Therefore, it is essential to describe the price scheme,
the service level agreement, or the terms and conditions when consuming the ser-
vice and paying for it. With the many roles involved in service networks, the need
for a common standard in the description of operational and commercial meta-data
becomes important.

The previous part surveyed a plethora of different service description approaches,
with a multitude of languages, techniques, methods, architectures and frameworks,
demonstrating that there is no shortage of existing proposals. Therefore, attempts
to a service description language that cover services from purportedly all walks of
life is fraught with the “yet another silver bullet” syndrome. Is a uniform concep-
tion of services across political, economic, business, entertainment, technological,
individual and other spheres of the largest sector in the world, possible, or even de-
sirable? Our answer is a qualified yes, and the following part is therefore devoted to
the proposed Unified Service Description Language (USDL).

Chapter 8 starts off by providing the positioning and design rationale of USDL
leading into subsequent chapters of this part that provide details of the USDL meta-
model. Chapter 9 discusses the scientific background of the USDL Pricing Module
as a comprehensive, applicable, executable, and non-proprietary endeavor. As such,
the chapter elicits what makes modeling and engineering the price of a service trans-
action less straightforward than in the case of a product sale. Chapter 10 covers the
modeling of licensing aspects (i.e., the USDL Legal Module) according to two dif-
ferent jurisdictions, viz., the copyright acts of Germany and the USA. Thus, the
chapter addresses the need for legal certainty and legal compliance when trading
services in marketplaces and service networks. Chapter 11 draws attention to de-
scribing: (1) what the service does, i.e., which functionality it provides, (2) where
the service resides, i.e., where it can be accessed and via which means it can be con-
sumed, and (3) how the service behaves, i.e., how to interact with the service in order
to properly consume it. In order to capture these aspects in an all-embracing manner,
USDL defines three modules (Functional, Technical, and Interaction Module). The
modules are commonly designed to provide a unifying description structure that
abstracts from details and allows for the re-use and integration of existing as well
as upcoming standards, thereby maintaining flexibility and extensibility of USDL.
Chapter 12 covers the scientific background of the Service Level Module of USDL.
In addition to general service level concepts, the chapter expands on two specific
service level fields: security and trust. Finally, Chapter 13 provides the modeling
foundation of USDL. In particular, the central Service Module that ties together the
remaining modules, the Participants Module for capturing information about the
different roles in service networks, and the Foundation Module.

Chapter 8

Design Overview of USDL

Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

Abstract Enabling Web-based service networks and ecosystems requires a way of
describing services by a “commercial envelope” as discussed in Chapter 1. A uni-
form conception of services across all walks of life (including technical services) is
required capturing business, operational and technical aspects. Therefore, our pro-
posed Unified Service Description Language (USDL) particularly draws from and
generalizes the best-of-breed approaches presented in Part I. The following chapter
presents the design rationale of USDL where the different aspects are put in a frame-
work of descriptions requirements. This is followed by the subsequent chapters of
this part that provide details on specific aspects such as pricing or legal issues.

8.1 Introduction

Any attempt to design a service description language that covers services from pur-
portedly all walks of life is fraught with the “yet another silver bullet” syndrome.
Is a uniform conception of services across political, economic, business, entertain-
ment, technological, individual and other spheres of the largest sector in the world,

Alistair Barros
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: alistair.barros@qut.edu.au

Daniel Oberle
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: d.oberle@sap.com

Uwe Kylau
SAP Research Brisbane, Building A4 Level 7, 52 Merivale Street, South Brisbane QLD 4101,
Australia, e-mail: uwe.kylau@sap.com

Steffen Heinzl
SAP Research Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany,
e-mail: steffen.heinzl@sap.com

187 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York8

mailto:alistair.barros@qut.edu.au
mailto:d.oberle@sap.com
mailto:uwe.kylau@sap.com
mailto:steffen.heinzl@sap.com

188 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

possible, or even desirable? Moreover, as described through the previous part sur-
veying the myriad of different approaches, with a plethora of languages, techniques,
methods, architectures and frameworks therein, no shortage of proposals exists. Our
answer, as stated at the outset of this book, is a qualified yes, and the onus of this
chapter is on providing the positioning and design rationale of USDL, leading into
subsequent chapters of this part that provide its details.

We have observed that the need for more comprehensively describing services is
becoming pressing, with services increasingly being exposed and delivered outside
company firewalls, on the Internet and through mobile communications, as seen in
the rise of on-demand applications, cloud computing, and business networks. While
the present day services being pushed into open market through the Web and mobile
channels are mostly in form of simple and instantly consumable “Apps,” more main-
stream industries are following suit. Consider, for instance, just some of the services
that add to the unfolding “on-demand” phenomenon: carrier bookings and track-
and-trace of shipments, world-wide tariff look-ups, news events, health insurance
comparisons, loan organizations and servicing, business formation, enterprise soft-
ware services, water/energy utility monitoring, platform services such as business
process management and enterprise services bus, and virtualized IT infrastructure
services.

The prospect of opening up these sorts of services, on a mass scale, to a variety of
channels, deployments and provisioning resources (e.g., cloud hosting, integration
through B2B gateways) requires, as we have contended, a unified way of describing
services. A rich, unified service description language would extend the capabilities
of present day service discovery, composition, provisioning, delivery and access
technologies such that they leverage more intricate details of service functionality:
ownership and provisioning, availability, pricing, conditions of use, conditions of
delivery, time of completion or fulfillment etc. Only then could the power of third-
parties be unleashed for realizing the much anticipated “network effect” of services
and the ambitious vision of the Internet of Services.

Service descriptions have been the subject of significant research in service sci-
ences and computing. SOA languages (Chapter 5) have focused on describing ser-
vices and their interactions in a uniform way, for leveraging heterogeneous tech-
nologies. Semantic Web Services (Chapter 7) have anchored these essentially pro-
grammatic descriptions of services with conceptual meaning, through ontologies.
The prospect of improving automatic discovery, interaction and composition of ser-
vices has additionally spurred efforts to conceptualize the wider context in which
services are accessed, seen through SOA reference models. Ultimately, pragmatic
methodologies focused on business insights, as with the product-service system ap-
proaches (Chapter 2), promise to broaden the conception of services from technol-
ogy abstractions, paving the way for developing them as semantically rich business
artifacts. The earlier example was the work of O’Sullivan [23] which conceptu-
alized the “fine-print” of everyday services, from sources such as terms and con-
ditions and newspaper advertisements, in detailing the comprehensive insight into
non-functional, business properties of services for its time. Additionally, service
system approaches (Chapter 4) have conceived services and their behavior in wider

8 Design Overview of USDL 189

socio-technical systems. Service network approaches (Chapter 3) can be seen as
a particular specialization of service system approaches focusing on customer-to-
customer, business-to-customer, and business-to-business interactions.

The Unified Service Description Language (USDL) has been developed across
several research institutes and publicly funded projects across Europe and Australia,
and this now extends to the Americas as part of a standardization push (through a
W3C incubation group). The scope of service has been on services as understood for
business and supportive IT provisioning, i.e., the socio-technical sense of services.
In this respect, purely human, purely automated and mixed human/automated ser-
vices were considered, that have a boundary of cognizance that is available through
the tasks of service provisioning, discovery, access and delivery. The overarching
philosophy of development has been inspired from the design science approach of
[18]. In addition, USDL is built in a collaborative and interdisciplinary way and
thoroughly evaluated.

In light of the efforts and insights of multiple institutes and disciplines involved
— comprising business management, information systems, IT and computer science
(including SOA, security and cloud), economics and law — a design rationale has
been established for USDL. It consists of a “universe of discourse,” providing a
consensual background of services in the socio-technical systems that they operate
in. This established the fact that despite the diversity of perspectives and varying
insights from previous and existing efforts and use cases, a consensual design of
USDL is possible. It is recognized that USDL should contain:

• concepts (either well-established or new and agreed upon) that are essential to
service descriptions;

• concepts to align with other artifacts, e.g., USDL should relate to, not overlap
with, languages dedicated to other organizational phenomena (e.g., business pro-
cesses, organizational resources, WSDL and other SOA aspects);

• concepts that can support domain-specific (e.g., industry-specific) specializa-
tions, since a “silver bullet” language for all service domains is infeasible.

To guide the design of USDL concepts, language requirements encountered in
other conceptual modeling languages were identified. These are: conceptualization,
expressive power, comprehensibility, formal foundation, extensibility and modular-
ity. For the “grey area” of the suitability of concepts for services, particular require-
ments are proposed and framed against the service discourse. These address:

• the organizational embedding of services into wider systems so that service de-
scription languages are not “techno-centric” and aligned with other techniques
such as enterprise architectures and business process modeling;

• cognitive sufficiency so that services can be understood coherently, across all
concepts and modules as well as those outside USDL;

• service information hiding requiring that services are preserved by the encap-
sulation principle when being composed (e.g., service “wrapping” of business
processes, data mash-ups and service bundles);

• deployment symmetry so that the contextual constraints of services are preserved
when they are deployed in new settings;

190 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

• execution (or delivery) resilience requiring that in addition to functional aspects,
all non-functional and exceptional parts be covered to ensure that a service is
deliverable.

Collectively, USDL aims at wider systemic alignment and is open to special-
ization and extension. This reflects the constructivist approach that has been used
in the philosophical treatment of information systems [17] and the development of
conceptual modeling techniques of information systems [13].

The chapter is structured as follows. We first provide a discourse on services
(Section 8.2). Next, the language requirements framed against the discourse are dis-
cussed (Section 8.3). Following this, we provide an overview of the structure of
USDL (Section 8.4) and how the requirements have been addressed through its cur-
rent state (Section 8.5). Then, we provide a discussion on how USDL was developed
across several projects and use cases (Section 8.6). Section 8.7 introduces a running
example in the logistics domain for the remaining chapters of this part. Finally, we
summarize the chapter and future development for USDL by way of a contrasting
the strengths and limitations of USDL (Section 8.8).

8.2 Universe of Discourse

The design rationale of USDL starts with a “universe of discourse” that ties together
ideas and phenomenal features of services that we have elicited and generalized
from existing languages, techniques, reference and standardization efforts. With the
discourse as the context, we identify concrete requirements for service description
languages (in the subsequent Section 8.3). The key ideas of the services discourse
have been used in a Delphi study (cf. Chapter 20) with 20 organizations to determine
the priorities of service conceptualization and utilization in current practice. They
were also used to consolidate developments on USDL, across many services science
research projects internationally.

8.2.1 Services

The foremost challenge of describing services lies in the fact that a wide range of ar-
tifacts, across economic, political, commercial, community and individual settings,
are referred to as services. The surveyed approaches of service description efforts
(from the Part I of the book) address IT services with progressively greater sensitiv-
ity to business aspects and the organizational settings (seen in the product-service
system and service network efforts). Indeed, most services, readily observable in
different walks of life, lie on a human-to-automation continuum. They range from
purely human (e.g., consultancy services), to purely automated (e.g., message store/-
forward system), with a mixture of human and automated resources used for others
in between (e.g., purchase order requisitions).

8 Design Overview of USDL 191

Across their diverse forms, services share a general characteristic. They pro-
vide functionality aimed at delivering value to consumers in terms of expected out-
comes, subject to delivery constraints, e.g., availability, pricing, copyright and dis-
claimers. In doing so, they alleviate consumers with ownership of resources, costs or
risks. This is consistent with other definitions of a service.1 Unlike goods, services
are intangible and therefore cannot be stored, inventoried or distributed by either
providers or consumers.

Seen across practically all our surveyed approaches, services of different sorts
evince a common demonitor: they fundamentally involve operations or actions, ex-
posed to consumers. In academic and standards-based literature for services, these
are often referred to as capabilities. Service capabilities aim at generating value,
measured in different ways, for expectations manifested as requests. The value is
reached when the outcomes or responses meet the expectations of requests.

8.2.2 Service Agents and Networks

Services are provided and executed variously through organizational contexts, re-
gardless of their degree of formality, complexity or visibility of the organization
(e.g., a commercial organization, a conglomerate, an individual). A challenge is
what aspects of organizational context are relevant for services and what to distill
from the myriad of aspects and artifacts inherent in services, e.g., those related to
business processes, applications, objects and resources constituting the enterprise
phenomena surrounding services. In short, where do we draw the line when de-
scribing services as a distinct phenomenon, albeit related to other artifacts?

Unlike applications or business processes, services are encapsulated and exposed
functionality, drawing from these core artifacts, as pure interfaces over implemen-
tations. Hence, services share similarities with these, such that they are sometimes
regarded synonymously. This is especially the case with business processes. Busi-
ness processes are composed of actions, with assigned resources (human or auto-
mated) for each, operating on business operations, applications and business re-
sources. While being similar to services, their main gravitas is in the internal details
of organizations and their systems, i.e., how requests, actions and responses are
processed to fulfill consumer goals. In contrast, services are mostly targeted for ex-
ternal consumers and focus on interactions, between consumers and providers, for
exposed capabilities; the resultant actions are internally executed. Where business
process activities are orchestrated across collaborating resources, service capabili-
ties are delivered to consumers by providers.

With service delivery increasingly taking place in wider settings such as busi-
ness networks, a distinction has emerged between service agents, e.g., owners of
services and the providers who owners outsource core delivery responsibility to.

1 As an example, according to ITIL (version 3): “A service is a means of delivering value to cus-
tomers by facilitating outcomes customers want to achieve, but without the ownership of specific
costs and risks.”

192 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

For example, a bank owns account management services. However, its subsidiaries
in different parts of the world act as providers of the services. In relation to this, the
notion of stakeholder is important since certain partners in a business network have
an interest or involvement in a service without having any full responsibility for its
provisioning and delivery. An example is a government regulation authority with a
stake in compliance, such as customs and carbon footprint for commercial services.

Furthermore, the provisioning (creation and extension) of a service is often
thought as being the responsibility of a service provider. However, the rise of ser-
vice marketplaces, cloud computing, and business processing hubs are extending
the distribution of provisioning to third parties. In service marketplaces, for exam-
ple, providers from diverse agencies expose services, prices and conditions of de-
livery. The marketplace can then act as a broker between consumers and providers,
specifically needs and service capabilities. Other intermediaries are emerging such
as cloud providers who can offer third-party hosting, B2B gateways that can offer
message translation as a service, third-party aggregators that extend the value and
capabilities of services through innovative repurposing, bundling etc., and channel
partners that allow services to be interacted with through new user interfaces and
experience.

Since there is a variety of organizational settings for service delivery, the notions
of provider, consumer, stakeholders and intermediary should be generally under-
stood within customer-to-customer, business-to-customer or business-to-business
situations. A particular implication is that consumers may be businesses that could
be running local business processes, interacting with business processes of outside
companies. Indeed, there might be shared value derived through different services of
businesses, and reciprocal interactions, so that the provider-consumer relationship
is hard to see. As seen from service network approaches in particular, provider and
consumer is ultimately relative to an intention of a set of interactions: a consumer
requests a service capability and a provider responds, even if there are several ex-
changes, and even if the roles shift for subsequent interactions.

The surveyed SOA and Semantic Web Services approaches have anchored their
conception of services around service capabilities between service consumer, bro-
ker, and provider roles. Some of the service network and service system approaches
consider more roles. However, they do not explicitly address these new trends of
third-party service provisioning and intermediation that could be better supported
in Web services architecture and SOA platforms (e.g., see extended roles for service
delivery in [10]). Proposals of the product-service system approaches have by far the
strongest conceptions of services however they were developed before the onset of
intermediaries. This is a similar problem in the wider conception of services within
socio-technical environment of the service systems approaches — i.e., the distri-
bution of service provisioning also needs clarity as to what cloud, B2B gateway,
channel partner etc., extended services entail.

8 Design Overview of USDL 193

8.2.3 Service Dependencies and Composition

To provision a service means it has to be prepared in a way that its capabilities can be
delivered to consumers. This means that a service has all the necessary parts required
for generating its capabilities and all the supportive resources are available so that
it can be executed and delivered through its operational environment. Especially for
loosely-coupled environments often encountered in practice, the need for different
parts needs to be explicitly understood and the risks of failure for these need to be
mitigated.

The necessary components yielding service capabilities can be understood for
distinct purposes. Some parts constitute a service’s functionality and directly relate
to the essence of its capabilities. For example, a purchase order service makes using
of stock checking and order management services drawn from an enterprise solu-
tion. In turn, the order management service may be a composite service consisting
of elementary services in order creation, order modification, order cancelation and
shipment request. Further services may be added to improve decision making during
these services, such as tariff rate look-ups, carrier/container availability look-ups,
tax calculations, carbon footprint checks, as well as environment and health policy
look-ups concerning transportation of sensitive goods. We can see from this exam-
ple that services can be put together from different parts, on different levels, through
different techniques. Each service, within its own right, therefore carries a structural
granularity, classified in complex enterprise software solutions such as SAP’s as
core (elementary and typically not externally exposed capabilities), compound (ca-
pabilities relating to a single business object) and composite services (capabilities
relating to multiple business objects).

Composition may entail putting together different applications, business objects
or business processes as encapsulated artifacts in services or it may involve composi-
tion of prior services. Classical service composition techniques are generally appli-
cable for either purpose e.g., BPM techniques for allowing activities to use different
functional parts to be orchestrated through ordered steps, or Service Component Ar-
chitecture (SCA) for wiring components. In this regard, it is interesting to note that
despite the advances in service composition, the subject of considerable develop-
ment under SOA, Semantic Web Services, product-service system, service system,
and service network approaches, the distinction between services vis-à-vis other en-
terprise artifacts is sometimes blurry. For example, services and business processes
are sometimes regarded synonymously so that it is unclear whether functional de-
pendencies are on the level of services or the workflows. In any case, proposals in
the product-service system and services network approaches situate services explic-
itly for aggregations that are unambiguously characteristic of services, i.e., service
bundling (addressing marketing and revenue generation requirements).

Other parts involved in a service may be supportive for achieving the desired
functionality, i.e., use of platform, infrastructure, device and other ancillary re-
sources. Indeed applications themselves could be regarded as supportive, e.g., me-
tering and billing engines, in the sense of bringing particular services into view that
can then be composed into the essential functionality of the service. While the dis-

194 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

tinction between essential and supportive functionality may not always be clear, the
mechanisms of bringing these into the regime of the service is. As just discussed, es-
sential functionality can be provisioned through classical service composition, while
supportive functionality requires other means of specifying dependencies. Services
exposed by corporate environments, for example, have complex dependencies in
their business and IT landscapes where there could be thousands of resources and
services contributing to capabilities of exposed services. Indeed, there are different
forms of service dependencies for different purposes (e.g., dependencies must be
in place or are incompatible). The treatment of service dependencies across appli-
cation, platform and infrastructure levels has become explicit through the area of
cloud provisioning [21].

8.2.4 Service Delivery

The delivery of services is subject to constraints so that expectations of requests and
responses are firmly in place for consumers, providers and other agencies involved,
such as intermediaries and stakeholders. Constraints include pricing, licensing, tem-
poral availability, geospatial availability, dependent resources with necessary capa-
bilities, and so on. Given the range and complexity of services across varying du-
rations, the delivery of services entails rights, obligations, and penalties on the part
of providers, consumers, and others. These are described in formal documents such
as service contracts and service level agreements. The risks of contention, negli-
gence or malpractice are considered significant. Hence, non-functional properties
need to be made explicit for service delivery. This is in contrast to business process
orchestration where pricing and similar information tends to be regarded as tacit.

Pricing concerns charging for a service prior to consumption — so to speak, the
price tag of a service on the catalogue. It is distinct from the payments that arise
for a specific instance of a service, after it has been discovered, minimally after a
commitment has been made by a consumer to use a service.

Conditions arise from use of services at different times, with different degrees
of coverage, the needed capabilities, the channels of consumption, the relationship
of the consumer with companies delivering services, metered usage, and so on. The
different conditions entail different costs associated with supply balanced against the
dynamics of demand (i.e., the availability of a service varies as a scarce resource,
to draw from economics, depending on the time of use and the “stock” of resources
it uses). Different service offers have different price plans. The different plans have
different components and conditions associated to different aspects of service us-
age, down to individual capabilities of services. The notion of pricing segmentation
addresses multiple levels of pricing conditions.

To date, the work of O’Sullivan [23] has been one of the most comprehensive
proposals on the conceptual level for business-focussed, non-functional properties
of services. However, O’Sullivan’s conceptual model has not been validated for ser-
vice networks under the emergence of intermediaries (such as cloud providers, B2B

8 Design Overview of USDL 195

gateways, channel partners etc). Indeed, delivery constraints under distributed ser-
vice provisioning — where a channel partner exposes a service, brokered through
a service marketplace, whose hosting parts are federated across a backend service
provider and a cloud provider — are incrementally built up over the delivery chain
of contributing partners. By implication, pricing and other delivery constraints are
relative to other parties in the delivery chain. For example the price of channeling
is a portion of the overall price, although the delivery needs the broker and hosting
services in place. The (true) price for the consumer of the service involves prices of
the different partner services. Such constraints in complex delivery chains are not
apparent in any of the surveyed efforts.

8.2.5 Service Consumption

When services are consumed, they need to be delivered across all their dimensions
— technical, human, business and material. As elaborated above, services are in-
teractional and they have effects on consumers and other entities that they interact
with. They need to be understood in terms of all interactions that can occur at differ-
ent time intervals, in different locations, with different entities be they consumers,
stakeholders, intermediaries, or providers.

Services are accessed through designated points of consumption known as chan-
nels. Business channels (e.g., mobile banking, whole-of-government citizen services
point) are forms of business resources which have consuming applications that allow
access to services or specific operations of services. They may be pre-configured to
access particular services or they may allow run-time discovery, selection and or-
dering. Consumers may directly interact with these applications or the applications
may entail automated interactions with services. In the case of the latter, it is crucial
for interactions and their data contexts to be described in a way that permits the
interoperation of consuming applications and services.

For end consumer interactions, different operations of a service may be required
in different channels. For example, a passport application requires full authentica-
tion of a consumer through a counter channel. Progress in processing the passport
may involve a self-serve channel while final handover of the passport can only occur
through the counter. Channels may have time and geographic constraints in which
services are accessed. They can support different technical channels for different
types of devices that are permitted when interacting with services.

Existing SOA and Semantic Web Services efforts have the notion of the external
behavior of services although they do not explicitly support channel constraints for
particular capabilities, e.g., which capabilities require human interaction for full
authentication and which may be accessed through mobile devices. Related efforts
address service consumption requirements as part of non-functional properties of
service delivery (e.g., the geospatial and temporal constraints of where services are
consumed). However, they do not make reference to an explicit behavioral view
of services for the service consumer — upon which the functionality, resources

196 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

and constraints of a service are suitably comprehended by consumers (cf. external
service model of the enterprise architecture framework, Archimate [19, 20]).

8.3 Language Requirements for USDL

Based on the general discourse of services described above, we identify the follow-
ing key requirements to guide the formation of service description languages. These
requirements are split into generic language requirements and service-specific con-
cept formation requirements.

8.3.1 Generic Language Requirements

With respect to the generic language requirements discussed below, approaches of
the SOA strand are largely technical. Their capabilities in all the generic require-
ments should be understood from a programming paradigm, and not on the level
of service descriptions suitable for business practitioners. UDDI does address ser-
vice descriptions more explicitly though as a way of supporting service descrip-
tion schemes concerning Web services, leaving open what the details of business-
focussed attributes of services should be. Semantic Web Services approaches (e.g.,
WSMO or OWL-S) appeal to the conceptual level (through ontologies). Unless a
domain is thoroughly conceptualized, a semantic Web service tends to be under-
stood through a complementary description, based on ontologies and programming
interfaces. In any case, Semantic Web Services approaches require designers to pro-
vide most of the service description schema (such as a detailed pricing scheme).
Efforts of the product-service system and service network approaches address most
of the generic language requirements. Where they are of questionable value is in
the suitability of particular concepts for describing services. This is the subject of
Section 8.3.2.

8.3.1.1 Conceptualization

First and foremost, a comprehensive description of services, across all the facets
and perspectives of the wide variety of stakeholders, is best supported on the con-
ceptual level. In general, the conceptual level, as described by the well-known Con-
ceptualization Principle [27], focuses specifications on essence, allowing users to
understand these free of implementation details.

8 Design Overview of USDL 197

8.3.1.2 Expressive Power

Correspondingly, a service description language should have a sufficient expres-
sive power so that full conceptualization is possible. The expressive power of a
language is the computational measure of language’s capability to capture its tar-
get. When considering the different aspects of services such as service pricing and
contract documents encountered in commercial trade, it is clear that the concepts,
relationships, constraints and behavior needed for full service description are large
and complex.

8.3.1.3 Modularity

Given the size and complexity of service related information, a service description
language should explicitly support modularity in order to improve maintainability
and extensibility of service descriptions. When describing services as diverse as
purely professional/human services such as project management and cloud-based
infrastructure services, not all concepts/attributes are applicable. It should be possi-
ble to use only those sets of service descriptions or modules that are relevant.

8.3.1.4 Extensibility

Given the diverse industries and domains involving services, a “one-size-fits-all”
service description scheme is infeasible. Even on a generic level for aspects such as
service ownership, pricing and availability, new and unforeseen requirements for de-
scriptions should be expected. In other words, service description languages should
be extensible so that they can be used in specific business contexts involving new
requirements that have not been factored into the supported set of service descrip-
tions.

8.3.1.5 Comprehensibility

In light of the size and complexity of service related information, and the fact that
service domain experts are non-technicians, service description languages should be
comprehensible. The conventional ways for making large and cumbersome models
comprehensible include the use of graphical representation, model views, and step-
wise decomposition from abstract to detailed levels. Since services are conveyed
through textual form, different and multi-modal forms of service description should
be supported. For example, it should be possible to view service contracts in struc-
tured, semi-structured or unstructured forms (textual narratives).

198 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

8.3.1.6 Formal Foundation

As with languages used for other applications, it is crucial that a service description
language has a formal foundation. In particular, it should be assigned a formal se-
mantics, in order to support for the full repertoire of concepts and features, alluded
to in the aforementioned requirements, in a clear and unambiguous way.

8.3.2 Service Concept Formation Requirements

In information systems’ conceptual modeling literature, the requirement of the suit-
ability of a language or technique for its intended domain is prominent. Different
domains require different language concepts and features suitable for them. The is-
sue of suitability gets to the heart of a constructivist synthesis of concept formation
for a service description language. In [11], principles were proposed to guide the
identification of suitable modeling concepts for business processes. Since business
processes are closely related to services, we adapt these requirements for the suit-
ability of service description languages.

8.3.2.1 Organizational Embedding

In reality, services are organizational systems or subsystems and so all concepts of
services relate directly or indirectly to organizational concepts. In that sense, the
concepts, as with those of other types of organizational artifacts such as business
processes, objects and resources, are said to be organizationally embedded [17].
More specifically, services are grounded in organizational functional structures. The
requirement entails alignment of service descriptions with organizational concepts,
whether they reference organizational concepts elsewhere maintained (e.g., LDAP
directories) or whether they provide corresponding concepts. A significant aspect of
organizational alignment for information systems and thus services is resourcing. In
business processes, resources are allocated from within organizations to undertake
ordered activities whereas at the level of services, the emphasis is on the delivery
partners involved: owners, providers, stakeholders, intermediaries, and consumers.
Each of these may be an individual or a role within an organization. The extent to
which partners are described in a service language aligns with their organizational
roles. Further aspects of service concepts that should be organizationally embedded
include delivery aspects such as pricing, availability as well as functional compo-
sition and bundling, whose constraints are ultimately determined by organizational
policies.

Figure 8.1 provides an abstract illustration of organizational embedding. In the
middle part of the figure is an abstract concept dependency structure of an organi-
zation. At the business level, this could consist of the functional structure, broken
down into organizational capabilities and, in turn, artifacts (resources, products, ser-

8 Design Overview of USDL 199

Infrastructure

External infrastructure services

Application components and services

Roles and actors

External application services

External business services

 Damage claiming process

Client Insurant InsurerArchiSurance

Registration PaymentValuationAcceptance

Customer
information

service

Claims
payment
service

Customer
administration

service

Payment
service

 CRM
 system

 Financial
 application

Customer
information

service

Claim
registration

service

Claim
registration

service

Claims
administration

service

 Policy
 administration

Claim
files

service

zSeries mainframe

DB2
database

Financial
application

EJBs

Customer
files

service

Sun Blade

iPlanet
app server

Claim
information

service

Organizational Directory

Service Directory

Business Process Management Suite

Enterprise Architecture

Business level
IT level

Fig. 8.1: Requirement for Organizational Embedding.

vices processes). At the IT level, IT automated services, applications, platforms and
infrastructure would be incorporated. A service could be at the business or IT level,
and its dependent organizational artifacts across business and IT levels would be
traceable. The figure shows a service, whose details are captured and stored in a
service directory and which is associated with the abstract organizational structure.
The figure also shows other resources supporting techniques or methods capturing
models related to the organizational embedding, at different levels.

As apparent from Figure 8.1, there are several key implications for the design of
service description languages arising out of organizational embedding. Firstly, con-
cepts can be justified in terms of wider systemic phenomena (e.g., policies or goals
of the enterprise or its units). Secondly, the languages can be aligned with other
languages, techniques or methods also concerned with organizational systems, i.e.,
service description languages do not override the concerns of these other languages,
e.g., service description languages relate to, and should not be confused with, busi-
ness process modeling and organizational resource languages. Thirdly, service de-
scription languages can be used in larger organizational methods such as enterprise
architecture frameworks where they can be coopted with wider operational, tactical
and strategic concerns for organizations, e.g., strategic planning, marketing. This is
in line with the proposal of the product-service system approaches (cf. Chapter 2).

200 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

8.3.2.2 Cognitive Sufficiency

In [11], the need for business process models to provide a sufficient cognizance for
human interpretation was identified. This need led to the requirement for integrating
information about control and data flow, resources, events and message exchange,
task pre- and post-conditions including temporal constraints, task UIs and others,
through models that reduce the need for assumptions to be made due to missing
details. Accordingly, we require that practitioners reliably understand the different
aspects of services including models of their different artifacts, documents, code,
and non-functional descriptions. For services, the challenge of cognizance is more
pronounced than for business processes since services are the exposed units of func-
tionality yielded from prior artifacts such as applications and business processes.
How to coherently present a logical service entity across its different sub-models
and documents, captured through different techniques and languages, is unclear.

General details of service

Individual
Service

Capability
Details

Process steps of service exposed
to consumers

SLA

How is service delivered
to consumer?

What are details of
individual service
operations?

What are the conditions and
penalties during delivery?

What impact does an
individual service
operation
have on delivery
conditions
and penalties?

Fig. 8.2: Requirement for Cognitive Sufficiency.

In [16] (cf. also Section 4.6), an integrated modeling environment is described
where services models and descriptions can be captured, viewed and extended to-
gether with the models of their supportive business processes and business objects.
The environment uses an integrated meta-model supporting the techniques for cap-
turing the different artifacts of services, in particular business processes and business

8 Design Overview of USDL 201

objects. In [1], the range of techniques is opened up for a potentially arbitrary set of
modeling techniques for different artifacts related to services (e.g., SCA, BPEL and
BPMN support). The underlying framework does not aim at integration of the dif-
ferent techniques but on how core aspects of techniques are mapped into a structure
that supports a common expression of a variety of service extension requirements
that are also expressible through dedicated techniques. For example if a service’s
interface, business process or UIs need to be integrated with other applications, then
their core elements are mapped to the core structure that also permits applications
to be integrated, e.g., an application operation is extended by integrating it with a
service’s operation, or a business process is extended by integrating it with a ac-
tivity from a service’s business process. The framework, as such, allows different
sub-models of services to be viewed together and the core elements to be extended
irrespective of the technique used to capture the service artifact.

However, this only addresses the models of services, not the logical service entity
per se. A service, as we described above, logically consists of capabilities imple-
mented by operations — those operations are the ones related to different artifacts
(such as business process activities or update transitions of business objects). Ca-
pabilities are subject of delivery and are subject to constraints of ownership, provi-
sioning, pricing, availability etc. If such constraints are separately captured, e.g., in
stove-piped SLA languages, then the association is lost as to which parts of services
relate to specific constraints and dependencies etc.

Figure 8.2 illustrates the cognitive sufficiency requirement for a service across
different representations of its details, attributes, models and documents. The figure
shows the collective viewing of the details of a service for two different levels of
concern. The general details of a service (name, functionality, version, owner etc.),
on the left hand side, lead to the details of how the service is delivered from the
perspective of a consumer, on the top. Interestingly, this part combines attribute
descriptions of the different phases of delivery and a model diagram. The details
of service level agreement (SLA) on the right can be viewed, as a document, for
the service as a whole. However, individual operations (their inputs, outputs and
channels where they are accessed), seen below, can be used to highlight different
parts of the SLA document related to that operation.

It can be seen that the requirement of cognitive sufficiency can be fully supported
by a language that abstracts the core functionality of a service (capabilities and op-
erations) through its descriptions. It is then possible to provide more fine-grained
correlation with different details of service, allowing delivery constraints of SLAs,
pricing, etc., to be referred to. The intuitive meaning of a service is then conveyed
coherently without requiring practitioners to make mental correlations across differ-
ent service documents.

8.3.2.3 Service Information Hiding

The well-known principle of Information Hiding is intrinsic to services since they
are encapsulated, reusable and deployed units of functionality. Current service lan-

202 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

guages support well-defined service interfaces while current service composition
languages allow services composed on business process (e.g. BPMN), service op-
eration (e.g., SCA) and UI levels (e.g., widget composition) to be hidden behind
interfaces. However, services have complex structures and can recursively consist
of other services of different sorts and with different types of artifacts.

Service Directory

Business Process
Management Suite

Service Component
Architecture Tool

y

Digital Asset
Management

Fig. 8.3: Requirement for Service Information Hiding.

Consider for example, a service for business formation that is implemented
through a long-running business process orchestrating many other processes for ful-
filling license provisioning, with value-added user interface components available
at different stages for data sensing (e.g., market monitoring of different business
lines, visualization of local supply chains). Furthermore, consider that for certain
types of business licenses, other services are bundled as part of a fulfillment stage,
such as monthly tax reporting and office/HR support, through software-as-a-service
applications with different business processes operating through them. The question
is how such a complex service package, with its different parts and dependencies,
can be made transparent through service description languages, without revealing
internal details of artifacts and replicating the techniques and languages used for
describing these (e.g., a business process modeling language).

To illustrate the point, if a provider deploys a service implemented through a
business process, then such a service could be described as single service with dif-

8 Design Overview of USDL 203

ferent capabilities and operations. Its activities would not be represented as services.
If, on the other hand, the business process makes use of other services that have been
deployed (and catalogued as different services), the fact of those services being com-
posed together should be exposed through a service description language (as service
dependencies). Indeed, composed services should be transparent through service de-
scription languages while their related artifacts (e.g., BPMN models) are pointed to.
Similarly, the dependencies of services through other forms of service composition,
such as data correlation (widgets and service operations), implementation inheri-
tance (package imports) and bundling (unordered and uncorrelated), should be ex-
posed through service description languages without replicating the details available
through composition languages.

Figure 8.3 illustrates the point. It shows services descriptions captured for service
records maintained in a service directory, on the left. The service records contain ref-
erences to external files containing models of different artifacts related to services
— correspondingly, those artifacts are encapsulated as services. There are three ar-
tifacts. A service bundle, on the middle top, combines an iPhone and a business
process. The iPhone is catalogued through a digital asset management repository.
The business process used in the bundle, in the center, is also exposed as a business
process. This is indicated by the service directory. The business process has a model
managed through the business process management suite. An individual activity in
the business process makes use of a composing a composed service, on the bot-
tom. It is maintained through a service component architecture tool. The composed
service is also maintained in the service directory, note, however, its constituent ser-
vices are not explicitly catalogued. Taken together, the service directory makes the
services across different artifacts and business operations, and keeps a track of their
dependencies, thus promoting flexible reuse.

8.3.2.4 Deployment Symmetry

As discussed above, the provisioning and delivery of services can be extended to
third-parties such as service brokers and cloud hosts. For example, service brokers
allow services to be advertised and delivered through their (marketplace) platforms.
They “on-board” services so that their technologies for discovery, orchestration,
ordering/CRM, payment etc., can be exploited. In doing so, new service offers can
be created with new monetization models, e.g. advertising and rewards can be used
to offset prices set by providers. Different service offers could be created for the
same service with different pricing, reliability and risk mitigation constraints. Since
delivery and execution of new service offers shifts to intermediaries, we require that
languages allow service descriptions to be consistent and coherent, i.e., symmetric,
regardless of how they have been extended and where they have been deployed.

In other words, as services are extended, there should be no loss of information in
terms of their functional and non-functional aspects. As extensions of existing ser-
vices, core descriptions and constraints set in place by providers concerning future
extensions should not be overridden, e.g., a cloud or channeled version of a service

204 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

Service Provider

Virtual
Enterprise

Service Owner Service Broker

Service Provider

Service Provider

Se

Fig. 8.4: Requirement for Deployment Symmetry.

does not change the core functionality of a service, although its price, response time
and point of consumption does. As extensions are created, services should be traced
back to their previous versions and extensions should occur with reference to prior
constraints and core service details.

Consider two implications of this requirement for service description languages.
The first concerns the organizational context of services. Take for example, a busi-
ness formation service, traditionally operated through the government, opened up
to allow the private sector to repurpose and target the service to different market
segments, e.g., supporting start-ups, retail outlets or building trades. A variety of
service specializations may be created where private sector agencies take up the
task of overall orchestration of the service. However, the government retains the
core responsibility of evaluating and granting individual business licenses. More-
over, the government requires that certain sensitive tasks such as settlement may be
delegated to outside agencies, they need to be accredited/certified, however. Such
constraints of delegation and retention of control when services are provisioned to
third-parties can be made transparent through well-defined organizational contexts
supported in service description languages. In general, the context and structure of
services should be defined abstractly so that concrete bindings can be configured in
particular specializations of services. A symmetric description of services, regard-

8 Design Overview of USDL 205

less of their lifecycle of provisioning and where they are deployed and operated,
supports crucial compliance needs.

A second implication of the deployment symmetry requirement is pricing. As
services are extended, e.g., to run in a cloud environment, new pricing and avail-
ability constraints should be incremental and not displace those put in place by the
originating providers. For example, if providers require a certain fee for a service,
new offers of the service created by brokers or other intermediaries (e.g., broker
fees) result in additional pricing constraints. Some parties provide credits, e.g., ad-
vertising revenue. In general, a symmetric description of service pricing for multiply
extended services sees debit or credit pricing constraints, or price apportions, in the
overall pricing schedule. Deployment symmetry has hardly been addressed by the
surveyed efforts.

Figure 8.4 provides an illustration of one aspect of deployment symmetry. It
shows that a service owner advertises a service together with the core part of its
“org. structure” through a service broker. The “org. structure” consists of designated
roles required for undertaking the service as policies, for the purposes of regulatory
compliance (e.g., with a government). The service can then be ordered through the
broker with a target organization needing to comply with the constraints set in place
by the service owner. The new setting distributes the required delivery through dif-
ferent services providers (i.e., in a virtual enterprise). Irrespective of whether the
service is run through its originating operational environment or new ones, the ser-
vice descriptions set in place contain constraints so that service delivery conforms
to required constraints.

8.3.2.5 Execution Resilience

Functional descriptions of services generally describe what is entailed in the deliv-
ery, however further issues also impact delivery. One is non-functional constraints
such as pricing. Another is deployment settings including business and technology
resources needed for ensuring delivery. A critical concern for ensuring that a service
is deliverable is exception handling.

The natural place for exception handling is in detailed specifications of service
tasks, for example in pre- and post-conditions and action specifications. Therefore,
a service description language should support the handling of exceptions, so that
the execution resulting from a specification can be validated as being resilient. This
includes rollbacks, cancelation policies, contingencies etc. These issues, of course,
relate back to other non-functional issues. For example, “cooling off” periods can be
built into pricing should there be uncertainty about customer satisfaction concern-
ing the fulfillment of a service. In addition, service level agreements need to corre-
late with exceptions so that compliance of delivery can be assessed when things go
wrong.

The requirement of execution resilience has been addressed in service/process
orchestration and composition languages, such as WS-BPEL, BPMN and SCA,
through technical exception handling considerations. However, exceptional issues

206 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

at the business level, such as an explicit support for policies for cancelations and
contingencies are only dealt with implicitly through SLA languages. A comprehen-
sive treatment is not available through surveyed efforts.

8.4 Structure of USDL

Given the complexity of the service domain, seen from our discourse, USDL has
been designed with the requirements of Conceptualization and Modularity in mind.
With respect to the former, UML class models are used for capturing USDL. More
specifically, the Eclipse Modeling Framework (EMF) [24] was chosen (Chapter 14
discusses representational issues in detail).

With respect to modularity, the distinction in business, operational, and technical
information put forward in Section 1.4 carries the main idea of USDL, namely the
unification and interconnection of service information from all areas of the spec-
trum. Yet, the distinction in business, operational, and technical aspects proved to
be too coarse-grained for an adequate structuring. Instead, USDL is split into sev-
eral packages (according to UML terminology). Each package represents one USDL
“module” and contains one class model.

Fig. 8.5: UML package diagram of USDL (dependencies between packages are rep-
resented as arrows).

The resulting split in modules follows from prominent non-functional aspects
such as pricing and legal constraints, how services are interfaced with for deliv-
ery and service level agreements, which partners have responsibility for the ser-
vice and details about service functionality. Consequently, Figure 8.5 introduces the
Functional, Interaction, Participants, Pricing, Service, Legal, Technical, and Service

8 Design Overview of USDL 207

Level Module and their dependencies. The Foundation factorizes common model-
ing elements as a consistent application of modularization. The modules are briefly
explained in the following.2 Note that the remaining chapters of Part II discuss the
modules in more detail. Besides, detailed specifications of each module are available
(cf. [3, 4, 8, 7, 5, 6, 9, 2, 12]).

Service Module (Chapter 13): The Service Module focuses on the essential
structure of a service, i.e., the building blocks of a service, without detailing its
functionality, responsible participants, and the other concerns. These are the sub-
jects of other USDL modules. The dedicated focus on the structural make-up of a
service is because of the complexity entailed. This arises from the conceptual di-
versity of service types, across the human-to-automation continuum, which brings
services of different “shapes and sizes” into view. This makes the task of design-
ing a unifying service description language challenging and warrants as a foremost
challenge, the clarity of service structure. As we discussed in Section 8.2.3, there
are different degrees of granularity for services, from simple information look-ups
and atomic transactions, to orchestrations of different service capabilities in appli-
cation packages or executable, BPEL-style business processes, coordinating the ef-
forts of companies on an international scale, such as the transportation of goods.
Ultimately, services can be bundled through market-competitive packaging seen in
telephony bundles, infrastructure provisioning or professional consultancies. Also
related to the structure of services, we have discussed (in Section 8.2.3), the orthog-
onal and adjacent issues of service dependency, related to the resources/services
supporting a service’s delivery, and composition, concerning the different parts put
together for a service’s functionality. Both these involve multiple, recursive use of
services — of diverse types in and across different levels of abstraction. In the Ser-
vice Module, services encapsulate functionality, from prior instrumental artifacts on
a business or technical level. A Service can be concrete, namely manual, semi-
automated and fully automated, or abstract, providing the template for concrete
realization in a particular setting. One or more ServiceVariants allow access to
predefined subsets of services. The packaging concept of services, ServiceBundle,
allows a number of services (including abstract services and service bundles) to be
grouped without any execution relationship. A CompositeService, as a special-
ization of Service, is similar, except that the different parts of functionality, from
potentially different services (including abstract services, composite services and
service bundles) have an execution relationship. This can be an ordering of steps
(such as business processes), unordered steps (such as program import) or data de-
pendency (such as widget mash-ups). In line with the Service Information Hiding
requirement, composition should not duplicate language-specific composition arti-
facts (such as BPEL processes), but should apply when services, at the USDL level,
have been composed (as discussed in Section 8.3.2.3). A major structural applica-
tion of services is provisioning. The NetworkProvisionedEntity generalizes both
Service and ServiceBundle to this end, and associated descriptive classifications

2 Classes and relations of the USDL modules are written in sans serif font in the following.

208 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

(e.g., terms and keywords), instrumental artifacts and shared variables for execution.
Importantly, a NetworkProvisionedEntity has dependencies for concrete services,
abstract services, service bundles and resources, through the Dependency element.
These relate to service delivery and reflect different dependency forms: Requires,
Includes, Enhances, Mirrors, canSubstitute and canConflict.

Participants Module (Chapter 13): The Participants Module captures the orga-
nizational actors that are important for the provisioning, delivery and consumption
of a service, thus factoring in a major aspect of the Organizational Embedding re-
quirement. Since services captured in USDL should not expose or repeat the de-
tails of their instrumental artifacts, as required by Service Information Hiding, the
details of organizational resources as stored in, for example, organizational direc-
tories, are not central to USDL’s concerns. However, sufficient details should be
exposed in USDL so that a correspondence can be made to organizational actors
where they directly concern service provisioning, delivery and consumption. The
Participant Module connects NetworkProvisionedEntity (Services or Service-
Bundles), with the participants in provisioning, delivery and consumption Roles,
resonating the wider setting of a service ecosystem, out to the Internet of Services
vision (see Chapters 1 and [10]). As per the service discourse, the participant Role
covers: service owners (cost center owners typically having governance responsi-
bility of services), service providers (having service delivery responsibility), stake-
holders (having regulatory, commercial or other designated interests in the service),
intermediaries (having specialist provisioning, such as a broker or cloud provider,
beyond the original provisioning), and end consumer. Basic organizational details
are captured for these roles.

Functional Module (Chapter 11): The Functional Module allows the capture
of service functionality at an abstract level, regardless of the proximity of the ser-
vice on the human-to-automation continuum, and free from technical implementa-
tion details. As a unified language, it allows service functionality for a wide range
of services to be expressed, so that users, designers and engineers, alike, can un-
derstand comprehensively how a service is provisioned, delivered and consumed.
Conventionally, service functionality is captured as a set of operations. In contrast,
USDL supports the capture of service functionality in different layers, for different
levels of concern. For instance, service providers can see the detailed functional-
ity of services aligned to organizational resources and objects accessed (a “white-
box” view). Intermediaries can be limited to a less intimate view of functionality
but sufficiently detailed so that they can configure third-party delivery functionality
(a “grey-box” view). Consumers would only see a view of the service focused on
their interactions (a “black-box” view). Accordingly, the Functional Module com-
bines well-established concepts of capability modeling and functional decomposi-
tion. The element that abstracts service capabilities is Function, which is under-
stood as representing a course of action that can be decomposed into sub-functions.
A Function may feature one or more input and output Parameters, as well as
one or more Faults (related to exceptions). A Function has preconditions and

8 Design Overview of USDL 209

produces postconditions (effects), as well as references to context variables, i.e.,
held in the context of a service and are affected when the function is performed.
Two types of resources are defined for a Function, namely those used for perform-
ing (utilizedResources), e.g., tools or organizational roles, and those manipulated
(affectedResources), e.g., business objects. The decomposition of Function sup-
ports different degrees of detail for different concerns of providers, intermediaries
and consumers.

Interaction Module (Chapter 11): The Interaction Module captures the behav-
ioral aspect of services, complementing the Functional Module and Technical Mod-
ule with their structural focus. The behavioral aspects of services principally con-
cern the way services are interacted by the different participants involved. A large
number of description/modeling languages have been proposed for modeling the ex-
ternal behavior of services as interaction protocols, and standards are now in wide
used. As with the Technical Module, our design choice was not to replace existing
efforts but to leverage them through the richer semantic setting of USDL. The cen-
tral concept in the module is InteractionProtocol, which groups the set of manda-
tory and optional interactions taking place between the participants. The Simple-
InteractionProtocol is used to define a single sequence of interactions. An Inter-
action models an act of communication between the consumer (user) of the service
and one or more other participants that have a responsibility in delivery. These par-
ties must be roles defined in the context of the service (feature involvedRoles). For
more complex and long-running services, interactions can be grouped into phases
of service delivery. A ComplexInteractionProtocol has a set of Phases. A Phase
holds a sequence of Interactions and requires as preconditions, and yields as post-
conditions, a set of Milestones. A Milestone, in turn, is defined as the (formal or
informal) description of a state of objects that are affected by the service. It thus
describes achievements, and Phases may require certain Milestones to be reached
before they can start (feature preconditions). The interaction protocol of USDL
maps straightforwardly to those in languages and techniques dedicated to service
interaction behavior. Language-specific models as the actual implementation speci-
fication can be linked with InteractionProtocol through Artifact.

Technical Module (Chapter 11): The Technical Module supports a common way
of describing the technical interfaces (access mechanism) of services. It is based on
two significant styles used in practice, with extensibility for the possibility of fur-
ther support of styles that emerge. Following Semantic Web Services (cf. Chapters
6 and 7), the Technical Module serves to semantically associate technical interface
descriptions with elements of USDL via the Functional Module. The two concrete
interface classes of the Technical Module mostly perform the function of a con-
tainer for “interface element” objects (e.g., objects of classes OperationBased-
InterfaceElement and ResourceBasedInterfaceElement). These objects refer-
ence a particular element in an external interface description, e.g., an operation
or parameter definition. A link to the actual interface description artifact (e.g., a
WSDL) that should contain such definitions is provided through implementation-

210 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

Specifications. A link is also provided to the USDL object implementing the inter-
face FunctionalElementRef.

Pricing Module (Chapter 9): The Pricing Module concerns the charging of ser-
vices as mutually understood by those who own or deliver services and those who
consume them. The key challenge for service pricing is the range of services covered
by USDL and the variety of conditions that apply to a single one of these. Different
offerings of the service, for different times, targeted at different customer profiles,
in different industries — all contribute to pricing variations. In pricing theory, this
is referred to as the segmentation of pricing, i.e., the rules governing when and how
different consumers are charged different prices. For USDL, all segmented-pricing
practices from the literature and those that were considered relevant for USDL were
assessed. It turned out that price plans offered by mobile network providers of-
fered among the most complex of pricing schemes. For instance, fixed-fee and pay-
as-you-go policies are offered through different plans having different features, al-
lowances and fees. In addition, different conditions apply, such cheaper rates outside
business hours, cheaper rates when the provider’s own network is called, or more
expensive for calls made overseas. Accordingly, USDL has a hierarchical structure
for service pricing, allowing different levels of a service that characterize the diver-
sity of pricing schemes in both professional and ICT services. A PricePlan relates
to different offerings of services or bundles, allowing a consumer to choose different
plans for the same service. A PricePlan contains one or more PriceComponents,
related to different service capabilities (Function), concerning different aspects of
pricing, e.g., handset charge, domestic calls under standard coverage, calls in excess
of standard coverage, overseas calls. Each PriceComponent has a monetary value
specified through a PriceLevel which may be fixed per measurement (Absolute-
PriceLevel) or proportional to a certain base (RelativePriceLevel). A PriceLevel
has a fundamental PriceMetric as a measure upon which pricing is based. Dis-
counts, surcharges, taxes and so on are supported through PriceAdjustments. Dy-
namic variations on pricing such as rewards status of customer, bundled deals and
other accepted negotiations with the customer, are supported through PriceFences.
Collectively, the USDL Pricing Module supports the representation of virtually any
price structure encountered in the service industry, from simple single-tariff ones
to complex price schedules involving multiple price plans. Segmenting conditions,
which dictate when certain price elements apply, are also part of the module capabil-
ities. Moreover, alternative possibilities are given to model the same set of charges.

Service Level Module (Chapter 12): The Service Level Module is intentionally
kept completely generic, as it does not specify how concrete service levels on con-
crete aspects should be specified. Instead, its main purpose is twofold. First, it pro-
vides a proper glue between abstractly specified service level issues of other USDL
concepts. For example it specifies to which elements of a function a certain service
level shall apply and who is the related participant. Second, it should allow for incor-
poration of arbitrary attribute and expression languages. The Service Level Module
concerns service level agreements (SLAs), and, thus, concepts capturing guarantees

8 Design Overview of USDL 211

regarding quality of service operation, as claimed/requested by different participants
involved in the delivery and consumption of a service. They are established as part
of service provisioning and could be updated during delivery as new conditions arise
for ensuring Execution Resilience. SLAs in practice are specified at the top-level in-
terface between a service provider to monitor whether the actual service delivery
complies with the agreed SLA terms. The USDL Service Level Module features a
more fine-grained support of requirements for SLA management out to the business
level. A ServiceLevel captures a single service level objective related to an of-
fered, negotiated or agreed service. It is either related to state (GuaranteedState)
or action (GuaranteedAction) and has a ServiceLevelExpression for capturing
assertions. A single participant, viz., ObligatedParty (cf. Participant Module), is
obligated to enforce the service level. Service levels for given service are realized
via ServiceLevelProfile. A set of service level specifications is combined into one
profile and offered, negotiated, or agreed upon as a whole. Different profiles can be
used to specify different options of how service levels may be specified and grouped
(e.g., as gold, silver, bronze profile). A ServiceLevelProfile resembles the concept
of a Service Level Agreement Template as for example specified in WS-Agreement.

Legal Module (Chapter 10): The Legal Module addresses the need for legal cer-
tainty and compliance in service networks and in trading services on marketplaces.
Participants need to know about the terms of usage of a particular service, for exam-
ple, liability, privacy, or copyright. However, this information is rarely provided in a
machine-processable manner but rather as informal text. Such informal representa-
tions of legal clauses are not accessible, for example, to search engines — one might
think of a specific search for services which can be re-sold — or an semi-automated
analysis for legal consequences such as if a transfer of copyright is legally allowed
(cf. our research in [22]). Therefore, the Legal Module covers the modeling of li-
censing aspects according to two different jurisdictions. The class Work is central to
the Legal Module since it represents the subject matter which can be licensed, i.e., a
Service, CompositeService, or the service output. UsageRights can be granted
for a Work according to different UsageTypes. The latter defines a specific, well-
defined, economic manner of how to use a Work, e.g., the right to distribute. In the
Legal Module pricing is considered as a Reward for the rights holder for allowing
other entities the usage of his work. Therefore, the class PricePlan of the Pricing
Module represents one possibility to describe a Reward. The class Function in the
Functional Module describes details about the usage of an artifact. This determines
the actual UsageRight and its UsageTypes. The class Role in the Participants
Module is used to describe a licensor. This also means that the licensor has to be
specified in the Participants Module: he is either the Provider of the service or has
to be listed as a Stakeholder.

Foundation (Chapter 13): The Foundation factorizes common parts of the re-
maining modules as a consistent continuation of modularization. Because of its ba-
sic character, all other modules depend on the Foundation meaning they reference
one or more of its elements.

212 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

8.5 How USDL Supports Requirements

With the overview of USDL modules, we discuss, in this section, how USDL ad-
dresses the requirements for service description languages aimed at the different
types of services, on the human-to-automation continuum (cf. Section 8.3.2). A
summary is given in Tables 8.1 and 8.2. Note that the individual modules’ chap-
ters further address the requirements in detail.

Table 8.1: Summary of how USDL supports the generic requirements.

Generic Language Re-

quirement

Support

Conceptualization USDL is positioned at the conceptual level by using UML class models
and pointers to external artifacts.

Expressive Power UML class models without the use of OCL.
Modularity USDL is split in different packages (modules) along well-established

lines of conceptual cohesion, e.g., pricing, legal, service level, function-
ality, etc.

Extensibility Variant management (cf. Chapter 17).
Comprehensibility No specific graphical representation of USDL is prescribed. USDL im-

plementations make use of form-based representations of USDL at-
tributes.

Formal Foundation Currently, USDL lacks a formal foundation.

Concerning the generic language requirements (cf. Section 8.3.1), USDL has
clearly been positioned at the conceptual level, free of implementation details, given
its UML-based class models and abstraction of business to technical aspects. In ad-
dition, it does not subsume related artifacts of services, such as technical WSDL
interfaces, but rather points to these so that it serves as a unifying, but not an all
encompassing, language. This is a further indication of its adherence to Conceptu-
alization. USDL has the Expressive Power of UML, although the majority of the
language definition is largely structural in nature — and thus has not made use of
UML’s OCL, for example, for dynamic constraints. The Comprehensibility of USDL
is at the same level as UML class models used to describe many languages and mod-
eling techniques, and the wide range of concepts and different foci of services led
to a dedicated treatment of Modularity, seen through the various modules. Indeed,
the grouping of concepts has resonance with recognized sub-areas of services in
existing service description languages, e.g., service, functional, interaction, pricing,
service and legal, are treated as distinct conceptual areas in different languages as
well as other unified service description proposals (e.g. [23]). With respect to Ex-
tensibility of USDL, different variants of USDL are required for different contexts.
This is already shown by the Legal Module (cf. Chapter 10) which requires different
contents depending on the jurisdiction of a country. The issue aggravates if more and
more parameters are relevant to determine the correct variant. Chapter 17 presents
one possible solution for managing variants of USDL consisting of a canonical data

8 Design Overview of USDL 213

model, a context driver mechanism, governance processes, and appropriate tooling.
Under current development, USDL lacks a Formal Foundation.

Table 8.2: Summary of how USDL supports the service concept formation require-
ments.

Service Concept For-

mation Requirement

Support

Organizational Embed-
ding

USDL concepts correspond to well-known organizational concepts
which align with behavioral and structural concepts such as business
processes and organizational actors/roles. Thus, USDL could be inte-
grated with enterprise architecture frameworks, BPM and other methods
or techniques used in organizations. USDL also supports network-based
organizations through network-style participants and services being ex-
tended by these.

Cognitive Sufficiency USDL provides the interconnection of different service aspects across
different modules. The interconnection allows for correlation of differ-
ent service-related information at different levels, e.g., pricing compo-
nents to service capabilities, or pricing levels to service offerings.

Service Information Hid-
ing

The explicit concept of service allows encapsulation of functionality
including that contained in artifacts related to services but captured
through other languages (e.g., business process descriptions). Compo-
sition on the level of services is possible using different forms of com-
position and dependency relationships, e.g., recursive bundles.

Deployment Symmetry Abstract services (cf. AbstractService in Service Module) allow ser-
vice needs in different organizations to be supported. Different concrete
services conforming to these could be used. However, the organizational
context is not abstracted, meaning that the providers cannot pre-define
the operational context constraints needed when their services are else-
where deployed.

Execution Resilience USDL supports the handling of exceptions by providing specific non-
functional properties (pricing, legal, functional and interaction) so that
the execution resulting from a specification can be validated as being
resilient.

Concerning the service concept formation requirements (cf. Section 8.3.2), Or-
ganizational Embedding is inherent in USDL, seen through the various elements
directly corresponding to organizational concepts, e.g., (human or business level)
services, resources and participants. Indeed, the organizational setting of services
extends beyond an intra-organizational scope to business networks, where roles and
activities are outsourced to third-party organizations such as intermediaries. In gen-
eral, all USDL concepts relate, directly or indirectly, to concepts readily identified
as organizational concepts. Furthermore, a number of concepts have dependencies
such that an explicit vertical alignment can be supported, from the business to tech-
nical levels, e.g., as we have seen with the Service and Resource elements. This
means that services across business and IT landscapes of an organization, and in
business networks, can be captured through USDL and supported through services
directories, repositories or registries. As we discussed in Section 8.3.2.1, a com-

214 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

prehensive resource for managing service descriptions could then support the many
different resources concerning organizational and technical artifacts. For example,
an organization’s enterprise architecture tool that captures information and organi-
zational and technical models could conveniently make reference to a USDL service
repository. It could show how services are used in different parts of an organization
and on different levels with other artifacts such as business policies and capabilities,
organizational actors, roles and resources, products, business processes and business
objects. At the other end of the spectrum, a technical software registry could make
reference to the USDL service repository for linking IT applications, platforms and
infrastructure resources with both the technical and, ultimately, the business services
that they support. The reader is referred to Figure 8.1 on page 199 for an elaboration
of this point.

With a wide range of service concepts addressed by USDL and with different de-
grees of detail involved, a major design challenge of USDL has been on an effective
alignment and correlation of concepts, such that the collective understanding of ser-
vices, is imparted. Different users, be they involved in service provisioning, delivery
or consumption, can have complex lines of enquiry on services. As we discussed in
the requirement of Cognitive Sufficiency in Section 8.3.2.2, these cannot be expected
to be isolated to any one perspective or module of service descriptions. In this re-
gard, a number of different instances show the sorts of design challenges that con-
fronted USDL, and how they were tackled. As we have discussed, service function-
ality broadly involves structural and behavioral aspects, with the complexity of de-
tails addressed through abstraction and decomposition. Service structure (the what)
has been addressed through the Functional Module while service behavior has been
addressed by the Technical Module (where) and Interaction Module (how). Ded-
icated artifacts described in well established languages are referenced, not dupli-
cated in USDL. Thus, a service provisioning tool could place descriptive attributes
and dedicated models (e.g., based on BPMN, BPEL or SCA) side by side. Corre-
spondences could be established at the tooling level such that highlighted attributes
(e.g., functions) could lead to highlighted parts of models. Of course, structural and
behavioral aspects could be viewed side by side so that the service functions, in-
terfaces and interactions in view, leads to a cognitively sufficient what-where-how
understanding of service functionality. Indeed, tooling could be developed so that
as further details of a function are viewed, corresponding details of interfaces and
interaction protocols are brought into view. Stretching it further, we have seen that
non-functional properties of services, such as pricing, legal, and SLA aspects, are
also inter-linked. For instance, a particular service offer’s price plan could be viewed
together with functional, interface and interaction details. Moreover, the details of
price components and fences as well as legal issues such as copyright clauses could
be detailed down to more detailed functions of a service. Taken together, we can
see that by carefully considering cognitive sufficiency in USDL, next-generation
editing tools for service provisioning and delivery could be considerably enhanced
by bringing together service functionality with non-functional aspects. Moreover,
consumer comprehension would be greatly enhanced by combining these aspects
that are relevant to ordering, accessing and tracking non-trivial services. Figure 8.6

8 Design Overview of USDL 215

Fig. 8.6: Meeting the requirement of Cognitive Sufficiency leads to interconnected
modules. Note that only interconnected elements of the individual modules are
shown to give an impression.

provides a summary of conceptual correlations across different USDL modules for
further insights into USDL’s cognitive sufficiency.3

Although it concerns services and therefore the encapsulation of the internal
functionality and reuse, there are wider considerations that USDL addresses con-
cerning the Service Information Hiding requirement. Service functionality, by way
of functions, interfaces and interaction protocols, is abstractly described in USDL

3 In addition to direct relations between modules, there are “connecting interfaces.” They are used
as a non-intrusive method of referencing when the referenced target can be one of many USDL
elements. The intent is to reduce module dependencies which would otherwise be introduced,
because targeted elements are likely to be scattered across multiple modules (cf. Section 13.5.1.4).

216 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

but concretely bound to external artifacts such as WSDL and BPEL files. Such a
two-tiered approach promotes a form of encapsulation and reuse. For instance, new
functions can be added to services by reusing prior artifacts. Conversely, services
within artifacts can reuse services described through USDL. For example, BPEL
processes or SCA compositions can make use of services described through USDL.
To promote reuse in large environments, artifacts themselves could be wrapped as
USDL services so that they can be discovered and assessed fully for functional and
non-functional compatibility with consuming services. Reuse then occurs on the
level of USDL where the required functions of a service could be composed with
other service functions or they used as part of service dependencies (i.e., Requires
or Includes dependencies). We can see that USDL’s support of service information
hiding lends itself well to multi-faceted modeling of advanced service provisioning
tooling envisaged above.

Given the positioning of USDL in a service network, potentially out to the In-
ternet of Services, the requirement of Deployment Symmetry is relevant. Recall, it
requires that services be operable regardless of where they are deployed including
abiding by a priori organizational contexts set by providers of services. For exam-
ple, roles, resources, services, artifacts defined for a service should be available in
a newly deployed environment where a service is being consumed. The question is
what happens if these are similar but differently named in the new environment. A
way to promote reuse in this situation is to provide abstract definitions of services,
resources and so on, so that these can be configured with concrete parts. Currently
in USDL, services and resources are abstract, demonstrating a basic support for de-
ployment symmetry. A further support of the requirement is by allowing services
to be conveniently extended at the level of a business network, e.g., extending a
provider service to be channeled.

USDL supports the handling of exceptions so that the execution resulting from
a specification can be validated as being resilient. As discussed in Section 8.3.2.5,
the requirement for Execution Resilience relates to non-functional properties readily
addressed in several modules. For example, the Pricing Module allows to represent
“cooling off” periods by price fences should there be uncertainty about customer
satisfaction concerning the fulfillment of a service. The Legal Module can capture
non disclaimers as put in place by service providers that will not be overridden when
third parties extend and deliver services elsewhere. The Functional Module supports
the definition of faults that can be mapped to technical fault messages (Technical
Module) and exception handling procedures (Interaction Module).

8.6 Construction of USDL

Work on USDL started as early as 2007 when a team of researchers at SAP Research
manifested their ideas for a Service Description Framework. This coincided with the
start of the German publicly funded THESEUS/TEXO research project [25] lead by

8 Design Overview of USDL 217

SAP Research. These purely internal ideas were documented by informal diagrams
and by a Wiki only.

The next significant progress happened in September 2008 when the first ver-
sion of a Universal Service Description Language was completed. This first version
was directly modeled in a simple XML Schema which was structured according
to the segments in the circular USDL logo (cf. Fig. 1.4 on page 12). Accordingly,
the XML Schema was composed of business, operational, and technical elements.
This version lead to a project internal position paper and was published in [15]. A
version 2.0 followed in December 2008 which however only added some additional
elements to the XML Schema required for internal use cases. The version 2.0 was
published in [14].

A significant change happened throughout 2009 in the lead up to the Future Inter-
net Assembly in Stockholm (November 23-24, 2009) [26] when USDL was promi-
nently disclosed to the public. It was decided to use class models instead of XML
Schema and to restructure according to the modules discussed in Section 8.4. Rea-
sons for that were mainly limitations in expressive power of version 2.0, which re-
quired considerable extensions to the model, thus motivating the switch to a proper
tool chain (Eclipse Modeling Framework, cf. Chapters 14 and 15) and modular de-
sign. As depicted in Fig. 8.7, this lead to the first milestone (M1) of USDL version
3.0 which was documented by detailed specifications available at the community
site www.internet-of-services.com and released in September 2009. M1
only featured first versions of the Service (originally called “Core”), Functional,
Interaction, Participants, and Foundation modules. This milestone also saw the re-
branding of USDL to Unified, instead of Universal, Service Description Language.
Since it is not the goal to replace all existing service description languages but to
provide a unified means of description capabilities suited to capture aspects of ser-
vices required for the universe of discourse outlined in Section 8.2.

Fig. 8.7: The evolution of USDL.

The milestone M2 particularly added the Pricing Module and was released in
December 2009. M3 has only been an unreleased intermediate version and has been
superseded by milestone M4. Besides the constant smaller improvements that hap-
pened in every milestone, M4 particularly added a first version of the Service Level
Module and Legal Module (a complete specification was published in April 2010).

http://www.internet-of-services.com

218 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

Both modules have been significantly extended and revised in M5 (released March
2011). A further change worth mentioning is the introduction of a separate Technical
Module which was basically split from the Functional Module.

Version 3 has been built and evaluated in a collaborative and interdisciplinary
way by SAP Research. That means about a dozen researchers at SAP Research
have contributed to USDL by bringing in their expertise from different backgrounds
(computer scientists, incl. security and SLA experts, business economists, legal sci-
entists, etc.) and are spread over different locations around the world. The mod-
eling has been managed by a central governance body who coordinated the dif-
ferent contributions. All this has been carried out in the context of several pub-
licly funded research projects under the Internet of Services theme, where services
from various domains including cloud computing, service marketplaces and busi-
ness networks, have been investigated for access, repurposing, and trading in large
settings. The projects included most prominently the TEXO project [25] within the
THESEUS research program initiated by the German Federal Ministry of Econ-
omy and Technology. Further projects contributed as well, including German Fed-
eral Ministry of Education and Research projects (e.g., Premium Services4), EU
DG INFSO projects (e.g., FAST,5 RESERVOIR,6 MASTER,7 ServFace,8 SHAPE,9

SLA@SOI,10 SOA4ALL11), and the Australian Smart Services CRC.12

A wide variety of use cases and perspectives were investigated within the projects
for forms of services and an alignment of business and technical aspects not avail-
able through previous service description efforts. The kinds of services covered
include: purely human/professional (e.g., project management and consultancy),
transactional (e.g., purchase order requisition), informational (e.g., spatial and de-
mography look-ups), software component (e.g., software widgets for download),
digital media (e.g., video clip players), platform (e.g., middleware services such
as message store-forward) and infrastructure (e.g., CPU and storage services). Use
cases from the corporate world provided insights into commercial management and
arrangements of services such as cost center ownership and provisioning, releas-
ing and dependencies in complex IT and business landscapes. Use cases involving
service marketplaces procuring services as complex as those from SAP’s portfo-
lio and ecosystem provided additional insights into structures for service bundling
including price-competitive of both professional and automated forms of services.
Use cases from cloud computing/IT virtualization helped frame platform and infras-
tructure services into USDL and extended service dependency graph with hosting

4 http://premiumservices.research-events.com/joomla/
5 http://fast-fp7project.morfeo-project.org/
6 http://www.reservoir-fp7.eu/
7 http://www.master-fp7.eu/
8 http://www.servface.eu/
9 http://www.shape-project.eu/
10 http://sla-at-soi.eu/
11 http://www.soa4all.eu/
12 http://www.smartservicescrc.com.au/

http://premiumservices.research-events.com/joomla/
http://fast-fp7project.morfeo-project.org/
http://www.reservoir-fp7.eu/
http://www.master-fp7.eu/
http://www.servface.eu/
http://www.shape-project.eu/
http://sla-at-soi.eu/
http://www.soa4all.eu/
http://www.smartservicescrc.com.au/

8 Design Overview of USDL 219

requirements for services. Use cases from business networks showed that service
versioning/provisioning capabilities need to extend beyond service providers to in-
termediaries and outsourced players such as brokers, aggregators and channel part-
ners — to drive up the network effect of services.

Subsequent iterations of USDL also include the contributions and evaluation
feedbacks of project partners. On the one hand, specific academic partners were
given mandates to incorporate or refine particular aspects in USDL. As an example,
the German Fraunhofer FOKUS institute13 was prompted to include security as-
pects (cf. Chapter 12). On the other hand, industrial partners of the research projects,
e.g., Siemens, evaluated USDL by case studies in their setting (cf. Chapter 18). The
evaluation contains feedback to further improvements and refinements of USDL.
The USDL method was and still is subject to a method engineering (ME) process
(cf. Section 20.2.3), i.e., USDL milestones passed several times through the ME
phases of requirements engineering, method design, and method implementation.
The underlying assumptions of the USDL ME process are justified by exploring the
requirements of potential USDL users (cf. Chapter 20). Part IV of the book provides
a detailed documentation of the evaluation efforts.

Finally, the scope of input is broadened even wider by approaching a standard-
ization body. As a first step to standardization, a W3C Incubator group has been
founded including additional players of academia and industry.14

8.7 Running Example

The following B2B scenario acts as running example for the remaining chapters
of Part II. The chapters use one or more of the services below and show how the
corresponding module would capture the corresponding information.

Consider a German medium-sized company which is world-market leader in
manufacturing gas turbines. The company relies heavily on exports, usually to Eu-
rope and the US. However, the company has just received an order by a Russian
company so it is in need to ship to Siberia for the first time. Therefore, the man-
ufacturing company is in need to use a new, in an ideal case all-inclusive, service
bundle for shipping, forwarding, clearance, etc. In this scenario, both the consignor
(sender, i.e., German medium-sized manufacturer) and the consignee (receiver, i.e.,
Russian company) would classify as 1PLs.15 Consequently, the manufacturing com-
pany consults a logistics service market place for discovering a suitable service

13 http://www.fokus.fraunhofer.de/en/fokus
14 http://www.w3.org/2005/Incubator/usdl/
15 1PL — A first-party logistics provider is an organization or natural person that needs to have
cargo, freight, goods, produce or merchandize transported from a point A to a point B. The term
first-party logistics provider stands both for the cargo sender and for the cargo receiver.

http://www.fokus.fraunhofer.de/en/fokus
http://www.w3.org/2005/Incubator/usdl/

220 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

Fig. 8.8: Logistics scenario as running example for Part II.

bundle. The logistics marketplace features a range of 2PL,16 and 3PL services,17

accompanying services such as customs clearance, insurances, container rental, as
well as 4PL services,18 typically bundling the aforementioned services. In particu-
lar, the consignor requires a Gost-R certification19 for exports to Russia as well as a
customs clearance. Upon close inspection, the consignor decides to use the follow-
ing 4PL and its bundled services (cf. Fig. 8.8):

1. 4PL

• Name: Lead Logistics
• Type: Composition
• Capability: Composition of customs clearance, certification and 3PL

16 2PL — A second-party logistics provider is an asset-based carrier, which actually owns the
means of transportation. 2PLs are: (i) shipping lines, which own, lease, or charter their ships, (ii)
airlines, which own, lease, or charter their planes, (iii) truck companies, which own, or lease their
trucks, or (iv) rail companies, which own their trains, warehouse owners.
17 3PL — A third-party logistics provider is a firm that provides a one stop shop service to its cus-
tomers of outsourced logistics services for part, or all of their supply chain management functions.
3PLs typically specialize in integrated operation, warehousing and transportation services that can
be scaled and customized based on market conditions and the demands and delivery service re-
quirements for their products and materials.
18 4PL — A fourth-party logistics provider or lead logistics provider is a consulting firm special-
ized in logistics, transportation, and supply chain management. A 4PL is an independent, singularly
accountable, non-asset based integrator of a client’s supply and demand chains.
19 http://www.gost-r.info/

http://www.gost-r.info/

8 Design Overview of USDL 221

2. Customs Clearance

• Name: Customs Clearance
• Type: Human
• Capability: Brokering of customs

3. Certification

• Name: Certification
• Type: Human
• Capability: Grants required Gost-R certification

4. 3PL

• Name: Freight Forwarding
• Type: Composition
• Capability: Composition of 2PLs, acts as freight forwarding

5. 2PL Rail

• Name: 2PL Rail
• Type: Human
• Capability: Transportation of goods via train

6. 2PL Airline Bundle

• Name: 2PL Airline International Economy and Ship Manager
• Type: Bundle
• Capability: Bundle of 2PL Airline and 2PL Airline Manager

7. 2PL Airline

• Name: 2PL Service International Economy
• Type: Human
• Capability: Transportation of goods via plane

8. 2PL Airline Manager

• Name: 2PL Airline Manager
• Type: Automated
• Capability: Technical interface (Web services and frontend tool) to look up

rates, kick-off and track shipments

8.8 Discussion

The chapter provided an overview of both the design and construction of USDL.
The design is rooted in service concept formation requirements derived from the
universe of discourse. Before the remaining chapters in this part will deep dive into

222 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

the individual modules of USDL, we would like to stress benefits and limitations of
USDL below.

Unification Part I highlighted that there are different strands of service description
efforts — each of which concerned with specific aspects. For example, WSDL
comprises detailed information about the provided functionality in form of oper-
ations with messages and data types along with details on the technical accessi-
bility, while — in the realm of service descriptions — BPEL is primarily used to
describe the observable behavior of complex services. Because of this, it is hard
to obtain a unified view on the functional, technical, and behavioral aspects of
services from the current description standards, which hampers the communica-
tion on specific aspects of interest. In contrast, USDL provides a novel unification
of business, operational and technical aspects. As an example, USDL proposes
a unified description model for the functional, technical, and behavioral aspects
of services. The aim is to provide a well structured model that resides on top of
existing as well as upcoming standards.

Interdisciplinary and collaborative The unification makes USDL inherently inter-
disciplinary. Several disciplines such as computer science, legal science, or busi-
ness economics have to be involved for the specification of USDL. This can only
be achieved by interdisciplinary and collaborative modeling what requires sig-
nificant amount of resources, man years, as well as a governance body.

Thorough Evaluation As demonstrated by Part IV, USDL follows a method engi-
neering (ME) process, viz., USDL milestones passed several times through the
ME phases of requirements engineering, method design, and method implemen-
tation. The underlying assumptions of the USDL ME process are justified by
case studies, exploring the requirements of potential USDL users, as well as a
theoretical evaluation.

Tool Support It was decided to base USDL on well-established grounds with re-
spect to software engineering. On the one hand, a wide-spread, mature, and well-
known modeling environment was chosen with the Eclipse Modeling Frame-
work. On the other hand, the decision also facilitated the creation of tools, such
as the USDL Editor (cf. Section 15.2.1) because of EMF’s model-driven engi-
neering capabilities. A whole tool set was developed around USDL, including
editors, repositories, and marketplaces, as discussed in Chapter 15, in order to
help bootstrapping USDL.

The features above can be considered benefits and even “unique selling points”
of USDL since they are not given for most of the approaches discussed in Part I.
However, USDL also exhibits limitations:

Missing Formal Foundation There is no Formal Foundation (cf. Section 8.3.1.6)
of USDL required especially for the design of a sound interaction module. Here,
future versions should draw from the Semantic Web Services fundamentals as
presented in Chapter 6.

Limitation to Offering Phase USDL captures only master data of a service stem-
ming from the offering phase (cf. service lifecycle depicted in Fig. 4.3 on page

8 Design Overview of USDL 223

86). This includes information that a service provider can describe before a ser-
vice is ever consumed. USDL is currently not able to capture transactional data,
i.e., information that is created as soon as the service is used. As an example,
consider pricing information. The price plan can be captured by USDL since it
can be specified before the service is consumed. However, a concrete price, e.g.,
“consumer A has to pay 5 Euros for consuming service B on 12th of September
2011,” cannot be captured by USDL since it available only after the service is
consumed. Future versions of USDL might extend to further phases of the life-
cycle and should draw from the service system approaches in Chapter 4.

Complexity The fact that USDL involves multiple disciplines is both an advan-
tage and poses a challenge. As the remaining chapters in this part will show,
background in all involved disciplines is required in order to comprehensively
describe a service with USDL. This becomes apparent in the Pricing Module (cf.
Chapter 9) and Legal Module (cf. Chapter 10), especially. The USDL light editor
(cf. Section 15.2.2) is a potential remedy since it reduces complexity by the pro-
gressive disclosure paradigm. Future research should also investigate graphical
representations of the language.

References

1. A. Barros, M. Allgaier, A. Charfi, M. Heller, U. Kylau, B. Schmeling, and M. Stollberg. Diver-
sified service provisioning in global business networks. In P. Kellenberger, editor, Proceedings
2011 Annual SRII Global Conference SRII 2011, 30 March - 2 April 2011, San Jose, Califor-
nia, USA. IEEE Computer Society Conference Publishing Services (CPS), 2011.

2. A. Barros, C. Baumann, A. Charfi, J. Finzen, M. Flügge, S. Heinzl, T. Kiemes, U. Kylau,
F. Marienfeld, N. May, O. Müller, F. Novelli, D. Oberle, J. Pattberg, P. Robinson, B. Schmel-
ing, W. Theilmann, and H. Witteborg. Unified Service Description Language (USDL) —
Service Level (SLA) Module. Technical Report Version 3.0, Milestone M5, SAP Research,
May 2011. Available at www.internet-of-services.com.

3. A. Barros, C. Baumann, A. Charfi, M. Flügge, S. Heinzl, T. Kiemes, U. Kylau, F. Marienfeld,
N. May, O. Müller, F. Novelli, D. Oberle, J. Pattberg, P. Robinson, B. Schmeling, W. Theil-
mann, H. Witteborg, J. Finzen, A. Horch, and M. Kintz. Unified Service Description Lan-
guage (USDL) — Foundation. Technical Report Version 3.0, Milestone M5, SAP Research,
May 2011. Available at www.internet-of-services.com.

4. A. Barros, C. Baumann, A. Charfi, M. Flügge, S. Heinzl, T. Kiemes, U. Kylau, F. Marienfeld,
N. May, O. Müller, F. Novelli, D. Oberle, J. Pattberg, P. Robinson, B. Schmeling, W. Theil-
mann, H. Witteborg, J. Finzen, A. Horch, and M. Kintz. Unified Service Description Language
(USDL) — Service Module. Technical Report Version 3.0, Milestone M5, SAP Research,
May 2011. Available at www.internet-of-services.com.

5. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Functional Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

6. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Interaction Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com

224 Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl

7. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Participants Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

8. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Pricing Module. Technical Report Version 3.0, Milestone
M5, SAP Research, May 2011. Available at www.internet-of-services.com.

9. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Technical Module. Technical Report Version 3.0, Milestone
M5, SAP Research, May 2011. Available at www.internet-of-services.com.

10. A. Barros and U. Kylau. Service delivery framework — an architectural strategy for next-
generation service delivery in business network. In P. Kellenberger, editor, Proceedings 2011
Annual SRII Global Conference SRII 2011, 30 March - 2 April 2011, San Jose, California,
USA, pages 47–58. IEEE Computer Society Conference Publishing Services (CPS), 2011.

11. A. P. Barros and A. H. M. ter Hofstede. Towards the construction of workflow-suitable con-
ceptual modelling techniques. Inf. Syst. J., 8(4):313–337, 1998.

12. C. Baumann, U. Kylau, and D. Oberle. Unified Service Description Language (USDL) —
Legal Module. Technical Report Version 3.0, Milestone M5, SAP Research, May 2011. Avail-
able at www.internet-of-services.com.

13. M. Bunge. Treatise on Basic Philosophy: Volume 3: Ontology I: The Furniture of the World.
Reidel, Boston, MA, USA, 1977.

14. J. Cardoso, A. P. Barros, N. May, and U. Kylau. Towards a Unified Service Description
Language for the Internet of Services: Requirements and First Developments. In 2010 IEEE
International Conference on Services Computing, SCC 2010, Miami, Florida, USA, July 5-10,
2010, pages 602–609. IEEE Computer Society, 2010.

15. J. Cardoso, M. Winkler, and K. Voigt. A service description language for the internet of ser-
vices. In R. Alt, K.-P. Fähnrich, and B. Franczyk, editors, Proceedings First International Sym-
posium on Services Science (ISSS’2009), volume 5 of Leipziger Beiträge zur Wirtschaftsinfor-
matik, Berlin, Germany, 2009. Logos.

16. K. A. Dhanesha, A. Hartman, and A. N. Jain. A model for designing generic services. In 2009
IEEE International Conference on Services Computing (SCC 2009), 21-25 September 2009,
Bangalore, India, pages 435–442. IEEE Computer Society, 2009.

17. E. Falkenberg, W. Hesse, P. Lindgreen, B. Nilsson, J. Oei, C. Rolland, R. Stamper, F. V. Ass-
che, A. Verrijn-Stuart, and K. Voss. Frisco — a framework of information system concepts —
the frisco report. Technical report, IFIP WG 8.1 Task Group FRISCO, 1998.

18. A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systems
research. MIS Quarterly, 28(1):75–105, 2004.

19. M. Lankhorst. Enterprise Architecture at Work. The Enterprise Engineering Series. Springer
Berlin Heidelberg, Berlin Heidelberg, 2nd edition.

20. M. M. Lankhorst, H. A. Proper, and H. Jonkers. The architecture of the archimate language. In
T. A. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer, and R. Ukor, editors, En-
terprise, Business-Process and Information Systems Modeling, 10th International Workshop,
BPMDS 2009, and 14th International Conference, EMMSAD 2009, held at CAiSE 2009, Am-
sterdam, The Netherlands, June 8-9, 2009. Proceedings, volume 29 of Lecture Notes in Busi-
ness Information Processing, pages 367–380. Springer, 2009.

21. F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar. Moving applications to
the cloud: An approach based on application model enrichment. International Journal of
Cooperative Information Systems (IJCIS), 20(3), 2011.

22. O. Raabe, R. Wacker, C. Funk, D. Oberle, and C. Baumann. Lawful Service Engineering
– Formalisierung des Rechts im Internet der Dienste. In E. Schweighofer, A. Geist, and
I. Staufer, editors, Globale Sicherheit und proaktiver Staat – Die Rolle der Rechtsinformatik,
volume 266 of books@ocg.at, pages 643–650, Wien, Österreich, 2010. Österreichische Com-
puter Gesellschaft (OCG).

http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
mailto:books@ocg.at

8 Design Overview of USDL 225

23. J. J. O’Sullivan. Towards a Precise Understanding of Service Properties. PhD thesis, Queens-
land University of Technology, 2006.

24. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley Longman, 2nd revised edition, 2008.

25. O. Terzidis, A. Fasse, B. Flügge, M. Heller, K. Kadner, D. Oberle, and T. Sandfuchs. Texo: Wie
THESEUS das Internet der Dienste gestaltet — Perspektiven der Verwertung. In L. Heuser
and W. Wahlster, editors, Internet der Dienste, acatech diskutiert, pages 141–161. Springer,
2011.

26. G. Tselentis, J. Domingue, A. Galis, A. Gavras, D. Hausheer, S. Krco, V. Lotz, and T. Zahari-
adis, editors. Towards the Future Internet — A European Research Perspective, Amsterdam,
The Netherlands, 2009. IOS Press.

27. J. van Griethuysen. Concepts and terminology for the conceptual schema and the information
base. Technical report, ISO/TC97/SC5/WG3, 1982.

Chapter 9

Service Pricing

Tom Kiemes, Francesco Novelli, and Daniel Oberle

Abstract The on-line discovery, trading and consumption of services as envisioned
in the Internet of Services demand an advanced support of the business aspects.
Pricing plays a fundamental role among such business facets on both sides of a
service marketplace. This chapter discusses the scientific background of the USDL
Pricing Module as a comprehensive, applicable, executable, and non-proprietary
endeavor. As such, the chapter elicits what makes modeling and engineering the
price of a service transaction less straightforward than in the case of a product sale.
In addition, we review the state of the art with regard to price meta-models and give
a detailed explanation of the most differentiating design choices in the meta-model
we propose, including the interdependencies with other USDL modules.

9.1 Introduction

The USDL Pricing Module covers the range of concepts needed to model price
structures in the context of service provisioning. It allows a hierarchical represen-
tation of price charges and provides the necessary elements for the specification of
segmented pricing, complementing the other USDL modules with these fundamen-
tal business aspects.

As a matter of fact, given the vital role of pricing in any commercial transaction,
it is striking to see how modeling price structures remains a barely touched topic in
the field of service engineering. Current service description languages and standards
typically lack comprehensive price modeling capabilities (see Part I of the book for

Tom Kiemes, Daniel Oberle
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: tom.kiemes@sap.com, e-mail: d.oberle@sap.com

Francesco Novelli
SAP Research Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany,
e-mail: francesco.novelli@sap.com

227 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York9

mailto:tom.kiemes@sap.com
mailto:d.oberle@sap.com
mailto:francesco.novelli@sap.com

228 Tom Kiemes, Francesco Novelli, and Daniel Oberle

an in-depth review of these approaches) while dedicated price modeling attempts
either address solely the more limited case of product pricing or target too high a
level of abstraction, hampering the possibility to be readily turned into executable
artifacts. The USDL effort avoids these shortcomings.

We advocate that a comprehensive, applicable and executable pricing meta-
model — such as the one we contribute — is crucial to realize the vision of the
Internet of Services (cf. Chapter 1), for it represents a key enabler of effective and
efficient service discovery, trade and consumption. On the supply side of a service
market it does namely allow providers to implement advanced market-segmentation
tactics. On the demand side it gives consumers the opportunity to automate selection
and matching based on the actual value of the service offerings, i.e., the difference
between the sought-after performance and the costs it shall generate for the con-
sumer.

In this chapter, we first delineate what makes modeling and engineering the price
of a service transaction less straightforward than in the case of a product sale (Sec-
tion 9.2) and review the state of the art with regard to price meta-models (Section
9.3). Subsequently, we give a detailed explanation of the most differentiating design
choices in the meta-model we propose, including the interdependencies with other
USDL modules (Section 9.4), and highlight how the module responds to the require-
ments described in Chapter 8 (Section 9.5). Eventually, we apply the meta-model
to a real price structure from the example introduced in Chapter 8 (Section 9.6) and
conclude (Section 9.7).

9.2 The Idiosyncrasies of Pricing Services

As a first step, we consider the distinctive nature of services and the pricing issues
it raises. A service is an perishable entity by definition, for it cannot be stored or
inventoried by either providers or consumers. Therefore, the time of purchase —
when the consumer commits to pay in exchange of the provisioned service (not to
be confused with the time of payment) — always precedes the time of production
[13]. That represents a key difference from the selling of goods, which can instead
occur either before production (e.g., in a make-to-order scenario for a customized
item) or afterwards (in the case of commodities). This is equally true for simple and
complex, manual and automated services alike. Calling a plumber to request a job,
for instance, we accept his hourly rate. Likewise, with a commercial Software-as-
a-Service application, a contract including a detailed description of price charges
and binding to the respective payment terms (e.g., a subscription) must be signed
beforehand by the consumer of the software functionality. This is to say, the pricing
necessarily takes place in advance of service production.

If the pricing is to precede production — and thus consumption — an important
consequence to be underlined is that the total sum a consumer is charged could re-
main uncertain until after the performance of the service has actually taken place.
The hourly rate of a legal studio may be known but the due total will be as uncertain

9 Service Pricing 229

as the length and outcome of the litigation in which it provides consulting. The same
uncertainty hampers the predictability of the costs incurred by the service provider,
for they might depend on the customer’s specific usage profile or on external fac-
tors. Advanced price structures encompass mechanisms to mitigate this uncertainty
on both sides of the transaction: for example, metered proxies that link charges to
usage, aligning prices with the vendor’s costs [17], or price caps and flat rates to
hedge the consumer’s risk [4].

In addition to that, increasingly significant segments of the service industry —
namely those related to media, telecommunication and software — have a particular
cost structure with high initial fixed costs and very low marginal ones. Given per-
ishability, the crucial problem for a service provider is then matching demand and
supply to avoid losing revenues from either unused or insufficient capacity (see [14]
for an example of such a scenario), and the price structure becomes a key tool to ma-
nipulate demand appropriately. This is achieved by embedding in it price discrim-
ination techniques, such as multi-part-tariffs, bundling, and versioning, alongside
more common volume- or time-based discounting policies.

A fundamental challenge for a pricing meta-model is representing the complex
market-segmentation rules within such price structures, i.e., those rules determining
when and how different consumers are charged different prices. Given the extreme
variety of service offerings targeted by USDL, all segmented-pricing practices (as
listed in [12]) were considered relevant for our purpose and, therefore, their impact
on the conceptual design of a price structure was assessed. However, some of them
do gain importance in the light of the increasing range of IT services available. For
example, while the customization of a product or of a manually-operated service
may require a costly re-deployment of resources, it is instead a relatively easy step
for an IT provider to design a set of variants of an electronic service responding to
diverse user needs, and price them accordingly [16]. Moreover, while a manufactur-
ing company is only rarely involved in the consumption phase, the contrary is true
for a service company.1

We conclude this section with a significant example to anchor in the praxis what
have been presented so far. Price plans offered by mobile network operators can be
seen as an archetype of complex pricing practices in a service market. The same mo-
bile communication service is typically offered under two classes of plans the con-
sumer might choose from: contract-based plans, where a fixed fee is charged each
month until renewal or termination, and pay-as-you-go plans, charging a lump sum
upon purchase in exchange for a limited traffic allowance, subsequently recharge-
able. Within each category a multitude of different plans is offered, with varying
features, allowances and, of course, fees.2 A single contract-based plan may itself be

1 We assume the inseparability of production and consumption be a distinctive characteristic of
services, as commonly found in the service literature. For a discussion about the validity of this
point of view see [10, pages 21–23], and, consequently, several price drivers may relate to the
consumer’s specific usage of the service. The price meta-model must be able to express these
relationships between consumers’ usage levels and price charges.
2 Vodafone, for instance, offers some 60 plans on its UK website:
http://shop.vodafone.co.uk/shop/mobile-price-plans/all-plans

http://shop.vodafone.co.uk/shop/mobile-price-plans/all-plans

230 Tom Kiemes, Francesco Novelli, and Daniel Oberle

a composition of fees when, for example, once the monthly traffic allowance given
by the monthly charge is exceeded, a pay-per-use component (e.g., by the minute for
voice services) is due. Moreover, several price levels may apply depending on other
conditions, such as the time of the call (cheaper rates outside of business hours)
or the called network (cheaper rates to the company’s own network). The same hi-
erarchical decomposition reflects analogous pricing habits of many IT purveyors,
such as web-service and cloud computing providers. Similar mechanisms apply for
professional services as well: legal, accounting and consulting services are often of-
fered with hourly rates which change with parameters such as the type and size of
the project, or the length and significance of the client’s contractual commitment.

9.3 Related Approaches

It is our belief that only a formalization of pricing schemes which meets specific
requirements can effectively support the trade of services on the Internet. First, such
a pricing meta-model should be applicable, that is, declarative in nature in order to
be directly usable as a component in a software system and to prevent re-modeling
a pricing scheme from scratch for every trading platform. Second, the meta-model
ought to be comprehensive in terms of being able to capture every relevant piece of
information used by service providers in describing their prices. Third, price deter-
mination should be executable on the basis of pricing model instances, rather than
hard coded in calculation routines for every possible use case. Finally, the formal-
ization should be expressed in a non-proprietary language.

In the world of IT there are three categories of artifacts where a more ore less
explicit formalization of pricing has taken place: Standard Business Software Ap-
plications, Standalone Billing Engines, and Dedicated Pricing Meta-Models. We
now discuss those approaches and how they rate with regard to each of the afore-
mentioned requirements. Table 9.1 summarizes the analysis of these approaches on
the basis of the given requirements.

Table 9.1: Price-Modeling approaches and requirements — a check mark is given
as soon as one of a kind meets the criterion.

Applicable Comprehensive Executable Non-Proprietary
Standard Business Soft-
ware Applications

- - � -

Standalone Billing Engines - - � �
Dedicated Pricing Meta-
Models

� � - �

9 Service Pricing 231

9.3.1 Standard Business Software Applications

Standard business applications such as Customer Relationship Management or En-
terprise Resource Planning provide some degree of price management, usually in
the form of price lists, pricing rules and pricing engines. The comprehensiveness
of such applications in a context of service trade depends on the particular solu-
tion considered. Horizontal solutions are designed to be generic and address pricing
mainly from a standard product-centered perspective, but vertical solution for var-
ious segments of the service industry may also be offered by some vendors. Of
course, in large enterprise deployments these applications are further tailored to the
customer’s own requirements through customization but we are considering only
the standard solution. Pricing models are typically embodied in the source code or
in the data model of the application and are therefore hard to extract for reuse. Since
a software application is a compiled artifact, it is indeed executable by definition.
Most available options falling into this category are proprietary.

9.3.2 Standalone Billing Engines

A billing engine is a standalone software component which can execute a billing
process on the basis of some input data to be provided in a predefined format. Stan-
dalone billing engines share many characteristics with software business applica-
tions. They are executable, but focus on product pricing and do not feature declar-
ative pricing models which could be easily reused. Once again, pricing models are
instead implicitly represented in the source code or in the database schemas. Both
commercial engines, such as HighDeal,3 and open source ones, such as jBilling,4

are available.

9.3.3 Dedicated Pricing Meta-Models

Formalized meta-models which specifically address pricing can be found as part
of XML-based electronic product catalogs, such as RosettaNet5 or BMEcat [6].
Kelkar et al. [7] review such approaches and — concluding that none of them is
comprehensive enough to adequately cover the whole pricing domain — develop
their own consolidated pricing model. However, we believe that, being product-
focused, even their effort is still not comprehensive enough in the context of service
pricing, lacking mechanisms to incorporate dependencies, e.g., contractual ones.

3 http://www.highdeal.com/
4 http://www.jbilling.com/
5 http://www.rosettanet.org

http://www.highdeal.com/
http://www.jbilling.com/
http://www.rosettanet.org

232 Tom Kiemes, Francesco Novelli, and Daniel Oberle

The pricing part of the GoodRelations ontology [5], based on [7], is not compre-
hensive enough by admission of the authors themselves, who declare it unable to
represent all possible price plans. Another formalization attempt is O’Sullivan et al.
[15] who, among non-functional service properties, investigate also pricing aspects.
Their effort, based on Object Role Modeling, is comprehensive indeed, but not exe-
cutable due to the mere referencing of conditions via URLs. In [18], Toma presents
a syntactic translation of [15] in the proprietary Web Service Modeling Language
(WSML) as non-normative extension to the WSMO framework. In [3], the Servigu-
ration ontology [1] is also extended with pricing aspects in that they do incorporate
and relate the class price model to other entities of the ontology. The structure of a
price plan is, however, not declaratively modeled — the price model itself is merely
a mathematical formula included as a string in the ontology.

Some pricing meta-models are standardized, e.g., xCBL.6 Therefore, the require-
ment of being non-proprietary is met. To the best of our knowledge, there is no
generic mechanism for computing the price determination on the basis of instances
of these pricing meta-models, so they classify as non-executable. In contrast to busi-
ness software applications and standalone billing engines they are reusable due to
their declarative nature.

9.4 Content

In this section, we discuss the pricing meta-model we propose, as embodied by the
USDL Pricing Module. The model consists of a static and a dynamic part. The static
part is a conceptual modeling language which captures pricing-related concepts and
relations between them. The dynamic part encompasses formal rules to declaratively
express context-dependencies — a fundamental prerequisite to support practices of
segmented-pricing.

9.4.1 Modeling of the Static Information

The static information in our model was assembled drawing from several sources,
namely the business literature on pricing management ([11], [13], [17], [9]) and
the state of the art in related IT modeling efforts (as detailed in Section 9.3). A
requirements-engineering analysis of dozens of real price structures from diverse
segments of the service industry was also conducted to reveal the peculiarities of
service pricing. Based on the aforementioned sources, we assembled a glossary of
concepts rich enough to cover the whole service pricing domain. The glossary was
then formalized, whereby each glossary item is represented by a class in the model.
Relevant verbs which build relations between different classes are represented by

6 http://www.xcbl.org/

http://www.xcbl.org/

9 Service Pricing 233

Fig. 9.1: Class Diagram of the Pricing Model.

references. Properties of a class as well as verbs which do not refer to another class
are represented by attributes. The resulting meta-model was subsequently embedded
in the larger context of USDL. In doing so, we were able to reuse service concepts
already defined in other USDL modules, for instance, by linking a price plan to a
service description.

An overview of the meta-model can be found in Figure 9.1, exemplarily depicted
as a class diagram.7 In the following we introduce the most important elements of
the USDL Pricing Module.

PricePlan A price plan is a self-contained price structure attached to a service or
bundle of services. The same service or bundle may be offered under different
price plans the customer can choose from, as it is often the case, for instance,
with the telecommunication services offered by network operators.

PriceComponent A price plan may comprise several fees to be added up in order
to get the due total. Each addend is a price component. For example, in the case of

7 In Chapter 14 other possible representations of USDL are discussed.

234 Tom Kiemes, Francesco Novelli, and Daniel Oberle

a transportation service there might be a price component relative to the volume
of the freight, one for its weight, one for the delivery terms, and another for the
specific insurance to be tied to the shipped good.

PriceLevel The monetary values a price component may assume are specified
by price levels and each price component must have at least one price level. In
case of multiple price levels for the same price component, rules will need to
be defined to establish which one applies. There are two types of price level: an
absolute monetary amount (AbsolutePriceLevels) — which represents a fixed
amount per measurement unit — and a percentage amount (ProportionalPrice-
Levels) — an amount proportional to a certain base, i.e., another price com-
ponent or an external monetary quantity. The latter would be employed, for in-
stance, in describing value-based pricing in a B2B context, where the seller’s
service fee is a percentage (the ProportionalPriceLevel) of the value-added
created by the buyer’s own commercial endeavor (the ExternalBase). For the
afore-mentioned volume price component there could be an absolute price level
defined for each kilogram up to a certain weight and a second, lower price level
for weights beyond that threshold (that would be one way to represent volume-
discounting).

PriceMetric The price metric represents the smallest entity which is priced by
the associated price level. For example, as mentioned above, one kilogram. The
PriceMetric is used if the price is charged merely for the existence or availability
of the priced entity, i.e., an SMS in a pre-paid allowance. The TypedPriceMetric
is used if the price depends on an attribute of the performed service function, such
as the number of transported kilograms.

PriceAdjustments Price adjustments are signed price components with a spe-
cific marketing semantic. For example, discounts for the shipment of small pack-
ages or surcharges for overnight delivery. When adjusting a price component,
the charge is to be added or subtracted from it. In case of multiple adjustments to
the same price component, these must be explicitly ordered using the dedicated
attribute.

Tax A tax item is a price component, for it also represents a charge that must
be added to get the (gross) total, and it too can take on a proportional amount
— an ad-valorem tax (e.g., the VAT) — as well as an absolute one per unit of
measurement (for example a specific rate duty). When the included attribute is
true the tax amount is already included in the amounts throughout the price plan
(i.e., the tax amount must be subtracted in order to obtain the net price charges),
otherwise the charges throughout the price plan are to be considered net of taxes
(i.e., the tax amount must be added in order to obtain the gross price charges).
Multiple tax items can be associated to a price plan, but must then be ordered to
avoid incongruities in applying successive taxation steps.

Function A concept from the USDL Functional Module representing the priced
entity or event leading to the enforcement of a price charge. A price component
always prices at least one function.

PriceFence A price fence defines a condition stating the validity of the linked
price element, be it the whole price plan, a price component, or a price level. It

9 Service Pricing 235

represents the key concept to operationalize segmented-pricing mechanisms with
the USDL Pricing Module, as it will be thoroughly explained in the following
subsection.

9.4.2 Modeling of the Context-Dependent Dynamic Information

The price fence is the concept giving our meta-model the modeling power to repre-
sent market segmentation practices conducted through the design of the price struc-
ture [12], whereby individual customers or customers groups are charged different
prices. This price differentiation can rely on the consumers’ identities, on their de-
cisions, and on the context in which these decisions are taken or in which the per-
formance and delivery of the service takes place. For example, how the consumer
decides to configure the service, the time in which the service requests occurs, etc.

Technically the price fence is a conditional expression assessing whether a par-
ticular price element — a price plan, price component, or price level — applies.
The parameters entering the evaluation in the price fence may be configuration or
contractual choices made by the customer prior to consumption, or some measured
aspects of the service usage itself. Price fences depend on contextual information
that we can generically categorize as follows:

Service Consumer Attributes of the requesting or consuming agent, such as age,
residence, or employment status.

Contract Contractual choices made prior to consumption to configure the service
performance and define the terms of usage.

Service Event The service event, which occurs when the respective service func-
tion from the USDL Functional Module is executed.

The business entity represented by the businessTerm attribute of the price fence
will be evaluated and compared against a certain value (or set of values) — the liter-
als. Several are made available to account for the different dimensions of the service
provision process. An expression language (e.g., XPath or OCL) is required to fully
specify the semantics of the condition statement. In [8], for instance, we utilize the
Semantic Web Rule Language (SWRL) in conjunction with the Web Ontology Lan-
guage (OWL) to perform automated reasoning over the price fences. Thereby, we
show that price determination can be automated based on a valid price plan, price
fence rules and usage data.

9.4.3 Interconnection of USDL Modules with Pricing Module

We now examine the relation to other USDL modules. Many classes from the Foun-
dation Module are referenced by the Pricing Module, namely Time, TimeInstant,
VariableDeclaration, TypeReference, Location, Option, Expression and De-

236 Tom Kiemes, Francesco Novelli, and Daniel Oberle

scription. The TargetConsumer from the Participant Module is used as a contex-
tual parameter influencing the price (as described in the previous subsection, 9.4.2).
However, there is another semantically very important interconnection — that be-
tween the Function class from the Functional Module and price components in the
Pricing Module. It links the price information to the priced entity and thus allows an
algorithm to calculate the price based on the executed function and the correspond-
ing pricing elements.

In the class diagram of Fig. 9.1 elements referenced from other USDL modules
are highlighted using different color tones.

9.4.4 Extending the USDL Pricing Module

The meta-model is designed to be generic enough to represent most possible pricing
schemes and should not require particular adaptation to specific domains. However,
USDL can be expanded via an integrated extension mechanism (cf. Chapter 17)
to support different domains and such extensions can be leveraged by the Pricing
Module as well.

Moreover, besides the typed literals we provide to represent values of a specific
type in a price fence expression, the CustomLiteral element can be used as a generic
container for literals whose type does not fall within the predefined ones, to execute
further, more exotic segmentation tactics.

9.5 Requirements Capabilities of the Pricing Module

As a non-functional aspect of service provision, the Pricing Module mainly ad-
dresses requirements of service concept formation (cf. Section 8.3). Nonetheless,
it offers some particular contributions to the fulfillment of generic requirements as
well. All the requirements the Pricing Module responds to and the elements involved
are recapitulated in Table 9.2.

The module allows the representation of virtually any price structure that could
be encountered in the service industry, from simple single-tariff ones to complex
price schedules involving multiple price plans. Segmenting conditions, which dic-
tate when certain price elements apply, are also part of the module capabilities.
Moreover, alternative possibilities are given to model the same set of charges. For
instance, a discounted price may be expressed as a different (lower) price level of a
certain price component or as a price adjustment to be subtracted from it. The two
possibilities are equivalent in terms of the total amount the price will take on for the
buyer, but may differ in terms of the chosen marketing campaign and the specific
communication goals it aims at. The modeled concepts cover all the requirements
pricing practitioners could express with regard to the representation of advanced
pricing models.

9 Service Pricing 237

Table 9.2: Requirements Capabilities and the Pricing Module.

Requirement Elements meeting the requirement

Generic language requirements
Extensibility CustomLiteral
Service concept formation requirements
Organizational Embedding

• businessTerm (PriceFence)
• PriceFence literals
• ExternalBase

Cognitive Sufficiency

• Function (Functional Module)
• Expression (Foundation Module)
• Description (Foundation Module)
• TimeInstant (Foundation Module)
• VariableDeclaration (Foundation Module)
• Classification (Foundation Module)
• TypedReference (Foundation Module)
• Location (Foundation Module)
• Option (Foundation Module)
• Time (Foundation Module)
• NetworkedProvisionedEntity (Service Module)

Deployment Symmetry Whole module
Execution Resilience Whole module

From the point of view of Extensibility (cf. Section 8.3.1.4), the contribution of
the Pricing Module is bounded to the segmentation possibilities. We provide a se-
ries of typed literals that can be used to represent values of a specific type in a price
fence expression and cover the most common price-segmenting practices (e.g., seg-
mentation by time, by location, by consumer). To allow more exotic segmentation
possibilities the CustomLiteral element can be used as a generic container for lit-
erals whose type does not fall within the predefined ones.

There are three ways in which the Pricing Module can meet the requirement for
Organizational Embedding (cf. Section 8.3.2.1). First of all, the price plan has a
strong alignment to the notion of business policies in organizations. So far, price
plans are contained with other considerations in business policy documents. More-
over, price plans as realized in USDL target different offers of services. The associ-
ations between price plans and service offers are also highly relevant to an organi-
zation’s service portfolio management. Second of all, any organizationally-relevant
aspect of the business constraining the validity of a price element through a price
fence can be referenced as a business term and a corresponding set of literals. The
business term specifies the variable or container of the business aspect to be evalu-
ated against some realization set, whose elements are modeled by literals of a given
type. Thirdly, monetary values other than the price charges themselves can be ref-
erenced employing the ExternalBase element. These values are used as a base for

238 Tom Kiemes, Francesco Novelli, and Daniel Oberle

the calculation of proportional price charges (e.g., for a value-based pricing sched-
ule that encompasses the payment by the service consumer of a percentage of his
monthly revenues).

The Pricing Module supports coarse- to fine-grained pricing elements which can
be referenced by coarse- to fine-grained elements in other USDL modules thus sup-
porting Cognitive Sufficiency (cf. Section 8.3.2.2) (for more on the inter-module
references see Section 9.4.3). At the same time, elements of the Pricing Module are
referenced by other modules.

The Pricing Module greatly contributes to the Deployment Symmetry (cf. Section
8.3.2.4) capability of USDL in a business environment. As a service is extended,
redeployed or brokered, any intermediary has the possibility to either incrementally
modify the pricing by means of additional price elements or to replace the current
pricing altogether.

Lastly, the pricing as a prominent non-functional property of a service addresses
the requirement of Execution Resilience (cf. Section 8.3.2.5). For example, “cooling
off” periods can be represented by price fences should there be uncertainty about
customer satisfaction concerning the fulfillment of a service.

9.6 Example

We now show how to model an existing price structure with the USDL Pricing Mod-
ule. Before we continue, two remarks need to be made. First, the comprehensiveness
of the module is such that, given space limitations, we cannot provide an exam-
ple covering the whole range of modeled concepts, instead, we focus on the most
commonly found price elements: the hierarchical composition of price charges, dis-
counts and surcharges, and consumer and contract dependencies.8 Secondly, please
bear in mind that, because of the Pricing Module’s flexible design, several concrete
pricing models could represent the same description of a price structure expressed
in natural language, tabular, or graphical form. What we present below is therefore
one possibility.

The price structure we are going to model is taken from the example introduced in
Chapter 8, where a German manufacturer of gas turbines relies on logistic providers
to have a lot of turbines delivered to Siberia. In particular, we take the perspective of
the second-party logistics provider (2PL) which employs airplanes to transport the
turbines along a particular leg of the delivery (from Germany to Russia). We utilize
different price plans to price the delivery to different countries offered by 2PL.

Listing 9.1: PricePlan Eurasian Shipment
<p r i c e P l a n>

<c u r r e n c y>EUR</ c u r r e n c y>
<names>

<d e s c r i p t i o n>
<v a l u e>E u r a s i a n Shipment</ v a l u e>
<t y p e>name</ t y p e>

8 Additional examples can be found in the specification USDL 3.0 module: Pricing M5 [2].

9 Service Pricing 239

<l a n g u a g e>en</ l a n g u a g e>
</ d e s c r i p t i o n>

</ names>
<e f f e c t i v e F r o m>

<a b s o l u t e P o i n t I n T i m e>
<v a l u e>2011−03−31 T08 :00 :00 .000+02 : 0 0</ v a l u e>

</ a b s o l u t e P o i n t I n T i m e>
</ e f f e c t i v e F r o m>

. . .
</ p r i c e P l a n>

We introduce a price component related to the volume of the good to be delivered,
whereby each cubic decimeter is priced 3 euros. Please note the connection between
the variable var1 of the priced function func1 and the PriceLevel with its Price-
Metric, since these explicit connections are necessary for an algorithm to be able to
actually calculate the price for the service by multiplying the value of the variable
var1 by the amount of the PriceLevel.

Listing 9.2: PriceComponent Volume
<pr iceComponen t p r i c e d F u n c t i o n s =” func1 ” x m i : i d =” pc volume ”>

<names>
<d e s c r i p t i o n>

<v a l u e>Volume</ v a l u e>
<t y p e>name</ t y p e>
<l a n g u a g e>en</ l a n g u a g e>

</ d e s c r i p t i o n>
</ names>
<componen tLeve l s>

<a b s o l u t e P r i c e L e v e l>
<abso lu teAmount>3 . 0</ abso lu teAmount>
<p r i c e M e t r i c s>

<t y p e d P r i c e M e t r i c t y p e R e f e r e n c e =” t y p e 1 ”>
<f a c t o r>1 . 0</ f a c t o r>

</ t y p e d P r i c e M e t r i c>
</ p r i c e M e t r i c s>

</ a b s o l u t e P r i c e L e v e l>
</ componen tLeve l s>

</ p r i ceComponen t>

<f u n c t i o n x m i : i d =” func1 ” a f f e c t e d C o n t e x t V a r i a b l e s =” va r1 ”>
<names>

<d e s c r i p t i o n>
<v a l u e>F l i g h t D e l i v e r y</ v a l u e>
<t y p e>name</ t y p e>
<l a n g u a g e>en</ l a n g u a g e>

</ d e s c r i p t i o n>
</ names>

</ f u n c t i o n>

<v a r i a b l e D e c l a r a t i o n x m i : i d =” v a r1 ” t y p e R e f e r e n c e =” t y p e 1 ”>
<names>

<d e s c r i p t i o n>
<v a l u e>Fre igh tVo lume</ v a l u e>
<t y p e>name</ t y p e>
<l a n g u a g e>en</ l a n g u a g e>

</ d e s c r i p t i o n>
</ names>

</ v a r i a b l e D e c l a r a t i o n>

<t y p e R e f e r e n c e x m i : i d =” t y p e 1 ”>
<un i tSymbol>c u b i c d e c i m e t e r</ un i tSymbol>

</ t y p e R e f e r e n c e>

240 Tom Kiemes, Francesco Novelli, and Daniel Oberle

2PL offers this transportation service under a tiered pricing scheme, to differ-
entiate charges based on the usage profiles of the customers. In the given example
up to 1000 cubic decimeters are delivered for 3 euros per cubic decimeter, while
exceeding cubic decimeters for 2.50 euros each. In USDL that can be realized by
simply adding another PriceLevel to the price component and bounding the two
price levels appropriately to create the two tiers.

Listing 9.3: Tiered Pricing
<pr iceComponen t>
. . .
<componen tLeve l s>

<a b s o l u t e P r i c e L e v e l>
<abso lu teAmount>3 . 0</ abso lu teAmount>
<t i e r H i g h e r B o u n d>1000</ t i e r H i g h e r B o u n d>
<p r i c e M e t r i c s>

<t y p e d P r i c e M e t r i c t y p e R e f e r e n c e =” t y p e 1 ”>
<f a c t o r>1 . 0</ f a c t o r>

</ t y p e d P r i c e M e t r i c>
</ p r i c e M e t r i c s>

</ a b s o l u t e P r i c e L e v e l>
<a b s o l u t e P r i c e L e v e l>

<abso lu teAmount>2 . 5</ abso lu teAmount>
<t i e rLowerBound>1001</ t i e rLowerBound>
<p r i c e M e t r i c s>

<t y p e d P r i c e M e t r i c t y p e R e f e r e n c e =” t y p e 1 ”>
<f a c t o r>1 . 0</ f a c t o r>

</ t y p e d P r i c e M e t r i c>
</ p r i c e M e t r i c s>

</ a b s o l u t e P r i c e L e v e l>
</ componen tLeve l s>

</ p r i ceComponen t>

As mentioned in Section 9.4, multiple price components can be used, and they
can also relate to each other as adjustments. 2PL incorporates a surcharge into its
price plans. The surcharge is to be paid when the customer ships an item categorized
as fragile, and amounts to 5% of the total expressed by the volume price component.
Therefore a new price component with a ProportionalPriceLevel is introduced into
the model instance and references the volume price component as its base.

Listing 9.4: Tiered Pricing
<p r i c e P l a n>

<planComponents>
. . .
<p r i c e A d j u s t m e n t p r i c e d F u n c t i o n s =” func1 ” componentFences =” f e n c e 1 ”>

<names>
<d e s c r i p t i o n>

<v a l u e> f r a g i l e</ v a l u e>
<t y p e>name</ t y p e>
<l a n g u a g e>en</ l a n g u a g e>

</ d e s c r i p t i o n>
</ names>
<t y p e>Premium</ t y p e>
<componen tLeve l s>

<p r o p o r t i o n a l P r i c e L e v e l i n t e r n a l B a s e s =” pc volume ”>
<percen tageAmount>0 . 0 5</ pe rcen tageAmount>

</ p r o p o r t i o n a l P r i c e L e v e l>
</ componen tLeve l s>

</ p r i ceComponen t>
</ p lanComponents>

</ p r i c e P l a n>

9 Service Pricing 241

<p r i c e F e n c e x m i : i d =” f e n c e 1 ”>
<b u s i n e s s T e r m>f r a g i l e F r e i g h t</ b u s i n e s s T e r m>
<b u s i n e s s T e r m E x p r e s s i o n>

<e x p r e s s i o n>
<v a l u e>f r a g i l e F r e i g h t IS t r u e</ v a l u e>
<l anguage ID>RulesLanguage</ l anguage ID>

</ e x p r e s s i o n>
</ b u s i n e s s T e r m E x p r e s s i o n>

</ p r i c e F e n c e>

9.7 Conclusion

The on-line discovery, trading and consumption of services as envisioned in the
Internet of Services demand an advanced support of the business aspects of transac-
tions alongside the technical requirements to be met. Among those business facets,
pricing plays a fundamental role on both sides of a service marketplace. A pricing
meta-model suitable for such a context was missing and the USDL effort there-
fore includes a novel attempt embodied in its Pricing Module. The module and its
foundations were thoroughly described in this chapter. The USDL Pricing Module
is comprehensive, applicable, executable, and part of a non-proprietary endeavor,
and it can thus be a fundamental enabler for the commercial success of any service
platform.

References

1. Z. Baida, H. Akkermans, and J. Gordijn. Serviguration: towards online configurability of
real-world services. In Proc. of the 5th ICEC, pages 111–118, 2003.

2. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Pricing Module. Technical Report Version 3.0, Milestone
M5, SAP Research, May 2011. Available at www.internet-of-services.com.

3. B. de Miranda, Z. Baida, and J. Gordijn. Modelling pricing for configuring e-service bun-
dles. In BLED 2006 Proceedings. AIS Electronic Library (AISeL), 2006. http://aisel.
aisnet.org/bled2006/48.

4. A. Faruqui and L. Wood. Quantifying the benefits of dynamic pricing in the mass market.
Edison Electric Institute, January 2008.

5. M. Hepp. Goodrelations: An ontology for describing products and services offers on the
web. In A. Gangemi and J. Euzenat, editors, Knowledge Engineering: Practice and Patterns,
16th International Conference, EKAW 2008, Acitrezza, Italy, September 29 - October 2, 2008.
Proceedings, volume 5268 of Lecture Notes in Computer Science, pages 329–346. Springer,
2008.

6. C. Hümpel and V. Schmitz. BMEcat - an XML standard for electronic product data inter-
change. In Proceedings of the 1st German Conference on XML, pages 1–11, 2000.

7. O. Kelkar, J. Leukel, and V. Schmitz. Price modeling in standards for electronic product
catalogs based on XML. In WWW ’02: Proceedings, pages 366–375, 2002.

8. T. Kiemes, D. Oberle, and F. Novelli. Towards a reusable and executable pricing model in
the internet of services. In G. Kotsis, D. Taniar, E. Pardede, I. Saleh, and I. Khalil, editors,

http://www.internet-of-services.com
http://aisel.aisnet.org/bled2006/48
http://aisel.aisnet.org/bled2006/48

242 Tom Kiemes, Francesco Novelli, and Daniel Oberle

The 12th International Conference on Information Integration and Web-based Applications &
Services (iiWAS2010), volume 272 of books@ocg.at, pages 720–727, Wien Österreich, 2010.
Österreichische Computer Gesellschaft (OCG).

9. S. Lehmann and P. Buxmann. Pricing Strategies of Software Vendors. Business & Information
Systems Engineering, 1(6):452–462, 2009.

10. C. Lovelock and E. Gummesson. Whither services marketing? Journal of Service Research,
7(1):20–41, 2004.

11. T. T. Nagle and J. E. Hogan. The Strategies and Tactics of Pricing. Prentice Hall, 4 edition,
2005.

12. T. T. Nagle and J. E. Hogan. Segmented Pricing: Using Price Fences to Segment Markets and
Capture Value. SPG Insights, 2006.

13. I. C. Ng. The Pricing and Revenue Management of Services: A Strategic Approach. Routledge,
1st edition, 2007.

14. F. Novelli. A Simulation Study of the Interdependence of Scalability and Cannibalization
in the Software Industry. In Proceedings of the 23rd European Modeling and Simulation
Symposium, Rome, September 2011.

15. J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. The price of services. In Service-
Oriented Computing — ICSOC 2005, Third International Conference, Amsterdam, The
Netherlands, December 12-15, 2005, Proceedings, volume 3826 of LNCS, pages 564–569.
Springer, 2005.

16. C. Shapiro and H. R. Varian. Versioning: The Smart Way to Sell Information. Harvard
Business Review, pages 106–110, November, December 1998.

17. A. A. Stern. The Strategic Value of Price Structure. Journal of Business Strategy, 7(2):22–31,
1986.

18. I. Toma. Modeling and ranking semantic web services based on non-functional properties.
PhD thesis, Faculty of Mathematics, Computer Science and Physics of the University of Inns-
bruck, 2010.

mailto:books@ocg.at

Chapter 10

Service Licensing

Christian Baumann and Maria Niedziella

Abstract Service marketplaces and service networks promote tradeable services on
the Internet. With such business transactions the need for legal certainty and legal
compliance arises. Two crucial aspects can be highlighted in this context: you need
to know about what you are talking and under which jurisdiction a transaction is ar-
ranged. Both aspects are difficult to address in a machine-processable description for
services. The subject matter — the what — is difficult to grasp: the service notion in
USDL encompasses technical Web services to conventional business services. Fur-
thermore, machine-processable legal attributes need to comply to the statutes of the
respective country of the transaction in order to achieve enforceable legal expres-
sions. Current models apply approaches which do not address the aforementioned
aspects. We argue to overcome the difficulties by modeling legal description capa-
bilities on the basis of the statutes. This chapter covers the modeling of licensing
aspects according to two different jurisdictions. We use the copyright acts of Ger-
many and the USA to illustrate the approach. The resulting model incorporates the
terms of the statutes, for example, Work, which can be mapped to any licensable
service artifact. Although certain notions such as Work have a common semantic
understanding this approach requires a management of the different variants. Vari-
ants are discussed in Chapter 17.

Christian Baumann
Berkeley Center for Law & Technology, University of California, Berkeley, School of Law, 376
Boalt Hall Berkeley, 94720 CA, USA, e-mail: baumann@berkeley.edu
Center for Applied Legal Studies (ZAR), Karlsruhe Institute of Technology, Germany,
e-mail: ch.baumann@kit.edu

Maria Niedziella
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: maria.niedziella@sap.com

243 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York0,

mailto:baumann@berkeley.edu
mailto:ch.baumann@kit.edu
mailto:maria.niedziella@sap.com

244 Christian Baumann and Maria Niedziella

10.1 Introduction

Software-as-a-service, cloud computing, service marketplaces, and service net-
works are some examples for the emerging ubiquity of services as discussed in
Chapter 1. With the advent of business within these structures the need for more
legal certainty arises. Participants need to know about the terms of usage of a partic-
ular service, for example, liability, privacy, or copyright; however, this information
is rarely provided in a machine-processable manner but rather as informal text. Such
informal representations of legal clauses are not accessible, for example, to search
engines — one might think of a specific search for services which can be re-sold
— or an semi-automated analysis for legal consequences such as if a transfer of
copyright is legally allowed.

While most of the functional and non-functional attributes can be used to describe
a service for international business purposes — take, for example, the description
capabilities for Price — the legal aspects are bound to the national context. For
instance, companies such as the Internet marketplace Amazon have separate general
terms and conditions for its branches in the different countries.1 The legal terms
notably differ although Amazon basically offers the same products.

The modeling of legal aspects has to account for the different national statutes.
This makes it difficult to identify common concepts for the Legal Module. The ex-
traction of generic legal terms from dictionaries, for example, is hardly an option,
since a legal description model has to apply to the legal practice. The legal prac-
tice, however, does not consider generic regulations, but it rather refers to the spe-
cific norms of the specific jurisdiction. For instance, most countries have private
international laws to determine which national law should be applied in a conflict
of laws situation.2 Although European directives and international treaties aim for
harmonizing national laws, they are not binding for private entities in the different
countries. These statutes are merely a mandate for the governments to implement
corresponding national laws. The implementations might differ in their embodi-
ment. Moreover, there are even more substantial differences in the common and the
civil law system.3

As a consequence, the Unified Service Description Language (USDL) has to ac-
count for national statutory provisions in order to provide binding legal description
capabilities.

USDL is an abstract and broad description mechanism for services on the Inter-
net. Services might deliver functionality, content, and other works — basically intel-
lectual subject matter. This intellectual property might be subject to copyright. How-
ever, certain combinations, unknown works, and new scenarios cannot be known in
advance. We, therefore, apply the approach to build a generic copyright model by

1 Cf. www.amazon.com, www.amazon.de, www.amazon.fr or other domain regions.
2 For more information on the scope of private international law cf. [24, pp. 16-24].
3 In common law, also known as case law, law is developed by judges through decisions of courts.
In civil law the law is developed and codified through the legislative branch — judges apply the
written statutes and follow them.

http://www.amazon.com
http://www.amazon.de
http://www.amazon.fr

10 Service Licensing 245

formalizing licensing aspects of the statutes itself [6]. This model is as abstract as
the statutes and can be specialized for a specific domain, scenario, or artifact. More-
over, by adhering to the statutory text the specialization of the model is merely a
modification of facts and legal consequences which are set by the law. Consider,
for instance, the legal term Work. It represents a legal concept which is protected
by copyright. A Song which is provided by a service might be considered as Work
and, therefore, enjoy copyright. Thus, when subsuming the artifact Song as Work in
order to define the corresponding usage rights, we have some level of compliance to
the law [7].

Our methodology to model legal non-functional properties adheres to the prin-
ciple of considering jurisdictions and the respective statutory text. To illustrate the
methodology this chapter focuses on the German Copyright Act (GCA) and the
Copyright Act of the United States (UCA). The advantage of copyright is, that most
countries have established copyright statutes, and international treaties have pro-
moted international harmonization of the copyright laws. Moreover, copyright is
one of the most discussed legal areas in the digitized environment and important for
a lot of industries on the Internet.

The remainder of this chapter is structured as follows. In Section 10.2 our ap-
proach to formalize copyrights based on the statutes is set into contrast to related
work. In Section 10.3 the German module is depicted before it is applied to the
example of the book (cf. Section 10.4). Differences and common concepts in rela-
tion to the U.S. module are also explained. Section 10.5 concludes the chapter and
provides an outlook for future work.

10.2 Related Work

There are many approaches to the formal representation of legal clauses (rights and
obligations). Because we specifically consider copyright for this chapter, we discuss
in this section approaches with the capability to represent copyrights. We position
our methodology, viz., considering the jurisdiction and the statutory text, to the ef-
forts by means of what we argue is essential for legal certainty and legal compliance
in USDL. The distinguishing criteria that set our model apart from related efforts are
as follows.

First, we distinguish between approaches that generically express rights (and
obligations) or specifically copyright. Our model follows the requirement to specif-
ically express one field of law. This supports legal certainty, since we relate to con-
stituted rights.

Second, we argue that by using the statutory text as a modeling basis we achieve
a certain level of legal compliance, since we comply with the applicable law of a
country. Generic approaches often originate from an economical background and
have to be separately verified by lawyers or courts4 for the specific jurisdiction.

4 For instance, the GNU General Public License version 2 (GPLv2) was in Germany approved as
effective according to German law in 2004, cf. [25]. The license was developed according to the

246 Christian Baumann and Maria Niedziella

Even if certain clauses of a generic approach are valid, they might have, depending
on the jurisdiction, a different legal implication or scope.5

Finally, the ubiquity of the notion of services on the Internet requires a compre-
hensive approach. We cannot predict which copyrighted material might be described
in USDL. This could vary from accessing the service itself (its program code) to an
aesthetic picture, or a to date unknown work type. Moreover, the construction of the
model has to account for multiple scenarios. A scenario could cover commercial or
non-commercial usage, it might involve granting usage rights to several unknown
users, a specific group of users, or only one known user. Therefore, we split this
criterion into the works and scenarios which are covered.

The criteria are depicted as columns in Table 10.1. The following efforts are
listed per row.

Table 10.1: Efforts to the formal expression of copyright.

based on

copyright

jurisdictions

considered

variety of works covered multiple sce-

narios covered

ccREL yes yes no — specialized for audio,
video, pictures, text, interactive
content

no — mainly
to provide at
no cost to the
public

ODRL no no yes yes
ODRL-S partly no no — specialized for (technical)

services
yes

XrML partly no yes yes
METSR no no no — mainly for digitalized

content in libraries
no — mainly
for research/
libraries

IPROnto partly no yes yes
O’Sullivan no no n/a n/a

10.2.1 Creative Commons Rights Expression Language

The Creative Commons Rights Expression Language (ccREL) [1] focuses on the
representation of the Creative Commons6 license sets in a machine-processable lan-

U.S. legal system. The license text is officially only available in English because the Free Software
Foundation (FSF) wants to avoid validation costs and the risk of introducing errors which could
have extensive consequences.
5 For instance, the GPL allows for copying, distribution, and adaptation according to German
copyright law. However, the right to make publicly available (§ 19 a GCA) is not specifically in-
cluded in the GPL. In Germany this right is crucial for distribution on the Internet. [35, Hören, Teil
Klauselwerke, IT-Verträge, note 211]
6 http://www.creativecommons.com

http://www.creativecommons.com

10 Service Licensing 247

guage. ccREL is based on RDF [33] and implements its model in RDFa [34] and
XMP [2, 3, 4]. The specification recommends a respective implementation depend-
ing on the character — if it is web-based or free-floating — of the artifact [1, p. 10].

The aim of the Creative Commons project is to provide widely applicable license
sets for works. The focus of the license sets is, however, on sharing with everyone
on the Internet at no charge. Even when a work is not provided to the public do-
main but rather made available with the idea of “some rights reserved,” there is no
consideration of using it in complex business situations.

Since the Creative Commons do not specify exclusive rights in their license
sets, it is possible to license a work under additional licenses. This scenario is ad-
dressed through CCPlus [11], an additional option to describe more permissions
than expressible through the original license sets. This enables rights holder to pro-
vide machine-processable information about commercial licensing options of their
works. However, the implementation is realized by means of a simple link to some
other resource on the Internet — there are no further expression capabilities.

The Creative Commons project provides its license sets as international (un-
ported) versions. Since they are fairly simple a certain level of international applica-
bility is achieved. However, the license sets are still ported to more than 70 different
jurisdictions in order to account for the requirement to comply with national laws or
to express subtle differences. [10]

In summary, ccREL provides a machine-processable formalism for the license
sets of the Creative Commons project. The license sets address a specific field of
law — copyright — and jurisdictions are considered. The approach is based on the
narrow scenario to provide works at no costs to the public. The combinations are
limited to six license sets and they are optimized for audio, video, pictures, text, and
interactive content.

10.2.2 Open Digital Rights Language

The Open Digital Rights Language7 (ODRL) is an XML based policy expression
language. It provides a common vocabulary which allows to build specific profiles.
ODRL is intended for publishing, distribution, and consumption of digital content.
In addition to copyright concepts it introduces parameters for areas such as func-
tionality or privacy. [22]

ODRL wants to provide a comprehensive expression language for artifacts on
the Internet. This is similar to USDL, however, ODRL focuses on (generic) rights
expression. The current draft of version 2.0 incorporates the semantics of the (un-
ported) version of the Creative Commons license sets [29], hence, it emphasizes its
generic approach to rights expression on the Internet.

7 http://odrl.net

http://odrl.net

248 Christian Baumann and Maria Niedziella

In summary, the ODRL model does not specifically address copyright. It does
not consider jurisdictions but rather builds on a generic approach. By definition of
its profile mechanism it is extendable to different scenarios and a variety of works.

10.2.3 Open Digital Rights Language Services

The Open Digital Rights Language Services (ODRL-S) is a profile which is based
on ODRL version 1.1 [28]. ODRL-S specializes in the artifact service and addresses
its licensing issues [16, 17].

The meaning of the term service in ODRL-S emphasizes on the technical imple-
mentation of (Web) services, thus, it is narrower than understood in USDL. Based
on this meaning the model defines specific attributes which are typical for the usage
of a service.

The WIPO8 copyright treaty serves as the legal source for the analysis of copy-
right aspects of the artifact service [15, pp. 8, 49]. This treaty is, however, not bind-
ing for private entities in different countries. The ODRL-S profile has the same
characteristics as the aforementioned ODRL.

10.2.4 Extensible Rights Markup Language

The Extensible Rights Markup Language (XrML) is the successor of the Digital
Property Rights Language (DPRL) which was developed by Xerox Palo Alto Re-
search Center. It is XML based and currently available in version 2.0. XrML is a
language to express rights and business rules for using, duplicating, and distributing
content. [8]

DPRL/XrML was designed to provide a comprehensive vocabulary for multiple
scenarios. This, eventually, lead to the adoption by the MPEG-21 standard and made
it the official part five in the ISO/IEC 21000 international standard [23]. Version 2.0
is designed for usage in any medium or type of resource and on any digital entity.
Due to the integration into ISO/IEC 21000, XrML is widely used for Digital Rights
Management (DRM). However, the language was not specifically designed on the
basis of national statutes or jurisdictions.

The international standard ISO/IEC 21000-5 is also adapted in the OASIS Web
Services Security (WSS) token profile for rights expression language [27].

8 World Intellectual Property Organization

10 Service Licensing 249

10.2.5 METSRights

METSRights (METSR)9 is an extension to the Metadata Encoding and Transmis-
sion Standard [13] (METS). METSR is based on XML and specialized for digitized
materials in academic institutions and libraries. It is intended to serve for informa-
tional purposes such as identification of ownership and contractual requirements for
re-use of the materials. [9, pp. 6-7]

METSR is not used in complex business scenarios. It is neither designed to
specifically represent copyrights, nor is it based on statutes.

10.2.6 Intellectual Property Rights Ontology

The model of the Intellectual Property Rights Ontology10 (IPROnto) [12, 19, 20, 21]
comprises a static and dynamic view on intellectual property rights. The static part
defines legal concepts and their relations. The processes such as creation of a work
build the dynamic model. The concepts in the static model are used to define the
processes in the dynamic model.

IPROnto follows a generic approach by incorporating the WIPO copyright
framework in its model [12, p. 115]. The model considers a variety of works and
multiple scenarios.

10.2.7 O’Sullivan

O’Sullivan developed a comprehensive model for “a domain independent taxon-
omy that is capable of representing the non-functional properties of conventional,
electronic, and Web services.” [30, p. 19]. In his work he also considers the notion
“intellectual property rights” [30, pp. 119-122], however, this is limited to registered
intellectual property rights such as trademarks, designs, or patents. Copyrights are
not included.

The model includes country of origin and the area where the granted intellec-
tual property right applies [30, p. 119]. The description formalism is not capable of
describing a usage right based on a specific law or jurisdiction.

9 METSR is available as an XSD schema at http://cosimo.stanford.edu/sdr/
metsrights.xsd, accessed 6 April 2011. The schema is heavily documented, there is no other
documentation available at this point.
10 IPROnto is aligned to the top level ontologies DOLCE [18] and SUMO [31].

http://cosimo.stanford.edu/sdr/metsrights.xsd
http://cosimo.stanford.edu/sdr/metsrights.xsd

250 Christian Baumann and Maria Niedziella

10.2.8 Conclusion

Some of the presented works can be related to rights expression languages (REL)
with the main purpose of machine-actionable control over digital content. They are
designed to be applicable for a variety of works and scenarios, and it has been tried
to realize generic concepts. We, in contrast, argue that an generic approach does not
provide legal certainty.

Only the Creative Commons consider jurisdictions. Its application within com-
plex business scenarios, however, is limited due to the simple expression capabili-
ties of ccREL. Furthermore, there are only six different license sets available and
the licensing model of the Creative Commons is based on the assumption to provide
works at no cost to the public.

O’Sullivan’s approach pursuits a comprehensive service description formalism,
however, the expression of copyrights is not supported. Our approach is specialized
in representing the rights and obligations granted by law, that is, copyright in our
discourse. For the representation of other concepts, for example, price or function-
ality, we rely on the remaining USDL modules.

We also argue that by adhering to the statutes and jurisdictions we are able to
foster legal compliance and legal certainty — only ccREL has a similar claim.

10.3 Modeling Copyright in USDL

Intellectual property (IP) is influenced by the principle of territoriality. Territoriality
means that IP aspects have to comply with the statutes of the country where an
IP issue arises [14, § 7 note 12]. In this section we use the German Copyright Act
(GCA)11 and the Copyright Act of the United States (UCA)12 to illustrated our
methodology [6]. The GCA is part of the civil law tradition, the UCA, on the other
hand, is part of the common law tradition.

The modeling of copyrights does not comprise the representation of the com-
plete copyright acts. In fact, only the relevant legal concepts which are required to
address licensing are important. These concepts build the core of our model; they
are integrated with other modules in USDL.

Throughout Section 10.3.1 the model according to the GCA is depicted. Legal
terms which are used in the statutes, such as Work, UsageRight, or UsageType,
are discussed. However, some notions which are not defined in the GCA, License,
for example, have to be introduced for completeness. In Section 10.3.2 we describe
the integration with concepts of other USDL modules. This integration allows us to
utilize expert knowledge from other domains. Following, in Section 10.3.3 the over-
laps and differences between the model of the GCA and the UCA are illustrated. The

11 In German: Urhebergesetz.
12 The Copyright Law of the United States of America and Related Laws are contained in Title 17
of the United States Code (17 U.S.C.).

10 Service Licensing 251

Fig. 10.1: Class diagram for the German Copyright Act.

results of this comparison are also used as an example for the management of vari-
ants in Chapter 17. This section concludes with an analysis on how the requirements
put forth in the overview in Chapter 8 are met (Section 10.3.4).

10.3.1 The Module According to the German Copyright Act

The class diagram for the GCA is presented in Figure 10.1. It shows classes, rela-
tions, and the integration with classes of other USDL modules.

10.3.1.1 Work

The class Work is of central importance for the model. It is the subject matter which
can be licensed. For instance, a service, a composite services, or the service output
can qualify as work as long as it fulfills the following requirements:

252 Christian Baumann and Maria Niedziella

• Personal creation [§ 2 Sec. 2 GCA]: The work has to be the product of some
human action [14, § 2 note 8]. The author or creator [§ 7 GCA] can only be a
natural person [14, § 7 note 2].

• Intellectual creation [§ 2 Sec. 2 GCA]: The work has to show or express some
of the author’s ideas or feelings to qualify as intellectual. Then it is individual or
original. [14, § 2 note 18]

• Classify as literature, science, or art [§ 2 Sec. 1 GCA]: The GCA provides a non-
exhaustive catalog. Computer programs are explicitly listed as literature. [14, § 2
note 3]

• Perception: The work has to be perceptible in some manner. Although a concrete
physical materialization is not required, a mere imagination without an expres-
sion is not protected by the GCA. [14, § 2 note 13]

Novelty, however, is not a requirement. This means that the same work could
(theoretically) be created by two different authors. As long as the works were created
independently, for example, the authors did not know from the work of each other,
each creation enjoys protection on its own. However, it is important that only the
intellectual content of the work and not the embodiment itself is protected. [14, § 2
note 11]

The class Work is connected to a copyright protected element of the service by
the relation subsumes. This relation reflects the legal practice of subsuming facts
under abstract notions of the law. Thus, the model allows us to link elements of a
service to copyright law. It is not in the scope of USDL to assess if the artifact which
shall be licensed meets the requirements of § 2 Secs. 1, 2 GCA as outlined above.

The non-exhaustive enumeration of typical work types in § 2 Sec. 1 GCA is mod-
eled as an attribute of Work. We also include the work types Governmental and
Collection because they are explicitly mentioned in §§ 4, 5 GCA. Furthermore, we
introduce the (non-legal) work type OtherWorks to account for to date unknown or
not listed work types.

When a work is protected by the GCA, the creator gains exclusive moral and
economic rights. Moral rights [§§ 12-14 GCA] include, for example, claim of au-
thorship; economic rights [§§ 15-24 GCA] grant the creator exclusivity to exploit his
creation economically. According to § 29 Sec. 1 GCA moral and economic rights
are not transferable inter vivos — the rights are inseparable from the creator. How-
ever, the usage rights which are derived from economic rights of the creator are
transferable.

10.3.1.2 UsageRight and UsageType

The rights that can be granted according to the GCA are usage rights [§ 31 GCA].
Usage rights are derived from the economic rights in §§ 15-24 GCA. In the Legal
Module the usage rights are differentiated by the attribute nature, which enumerates
the underlying economic rights.

According to § 31 Sec. 1 GCA a usage right might be divided into several usage
types. A usage type defines a specific, well-defined, economic manner of how to

10 Service Licensing 253

use a work [26, § 31 note 17]. For instance, the Right to Distribute [§ 17 GCA]
contains various distribution possibilities, such as to distribute a literary story as a
hardcover book, an electronic book (eBook), or as an audio book; the audio book can
be distributed on a compact disk or over the Internet as an MP3 file. The different
manners of distribution are derived from the economic right of Right to Distribute.
In the model, therefore, a UsageRight permits one or more UsageType.

Not all potential scenarios or usage types which might evolve through technolog-
ical developments can be predicted and codified in the law [cf. § 31a GCA]. There-
fore, the class UsageType does not have an enumeration of usage types. When
USDL is applied to a specific scenario the adequate usage types should be initiated
via an informal description or by introducing specializations of the class Usage-
Type.

Usage rights can be either exclusive or non-exclusive [§ 31 Sec. 1 GCA]. A non-
exclusive usage right permits the licensee to use the work in the agreed manner [26,
§ 31 notes 14-15]. An exclusive usage right allows the licensee to use the work in
the agreed manner and gives him the right to prohibit others using the work in that
manner [26, § 31 note 13]. If the author approves it, a usage right can be transferred
and an exclusive licensee might grant corresponding (exclusive or non-exclusive)
usage rights to third parties [26, § 31 note 9]. A creator can grant a non-exclusive
usage right to several users [14, § 31 notes 50-55]. The class UsageRight has the
attribute exclusive to indicate if a usage right is exclusive or non-exclusive.

A usage right can be restricted and different requirements might be attached to
it. This is represented by the relations isRestrictedBy and requires to the corre-
sponding classes.

10.3.1.3 TimeRestriction, SpatialRestriction, and ContentRestriction

According to § 31 Sec. 1 GCA the licensor is allowed to restrict usage rights in three
different dimensions: temporal, spatial, and content.

A temporal restriction is concerned with the question if the usage right is still
valid, as opposed to if it exists at all [26, Vor § 28 note 88]. The restriction can,
for example, be defined as a period of time; it can also be defined in a quantitative
manner, since this does also address the question for the temporal validity [26, Vor
§ 28 note 89].

A spatial restriction narrows a usage right to a specific economic territory or
geographical area [26, Vor § 28 note 90]. Language regions are also considered as a
spatial restriction [14, § 31 note 30].

A content restriction relates to the substance of a work — its content. Typically,
these restrictions correspond to the economic rights in §§ 15 ff. GCA. However,
you can restrict the substance of the work by additional content restrictions as long
as they describe a sufficiently distinguishable, consistent, independent, technical,
economic manner [26, Vor § 28 notes 91, 87]. This can be indicated, for example,
by the distribution channel or the appearance of the work (cf. example above for

254 Christian Baumann and Maria Niedziella

Right to Distribute). A restriction to a group of people is not a content restriction
unless it is necessary because of the content itself [14, § 31 note 36].

Restrictions can be restricted by other restrictions. More information about the
restrictions can be found at [5, Secs. 3.5-3.8].

10.3.1.4 Requirement

An author is entitled to demand a consideration when someone uses his work. This
consideration can be regarded as the licensee’s obligation which he has to fulfill in
order to make the execution of a usage right valid — a requirement. In our model
we distinguish between two different kinds of requirements: monetary and moral
obligations.

A principle of copyright law is to incentivize creators to publish their works
through monetary compensation. This is derived from the economic exploitation
rights of the author [14, § 15 note 4]. The right to demand a reward is anchored in
§ 32 GCA. Therefore, we introduce the class Reward which can be related to other
remunerations in USDL, for example, a PricePlan (cf. Chapter 9).

The moral rights are distinct from the economic rights. They are concerned with
the author’s relationship with the work even after it leaves his possession or own-
ership. The author of a work always maintains the moral rights to his work even
when he grants exclusive usage rights to a third party — they are not transferable.
The moral rights include the right of attribution, the right to have a work published
anonymously or pseudonymously, and the right to the integrity of the work. The
author has, however, the liberty to exercise those rights or not. In our model we
consider the moral right to attribute [§ 12 GCA]. Further information on the class
Requirement can be found at [5, Sec. 3.9].

10.3.1.5 License

The notion license is not defined by the GCA. In practice, it has different meanings
in its usage, for instance, license sometimes relates to rights in the Patent Law or
it does only comprise non-exclusive rights [26, Vor § 28 note 49]. In our model we
introduce the class License to provide a “container” for one or more UsageRight.
This class allows a licensor to relate all usage rights under which he is willing to
grant the usage of his work. License can be restricted via the relation isRestricted-
By and can be provided under certain requirements via the relation requires. A
restriction or requirement which relates to the class License applies to all usage
rights.

The licensor might be the author or an exclusive licensee who is permitted to
grant usage rights to third parties (attribute licensorRole). According to the GCA an
author can only be a natural person, thus, a company as a licensor can only be an ex-
clusive licensee. A specific license is identified by the attribute licenseNumber and

10 Service Licensing 255

the relation hasDate to the class AbsolutePointInTime in the Foundation Module.
The same license number can be issued on different dates.

USDL provides description capabilities for services, however, it is not designed
to manage transactional data. Therefore, License does not represent a contract but
rather the usage rights under which a rights holder is willing to grant the usage of
his work. The rights holder is related to License via the relation hasLicensor.

10.3.2 Integration with Other USDL Modules

The other USDL modules provide concepts which are also important for the de-
scription of license terms. By re-using relevant concepts in the Legal Module we
utilize expert knowledge and reduce modeling complexity within the module. The
present Legal Module is integrated with the Foundation, Pricing, Functional, and
Participants Modules.

The Foundation Module (cf. Chapter 13) provides basic concepts of USDL of
which we integrate the class Person, AdministrativeArea, Time, AbsolutePoint-
InTime, and Description. Furthermore, the relation subsumes from the legal class
Work to the interface CopyrightProtectedElement represents the legal process of
subsuming a subject matter under a legal term. This allows our model to account
for multiple or unknown artifacts which fulfill the requirements of a work according
to the GCA. The interface potentially implements any identifiable element which is
described by USDL, for example, a (copyrightable) service which shall be licensed.

The Pricing Module (cf. Chapter 9) provides a model to express pricing strate-
gies. In the Legal Module pricing is considered as a reward for the rights holder
for allowing other entities the usage of his work. Therefore, the class PricePlan
represents one possibility to describe a Reward.

The class Function in the Functional Module (cf. Chapter 11) describes de-
tails about the usage of an artifact. This determines the actual usage right and its
usage types (cf. Section 10.3 UsageRight and UsageType). For instance, when
USDL is adopted by a domain which defines multiple usage rights and different
usage types for a usage right, take, for example, different distribution channels of
a written story (cf. aforementioned Section 10.3 for an example), the class Func-
tion provides information about the requested service and determines the concrete
usage right/usage type combination for the license.

Finally, the class Role in the Participants Module (cf. Chapter 13) is used to
describe a licensor. This also means that the licensor has to be specified in the Par-
ticipants Module: he is either the Provider of the service or has to be listed as a
Stakeholder.

256 Christian Baumann and Maria Niedziella

10.3.3 Comparison to the U.S. Legal Module

Modeling of legal aspects such as licenses depends on the legislation of the coun-
try and, consequently, different modules for the jurisdictions are required. Never-
theless, copyright has overlaps across jurisdictions, since international treaties aim
for harmonizing the different copyright acts. Germany and the United States (U.S.)
are members of the major international copyright treaty: the Berne Convention13

(RBC). The Berne Convention requires the signatories, for example, to recognize
the copyright of works of authors from other signatory countries in the same way as
it recognizes the copyright of its own nationals (Art. 5 RBC). As can be seen from
the example, such a regulation does not regulate in detail, it is also not binding for
private entities in the different countries. However, a country has to implement the
requirements set by a treaty in its national law in order to remain a signatory. Be-
ing a member state has advantages for international relationships, for instance, the
trade.

In Section 10.3.1 we demonstrate how the GCA was used to model classes and
relations for granting usage rights according to the German law. The current USDL
module for the UCA is depicted in Figure 10.2. In the following we discuss differ-
ences of classes and relations.

Class Work: different attributes.
According to the UCA a work can be registered [17 U.S.C. sec. 408 (a)]. The reg-
istration is not a condition of copyright protection, however, it is a prerequisite
to civil infringement actions [cf. 17 U.S.C. secs. 411, 412] — it serves as prima
facie evidence. The GCA does not consider the registration of a work; a registra-
tion is even not possible in Germany.

Class UsageRight: different attributes.
Class UsageType: only available in the German Legal Module.
The GCA distinguishes the terms usage right and usage type. Usage types are
used to clearly differentiate the economic usage of a work. Since the UCA is un-
aware of this differentiation, the U.S. Legal Module does not provide a separate
class for usage types but an enumeration of the rights according to 17 U.S.C.
sec. 106. The corresponding attribute of the class UsageRight has been named
type:UsageType to reflect its semantic proximity to the class UsageType in the
German module. In the German module the class UsageRight has the attribute
nature:UsageNature, which enumerates the (semantically similar) economic
rights provided by the GCA. These economic rights are similar to the attribute
type:UsageType in the U.S. Legal Module, however, we use different names
for the attributes since you cannot transfer economic rights in Germany but in
the U.S.

Class CopyrightTransfer: only available in the U.S. Legal Module.
In U.S. common law copyrights can be transferred. This option is not available in

13 Convention for the Protection of Literary and Artistic Work.

10 Service Licensing 257

Fig. 10.2: Class diagram for the Copyright Act of the U.S.

German law. According to the GCA you can only grant usage rights, the actual
copyright always remains with the original author.14 Therefore, the U.S. Legal
Module contains the class CopyrightTransfer to specify whether the copyright is
assigned or transferred. The attribute type:TransferType allows an Assignment
(usage right is assigned) or an Authorization (copyright is transferred).

Sub-classes of Class Restriction: not available in the U.S. Legal Module.
There is no distinction between spatial, time, and content restrictions in the UCA.
Therefore, the corresponding classes are (currently) not available in the U.S. Le-
gal Module.

Class Notice: only available in the U.S. Legal Module.
The legal transfer of exclusive copyrights in the U.S. is not valid unless that
transfer is in writing and signed by the owner or a legal representative [17 U.S.C.
sec. 204]. The transfer of copyright ownership may be recorded in the Copyright
Office [17 U.S.C. sec. 205]. Consequently, the class Notice is introduced as a
sub-class of Requirement.

14 Only in the case of the death of an author you can transfer copyrights, § 29 Sec. 1 GCA.

258 Christian Baumann and Maria Niedziella

Class Copy: only available in the U.S. Legal Module.
17 U.S.C. sec. 101 regards a copy as the material object, other than a phono
record, in which the work is first fixed, thus, it is more specific than the class
Work. Moreover, 17 U.S.C. often relates to the term copy in the statute text.
Therefore, we introduce the sub-class Copy.

Relation authors: relating different classes.
German law only considers natural persons as authors of a work. Hence, the
German Legal Module introduces the relation authors which points to the class
Person of the Foundation Module. U.S. common law considers natural and legal
persons as authors of a work. Therefore, authors points to the class Agent of the
Foundation Module.

Relations licensedBy (U.S.) vs. licenses (German).
In the U.S. Legal Module the relation licensedBy links the classes Work and
CopyrightTransfer. A work is licensed by a specific type of copyright trans-
fer. The CopyrightTransfer then authorizes the License. The German module
represents the relation between the classes Work and License via the relation
licenses. In German law it is not an option to transfer the complete copyright
ownership but only to grant usage rights. In U.S. common law, however, it is re-
quired to express if a license contains transferred or assigned copyrights.

Merging the U.S. and the German variants, which are derived from the statutes,
into one module is not an option since further countries might require additional
conceptualizations. Moreover, classes with the same name might differ in their spe-
cific conception. We also omit a generalization of the content of the two modules
to a universal module in order to describe one (generic) copyright regime for the
Internet. This would not support legal compliance and legal certainty as we argue in
Section 10.1.

Although there are major differences between the two modules, there is also
overlap, for example, the meaning of the class Work is indeed equal. The approach
to variants in USDL is addressed in Chapter 17.

One has also to appreciate that the GCA and the UCA are part of different legal
traditions and, therefore, very different. The differences between other countries, for
instance, Germany and Austria might not be as major.

10.3.4 Design of the Legal Aspects in USDL

As mentioned throughout this chapter, the modeling of legal aspects adheres to the
text of the statutes. Moreover, jurisdictions are considered and a high integration
with other modules is an objective. This integration is intrinsic since the Legal Mod-
ule aims to describe terms for the subject matter — the service.

10 Service Licensing 259

Table 10.2: How are generic USDL language requirements addressed when model-
ing legal aspects in the Legal Module.

Requirement Addressed how?

Conceptualization Modeling of legal aspects adheres to the statutes of a country.
Therefore, the level of abstraction is similar to the statutes. This
allows for an abstract (conceptual) level. The Legal Module is re-
stricted to the field of law, viz., copyright in our discourse. How-
ever, within this field of law the conceptualization of legal aspects
for computational measure is high.

Modularity The methodology in modeling legal aspects re-uses concepts from
other base modules and, thus, accounts for the modularity of USDL.

Comprehensibility Legal aspects should be represented in a narrative (license) text,
common deed, and machine-processable form. The machine-
processable form is represented by the current model, however, in
order to attach textual narratives the class Artifact in the Foundation
Module has to be utilized.

Table 10.3: How are service concept formation requirements in USDL addressed
when modeling legal aspects in the Legal Module.

Requirement Addressed how?

Organizational Embedding Copyright and licensing issues have a strong alignment to the notion
of business policies in organizations and statutes of jurisdictions
that services operate in. So far, licenses are contained with other
considerations in business policy documents. Moreover, licenses as
realized in USDL target different offers of services. The associa-
tions between licenses and service offers are also highly relevant to
an organization’s service portfolio management.

Cognitive Sufficiency The Legal Module supports coarse- to fine-grained modeling ele-
ments which can be referenced by coarse- to fine-grained elements
in other USDL modules. The terms may also be described in a tex-
tual form (common deed/ license text) which may be provided ex-
ternally. Moreover, the license can be used for various artifacts as
long as they classify as work. At the same time, elements of the
Legal Module are referenced by other modules.

Deployment Symmetry As a service is extended, redeployed or brokered, any intermediary
has the possibility to either incrementally modify the copyrights
without overriding the previous legal constraints of providers.

Execution Resilience Legal issues as a prominent non-functional property of a service
address the requirement of Execution Resilience. For example, non
disclaimers as put in place by service providers will not be overrid-
den when third parties extend and deliver services elsewhere.

260 Christian Baumann and Maria Niedziella

Another main character of the module is driven by the difficulty to predict the
actual artifacts which shall be described. This leads to an abstract model (high con-
ceptualization). Also the extensibility and comprehensibility of the module is influ-
enced by this.

The requirements put forth in the overview in Chapter 8 are listed in Table 10.2
and 10.3.

10.4 Example — 2PL Airline Manager

Chapter 8 outlines a case example. In this example a German medium-sized com-
pany decides to use a fourth-party logistics provider (4PL) who offers a complete
service bundle for the export to Russia. The service bundle includes a Web service
and fronted tool, the 2PL Airline Manager, which is provided by a second-party lo-
gistics provider (2PL). The 2PL Airline Manager is used to look up rates, to kick-off
shipments as well as to track shipments.

10.4.1 Terms of Usage

In addition to the description of the case example in Chapter 8 we consider the fol-
lowing information. The 2PL company of the 2PL Airline Manager resides in Ger-
many and provides its Web service and fronted tool to German customers amongst
others. The 2PL Airline Manager was developed and programmed by a 2PL em-
ployee. 2PL wants to allow its usage at no cost under the following conditions:15

(a) 2PL grants you a personal, non-exclusive, non-transferable, royalty-free license
to use the 2PL Web service and to install the frontend tool only on your inter-
nal computer systems located in Germany, along with any modifications and
upgrades thereof, if any, and any related manuals, documents, or other items
(hereinafter collectively called “Materials”) provided by or on behalf of 2PL,
solely for the purpose of connecting with 2PL servers to look up rates, kick-off
shipments and track shipments tendered to 2PL by you using the interface, and
no other purpose.

(b) You acknowledge that you do not remove the name of 2PL from the 2PL Airline
Manager or its Materials.

(c) You may not copy, modify, adapt or reproduce the 2PL Airline Manager or its
Materials.

15 To emphasize the applicability of our model we use an adapted version of an excerpt of a
FedEx end-user license agreement which can be found at http://images.fedex.com/us/
software/pdf/license.pdf (accessed 31 July 2011).

http://images.fedex.com/us/software/pdf/license.pdf
http://images.fedex.com/us/software/pdf/license.pdf

10 Service Licensing 261

(d) You may not translate, decompile, reverse engineer or disassemble the 2PL Air-
line Manager or its Materials in any event, except to the extend this limitation
is prohibited by law.

(e) This license is effective until terminated by either you or 2PL. It will terminate
independently without notice if you fail to comply with any provision of this
license or any instructions regarding the 2PL Airline Manager or its Materials.

These terms describe a restrictive usage of the 2PL Airline Manager for an ar-
bitrary user group, this means, the German medium-sized company as well as the
4PL can use the 2PL Airline Manager as long as they comply with the terms. The
description of the service bundle of 4PL should also include the terms of 2PL, since
1PL might make use of the 2PL Airline Manager and, therefore, needs to know the
conditions.

The terms (a)-(e) alone are not a contract and do not include transactional data,
and, therefore, can be described in USDL. 2PL could define multiple licenses in
USDL, for example, granting a broader usage scope16 for the payment of a royalty.

10.4.2 Terms of Usage Transferred to USDL

In the following we apply the German Legal Module to the 2PL Airline Manager.
However, this is not a one-to-one mapping of the written terms above. The condi-
tions (a)-(e) rather serve as instructions for the objectives of 2PL.

The 2PL Airline Manager is implemented as a Web service and a frontend tool
— basically computer programs. Computer programs are subject to the copyright
law [§ 2 Sec. 1 No. 1 GCA] if they meet the requirements of § 2 Sec. 2 GCA.17 We
assume the 2PL Airline Manager fulfills the requirements to qualify as such a work.
In our model the 2PL Airline Manager is subsumed under Work via the relation
subsumes and classified as Type: Literary as defined in the GCA.18 The other
Materials mentioned in condition (a) might be classified accordingly.

Listing 10.1: Work
<work>
<t y p e> l i t e r a r y </ t y p e>

<d e s c r i p t i o n s>
<d e s c r i p t i o n>
<t y p e> name </ t y p e>
<v a l u e> Web S e r v i c e </ v a l u e>

</ d e s c r i p t i o n>
<d e s c r i p t i o n>
<t y p e> name </ t y p e>
<v a l u e> F r o n t e n d Tool </ v a l u e>

</ d e s c r i p t i o n>
</ d e s c r i p t i o n s>

16 For instance, the usage of the software package to manage logistics provider other than 2PL.
17 Cf. Section 10.3.1.1.
18 The classification of a computer program as literary work results from the fact that it is written
text. The requirements of § 2 Sec. 2 GCA do not particularly ask for poetry or such work.

262 Christian Baumann and Maria Niedziella

<subsumes x s i : t y p e = ’ s e r v i c e : S e r v i c e >
<n a t u r e> Semi−Automated </ n a t u r e>
<exposedResource> <!−− urn o f s e r v i c e −−> </ exposedResource>
</subsumes>

<a u t h o r s x s i : t y p e = ’ f o u n d a t i o n : P e r s o n ’>
<f i r s t N a m e> <!−− f i r s t name of t h e 2PL employee −−> </ f i r s t N a m e>
<las tName> <!−− l a s t name of t h e 2PL employee −−> </ las tName>
</ a u t h o r s>

</work>

The 2PL Airline Manager was created by an employee of 2PL. The employee is
the creator and, therefore, owns the copyrights. However, the employer is entitled to
enact all proprietary powers [§ 69b GCA] and to limit the author’s attribution rights
to the effect that the attribution name might be the employer’s (company) name [26,
§ 69b note 15]. According to condition (b) of the terms the attribution shall be given
to 2PL; this is a none negotiable Requirement (negotiable: false).

Listing 10.2: Requirement: Attribution
<r e q u i r e m e n t x s i : t y p e = ’ A t t r i b u t i o n ’>
<n e g o t i a b l e> f a l s e </ n e g o t i a b l e>
<a t t r i b u t i o n N a m e s> 2PL </ a t t r i b u t i o n N a m e s>
<a t t r i b u t i o n U R L> h t t p : / /www. 2 PL . com </ a t t r i b u t i o n U R L>

</ r e q u i r e m e n t>

Condition (a) lists details about the rights which shall be granted, however, it
does not specify the exact usage rights. These rights are determined by the intended
functionality and the manner of usage of the the 2PL Airline Manager:19 since it
requires some installation on the customer’s computer system it needs to be re-
produced. Moreover, because the terms address an arbitrary user group it needs to
be available to the public. Therefore, the two usage rights with the attribute na-
ture: RightToMakePubliclyAvailable [§§ 15 Sec. 2, 19a GCA] and nature: Right-
ToReproduce [§§ 16, 69 c GCA] are described in USDL. Moreover, condition (a)
clearly states that the rights may only be non-exclusive (exclusive: false).

A UsageRight permits a certain UsageType which specifies the exact manner
of usage. The manner is clearly stated in condition (a) as the purpose of connecting
to 2PL servers to:

• look up rates
• kick-off shipments
• track shipments

2PL permits for every UsageRight the same manner. The UsageType can be
described further via the class Description in the Foundation Module.

Listing 10.3: RightToReproduce and the corresponding manner (UsageType)
<u s a g e R i g h t>
<n a t u r e> RightToReproduce </ n a t u r e>
<e x c l u s i v e> f a l s e </ e x c l u s i v e>
<p e r m i t s>

19 Cf. relation isDeterminedBy from the class UsageRight to the class Function in the Func-
tional Module.

http://www.2PL

10 Service Licensing 263

<usageType>
<d e s c r i p t i o n s>

<!−− s h o r t d e s c r i p t i o n −−>
<d e s c r i p t i o n>
<v a l u e> C o n n e c t i n g t o 2PL s e r v e r s i s on ly a l l o w e d f o r t h e p u r p o s e t o l o o k

up r a t e s , k ick−o f f sh ipmen t s , and t r a c k s h i p m e n t s . </ v a l u e>
<t y p e> f r e e t e x t S h o r t </ t y p e>
<l a n g u a g e> en </ l a n g u a g e>

</ d e s c r i p t i o n>

<!−− keywords −−>
<d e s c r i p t i o n>
<v a l u e> r a t e l oo k up </ v a l u e>
<t y p e> keyword </ t y p e>

</ d e s c r i p t i o n>
<d e s c r i p t i o n>
<v a l u e> s h i p m e n t k ick−o f f </ v a l u e>
<t y p e> keyword </ t y p e>

</ d e s c r i p t i o n>
<d e s c r i p t i o n>
<v a l u e> s h i p m e n t t r a c k i n g </ v a l u e>
<t y p e> keyword </ t y p e>

</ d e s c r i p t i o n>

<d e s c r i p t i o n s>
</ usageType>

</ p e r m i t s>
</ u s a g e R i g h t>

Condition (a) lists several restrictions which restrict the UsageRight and, there-
fore, the UsageType. Content wise the usage right to reproduce is restricted to the
installation on the internal computer system of the customer and to be used only
with shipments tendered to 2PL by the customer using the interface. Furthermore,
the usage is spatially restricted to computer systems in Germany only. The Time-
Restriction, however, is “not limited.”

Listing 10.4: Restrictions.
< r e s t r i c t i o n x s i : t y p e = ’ C o n t e n t R e s t r i c t i o n ’>
<c o n t e n t> The usage i s r e s t r i c t e d t o t h e i n s t a l l a t i o n on t h e i n t e r n a l compute r

sys tem of t h e cu s to m er and t o be used o n ly wi th s h i p m e n t s t e n d e r e d t o 2
PL by t h e c u s t o m e r u s i n g t h e i n t e r f a c e .

</ c o n t e n t>
</ r e s t r i c t i o n>

< r e s t r i c t i o n x s i : t y p e = ’ S p a t i a l R e s t r i c t i o n ’>
<r e g i o n s x s i : t y p e = ’ f o u n d a t i o n : A d m i n i s t r a t i v e A r e a ’>
<v a l u e> DE </ v a l u e>
<t y p e> c o u n t r y </ t y p e>

</ r e g i o n s>
</ r e s t r i c t i o n>

< r e s t r i c t i o n x s i : t y p e = ’ T i m e R e s t r i c t i o n ’>
<t i m e S p e c i f i c a t i o n x s i : t y p e = ’ f o u n d a t i o n : D u r a t i o n I n t e r v a l ’>

<s t a r t x s i : t y p e = ’ f o u n d a t i o n : A b s o l u t e P o i n t I n T i m e ’>
<v a l u e> 2011−03−31 T08 :00 :00 .000+02 : 0 0 </ v a l u e>

</ s t a r t>
<i n t e r v a l D u r a t i o n>

<v a l u e> 9999 </ v a l u e>
<t y p e> y e a r </ t y p e>

</ i n t e r v a l D u r a t i o n>
</ t i m e S p e c i f i c a t i o n>

</ r e s t r i c t i o n>

264 Christian Baumann and Maria Niedziella

Condition (c) and (d) outline usage rights which are not permitted. This informa-
tion is not required to be represented in USDL since in copyright law all rights are
reserved by default. Each usage right one wants to utilize needs to be specifically
obtained, thus, as long as a usage right is absent the work is not allowed to be used in
the particular manner. Also the restriction of non-transferable in condition (a) and
the information on the effectiveness of the license in condition (e) are negligible
since this is the default of the law.

Listing 10.5 shows the snippets of Listing 10.1 to 10.4 in one exemplary license.
The requirements and restrictions from Listing 10.2 and 10.4 are attached to Li-
cense, since 2PL does not differentiate on a usage right level.

Listing 10.5: License 2PL Airline Manager
<l i c e n s e>
<l i c enseNumber> 298−37299−4789−G48J </ l i c enseNumber>
<i s s u e D a t e s x s i : t y p e = ’ f o u n d a t i o n : A b s o l u t e P o i n t I n T i m e ’>
<v a l u e>2011−03−31 T08 :00 :00 .000+02 : 0 0</ v a l u e>

</ i s s u e D a t e s>

<l i c e n s o r R o l e> e x c l u s i v e L i c e n s e e </ l i c e n s o r R o l e>
<h a s L i c e n s o r s x s i : t y p e = ’ p a r t i c i p a n t s : p r o v i d e r ’>
<e n a c t i n g A g e n t> <!−− r e f e r e n c e t o p r o v i d e r e l e m e n t under s e r v i c e −−> </

e n a c t i n g A g e n t>
</ h a s L i c e n s o r s>

< l i c e n s e s>
<work>
<!−− L i s t i n g 1 −−>
. . .

</ l i c e n s e s>

<g r a n t s>
<u s a g e R i g h t>
<!−− L i s t i n g 3 −−>
. . .

</ g r a n t s>

<r e q u i r e s>
<r e q u i r e m e n t x s i : t y p e = ’ A t t r i b u t i o n ’>
<!−− L i s t i n g 2 −−>
. . .

</ r e q u i r e s>

<i s R e s t i c t e d B y>
< r e s t r i c t i o n x s i : t y p e = ’ C o n t e n t R e s t r i c t i o n ’>
<!−− L i s t i n g 4 −−>
. . .

</ i s R e s t r i c t e d B y>

</ l i c e n s e>

The information provided in Listing 10.5 represents the intention of terms (a)-
(e), however, a written license text should also be attached via the class Artifact.
The expression in USDL represents a machine-processable form of the license text,
other aspects which are not present such as the AdaptionRight are not permitted.

10 Service Licensing 265

10.5 Conclusion

This chapter presented our approach with modeling legal aspects in USDL. It is
based on the requirement to comply with national laws by using the legal text as
a modeling basis. Modeling of legal aspects in USDL is particularly difficult, be-
cause the subject matter “service” is imprecise for a legal analysis. However, when
the subject matter is unknown it is challenging to define machine-processable at-
tributes on a more precise granularity than rights and obligations. We, in contrast,
argue to achieve a certain level of legal compliance and legal certainty in the area
of services by complying with statutes. Additionally, the conceptualization (level of
abstraction) is guaranteed because the law is abstract for a specific field of law.

To illustrate our methodology we used the German Copyright Act for modeling
the Legal Module. We compared it to the Copyright Act of the United States to point
out differences or common concepts. The M5 specification of the German Legal
Module can be found at [5], the U.S. Legal Module is not part of this milestone, but
will be integrated.

We already demonstrated the major hurdle when modeling according to the law:
jurisdictions. Although not all concepts of the jurisdictions are disjunct, local pe-
culiarities have to be accounted for. This demands for a management of variants.
Chapter 17 illustrates the approach to variant management in USDL.

In future work it is planned to include description capabilities for contract clauses
in the Legal Module. Such standard terms comprise aspects of private law such as
liability. These clauses also have to comply with national laws.

Another advantage of modeling legal aspects according to the laws is that the
notions of the legal text are used. This supports the analysis for legal consequences
such as if a transfer of copyright is legally allowed. Approaches to the automated
analysis of legal consequences which are based on the formal description of services
can be found at [32, 7].

References

1. H. Abelson, B. Adida, M. Linksvayer, and N. Yergler. ccREL: The Creative Commons Rights
Expression Language: Version 1.0, 3 March 2008.

2. Adobe Systems Incorporated. XMP Specification Part 1: Data Model, Serialization, and Core
Properties, July 2010.

3. Adobe Systems Incorporated. XMP Specification Part 2: Additional Properties, July 2010.
4. Adobe Systems Incorporated. XMP Specification Part 3: Storage in Files, July 2010.
5. C. Baumann, U. Kylau, and D. Oberle. Unified Service Description Language (USDL) —

Legal Module. Technical Report Version 3.0, Milestone M5, SAP Research, May 2011. Avail-
able at www.internet-of-services.com.

6. C. Baumann and C. Loës. Formalizing Copyright for the Internet of Services. In G. Kotsis,
D. Taniar, E. Pardede, I. Saleh, and I. Khalil, editors, Proceedings of the 12th International
Conference on Information Integration and Web-based Applications & Services (iiWAS2010),
volume 272 of books@ocg.at, pages 712–719, New York, NY, USA, 2010. ACM.

7. C. Baumann, P. Peitz, O. Raabe, and R. Wacker. Compliance for Service Based Systems
Through Formalization of Law. In J. Filipe and J. Cordeiro, editors, Proceedings of the 6th

http://www.internet-of-services.com
mailto:books@ocg.at

266 Christian Baumann and Maria Niedziella

International Conference on Web Information Systems and Technology, volume 2, pages 367–
371, Valencia, Spain, 2010. INSTICC Press.

8. Contentguard. XrML 2.0 Technical Overview: Version 1.0, 8 March 2002.
9. K. Coyle. Rights Expression Languages: A Report for the Library of Congress, 2004.

10. Creative Commons. CC Affiliate Network. Accessed 6 April 2011.
11. Creative Commons. CCPlus. Accessed 5 April 2011.
12. J. Delgado, I. Gallego, S. Llorente, and R. Garcı́a. IPROnto: An Ontology for Digital Rights

Management. In D. Bourcier, editor, Legal knowledge and information systems, volume 106 of
Frontiers in Artificial Intelligence and Applications, pages 111–120, Amsterdam, 2003. IOS
Press.

13. Digital Library Federation. Metadata Encoding and Transmission Standard: Primer and Ref-
erence Manual, 2010.

14. T. Dreier and G. Schulze. Urheberrechtsgesetz: Urheberrechtswahrnehmungsgesetz, Kun-
sturhebergesetz: Kommentar. C. H. Beck, München, 3 edition, 2008.

15. G. R. Gangadharan. Service Licensing. PhD thesis, University of Trento, Trento, Italy, 2008.
16. G. R. Gangadharan, V. D’Andrea, R. Ianella, and M. Weiss. ODRL Service Licensing Profile

(ODRL-S). In R. Grimm, B. H. Hass, and J. Nützel, editors, Virtual goods, pages 73–90, New
York, 2008. Nova Science Publishers.

17. G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella. Service License Composition
and Compatibility Analysis. In B. J. Krämer, K.-J. Lin, and P. Narasimhan, editors, Service-
Oriented Computing - ICSOC 2007, volume 4749 of Lecture Notes in Computer Science,
pages 257–269, Berlin Heidelberg, 2007. Springer.

18. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening ontologies
with dolce. In A. Gómez-Pérez and V. R. Benjamins, editors, Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, 13th International Conference,
EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings, volume 2473 of Lecture Notes
in Computer Science, pages 166–181. Springer, 2002.

19. R. Garcı́a. A Semantic Web approach to Digital Rights Management. PhD thesis, Universitat
Pompeu Fabra, Barcelona, 2005.

20. R. Garcı́a, R. Gil, and J. Delgado. Intellectual Property Rights Management Using a Semantic
Web Information System. In R. Meersman, T. Zahir, W. van der Aalst, C. Bussler, A. Gal,
V. Cahill, S. Vinoski, W. Vogels, T. Catarci, and K. Sycara, editors, On the Move to Mean-
ingful Internet Systems 2004: CoopIS, DOA, and ODBASE, volume 3290 of Lecture Notes in
Computer Science, pages 689–704, Berlin Heidelberg, 2004. Springer.

21. R. Gil, R. Garcı́a, and J. Delgado. An interoperable framework for IPR using web ontologies.
In M. Biasiotti, E. Francesconi, M.-T. Sagri, and J. Lehman, editors, Legal Ontologies and
Artificial Intelligence Techniques, volume 4 of IAAIL Workshop Series, pages 135–148. Wolf
Legal Publishers, 2005.

22. IPR Systems Pty Ltd. Open Digital Rights Language (ODRL), 8 August 2002.
23. ISO/IEC 21000-5:2004. Information technology – Multimedia framework (MPEG-21) – Part

5: Rights Expression Language, 1 April 2004.
24. J. Kropholler. Internationales Privatrecht: Einschliesslich der Grundbegriffe des Interna-

tionalen Zivilverfahrensrechts. Mohr Lehrbuch. Mohr Siebeck, Tübingen, 6 edition, 2006.
25. LG München I. Wirksamkeit der GNU General Public Licence (GPL) nach deutschem Recht,

19 May 2004.
26. U. Loewenheim, G. Schricker, and A. Dietz, editors. Urheberrecht: Kommentar. C. H. Beck,

München, 4 edition, 2010.
27. OASIS. Web Services Security Rights Expression Language (REL), 1 February 2006.
28. ODRL Initiative. ODRL Service (ODRL-S) Profile (Working Draft: 2 April 2008). Accessed

6 April 2011.
29. ODRL Initiative. ODRL V2.0 - Common Vocabulary (Working Draft: 18 February 2011).

Accessed 6 April 2011.
30. J. J. O’Sullivan. Towards a Precise Understanding of Service Properties. PhD thesis, Queens-

land University of Technology, 2006.

10 Service Licensing 267

31. A. Pease, I. Niles, and J. Li. Origins of the IEEE Standard Upper Ontology. In Working Notes
of the AAAI-2002 Workshop on Ontologies and the Semantic Web, Edmonton, Canada, July
28-August 1, 2002, 2002.

32. O. Raabe, R. Wacker, C. Funk, D. Oberle, and C. Baumann. Lawful Service Engineering
– Formalisierung des Rechts im Internet der Dienste. In E. Schweighofer, A. Geist, and
I. Staufer, editors, Globale Sicherheit und proaktiver Staat – Die Rolle der Rechtsinformatik,
volume 266 of books@ocg.at, pages 643–650, Wien, Österreich, 2010. Österreichische Com-
puter Gesellschaft (OCG).

33. W3C. RDF/XML Syntax Specification (Revised), 10 February 2004.
34. W3C. RDFa in XHTML: Syntax and Processing, 14 October 2008.
35. F. v. Westphalen, G. Thüsing, and F. Drettmann, editors. Vertragsrecht und AGB-

Klauselwerke. C. H. Beck, München, 27 edition, 2010.

mailto:books@ocg.at

Chapter 11

Service Functionality and Behavior

Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

Abstract One of the most essential parts of every service description language is
to provide suitable means for describing the following three aspects of services: (1)
what the service does, i.e., which functionality it provides, (2) where the service
resides, i.e., where it can be accessed and via which means it can be consumed,
and (3) how the service behaves, i.e., how to interact with the service in order to
properly consume it. These are subject to various existing and well established stan-
dards. In order to capture these aspects in an all-embracing manner, USDL defines
three separate modules — the Functional, the Technical, and the Interaction Mod-
ule — that each cover one aspect and together provide a holistic description of the
functionality and behavior of services. The modules are commonly designed to pro-
vide a unifying description structure that abstracts from details and allows for the
re-use and integration of existing as well as upcoming standards, thereby maintain-
ing flexibility and extensibility of USDL. This chapter introduces the background
and underlying design principles, and presents the USDL modules for functional,
technical, and behavioral service descriptions in detail.

Uwe Kylau
SAP Research Brisbane, Building A4 Level 7, 52 Merivale Street, South Brisbane QLD 4101,
Australia, e-mail: uwe.kylau@sap.com

Michael Stollberg
SAP Research Dresden, Chemnitzer Strasse 48, 01187 Dresden, Germany,
e-mail: michael.stollberg@sap.com

Ingo Weber
The University of New South Wales, School of Computer Science & Engineering, K17, The Uni-
versity of New South Wales, Sydney, NSW 2052, Australia,
e-mail: ingo.weber@cse.unsw.edu.au

Alistair Barros
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: alistair.barros@qut.edu.au

269 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York1,

mailto:uwe.kylau@sap.com
mailto:michael.stollberg@sap.com
mailto:ingo.weber@cse.unsw.edu.au
mailto:alistair.barros@qut.edu.au

270 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

11.1 Introduction

The overall purpose of a service description language is to facilitate a proper com-
munication among the parties that are involved in the provisioning and consumption
of services. In order to create business value through services, service providers,
consumers, and intermediaries (e.g., service brokers) need to successfully commu-
nicate on the usage of these services. Several aspects of substantially different nature
are relevant in this communication, ranging from the provided features over techni-
cal details to legal and financial aspects. To allow for a common understanding —
which is the crucial pre-requisite for successful communication — a service descrip-
tion language defines a system of symbols governed by grammatical rules which
associate particular sets of symbols with a meaning. The aim of USDL is to pro-
vide an all-embracing service description language that covers all relevant aspects
for communicating about business services on the basis of a structured description
model with a clearly defined meaning, while preserving flexibility and extensibility
for the re-use and integration of existing service description standards as well as
upcoming ones.

Among the various aspects that are relevant in the context of services, the follow-
ing ones relate to the basic facets of a service and hence are essential for facilitating
a proper communication: (1) what the service does, i.e., what functionality and fea-
tures it provides that create value for the involved parties when performed, (2) where
the service resides, i.e., where to access it and by which means it can be consumed,
and (3) how the service behaves, i.e., how the service acts when it is performed and
how to interact with the service in order to properly consume it (cf. [9],[30]).

These aspects are subject to various existing and well established standards, such
as WSDL [7], WS-BPEL [23] (or in short BPEL), etc., which constitute the core of
the technology stack used in many current service-based systems. However, despite
their wide adoption the existing standards commonly expose some crucial draw-
backs. Firstly, they mostly provide structural descriptions on a low, technical level,
which allows for automated processing but limits the common understanding and
communication about services on higher levels of abstraction. Secondly, the three
aspects mentioned earlier are commonly spread across several service descriptions
standards; e.g., WSDL comprises detailed information about the provided function-
ality in form of operations with messages and data types along with details on the
technical accessibility, while — in the realm of service descriptions — BPEL is
primarily used to describe the observable behavior of complex services. Because
of this, it is hard to obtain a unified view on the functional, technical, and behav-
ioral aspects of services from the current description standards, which hampers the
communication on specific aspects of interest.

In order to overcome these drawbacks, USDL proposes a unified description
model for the functional, technical, and behavioral aspects of services. The aim
is not to re-invent the wheel by introducing yet another description model for these
essential aspects — but to provide a well structured model that resides on top of ex-
isting as well as upcoming standards, and facilitates the integration, interoperability,

11 Service Functionality and Behavior 271

and exchange among them. For this, USDL defines three modules that each cover
one of the core aspects mentioned above.

1. The Functional Module defines generic constructs for describing what a service
does, i.e., the features and functionality provided. This covers what is com-
monly referred to the ‘functional description’ of a service.

2. The Technical Module encompasses generic constructs for describing the ‘tech-
nical interface’ of a service, i.e., how to technically access and consume the
service.

3. The Interaction Module defines generic constructs for describing the order and
other constraints over how individual parts of a service are performed and how
the involved parties interact. For instance, it allows modeling that some service
requires a customer to request a quotation before goods can be ordered.

With the three modules presented in this chapter, USDL defines a description
model for the concepts that are common among existing standards, with clearly de-
fined semantics, while abstracting from technical details that are already well cov-
ered by these standards. As the main goal of USDL is to provide a meta-model that
captures the information required to provision, deliver and consume a service, the
three modules need to address all aspects required to understand what a given ser-
vice offers, how to technically access it, and how to interact with it while respecting
any constraints on the execution order. However, even though the information has
to be provided, it does not have to be contained entirely inside USDL itself; most
of the information may be present in existing artifacts (such as WSDL documents),
and can simply be referenced by the respective USDL model element. Accordingly,
the three modules merely define the basic constructs in a generic manner so that ex-
isting as well as upcoming standards can be re-used and integrated, thus maintaining
the foundation principle of flexibility and extensibility of USDL. Finally, addressing
each of the aspect in a separate module follows the principle of modularity.

The remainder of this chapter is structured as follows. Section 11.2 reflects on
the background and introduces the design of the USDL modules for describing func-
tionality, technical interfaces, and behavior of services. Sections 11.3, 11.4, and 11.5
present the Functional, Technical, and Interaction Module of USDL in detail. Sec-
tion 11.6 concludes the chapter.

11.2 Modeling Functionality, Technical Interfaces, and Behavior

in USDL

USDL’s modules for the functional, technical, and behavioral aspects of services
define generic constructs for modeling the core aspects of services in a structured
manner, while being extensible by re-using and integrating existing as well as up-
coming standards. The following discusses relevant background about state of the
art related to the three aspects, and motivates the focus of modeling and the con-
structs selected. The second part of the section then outlines the general design and

272 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

relationship of the three USDL modules which are presented in detail in subsequent
sections.

11.2.1 State of the Art and its Influence on the Module Design

11.2.1.1 On Functional Modeling

Functional modeling is concerned with describing what the service does. In early
service frameworks, functionality has mostly been considered as the set of oper-
ations, respectively the inputs and outputs of a service (e.g., [21]). USDL takes a
broader understanding of this, considering the functionality of a service to be what
it achieves for the beneficiaries involved (e.g., customers and providers), i.e., its
value proposition.

In order to describe the business value of a service, a means for describing the
functionality on a high level of abstraction is needed. Yet, enough detail needs to be
presented to enable potential consumers of the service to understand what it does,
and that well enough for them to make a decision on its suitability for the consump-
tion scenario. While no widely adopted standards for this exist, a common concept
that appears to be suitable is capability modeling as used for example in SoaML
(OMG) or the SOA Reference Model (OASIS) (see Chapter 5). [22] discusses the
concept of capabilities as expressing the ability to perform a course of action that
achieves a result. When viewed on a whole, this constitutes the functionality offered
as the service. Other scholars have extended this by adding the notion of commit-
ment, meaning that the entity offering the service is not only capable of doing so,
but also committed to do so upon request (cf. Chapter 4 and [12]).

Originally developed as AI techniques for formal software specification, capabil-
ity modeling usually takes a black-box view, meaning that only the external visible
functionality is described but not how it is realized internally [13]. Other approaches,
commonly termed function modeling (or component modeling), stem from struc-
tured systems analysis and design techniques wherein the principle of functional de-
composition has been introduced [8]. They address modeling of functionality with a
more detailed formalization of the (software) components that realize this function-
ality, thus generating a white-box or grey-box view depending on the level of detail
provided about the components/processes. For example, drilling down to the lowest
level of atomic functions performed in an organization including information about
the roles and systems involved in the process can be regarded as a true white-box
view (sometimes also called glass-box).

Recent works, especially in the context of Semantic Web Services, adopt the
notion of capabilities (e.g., [11] and Chapters 6 and 7) and formally describe the
provided functionality in terms of preconditions that specify the conditions under
which a service can be consumed, and effects that describe the results of a regular
execution (e.g., [26] and Chapters 6 and 7). It should be pointed out that capability
modeling does not have to be limited to a flat, single-layer model. In fact, there are

11 Service Functionality and Behavior 273

approaches that propose quite diverse hierarchical models (cf. [16]), which also cap-
ture interconnections between individual capabilities in terms of inputs, outputs and
exceptions. In borrowing the principles of decomposition from function modeling,
these capability models slightly extend their scope from black-box to grey-box and
thus share similarities with function modeling. The difference is that they describe
functionality from a business point of view, which does not go beyond a certain level
of detail, as opposed to the IT systems point of view (taken by function modeling)
that usually covers all aspects of realization/implementation.

For functional modeling in USDL, a mix of capability modeling and function
modeling has been chosen. In particular, service functionality is modeled as a set
of hierarchical functions, which, at the top-most level, are externally visible as ca-
pabilities. As outlined previously, functions are the building blocks of rendering a
capability and have a number of inherent characteristics, some of which are similar
to concepts of technical interfaces. Functions produce outcome, e.g., something is
created, transformed, delivered or destroyed. Functions are performed by some ac-
tor (agent), who, in doing so, usually operates on one or more objects (resources),
consuming and producing some of the objects, while others are maybe affected as a
side effect. It is furthermore common that actors use resources as tools to perform
an action.

The reason for choosing this model is that while most service consumers might
not care how functions offered as capabilities are structured internally, such infor-
mation is of interest to intermediaries aggregating, re-purposing and enriching ser-
vices. For example, a service broker that provides payment and billing facilities
may support fine-grained payment models, e.g., collecting multiple apportions dur-
ing service execution. Integrating such payment models correctly, requires detailed
knowledge about the structure of a capability. In some cases it is even necessary to
describe conditions that have to hold before an action can be started, as well as the
effects that set in once the action is completed.

11.2.1.2 On Modeling Technical Interfaces

The second of the core aspects refers to describing how to access a service, which
is necessary to provide service consumers with the relevant details on how to tech-
nically invoke the service in order to consume its functionality. This refers to the
set of concrete technologies through which the service can be accessed, which is
commonly referred to as the technical interface of a service. Description methods
for the technical interface are already well covered by the existing standards, which
form the heart of service-based IT systems, at least for automated services that offer
IT-supported means of access [9].

The currently most prominent technologies for technical interfaces of automated
services are SOAP-based interfaces as, e.g., supported by WSDL [7] and, lately
emerging, RESTful Web service interface as, e.g., supported by WADL [15] or
structured according to ODATA [20] (see also Chapter 5). These have emerged from
the domain of distributed computing, and expose certain similarities of concepts:

274 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

they consist of operations that have typed input and output parameters, and faults /
exceptions that may occur during the execution.

USDL supports the modeling of such technical interfaces by defining an abstract
notion of a technical interface which can be extended by referencing respective mod-
eling constructs of existing standards. This allows providing the detailed informa-
tion for the technical access and consumption of services, also covering the case
where a business service exposes several technical interfaces, e.g., a SOAP-based
interface and a proprietary EDI interface (such an SAP RFC). Similar to constructs
that have been defined in other higher-level service description efforts (e.g., by the
‘grounding’ concept of OWL-S [19]; cf. also Chapter 7), this provides a means for
describing technical interfaces in an explicit and well structured manner while al-
lowing for the re-use and integration of existing as well as emerging standards that
capture technical interface descriptions in sufficient detail and widely employed as
the technical foundation of service-based systems.

In addition, the generic constructs in USDL allow integrating description stan-
dards of other types of technical interfaces, e.g., for services that can be accessed by
email, fax, telephone as well as manual services that cannot be accessed (requested
or delivered) by any technical means. Take, for example the service provided by a
hair dresser. Although you can request it via phone, it can only be delivered through
manual labour involving direct human interaction. With this, the support for mod-
eling technical interfaces USDL allows the re-use and integration of existing stan-
dards while remaining extensible for emerging standards as well as for the broader
understanding of business services that is not limited to automated services.

11.2.1.3 On Behavioral Modeling

In addition to the knowledge about the provided functionality and the technical in-
terface, it might be necessary to know how to interact with the service in order to
properly consume its functionality. This is commonly referred to as behavior mod-
eling of services, which is concerned with the external behavior of the service, i.e.,
constraints on the order in which individual functions are performed and when and
how it is necessary to interact with the service, respectively with the actors perform-
ing it [6]. The artifact resulting from behavior modeling is referred to as behavioral
interface, business protocol, or public view on a process. Behavior modeling is par-
ticularly important for properly consuming complex or long-running services that
offer several functions, as common in business contexts.

Interaction structures are well known in the domain of workflow and business
process modeling (e.g., BPEL [23] or BPMN [24]), and have been applied in chore-
ography languages to define collaborations (e.g., WS-CDL [17] or WSCI [1]).
Within the spectrum of different modeling approaches, two general styles of repre-
senting control flow can be identified. On the one hand, there are graph-based mod-
els that capture ordering as a set of relationships between vertices and edges (exam-
ples include BPMN and Petri Nets). On the other hand, there are hierarchical, block-
structured languages (e.g., WS-CDL and WSCI) that capture ordering through the

11 Service Functionality and Behavior 275

semantics of the blocks. BPEL is a hybrid, offering both block-structured and graph-
based modeling.

For reasons of simplicity and traceability, USDL supports behavioral model-
ing by a basic version of the block-structured approach which allows capturing
sequences. This appears to be sufficient for services that do not actually have an
existing formal description of their externally observable behavior and hence do
need such a description (such as, e.g., manual services). To not exclude complex
behavioral interaction protocols, providers get the possibility to attach the definition
of their protocol(s) in a formalism of their choice and potentially have an abstrac-
tion of these protocol(s) mapped to the USDL model. Phases may be introduced as
necessary, as they usually only make sense for long running process-based services.
With this, USDL provides a means for describing the externally observable behavior
of services in a basic manner, which can — analogously to the other models — be
extended with more expressive languages in case this is desirable.

11.2.2 Design and Relationship of USDL Modules

The split of modeling of functionality and behavior in three modules in USDL was
motivated primarily by the requirement of Modularity (cf. Section 8.3.1.3). Only
the Functional Module is mandatory in each USDL service description (there can
be no service without value-creating functionality). The other two modules are op-
tional, with the Technical Module applying mostly to automated services and the
Interaction Module being only relevant for complex, longer-running services.

Even though Functional, Technical and Interaction Modules are distinct in USDL,
all three form a close unity and together provide a description model for three impor-
tant aspects: what, where and how. They are modules where almost all the general
principles and modeling requirements of USDL are applied. This is due to the fact
that they cover the very core of service description, overlapping with many other
description languages. Accordingly, all three modules are concise and try not to
replicate existing standards, e.g., for describing technical service interfaces. They
do, however, fill gaps between capabilities of existing description languages and
identified description requirements.

In the attempt to find a language suitable for a wide range of services, the fact
that existing standards do not always provide the right means for the description
purposes of USDL has to be addressed with proper Conceptualization and Expres-
sive Power. For instance, a non-technical user should be able to define a simple
interaction protocol in USDL.

Overall, one of the goals of USDL is to enable provisioning, delivery and con-
sumption of services, which means the combination of all modules needs to provide
sufficient information for potential consumers to make their decision and understand
how to consume services (Comprehensibility, cf. Section 8.3.1.5).

Table 11.1 lists all requirements that were considered during modeling of func-
tional, technical and interaction aspects. The table also outlines how these require-

276 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

ments were implemented in the three modules. Please note that for the remainder of
this section requirements introduced in Section 8.3 are given without reference.

Table 11.1: USDL requirements addressed by the Functional, Technical and Inter-
action Module (cf. Chapter 8).

Requirement Requirement addressed how

Generic language requirements
Conceptualization Functional, Technical and Interaction modules are described on an ab-

stract level and where relevant allow for language specific artifacts, e.g.,
BPEL processes, to be integrated not subsumed.

Expressive Power Functional, Technical and Interaction modules are sufficiently expres-
sive to support description of manual and automated services in varying
degrees of detail.

Comprehensibility Support of different views of functional, technical and interaction as-
pects through black-box, gray-box, white/glass-box.

Modularity Functional Module does not require elements of Technical Module or
Interaction Module to be present.

Extensibility Technical Module and Interaction Module allow introduction of alter-
native interface and behavioral models.

Service concept formation requirements
Organizational Embed-
ding

Service capabilities can be traced from business to technical levels
(through cyclic associations on Functions).

Cognitive Sufficiency Functional, Technical and Interaction modules allow referencing of ex-
ternal (e.g., organizational) artifacts and support interconnecting arti-
facts to core service elements.

Service Information Hid-
ing

Functional Module descriptions can be limited to externally visible ca-
pabilities (black-box); Technical Module and Interaction Module — by
definition — only capture externally observable aspects.

Deployment Symmetry Different degrees of detail (black-box, gray-box, white-box) can be de-
veloped for Functional, Technical, and Interaction modules supporting
different stakeholder extensions.

Execution Resilience Functional Module supports definition of (conceptual) faults that can be
mapped to technical fault messages (Technical Module) and exception
handling procedures (Interaction Module).

The interconnection between USDL and existing standards, respectively the in-
terconnection of Services and Service Dependencies and Composition (technical
and behavioral aspects of interaction; cf. universe of discourse in Section 8.2), is
what mainly characterizes the structure of the modules. Driven by the requirement
of Conceptualization, functionality — as modeled in the Functional Module — is
understood in an abstract, conceptual way and thereby freed from any concerns of
access. This has the advantage that multiple technical means of access and behav-
ioral protocols can be defined for a single piece of functionality. Cognitive Suffi-
ciency across all three modules is instilled through cross-referencing. Specifically,
concepts in the Technical Module and Interaction Module reference concepts in the
Functional Module. Both modules describe concrete means of access to functional-

11 Service Functionality and Behavior 277

ity either directly or through references to external descriptions of such means, e.g.,
in other service artifacts.

With respect to the requirement for Organizational Embedding, the Function has
a cyclic association which supports traceability of service functions from the busi-
ness to technical levels. Interaction protocols can be defined at each level. Technical
interfaces can be defined for the technical level.

Allowing existing description standards, and their models, to be integrated into
USDL and interconnected with core functional concepts requires the three modules
to be flexible. Only a small number of concepts define the necessary structural skele-
ton for describing functional, technical and interaction aspects (Function, Interface
and InteractionProtocol, respectively), which is in accordance with the require-
ment of Conceptualization. The aforementioned integration of existing description
models is enabled by a few additional concepts included in the modules by default.
These concepts represent alternative concrete implementations of the skeleton. New
implementations can be introduced as well, using the extension mechanisms pro-
posed in Chapter 17. Addressing the requirement of Extensibility, an extension may
define a complete description model (for technical or behavioral aspects) or augment
the currently non-exhaustive integration capabilities to cover additional external de-
scription standards.

Separating Services and the two aspects of Service Dependencies and Compo-
sition (technical and behavioral, as previously mentioned) into three distinct, but
interconnected, modules presents one of the unique properties of USDL. Current
service description languages do not address this the same way, i.e., they do not
combine all three characteristics.1

Some languages, e.g., WSDL [7], separate functionality from concerns of access,
but then do not cover all aspects of the latter (e.g., only technical). Other languages
cover all three, but do not clearly separate. For example, OWL-S [19] separates
technical aspects into groundings, whereas functional and behavioral aspects are
captured together in process models.

Some of the other principal commonalities and differences with existing service
description models were outlined in Section 11.2.1. Among them is the use of ca-
pability modeling and functional decomposition as a combined approach for mod-
eling functional aspects in USDL. It was chosen to meet the requirement of Service
Information Hiding. In particular, this approach facilitates description of function-
ality on different degrees of visibility, exposing extensive functional descriptions
(glass/white-box) or hiding pieces of information as necessary.

This concludes the overview of the design of the three modules. For a full formal
specification please refer to [2], [4] and [3], respectively.

1 (1) combining functional, technical and interaction aspects; (2) addressed separately and modu-
lar; (3) interconnected to form a whole.

278 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

Fig. 11.1: Class diagram of the Functional Module.

11.3 The Functional Module

As outlined in previous sections, modeling of functionality is one of the funda-
mental components of a service description language. The Functional Module of
USDL defines a concise, yet powerful, meta-model that explicitly deals with the
value-creating functionality provided by a service, abstracting from technical im-
plementation. As USDL is intended to support a wide range of services, it provides
modelers with the flexibility to express different degrees of detail and complexity
(from black-box to white-box views), while being designed to remain comprehen-
sible. Following these principles, the Functional Module combines key concepts
of capability modeling and functional decomposition. The central construct is the
class Function, which is understood as representing a course of action that can be
decomposed into sub-functions. The following explains the model in detail. Figure
11.1 depicts the class diagram of the module.

11 Service Functionality and Behavior 279

11.3.1 Overview and Main Constructs

The course of action modeled as a Function is usually performed by a single actor,2

which is specified as the provider of the service (see Chapter 13). However, there
are also cases where more than one actor is involved, e.g., if the “leading” actor de-
cides to outsource parts of the activity to other parties. The course of action may be
defined by providing an informal textual description using the features names and
descriptions. Alternatively, modelers have the ability to recursively decompose a
function into sub-functions (feature subfunctions), i.e., lower-level building blocks
that together make up the higher-level function, but are not themselves exposed for
isolated external consumption. A third variant of describing functionality is to link
the USDL element to an external vocabulary, e.g., a different specification language,
classification system or ontology. This can be achieved through referencing an actual
formal specification of the function via feature implementationSpecifications, or
by specifying a Description of type concept as part of feature descriptions. De-
pending on the level of detail of textual description and decomposition, or of the
referenced vocabulary, a black-box, gray-box or white-box view of functionality is
produced.

Apart from describing and structuring the course of action, there are other aspects
that characterize a function. For example, a Function may feature one or more input
and output Parameters, as well as one or more Faults. The latter is used to capture
information about exceptions that may arise while the course of action is performed.
Both elements are named and may be typed via feature typeReference, essentially
being a pointer into an external type system. It was decided not to incorporate ele-
ments for the definition of types into USDL, because there exist sufficiently pow-
erful type definition languages (e.g., XML Schema [28] or ontology languages —
see Chapters 5 and 7). Adding such elements to USDL would have replicated these
efforts and potentially jeopardize the comprehensibility of the model.

Other features of Function comprise required pre-conditions and produced post-
conditions (effects), as well as references to context variables, i.e., variables held
in the context of a service and are affected as part of performing the function. This
completes the set of features considered by most service description languages to
be part of the specification of a service function. In USDL modelers have, on top of
that, the possibility to specify resources involved in the course of action defined as
a service function. Two categories are distinguished: resources that are used for per-
forming the function (utilizedResources), e.g., tools or organizational roles, and
resources that are manipulated in that process (affectedResources), e.g., business
objects (such bank accounts).

The concepts of capability modeling (cf. Section 11.2.1) are applied at the con-
nection point between the Functional and Service Module. Namely, a Service is
required to provide one or more functions, which in this context are defined to be
the capabilities offered by the service. The notion of capability carries additional
semantics that go beyond the general definition of function. In particular, it means

2 The term agent is used in USDL, cf. Chapter 13.

280 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

that the actors performing the course of action are not only able to do so, but they
are also willing to accept requests and establish an agreement for this to take place.
Accordingly, when using a function as a capability, the course of action in that func-
tion is understood as the process of value creation3 (as viewed from the providing
side).

Capabilities are the externally-consumable portions of functionality. This means
they can be made accessible through technical interfaces, a fact that is captured in
the model by feature externalInterfaces. This feature may reference a number of
Interface objects in the Technical Module, each of them describing an interface
through which the capability can be requested/invoked. The exact part of the in-
terface responsible for providing access is identified in the Technical Module by
referencing back to the capability or its sub-functions (cf. Section 11.4). The idea
is that externalInterfaces is only used with capabilities, i.e., a sub-function cannot
reference a technical interface object. This is due to the fact that a whole techni-
cal interface is used to implement a capability, and hence logically belongs to the
top-level function.

As capabilities are defined in the scope of a Service object, the default case is
that all capabilities are made available upon contracting the service. Alternatively,
a subset of capabilities may be selected and a USDL service description is derived
specifically for a particular consumer contract. In order for a provider to indicate
what the valid subsets are, s/he can use the option concept of USDL and define a
FunctionalOption that references the respective Function objects.

11.3.2 Illustrative Example

The object diagram in Figure 11.2 shows an example of how some of the elements
of the Functional Module are used to describe service functionality. It refers back
to the example service introduced in Section 8.7, which is an automated service
used by clients to manage shipment processes provided by an airline. One of the
functions that is offered as a capability lets clients initiate the shipment of goods
by booking certain capacities on a specific flight (function F1, “Request Booking”).
They send a request for booking, in this case assumed to be corresponding to a type
defined by a fictitious IATA4 specification. The request furthermore has to include
a client-specific X.509 certificate containing a client key, which was issued as part
of an initial registration step prior to using the service. The registration process also
creates a client account, and both items (account and client key) are necessary pre-
conditions (subsumed in C1) for calling this particular function through the offered
WSDL interface (interface I1).

3 Technical services may offer functionality that is only loosely connected to the value proposition
of a service, or even completely disconnected from it. For instance, deprecated functions may still
be present, but new consumers may be discouraged from using them. It is recommended to simply
ignore such functionality in USDL, i.e., to not provide model elements for them.
4 International Air Transport Association

11 Service Functionality and Behavior 281

Fig. 11.2: Object diagram depicting functional elements of example service 2PL
Airline Manager.

The function itself is realized by two component functions (F2 and F3). The
first one takes the client certificate and uses it to authenticate the client. It further-
more looks up the client’s account profile and extracts additional parameters from it.
These parameters are then passed to the second function, which performs the actual
booking according to the information in the booking request and the received param-
eters. If the request contains no errors and there is enough capacity on the selected
flight, a booking is made and a booking confirmation is returned. Both functions
have a precondition (C2 and C3, only indicated in Figure 11.2) that is identical to
the precondition of their “parent” (F1).

In this example one of the core concepts of USDL, which also constitutes a lim-
itation, can be observed. It concerns how USDL objects, i.e., class instances, are
understood and how their scope of existence and visibility is defined. For example,
take the first sub-function of “Request Booking,” which is “Authenticate User and
Lookup User Profile.” One could easily imagine that exactly the same function is
used in other higher-level functions, e.g., authentication is also required for “Change
Booking.” Maybe it behaves slightly different, because of the changed context (re-
quest vs. change), but this could be captured in the implementation. When mapping
this to USDL, however, there would be two different Function objects describing
what in reality is one and the same function. The same applies to other elements of
USDL, including Parameter and Fault, as seen, for example, with the two objects
called “User Parameters” in Figure 11.2 (P5 and P6).

282 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

The main reason for this is to be found in the notion of description, which in
USDL is clearly distinguished from the concept of representation. Most USDL
objects describe entities (e.g., Functions), they are not understood as 1:1 model
representations (with a few notable exceptions5). In a sense, they can be seen as
views onto real-world entities — and possible model representations of these. To
illustrate this, consider a case where the airline manages its business and IT oper-
ations through an enterprise architecture framework (e.g., TOGAF [14], Zachman
Framework [31]).6 As part of these activities the airline created a capability map
showing all functions performed within the organization, including the externally-
consumable functions (the capabilities), and their relationships. In this map there
exists exactly one record with name “Authenticate User and Lookup User Profile.”
It has a unique identifier and represents the intangible code routine performed by a
computer system, which is used as a building block for many higher-level functions.
The two (or more) USDL Function objects (in a single service description) created
to describe the code routine constitute two separate views onto this routine and its
record in the capability map. Each view exists locally within the scope of its parent
function and therefore is not visible to objects outside this scope.

Even though this definition of object scope introduces modeling redundancies in
the form of independent model objects, there is still the possibility to capture the
information that several objects actually describe one and the same entity. This is
achieved in this case by linking both views (Function objects) to the record held
in the capability map. For this purpose a Description object of type “concept” is
added to each Function object (using feature descriptions). The description refer-
ences the unique identifier of the record in the map, which thereby enables viewers
of the USDL document to infer that both Function objects refer to the same entity.
In fact, using such “concept links” is a generic method to align elements of USDL
service descriptions with artifacts capturing organizational models (cf. Organiza-
tional Embedding, Section 8.3.2.1).

There is another effect of this limitation to the Functional Module. Function
objects that are sub-functions of another Function object cannot be referenced as
capabilities. The reason is that, because they only exist in the scope of their parent
function, they are not visible to a Service object. In case a sub-function describes a
function that is actually consumable by itself, a new top-level Function object has
to be defined and can then be referenced as a capability (by a service or a functional
option).

11.4 The Technical Module

The modeling of technical aspects in the Technical Module is inspired by what was
outlined in Section 11.2.1 as the two main styles of describing technical interfaces.

5 In fact, all major core elements, e.g., Service, Agent, or Resource, are modeled in a represen-
tative manner, i.e., defined once and then referenced.
6 For a comprehensive overview on Enterprise Architecture see [18].

11 Service Functionality and Behavior 283

On the one hand, there are those service description languages that originated from
distributed systems computing and promote a style centered around the notion of
methods (operations) with inputs and outputs. On the other hand, Web-based APIs
of recent years follow a style centered around the notion of resources (as in REST).
In order to be compatible with both and future styles, the Technical Module intro-
duces an extensible model built around the abstract class Interface. The intention
is that, per style of interface description, one concrete class implementing Interface
is introduced. Surveying all available interface technologies is not an immediate
task of USDL, and it is moreover impossible to foresee every new style of interface
possibly being developed in future. Therefore, the Technical Module comes with
only two concrete classes. In particular, there is one class for interfaces based on
the concept of operations and one class for interfaces based on the concept of re-
sources. Other interface classes may be introduced through extensions to USDL —
see Chapter 17.

11.4.1 Overview and Main Constructs

Figure 11.3 depicts the class diagram of the Technical Module. Note that the model
refrains from capturing any sort of interface structure, because, more than any other
aspect of services, technical interfaces are well covered by specialized, best-of-class
description languages. These languages are connected to the technologies employed
for service implementation, and over the years many such technologies have been
developed. Most service providers have their technology and language of choice (in-
cluding tool suite), and have produced many interface descriptions. Replicating the
information stored in these artifacts would introduce unnecessary issues of keeping
USDL synchronized with them. Hence the chosen approach omits interface struc-
ture, e.g., which operation an input parameter belongs to. The Technical Module
captures only information that is of interest to parties forming a decision about a
service (in order to make USDL self sufficient for this purpose), and information
that connects interface elements with concepts in other USDL modules, e.g., func-
tional concepts.

With the decision not to replicate interface description languages, the main pur-
pose of the Technical Module is the integration of different description artifacts.
In line with the idea of Semantic Web Services (cf. Chapter 7, [27]), it “anno-
tates” elements defined in interface descriptions with elements of USDL, espe-
cially those elements describing conceptual functionality which are exposed by
the interface in question. Thus, the two concrete interface classes of the Techni-
cal Module mostly perform the function of a container for “interface element” ob-
jects (e.g., objects of classes OperationBasedInterfaceElement and Operation-
BasedInterfaceElement). These objects essentially are connectors in the form of
a typed double pointer. Firstly, they reference a particular element in an external
interface description, e.g., an operation or parameter definition. The typing of the
connector ensures that it is clear what kind of interface element is referenced. A link

284 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

Fig. 11.3: Class diagram of the Technical Module.

to the actual interface description artifact (e.g., a WSDL) that should contain such
definitions is provided through implementationSpecifications. Secondly, connec-
tors reference a USDL object implementing the interface FunctionalElementRef
(defined in the Foundation of USDL, cf. Chapter 13). In the current version of
USDL [2], Function, Parameter and Fault implement this interface.

Aside from connecting interfaces with conceptual functionality, the Technical
Module also captures information about the technologies used for communicating
with the service, e.g., transport and messaging protocols.7 Similar to the concept
of bindings in a WDSL interface, there may be several alternative sets of co-acting
protocols. These are called AccessProfiles in USDL.

7 In the context of the Technical Module, the word protocol refers to such communication proto-
cols. These are distinct from the interaction protocols or business protocols covered in the Interac-
tion Module.

11 Service Functionality and Behavior 285

Fig. 11.4: Object diagram depicting technical elements of example service 2PL Air-
line Manager.

Overall, the Technical Module provides a lot of flexibility. For instance, it allows
to specify nothing but a single link to a description artifact, e.g., WSDL file. In
such a minimalist case, however, the annotations linking technical with conceptual
elements would be missing. On the other hand, it can accommodate new interface
styles through extensions. Note that an extension may provide a complete interface
description language in its own right, meaning it is not necessarily bound to the
design decision made for the Technical Module, i.e., to reference and not (re-)model
a language. Refer to Chapter 17 for more information about extension mechanisms
in USDL.

11.4.2 Illustrative Example

The object diagram in Figure 11.4 depicts an excerpt of a possible interface descrip-
tion for the 2PL Airline Manager service (see Section 8.7). As indicated by feature
implementationTypeID on the operation-based interface object (I1), it is a WSDL
1.1 interface that provides its WSDL file at the URL given in the artifact object under
implementationSpecifications (A1). The figure shows one access profile group-
ing two protocols, HTTP and SOAP, which means there is a “SOAP over HTTP”
binding in the WSDL interface. In addition, four interface element objects are listed,
one WSDL operation (“requestBooking,” IE1), two WSDL messages of type Input-
Parameter (IE2 and IE3), and one WSDL message of type OutputParameter

286 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

(IE4). They reference the function “Request Booking” (F1, see Figure 11.2) and
its three parameters (two inputs, P1 and P2, and one output, P3) via feature ex-
posedFunctionalElements, respectively. This suggests that the WSDL operation
and the three WSDL messages comprise a number of elements that provide access
to the function.

Reflecting on the design of the Technical Module, it should be pointed out that it
is not a novel idea to annotate interfaces with references to conceptual descriptions
(of the functionality they actually expose). Other languages such SAWSDL [10] or
OWL-S [19] proposed this before. However, what is new in USDL is the aim to
provide an umbrella for all kinds of technical interface descriptions and, more im-
portant, for all different styles of structuring interfaces (and services). Approaches in
the realm of Semantic Web Services, due to their heritage, only cover the operation-
based interface style. On the other hand, formal descriptions of services built ac-
cording to the principles of REST are still in their infancy (e.g., WADL [15]) and
have yet to embrace conceptual modeling of functionality. In fact, the community
promoting REST encourages to employ a lightweight approach towards services,
including their description (see [25]). Hence, it is doubtful whether REST technolo-
gies will ever be natively extended with semantic descriptions. With USDL there
now exists one possibility for a non-intrusive link between the two.

11.5 The Interaction Module

The Interaction Module captures behavioral aspects of services that govern the in-
teraction protocols (also called behavioral interfaces, business protocols, or public
view on a process) to be followed by the different parties engaged in value co-
creation. Accordingly, the central concept of the module is the class Interaction-
Protocol, which groups the set of mandatory and optional interactions taking place
between the parties. This section introduces the module.

Modeling of behavioral aspect is greatly influenced by the underlying question to
what extent USDL should allow the modeling of flow structures and which style of
modeling is most appropriate. As explained in Section 11.2, there exist two major,
fundamental styles for modeling the structure of processes: hierarchic block struc-
tures and directed graphs. Adding to this question is the fact that, as with technical
interfaces, describing the externally observable behavior of a service has received
considerable attention. Thus, a number of description/modeling languages are avail-
able and actively used. In consequence, the principles outlined for the Technical
Module also apply here: existing languages and description artifacts should not need
to be replaced, but should be augmented with additional information linking them
to other elements of the service. This caters in particular for scenarios where ex-
isting methods for service/system description are used. Providing the augmented
information for service interaction protocols is the main purpose of the Interaction
Module.

11 Service Functionality and Behavior 287

Fig. 11.5: Class diagram of the Interaction Module.

11.5.1 Overview and Main Constructs

Figure 11.5 depicts the class diagram of the Interaction Module, which employs
a basic version of the block-structured approach: only sequences of (possibly op-
tional) activities are supported. This approach was chosen for reasons of simplicity
and traceability, with the goal of enabling non-technical users to model the exter-
nally observable behavior of services where no USDL-external model exists. Sim-
ilar modeling approaches can be found in the literature [5, 29], some of which
have been shown to be comprehensible and usable by non-technical users. These
are mostly manual services with no technical footprint, or automated services with
simple interaction protocols. They often have a textual description of how customers
should interact with them, and therefore would need such a description, in order to
be monitored and tracked, e.g., by a service marketplace.

According to the design decisions made, two types of classes capturing in-
teraction protocols are introduced. They both extending a common super-type
InteractionProtocol, which essentially represents a nameless container. The class

288 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

SimpleInteractionProtocol is used to define a single sequence of interactions, with
the order of interactions being determined by the order in which they are listed in
feature interactions. An Interaction is the basic building block of interaction proto-
cols. It models an act of communication between the consumer (user) of the service
and one or more other parties. These parties must be roles defined in the context
of the service (feature involvedRoles), and an interaction is by default directed to-
wards them. It may also run in the reverse direction, i.e., from a role towards the
customer, or be skipped entirely (indicated by features and reverse and optional,
respectively). The main sequence of interaction may be preceded by a second se-
quence that is situated during the time of service matchmaking and offering (feature
preDeliveryInteractions).

In case of long-running services it may be desirable to split the overall sequence
of interactions into groups marking the major phases of service delivery. Breaking
down service execution into a manageable number of phases may make it easier
for consumers to track the progress and understand what achievements have already
been made, e.g., during the application for a visa. The class ComplexInteraction-
Protocol is used to define such protocols as a set of phases. The class Phase holds
a sequence of interactions and may yield one or more milestones (feature post-
conditions). A Milestone, in turn, is defined as the (formal or informal) description
of state of objects that are affected by the service. It thus describes achievements,
and phases may require certain milestones to be reached before they can start (fea-
ture preconditions). At this point the model deviates slightly from the simple path,
as this construct allows to define an arbitrary order among phases (which could be
translated into a directed graph).

Just like the other two modules that are presented in this chapter, the Interaction
Module leaves room for flexibility. The only mandatory requirement is that modelers
have to indicate which capabilities of the service are being rendered when running
through a protocol (feature exposedCapabilities). This constitutes the main link
to the Functional Module. Fine-grained links may be provided on the level of in-
teractions by referencing one or more (“sub-”)functions that are triggered after an
interaction successfully took place (triggeredFunctions). Modelers with existing
complex interaction protocols have the possibility to attach their protocol defini-
tion(s) in a formalism of their choice (feature implementationSpecifications on
abstract class InteractionProtocol). They may even have an abstraction of these
protocol(s) mapped to the model in USDL, which would allow them to annotate a
protocol with references to conceptual functionality and service participants. How-
ever, unlike “interface element” objects in the Technical Module, Interaction ob-
jects do not refer to an external artifact by default. In order to establish the link to
a specific element in a behavioural interface description, a corresponding Descrip-
tion object has to be added to feature names. This object has to specify the unique
name of the element in the external description artifact and has to have its scope set
to the unique identifier of a namespace in that artifact.

11 Service Functionality and Behavior 289

Fig. 11.6: Object diagram depicting interaction elements of example service Freight
Forwarding.

11.5.2 Illustrative Example

The object diagram in Figure 11.6 illustrates an example of an interaction proto-
col. It belongs to the USDL description of example service “Freight Forwarding”
provided by the 3PL (see Section 8.7). Contrary to service 2PL Airline Manager
which was used to explain the other two modules, this service is a manual service.
There is no technical interface and no defined interaction protocol. Even so, provid-
ing a freight forwarding service actually comprises a substantial number of inter-
actions between the consumer (shipper, aka. cargo owner) and the provider (freight
forwarder). Furthermore, the overall time that it takes to export and/or import, the
process managed by the forwarder, may range from a few days to several weeks,
meaning this service can be considered long-running.

In making the effort of describing the service in USDL, the 3PL decides to cap-
ture the interaction protocol that shippers should follow. For illustration purposes
please refer to Figure 11.7, which presents an alternative model of the interaction
protocol in BPMN notation (cf. [24]). The 3PL creates a ComplexInteractionPro-
tocol object (IP1) that consists of three phases. The first phase “Order Entry” (PH1)
takes place before the actual service is provided and is initiated by the shipper upon
sending of a forwarding order (IN1). Being a pre-delivery phase, it may end with the
order being rejected (not shown in Figure 11.6), whereupon no service is delivered.
On the other hand, if the order is accepted, a confirmation is returned to the shipper

290 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

Fig. 11.7: BPMN diagram depicting the interaction protocol of example service
Freight Forwarding.

(optional and reverse interaction IN2) and the phase concludes with freight forward-
ing capabilities being rendered. In particular, the forwarder commences planning
activities and organization of pre-carriage (pick-up of the goods and transport to an
export facility, e.g., port), which is modeled as (sub-)function F2 and triggered by
IN2.

The second phase (PH2) covers booking of the main carrier and executing pre-
carriage. It starts with the arrival of a number of documents that the shipper has to
provide (IN3), e.g., invoice, packing list, or certificate of origin. These documents
are then checked by the 3PL for completeness and correctness (triggered function
F3) (and some will later be forwarded to the carriers). Booking of the main carrier
(e.g., airline) is performed as part of function F2 and a booking confirmation is
returned to the shipper once booking was successful (IN4). The shipper then sends
final, binding shipping instructions (IN5). Alternatively, it may update or confirm
instructions sent earlier (e.g., in IN1 or IN3). With the final instructions received, the
3PL is now able to orchestrate the main export steps (function F4 triggered by IN5).
The first interaction of this main phase (PH3) occurs when the cargo has arrived
at the export handling facility and the 3PL receives a cargo receipt. It forwards this
receipt to the shipper (IN6). Before creating and sending the draft house bill of
lading (ocean transport), or in this case air waybill (air transport), the 3PL performs
another round of checks. If anything has changed with the shipment (e.g., different
flight), it sends a notification to the shipper (optional interaction IN7). Assuming
there is no intervention (not shown here), the shipper receives the draft air waybill
indicating that the cargo is about to be loaded and ready to go on its main journey
(IN8). Some time thereafter the 3PL sends the the final air waybill (as received
by the airline) together with a few other documents (e.g., dispatch note and export
confirmation) to the shipper (IN9). The export is finished at this point. Please note
that import and invoicing is not shown here for brevity.

11.6 Conclusion

This chapter has presented the USDL constructs for modeling the functional, tech-
nical, and behavioral aspects of services. These are essential for facilitating an ap-

11 Service Functionality and Behavior 291

propriate communication between service providers, consumers, and intermediaries
for the proper provisioning and consumption of services, and are subject to various
existing standards which form the core of many existing platforms for service-based
systems. USDL introduces three separate modules for this, which define basic mod-
eling constructs and foster the re-use and integration of existing as well as upcom-
ing standards, therewith maintaining the foundation principles of conceptualization,
flexibility and extensibility of USDL.

In this chapter the relevance of functional, technical, and behavioral modeling as
well as the applied design principles have been outlined. The three USDL Modules
have been presented in detail along with illustrative examples. The first aspect cov-
ered here is concerned with functional modeling, i.e., with describing what a service
does. In USDL, this is captured in the Functional Module, which defines generic
constructs for describing the abstract functionality in terms of the functions that a
service provides, following previous works on capability modeling. The second as-
pect is concerned with modeling the technical interfaces of services, which describes
how to technically access and consume services. For this, the Technical Module of
USDL defines the notion of an abstract interface, which can be connected to exist-
ing as well as upcoming interface description standards. This provides a structured
means to explicitly connect the technical accessibility with the abstract functionality
while remaining extensible. The third aspect addresses behavioral modeling, i.e., the
externally visible behavior of a service that needs to be known in order to properly
consume the provided functionality. Behavioral protocols are especially relevant for
services with more complex interaction patterns. For this, the Interaction Module of
USDL provides basic constructs for behavior modeling that can be extended with
more expressive behavioral languages if desirable.

In summary, USDL provides an integrated meta-model for functional, technical,
and behavioral aspects of services, which in turn constitute the core of technology
platforms for service-based systems. In accordance with general design principles
of USDL, the respective modules define a skeleton of basic constructs in a generic
manner and foresee the re-use and integration of existing as well as upcoming stan-
dards. As outlined in the illustrative examples, the intended usage of the presented
USDL modules is to extend the core skeleton with the specific notions and stan-
dard languages that are relevant for a particular application scenario. This enables a
tailored description that only uses the actually needed technology stack while pro-
viding a holistic view on the services by associating external artifacts in this stack
with core USDL constructs.

References

1. A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek. Web Service Choreography Interface
(WSCI) 1.0. Note 8 August 2002, W3C, 2002. Online at: www.w3.org/TR/wsci.

2. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service

http://www.w3.org/TR/wsci

292 Uwe Kylau, Michael Stollberg, Ingo Weber, and Alistair Barros

Description Language (USDL) — Functional Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

3. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Interaction Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

4. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Technical Module. Technical Report Version 3.0, Milestone
M5, SAP Research, May 2011. Available at www.internet-of-services.com.

5. J. Becker, D. Pfeiffer, and M. Räckers. PICTURE - a new approach for domain-specific
process modelling. In CAiSE’07 Forum, Proceedings of the CAiSE’07 Forum at the 19th In-
ternational Conference on Advanced Information Systems Engineering, Trondheim, Norway,
11-15 June 2007, 2007.

6. B. Benatallah, F. Casati, and F. Toumani. Web Service Conversation Modeling, A Cornerstone
for E-Business Automation. IEEE Internet Computing, 8(1):46–54, 2004.

7. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 1: Core Language. Recommendation 26 June 2007, W3C,
2007. Online at: www.w3.org/TR/wsdl20.

8. T. DeMarco. Structured Analysis and System Specification. Prentice Hall, 1979.
9. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall Inter-

national, 2005.
10. D. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema (SAWSDL).

W3C Recommendation August 2007, W3C, August 2007. Online at: http://www.w3.
org/TR/sawsdl/.

11. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domigue.
Enabling Semantic Web Services. The Web Service Modeling Ontology. Springer, Berlin,
Heidelberg, 2006.

12. R. Ferrario and N. Guarino. Towards an Ontological Foundation for Services Science. In Fu-
ture Internet - FIS 2008, First Future Internet Symposium, FIS 2008, Vienna, Austria, Septem-
ber 29-30, 2008, Revised Selected Papers, pp. 152-169, 2008.

13. J. D. Gannon, J. M. Purtilo, and M. V. Zelkowitz. Software Specification: A Comparison of
Formal Methods. Ablex Publishing Co., 1994.

14. T. O. Group. TOGAFTMVersion 9 Enterprise Edition. Van Haren Publishing, February 2009.
15. M. Hadley. Web Application Description Language. W3C Member Submission 31 August

2009, W3C, 2009. Online at: http://www.w3.org/Submission/wadl/.
16. U. Homann. A Business-Oriented Foundation for Service Orientation. MSDN, Microsoft

Corporation, 2006.
17. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto (eds.). Web

Services Choreography Description Language Version 1.0. Candidate Recommendation 9
November 2005, W3C, 2005. Online at: http://www.w3.org/TR/ws-cdl-10/.

18. M. e. a. Lankhorst. Enterprise Architecture at Work. Springer, Berlin, Heidelberg, 2009.
19. D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22

November 2004, W3C, 2004. Online at: http://www.w3.org/Submission/OWL-S/.
20. Microsoft. Open Data Protocol (OData) Specification, Version v20101230, 2010.
21. E. Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-Wesley

Professional, 2002.
22. P. Oaks, A. Hofstede, and D. Edmond. Capabilities: Describing What Services Can Do. In

Service-Oriented Computing - ICSOC 2003, First International Conference, Trento, Italy, De-
cember 15-18, 2003, Proceedings, pp. 1-16, 2003.

23. OASIS. Web Services Business Process Execution Language Version 2.0, Apr. 2007.
Online at: http://www.ibm.com/developerworks/webservices/library/
ws-bpel/.

24. OMG. Business Process Model and Notation, V1.1, 2008.

http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/wadl/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/OWL-S/
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.w3.org/TR/sawsdl/
http://www.ibm.com/developerworks/webservices/library/ws-bpel/

11 Service Functionality and Behavior 293

25. C. Pautasso, O. Zimmermann, and F. Leyman. RESTful Web Services vs. ‘Big’ Web Services:
Making the Right Architectural Decision. In In Proceedings of 17th International World Wide
Web Conference (WWW 2008), pages 805–814, April 2008.

26. M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase Web Service Discovery based
on Rich Functional Descriptions. In Proc. 4th European Semantic Web Conference (ESWC
2007), Innsbruck, Austria, 2007.

27. R. Studer, S. Grimm, and A. Abecker. Semantic Web Services. Concepts, Technologies, and
Applications. Springer, 2007.

28. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1: Structures
Second Edition. W3C Recommendation 28 October 2004, W3C, October 2004. Online at:
http://www.w3.org/TR/xmlschema-1/.

29. I. Weber, H. young Paik, B. Benatallah, C. Vorwerk, Z. Gong, L. Zheng, and S. Kim. Managing
long-tail processes using FormSys. In ICSOC’10: 8th International Conference on Service
Oriented Computing, Demo Track, San Francisco, CA, Dec. 2010.

30. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, 2005.

31. J. A. Zachman. The Zachman Framework for Enterprise ArchitectureTM: A Primer for Enter-
prise Engineering and Manufacturing.

http://www.w3.org/TR/xmlschema-1/

Chapter 12

Service Levels, Security, and Trust

Florian Marienfeld, Edzard Höfig, Michele Bezzi, Matthias Flügge, Jonas Pattberg,
Gabriel Serme, Achim D. Brucker, Philip Robinson, Stephen Dawson, and
Wolfgang Theilmann

Abstract This chapter covers the scientific background for the Service Level Mod-
ule of the Unified Service Description Language (USDL). In addition to general
service level concepts, we expand on two specific service level fields: security and
trust. For that end we first review the state of the art in service level modeling, then
we explain the design of the Service Level Module and position it among the rest
of USDL. For security, two possible perspectives, a high level business view and
a low level engineering approach, are introduced. With regards to trust, USDL is
suitable to specify how a service can be rated by its consumers and to ensure that
ratings of competing services are comparable, and hence to determine trustworthi-
ness. Additionally, we present a description of non-security-related elements that
can be exploited for trust estimation.

Florian Marienfeld, Edzard Höfig, Matthias Flügge, Jonas Pattberg
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany,
e-mail: firstname.lastname@fokus.fraunhofer.de

Michele Bezzi, Gabriel Serme
SAP Research Sophia-Antipolis, 805, Avenue du Dr. Maurice Donat, 06250 Mougins, France,
e-mail: michele.bezzi@sap.com, e-mail: gabriel.serme@sap.com

Achim D. Brucker, Wolfgang Theilmann
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: achim.brucker@sap.com, e-mail: wolfgang.theilmann@sap.com

Philip Robinson, Stephen Dawson
SAP Research Belfast, Concourse, Queen’s Road, Queen’s Island, Titanic Quarter, BT3 9DT
Belfast, United Kingdom,
e-mail: philip.robinson@sap.com, e-mail: stephen.dawson@sap.com

295 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York2,

mailto:firstname.lastname@fokus.fraunhofer.de
mailto:michele.bezzi@sap.com
mailto:gabriel.serme@sap.com
mailto:achim.brucker@sap.com
mailto:wolfgang.theilmann@sap.com
mailto:philip.robinson@sap.com
mailto:stephen.dawson@sap.com

296 Marienfeld et al.

12.1 Introduction

The USDL Service Level Module captures concepts concerned with guarantees re-
garding quality of service operation, which are claimed/requested by different actors
involved in the provisioning, delivery and consumption of a service. Given the role
of service levels as a vital component of any commercial transaction, it is striking to
see how poorly service levels are supported in commercial offerings and also to see
the lack of a systematic approach to these in the research arena. Most approaches
are missing formal semantics, leave fine-grained content unspecified, lack flexibility
and are tuned to specific scenarios and domains. Based on the research results of the
SLA@SOI project [21], the USDL effort tries to avoid these shortcomings.

We advocate that a comprehensive, applicable and executable service level meta-
model such as the one we contribute is crucial to realize the vision of the Internet
of Services (IoS), for it represents a key enabler of effective and efficient service
discovery, trade and consumption. It basically gives both, service providers and
customers dependability on the quality levels a service comes with and the related
obligations of the involved stakeholders.

In our view, two special service level topics deserve to be discussed in more
detail in this chapter: security related concepts are actually realized as part of the
service level module; trust related elements in contrast, are technically located in
other modules, but are conceptually most closely related to SLA. Therefore, they
are covered here, too.

There are a number of security focused service description languages, which
express the security properties of services and service message exchanges in a stan-
dardized way. However, they are often not sufficient to address new scenarios where
security is becoming a key aspect in business decisions. The USDL security ele-
ments we present in this part of the chapter are a description of security and trust
aspects of a service, making the bridge between the IT level and the business level.

As for other USDL modules, the security part provides a minimal set of elements
to allow for simple and fast description of security features of services. More tech-
nical descriptions can be integrated in the USDL, using appropriate references to
standard security description languages.

The question of trust is closely related to security, yet subtly different. When
concerned with security, one assumes that chosen business partners, i.e., providers,
are both competent and benevolent and considers threats emanating from third par-
ties. With many principals unknown to each other, however, this assumption does
not hold, and some prediction has to be made, regarding the reliability of potential
partners. The means to perform this calculation and to track and communicate trust
information are quite different from those that serve to secure operation against in-
terference from external entities. Nevertheless, trust has a dependency on security,
since a smart choice about the provider is worthless if no appropriate security mech-
anisms are in place. In the traditional world of business services a human user can
partly assess the trustworthiness relying on cues like brand of the provider, “word of
mouth” recommendations [7] and perceived quality of the website [5]. This does not
scale to the level of an Internet of Services, where services are automatically com-

12 Service Levels, Security, and Trust 297

posed and delivered with limited human intervention, and explicit trust and security
properties are becoming a key for a broad adoption of service technology [17].

The structure of this chapter is the following: In the subsequent Section 12.2 we
review related approaches. In Section 12.3 we position the Service Level Module
among the other modules and layout its content. Section 12.4 introduces the USDL
representation of security properties. Trust awareness is covered in Section 12.5.
Conclusions are drawn in the Section 12.6.

12.2 State of the Art

The state of the art in SLA specification and management motivates the features of
USDL. USDL is a synthesis and generalization of existing specifications, capturing
the essential elements of an SLA specification. In doing so it satisfies key require-
ments for SLA management and enables new business-oriented aspects of service
management (e.g., security and privacy) to be encoded in SLA documents. SLA
Management includes the specification of machine and human readable documents,
the configuration of systems based on the content of these documents and the mon-
itoring of parameters expressed in these documents in order to achieve compliance.
Failure to achieve SLA compliance can lead to losses in efficiency, performance,
reputation and business opportunities. This section discusses the state of the art
in SLA specification, monitoring, negotiation and enforcement as well as security
models. A comprehensive solution to SLA management addresses each of these
areas. For each area of SLA management the requirements and challenges are de-
scribed, such that existing approaches can be compared to the SLA principles of the
USDL Service Level Module.

12.2.1 SLA Specification

SLA specification can be viewed as both a process and a document. It is the process
of a service consumer initially declaring and agreeing to specific service require-
ments, when entering a contract with a service operator or provider. The consumer
hence specifies Service Level Objectives (SLOs), before or after the availability and
capability of services and service providers are known. In the case this is done be-
forehand, SLOs are used for service discovery. If SLOs are specified when the ser-
vice and provider are known, this is the process of initiating or requesting the pro-
visioning of a specific service on their behalf. From the provider’s perspective it is
the process of declaring their service capabilities and quality guarantees in a form of
advertisement. This is also known as a Service Level Agreement Template (SLAT),
and acts as the baseline for contractual agreement with customers, potentially in dif-
ferent classes. The specified documents all have the same minimal requirements for
structure and content:

298 Marienfeld et al.

• Definition of individuals, organizations and roles involved in the agreement. The
roles are typically consumer/customer and provider/operator, but can also include
a third-party broker, an intermediate actor in the SLA management process.

• Functional description of the service’s purpose and capabilities. In the case of a
technical, IT service, such as a Web service, the functional description refers to
the set of operations, methods and parameters. For example, the Web-Services
Description Language (WSDL) provides a standard specification for SOAP-
based Web services.

• Costs to the consumer for receiving the service. The units for costs are defined
by relating financial costs to utility functions of the resources consumed by the
service. For example costs can be defined per requests, per volume of storage
used, per user or on a fixed-term or unlimited basis.

• Guarantee or Quality of Service (QoS) terms define the non-functional properties
of the service. These properties include availability, performance, response time,
reliability and security.

• Compensation terms define what the consumer can rightfully demand from the
service provider in return, should the functional or guarantee terms not be ful-
filled.

The distinction between a SLA document and a configuration document for a
service infrastructure is becoming increasingly fuzzy. The contents of a SLA are
inevitably translated into concrete configuration directives that are used to guide the
provisioning of resources, deployment of software and tuning of settings to enable
effective operation of the service. Effective operation means that all functional and
non-functional terms in the SLA can be satisfied without exploding costs for the
provider. Providers need to keep their costs down so that they can offer an attractive
service deal to consumers without sacrificing their profit targets. Given that this
becomes a more complex problem for human operators to deal with manually and
rapidly, the following new requirements arise for SLA specifications in a world of
service management automation:

1. SLA specifications need to be both human and machine readable, given that
people need to define, exchange and agree terms, while algorithms are required
to parse, extract and analyze terms, and translate terms and analysis results to
configuration directives in an efficient and accurate manner.

2. Traceability to organizational Key Performance Indicators (KPIs) such as per-
formance, availability and cost.

3. All terms must be associated with concrete metrics that enable them to be mon-
itored and audited.

4. Sufficiently flexible for application in different service operation domains and
contexts.

5. Support for the entire SLA life cycle, including negotiation, provisioning, mon-
itoring and decommissioning.

There are various specification languages in existence, each with different mo-
tives but similar concepts. The Open Grid Forums’s WebService-Agreement [1] and

12 Service Levels, Security, and Trust 299

IBM’s Web Service Level Agreement (WSLA [12]) are the most well-known lan-
guages for expressing SLAs. WSLA is a comprehensive specification for describing
SLAs for Web services, providing a template for defining concrete metrics. WSLA
however does not support the entire life cycle of SLAs, as negotiation of terms is
not supported for flexibility. WS-Agreement superseded WSLA in order to address
these points. While WS-Agreement is very flexible, given its generality, and pro-
vides a comprehensive schema that enables human and machine interpretation, it
still requires more concrete metrics and explicit traceability to KPIs. Another point
to mention is that WSLA and WS-Agreement were developed for WSDL-type Web
services and hence do not have the semantics included for dealing with non-WSDL
services.

There are other specifications existing that are not tied to WSDL. SLAng [9] for
example is specified in the Object Management Group’s (OMG) Meta Object Facil-
ity (MOF) and, thus, has a degree of language independence with mappings to XML
and Human-Usable Textual Notation (HUTN). SLAng also places greater empha-
sis on semantics, providing formal notions of SLA compatibility, monitorability and
constrained service behaviour. It is, however, targeted at electronic services and pro-
vides only a limited set of domain-specific QoS constraints. Another language, viz.,
CC-Pi [2] is more generic, offering a theoretical framework for mapping SLAs to
service constraints. The CC-Pi model is, however, tightly-coupled to the mechanics
of negotiation, and does not address common constructs such as agreement party
details or service interfaces. The SLA* approach from SLA@SOI [8], in contrast,
is a complete abstract SLA syntax which has been designed to be independent of
underlying technologies. It is decoupled both from particular notions of service,
and from particular modes of expression, and can be extended to diverse scenarios
without sacrificing formality or semantics.

12.2.2 SLA Monitoring

The formal specification of SLAs enables monitoring the status and compliance
of services with the organizational KPIs of the parties involved. As stated in the
previous section, in order to monitor aspects of a service’s operation, it must be
possible to measure that aspect using concrete metrics. There are critical areas of
service and resource management that depend on this information and delivering
it to the right people and systems in a timely manner. These are discussed in the
following and are the set of standard activities defined for IT Service Management
(ITSM) in the Information Technology Infrastructure Library (ITIL).1

Capacity planning and management involves the allocation of resources in or-
der to avoid over-spending, wastage and under-provisioning. However, there is
still the over-arching objective of satisfying the obligations and guarantees stated
in SLAs. Resources include people, hardware, software licenses, software in-

1 http://www.itil-officialsite.com

http://www.itil-officialsite.com

300 Marienfeld et al.

stances and materials. SLA monitoring is the timely update of information about
resource capabilities, availabilities and performance during operation. In order
for services to be delivered efficiently in an on-demand manner, there is a need
for mixing historical, predictive and live information about resources for dynamic
replanning and provisioning of resources. In the case of people this includes the
assignment of tasks and access to resources through justifiable provisioning of
users and assignment of privileges.

Availability analysis and management is the set of activities done to maximize
the likelihood that resources will be available when required, as well as recov-
erable from unsafe or fault states. Availability is both an explicit and implicit
objective of SLA management. As an explicit objective the guarantees of avail-
ability and recovery are agreed in the SLA. As an implicit objective an analyst
or management system needs to monitor the resource to identify when associ-
ated services are required. This also has relations to capacity planning and man-
agement, as the sizing and number of resources will change the availability of
services.

Operations management is the coordination tasks and processes amongst re-
sources to ensure that the KPIs of an organization are met, along with the objec-
tives in the SLAs the organization has with customers and partners. SLA moni-
toring should provide feedback about the current load on different resources and
the criticality of service request to be handled. Operations management usually
includes optimization of handling service requests and assigning tasks based on
multiple objectives. These multiple objectives are derived from the set of ob-
jectives in multiple SLAs, such that conflicts and contentions will arise in an
environment that allows concurrent services and service users.

Incident management is the handling of inevitable failures and unexpected events
that arise during service operation. Capacity planning has to take incident man-
agement into account, as redundant resources and back-up resources usually need
to be deployed to for executing contingency plans. Incident management is also
related to availability analysis and management, as effective incident manage-
ment increases the likelihood that resources and services will be available even
if experiencing known and unexpected incidents. Operations management also
extends to incident management, as the coordination of resources during contin-
gency and recovery operations might be more critical than during normal opera-
tion. SLA monitoring is hence critical for identifying and characterizing incidents
and deviations from SLA obligations and guarantees, such that effective incident
response actions can be executed.

SLA monitoring is more than blanket monitoring of every possible operation,
property and behavior of resources, although this might be necessary to some ex-
tent. SLA monitoring has to be purposeful and driven by measurable indicators
derived from business objectives. Even if there is extensive monitoring of all re-
sources, a system of filtering and routing information to meaningful endpoints or
sinks is necessary. Failure to meet this requirements results in monitoring informa-
tion consumers being overwhelmed, the processing of irrelevant or redundant data,
and the introduction of unnecessary communications and processing bottlenecks.

12 Service Levels, Security, and Trust 301

Figure 12.1 shows a conceptual architecture for SLA monitoring for the purpose of
discussing the state of the art as opposed to proposing a blueprint.

Fig. 12.1: Conceptual architecture for SLA monitoring.

The typical components in a SLA monitoring solution are collections of probes or
sensors that gather localized resource information and publish it to a set of informa-
tion subscribers. The assignment of subscribers to channels that the probes publish
on is then based on the types of services, location of resources, connectivity and the
respective metrics associated with services. This assures that the collection and dis-
tribution of monitoring data is traceable to specific KPIs and operational contexts.
Higher-level probes subscribe to lower-level probes and hence act as data aggrega-
tors, filters and transformers, based on the information needs of the SLA manage-
ment system at the time of deployment. The needs for monitoring are determined
by analyzing the existing SLAs. Very low-level metrics such as CPU, memory and
network utilization and availability can be mapped directly to localized probes that
gather raw resource performance information. Higher-level metrics that described
collections of resources, functions (e.g., predictions and trends) require higher-level
probes to subscribe to lower level probes. These are referred to as level 1 probes in
Figure 12.1. The information required to configure monitors is extracted from SLA
specifications.

Monitored data can be persisted at each level in order to have different levels of
granularity for historical data. Determining when to capture, aggregate, archive and
delete data will differ from solution to solution. Furthermore, the selection of where
to persist data is dependent on the local storage capabilities of the respective mon-
itored resources, as well as the overall storage architecture and network topology.
Centralized persistence has the advantage of simplicity and faster queries, as data is
stored in one location. The disadvantage is the single point of failure that can cause
all historical data to be damaged or lost. The loss of historical data can be problem-
atic for optimizing the way in which SLAs are enforced and the availability of audit
data when payment is due or disputes arise.

302 Marienfeld et al.

12.2.3 SLA Negotiation and Enforcement

SLA negotiation is the process of a service provider and consumer reaching con-
sensus on the terms to be included in a SLA document. Negotiation is complete
when all parties agree to the terms. This process can be automated but is often done
as manual exchanges of proposals/tenders and offers. A generic protocol for nego-
tiation is known as the alternating offers-based protocol [24], which is shown in
Figure 12.2.

Fig. 12.2: Alternating offers-based protocol adapted from Venugopal, Chu and
Buyya [24].

The protocol begins with the consumer (or initiator) sending a request to the
provider or broker, who take the role of responder. The provider issues a proposal of
how they can satisfy the request. For example, the request might have stated “pro-
vide service X with a guarantee of less than 3 ms response time for 1000 concurrent
users.” The proposal would use the same functional specification and quality met-
rics although the provider might not be capable of exactly matching the request.
The provider might offer a proposal such as “Can provide service X with a guar-
antee of less than 3 ms response time if there are less than 750 concurrent users.”
The consumer can accept, reject or counter (i.e., update the request) the proposal,
to which the provider can do the same until a confirmed state is reached. The con-
firmed state can be either of acceptance or rejection. This plain protocol assumes
that both parties will adhere to the protocol and that the provider will typically have
counter offers. However, the style of negotiation varies based on the number of par-
ties involved and the set of options available. Three styles of SLA negotiation are as
follows:

12 Service Levels, Security, and Trust 303

• Boolean: there are no alternatives offered by providers. Consumers either accept
or reject a provider’s offer without requesting alternatives. This style of negoti-
ation is typically brokered, as the consumer considers the offerings of multiple
providers registered with the same broker. Consumers select providers that have
offers that best fit their requirements. The proposal is that of a single provider and
counters are alternative providers. It can be the case that the provider chooses to
maintain a very generic, one-size-fits-all policy for services to avoid any liability.
However such a style of negotiation is not attractive for critical services where
the consumers need to know what to explicitly expect from the provider.

• Template: in this case a provider has several options in the form of templates.
Examples of this are the Amazon EC2 services2 that offer T-shirt sizes of small,
medium, large and x-large, which all have predefined service guarantees and
technical specifications. This style has issues for over and under-provisioning,
as the capabilities of the provider might change over time. They might need to
dynamically update the specifications of their templates and offerings based on
their current and planned prediction.

• Scalar: the most complex style of negotiation is where fine-grained adjustments
are permitted on a dynamic basis. The provider does not counter with a suite
of templates but makes adjustments in their guarantees and obligations, which
then have an impact on how resources are sized and configured. Elastichosts3 are
a provider of infrastructure services similar to Amazon, but allow customers to
state the exact amount of capacity (memory, storage and CPU) they require.

Given that the style of negotiation varies from business domain to business do-
main, the Service Level Module must be sufficiently configurable to support any
of these styles. Enforcement of SLAs is the translation of the terms in the agree-
ment to concrete configuration directives. There are three possibilities that exist for
handling the translation of SLAs to directives, each having their advantages and
disadvantages for building a complete solution.

Fig. 12.3: Different approaches to SLA translation to configuration directives

2 http://aws.amazon.com/ec2
3 http://www.elastichosts.com

http://aws.amazon.com/ec2
http://www.elastichosts.com

304 Marienfeld et al.

The advantages and disadvantages of these different approaches are discussed
below, as it is important for any user of the Service Level Module to know which
approach should be used and the consequences of that selection.

1. Syntactic Refinement: In this case there are homogeneous modeling semantics
for SLA terms and configuration directives. It is only a case of adding more de-
tails (e.g., missing parameter values) to the specification without changing the
semantics or schema of the specification. Syntactic refinement is hence trans-
forming a SLA model S to a configuration S+. For example, S could be WSLA
or WS-Agreement specification with many null fields, where every S+ is more
information provided to those fields.

• Advantages: simpler process for moving through the SLA transformation
process as there are less processing and transformation logic involved. This
also implies higher scalability, easier rollback, consistency checks and sim-
ulation.

• Disadvantages: there is the initial agreement that all management compo-
nents use the same semantics. Secondly, some of the human readability
would have to be sacrificed in order to have a specification that is already
at the level of configuration directives without the ability to separate con-
cerns.

2. Transformation (Semantic Refinement): In this case there is no assumption
of homogeneous specification templates, such that the SLAs can be specified
in any language. In order to obtain configuration directives, the specification
would then have to be transformed into lower level semantics using a trans-
formation function. The transformation function must be provably correct for
deriving a specification with different syntactical properties. There is also need
to add annotations to the initial specification in order to supply sufficient infor-
mation for concrete configuration directives. In Figure 12.3 this is illustrated as
performing a transformation function X(.) on the specification S, such that X(S)
is produced, which could be a totally different format for specifying configura-
tion directives.

• Advantages: lower coupling and dependencies between components that
handle SLA specifications and configuration directives. Existing control and
management components do not have to be changed in order to configure
resources based on SLA specifications. There is also better support for hu-
man and machine readability, as S could be intended for humans and X(S) is
compiled for machines.

• Disadvantages: transformation can be quite complex and hence could in-
troduce errors that take a long time to debug; additional model annotations
would have to be introduced in order to perform this automatically.

3. Template Selection: In this case there are no assumptions of homogeneous
models or templates, but there is a logic implemented for mapping higher
level models to lower level deployable component templates, in such a way

12 Service Levels, Security, and Trust 305

that selected templates are understood as being conformant with a higher-level
model specification. Figure 12.3 illustrates this by showing the template selec-
tion S ← T , where the template T is selected given the specification S. The set
of templates are discrete and predefined.

• Advantages: even lower coupling and dependencies between models; se-
lection logic is relatively easy to encode and tolerates manual interaction.
Higher flexibility gained in how the SLA is specified. Templates can be made
to be platform independent, such that configuration directives can be further
compiled for different management systems.

• Disadvantages: carries the additional overhead of creating templates and
loses the dynamic property of the above methodologies.

This coverage of the state of the art in SLA management shows that there is still
a gap in the areas of SLA specifications that are flexible for multiple domains and
not restricted to IT-centric services. Secondly, there should not be an assumption of
what level of monitoring is going to be associated with the SLAs specified in the
language. Finally, the language needs to be sufficiently flexible and expressive to
support different forms of translation into configuration directives, without sacrific-
ing human-readability and machine processing that enable advanced analytics and
automation in service management.

12.3 The Service Level Module

12.3.1 Position within USDL

The Service Level Module is an integral part of USDL. The module ties together all
the functional and non-functional guarantees that are stated on top of a core service
description (as described in the Service Module, cf. Chapter 13). Furthermore, all
guarantees are clearly linked to its related (and probably obligated) stakeholder (as
expressed in the Participants Module, cf. Chapter 13). Last there is a strong semantic
linkage to the Legal Module (cf. Chapter 10). While the Legal Module describes the
constraints and aspects of licensing, the Service Level Module complements this
with the specific conditions that are to be guaranteed.

The Service Level Module directly responds to the main requirements for USDL.
It satisfies a clear Conceptualization (see Section 8.3.1.1) as it realizes the core
principles of guarantee, obligated party, affected service elements and negotiable
parameters on an abstract level. It comes with means for Extensibility (see Sec-
tion 8.3.1.4) that allows for incorporating arbitrary, domain specific type/term sys-
tems. It also supports Comprehensibility (see Section 8.3.1.5) as it allows descrip-
tion of service levels in human-readable, semi-structured, and fully structured ways.
Organizational Embedding (see Section 8.3.2.1) is achieved by the association to
participants. And last, it supports Deployment Symmetry (see Section 8.3.2.4) as

306 Marienfeld et al.

it allows mutual, symmetric obligation relationship between arbitrary roles in the
service value creation chain.

12.3.2 Construction Rationale

Service Level Agreements, as considered in the research community, specify all
the conditions under which services are to be delivered. In that sense the whole
specification of USDL can be considered as a language to describe SLAs.

However, within USDL several key perspectives have got high priority and like-
wise shall get high visibility. For this reason the actual Service Level Module is just
one module among others (such as pricing or legal).

The Service Level Module is intentionally kept completely generic, as it does
not specify how concrete service levels on concrete aspects (such as legal, pricing
or security) shall be specified. Instead, its main purpose is twofold. First, it shall
provide a proper glue between other USDL concepts. For example it specifies to
which elements of a function a certain service level shall apply and who is the re-
lated stakeholder. Second, it should allow for incorporation of arbitrary attribute and
expression languages. One particular attribute language is specified further below in
this chapter and deals with security aspects. Other languages could be integrated as
well, e.g., the UML profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE) or the full SLA model from SLA@SOI.

The Service Level Module intentionally does not specify any concrete attribute
type systems. This is done for three reasons. First, there is no commonly agreeable
type system that applies to all kinds of domains. Secondly, even some common core
for such a type system can easily grow to extensive size and therefore contradicts
our ambition to keep the Service Level Module as lean as possible. Third, there
are already established type systems for different domains, and we wanted to keep
the Service Level Module neutral and fully extensible towards these type systems.
However, for pragmatic reasons, the Service Level Module also comes with a base
extension (not part of the core USDL language) which provides common notions
for frequently used metrics such as reliability, security, location, time, performance,
and availability.

12.3.3 Module Overview

The main concepts of the module (see Figure 12.4) are the ServiceLevel (speci-
fying either a state or an action), the ServiceLevelExpression, and the Service-
LevelAttributes. Furthermore, the module contains important references to other
modules’ concepts such as the ObligatedParty (Participant Module), the Variable-
Declaration (Foundation Module), and the relatesTo reference (Foundation Mod-
ule).

12 Service Levels, Security, and Trust 307

Fig. 12.4: Overview of the Service Level Module.

The entry point to specify the service levels of a given service is realized via
ServiceLevelProfile. A set of service level specifications are combined into one
profile and are offered, negotiated, or agreed upon as a whole. Different profiles
can be used to specify different options of how service levels may be specified and
grouped (e.g., as gold, silver, bronze profile). A ServiceLevelProfile resembles the
concept of a Service Level Agreement Template as for example specified in WS-
Agreement.

A ServiceLevel specifies a single service level objective as it characterizes an
offered, negotiated or agreed service. ServiceLevels are defined by the parties par-
ticipating in service provisioning, delivery, and consumption and express assertions
that are claimed or expected to hold during these activities. Such assertions are al-
ways attributed to a single party, which is obligated to enforce the service level.
From the viewpoint of the party defining the ServiceLevel two cases are distin-
guished. Either the defining party obligates itself to ensure the ServiceLevel, i.e., it
claims that the assertion will hold, or the defining party expects the obligated party
to ensure the ServiceLevel, i.e., it requires the other party to enforce the assertion.
A ServiceLevel can be either a GuaranteedState (specifies a single state that
must be maintained within the lifetime of any service instance, to which the respec-
tive service level profile applies) or a GuaranteedAction (specifies a self-contained
activity that must be performed, if and only if during the lifetime of any service in-

308 Marienfeld et al.

stance to which the respective service level profile applies a specific precondition is
fulfilled).

A ServiceLevelExpression specifies an expression that is evaluated in the con-
text of a service level state or action. For this purpose it may reference a set of
ServiceLevelAttributes (constants, metrics or variable references) and define rela-
tionships between these attributes, e.g., Boolean or arithmetic operands. Typically,
it resolves to a Boolean value that indicates whether a GuaranteedState is met or
whether the precondition to a GuaranteedAction is fulfilled.

A ServiceLevelAttribute specifies a single attribute that is part of a service level
expression. Attributes can take various concrete forms, of which three (constant,
variable reference and metric) are defined in the core version of USDL. A Service-
LevelAttribute has a scope, i.e., it exists in reference to something to which it ap-
plies. By default, all attributes are defined in relation to the entire service (including
its overall context). Alternatively, a scope that covers only parts may be specified.
A Constant specifies a single ServiceLevelAttribute which is constant during ser-
vice operation, i.e., during the lifetime of any service instance. A Metric specifies a
single ServiceLevelAttribute which refers to the observation (measure) of a prop-
erty of the service at service runtime. It may change over the lifetime of a service
instance. Last, a VariableReference allows for referencing a variable declared in
the global context of a service or service bundle. VariableReferences are used, for
instance, as part of service level expressions.

In Listing 12.1 (cf. appendix of this chapter) we provide a more detailed example
of how the Service Level Module can be used. It is related to a 3PL logistics provider
as specified in the running example introduced in Chapter 8. The XML snippet
shows a service level specification, where

1. Customers can specify their expected delivery duration
2. A provider-obligated term guarantees the delivery within the specified duration

(ServiceLevel nb 1)
3. A provider-obligated term guarantees that goods are maintained at -5 degrees

Celsius (ServiceLevel nb 2)
4. A provider-obligated action regulates penalty payments for delayed deliveries

(ServiceLevel nb 3)

12.4 USDL and Security

The implementation of security measures for electronic services, such as the proper
authentication of consumers and the encryption of service data, can become a
complex and error-prone effort. Service providers do not always possess sufficient
knowledge and experience on technical security mechanisms and standards. The
same applies to the definition of service security characteristics as part of a formal
service description. Such technical issues may be far out of the core competencies
on which a service provider should be able to concentrate in a globalized and com-
petitive market.

12 Service Levels, Security, and Trust 309

With regard to the security issues mentioned above, this means that platforms on
which business services are developed, hosted and traded will provide — as part of
the platform infrastructure — shared security services to handle the management of
identities, the access control to services, data protection and related tasks. Business
services strongly vary in their security requirements. General information services,
such as rental car availability information, and transaction oriented services, such as
the booking of a rental car in combination with a debit advice, are possibly traded on
one and the same platform. Hence, security services provided by the platform are not
statically bound to business services. Rather they can be integrated with and bound
to business services on demand and in a flexible manner (Security-as-a-Service).

Ideally, a business service provider is enabled to implement service security mea-
sures in a declarative manner, i.e., by specifying the desired security characteristics
as part of a service model or service description. In this case the underlying plat-
form (operated by a third party) takes care of fulfilling the declared security require-
ments by including the required security services, e.g., by enforcing user authen-
tication or by ensuring non-repudiation of the service usage. In order to anticipate
the potentially limited technical security knowledge of business service providers,
the description of security characteristics should be supported on an abstract, non-
technical level. The abstract description of business service security characteristics
also enables non-technicians on the consumer side to express their security demands
and to find business services that comply with these demands.

The USDL (v3 Milestone 5 specification) elements that serve to model these
claims and requirements are depicted in Figure 12.5. The key building blocks are
the classes SecurityMetric and SecurityAttribute, which are explained in detail
here. They are special cases of the class ServiceLevelAttribute and both entail
properties of the enumeration types SecurityGoal, SecurityRequirementLevel
and RealizationLevel. The former two are straightforward elements that can be
used as detailed below. RealizationLevel refers to the OSI reference model [3] for
layered networks and specifies at what layer in the communication stack the security
element is targeted at. These classes, that were introduced due to security consider-
ations were placed in the module Service Level Base Extension. On the one hand,
non-functional security properties are clearly part of the agreed service level. On the
other hand, they are considered a domain specific extension and not part of USDL
since they are not inherently part of all domains of business services, but only geared
towards domains involving extensive network communication.

The SecurityAttribute and SecurityMetric elements support the description of
service security characteristics in two alternative, mutually exclusive ways, they
mainly differ in the abstraction level. SecurityAttribute specifies security charac-
teristics in terms of security goals and security requirement levels, but it does not
provide reference to specific technical security measures. Such SecurityGoals are
integrity, confidentiality, identification, authentication, authorization, privacy and
accountability. A SecurityRequirementLevel is used to indicate the desired im-
plementation degree of a security goal, i.e., the required level of protection/security
with respect to the security goal. The granularity of the security requirement levels
is inspired by the “authentication assurance levels” [23] as developed by the Euro-

310 Marienfeld et al.

Fig. 12.5: Model elements introduced for security infrastructure.

pean STORK4 project. On the other hand, SecurityMetric describes the high level
security goal, but also the specific security mechanism used to address this goal,
possibly including values of parameters and/or pointers to concrete security policies
written in a standard policy language, such as WS-Security, P3P, XACML.

USDL allows one to browse services, and select them according to their capabil-
ities and features, and security features may be important criteria for such a choice.
Thus, USDL elements for security can express claims and/or requirements about
security properties, with information on protections that are enforced by the service
provider. For example, a service provider may claim that the customer data remain
confidential, but at the same time it may require that the consumer should support
message encryption to send input data in a confidential way.

In the next subsections we will describe the two approaches in more detail.

12.4.1 SecurityAttribute

Defining security characteristics in terms of security goals and requirement levels
enables actors (on the provider as well as on the consumer side) who are not “techni-

4 https://www.eid-stork.eu

https://www.eid-stork.eu

12 Service Levels, Security, and Trust 311

cal security experts,” i.e., who are not familiar with, e.g., WS-Security policies [11]
or XACML [16] statements, to express their security demands. These requirements
are then interpreted in the context of the particular platform that provides access to
the service, using a platform-specific security profile (additional service metadata).
The platform may undertake the task of implementing the security goals at the de-
sired requirement levels by generating appropriate technical security policies (e.g.,
WS-SecurityPolicy artifacts) and by involving suitable platform services that are
handling authorization, authentication, encryption etc.

The platform operator may create a “platform-specific security profile” to spec-
ify the technical details on how a security goal is realized on a given platform. The
platform-specific security profile maps security goals that are defined at certain se-
curity requirement levels to concrete security mechanisms and technical standards
that are supported by the given platform. For example, a platform operator may map
the security goal “Authentication” at the security requirement level “low” to a for-
mal WS-SecurityPolicy statement which specifies that a “UsernameToken” with a
“password digest” and a “creation time stamp” is required to be authenticated. The
same security goal with the security requirement level “high” could, e.g., be mapped
to a WS-SecurityPolicy statement demanding an “X.509-Token.”

The security mechanisms as well as the mapping of security goals and require-
ment levels to security mechanisms and technical standards are likely to vary from
platform to platform, depending on the application domain and on the technical se-
curity services and standards supported by the platform. For this reason, USDL does
not prescribe the form or structure of a platform-specific security profile. It is simply
referenced.

In summary, the specification of security requirement levels for security goals
enables service providers to express business service security characteristics on a an
abstract rather than on a technical level. The same applies to service consumers that
may search for appropriate business services based on these abstract characteristics.

The following short example further refines the 2PL Airline Manager (cf. Exam-
ple 8 in Section 8.7), and illustrates the utilization of security attributes. The “2PL
Airline Manager” provides two interfaces for looking up rates and kicking-off ship-
ments. It was decided, that the operation “looking up rates” should be public, and
therefore does not require any security characteristics; resulting in the USDL speci-
fication as outlined in Listing 12.2 on page 324: lines 28 to 48. Whereas the kick-off
shipment requires medium Authentication and high Encryption, as it has to be
known, who initiated the shipment, and the data of the operation should be kept
confidential.

The service provider of the 2PL Airline Manager utilizes the “platform-specific
security profile,” defined by the platform operator of the logistics marketplace. At
first the service provider has to select the “platform-specific security profile,” which
is in this case an ontology.5 Then, the service provider defines the desired secu-
rity requirements by associating the adequate security goals with the correspondent

5 Accessible via http://ontology.logistics_service.org/security/lso_
profile123

http://ontology.logistics_service.org/security/lso_profile123
http://ontology.logistics_service.org/security/lso_profile123

312 Marienfeld et al.

security requirement levels (see Figure 12.6). The USDL serialization is also illus-
trated in Listing 12.2: lines 50 to 73.

Fig. 12.6: Specifying security via SecurityAttributes with the USDL Editor (cf.
Section 15.2.1).

12 Service Levels, Security, and Trust 313

12.4.2 SecurityMetric

Similar to the SecurityAttribute element, the SecurityMetric element specifies
both a SecurityGoal and a RealizationLevel, but does not feature a Security-
RequirementLevel. Note that this is an alternative way to describe security re-
quirements/claims, not intended to be used in combination with SecurityAttribute.
Here, we do not need to express the requirement level, from low to high as in this
approach we define more concrete security properties with link to technical artifacts.
Security is then expressed in terms of concrete actions rather than an abstract level.
Unlike SecurityAttribute, which only defines an abstract requirement level, the se-
curity metric enables a direct mapping with technical artifacts. A service provider
can then specify some claims in terms of mechanism, such as internal procedure
to erase Personally Identifiable Information after a certain amount of time to cover
a privacy SecurityGoal. Also, the specifications to communicate with the service
provider are no longer platform-specific, but rather described and decided when one
operates service elicitation.

Having security described with technical artifacts allows actors that understand
security protocols and standards to express their security demands in such terms. For
example, during the matchmaking phase, a service consumer might restrict search
to services that support data confidentiality at the application level through usage of
a specific encryption algorithm. Prior to publishing the service, the provider defines
which algorithms are accepted, such as AES and RSA for symmetric and asymmet-
ric cryptography, and puts these capabilities in USDL. The consumer is then able to
check which service is compatible with his requirements.

SecurityMetric defines what the service provider claims or requires in terms of
technical artifacts. As this element is mostly for automated services, we can foresee
usage of this element for manual or semi-automated services, such as making sure
in a parcel shipment service that the warehouse clerk sets the seal on the box and
then signs the registry.

Listing 12.3 on page 325 is an instantiation of the model shown in Figure 12.5.
It provides information for an automated service on how identity is managed to
certify authentication and provide message encryption to avoid leakage of data. The
example is based on the example of the 2PL Airline Manager (cf. Section 8.7) where
we try to specify more concrete mechanisms than previous section.

Instead of declaring the security level in an abstract way, we observe that the
snippet gives us details about security mechanisms and goals. It automatically links
security requirements with two external security policies, as outlined in Listing 12.3:
lines 2 to 26. The first one is set to express encryption of a SOAP Body and the
second adds support for SAML token for identity propagation, i.e., authentication.
From line 35 to 38, we specify a protocol that is not an implementation specification.
In our case, we introduce the HTTP Authentication scheme to express future usage
of BASIC or DIGEST authentication. Then, lines 39 to 62 is the first block that
expresses a concrete security mechanism. With the goal to describe authentication
security at the session level, the block lists security mechanisms accepted by the
service provider. Technologies can be linked coming from various sources, such as

314 Marienfeld et al.

the reference to SAML Token coming from a WS-SecurityPolicy or from protocol
documentation such as the HTTP Auth link. USDL provides expression logic to
decide and restrict application of security mechanisms. The second block in lines
63 to 75 indicates the usage of message confidentiality and contains a summary of
what is used. The service consumer is able to quickly understand the profile used by
the service, and in case of further and detailed information he can consult directly
the referenced security policy.

12.5 Trustworthiness of Service Providers

In contrast to security measures, which are targeted at third party threats, trust con-
siderations are concerned with the risk emanating from business partners, in partic-
ular, unknown service providers. Trust calculation in this field evaluates which of
the suitable providers is most likely to actually deliver what was promised [7]. This
definition of trust is in line with Marsh’s dissertation thesis [15], viz., the earliest
transfer of the concept from humanities to computer sciences. He defines trust as
the confidence towards a decision that entails obvious risks.

In an Internet of Services environment, where automatic, manual, and hybrid
services are traded, there are three conceivable sources that can be considered to
estimate the amount of a trust a consumer should put into a particular offering. The
actual calculation of a trust score depends highly on the domain and the consumers
preferences, but in any domain and for any user, the following categories apply.

The first source is provider and service information supplied by the provider
himself. This is precisely the data covered in a USDL service description. It can
safely be called objective, since any piece of information can, at least in theory, be
verified by a neutral third party. This type of source is dealt with in the following
section.

As opposed to the objective data of the service description, trust can be based
on subjective data, i.e., feedback of other users. The connection of USDL with this
reputation-based trust is discussed in the subsequent Section 12.5.2.

The third possibility for service seekers to judge trustworthiness is run time data,
i.e., the information that the service platform collects about providers, offerings and
invocations as they are delivered over time. This material, however, is out of scope
of the static service description which is the purpose of USDL.

12.5.1 Trust Directly Based in Service Description

The USDL service description may offer various cues for confidence in a service
offering. In Chapter 13, the class Certification is introduced (see also Figure 12.7).
By asking neutral third parties to issue certificates about agents or a resources a
provider can establish trustworthiness. Straightforward examples for such are Trust-

12 Service Levels, Security, and Trust 315

edShops6 and organic food.7 Ratings issued by agencies can also be modeled using
the Certification class, such as Skytrax’s World Airline Star Rating8 or the stars of
the European Hotelstars Union.9

Fig. 12.7: Class Certification.

Inside the framework of USDL, there is no way to ensure that only rightful cer-
tifications are claimed. Nevertheless, it is reasonable to trust the claim of the certifi-
cation as much as one trusts the neutral party that supposedly issued it: to make sure
that no one falsely shows certificates is of vital business interest to the respective
rating agencies and USDL makes it easy for them to scan for abuses. For example,
TrustedShops can easily check if everyone referencing them actually shows in their
files. Since we are dealing with an electronic market place and formalized service
descriptions, this is much easier than in the case of physical shops that hang up
physical documents.

Apart from these explicit trust cues, there is a range of USDL elements that im-
plicitly induce some amount of trustworthiness. An example for this is the physical
location of a provider. In the logistics domain, a courier company looking for an
ocean carrier may not strictly require that it be based in a certain country, but it may
find EU based carriers more trustworthy than American competitors. Likewise the
attribute yearOfFounding in class Organization can contribute to the trust calcu-

6 http://www.trustedshops.de
7 http://www.bio-siegel.de
8 http://www.airlinequality.com/StarRanking/ranking.htm
9 http://www.hotelstars.eu

http://www.trustedshops.de
http://www.bio-siegel.de
http://www.airlinequality.com/StarRanking/ranking.htm
http://www.hotelstars.eu

316 Marienfeld et al.

lation. Beyond these there are various pieces of information contained in the USDL
description, that can be exploited for trust calculation. However, that calculation
depends highly on the domain and on consumer preferences and is therefore out
of the scope of this book. In the THESEUS/TEXO project, we realized a sample
trust prediction for a car rental scenario [10] based among on USDL data. Simi-
lar to certification, all this information is provider supplied and hence questionable.
So reasonable trust preferences put more weight on such certain elements; namely
those that are likely to be audited by a relevant actor, who has a natural incentive.
The location, for example, is most likely to be checked by the service market place
operator.

On a conceptual level, a clear distinction can be made between two classes of
USDL items: on the one hand, items that imply how well an offering matches the
demand of a service seeker. On the other hand, items that assures confidence in the
provider. An example of the former is the price, the latter could be a certificate. In
practice, however, the line is blurry, certain elements can easily appeal to both the
liking and the trusting of a service seeker. Imagine a traveler looking for a hotel:
A two-star cuisine may not be a requirement, yet its presence can be interpreted
as a sign of overall reliability. In other circumstances one piece of information can
even contribute in a contradictory way to preference and reliability. To illustrate this,
let us consider a 3PL courier company (cf. running example from Chapter 8) that
seeks an airline service. Given their functional parameters such as origin, destina-
tion, dates, weight, etc. there might be ten airlines offering that particular service at
a particular price. Now, while a lower price is quite to the liking of the seeker, a fee
lower than half the mean price may be a cue to distrust that provider.

12.5.2 Using the Service Description to Harness User Ratings

A different approach to evaluate the trustworthiness of a provider is to consider his
reputation, i.e., the reported experience of other users. This field is currently still
under investigation and a recent overview about reputation in service-oriented envi-
ronments is provided in [13]. The essential idea is that of wisdom of crowds [22]:
the more users report on a given provider, the better his reputation predicts his be-
havior. Additionally, and in contrast to the static data mentioned in the previous sec-
tion, a reputation system makes white-washing difficult, i.e., the cost of building up
a trusted profile can stop malicious providers from cheating with fresh accounts [4].

The actual reputation can obviously not be part of a static USDL service descrip-
tion, since it is highly dynamic. Nevertheless, USDL can be used to remedy some
of the problems often encountered in reputation systems.

In many domains a simple measure of how happy a consumer was with a ser-
vice is too undifferentiated. This also applies if the rating system is used for other
purposes than trust calculation. For instance, providers want specific aspects of their
services rated to guide their innovation process. As these two were the main applica-
tions for feedback information foreseen by the USDL meta-modelers, the elements

12 Service Levels, Security, and Trust 317

discussed here cater for the needs of both. Consequently, a framework for evaluat-
ing specific aspects of a service or provider is needed. Moreover, domain specific
scales may be necessary, wherever a simple five star scale is insufficient. On the
other hand, there is a mechanism that ensures that comparable services can be rated
in a consistent way. Otherwise, providers would make their offering ratable only in
those categories where they excel.

In order to meet the requirement of Extensibility (cf. Section 8.3.1.4) a complete
feedback meta-model was developed in THESEUS/TEXO [14], that allows for the
definition of a hierarchy of rating aspects on a corresponding scale. Since that meta-
model is not specific to the realm of services, but could also be used for products, it
was not incorporated in USDL. Instead, instances of the feedback meta-model can
be referenced using the USDL class Artifact.

The interlinking of feedback with relevant USDL classes is depicted in Fig-
ure 12.8. Essentially, the relation feedbackModels adds 0 to n feedback model
Artifacts to NetworkProvisionedEntity, AbstractService and Agent. Service-
Bundle and Service inherit the link from NetworkProvisionedEntity and they
represent the core objects to be rated. By means of the super class Agent, USDL
users can describe how Persons and Organizations can be rated. The class
AbstractService deserves a more detailed discussion.

Fig. 12.8: Model elements introduced for a feedback infrastructure.

The feedback models attached to AbstractService enable consist rating schemes
across similar services across multiple providers. A domain knowledgeable author-
ity such as the service market place platform operator can define AbstractServices

318 Marienfeld et al.

and specify how instances of these are to be evaluated. Concrete services claim to
implement a given AbstractService in order to be suggested to seekers of this kind
of offering. By that they automatically are subject to the rating scheme attached
to the abstract one, and hence all competing services are guaranteed to sharing the
most important evaluation aspects for this kind of offering. Moreover, providers can
attach further rating models inside their USDL description to get a more detailed
feedback on their performance.

To illustrate this, let us consider an example. We chose a domain where most
principals are unknown to each other, and hence must base their trust on other con-
sumers’ rating. This diverges from the running example where principals are most
likely to have some past interaction and do not have to rely on third party opin-
ions. Consider a service market that trades automotive services. The platform host
would reasonably create an AbstractService “car repair” and link it up with a feed-
back model that covers at least “quality of repair” and “speed of repair.” Thus, all
providers that want to be taken into account when a car repair is wanted, must ref-
erence this AbstractService and can therefore automatically be evaluated in these
two most relevant categories. This in turn leads to a consistent reputation landscape
of car repair services, which is suitable for service seekers to base their trust on.

12.6 Conclusion

In this chapter we presented an overview of existing approaches to model service
levels with an extra glimpse on security specific languages. Building on that, we
described how USDL addresses existing gaps, followed by a discussion of how the
Service Level Module in constructed and how it relates to other USDL elements.
Again, special care was taken to discuss how security properties are covered in
USDL. Namely, USDL allows service providers to specify security offerings and
state their security requirements.

Subsequently, we explained the USDL meta-model elements that are related
to security and trust in detail. Most notably the classes SecurityAttribute and
SecurityMetric for specifying security goals either on a high level or on a tech-
nical level, respectively. The relation feedbackModel was introduced explicitly to
facilitate trust calculation. It associates services with rating schemes. Additionally,
we surveyed preexisting USDL elements that offer cues for trust estimation.

We decided that trust and security elements do not form a USDL module of their
own, since they do not represent a group of functional elements. They rather form
part of the Service Level Module which host most non-functional properties.

Based on the foundations laid out in this chapter, we see several lines of future
work: First, the discussed security properties are on a merely technical level and are
not well suited for describing security properties on a more abstract, i.e., business
level. On a business level, users usually do not want to specify properties such as
Confidentiality or Authorization. Instead, they want to specify more abstract prop-
erties such as “comply to the following regulations” or “it is only allowed to share

12 Service Levels, Security, and Trust 319

this data between the following parties.” Supporting such high-level specifications
requires, on the one hand, to link the security extension with the Legal Module
(see Chapter 10). This allows for an extensive support of legal compliance regula-
tions such as the Sarbanes-Oxley Act [20] in the financial industry or HIPAA [6]
in the health care industry. Supporting such legal compliance regulations is particu-
lar challenging as they combine legal requirements based on abstract concepts with
technical security and privacy aspects. On the other hand, this requires a process
for mapping high-level requirements to technical realizations of those requirements
and, thus, allow business experts and security experts to work together for providing
secure, trustworthy, and compliant applications on top of the Internet of Services.
Second, we plan to provide extensions that serve domain specific needs, e.g., that
allow for describing advanced access control or privacy needs in the health care do-
main. The reader interested in a detailed description of such requirements is, e.g.,
referred to the documents describing the security requirements England’s National
Programme for Information Technology (NPfIT) of the National Health Service
(NHS) [18, 19]. Third, we plan to empirically evaluate the concepts introduced here,
i.e., to investigate how well they help to describe and trade business services.

References

1. A. Andrieux, K. Czajkowski, A. Dan, et al. Web services agreement specification
(ws-agreement). Technical report, OpenGridForum, 2007. http://www.ogf.org/
documents/GFD.107.pdf.

2. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In Programming Languages and Systems, 16th European Symposium on
Programming, pages 18–32. Springer, 2007.

3. J. Day and H. Zimmermann. The OSI Reference Model. Proceedings of the IEEE,
71(12):1334–1340, Dec. 1983.

4. M. Feldman and J. Chuang. The Evolution of Cooperation under Cheap Pseudonyms.
In 7th IEEE International Conference on E-Commerce Technology (CEC), pages 284–291,
München, jul 2005. IEEE Computer Society.

5. D. Gregg and S. Walczak. The relationship between website quality, trust and price premiums
at online auctions. Electronic Commerce Research, 10:1–25, 2010.

6. HIPAA. Health Insurance Portability and Accountability Act of 1996. http://www.cms.
hhs.gov/HIPAAGenInfo/, 1996.

7. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618–644, 2007.

8. K. Kearney, F. Torelli, and C. Kotsokalis. SLA*: An Abstract Syntax for Service Level Agree-
ments. In Proceedings of IEEE Grid2010 conference; Service Level Agreements in Grids
Workshop, Brussels, 2010.

9. D. D. Lamanna, J. Skene, and W. Emmerich. Slang: A language for defining service level
agreements. In Future Trends in Distributed Computing Systems, pages 100–106. IEEE Com-
puter Society, 2003.

10. E. Lapi, E. Höfig, and F. Marienfeld. THESEUS/TEXO Consortium: TRICE Deliverable E4
– Demonstrator Based on TEXO Platform, Feb. 2011.

11. K. Lawrence, C. Kaler, and al. Ws-securitypolicy 1.3. http://docs.oasis-open.
org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.
3-spec-os.html, 2009.

http://www.ogf.org/documents/GFD.107.pdf
http://www.cms.hhs.gov/HIPAAGenInfo/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://www.ogf.org/documents/GFD.107.pdf
http://www.cms.hhs.gov/HIPAAGenInfo/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html

320 Marienfeld et al.

12. H. Ludwig, A. Keller, A. Dan, et al. Web service level agreement (wsla) language speci-
fication. Technical report, IBM Research, 2003. http://www.research.ibm.com/
wsla/WSLASpecV1-20030128.pdf.

13. Z. Malik and A. Bouguettaya. Trust Management for Service-Oriented Environments.
Springer US, 2009.

14. F. Marienfeld, E. Höfig, and E. Lapi. THESEUS/TEXO Consortium: TRICE Deliverable E2
– Extension of USDL with Trust and Quality Criteria, Feb. 2011.

15. S. P. Marsh. Formalising Trust as a Computational Concept. PhD Thesis, University of
Stirling, 1994.

16. T. Moses. eXtensible Access Control Markup Language(XACML) Version 2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.
0-core-spec-os.pdfl, 2005.

17. L. Nixon, D. Lambert, A. Filipowska, and E. Simperl. Future of the Internet of Services for
Industry: the ServiceWeb 3.0 Roadmap. Future Internet Assembly (FIA 2009), 2009.

18. D. of Health. The Care Record Guarantee. Our Guarantee for NHS Care Records in England.
Technical report, Department of Health, 2009.

19. D. of Health. Information Governance (IG) Concepts, 2010. http://www.
connectingforhealth.nhs.uk/systemsandservices/infogov/.

20. P. Sarbanes, G. Oxley, et al. Sarbanes-Oxley Act of 2002. 107th Congress Report, House of
Representatives, 2nd Session, 107–610, 2002.

21. F. I. P. SLA@SOI. Empowering the service industry with sla-aware infrastructures. http:
//sla-at-soi.eu.

22. J. Surowiecki. The Wisdom of Crowds. Doubleday, 2004.
23. the STORK-eid Consortium. STORK Deliverable D2.1 - Framework Mapping of Techni-

cal/Organisational Issues to a Quality Scheme. https://www.eid-stork.eu/index.
php?option=com_processes&Itemid=&act=streamDocument&did=579,
2011.

24. S. Venugopal, X. Chu, and R. Buyya. A Negotiation Mechanism for Advance Resource Reser-
vations Using the Alternate Offers Protocol. In 16th International Workshop on Quality of
Service, pages 40–49, june 2008.

Listings

Listing 12.1: USDL Service Level Agreement sample
1 <i d e n t i f i a b l e E l e m e n t x s i : t y p e =” s e r v i c e : S e r v i c e”>
2

3 <c o n t e x t V a r i a b l e s>
4 <!−− v a r i a b l e f o r e x p e c t e d d u r a t i o n o f d e l i v e r y i n weeks ,
5 d e f a u l t : 1 week −−>
6 <v a r i a b l e D e c l a r a t i o n x s i : i d =” v a r E x p D e l D u r a t i o n”>
7 <name>
8 <va lue> e x p e c t e d D e l i v e r y D u r a t i o n </ va lue>
9 <type> name </ type>

10 </name>
11 <d e f a u l t V a l u e> 1 </ d e f a u l t V a l u e>
12 <t y p e R e f e r e n c e>
13 <c l a s s i f i c a t i o n S y s t e m I D> h t t p : / / www. i n t e r n e t −of−s e r v i c e s . com /
14 s e r v i c e T y p e s </ c l a s s i f i c a t i o n S y s t e m I D>
15 <c l a s s I D> d u r a t i o n w e e k </ c l a s s I D>
16 <uni tSymbol> wk </ un i tSymbol>
17 <d e s c r i p t i o n s >
18 <d e s c r i p t i o n>
19 <va lue> d u r a t i o n i n weeks </ va lue>
20 <type> f r e e t e x t S h o r t </ type>

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdfl
http://www.connectingforhealth.nhs.uk/systemsandservices/infogov/
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=579
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdfl
http://www.connectingforhealth.nhs.uk/systemsandservices/infogov/
https://www.eid-stork.eu/index.php?option=com_processes&Itemid=&act=streamDocument&did=579

12 Service Levels, Security, and Trust 321

21 <l anguage> en </ l anguage>
22 </ d e s c r i p t i o n>
23 </ d e s c r i p t i o n s >
24 </ t y p e R e f e r e n c e>
25 </ v a r i a b l e D e c l a r a t i o n >
26 </ c o n t e x t V a r i a b l e s>
27

28 <s e r v i c e L e v e l P r o f i l e s >
29 <s e r v i c e L e v e l P r o f i l e >
30

31 <s e r v i c e L e v e l s>
32

33 <!−− s e r v i c e l e v e l #1 −−>
34 <s e r v i c e L e v e l x s i : t y p e =” s e r v i c e l e v e l : G u a r a n t e e d S t a t e”>
35 <!−− p r o v i d e r i s o b l i g a t e d −−>
36 <o b l i g a t e d P a r t y> prov321 </ o b l i g a t e d P a r t y>
37

38 <d e s c r i p t i o n s >
39 <d e s c r i p t i o n>
40 <va lue> D e l i v e r y d u r a t i o n must n o t l o n g e r t h a n what has been
41 s p e c i f i e d by t h e c u s t o m e r . </ va lue>
42 <type> f r e e t e x t S h o r t </ type>
43 <l anguage> en </ l anguage>
44 </ d e s c r i p t i o n>
45 </ d e s c r i p t i o n s >
46

47 <s t a t e S p e c i f i c a t i o n >
48

49 <!−− measured d e l i v e r y d u r a t i o n i s l e s s t h a n or e q u a l t o what i s
50 s e t i n t h e s e r v i c e c o n t e x t (c u s t . i n p u t −−>
51 <va lue> m e t r i c [” m d e l D u r a t i o n ”] <= v a r i a b l e [” v expDelDur ”] </ va lue>
52 <l anguageID> urn : example : e x p r e s s i o n l a n g u a g e </ l anguageID>
53

54 <a t t r i b u t e s >
55 <!−− r e f e r e n c e t o t h e v a r i a b l e −−>
56 <a t t r i b u t e x s i : i d =” v expDelDur ”
57 x s i : t y p e =” s e r v i c e l e v e l : V a r i a b l e R e f e r e n c e”>
58 <r e f e r e n c e> v a r E x p D e l D u r a t i o n </ r e f e r e n c e>
59 </ a t t r i b u t e >
60 <!−− m e t r i c f o r measu r ing d e l i v e r y d u r a t i o n −−>
61 <a t t r i b u t e x s i : i d =” m d e l D u r a t i o n ” x s i : t y p e =” s e r v i c e l e v e l : M e t r i c”>
62 <t y p e R e f e r e n c e>
63 <c l a s s i f i c a t i o n S y s t e m I D>
64 h t t p : / / www. i n t e r n e t −of−s e r v i c e s . com / s e r v i c e T y p e s
65 </ c l a s s i f i c a t i o n S y s t e m I D>
66 <c l a s s I D> d u r a t i o n d a y </ c l a s s I D>
67 <uni tSymbol> d </ un i tSymbol>
68 <d e s c r i p t i o n s >
69 <d e s c r i p t i o n>
70 <va lue> d u r a t i o n i n days </ va lue>
71 <type> f r e e t e x t S h o r t </ type>
72 <l anguage> en </ l anguage>
73 </ d e s c r i p t i o n>
74 </ d e s c r i p t i o n s >
75 </ t y p e R e f e r e n c e>
76 <a s s e s s m e n t>
77 <va lue> d e l i v e r y d u r a t i o n as measured by r e c e i v i n g p a r t y
78 </ va lue>
79 <type> f r e e t e x t L o n g </ type>
80 <l anguage> en </ l anguage>
81 </ a s s e s s m e n t>
82 </ a t t r i b u t e >
83 </ a t t r i b u t e s >
84

85 </ s t a t e S p e c i f i c a t i o n >
86 </ s e r v i c e L e v e l>
87

322 Marienfeld et al.

88 <!−− s e r v i c e l e v e l #2 −−>
89 <s e r v i c e L e v e l x s i : t y p e =” s e r v i c e l e v e l : G u a r a n t e e d S t a t e”>
90 <!−− p r o v i d e r i s o b l i g a t e d −−>
91 <o b l i g a t e d P a r t y> prov321 </ o b l i g a t e d P a r t y>
92

93 <d e s c r i p t i o n s >
94 <d e s c r i p t i o n>
95 <va lue> The t e m p e r a t u r e o f t h e goods i s m a i n t a i n e d a t minus 5
96 d e g r e e s . </ va lue>
97 <type> f r e e t e x t S h o r t </ type>
98 <l anguage> en </ l anguage>
99 </ d e s c r i p t i o n>

100 </ d e s c r i p t i o n s >
101

102 <s t a t e S p e c i f i c a t i o n >
103

104 <!−− measured t e m p e r a t u r e i s a p p r o x i m a t e l y e q u a l t o minus 5
105 d e g r e e s C e l s i u s −−>
106 <va lue> m e t r i c [” m temp ”] ˜= c o n s t a n t [” c5 ”] </ va lue>
107 <l anguageID> urn : example : e x p r e s s i o n l a n g u a g e </ l anguageID>
108

109 <a t t r i b u t e s >
110 <!−− t e m p e r a t u r e t h r e s h o l d (modeled as c o n s t a n t) −−>
111 <a t t r i b u t e x s i : i d =” c5 ” x s i : t y p e =” s e r v i c e l e v e l : C o n s t a n t”>
112 <va lue> −5 </ va lue>
113 <t y p e R e f e r e n c e>
114 <c l a s s i f i c a t i o n S y s t e m I D>
115 h t t p : / / www. i n t e r n e t −of−s e r v i c e s . com / s e r v i c e T y p e s
116 </ c l a s s i f i c a t i o n S y s t e m I D>
117 <c l a s s I D> t e m p e r a t u r e c e l s i u s </ c l a s s I D>
118 <uni tSymbol> dC </ un i tSymbol>
119 <d e s c r i p t i o n s >
120 <d e s c r i p t i o n>
121 <va lue> t e m p e r a t u r e i n d e g r e e s C e l s i u s </ va lue>
122 <type> f r e e t e x t S h o r t </ type>
123 <l anguage> en </ l anguage>
124 </ d e s c r i p t i o n>
125 </ d e s c r i p t i o n s >
126 </ t y p e R e f e r e n c e>
127 </ a t t r i b u t e >
128 <!−− m e t r i c f o r measu r ing t e m p e r a t u r e , r e l a t e d t o goods (i n p u t t o
129 s e r v i c e f u n c t i o n ” T r a n s p o r t ”) −−>
130 <a t t r i b u t e x s i : i d =” m temp ” x s i : t y p e =” s e r v i c e l e v e l : M e t r i c”>
131 <r e l a t e s T o> paramGoods </ r e l a t e s T o>
132 <t y p e R e f e r e n c e>
133 <c l a s s i f i c a t i o n S y s t e m I D>
134 h t t p : / / www. i n t e r n e t −of−s e r v i c e s . com / s e r v i c e T y p e s
135 </ c l a s s i f i c a t i o n S y s t e m I D>
136 <c l a s s I D> t e m p e r a t u r e c e l s i u s </ c l a s s I D>
137 <uni tSymbol> dC </ un i tSymbol>
138 <d e s c r i p t i o n s >
139 <d e s c r i p t i o n>
140 <va lue> t e m p e r a t u r e i n d e g r e e s C e l s i u s </ va lue>
141 <type> f r e e t e x t S h o r t </ type>
142 <l anguage> en </ l anguage>
143 </ d e s c r i p t i o n>
144 </ d e s c r i p t i o n s >
145 </ t y p e R e f e r e n c e>
146 <a s s e s s m e n t>
147 <va lue> t e m p e r a t u r e o f goods as c o n s t a n t l y measured
148 by p r o v i d e r </ va lue>
149 <type> f r e e t e x t L o n g </ type>
150 <l anguage> en </ l anguage>
151 </ a s s e s s m e n t>
152 </ a t t r i b u t e >
153 </ a t t r i b u t e s >
154

12 Service Levels, Security, and Trust 323

155 </ s t a t e S p e c i f i c a t i o n >
156 </ s e r v i c e L e v e l>
157

158 <!−− s e r v i c e l e v e l #3 −−>
159 <s e r v i c e L e v e l x s i : t y p e =” s e r v i c e l e v e l : G u a r a n t e e d A c t i o n”>
160 <!−− p r o v i d e r i s o b l i g a t e d −−>
161 <o b l i g a t e d P a r t y> prov321 </ o b l i g a t e d P a r t y>
162

163 <d e s c r i p t i o n s >
164 <d e s c r i p t i o n>
165 <va lue> P e n a l t y payment o f EUR100 p e r f u l l day of d e l a y e d

d e l i v e r y
166 </ va lue>
167 <type> f r e e t e x t S h o r t </ type>
168 <l anguage> en </ l anguage>
169 </ d e s c r i p t i o n>
170 </ d e s c r i p t i o n s >
171

172 <p r e c o n d i t i o n S p e c i f i c a t i o n >
173 <!−− measured d e l i v e r y d e l a y i s g r e a t e r o r e q u a l t h a n 1 −−>
174 <va lue> m e t r i c [” m delDelay ”] >= c o n s t a n t [” c6 ”] </ va lue>
175 <l anguageID> urn : example : e x p r e s s i o n l a n g u a g e </ l anguageID>
176

177 <a t t r i b u t e s >
178 <!−− d e l i v e r y d e l a y t h r e s h o l d (modeled as c o n s t a n t) −−>
179 <a t t r i b u t e x s i : i d =” c6 ” x s i : t y p e =” s e r v i c e l e v e l : C o n s t a n t”>
180 <va lue> 1 </ va lue>
181 <t y p e R e f e r e n c e> <!−− same t y p e d e s c r i p t i o n as s p e c i f i e d i n
182 m e t r i c below −−> </ t y p e R e f e r e n c e>
183 </ a t t r i b u t e >
184 <!−− m e t r i c f o r measu r ing d e l a y i n d e l i v e r y −−>
185 <a t t r i b u t e x s i : i d =” m delDelay ” x s i : t y p e =” s e r v i c e l e v e l : M e t r i c”>
186 <t y p e R e f e r e n c e>
187 <c l a s s i f i c a t i o n S y s t e m I D>
188 h t t p : / / www. i n t e r n e t −of−s e r v i c e s . com / s e r v i c e T y p e s
189 </ c l a s s i f i c a t i o n S y s t e m I D>
190 <c l a s s I D> d u r a t i o n d a y </ c l a s s I D>
191 <uni tSymbol> d </ un i tSymbol>
192 <d e s c r i p t i o n s >
193 <d e s c r i p t i o n>
194 <va lue> d u r a t i o n i n days </ va lue>
195 <type> f r e e t e x t S h o r t </ type>
196 <l anguage> en </ l anguage>
197 </ d e s c r i p t i o n>
198 </ d e s c r i p t i o n s >
199 </ t y p e R e f e r e n c e>
200 <a s s e s s m e n t>
201 <va lue>d e l a y e d d e l i v e r y as measured by r e c e i v i n g p a r t y </ va lue

>
202 <type> f r e e t e x t L o n g </ type>
203 <l anguage> en </ l anguage>
204 </ a s s e s s m e n t>
205 </ a t t r i b u t e >
206 </ a t t r i b u t e s >
207 <p r e c o n d i t i o n S p e c i f i c a t i o n >
208

209 <a c t i o n S p e c i f i c a t i o n >
210 <va lue> <!−− c r e d i t t h e c u s t o m e r w i t h (EUR 100
211 ∗ f l o o r (m e t r i c [” m delDelay ”])) −−> </ va lue>
212 <l anguageID> urn : example : a c t i o n l a n g u a g e </ l anguageID>
213 </ a c t i o n S p e c i f i c a t i o n >
214

215 </ s e r v i c e L e v e l>
216 </ s e r v i c e L e v e l s>
217

218 </ s e r v i c e L e v e l P r o f i l e >
219 </ s e r v i c e L e v e l P r o f i l e s >

324 Marienfeld et al.

220

221

222 </ i d e n t i f i a b l e E l e m e n t >

Listing 12.2: USDL SecurityAttribute
1

2 <!−− . . . −−>
3 <s e r v i c e L e v e l P r o f i l e >
4 <i m p l e m e n t a t i o n S p e c i f i c a t i o n s>
5 <i m p l e m e n t a t i o n S p e c i f i c a t i o n x s i : i d =” l s o p r o f i l e 1 2 3 ”>
6 <type> T e c h n i c a l M e t a d a t a </ type>
7 <mimeType> a p p l i c a t i o n / xml </mimeType>
8 <u r i> h t t p : / / o n t o l o g y . l o g i s t i c s s e r v i c e . o rg / s e c u r i t y / l s o p r o f i l e 1 2 3 </ u r i

>
9 <d e s c r i p t i o n s >

10 <d e s c r i p t i o n>
11 <va lue> s e c u r i t y p r o f i l e 123 </ va lue>
12 <type> name </ type>
13 <l anguage> en </ l anguage>
14 </ d e s c r i p t i o n>
15 </ d e s c r i p t i o n s >
16 </ i m p l e m e n t a t i o n S p e c i f i c a t i o n>
17 </ i m p l e m e n t a t i o n S p e c i f i c a t i o n s>
18 <!−− . . . −−>
19 <s e r v i c e L e v e l s>
20 <s e r v i c e L e v e l x s i : t y p e =” s e r v i c e l e v e l : G u a r a n t e e d S t a t e”>
21 <!−− . . . −−>
22 <s t a t e S p e c i f i c a t i o n >
23 <!−− . . . −−>
24 <va lue> a t t r i b u t e [” sec1 ”] a p p l i e s </ va lue>
25 <va lue> a t t r i b u t e [” sec2 ”] a p p l i e s </ va lue>
26 <!−− . . . −−>
27 <a t t r i b u t e s >
28 <!−− l o o k u p r a t e s has no s e c u r i t y r e s t r i c t i o n s −−>
29 <a t t r i b u t e x s i : i d =” sec1 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y A t t r i b u t e ”>
30 <r e l a t e s T o>a ir l ine mgmt : l o o k u p r a t e s </ r e l a t e s T o>
31 <s e c u r i t y G o a l s>
32 <s e c u r i t y G o a l>A u t h e n t i c a t i o n </ s e c u r i t y G o a l>
33 </ s e c u r i t y G o a l s>
34 <r e q u i r e m e n t L e v e l>none</ r e q u i r e m e n t L e v e l>
35 <p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
36 l s o p r o f i l e 1 2 3

37 </ p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
38 </ a t t r i b u t e >
39 <a t t r i b u t e x s i : i d =” sec2 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y A t t r i b u t e ”>
40 <r e l a t e s T o>a ir l ine mgmt : l o o k u p r a t e s </ r e l a t e s T o>
41 <s e c u r i t y G o a l s>
42 <s e c u r i t y G o a l> C o n f i d e n t i a l i t y </ s e c u r i t y G o a l>
43 </ s e c u r i t y G o a l s>
44 <r e q u i r e m e n t L e v e l>none</ r e q u i r e m e n t L e v e l>
45 <p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
46 l s o p r o f i l e 1 2 3

47 </ p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
48 </ a t t r i b u t e >
49 <!−− . . . −−>
50 <!−− k i c k o f f s h i p m e n t s r e q u i r e s medium A u t h e n t i c a t i o n
51 and h ig h C o n f i d e n t i a l i t y
52 −−>
53 <a t t r i b u t e x s i : i d =” sec3 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y A t t r i b u t e ”>
54 <r e l a t e s T o>a ir l ine mgmt : k i c k o f f s h i p m e n t s </ r e l a t e s T o>
55 <s e c u r i t y G o a l s>
56 <s e c u r i t y G o a l> A u t h e n t i c a t i o n </ s e c u r i t y G o a l>
57 </ s e c u r i t y G o a l s>
58 <r e q u i r e m e n t L e v e l>medium</ r e q u i r e m e n t L e v e l>
59 <p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
60 l s o p r o f i l e 1 2 3

12 Service Levels, Security, and Trust 325

61 </ p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
62 </ a t t r i b u t e >
63 <a t t r i b u t e x s i : i d =” sec4 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y A t t r i b u t e ”>
64 <r e l a t e s T o>a ir l ine mgmt : k i c k o f f s h i p m e n t s </ r e l a t e s T o>
65 <s e c u r i t y G o a l s>
66 <s e c u r i t y G o a l>C o n f i d e n t i a l i t y </ s e c u r i t y G o a l>
67 </ s e c u r i t y G o a l s>
68 <r e q u i r e m e n t L e v e l>high</ r e q u i r e m e n t L e v e l>
69 <p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
70 l s o p r o f i l e 1 2 3

71 </ p l a t f o r m S p e c i f i c S e c u r i t y P r o f i l e >
72 </ a t t r i b u t e >
73 </ a t t r i b u t e s >
74 <!−− . . . −−>
75 </ s t a t e S p e c i f i c a t i o n >
76 </ s e r v i c e L e v e l>
77 <s e r v i c e L e v e l s>
78 <s e r v i c e L e v e l P r o f i l e >
79 <!−− . . . −−>

Listing 12.3: USDL Security Metric
1 <s e r v i c e L e v e l P r o f i l e >
2 <i m p l e m e n t a t i o n S p e c i f i c a t i o n s>
3 <i m p l e m e n t a t i o n S p e c i f i c a t i o n x s i : i d =” l so Wssp1 . 2 Encryp tBody”>
4 <type> T e c h n i c a l M e t a d a t a </ type>
5 <mimeType> a p p l i c a t i o n / xml </mimeType>
6 <u r i> h t t p : / / l o g i s t i c s s e r v i c e . o rg / s e c u r i t y / l s o−Wssp1.2−EncryptBody . xml

</ u r i>
7 <d e s c r i p t i o n s >
8 <d e s c r i p t i o n>
9 <va lue> WS−S e c u r i t y P o l i c y t o e x p r e s s t h a t t h e e n t i r e body of a soap

10 message has t o be e n c r y p t e d </ va lue>
11 <l anguage> en </ l anguage>
12 </ d e s c r i p t i o n>
13 </ d e s c r i p t i o n s >
14 </ i m p l e m e n t a t i o n S p e c i f i c a t i o n>
15 <i m p l e m e n t a t i o n S p e c i f i c a t i o n x s i : i d =” l so Wssp1 . 2 SupportSAMLToken”>
16 <type> T e c h n i c a l M e t a d a t a </ type>
17 <mimeType> a p p l i c a t i o n / xml </mimeType>
18 <u r i> h t t p : / / l o g i s t i c s s e r v i c e . o rg / s e c u r i t y / l s o−Wssp1.2−SupportSAMLToken .

xml </ u r i>
19 <d e s c r i p t i o n s >
20 <d e s c r i p t i o n>
21 <va lue> WS−S e c u r i t y P o l i c y t o e x p r e s s t h e s u p p o r t o f SAML t o k e n f o r

I d e n t i t y </ va lue>
22 <l anguage> en </ l anguage>
23 </ d e s c r i p t i o n>
24 </ d e s c r i p t i o n s >
25 </ i m p l e m e n t a t i o n S p e c i f i c a t i o n>
26 </ i m p l e m e n t a t i o n S p e c i f i c a t i o n s>
27 <!−− −−>
28 <s e r v i c e L e v e l s x s i : t y p e =” s e r v i c e l e v e l : G u a r a n t e e d S t a t e ” o b l i g a t e d P a r t y = ” / /

@Roles .0”>
29 <s t a t e S p e c i f i c a t i o n >
30 <!−− . . . −−>
31 <a t t r i b u t e s >
32 <!−− k i c k o f f s h i p m e n t s r e q u i r e s medium and
33 h igh C o n f i d e n t i a l i t y
34 −−>
35 <a t t r i b u t e x s i : i d =” s e c : h t t p a u t h ” x s i : t y p e =” s e r v i c e l e v e l : G e n e r i c C o n s t a n t

”>
36 <!−− HTTP AUTH (BASIC or DIGEST) −−>
37 <va lue>h t t p : / / www. i e t f . o rg / r f c / r f c 2 6 1 7 . t x t </ va lue>
38 </ a t t r i b u t e >
39 <a t t r i b u t e x s i : i d =” sec5 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y M e t r i c ”>
40 <r e l a t e s T o>a ir l ine mgmt : k i c k o f f s h i p m e n t s </ r e l a t e s T o>

326 Marienfeld et al.

41 <s e c u r i t y G o a l s>
42 <s e c u r i t y G o a l> A u t h e n t i c a t i o n </ s e c u r i t y G o a l>
43 </ s e c u r i t y G o a l s>
44 <R e a l i z a t i o n L e v e l> S e s s i o n </ R e a l i z a t i o n L e v e l>
45 <s e c u r i t y M e c h a n i s m s>
46 <s e c u r i t y M e c h a n i s m x s i : t y p e =” s e c : h t t p a u t h ”>
47 <va lue>HTTP AUTH</ va lue>
48 </ s ecu r i t yMechan i sm>
49 <s e c u r i t y M e c h a n i s m x s i : t y p e =” l so Wssp1 . 2 SupportSAMLToken”>
50 <va lue>SAML</ va lue>
51 </ s ecu r i t yMechan i sm>
52 </ s e c u r i t y M e c h a n i s m s>
53 <e x p r e s s i o n S p e c i f i c a t i o n >
54 <d e s c r i p t i o n>
55 A u t h e n t i c a t i o n i s v e r i f i e d t h r o u g h HTTP h e a d e r s
56 o r t o k e n i n SOAP messages
57 </ d e s c r i p t i o n>
58 <e x p r e s s i o n>
59 s e c : h t t p a u t h OR lso Wssp1 . 2 SupportSAMLToken
60 </ e x p r e s s i o n>
61 </ e x p r e s s i o n S p e c i f i c a t i o n >
62 </ a t t r i b u t e >
63 <a t t r i b u t e x s i : i d =” sec6 ” x s i : t y p e =” s l b a s e e x t : S e c u r i t y M e t r i c ”>
64 <r e l a t e s T o>a ir l ine mgmt : k i c k o f f s h i p m e n t s </ r e l a t e s T o>
65 <s e c u r i t y G o a l s>
66 <s e c u r i t y G o a l>C o n f i d e n t i a l i t y </ s e c u r i t y G o a l>
67 </ s e c u r i t y G o a l s>
68 <R e a l i z a t i o n L e v e l> Message </ R e a l i z a t i o n L e v e l>
69 <s e c u r i t y M e c h a n i s m s>
70 <s e c u r i t y M e c h a n i s m x s i : t y p e =” l so Wssp1 . 2 Encryp tBody”>
71 <type>E n c r y p t i o n </ type>
72 <va lue>Basic256Sha256Rsa15 </ va lue>
73 </ s ecu r i t yMechan i sm>
74 </ s e c u r i t y M e c h a n i s m s>
75 </ a t t r i b u t e >
76 </ a t t r i b u t e s >
77 <!−− . . . −−>
78 </ s t a t e S p e c i f i c a t i o n >
79 <!−− . . . −−>
80 </ s e r v i c e L e v e l s>
81 </ s e r v i c e L e v e l P r o f i l e >

Chapter 13

Modeling Foundations

Steffen Heinzl, Uwe Kylau, and Norman May

Abstract One of the basic purposes of USDL is to provide a “commercial envelope”
around a service for exposition in Web-based service networks (i.e., the Internet of
Services). Besides the description of pricing, licensing, functionality, behavior, ser-
vice levels, and security aspects, there remain the following fundamental facets:
the interweaving of all the aspects, the modeling of basic concepts such as service,
composite service, or bundles, and the information about participants in the deliv-
ery of the service. These concepts are reflected in the modules introduced in this
chapter: the Service Module and the Participants Module. These two modules are
complemented by the Foundation which covers aspects that are used in multiple
other modules. This chapter presents the module design taking into account the in-
fluence of the state of the art and several of the general language requirements as
well as the service concept formation requirements from Chapter 8.

13.1 Introduction

USDL is a service description language to be used in multi-party service networks
in the Internet (frequently dubbed the Internet of Services). In particular, USDL is
targeted as an integral building block for supporting the value creation processes
taking place in such ecosystems — by providing the means to encapsulate a service
as self-contained asset which is exposed in novel ways (cf. Chapter 1). The inher-

Steffen Heinzl
SAP Research Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany,
e-mail: steffen.heinzl@sap.com

Uwe Kylau
SAP Research Brisbane, Building A4 Level 7, 52 Merivale Street, South Brisbane QLD 4101,
Australia, e-mail: uwe.kylau@sap.com

Norman May
SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany, e-mail: norman.may@sap.com

327 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York3,

mailto:steffen.heinzl@sap.com
mailto:uwe.kylau@sap.com
mailto:norman.may@sap.com

328 Steffen Heinzl, Uwe Kylau, and Norman May

ent business nature of this context has to be addressed in the foundational parts of
USDL. In order to make a decision, consuming participants want to know (1) who
they are dealing with, i.e., who is involved in providing and delivering a service, and
(2) what exactly they are paying for.

The second part has several aspects. First and foremost, it is about what a service
does, i.e., its functionalities and features. This is covered in a dedicated chapter (see
Chapter 11). Second, the it concerns how the service is embedded into the network
that makes up a service ecosystem. Relationships to participants are subject of the
who aspect, but relationships and dependencies to other services, and resources in
general, have to be covered as well. This comprises, in particular, the issue of com-
bining services into new service offerings, an act that may take either the form of
composition or bundling of services. Both types have received considerable atten-
tion by existing standards and prior research. Composition of services is addressed
by many different approaches. There are, for example, process-driven orchestration
languages such as WS-BPEL [18] (BPEL hereafter) or BPMN [19], choreography
languages such as WS-CDL [14], and data-driven mash-up techniques. The third
aspects concerns the classification (or categorization) as a means of positioning a
service in the overall service space by associating it with well-defined meaning.
Typical types of classifications are, for instance, service type hierarchies, which are
often industry-specific. The United Nations Standard Product and Services Code
(UNSPSC1) or eCl@ss2 (cf. also [9]) are examples of global, generic type hierar-
chies. One particular type of classifying a service is the service nature in USDL. It
concerns the involvement of human or machine actors in the process of providing
and delivering a service. Another categorization often used relates to the granularity
or complexity of a service, i.e., does it provide a single operation or a complex set
of features. It is easy to imagine that there are many more of these category-like
characteristics, all of which could play a role in describing a service.

Besides (1) and (2), USDL defines a unifying frame that is referential and ex-
tensible, and avoids to replicate. The frame ties together foundational parts of ser-
vice description with all other aspects required for a comprehensive description dis-
cussed in Chapters 9 to 12. The foundational parts provide the core information
about a service, including its general properties, involved participants and depen-
dencies. As USDL does not aim to re-invent standards for composing services or
building classification hierarchies, it supplies mechanisms that allow such standards
to be integrated into the language and connected to other description aspects. USDL
captures the foundational parts in three distinct modules.

1. The Service Module captures the non-functional portions of the what aspect,
alongside general information about a service. The module also covers depen-
dencies to other entities, except for those that relate to the who aspect which are
subject of the next module.

2. The Participant Module defines a number of abstract and concrete roles, which
were identified in the context of the Internet of Services.

1 http://www.unspsc.org/
2 http://www.eclass.de/

http://www.unspsc.org/
http://www.eclass.de/

13 Modeling Foundations 329

3. The Foundation (module) of USDL contains elements that are of general nature
and re-used throughout the other modules of USDL. This includes elements
that describe entities independent of the concept of service, e.g., organization
and person.

The remainder of this chapter is structured as follows. Section 13.2 reflects on
state-of-the-art background and introduces the design of the three USDL modules
describing foundational parts of services. Sections 13.3, 13.4, and 13.5 present the
Service and Participant Modules, and Foundation of USDL in detail. Section 13.6
concludes the chapter.

13.2 Modeling Foundational Service Aspects in USDL

Foundational service aspects constitute the backbone of service description in
USDL and cover general information about a service, its relationships to partici-
pants, as well as structural and commercial dependencies. USDL defines three mod-
ules for these aspects and takes a generic, in some parts abstract, modeling approach,
which ensures enough flexibility to address a wide variety of services. The following
section discusses relevant background for some of the aspects mentioned, in order
to motivate the focus of modeling and the constructs selected. The section outlines
the design and relationship of the three USDL modules which are presented in detail
in subsequent sections.

13.2.1 State of the Art and its Influence on the Module Design

13.2.1.1 On Service Composition and Bundling

Building service-based applications through composition has been addressed by two
major areas: (business) process composition and mash-ups. Business process com-
position deals with representing steps of a process as single software components.
The software components are ordered and data dependencies are established, in or-
der to define the composition. The components can be reused to rapidly change
existing processes or build new ones and are often conceptually based on the idea
of a service-oriented architecture. Two wide-spread standards used to represent and
execute business processes are BPEL [18] and BPMN [19]. Building of mash-ups
often follows more informal approaches. The representation of mash-ups is not stan-
dardized in a formal way such as, e.g., BPEL. Applications are not only built from
consuming reusable software components, but also by aggregating data sources (in-
cluding data transformation and making the results accessible). One popular exam-
ple for creating data mash-ups is Yahoo Pipes [8]. While BPEL and BPMN often
rely on Web services (i.e., SOAP, WSDL, etc.) as the technical implementation of

330 Steffen Heinzl, Uwe Kylau, and Norman May

the SOA paradigm, mash-ups often use a number of different technologies and pro-
tocols (including HTTP accessible (quasi-)REST-based interfaces, RSS [15], ATOM
[21], OData [17], RDF [16], etc.), which allow representing and consuming data.

Beside the widespread BPEL and BPMN standard, there’s also the Service Com-
ponent Architecture (SCA) [1],3 a set of specifications that describe how to build
systems and applications out of reusable components around the SOA paradigm.
SCA components among others support a number of different interfaces for local as
well as remote consumption. Furthermore, composition of components is done in
general-purpose programming languages, such as Java and C#.

While the Interaction Module focuses on the behavioral aspect of compositions,
the modeling foundation reflects the structural aspects of composition to capture
how services are embedded into a business network. Section 8.3.2.3 already explains
that USDL addresses the requirement of information hiding by hiding the internal
structure of the composition (including language-specific composition details). So,
USDL just grasps enough information to show which services interact with each
other, short of knowing how this is implemented. Basically, the embedded compo-
sition information in USDL shows which services and thus which partners interact
in the ecosystem.

To further emphasize the importance of trading in business networks, also
bundling is possible in USDL. Bundling allows providers to combine services to
increase sales numbers. The services are not necessarily connected on a technical
level and can even be completely independent of each other.

13.2.1.2 On Service Participants

As already explained in Chapter 1, the participants in service networks and ecosys-
tems go beyond the traditional SOA roles (provider, broker, and consumer) espe-
cially with respect to monetization and fulfillment. [5] A service has to be described,
offered and found on a service marketplace for monetization. A service broker may
provide marketplace functionality and additionally coordinate the communication
with a set of services that fulfill a larger task, such as founding a new company and
thus take part in service delivery. To communicate with a service, data translations
might be necessary being performed by a service gateway. To add value to existing
services, service aggregators may combine existing services to new services, host
these with a service hoster (e.g., offering a cloud infrastructure) and sell these. In
some scenarios, a service may even be provided by another legal entity, viz., a busi-
ness owner, for example, a national subsidiary of a multi-national organization, or
the legislative authorities force the provider to adhere to certain conditions to protect
the environment.

To address all of these roles, USDL introduces — beside the provider and con-
sumer — the general concepts of intermediaries and stakeholders, and specifically
the business owner. Intermediaries comprise all the participants that are part of

3 http://oasis-opencsa.org/sca

http://oasis-opencsa.org/sca

13 Modeling Foundations 331

the service delivery, e.g., service hoster, service broker, etc. Stakeholders reflect
all additional participants beside providers, consumer, and intermediaries, that have
‘stakes’ in the service delivery, such as the legislative authorities.

13.2.1.3 On Time and Location

The conceptualization of location and time has been designed to specifically cater
for the needs (and challenges) of service description and is aligned with con-
cepts in the domain of geographic information systems and international time stan-
dards. Specifications that were consulted include the Geographic Markup Language
(GML, ISO 19136) [12] of the Open Geospatial Consortium,4 as well as ISO
8601 [11] and ISO 19108 [10] (a standard associated with GML), for the exchange
of time-related information. Whereas GML and ISO 19108 were deemed too com-
plex to be referenced in USDL (the required tooling support was considered to be
too much overhead), ISO 8601 covers only a part of what was identified as relevant.
As a consequence, both set of concepts (time and location) were re-modeled in
USDL, even though in a way that allows mapping between the different languages.

13.2.1.4 On Organizational Modeling

USDL was modeled taking into account the requirement of Organizational Embed-
ding as explained in Section 8.3.2.1. Since services cannot be described independent
of organizational details, such as the actors that are part of the fulfillment of the ser-
vice, the resources needed, etc., USDL takes on the concepts of agents and roles.
Hence, relationships of a service to resources, stakeholders, business services inside
the organization are included in USDL.

Among other works, USDL draws from the Organization Ontology [20] intro-
ducing concepts, such as Organization, Role and Agent. The ontology focuses on
these concepts to describe the structure of organizations. Further, Bottazzi [6] de-
fines an ontology of organizations based on DOLCE. In this ontology the main
concepts are organizations, norms, agents and roles. The norms define the main
concepts of the organization and the behavior of the agents. Agents and norms are
connected by roles.

13.2.2 Design and Relationship of USDL Modules

Capturing foundational service concepts in three distinct modules follows the re-
quirement of Modularity (cf. Section 8.3.1.3). The Service Module and Participant
Module are each concerned with a specific aspect, which is intended to help mod-

4 http://www.opengeospatial.org/

http://www.opengeospatial.org/

332 Steffen Heinzl, Uwe Kylau, and Norman May

elers focus on that aspect when defining a service description step-by-step. More-
over, separating core service and participant aspects follows proven principles of
role modeling and resource allocation, as employed in, e.g., work-flow and process
management systems [22]. Such systems define roles and participants independent
of the subject of activity (the work-flow or process). Roles are an abstract notion and
represent a set of capabilities or permissions. They are assigned to portions of ac-
tivity, e.g., specific tasks, at design time or deployment time, and are later resolved
according to defined rules. This enables systems to manage allocation of individual
participants and resources more dynamically by taking into account the context of a
specific case or process instance during role resolution.

Elements in the Foundation fall in one of the following three categories:

1. Elements independent of services, e.g., Organization, Person, or Resource.
2. Elements re-used across modules, e.g., Description, Artifact, or Classifica-

tion.
3. Connecting interfaces: These elements are interfaces that are used to connect

elements in one module with many different elements in other modules. A par-
ticular example is the link that connects the element Work in the Legal Module
(cf. Chapter 10) with the element represented (or subsumed) by Work. This
could be an entire Service defined in the Service Module or just an output
parameter of a single service function defined in the Functional Module (cf.
Chapter 11). In order not to introduce many module dependencies in the ref-
erencing module (the Legal Module in this case), an interface is added to the
Foundation which is then inherited by the elements that can be referenced. This
way there are only dependencies on the Foundation.

Table 13.1 lists the complete set of requirements that were considered during
modeling of core service, participant and foundation aspects. The table also briefly
outlines how these requirements were implemented in the three modules. A more
in-depth explanation is given in the remainder of this section.

The main purpose of the foundational modules of USDL is twofold. On the one
hand, they capture information about Service Agents and Networks (participants)
and Service Dependencies and Composition (cf. Section 8.2). On the other hand,
the Service Module provides the anchor for linking the different aspects of ser-
vice description, including the aspects of Services, Service Delivery, and Service
Consumption, all of which are covered by other USDL modules. Addressing the
requirement of Cognitive Sufficiency, this anchoring represents the structural back-
bone of USDL’s “unifying” character. For reasons of getting a quick entire overview
when inspecting a service description, all links to other modules (except for the Le-
gal Module) are directed outwards, i.e., a relationship exists from a core service
element to a single (“anchoring”) element. These elements act as containers for the
information captured by their respective module. The Legal Module (cf. Chapter 10)
connects to core service elements in the reverse way (via a connecting interface in
the Foundation). This method was chosen, because of the way that laws, in this case
copyright laws, are written. In copyright law there is a clear distinction between the
work that can be protected as intellectual property and an entity such as service that

13 Modeling Foundations 333

Table 13.1: USDL requirements (cf. Section 8.3) addressed by the Service and Par-
ticipant Module, as well as the USDL Foundation.

Requirement Requirement addressed how

Generic Language Requirements
Conceptualization Service Module views service as business asset, i.e., independent of par-

ticular implementation; definition of types (services, roles, etc.) is kept
on higher (abstract) level

Modularity Service Module and Participant Module are separated along conven-
tional lines; re-use is promoted through moving elements to USDL
Foundation

Extensibility For business networks, the Participant Module supports future special-
ization in the area of intermediaries.

Service Concept Formation Requirements
Organizational Embed-
ding

Services are captured on technical as well as business level. The Service
Module with its dependency structure allows tracing services back to
the organizational structures, resources, and services on business level.
The Service Module furthermore allows referencing of external (e.g.,
organizational) artifacts for service composition.

Cognitive Sufficiency Service Module provides the anchor for interconnecting different ser-
vice aspects and external description artifacts. A coarse-grained depen-
dency structure of services referring to other services may be refined
on-demand by obtaining the relevant information from other modules.

Service Information Hid-
ing

Service Module permits to publish or hide structure of a service, e.g., in
terms of its composition. Furthermore, language-specific artifacts, such
as process models can be hidden.

Deployment Symmetry Service and Participant Module both define structures for services with
its participants that are common for most application contexts and ser-
vice ecosystems. Participants may add information corresponding to
their roles to an existing USDL description.

is an embodiment of this work. This does not rule out that both are congruent, and
it is common that the entire service is protected and licensed.

Cognitive Sufficiency, i.e., understanding how different aspects of a service relate
to each other, is complemented by Comprehensibility. This requirement primarily
calls for easy to understand representations of the structured USDL model. On a
coarse level services can have dependencies to other services. These dependencies
may be refined — if needed — by obtaining the relevant information from other
modules, e.g., by resolving the function of the service and in a next step the price
of the function, etc. Beside the dependency structure, this requirement also moti-
vates supplementing USDL with additional information. This includes structured
and unstructured materials that provide further descriptive value, e.g., implemen-
tation guides, demonstration videos or reviews by other users. A similar need for
connections to external description artifacts exists for the requirement of Organiza-
tional Embedding. Therefore, the USDL Foundation introduces elements to provide
references to external artifacts in a generic way. References can be on the level of
entire artifacts, as well as individual artifact elements.

334 Steffen Heinzl, Uwe Kylau, and Norman May

All three modules presented here are mandatory in USDL for the simple reason
that there can be no service description without defining a service object that refers
at least one participant identified as the provider. Together with the Functional Mod-
ule (cf. Chapter 11) they form the minimum set of modules that need to be supported
in a USDL deployment (cf. Chapter 17). Deployment is the process that comprises
the definition of a USDL variant and configuration/adaptation of USDL tools to be
used in a particular application context. The structures of the service with its par-
ticipants are common for different ecosystems into which services can be deployed.
Thus, they build the foundation to achieve Deployment Symmetry for different appli-
cation domains. A cloud hoster may for example add information about himself to
the intermediaries. He may also make additions to the Pricing Module (see Chapter
9), e.g., adding a certain percentage of the original price for the hosting.

Having this in mind, USDL is specifically designed to be used for a wide range
of services. In consequence, it has to satisfy the description requirements of many
service types; requirements that potentially are very different. This problem is ad-
dressed by a generic and open approach, i.e., an approach that leaves a lot of con-
straints unspecified. The main reason is that the alternative would have been to in-
troduce specializations of concepts such as Service, Role or Resource, in order
to cater for the specific requirements of each concrete type. Done properly, this
would have led to the definition of tens or hundreds of individual types, given the
fact that the services domain is so vast and can be categorized along so many di-
mensions. However, it would have been a futile undertaking to find a single set of
specializations that is comprehensive and satisfying, and would be accepted as an
adequate decomposition. This is not only because of the large number of possible
dimensions, but also because many of them overlap. Thus, instead of unnecessar-
ily enlarging the USDL core model (the model presented in this part of the book)
with countless subtypes, the intention is that domain-specific USDL variants intro-
duce concrete requirements particular to their domain by means of extensions to the
generic USDL. Alternatively, it is possible to just indicate a type through a generic
classification mechanism available in the Foundation.

Altogether this approach offers the best basis for introducing USDL as a truly
“unifying” service description, as it maintains a generic level, but allows fine-
grained scoping of concrete variants for different application domains. Please refer
to Chapter 17 for more information about variant management and extensibility. In
addition, Chapter 16 discusses governance processes to ensure correct use of these
mechanisms during USDL deployment and maintenance.

Even though domain-specific types are the subject of USDL extensions, there are
a few important general type dimensions for the categorization of services that have
to be addressed in the core service description language. This is due to the fact that
these type dimensions influence the handling of a service in almost every service
ecosystem. The two dimensions considered in USDL are (a) ServiceNature and
(b) different types of composition structures. As mentioned earlier, ServiceNature
refers to the way a service is rendered (manual labor, semi-automated, automated),
which usually also influences how it can be requested and accessed. Composition
structures, introduced earlier in this section, are concerned with functional (re-)use

13 Modeling Foundations 335

or commercial packaging and imply dependencies between services. Following the
requirement of Service Information Hiding, they are captured in USDL on an ab-
stract level that omits any detail regarding how individual services are composed
with each other. The only information available is information about which services
are part of a composite or bundle and, in the case of composites, what type of func-
tional composition was used. Facilities to reference external artifacts that describe
the composition in detail ensure that Organizational Embedding can be achieved.
Through the dependency mechanism in the Service Module, services can be traced
back to the organizational structure, resources, and services at business level.

Since composition details as well as information for Organizational Embedding,
such as dependencies to other services and resources, are abstracted from the techni-
cal details of concrete languages (such as BPEL) and from implementation details,
the general language requirement of Conceptualization is fulfilled. Furthermore, to
additionally allow for Extensibility, the Intermediary role is abstract. Thus, USDL
is not limited to a predefined set of roles, but different types of intermediaries can
partake in the fulfillment of the service (e.g., a Service Hoster, a Service Broker,
etc.) as already described in Section 13.2.1.2.

This concludes the overview of the design of the three modules. For a full formal
specification please refer to [2], [4] and [3], respectively.

13.3 The Service Module

As previously mentioned, the Service Module forms the central backbone of USDL
where all other description aspects are tied together into a “unified” model of ser-
vices. According to the design principles introduced in Section 13.2, the elements
in the Service Module are defined on a generic level without formalizing any details
specific to a single application domain. They are also conceptual, meaning they do
not suggest of preclude a particular implementation. Figure 13.1 depicts the class
diagram of the module. Please note that the diagram does not show the entire model,
as connections to other modules are omitted. Please refer to Chapter 8 (Fig. 8.6 on
page 215) for a complete overview about module dependencies and other chapters
in this part of the book for details on these dependencies.

13.3.1 Overview and Main Constructs

Given the prominent and generic position of service composition, it was a natural
choice to architect the core structure with that dimension in mind. Correspondingly,
the module’s core structure consists of three service concepts that are unified under
the umbrella of the abstract element NetworkProvisionedEntity. As suggested by
the name, this element subsumes all entities that are subject of provisioning (and
delivery and consumption) in Web-based service networks (cf. Chapter 1). It con-

336 Steffen Heinzl, Uwe Kylau, and Norman May

Fig. 13.1: Class diagram of the Service Module.

stitutes the least common denominator among the three concrete service concepts,
namely Service, CompositeService and ServiceBundle. All three concepts man-
ifest the following commonalities.

• They each describe an identifiable entity (represented by the class Identifiable-
Element), which means it has a unique identifier and at least one name.

• The entity described may specify a version, which indicates its evolution.
• The entity described may be classified/categorized in a defined classification sys-

tem (classifications), and may hold certifications.
• They may provide additional information about the entity described, either

as informal descriptions or through links to external artifacts (additional-
Documentation).

• The entity described may manifest one or more dependencies to other services
or resources.

• They may link to a number of feedbackModels. These are artifacts that define a
model for collecting feedback about the entity described. Please see Chapter 12
for more information about service feedback.

13 Modeling Foundations 337

• The entity described may declare one or more variables which are held in its
context (contextVariables), either permanently or for the lifetime of a single
invocation.

Besides the three concrete service concepts there also exists the concept of
AbstractService which is used to represent classes of services, i.e., groups of ser-
vices that comply with a number of predefined description properties. Services de-
veloped to operate in the context of particular functional or organizational structures
can be abstracted and carried through into new deployments where they can be con-
cretely instantiated. An AbstractService is itself an IdentifiableElement that has a
version, can be classified (abstractServiceClassification) and supplemented with
additional descriptions. On top of that, it may contain nearly an entire service de-
scription, i.e., it has references to almost all service aspects (not shown in Figure
13.1). This is the template defined by the AbstractService. Concrete instances have
to adhere to it completely. AbstractServices may be composed hierarchically by
overwriting and extending other abstract services that act as their parents.

The basic definition of the most elemental concrete service concept, Service,
is that of a distinct set of capabilities intended to be rendered to a customer, par-
tially or as a whole. It exposes the set of capabilities through one or more techni-
cal interfaces, under well-defined service levels and according to particular pricing
schemes and license agreements. Services are also of a specific nature meaning
that they can either be performed manually (by a human), automated (e.g., by com-
puters without human interaction), or semi-automated. Finally, some services act as
facades to access and manage resources (type of resources indicated by exposed-
Resources).

Because the service model by default allows for flexible definition of consumable
functionality and delivery constraints, it is sometimes desirable to clearly define
what combinations of capabilities, price plans, etc. are available. This is possible by
giving a number of alternative options, e.g., functional options or pricing options,
which essentially represent subsets of the overall set of service aspects. In order to
furthermore capture dependencies between different kinds of options, one or more
ServiceVariant objects can be defined that group options into predefined packages,
e.g., a certain set of capabilities with a certain service level profile.

The second concrete service concept, CompositeService, is itself a Service
in the sense that it provides capabilities to consumers. Unlike Service, it uses
and aggregates other Services, ServiceBundles or AbstractServices available
in the service ecosystem (subsumed under the interface Composable). The com-
position of these components (or parts) may be arbitrary, i.e., does not follow a
particular order (SimplePartsComposite), or it may be governed at its highest
level by a process (OrderedPartsComposite). Components may also be composed
loosely on the basis of data producer/consumer relationships (DataDependent-
PartsComposite). Details of the composition are not captured in USDL, but
may be provided through referencing a formal specification of the composition
(implementationSpecification). The only pieces of information available are: what
the components are, how many of them have to be included, and which components
are mandatory (feature optional of Part). In the case of dynamic composition, it is

338 Steffen Heinzl, Uwe Kylau, and Norman May

possible that only some of the referenced parts are included in the final composite.
A groupingConstraint indicates whether it has to be one (1), all (-1), or some (the
number given) part(s).

Part represents the concept of a slot within a composition structure. Using this
abstraction layer on top of the actual Service, ServiceBundle or AbstractService
(component of a composition structure) allows for fine-grained configuration of a
composition, e.g., by making parts optional. It should be pointed out that general
composition constraints (of a CompositeService or ServiceBundle) always take
precedence over part configurations. For example, if the composition constraint is
set to all (-1), it is not possible to omit optional parts. In general, it is envisioned
that part configurations refine overall composition constraints and are not defined in
a conflicting way.

The third concrete service concept is ServiceBundle. In contrast to Composite-
Services, which provide new functionality by combining the capabilities of their
parts, ServiceBundles aggregate Services, ServiceBundles or further Abstract-
Services for commercial reasons. In other words, bundling is defined as offering
several services for sale as one combined package. It is motivated by, e.g., compet-
itive pricing or combining a low-selling service with a highly demanded service in
order to drive up sales figures. The degree of collective delivery/consumption of the
bundled items can be limited through a bundlingConstraint (similar to grouping-
Constraint of CompositeService).

The element Dependency captures information about the relationships that ex-
ist between a Service or ServiceBundle and another Service, ServiceBundle,
AbstractService or Resource. This element expresses various generic types of de-
pendencies such as Requires, Includes and canSubstitute, amongst others. Each
DependencyType has particular semantics. For example, a dependency of type
Requires implies that the operation of the Service or ServiceBundle depends on
the operation of the referenced Service, ServiceBundle, AbstractService, or Re-
source; consequence is that the referenced object has to be made available by the
consumer (i.e., has to be ordered separately). Please refer to [2] for an explanation
of all DependencyTypes.

13.3.2 Illustrative Example

Listing 13.1 depicts an excerpt of the service description for service 2PL Airline
Manager (cf. Section 8.7). It shows general service properties and references to
other service aspects (covered in other USDL modules). It is an automated ser-
vice (nature). It is available in its first major version (1.0) that was published on
March 31st, 2011, at 8am UCT+2h (feature publicationTime). There is one
long description with information about the service, which is supplemented by an
external document about certification guidelines for client implementations (feature
additionalDocumentation).

13 Modeling Foundations 339

Listing 13.1: Core properties of example service 2PL Airline Manager.
1 <s e r v i c e>
2 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 2 pl−sh ip−manager</ r e s o u r c e I D>
3 <v e r s i o n >1.0</ v e r s i o n>
4 <n a t u r e>Automated</ n a t u r e>
5 <names>
6 <d e s c r i p t i o n>
7 <va lue>2PL A i r l i n e Manager</ va lue>
8 <type>name</ type>
9 </ d e s c r i p t i o n>

10 </names>
11 <p u b l i c a t i o n T i m e x s i : t y p e = ’ f o u n d a t i o n : A b s o l u t e P o i n t I n T i m e ’>
12 <va lue >2011−03−31T08 :00 :00 .000+02 :00 < / va lue>
13 </ p u b l i c a t i o n T i m e>
14 <d e s c r i p t i o n s >
15 <d e s c r i p t i o n>
16 <va lue>2PL A i r l i n e ’ s Manager S o f t w a r e makes b u s i n e s s s h i p p i n g
17 e a s i e r and more e f f i c i e n t < / va lue>
18 <type>f r e e t e x t L o n g </ type>
19 <l anguage>en</ l anguage>
20 </ d e s c r i p t i o n>
21 </ d e s c r i p t i o n s >
22

23 <a d d i t i o n a l D o c u m e n t a t i o n>
24 <a r t i f a c t >
25 <type>UsersManual </ type>
26 <mimeType>a p p l i c a t i o n / pdf </mimeType>
27 <u r i>h t t p s : / / www. 2 p l . com / downloads / pdf / C e r t i f i c a t i o n G u i d e l i n e s . pdf </ u r i>
28 <d e s c r i p t i o n s >
29 <d e s c r i p t i o n>
30 <va lue>G u i d e l i n e s f o r c e r t i f y i n g a c l i e n t i m p l e m e n t a t i o n .</ va lue>
31 <type>f r e e t e x t S h o r t </ type>
32 <l anguage>en</ l anguage>
33 </ d e s c r i p t i o n>
34 </ d e s c r i p t i o n s >
35 </ a r t i f a c t >
36 </ a d d i t i o n a l D o c u m e n t a t i o n>
37

38 <p r o v i d e r> <!−− P a r t i c i p a n t Module −−> </ p r o v i d e r>
39 <p r i c e P l a n s> <!−− P r i c i n g Module −−> </ p r i c e P l a n s>
40 <s e r v i c e L e v e l P r o f i l e s > <!−− S e r v i c e Leve l Module −−> </ s e r v i c e L e v e l P r o f i l e s >
41 <c a p a b i l i t i e s > <!−− F u n c t i o n a l Module −−> </ c a p a b i l i t i e s >
42 < t e c h n i c a l I n t e r f a c e s > <!−− T e c h n i c a l Module −−> </ t e c h n i c a l I n t e r f a c e s >
43 <i n t e r a c t i o n P r o t o c o l s > <!−− I n t e r a c t i o n Module −−> </ i n t e r a c t i o n P r o t o c o l s >
44

45 </ s e r v i c e>

The second example depicted in Listing 13.2 and shows how 2PL Airline bun-
dles services into an International Economy Bundle. The bundle consists of the
automated 2PL Airline Manager service and the manual International Economy
airfreight service. Both services have to be included as indicated by bundling-
Constraint (set to -1).

Listing 13.2: Bundling of 2PL Airline example services.
1 <!−− 2PL A i r l i n e Manager −−>
2 <s e r v i c e>
3 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 2 pl−sh ip−manager</ r e s o u r c e I D>
4 . . .
5 </ s e r v i c e>
6

7 <!−− 2PL A i r l i n e I n t e r n a t i o n a l Economy −−>
8 <s e r v i c e>
9 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 2 pl− i n t l −economy</ r e s o u r c e I D>

10 <n a t u r e>Manual</ n a t u r e>

340 Steffen Heinzl, Uwe Kylau, and Norman May

11 . . .
12 </ s e r v i c e>
13

14 <!−− 2PL A i r l i n e I n t e r n a t i o n a l Economy Bundle −−>
15 <s e r v i c e B u n d l e>
16 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / b u n d l e s / 2 pl− i n t l −economy−1</ r e s o u r c e I D>
17 . . .
18 <b u n d l i n g C o n s t r a i n t >−1</b u n d l i n g C o n s t r a i n t>
19 <p a r t s>
20 <p a r t>
21 <o p t i o n a l>f a l s e </ o p t i o n a l>
22 <composable>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 2 pl−sh ip−manager</ composable>
23 </ p a r t>
24 <p a r t>
25 <o p t i o n a l>f a l s e </ o p t i o n a l>
26 <composable>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 2 pl− i n t l −economy</ composable>
27 </ p a r t>
28 </ p a r t s>
29 </ s e r v i c e B u n d l e>

13.4 The Participant Module

The Participant Module connects provisioned entities, i.e., Services or Service-
Bundles, with the participants that are involved in their provisioning, delivery
and consumption. In this context participants fulfill a particular role. The Section
13.2.1.2 introduced a set of general roles identified as relevant for service ecosys-
tems. It goes beyond the set of roles usually considered in traditional service-
oriented architectures (SOA), which is one of the reasons why USDL dedicates a
separate module to the modeling of roles. The other reason was outlined in Sec-
tion 13.2 and concerns the level of abstraction applied to modeling. Keeping the
model on an abstract level ensures that it is generic enough to cover a wide range of
application scenarios.

These two aspects, extended role model and high level of abstraction, formed the
Participant Module. Figure 13.2 depicts the class diagram of the module.

13.4.1 Overview and Main Constructs

The central concept of the Participant Module is that of a Role. It is an abstract
element that is extended by a number of concrete roles. These are the high-level
roles identified earlier in this book (cf. Section 8.2.2). Each one of them can be de-
fined either in an abstract way, i.e., only using textual descriptions, or in a concrete
way by connecting it to a participant (abstract element Agent in USDL). Enabling
an abstract definition allows to express certain requirements before a Role is actu-
ally resolved and an enacting participant is determined. Such requirements are, for
example, that a certain role is necessary for the delivery of a service, or that the en-

13 Modeling Foundations 341

Fig. 13.2: Class diagram of the Participant Module.

acting participant has to comply with constraints and obligations. The default case,
however, is that a role is defined concretely, i.e., a participant exists.

In the process of provisioning, delivery and consumption of services through
service ecosystems there is one participant that holds governance and operational
responsibility for a service. This participant is commonly referred to as service
Provider. It controls how the service is provisioned to consumers, e.g., what are
the organizational and system resources used, or how it is implemented. In most
cases the provider will also act as the trading partner to consumers and define busi-
ness constraints of delivery. However, there are scenarios in which this function is
performed by another legal entity — here called a BusinessOwner. This could
be, for example, a national subsidiary of a multi-national organization, where the
subsidiary sells the service and the parent organization provides it.

Especially in diversified service ecosystems, there are often entities other than
the provider that hold stakes in a service. For example, composite services and ser-
vice bundles are aggregations that comprise services from different providers. Each
aggregated provider performs part of the aggregation and hence becomes a Stake-
holder. This is due to the fact that it is the providers, who largely control the terms of
engagement with aggregators regarding the re-use or re-purposing of their services.
In other words, they have a certain influence on the composite services and service
bundles that re-use their services. Further examples of stakeholders include regula-
tion bodies, such as governments or industry associations, which have the authority
to prescribe certain aspects of service delivery. There are also third-party providers
of delivery functions (e.g., billing or authentication) that can be orchestrated with
a service enabling the outsourcing of these functions. All these participants are as-

342 Steffen Heinzl, Uwe Kylau, and Norman May

sociated with dedicated parts of the provisioning and delivery of a service and are
summarized here under the term stakeholder.

A particular subset of Stakeholders are Intermediaries. Intermediaries have
to be understood as one possible set of architectural roles, with each role conceptual-
izing a certain behavior or mode of operation requiring a specific set of applications
and tools. Participants that facilitate delivery and consumption of services act in
one or several of these roles while operating in service ecosystems. The Participant
Module clearly distinguishes between a pure Stakeholder and an Intermediary, in
order to capture the difference of purpose associated with the stake. Stakeholders
can influence delivery of services, whereas intermediaries facilitate delivery.

The Service Hoster is an example for an intermediary that catalogues special
types of services, namely infrastructure-as-a-service and platform-as-a-service of-
ferings (commonly termed cloud computing services). Likewise, the Service Gate-
way is a specific intermediary that provides interoperability through cataloguing
and interfacing with a choice of a 3rd-party B2B gateways, which provide services
such as message translation and store-forward processing. The Service Aggregator
provides added value by packaging and combining services. In addition, the Ser-
vice Broker cares for central service publication, discovery, and ordering. Finally,
the Service Channel Maker is positioned at the consumer end of the service provi-
sioning chain where services are channeled into user environments and consumed.
[5]

Finally, on the consumer side, the model defines two elements: Consumer
and TargetConsumer. TargetConsumer describes potential user groups of a ser-
vice, which offers a means to advertise in targeted manner. The definition of the
user group is done either through referencing an entry in a predefined taxonomy
(classifications) or via textual descriptions. Consumer is a specific role that rep-
resents the participant consuming a service. In most cases it will be abstract, i.e.,
with no particular participant assigned, and will be used to specify requirements
consumers must meet, e.g., comply with certain service levels. It is only in those
cases where a service description becomes part of contracting that a concrete con-
sumer can be identified.

13.4.2 Illustrative Example

An example of how to use different participant roles is shown in the service descrip-
tion excerpt depicted in Listing 13.3. It is the Lead Logistics service composition
offered by 4PL (cf. Section 8.7). To be specific, it is actually a version of the service
that is offered in a German logistics service ecosystem. It consists of three services:
3PL’s Freight Forwarding composite service, Certification provided by 4PL and
Customs Clearance performed by Russia’s customs agency. Only 3PL’s service is
mandatory. The other two services are optional, as they depend on the type of cargo,
i.e., not everything needs to be cleared and certified. Accordingly, the grouping-
Constraint of the composition is set to 1.

13 Modeling Foundations 343

The participant role setup for services Freight Forwarding and Customs Clear-
ance is simple. They each have a provider only (3PL and Russian customs, respec-
tively). Certification is provided by 4PL — a Russian company, but sold in the Ger-
man market by 4PL’s German subsidiary. This makes the subsidiary the service’s
businessOwner, while the employees of the Russian parent company do the work.

With 4PL’s composite service, this is a bit different. Employees of the German
subsidiary are actually organizing the shipment, invoking the individual parts and
interacting with them. Consequently, it is the subsidiary that is listed as the provider.
However, because Lead Logistics is a composite service, there exists a relationship
to the parent company. 4PL, next to 3PL and Russian customs, is a stakeholder of
the service, as it provides one of its components.

The description of the different participants (agent entries) are given for com-
pleteness. Please refer to Section 13.5 for a comprehensive example of participant
description.

Listing 13.3: Bundling of 4PL example service.
1 <!−− 3PL F r e i g h t Forward ing −−>
2 <c o m p o s i t e S e r v i c e>
3 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 3 pl−f r e i g h t −fwd</ r e s o u r c e I D>
4 <n a t u r e>Manual</ n a t u r e>
5 <p r o v i d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 3 pl </ p r o v i d e r>
6 . . .
7 </ c o m p o s i t e S e r v i c e>
8

9 <!−− GOST−R C e r t i f i c a t i o n −−>
10 <s e r v i c e>
11 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 4 pl−gos t−r </ r e s o u r c e I D>
12 <n a t u r e>Semi−Automated</ n a t u r e>
13 <p r o v i d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl </ p r o v i d e r>
14 <bus inessOwner>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl−de</ bus inessOwner>
15 . . .
16 </ s e r v i c e>
17

18 <!−− Customs C l e a r a n c e −−>
19 <s e r v i c e>
20 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / customs−r u s s i a </ r e s o u r c e I D>
21 <n a t u r e>Manual</ n a t u r e>
22 <p r o v i d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / customs−r u s s i a </ p r o v i d e r>
23 . . .
24 </ s e r v i c e>
25

26 <!−− 4PL Lead L o g i s t i c s −−>
27 <c o m p o s i t e S e r v i c e>
28 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / b u n d l e s / 4 pl−l e ad− l o g i s t i c s </ r e s o u r c e I D>
29 . . .
30 <p r o v i d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl−de</ p r o v i d e r>
31 <s t a k e h o l d e r s>
32 <s t a k e h o l d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 3 pl </ s t a k e h o l d e r>
33 <s t a k e h o l d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl </ s t a k e h o l d e r>
34 <s t a k e h o l d e r>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / customs−r u s s i a </ s t a k e h o l d e r>
35 <s t a k e h o l d e r s>
36 . . .
37 <g r o u p i n g C o n s t r a i n t >1</ g r o u p i n g C o n s t r a i n t>
38 <compos i t ionType>O r d e r e d P a r t s C o m p o s i t e<compos i t ionType>
39 <p a r t s>
40 <p a r t>
41 <o p t i o n a l>f a l s e </ o p t i o n a l>
42 <composable>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 3 pl−f r e i g h t −fwd</ composable>
43 </ p a r t>
44 <p a r t>

344 Steffen Heinzl, Uwe Kylau, and Norman May

45 <o p t i o n a l>t r u e </ o p t i o n a l>
46 <composable>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / 4 pl−gos t−r </ composable>
47 </ p a r t>
48 <p a r t>
49 <o p t i o n a l>t r u e </ o p t i o n a l>
50 <composable>h t t p : / / u s d l b o o k . o rg / s e r v i c e s / customs−r u s s i a </ composable>
51 </ p a r t>
52 </ p a r t s>
53 </ c o m p o s i t e S e r v i c e>
54

55 <agen t>
56 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl </ r e s o u r c e I D>
57 . . .
58 </ agen t>
59 <agen t>
60 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl−de</ r e s o u r c e I D>
61 . . .
62 </ agen t>
63 <agen t>
64 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / customs−r u s s i a </ r e s o u r c e I D>
65 . . .
66 </ agen t>
67 <agen t>
68 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 3 pl </ r e s o u r c e I D>
69 . . .
70 </ agen t>

13.5 The Foundation

As outlined in Section 13.2, the Foundation contains a number of different base el-
ements, ranging from elements re-used across two or more modules to elements in-
dependent of service. This section gives an overview of these elements and presents
a few examples. A detailed specification can be found in [3].

13.5.1 Overview and Main Constructs

13.5.1.1 Time and Location

Among the most universal elements, which are independent of service description,
are time and location. Both concepts are used in the context of service description,
for instance, to express temporal and geographical availability, i.e., the time when
and location where a service can be requested and delivered. Figure 13.3 and Figure
13.4 depict time and location elements, respectively.

The Time concept in USDL offers a number of concrete types to capture tem-
poral parameters. Four main types are distinguished, which together cover many
known use cases. The more common ones are TimeInstant and TimeInterval.
TimeInstants are either defined as absolute points in time, where value is a rep-
resentation according to ISO 8601 [11], or relative points in time. The latter is ex-
pressed relative to a ReferenceEvent and may either use a duration (the sum of

13 Modeling Foundations 345

Fig. 13.3: Excerpt of the class diagram of the Foundation: time elements.

TimeEntity objects, e.g., two weeks and three days) or the next occurrence of a spe-
cific temporal entity (e.g., next April) to mark the time instant. TimeIntervals may
also use durations (DurationInterval) to define a time span from a specific time in-
stant (start). Alternatively, StartToEndInterval uses two time instants to mark the
time span.

The third concrete type of time is RecurrentTime and defines a set of time
instants by means of recurrence. Again, there are several ways to express recurrence.
If the recurrence is periodic, a fixed duration is specified (repeatEvery). If it is not,
a more complex TimePattern can be defined. The number of recurrences is either
known and can be given in combination with a start time instant (validFromStart-
Time), or unknown, in which case an interval marks the time span during which
recurrence takes place (validDuringTimeInterval).

AbsolutePointInTime, the two concrete time intervals and RecurrentTime
make up a portion of the model that is equivalent to what can be expressed with ISO
8601. USDL adds to that RelativePointInTime and TimePattern. TimePattern is
the fourth main type and is meant to express more elaborate temporal properties,
e.g., opening times of a shop. Patterns are defined using a formal expression in an
arbitrary expression language. Finally, to ensure that time properties are unambigu-
ous around the world, each concrete type may specify a timezone identifier (e.g.,
+1000 or CET).

The Location concept in USDL distinguishes between real physical (geographic)
locations, e.g., street address, and electronic locations, e.g., a telephone number or
a URL. Both types are understood to identify one or more locations in an address
space, which is why they are subsumed under one umbrella concept. For real phys-
ical locations there exist two encodings of a single address space, the global union
of postal addresses and the global geographic coordinate system (limited here to
WGS84,5 for the sake of simplicity). It is possible to do a mapping from one to the

5 World Geodetic System 1984

346 Steffen Heinzl, Uwe Kylau, and Norman May

Fig. 13.4: Excerpt of the class diagram of the Foundation: location elements.

other, and they are sometimes referenced implicitly and simultaneously. For exam-
ple, when talking about a country one could either think of it as a self-contained
region in the global space of street addresses, or as a defined set of geo-coordinates.
Please note that physical locations are limited to locations on the surface of the
earth. USDL defines the following concrete types of PhysicalLocation.

• GeographicLocation: A single point on the earth’s surface, defined by WGS84
coordinates.

• PostalAddress: A street address that is expressed as a set AddressItem objects.
A mapping to GeographicLocation may be provided.

• Polygon: An area on the earth’s surface delimited by the convex hull that is
defined by 2 or more vertices (GeographicLocations).

• AdministrativeArea: An area on the earth’s surface that is delimited by a politi-
cal definition or claim of ownership, e.g., country, state (province, territory), city,
or postal code area.

• Area: An area on the earth’s surface that is defined by one or more reference
locations and a perimeter around these locations (product of perimeter value
and unitOfLength).

Opposite to physical locations, the realm of electronic addresses has more than
just one address space and often many encodings for a single one of them. This
is due to the fact that electronic addresses are created with information technology
and are thus virtual by default. Because of the variety of address spaces, it is neces-
sary to identify that space when specifying an ElectronicAddress. USDL defines
a simple set of address types, which in most cases is sufficient to uniquely identify

13 Modeling Foundations 347

Fig. 13.5: Excerpt of the class diagram of the Foundation: generic elements, agents,
resources and connecting interfaces.

a space (e.g., phone number, email, IP v4). However, in the case of instant messag-
ing the type is not enough and an additional identifier of the messaging system has
to be supplied. Lastly, electronic addresses can be aggregated into sets or regions,
either through explicit reference (groupedAddresses) or through specification of
templates in the form of regular expressions (addressTemplates).

13.5.1.2 Generic Description Elements

The USDL Foundation defines a number of generic description elements that are
often used from other modules. They are depicted in Figure 13.5 and introduced in
the following.

One of the most widely used elements is Description. It is intended to attach
typed and scoped textual descriptions to other USDL elements. Typing relates to
how the textual description that is given as the value should be understood, e.g.,
name, short free-text or keyword. Scoping can be used to limit the validity of the

348 Steffen Heinzl, Uwe Kylau, and Norman May

textual description to a specific space. It is useful, for instance, to define the context
wherein a name represents a unique identifier. Another option is to specify a lan-
guage identifier to indicate the language of the textual description. This enables a
form of internationalization by attaching multiple Description objects of the same
type and scope, but different languages, to a single USDL element instance.

Concerning the aspect of identification and naming, it should be noted that many
elements in USDL provide a description of real world objects (material and im-
material). One inherent characteristic of such real world objects is that they can
be distinguished from another. In order to capture their individuality, Identifiable-
Element provides means to make them uniquely identifiable. The class is abstract
and requires its concrete subtypes to specify one global identifier (resourceID), to
be used mainly by systems and tools, and at least one name. Names are Descrip-
tion objects of type name and usually represent identifiers introduced by humans.
There can be several names that are used synonymous, with probably some of them
limited to a certain scope.

In addition to generic descriptions and identifiers, there are several elements in
the Foundation that can be used to reference external resources. One of them is the
element Artifact. It represents a link or pointer to a resource that can be located with
a URI. The content type of the resource (type) and its encoding (mimeType) are
given to ensure correct lookup and handling during resolution of the URI, while a
set of descriptions may give detailed information about the resource. Another ref-
erential element is Classification. It identifies a specific entry (or class) in a classi-
fication system, e.g., a taxonomy or ontology. The classification system is uniquely
identified (classificationSystemID) and a link to its formal definition or imple-
mentation can be attached using an Artifact object. A special type of classification
is TypeReference, which identifies an element in a type system (a classification
system of data types).

While ordinary classifications are “self-assigned” with no sure method the check
whether they are true, a Certification provides a classification that was verified by
an independent party. The proof that the classification in the certification system is
not part of USDL itself, but can be given in form of a certified, e.g., digitally signed,
artifact (the certificate).

The last of the referential elements in the Foundation of USDL is Variable-
Declaration. It represents variables that are defined in the context of an entity, e.g.,
a service whose functions read and manipulate such variables. The represented vari-
able has to have a single name and may be typed (using TypeReference). It may
also specify a defaultValue and descriptions that give more information about the
purpose and use of the variable. No assumptions are made about the lifetime of
the variable. It could exist permanently, i.e., as long as the service is deployed and
available, or just for the lifetime of a single service invocation.

The set of generic description elements is completed by the elements Expres-
sion, Condition and Option. Expression can be used to specify formal expres-
sions in an arbitrary language (identified by languageID). Condition represents an
expression that is used to express state. Option defines an abstract super-type that
is meant to be extended in future by concrete option elements. The concept of op-

13 Modeling Foundations 349

tion is introduced to capture subsets of particular service aspects, e.g., functionality
or pricing, in order to limit the possible combinations of individual elements that
can be contracted and consumed. For instance, a service provides three capabili-
ties and the service provider wants to express that users can only consume them in
two combinations, because two capabilities are interchangeable (two versions of a
particular functionality). Supplying two options, the provider can rule out that the
wrong combination is selected.

13.5.1.3 Agents and Resources

In order to describe the participants that are involved in the provisioning, delivery
and consumption of services, the Foundation introduces the abstract element Agent,
which is an IdentifiableElement (see Figure 13.5). The term “agent” is used to in-
dicate that these are entities that act independently, and they are also understood in
the legal sense as legal persons. USDL distinguishes two concrete types of agents:
Organization and Person. Both share a number of properties. For example, they
may be categorized into multiple classification systems and may hold multiple cer-
tifications, e.g., ISO9001 [13] for organizations and CISA [7] for persons. They are
also entities that can receive feedback from other participants and therefore may
reference a number of feedback models (cf. Chapter 12).

An Organization is an institutionalized legal person. It is mainly characterized
by its name (or names), its legalForm (business type in a country-specific system
of legal entities) and its contact data. The latter is grouped into profiles that may
contain multiple electronic addresses and up to one postal address. Each Contact-
Profile is meant to represent the official contact information for a specific location
or branch of the organization. Information about this location may be given as addi-
tional descriptions. Similarly, additional information about the organization itself
can be attached to an Organization object via descriptions. Finally, persons can
act as representatives of organizations.

A Person is an individual natural person. She or he has a firstName, lastName,
and potentially many middleNames. She or he may also specify her or his date-
OfBirth, jobTitle. In addition, she or he may hold a number of official titles, e.g.,
“Prof.,” “Ph.D,” or “Sir,” and may be affiliated with one or more functional groups in
an organization (departments). Similar to organizations, a person may have mul-
tiple contactProfiles for different purposes, for instance, one profile for work and
one personal profile. A person’s displayable name and aliases can be expressed with
feature names, and additional information, such as biographies, can be attached
using feature descriptions.

Next to active agents there is also an element to describe passive objects used
in the context of service provisioning and delivery. To be specific, the element
Resource captures information about types or classes of objects. These resource
classes are uniquely identifiable entities (superclass IdentifiableElement) and are
categorized into one of four general types (software, information, human, or physi-
cal). They can be further classified, as well as hold certifications.

350 Steffen Heinzl, Uwe Kylau, and Norman May

13.5.1.4 Connecting Interfaces

Connecting interfaces are used as a non-intrusive method of referencing when the
referenced target can be one of many USDL elements. The intent is to reduce mod-
ule dependencies which would otherwise be introduced, because targeted elements
are likely to be scattered across multiple modules. The following interfaces are de-
fined (see also Figure 13.5).

• DependencyTarget is inherited by elements that describe entities upon which a
service can depend (cf. Section 13.3).

• FunctionalElementRef is inherited by elements that describe functionality
which may be exposed by elements of a technical interface (cf. Chapter 11).

• ServiceLevelElementRef is inherited by elements that describe aspects of a
service to which service levels may apply (cf. Chapter 12).

• CopyrightProtectedElementRef is inherited by elements that describe aspects
of a service to which copyright protection may apply (cf. Chapter 10).

13.5.2 Illustrative Example

The following illustrates the use of a few selected elements of the Foundation. More
examples are given in Chapters 9 and 10, as well as Section 13.3 of this chapter.

Listing 13.4 depicts a fragment of the description of service Lead Logistics (see
Section 8.7). It shows the part where the organizational data of the service provider,
i.e., 4PL’s German branch (cf. Listing 13.3), is defined. Organization is a con-
crete type of Agent, a fact expressed by feature xsi:type. The company has the
official name “4PL GmbH” (feature names) and its business type, “GmbH,” is for-
mally specified through a Classification (feature legalForm). 4PL GmbH has 63
employees and was founded in 1993 (features numberOfEmployees and yearOf-
Founding). The company can be contacted at its office, which is located in Berlin
at approximately 55.7237 degrees latitude and 37.6826 degrees longitude. There
is one person representing the company (feature representatives; see also Listing
13.5).

Listing 13.4: Definition of 4PL organizational data: 4PL German branch.
1 <a g e n t x s i : t y p e =” f o u n d a t i o n : O r g a n i z a t i o n”>
2 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / o r g a n i z a t i o n s / 4 pl−de</ r e s o u r c e I D>
3 <names>
4 <d e s c r i p t i o n>
5 <va lue>4PL GmbH</ va lue>
6 <type>name</ type>
7 </ d e s c r i p t i o n>
8 </names>
9 <numberOfEmployees>63</numberOfEmployees>

10 <yearOfFounding >1993</ yearOfFounding>
11 <l ega lForm>
12 <c l a s s i f i c a t i o n S y s t e m I D>German B u s i n e s s E n t i t y Types</

c l a s s i f i c a t i o n S y s t e m I D>
13 <c l a s s I D>GmbH</ c l a s s I D>
14 </ l ega lForm>

13 Modeling Foundations 351

15 <r e p r e s e n t a t i v e s >
16 <r e p r e s e n t a t i v e >h t t p : / / u s d l b o o k . o rg / p e r s o n s / 4 pl−y u r i </ r e p r e s e n t a t i v e >
17 </ r e p r e s e n t a t i v e s >
18 <c o n t a c t P r o f i l e s >
19 <c o n t a c t P r o f i l e >
20 <p o s t a l A d d r e s s>
21 <l i n e I t e m s>
22 <a d d r e s s I t e m>
23 <va lue>L o g i s t i k S t r a s s e </ va lue>
24 <type>s t r e e t </ type>
25 <a d d r e s s I t e m>
26 <a d d r e s s I t e m>
27 <va lue >43</va lue>
28 <type>s t r e e t N u m b e r </ type>
29 <a d d r e s s I t e m>
30 <a d d r e s s I t e m>
31 <va lue>B e r l i n </ va lue>
32 <type>c i t y </ type>
33 <a d d r e s s I t e m>
34 <a d d r e s s I t e m>
35 <va lue >10123</ va lue>
36 <type>pos t code </ type>
37 <a d d r e s s I t e m>
38 <a d d r e s s I t e m>
39 <va lue>Germany</ va lue>
40 <type>c o u n t r y </ type>
41 <a d d r e s s I t e m>
42 </ l i n e I t e m s>
43 <g e o g r a p h i c L o c a t i o n>
44 <l a t i t u d e >55.723727</ l a t i t u d e >
45 <l o n g i t u d e >37.682562</ l o n g i t u d e>
46 </ g e o g r a p h i c L o c a t i o n>
47 </ p o s t a l A d d r e s s>
48 <d e s c r i p t i o n s >
49 <d e s c r i p t i o n>
50 <va lue>4PL German Branch O f f i c e </ va lue>
51 <type>f r e e t e x t S h o r t </ type>
52 <l anguage>en</ l anguage>
53 </ d e s c r i p t i o n>
54 </ d e s c r i p t i o n s >
55 </ c o n t a c t P r o f i l e >
56 </ c o n t a c t P r o f i l e s >
57 </ agen t>

The service description fragment in Listing 13.5 depicts the definition of a per-
son, who is a representative of 4PL’s German branch. It is another part of the de-
scription of service Lead Logistics. As indicated by feature xsi:type, Person is also
a special type of Agent. The person is called “Yuri Petrovich Andropov;” a name
that consists of a firstName, a middleName and a lastName. In addition to individ-
ual name composites, a label for display is given in feature names. Yuri is the sales
manager and has a Ph.D. (features jobTitle and titles). He moreover holds a certi-
fied accreditation of the status ‘Expert Customs Broker’ from the German ministry
of trade, as specified in feature certificates. A PDF copy of the certificate can be ob-
tained from the German Website of 4PL. Lastly, a phone number and email address
are listed as Yuri’s business contact details (feature contactProfiles specifying two
ElectronicAddress objects).

Listing 13.5: Definition of 4PL organizational data: representative of 4PL.
1 <a g e n t x s i : t y p e =” f o u n d a t i o n : Pe r so n”>
2 <r e s o u r c e I D>h t t p : / / u s d l b o o k . o rg / p e r s o n s / 4 pl−y u r i </ r e s o u r c e I D>
3 <names>

352 Steffen Heinzl, Uwe Kylau, and Norman May

4 <d e s c r i p t i o n>
5 <va lue>Yur i P . Andropov</ va lue>
6 <type>name</ type>
7 </ d e s c r i p t i o n>
8 </names>
9 <f i r s t N a m e>Yuri </ f i r s t N a m e>

10 <middleNames>
11 <middleName>P e t r o v i c h </middleName>
12 </middleNames>
13 <las tName>Andropov</ las tName>
14 < t i t l e s >
15 < t i t l e >Ph .D.</ t i t l e >
16 </ t i t l e s >
17 <j o b T i t l e>S a l e s Manager</ j o b T i t l e>
18 <c e r t i f i c a t i o n s >
19 <c e r t i f i c a t i o n >
20 <c e r t i f i c a t e >
21 <type>C e r t i f i c a t e </ type>
22 <mimeType>a p p l i c a t i o n / pdf </mimeType>
23 <u r i>h t t p : / / www. 4 p l . de / company−d a t a / y u r i a / agen t−c e r t i f i c a t i o n . pdf </ u r i>
24 <c e r t i f i c a t e >
25 <c l a s s i f i c a t i o n >
26 <c l a s s i f i c a t i o n S y s t e m I D>urn : t r a d e −o f f i c e : customs−a g e n t s : de</

c l a s s i f i c a t i o n S y s t e m I D>
27 <c l a s s>c e r t i f i e d −e x p e r t<c l a s s>
28 <c l a s s i f i c a t i o n >
29 <d e s c r i p t i o n s >
30 <d e s c r i p t i o n>
31 <va lue >’ E x p e r t Customs Broker ’ a c c r e d i t a t i o n from m i n i s t r y o f t r a d e </

va lue>
32 <type>f r e e t e x t S h o r t </ type>
33 <d e s c r i p t i o n>
34 <d e s c r i p t i o n s >
35 <c e r t i f i c a t i o n >
36 <c e r t i f i c a t i o n s >
37 <c o n t a c t P r o f i l e s >
38 <c o n t a c t P r o f i l e >
39 <e l e c t r o n i c A d d r e s s e s>
40 <e l e c t r o n i c A d d r e s s>
41 <va lue >+49 030 999 1234</ va lue>
42 <type>phone</ type>
43 </ e l e c t r o n i c A d d r e s s>
44 <e l e c t r o n i c A d d r e s s>
45 <va lue>y u r i . a@4pl . de</ va lue>
46 <type>emai l </ type>
47 </ e l e c t r o n i c A d d r e s s>
48 </ e l e c t r o n i c A d d r e s s e s>
49 </ c o n t a c t P r o f i l e >
50 </ c o n t a c t P r o f i l e s >
51 </ agen t>

13.6 Conclusion

This chapter has presented the modeling foundation of USDL. The design of the
Service Module, Participants Module, and the Foundation have been influenced by
the state of the art from the areas of service composition, of actors that partake in
the fulfillment and delivery of services, of time and location modeling, and of or-
ganizational modeling. Furthermore, it has been outlined how the generic language

13 Modeling Foundations 353

and service concept formation requirements from Chapter 8 have been addressed.
From each module, the concepts and entities have been shown and exemplified.

References

1. Service component architecture. Technical report, BEA Systems, Cape Clear Software, IBM,
Interface21, IONA Technologies PLC, Oracle, Primeton Technologies Ltd, Progress Software,
Red Hat Inc., Rogue Wave Software, SAP AG, Siebel Systems, Software AG, Sun Microsys-
tems, Sybase, TIBCO Software Inc., Nov 2006.

2. A. Barros, C. Baumann, A. Charfi, M. Flügge, S. Heinzl, T. Kiemes, U. Kylau, F. Marienfeld,
N. May, O. Müller, F. Novelli, D. Oberle, J. Pattberg, P. Robinson, B. Schmeling, W. Theil-
mann, H. Witteborg, J. Finzen, A. Horch, and M. Kintz. Unified Service Description Language
(USDL) — Service Module. Technical Report Version 3.0, Milestone M5, SAP Research,
May 2011. Available at www.internet-of-services.com.

3. A. Barros, C. Baumann, A. Charfi, M. Flügge, S. Heinzl, T. Kiemes, U. Kylau, F. Marienfeld,
N. May, O. Müller, F. Novelli, D. Oberle, J. Pattberg, P. Robinson, B. Schmeling, W. Theil-
mann, H. Witteborg, J. Finzen, A. Horch, and M. Kintz. Unified Service Description Lan-
guage (USDL) — Foundation. Technical Report Version 3.0, Milestone M5, SAP Research,
May 2011. Available at www.internet-of-services.com.

4. A. Barros, C. Baumann, A. Charfi, S. Heinzl, T. Kiemes, U. Kylau, N. May, O. Müller, F. Nov-
elli, D. Oberle, P. Robinson, B. Schmeling, W. Theilmann, and H. Witteborg. Unified Service
Description Language (USDL) — Participants Module. Technical Report Version 3.0, Mile-
stone M5, SAP Research, May 2011. Available at www.internet-of-services.com.

5. A. Barros and U. Kylau. Service delivery framework — an architectural strategy for next-
generation service delivery in business network. In P. Kellenberger, editor, Proceedings 2011
Annual SRII Global Conference SRII 2011, 30 March - 2 April 2011, San Jose, California,
USA, pages 47–58. IEEE Computer Society Conference Publishing Services (CPS), 2011.

6. E. Bottazzi and R. Ferrario. Preliminaries to a DOLCE ontology of organisations. Intl. Journal
Business Process Integration and Management, 4(4):225–238, 2009.

7. D. L. Cannon. CISA: Certified Information Systems Auditor Study Guide. Sybex, 3rd edition,
2011.

8. J. C. Fagan. Mashing up multiple web feeds using Yahoo! pipes. Computers in Libraries,
27(10), 2007.

9. M. Hepp, J. Leukel, and V. Schmitz. A quantitative analysis of product categorization stan-
dards: content, coverage, and maintenance of eCl@ss, UNSPSC, eOTD, and the RosettaNet
technical dictionary. Knowl. Inf. Syst., 13(1):77–114, 2007.

10. International Organization for Standardization. ISO 19108:2002, Geographic informa-
tion - Temporal schema, 2002. online at: http://www.iso.org/iso/catalogue_
detail?csnumber=26013.

11. International Organization for Standardization. ISO 8601:2004, Data elements and inter-
change formats - Information interchange - Representation of dates and times, 2004. online
at: http://www.iso.org/iso/catalogue_detail?csnumber=40874.

12. International Organization for Standardization. ISO 19136:2007, Geographic information -
Geography Markup Language (GML), 2007. online at: http://www.iso.org/iso/
catalogue_detail?csnumber=32554.

13. International Organization for Standardization. ISO 9001:2008, Quality management systems
- Requirements, 2008. online at: http://www.iso.org/iso/catalogue_detail?
csnumber=46486.

14. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto (eds.). Web
Services Choreography Description Language Version 1.0. Candidate Recommendation 9
November 2005, W3C, 2005. online at: http://www.w3.org/TR/ws-cdl-10/.

http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.internet-of-services.com
http://www.iso.org/iso/catalogue_detail?csnumber=26013
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=32554
http://www.iso.org/iso/catalogue_detail?csnumber=46486
http://www.w3.org/TR/ws-cdl-10/
http://www.iso.org/iso/catalogue_detail?csnumber=26013
http://www.iso.org/iso/catalogue_detail?csnumber=32554
http://www.iso.org/iso/catalogue_detail?csnumber=46486

354 Steffen Heinzl, Uwe Kylau, and Norman May

15. R. M. Lerner. At the forge: syndication with RSS. Linux Journal, 126(8), 2004.
16. F. Manola and E. Miller. RDF Primer. W3C Recommendation, Feb 2004.

http://www.w3.org/TR/rdf-primer/.
17. Microsoft. Open Data Protocol (OData) Specification, Version v20101230, 2010. http:

//www.odata.org/media/16352/[ms-odata].pdf.
18. OASIS. Web Services Business Process Execution Language Version 2.0, Apr. 2007.

online at: http://www.ibm.com/developerworks/webservices/library/
ws-bpel/.

19. OMG. Business Process Model and Notation, V1.1, 2008.
20. D. Reynolds. An organization ontology. Epimorphics, http://www.epimorphics.

com/public/vocabulary/org.html, Oct 2010.
21. R. Sayre. Atom: The standard in syndication. IEEE Internet Computing, 9(4):71–78, 2005.
22. A. ter Hofstede, W. van der Aalst, A. ter Hofstede, and M. Weske. Business process manage-

ment: A survey. In M. Weske, editor, Business Process Management, volume 2678 of Lecture
Notes in Computer Science, pages 1019–1019. Springer Berlin / Heidelberg, 2003.

http://www.w3.org/TR/rdf-primer/
http://www.odata.org/media/16352/[ms-odata].pdf
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.epimorphics.com/public/vocabulary/org.html
http://www.odata.org/media/16352/[ms-odata].pdf
http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.epimorphics.com/public/vocabulary/org.html

Part III

USDL — Methods

The previous part of the book has described the meta-model of USDL in terms of
its abstract syntax using natural language, examples, and UML class diagrams. This
part presents methods, viz., approaches and tools to the representation, creation,
communication, and management of actual service descriptions.

Chapter 14 deals with technical aspects of how USDL service descriptions can
be read from and written to different representations for use by humans and tools.
A combination of techniques for representing and exchanging USDL have been
drawn from Model-Driven Engineering and Semantic Web technologies. Chapter
15 argues that fundamental tooling is required in order to apply USDL in prac-
tical settings. The chapter discusses three fundamental types of tools for USDL.
First, USDL editors have been developed for expert and casual users, respectively.
Second, several USDL repositories have been built to allow editors accessing and
storing USDL descriptions. Third, our generic USDL marketplace allows providers
to describe there services once and potentially trade them anywhere. The operation
of such a service marketplace requires a governance approach that lies adjacent to
the requirements of a SOA and the more general governance of IT. It also has re-
quirements of its own, especially when it comes to the description of services with
languages such as USDL. Therefore, Chapter 16 proposes four building blocks as
a basis for a governance framework that is capable of supporting the operation of a
service marketplace. Finally, Chapter 17 addresses the fact that different variants of
USDL are required for different contexts. This is already shown by the Legal Mod-
ule which requires different contents depending on the jurisdiction of a country. The
issue aggravates if more and more parameters are relevant to determine the correct
variant. The chapter presents one possible solution for variant management consist-
ing of a canonical data model, a context driver mechanism, governance processes,
and appropriate tooling.

Chapter 14

Representing USDL for Humans and Tools

Keith Duddy, Matthias Heinrich, Steffen Heinzl, Martin Knechtel, Carlos
Pedrinaci, Benjamin Schmeling, and Virginia Smith

Abstract This chapter deals with technical aspects of how USDL service descrip-
tions can be read from and written to different representations for use by humans
and tools. A combination of techniques for representing and exchanging USDL have
been drawn from Model-Driven Engineering and Semantic Web technologies. The
USDL language’s structural definition is specified as a MOF meta-model, but some
modules were originally defined using the OWL language from the Semantic Web
community and translated to the meta-model format. We begin with the important
topic of serializing USDL descriptions into XML, so that they can be exchanged
between editors, repositories, and other tools. The following topic is how USDL
can be made available through the Semantic Web as a network of linked data, con-
nected via URIs. Finally, consideration is given to human-readable representations
of USDL descriptions, and how they can be generated, in large part, from the con-
tents of a stored USDL model.

Keith Duddy
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: keith.duddy@qut.edu.au

Steffen Heinzl, Benjamin Schmeling
SAP Research Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany,
e-mail: steffen.heinzl@sap.com, e-mail: benjamin.schmeling@sap.com

Matthias Heinrich, Martin Knechtel
SAP Research Dresden, Chemnitzer Strasse 48, 01187 Dresden, Germany,
e-mail: matthias.heinrich@sap.com, e-mail: martin.knechtel@sap.com

Carlos Pedrinaci
Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK,
e-mail: c.pedrinaci@open.ac.uk

Virginia Smith
Hewlett-Packard Company, 8000 Foothills Blvd, Roseville, CA 95747, USA,
e-mail: virginia.smith@hp.com

357 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York4,

mailto:keith.duddy@qut.edu.au
mailto:steffen.heinzl@sap.com
mailto:benjamin.schmeling@sap.com
mailto:matthias.heinrich@sap.com
mailto:martin.knechtel@sap.com
mailto:c.pedrinaci@open.ac.uk
mailto:virginia.smith@hp.com

358 Duddy et al.

14.1 Introduction

The previous part of the book has described the semantics of the USDL language
in terms of its abstract syntax shown as UML class diagrams with natural language
explanations, and examples. This part presents tools and approaches to the creation,
representation and communication of actual service descriptions using a variety of
formats. The class diagrams show the structure of information that the USDL lan-
guage expresses, with classes representing the main concepts we wish to capture
about services, attributes of these classes representing properties of the concepts,
and references between the classes representing links between the concepts. The
underlying specification in terms of which the USDL is defined is the Ecore lan-
guage from the Eclipse Modeling Framework (EMF), which is derived from the
Meta-Object Facility (MOF) [19] — an Object Management Group (OMG) stan-
dard for meta-data definition which shares the same semantics as the UML class
modeling language. MOF and Ecore also use a subset of the graphical language of
UML to provide diagrammatic representations of meta-models. The diagrams do
not show every feature of UML, MOF or Ecore, but the concepts they do show
share the same semantics. Ecore has an XML representation with filenames ending
in .ecore which captures all of the details.

For readers not familiar with EMF, the following comparison with XML may
assist. The Ecore language plays the same role as the XML Schema language for
defining XML schemas — it provides the basic concepts in terms of which object-
oriented models are defined: XML element types are roughly equivalent to classes,
XML attribute types are similar to Ecore classes’ attributes, and XML ref element
types are similar to Ecore references. A document type X is defined by a schema
definition X.xsd, in the same way as a language Y is defined by the Ecore model
(also called a meta-model) Y.ecore.

A schema document (.xsd file) contains element type definitions that constrain
what elements may appear in an XML document that validates against the schema,
in the same way that a meta-model (serialized as an .ecore file) defines what
objects may appear in a model instance (serialized as an .xmi file) that conforms
to the meta-model.

Figure 14.1 shows the modeling hierarchy in the EMF technical space in which
the USDL is defined. It has the Ecore language at the top layer, with its concepts of
packages, classes, attributes and references. The next layer down contains the USDL
meta-model, which identifies concepts about services in terms of Ecore classes,
attributes and references. The lowest layer shows USDL service descriptions ex-
pressed in the USDL language, as instances of the classes defined in the USDL
meta-model.

As you can see, there are two possible instantiations that come as standard within
EMF: Java objects which are instances of Java classes generated according to stan-
dard mappings from the Ecore meta-models; and XMI files, which conform to the
XML Schemas that are also generated from Ecore meta-models. In EMF the XMI
mapping is used to create a default serialization from a set of in-memory Java ob-
jects to an XML document.

14 Representing USDL for Humans and Tools 359

EMF Technical Space

Key:

instanceOf

<Service name="A">
 ...
 <PricePlan name="P">
 ...
 </PricePlan>
</Service>

Ecore.ecore

USDL_Pricing.ecore

EClass

EPackage

USDL_Core.ecore

Price
Plan . . .

Service

EReference

ServiceA.xmi

XMI

. . .

JVM

mapping

Java object
and pointer

. . .

Ecore language

USDL Metamodel

USDL Service
Descriptions

(XML Serialization)(Java Object Instances)

Fig. 14.1: Meta-model hierarchy for USDL.

In addition to the EMF code generators, there is a large developer commu-
nity, both open-source and private, which has extended EMF with myriad tools for
editing, serializing, and transforming models; for storing them in various kinds of
databases; and for creating tools around them. EMF is a plugin for Eclipse, which is
the world’s most widely used Java developer environment, and therefore integrates
the use of Ecore models in Java with hundreds of other frameworks and plugins.

The use of tools which manipulate models to produce textual syntaxes, code, ed-
itors, data stores and other models of various kinds is known generically as Model-
Driven Engineering (MDE). One of the earliest articulations of the concept of mod-
els as first class artifacts in software engineering was through the OMG’s Model
Driven Architecture (MDA) [26], introduced in 2000, which began by suggesting
that abstract models of business functionality could be transformed into running
code through a series of layered transformations: Computation Independent Models
could be augmented by some additional information and transformed into Platform
Independent Models, which could then be transformed using mappings to Platform
Specific Models from which code could easily be derived by (re-)using best-practice
patterns. Although MDA is only being used in this suggested form in a minority of
cases, the basic concept of specifying higher-level abstractions of domain concepts
as meta-models, and then using mappings to different formats, and code-generation

360 Duddy et al.

tools to support the models, rather than writing code, is now well established. The
approaches we call MDE also overlap with technologies from the Domain Specific
Language (DSL) community, in which the concept of the domain language defini-
tion is very close to the abstraction of the meta-model, and many tools bridge the
gap between textual and graphical DSLs and object-oriented models. The storage
and manipulation of object models in programs which are derived from grammars
representing textual syntaxes is now commonplace, and integrates tools designed for
compiler construction, such as parser generators and parse-tree manipulation tools
with other model transformation languages and tools.

Furthermore, there are automated mappings from Ecore to other representational
formats such as non-XML textual languages, as well as Semantic Web languages
such as OWL and RDF. However, it is more valuable in a Semantic Web environ-
ment to use human-guided mappings which match the concepts in the USDL to
those represented in existing vocabularies so that service meta-data from USDL can
be integrated into a larger web of Linked Data.

This chapter shows how model-driven techniques are used to manipulate the
Ecore models of the USDL language in order to create a number of concrete rep-
resentations of USDL service descriptions. This chapter is structured as follows:
Section 14.2 explains the approach used to serialize USDL for interchange between
tools that can place an entire service description into a single XML document, or
can exchange an XML representation of one of the modules of USDL at a time.
The use of the augmented XML framework, viz., the Service Modeling Language
(SML), is also considered for its document cross referencing, packaging and vali-
dation capabilities. This is followed in Section 14.3 by an analysis of the existing
Semantic Web environment for established ontologies and vocabularies with which
the USDL is well aligned. Section 14.3 then describes approaches across several
Semantic Web technologies for representing USDL so that existing Linked Data
approaches to modeling domain semantics can be matched and re-used, and to over-
come some of the limitations of semantic representation in the object-oriented MOF
specification. Finally, Section 14.4 demonstrates the use of template-based query
approaches over EMF models to provide human-readable representations of USDL.

14.2 Serialization of USDL models

The approach used for the serialization of USDL models is based on the XML
Metadata Interchange standard (XMI), which is defined by the Object Management
Group (OMG). A few requirements are introduced that are necessary (or nice to
have) for the goal of creating well-formed XML documents that describe a concrete
USDL model (i.e., a service description). Based on the requirements, two ways of
creating a serialization module for USDL are described. Leveraging XMI, it is pos-
sible to generate XML documents from the USDL models, serving as a concrete
syntax for the USDL’s abstract syntax. Finally, the use of the Service Modeling
Language is considered for its capacity to cross-link models between documents,

14 Representing USDL for Humans and Tools 361

and to package a set of XML Schema and instance documents into a single XML
file for distribution.

14.2.1 Model Requirements for an XML-based Concrete Syntax

When using XML as a concrete syntax, a number of requirements arise that we will
categorize into two types: technical and structural requirements. Technical require-
ments are necessary for the serialization of our model into a single XML document,
and for the ability to serialize the subset of a service description that pertains to a
particular module. Structural requirements make the concrete syntax simpler and
easier to read.

Technical Requirement 1:

The model to be serialized must define a single root element. The reason is that
XML is a textual representation that is tree-based, whereas Ecore models are graph-
based. From the root, navigation to all other elements that are part of the tree is
possible.

Technical Requirement 2:

Each model class that is not the root element for a module must be contained by
another model class. This implies that there is always a navigable path from the root
element class to all other classes. This path must be available using Ecore contain-
ment references only. XMI already allows for XML path navigation to subclasses
of any class that is already reachable from the root element by containment. Any
class navigable from such subclasses is also transitively considered navigable from
the root class, and its XMI serialization will form a correct nested element set.

Technical Requirement 3:

Non-containment references must be mapped by some textual linking mechanism.
Otherwise already contained XML elements cannot be reused but have to be dupli-
cated which would destroy the well-formed structure of the concrete model instance.

Different XML specifications provide different mechanisms for referencing other
elements, such as XML Schema’s ref mechanism or RDF’s URIref mechanism.
In general, there are three strategies to handle references. The first strategy iden-
tifies XML elements by their location in the XML subtree (often referred to as URI
fragments), the second uses unique characteristics of an XML element such as an
attribute with unique values, and the third introduces dedicated unique identifier

362 Duddy et al.

attributes which are added to the XML element. The first two strategies have one
significant disadvantage: If the identifier changes, the references in the document
are broken. The third strategy on the other hand has no need to change identifiers
even if the document structure or attribute values change. However, the challenge in
using the third strategy is to generate unique identifiers across multiple documents.

Structural Requirement 1:

If a model consists of several modules (or packages in MOF terminology), each
module should define a module root element. This allows for the definition of doc-
uments containing contents from only a single module, e.g., a USDL fragment con-
taining only the pricing model could be serialized and exchanged.

Structural Requirement 2:

Model classes that are referenced (by non-containment references) should be top el-
ements contained directly by the document root. The reason for this requirement is
that referenced elements are reusable: once defined they can be referenced from dif-
ferent parts of the XML document. When enforcing this requirement, the semantics
of the model should be taken into account, i.e., there may be reasons to not strictly
follow this requirement.

Structural Requirement 3:

Imported elements should be part of the serialization model. There is no theoretical
reason for this requirement, because elements that are referenced by URI in other
documents can be located. However, it should be obvious and directly visible which
documents need to be accessed to resolve all references. Unless we define an import
element in the model which maps to an import schema for the document, all refer-
ences will have to be checked and document dependencies calculated. This is why
XML-based specifications such as WSDL and XML Schema introduce dedicated
import elements.

14.2.2 The USDL Serialization Model

To allow the serialization into an XML-based syntax, a few extensions to the abstract
USDL meta-model are needed. These extensions are used to address the above re-
quirements and result in a concrete USDL meta-model.

We introduce two variants for the concrete USDL meta-model: a lightweight
model that fulfills the technical requirements and a full-fledged model that also ful-

14 Representing USDL for Humans and Tools 363

fills the structural requirements. The lightweight version is easily adaptable for tool
builders since it directly builds upon available XMI tools. The full-fledged model
also needs extensions in each module as we explain below.

14.2.2.1 Lightweight USDL Meta-model

Technical Requirement 1 has been addressed by the introduction of an additional
root class in Ecore — the USDL3Document — which has a containment reference
to all other classes either directly or indirectly. This class is in a Serialization Module
which imports the other modules and makes references to classes in other modules.

Fig. 14.2: Excerpt from the USDL meta-model.

Technical Requirement 2 can be met by defining references from the root element
USDL3Document which contain either (i) all non-contained, concrete classes or
(ii) all non-inheriting, non-contained classes.

The definition of the root class and its module can either be achieved manually
or derived automatically by applying a model transformation to the standard USDL
meta-model. Take for example the excerpt from the USDL model shown in Figure
14.2. The model shows the interrelations of a few classes. The ServiceBundle and
the CompositeService classes contain the class Part, whereas the Resource class
is only referenced by Service. CompositeService inherits from Service. Service
andServiceBundle inherit from NetworkProvisionedEntity.

Following the approach (i) above (containing all non-contained, concrete classes),
the classes that need to be contained by the newly introduced root element in this
diagram are Resource, Service, Composite Service and ServiceBundle. Ap-

364 Duddy et al.

Fig. 14.3: Serialization module for the USDL excerpt.

plying the model transformation to the USDL meta-model excerpt results in the
(automatically generated) Serialization module shown in Figure 14.3. The same
model transformation can be applied to all USDL modules to create the lightweight
serialization module for USDL.

Technical Requirement 3 is already addressed by virtue of the choice of the stan-
dard XMI mapping rules (see Section 14.2.4). One advantage of the lightweight
model is apparent: The serialization module can simply be added to the other Ecore
modules without modifying them.

14.2.2.2 Full-fledged USDL Meta-model

A full-fledged approach to USDL Serialization requires changing the standard meta-
model to address the structural requirements as well. In order to meet Structural Re-
quirement 1, a root element for each module is introduced which is used as a con-
tainer for all non-contained classes of a module, e.g., a PricingElements class has
been added to the Pricing Module. Technical Requirement 2 is solved in a slightly
different way than the lightweight model, namely by adding containment references
between the root class USDL3Document and each of the module roots. In addi-
tion, containment references are created between all classes that are not already
reachable via containments from the USDL3Document root class via each module
root class (and thus Structural Requirement 2 is met). For example the PricePlan
class is not reachable from the module root, PricingElements, and therefore we
add a containment reference from it to PricePlan. Consequently, the PricePlan is

14 Representing USDL for Humans and Tools 365

now reachable from the USDL3Document by navigating from USDL3Document
to PricingElements to PricePlan.

Structural Requirement 3 has been addressed by introducing the Import class.
The Import class provides a uri attribute that points to the imported USDL docu-
ment. This convenience class is especially helpful for tools to preload referenced
documents in order to navigate cross-document references.

The full-fledged USDL meta-model has the advantage that structural require-
ments are fulfilled and thus that the readability of the resulting USDL is better due
to a better separation of the different modules inside the XML document (or docu-
ments — if serialized per module). A major disadvantage is that the existing USDL
modules have to be extended with module root elements, such as PriceElements.
Thus, the abstract syntax of USDL has to be made more complex in order to make
the concrete syntax easier to understand.

14.2.3 Serialization Model

The Serialization model that is used for USDL (Version 3, Milestone 5) is a light-
weight one with additional support of an Import mechanism. Figure 14.4 depicts the
Serialization model in that module.

Fig. 14.4: Serialization module for USDL (Milestone 5).

366 Duddy et al.

14.2.4 Mapping the USDL Serialization Model to XML

After defining a Serialization Module — which meets our technical (and structural)
requirements — this model needs to be mapped to XML. The mapping is based on
the default Ecore serialization mechanism which itself is based on XMI. Hence, a
short introduction to XMI follows.

The XML Metadata Interchange (XMI) specification (V2.0 was used for Ecore)
defines a standard for exchanging any type of metadata that is compliant to the
Meta Object Facility (MOF). Ecore has been built to comply to a subset the MOF
standard, and thus satisfies this requirement. XMI defines XML Schema constructs
for the purpose of identification, linking, object type hierarchies, and data typing.
These predefined schema element patterns allow for the serialization of instances
of any MOF-conformant object-oriented meta-model to XML, including standards
such as UML 2.0 and BPMN 2.0.

Table 14.1: Overview of XMI Mapping from Ecore to XML

Ecore XML
Instance of EClass XML Element with xmi:id
Instance of EAttribute of Datatype XML Attribute
Instance of EReference (containment) Nesting XML Elements
Instance of EReference (non-containment) XML Ref Attribute
Inheritance — A is a concrete type Attribute set to “A”

subtype of B in the XMLElement representing “B”

To reduce the effort of building tools on top of USDL, the default XMI mapping
of Ecore to XML has been applied to USDL. A summary of the major parts of
this mapping is shown in Table 14.1. This mapping fulfils Technical Requirement 3
since each generated element has an xmi:id that can be referenced. Listing 14.1
shows an example XMI serialization of a USDL service model instance, as specified
by the Serialization Module and transformed USDL Modules, as documented in the
USDL Version 3 Milestone 5 specification.

Listing 14.1: XMI serialization of a USDL service model instance.
1 <u s d l 3 : USDL3Document xmlns : xmi =” h t t p : / / www. omg . org /XMI” . . . >
2

3 <s e r v i c e s xmi : i d =” S e r v i c e 1 7 8 ” v e r s i o n = ” 1 . 0 ” n a t u r e =” Manual ” . . . >
4

5 <names xmi : i d =” D e s c r i p t i o n 3 8 9 ”
6 v a l u e =” Lead L o g i s t i c s − G e n e r a l F r e i g h t ” t y p e =”name” />
7

8 <p r o v i d e r xmi : i d =” P r o v i d e r 2 5 6 2 ” e n a c t i n g A g e n t =” O r g a n i z a t i o n 4 3 2 ”/>
9

10 </ s e r v i c e s>
11

12 <a g e n t s x s i : t y p e =” f o u n d a t i o n : O r g a n i z a t i o n ” xmi : i d =” O r g a n i z a t i o n 4 3 2”>
13

14 . . .

14 Representing USDL for Humans and Tools 367

15

16 </ a g e n t s>
17

18 </ u s d l 3 : USDL3Document>

The USDL3Document is the root element. It may contain several service de-
scription which are in turn represented by a services element (named after the
containment reference from the USDL3Document class to the Service class). The
services element furthermore has an xmi:id attribute that allows other ele-
ments to reference the services element. The nature of the service is a simple
EAttribute and therefore mapped to an XML attribute. Names are contained by the
Service class and therefore realized by nesting the names element inside it. The
Provider has an enacting agent. This is realized by including an agents element
with type Organization and using the Organization’s xmi:id.

It is common practice for Ecore modelers to apply plural nouns for represent-
ing multi-valued containment references, such as, “services,” but when mapped to
XML, this results in multiple nested elements, each of which is named after the
reference. The resulting XML would read better with singular names — such as
“service,” but this would require the adaptation of the default XMI mapping.

14.2.5 Serialization and Exchange of USDL Models Using SML

The Service Modeling Language (SML) [21], which is a W3C recommendation,
provides some useful tools for representing and exchanging USDL models. SML is
not a domain language itself, i.e., it does not define the domain entities. However,
SML does provide useful constructs for representing complex service descriptions.
In addition, the corresponding SML Interchange Format (SML-IF) [20] provides a
convenient and standardized way to represent and exchange self-contained USDL
models.

14.2.5.1 SML Models

An SML model is a set of interrelated documents that describe a service (or other
domain) model. This set of documents consists of model definition documents and
model instance documents. The model definition documents contain information
about the service (the service model), as well as constraints on the model that must
be satisfied for the service to function properly. The model instance documents con-
tain the data for the modeled instances.

There are two types of model definition documents: schema documents and rule
documents. The model definition documents provide much of the information a
model validator needs to decide whether a given model is valid. Schema documents
define constraints on the structure and content of the instance documents in a model.
SML uses XML Schema as the schema language and defines a set of extensions to

368 Duddy et al.

XML Schema to support references that may cross document boundaries. Rules are
boolean expressions that additionally constrain the structure and content of docu-
ments in a model in ways that may not expressible within a given XML Schema.
SML uses Schematron [13] and XPath [7] for rules. While the rules can be embed-
ded in SML model schema documents, they can also be placed in separate docu-
ments so that the schema documents themselves are not altered.

SML schema documents are defined as a strict superset of XML Schema. All
valid XML Schema documents are valid SML schema documents. SML does de-
fine an extension of XML Schema, namely the SML references. SML references
are used to link from one element in a model to another element in the same model.
The linked elements may reside in separate XML documents at runtime. In addi-
tion, SML references may be constrained to specific elements or element types.
Extending the Ecore default mapping by defining the mapping of non-containment
references to SML references instead of XML Ref attributes enhances the cogni-
tive sufficiency of the USDL model by making the reference endpoint more explicit
while still satisfying Technical Requirement 3. However, it is worth noting that,
as long as the Schema extensions defined by SML are not used, then SML model
documents can still be processed by currently available XML processors.

SML model instance documents are XML documents that together form a ser-
vice’s description (instance). They describe or support the description of the in-
dividual resources that the model portrays and must conform to the structure and
constraints as defined in the model definition documents, as shown in Figure 14.5.

14.2.5.2 SML Interchange Format

The SML-IF specification defines a standard interchange format that preserves the
content and interrelationships among the model documents. It also defines a con-
strained form of model validation to ensure interoperability when specific condi-
tions are met and to increase the likelihood of interoperability in other cases. But, at
a minimum, the SML-IF interchange format provides a well-defined standard for ex-
changing a set of model documents regardless of the validation process. An SML-IF
document packages the set of SML model documents to be interchanged as a single
XML document. Each model document appears as content in either the ‘definitions’
or ‘instances’ subsection of the SML-IF document, depending on whether the model
document in question is a model definition document or a model instance document.
Each model document can be represented in either of two ways, by embedding its
content or by providing a reference to it.

14.2.5.3 USDL Models as SML Models

As mentioned, SML is agnostic of any domain model such as a service description
model. USDL provides such a domain model. As specified previously in this chap-
ter, USDL Version 3 Milestone 5 defines a concrete representation of the USDL

14 Representing USDL for Humans and Tools 369

Fig. 14.5: The SML document structure.

model as an XMI schema and a specific model instance as an XMI document that
validates to that schema. These documents form a valid SML model as described
here and can be packaged into one SML-IF document. Note that in the case of full-
fledged USDL serialization, a serialization may be in a single file, or each module
may be represented in a separate XML document. In the latter case an SML-IF
document provides a convenient way to package multiple documents into one deliv-
erable XML document. The value of SML-IF is that a single USDL model made of
multiple schema and instance documents can easily be passed around as a coherent
whole thus satisfying the requirement of cognitive sufficiency.

The user could also manually expand the model description beyond the USDL
meta-model to formalize specific business rules as SML rule documents. This can
be done without altering the XMI schema for USDL. SML-IF provides a way for
the USDL model to incorporate this additional model definition document. In ad-
dition, SML provides the capability to link references across schema documents
which would assist in the implementation of Structural Requirement 1 and the full-
fledged USDL serialization model by enabling cross document links. However, this
capability would require an SML processor rather than a standard XML processor
and, therefore, this capability comes at an additional cost of implementation.

370 Duddy et al.

14.3 Representing USDL as Linked Data

The W3C defines the Web as “an information space in which the items of interest,
referred to as resources, are identified by global identifiers called Uniform Resource
Identifiers (URI)” [14]. The Web is based on three main aspects, namely the identi-
fication of resources, enabling the interaction between agents (software or humans)
via well-defined protocols, and formats that govern the representation of data and
resources transmitted.

These principles have effectively governed the Web and still maintain the ability
for extension to cope with new kinds of resources, or to enable more complex activ-
ities to be carried out. A good example is the work carried out on the Semantic Web
towards providing machine interpretable semantic descriptions of resources, which
could pave the way for the development of more intelligent agents. Most relevant is
the use of RDF and OWL, which are based on pre-existing Web standards, to define
domain-specific models of concepts in an effective and extensible manner.

The Linked Data principles were suggested1 by Tim Berners-Lee in 2006 as
a means of creating a Web of Data better suited for machine processing. These
principles recommend that one should:

1. use URIs as names for things,
2. use HTTP URIs so that people can look up those names,
3. provide useful information, using the standards (RDF, SPARQL) when someone

looks up a URI,
4. include links to other URIs so that they can discover more things.

Since these principles were proposed we have witnessed an outstanding growth
in terms of data and vocabularies allowing people to freely expose and interlink
large quantities of heterogeneous data. In fact, for raw data that can effectively be
modeled in RDF, Linked Data principles are considered by well cited authors [4] as
the best means for publishing to the Web.

The first principle ensures that resources are uniquely identified. The second prin-
ciple ensures that their identification is such that HTTP can be used for obtaining
information about the resource. The third principle establishes standard technolo-
gies for exposing data in a manner that is suitable for machine processing. Finally,
the fourth principle aims to promote the interlinking of data. The same way hyper-
links connect Web documents into a single global information space, Linked Data
uses hyperlinks to connect data into a single global data space. These links allow
applications to navigate the Web of Data and, since the data is exposed through
HTTP (see principle 2) and represented in some standard format (see principle 3),
machines can obtain it, interpret it, and act accordingly in an automated manner.

USDL was originally modeled in Ecore and integrates a number of different per-
spectives on services (e.g., pricing, technical details, legal aspects, stakeholders in
service provision, etc). In addition, the Pricing and Legal Modules were also mod-
eled ontologically in OWL. In [15] Semantic Web tools are used to create and man-

1 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

14 Representing USDL for Humans and Tools 371

age instances of pricing plans for billing purposes. In work related to the USDL
Legal and Service Level Modules [3] the German copyright legislation was mod-
eled as an ontology from which licence rights models can be derived to describe the
conditions for use of copyright material provided by a service. In the remainder of
this section we shall thus focus on how all of USDL can adopt linked data principles,
focusing mainly on the representation of USDL in RDF(S), and on the interlinking
with external vocabularies and data sources.

14.3.1 Linked USDL

Creating a linked-data-ready version of USDL involves modeling USDL data and
thus the USDL language (meta-model) itself in RDF(S) [5] or related standards,
such as RDFa [1] and OWL [8]. USDL is composed of a number of modules
some of which started out as Ecore models only, and need to be re-modeled in
RDF(S)/OWL accordingly. Redescribing the whole USDL model again in the form
of ontologies is beyond the scope of this book, so instead we shall focus on the
main design decisions concerning the lightweight semantic representation of USDL
in RDF(S)/OWL. Then some examples targeted at the reuse of existing vocabularies
and instances are considered. Through this exercise it shall be seen not only that ex-
isting vocabularies cover a good part of USDL, but also that modeling USDL in this
manner has a number of benefits from the use of Semantic Web tools and formalisms
(e.g., temporal reasoning) and from compatibility with existing datasets.

14.3.1.1 Integrating USDL in the Web of Data Through Reuse

The fourth Linked Data principle is to include links to other data sources from the
Web. These links are an essential means of generating a Web of Data as opposed
to disconnected silos. Linked data simplifies data integration and interpretation, as
well as enabling the discovery of related data that is not part of a USDL service
description.

Most often there are three kinds of links contemplated [9]:

Relationship Links whereby entities from a data source are linked to entities from
other data sources through relationships. For instance, Service A stored in a
USDL repository can be described as being provided by Company C defined
in an external Companies Catalogue. This type of link enables the reuse of data
and establishes links across datasets.

Identity Links which indicate that two URIs refer to the same entity. This allows
us to state, for instance, that Company C from the previous catalogue is actually
the same as Company X, rated by customers in a certain social Web site. By
means of these links, machines can incorporate different views about the same
entity based on data coming from diverse sources.

372 Duddy et al.

Vocabulary Links which are established between entities and the vocabularies
used to define them, thus allow machines to retrieve the definitions and interpret
them. For instance, knowing that Service A is a ServiceBundle informs us that it
has other Services as part of it. These links also allow us to indicate relationships
(e.g., equivalence, subsumption) between concepts, and re-use relationships de-
fined in different vocabularies. This helps integrate data from diverse datasets.

A fundamental activity in adapting USDL for the Web of Data therefore concerns
the analysis of existing vocabularies and datasets, in order to i) identify reusable
vocabularies to avoid reinventing the wheel and promote reuse and integration; and
ii) identify possible relationships with USDL concepts and USDL data to support
navigation across datasets and to simplify data integration.

14.3.2 Design Decisions

In this section we introduce some of the main decisions that have been adopted
while creating Linked USDL. We first introduce general modeling decisions and we
then cover choices made concerning capturing information of particular kinds, such
as geospatial and temporal.

14.3.2.1 Classifications and SKOS Schemes

The main purpose of the USDL specification is to provide a schema, or type sys-
tem, which defines the contents and structure of concrete service descriptions, e.g.,
Service A, its kind, e.g., Service, and a certain categorization of the Service kind,
e.g., an Automated Service. When defined in terms of ontologies the USDL Ecore
model could be replicated using sub-classing and meta-modeling, however, the use
of a hierarchy of classes essentially establishes explicitly and a priori the subclasses
available. Some parts of the model, however, consist of a set of enumerated values
which act as classification categories, and are not expressed as class hierarchies.

The conceptual distinction introduced by a hierarchy of classes is sometimes ap-
propriate as is the case for instance when capturing the relationship between Service
and Composite Service, in which the latter has a grouping constraint which makes
no sense for Services in general. However, in the Participants module, there are
many different subtypes of Role, including BusinessOwner, Provider and Stake-
holder, which do not introduce any extra data values or structural constraints. We
consider that these subtypes would be better expressed as simple categories.

As a general decision for Linked USDL, we have captured the relationship be-
tween concepts via subsumption relationships whenever there was a structural and
semantic difference like in the case of Service and CompositeService. For cases
like the nature of services which are represented as an enumeration of values in
Ecore, we use Simple Knowledge Organization System (SKOS) [18] schemes for
defining the different categories. SKOS is a common lightweight data model rep-

14 Representing USDL for Humans and Tools 373

resented in RDF, which supports the capture of knowledge organization systems
such as classification schemes and taxonomies. Using SKOS, categorizations can
be represented in a machine processable manner. We can easily integrate different
perspectives simply by changing the definition of the concept categorized by means
of a property whose range is skos:Concept. In cases where the USDL specification
uses subclassing to introduce categories, such as the Role example above, we can
also use SKOS, and apply simple taxonomies to the concept of agents, rather than
having a fixed set of subsumed concepts. Indeed, this mechanism does not prevent
users of USDL from providing their own vertical domain-specific categorizations
through subsumption if they wish to.

14.3.2.2 Types as Properties

The USDL specification defines some kinds of things using a property indicating
the type (e.g., dependencyType) and others by using a hierarchy of concepts (see
for instance the different Roles above). In RDF(S) both these approaches could
be best modeled using several properties, possibly in a hierarchy. For example, in
the case of Dependency and DependencyType, where the relationship is binary,
RDF properties are the natural choice as they allow capture of relationships be-
tween the properties where necessary. In this case we have therefore modeled all
the DependencyTypes as properties, we have defined their range accordingly, and
we have dropped the concept DependencyTarget since it becomes redundant with
this modeling approach. We have thus defined a top level property dependsOn and
a number of sub-properties including requires, includes, mirrors, etc.

14.3.2.3 Partonomy

Part-whole relations are very common structuring primitives of the universe, and
indeed they are represented in the USDL Ecore model by containment refer-
ences (black diamonds in the visual representation). For example, ServiceBundle
and CompositeService have a number of constituent parts which can be either
AbstractServices or NetworkProvisionedEntities. The existence of a part or
parts in the model can be specified as a cardinality, or range of numbers, which
if the lower bound is zero is optional, or if the lower bound is some other num-
ber, then that number of parts is mandatory. In the case of CompositeServices the
Ecore has no way of directly specifying the CompositionType, and so an enumer-
ated value in an attribute of Services specifies whether the sub-services are data
dependent, ordered, or just an aggregation.

RDFS and OWL do not have specific construct for modeling part-whole relations
but there are however a number of general purpose proposals for capturing these.
The reader is referred to [23] and [24]. For the purposes of USDL we adopted the
latter as it helps define both direct and transitive relations. We thus include has-
PartTransitive as a transitive relation and hasPart, a sub-property of hasPart-

374 Duddy et al.

Transitive, as a normal property. Doing so allows us to simply capture the hasPart
relations and if necessary be able to deduce the existence of transitive containment
relationships automatically through reasoning over hasPartTransitive.

Additionally, as indicated earlier, USDL constrains the cardinality of parts, with
the most common being single-valued, either mandatory or optional. These dif-
ferent kinds are captured through a hierarchy of properties refining hasPart and
hasPartTransitive respectively. Notably we have included hasOptionalPart and
hasOptionalPartTransitive as well as hasMandatoryPartTransitive and has-
MandatoryPartTransitive. The current version does not insert the inverse relation
isPartOf, but, should it be necessary, this would be an easy addition.

14.3.2.4 Agents and Roles

Given that the provisioning of services necessarily involves a number of individu-
als or organizations taking part, USDL provides a number of classes and relations
covering this. In particular, Agent represents all the entities that can take active part
in the provisioning of a Service. USDL identifies Organization, NaturalPerson,
and ResourceAgent as the main kinds of Agents. This term appears in a number
of vocabularies, notably in Dublin Core,2 and FOAF [6] to name the main ones. The
notion of Agent also concerns organizations which are covered in other vocabular-
ies, for example by gr:BusinessEntity in GoodRelations [10].

Closely related to the notion of Agent, USDL includes the notion of Role. Role
serves as the super type of all concrete USDL classes that represent roles found in
a service network (e.g., service provider). Agents participating in the provisioning
and delivery of a service perform distinct functions, which define their Role. Roles
may either be bound to a concrete Agent or may be used as placeholders. The
latter is necessary if the Service is in a stage where some Agents are yet to be
determined. For example, a service description may specify that there needs to be a
B2B gateway in order to deliver the service to a consumer. Which gateway provider
will be chosen, however, depends on the message/interface standards supported by
a consumer and the consumer’s preferences.

In order to maximize reuse and integration across vocabularies we have adopted
Reynolds’ organization ontology [25], which covers all the core notions, provides
basic modeling constructs for Roles and is already integrated with existing vo-
cabularies such as FOAF and GoodRelations. The main design decisions in this
ontology are i) capturing the relationship between Agents and Roles played in
an organization through an n-ary relationship represented by the intermediate class
Membership, and ii) integration with GoodRelations, FOAF and the vCard vo-
cabulary [12]. By means of these alignments we enable the re-use of many FOAF
profiles, GoodRelations descriptions, and other existing Web data.

2 http://dublincore.org/

http://dublincore.org/

14 Representing USDL for Humans and Tools 375

14.3.2.5 Geospatial Modeling

One aspect of the USDL Foundation module concerns location-related entities and
relationships. In particular USDL specifies a super type for all location related en-
tities, namely Location, and the subtypes PhysicalLocation, GeographicalPoint,
PhysicalAddress, AdministrativeArea, and many others.

There has been a considerable amount of work devoted to creating ontologies
and services in this area. Currently, perhaps the most reused vocabulary for geo-
graphic concepts is the W3C Basic Geo vocabulary, which facilitates the capture
of GeographicalPoints on the basis of their latitude, longitude and altitude. In
addition to this effort, the W3C Geo Incubator Group also devoted some effort to
creating a simple and reusable vocabulary [16] for capturing some basic geometry
relations, which we have adopted in Linked USDL.

There is also a range of complementary vocabularies, data sources, and services
available on the Web with which it would be interesting to integrate for data re-
use. It is worth noting the work by several organizations: firstly, the UK Ordnance
Survey3 as part of the data.gov.uk initiative for the public release of a large quantity
of governmental data in the UK; the site Geonames.org, which comes with a large
knowledge base of locations and services for accessing it; and the geospatial data
set authored by the FAO.4

14.3.2.6 Temporal Modeling and Reasoning

USDL includes quite a few classes for representing time, including Time Instant,
Time Interval, etc. Time representation and reasoning has been addressed quite
often by researchers. Indeed, Semantic Web researchers already have several works
on time representation. In particular, perhaps the most popular for Linked Data is
OWL Time [11] which is hosted by W3C.

Time Ontology defines temporal entities and temporal relationships based on
James Allen’s interval temporal algebra [2]. It therefore identifies Instants, defines
Intervals on the basis of beginning and end Instants and includes the typical tem-
poral relationships between Instants and between Intervals (e.g., before, during,
etc). Linked USDL supports the capture of most of the temporal aspects of USDL
using OWL Time, and additionally supports the implementation of Allen’s interval
temporal algebra for reasoning about intervals and instants. Some issues like the pre-
cision of OWL Time (currently limited to seconds) and notions such as Recurrent
Time and Time Pattern still need to be addressed.

3 http://www.ordnancesurvey.co.uk/
4 http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

http://www.ordnancesurvey.co.uk/
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

376 Duddy et al.

14.3.3 Services and Service Vocabularies

Modeling the central notion of Service in USDL with Linked Data did not require
any particular decisions other than those mentioned above. However, we carefully
reviewed the state of the art in service ontologies and vocabularies in order to iden-
tify the main alignments to be addressed. The main vocabularies used can be di-
vided into those that address business aspects of services, such as e3Service [27]
and GoodRelations, and those that tackle the technical aspects of services, for ex-
ample, OWL-S [17], WSMO-Lite [28], and the Minimal Service Model [22].

In the current version of Linked USDL, we have performed the following align-
ments with GoodRelations since it is the most widely used vocabulary for (business)
services on the Web:

• AbstractService is a subclass of gr:Product Or Service Model since it provides
prototypical definitions of Services.

• Service and CompositeService are subclasses of gr:Product Or Services Some
Instances Placeholder as they both identify a placeholder for instances of a ser-
vice.

• The inter-service relationship enhances is equivalent to gr:addOn.

Possible additional alignments could be carried out with the e3 family of ontolo-
gies. However, at this stage these ontologies are not offered publicly on the Web in
a resolvable manner which is a requirement for Linked Data.

14.3.4 Summary of USDL as Linked Data

This section has outlined the approach to mapping USDL to existing Linked Data
and the Semantic Web resources. The structural specification of the USDL meta-
model replicates a lot of vocabularies and relations specified in ontologies, for which
there are meaningful and interlinked instances available on the Web through Linked
Data. In fact the original form of some parts of USDL, notably the Pricing and Legal
modules, were as OWL specifications, to facilitate the use of existing tools to cre-
ate and manipulate service descriptions. By drawing equivalences between classes,
attributes and relationships in the USDL specification with existing vocabularies,
relations, and stores of data in the Linked Data Web, we can re-use both common
concepts and instances of these which already exist, and use a broad range of tools
for reasoning about the contents of USDL service descriptions.

14.4 USDL Documentation Generation using USDL-Doc

USDL service descriptions are a convenient way to capture various aspects of a ser-
vice (e.g., technical, legal or operational aspects) in a structured manner which al-

14 Representing USDL for Humans and Tools 377

lows for further automatic processing. However, raw formats embedding structuring
tags (e.g., XMI) typically fall short of providing a decent human-readable descrip-
tion. Therefore, we have implemented the USDL-Doc tool capable of transforming
USDL service descriptions into HTML or PDF documents.

14.4.1 USDL-Doc Architecture

The USDL-Doc tool is a simplistic but powerful USDL editor add-on dedicated to
mapping existing USDL service descriptions, stored as EMF models in XMI for-
mat, to HTML or PDF documents. Generated HTML/PDF documents may serve as
service detail pages exhibited on the service marketplace, developer documentation,
etc.

USDL Files (in
XMI Format) USDL-Doc HTML/PDF

Representation

Fig. 14.6: Document Generation Workflow.

The document generation process is fully automated and follows the workflow
depicted in Figure 14.6. Existing USDL service descriptions persisted in the XMI
format are processed by the USDL-Doc tool which eventually produces HTML or
PDF files.

USDL Workbench

USDL Metamodel

USDL Model
Repository

USDL Editor

USDL-Doc Component

Template
Repository

Generator Engine

Storage Component

Network Share

Local File System

InputDefinesCreates / Modifies

Fig. 14.7: Document Generation Platform Architecture.

378 Duddy et al.

In order to provide a fully automated workflow, the architecture illustrated in
Figure 14.7 was devised. Essentially, there are three major building blocks: (i) the
USDL workbench, (ii) the USDL-Doc component and (iii) the storage component.
The USDL workbench is used by the USDL designer when creating and revising
USDL descriptions by means of the USDL editor. The USDL editor creates USDL
models which are compliant to the USDL meta-model. In essence, the USDL meta-
model provides a fixed language vocabulary which can be combined to form arbi-
trary USDL models. Those models are stored in a dedicated USDL model repository
which may be implemented in any form from a complex shared repository to a folder
of XMI files on the local file system.

After USDL services are completely described, the USDL-Doc component may
be triggered to produce self-contained HTML or PDF documents. The USDL-Doc
component derives the documents taking into account the USDL service description
instance itself as well as the associated USDL meta-model. Therefore, the generator
engine — having access to the model and meta-model — can query the model in a
declarative style. For example, a declarative query could ask for all natural persons
belonging to a specific organization where the classes NaturalPerson and Organi-
zation are part of the USDL meta-model, and therefore nouns in language vocabu-
lary implied by the meta-model. The template language to express these declarative
queries is the Xpand language. Besides specifying dynamic queries, Xpand tem-
plates can also include static code blocks (e.g., HTML code). Hence, Xpand serves
as a flexible code generation language targeting any kind of textual generated code
(e.g., HTML, Java, C). The Xpand template language, together with the Xpand edi-
tor, is bundled in the openArchitectureWare (oAW) framework that also provides a
generator engine executing the Xpand templates. In summary, the USDL-Doc com-
ponent leverages the oAW template language Xpand and the oAW text generation
engine to transform USDL models into HTML or PDF files.

These generated files are consequently transferred to the storage component. The
storage component may put files into a variety of configured storage locations (in-
cluding the file system, network shares and databases). Thus, generated documents
can easily be shared and consumed.

14.4.2 HTML Generation Example using USDL-Doc

The following example will expose the technical details of the documentation gen-
eration workflow. Therefore, we have chosen a minimal example that illustrates all
relevant aspects.

Let’s assume we want to model a new organization and all of its representatives.
The USDL meta-model already provides concepts representing people and organi-
zations and their properties and relationships. Figure 14.8 shows a small fragment
of the USDL meta-model (residing in the Participant module) depicting the classes
Organization, NaturalPerson and the reference representatives. Consequently,
an arbitrary USDL editor may instantiate these classes to create an object instance

14 Representing USDL for Humans and Tools 379

Fig. 14.8: Fragment of the USDL meta-model.

representing a new organization, its properties, and objects representing its associ-
ated people. Figure 14.9 shows such a USDL editor where the organization Lead
Logistics (cf. running example in Section 8.7) is established and multiple natural
persons are the associated representatives.

Fig. 14.9: USDL Example Model.

In order to advertise the service specified in USDL, we can deploy the service
description we have created in the editor to a broker of services in a service market-
place in XMI format. We also might want to offer the information about the service
on a Web page to inform potential customers. Therefore, we initiate an USDL-to-
HTML conversion by invoking the USDL-Doc tool. The tool processes the USDL

380 Duddy et al.

service description file, along with the USDL meta-model, and uses the Xpand tem-
plate to produce a human-readable representation.

«IMPORT usdl»
...
«DEFINE expandOrganization FOR Organization»

<html>
<body>
<div>
<p>organization.name</p>
<p>organization.legalForm</p>
<p>organization.numberOfEmployees</p>
<p>organization.yearOfFounding</p>
</div>
«EXPAND expandNaturalPerson FOREACH representatives»
</body>
</html>

«ENDDEFINE»

«DEFINE expandNaturalPerson FOR NaturalPerson»
<div>
<p>naturalPerson.firstName</p>
<p>naturalPerson.lastName</p>
<p>naturalPerson.title</p>
</div>

«ENDDEFINE»
...

Fig. 14.10: Xpand Code Generation Template.

An example Xpand template is shown in figure 14.10. It defines the rules (e.g.,
expandOrganization, expandNaturalPerson) for how to map USDL
model elements to HTML code. While the bold black font denotes dynamic code
generation, the lighter font expresses static HTML code. To have a means to access
the USDL model elements, the template has to declare the available types by import-
ing the USDL meta-model. Once the generator engine is aware of the USDL types,
various typed rules might be defined. In the example in Figure 14.10 there are two
rules specified: expandOrganization and expandNaturalPerson. These
rules are applied to all organizations and all natural persons defined in the USDL
model. The expandOrganization rule actually creates a new HTML file and
prints the organization properties to a div-block. Moreover, within the expandOrga-
nization rule an expandNaturalPerson rule is called creating a dedicated div-
block for each person. Note that Xpand language is capable of (i) defining declara-
tive rules for specific types, (ii) accessing element properties using the dot-operator
and (iii) navigating through the model to discover linked objects via references (e.g.,
representatives).

Finally, the generator engine processing the Xpand template creates an HTML
page like the one depicted in Figure 14.11. The illustrated HTML generation is also
feasible for PDF documents. It merely requires a PDF-specific Xpand template.

14 Representing USDL for Humans and Tools 381

Fig. 14.11: Generated HTML Page.

14.4.3 Summary of USDL-Doc

In this section, we have demonstrated the USDL-Doc tool which transforms USDL
service descriptions into HTML or PDF documents. The resulting documents may
address various needs of service providers such as providing developer documenta-
tion or marketing material.

14.5 Conclusion

This chapter has explained how tools can use the USDL meta-model to make repre-
sentations of concrete service descriptions for use by humans and tools.

382 Duddy et al.

Firstly, we can see that additional meta-model machinery is needed to allow tree-
based textual serialization of the USDL’s Ecore models designed for describing the
structure and constraints of a service description. The main purpose is for model
interchange between tools, but human readability is also considered. A simple struc-
tural containment is introduced to allow tools using the XMI specification to create
valid XML documents for whole service descriptions, and for fragments from par-
ticular modules. However, an additional class for an import mechanism are also
used to facilitate the easy tracing of the documents in which parts of a USDL model
are located. The use of SML is and its interchange format SML-IF are also dis-
cussed. This framework facilitates the packaging together of a coherent set of XML
Schema and instance documents, the cross-linking of elements between these doc-
uments, and the potential to validate additional constraints that cannot be expressed
via XMI.

The integration of USDL service descriptions within existing vocabularies and
ontologies in the Semantic Web space has been explored in Section 14.3. The tech-
nologies that make up the Semantic Web have more flexible kinds of relationships
between concepts than the minimal object-oriented typing of the MOF, and some
of these are considered to maximize the ability to match concepts in USDL within
a larger Linked Data ecosystem. The other idea put forward is that an initial effort
to match the concepts in the USDL meta-model with similar concepts in existing
ontologies will allow the USDL service descriptions available in a Semantic Web
context to be linked across domains such as Agents and Geospatial data, and to be
manipulated by a range of reasoning tools.

Finally, we consider the use of USDL-Doc tools which use the USDL meta-
model in concert with service description instances to format USDL data for human
comprehension and navigation.

References

1. B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML: Syntax and Pro-
cessing. http://www.w3.org/TR/rdfa-syntax/, October 2008.

2. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

3. C. Baumann and C. Loës. Formalizing copyright for the internet of services. In G. Kot-
sis, D. Taniar, E. Pardede, I. Saleh, and I. Khalil, editors, iiWAS’2010 - The 12th Interna-
tional Conference on Information Integration and Web-based Applications and Services, 8-10
November 2010, Paris, France, pages 714–721. ACM, 2010.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J. Semantic Web
Inf. Syst., 5(3):1–22, 2009.

5. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema, 2002.
http://www.w3.org/TR/rdf-schema.

6. D. Brickley and L. Miller. FOAF Vocabulary Specification 0.98. http://xmlns.com/foaf/spec/,
August 2010. Last Visited: July 2011.

7. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Recommendation, W3C,
November 1999.

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdf-schema
http://xmlns.com/foaf/spec/

14 Representing USDL for Humans and Tools 383

8. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/, February 2004. Last Visited: March 2005.

9. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space, volume 1
of Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool, 1st
edition edition, 2011.

10. M. Hepp. Goodrelations: An ontology for describing products and services offers on the web.
In 16th International Conference on Knowledge Engineering and Knowledge Management
(EKAW2008), volume 5268 of LNCS, pages 332–347, Acitrezza, Italy, October 2008. Springer.

11. J. R. Hobbs and F. Pan. Time Ontology in OWL. Available at http://www.w3.org/TR/
owl-time/, September 2006.

12. R. Iannella, H. Halpin, R. Iannella, B. Suda, and N. Walsh. Representing vcard objects in rdf.
Member submission, W3C, January 2010.

13. ISO. Information technology – Document Schema Definition Languages (DSDL) – Part 3:
Rule-based validation – Schematron . ISO/IEC 19757-3, June 2006.

14. I. Jacobs and N. Walsh. Architecture of the world wide web, volume one. Recommendation,
W3C, December 2004.

15. T. Kiemes and D. Oberle. Generic modeling and management of price plans in the internet of
services. In K.-P. Fähnrich and B. Franczyk, editors, Informatik 2010: Service Science - Neue
Perspektiven für die Informatik, Beiträge der 40. Jahrestagung der Gesellschaft für Informatik
e.V. (GI), Band 1, 27.09. - 1.10.2010, Leipzig, volume 175 of LNI, pages 533–538. GI, 2010.

16. J. Lieberman, R. Singh, and C. Goad. W3c geospatial vocabulary. Incubator group report,
W3C, October 2007.

17. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services. Member submission, W3C, 2004. W3C Member Submission 22
November 2004.

18. A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System Reference. Rec-
ommendation, W3C, August 2009.

19. Object Management Group. Meta Object Facility (MOF) Core Specification Version 2.4.
OMG Document No. formal/2008-12-10, December 2008.

20. B. Pandit, V. Popescu, and V. Smith. Service modeling language interchange format, version
1.1. Recommendation, W3C, May 2009.

21. B. Pandit, V. Popescu, and V. Smith. Service modeling language, version 1.1. Recommenda-
tion, W3C, May 2009.

22. C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecký, and J. Domingue. iServe: a
Linked Services Publishing Platform. In Proceedings of Ontology Repositories and Editors
for the Semantic Web at 7th ESWC, 2010.

23. V. Presutti. Part whole design pattern.
24. A. Rector, C. Welty, N. Noy, and E. Wallace. Simple part-whole relations in owl ontologies.

Editor’s draft, W3C, 2005.
25. D. Reynolds. An organization ontology. http://www.epimorphics.com/public/

vocabulary/org.html, October 2010.
26. Richard Soley. Model Driven Architecture. OMG Document No. formal/2000-11-05, Novem-

ber 2000.
27. P. van Eck, J. Gordijn, and R. Wieringa. Value-based design of collaboration processes for

e-commerce. In 2004 IEEE International Conference on e-Technology, e-Commerce, and
e-Services (EEE 04), 29-31 March 2004, Taipei, Taiwan, pages 349–358. IEEE Computer
Society, 2004.

28. T. Vitvar, J. Kopecky, J. Viskova, and D. Fensel. WSMO-Lite Annotations for Web Services.
In M. Hauswirth, M. Koubarakis, and S. Bechhofer, editors, Proceedings of the 5th European
Semantic Web Conference, LNCS, Berlin, Heidelberg, June 2008. Springer Verlag.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-time/
http://www.epimorphics.com/public/vocabulary/org.html
http://www.w3.org/TR/owl-time/
http://www.epimorphics.com/public/vocabulary/org.html

Chapter 15

Enabling USDL by Tools

Markus Heller, Benjamin Schmeling, Steffen Heinzl, Torsten Leidig, Keith Duddy,
Thorsten Sandfuchs, Andreas Klein, and Matthias Allgaier

Abstract Fundamental tooling is required in order to apply USDL in practical set-
tings. This chapter discusses three fundamental types of tools for USDL. First,
USDL editors have been developed for expert and casual users, respectively. Sec-
ond, several USDL repositories have been built to allow editors accessing and stor-
ing USDL descriptions. Third, our generic USDL marketplace allows providers to
describe their services once and potentially trade them anywhere. In addition, the
marketplace software can be customized to different settings and considers the id-
iosyncrasies of service trading as opposed to the simpler case of product trading. The
chapter also presents several deployment scenarios of such tools to foster individual
value chains and support new business models across organizational boundaries. We
close the chapter with an application of USDL in the context of service engineering.

15.1 Introduction

In order to be of practical value to users, a set of enabling tools for USDL is re-
quired. In essence, there are three basic types of enabling USDL tools: USDL edi-
tors, USDL repositories, and USDL service marketplaces. In this chapter, we pro-
vide an overview of available tool support for USDL and discuss possible deploy-
ment scenarios as well as advanced applications.

Markus Heller, Torsten Leidig, Thorsten Sandfuchs, Andreas Klein, Matthias Allgaier
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: firstname.lastname@sap.com

Benjamin Schmeling, Steffen Heinzl
SAP Research Darmstadt, Bleichstrasse 8, 64283 Darmstadt, Germany,
e-mail: firstname.lastname@sap.com

Keith Duddy
Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia,
e-mail: keith.duddy@qut.edu.au

385 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York5,

mailto:firstname.lastname@sap.com
mailto:firstname.lastname@sap.com
mailto:keith.duddy@qut.edu.au

386 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

The presented tools address different phases of the service lifecycle. The service
lifecycle is comprised of several phases that describe all work activities that are
needed to handle services: service innovation, service offering, service matchmak-
ing, service usage, and service feedback.

To support the service offering phase, two different editor environments are pre-
sented: the USDL editor and the USDL light editor. Both editors offer basic func-
tionality to create, manipulate and store USDL descriptions. The USDL editor (Sec-
tion 15.2) targets the user group of modeling experts and supports the full range of
concepts of the USDL specification. The editor is automatically generated from the
USDL meta-model by means of model-driven engineering. The USDL light editor
targets casual users with a simpler and reduced user interface and allows working
with a restricted well-designed set of USDL concepts.

The USDL repository (Section 15.3) supports the storage and retrieval of USDL
descriptions in the service offering phase. The USDL repository provides a user
interface and an application programming interface (API).

The most prominent tool for the matchmaking phase is the USDL service mar-
ketplace (Section 15.4). It provides a virtual marketplace for the publication, search
and selection of services and brings service providers and service consumers to-
gether on a trading platform.

The three types of tools can be combined differently in various deployment sce-
narios which are exemplarily discussed in Section 15.5.

Finally, an application of USDL in a more complicated application scenario is
detailed as an example of advanced tools that leverage the potential of USDL in a
technical engineering context of service engineering. A framework for the integra-
tion of services into service-based enterprise systems is described in Section 15.6.

15.2 Editors

The editors for the creation and modification of USDL descriptions are the most
basic tools. Both editors address a typical dilemma when tool support is provided
for a basic meta-model. On the one hand, the complexity and expressive power of the
modeling language needs to be supported in the editors while on the other hand the
user’s mental models for the editor usage need to be as simple and straightforward
as possible. Both USDL editors address this dilemma with different emphasis:

• The first editor — the USDL editor — supports the full range of concepts of the
USDL meta-model, and, thus, is meant for modeling experts.

• The second editor — the USDL light editor — targets casual users and offers a
restricted well-designed set of USDL concepts to be able to specify basic ser-
vice characteristics within a form-based editor with a simpler and reduced user
interface.

Both editors have been developed by SAP Research and they are presented in the
two subsequent sections.

15 Enabling USDL by Tools 387

15.2.1 USDL Editor for Experts

The USDL meta-model is the main artifact for language specification and formalizes
the USDL concepts and the relationships among them. It defines the abstract syntax
of the language and hence specifies the rules that instances of the meta-model must
adhere to. As USDL covers business, operational and also technical aspects, there
are many concepts that have been assembled into the USDL meta-model.

In order to facilitate this task, the USDL editor presented in the following sup-
ports users in defining valid (i.e., meta-model conforming) service descriptions and
also in displaying such descriptions in a structured and understandable way.

15.2.1.1 Requirements and Design Choices

To understand the design choices that have been taken for this USDL editor we
present the most important requirements that have driven the development. As there
are implementations of a USDL editor currently available, we categorize the require-
ments into general requirements (that every USDL editor should support) as well as
specific requirements that motivate the development of the USDL editor presented
here.

General requirements for USDL editors:

Easy creation of new service descriptions from scratch Creating new USDL de-
scriptions should be as easy as possible, e.g., by using wizards. The editor can
start with a minimal description which only contains the mandatory description
elements predefined by default values.

Editing and displaying already existing service descriptions Service descriptions
can be displayed in a structured way and reduce complexity whenever possi-
ble or applicable, e.g., the editor should provide an easy and consistent way to
instantiate relationships, i.e., links between description elements.

Assuring that descriptions conform to the USDL meta-model The editor should
help the user to define models that adhere to the rules given by the meta-model.
This can either be achieved by validation functionality or even by assuring that
only valid models can be saved.

Abstraction from concrete syntax Although there is a concrete USDL syntax
based on XML (cf. Chapter 14), it is tedious to edit USDL files in an XML edi-
tor, because it is too low level, e.g., references and id generation has to be done
manually. Moreover, large XML documents tend to be unreadable for humans.
This can for example be overcome by offering subsections per USDL module
and only displaying information that is currently relevant for the user.

Requirements that were taken into account specifically for the USDL editor dis-
cussed here are:

Support for all USDL concepts There should be at least one editor that supports
all the concepts defined in the USDL meta-model, otherwise those concepts can-

388 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

not be instantiated. This requirement was especially important for being able to
validate all language concepts during the development of the USDL language.

Changes in the meta-model are automatically reflected in the editor The concepts
added to the USDL meta-model during the development of the language had to
be validated by a set of examples, e.g., to see how a certain concept can be instan-
tiated and how it would work for a concrete service description. However, during
the development of the language the meta-model is not stable and will change
frequently. Every change in the meta-model will affect the code of an editor. If
changes in the code have to be done manually, there will be high development
efforts.

15.2.1.2 Realization Concepts

Especially the last requirement has a direct impact on the architecture and set of
frameworks to be used for the implementation of the USDL editor. As discussed
in Chapter 14, the USDL meta-model has been specified by the Eclipse Modeling
Framework (EMF). EMF provides Ecore as a meta-modeling language with a cor-
responding Ecore editor, an Ecore2Java transformation, an EMF Reflection API,
Ecore2XSD transformation, and a XML/XMI Serialization for Java objects gener-
ated by the Ecore2Java transformation. All the features are supported by tools inte-
grated in the Eclipse IDE and facilitate the automatic, model-driven, generation of
user interface and application code for the editor. An overview of the architectural
components and models is depicted in Figure 15.1.

Fig. 15.1: Architecture of the USDL Editor.

The USDL Editor comprises six architectural components: The Eclipse Plugin/-
configuration component contains the Eclipse-specific configuration artifacts. The
Object Model is the meta-model’s representation as Java Classes which is gener-
ated by the Ecore2Java transformation and is used as data model for the editor. The

15 Enabling USDL by Tools 389

Generic GUI Components are based on the EMF Reflection API and render input
forms based on the attribute types and values of the object model, e.g., combo boxes
in case of enumeration types. There is also a smaller part of GUIs that is static and
has to be written manually (Static GUI Components). This includes for example the
main user interface and the structuring into different tabs. The Ecore2XSD com-
ponent is a model-to-model transformation that generates the USDL XML Schema
out of the Ecore meta-model. This module is an extension of the default Ecore2XSD
transformation provided by EMF. The Java2XMI Serialization component — also a
slightly customized version of the EMF serialization — supports writing and read-
ing of USDL descriptions from service descriptions, which can be validated against
the USDL meta-model.

Whenever there is a change in the meta-model, the Ecore2Java transformation
can be run which updates the Java object model. Because of the generic GUI Com-
ponents, the user interface of the editor automatically changes according to the new
object model. As an example consider the introduction of a new attribute to the Ser-
vice class. After invocation of the Ecore2Java transformation the editor will analyze
the changed Java classes at runtime (using EMF reflection API) and automatically
add a new input field, e.g., a text field for attribute type String. This works because
the generic GUI components always rebuild the user interface of the editor after
restarting, reflecting changes immediately. A nice side effect of this approach is
the uniform user interface. However, not the complete structure of the user inter-
face can be generated automatically. That is why the Eclipse Plugin/Editor Widget
component allows for the manual adaptation of the main widget, e.g., the subtabs
for modules or the elements shown in each tab can be specified programmatically.
Figure 15.2 shows a screenshot of the USDL editor.

Fig. 15.2: Screenshot of the USDL Editor.

390 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

15.2.2 USDL Light Editor for Casual Users

The USDL light editor is targeted at users, who want to specify the core business in-
formation of the service, such as general header data, participant, and contact infor-
mation, abstract capabilities and actions of the service, the core interaction schema
as well as basic pricing, availability information. In contrast to the editor discussed
in the previous section, the USDL light editor hides some of the complexities of the
language in favor of lowering the entry barrier for casual users.

15.2.2.1 Requirements and Design Choices

The editor should be easy to deploy and access by a potentially large group of di-
verse target users in arbitrary application domains and business sectors. So we de-
cided to implement the editor as a Web application. Another important requirement
results from the fact that our target users are mainly non-technical people. There-
fore, the editor should be easy to use, which means it should reduce the complexity
of USDL and translate technical details into a user friendly and understandable rep-
resentation. Simplification was the main goal to lower the entrance barriers for new
users. Not every service needs the full breadth of USDL and we should not penalize
the many simple services for the sake of the few complex ones. Specific details, e.g.,
complex pricing models, can be added later by the specialists using the previously
presented editor.

Other important principles to achieve usability are a) focus on aspects, b) pro-
gressive disclosure of details [20], and c) utilization of context [22]. The principle
of focus means that the visual appearance (color, font, visibility, layout, lines, etc.)
should be used to attract the user’s attention to the aspects that are really necessary
to do the job in a certain situation. This could mean that only information and in-
teraction elements are presented to the user if they are relevant to a certain aspect.
For example, if the user is specifying the interaction aspects of the service, he will
only be presented UI elements that are dealing with interaction behavior. Elements
out of focus will be eliminated, blurred, or put to background. Also the interaction
elements need to be offered in the right representation, which would include the
use of graphical representations in this case. Changes of the focus or scene can be
indicated by smooth animations. [18]

In addition, the principle of context suggests to limit the user activity to one spe-
cific context supporting it by the adequate operations and contextual information
available inside the service description but also related information from other ser-
vices and the background business systems. The editor tool must not be a monolithic
isolated tool. It rather should be embedded into an overall business setting, which
provides valuable information and constraints about the business context. There-
fore, the editor must be open to be integrated into the business environment of the
company.

Progressive disclosure [20] is another principle that helps to avoid scaring peo-
ple and reduces the user interface elements to the amount that is necessary in the

15 Enabling USDL by Tools 391

Fig. 15.3: Progressive disclosure of pricing information.

current situation. Only if the user is going to be more specific on an issue, the re-
spective user interface elements will be shown. Figure 15.3 shows how a price plan
is progressively disclosed to its price components.

15.2.2.2 Realization Concepts

The USDL light editor is realized as a single-page application (SPA) based on
HTML5, SVG and JavaScript. This ensures that it can be used on major desk-top
and mobile platforms that come with a Web browser. No dedicated deployment pro-
cedures are necessary. Utilizing the local store and caching capabilities of modern
Web browsers, the editor also can be used online. The editor can be packaged as
a WebApp for the GoogleChrome and Mozilla Firefox browser. The package size
remains less than eight megabytes, which leads to acceptable loading time even if
loaded from the Web server.

JQuery is used as core DOM and UI framework and we can rely on a rich set
of available plug-ins, which we use for in-place editing, smooth animation, gesture-
based interactions, especially on mobile devices. The editor is using the RESTful

392 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

USDL repository API in order to browse, load, and save service descriptions from
various USDL repositories. USDL descriptions are delivered as XML documents
according to the USDL XSD (cf. Chapter 14). Mapping of XML representations of
USDL to user interface elements is done via folding [23, 6, 21]. Specific substruc-
tures of the USDL descriptions are transformed into a HTML/SVG structure that is
folded into the corresponding XML part.

Fig. 15.4: Graphical representation of interaction model.

Folding provides an easy way to achieve a bidirectional mapping between the
USDL model and the user interface representation. Changes of the HTML part will
result in corresponding changes in the XML part and vice versa. Extensions are
simply done by specifying HTML representations and their corresponding model
parts. A set of generic folding operations is doing the actual mapping and updating.
In HTML5 this also can be done for graphical representations using SVG (Figure
15.4).

We use the card stack metaphor in order to achieve focusing and progressive dis-
closure. Each major aspect is summarized on a card. If the user wants to navigate
to specific sub-aspects, a new card describing this aspect will be opened on top of
the current card. The user can jump between the cards (“look back”) by moving the
cards to the left or right. The UI representation on a card consists of forms contain-
ing in-place editable text fields, which are supported by pop-up tools depending on

15 Enabling USDL by Tools 393

the type of the input field, e.g., rich text commands, option menus, date-time selec-
tors. Elements of the interaction module of USDL have a graphical representation,
loosely based on service blueprints, because it is more intuitive to specify behavioral
aspects in a graphical notation.

15.3 Repositories

For the storage of the created USDL descriptions, a set of USDL repositories has
been developed. The repositories, once deployed to many sites, allow the inter-
change of USDL descriptions that have been described once for the deployment
into multiple repository sites. In the remainder of this section, two USDL reposi-
tories with different addressed needs are explained. Besides the implemented state
within these two repositories, a standard interface and protocol for accessing USDL
repositories in general is currently under discussion.

15.3.1 USDL Repository as an Enterprise Application

After creating USDL descriptions for his services, the service provider usually pub-
lishes the descriptions either for broad access through the Internet or for (internal)
consumption in the corporate intranet. This is where USDL repositories come into
play. A model-driven approach is suitable to construct a repository that fully covers
a complex model as USDL, that provides persistence and de-/serialization of the
USDL descriptions, and that offers web-based access to create, read, update and
delete descriptions. Implementing the persistence layer alone means that

• a database schema reflecting the whole USDL model has to be created (either by
modeling it with ER diagrams or creating it directly with SQL statements),

• SQL statements to create, read, and update service descriptions have to be writ-
ten, and

• serialization into XML and deserialization from XML according to the concrete
syntax format defined in Chapter 14 has to be undertaken.

Through model-to-model transformations, it would be possible to create an ER-
diagram or the SQL statements could be generated from the model. However, the
USDL model is structured according to object-oriented principles while the database
structures are relational.

Taking this into account, it is reasonable to use an ORM (Object-relational map-
ping) framework, such as Hibernate1 or EclipseLink2 which are both JPA (Java Per-
sistence API) providers. JPA provides an annotation-based mechanism to map Java

1 Hibernate, JBoss Community, http://www.hibernate.org/
2 EclipseLink, The Eclipse Foundation, http://www.eclipse.org/eclipselink/

http://www.hibernate.org/
http://www.eclipse.org/eclipselink/

394 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

objects to database tables which is indeed a challenging task because object-oriented
principles cannot be directly mapped to relational data models. The most prominent
examples are inheritance (which is not directly supported), attributes with complex
data types (which cannot be directly mapped to columns) and polymorphic queries
(also not directly supported). These and other shortcomings are compensated by the
ORM frameworks. JPA allows different inheritance mapping strategies (Single Ta-
ble, Joined, Table per Class), which result in a different number of tables, number of
joins, and different amount of replicated data. The Java classes with the required an-
notations can directly be generated from the USDL meta-model. The Eclipse Mod-
eling Framework (EMF) offers a rich tool set for this purpose. The generated Java
classes are based on the Ecore class model which offers a richer reflection API than
the standard class model of Java. The Ecore class model can, however, not be di-
rectly processed by JPA frameworks, such as Hibernate. Hence, Teneo3 was used
to provide this mapping. While Hibernate allows Java objects to be written to the
database directly, Teneo extends the reach of Hibernate and EclipseLink to Ecore
models. It is possible to create a class model in Ecore, provide the annotations (such
as adding an ID annotation for all classes through a model-to-model transformation)
needed by the JPA framework, and then create the Java classes that are further used
in the application implementation. Besides the Java classes, also JEE 6 Data Access
Objects (DAOs) and internal services for transaction handling are created which can
be used to facilitate the backend access.

Fig. 15.5: Technology Stack of the USDL Repository.

3 Teneo, The Eclipse Foundation, http://wiki.eclipse.org/Teneo

http://wiki.eclipse.org/Teneo

15 Enabling USDL by Tools 395

The JBoss 6 Application Server4 was used to host the repository, providing a
technology stack which is depicted in Figure 15.5. The next section shows how a
remote access to a repository can be realized.

We have focused mainly on the backend of the repository, since the frontend
functionality is standard functionality which can — to a certain degree — be inde-
pendent of the backend application.

Remote access to the repository is enabled via Jersey5 (REST style access to the
service descriptions) and odata4j6 (an implementation of the OData7 protocol for
Java).

15.3.2 Building a USDL Repository as a Service

A project of the Smart Services Australian Cooperative Research Centre (CRC) at
Queensland University of Technology (QUT) has developed a repository genera-
tion tool called Repository as a Service (RaaS). Its first prototype implementation
is documented in [14]. Unlike other model repositories, such as EMFStore [17],
the Jazz repository [8], and others [9], RaaS is more concerned with storing a large
number of instances of a given data model than supporting models within software
engineering approaches. RaaS builds a Web service accessible repository of model
objects, as specified by any EMF Ecore meta-model. The USDL was the first sub-
stantial model for which a repository service has been generated and deployed for
use within service-oriented projects in the CRC and its partners. The size and com-
plexity of USDL, and the likelihood of USDL repositories needing to contain tens
or hundreds of thousands of service descriptions have driven the requirements for
the structure and scalability of the RaaS tools.

15.3.2.1 High Level Design Rationale

USDL is meant to define a set of service descriptions for shared use in an enterprise
or marketplace, and therefore, the implementation of a repository for USDL descrip-
tions is necessarily a datastore with distributed access by all service providers and
their potential clients, as well as service portfolio managers. The design of efficient
and scalable distributed systems requires the smallest number of remote interactions
as possible, conveying the largest payload possible without forcing the unnecessary
duplication of data in these payloads. The current trend in services design is toward
document-oriented computing (using large gained XML documents), rather than ap-
plication integration using remote procedure calls (using a one call per fine-grained

4 JBoss Application Server, JBoss Community, http://www.jboss.org/jbossas/
5 Jersey, java.net, http://jersey.java.net/
6 odata4j, An OData Toolkit for Java, http://code.google.com/p/odata4j/
7 Open Data Protocol (OData), http://www.odata.org/

http://www.jboss.org/jbossas/
http://jersey.java.net/
http://code.google.com/p/odata4j/
http://www.odata.org/

396 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

data element update). Our design is based on the premise that the granularity of
interaction with repository services should be based on the semantics of the data
being exchanged, rather than dictates of the middleware style being employed to
implement the repository.

Another dichotomy in service provision which invites much polarizing debate
is the choice of the W3C and OASIS standards for Web services, known as WS-*,
versus the more minimal approaches to HTTP protocol reuse known as Represen-
tational State Transfer (REST). We wish to allow both styles of interaction with
USDL repositories to gain the widest possible adoption of USDL.

Here is a list of requirements that formalizes some of these high-level design
goals:

As a Service Our first requirement for a USDL repository is that it also be avail-
able to users as a service. We have named our implementation of a repository
generation framework Repository as a Service (RaaS).

Full code generation, with maximal off-the-shelf reuse The experience of build-
ing a prototype repository for an early version of USDL by hand has led us to
the conclusion that hand-coding tools to support metadata management are a
wasted effort in an environment where the meta-model is undergoing continuous
change. The RaaS tools must reuse code generation frameworks where possible,
and use best-of-breed model transformation technologies where new code gen-
eration approaches are needed to fulfill the other requirements. As the USDL
abstract syntax is specified using MOF models, and as EMF is mature and an
open implementation of the MOF, with the most active developer community,
we chose to use Eclipse/EMF as the base technology platform.

Multi-Granular Access The use of EMF as the in-memory Java programming
framework for programmers to create, access and modify USDL metadata pro-
vides a very fine grain of manipulation of individual objects and their attributes
and references using either generated accessor methods or the EMF reflective in-
terfaces. This granularity of access should be made available to distributed clients
who need to update particular attributes in a USDL service description on a reg-
ular basis. However, if the generated interfaces of all of the EMF classes in the
USDL model were the only basis on which a Web service was made available,
there are a number of problems that this would bring with it. Firstly, the gener-
ated WSDL which represents the EMF interfaces for the whole of USDL contains
thousands of operations, grouped into hundreds of port definitions. Secondly, the
latency associated with the hundreds or thousands of remote operation invoca-
tions required to populate a single full service description creates a very ineffi-
cient distributed application. The option to upload a whole service description,
which has been edited locally, into a remote repository allows us to overcome this
inefficiency. However, there are many use cases where some subset of a service’s
descriptive objects and attributes may need to be updated as a group, for example
in the update of a Price Plan (which is only valid with at least one attached Price
Component, which comes with at least one Price Level), or the addition of a new
Service Level Agreement (which also must have many additional contained ob-
jects in order to be valid). Therefore it is a requirement that a user of the RaaS be

15 Enabling USDL by Tools 397

able to choose the granularity of object group creation and update, both to match
their requirements for consistent updating of a related group of model elements,
and for distribution efficiency.

Multiple User Roles with Defined Rights and Access Control The USDL brings
together a number of different aspects of service metadata that have to date been
dispersed throughout an organization, and which are represented in diverse for-
mats. The set of roles in an organization that are responsible for this metadata
includes at least: technical, marketing, provisioning, legal and business owners.
Then there are clients of the services described in USDL who need access to the
descriptions via search and browse applications. We require that a set of arbitrary
roles may be defined to represent the various users of a USDL repository which
is deployed in a particular setting, and that they be given read or read/write ac-
cess to the parts of the USDL model that they are intended to populate or query.
We require that this specification be in terms of a subset of the MOF packages
and classes defining the USDL abstract syntax, and that appropriate access con-
trol mechanisms be derived from the specification. A deployed USDL RaaS must
also offer an administration interface which allows roles to be granted appropri-
ate access rights and users to be assigned to roles. Furthermore, if certain roles
are only permitted access to a subset of the full create/read/write capabilities then
an appropriate role-based WSDL specification (or REST interface) must be gen-
erated that hides irrelevant detail from users in that role (such as create and write
operations for read-only users, or even read operations for modules which are
outside the purview of the role).

Reliable and performant storage We require that a repository service can safely
store a set of USDL service descriptions in such a way that the data is robust and
that it can be searched and retrieved efficiently. We have chosen the Teneo plugin
for object-relational storage.

Rich query language support Service portfolio managers and service clients need
to be able to query a repository of USDL service descriptions in a flexible manner
to allow them to discover appropriate services for their needs.

15.3.2.2 A Design which Meets the Requirements

The tools we have developed using a combination of off-the-shelf and bespoke code
generators and wizards are known as Repository as a Service. Fig. 15.6 shows the
RaaS code generators and the architecture of the deployment of a USDL repository,
which includes objects in a Java Virtual Machine which conform to the EMF types
generated from the USDL Ecore model, and a persistence layer using Teneo and
Hibernate, as well as a Web services layer supporting WSDL and REST services.
The following subsections describe the design in detail.

398 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

Fig. 15.6: The Architecture of the RaaS Tools.

WS-* and REST Services with Multi-granular Access

The design of the serialization of the contents of a graph of objects is the key to
providing “multi-granular access.” An object that contains other objects must be
able to serialize its own attributes as well as the object(s) that it contains. We identify
the classes in the USDL meta-model which represent roots of trees of contained
objects, and use these as the candidates for read/write operations in the Web service
which can be passed a complete set of connected objects making a well formed piece
of a service description. We generate appropriate XML parameter schemas, and
allow repository users to identify any additional meta-model classes as candidates
for operation generation. For example: PricePlan is selected as a candidate, but
a user can also chose PriceLevel (a contained class) as a candidate for read/write
operation generation, as this is the most likely class to be frequently updated when
a price changes.

Another approach which is supported is the choice to assert a containment re-
lationship over a reference in the meta-model which is specified as non-contained.
For example, in a number of places in USDL, Expressions are referred to by other
classes, perhaps with the rationale that they may be shared by several instances
that require them, in the same way as an Organization is defined once per USDL
repository, and referenced by all the USDL model elements that need to nominate
a particular Organization as a BusinessOwner, Stakeholder, etc. But in the ser-
vice description editing scenario, it is unlikely that an Expression can be shared by
multiple service description instances, and so if we annotate the meta-model with

15 Enabling USDL by Tools 399

an asserted containment then the Web service can treat each Expression usage in
this context as a contained element, and need not generate a separate interface for it.

Object Identification across Address Spaces

The first practical consideration when implementing a distributed version of the
in-memory EMF object graphs that exist in a Java program is the identification of
objects previously created in the USDL repository. Unlike previous generations of
middleware, such as DCOM and CORBA, Web services toolkits make distributed
object identification the problem of the application. Even when a service description
is created as a single XML document, and uploaded into the repository, there are
some things that must be provided by reference, rather than by value. For example,
the Organizations, NaturalPersons and Resources specified in the Foundation
Module of USDL must be defined in the repository once only, and have references
to them from other USDL objects. If not, the change in contact details, locations,
etc. for these entities cannot be made in a single place, and their utility as shared
classes is lost.

The module structure of USDL is designed to provide a default separation of
concerns, and granularity of service description population, even though the main
classes in each non-core module are contained by references from the Service class
in the Service Module. The module structure implies a module-at-a-time popula-
tion of service descriptions by different roles in the maintenance of USDL data.
However, the existence of many cross-module references in the USDL meta-model
implies that each module must to be able to refer to objects that are already present
in the repository.

To support the identification of each extant object in RaaS, we insert a new at-
tribute into each class in the USDL meta-model, named raasId. This is a simple,
but effective way of being able to populate references to objects already created by
another user, which are not present in the address space of a client. These identifiers
also allow the creation of meaningful URIs for REST access to the repository —
especially where multi-valued references don’t allow these to be determined from
context by their type name alone.

15.3.2.3 Implementation

In this section we first introduce the set of tools which is used to create the majority
of the code for the RaaS, and then explain the process in which we use them to meet
our design goals.

400 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

Tool Reuse

As stated in the design goals, we use off-the-shelf tools and frameworks where pos-
sible, and model transformation and code generation approaches where no appro-
priate tool exists. We use the EMF generated classes, wrapped by Connected Data
Objects (CDO)8 as our Java object platform, and Teneo9 with Hibernate10 to gener-
ate a relational persistence layer from the EMF.

The fact that Teneo uses the Hibernate framework, gives us an implementation of
the Hibernate Query Language (HQL) for use by clients which we provide through
a generated query operation. Optionally, the repository may also support the use of
the OMG standard Object Constraint Language (OCL), which is supported by an
open-source Eclipse plug-in.

The Web services layer reuses the Java XML Schema generation tool JaxB, and
Java Web Service implementations JaxWS and JaxRS. The use of JaxB in combina-
tion with EMF provides a number of options for client applications to communicate
with the repository. They can populate documents that conform to the generated
XML Schemas, and invoke the WSDL operations from any Web services toolkit, or
they can use the EMF interfaces to create groups of interconnected objects, and then
pass these to a proxy for the Web service which performs the SOAP/XML serializa-
tion and remote operation invocation for them. There are also REST URIs generated
which allow XML or JSON formatted documents to be passed via HTTP GET and
PUT for ease of Web browser-based repository client creation, and integration into
RESTful applications. The XML generated by JaxB is flexible enough to allow a
whole subgraph of serialized EMF objects to be transmitted as the parameter to a
single SOAP invocation or REST interaction. This capability is matched by a dese-
rializer in the repository that accepts XML fragments of arbitrary size and creates
matching structures in the datastore when they are created, or patches them into the
existing structure in the datastore when updates are performed. Finally, in order to
manipulate the input meta-model to RaaS we use the Tefkat model transformation
language and engine [19].

Combining the Tools and Frameworks

Firstly, we create a new version of the USDL meta-model using a Tefkat transforma-
tion to insert a unique identifier attribute “raasId” into each class in the meta-model.
Then EMF and CDO code is generated from the new meta-model. A proxy is imple-
mented in CDO to allow these identifiers to behave as de-facto references when an
object referred to is not in memory. Teneo is nominated to the CDO code generator
as the relational persisence layer, and its code is also generated in this step.

8 http://wiki.eclipse.org/CDO
9 http://wiki.eclipse.org/Teneo
10 http://www.hibernate.org

http://wiki.eclipse.org/CDO
http://wiki.eclipse.org/Teneo
http://www.hibernate.org

15 Enabling USDL by Tools 401

Then, using pattern matching, we identify the “root classes” of each package
in the meta-model, taking into account any asserted containment relationships. An
Eclipse wizard for RaaS presents these to the repository builder as default medium-
grained model entry points to the Web service generation tools. For example, in the
Pricing Module there are twenty classes, but as only four are not contained by an-
other class, it would be sufficient to generate the WSDL operations (or REST URIs)
for only these classes, and allow interaction with the repository only for creation
and update of whole PricePlans, PriceFences, PriceMetrics and Taxes, with all
their contained classes attached to them by containment references.

Once the RaaS repository builder has chosen any additional classes for which to
generate operations, the generated EMF/CDO classes are annotated for JaxB, JAX-
RS and JAX-WS code generation by the wizard, and a project build is initiated. The
generated Web service, including the persistence layer, is then packaged as a WAR
file, and may be deployed into Tomcat or other Web services container on any server
machine.

15.3.3 Conclusion

The design of USDL as a set of EMF Ecore models allows for the use of many pow-
erful model-driven engineering and code generation tools and frameworks. It suits
both the generation of a repository as an enterprise application as well as a repos-
itory as a service. However, the combination of these tools into a scalable three
tiered distributed server requires a number of important additional design choices.
We have seen that the selection of only a subset of meta-model classes for remote
access provides a basis from which to match the semantics of the model with an
appropriate granularity of distribution of related model objects. The use of addi-
tional identifiers in combination with the CDO framework allows programmers to
manipulate a subset of objects, while preserving references to extant objects that are
resident in the remote repository.

15.4 USDL Marketplace

Creating descriptions with USDL editors and storing the descriptions in USDL
repositories happens in the offering phase. Referring back to the running example
introduced in Section 8.7, the 4PL would have to capture a description of its service
in USDL and store it in a local or third-party repository. A marketplace is required
to enable the trading of services in the matchmaking phase. The example mentioned
a logistics marketplace for enabling trade of logistics services.

However, 4PL might want to offer its service on different marketplaces and trad-
ing platforms. Currently, 4PL would have to capture its service several times con-
forming to the representation requirements of each individual marketplace. In order

402 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

to remedy this situation, we have developed a generic standard software for USDL
service marketplaces. The generic software can be customized to different settings
(e.g., the logistics domain), is able to import and export USDL descriptions, and
can subscribe to several USDL repositories thus enabling providers to potentially
describe once and deploy anywhere (further discussed in Section 15.4.1).

The generic marketplace software particularly considers the idiosyncrasies of
service trading as opposed to the simpler case of product trading. One such id-
iosyncrasy concerns the pricing of services as discussed in Section 9.2. A service
is an intangible entity by definition, for it cannot be stored or inventoried by ei-
ther providers or consumers. Therefore, the time of purchase — when the consumer
commits to pay in exchange of the provisioned service (not to be confused with the
time of payment) — always precedes the time of production. That represents a key
difference from the selling of goods, which can instead occur either before produc-
tion (e.g., in a make-to-order scenario for a customized item) or afterwards (in the
case of commodities). Another idiosyncrasy and benefit of our solution is discussed
in 15.4.2.

Our generic USDL service marketplace is implemented as a J2EE11 application
based on JBoss’s Seam framework.12 JBoss Seam supports REST for communicat-
ing with the USDL repository as well as a fully-fledged tool set for creating user
interfaces, business logic and database persistence.

15.4.1 USDL Service Publishing and Presentation

Providers can publish USDL services into a marketplace through direct uploading
or using a certificate-based subscription mechanism, which connects the providers’
marketplace accounts with a USDL repository. In this case, updates on a USDL ser-
vice in the repository get automatically propagated to the connected marketplaces.
See details of possible deployment scenarios in Section 15.5.

The service marketplace is capable of extracting different aspects of a USDL
service description and present them tailored for a specific role. Figure 15.7 shows
how a USDL service description exposing the customer relevant aspects of the ser-
vice such as a price plan, main description attributes and references to the provider’s
main contact. The USDL description is parsed and rendered in human readable for-
mat (cf. also Section 14.4), exposing, e.g., price fences in a tabular design. The
given USDL description is exposed with a link for further programmatic access to
the description.

11 http://java.sun.com/j2ee/docs.html
12 http://seamframework.org/

http://java.sun.com/j2ee/docs.html
http://seamframework.org/

15 Enabling USDL by Tools 403

Fig. 15.7: Visualized USDL service description targeted at the consumer.

15.4.2 Business Scenarios — Enhanced User Guidance through
Abstract Services

Another central functionality of the service marketplace is the support of match-
making and bundling options for the involved roles in the concept called “business
scenarios.”

A business scenario enables the customer to find a non-trivial combination of ser-
vices to fulfill a complex business goal. Complex business goal cannot be achieved
by a single service or a simple service bundle, but can be solved through logically
combining different services usually coming from different services providers. Such
business scenarios have to be understood by marketplace customers and the market-
place itself, therefore they are supported with a textual and a formal description. The
textual description is written by a business expert, targeted at specific customers.
The formal description of a “service plan” is the corresponding technical represen-
tation and also created by the business expert.

A service plan is an abstract solution to a problem and consists of abstract ser-
vices and abstract service modules. An abstract service module contains different
abstract services, or other abstract service modules combined with the logical oper-

404 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

ators AND, OR, or XOR. A built-in SAT-solver13 supports the expert in configuring
service plans consistently.

Fig. 15.8: Guided service plan procedure.

When a consumer instantiates a business scenario, the marketplace system gen-
erates a guided procedure out of the service plan model and supports the user in
fulfilling the scenario on an abstract level. The contained abstract service modules
are displayed successively and the consumer can choose exactly one, multiple or all
abstract services or abstract service modules from each module depending on the
logical operator defined by the business expert. Figure 15.8 shows the logical model
behind a service plan on the left side. On the right side two guided procedure steps
are visualized.

After configuring the service plan on an abstract level, the marketplace system
generates a proposal with concrete services described in USDL that fulfill the user’s
service plan. The proposal is a best bet, based on parameters such as minimal price,
service rating, provider rating and geographical closeness. Furthermore, the impor-
tance of the different factors can be weighted by the user as shown in Figure 15.9.

This split approach, which is based on the concept of abstract services, allows the
business expert to separate the process of describing his business problem and find-
ing the right providers for the fulfillment. From a customer’s perspective, a concrete

13 http://www.sat4j.org/

http://www.sat4j.org/

15 Enabling USDL by Tools 405

Fig. 15.9: Service Plan proposal.

instantiation of a business scenario can be seen as a new building block through
loose coupling of cross-organizational services.

Concluding, we can say that our prototypical implementation of a service market-
place benefits from concepts introduced by USDL, especially the notion of abstract
services allowed us to develop a goal-driven solution for more complex business
scenarios. Future work could empirically evaluate the influence on the acceptance
rate for business service marketplaces that make full use of USDL’s capabilities.

15.5 Deployment Scenarios

As the tools supporting USDL are only loosely coupled, they can be combined for
different deployment scenarios and business scenarios, supporting various use cases,
outlined in this section. This allows the involved parties to create individual value
chains and support new business models across organizational boundaries in an In-
ternet of Services.

15.5.1 Simple USDL Tool-Chain

A first variant of a minimal tool chain is depicted in Figure 15.10 on the left hand
side. It is operated within a single unit or organization and merely consists of an
editor accompanied by a USDL repository. This simple combination of two USDL-

406 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

based tools enables the organization to collect all of their relevant services and cap-
ture descriptions of the services in a standard format and using standard tools. Es-
tablishing such a service inventory is a prerequisite for the reuse of services within
the organization.

A second variant of a minimal value chain is shown in the right hand side of Fig-
ure 15.10. Within a single unit or organization, a service marketplace can be added
to the deployment scenario. With a service marketplace, the services can be exposed
for consumption. This simple combination of USDL-based tools would normally be
deployed in addition to existing service delivery channels, not depicted in the figure.
It generates additional value to be created by exposing the same services into the ser-
vice marketplace for combination purposes or for consumption by other internal or
external stakeholders.

�

Fig. 15.10: USDL value-chain within a single entity (right: with a service market-
place).

15.5.2 Value Chains for Multiple Stakeholders

The previous section discussed how the USDL tools are used within the boundaries
of a single organization. If multiple organizations (or departments, units and the
like) are involved, the tools can be deployed in an inter-organizational setting. The
exchange of USDL service descriptions (or maybe even fragments, such as price
model fragments) between the tools is the enabler for such advanced scenarios.

An example for a possible inter-organizational usage scenario is shown in Figure
15.11. The setting shown can be realized with the goal of establishing a distributed

15 Enabling USDL by Tools 407

Fig. 15.11: Example deployment of USDL tools in a cross-organizational scenario

service value chain that is spread across multiple organizations. Different compa-
nies can install central USDL repositories within their organization as a focal point
for storing and maintaining their services (as seen at the bottom of the figure). In
order to feed service descriptions into the repository, service providers in the or-
ganization use USDL editors to create service description documents and to store
them into the USDL repository. These organizational USDL repositories need not
(and often should not) be connected directly. Instead, a set of tools is available that
can consume and process USDL services, for example, service execution runtime
environments that can support the enactment of services that are described in USDL
or tools to support the special area of service innovation (right top part of Figure
15.11). These tools can be interconnected with each other, even across organiza-
tional borders, and exchange USDL-related information with each other. A service
marketplace can either be located within a single organization (top left part of Figure
15.11) which acts as a broker for services from other companies. Multiple service
marketplaces can be located in various sites.

15.6 Service Integration Framework

Besides the fundamental tools discussed so far, we also present an application of
USDL in the context of service engineering that leverages the potential of USDL.
In the remainder, a framework for the integration of services into service-based en-
terprise systems is described.

In the Internet of Services (cf. Chapter 1), the easy and simple consumption of
services constitutes a central challenge. Within service ecosystems, organizations

408 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

dynamically interact as service providers or service consumers and potentially use
a service platform with a service marketplace to create, design, trade and consume
services [7]. Business applications running in enterprise systems (e.g., ERP, CRM
or SCM systems) constitute a promising channel for service consumption. Users
of enterprise systems increasingly demand the possibility to integrate new business
functionality from service marketplaces into their core business applications. En-
terprise system vendors and service providers for business application functionality
extensions (e.g., partners or independent software vendors (ISVs)) have to address
this demand in order to establish or remain a competitive advantage.

We can separate two fundamental approaches to service integration into enter-
prise systems: (i) Service integration in foreseen system interfaces that have been
provided at the time of shipping the enterprise system. For example, standard in-
terfaces for Business-to-Business (B2B), cf. [12], or Application-to-Application
(A2A) integration scenarios are known from the area of Enterprise Application In-
tegration (EAI), cf. [16]. (ii) The integration of services in unforeseen service inter-
faces which is the topic of this section.

Before being able to use the integrated service within the context of the enterprise
system, the corresponding business application has to be adapted or extended to
different affected application layers, e.g., by adding new UI elements (presentation
layer), adding a new process step (process layer) or extending a business object with
a new field to persist data from the external service (business object layer). Please
note, that in both scenarios the structural- and/or behavioral mismatches between the
service interfaces of the enterprise system and the service provider are traditionally
addressed by service mediation (data and/or process mediation) components (cf.
[13]).

The scope of this section is on the adaptation or extension of an enterprise system
and business applications in order to consume a given service. We provide a short
overview of our service integration framework, i.e., a modeling environment and
runtime engine for service integration into business applications. Finally, a brief
description of a prototype is given to demonstrate the feasibility of the approach.
For a more detailed description of the approach and a discussion of related work we
refer the reader to our previous work [4], [5] and [15].

15.6.1 Example: Consumption of a Business Service “Eco Value
Calculator” within a PLM Application

In the following, we briefly describe an example for the integration of a service
into a business application. After legal changes in the export guidelines, a car seat
manufacturer wants to adapt his products to make sure that the changed guidelines
are met with all products. In our example, the material of all parts of a car seat has
to comply with new environmental ecological regulations.

The manufacturer uses a Product Lifecycle Management System (PLM) that sup-
ports its core business processes as one of its core enterprise systems (cf. Fig. 15.12).

15 Enabling USDL by Tools 409

Fig. 15.12: PLM Business Application extended with the complementary service
“Eco Calculator.”

Originally, the system does not provide the required calculation of eco values for
the bill of materials used for a given car seat. Therefore, the manufacturer’s system
needs to be extended.

A service provider offers a business service, possibly described with a USDL
description, on the service marketplace for the required functionality that allows the
calculation of eco values for products including certification. A product designer of
the manufacturer accesses a service marketplace directly from within his enterprise
system and searches for services that provide the missing functionality. From a list
of recommended services, which are certified for the enterprise system, the product
designer selects the service which best matches his needs. The designer selects a
service called Eco Calculator and purchases it on the marketplace.

The service is integrated into the business application without running a manual
integration project: the user interface of the core business application is extended
with (i) an additional table column (“Eco Value”), (ii) an additional button (“Cal-
culate Eco Value”) and (iii) an additional field indicating the total eco value for the
car seat (“Entire Eco Value”). When the service has been installed automatically,
it can subsequently be used: If the total eco value meets the legal requirements, a
certificate is generated and passed to the consumer application.

410 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

15.6.2 Architecture and Main Components of a Service Integration
Framework

The developed service integration framework comprises a set of different compo-
nents (cf. Figure 15.13). An enterprise system provider (left) develops and offers a
enterprise system that is consists of several business applications.

A dedicated adaptation/extension execution environment (runtime) (depicted at
the bottom of Figure 15.13) is responsible for the extension and adaptation of the
system after it has been shipped (post-mortem extensibility). An application ex-
tensibility description document is a model of the core business application’s ex-
tensibility capabilities and is comprised of the possible extension points where the
core business applications can be extended or adapted. On the other hand, a service
provider (right hand side in the figure) creates a new business service and publishes
a service description (described, for example, in USDL) for the offered service for
future consumption. For this purpose, the USDL tool chain is used: The service
provider uses the USDL editor to create and edit the service description. The service
description is stored in the USDL repository. Additionally, the service description
can be uploaded to service marketplaces (not shown in the figure) in order to offer
the service to many potential consumers.

A service integrator (in the middle of Figure 15.13) provides a solution that
integrates a selected enterprise system with a selected business service. He uses
an integration modeling environment to capture all aspects of the service integra-
tion, e.g., the integration or adaptation steps on presentation layer, business process
layer, or service layer, or other affected application layers. In addition, a dedicated
recommendation system [3] is part of such an environment. Finally, an integration
description is generated that contains all necessary information for parameterizing
the adaptation/extension environment.

In order to increase the abstraction level for unforeseen service integration, a new
pattern-driven modeling approach is used. The set of integration steps is described
with instances of a set of (predefined) adaptation patterns in order to avoid describ-
ing the changes with lower-level codes, such as program code fragments or other
low-level configuration data. An adaptation pattern links elements from the appli-
cation extensibility model (using an application reference port) with elements from
the service model (using a service reference port). Each adaptation pattern describes
a relationship between one or more extension points of the application extensibility
model and one or more elements of the service model. This approach follows the
principle of moderately extending core business applications by none-highly spe-
cialized integration experts.

15 Enabling USDL by Tools 411

Fig. 15.13: Service Integration Framework (with Recommendation System).

15.6.3 Prototype of a Service Integration Modeling Environment

In this section the modeling approach with the eco calculator service integration
scenario is illustrated (cf. Figure 15.14). On the left hand side, the application ex-
tensibility model for the enterprise system is shown while on the right hand side,
the service description (derived from the USDL service description) is listed. In the
middle part the integration model is shown including the visual representation of
adaptation patterns.

Four requirements are given to the service integrator: (i) the service should be
integrated into the Product-Lifecycle-Management (PLM) part of the enterprise sys-
tem. (ii) The service should be invoked before the car seat is shipped. (iii) The eco
values returned from the service should only be displayed on the user interface in
an existing table. (iv) The returned eco values should not be persisted. The integra-
tion solution is modeled using one complex and one atomic adaptation pattern. The
complex adaptation pattern itself consists of four atomic adaptation patterns.

412 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

Fig. 15.14: Example Integration Model using Adaptation Patterns — Integration of
the Eco Calculator Service into the PLM Business Application.

The complex pattern “Stateless Service Integration without Data Persistency”
was chosen because it seems to fit to the given requirements. It consists of four
atomic adaptation patterns: (i) addButton, (ii) addTableColumn, (iii) addDataMed-
itator and (iv) addDataMediator.

The complex adaptation pattern exposes four application reference ports (A1 to
A4) and six service reference ports (A5 to A10) that are internally linked to the ports
of the contained atomic adaptation patterns. All ports are connected to appropriate
elements of the application extensibility or service model.

For example “addButton” is connected via the application reference port B1 with
the port type Extension Point Type — Button Panel. This port is parameterized with
the value BP-EP#1. The text for the button is taken from the Default User Interface
section of the service description (service reference port B2). The information for
the event handler of this button (service operation that is called when the button
is pressed) is taken from the Operations section of the service description (service
reference port B3). The other adaptation patterns are parameterized based on the
same principles.

Both adaptation patterns of type “addDataMediator” are used to model data me-
diation problems which are resolved using externally executed data mediation tools.
Finally, a new integration description is generated from the modeling environment.

To demonstrate the feasibility of the modeling and the runtime adaptation ap-
proach of the framework, a functional prototype has been implemented. A PLM

15 Enabling USDL by Tools 413

business application is implemented based on Microsoft Silverlight, the business
service “Eco Calculator” is implemented as a Web service based on the Axis frame-
work.14 The prototype addresses the presentation layer. After the integration de-
scription has been modeled with the integration modeling environment, it is loaded
into the Adaptation/Extension Execution Environment (implemented in Java). It is
forwarded to the UI Layer Adaptation Manager that actually adapts the PLM busi-
ness application by reusing its native extensibility features (Microsoft Silverlight
APIs).

15.7 Conclusion

The chapter introduced concrete prototypes of fundamental tools and presented the
findings in applying them. Regarding USDL editors, we have learned that the com-
plexity of the language requires different types of editors for expert and casual users.
Building USDL repositories requires a careful design of the interface in order to
provide a scalable and efficient solution. Service providers can benefit from USDL
marketplaces since they allow them to describe their services once and potentially
trade them anywhere. All of the tools can be flexibly combined in different de-
ployment scenarios (both single- and cross-organizational). We have also seen that
USDL benefits service engineering by a framework for the integration of services
into service-based enterprise systems.

References

1. MOF 2.0/XMI Mapping, v2.1.1. OMG Document formal/2007-12-01, OMG, 2007.
2. Meta Object Facility (MOF) Core Specification Version 2.4. OMG Document formal/2008-

12-10, Object Management Group, 2008.
3. M. Allgaier. Requirements for a recommendation system supporting guided service integra-

tion modelling in extensible enterprise systems. In W. Esswein, M. Juhrisch, M. Nüttgens,
and K. Turowski, editors, MobIS 2010 Modellierung betrieblicher Informationssysteme 15. -
17. September, Dresden. 2010. CEUR Online Proceedings, 2010.

4. M. Allgaier and M. Heller. Research challenges for seamless service integration in extensible
enterprise systems. In B. Pernici, editor, Proceedings of Industrial Experiences for Service
Oriented Computing (IE4SOC), Stockholm 2009, Sweden, pages 20–24, 2009.

5. M. Allgaier, M. Heller, and M. Weidner. Towards a model-based service integration frame-
work for extensible enterprise systems. In M. Schumann, L. Kolbe, M. Breitner, and
A. Frerichs, editors, Multikonferenz Wirtschaftsinformatik, Göttingen 2010, pages 1523–1534,
2010.

6. M. Alpuente, D. Ballis, M. Baggi, and M. Falaschi. A fold/unfold transformation framework
for rewrite theories extended to cct. In Proceedings of the 2010 ACM SIGPLAN workshop on
Partial evaluation and program manipulation, PEPM ’10, pages 43–52, New York, NY, USA,
2010. ACM.

14 http://axis.apache.org/axis/

http://axis.apache.org/axis/

414 Heller, Schmeling, Heinzl, Leidig, Duddy, Sandfuchs, Klein, Allgaier

7. A. P. Barros and M. Dumas. The rise of web service ecosystems. IT Professional, 8(5):31–37,
2006.

8. C. Bartelt, G. Molter, and T. Schumann. A Model Repository for Collaborative Modeling
with the Jazz Development Platform. In 42st Hawaii International International Conference
on Systems Science (HICSS-42 2009), Proceedings (CD-ROM and online), 5-8 January 2009,
Waikoloa, Big Island, HI, USA, pages 1–10. IEEE Computer Society, 2009.

9. M. Belaunde. A Pragmatic Approach for Building a Flexible UML Model Repository. In
R. B. France and B. Rumpe, editors, UML’99: The Unified Modeling Language - Beyond the
Standard, Second International Conference, Fort Collins, CO, USA, October 28-30, 1999,
Proceedings, volume 1723 of Lecture Notes in Computer Science, pages 188–203. Springer,
1999.

10. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide. Addison-
Wesley Object Technology Series. Addison-Wesley Professional, 2nd edition, 2005.

11. F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling Framework. Addison-Wesley,
2003.

12. C. Bussler. B2B Integration: Concepts and Architecture. Springer, 2003.
13. O. Corcho, S. Losada, and R. Benjamins. Mediation — bridging between heterogeneous web

service systems. In R. Studer, S. Grimm, and A. Abecker, editors, Semantic Web Services:
Concepts, Technology and Applications. Springer, New York, 2007.

14. K. Duddy, M. Henderson, A. Metke-Jimenez, and J. Steel. Design of a model-generated
repository as a service for USDL. In G. Kotsis, D. Taniar, E. Pardede, I. Saleh, and I. Khalil,
editors, iiWAS’2010 — The 12th International Conference on Information Integration and
Web-based Applications and Services, 8-10 November 2010, Paris, France, pages 707–713.
ACM, 2010.

15. M. Heller and M. Allgaier. Model-based service integration for extensible enterprise systems
with adaptation patterns. In D. A. Marca, B. Shishkov, and M. van Sinderen, editors, ICE-B
2010 - Proceedings of the International Conference on e-Business, Athens, Greece, July 26
- 28, 2010, ICE-B is part of ICETE - The International Joint Conference on e-Business and
Telecommunications, pages 163–168. SciTePress, 2010.

16. G. Hohpe and B. Woolf. Enterprise Integration Patterns — Designing, Building, and Deploy-
ing Messaging Solutions. Addison-Wesley Professional, Boston, 2003.

17. M. Koegel and J. Helming. EMFStore: a model repository for EMF models. In J. Kramer,
J. Bishop, P. T. Devanbu, and S. Uchitel, editors, Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town, South Africa,
1-8 May 2010, pages 307–308. ACM, 2010.

18. B. Laurel. Computers as Theatre. Addison Wesley, Reading, MA, USA, 1993.
19. M. Lawley and J. Steel. Practical Declarative Model Transformation with Tefkat. In J.-M.

Bruel, editor, Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International
Workshops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October 2-
7, 2005, Revised Selected Papers, volume 3844 of Lecture Notes in Computer Science, pages
139–150. Springer, 2005.

20. J. Nielsen. Progressive disclosure. Alertbox, December 2006.
21. T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings of the conference on Func-

tional programming languages and computer architecture, FPCA ’93, pages 233–242, New
York, NY, USA, 1993. ACM.

22. Talin. A summary of principles for user-interface design, August 1998.
23. A. Wingo. Applications of Fold to XML Transformation. In Proceedings of the 2007 Work-

shop on Scheme and Functional Programming, pages 69–78, 2007.

Chapter 16

Supporting USDL by a Governance Framework

Christian Janiesch and Michael Niemann

Abstract The previous chapter introduced service marketplaces as fundamental tool
that enables and benefits service ecosystems. The application of service market-
places for enterprise resource planning is a growing market. The operation of such
an online marketplace requires a governance approach that lies adjacent to the re-
quirements of a SOA and the more general governance of IT. It also has require-
ments of its own, especially when it comes to the description of services with lan-
guages such as USDL. In this chapter, we propose four building blocks as a basis
for a governance framework that is capable of supporting the operation of a ser-
vice marketplace. The research is based on existing frameworks and also takes into
consideration the particularities of emerging SOA Governance approaches. We em-
phasize the processes required for the management of service descriptions.

16.1 Introduction

Service marketplaces in the Internet of Services are an approach to enable and facil-
itate the trading of services. In the case of trading pure software services, the goal is
to make software ubiquitously available as services which can be licensed for use.
The aim is to reduce hardware cost and maintenance at the customer side and make
(complex) software a commodity. The application of marketplaces for enterprise
resource planning is a growing market.

Christian Janiesch
Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of
Technology, Englerstr. 11, Geb 11.40, 76131 Karlsruhe, Germany,
e-mail: christian.janiesch@kit.edu

Michael Niemann
KOM - Multimedia Communications Lab, Technische Universität Darmstadt, Rundeturmstr. 10,
64283 Darmstadt, Germany, e-mail: michael.niemann@kom.tu-darmstadt.de

415 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York6,

mailto:christian.janiesch@kit.edu
mailto:michael.niemann@kom.tu-darmstadt.de

416 Christian Janiesch and Michael Niemann

The operation of an online service marketplace requires a governance approach
that lies between the requirements of an SOA and the more general governance of
IT. IT Governance aims to reduce the risk of fraud, data inconsistencies, and result-
ing damages for stakeholders by defining regulations concerning the organizational
model (roles and responsibilities) and general procedures (cf. Section 16.2 for an
elaborated overview of related work). We use the IT Governance frameworks of
COBIT [6] and ITIL [7] as a basis for research not only because they provide in-
sights from unbiased organizations rather than individual enterprises but because
they are at both ends of the governance spectrum: COBIT focuses on strategically
important tasks (main processes) and ITIL focuses on management tasks (support
processes), which are often subject to outsourcing and, thus, the ideal blueprint for
managed third-party processes.

Based on an analysis of related work, we propose four building blocks in Section
16.3 to instantiate a governance framework that is capable of supporting the oper-
ation of a service marketplace. We base our conceptual considerations on existing
frameworks and also take into consideration the particularities of emerging SOA
Governance frameworks. We highlight its usefulness and applicability to USDL in
Section 16.4. We conclude with a summary and outlook (Section 16.5).

16.2 Related Work

According to a survey conducted among companies that use SOA as enterprise ar-
chitecture, 79 % of the respondents stated that they feel a large negative risk by tak-
ing services into production that are not effectively “governed.” On top of that, 88 %
of the companies consider their current SOA Governance approach insufficient —
only 12% implemented a sufficient approach according to their own estimation [5].
Although companies are aware of the high risk of a governance lack, they have not
installed sufficient mechanisms to address it. The need for appropriate governance
approaches is high.

In recent years, a number of models and frameworks for SOA Governance have
been proposed. While proceeding from diverging challenges and definitions, most
of them address similar goals. They propose varying techniques and differing com-
binations of them to reach these goals. As the awareness of the need for SOA Gover-
nance is quite young, only few accepted standard procedures, goals and techniques
exist. One reason might be the fact that there is no common definition of SOA Gov-
ernance that could form a foundation for the different approaches.

We investigated and compared 22 SOA Governance approaches, developed in
35 publications at companies and research institutions. We divided them into three
groups: Scientifically published approaches cover reviewed publications such as
journal articles, conference papers, as well as book chapters and books. Many gov-
ernance approaches have been made available by software vendors, published as
company whitepapers which target governance for the SOA system aligned with
proprietary software products (e.g., SOA infrastructure). The third group is formed

16 Supporting USDL by a Governance Framework 417

by authors from the consulting industry that published their expertise in whitepapers
based on achieved experience. During the examination, ten major aspects have been
identified.

The approaches, however, show different quality. Approaches which formulate
a clear view and opinion backed with arguments concerning a criteria, i.e., whose
recommendation of the integration of a corresponding criterion is backed with argu-
ments, are considered a founded recommendation in this analysis. Suggested build-
ing blocks of SOA Governance are fully integrated, concrete suggestions are made
and even examples are given (marked with • in Table 16.1). In contrast to this, some
approaches are characterized by a more narrow view of the topic. They show a lack
of clear instantiation, explanation, level of detail, or specification. They point out
an aspect considered important, however, lack the required level of detail, or preci-
sion. These cases are considered as proposal of the integration of the given criteria,
equally to “partially integrated, mentioned” (marked with ◦ in Table 16.1).

Governance Policies

In almost all approaches, governance policies are informally defined as “means to
define what’s right.” Generally, governance policies represent general guidelines,
conventions, rules, and best practices that support the controllable and efficient op-
eration of the SOA system. They are often applied in the administration of a service
lifecycle, or during a SOA procedure model.

Generally, governance policies are considered distinct from service performance-
related policies as described by standards such as WS-Policy [47, 24]. Main aspects
of governance policies are their application to roles, service design and operation,
and service documentation. Some approaches, however, leave the specified policies
unclassified. Concerning policy handling, procedures for policy exception handling,
as well as recognition of too restrictive policies are suggested.

As a consensus of all authors, policies are considered mighty instruments that
combine various application aspects. They represent the most important and quite
complex aspect of SOA Governance. Application aspects are roles-related, service
design and operation-related, and, explicitly, service documentation-related poli-
cies. The latter are to ensure useful retrieval processes that are performed by, e.g.,
service requesters. Important aspects of policy handling are policy lifecycle manage-
ment, policy exception regulation, and recognition of inappropriate (too restrictive)
regulations.

Organizational Structure

Due to the changed conditions of SOA systems compared to other IT systems, the
majority of authors considers to adjust organizational structures. The approaches
outline and introduce new boards, councils, and institutions for special accountabil-
ity around SOA.

418 Christian Janiesch and Michael Niemann

Table 16.1: Detailed survey results.

G
ov

er
na

nc
e

Po
lic

y
C

at
al

og
ue

O
rg

an
iz

at
io

na
lS

tr
uc

tu
re

A
rt

ef
ac

ts
M

an
ag

em
en

t

R
ol

e
an

d
R

es
po

ns
ib

ili
tie

s

Se
rv

ic
e

L
if

ec
yc

le

St
ra

te
gi

c
A

sp
ec

ts

SO
A

Pr
oc

ed
ur

e
M

od
el

G
ov

er
na

nc
e

Pr
oc

es
se

s

M
et

ri
cs

SO
A

M
at

ur
ity

M
ea

su
re

m
en

t

Books and journal articles
Schepers et al. [44] • ◦ ◦ ◦ ◦ • • - - •
Bernhard and Seese [17] • • ◦ - • - • • • -
Derler and Weinreich [23] ◦ - • ◦ • - - - - -
Kohnke et al. [31] • • - ◦ ◦ • - ◦ ◦ -
Bieberstein et al. [18, 19] ◦ • • • - • • • ◦ ◦
Marks and Bell [32] • • • ◦ ◦ • • • • -
Brown et al. [22] • • • • • • • • • -
Schelp and Stutz [43] ◦ • - ◦ - ◦ ◦ - ◦ -
Rieger and Bruns [42] • • • • ◦ ◦ - - - -
Josuttis [29] ◦ • ◦ ◦ • ◦ ◦ ◦ - -

Software Manufacturers
Brauer and Kline [21] • • • - • ◦ ◦ - - -
Hewlett Packard [8] • • • - • ◦ ◦ - - -
Systinet [3] • • • - • ◦ ◦ - - -
WebMethods [4] ◦ - • ◦ ◦ - ◦ ◦ - -
Matsumura [33] ◦ - • ◦ ◦ - ◦ ◦ - -
Software AG [1, 9] • ◦ • ◦ • ◦ • - ◦ •
BEA Systems Inc. [2] ◦ - • - • - ◦ - - -
Afshar [13] • • • ◦ ◦ • • - - •
Holley et al. [26] - • • ◦ • ◦ • - ◦ -
McBride [34] - • • ◦ • ◦ • - ◦ -
Mitra [35] - • • ◦ • ◦ • - ◦ -
Muriankara [37] - • • ◦ • ◦ • - ◦ -
Woolf [52] - • • ◦ • ◦ • - ◦ -
The Open Group [11] ◦ • - • • • • • ◦ -

Consulting Industry
Everware-CBDI: Allen [14] • • • ◦ - • - • - •
BearingPoint: Rane and Lomow[41] • ◦ ◦ ◦ ◦ ◦ • - - -
ZapThink: Bloomberg [20] • ◦ • • - • - ◦ - -
Windley [50, 49, 51] • • ◦ ◦ • - • - - -
Berlecon: Quantz [40] ◦ • • - - - - - - -

16 Supporting USDL by a Governance Framework 419

All approaches that give founded recommendations concerning organizational
changes (15 out of 22), recommend setting up a SOA Centet of Excellence (SOA
CoE). This institution has convinced in theory (7 mentions) as well as in practice (8
mentions). It can be considered a crucial organizational institution for the operation
of an SOA system.

Summarizing, the presented organizational entities (SOA CoE, SOA Board, and
SOA Governance Board) are the three most frequently integrated ones. Competen-
cies, however, are not clearly attributable. The approaches give different recommen-
dations especially concerning the question of how decision and consulting compe-
tencies are to be distributed among the entities. The majority, however, agrees on
the SOA CoE bundling many of the discussed competencies — in some cases even
all of them.

In contrast to organizational entities that could also be named group roles, the
precise definition of (single) roles and responsibilities has been a major aspect of
SOA Governance approaches.

Roles and Responsibilities

Almost 80 % of the approaches mention the adjustment of roles and responsibilities
for the operation of a SOA system. All these authors consider implementing and
operating an enterprise architecture as an SOA to have impact on the organizational
structure of the entire company. Besides the introduction of new organizational en-
tities, this covers the definition of new roles and accountability. In order to assign
clear and non-overlapping definitions of competencies, a solid concept for roles and
accountability is commonly considered to be advantageous for all involved persons
and the operation of the SOA system.

In the context of SOA Governance, an important aspect is the targeted impact on
behavior. The IT Governance goal to “achieve desirable behavior in the use of IT”
[48] is an important goal for SOA Governance as well.

Methods such as RACI charts, impact on behavior [19, 32], SOA Education Plan
[18], and the Capability Assessment Method [22] are considered central components
of the discipline SOA Governance.

Artifact Management and Software Support

Clearly more than half of the approaches (14 out of 22) name software support or
artifact management a central building block of SOA Governance. Most of them
come from the software industry.

During the development process of a SOA, many artifacts are created, e.g., ser-
vices, meta data, service descriptions, interface descriptions, and message format
specifications. Services in operation are bounded by policies and service contracts.
Further meta data are SOA Governance artifacts such as roadmaps, process de-
scriptions, and reference architectures (cf., e.g., [11]). The approaches suggest the

420 Christian Janiesch and Michael Niemann

operation of a service registry or service repository, and a Web service management
system. They recommend structuring all kinds of artifacts as a meta-model to clarify
relationships as well as the establishment of additional data and artifact related roles
and responsibilities.

As main function of a service registry, most authors refer to publishing and dis-
covery of services, while the service repository is considered to serve meta data stor-
age. However, none of the approaches recommends operating both of these. Never-
theless, the understanding of service registries and repositories in terms of function-
alities astonishingly diverge among the authors (cf., e.g., definitions by [41, 50]).

Service Lifecycle

Service lifecycle management (SLM) is a central aspect of SOA Governance. More
than 75% of the approaches mention a service lifecycle to be an integral part of SOA
Governance. The majority of approaches emphasizing the service lifecycle are from
the author group software vendors.

Lifecycle models, in general, are widely used additives for design, development,
operation, and maintenance of software (e.g., in [46]). As a purpose of SOA Gover-
nance, the design, implementation, operation, and version management of services
can be improved by comprehensive and reasonable regulations in service lifecycles
[21, 33, 50]. Their planning and implementation is part of SOA governance. How-
ever, the notions of definition and distribution of activities in lifecycle phases vary
in wide ranges.

Using lifecycles, many artifacts beyond services can be controlled. Additionally
to guidelines, applications composed from services, as well as business processes
can be controlled by lifecycles (as proposed by [13]). Also, readjustments of SOA
goals to changed business requirements, or frequent transposition of the SOA Gov-
ernance model are performed using lifecycles (cf., e.g., [22, 26]). Using lifecycles
is a powerful instrument of control, i.e., a powerful instrument of governance.

Strategic Alignment

The conception of a strategic plan as well as business-IT alignment, are both con-
sidered a further central element of SOA Governance by the experts. 15 out of 22
approaches refer to strategic alignment, the majority with concrete suggestions. Es-
pecially authors from the practitioner’s domains (consulting industry and software
vendors) consider this point crucial. Four aspects of strategic alignment considered
most important are formalization of SOA goals, identification and prioritization of
services, adequate financing of service development, and SOA commitment of the
management.

16 Supporting USDL by a Governance Framework 421

SOA Procedure Model

Besides the management and effective administration of governance methods, the
strategy and procedure of adopting and introducing a SOA as enterprise architecture
— a procedure model — is considered a crucial part of a SOA Governance approach.
16 of 22 approaches point out the importance of a procedure model, most of them
from the software industry and academia.

What is referred to as SOA procedure model, are many different variations of
procedures for regulated SOA introduction and operation that are called, e.g., SOA
Lifecycle, SOA Governance Roadmap, or SOA Adoption Model by the respective ap-
proaches. Generally, SOA procedure models act as a global guideline for the future
development of the SOA system. They designate and communicate planned future
developments of a SOA system and describe the phases from plan to realization.

Governance Processes and Policy Enforcement

Nine out of 22 approaches formulate governance processes and policy enforcement
to be crucial aspects of SOA Governance, four of them are founded recommenda-
tions from academia. Governance processes are the actual implementation of gover-
nance. They define the business and IT-internal processes that are required to operate
an IT system from the perspective of governance. They provide the activities and ac-
countability for the operation of a SOA on a meta level. Mechanisms for automated
policy conformance checks are summarized by the term policy enforcement used
by the approaches. They target the monitoring of adherence to policies and their
operational enactment and are integrated in processes.

Many approaches mention the category Processes as a central point of their ap-
proach. However, the classification types vary from governing vs. governed pro-
cesses [18, 22, 12], runtime vs. design time governance [32, 4], policy-related
vs. review-related processes [17], organizational structures vs. employees [31], pro-
cesses vs. organization, infrastructure vs. maturity [14], and architecture review
processes [20]. The classification that is mentioned most frequently is governing
vs. governed processes. Governing processes cope with performing and realizing
governance methods and structures. They serve as a means for the governance ap-
proach. Governed processes are subject to governance. They represent activities
such as service development, process management, and service operation. Further,
all authors agree that concise definition and structuring of governance processes is
crucial to the successful operation of a SOA system.

Concerning policy enforcement (as part of governing processes), all approaches
propose control points that reside in (cyclic) governance processes. Techniques or
concrete examples for automated policy enforcement (other than manual revision of
artifacts) are provided by none of the approaches.

422 Christian Janiesch and Michael Niemann

SOA Maturity Measurement

According to Windley [49], implementations of governance that are not adjusted
to the scope and maturity of a SOA system cannot display its full effect: either
they exercise too few control, or they limit the involved persons by an overdose of
regulation in their freedom of action and have a demotivating effect [50, 49]. Gov-
ernance methods and procedures are to be planned proactively, in order to keep up
with the development of the SOA system and enable controlled growth. Documen-
tation of the planned development as a roadmap is an often proposed method to keep
track of the state and development direction of the SOA system. In order to assess
the current maturity of a SOA system, SOA maturity models have proven useful
[44, 1, 13, 14, 28].

Overall, SOA Maturity Models are explicitly considered in four out of 22 ap-
proaches (ca. 23%), where three mentions come from the practitioner’s domain, and
one from scientific work. As SOA Maturity Models are already widespread and
well-known instruments of SOA Governance, it seems astonishing that the integra-
tion of maturity models into SOA Governance is proposed by a minority of authors.
Obviously, only few authors recognize the benefits of maturity measurement in the
context of SOA Governance. However, several additional authors proclaim SOA
Maturity Models-related methods. So it might be a lack of awareness which causes
the little assignment of maturity models to governance.

SOA Metrics

Almost half of the approaches mention a metrics system as an important building
block for SOA Governance. Metrics, in general, are defined along with goals and
make processes and parameters of the SOA system more transparent. The mea-
surement of goals, combined with a supporting management structure, supports the
judgement on the effectiveness of the adoption of an IT system such as SOA. For the
implementation of SOA Governance in a company, a set of goals is usually defined
that are to be achieved. Metrics, in general, report on the performance of the SOA
system as a whole, by measuring the goals set by the governance initiative (cf., e.g.,
[17, 22]).

Improving the assessment of achievement of SOA goals by the definition of a
metrics system is considered an important aspect of SOA Governance by all authors
mentioning this issue. Most of the authors especially emphasize the management
of service operation, service statistics, project performance, and the relationship to
employee behavior to be important in the context of metrics for SOA Governance.
Further, the measurement of service reuse is an important aspect.

16 Supporting USDL by a Governance Framework 423

Summary

We compared the structure and core aspects of several approaches that first struc-
tured SOA Governance. As a result, ten components have been identified, that most
of the authors make use of to compose their approaches.

The approaches do not usually adhere to consistent criteria, as done by the pre-
sented analysis. Most approaches use either organizational means, SOA goals or
governance guidelines as a main criterion. In most cases, one important aspect is
selected, and other (equally important) ones are presented in a cross-sectional way.
The inherently multi-dimensional nature of this area is simplified and reduced to a
few structuring criteria in most cases. However, there seems to be no reason for the
selected and presented outlines — the choices of main criteria seem arbitrary.

In unison, the authors agree on the necessity of SOA. Based on common charac-
teristics of SOA systems and the emerging challenges, the installation and operation
of governance approaches for SOA is considered essential, on the one hand, regard-
ing the management and unification of SOA-inherent heterogeneity and complexity,
and, on the other hand, on the regulation and exploitation of new capabilities such
as cross-organizational service deployment. SOA Governance turned out to be an
area that is structured in various dimensions, e.g., goals and strategy, organizational
structures, roles and employee behavior, software support.

Only few proposals [32, 22, 11] present holistic approaches that tackle all or most
of the identified components. The overall comparison shows that most approaches
are characterized by a tunnel perspective, limiting the focus on selected issues. How-
ever, the majority of authors agree that a holistic governance approach is crucial for
SOA Governance. In the remainder of this chapter, we specify building blocks for a
governance approach tailored to the needs of the Internet of Services. In particular,
we adopted the results from Organizational Structure and Role and Responsibili-
ties in our stakeholder map, while the process framework reflects insights from the
SOA Procedure Model as well as Governance Processes. The component Metrics
is adopted in the Measurement Framework, and SOA Maturity Measurement in the
Maturity Model and Capability Profile. The service description management for
USDL has been influenced by the insights of Governance Policies and Governance
Processes.

16.3 Building Blocks of a Service Governance Framework

Based on an analysis of related work, we propose four building blocks to instantiate
a governance framework that is capable of supporting the operation of such a plat-
form. We base our conceptual considerations on existing frameworks and also take
into consideration the particularities of emerging SOA Governance frameworks.

First, the Process Framework defines tasks and activities required to manage
the ISM and its lifecycle. Especially, the areas of “service portfolio management,”
“service lifecycle management” as well as “broker operations” are not adequately

424 Christian Janiesch and Michael Niemann

represented by current frameworks and are developed in this component. Roles
and responsibilities of the processes, tasks are focused on in the second building
block, namely, the Stakeholder Map. The third building block, viz., the Measure-
ment Framework, describes corresponding key performance indicators and other
result measures, which are used to evaluate process quality as well as the compli-
ance with internal, normative, and legal regulations. The fourth building block is a
Maturity Model. The application to a service-oriented IT system allows the evalua-
tion concerning system maturity and identification of potential gaps, which need to
be covered by additional governance processes.

16.3.1 Stakeholder Map

Generally, in the Internet of Services, which we consider as the basis for (future) ser-
vice marketplaces, several main stakeholders have been identified: service provider,
service broker or intermediary, and service consumer [16]. While the service con-
sumer and the service provider are actual persons acting as a specific stakeholder,
the service broker is a virtual entity, a marketplace, or a piece of software. Never-
theless, it is operated by actual persons who act as a certain stakeholder.

With the emphasis on the complete service lifecycle, including the inception of a
service and its after-sales, i.e., the community around the platform, these roles need
to be extended. As outlined above, the service broker itself is not a stakeholder in
that sense. That means its role cannot be taken by any person but is, instead, a piece
of software. However, a supporting stakeholder, such as the platform host, needs to
be established. Fig. 16.1 shows all roles. Note that multiple instances of each role
but the operating platform host communicate via the service marketplace.

Fig. 16.1: General Service Marketplace Roles [16].

In the following we describe and detail the five stakeholders. For each stake-
holder, associated activities are also outlined. A role is a subordinated entity of a
stakeholder. Thus, each stakeholder may have several roles. Primarily a governance
framework for marketplace platforms does focus on the platform host’s activities.

16 Supporting USDL by a Governance Framework 425

But the framework also needs to take into consideration that services are neither
produced nor consumed by the platform host but a provider and consumer. As such
these roles have to be taken into consideration.

16.3.1.1 Service Provider

The service provider supports agencies that hold governance and operational re-
sponsibility for a service, including organizational structures and other business as-
pects, as well as systems and other implementation artifacts. The service provider
represents the role of a development party, producing and publishing services ready
for execution. Largely, they are the service owners, responsible for the service im-
plementation as well as maintenance. Unlike traditional software producers, service
providers develop services that remain in the same organization, rather than being
delivered to software clients (what is also possible). Therefore, during requirements
engineering, it is the duty of service providers to not only analyze the objective,
functionality, interface, and quality of service, but to also consider accessibility, re-
trievability, how to manage service level agreements (SLA), and define policies, etc.
At runtime the provider may have to provide second level support and appropri-
ate change management. Possible roles include the service manager, service clerk,
service producer, content provider, service aggregator, service integrator, business
expert, service engineer, service designer, and service programmer (for more detail
on roles cf. [27]).

16.3.1.2 Platform Host

The platform host administrates the marketplace platform, including the user man-
agement, and the maintenance of all running management services, as well as plat-
form governance, risk, and compliance. For the platform host several roles are dis-
tinguished. The platform host has to support agencies that specialize in taking ser-
vices out of markets and driving up their consumption through competitive pricing
models. These agencies provide a further intermediation, managing the front-desk
delivery of services to customers without encroaching on back-office responsibility.
The platform host may have to certify service providers and their offers, since not all
offers are acceptable. A role certifier is needed (perhaps even an additional stake-
holder). Another point is billing and payment tracking, which also is a role often
held by additional stakeholders.

With an increasing number of services, registries are becoming more and more
important. They serve as a central location for tracking and managing services. The
reusability of services depends on these registries, as these provide a way to share
services across organizational borders. The platform host has to keep his registry
and search index current as the central information database and its timeliness is
crucial to the success of the whole system. Additionally, registry maintenance is
of importance. For instance, a service that is updated while being in use should

426 Christian Janiesch and Michael Niemann

not be interrupted in execution, the removal of services that were never or seldom
invoked should be considered, a rating system could be included, etc. During service
delivery, a controlled service provisioning has to be ensured. In order to guarantee
that clients can be charged by the providers and to ensure security, services are only
accessible by authorized users. SLAs are used as contracts and authorization. These
usually define costs, assured availability, performance, etc. As soon as services start
being executed, the platform host begins the service monitoring process in order
to ensure SLAs as well as policies and keeps track of the behavior of published
services.

The role platform support gives support (at least second level support) to all
marketplace platform processes, assisting various other stakeholders that are inter-
acting with the platform including the service consumer, service innovator, service
provider, or community member. Platform support is, e.g., a call center agent or a
support consultant.

Further roles can include a business manager, governance officer, ontology and
standards engineer/ expert, host architect, hardware admin, and software admin.

16.3.1.3 Service Consumer

The service consumer finds services, based on his functional and non-functional
requirements and selects from offered variants (e.g., SLA variants) via the market-
place of the SaaS platform, buys or licences them and then may request and invoke
them. For the service consumer several roles are distinguished such as business user,
expert user, or manager, and perhaps administrators (each with approval rights). Ad-
ditionally, a guest (of the platform) may only browse the offers. He has to register
and login for ordering.

16.3.1.4 Community Member

Community members are registered and non-registered users of the marketplace.
Most other stakeholders can act as community member stakeholders: Roles attached
to the platform host are excluded, as they do not take part in the community in this
sense but only from an administrative side. Community members — in addition to
their possible other stakeholder roles — provide feedback for tradable services (e.g.,
problem reports) and use wikis, web logs, and forums provided by the marketplace
platform to discuss tradable services.

16.3.1.5 Service Innovator

Service innovators use the marketplace platform to innovate on tradable services.
The innovator derives new ideas from direct feedback from service consumers,
query logs, or other data (e.g., wikis, blogs, etc.) or creates new ideas for services

16 Supporting USDL by a Governance Framework 427

from scratch. Service innovators collect, aggregate, store service ideas in an idea
repository, and rank these collections of ideas. Service innovators need to be regis-
tered in the marketplace platform, for use of the service browser and service discov-
ery, as well as the community portal to browse consumer feedback.

16.3.2 Process Framework

All relevant governance processes have been grouped in five phases to increase
the accessibility of the framework: design, deployment, delivery, monitoring, and
change. In each of these phases, several processes constitute the process frame-
work. Figure 16.2 provides an overview. As the framework has been compiled on
the basis of existing frameworks, some processes have already been considered in
existing frameworks. Most of the time, the existing processes will need to be ex-
tended to cater for the specific needs of marketplace platform governance.

The design phase contains all sorts of strategic aspects of the use or operating of
the marketplace platform and its traded services. The development and deployment
of services, as well as the selection of third-party services are components of the
deployment phase. The delivery phase contains all aspects of service and infrastruc-
ture operations. It is closely coupled with the monitoring phase as they are executed
concurrently. The monitoring phase contains all aspects of service and infrastructure
monitoring. It is closely coupled with the delivery phase as they are also executed
concurrently. The change phase contains all processes and tasks needed to adjust
and change the infrastructure and software traded as service.

Fig. 16.2: Process Framework.

428 Christian Janiesch and Michael Niemann

16.3.2.1 Design

The design phase includes organizational and infrastructure aspects as well as the
service portfolio planning and the alignment of business requirements with the IT.
It also comprises legal issues concerning general terms and conditions as well as
SLAs. Furthermore, a process of provider management has to be introduced (in-
cluding certification) because a marketplace platform is essentially a supplier/ser-
vice provider enabling approach.

Strategy design covers all activities that are related to the creating and reviewing
a strategic IT plan. This mainly involves strategic alignment, dependency analy-
sis as well as the specific consideration of SOA capabilities. Strategy design also
involves financial management tasks. Infrastructure design processes comprise ac-
tivities which ensure a sound architecture specification. Accordingly, general pro-
cesses on standards and development plans, as well as service marketplace-specific
processes on running processes, organizational units, and their relationships are cov-
ered. This involves, e.g., the identification of system owners, data owners, and ser-
vices owners. Service portfolio management encompasses all available processes on
the infrastructure. Their management is of high importance to smooth operations.
Thus, the governance of the composition of services, their granularity, their descrip-
tion as well as portfolio development are the key tasks. In addition to that, capacity
planning is of essence as is the management of service continuity. While service
lifecycle management as such covers all phases of the framework, there are specific
tasks which have to be conducted in every of its phases. The design phase is the first.
In order to properly deploy and deliver a service, the service has to be configured
and validated before a transition strategy for service operations can be designed.
Similarly, service description management covers all phases of the framework as
services have to be described properly according to a certain schema in order to be
discovered and used. Since services are traded, the governance of the underlying
pricing models and SLA becomes important. The design of an SLA framework, the
design of standard terms and conditions as well as the design of payment/ pricing
models has to precede the service offering. As most of the services can be provided
by third-party service providers, it is important to include a process to specifically
manage their involvement. The process of provider management is a portfolio man-
agement process to evaluate and engage or disengage providers. Also, the gover-
nance of third-party design processes is part of provider management.

16.3.2.2 Deployment

The deployment phase comprises all processes that surround the deployment of ser-
vices. This covers the service catalogue management, service continuity manage-
ment, service validation and testing, and the definition/ negotiation of SLA. Service
development has been consciously separated from this framework as we only cater
for run-time governance. Service development and engineering is a broad topic of
its own.

16 Supporting USDL by a Governance Framework 429

Service lifecycle and service description management for deployment cover all
governance processes that are executed when a service is to be deployed. This in-
volves service catalogue management, service continuity management as well as the
execution of validation and testing. In order to create a service offering, the corre-
sponding SLA, operation level agreements (OLA), and general terms and conditions
have to be chosen, too.

16.3.2.3 Delivery

The delivery phase contains all aspects which guarantee the delivery of services.
Thus, it includes service and infrastructure maintenance. Here, both the operation
of mere infrastructure software and hardware as well as the assurance of service
performance is managed. In addition to that all business functions concerning the
brokerage of services have to be governed properly. Thus, the process broker op-
erations has to be introduced which contains sub-processes which stem from the
common phases of business transactions to reflect all phases of a purchase: Initia-
tion, Agreement, Settlement, After Sales. Furthermore, all support operations (such
as help-desk) and the management of the organization are part of this phase. Fi-
nally, security and compliance issues are also addressed here. Processes that deal
with monitoring have been grouped in a separate phase.

Managing the marketplace platform involves several governance processes which
are tightly related to IT management operations. Data as well as the physical envi-
ronment, i.e., servers, data storage, network, need to be properly protected and/or
backed up. In addition, the operation of the infrastructure needs to be safeguarded,
i.e., regular maintenance has to be conducted and software updates have to be ap-
plied. Besides infrastructure operations the service operation, too, needs to be gov-
erned but during service lifecycle management. All services which were designed,
described, and deployed need to be operated so that performance and capacity re-
quirements can be met. A continuous service must be ensured according to SLAs.
The central component of a marketplace platform is the service broker which facili-
tates the communication between service provider and service consumer. It ensures
that a service can be searched for and discovered, contracts can be negotiated, and
services can be bought and payed for. Also after-sales routines need to be governed.
The structuring of this new component is based on the common phases of trans-
actions for e-commerce purchases on a marketplace [45, 38]. Both, the operation
of the infrastructure and of all services, needs to be supported by a proper (multi-
level) support help-desk. It provides support services and incident management to
customers and providers alike. All interaction on the marketplace platform needs
to be secure as it involves business transactions. In order for the infrastructure to
run secure, measures have to be taken to ensure authorization and authentication.
Measures for security breaches and constant vulnerability assessments have to be in
place. This includes data privacy issues.

Execution is both, the delivery and the monitoring of services and infrastructure.
As both topics are closely related but focus on different parts of the execution they

430 Christian Janiesch and Michael Niemann

are separated logically in the framework. Monitoring covers the observation of ser-
vices and infrastructure concerning performance, (future) capacity, and fulfilment of
SLAs. Data analysis, exception handling, and security specific tasks such as logging
are also within the scope of this phase. Error logs have to be analyzed for preparing
error corrections.

16.3.2.4 Monitoring

Monitoring is an important governance process to ensure that the infrastructure and
services are delivered according to plan. In order to do so, both, the infrastructure
as well as the services including their descriptions, need to be closely monitored.
Governance tasks involve the actual setup of a monitoring organization which spec-
ifies the approach, measures, objects to be measured etc. Areas to be monitored are,
e.g., third-party services from service providers, overall service performance as well
as infrastructure capacity and thresholds. Besides monitoring the infrastructure and
service functionality, the contracted service levels need to be safeguarded, otherwise
compensation routines have to be executed. This entails that governance processes
for the specific monitoring of SLAs have to be in place to constantly monitor and
review the execution and compensate for violations. Monitoring is no end in itself.
The as-is data has to be correlated with planned/ predicted performance, so that
weaknesses can be identified and proposals for improvement can be derived. This
monitoring analysis process usually involves the generation of reports and the use of
descriptive data analysis techniques (e.g., Online Analytical Processing). However,
in order to allow not only ex post analysis, more intelligent ex ante analyzes are
desirable to enable the broker to predict the impact change will have on future oper-
ations (architecture management), e.g., when replacing services. While monitoring
data and their analysis usually means to compile reports and analyze aggregated
data, the exception handling processes deals with singular events and is designed
to single out irregularities and provide patterns so that events can be correlated and
appropriate responses can be selected. This in turn allows the categorization and
prioritization of incidents to escalate and recover. Similar to security in the delivery
phase, security monitoring is necessary to ensure a consistent behavior. Also, in or-
der to comply with legal requirements, certain tasks may need to be monitored and
logged.

16.3.2.5 Change

The change phase contains all processes and tasks needed to adjust the infrastruc-
ture and services traded on the platform in order to ensure compliance and quality
of service. That comprises processes which deal with the change and retirement
of the actual services, change management processes for SLAs as well as change
management from an organizational perspective.

16 Supporting USDL by a Governance Framework 431

Within service lifecycle management, the deployment of each new release of a
service needs to undergo a specified change management governance process in or-
der to ensure the continuous service provisioning. These activities involve, e.g., test
plans and deployment verification. In case of a service retirement, contracted war-
ranties have to be enforced, contracts may have to be terminated or changed, and
equal functionality may have to be offered as a replacement. Also maintenance re-
quires the removal of defunct services. Service functionality may change, business
models may change over time. This needs to be reflected in the contracts which were
signed on the platform. Changes within service descriptions, SLAs, pricing models,
and general terms and conditions are governed by these processes to ensure due
diligence and traceability. This can be conducted either in conjunction with func-
tionality change or without. All activities in the change phase need to be managed
by a proper change management organization. All change requests and all managed
change need to be documented, prioritized, and evaluated before the change ticket is
closed. The change itself — at least in complex cases — will be followed by design,
development, deployment, i.e., here the overall process may start again.

16.3.3 Measurement Framework

We propose a multi-stage measurement framework composed of three layers to as-
sess the performance of the governance framework processes. Fig. 16.3 depicts the
different stages: Company Scorecard, IT Balanced Scorecard, ITIL/COBIT-based
Processes and KPI (key performance indicators).

The first layer describes the company scorecard including the vision, mission,
and strategy of the company. The most generic stage is the vision of a company
describing the mission statement. It explains the reason for a company to exist.
The second stage is the mission of the company describing specific goals in terms
of performance, costs, ROI or market goals. The strategy follows as stage three
and defines the specific way to achieve the company goals. These three stages are
defined by the top management and do not have a standardized way of measuring the
achievement of the goals. Instead they are discussed by the responsible managers in
person.

The second layer refers to the IT Balanced Scorecard pointing out the strategy
of the business area. The IT Balanced Scorecard is composed of six perspectives
including financial management, process management, provider management, em-
ployee management, innovation management, and product management. Referring
to Kaplan and Norton, the four perspectives of the classical Balanced Scorecard
(financial, customer, internal process, and innovation & learning perspective) are
extensible and should be adjusted to the own needs [30]. Objectives are deduced by
concentrating on the main characteristics of the strategy defined on the third stage.
These more clearly outlined objectives serve as a basis for the critical success fac-
tors which are determined for specific perspectives of the IT Balanced Scorecard.

432 Christian Janiesch and Michael Niemann

�

Fig. 16.3: Measurement Framework.

Each critical success factor is measured by few KPIs belonging to one of the six
perspectives.

The third layer comprises processes. A suitable selection of processes from the
process framework makes up the sixth stage. For each process there exist several
KPIs measuring the performance of the specific process, related to the KPIs of the
CSF. A proper selection has to be made for the specific case. The final part of the
framework comprises monitoring measures serving as input factors for each KPI on
the eighth and last stage.

16 Supporting USDL by a Governance Framework 433

While the distribution and transformation of governance requirements to lower
levels follows a top-down approach, the requirements and goals can be measured
and controlled on a bottom-up basis by a KPI system. Therefore, the monitoring
data on the lowest stage serves as input for KPIs on the next higher stage. The KPIs
feed measures on the stage above and so on.

16.3.4 Maturity Model and Capability Profile

A maturity model is a method for evaluating and measuring the current state of ser-
vice adoption of an organization. Each organization can class in one level based on
different characteristics. The maturity model reveals the organization’s weaknesses
and helps to develop transition plans to achieve the next maturity level [10]. Our
maturity model is presented in Table 16.2.

We base our considerations on the following characteristics (cf., e.g., [15, 36,
39]):

Technology/ architecture Level of the underlying architecture, level of integration
of for example databases or legacy systems, or the implementation of monitoring
and optimization tools

People/ organization The employee’s knowledge, characteristics of enterprise cul-
ture, and employees’ motivation

Adoption scope Organizational focus of SOA, inter-departmental adoption of
SOA, supply chain scope of SOA

Process Orchestration of services, business processes
Standards Technical standards, eBusiness standards, standardized approaches
SOA development Maturity of the SOA development process, existence, accep-

tance, documentation, and communication of an organization-wide standardized
SOA approach

Besides these aspects, further dimensions are suggested for a maturity model, for
example, the level of tool support, information management as well as lifecycle ma-
turity or governance maturity. Most SOA maturity models consist of five levels such
as the Capability Maturity Model (CMMI) [10]. However, their labels are different
due to their different focus. The level labels are named according to the CMMI,
as various dimensions are considered and the CMMI labels can cover all described
aspects.

434 Christian Janiesch and Michael Niemann

Ta
bl

e
16

.2
:M

at
ur

ity
M

od
el

.

D
im

en
si

on
L

ev
el

1
–

In
iti

al
L

ev
el

2
–

R
ep

ea
ta

bl
e

bu
tI

nt
u-

iti
ve

L
ev

el
3

–
D

efi
ne

d
L

ev
el

4
–

M
an

ag
ed

an
d

M
ea

-
su

ra
bl

e
L

ev
el

5
–

O
pt

im
iz

ed

Te
ch

no
lo

gy
/A

rc
hi

te
ct

ur
e

Pl
at

fo
rm

-d
ep

en
de

nt
po

in
t-

to
-

po
in

ts
er

vi
ce

s,
no

st
an

da
rd

iz
ed

or
ce

nt
ra

liz
ed

SO
A

te
ch

no
l-

og
y,

sm
al

ln
um

be
ro

fs
er

vi
ce

s

D
is

tr
ib

ut
ed

sy
st

em
s,

in
te

gr
a-

tio
n

of
ap

pl
ic

at
io

ns
,d

at
ab

as
es

,
an

d
le

ga
cy

,
pl

an
ne

d
ar

ch
ite

c-
tu

re
vi

si
on

,v
er

si
on

in
g

an
d

se
-

cu
ri

ty

R
eu

sa
bl

e
an

d
di

sc
ov

er
ab

le
se

rv
ic

es
,

lo
ng

-r
un

ni
ng

tr
an

s-
ac

tio
ns

,s
er

vi
ce

ve
rs

io
ni

ng

SO
A

m
on

ito
ri

ng
,e

ve
nt

-d
riv

en
da

sh
-b

oa
rd

s
an

d
al

er
ts

B
us

in
es

s
pr

oc
es

s
to

ol
s,

ea
sy

as
si

m
ila

tio
n

of
ne

w
te

ch
no

lo
-

gi
es

,
co

m
po

si
te

ap
pl

ic
at

io
ns

,
hi

gh
ly

fle
xi

bl
e

ar
ch

ite
ct

ur
e

Pe
op

le
/

O
r-

ga
ni

za
tio

n/
St

ak
e-

ho
ld

er
So

m
e

se
lf

-t
au

gh
t

SO
A

-s
ki

lls
,

di
sc

on
ne

ct
ed

SO
A

pr
oj

ec
t

te
am

s,
no

SO
A

sp
ec

ifi
c

or
ga

ni
za

tio
na

lo
cc

ur
re

nc
e

SO
A

le
ad

er
sh

ip
an

d
sp

on
so

r-
sh

ip
th

ro
ug

h
C

IO
,S

O
A

C
om

-
pe

te
nc

e
C

en
tr

e,
SO

A
sk

ill
s

de
-

ve
lo

pe
d

In
ce

nt
iv

es
es

ta
bl

is
he

d
fo

r
to

en
co

ur
ag

e
SO

A
ad

op
tio

n,
ex

-
ec

ut
iv

e
co

m
m

itm
en

tf
or

SO
A

,
st

ro
ng

SO
A

sk
ill

s

R
eu

se
an

d
m

ea
su

re
m

en
t

cu
l-

tu
re

,
C

FO
sp

on
so

rs
hi

p
fo

r
SO

A

A
gi

le
an

d
co

nt
in

uo
us

im
-

pr
ov

em
en

t
cu

ltu
re

,
al

l
re

-
sp

on
si

bi
lit

ie
s

as
si

gn
ed

an
d

de
fin

ed
A

do
pt

io
n

Sc
op

e
In

tr
a-

de
pa

rt
m

en
ta

la
do

pt
io

n
B

us
in

es
s

un
it

le
ve

la
do

pt
io

n
C

ro
ss

-b
us

in
es

s
un

it
le

ve
l

ad
op

tio
n

E
nt

er
pr

is
e-

le
ve

la
do

pt
io

n
V

al
ue

ne
t

re
sp

ec
tiv

el
y

su
pp

ly
ch

ai
n

ad
op

tio
n

Pr
oc

es
s

SO
A

kn
ow

le
dg

e
av

ai
la

bl
e

vi
a

in
di

vi
du

al
co

m
pe

te
nc

e
M

od
el

in
g

of
bu

si
ne

ss
pr

o-
ce

ss
es

w
ith

se
rv

ic
e

co
m

po
-

ne
nt

s,
fir

st
re

us
ab

le
pr

oc
es

se
s

im
pl

em
en

te
d

on
a

pr
oj

ec
t

ba
-

si
s

M
od

el
in

g,
do

cu
m

en
ta

tio
n,

an
d

im
pl

em
en

ta
tio

n
of

bu
si

ne
ss

pr
oc

es
se

s
ba

se
d

on
SO

A
co

m
-

po
ne

nt
s

ac
ro

ss
bu

si
ne

ss
ar

ea
s

an
d

or
ga

ni
za

tio
na

lu
ni

ts

SO
A

fr
am

ew
or

k
an

d
se

rv
ic

e
co

m
po

ne
nt

sa
re

sy
st

em
at

ic
al

ly
an

d
pr

oa
ct

iv
el

y
m

an
ag

ed

Sy
st

em
at

ic
ap

pr
oa

ch
es

ta
b-

lis
he

d
fo

r
id

en
tif

yi
ng

ne
w

re
qu

ir
em

en
ts

an
d

de
te

ct
in

g
ga

ps
,c

on
tin

uo
us

im
pr

ov
em

en
t

St
an

da
rd

s
(s

am
pl

e)
SO

A
P/

R
E

ST
,

X
M

L
,

W
SD

L
,

J2
E

E
U

D
D

I,
W

S-
Se

cu
ri

ty
W

S-
B

PE
L

,e
bX

M
L

Pr
oj

ec
t

m
an

ag
em

en
t

st
an

-
da

rd
s,

bu
si

ne
ss

ac
tiv

ity
m

on
ito

ri
ng

B
us

in
es

s
pr

oc
es

s
m

od
el

in
g

st
an

da
rd

s

SO
A

D
ev

el
op

m
en

t
M

in
im

al
do

cu
m

en
ta

tio
n

of
ar

ch
ite

ct
ur

e,
no

fo
rm

al
se

rv
ic

e
de

ve
lo

pm
en

t
pr

oc
es

s,
no

co
m

m
un

ic
at

io
n

ac
ro

ss
pr

oj
ec

t
te

am
s

So
m

e
le

ve
l

of
ar

ch
ite

ct
ur

al
do

cu
m

en
ta

tio
n,

re
us

ab
le

ar
ch

ite
ct

ur
e

w
ith

in
pr

oj
ec

t
te

am
s,

as
ho

c
co

m
m

un
ic

at
io

n
ac

ro
ss

pr
oj

ec
tt

ea
m

s

St
an

da
rd

iz
ed

ar
ch

ite
ct

ur
e

de
-

fin
ed

,
pr

oj
ec

t
te

am
s

ar
e

en
-

co
ur

ag
ed

to
us

e
ar

ch
ite

ct
ur

e,
su

pp
or

tl
ev

el
s

ar
e

es
ta

bl
is

he
d

St
an

da
rd

ap
pr

oa
ch

fo
r

SO
A

,
in

cl
ud

in
g

pr
oc

es
se

s,
te

ch
no

lo
-

gi
es

,a
nd

co
m

po
ne

nt
s

A
rc

hi
te

ct
ur

al
fr

am
ew

or
k

in
pl

ac
e

fo
r

ea
ch

te
am

to
ex

po
se

an
d

co
ns

um
e

se
rv

ic
es

in
cl

ud
-

in
g

ex
te

rn
al

pa
rt

ne
rs

,c
on

tin
u-

ou
s

ar
ch

ite
ct

ur
e

im
pr

ov
em

en
t

SO
A

G
ov

er
na

nc
e

N
o

fo
rm

al
SO

A
G

ov
er

na
nc

e
co

nc
ep

ti
n

pl
ac

e
R

eg
ul

ar
SO

A
G

ov
er

na
nc

e
pr

ac
tic

es
ta

ke
pl

ac
e,

id
en

ti-
fie

d
pr

ob
le

m
s

ar
e

ta
ck

le
d

by
pr

oj
ec

t
te

am
s

th
at

ar
e

fo
rm

ed
w

he
n

ne
ce

ss
ar

y

A
n

or
ga

ni
za

tio
na

la
nd

pr
oc

es
s

fr
am

ew
or

k
is

de
fin

ed
as

a
ba

-
si

s
fo

r
SO

A
G

ov
er

na
nc

e,
sp

e-
ci

fic
pr

oc
ed

ur
es

fo
rS

O
A

m
an

-
ag

em
en

ti
n

pl
ac

e

Ta
rg

et
-s

et
tin

g
ha

s
de

ve
lo

pe
d,

in
te

gr
at

io
n

of
bu

si
ne

ss
B

SC
SO

A
G

ov
er

na
nc

e
is

so
ph

is
ti-

ca
te

d
ap

pr
oa

ch
us

in
g

ef
fe

ct
iv

e
an

d
ef

fic
ie

nt
te

ch
ni

qu
es

16 Supporting USDL by a Governance Framework 435

In addition, capability profiles represent the application of the maturity model
on a SOA system and outline the overall abilities of the system compared with
the planned targets. Commonly, the purpose of capability profiles is to provide a
blueprint of a system’s current respective abilities related to specific domains [25].
In the case of IT Governance, a capability profile is created by the assessment of an
IT system using a maturity model — it illustrates the situation as-is [6]. Along with
a governance framework, adoption models or best practices are often provided, that,
in some cases, are part of the framework itself [13]. One kind of adoption support
or recommendation is to provide an assessment of reference processes concerning
their importance in implementation. This provides an order as well as a benchmark
that can be applied later on.

We built a process maturity matrix that includes recommendations for which pro-
cesses to address with high priority, depending on the targeted maturity level. Our
method visualizes capability profiles by emphasizing the importance of specific pro-
cesses. Thus, it allows a weighting concerning the ordering of process adaptation
in order to achieve given maturity levels when implementing the governance ap-
proach. It represents an adaptation tool for planning support, especially concerning
the implementation details of reference processes, using a percentage completion-
assessment.

Once a process matrix is defined, generic capability profiles, one for each matu-
rity level, are generated. These capability profiles are aligned along the five phases:
design, deployment, delivery, monitoring, and change.

During the generation process, each of the process adoption steps preparation,
implementation, and consolidation is weighted concerning expected effort, as well
as the respective processes are weighted inside the process domain. This way, the
expected percentage value of implemented processes per governance phase is com-
puted. For the following configuration, the resulting radar chart is outlined in Fig.
16.4: process domains: uniformly weighted. Each axis represents one governance
phase of the governance framework: Design, Deployment, Delivery, Monitoring,
and Change.

Each of the five axes indicates the implementation progress achieved per gover-
nance phase on a percentage scale. The diagram shows that the capability profile
for maturity level 1, initial, poses no requirements concerning any monitoring pro-
cesses, touches design, change, and delivery-related processes, and demands almost
25% of deployment-related processes to be implemented. This is due to the fact that
processes of the deployment phase are considered important for the second level
and need to be considered in the first instance when adopting reference processes.

Maturity level 2, repeatable but intuitive, demands a solid basis of implemented
processes in each of the five phases. Deployment is once more considered far more
important than monitoring. The diagram outlines the importance of level 3, defined,
that covers over 50% of implementation progress of all five phases. In particular, it
requires the complete realization (including consolidation) of all deployment pro-
cesses.

Levels 4 and 5 perform the optimization of processes. For Level 4, managed and
measurable, the realization of all processes of the phases Delivery and Change is re-

436 Christian Janiesch and Michael Niemann

Fig. 16.4: Capability Profiles for Maturity Levels.

quired. Level 5, optimized, basically consists of process improvement in Monitoring
(Monitoring analysis) and Design (Strategy design).

This approach provides an overview and visualization of the overall governance
process in connection with system maturity. Vice versa, it provides an easy means
to estimate the maturity level of the system based on the measured or estimated
implementation progress of reference processes by the comparison of respective ca-
pability profiles. This analysis allows the combination of the governance framework
and the maturity model and hence supports management decision-making.

16.4 Service Description Management for USDL

16.4.1 Service Description Management Processes

In addition to the creation of the initial service description, descriptions are con-
stantly subject to change due to service upgrades, changes in service functional-
ity, changes of the used technical terms, changes in word usage, and many more
and lead to different service description variants or configurations (see Chapter 17).
In order to reduce the risk of fraud, data inconsistencies, and resulting damages
for stakeholders, it is important to define regulations concerning the organizational
model (roles and responsibilities) and general procedures. The goal is to organize
the handling of descriptions by assuring consistency of the used service description
meta-model.

16 Supporting USDL by a Governance Framework 437

From a software engineering point of view, service descriptions can be seen as
traditional development objects. Change processes are common and for specific
cases (create, update, remove, distribute, . . .), there is a number of appropriate (tech-
nical) ways to address these issues. However, for the traceable and controllable op-
eration of a service marketplace, it is essential (in the sense of adhering to a general
guideline or law, e.g., the Sarbanes Oxley Act) to assure guideline-consistent be-
havior in the general processes (here: handling service description). In addition to
the automation of concrete data handling activities, the according processes need
to be observed in order to globally assure efficient control and, in the end, compli-
ance. Governance approaches introduce structures and guidelines aiming at achiev-
ing these goals.

We incorporate processes to complement the governance framework (throughout
the governance phases) for the regulation and standardization of service description
processes, as well as the setup and maintenance processes for service description
meta-models (here: USDL). Overall goals are data consistency, sustainability, trace-
ability, reliability and transparency of IT processes. Processes that define the ex-
tension of the framework concerning governance of service description are twofold
as you need to manage instances, i.e., concrete service descriptions, and the meta-
model. Consequently, for all phases of the Service Description Management, we
distinguish the processes of Setup and Maintenance of Service Description Meta-
model and Service Instance Description.

The framework defines the phases as a control cycle from an IT system operation
perspective. The activities are organized along the phases in Table 16.3.

In the design phase, the host architect (HA) and the business manager (BM)
define the standards that will be used to design the actual service description meta-
model for the platform. USDL could be one of the standards. The HA and software
administrator (SA) define the concrete repository as well as the maintenance and
versioning procedures. Also, the BM and the HA define the concrete organizational
model to support these maintenance processes for their platform. The processes
may be adapted from other governance frameworks such as the TEXO Governance
Framework [27]. Similarly, the supporting tools for meta-model design and main-
tenance have to be chosen. The BM and HA define description guidelines in order
to achieve uniformity. This way, they make sure that the same elements in differ-
ent meta-models are named in a uniform way. Finally in the design phase, the BM
then designs the concrete meta-model and the HA checks and implements it from a
technical perspective.

The concrete deployment of the meta-model management tools as well as the
meta-model itself, takes place in the deployment phase and is executed by the SA.

The delivery of the description is automated, all related governance processes are
related to its monitoring.

Accordingly, in the monitoring phase, the BM verifies and certifies that all meta-
models conform to the guidelines. He is supported by the meta-model manage-
ment tools. But ultimately, he is accountable for the data. The SA performs pe-
riodic consistency checks to eliminate technical inconsistencies, e.g., after dele-
tions. Advanced monitoring tasks are the monitoring of word changes over time,

438 Christian Janiesch and Michael Niemann

Table 16.3: Service Description meta-model Setup and Maintenance Processes. BM
— business manager (host), HA — host architect (host), SA — software admin
(host), SM — service manager (provider), R stands for responsible, A for account-
able.

Phase Processes Roles
Design - Define description standards and meta-modeling language HA, BM

- Define repository maintenance and versioning HA, SA
- Define organizational model BM, HA
- Determine tooling support BM, HA, SA
- Define general description guidelines BM, HA
- Create meta-model BM, HA

Deployment - Meta-model deployment (Establish repository and load meta-
model in repository)

BM

Delivery
Monitoring - Verify and certify adherence to description meta-model guide-

lines
BM

- Perform frequent consistency check SA
- Monitor word usage and meaning development over time BM (A)
- Monitor changes and perform development trends analysis BM (A)
- Analyse feedback from monitoring of semantic applications BM (R)

Change - Change description standards BM (A), HA (R)
- Change maintenance processes BM (A), HA (R)
- Change maintenance roles and responsibilities BM (A), HA (R)
- Change peripheral (non-core) modules of description meta-
model

BM (A)

- Change core modules in description meta-model BM (A)

trends, and semantic checks. Terms change over shorter periods of time, so that
meta-model changes may be necessary. Although this more apparent on the in-
stance level, changes of the meta-model may appear. Sometimes, a trend can be
calculated from these changes to anticipate necessary future modification. Semantic
applications can also provide feedback on the use of technical terms or tags in the
meta-models. Again, we assume the latter two are more important on an instance
level but still, in a large deployment the may be enough data to perform this kind of
monitoring.

In the change phase, standards as well as the associated governance may be
adapted if the monitoring of the marketplace platform suggests this. Change may
impact the description standard, e.g., the addition of core data types from CCTS to
USDL, the roles and responsibilities, e.g., the reassignment of BM tasks to and on-
tology engineer, the change of processes, e.g., the addition of a community liaison
process to bring the service community up to speed about changes in the meta-
model, as well as implementing changes in the actual core meta-models or their
modules.

For more details on the roles cf. [27]. We also included accountability (A) and
responsibility (R) information in the table according to RACI matrices.

Table 16.4 lists essential reference guidelines that are required for successfully
designing, setting up, and maintaining a repository used for service description in an

16 Supporting USDL by a Governance Framework 439

environment such as the Internet of Services. Guidelines described in Table 16.4 fo-
cus on the usage of the service description repository, the service ontology, through-
out the governance lifecycle.

Table 16.4: Service Description Setup and Maintenance Processes. BM – business
manager (host), HA – host architect (host), SA – software admin (host), SM – ser-
vice manager (provider), R stands for responsible, A for accountable.

Phase Processes Roles
Design - Determine tooling support HA, SA

- Define general description guidelines BM
- Set up repository for service descriptions HA, SA

Deployment - Verify description instances BM
Delivery
Monitoring - Verify and certify adherence to description meta-model and

description guidelines
SA, BM

- Monitor word usage and meaning development over time BM (A)
- Monitor changes and perform development trends analysis BM (A)
- Analysis of semantic applications and usage feed-back BM, SA

Change - Change description guidelines BM, HA
- Change description process BM, HA
- Change service description BM, HA, SM

Similarly, to the governance of meta-models, the instances of service descriptions
have to be governed. In the design phase, approved tooling for actual descriptions
needs to be chosen and modeling guidelines have to be published so that the de-
scription files are uniform and comparable for the service consumers.

When providers deploy their services so that they can be sold via the marketplace
platform, their descriptions have to be checked for compliance to the guidelines set
forth in the design phase. This entails a semantic as well as a syntactical evaluation.

Naturally, the actual delivery takes place automatically, similar to the meta-
model.

Just like in the case of the meta-model, word changes are tracked, trends are
estimated and semantic checks are performed. In addition user feedback is evaluated
by the BM and factored into the verification of service descriptions to their meta-
mdoel.

In the change phase, the BM and HA adapt processes and guidelines for service
descriptions as deemed necessary through monitoring and communicate the change
to the users. If necessary, the concrete description of services has to be changed here
as well.

440 Christian Janiesch and Michael Niemann

16.4.2 Exemplary Application

When designing the service description meta-model, one of the first decisions will
have to be on the used standards. If we assume USDL is taken as a basis, then (with
a look at the running example) a meta-model for an agent’s address might look as
follows (rendered as XML for the sake of readability in Listing 16.1):

Listing 16.1: Agent address meta-model.
1 <P h y s i c a l A d d r e s s xmi : i d =””>
2 <S t r e e t ></S t r e e t>
3 <St ree tNumber></S t ree tNumber>
4 <Ci ty></C i ty>
5 <Pos tcode></Pos tcode>
6 <S t a t e ></S t a t e>
7 <Country></Country>
8 <G e o g r a p h i c a l P o i n t xmi : i d =” ”>
9 <L a t i t u d e ></L a t i t u d e>

10 <Longi tude></Long i tude>
11 </ G e o g r a p h i c a l P o i n t>
12 </ P h y s i c a l A d d r e s s>

It is a design decision to adopt this meta-model or to add or delete information
(e.g., remove the state for an exclusively German platform). Also, the meta-model
designers need to decide on code lists for the attributes such as country codes or a
format for geo-spatial coordinates. USDL is quite comprehensive but changes will
be necessary as there may be new forms of communication for virtual addresses or
if a country decides to introduce a different system to specify physical addresses.
Also, the platform host could decide to implement CCTS and use core data types
for addresses which would look significantly different as they carry more detailed
data.

On an instance level, the agent’s address might look like Listing 16.2.
Listing 16.2: Service description showing a concrete agent’s address.

1 <P h y s i c a l A d d r e s s xmi : i d =” P h y s i c a l A d d r e s s 2 7 4 3 7 2 0 4”>
2 <S t r e e t>Hacks Cross Road</ S t r e e t>
3 <St ree tNumber >3620</ S t ree tNumber>
4 <Ci ty>Memphis</Ci ty>
5 <Pos tcode >38125−8800</ Pos tcode>
6 <S t a t e>Tennessee </ S t a t e>
7 <Country>USA</Country>
8 <G e o g r a p h i c a l P o i n t xmi : i d =” G e o g r a p h i c a l P o i n t 2 6 1 0 1 1 1 8”>
9 <L a t i t u d e >35.05107</ L a t i t u d e>

10 <Longi tude >−89.792703</ Long i tude>
11 </ G e o g r a p h i c a l P o i n t>
12 </ P h y s i c a l A d d r e s s>

Here, the change of address is probably the most striking use case. In order to
keep addresses (and service interfaces up to date) monitoring and feedback infor-
mation has to be evaluated to make sure all data is current. Also, legal requirements
on reporting the accountability for services might change and require different data
which used to be optional. Here a change in the meta-model will cascade to changes
in the actual service descriptions.

16 Supporting USDL by a Governance Framework 441

16.5 Conclusion

Based on evidence from existing governance frameworks and research from academia
and practice we derived processes, stakeholders, measurements, and maturity levels
as the four building blocks for a governance framework that can support operations
of a service marketplace.

In our understanding transactions on a service marketplace involve three entities:
a service provider, a service broker and a service consumer. Innovators and com-
munities support this process indirectly. The platform host is the key stakeholder to
enable this interaction via the broker. However, the provider and the consumer are
also involved directly or indirectly in governance processes in the different phases
of the service lifecycle and the generation of KPIs about these processes. We distin-
guish five phases that cover design, deployment, delivery, monitoring, and change
of services. The KPIs are broken down from a company-level to an IT-level to these
processes. Furthermore, in order to grow and evaluate the overall architecture we
propose a maturity model and capability profile. These four building blocks are
necessary to form the core of a Governance framework for the Internet of Services.

Furthermore, this kind of Governance has to pay attention to cross-company le-
gal aspects, e.g., data protection/ security. It must comprise contract management
over country borders, country-specific laws for data transmission and protection,
and laws concerning the fulfilment of online contracts. It also must cover different
service monitoring aspects and includes the interests of multiple stakeholders. Op-
erating a service marketplace platform involves much more stakeholders than com-
mon SOA approaches. Being a cross-company setup, a framework must consider
the interests of all stakeholders of the marketplace platform.

We acknowledge that there may be more aspects to include as related work points
out. However, they can most likely be related to the above four building blocks. In
this chapter we provided an initial framework that needs to be instantiated accord-
ing to the application and its process, roles, maturity levels, and metrics need to be
detailed for application. At this stage it is also intended as an overview of the chal-
lenges governance faces in the Internet of Services such as brokerage as well as an
inspiration for further research in this emerging area.

References

1. SOA Governance: Beherrschen Sie Ihre SOA. Business white paper, Software AG,
2005. http://www.softwareag.com/de/Images/WP_SOA_Governance_D_
tcm17-22130.pdf.

2. Service Lifecycle Governance: Timely Policies and Enforcement Help Compa-
nies Reap the Full Benefits of SOA. BEA white paper, BEA Systems, Inc., 2006.
http://www.itworldcanada.com/Admin/Pages/Assets/DisplayAsset.
aspx?id=e0a24263-a10a-4887-8d45-582261587176.

3. SOA Governance: Balancing Flexibility and Control Within an SOA. A systinet white paper,
Systinet, 2006. http://www.webservices.org/content/download/83830/

http://www.softwareag.com/de/Images/WP_SOA_Governance_D_tcm17-22130.pdf
http://www.itworldcanada.com/Admin/Pages/Assets/DisplayAsset.aspx?id=e0a24263-a10a-4887-8d45-582261587176
http://www.webservices.org/content/download/83830/1225383/file/SOA_Gov906.pdf
http://www.softwareag.com/de/Images/WP_SOA_Governance_D_tcm17-22130.pdf
http://www.itworldcanada.com/Admin/Pages/Assets/DisplayAsset.aspx?id=e0a24263-a10a-4887-8d45-582261587176

442 Christian Janiesch and Michael Niemann

1225383/file/SOA_Gov906.pdf.
4. SOA Governance: Enabling Sustainable Success with SOA. Technical report, webMeth-

ods, Inc., 2006. http://www.cioindex.com/nm/articlefiles/44428-SOA_
Governance.pdf.

5. 2007 Survey on SOA Governance. Technical report, WebLayers SOA Forum, 2007. http:
//www.bitpipe.com/detail/RES/1209665671_580.html.

6. CObIT 4.1: Control Objectives for Information and Related Technology. Technical report, IT
Governance Institute, Rolling Meadows, IL, USA, 2007.

7. ITIL v3: Information Technology Infrastructure Library Version 3. Core OGC titles, Office of
Governance Commerce, The Stationery Office, London, 2007.

8. SOA Governance: Balancing Flexibility and Control within an SOA. Technical report,
Hewlett-Packard, 2007. http://hp.com/go/soa.

9. Five Steps for Building the Business Case for SOA Governance. Business white paper, Soft-
ware AG, 2008. http://www.softwareag.com/de/images/BusCase_SOA_WP_
Nov08-web_tcm17-45795.pdf.

10. CMMI Models and Reports. Technical report, Software Engineering Institute, 2009. http:
//www.sei.cmu.edu/cmmi/models/.

11. SOA Governance Framework. Technical standard, The Open Group, 2009.
12. TOGAF 9: The Open Group Architecture Framework. Technical report, The Open

Group, 2009. http://www.opengroup.org/architecture/togaf9-doc/
arch/index.html.

13. M. Afshar. SOA Governance: Framework and Best Practices. An Oracle White Paper. An
Oracle white paper, 2007. http://www.oracle.com/technologies/soa/docs/
oracle-soa-governance-best-practices.pdf.

14. P. Allen. SOA Governance: Challenge or Opportunity? CBDI Journal, 7:20–31, 2008.
15. A. Arsanjani and K. Holley. Increase Flexibility with the Service Integration Maturity Model

(SIMM). Technical report, IBM developerWorks, 2005.
16. A. P. Barros and M. Dumas. The rise of web service ecosystems. IT Professional, 8(5):31–37,

2006.
17. J. Bernhardt and D. Seese. A conceptual framework for the governance of service-oriented

architectures. In G. Feuerlicht and W. Lamersdorf, editors, Service-Oriented Computing -
ICSOC 2008 Workshops, ICSOC 2008 International Workshops, Sydney, Australia, December
1st, 2008, Revised Selected Papers, volume 5472 of Lecture Notes in Computer Science, pages
327–338. Springer, 2008.

18. N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and R. Shah. Service-oriented Architecture
Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press, Upper Saddle
River, NJ, USA, 2005.

19. N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact of service-oriented architec-
ture on enterprise systems, organizational structures, and individuals. IBM Systems Journal,
44(4):691–708, 2005.

20. J. Bloomberg. SOA Governance: IT Governance in the Context of Service Orientation. Zap-
Think, LLC, Baltimore, MD, USA, 2004.

21. B. Brauer and S. Kline. SOA governance: a key ingredient of the adaptive enterprise. Whitepa-
per, HP, 2005.

22. W. Brown, R. Laird, C. Gee, and T. Mitra. SOA Governance: Achieving and Sustaining Busi-
ness and IT Agility. IBM Press, Upper Saddle River, NJ, USA, 2008.

23. P. Derler and R. Weinreich. Models and Tools for SOA Governance. In D. Draheim and
G. Weber, editors, Trends in Enterprise Application Architecture, 2nd International Confer-
ence, TEAA 2006, Berlin, Germany, November 29 - December 1, 2006, Revised Selected Pa-
pers, volume 4473 of Lecture Notes in Computer Science, pages 112–126. Springer, 2006.

24. T. Erl. Service-oriented Architecture: Concepts, Technology, and Design. Prentice Hall, En-
glewood Cliffs, NJ, 2005.

25. D. Herron and D. Garmus. Identifying your organization’s best practices. CrossTalk: Journal
of Defense Software Engineering, 19:22–25, 2005.

http://www.cioindex.com/nm/articlefiles/44428-SOA_Governance.pdf
http://www.bitpipe.com/detail/RES/1209665671_580.html
http://hp.com/go/soa
http://www.softwareag.com/de/images/BusCase_SOA_WP_Nov08-web_tcm17-45795.pdf
http://www.sei.cmu.edu/cmmi/models/
http://www.opengroup.org/architecture/togaf9-doc/
http://www.oracle.com/technologies/soa/docs/oracle-soa-governance-best-practices.pdf
http://www.webservices.org/content/download/83830/1225383/file/SOA_Gov906.pdf
http://www.cioindex.com/nm/articlefiles/44428-SOA_Governance.pdf
http://www.bitpipe.com/detail/RES/1209665671_580.html
http://www.softwareag.com/de/images/BusCase_SOA_WP_Nov08-web_tcm17-45795.pdf
http://www.oracle.com/technologies/soa/docs/arch/index.html
http://www.oracle.com/technologies/soa/docs/oracle-soa-governance-best-practices.pdf
http://www.sei.cmu.edu/cmmi/models/

16 Supporting USDL by a Governance Framework 443

26. K. Holley, J. Palistrant, and S. Graham. Effective SOA Governance. IBM White
Paper, 2006. ftp://ftp.software.ibm.com/software/uk/flexible/wp/
effective_soa_governance.pdf.

27. C. Janiesch, M. Niemann, and R. Steinmetz. The TEXO Governance Framework. Technical
report, SAP Research White Paper, 2011. http://www.internet-of-services.
com.

28. W. Johannsen and M. Goeken. Referenzmodelle für IT-Governance: Strategische Effektivität
und Effizienz mit COBIT, ITIL & Co. dpunkt, Heidelberg, 2007.

29. N. Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly Media, Se-
bastopol, CA, USA, 2007.

30. R. Kaplan and D. Norton. Translating Strategy into Action: The Balanced Scorecard. Harvard
Business School, Boston, MA, 1996.

31. O. Kohnke, T. Scheffler, and C. Hock. SOA-Governance — Ein Ansatz zum Management
serviceorientierter Architekturen. Wirtschaftsinformatik, 50(5):408–412, 2008.

32. E. Marks. Service-Oriented Architecture Governance for the Services Driven Enterprise. John
Wiley & Sons, Inc., Hoboken, NJ, USA, 2008.

33. M. Matsumara. The Definitive Guide to SOA Governance and Lifecycle Man-
agement. Technical report, 2007. http://www.scribd.com/doc/7056416/
Guide-to-SOA-Governance.

34. G. McBride. The Role of SOA Quality Management in SOA Service Lifecycle Manage-
ment. IBM developerWorks, 2007. ftp://ftp.software.ibm.com/software/
rational/web/articles/soa_quality.pdf.

35. T. Mitra. A Case for SOA Governance. IBM developerWorks, 2005. http://www.ibm.
com/developerworks/webservices/library/ws-soa-govern/.

36. B. Moreland and M. Afshar. The Path to SOA (Part I of III). http://www.ebizq.net/
topics/systems_management/features/7193.html, 2006.

37. M. Muriankara. SOA Governance Framework and Solution Architecture. IBM de-
veloperWorks, 2008. http://www.ibm.com/developerworks/webservices/
library/ws-soa-govframe/.

38. A. Picot, R. Reichwald, and R. Wigand. Die grenzenlose Unternehmung: Information, Or-
ganisation und Management. Gabler, Wiesbaden, 4th edition, 2001.

39. A. Pugsley. Assessing your SOA Program. HP White Paper, Hewlett Packard, 2006.
40. J. Quantz. SOA in der Praxis: Wie Unternehmen SOA erfolgreich einsetzen. Berlecon report,

BerleCon Research, Mar 2006. http://www.berlecon.de/studien/downloads/
Berlecon_SOA.pdf.

41. D. Rane and G. Lomow. SOA Governance: More than just Registries and Repositories. Tech-
nical report, BearingPoint, 2008. http://www.digitalgovernment.com/media/
Knowledge-Centers/asset_upload_file77_1753.pdf.

42. I. Rieger and R. Bruns. SOA-Governance und -Rollen: Sichern des Mehrwerts einer service-
orientierten Architektur. pages 20–24, 2007.

43. J. Schelp, O. Schmitz, J. Schulz, and M. Stutz. Governance des IT-Sourcing bei einem Fi-
nanzdienstleister. HMD - Praxis Wirtschaftsinform., 250, 2006.

44. T. G. J. Schepers, M.-E. Iacob, and P. van Eck. A lifecycle approach to SOA governance.
In R. L. Wainwright and H. Haddad, editors, Proceedings of the 2008 ACM Symposium on
Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, pages 1055–1061.
ACM, 2008.

45. B. Schmid. Elektronische Märkte: Merkmale, Organisation und Potentiale. In A. Hermanns
and M. Sauter, editors, Management-Handbuch Electronic Commerce: Grundlagen, Strate-
gien, Praxisbeispiele. Vahlen, Munich, 1999.

46. I. Sommerville. Software Engineering. Addison-Wesley, Harlow, 8th edition, 2006.
47. A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, and U. Yalcinalp.

Web services policy 1.5 - framework. W3C Recommendation, http://www.w3.org/
TR/ws-policy/ 2007.

48. P. Weill and J. Ross. IT Governance: How Top Performers Manage IT Decision Rights for
Superior Results. Harvard Business School Press, Boston, MA, USA, 2004.

ftp://ftp.software.ibm.com/software/uk/flexible/wp/effective_soa_governance.pdf.
http://www.internet-of-services.com.
http://www.scribd.com/doc/7056416/Guide-to-SOA-Governance.
ftp://ftp.software.ibm.com/software/rational/web/articles/soa_quality.pdf.
http://www.ibm.com/developerworks/webservices/library/ws-soa-govern/.
http://www.ebizq.net/topics/systems_management/features/7193.html, 2006.
http://www.ibm.com/developerworks/webservices/library/ws-soa-govframe/.
http://www.berlecon.de/studien/downloads/Berlecon_SOA.pdf.
http://www.digitalgovernment.com/media/Knowledge-Centers/asset_upload_file77_1753.pdf.
http://www.w3.org/TR/ws-policy/ 2007.
ftp://ftp.software.ibm.com/software/uk/flexible/wp/effective_soa_governance.pdf.
http://www.internet-of-services.com.
http://www.scribd.com/doc/7056416/Guide-to-SOA-Governance.
ftp://ftp.software.ibm.com/software/rational/web/articles/soa_quality.pdf.
http://www.ibm.com/developerworks/webservices/library/ws-soa-govern/.
http://www.ebizq.net/topics/systems_management/features/7193.html, 2006.
http://www.ibm.com/developerworks/webservices/library/ws-soa-govframe/.
http://www.berlecon.de/studien/downloads/Berlecon_SOA.pdf.
http://www.digitalgovernment.com/media/Knowledge-Centers/asset_upload_file77_1753.pdf.
http://www.w3.org/TR/ws-policy/ 2007.

444 Christian Janiesch and Michael Niemann

49. P. Windley. Governing SOA. InfoWorld.com, Jan 2006.
50. P. Windley. SOA Governance: Rules of the Game. InfoWorld.com, 2006.
51. P. Windley. Teaming up for SOA. InfoWorld.com, 2007.
52. B. Woolf. Introduction to SOA Governance. IBM developerWorks, 2007. http://www.

ibm.com/developerworks/library/ar-servgov/.

http://www.ibm.com/developerworks/library/ar-servgov/.
http://www.ibm.com/developerworks/library/ar-servgov/.

Chapter 17

Managing Variants of USDL

Gunther Stuhec, Daniel Oberle, Christian Baumann, Christian Janiesch, Michael
Dietrich, Jens Lemcke, Jörg Rech, and Wolfgang Karl Rainer Schwach

Abstract Different variants of USDL are required for different contexts. This is al-
ready shown by the Legal Module which requires different contents depending on
the jurisdiction of a country. The issue aggravates if more and more parameters are
relevant to determine the correct variant. The chapter presents one possible solu-
tion for variant management consisting of a canonical data model, a context driver
mechanism, governance processes, and appropriate tooling. Although the solution
for variant management is targeted at existing business documents, such as a pur-
chase order, it provides a powerful and adequate means for dealing with USDL
variants as well.

17.1 Introduction

Chapter 14 discussed that the contents of USDL are required in different representa-
tions. Different contexts of use, e.g., industries or countries, even require variants of
USDL. As shown in Chapter 10, formalizing licenses according to German law and

Gunther Stuhec
SAP Global Partner & Ecosystems Group, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany,
e-mail: gunther.stuhec@sap.com

Daniel Oberle, Michael Dietrich, Jens Lemcke, Jörg Rech, Wolfgang Karl Rainer Schwach
SAP Research Karlsruhe, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany,
e-mail: firstname.lastname@sap.com

Christian Baumann
Berkeley Center for Law & Technology, University of California, Berkeley, School of Law, 376
Boalt Hall Berkeley, 94720 CA, USA, e-mail: baumann@berkeley.edu

Christian Janiesch
Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of
Technology, Englerstr. 11, Geb 11.40, 76131 Karlsruhe, Germany,
e-mail: christian.janiesch@kit.edu

445 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York7,

mailto:gunther.stuhec@sap.com
mailto:firstname.lastname@sap.com
mailto:baumann@berkeley.edu
mailto:christian.janiesch@kit.edu

446 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

US common law requires different Legal Modules. However, both modules are not
completely disjoint. There are overlaps in that specific classes are identical in both
modules. Along the same lines, one can conjecture that other contexts, e.g., indus-
tries, business processes, or business roles, have specific needs on the content level
that lead to further variants of USDL. First, extensions or alterations might be re-
quired with different granularity (attributes, classes or relations, or whole modules).
Second, different representation terms might be applied for the same entity (both
because of internationalization and also within the same language). Third, identi-
cal representation terms might have different meanings in different contexts. For
example, Reward has many different meanings in different contexts and requires
disambiguation. Reward could be either a bestow of honor to actors in the music
industry or it could be a payment return for a service in the context of legal as-
pects. Fourth, the ownership of an alteration might be proprietary, i.e., only required
for a specific user, or should be made normative and channeled back as an official
alteration to the standard.

If not managed properly, the situation will lead to a proliferation of USDL vari-
ants much like what has happened with business documents in the area of B2B
interoperability which requires cost and time intensive mappings between variants.
B2B interoperability requires a technical realization of connectivity between sys-
tems. This is readily addressed through the use of existing technical standards and
supporting middleware such as Web services. However, the bigger challenge, which
still remains for achieving B2B interoperability, is the lack of a common under-
standing at the collaborative business process and data level.

This lack of common understanding is caused by different representations, dif-
ferent purposes of use, different contexts of use, and different syntax-dependent
approaches in solving the problem. For more than 30 years, different B2B stan-
dardization approaches have only considered their own specific requirements, at a
syntax-dependent level, without consideration of adopting a common approach at
the semantic level. This lack of a common approach has led to significant interop-
erability issues when attempting to use the resultant solutions outside of the narrow
scope for which they were developed [30].

As an example business document, consider a purchase order, which is being ex-
changed between a buyer and a retailer, and eventually also between the retailer and
a supplier. The communication happens via different e-Business standards. Buyer
and retailer might exchange the purchase order in the OAGIS v8.0 syntax; retailer
and supplier communicate via RosettaNet [13]. Both the OAGIS and RosettaNet
representations use significantly different structures [9] and element names to rep-
resent the purchase order document. Therefore, the parties have to negotiate their
different meanings and align before the communication takes place and establish
cost and time intensive mappings from and to their internal interfaces in ERP sys-
tems, respectively.

Besides the RosettaNet and OAGIS standards, there is a proliferation of stan-
dardized syntaxes for representing business documents [24]. Typically, different in-
dustries in combination with geopolitical settings introduce their own standard. An

17 Managing Variants of USDL 447

example set is the family of EDIFACT variants [5].1 Several industries developed
variants, in this particular case subsets of the EDIFACT umbrella standard, to re-
flect their specific representation needs. Examples are ODETTE for the European
Automotive Industry, EDIFICE for the high-tech industry, CEFIC for the chemicals
industry, EDILIBE for book retails, and many more. Although an estimated 60% of
the represented information in the (competing) standards is similar, most of them
established their own terminology, structure, and way of representation.

A possible solution for managing variants of USDL therefore stems from the area
of B2B interoperability. The solution consists of the following four pillars:

1. A Canonical Data Model to ensure a controlled vocabulary
2. A Context Driver mechanism to manage the different contexts of use
3. Governance Processes to manage the canonical data model
4. Tooling to realize and support 1-3

The chapter will introduce each of the four pillars in more detail in Sections 17.3
to 17.6. Before, Section 17.2 will detail some examples for variants in USDL. Fi-
nally, we discuss related works and conclude in Section 17.7 and 17.8, respectively.

17.2 Motivation

The fact that there will be several variants of USDL is already apparent in the Legal
Module. Modeling of legal aspects such as licenses depends on the legislation of
the country and, consequently, different modules for the German and the US com-
mon law are required (cf. Chapter 10). However, it is also apparent that there are
overlaps between both modules. For instance, the class Work appears in both mod-
ules although with different attributes. In addition, there are also differences on the
level of classes and relations. The class of CopyrightTransfer is apparent in US
but not in German law, the relation authors points to the foundational classes Per-
son (German variant) and Agent (US variant), respectively. Figure 17.1 provides
an overview of the overlaps and differences related to the class Work and will serve
as a running example in the remainder of the chapter. The following enumeration
provides a detailed description of the running example. More differences for legal
aspects are discussed in Chapter 10.

Class Work: Difference with respect to attributes The German and US variants of
the class Work differ in individual attributes. According to US common law, a
work can have a registration status. The registration of a work is not possible in
German law. In contrast, the registration serves as prima facie evidence in the
case of a copyright lawsuit in US common law.

Class CopyrightTransfer: Only in US Copyrights can be transferred in US com-
mon law. This option is not available in German law, but you can only grant usage

1 The acronym stands for Electronic Data Interchange For Administration, Commerce and Trans-
port developed under the United Nations.

448 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

rights. The copyright always remains with the original author2 in German law.
Therefore, the US Legal Module contains a class CopyrightTransfer to specify
whether the copyright is assigned or transferred. The type of conveyance is spec-
ified by the enumeration type:TransferType. The following types are possible:
Assignment (usage right is assigned) and Authorization (copyright is trans-
ferred).

Fig. 17.1: Differences between Work in the US (left) and the German (right) Legal
Modules.

Relation authors: Difference with respect to relations German law only consid-
ers natural persons as authors of a work. Hence, the German Legal Modules in-
troduces a relation authors which points to the class Person of the Foundation
Module. US common law considers both natural and legal persons as authors of
a work. Consequently, authors points to the more generic class Agent (of the
Foundation Module).

Relation licensedBy: Difference with respect to relations In the US module the
relation LicensedBy links the classes Work and CopyrightTransfer. A work is
licensed by a specific type of copyright transfer.3 The CopyrightTransfer then
authorizes the License.
The German module represents this via the relation licenses, since it is not an
option to transfer the complete copyright but only to grant usage rights.

Putting both the US and German variants in one module is not an option since fur-
ther countries might even require additional conceptualizations and equally named
classes might differ in their conception. Yet, there is overlap, e.g., the notion of
Work is indeed equal in both countries, so introducing two classes of the same
name in different modules is also not an option.

2 The copyrights can be transferred only in the case of the death of an author in the German
Copyright Law.
3 Cf. description for class CopyrightTransfer.

17 Managing Variants of USDL 449

Our experience so far also gives reason to expect several industry-specific ex-
tensions or variants of USDL. We expect a situation similar to EDIFACT which is
governed by the UN and additionally several sub-committees that govern industry-
specific derivations of EDIFACT. For example, ODETTE for the European auto-
motive industry or EDIFICE for the electronics industry. Besides, many countries
have their own EDIFACT derivation. For example, there is a DIN (German norm)
in Germany which is derived from EDIFACT.

In addition, there is the need for proprietary extensions to USDL. Consider a
platform provider who might want to integrate a class about Feedback specifically
for his usage of USDL. The following sections introduce a possible solution to cope
with all the aforementioned challenges by means of four pillars, viz., a canonical
data model, a context driver mechanism, governance processes, as well as corre-
sponding tooling.

17.3 Canonical Data Model

Even if the terminology of the two Legal Modules follows a strict grammar, it is
unlikely that separately introduced variants of USDL apply the same grammar and
arrive at compatible naming schemes. Therefore, the first remedy for countering the
problems outlined in the previous section is a Canonical Data Model (CDM) based
on a standard naming convention to ensure a common vocabulary.

The Core Components Technical Specification (CCTS) [8] by the United Na-
tions Center for Trade Facilitation and Electronic Business (UN/CEFACT) is such
a grammar and provides the platform independent definition of data types for docu-
ment exchange and, in addition to that, a concept on how to organize, i.e., aggregate
and associate, data on a higher level to create business documents (e.g., a purchase
order). CCTS provides a way of standardizing business semantics, i.e., the document
data’s meaning.

Core components are building blocks for semantically correct and meaningful
business documents. Core components can be instantiated to assemble a business
document via core component types (CCT), basic business information entities
(BBIE), association business information entities (ASBIE), and aggregate business
information entities (ABIE).4 CCT are of a data type and consist of a content com-
ponent and one or more supplementary components. Content components carry the
actual value while supplementary components further define the content. According
to the specification, CCT do not have business semantics. BBIE have business se-
mantics and provide a singular element of an ABIE (e.g., Type in Work). An ABIE
(e.g., Work) is a collection of BBIEs and can be part of other ABIEs via an ASBIE.
Figure 17.2 shows the class Work of the US Legal module rendered in CCTS.

CCTS prescribes naming conventions for specifying the dictionary entry names
(DEN) for supplementary components, content components, BDTs, BBIEs, AS-

4 In terms of object-orientation, ABIEs are roughly equivalent with classes, BBIEs with attributes,
and ASBIEs with associations.

450 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

<<BBIE>> Work Registration Status Text [0..1]
<<BBIE>> Work Type Identifier [0..1]

Type OCQ OCT PQ PT RT Oc

Work Details

<<ABIE>>

<<ASBIE>> Work License Transfer [0..*]
<<ASBIE>> Work Author Agent [1..*]
...

Fig. 17.2: Work of the US Legal Module rendered in CCTS as ABIE.

BIEs, and ABIEs. The basis of the naming conventions is ISO 11179 Part 5 and
can be compared with a grammar of a natural language for the consistent and gram-
matically correct building of element or attribute names. The DEN consists of an
Object Class Term (OCT), a property term (PT), and a representation term (RT).
OCTs and PTs can be assigned additional qualifiers (OCQ and PQ). The OCT
can be compared with the object of a sentence, the PT is usually the predicate
and the RT can be regarded the subject of a sentence. The optional qualifiers can
be used for the semantic refinement of OCTs and PTs. All of them can only be
represented by nouns and adjectives (verbs of the USDL class models are nomi-
nalized accordingly). An example of a complete Dictionary Entry Name would be
Work.Registration.Status.Text. The Object Class Term represents the
ABIE for which the BBIE or ASBIE is defined, e.g., Work. The Property Term is the
first part of the name of an administered item. The Property Term (e.g., Status)
expresses a property of an ABIE, and defines the characteristics that belong to an
ABIE. The PT can be further refined by providing a Property Qualifier (PQ), in our
case Registration. The Representation Term is the second part of the property.
It defines the subject that is used to express the kind of representation of the property
and reflects its datatype. For example, Status gives the apparent proposition and
Text specifies how the Status will be represented. A BBIE always gets its char-
acteristics for the representation of the values by an appropriate Core Data Type.
Type awareness of the core components is easily determined by examining the Rep-
resentation Term of the BBIE, as a Representation Term is always the same term as
the Object Class Term of its corresponding Core Data Type. ASBIEs link to other
ABIEs. In our example, the ASBIE License.Transfer links to another ABIE
identified by Copyright.Transfer.Details (not shown in Figure 17.2).

17 Managing Variants of USDL 451

17.4 Context Driver

CCTS specifies how to assemble USDL variants and their data types as well as a
methodology on how to create context-based instantiations of these general USDL
variants. For example, the aforementioned Work might feature different BBIEs and
ASBIEs in different business contexts. CCTS defines business context as the formal
description of a specific business circumstance as identified by the values of a set
of context categories, allowing different business circumstances to be uniquely dis-
tinguished. A context category is a group of one or more unordered values used to
express a characteristic of a business circumstance. Examples for context categories
are industry, business role, or country. Each context category consists of a set of re-
lated context values. Each value of the context category is defined by a classification
scheme which is expressed as code list or identifier scheme.

This is already depicted in Fig. 17.4 by the leftmost columns. Wildcards (*)
mean that the BBIE or ASBIE is valid in every industry (Ind), business role (Rol),
or country (Co), respectively. Specific values, such as US for the country (column
Co) for Registration.Status.Text, mean that this BBIE is only valid for
the United States but in all industries and countries. Thus, both the German and the
US version of Work can be captured in one ABIE.

<<BBIE>> Work Registration Status Text [0..1]
<<BBIE>> Work Type Identifier [0..1]

Type OCQ OCT PQ PT RT Oc

Work Details

<<ABIE>>

<<ASBIE>> Work License Transfer [0..*]
<<ASBIE>> Work Author Agent [1..*]
<<ASBIE>> Work Author Person [1..*]

Ind Rol Co

Context

* * US
* * DE,US
* * US
* * US
* * DE

Fig. 17.3: Context categories and CCTS.

In [8], CCTS foresees eight context categories5 but does not specify how to ap-
ply and realize such context drivers. This is where the UN/CEFACT Unified Con-
text Methodology (UCM) [16] comes into play as a methodology for managing
the representation and use of business context information, especially for UN/CE-
FACT technologies. This includes representing the business contexts of business
documents, using business context during message assembly to produce messages
for specific business contexts, and using business context to (semi-) automatically
customize generic business processes. UCM uses graph theory and set theory to de-
fine and understand the concept of context, context categories, context values, and
context operands [21]. An alternative to the UCM is proposed in [17].

5 Business process, business process role, supporting role, industry classification, product classifi-
cation, country, official constraints, and system capabilities.

452 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

17.5 Governance Processes

The canonical data model and context driver mechanism are the prerequisites for a
common vocabulary and the prevention of the proliferation of incompatible USDL
variants. However, with the modification and adding of USDL variants by users,
the canonical data model might lose structure, consistency, conciseness, and even
correctness. Therefore, it has to be normalized, harmonized, optimized, corrected,
and consolidated by a schema engineer or by an automatic analyzer both with the
backup of a governance team and corresponding governance processes.

Current business document standards, such as OAGIS or RosettaNet, are typi-
cally managed centrally by such a governance board consisting of several schema
engineers. Users can inquire changes to the schema and the governance board even-
tually decides if and how the change will be reflected in future versions. This task
is non-trivial and time-consuming since a multitude of users might request similar
extensions and alterations. The processes for the inquiry and changes are more or
less explicit depending on the standards body and include (cf. also [25]):

Harmonization The semantic analysis of the canonical data model in order to de-
termine equivalence, similarity, or dissimilarity in dictionary entry names. Names
and identifiers within the canonical data model should use identical names and
a similar structure. The aim of harmonization is to improve the canonical data
model’s interoperability, reusability, and maintainability. For example, elements
have synonyms, related business terms or terms in different languages such as au-
thor, auth, writer, creator, etc. These should be harmonized by finding a meaning-
ful common denominator (independent of different languages). The governance
board needs to find these names and select a standardized reference term.

Normalization The structural analysis of the canonical data model in order to
determine duplication, flatness, or over-nesting of elements. The structure of
schema elements (e.g., addresses) should be balanced. The aim of normalization
is to improve the readability, interoperability, portability, reusability, accessibil-
ity, and maintainability of the canonical data model. For example, an element
containing information on a person in a flat structure can contain (academic) ti-
tles, the middle name, job titles, zip code, etc. and can be subdivided into reusable
sub-schema such as name, address, or job information. The governance board
needs to identify flat or otherwise malformed substructures and split or normal-
ize them.

Consolidation The structural and semantic analysis of the canonical data model
in order to determine overlap, similarity, or dissimilarity of elements or struc-
tural parts of a schema. Schema elements similar to each other but spread over
different schemas should be integrated. The aim of consolidation is to improve
the canonical data model’s understandability, reusability, and maintainability. For
example, elements containing the address of a person, company, or field should
be integrated and linked — potentially in few different scenarios (e.g., long and
short addresses). The governance board needs to identify distributed but similar
elements and consolidate them.

17 Managing Variants of USDL 453

Optimization The structural, semantic, or pragmatic analysis of static or dynamic
characteristics of the canonical data model in order to determine the usability/ ap-
plicability, distribution, usage, etc. of dictionary entry names. A schema needs
to be optimized regarding various quality attributes. The aim is to improve a
quality attribute such as understandability, reusability, interoperability, portabil-
ity, reusability, accessibility, maintainability, consistency, conciseness, and even
correctness.

The governance board has to process several activities to collaboratively make a
decision on the identified problem propositions. These activities are:

Rating of diagnosed problems by each individual in order to prioritize them.
Commenting of diagnosed problems by each individual in order to persist one

owns thought.
Discussion forum to argue about the problems, potential treatments (solutions),

and side effects.
Comparison mechanism for comparing semantically same or similar elements or

structures
Context driver mechanism for refining the unambiguous definition in which busi-

ness context is an element relevant.
Voting mechanism for the proposed treatments (schema refactorings) or further

process (e.g., annotate for deprecation).
Refactoring mechanisms for the semi-automated changes on the CDM. This might

include descriptions of (manual) refactorings as well as semi-automated schema
refactorings [10] such as Rename Element or Extract Sub-schema.

Annotation mechanism for the annotation or tagging of elements within the CDM.
Annotations such as @deprecated, @ambiguous, @see, or @planned-
ForVersion are aimed at supporting governance activities by persisting infor-
mation, decisions, or background knowledge.

Mapping mechanism for identifying, if an element is not a part of the standard
CDM anymore but this should further considered by users. This means a mapping
mechanism to the new standard CDM element should be provided.

Furthermore, the changes to the canonical data model should be versioned to be
able to rollback erroneous, premature, or inappropriate changes.

17.6 Tooling

The CCTS-based naming conventions, the canonical data model and the context
driver are just specifications which need to be realized by appropriate tooling. In
addition, the governance processes are usually implicit and realized without any tool
support. A community of experts, i.e., the governance board, analyzes, discusses,
and treats problems within the canonical data model. They have to manually identify
these problems by analyzing the canonical data model on their own. Therefore, we

454 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

propose a solution, as presented in [29], whose key features are presented in the
following subsections.

17.6.1 Common Repository

First and foremost, the solution consists of a repository containing the canonical data
model discussed in Section 17.3. The canonical data model is structured according
to CCTS and supports the context driver principle. That means every element of
the canonical data model can be marked to be valid in a specific number of context
categories. The common repository can be accessed remotely and collaboratively.
Users can formulate queries to obtain the business document in the corresponding
context.

Fig. 17.4: Obtaining context-specific variants of USDL.

In order to illustrate this let us have a look at Fig. 17.4 and consider the follow-
ing example. Assume an automotive manufacturer in Germany who is in need of
obtaining USDL in its context. The manufacturer accesses the common repository
through its web browser. The Web interface allows formulating a context specific
query for the USDL variant that fits the user’s context. Rather than responding with
a one-size-fits-all USDL where most fields will remain unused, the common repos-
itory provides a customized variant of USDL that most closely fits to the unique
requirements of the manufacturer. The solution achieves this by creating a context
specific assembly of the most appropriate and reusable building blocks. The result
is a tailor made suggestion designed specifically for the user’s context that might

17 Managing Variants of USDL 455

be very close to the final user’s requirements. This suggestion can be modified or
customized by the user afterwards and by using the same tool. Coming back to the
running example of the Legal Module, the manufacturer would retrieve the Work
ABIE with ASBIEs and BBIEs only valid in his context.

17.6.2 Collaborative Governance

In the running example, the obtained variant is the recommended structure for the
manufacturer. The manufacturer can now determine if the elements identified are
appropriate for its context, or if some elements are missing. An online modification
in the manufacturer’s context according to its business needs can be performed.
For the elements that are not required, the solution is simple. A delete action not
only removes the item from the USDL variant in the corresponding context, but
also provides valuable information that is used to improve future results (cf. Section
17.6.3). For the missing elements, there exists the possibility to add a data element
(ABIE, BBIE, or ASBIE) to the variant in the given context. However, one typically
struggles to determine the correct name, structure, position and so on. In order to
remedy the struggles, the solution contains a natural language processor to provide
a CCTS conformant name and definition, identify where else it is being used and
in what context, and the most appropriate position in an ABIE. The tool can also
provide a list of similar ABIEs, which come close to the required semantics of the
users. The tool can additionally provide some statistical results to the users such as
how often used, in which contexts used, what is the substructure etc. This statistical
information should support the user to prefer an already defined ABIE instead of
defining a new ABIE.

Although deleting and adding new elements is like a self service for user, gover-
nance is required spanning all contexts and variants of the common repository when
new elements are created. In this case the governance body is notified and has to
decide on the change inquiry. The solution allows the governance body to configure
both the notification level and priority of inquiries made by the users. With respect
to the level, the governance body is able to choose at which granularity it shall be
notified (creation of a new ABIE, BBIE or ASBIE). The governance body is pro-
vided tool support to inquire further with the user and eventually decides whether a
new element is created or whether the suggested element is harmonized with an ex-
isting one. This governance support is a strict workflow to guarantee the consistency
of the canonical data model. This workflow observes all activities made by the users
and analyzes if the modifications can be harmonized, normalized, consolidated or
even optimized. Based on this information, the following actions can be performed:

• The user will just accept the proposal of the system
• The user and governance group will perform a mediation, if there any doubtful

questions on both sides
• The governance group will urge the user to take the recommendation, otherwise

the canonical data model will lose the consistency, or

456 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

• The governance group will consider the user’s extension as a mapping, if the user
is not willing to change his model according the recommendation.

Therefore, the second key feature of the solution is collaborative governance
whose fundamental idea is to include the wisdom of the crowd and abstract from
the view of few [31]. In order to support the schema engineers and members of the
governance board in their quality assurance activities, the solution provides an intel-
ligent assistance system which informs about potential problems within the canon-
ical data model and recommends potential treatments (e.g., schema refactorings).
The assistance functionality has to identify patterns regarding the structure, usage,
syntax, or semantics of elements within the canonical data model with a negative
impact on the canonical data model’s quality. The collaborative governance should
enable and assist the community and a subgroup of experts — the governance board
— to keep the canonical data model in high quality.

17.6.3 Evolutionary Optimization

Suppose a multitude of users are independently adding similar elements to the com-
mon repository. A proliferation of such elements is avoided through governance, yet
there is further potential for optimizing the contents of the common repository over
time. Suppose more than 50% of the users in different contexts require the same
element as the manufacturer. If this is the case, the element might as well become
valid in every possible context. Vice versa, if elements are never used, they might
be deleted completely from the repository.

Therefore, the third key feature of the solution is the tracking of statistics of the
frequency of usage of data in the common repository for optimizing its contents.
This comprises a trend analysis of the elements in the common repository as well
as information about non-usage in different periods. Data of the trend analysis can
be viewed to the users to facilitate maintenance of their business documents. In
addition, the information can improve the abilities for semi-automatic consolidation
and harmonization.

17.6.4 Semi-automatic Mapping

The fourth key feature of the solution is a Semi-automatic Mapping component fa-
cilitating the import from and export to existing industry standards (e.g., RosettaNet,
CIDX, EDIFACT) as well as proprietary schemas with different syntax representa-
tions (e.g., XML Schema, CSV, or XMI). For the data import, several matching algo-
rithms ([11], [22] in particular) are applied to identify corresponding entities within
the repository. The data is mapped to the CCTS-based elements of the common
repository. New elements will be generated if no similar element can be identified.

17 Managing Variants of USDL 457

The mapping is realized by a set of matching algorithms implementing vari-
ous comparative methods. In this manner, comparisons of definitions, descriptions,
types, dictionary entry names, context categories and values, attributes and prop-
erties are carried out by the various matchers. If the match similarity value of the
considered B2B entity and some CCTS entity is disproportionately high compar-
ing to the match similarity values of the other CCTS entities analyzed and above
a predefined threshold, then a conclusion can be drawn that this B2B entity can be
mapped onto the correspondent CCTS entity with high probability. Each matching
algorithm can be assigned a weight so that it contributes more or less to the cumu-
lated total similarity value accordant to its importance. The result of this process is
a list of highly probable correspondences that will be verified by a user.

The proprietary or B2B schemas are also stored in the common repository. When
a new schema is imported by a user, the user already has the possibility to indicate
preferred mappings of elements between his schema and the canonical data model
as well as to propose new element names. Then the new schema is stored in the
common repository along with the mapping and naming proposals from the user.
This triggers the iterative governance process: An automatic analyzer starts to com-
pare the schema elements of the new schema including the information provided by
the user with the canonical data model and the other schemas in the repository. The
results of that analysis are presented to the governance board: first, how the differ-
ent elements of the newly imported schema can be mapped to the elements of the
canonical data model or if new elements should be inserted. Second, how a newly
created or extended element can be named. The proposed names follow the CCTS
DEN standard [21].

17.7 Related Work

There are numerous related works concerning canonical data models, context driver,
governance processes, and appropriate tooling. However, we argue that the approach
for variant management discussed in this chapter supersedes the related work since
none of the latter covers all four areas.

17.7.1 Canonical Data Model

There is some related work to the canonical data model. As Janiesch and Thomas
point out in [20], the introduction of a semantic layer is a new concept for business
documents which older standards do not encompass. As of now, there is only lim-
ited transfer of this concept to other applications. For business rules definition, there
is the Semantics of Business Vocabulary and Business Rules (SBVR) [1]. While
SBVR contains a section on vocabulary, it is focused on the definition of statements

458 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

rather than the structure of entities such as WSDL specifications or business docu-
ments.

In conceptual modeling, domain specific modeling methods (e.g., [2]) use do-
main concepts to clearly define (and name) certain tasks. Alternatively, domain on-
tologies or technical term models can be added to the original models [18]. This
facilitates comparability and reuse of the models. Most other approaches to data
models are of syntactical nature and specify the notation rather than the semantics
of the content (e.g., camelback notation).

17.7.2 Context Driver Principle

Related work to the context driver principle is twofold. Numerous approaches to
configuration exist [3], [12], [14], [19], [26], [28]. Common modeling frameworks,
however, only provide few options for variant handling [10], [27], [33].

CCTS used to provide only indirect support for the configuration of its core com-
ponents. Rather than providing a structured means to project the variants of the mod-
els, it provided a constraint language to trace back the change that has been made
to a variant; it is of inverse nature so to speak. This has certain drawbacks, the most
striking ones being: No guidance on new projection is offered and each variant has
to be stored redundantly [8]. The approach followed in this document operates in
the opposite direction, a method is needed that provides a means to derive business
document variants from master models in a structured way. In that, it is similar to the
approach of Janiesch [17], who applied the mechanisms of configurative reference
modeling to business documents.

Concerning the definition of context parameters, there is no unified list if there
is one at all. Often, the definition of the attributes, which define a context, are at the
liberty of the modeler. The context methodology project aims at providing a solution
in the long term.

17.7.3 Governance Processes

The governance (i.e., maintenance, management, or administration) and optimiza-
tion (i.e., evolution, harmonization, normalization, consolidation) of schemas are
relatively new fields and only little research focuses on canonical models fusing
other schema into one. Today, approaches on the optimization [23], [15], harmo-
nization [6], normalization [23] or consolidation of business schemas are non-
collaborative and unsupported.

17 Managing Variants of USDL 459

17.7.4 Tooling

Collaborative tools for the construction and governance of ontologies are emerg-
ing. A survey is given in [7] starting with knowledge bases such as Ontolingua
and Co4 to collaborative systems such as BibSonomy (collaborative tagging), DBin
(collaborative sharing), Hozo (collaborative ontology construction), OntoWiki (col-
laborative semantic authoring), Collaborative Protégé (collaborative ontology con-
struction), or SOBOLEO (collaborative taxonomy development). But these tools
are, typically, based on RDF or OWL and not easy to migrate to a proprietary XML
schema as used for the CDM.

The iSURF eDoCreator (Electronic Document Design and Customization Tool)
enables the creation and customization of CCTS-based document schemas. It does
not reuse a repository of context driver values for the (semi)automatic projection
of variants but merely facilitates the tedious process of defining the structure and
serializing it. Therefore, it does not allow for comprehensive variant management to
limit document proliferation [32].

H2 is a meta-modeling tool developed by the European Research Center for In-
formation Systems (ERCIS) which enables the dynamic modeling of nested struc-
tures such as XML structures. It also allows for the configuration of these to project
context specific variants. In many ways, it is a very promising tool for the configu-
ration of documents. It is, however, still in development and lacks necessary import
and export functionality as its focus is on being a generic meta-modeling tool [4].

17.8 Discussion

The chapter introduced a possible solution for variant management of USDL based
on findings and experience in the area of business document modeling, configura-
tion, and variant management. The chapter exemplified how the four pillars of this
solution would be applied to USDL by means of the Legal Module. In general, ap-
plying the proposed solution would require the following disruptive steps.

First, USDL would have to be represented in CCTS. On the one hand, this com-
prises the consistent application of the CCTS naming scheme to classes, associations
and attributes. On the other hand, the main challenge is the difference in expressive-
ness of CCTS and USDL’s current meta-modeling language. USDL is originally
modeled by UML class models and makes extensive use of interfaces and inher-
itance. Both modeling primitives are not provided by CCTS and workarounds as
well as extensions would have to be found.

Second, in order to put the context driver mechanism into action, a first step
is to agree on a valid set of context categories. Consequently, the current version of
USDL could be defined as valid in all contexts (apart from the Legal Modules which
could already be split according to the geopolitical context).

Third, the solution would require one or more centrally governed repositories for
USDL variants based on USDL master templates. This repository should be under

460 Stuhec, Oberle, Baumann, Janiesch, Dietrich, Lemcke, Rech, Schwach

the auspices of an independent governing body. This could be a standardization
committee such as the W3C. Another option is to deploy repositories in specific
settings, such as large enterprises. Chapter 16 already discussed additional aspects
of governance which are a prerequisite to this solution.

Fourth, with regards to tooling available nowadays, there is only one tool that
supports all required pillars as discussed in Section 17.6. However, this tool remains
a prototype for the time being [29].

References

1. Semantics of business vocabulary and business rules (SBVR). Available specification, OMG.
2. J. Becker, L. Algermissen, D. Pfeiffer, and M. Räckers. Bausteinbasierte Modellierung

von Prozesslandschaften mit der PICTURE-Methode am Beispiel der Universitätsverwaltung
Münster. Wirtschaftsinformatik, 49(4):267–279, 2007.

3. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive reference modeling: Integrating con-
figurative and generic adaptation techniques for information models. In Proceedings of the
Reference Modeling Conference (RefMod2006), Passau, 2006.

4. J. Becker, C. Janiesch, and S. Kramer. Modellierung und Konfiguration elektronischer
Geschäftsdokumente mit dem H2-Toolset. Arbeitsberichte des Instituts für Wirtschaftsin-
formatik 116, University of Münster, Germany, 2007.

5. J. Berge. The EDIFACT Standards. Blackwell Publishers, 2nd edition, 1994.
6. Y.-F. Chen, X. Sun, and C.-C. J. Kuo. XML schema harmonization: design methodology and

examples. In Proc. SPIE, volume 5241 of Multimedia Systems and Applications VI, pages 221
– 232, 2003.

7. G. Correndo and H. Alani. Survey of tools for collaborative knowledge construction and
sharing. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web In-
telligence and International Conference on Intelligent Agent Technology - Workshops, 2-5
November 2007, Silicon Valley, CA, USA, pages 7–10. IEEE, 2007.

8. M. Crawford. Core Components Technical Specification - Part 8 of the ebXML Framework.
Technical report, UN/CEFACT, 2003.

9. S. Damodaran. B2B integration over the Internet with XML: RosettaNet successes and chal-
lenges. In Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, WWW Alt. ’04, pages 188–195, New York, NY, USA, 2004. ACM.

10. D. Delen, N. P. Dalal, and P. C. Benjamin. Integrated modeling: the key to holistic under-
standing of the enterprise. Commun. ACM, 48(4):107–112, 2005.

11. H.-H. Do. Schema Matching and Mapping-based Data Integration: Architecture, Approaches
and Evaluation. PhD thesis, University of Leipzig, Germany, 2007.

12. A. Dreiling, M. Rosemann, W. M. P. van der Aalst, L. Heuser, and K. Schulz. Model-based
software configuration: patterns and languages. EJIS, 15(6):583–600, 2006.

13. M. Flebowitz. OAGIS 8.0: Practical Integration meets XML Schema. XML Journal, 3(9),
2002.

14. U. Frank and C. Lange. E-MEMO: a method to support the development of customized
electronic commerce systems. Inf. Syst. E-Business Management, 5(2):93–116, 2007.

15. F. Gessner. CCTS modeler concept and development: Semantic-driven optimization and har-
monization of data models. Master’s thesis, University of Applied Sciences Würzburg, Ger-
many, 2008.

16. S. Hinkelmann. UN/CEFACT Unified Context Methodology (UCM) Direction And Concepts.
presentation slides, Mar 2009.

17. C. Janiesch. Implementing views on business semantics. In 15th European Conference on
Information Systems (ECIS 2007), St. Gallen, 2007.

17 Managing Variants of USDL 461

18. C. Janiesch. Enhancing the accessibility of enterprise system documentation with domain
ontologies. AIS Transaction on Enterprise Systems, pages 27 – 35, 2009.

19. C. Janiesch, A. Dreiling, U. Greiner, and S. Lippe. Configuring processes and business doc-
uments - an integrated approach to enterprise systems collaboration. In 2006 IEEE Interna-
tional Conference on e-Business Engineering (ICEBE 2006), 24-26 October 2006, Shanghai,
China, pages 516–521. IEEE Computer Society, 2006.

20. C. Janiesch and S. M. Thomas. Business document taxonomy - comparison of the state-of-
the-art and recommendations for future applications. IBIS, 2(2):59–78, 2006.

21. P. O’Connor, A. Coates, and M. Crawford. Unified context methodology technical specifica-
tion. Technical report, UN/CEFACT, Apr 2010.

22. E. Peukert, J. Eberius, and E. Rahm. AMC - a framework for modelling and comparing
matching systems as matching processes. In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan,
editors, Proceedings of the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany, pages 1304–1307, 2011.

23. H. Proper and T. Halpin. Conceptual schema optimisation — database optimisation before
sliding down the waterfall. Technical Report 341, Department of Computer Science, Univer-
sity of Queensland, Jul 1995.

24. J. Quantz and T. Wichmann. E-Business-Standards in Deutschland Bestandsaufnahme, Prob-
leme, Perspektiven. Technical report, Berlecom Research, 2003.

25. J. Rech, W. Schwach, M. Dietrich, and G. Stuhec. Intelligent assistance for collaborative
schema governance in the german agricultural ebusiness sector. In G. Kotsis, D. Taniar,
E. Pardede, I. Saleh, and I. Khalil, editors, iiWAS’2010 - The 12th International Conference
on Information Integration and Web-based Applications and Services, 8-10 November 2010,
Paris, France, pages 867–870. ACM, 2010.

26. M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling language. Inf.
Syst., 32(1):1–23, 2007.

27. A.-W. Scheer. ARIS: Business Process Modeling. Springer Verlag, Berlin, 3rd edition, 2000.
28. P. Soffer, B. Golany, and D. Dori. ERP modeling: a comprehensive approach. Inf. Syst.,

28(6):673–690, 2003.
29. G. Stuhec. Using CCTS modeler Warp 10 to customize business information interfaces. Tech-

nical report, SAP Developer Network (SDN), Nov 2007.
30. G. Stuhec and M. Crawford. How to solve the business standards dilemma — the CCTS

standards stack. Technical report, SAP Developer Network (SDN), Nov 2007.
31. J. Surowiecki. The wisdom of crowds: Why the many are smarter than the few. Abacus, 2005.
32. F. Tuncer, A. Dogac, S. Postaci, S. Gonul, and E. Alpay. iSURF edocreator.
33. J. A. Zachman. A framework for information systems architecture. IBM Systems Journal,

26(3):276–292, 1987.

Part IV

USDL — Evaluation

The USDL has been designed as a means to describe services so that they can be
traded via the Internet. The previous parts outlined the status-quo of service descrip-
tion research and presented detail of USDL’s model and methods. For evaluating the
actual worthiness of a modeling language such as USDL, potential users will con-
sider the fit of the language with the contingent influences their organizations have
to deal with. Therefore, Part IV is concerned with multiple evaluations of the Uni-
fied Service Description Language. The part consists of four chapters that move
from empirical to more theoretical evaluations.

Chapter 18 starts off with the findings of four different case studies: services in
the energy domain, services for mobile users, manual services for insurances, and
services for B2B integration. Each case study originates from a different company
and provides its own conclusion. Case studies are the first step to a comprehensive
validation of USDL, because they can create feedback regarding usability, feasi-
bility, completeness etc. of certain aspects of USDL. In contrast to the specific case
studies on selected business projects, Chapter 19 presents a multiple-enterprise eval-
uation study that follows an iterative methodology with a survey part which delivers
several quantitative results. The purpose of Chapter 20 is to identify requirements for
a service description language from potential USDL users. The presented research
takes a semiotic theory perspective to the design of modeling languages. Through a
Delphi study approach, i.e., an anonymous, written multi-stage survey process, the
chapter elaborates a set of requirements. The requirements can be used to ex-post
test if the features of the USDL actually address the users’ needs and to recheck
the underlying assumptions of the USDL design and development process. Finally,
Chapter 21 focuses on evaluating the expressive power of the language to specify
software services from a theoretical point of view. In particular, it discusses which
information should be provided in order to support the discovery and combination
of software services.

Chapter 18

Case Studies

Martin Schäffler, Anke Thede, Bastian Leferink, Kay Kadner, Andrea Horch,
Maximilien Kintz, Monika Weidmann, and Moritz Weiten

Abstract Case studies play an important role for validations in general. In particu-
lar, they are the first step to a comprehensive validation of USDL, because they can
create feedback regarding usability, feasibility, completeness etc. of certain aspects
of USDL. This chapter contains the findings of executing four different case stud-
ies: services in the energy domain, services for mobile users, manual services for
insurances, and services for B2B integration. Each case study originates from a dif-
ferent company and provides its own conclusion. In general, the case studies show
that USDL can be used to realize the described scenarios. However, they identify
also room for improvement: the scope of USDL should be limited (don’t try to be
“universal”), semantic technologies should be used, and a simple API is necessary.

Martin Schäffler
Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany,
e-mail: martin.schaeffler@siemens.com

Anke Thede, Bastian Leferink
B2M Software AG, Emmy-Noether-Str. 17, 76131 Karlsruhe, Germany,
e-mail: a.thede@b2m-software.de, e-mail: b.leferink@b2m-software.de

Kay Kadner
SAP Research Dresden, Chemnitzer Strasse 48, 01187 Dresden, Germany,
e-mail: kay.kadner@sap.com

Andrea Horch, Maximilien Kintz
University of Stuttgart, Institute IAT, Allmandring 35, 70569 Stuttgart, Germany,
e-mail: firstname.lastname@iat.uni-stuttgart.de

Monika Weidmann
Fraunhofer Institute for Industrial Engineering IAO, Nobelstr. 12, 70569 Stuttgart, Germany,
e-mail: monika.weidmann@iao.fraunhofer.de

Moritz Weiten
SEEBURGER AG, Edisonstrasse 1, 75015 Bretten, Germany,
e-mail: m.weiten@seeburger.de

465 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York8,

mailto:martin.schaeffler@siemens.com
mailto:a.thede@b2m-software.de
mailto:b.leferink@b2m-software.de
mailto:kay.kadner@sap.com
mailto:firstname.lastname@iat.uni-stuttgart.de
mailto:monika.weidmann@iao.fraunhofer.de
mailto:m.weiten@seeburger.de

466 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

18.1 Introduction

Although case studies are rather a research method in social science, the concept
can be applied to other sciences as well. Especially in the beginning of any research
endeavor, it may make sense to describe and explain the universe of discourse (or
“case”) with some case studies. They help to understand causes of particular phe-
nomenons, which creates or fosters research questions or hypotheses. A nice side
effect is that case studies are typically easy to understand by stakeholders due to
their descriptive nature. Case studies typically have a high conceptual validity be-
cause they have an in-depth understanding of the case itself and its context and pro-
cesses [2]. Therefore, case studies are often used to investigate a certain area, which
is very specific and can hardly be put into formal methods. Nevertheless, the case
study results can support the derivation of general principles and generic answers to
the case.

Besides the initial clarification of a case, case studies are also a quite pragmatic
approach of evaluating concepts because the same advantages apply here (depth,
conceptual valid, context understanding among others). Although this kind of eval-
uation can hardly be seen as validation in the strict sense, it can be used to detect
problems and reveal issues of the discussed matter with limited effort. Therefore,
we decided to evaluate USDL by specifying various case studies. Since case studies
cannot be the only way of validation for a concept, a more formal way of validation
can be found in the subsequent chapters.

The case studies described in this chapter originate from various companies and
institutions. They originate in various projects with customers or research endeav-
ors. This heterogeneity of sources is a perfect situation for proofing the “U” in
USDL, being “unified.” USDL is meant to be useful for nearly all kinds of ser-
vices, independent of their nature. Consequently, the case studies involve electronic
services (Web services) as well as manual services from different domains. Is has to
be noted that the case studies where carried out using USDL3 milestone 4. The book
is based on the USDL3 milestone M5 which already includes some of the feedback.
Both versions of the specification are available online.

The first case study is about services in the energy domain. Energy gets more
important in our everyday life and an increasing number of people produce energy
on their own premises. Such people are in need of new services, e.g., a weather
forecast service. Therefore, services for energy prediction, energy metering, billing,
etc., will be described with USDL and offered via a marketplace.

The second case study investigates how USDL supports the use of services in mo-
bile environments. This is of interest because mobile devices such as smart phones
allow the user to access the internet almost everywhere and at anytime. The Mobil-
ity Mediation Layer (MML) is a mediator between mobile devices and the actual
services, which can easily be added to the MML because they are described with
USDL.

The third case study is carried out in the area of insurance organization and man-
agement. Insurance companies need to have close contact with craftsmen and other
people that handle the insurance claim. The case study investigates the suitability

18 Case Studies 467

of USDL for describing services of craftsmen, putting these on a marketplace and
making this marketplace searchable and accessible for insurance companies.

Finally, the fourth case study describes the use of USDL in the area of B2B
integration. Small companies face major problems if they want to integrate their
IT landscape with the systems, protocols, and data structures of larger companies.
Services for mapping and adaptation tasks are required to facilitate the integration.
They are described with USDL so that it’s easy to find the appropriate services for
the given requirements.

It can be seen from these short descriptions that USDL can be used in diverse
contexts for different purposes. The following sections contain a more detailed and
comprehensive description of the case studies, including background information
of projects, system architecture and — most importantly — conclusions that the
authors draw from practical experience.

18.2 Case Study: Energy

18.2.1 Changes in the Energy Domain

The energy market is changing right now. Today, big energy companies are respon-
sible for the production, transmission, and billing of energy. In contrast, the energy
network of the close future will be dominated by new players on the energy market
(cf. [13], [15]). The ability to store energy in devices such as electric cars or hydro-
gen tanks enables the energy consumer to buy and use the energy at different points
in time. The consumer is then able to buy at a cheap price at times of low demand
but is not forced to use the energy immediately. Instead, he could decide to use the
energy later or sell it at times of high demand for a better price.

Consequently, the ordinary consumer of energy evolves to a kind of broker in
addition to his role as consumer. And if this consumer produces energy with solar
panels, wind generators or other facilities of his own he could be referred to as
“prosumer.”

The Siemens AG is part of this change right now. The company participates in
public research projects on the subject “smart grid” (cf., e.g., E-DeMa [8]) and de-
velops hard and software to support the change (cf. [17]).

18.2.2 Services as Emerging Technology

The change in the energy markets goes hand in hand with a change in the network
topology and the network devices. This “smart grid” is able to provide the prosumer
with intelligent cabling for energy supply, delivery, and smart devices to meter and
supply energy (cf. [16]).

468 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

These smart devices enable a new market, viz., the market for services around
the production, storage, and supply of energy of prosumers. These kinds of services
are value-added services on top of the core businesses of energy and correspond
directly with the needs of the emerging prosumer.

As an example, the prosumers could use services to optimize their use and pro-
ductivity of energy, e.g., by calculating the optimal point in time for consuming or
producing energy. Combined with a forecast of the overall demand and the own pos-
sible energy production and consumption the prosumers are then able to optimize
their behavior (cf. [3]). Other services could be selling, delivery, maintenance, and
service of the devices and energy production systems.

18.2.3 Standards Pave the Way to User Acceptance

Currently, many service marketplaces are being developed in diverse contexts and
domains (e.g., E-DeMa [8], Microsoft Pinpoint [10]). Therefore, similar effort is
spent in many different companies on common building blocks for service market-
places. One such building block is a comprehensive description of a service and how
consumers or systems can decide for the similarity of services. A standard would
help to foster synergies because the standards development process in standardiza-
tion organizations (e.g., W3C) combines forces of some of the main players of the
new market. Also, a well defined and accepted standard could facilitate the devel-
opment, provision, and usage of services in the near future for all roles involved
on different service marketplaces. From the point of view of a developer of mar-
ketplaces, a standard could be the basis for his software development. Also from a
service provider’s point of view, a standard is the freedom to develop and describe a
service for many platforms. In addition, a standard is a clear definition basis for the
service consumer.

Siemens could benefit from the USDL standard as well. As a global player in the
B2B market for industry, energy and healthcare products, the offering and consum-
ing of services could become a significant part of its business in the near future. As
the USDL standard could be a basis of cross-sector initiatives for service develop-
ment, it would provide considerable synergy even inside the company.

18.2.4 The Use Case: Services for Energy Markets

For the scenario, let us assume that a prosumer of energy wants to benefit from his
investments in an electric car, solar panels, and intelligent devices to manage the
energy production. Consequently, he would like to optimize his energy production
and sell the energy when the price for energy supply is at its peak. For this, he needs
a detailed forecast of the productivity of his devices to negotiate the price of his
produced energy on the energy market.

18 Case Studies 469

The productivity of his device is directly related to the sun’s radiation on the
solar panels mounted on his house. To calculate the productivity of the near future
the prosumer needs a detailed weather forecast. He could then use his calculation
to decide, e.g., to load the battery of his car a bit later but sell the production of the
solar panels to the network in the next minutes.

This weather service could be investigated via a search engine on the internet,
analyzed “by hand” if it copes with the requirements and connected via a propri-
etary Web service implementation. Or it can be offered on a service marketplace for
services related to prosuming of energy, compared with other offers by the system,
recommended to the customer and then subscribed to via a standard Web service
interface — all of that on the basis of the USDL description.

18.2.5 Example: Services for Weather Forecast

In the implementation of a prototype at Siemens Corporate Technology, we prepared
a corresponding weather service to provide the basis for the calculation of the device
productivity. We conducted research and found that no standard weather service
provides this kind of prediction we needed. Hence, we took a standard weather
service with a fine granularity in sun probability and calculated a sun radiation factor
for the near future. This service was implemented and then described by means of
USDL 3M4 to evaluate the suitability of the language at this stage.

18.2.6 Implementation of the Service Marketplace

At the time of the case study, no service marketplace was available which could pro-
cess USDL service descriptions. To execute the use case and evaluate the usability
of marketplaces at this stage, we simply implemented a service marketplace on our
own.

A screenshot of the end-user area of this marketplace is shown in Figure 18.1.
The screenshot depicts the marketplace with the navigation area on the left side, the
possibility to filter services for “Private Customers” and “Business Customers” on
the top left, on the top right a “Service Search” box to search services by keywords
and in the center the detail area for the specifics of a service. The buttons on the
bottom right side can be used to “Subscribe” the service shown in the detail area or
to “Subscribe and Activate” the service by one click.

By using the navigation area the user could navigate to the subscribed services of
the his own (“My Services”), to navigate through the service catalogue by help of
service categories (“Service Catalogue”), to get the top 25 services (“Top25”) and
the newest services (“New Services”) on the marketplace. If the user selects one
service listed in the navigation area or the search result, he could see the details of

470 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

this service in the center area of the browser window. The information is distributed
over several tabs to organize the user interface.

Fig. 18.1: Energy marketplace prototype.

The implementation was based on the Google Web Toolkit (GWT, cf. [4]) and
tailored to the needs of a service marketplace for a Siemens energy marketplace. The
user interface was adapted to the Siemens web appearance and an import mechanism
for services described in USDL was added. The marketplace prototype is used for
demonstration purposes.

18.2.7 Marketplace Functionalities and Roles

As not all details of the UDSL description are needed, the import functionality only
selects some details, e.g., the price model, provider details, and legal information.
After the import of the USDL file, this information is stored in the service repository
and is accessible for the marketplace customer via the Service Catalogue in the user
interface. With the import, the provider could choose or define a topic cluster in
which the services are organized.

18 Case Studies 471

Details of the service are displayed when the customer navigates to a service of
interest in the catalog. The overall and coarse-granular description, availability and
the price model are displayed in the “Service Information” tab of the detail side
and the user can navigate to other details by selecting the other tabs “Provider” and
“Legal.”

The roles “administrator,” “provider,” and “customer” are implemented to use the
marketplace. On top of that, brokering and clustering of services will be realized in
the near future.

18.2.8 Lessons Learned

The implementation of the marketplace and the use of USDL 3M4 as its basis pro-
vided a deep insight in the mechanisms and pitfalls of the adoption of the standard.
In our scenario, different roles are implemented and therefore different stakeholders
have to overcome some hurdles.

The standard benefits the provider since the service must be described only
once but can be published on several marketplace platforms. Nevertheless, a well-
regulated process has to be defined for the editing and provisioning to the mar-
ketplaces. An additional editor with versioning and deployment mechanisms could
assist here. The editor also has to assist during the design phase of the service — the
provider has to describe complex correlations, e.g., price models or service deploy-
ment interfaces. Therefore, clear and supportive user interfaces and user interaction
guidance is needed here at all costs.

The service consumer needs guidance as well, e.g., to select the right services for
his own purposes. Hence, a clear and supportive implementation of the marketplace
interface is needed. On top of that, an intuitive filtering functionality to navigate
through the offered services would be helpful here. Additional functionalities such
as “compare services,” “related services,” and use of customer preferences for pre-
selection of services would complete the picture of a marketplace, which satisfies
the customers demand.

One special overall finding for all roles is that the USDL should not provide
a standard for all possible services in every domain. Instead, it should provide a
framework sufficient to describe the basics of services and mechanisms for domain
specific extension. Otherwise, it is too complex for all parties involved to use the
standard for service description.

18.2.9 Demand of a USDL Standard in the Energy Domain

The energy smart grid movement has started and will influence many other parts of
our lives as well, e.g., personal mobility (e-car) and intelligent buildings (cf. [11]).
These new areas could be accepted faster by business and consumer if these areas

472 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

are accessible by clear and well-defined interfaces. Hence a standard for service
description could contribute to simplify the provision and delivery of value-added
energy services and to establish these new technologies in the society fast and stable.

18.3 Case Study: Mobility

Today, many business processes can be interacted with through mobile interfaces.
Mobile applications often involve connections to backend services without which
they would not properly function. Mobile applications are developing at a quick
pace. Operating systems are evolving, new devices are developed and old ones are
abandoned. A standardized interface to external services is very important to keep
the chances and the effort to maintain and port mobile applications at an acceptable
level. Furthermore, mobile applications have specific requirements on the amount
of data provided to the user. Due to small displays and a mostly small bandwidth it
is important to deliver as little information as necessary. The limited possibilities of
user interactions on mobile devices raise the need for pre-populated data fields with,
e.g., context information as location data. There are basically two distinct types of
mobile applications:

• The mobile synchronization is a backend process made available for mobile us-
age. The basic process is executed on a backend system and can mostly run with-
out any mobile support. Most importantly, the current process status is persisted
in the backend. Some (even all) parts of the process can be performed on the
mobile device. Before a process step is executed on a mobile device the cur-
rent process status is copied to the device. Once the step is finished the result is
copied back to the backend system. Here, of course, synchronization problems
may occur and have to be dealt with (synchronous reading and writing).

• the genuine mobile application is an application of which the basic process is
executed on the mobile device. Such an application may use external services to
gather information needed to execute the service. But the process itself persists
on the mobile device, that is the current process state is kept on the device. Such
a process may still be invoked by an external event and the last step may be an
external call.

We will concentrate on genuine mobile applications because the range of service
types is larger. Mobile applications may use services as

• information source: large sets of information cannot be kept on a mobile device
• external calculation: complex calculations often require much data and comput-

ing power
• centralization: when mobile users interact, the backend provides the centralized

data store

We show how USDL can facilitate the integration of backend services as well as
the flexibility to design new backend services to suit specific mobile needs. The use

18 Case Studies 473

of a mediation layer especially for mobile access is shortly described. Such a layer
interacts with USDL service on the one hand and with the mobile devices and their
particularities on the other hand. Combining services on the server-side, providing
only the required content for the actual situation, merged together in a comfort-
able interface is the aim of our approach to mobile, service-based applications. The
composition of services, described in the next section, is required to achieve this
goal as well as the ability to augment the technical service description with further
information as described in Section 18.3.2.

18.3.1 Composition of Services

Many services are reusable in different contexts. As an example, consider a routing
service that calculates a route from one geographical point to another, using different
means of transport. Such a service can be used in a mobile device to display routing
information to a contact. It can be included in a value-added mobility service that
calculates shortest times to get from a point to another, using a combination of
public transportation, taxi, pedestrian routes and car sharing. It can be used to find
alternative routes when confronted with a closed motorway section. It may be the
basis for proposing circular jogging routes that fit your personal sports level and
distance. This list shows that the composition of basic and very general services
is essential for building new value-added services that are useful for more specific
needs.

The composition of services requires a standardized language for service and in-
terface description. If services shall be composed or recomposed automatically and
on-the-fly then the descriptions have to be extensive and have to include semantic
information in order to match correct services. Technical description standards such
as WSDL describe the technical interface of a service comprehensively but nothing
can be described about the service’s content nor is the interface composed of nec-
essarily standardized data types. Either, the service providers have to adhere to a
standardized set of data types or a semantic description of services has to be created
in order to gain the remaining knowledge about services. USDL provides the basis
for the latter as it contains additional information about the task of a service and
others. The most important parts of USDL in this aspect are described in detail in
the next section.

18.3.2 Technical Components

A mediation layer is required to optimize and unify the communication between the
mobile devices and the Internet of Services. Accordingly, our Mobility Mediation
Layer (MML, see Figure 18.2) offers functionality for unified mobile security, for
optimization of service calls and contents with respect to the restricted bandwidth,

474 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

for transformation and adaption of service contents to mobile needs and service
composition directly in the mediation layer for adding mobile features such as con-
text and localization to services.

Fig. 18.2: Mobile Architecture including Mobility Mediation Layer.

Mobile devices issue service calls to the MML that translates the calls into back-
end service calls and transforms the request with respect to the service’s interface
and protocol. This means that making services available to mobile devices requires
them to be known in the MML. An import of the USDL description is usually
enough to make the service usable. The standardized and comprehensive descrip-
tion through USDL facilitates the automated processing of services by mediation
layers in general. The MML makes specific use of many of the elements of USDL.
Among the most important parts are

• Technical interface description: the description is used for automatically translat-
ing between the mobile communication and the service interface. In particular, by
semantic means data types are automatically mapped against another so different
services with the same semantic interface become exchangeable.

• Security: services may have distinct security requirements and mechanisms. Im-
plementing all these on different mobile infrastructures is tedious. By a compre-
hensive description of the security specifications of the services, the MML can
offer unified authentication and authorization to the mobile devices and translate
this information to the service specific requirements.

• Categorization and description of the service itself: USDL offers many ways
to describe what a service actually does. This information can be semantically
enriched and then used for matching. If the description already contains semantic
annotations then this step is further facilitated.

• Price models for automatic accounting: Ad-hoc composition of services also re-
quires to specify a composed price plan. A detailed and machine readable de-

18 Case Studies 475

scription of a service’s price model allows to automatically derive such a com-
posed price plan.

• Legal description: when composing services the legal conditions of all underly-
ing services have to be considered.

To sum it up, USDL can be imported into the MML. The MML then generally
has sufficient information to make the service available to mobile devices and to of-
fer different options for the mobile usage. Such options comprise automatic service
selection among different substitutable services (e.g., with respect to performance,
availability or price), automatic inclusion of services into an application (plug-and-
play) or calculation of combined price models for composed services. USDL deliv-
ers the information that is needed by the MML in order to understand the service
and what it does and in order to translate the service results to the unique protocol
and data structure delivered to the mobile devices.

18.3.3 Lessons Learned

Overall, the usage of USDL as a description language for our services proved to
be convenient. However, the deployment itself turned out to be non-trivial. Due
to the missing of a machine-readable technical semantic description, an automated
parameter-matching was not possible. Therefore, a fully automated deployment pro-
cess was not realizable. To annotate the mobile interface parameter to external (web-
) service parameters our USDL import only estimates a parameters nature. A service
administrator still needs to manually apply or create an ontology for each service
parameter corresponding to the idea of annotation in the field of Semantic Web Ser-
vices (cf. Chapter 7).

Despite this minor challenge — which can be solved in future versions — USDL
meets our requirements. We are able to automatically search for services, to combine
and compose them. Security and legal information help us to provide our users only
with services they have registered for including a single-sign on and which they are
allowed to use. Lessons learned are that a comprehensive description such as USDL
is very useful, especially for software as the MML that needs to interpret these data.
But it is essential to have an editor that is easy to use and to understand as well as
possibilities to import information from other standardized sources such as WSDL
specifications and so forth.

In the future, utilizing the price model data will allow us to offer additional,
interest services based on context and service branch to our users, taking care of the
billing process for them as the price models allow for automatic price calculation of
composed services.

476 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

18.4 Case Study: Craft Services

18.4.1 The openXchange Project

The openXchange1 project deals with the development and improvement of IT sup-
port in active property damage claim management. The project’s goal is to simplify
the associated processes by offering better and more integrated IT support.

One important task in this field is to improve the communication between the
insurance companies and their partners, such as craftsmen, regulators, or technical
experts.

As of today, there is no adequate standard for the communication between the in-
surance companies and the mentioned partners. Therefore, the openXchange project
extended existing standards and, when needed created new ones.

One special problem is the description of the craft service offered by crafts com-
panies, which insurance companies can look for when searching craftsmen for re-
pairing specific damage. For this purpose the openXchange team identified USDL
as an adequate and easy to use tool for describing the crafts services and using the
USDL description of crafts services in a search engine [1].

18.4.2 The Roles of Services and Service Description in Craft
Services

In Germany, craft services are regulated by the German Crafts Code,2 which lists all
craft service categories, their admission requirements and defines other craft service
related rules. In the state of the art analysis conducted at the beginning of the openX-
change project we identified several problems specific to craft services classification
and search:

• craft services are a large field consisting of many subcategories, some of which
are overlapping (for example in that they seek to repair the same damaged objects
or depend on each other);

• when customers are looking for craftsmen, they in many cases do not know which
categories or keywords they should give into the search engine to find the appro-
priate answer, and cannot ensure that they found all the services they actually
need;

• additionally, craftsmen are confronted with the problem to decide on which inter-
net platforms and search engines they should register their services. Adding and
updating their data in the heterogeneous environment of today’s internet plat-
forms is a highly time consuming task. Craftsmen usually do not know which

1 http://www.openxchange-projekt.de/
2 Gesetz zur Ordnung des Handwerks (Handwerksordnung), cf. http://bundesrecht.
juris.de/hwo/

http://www.openxchange-projekt.de/
http://bundesrecht.juris.de/hwo/
http://bundesrecht.juris.de/hwo/

18 Case Studies 477

platforms offer the higher benefits in terms of possible new customer contacts
and contracts.

The solution for these problems is standardizing the description of crafts services.
A standard crafts service description ensures the consistent description of crafts
services and the recoverability of a once created service description. As part of our
project, we built up a new ontology describing crafts services, possible damaged
objects and the relationships between each craft service category and object type in
a standardized way, as other current classification schemes, such as, [6], appeared
insufficient to meet our requirements.

Because we needed a description language for craft services, we chose to use
the USDL for describing the services and using these descriptions in a crafts search
engine. USDL had the advantage of being well specified service description lan-
guage, which made our task easier, and appeared better suited than other descrip-
tion languages restricted to Web services [9]. The following sections will present
the approach of the team and its experience by using USDL for these purposes.

18.4.3 Use Case: openXchange Crafts Search

One of the supporting IT tools created in openXchange is a crafts service search
engine for insurance companies (see Figure 18.3). The search engine is an ontology-
based Web service with the ability to understand semantic input of the user: the
user does not need to distinguish between search criteria and can simply enter, for
example, a specific service he needs, an object that has been damaged and should be
repaired or a ZIP code in the same text field. The query is sent to the Web service in
a specific XML format. The output of the Web service uses another specific XML
format to encapsulate the descriptions of the matching craft services. Each craft
service returned is described using the XML serialization of USDL.

Fig. 18.3: Current structure of the openXchange crafts search.

478 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

The crafts search engine uses an ontology for understanding the semantic input
of the user [14]. “Understanding” in this case means identifying what kind of input
the user sent (address, company name, crafts category, damaged item, etc.) or if
there are synonymous items for the query keywords the engine can search for in
the crafts database. After finding the matches in the database, the search engine
returns the results as USDL descriptions of the matching craftsmen companies. The
ontology describes the metadata (classifications of and relations between craftsmen,
craft services and damaged items) and the USDL result shows the specific craftsman
service data found by the search.

The automatic conversion of the database results into USDL descriptions is done
by the search engine by filling the data of each result dataset into a previously man-
ually generated general USDL crafts service description (an example is shown in
Listing 18.1) [7].

Listing 18.1: Part of the XML serialization of craft service USDL description.
1 <Service xmi:id="ServiceWrapper_8732241">
2 <ServiceElements xmi:id="Service_29245520">
3 <Guid>bdcb0674-9d90-479f-8fb7-92b6e6142fe0</Guid>
4 <Version>1.0</Version>
5 <Name>Sanitaer Rataplan GmbH</Name>
6 <PublicationTime xsi:type="foundation:AbsolutePointInTime"
7 xmi:id="AbsolutePointInTime_32657640" />
8 </Service>

18.4.4 Experiences

Integrating USDL in our service turned out to be quite easy. The most difficult part
of the work consisted in the description of a dummy craft service using all attributes
that were needed in our use case (capabilities, certificates, basic pricing information
and of courses general information such as contact data and postal address). Once
this dummy service had been described with the USDL editor, we used the XML
serialization of this USDL description and integrated it as an example output format
in our Web service.

Although USDL can be used to store service descriptions and can be directly
searched, in the crafts service case we use it mainly as a way to transfer service
descriptions between the search service and the users.

We also used USDL to describe our crafts services search, as our search engine
itself consists in a service that could be traded on an online service marketplace [5].
In this case, USDL provided a way to describe search engine capabilities and its
technical specifications.

18 Case Studies 479

18.4.5 Lessons Learned

Our work has shown that creating an interface for a search engine to USDL-based
web applications is simple. When USDL becomes a better recognized standard for
the description of services, for reasons of consistency and interaction it will be-
come necessary to be able to convert the description of services like craft services
to USDL. The project openXchange found an easy way for doing this conversion by
using a general description for a special type of service.

Fig. 18.4: Future structure of the openXchange crafts search.

A further improvement of our craft services search engine would be storing the
craftsmen data directly in a USDL repository, as shown on Figure 18.4. Creating a
USDL repository as base of a search engine is an interesting task for future work
and further evaluation of USDL.

18.5 Case Study: Business Integration

The use case described in this section illustrates how the next generation of B2B-
(“Business-to-Business”-) solution benefits from USDL. It shows how USDL is ap-
plied in two different contexts: as a building component for a platform-data model
(in terms of a service engineering approach) and as an enabler for external channels
(in terms of a service description approach).

For many inter-company relations, the B2B-integration has become indispens-
able nowadays. According to a survey conducted by Forrester Research, 75% of
the participating enterprises exchange EDI/B2B-documents with more than 40% of

480 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

all their trading partners [12]. B2B-solutions significantly improve the overall ef-
ficiency for procurement, production, and distribution based on the integration of
internal operations as well as the extension of processes to trading partners. The au-
tomation of business processes significantly reduces production and transportation
costs. The partners can react much faster on changing demands and achieve a faster
time-to-market. In addition, time consuming and error-prone manual data entries
can be avoided.

Despite the obvious advantages, small companies typically face barriers when
trying to integrate into a B2B network due to the complexity of the field. Among the
reasons are the heterogeneous requirements in different countries and industries as
well as the number of technologies and standards involved such as communication
protocols, message formats, process monitoring etc. Participating in B2B networks
requires technical decisions as well as an investment in hard- and software designed
to fulfill the specific needs. This includes the supported business processes as well as
the expected amount of traffic. In addition to this monetary investment, participants
hosting B2B solutions also need to establish the technical expertise necessary to
maintain and operate their solution.

At this point, providers of B2B solutions come into play again, offering man-
aged services for their customers. This model has recently gained much popularity
and works well for an increasing number of B2B-participants who do not have the
capabilities to host their own solution or simply consider managed services to be
more attractive for a couple of reasons. From the provider’s perspective, the ques-
tion remains how to operate the managed services cost-effectively and at the same
time keep the service attractive for the customers — especially for smaller compa-
nies with their limited technical expertise. It soon turned out that this goal cannot be
achieved by just providing “software as a service” but only by offering a complete
solution to the customers. This was the starting point for research and development
activities conducted by the SEEBURGER AG as part of the TEXO project [19].

18.5.1 The Next Generation of Hosted B2B Solutions

Several questions have been driving this project:

• How does the next generation of hosted B2B-solutions look like?
• How can entry barriers (primarily costs and technical expertise) for potential B2B

participants be lowered?
• How can the “on-boarding” of new B2B-participants and -relations be improved?
• How can “pay per use” be made more attractive for both parties: provider and

customer?

From the perspective of the underlying infrastructure, cloud computing has been
identified as a key component for next generation hosted solutions. The application
of cloud technology increases the flexibility for hosted B2B solutions; cloud-based
solutions can be adapted more easily to changes in the market. In addition, cloud

18 Case Studies 481

technology supports pay-per-use models that base directly on the correlation be-
tween customer costs and (solution-) provider costs.

This section concentrates on the answers that have been found to the previous
questions on application level. The core idea is to establish a hosted B2B platform
that significantly reduces operational costs on the provider’s and the customer’s side.
A significant cost reduction can merely be achieved by relying onto configurable
standard B2B-solutions and by delegating major parts of the necessary configuration
effort to the customer, in form of a self-service. As an example, B2B participants
can register themselves on their own at the platform and can on their own establish
business relations to other partners. A “B2B Directory” supports the B2B partici-
pants in setting up and maintaining their partner profiles and business relations in a
centralized manner. This B2B Directory servers two main tasks: (i) reduce the tech-
nical complexity of configuring a B2B solution to configuring a simple business
task using a business terminology the B2B participant is able to understand and (ii)
establish a central data repository free of redundancies across all trading partners.

The “B2B Directory” provides data and metadata for services offered by the
platform, which include:

• the automation of B2B relations based on industry-specific standard processes;
• the management of business partner profiles;
• data (message) conversion based on standard mappings;
• profiling and tracking services;
• etc.

Thus, the “B2B Directory” is the base for the configuration of executable pro-
cesses for B2B-relations. It also maintains all master data necessary to run those
processes.

18.5.2 Integrating USDL into the “B2B Directory” Data Model

The “B2B Directory” relies on a central data model. Apart from B2B-specific func-
tional requirements, important goals of model-design have been to establish a flex-
ible but extensible model, to avoid conceptual gaps (between application and end
user) and to support the exchangeability of service metadata. For these reasons, the
“B2B Directory” data model integrates several parts of the Unified Service Descrip-
tion Language to describe different aspects of platform services. This includes core
concepts, such as the descriptions of participants, technical protocols, or service
levels.

There are several advantages of integrating USDL modules or parts of them into
the platform data model: From a service engineering perspective, USDL provides a
well-founded and generic base for managing the kind of data that the B2B-platform
requires — especially when the set of services offered shall be extended in the fu-
ture. A typical use case concerns the description of partner profiles. Partner profiles
provide information about the “B2B capability” of a trading or business partner,

482 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

such as the technical communication channels and the message formats supported.
The information provided in these partner profiles is restricted to the services that
the platform supports, e.g., with respect to the communication protocols and mes-
sage standards that can be used.

However, for certain industries and customers, there might be additional inter-
faces that are of interest for participants that have been registered — in terms of
an emerging de facto standard. E.g., one might think of a new interface beyond the
typical ordering-, invoicing etc. standard processes. Generally, the platform can han-
dle such interfaces on two levels: (i) registering/describing them and (ii) supporting
them technically (through the processes running on it). The advantage of registering
interfaces that are not yet supported technically is that the provider can keep track
of possible extensions that have a high potential for a number of participants more
easily. However, the description of this kind of additional (“non-standard”) interface
needs to be provided on a rather generic level. Based on USDL, a generic but still
formal description can easily be made on the base of a common model.

In the more general case, the platform might be extended by more general ser-
vices beyond typical B2B connections, e.g., infrastructure services such as the ones
that the platform uses itself (in order to exploit free capacities) or community ser-
vices in terms of business networks. The metadata needed for those additional ser-
vices overlaps with the general B2B case: aspects such as “participants” or “service
level” need to be described.

18.5.3 USDL for Platform Services: Marketplaces as Channels

Once USDL is used for the data model of the “B2B Directory,” USDL-based service
metadata can be extracted easily — without any conceptual gaps. USDL metadata
is available for different kinds of services provided by the B2B platform: (i) a gen-
eral B2B connection service, (ii) partner-specific connection services and platform-
internal services that are exposed as (iii) “standalone” service for external use (e.g.,
data conversion).

The first option represents a generic description of what the platform has to offer:
a service to establish B2B connections between business partners registered against
the “B2B Directory.” This service can be offered in any context where the automatic
processing of orders, invoices, etc. is relevant. Important aspects that are part of the
USDL-instance include:

• general information (textual, internationalized description of the service);
• roles (service-provider, B2B-partner);
• supported technical interfaces (“communication channels,” message standards,

etc.);
• service level.

The second option concerns the connection to specific business partners. To moti-
vate this use case we introduce the concept of a “hub.” A hub in the B2B context

18 Case Studies 483

is typically a large enterprise that maintains business relations to a number of part-
ners, such as, suppliers in a production scenario for example. Business partners,
which have to exchange data with a hub, need to meet several technical require-
ments, starting with the communication protocol, supported message standards, etc.
From the business partner’s perspective, the possibility to establish B2B connec-
tions to certain hubs is of strategic value. For the hub, on the other hand, automated
B2B-connections influence the decisions regarding the maintenance of a network of
partners.

Each possible connection to specific hubs that are already registered against
the B2B-directory is considered a service the platform has to offer. Consequently,
USDL descriptions can be provided for each such connection. This description con-
tains the same information as for the general B2B connection service, but also pro-
vides additional information about the individual requirements in terms of technical
constraints, etc.

With the USDL description, the information about possible B2B-relations to cer-
tain hubs and partners can be made available on service marketplaces — in addition
to other service-descriptions that are partially provided by the (potential) B2B par-
ticipants themselves. This is illustrated in Figure 18.5.

Fig. 18.5: Scenario for the interoperability of a B2B platform and service market-
places based on USDL.

Figure 18.5 shows a possible scenario that illustrates the role of USDL in the
different approaches that can be used to combine B2B hosting with service mar-
ketplaces. Services offered by the B2B platform are made visible on one or more
service marketplaces via USDL along with other services. The following scenarios
illustrate the synergies that are a consequence of this approach:

• Companies/institutions acting as a small partner search on the marketplace for
new hubs offering certain services; next to potential matches the marketplace
offers automated B2B-connections (as a generic or as a partner-specific service);

484 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

• Companies/institutions acting as a small partner (typically suppliers) search new
customers (hubs) that they can address

From the perspective of the B2B platform (or its provider), the service market-
place acts as a channel maker: by publishing USDL instances on marketplaces, plat-
form customers can be acquired. The effort for the platform provider to make B2B
services visible is comparatively low - independent of the number of marketplaces
involved and their degree of specialization on a certain domain or industry.

Finally, USDL can be used to describe standalone services that the platform has
to offer - the third of the options mentioned above. This could be a data conversion
or transformation service bridging different standard formats. Such a service is a
typical component of B2B-solutions and is implicitly part of the services described
above (options (i) and (ii)). Offered as a standalone variant, transformation services
support additional use cases, which do not require full-fledged B2B connections.

18.5.4 Lessons Learned

The next generation of B2B platform will significantly reduce the barriers for small
enterprises when trying to integrate into a B2B network. This includes the total
cost of ownership as well as the required know how. One of the challenging tasks
in establishing such a new platform was the development of a comprehensive data
model for describing master data — such as B2B-profiles of business partners in the
“B2B Directory.” Several core concepts of the data model could be taken over from
already existing USDL modules. The data model of the B2B directory benefits from
the modular, extensible design of the USDL components integrated.

USDL can be applied in form of a platform-neutral model, based on XML
schemata. Additionally, there is a platform-specific (=Java-based) infrastructure that
can be used for USDL tooling or integration - as a consequence of using the “Eclipse
Modeling Framework” for the development of the model [18]. This circumstance
simplified the adoption of USDL in the context of the B2B platform.

Apart from the advantages of an internal integration of USDL components, there
is a strategic value of supporting USDL in terms of an external metadata interface.
One of the main goals establishing the next generation B2B platform is to gain
customers that currently do not participate in the B2B business - especially small
enterprises. Having such an effective and efficient channel in form of service mar-
ketplaces will help to accelerate the adoption by those customers. The channel will
be effective because of the awareness that can be achieved by placing B2B con-
nection services as an additional offer to the domain-specific services provided by
marketplace participants. The channel will be efficient because of the low effort that
is being required to generate USDL for any number or marketplaces.

18 Case Studies 485

18.6 Conclusion

This chapter contains various use cases that describe how USDL is useful in dif-
ferent application domains. In the first use case, USDL was used to realize trading
energy services via some marketplace. The marketplace was developed and service
providers were able to upload service descriptions. The second use case demon-
strated how USDL supports the adaptation of services to mobile environments and
their requirements. Basic information provided through the MML is extracted from
the service’s USDL description. Third, a search engine for craftsmen returns the
service descriptions of their offering also in USDL and the search engine itself has
been described in USDL. Finally, USDL was used to describe services for B2B inte-
gration that were published by service providers on a marketplace where they can be
found by customers. Based on the conducted case studies, the following conclusions
can be drawn:

• USDL should not try to be a service description for all possible services. It should
rather provide a framework and allow for extensions. Otherwise, USDL will be-
come even more complex and hard to understand, which will result in a high
entry barrier.

• USDL could use a semantic description for less manual effort in deployment.
If USDL is semantically annotated, the meaning of particular elements is pre-
defined. This facilitates the mapping to internal data structures and use by custom
applications.

• The API of USDL’s data model is too complicated. The model makes sense from
the model point of view. However, it lacks some object orientation aspects. Since
the code is automatically generated from the model files, some features are too
complex.

• Using Eclipse Modeling Framework facilitates integration in existing landscapes.
Since Eclipse is a common tool for development environments, it is easy to ex-
tend current systems with USDL capability.

These valuable comments and feedback help to improve USDL and tailor it to its
users’ needs. The next version of USDL will tackle them if possible.

References

1. J. Cardoso, A. Barros, N. May, and U. Kylau. Towards a Unified Service Description Lan-
guage for the Internet of Services: Requirements and First Developments. In Proceedings of
the 2010 IEEE International Conference on Services Computing, SCC ’10, pages 602–609,
Washington, DC, USA, 2010. IEEE Computer Society.

2. N. K. Denzin and Y. S. Lincoln. The SAGE handbook of qualitative research. Sage Publica-
tions, 2011.

3. C. Gellings. The Smart Grid: Enabling Energy Efficiency and Demand Response. Taylor and
Francis, 2009.

4. Google Inc. Google Web Toolkit. Online available, http://code.google.com/webtoolkit/, 2011.
Accessed 15 July 2011.

http://code.google.com/webtoolkit/

486 Schäffler, Thede, Leferink, Kadner, Horch, Kintz, Weidmann, Weiten

5. S. Heinzl, B. Schmeling, and B. Freisleben. Using temporal policies for managing chang-
ing meta-data of web services. International Journal of Web and Grid Services, 6:331–356,
November 2010.

6. M. Hepp, J. Leukel, and V. Schmitz. A Quantitative Analysis of eClass, UNSPSC, eOTD,
and RNTD: Content, Coverage, and Maintenance. In Proceedings of the IEEE International
Conference on e-Business Engineering, pages 572–581, Washington, DC, USA, 2005. IEEE
Computer Society.

7. R. Kursawe. Evaluierung der Modellierung realer Dienstleistungen in der Dienstbeschrei-
bungssprache USDL. Technical report, Dresden University of Technology, Institute of Sys-
tems Architecture, Chair of Computer Networks, 2010.

8. M. Laskowski. E-DeMa: Entwicklung und Demonstration dezentraler vernetzter Energiesys-
teme hin zum E-Energy-Marktplatz der Zukunft. In E-Energy Wandel und Chance durch das
Internet der Energie. Springer, 2009.

9. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
16:46–53, March 2001.

10. Microsoft Corp. Microsoft Pinpoint. Online available, http://pinpoint.microsoft.com, 2011.
Accessed 1st June 2011.

11. OECD. Smart sensor networks for green growth. OECD Information Technology Outlook
2010, 2010.

12. K. Perillo and K. Vollmer. Joint Industry EDI/B2B Survey. Technical report, Forrester Con-
sulting, 2010.

13. D. T. Roy. Smart Metering und Smart Grid im Jahre 2025: Szenarioanalyse ”̆ber die Entwick-
lung der Energiewirtschaft in Deutschland. Grin Verlag, 2011.

14. M. E. Saleh. Semantic-based query in relational database using ontology. Canadian Journal
on Data, Information and Knowledge Engineering, 2011.

15. Siemens AG. Energy for Everyone - Scenario 2020. In Pictures of the Fu-
ture Magazine Spring 2008, 2008. Available online, Accessed 7 July 2011,
http://www.siemens.com/innovation/en/publikationen/publications pof/
pof spring 2008/energy/scenario.htm.

16. Siemens AG. City of Wind - Scenario 2023. In Pictures of the Future Mag-
azine Fall 2010, 2010. http://www.siemens.com/innovation/apps/pof microsite/ pof-fall-
2010/ html en/scenario-2023.html, Accessed 11 July 2011.

17. Siemens AG. Smart Metering Solutions. Online available,
http://www.energy.siemens.com/hq/en/energy-topics/smart-grid/smart-consumption/smart-
metering-solution.htm, Accessed 21 June 2011, 2011.

18. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley, Boston, MA, 2. edition, 2009.

19. O. Terzidis, A. Fasse, B. Flügge, M. Heller, K. Kadner, D. Oberle, and T. Sandfuchs. Texo:
Wie THESEUS das Internet der Dienste gestaltet - Perspektiven der Verwertung. In W. W.
Lutz Heuser, editor, Internet der Dienste, acatech diskutiert, pages 141–161. Springer, 2011.

http://pinpoint.microsoft.com
http://www.siemens.com/innovation/en/publikationen/publicationspof spring 2008/energy/scenario.htm.
http://www.siemens.com/innovation/apps/pof microsite/ pof-fall-2010/ html en/scenario-2023.html
http://www.energy.siemens.com/hq/en/energy-topics/smart-grid/smart-consumption/smart-metering-solution.htm
http://www.energy.siemens.com/hq/en/energy-topics/smart-grid/smart-consumption/smart-metering-solution.htm
http://www.siemens.com/innovation/apps/pof microsite/ pof-fall-2010/ html en/scenario-2023.html
http://www.siemens.com/innovation/en/publikationen/publicationspof spring 2008/energy/scenario.htm.

Chapter 19

Experience Report on Real-World Manual

Service Modeling in USDL

Josef Spillner, Ronny Kursawe, and Alexander Schill

Abstract The Internet of Services promotes distributable, composable and trade-
able services as first-class entities. Such services are assumed to encompass the full
range from technical Web services to conventional business services delivered by
humans. However, research and development of service models and platforms to
realize the Internet of Services vision has largely been concentrating on pure tech-
nical services. With the introduction of the Unified Service Description Language
(USDL), this is about to change. In a multiple-enterprise evaluation study performed
in parallel to the ongoing USDL specification process, we have applied modeling
and registration techniques to existing services with none or few technical com-
ponents provided by businesses in a locality-constrained area with the purpose of
determining suitability and acceptance aspects. We outline the results of our study
and include an evaluation of USDL language facilities in the context of real-world
service representation. This chapter connects evaluation results with early USDL
drafts [16] with a discussion on recent USDL capability changes up to the specifi-
cation milestone M5.

19.1 Introduction

Businesses involved with e-business activities struggle to find a balance between
keeping trade secrets and exposing information about their products and services on
the untrusted Internet [5]. On the contrary, any participation in value chains assisted
by distributed business processes requires a public, detailed and accurate description
of goods and services. The Internet of Services (IoS) idea suggests that these ser-
vices become tangible entities which can be traded and composed on marketplaces
on the basis of declarative descriptions to facilitate the creation of value chains (cf.

Josef Spillner, Ronny Kursawe and Alexander Schill
Technische Universität Dresden, Faculty of Computer Science, Nöthnitzer Str. 46, 01187 Dresden,
Germany, e-mail: firstname.lastname@tu-dresden.de

487 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _1 © Springer Science+Business Media 20121 4614 1864-1 New York9,

mailto:firstname.lastname@tu-dresden.de

488 Josef Spillner, Ronny Kursawe, and Alexander Schill

Chapter 1). However, techniques from this area still differ in how they apply to tech-
nical services compared to manual services. Today, most publicly available research
prototypes for service trading and composition focus on technical Web services with
purely syntactical interface descriptions and little semantic information about their
behaviour. For the future, it is expected that the service continuum handled by IoS
service platforms be extended to conventional business services manually delivered
or performed by humans over time, possibly as part of solutions related to prod-
uct exchange, aligned with the general trend towards servitisation as explained in
Chapter 3. Another weakness of existing prototypes especially around USDL is that,
even when considering the full spectrum of service definitions, service marketplace
concepts have so far only been analyzed with artificial scenarios, for instance in
the THESEUS/TEXO research project, and not with real-world services. We define
real-world services as the slice of the service continuum which is offered in the real
world, under legal jurisdiction of their respective location, and in a certain economic
and publicity context. This definition includes manual business services as well as
technical services offered for free or for compensation by businesses, as shown in
Figure 19.1. We omit the definition of the complementary slice which likely in-
cludes the mentioned artificial offerings for research purposes and test instances of
services without a required notion of providers and consumers.

Real-World
Services

Technical
Services

Non-Real-World
Services

Manual
Services

Hybrid Services

Fig. 19.1: Real-world services in the service continuum.

One indicator backing the expectation of the continuum expansion is that a surge
in human-provided services has recently been acknowledged, for instance in their
variety as composable human-as-a-service in crowdsourcing environments [14]. A
second indicator is the progress of generic models in service sciences [12] and the
General Service Model presented in Chapter 4. According to the typical service
lifecycle in the IoS (cf. Section 4.4), which is divided into the five phases offer-
ing, matchmaking, usage, feedback and innovation, unavoidable differences would
most likely occur during the usage phase due to automated technical service exe-
cution only being present in electronic Web services. Further differences would be
expected for the development and deployment of the service implementation prior to
its announcement to potential consumers (e.g., programming + installation vs. train-
ing + service center opening), while the development and deployment of the declar-
ative service artifacts such as descriptions (modeling, registration) would not differ.

19 Experience Report on Real-World Manual Service Modeling in USDL 489

The other phases would also mostly remain comparable, thus hiding the service im-
plementation (manual or technical) as suggested by implementation neutrality [7].
Therefore, we conducted an evaluation study on the extent of reusability and fun-
gibility of Internet of Services ideas and techniques especially from the modeling,
registration and portfolio review processes to real-world services with an expectedly
high degree of manual services among them. Our central goal has been the practical
evaluation of using USDL as information carrier throughout these processes. The
superordinated offering phase scope of the work is hachured in the IoS service life-
cycle in Figure 19.2, which follows the lifecycle model given in the TEXO Service
Ontology presentation in Chapter 4 (Fig. 4.3 on page 86).

Modelling &
Description

Matchmaking

Offering

Usage
Feedback

Innovation

Implementation Development

Description Modelling
Registration & Review

Implementation Deployment

Search
Auctioning
Contracting
Configuration

Execution
Monitoring
Adaptation
Billing

Collection
Aggregation
Correlation

Analysis
Idea Mining

Focus of studyGeneral Lifecycle

Fig. 19.2: Scope of evaluating real-world service trading in the IoS lifecycle.

Two specific measurable aims were extracted from the goal which influenced the
methodology in conjunction with the process selection within the offering phase.

The first aim was to determine the technical suitability of semantically rich
declarative description languages for conventional business services or hybrid IT-
supported services. Languages previously designed purely for Web services such as
WSDL, WADL and DAML-S have been criticized for not conveying enough infor-
mation about the value and the content of manual services [1]. On the other hand,
computationally complete semantic languages such as WSML or OWL (in its ap-
plication as OWL-S) have not been received well beyond academic projects due to
high complexity and missing standardized base ontologies. Therefore, we wanted
to find out if USDL offers a suitable formalized spectral view from conventional
to electronic services, thus making it possible for service providers to change the
service implementation and delivery without having to change the description. Of
particular interest has been a practical readiness assessment of the language which

490 Josef Spillner, Ronny Kursawe, and Alexander Schill

has been specifically designed to describe dynamically tradeable and contractually
protectable business services as opposed to services with just informal business as-
pect descriptions.

Our second aim was to see to which extent companies accept the offering pro-
cesses on service marketplaces, independent of the actual description language, but
aligned with the marketplace and registry architecture envisioned to be used for
large-scale use of USDL. It implies a consideration of the willingness to publicly ex-
pose descriptive service and provider information in registries. To reach both aims,
viz., the determination of suitability and acceptance, we performed an evaluation
study called Real World Services in Dresden (RWSDD) with the additional goal of
extrapolating its results to a general discussion on IoS concepts.

In contrast to the previous chapter about specific case studies on selected business
projects, our multiple-enterprise evaluation study follows an iterative methodology
with a survey part which delivers several quantitative results [13].

The remainder of this chapter is structured as follows: First, we present our ap-
plied multi-phase evaluation methodology including the selection of target compa-
nies and services and the steps required to bring them into the IoS. Then, we explain
our findings regarding the suitability of selected service description technologies
and acceptance of our chosen approach concerning the survey, modeling and reg-
istration of commercial business services. The methodology and the findings are
compared to similar studies. Finally, the chapter is concluded with remarks on the
prospective value of the IoS for real-world services.

19.2 Evaluation Methodology

The starting point for the evaluation study is a local setting of companies offer-
ing services within the city of Dresden in Saxony, Germany, in the year 2010. The
economical-structural characteristic of having mostly small, often tiny, and only
some medium-sized companies poses a challenge regarding the ease of use of In-
ternet of Services techniques. The criteria for the evaluation of suitability and ac-
ceptance aspects in applying IoS techniques to real-world services have been cho-
sen accordingly. They encompass service identification to isolate services from the
overall offering of the companies, adequate tooling to express the service con-
cepts and constraints appropriately without overhead or under-specification, and
self-empowerment to let companies model, manage and register the descriptions
by themselves.

The methodology was designed to lead to increased precise knowledge about our
evaluation aims and criteria through an iterative process with each iteration intro-
ducing a new phase, which are not to be confused with the service lifecycle phases.
Consequently, we prepared a five-phase methodology which included an identifica-
tion of a decent number of various service companies, and subsequent reduction of
quantity, hence gaining quality, by filtering with a questionnaire, active modeling
of service descriptions and registration of the services at an internal and a public

19 Experience Report on Real-World Manual Service Modeling in USDL 491

service portal. We also planned a selective implementation of Web services lead-
ing to hybrid conventional-electronic service offerings although eventually decided
to postpone this activity for reasons to be explained later. Instead, we added a re-
evaluation phase after some delay to determine the suitability of the most recent
USDL specification milestone. The resulting methodology is visualized in Figure
19.3. The time frame for the evaluation (the first four phases) was limited to three
months from February to May 2010, and the delay for the fifth phase lasted until
April 2011. Hence, the evaluation was overlapping with the USDL milestone phases
towards M3 and M4 whereas the recent re-evaluation of the results performed in the
context of M5 allows us to include an analysis of the specification re-engineering
progress partially based on our own feedback from the first four phases.

Phase 1:
Company

identification
and selection

(63 + 30)

Phase 2:
Questionnaire

on service
focus
(14)

Phase 3:
Modelling and
representation

(12)

Phase 4:
Registration

(5)

Evaluation depth

Variety breadth
Suitability Acceptance

Phase 5:
Re-Evaluation

Progress

Fig. 19.3: Overall methodology of real-world service selection and integration into
the IoS in multiple phases, including number of participating companies in each
phase.

The iterative evaluation was mainly conducted by a student, first by creating two
sets of diverse companies, followed by a survey by e-mail in multiple feedback
rounds, and finally by interacting with the most relevant companies by e-mail based
on the modeling and registration work with the USDL editor and a registration por-
tal. The following paragraphs describe all evaluation phases in detail. A summary
and excerpt of the questionnaires will then be given at the end of the section in
Listing 19.1.

19.2.1 Identification of Service-Centric Companies

We limited our study to 63 individually identified local companies from all industry
sectors and in addition to 30 companies from the tourism sector known to us through
a local industry association (chamber of commerce, IHK).

The first set of companies included mostly small and tiny companies which, ac-
cording to their own estimations, offer 95% services and 5% products, matching our

492 Josef Spillner, Ronny Kursawe, and Alexander Schill

expectation regarding the initial identification. The industry representation consisted
of a mix of event agencies, design studios, translation and correction of documents,
consulting and delivery services. Target customers were a mix of private consumers,
businesses and the public sector.

The second set of companies included mostly branch offices of larger tourism
companies which are characterized by a higher level of IT-supported operations. In
contrast, decisions about IoS integration are less likely taken directly by the local
companies. The chosen tourism companies offer travel planning and booking ser-
vices, sightseeing tours as well as lodging and catering for tourists.

All selected companies were sent background information on the Internet of Ser-
vices and a questionnaire about their service offering and procurement habits. The
tourism companies received an industry association statement about the importance
of Internet innovations as additional incentive.

19.2.2 Inventory of Existing Service Offering and Usage

Only 14 companies completed the questionnaire, while some others filled the forms
only partially. Missing key data such as company names even made it impossible
to identify duplicates, therefore we dropped all incomplete questionnaires. The re-
sponse rate of smaller companies was higher than the rate of medium-sized ones.

Of note are some statistics about the companies’ previous usage of Internet and
World Wide Web facilities according to the results of the questionnaire. 100% are
advertising on a dedicated web site. 71% make use of online business registries,
while only 36% are paying for inclusion in printed industry registries. Regarding
the descriptions of offered services, 100% found the company name and web site
required attributes, compared to 64% for both the offering details and telephone
contacts. Physical address information was deemed important in 29% of all cases,
either as text or as geographical location on a map. Electronic services are offered
by half of the companies. The statistical information served as input for the service
identification criterion.

19.2.3 Service Modeling

Among all companies which completed the questionnaire, 12 indicated that they
be interested in having their service offering modeled in a declarative service de-
scription language, and the remaining 2 were undecided. We started modeling with
USDL while in parallel evaluating concepts from the Web Services Modeling On-
tology (WSMO) for a comparison which is not presented in this chapter but can be
found in [16].

The results of this phase determine the suitability of IoS service description lan-
guages and are thus presented in detail in the first half of the next section.

19 Experience Report on Real-World Manual Service Modeling in USDL 493

19.2.4 Service Registration

After creating the service descriptions, we submitted them for a brief review to the
companies and offered them to have them registered publicly on a service market-
place, not registered at all, or registered with pseudonymization techniques applied
so that the real-world business could not easily be found out from the service de-
scription. For publicly registered services, we submitted the resulting information
pages again for a public service portfolio appearance review.

The results of this phase determine the acceptance of IoS marketplace concepts
and are thus presented in detail in the second half of the next section.

19.2.5 Further Phases

The questionnaire results indicated that similar to the modeling needs, 9 companies
would be interested in a Web service implementation regarding parts of their busi-
ness services, with the remaining 5 being undecided. Our study did not cover the
actual realization of Web services or any post-registration activities such as search
for offered services, service usage contract establishment or feedback submission.
Therefore, we omit a discussion of using USDL in practice beyond the offering
phase.

19.2.6 Methodology Summary and Questionnaire

The applied methodology helped us in the reduction of efforts to gain experience
with the most relevant companies and services. It accompanied the whole offering
phase for 5 providers while still leaving room for considering implementation as-
pects beyond our study. The structural excerpt of the used questionnaire given in
Listing 19.1 reflects the survey part (phase 2) of the methodology. In total, 24 ques-
tions were to be answered by the participants.

Listing 19.1: Excerpt from the questionnaires
1 Company data {name, contact person, title, web site, e-mail

address}
2 Service overview and identification {service centrism, portfolio,

advertisement forms, advertisement information}
3 (Technical) Services - export {applicability, target groups,

technologies, operator, quality assurance}
4 (Technical) Services - import {applicability, contact

establishment}
5 --- Answers determined further questions
6 Realisation of formalized service offering {modeling,

registration, implementation}

494 Josef Spillner, Ronny Kursawe, and Alexander Schill

7 --- Answers determined participation in phase 3 (modeling) and 4
(registration)

19.3 Findings

Our study concentrated on two main aspects: Suitability of current service descrip-
tion and registration techniques, as well as acceptance of offering services at IoS
marketplaces among the participating companies. We give a detailed explanation
about possibilities and weaknesses of modeling manual services with USDL to de-
termine the suitability, and we analyze the responses of companies to our realization
to determine the acceptance. We draw conclusions mostly from the 3rd and 4th phase
of our evaluation. It should be noted that due to the low number of services consid-
ered in the late phases, the results are not representative. However, given the lack
of similar studies, they help to understand the challenges of bringing real-world
services into the IoS and to identify problems early in the process.

19.3.1 Suitability of USDL

USDL is a recent and still evolving service description language which has so far
not yet been used on public service marketplaces [4]. As outlined in Chapter 8, it
is being constructed under a design science approach. Major modules in the latest
milestone M5 encompass a foundation and core description, service level objectives,
pricing, functional descriptions and interaction.

The USDL syntax is kept synchronized with an Ecore model so that Ecore-based
transformations can be used in addition to XML transformations, which is popu-
lar with Java tool developers [6] and hence stimulates the refinement and exten-
sion through domain-specific modules and vocabulary. At the time of the evaluation
study, around the introduction of M4, not all modules of version 3 (USDLv3) were
completed, as shown in Figure 19.4. Especially the Legal Module has only been cre-
ated as a stub, and the Service Level module was work in progress. This limitation,
combined with an exclusion of syntax intended to represent features of technical ser-
vices, restricted our study to human-descriptive, functional and pricing aspects. We
deliberately left out interaction descriptions as we focused on isolated request-reply
style offerings.

For pragmatic reasons, the suitability of the language was analyzed in conjunc-
tion with the syntax and semantic expressivity generated by the USDL editor, since
we assume that this description creation method will be the dominant one in the
near future. The complementary theoretical analysis will be given in the chapters 20
and 21. The Eclipse-based USDL editor (cf. Section 15.2.1) available to us could be
considered adequate and complete for expressing all language features needed for
the evaluation. However, it required special user skills and training, hence it seemed

19 Experience Report on Real-World Manual Service Modeling in USDL 495

to be unsuitable to let companies model their services on their own. A remedy would
have been the USDL light editor (cf. Section 15.2.2) which is however still in a pro-
totypical state. A further limitation, restraining the self-empowerment criterion, was
the missing unrestricted availability of the editor to companies at evaluation time.
We worked closely together with some of the USDL authors and tooling creators
to ensure that our feedback could help to avoid some of the early issues we found.
Some results can be verified with the now widely-available USDL editor for M5
[8]. The progress on USDL development in general can be tracked on an Internet of
Services commercial community site.1

foundation

core

functional participant

pricing interaction

service levellegal

extensions

Fig. 19.4: Modular structure of USDL version 3, as presented to the participating
companies.

In general, USDL can be seen as one of the first accessible formalized descrip-
tion languages which is suitable for real-world manual and Web services alike. The
example in Listing 19.2, which is an excerpt from one of the services modeled by
us during the study, demonstrates how we represented an actual certified consult-
ing service without explicit pricing information. The example is given in compact
USDL pseudo-notation which omits syntax elements for better readability.

Listing 19.2: USDL representation of consulting service
1 core:Service {
2 guid "urn:Consulting Mueller Services"
3 nature "Human"

1 USDL community: http://internet-of-services.com

http://internet-of-services.com

496 Josef Spillner, Ronny Kursawe, and Alexander Schill

4 naturalPersons {
5 firstName "Gustav"
6 lastName "Mueller"
7 contactProfiles {
8 virtualAddress "+49 (351) 0000000"
9 }}

10 organizations {
11 guid "urn:Consulting Mueller Company"
12 representatives "//@naturalPersons.0"
13 certifications {
14 certificate "DIN ISO 9001"
15 }
16 contactProfiles {
17 physicalAddress {
18 street "Dienstboulevard"
19 city "Dresden"
20 }}}
21 serviceLevelElements {
22 availabilityAttribute {
23 type "Telefonische Erreichbarkeit"
24 timeZone "CEST"
25 timeRanges {
26 Mo-Fr: 9:30 - 16:00
27 }}
28 }
29 paymentTerms {}
30 pricePlans {
31 name "Standardstundensatz"
32 currency "EUR"
33 planComponents {
34 componentFloor "70"
35 }
36 taxes {}
37 }
38 capabilities {
39 name "Unternehmensberatung"
40 }}

According to the feedback gathered from the participants, several interesting
USDL features map real-world situations to service description fragments in a much
better way than with conventional description approaches. For example, the model-
ing of roles can map a restaurant, an associated delivery service and a training with
the chef de cuisine as services with corresponding opening or operating times to the
same provider structure. Compared to printed business registries, these structures
already present an immense advantage when looking for a service to cover specific
needs under selection constraints due to the higher expressivity and transparency of
the information.

Yet, a number of weaknesses result from precisely this broad scope. Additional
weaknesses were found in the realization of certain XML language constructs and in
the presentation within the Eclipse-based standalone USDL editor of version 0.5. A
subset of ostensive weaknesses found by us will be briefly mentioned here, ranging

19 Experience Report on Real-World Manual Service Modeling in USDL 497

from general language characteristics to module-specific remarks. A full unedited
(but anonymized) report on the suitability of modeling particular real-world services
in USDL can be found in an online report [10].

• While industry-specific perspectives are planned, they are currently not part of
the public specification. Therefore, modeling always exposes the entire structure
which is often not desired, especially for services in the creative industries such
as marketing or event management.

• The modeling characteristics, especially the extensibility entry points, impede an
axiomatic approach which lets providers start with a minimal description first
and extend towards more advanced concepts as needed. The unique identifiers
(GUIDs) of elements and the term expression languages contribute to this issue.

• Composite services in the real world can be extremely complex. For instance,
a food delivery service may have separate product shopping cart and delivery
options. USDL offers limited support for composite services.

• The Pricing Module of USDL is very powerful by allowing a great degree of
granular price decomposition. However, this leads to difficult price evaluation
at runtime. A possible solution would be to add non-normative simple pricing
information to each full specification, e.g., a service starting at 99 EUR. This en-
hancement would reflect imprecise price statements often seen in manual service
advertisements.

• A related issue is the combination of services with products. If a service deliv-
ery price depends on chosen products as the service configuration, the dynamic
price calculation is hard to realize. A proposed meta-model found in related lit-
erature [2] primarily considers the four service system dimensions component,
resource, product and process and could serve as valuable input for overcoming
this limitation.

• Availability as a temporal and spatial concept is not used to its full potential. This
is a key metric to distinguish functionally identical or similar services and filter
out services which are out of the question because they cannot be reached.

• USDL service descriptions are likely to be processed in user-friendly portals.
However, USDL lacks unified graphical elements such as provider and service
logos, banners and similar visual hints. In M5, description elements are trans-
latable which makes it possible to create single-source documents for multiple
languages. However, there are still weaknesses in the XML serialization given
that instead of using the xml:lang attribute, an under-specified custom language
tag is introduced.

• The Service Level Module is only basic. It does not support ranges or dependency
specifications between objectives. Legally valid contractual rights and obliga-
tions of real-world service providers and consumers require an expressive syntax
if the aim is to replace currently used paper contracts with machine-readable
documents.

• Legally required information such as tax numbers and court locations are not yet
part of the language. For the completion of the Legal Module, such real-world
requirements need to be taken into account.

498 Josef Spillner, Ronny Kursawe, and Alexander Schill

• The editor refuses to work properly with Unicode data and mandates to use XML
encoding for non-ASCII characters, resulting in larger and harder to read docu-
ments.

We expect that the upcoming standardization attempt will reduce the number
and impact of the identified weaknesses and therefore increase the suitability of
describing tradeable services in USDL.

19.3.2 Acceptance of IoS Concepts among Companies

Service marketplaces represent an intuitive concept to exchange USDL files be-
tween providers and consumers. Acceptance problems found by previous studies
center around a mismatch between supply and demand in certain configurations,
for instance, consumers expecting better quality in one domain and more choice in
another [9]. Solving the mismatch requires thorough specification and processing
of non-functional properties during matchmaking, which is provided by most ad-
vanced service description concepts in USDL. It certainly also requires means to
discover under-supply and subsequently techniques to describe and offer competi-
tive offerings to close the gaps, which is outside the scope of service descriptions
and needs to be provided by service platforms and marketplaces. Acceptance is an
important competitive metric which directly affects the quantity of turning potential
into actual users [9]. This necessity led us to include the registration process at a
marketplace into our evaluation.

Out of the 12 companies whose services we modeled, 5 indicated to us that they
would like to immediately see the service descriptions being used on a public ser-
vice marketplace independently from whether or not the companies would get direct
access to modify the registry entries if needed. The remaining 7 were unsure. There-
fore, we measured the combined acceptance of modeling and registration techniques
in the IoS with 5 real-world service providers.

Service descriptions approved for public registration were registered into an in-
stance of ConQo, a freely available semantic service description registry software
which ships with domain-independent base ontologies for common service concepts
such as quality and price [17]. Its service model mandates a domain-dependent (and
possibly automatically generated) Web Service Modeling Language (WSML) file
of arbitrary complexity and usage of the base ontologies, with an arbitrary num-
ber of attached documents and hyperlinks, including USDL or WSDL files. For a
preference-driven search and discovery over the service offering, USDL informa-
tion would have to be transformed into WSML constructs to become visible to the
ConQo reasoner. However, since search was not a goal of this study, we only consid-
ered few attributes such as service name, description and ownership specification,
and confined all others within the USDL file. A service catalogue within a social
network of users, communities and companies has been produced which reflects the
contents of the service registry. We requested extended company information such
as the logo from the 5 participants and invited them them to take a look and tell us

19 Experience Report on Real-World Manual Service Modeling in USDL 499

what they think about the registration process and their public appearance own on
the network. The resulting service catalogue can be found online.2

The general feedback from companies about the catalogue was a positive one,
although the resulting service information pages were lacking some information
due to concerns over commitment and privacy.

We perceived a general reluctance to specify all prices and conditions upfront.
Therefore, we suggest to include negotiation capabilities into the service description
languages. Service providers would specify which input parameters affect the price
on a mandatory or optional level. While SLA negotiation including QoS and pricing
conditions is an established topic among SOA researchers, specifying negotiation
metadata for a prior meta-negotiation about which properties are negotiable in which
situation is a relatively new topic [3].

USDL in particular offers specification fields for employee roles and birth dates.
The usage of these fields will depend on trading employee privacy and company
protection versus customer needs and curiosity. If all service description fields are
public, crawlers could be created to exploit this information in non-intended ways.
We expect this to become a major area of interest for privacy research along with
the establishment and rising popularity of the IoS, and suggest to reflect the issue as
privacy control mechanism in the USDL editor.

By closely observing the progress of some participants and the modeling and
registration work performed by the student, we also experienced that companies
would need much easier-to-use guided tools and editors to bring their services into
the IoS. The USDL editor (Eclipse version) and comparable tools from the Semantic
Web Services domain such as WSMO Studio are exclusively targeting technical
users. The newly prototyped USDL light editor (cf. Section 15.2.2) is certainly a
step in the right direction to enable also casual users. Easy applications or web-based
wizards could help to parallelize the collection of registration data from companies.
After all, the presence of a large number of service descriptions is one of the key
success factors for service marketplaces due to the network effect [15].

Regarding the registration, our plan to let companies register additional descrip-
tions by themselves after our initial registration had to be put on hold despite the
availability of a step-by-step documentation. We perceived both a problem of under-
standing the resulting declarative service descriptions and an incentive problem of
what the benefits of registering the files would be. Therefore, we as evaluation mar-
ketplace operators performed the registration entirely on behalf of the companies,
which will obviously not scale. We recommend the standardization of service pack-
age publishing interfaces and the inclusion of publishing functionality into modeling
tools to streamline this process. In the M5 version of the editor, a lightweight pub-
lication function for automated registration at marketplaces has been added, but the
standardization issue remains. We also suggest that service description ownership
and dynamic content adaptation (e.g., provider address updates) within service plat-
forms be treated explicitly to convey the advantage of roaming between different
hosters without losing information, and to keep the maintenance efforts low. Our

2 RWSDD service catalogue: http://crowdserving.com/
real-world-services-in-dresden

http://crowdserving.com/real-world-services-in-dresden
http://crowdserving.com/real-world-services-in-dresden

500 Josef Spillner, Ronny Kursawe, and Alexander Schill

discussion with the affected companies strengthened this view, but a general state-
ment regarding the influence of effort on the acceptance needs future research.

Finally, the acceptance of post-registration processes such as service search, us-
age and rating needs to be taken into account. While we don’t cover these aspects in
our current work, we intend to explore it later through complex service scenarios.
For example, a manual service provider needs to offer a composed service which
includes a Web service interaction, and the web service shall be dynamically re-
placeable under the constraint that it won’t ever cost more than a certain limited
amount of money.

19.4 Conclusion

In the spectrum from fully electronic services to IT-independent business services,
current Internet of Services approaches and platforms mostly concentrate on elec-
tronic or at least IT-supported services. However, our experience from the evaluation
study RWSDD suggests that central service offering tasks such as modeling and reg-
istration of service descriptions have become more feasible and inclusive than with
previous conventional SOA techniques. While the study criteria are only partially
fulfilled, especially concerning the adequate tooling, the expanded view on practi-
cal service trading helps to refine research results in the IoS.

Major barriers to wide adoption of the techniques can still be found in service
description languages such as USDL. They require a further evolution, especially
in terms of standardized base vocabulary for expressing service properties, and im-
proved user-friendly tooling for entering into an economy of scale by reaching a
critical mass of self-empowered IoS participants.

Further crucial factors for durable acceptance of IoS ideas will be the availabil-
ity of permanent service marketplace installations with guided service provisioning
processes, the long-term manageability of service portfolios and the inclusion of
user feedback into the service evolution. Future studies about real-world services
are expected to yield more concrete results about the post-registration usage phases.
We expect such studies to be performed once the IoS infrastructures are completely
developed and actively used.

References

1. Z. Baida, H. Akkermans, and J. Gordijn. Serviguration: Towards Online Configurability of
Real-World Services. In Proceedings of the 5th International Conference on Electronic Com-
merce, volume 50 of ACM International Conference Proceeding Series, pages 111–118, 2003.
Pittsburgh, Pennsylvania, USA.

2. M. Böttcher and K.-P. Fähnrich. Service Systems Modeling. In Proceedings First Interna-
tional Symposium on Services Science (ISSS), March 2009. Leipzig, Germany.

19 Experience Report on Real-World Manual Service Modeling in USDL 501

3. I. Brandic, S. Venugopal, M. Mattess, and R. Buyya. Towards a Meta-Negotiation Archi-
tecture for SLA-Aware Grid Services. In Workshop on Service-Oriented Engineering and
Optimizations, December 2008. Bangalore, India.

4. J. Cardoso, M. Winkler, and K. Voigt. A Service Description Language for the Internet of
Services. In Proceedings First International Symposium on Services Science (ISSS), March
2009. Leipzig, Germany.

5. T. Deelmann and P. Loos. Trust Economy: Aaspects of Reputation and Trust Building for
SMEs in E-Business. In Eighth Americas Conference on Information Systems, pages 2213–
2221, 2002. Dallas, Texas, USA.

6. K. Ehrig, G. Taentzer, and D. Varro. Tool Integration by Model Transformations based on the
Eclipse Modeling Framework. EASST Newsletter, 12, June 2006.

7. M. N. Huhns and M. P. Singh. Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing, 1(9):75–81, 2005.

8. K. Kadner and A. Kümpel. USDL-Editor 1.0.0.3M4. Available online:
http://sourceforge.net/projects/usdleditor/, April 2011.

9. T. Kollmann. Measuring the Acceptance of Electronic Marketplaces: A Study Based on a
Used-car Trading Site. Journal of Computer-Mediated Communication (JCMC), 6(2), 2001.

10. R. Kursawe. Evaluierung der Modellierung realer Dienstleistungen in der Dienstbeschrei-
bungssprache USDL. Evaluation Study Report, June 2010. Available online: http://texo.inf.tu-
dresden.de/publications/reports/usdl-rwsdd.pdf.

11. D. Oberle, N. Bhatti, S. Brockmans, M. Niemann, and C. Janiesch. Countering Service Infor-
mation Challenges in the Internet of Services. Business & Information Systems Engineering
(BISE), 5, 2009.

12. E. Ostasius, Z. Petraviciute, and G. Kulvietis. Constructing a Generic E-Service Model in Pub-
lic Sector. In Proceedings of the 16th International Conference on Information and Software
Technologies, April 2010. Kaunas, Lithuania.

13. A. Pinsonneault and K. L. Kraemer. Survey research methodology in management informa-
tion systems: an assessment. Journal of Management Information Systems - Special section:
Strategic and competitive information systems, 10(2):75–105, September 1993.

14. D. Schall. A Human-Centric Runtime Framework for Mixed Service-Oriented Systems. Dis-
tributed Parallel Databases, March 2011.

15. C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to the Network Economy.
Harvard Business School Press, 1998.

16. J. Spillner, R. Kursawe, and A. Schill. Case Study on Extending Internet of Services Tech-
niques to Real-World Services. In International Symposium on Services Science (ISSS),
September 2010. Leipzig, German.

17. G. Stoyanova, B. Buder, A. Strunk, and I. Braun. ConQo – A Context- and QoS-Aware Service
Discovery. In Proceedings of IADIS Intl. Conference WWW/Internet, October 2008. Freiburg,
Germany.

http://sourceforge.net/projects/usdleditor/
http://texo.inf.tu-dresden.de/publications/reports/usdl-rwsdd.pdf
http://texo.inf.tu-dresden.de/publications/reports/usdl-rwsdd.pdf

Chapter 20

Requirements for a Service Description

Language — Findings from a Delphi Study

Martin Matzner and Jörg Becker

Abstract The USDL has been designed as a means to describe services so that they
can be traded via the Internet. The previous parts outlined the status-quo of service
description research and practice and highlighted by feature comparison that USDL
outstands related approaches in various concerns. However, for evaluating the actual
worthiness of a modeling language such as USDL, potential users will consider the
fit of the language with the contingent influences their organizations have to deal
with. To fill this gap, the purpose of this chapter is to identify requirements for a
service description language from potential USDL users. The presented research
takes a semiotic theory perspective to the design of modeling languages. Through a
Delphi study approach, i.e., an anonymous, written multi-stage survey process, the
chapter elaborates a set of requirements. The requirements can be used to ex-post
test if the features of the USDL actually address the users’ needs and to recheck
the underlying assumptions of the USDL design and development process. While
finding broad consent with most requirements, we also observed differentiated needs
related to the intended use of the USDL.

20.1 Introduction

The emerging research discipline of service science and its design research oriented
“normative” [12] part — service sciences management and engineering (SSME) —
focus on the design and delivery of services in service systems. In particular, SSME
strives to build and evaluate IT artifacts of utility for the service economy.

Service systems are dynamic value co-creation configurations of resources, in-
cluding people, organizations, shared information, and technology, all connected
internally and externally to other service systems by value propositions [23].

Martin Matzner and Jörg Becker
University of Münster, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, e-mail: firstname.lastname@ercis.uni-muenster.de

503 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York20

mailto:firstname.lastname@ercis.uni-muenster.de

504 Martin Matzner and Jörg Becker

In order to get the relational processes of value creation between (multiple)
providers of a service, the customer as co-creator of value and all potential inter-
mediaries established, various information about a service needs to be (digitally)
exchanged between them. However, a specific description might focus on particular
aspects of a service or address multiple aspects of a service within one representa-
tion.

Information models are a means to represent a service. Information models are
computer-based symbol structures which capture the meaning of information and
organize it in ways that make it understandable and useful to people [16, p. 127].
Information models are represented in a modeling language. Accordingly, to provide
a proper service description as a service representation for a specific purpose there
is a need for a purposeful language to represent the services.

In recent years a plethora of languages that are intended to describe specific as-
pects of a service have been proposed (cf. Part I of this book). Now, the Unified Ser-
vice Description Language (USDL) has been proposed as a platform-independent
language that is intended to facilitate web-based services offered via the Internet.
Particularly, it shall address a variety of services, from “manual services” to rather
technical services such as infrastructure services (e.g., CPU and file storage).

Against this background of a “blooming production of modeling methods” [22],
any new proposed modeling language has to demonstrate its “worthiness.” Such
demonstration could be done by applying evaluation techniques that fall in one of
these categories: feature comparison, theoretical and conceptual investigation, and
empirical evaluation [22].

In this context, the purpose of this work is to identify requirements for a service
description language. We therefore employ an empirical Delphi study approach to
potential USDL users and pilot users of the USDL draft specification. The elab-
orated list of requirements can be used to ex-post test if the features of the USDL
language cover these requirements. Furthermore, the requirements are used to check
the underlying assumptions of the USDL design process as they reflect the intended
modeling scope of (potential) USDL users and thereby shed light on a sufficient
pool of concepts to describe services.

This chapter remains as follows: Section 20.2 discusses information models,
modeling languages and methods to construct models, as well as method engineer-
ing as the process of respectively constructing the methods as research background
of this work. Section 20.4 introduces the Delphi study method and outlines the spe-
cific setting of our survey. Section 20.5 then informs on findings from our study
and outlines requirements for a service description language. The chapter ends with
conclusions and a research outlook.

20 Requirements to a Service Description Language 505

20.2 Fundamentals of Modeling Language Design

20.2.1 Models and Information Models

Models are abstract representations of an original (real-world or thought-of). Mod-
els are artifacts that are made of constructs. Constructs form the vocabulary of a
domain. Constructs build the basis for defining problems and specifying their so-
lutions [13]. Models are sets of statements expressing relationships between con-
structs. Building on constructs, models are meant to represent certain situations of
problems or solutions [13].

Information models in particular, serve the “construction of computer-based sym-
bol structures which capture the meaning of information and organize it in ways that
make it understandable and useful to people” [16, p. 127].

Typically, several modeling techniques are applied in different phases of infor-
mation systems (IS) development, leading to an increasing degree of formalization
and an decreasing level of abstraction — from conceptual modeling over design
specification to implementation [1]. Conceptual models beneath their representa-
tional aspect — i.e., to capture knowledge about the application domain of an IS
— have at least two additional properties [24]. Conceptual models do not represent
all characteristics of the original. Based on the intentions of the modelers and the
objectives of the modeling project certain aspects of the domain are simplified or
omitted (reduction feature). A conceptual model is also always embedded into a
context consisting of a group of subjects, an intended purpose, and a certain time
(pragmatic feature).

To better handle the complexity arising from adequately representing an IS, mod-
els may be divided into partial models with respectively focus on the description of a
specific aspect. Further, complexity might be addressed by multi-perspective mod-
eling that allows for projections on the overall model by assigning certain model
types to different perspectives [11].

20.2.2 Characteristics of Modeling Languages

Conceptual models are expressed in a conceptual modeling language. Modeling lan-
guages in general might be described in the semiotic perspectives of syntax, seman-
tics and pragmatics. Modeling languages are embedded into modeling methods.

A Semiotic Theory Perspective to Modeling Languages

Semiotics is the theory of signs and designation processes [15]. It considers lan-
guage as a system of signs and distinguishes three perspectives on sign relations.
The syntax describes the set of signs and their interrelations. The semantics denotes

506 Martin Matzner and Jörg Becker

the relationships of signs to the concept they refer to (i.e., their meaning). The prag-
matics is related to the relationship between the sign system and a sign-user, taking
into account how signs are interpreted and what the intention of the language use is
[17].

IS research regards modeling languages in the context of Modeling Techniques.
Such modeling techniques feature two aspects (cf. Fig. 20.1): the modeling language
itself and related instructions.

Fig. 20.1: Modeling methods and modeling languages.

With respect to the semiotic perspectives, a modeling language’s syntax is de-
scribed by the conceptual and the representational aspect (cf. Fig. 20.2).

The conceptual aspect refers to the language elements and syntactical relation-
ships among them. It thereby describes the “abstract syntax” of the language. It
thus provides syntactical rules that describe how different language constructs may
be properly combined to build well-formed models [17]. Thereby, the set of all
grammatically correct models that are constructible with that specific language is
determined [6]. Typically, this language aspect is formally described in form of a
(language-based) meta-model [7].

The representational aspect of a language refers to the representation of the lan-
guage elements and their relationships. In diagrammatic modeling languages these
symbols typically occur as pictorial or geometrical shapes [2]. It thereby describes
the “particular syntax” of a language. There might exist multiple forms of repre-
sentation for one conceptualization. A new representation does not constitute a new
language. In general, the design of the concrete syntax depends on the intended
model use and should hence adhere to quality measures such as utility and compre-
hensibility [10].

The semantics of a language is also defined by the conceptual aspect of a lan-
guage. It explicates the meaning of the language elements (the used constructs)
and their relationships in the context of a modeled domain [25]. The semantics is
typically defined in a natural language description, a technical term model or by
ontologies. In any case, a clear definition of the semantics is important, since dif-
ferent users of a modeling language should develop a compatible understanding of
the language’s elements in order to discuss and exchange models with that specific
language [7].

20 Requirements to a Service Description Language 507

Fig. 20.2: Aspects of modeling languages.

The pragmatics of a modeling language refers to its intended scope and objec-
tives with respect to a given modeling need in a particular area of application. The
intended scope of a modeling language especially determines which domain con-
cepts are to be incorporated into the language. Hence, the pragmatics has a signif-
icant influence on the syntactic dimension of a language and should therefore be
specified before designing the language constructs [10].

Modeling Methods

A Modeling Technique combines a modeling language with instructions. The in-
structions describe how to construct a model with a modeling language. Instruc-
tions are therefore derived from the modeling language. The Modeling Method (cf.
Fig. 20.3) defines the essential tasks of one or more model development phase(s).
There might be several modeling techniques assigned to these phases. Modeling
techniques might particularly be assigned to certain modeling views (e.g., organi-
zation, data, control, functions) or development layers (concept, data processing
concept, implementation).

20.2.3 Method Engineering and Language Design Process

Modeling languages and methods are designed to address the modeling needs of
new business and research areas [18]. The design of a modeling method is com-
monly considered to be an engineering task; leading to the notion of method engi-
neering as the discipline that comprises all activities dealing with the creation of
methods in general and modeling methods in particular. Method engineering has

508 Martin Matzner and Jörg Becker

Fig. 20.3: Modeling method.

been explained as a process that comprises of three phases: requirements engineer-
ing, method design and method implementation [8].

Requirements engineering (RE) comprises discovering, prioritizing, document-
ing, representing and maintaining a set of requirements for a specific artifact, which
is in case the modeling method. Further it is concerned with analyzing and docu-
menting requirements, by processes including needs analysis, requirements analysis
and requirements specification [9]. Some authors also emphasize an organizational
aspect in RE, outlining the involved political, sensemaking, and communicative pro-
cesses [4].

Method design comprises all activities of the actual modeling method construc-
tion. Amongst them are the identification of basic language concepts, their supple-
mentation with attributes, and the definition of relationships between attributes, e.g.,
by a meta-model. To make the design choices traceable and to facilitate a better un-
derstanding of the method’s capabilities, the reasons for building the meta-model
in a specific way should be documented in form of a method rationale [19]. The
specification of the semantics completes the specification of the conceptual aspect.
Then, the representational elements have to be defined in a way that every language
concept must have an according representation. Finally, modeling instructions are
specified.

Method implementation and evaluation finally subsumes the activities of imple-
menting the method in an information system and testing it in real conditions.

20 Requirements to a Service Description Language 509

20.2.4 User Requirements for the Unified Service Description
Language (USDL)

The Unified Service Description Language (USDL) is designed as a platform-
independent service description language. USDL is intended to facilitate web-based
services offered via the Internet. It shall address a variety of services, amongst them
“manual services” (e.g., project management and consulting), transactional services
(e.g., purchasing, order), information services (e.g., request geo information), soft-
ware services (e.g., software widgets), digital media services (e.g., video and audio
clips), platform services (e.g., storage and forwarding of messages) or infrastructure
services (e.g., CPU and file storage). Thus, USDL obviously breaks new grounds.
It is an endeavor to develop a modeling method that addresses business needs for a
unified digital representation of services in a new fashion.

The USDL method was and still is subject to a method engineering (ME) pro-
cess (cf. Section 20.2.3). At the time of this study, a well advanced draft of the
USDL method’s specification — namely the USDL 3.0 M4 — was proposed by
the developers after several times passing through the ME phases of requirements
engineering, method design and method implementation.

Accordingly, this research is an effort to explore the requirements of (potential)
USDL users. Thereby, we want to justify the underlying assumptions of the USDL
ME process. Further, a precise analysis of the requirements the users raise to USDL
is a vital means for evaluating characteristics of the specifications against the users’
needs [22].

Particularly, an elaboration of the user requirements for a service description
language would help to review (see above):

• The reduction feature of conceptual modeling: As a service description cannot
represent all characteristics of a service — which aspects of the domain can be
simplified or omitted?

• The pragmatic feature of conceptual modeling: As a service description is always
embedded into a context consisting of a group of subjects, an intended purpose,
and a certain time — what is the intended use of the USDL specification?

20.3 A Delphi Method Process for Exploring Requirements for a

Service Description Language

20.3.1 Delphi Method

The Delphi study is a method for structuring group communication and decision
processes [5]. It is a means to systematically capture expert opinions on a com-
plex problem. Typically, the Delphi process is applied if there is only doubtful or
fragmentary knowledge about the area under investigation. The Delphi method has

510 Martin Matzner and Jörg Becker

been applied in various areas, such as scenario development in business forecasting
and public policy-making [21]. In the IS literature, the Delphi method has previ-
ously been applied — amongst others — to reach consensus between researchers
and practitioners on a common quality framework for evaluating data model quality
[14].

The Delphi study has three characteristic features [3]:

• Anonymous response — opinions are obtained by questionnaire. Individual as-
sessment is not passed to the other group members.

• Iteration and controlled feedback — interaction is effected by conducting several
iterations of the survey, with carefully controlled feedback between the rounds.

• Statistical group response — the group opinion is aggregated from the individ-
ual opinions. Thus, biasing effects of dominant individuals and group pressure
towards conformity are minimized.

The Delphi process follows an anonymous, written, multi-stage survey process
[5]. In the run-up to each stage, each member of the expert group is given feedback
on the results of the previous stage.

Delphi is also subject to some (early described) limitations [20]. Amongst these
limitations are esp. constraints regarding the reliability and validity of Delphi results
for predictive models. However, Delphi studies are therefore used to serve rather
exploratory purposes in an uncharted domain as it is in our case.

20.3.2 Specific Setting and Procedure

A two-stage survey layout was chosen to serve our purpose — i.e., to identify re-
quirements for a service description language. Members of the Delphi expert panel
were invited via email and were contacted by telephone in advance. The survey was
run from November 2010 to February 2011. Potential participants were provided
with a cover letter that informed them about the goals and overall procedure of
the survey and with a questionnaire. The questionnaire informed about the research
question addressed by the survey, i.e., to assess criteria that shall be “applied for
assessing the quality of a service description language.”

In the first round of the Delphi study, the experts were asked about their expe-
riences with service description in general and USDL in particular. The panel has
been provided with a list of quality criteria towards a service description that we
identified from the literature. The criteria were grouped according to the USDL
modular structure into the sections “discovery and matchmaking,” “ordering, nego-
tiation and access,” “composition and aggregation,” “multi-channeling, TCO, and
outsourcing,” and “resources.” The panelists then were asked to rate the relevance
of several criteria in the described sections on a 6-point Likert scale, ranging from
“completely disagree” to “completely agree.” For every section an open-ended ques-
tion was added to enable the panelists to add additional items.

20 Requirements to a Service Description Language 511

Subsequently, the results of the first round were analyzed and compiled into a
document that was sent back to the panelists for revision. For each item of the list,
median, arithmetic mean (x̄), inter-quartile range (IQR), and standard deviation (σ)
were communicated. In the second round, besides again rating the criteria, the pan-
elists were asked to add a reason if choosing a rating that was outside the IQR in
order to reach an overall consensus. Further rounds were not conducted because the
results from the second round reached a satisfactory degree of saturation, and be-
cause we also felt that the respondents would be unwilling to participate in a third
round.

20.4 Results from the Study: Requirements for a Service

Description

In total, 20 experts participated in the first round, 17 of which again answered in the
second round. The list below shows the institutions the respondents are affiliated to.

• Attensity Europe GmbH
• Carl von Ossietzky Universität Oldenburg
• Deutsches Zentrum für Künstliche Intelligenz GmbH, Saarbrücken
• FOKUS - Fraunhofer Institut für Offene Kommunikationssysteme
• Fraunhofer-Institut für Arbeitswissenschaft und Organisation IAO
• imc - information multimedia communication AG
• Intelligent views GmbH
• Metasonic AG
• Metris GmbH
• Public Research Centre Henri Tudor, Luxemburg
• Queensland University of Technology, Brisbane, QLD, Australia
• SAP AG
• Seeburger AG
• Siemens AG
• Smart Services CRC, Eveleigh, NSW, Australia
• The Open University, Knowledge Media Institute, Milton Keynes, UK
• University of Helsinki, Finland
• Westfälische Wilhelms-Universität Münster - ERCIS
• YellowMap AG

Most of the participants by now use description techniques for their service port-
folio. Widely-used approaches comprise enterprise architecture and resource models
(e.g., ArchiMate, ARIS) and business process models (e.g., ARIS, BPMN). Further,
formal descriptions for technical services are used at least in an experimental setting.
BPEL and Web service description approaches such as WSDL, OWL-S and WSMO
have been frequently stated. We also asked the panelists which information systems
in their enterprises process service-related information and, thus, might be poten-
tial target systems to a service description. Amongst the answers dominate standard

512 Martin Matzner and Jörg Becker

enterprise software systems (CRM, ERP, SCM), product configurators, master data
management systems and search engines. Answering the questionnaire did not pre-
sume USDL modeling experience as we wanted to explore requirements for a ser-
vice description in general. Thus, nine of the responds said that they did not have
prior USDL modeling experience. The remaining panelists stated that they modeled
up to 20 services with USDL. Among the modeled services were geo information
services, supplier services, point-of-interests search or Web service description as
well as the application of the USDL data structure as part of an internal data model.

We present key findings from the study in the subsequent subsections. We also
refer to Table 20.1 that summarizes the results from the Delphi study and that also
provides data that supports our presentation of the key findings.

20.4.1 Level of Detail

An important decision in the course of designing a service description such as USDL
is to choose a certain level of detail. A very broad specification would rather focus
on the description of a service’s core properties. On the contrary, a very specific
specification would provide detailed constructs and structures for various aspects of
a service. Thus we wanted to explore the users’ needs to the reduction feature of a
modeling language (see above). When asked, which granularity of a service descrip-
tion is more likely to meet their needs, the respondents’ answers were diverse. The
results feature relative high variance (e.g., standard deviation in round 1 σ1 = 1.69)
and a measure of central tendency nearby “undecided” (arithmetic means in round
2, x̄2 = 3.875) (cf. Figure 20.4 and Table 20.2).

Fig. 20.4: Answer distribution to “level of detail.”

In the first round of the Delphi survey the panelist could (optionally) state reasons
for their assessments. These statements further attest the heterogeneous assessment.
By way of example, one respondent answered: “There is an obvious tradeoff be-
tween granularity and comprehensiveness of service description and ease of use.”

20 Requirements to a Service Description Language 513

Table 20.1: Results from the Delphi study. ‘Negotiating functional service prop-
erties’ and ‘Configuration rules (exclusion)’ were control questions from Delphi
round 1.

Requirement x̄1 x̄2 σ1 σ2
General Requirements
Granularity of service description 3.83 3.875 1.69 0.956
Domain-specific extensions 5.26 5.19 1.05 1.17

Discovery and Matchmaking
Search based on functional properties 5.55 5.81 0.78 0.4
Search based on non-functional properties 5.3 5.69 0.66 0.48
Search based on cross-references 4.22 4.5 1.17 0.76
Reducing search space through input or output compatibilities 4.3 4.38 1.53 1.15

Ordering, Negotiation and Access
Understandability of the terms of service-usage 5.1 4.88 0.85 0.96
Service variants based on functional properties 4.1 4.13 1.17 0.89
Service variants based on non-functional properties 4.5 4.56 1.24 0.81
Negotiating non-functional service properties 3.58 3.4 1.68 1.06
Negotiating functional service properties 3.2 1.26

Composition and Aggregation
Composition 1 (through process descriptions) 4.3 4.31 1.75 1.3
Composition 2 (with intermediary services) 4.05 4.13 1.76 1.36
Aggregation 4.9 4.94 0.97 0.46
Configuration rules (inclusion) 4.89 5.06 1.33 1.06
Configuration rules (exclusion) 4.25 1.18
Substitution relationship 4.1 4.33 1.71 0.82
Provider-sided service integration 5 5 0.87 0.58

Multi-channeling, TCO and Outsourcing
Multi-channeling 1 (channel-based diversification) 4.13 4.19 1.55 1.05
Multi-channeling 2 (based on properties of devices) 4.28 4.25 1.41 1.18
Total-Costs-of-“Ownership” 3.95 4 1.58 1.46
Reliability 4.75 4.53 1.29 1.3
Availability 4.95 4.93 1.28 1.43

Resources
Integrating customer resources 4.56 4.69 1.38 0.6
Operant resources 3.72 3.19 1.53 1.11
Operand resources 3.53 3.19 1.39 1.22
Linking services to product life-cycle 3.65 3.6 1.22 0.51

514 Martin Matzner and Jörg Becker

Table 20.2: Delphi rating on “level of detail.”

x̄1 3.83 σ1 1.69 n/a1 2 (10%)
x̄2 3.875 σ2 0.956 n/a2 0

As reasons that would contradict a rather fine-granular description of services
was mentioned by the respondents: increased “effort,” “future occurrences are not
foreseeable,” “acceptance,” and limited “reuse.”

As reasons for a rather fine-granular description was mentioned: increased “us-
ability,” “transparency,” “combinability,” “interoperability,” “interpretability by in-
formation systems,” “comparability in details.”

20.4.2 Domain-specific Extensions

Domain-specific extensions to a rather narrowly focus description of the service’s
core could be a design option that overcame the previously discussed dichotomy
of a service description. Such extensions would address the above introduced prin-
ciples of modularization and multi-perspective modeling. In the Delphi one of the
respondents commented correspondingly to the previous question on a desired level-
of-detail of the service representation: “From my point of view, a generic service de-
scription language with an extension mechanism for domain-specific features would
be ideal solution.”

Thus, we asked the panel whether — given the existence of such domain-specific
extensions — as much aspects of the description as possible should reside with these
extensions. The overall feedback states great support by the experts for this thesis.
The panel recommends transferring as much aspects of the service description from
the core to the extensions (x̄1 = 5.26, x̄2 = 5.19) as can be seen in Figure 20.5 and
Table 20.3.

Fig. 20.5: Answer distribution to “domain specific extensions.”

20 Requirements to a Service Description Language 515

Table 20.3: Delphi rating on “domain-specific extensions.”

x̄1 5.26 σ1 1.05 n/a1 1 (5%)
x̄2 5.19 σ2 1.17 n/a2 0

20.4.3 Discovery and Matchmaking

To allow for an effective discovery and matchmaking of services turned out to be
a major requirement for a service description. The panel expressed support to four
provided categories that might be addressed by a service description language, i.e.,
to support a search on functional as well as on non-functional properties of a service,
to support a search based on cross-references amongst services and to support a
reduction of the search space of potential service candidates through an analysis of
input and output compatibilities among services. Central tendency indicators for all
four aspects expressed “agreement” in both rounds of the survey (all x̄1 > 4 and all
x̄2 > 4).

20.4.4 Ordering, Negotiation and Access

In the view of the respondents, a service description should be very good under-
standable, referring to a very comprehensible representation of expectations, rights,
duties and penalties related to a service provision. Here, we observed a high mean
affirmation (x̄1 = 5.1, x̄2 = 4.88). As a means that might facilitate understandabil-
ity, the use of multi-view modeling (see above) has been proposed in an expert’s
comment. Thus, e.g., contracting issues would reside within a specific view with a
specific modeling technique assigned to this view.

Also the need that a service description could represent service variants based on
functional as well as on non-functional properties was expressed. In the first type,
the service variants differ in the subsets of capabilities they feature. In the latter type,
the service variants differ in their non-functional properties, e.g., regarding price or
availability.

In contrast, the support of negotiation processes on the actual values of non-
functional service properties as well as on the actual customer-specific functional
properties of a service was considered to be less important.

516 Martin Matzner and Jörg Becker

20.4.5 Composition and Aggregation

According to the panel’s opinion from the given features inclusive configuration
rules for services are most important. The mechanism refers to a service descrip-
tion’s capability to represent dependencies between services in the form of “compo-
nent A requires component B” (x̄2 = 5.06). Instead, exclusive rules, i.e., component
A is incompatible with component B, was attached less importance (x̄2 = 4.25).

In order to loosely couple several of a provider’s services in the form of mar-
ketable service bundles the “aggregation” of services seems to be a convenient
mechanism. All experts agree in the second round that a service description should
facilitate aggregation.

The respondents set a special emphasis on the requirement for a service descrip-
tion to allow for the description of integrated service bundles comprising offers from
not only one, but several providers (provider-sided service integration, x̄1/2 = 5).

A very high variance could be observed in the panelists’ need for a service de-
scription’s ability to support a coupling of services through process descriptions of
a service (coupling 1, σ1 = 1.75, σ2 = 1.3). Here, certain process steps might be re-
alized by (other) services. Accordingly, the ability to support a coupling of services
with intermediary services (e.g., different delivery-related services such as Payment
Engines and Service Broker (coupling 2, σ1 = 1.76, σ2 = 1.36) was rated with high-
est variance among all characteristics.

20.4.6 Multi-Channeling, TCO and Outsourcing

Requirements for a service description in this category seem to depend heavily on
the intended use of the service description, e.g., providing a Web service versus
offering “conventional” services to customers via the Internet. The responses of the
panelists vary intensely (all σ > 1.0).

However, there is still clear support to all items of the provided requirement
list (all x̄2 > 4). Namely these requirements comprise the support of channel-based
diversification, e.g., through integrating into several channel partner’s offerings
(multi-channeling 1), the diversification of services based on properties of devices
the service is accessed with (e.g., browser, mobile phone; multi-channeling 2), as
well as providing decision support to a customer by means of supporting an easy
assessment of the total costs related to service usage for a certain time and based on
certain usage assumptions.

The panel set a strong focus on the service description’s ability to allow for a
comprehensive understanding of availability conditions of service usage (x̄1 = 4.95,
x̄2 = 4.93).

20 Requirements to a Service Description Language 517

20.4.7 Resources

The customer as co-creator of value has a particular important role in the relational
processes of service value creation. Accordingly, the resource aspect of a service
description might require also representing resources of the customer, if these re-
sources have to be integrated into the providers’ service fulfillment processes. In
the second round of the survey, no respondent disagrees with that notion (x̄2 = 4.69
with low variance σ2 = 0.6).

We also asked for the panelists’ need to further distinguish between several types
of resources and proposed the concepts of “operant” and “operand” resources that
are distinctively advocated in the service science literature. In this notion operant
resources refer to competencies such as human resources, knowledge, business pro-
cesses, culture, business relations, whereas operand resources refer to, e.g., machin-
ery, components, parts, and material. Such a distinction was of less importance in
the eyes of the respondents.

20.5 Conclusion and Outlook

The purpose of this chapter was to identify requirements for a service descrip-
tion language from potential USDL users. We introduced information models as
a means to serve the construction of computer-based symbol structures. As infor-
mation models are intended to capture the meaning of information about an original
and organize it in ways that make it understandable and useful to people the ques-
tion occurred what the particular demands of (potential) USDL users on a service
description language are. We focused on the representational aspect of a modeling
language — that is to capture knowledge about the application domain. Here, we
particularly tried to assess how the two main features of (conceptual) information
models would be met by USDL. These aspects are, first, the reduction feature of
conceptual modeling, i.e., “Are the right aspects of a service selected respectively
omitted?,” and second, the pragmatic feature, i.e., “Is the users’ intended use of the
USDL compliant with its addressed scope?”

We addressed this objective by employing a Delphi study approach in order to
explore required characteristics of a service description — in particular concepts
and relationships among these concepts. The observations headmost suggest a very
broad support of the respondents with the provided list of requirements.

Two forces might have added to this convergence and thus might constitute lim-
itations of this work. The study was conducted at a late stage of the method engi-
neering process that comprises of multiple iterations of requirements engineering,
method design and method implementation followed by phases of sense-making
and discussions. Against this background, first, many panelists actively participated
in the development process of the USDL specification. Accordingly, many of the
respondents were able to make their wishes and concerns heard at an early stage
of method design. Second, also the participants’ expectations to a service descrip-

518 Martin Matzner and Jörg Becker

tion might be biased by this participation and prior USDL modeling experiences
in a sense that the respondents’ perceived requirements for a service description
converged with actual outcomes of the participatory USDL design process.

At the time of this study, only a well advanced draft of the USDL method’s
specification — namely the USDL 3.0 M4 — was proposed by the developers. Par-
ticularly, the diagrammatic modeling approach and corresponding modeling tools
were then in a premature stage. Some criticism expressed by respondents should be
met as final and improved tool support and documentation are available.

Still the desired design of the concrete syntax depends heavily on the intended
scope and objectives of the service models, referring again to the pragmatics of the
modeling method. Here, we see a further contribution of the work as it outlines
differences in the needs of those users that strive for the representation of rather
technical services and the users that also consider representing “conventional” ser-
vices.

The groups’ needs correspond to a discussion in the USDL design process about
the trade-off between a rather generic or rather specific description of the services.
Necessarily such a decision is a tender spot in the design of a modeling method
such as the USDL. Further work will need to further elaborate on these oppositional
paradigms. Here, modularization — as currently advanced in the W3C Unified Ser-
vice Description Language Incubator Group — and multi-perspective modeling are
promising strategies to bring together the users’ interests.

References

1. J. Becker and P. Delfmann. Reference Modeling. Efficient Information Systems Design
Through Reuse of Information Models. Physica, Berlin, Germany, 2007.

2. A. F. Blackwell. Pictorial representation and metaphor in visual language design. J. Vis. Lang.
Comput., 12(3):223–252, 2001.

3. N. Dalkey. An experimental study of group opinion: The delphi method. Futures, 1(5):408 –
426, 1969.

4. E. Davidson. Technology frames and framing: A socio-cognitive investigation of requirements
determination. MIS Quarterly, 26(4):329–358, 2002.

5. A. L. Delbecq, A. H. van De Ven, and D. H. Gustafson. Group Techniques for Program
Planning: A guide to nominal group and Delphi processes. Scott. Foresman, Gleview, IL,
USA, 1975.

6. G. Guizzardi. Ontological foundations for structural conceptual models. PhD thesis, CTIT,
Centre for Telematics and Information Technology, University of Twente, Enschede, 2005.

7. G. Guizzardi, L. F. Pires, and M. J. van Sinderen. On the role of domain ontologies in the de-
sign of domain-specific visual modeling languages. In J.-P. Tolvanen, J. Gray, and M. Rossi,
editors, Proceedings of the 2nd OOPSLA Workshop on Domain-Specific Visual Modeling Lan-
guage, pages 25–38, 2002.

8. D. Gupta and N. Prakash. Engineering methods from method requirements specifications.
Requir. Eng., 6(3):135–160, 2001.

9. J. Holmström and S. Sawyer. Requirements engineering blinders: exploring information sys-
tems developers’ black-boxing of the emergent character of requirements. EJIS, 20(1):34–47,
2011.

10. M. Karow. Business Process Documentation in Creative Work Systems. PhD thesis, University
of Münster, Germany, 2011.

20 Requirements to a Service Description Language 519

11. R. Knackstedt. Fachkonzeptionelle Referenzmodellierung einer Managementunterstützung
mit quantiativen und qualitativen Daten. Methodische Konzepte zur Konstruktion und An-
wendung. PhD thesis, University of Münster, Germany, 2006.

12. P. P. Maglio, S. L. Vargo, N. Caswell, and J. Spohrer. The service system is the basic abstrac-
tion of service science. Inf. Syst. E-Business Management, 7(4):395–406, 2009.

13. S. T. March and G. F. Smith. Design and natural science research on information technology.
Decision Support Systems, 15(4):251 – 266, 1995.

14. D. L. Moody. Theoretical and practical issues in evaluating the quality of conceptual models:
current state and future directions. Data Knowl. Eng., 55(3):243–276, 2005.

15. C. W. Morris. Foundations of the theory of signs. The University of Chicago Press, Chicago,
IL, USA, 1938.

16. J. Mylopoulos. Information modeling in the time of the revolution. Inf. Syst., 23(3-4):127–
155, 1998.

17. D. Pfeiffer. Semantic Business Process Analysis — Building Block-based Construction of
Automatically Analyzable Business Process Models. PhD thesis, University of Münster, 2008.

18. J. Ralyté, C. Rolland, and R. Deneckère. Towards a meta-tool for change-centric method
engineering: A typology of generic operators. In A. Persson and J. Stirna, editors, Advanced
Information Systems Engineering, 16th International Conference, CAiSE 2004, Riga, Latvia,
June 7-11, 2004, Proceedings, volume 3084 of Lecture Notes in Computer Science, pages
202–218. Springer, 2004.

19. M. Rossi, J.-P. Tolvanen, B. Ramesh, K. Lyytinen, and J. Kaipala. Method rationale in method
engineering. In 33rd Annual Hawaii International Conference on System Sciences (HICSS-
33), 4-7 January, 2000, Maui, Hawaii, Track 2: Decision Technologies for Management. IEEE
Computer Society, 2000.

20. H. Sackman. Delphi assessment: expert opinion, forecasting and group process. Technical
Report AD0786878, Rand Corp., Santa Monica, CA, USA, Apr 1974.

21. R. C. Schmidt. Managing delphi surveys using nonparametric statistical techniques. Decision
Sciences, 28(3):763–774, 1997.

22. K. Siau and M. Rossi. Evaluation techniques for systems analysis and design modelling meth-
ods — a review and comparative analysis. Inf. Syst. J., 21(3):249–268, 2011.

23. J. Spohrer, S. L. Vargo, N. Caswell, and P. P. Maglio. The service system is the basic abstrac-
tion of service science. In 41st Hawaii International International Conference on Systems
Science (HICSS-41 2008), Proceedings, 7-10 January 2008, Waikoloa, Big Island, HI, USA,
pages 1530–1605. IEEE Computer Society, 2008.

24. H. Stachowiak. Allgemeine Modelltheorie. Springer, Wien, 1973.
25. Y. Wand, D. E. Monarchi, J. Parsons, and C. C. Woo. Theoretical foundations for conceptual

modelling in information systems development. Decision Support Systems, 15(4):285 – 304,
1995.

Chapter 21

How Complete is the USDL?

A Theoretical Evaluation of its Capability to Specify

Software Services

Dominik Q. Birkmeier, Sven Overhage, Sebastian Schlauderer, and Klaus
Turowski

Abstract The USDL aims at providing comprehensive descriptions of business
and software services which cover all aspects relevant to support their discovery
and combination in the envisioned Internet of Services. In this chapter, we specif-
ically evaluate the expressive power of USDL to specify software services. Based
on an analysis of literature on software description requirements and related ap-
proaches, we derive a theoretically grounded evaluation framework. This frame-
work is used as a benchmark to evaluate the constructs of the USDL. According
to the presented evaluation framework, comprehensive descriptions of software ser-
vices should cover commercial information, implemented business semantics, tech-
nical binding information, and service quality. The evaluation shows that the USDL
provides the most detailed approach to date to comprehensively describe software
services, which nevertheless should be harmonized in some aspects.

21.1 Motivation

The Unified Service Description Language (USDL) has been developed as a vendor-
independent approach to facilitate the trading of both business and software ser-
vices. One of its main goals is to provide a single, complete source of information
that supports the evaluation of services by consumers and the combination in the
envisioned Internet of Services (cf. Chapter 1). Therefore, the USDL introduces a
meta-model which unifies capabilities to specify business, operational, and techni-
cal service aspects into a coherent framework. The preceding chapters have shown

Dominik Q. Birkmeier, Sven Overhage, Sebastian Schlauderer
University of Augsburg, Universitätsstrasse 16, 86159 Augsburg, Germany,
e-mail: firstname.lastname@wiwi.uni-augsburg.de

Klaus Turowski
Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany,
e-mail: klaus.turowski@ovgu.de

521 ,A. Barros and D. Oberle (eds.), Handbook of Service Description: USDL and Its Methods
DOI 10.1007/978- - - _ , © Springer Science+Business Media 20121 4614 1864-1 New York21

mailto:firstname.lastname@wiwi.uni-augsburg.de
mailto:klaus.turowski@ovgu.de

522 Birkmeier, Overhage, Schlauderer, and Turowski

that the USDL is applicable to describe services of various domains and that it is
suitable to support the trading and reuse of both business and software services in
practice. In this chapter, we focus on evaluating the expressive power of the lan-
guage to specify software services from a theoretical point of view. In particular, we
will discuss which information should be provided in order to support the discovery,
contracting, and combination of software services.

Especially for service-oriented computing approaches, evaluating the expressive
power of a service description language is a crucial task since the success of such ap-
proaches considerably depends on the ability of consumers to discriminate between
offered software services and choose the ones best suited to fulfill their requirements
[24]. Without adequate information, consumers are forced to treat software services
as “experience goods” [16] whose properties cannot be sufficiently assessed against
existing requirements until after buying. If consumers are left unable to discriminate
between different service offerings before buying, the corresponding service market
is likely to malfunction, though [2]. For this reason, an approach to comprehen-
sively specify software services is a key prerequisite for the prophesied emergence
of so-called service ecosystems [4].

The development of the USDL acknowledges the critical importance of pro-
viding comprehensive descriptions of software services. Yet, it has to be clarified
whether the expressive power of the USDL is sufficient to facilitate the trading
of software services in the intended way. To evaluate the expressive power of the
USDL, we introduce a theoretical evaluation framework with several description
aspects that have been identified as relevant in literature. This framework is used
as a benchmark to evaluate the USDL against. The evaluation results document
to what extent the expressive power of the USDL meets theoretically motivated
requirements. Where differences are identified, the potentially resulting room for
improvements is analyzed.

The remaining chapter is organized as follows: in Section 21.2, we discuss ap-
proaches that aim at a complete description of reusable software artifacts. This dis-
cussion helps identifying relevant properties that have to be described in order to
support a successful trading and reuse of software services. Based on the results
of the discussion, we define the theoretical evaluation framework in Section 21.3.
It is used to evaluate the expressive power of the USDL, milestone version M4, in
Section 21.4. We conclude by summarizing and reflecting the evaluation results in
Section 21.5.

21.2 Existing Approaches to Describe Reusable Software

Artifacts

Various approaches exist in literature which aim at providing a complete speci-
fication of software artifacts. Some of these approaches have already been discussed
in the chapters belonging to Part I. While that part of the book focused on describing
the state of the art in service description, we concentrate on approaches to compre-

21 How Complete is the USDL? 523

hensively specify software artifacts in the following. Similar to the USDL, most
of the approaches build upon specialized techniques to describe specific aspects,
which are tied together in order to form a comprehensive approach. The majority
of approaches to completely describe software artifacts originated as part of the
component-based software engineering (CBSE) discipline, which aims at an effi-
cient trading and reuse of coarse-grained software parts, viz., software components
[27]. The CBSE discipline is conceptually close to service-oriented computing [27].

In an approach to describe reusable software components based on the concept of
software contracts, [6] combined existing techniques to describe programming in-
terfaces, assertions (pre- and post-conditions as well as invariants), interaction pro-
tocols, and quality attributes into a unifying specification framework. The approach,
which aims at providing a comprehensive overview of the functionality provided by
a software artifact, is depicted in Figure 21.1.

Level 4: Quality of Service

Level 3: Synchronization
Path Expressions

Level 2: Behavior
Pre- and Postconditions

Level 1: Syntax
Interface Definition Language

Non-Negotiable

 Dynamically Negotiable

Fig. 21.1: Contract-based approach to comprehensively describe software compo-
nents [6].

The specification framework introduced by [6] has been criticized since it fo-
cuses solely on technical aspects of the provided functionality and ignores the imple-
mented domain semantics as a relevant part of a component description. The domain
semantics represents the understanding of the concepts underlying a certain appli-
cation domain and determines the meaning of domain aspects such as exchanged
information, actions of stakeholders, work-flows, incidents etc. [7].

524 Birkmeier, Overhage, Schlauderer, and Turowski

As software components cannot be assessed for reusability without knowing
about the domain semantics that they implement, the framework proposed by [6]
has been augmented in subsequent approaches. In an interdisciplinary setting, mem-
bers of the special interest group on component-based business applications of the
German Informatics Society jointly created the Standardized Specification of Busi-
ness Components framework [1]. Its structure is depicted in Figure 21.2. The con-
tributions of this framework are two-fold. Firstly, it complements the description of
technical aspects of the provided functionality with a description of the implemented
business semantics. That description explains the meaning of business terms from
the component providers’ point of view. Secondly, the framework introduces ad-
ditional aspects which describe marketing-related information such as distribution
channels, license agreements, or administrative contacts.

Interface Level

Behavioural Level

Coordination Level

Quality Level

Terminology Level

Task Level

Requirement of
specification on

Bu
sin

es
s C

om
po

ne
nt

Marketing Level

Facts to be specified

Functional terms of the business domain

Properties, quality features
Measurement units and methods
Service-level

Conditions (invariants, pre- and post
conditions)

Denomination of Business Components,
services, parameters, data types and failure
reports
Service signatures
Assigment to business tasks

Succession relationships between the services
of other components
Succession relationships between the services
of one component

Tasks that are automated by the Business
Component, purpose

Businesss-organisational features
Technical initial conditions

Fig. 21.2: Standardized Specification of Business Components framework [1].

The Standardized Specification of Business Components framework has been
used as a conceptual basis to create the WS-Specification framework which aims
at a comprehensive description of software services [21, 22, 23]. Like the Universal
Description, Discovery, and Integration (UDDI) standard, WS-Specification themat-
ically groups parts of a service description (see Figure 21.3):

21 How Complete is the USDL? 525

• the white pages contain general and commercial information about the service;
• the yellow pages comprise service classifications according to standardized tax-

onomies;
• the blue pages describe the business semantics of the operations offered by a

service;
• the green pages contain technical information to bind and execute the operations

of a service;
• the grey pages describe the quality characteristics of services in the form of ser-

vice levels.

vendor, distribution channels, pricing etc.

security, persistency, and accuracy

offered functions
(e.g. business tasks)

processed information objects
(e.g. business entities)

interaction protocols
(e.g. allowed call sequences)

pre- and post-conditions, invariants

signature lists
(interface definitions)

reliability and efficiency

usability, maintainability, and portability

enumerated & faceted classifications
(e.g. domains, technical binding model)

supported processes
(e.g. business processes)

G
en

er
al

(w
hi

te
)

Ta
xo

no
m

y
(y

el
lo

w
)

Fu
nc

tio
na

lit
y

(b
lu

e)
In

te
rf

ac
e

(g
re

en
)

Q
ua

lit
y

(g
re

y)

Purchasing Information

Classifications

Information Objects

Functions

Processes

Signatures

Assertions

Interaction Protocols

Employment

Application

Performance

Fig. 21.3: WS-Specification framework.

As we can see, approaches to comprehensively describe the properties of reusable
software artifacts have a variety of commonalities. All of them describe the func-
tionality that is provided by a software artifact. The functionality is described as the
effects of a software artifact, i.e., the situation which precedes and/or results from its
execution. The effects of a software artifact are described in different ways however,
as the approaches describe different aspects of the provided functionality.

Approaches, which have been created by interdisciplinary communities, also in-
clude marketing-related information into the description of software artifacts. While
such information does not characterize the provided functionality per se, it is re-
quired to determine whether a software artifact can be reused in a certain project
context.

526 Birkmeier, Overhage, Schlauderer, and Turowski

21.3 Theoretical Evaluation Framework

We use the findings presented in Section 21.2 as the starting point for the develop-
ment of our theoretical evaluation framework. As discussed, approaches to com-
prehensively describe the characteristics of software services should cover both
marketing-related as well as functionality-related information. Marketing-related
information should cover legal and pricing aspects as well as the form of distri-
bution. This information usually is required to initiate and complete commercial
transactions.

In addition, consumers need to know about the functionality provided by soft-
ware services in order to discriminate between alternate candidates and choose the
ones best suited to fulfill their requirements. As can be seen from the findings in
Section 21.2, a service description should document “the intended effect of a piece
of software in precise terms” [11]. Doing so facilitates the searching and binding of
software services that users have to establish when integrating a service into a com-
posite application. In order to evaluate in how far a description language completely
specifies the intended effects of a software artifact, we propose the following eval-
uation framework. This evaluation framework can particularly be used to highlight
the properties which can be specified using the USDL and shows to what extent the
USDL is capable of describing software services in a unified way.

The evaluation framework builds upon theoretical findings regarding the descrip-
tion of software functionality. Both the description of reusable software artifacts
(program routines, algorithms, classes etc.) in general as well as the description of
software services in particular have repeatedly been subject to research. Regardless
of the underlying paradigm, a description of software functionality documents the
task that a software artifact is meant to perform in detail [13]. It can be employed to
assess whether this artifact is suitable to be (re-) used in an application development
project. The task a software artifact is meant to perform can generally be described
by the following three levels of abstraction [6, 9, 17, 20, 23, 25].

The business semantics is defined during the conceptual design of the software
artifact. It expresses the business context in which a software artifact is meant to
operate and describes the supported tasks from a business-oriented viewpoint (i.e.,
in business terms). A typical business context could, e.g., be “annual accounting”
and a supported task could be “balancing.” Thereby, the definition of “balancing”
has to be made explicit. A description of the business semantics may for example
point out that a service supports a balancing process according to the US-GAAP as
opposed to a balancing process according to the IFRS. The information provided on
this abstraction level allows users to assess if a software artifact fulfills functional
requirements and if it implements the desired business tasks.

The software architecture is determined during the technical design phase of the
software artifact and describes its programming interface. It provides information
about how to technically integrate the artifact into a composite application. A soft-
ware architecture description could for example document the in- and outputs and
the pre- and post-conditions of interface operations [15, 26]. Based on this informa-
tion, it becomes possible to correctly invoke operations at run-time.

21 How Complete is the USDL? 527

The quality of a software artifact is determined by its implementation. It is de-
scribed in the form of quality characteristics and metrics [12]. Quality characteristics
could for example document that a service has a mean response time of less than 0.2
seconds or that it has a throughput of 150 calls per second. Such a description allows
users to assess the fulfillment of non-functional requirements such as the efficiency
or the reliability of a service.

The information provided on the different abstraction levels targets varying user
groups (such as designers, analysts, business people, personnel responsible for pro-
curement etc.). Accordingly, the software description should articulate the informa-
tion contained in the various abstraction levels in language formats that are under-
standable for the respective target groups. The business semantics should therefore
be documented using an end-user oriented format. The software architecture should
be described in a computer-oriented (e.g., a programming) format, and the qual-
ity should preferably be represented as a list of characteristics that is grouped into
service levels.

To get a more detailed overview what has to be specified on each abstraction
level, they can be further structured according to the generic model views of Gen-
eral Systems Theory [5]. These model views are similar to the perspectives that are
traditionally distinguished in modeling disciplines [3].

The static view describes structural properties of a software artifact. Such proper-
ties range from the processed information items (things) and organizational aspects
(like the involved stakeholders) on the business semantics level to type declarations
on the software architecture level to fixed characteristics like the usability or main-
tainability on the quality level.

The functional view focuses on the capabilities of a software artifact. This view
documents the supported business tasks and activities on the business semantics
level, the pre- and post-conditions of interface operations on the architectural level,
as well as the provided security or persistency on the quality level. Interestingly, the
ISO 9126 quality model defines extra-functional attributes such as the security or
the persistency as functionality that is provided additionally [12].

The dynamic view specifies how a software artifact executes at run-time. The
execution is documented as business process or work-flow on the business semantics
level. On the software architecture level, it is described by the timing constraints
and interactions between the operations of the programming interface. Properties
like the reliability or the efficiency characterize the execution of a software artifact
on the quality level.

To assess whether a software artifact in general or a service in particular is
reusable in a certain context, all three abstraction levels have to be analyzed and
compared to the requirements by the consumer. To completely specify the func-
tionality of a software artifact, a description language should accordingly be able
to document all of the above-mentioned properties. From a theoretical perspective,
these properties hence form a framework against which description languages can
be evaluated.

The resulting evaluation framework is depicted in Table 21.1. In the following,
we use it to evaluate the expressive power of the USDL. Note that a description

528 Birkmeier, Overhage, Schlauderer, and Turowski

Table 21.1: Aspects of a comprehensive specification.

Abstraction_
Systems__________ level_
View__________________

Business level
(conceptual design)

Architectural level
(technical design)

Quality level
(implementation)

Static view
(structure)

Organizations, stakeholders,
information items

Signatures (type and
interface declarations)

Usability, maintainability,
portability

Functional view
(capabilities)

Tasks, activities,
events

Assertions (pre- and post-
conditions, invariants)

Functionality (security,
persistency, transactions)

Dynamic view
(execution)

Processes,
work-flows

Timing constraints
(interaction protocols)

Reliability,
efficiency

which covers all abstraction levels and model views is still a black-box specification
as long as it solely describes what a software artifact does without detailing on how
this is achieved algorithmically. It is thus up to the providers to decide whether they
use the specification aspects depicted in Table 21.1 to document external or internal
properties of a software artifact. While external properties specify what a software
artifact does, internal properties document how this is achieved.

21.4 Evaluation of the USDL

Comprehensively specifying software services leads to complex documents that
contain contents for different target groups. Like related approaches, the USDL
therefore makes use of a structuring mechanism to organize and thematically group
the different aspects of service descriptions. To separate specification parts with
different contents, the USDL differentiates between a business perspective, an op-
erational perspective, and a technical perspective as core clusters. Thereby, general,
legal, and commercial information belong to the business core. The description of
the business semantics and the software architecture belongs to the operational core.
The technical core has been reduced to only contain interactions and the protocol
information.

When analyzing the USDL structuring against the theoretically motivated group-
ing of specification content as illustrated in Table 21.1, it becomes evident that ab-
straction levels and system views are currently intermixed. The operational per-
spective in fact contains information that describes services from a domain-oriented
(business semantics) and an architectural (programming interfaces) perspective.
Nevertheless, the USDL is among the few approaches to provide a holistic service
description which addresses all areas of the defined evaluation framework.

In the remainder of this section, the USDL is analyzed for completeness based
on the defined framework. Besides, the analysis reveals how comprehensive the
USDL is compared to related approaches regarding the general and commercial

21 How Complete is the USDL? 529

information (21.4.1), the information about the business semantics (21.4.2) and the
software architecture (21.4.3), as well as the information about the quality (21.4.4).

21.4.1 General and Commercial Information

To support the reuse of software services, a service description needs to provide in-
formation about the provider as well as the commercial and legal conditions under
which a service may be used. Additionally, to uniformly catalog services in mar-
ketplaces and to support an efficient browsing for services with a certain property,
software services need to be classified according to standard taxonomies. Therefore,
various classification systems have been introduced which have repeatedly been ap-
plied to catalog reusable software artifacts in general and services in particular.

The specification of general and commercial properties has only been addressed
by some related approaches yet. The UDDI standard for example supports a spec-
ification of the organization that provides a service. As part of the UDDI white
pages, one can describe the company’s name, business identifiers (e.g., tax number,
D-U-N-S number etc.), addresses, administrative contacts, and communication me-
dia. The Standardized Specification of Business Components framework supports
the description of the provider name, administrative contacts, prices, license agree-
ments, as well as the scope of supply. WS-Specification combines both approaches
and introduces a distribution channel concept to specify pricing, scope of supply,
and legal constraints. For each distribution channel, the pricing, scope of supply, and
legal constraints can be specified separately. A software service can so be offered
with different pricing policies (e.g., pay per use, flat fees) and license agreements
that are adapted for each distribution channel.

Compared to these approaches, the USDL offers a similar, in most aspects even
superior functionality. Other than the specification of distribution channels in WS-
Specification, the USDL Pricing Module offers a more detailed functionality that
covers several pricing models. Additionally, the description of the provider and the
administrative contacts is more refined in the USDL than in other approaches. With
the Participants Module, providing organizations can be specified in detail. In con-
trast to most other approaches, the USDL makes use of a highly customizable de-
sign pattern for many elements of the meta-model such as the VirtualAddress or
the AdministrativeArea. For example, instead of hard-coding the different parts of
a VirtualAddress, the element is designed to consist of multiple generic address
parts. Each address part can be modeled as a structure that contains a string and
a type. Address part types can be listed as a taxonomy (enumeration), which can
dynamically be updated to cover addresses of different regions in the world.

Apart from this general information, related approaches such as the UDDI or
WS-Specification also support to classify various aspects of software services like
the offered functionality, the underlying technology, or the provider location. For
the classification, standard taxonomies with keywords are used. The following tax-
onomies are commonly used to classify software services:

530 Birkmeier, Overhage, Schlauderer, and Turowski

• the North American Industry Classification System (NAICS)
• the United Nations Standard Products and Services Code (UNSPSC)
• the Microsoft Geo Web (MSGEO)

The Foundation Module of the USDL contains a Classification element which
supports classifying description elements into defined taxonomies. In the Service
Module, this element is used to classify the functionality of services. Among others,
the NAICS and the UNSPSC are applicable to classify the functionality of a service.
USDL hence provides a similar capability for classifying services as it can be found
in related approaches. All in all, USDL thus provides the most detailed support for
the description of relevant general and commercial information.

21.4.2 Information about the Business Semantics

To efficiently assess whether the functionality of services is suited to fulfill exist-
ing requirements, users need to know about the business semantics that a service
implements. The business semantics usually is difficult to analyze on the basis of
the programming interfaces. For example, it is cumbersome to assess if an inter-
face operation “createBalance” implements a balancing strategy according to the
US-GAAP or the IFRS.

The specification of the implemented business semantics has not been addressed
by all approaches to comprehensively describe reusable software artifacts. In fact,
specifying the business semantics of software parts only became a topic of interest as
the complexity of the artifacts began to cause assessment problems. Coarse-grained
software units such as components and software services have to be described more
comprehensively to make their complex functionality understandable. In literature,
there exist approaches to augment programming interfaces with business terms as
keywords [28]. More sophisticated approaches such as the Standardized Specifica-
tion of Business Components framework and WS-Specification support a specifica-
tion of the business semantics on the basis of business concepts, which can be put
into relationship with the programming interfaces. WS-Specification uses a system
of interrelated concepts to describe the business semantics as ontology. Its concept
types and relationships are deduced from the conceptual modeling domain, which
utilizes conceptual models to capture and communicate a formal understanding of
business domains [21].

Compared to such approaches, the USDL offers a similar functionality to specify
the business semantics of services. The Functional Module makes use of capability
modeling approaches to specify the abstract functionality of services. Capabilities
express the ability to perform a course of action and consist of actions. Actions,
however, are characterized as being service-internal actions that should only be used
in a glass-box specification. Both capabilities and actions can have input and out-
put parameters, faults, and conditions. Capabilities, actions, parameters, faults, and
conditions can be linked to the technical interface if they have direct counterparts
(see Section 21.4.3).

21 How Complete is the USDL? 531

From an analytical point of view, the current way of describing business seman-
tics in the USDL also has to be criticized in some ways though. First of all, the
artificial distinction between capabilities and actions only partially corresponds to
the way in which business functionality is modeled traditionally. Especially in con-
ceptual modeling approaches, business functionality is specified as a set of busi-
ness functions. Business functions can be decomposed hierarchically to depict a
stepwise refinement from coarse-grained top-level business functions to more ele-
mentary business actions which might be automated by software applications. In
the USDL, complex business functions would have to be described as capabilities,
while more elementary business functions would have to be specified as actions. A
more gradual refinement cannot be modeled as the USDL only makes use of these
two hierarchy levels.1

Furthermore, business information can only be described as input or output pa-
rameters to business functions (i.e., capabilities or actions). It is not possible to de-
fine complex business information objects which usually consist of several parts and
have both inheritance-based as well as compositional relationships to other infor-
mation objects. As the business information that is processed by software services
usually is complex, it is necessary to describe the business semantics of this infor-
mation comprehensively. Finally, in order to describe a course of actions, schema
elements which describe business processes ought to be introduced. Business pro-
cesses describe temporal relationships between business functions and can be used
to show how the operations of a software service have to be used together. Such a
description of business processes would furthermore complement the specification
of technical interactions, which is already supported in the meta-model.

The business semantics that actually needs to be described hence is in some parts
more complex compared to what is currently proposed by the USDL. Furthermore,
a service description should only specify externally accessible business functions,
exchanged information objects, and visible business processes in order to follow the
aspired black-box strategy. In contrast to what is stated in the USDL specifications,
we hence recommend avoiding the inclusion of service internal information objects
and functions into a service description. All in all, it can be concluded that USDL
already covers important aspects regarding the description of the business seman-
tics, but some points still require further improvement which ought to be addressed
in future versions.

21.4.3 Information about the Software Architecture

To technically bind and execute software services, the programming interface has
to be specified and communicated to the service consumer. From a theoretical point
of view, the programming interface defines the software architecture of a service. It
consists of interface signatures, assertions (pre-, post-conditions and invariants) and

1 This has already been addressed in the latest milestone M5.

532 Birkmeier, Overhage, Schlauderer, and Turowski

timing constraints that might exist between the operations of an interface. As the
technical binding of software services is a central step to realize a working compos-
ite application, there already exist numerous approaches to specify the necessary
characteristics of services. These approaches build upon well-researched findings
from the distributed systems domain. For software services, the most widespread
approach to describe programming interfaces is the Web Service Description Lan-
guage (WSDL), version 1.1.

The WSDL is a standardized specification language to define signature lists. It
therefore uses the following objects: Services, Endpoints, Bindings, Interfaces,
Operations, and Types [8]. Services and Endpoints generally describe where to
find a service. Bindings specify the concrete protocol as well as the data formats
for a certain port. Types and Operations define the corresponding data types and
interface methods independently of a concrete communication technology. Related
data types and interface methods are grouped together by the Interface construct.
The WSDL does not provide mechanisms to specify pre- and post-conditions or in-
teraction protocols, but only documents structural properties of the software archi-
tecture. Other approaches, such as the Semantic Annotations for WSDL and XML
Schema (SAWSDL), have upgraded the WSDL accordingly. This approach allows
users to annotate WSDL files with additional semantics [10] (cf. also Chapter 7).
The SAWSDL therefore specifies how semantic annotations can be made within the
WSDL in order to make a reference to semantic models such as ontologies. In con-
trast to the WSDL, the SAWSDL approach hence also allows for the description of
functional aspects of the software architecture. Yet, the SAWSDL does not spec-
ify a language to describe these semantic models, but only shows how they can be
referenced to when using WSDL.

The Web Ontology Language for Services (OWL-S) goes beyond the scope of
the WSDL. Regarding the technical aspects, it for instance furthermore describes
pre- and post-conditions [14]. It also allows specifying timing constraints and there-
fore describes all three aspects of the software architecture of a service as depicted
in Table 21.1. As well as the WSDL, the OWL-S uses an XML-based representa-
tion format. Other approaches such as the Service-Oriented Architecture Modeling
Language (SOAML) or the Systems Modeling Language (SysML) build upon the
UML to describe the software architecture of a service. These languages have a
broad scope and can be used to specify signature lists, assertions, and timing con-
straints amongst others [18, 19]. Consequently, all of the three views of the software
architecture can also be described using graphical languages.

To describe the software architecture of services, the Functional Module of the
USDL supports the specification of technical interfaces, operations, parameters, and
faults. To describe interface signatures, the TechnicalOperation element has been
introduced. It covers the specification of an interface method. Besides the method
name, parameter names, types, and faults can be specified. However, in contrast to
most related approaches and programming languages, the USDL does not support
the definition of complex data types. Although the TechnicalOperation includes
inputs/outputs which are used/created during the execution of an operation, these
in- and outputs cannot be further specified. Therefore, in the next version of USDL,

21 How Complete is the USDL? 533

a TypeDeclaration element should be introduced along with a connection to the
TechnicalInterface. The TypeDeclaration element could be utilized to define the
in- and outputs used during the execution of the operation. In particular, composite
data types such as enumerations or compositions of primitive data types (structures)
could be defined so that they can later on be referred to. Another option would be to
refer to corresponding WSDL definitions. However, in such a case the USDL would
become dependent on additional languages to specify details.

The USDL also supports the specification of functional software architecture
properties such as pre- and post-conditions as well as incoming and outgoing faults.
Pre- and post-conditions describe which conditions have to be fulfilled before an
operation can start and which conditions will result after the execution of an oper-
ation. Faults report unexpected states during the execution of a service, which can
either be reported or reacted to. The definition of functional architecture properties
is fully comparable to that supported by related approaches.

In addition, dynamic architecture properties such as timing constraints and in-
teractions between interface operations can be specified with the USDL. To define
such aspects, the USDL provides a specific Interaction Module which implements a
less widespread, block-structured approach to define interactions. However, it seems
that this block-structured approach might not be scalable to support the specification
of arbitrarily complex interaction protocols, as the USDL allows service providers
to leave the ordering of interactions unspecified and attach a formal definition of
the protocol in a formalism of their choice. Such a procedure has to be criticized
as it does not enforce homogeneous service descriptions which are comparable. We
therefore recommend implementing a more widespread graph-based approach to
specify interaction protocols which is able to handle intuitive and complex proto-
cols on the same basis. An optimal representation of interaction protocols to service
consumers will then have to be reached by choosing an adequate formalism. As the
technical interaction protocol is usually assessed by designers and programmers,
graphical notations (e.g., the UML state chart) should be adequate notations. To
sum up, it can be concluded that the USDL addresses the relevant aspects of soft-
ware architecture information. However, it still has to be improved in some details.

21.4.4 Information about the Quality

In the theoretical evaluation framework the third abstraction level describes the
quality aspects of software artifacts. Quality considerations are an important part
when specifying the functionality of software and, thus, are part of most approaches
to specify software components and services as well. Quality assurances are com-
monly realized through the concept of service level agreements.

As a “comprehensive specification and evaluation of software product quality is
a key factor in ensuring adequate quality,” the International Organization for Stan-
dardization (ISO) has defined the ISO 9126 standard [12]. This “Software engineer-
ing - Product quality” standard covers a quality model, internal and external metrics,

534 Birkmeier, Overhage, Schlauderer, and Turowski

as well as quality-in-use metrics. The quality model itself, as developed by the ISO,
categorizes software quality attributes into six different characteristics:

• the usability characteristic is defined as the capability of services to be under-
stood, learned and used, as well as being attractive to the user under specified
conditions

• the maintainability characteristic is defined as the capability of services to be
altered for corrections and improvements or be adapted for changes in the envi-
ronment, requirements or functional specifications

• the portability characteristic is defined as the capability of services to be relo-
cated between different environments

• the functionality characteristic is defined as the capability of services to provide
functions which meet predefined, as well as implicit needs with respect to speci-
fied conditions

• the reliability characteristic is defined as the capability of services to maintain a
predefined level of performance with respect to specified conditions

• the efficiency characteristic is defined as the capability of services to provide suit-
able performance in relation to the amount of resources expended under specified
conditions

All of them are further subdivided into sub-characteristics, which can be mea-
sured by internal or external metrics. Thus, the result is a strictly hierarchical model
as depicted in Figure 21.4.

external and
internal
quality

functionality reliability usability efficiency maintainability portability

maturity
fault tolerance
recoverability

reliability
compliance

understandability
learnability
operability

attractiveness

usability
compliance

time behavior
resource

utilization

efficiency
compliance

analyzability
changeability

stability
testability

maintainability
compliance

adaptability
installability
co-existence
replaceability

portability
compliance

suitability
accuracy

interoperability
security

functionality
compliance

Fig. 21.4: Quality model for external and internal quality [12].

The current USDL version recognizes the importance of quality specifications
and, hence, envisions a service level package as one of the central modules. How-
ever, in the current USDL specification it is still under investigation and only a rough
draft of the corresponding module exists. In this draft, numerous aspects of related
approaches (e.g., excerpts of several different WS-* specifications) are included. In

21 How Complete is the USDL? 535

its current version, the Service Level Module in the USDL already covers several
of the above-mentioned characteristics. Within others, it contains security, trans-
actional behavior, reliability, performance and availability aspects. Furthermore it
defines concrete quality attributes to further refine the basic quality aspects. How-
ever, it does not cover all of the characteristics described in the ISO quality model
(e.g., usability aspects are not yet included). While some of them might be negli-
gible, as the ISO standard was developed for traditional software products, others
ought to be examined more closely.

One possible impairment might be the lack of any clear structure in the current
USDL Service Level Module. First of all, the contained characteristics are described
on one level, so there is no hierarchy as implied by the ISO standard. Moreover,
most elements are explicitly related in some way and additional implicit relations
are included through a color coding. The upcoming module should therefore build
upon the existing ISO standard for software product quality. In so doing, missing
characteristics could be included together with a more sophisticated, standardized
hierarchy of characteristics.

21.5 Conclusions

Due to the existing plethora of description languages and their different motivations
and representation formats, the searching, comparison, and trading of software ser-
vices today is a complicated task. In order to facilitate the emergence of an Internet
of Services, the USDL aims at providing a coherent and complete source of informa-
tion to select and integrate services. In this chapter, we have analyzed the expressive
power of the USDL to specify software services from a theoretical point of view.
Therefore, we proposed a theoretically motivated evaluation framework with several
description aspects that were found to be relevant in literature. Doing so allowed us
to evaluate in how far the USDL in its current form is capable of providing a univer-
sal and complete source of information. It moreover revealed areas where the USDL
lacks details and future work should concentrate on.

The evaluation of the USDL against a theoretical framework and related ap-
proaches has shown that the USDL aims at documenting all relevant specification
perspectives. All of the abstraction levels discussed in Section 21.3 have been ad-
dressed with the USDL as the language considers the specification of marketing-
related information as well as of functionality-related information. Regarding the
functionality-related information, it particularly endorses the specification of busi-
ness semantics next to technical and quality properties. As regards the state of the
art of description languages for software services, the business semantics of a ser-
vice can only be specified by a very few approaches. Consequently, the USDL can
indeed be regarded as a comprehensive approach to specify services.

As the evaluation has shown, the concepts provided by the USDL to specify soft-
ware services are in many aspects superior to the current state of the art or at least
comparable (see Table 21.2). This is especially true for the description of general

536 Birkmeier, Overhage, Schlauderer, and Turowski

Table 21.2: Summary of evaluation results

Abstraction
Level

USDL description content
Comparison to
state of the art

General
Information

Vendor information +

Legal information +

Commercial information (pricing, distribution) ++

Business

Information items +

Capabilities

Processes

Architecture

Signatures (interface declarations) +

Assertions (pre and post conditions, invariants) ++

Timing constraints (interaction protocols) +

Quality

Usability, maintainability, portability

Functionality (security, persistency, transactions etc.) +

Reliability, efficiency +

Legend: ++: superior, +: comparable, : inferior

and commercial information and the classification of the functionality of services.
With some limitations regarding the description of interaction protocols, this can
also be attested for the documentation of the software architecture. Other aspects
of the USDL still lack important details or reveal room for improvements, however.
Especially the description of quality attributes still seems to be under investiga-
tion. Hence, various quality attributes such as the usability of services cannot be
described at all yet. Furthermore, the quality module of the USDL is lacking a clear
hierarchical structure. We therefore propose building revisions of this module on the
basis of a conceptual quality model, e.g., the ISO 9126 model of software quality
[12]. Room for improvements was also identified with respect to the specification
of the business semantics of services. In particular, specifying stepwise refinements
of business functions and describing the execution of business functions according
to a business process ought to be better supported in future versions of the USDL.

While the presented results provide several insights regarding the adequacy of
the USDL for the description of services, they are nevertheless subject to some
limitations. Most notably, we have limited our analysis to software services and
left out the examination of business services. The reasons behind this decision are
two-fold. Firstly, approaches aiming at the trading and reusing of software services
are expected to build a cornerstone for the Internet of Services [4]. Analyzing the
suitability of the USDL to describe software services therefore is of particular im-
portance. Secondly, the authors have already gathered several years of expertise in
the description of reusable software artifacts which could be incorporated into the

21 How Complete is the USDL? 537

analysis. However, as a consequence of the chosen evaluation strategy, additional
shortcomings of the USDL regarding the specification of business services might
have remained undiscovered during our analysis. Evaluating the completeness of
the USDL as to the description of business services accordingly is an important di-
rection for future research. Furthermore, we did not discuss the trade-off between
the completeness of a description on the one hand and its usability on the other hand.
Usually, more complete descriptions are more difficult to create and cannot be algo-
rithmically processed anymore [20]. As such a trade-off has to be taken into account
during the design of a specification language, sub-optimal solutions are sometimes
unavoidable.

Based on the results of our evaluation, the USDL nevertheless can be classified
as a vendor-independent approach that overall appears to be suited to facilitate the
trading of software services. All in all, the USDL seems to be on a promising way to
become a complete source of information that supports the assessment of software
services by consumers. Fundamentally, it aims at specifying all aspects of a service
description that were found to be necessary in the corresponding literature. As the
USDL is still in the standardization process, the responsible W3C Incubator Group
can address aspects in which details are still missing or requiring improvement. Es-
pecially, it should be possible to eliminate identified shortcomings and to effectively
complement additional aspects that were found to be missing during our evaluation.
With our work, we therefore hope to contribute to the ongoing endeavor of making
USDL a comprehensive description language for the Internet of Services.

References

1. J. Ackermann, F. Brinkop, P. Fettke, A. Frick, E. Glistau, H. Jaekel, O. Kotlar, P. Loos,
H. Mrech, E. Ortner, S. Overhage, U. Raape, S. Sahm, A. Schmietendorf, T. Teschke, and
K. Turowski. Standardized Specification of Business Components. Technical report, German
Society of Informatics (GI), 2002.

2. G. A. Akerlof. The Market for ”Lemons”: Quality Uncertainty and the Market Mechanism.
The Quarterly Journal of Economics, 84(3):488–500, 1970.

3. I. Arbnor and B. Bjerke. Methodology for Creating Business Knowledge. Sage Publications,
London, 3 edition, 2009.

4. A. P. Barros and M. Dumas. The Rise of Web Service Ecosystems. IEEE IT Professional,
8(5):31–37, 2006.

5. L. v. Bertalanffy. General System Theory. George Braziller, New York, NY, 1976.
6. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components Contract

Aware. IEEE Computer, 32(7):38–45, 1999.
7. M. Bunge. Treatise on Basic Philosophy, Volume 3: Ontology I: The Furniture of the World.

Reidel, Boston, MA, 1977.
8. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description Lan-

guage (WSDL) Version 2.0 Part 1: Core Language. Technical report, World Wide Web Con-
sortium, 2007.

9. D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks with UML: The Catal-
ysis Approach. The Object Technology Series. Addison-Wesley, Upper Saddle River, NJ,
1999.

10. J. Farrell and H. Lausen. Semantic annotations for wsdl and xml schema. Recommendation,
W3C, 2007.

538 Birkmeier, Overhage, Schlauderer, and Turowski

11. N. Gehani and A. T. McGettrick. Software Specification Techniques. Addison-Wesley, Wok-
ingham, 1986.

12. ISO/IEC. Software Engineering - Product Quality - Part 1: Quality Model. Technical Report
ISO/IEC Standard 9126-1, International Organization for Standardization, 2001.

13. B. H. Liskov and V. Berzins. Software Specification Techniques, chapter An Appraisal of
Program Specifications, pages 3–24. Addison-Wesley, Upper Saddle River, NJ, 1986.

14. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia,
T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing Semantics to Web
Services: The OWL-S Approach. In J. Cardoso and A. P. Sheth, editors, Semantic Web Ser-
vices and Web Process Composition, First International Workshop, SWSWPC 2004, Revised
Selected Papers, volume 3387, pages 26–42. Springer, Berlin, Heidelberg, 2005.

15. B. Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, 2.
edition, 1997.

16. P. Nelson. Information and Consumer Behavior. The Journal of Political Economy, 78(2):311–
329, 1970.

17. T. W. Olle, J. Hagelstein, I. G. MacDonald, and C. Rolland. Information Systems Methodolo-
gies. A Framework for Understanding. Addison-Wesley, Wokingham, 1991.

18. OMG. Service oriented architecture Modeling Language (SoaML). Revised Submission
ad/2008-11-01, Object Management Group, 2008.

19. OMG. OMG Systems Modeling Language (SysML), Version 1.2. OMG Specification
formal/2010-06-02, Object Management Group, 2010.

20. S. Overhage. UnSCom: A Standardized Framework for the Specification of Software Com-
ponents. In M. Weske and P. Liggesmeyer, editors, Object-Oriented and Internet-Based Tech-
nologies, 5th Annual International Conference on Object-Oriented and Internet-Based Tech-
nologies, Concepts, and Applications for a NetworkedWorld, Net.ObjectDays 2004, volume
3263 of Lecture Notes in Computer Science, pages 169–184. Springer, Berlin, Heidelberg,
2004.

21. S. Overhage. Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezi-
fikationsrahmen und Anwendung. Dissertation, Universität Augsburg, 2006.

22. S. Overhage and P. Thomas. WS-Specification: Specifying Web Services Using UDDI Im-
provements. In A. B. Chaudri, M. Jeckle, E. Rahm, and R. Unland, editors, Web, Web-Services,
and Database Systems, NODe 2002 Web and Database-Related Workshops, Revised Papers,
volume 2593 of Lecture Notes in Computer Science, pages 100–119. Springer, Berlin, Heidel-
berg, 2002.

23. S. Overhage and P. Thomas. WS-Specification: Ein Spezifikationsrahmen zur Beschreibung
von Web-Services auf Basis des UDDI-Standards. In O. Ferstl, E. J. Sinz, S. Eckert, and
T. Isselhorst, editors, Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety, pages
1539–1558. Physica, Heidelberg, 2005.

24. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges. IEEE Computer, 40(11):38–45, 2007.

25. A. Scheer. ARIS - Business Process Frameworks. Springer, Berlin, Heidelberg, 3. edition,
2000.

26. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, Englewood Cliffs, NJ, 1996.

27. C. Szyperski, D. Gruntz, and S. Murer. Component Software. Beyond Object-Oriented Pro-
gramming. Addison-Wesley, Harlow, 2. edition, 2002.

28. P. Vitharana, F. Zahedi, and H. Jain. Knowledge-Based Repository Scheme for Storing and
Retrieving Business Components: A Theoretical Design and an Empirical Analysis. IEEE
Transactions on Software Engineering, 29(7):649–664, 2003.

	Preface
	The Positioning of Services
	The Need for Explicit Service Descriptions
	About USDL
	About the Book
	Acknowledgements
	References

	Contents
	List of Contributors
	Chapter 1 The Internet of Services and USDL
	1.1 Services Sector: Key Driver of Developed Economies
	1.2 Intense Research During the Past Years
	1.3 The Internet of Services — Basic Concepts
	1.3.1 The Digital Footprint of Services
	1.3.2 Complementing the Service-Oriented Architecture paradigm
	1.3.3 Software Applications and Services
	1.3.4 Applying the Internet Economy to the Services Sector

	1.4 The Uniﬁed Service Description Language
	1.5 Strategic Implications
	References

	Part I State of the Art
	Chapter 2 Product-Service System Approaches A Business Perspective on Service Modeling
	2.1 The Need for Conceptual Modeling of Services
	2.1.1 The Trend Towards Service
	2.1.2 Beyond Goods and Services: Customer Solutions as Value Offers
	2.1.3 Product-Service Systems
	2.1.4 Analysis of Conceptual Modeling Approaches for Services

	2.2 The Interdisciplinary Study of PSS Conceptual Modeling: Extracting Concepts
	2.2.1 Conceptual Modeling and Languages
	2.2.2 Extracting Concepts from PSS Research Disciplines

	2.3 A Review of the Status-quo of PSS Conceptual Modeling and Perspectives to Service Description
	2.3.1 Identifying Relevant Modeling Languages
	2.3.2 Review of PSS Modeling Languages
	Molecular Model / Service Blueprinting
	SeeMe
	SADT
	ARIS / Model-based Service System Engineering
	Coloured Petri Nets for Service Simulation (CPN)
	Method for systematic development of product-oriented services
	STEP / EXPRESS-G
	2.4 Discussion, Limitation and Outlook
	References

	Chapter 3 Service Network Approaches
	3.1 Introduction
	3.2 Comparison Framework
	3.2.1 Deﬁnitions
	3.2.2 Service Network Criteria
	3.2.3 ICT Support
	3.2.4 Illustrative Example

	3.3 Approaches for Modeling Service Networks
	3.3.1 BMO
	3.3.2 REA
	3.3.3 Value Network Analysis (VNA)
	3.3.4 O-WSP
	3.3.5 Serviguration
	3.3.6 The e3family
	3.3.6.1 e3value
	3.3.6.2 e3strategy
	3.3.6.3 e3control
	3.3.6.4 e3alignment
	3.3.6.5 e3service

	3.3.7 VBC
	3.3.8 GVP
	3.3.9 Becker
	3.3.10 Traverso
	3.3.11 OntoMat-Service
	3.3.12 METEOR-S
	3.3.13 Service Network Notation (SNN)
	3.3.14 DynamiCoS
	3.3.15 u-service
	3.3.16 CPC
	3.3.17 Kohlborn

	3.4 Discussion
	3.5 Acknowledgements
	References

	Chapter 4 Service System Approaches Conceptual Modeling Approaches for Services Science
	4.1 Introduction
	4.2 Alter’s Framework: Service Systems as Work Systems
	4.3 The General Service Model
	4.4 The TEXO Service Ontology
	4.5 The OASIS SOA Reference Architecture Foundation (SOA-RAF)
	4.6 The IBM Research Service Design Model
	Service Instances and Service Concepts
	Service Requirements
	Service Stakeholders
	 Service Request
	Service Process
	Resource Type

	4.7 Discussion
	4.7.1 Service Deﬁnition
	4.7.2 Service Application Perspective
	4.7.3 Service System Perspective
	4.7.4 Service Science Readiness
	4.7.5 Value Modeling
	4.7.6 Service Contract
	4.7.7 Reusability
	4.7.8 Service Time Frame

	4.8 Concluding Remarks
	References

	Chapter 5 SOA Approaches
	5.1 Introduction
	5.2 Service Description
	5.2.1 Web Services Description Language
	5.2.2 SOAP and Messaging Speciﬁcations
	5.2.3 Web Application Description Language

	5.3 Service Discovery
	5.4 Service Composition: Orchestration and Choreography
	5.4.1 Web Services Business Process Execution Language
	5.4.2 Business Process Model And Notation

	5.5 Meta and Reference Models for SOA
	5.5.1 Reference Model for Service-oriented Architecture
	5.5.2 Service-oriented Architecture Ontology
	5.5.3 Service-oriented Architecture Modeling Language
	5.6 Summary and Discussion
	References

	Chapter 6 Semantic Web Services Fundamentals
	6.1 Introduction
	6.2 Description Logics
	6.2.1 Approach Synopsis
	6.2.2 AI Formalism

	6.3 Logic Programming
	6.3.1 Approach Synopsis
	6.3.2 AI Formalism

	6.4 Planning for Service Chaining
	6.4.1 Formalism in a Nutshell
	6.4.2 Formalism Details
	6.4.3 Application to Services
	6.4.4 Example
	6.4.5 Discussion

	6.5 Planning for Service Interactions
	6.5.1 Formalism in a Nutshell
	6.5.2 Formalism Details
	6.5.3 Application to Services
	6.5.4 Example
	6.5.5 Discussion

	6.6 Conclusion
	References

	Chapter 7 Semantic Web Services Approaches
	7.1 Introduction
	7.2 Preliminaries
	7.3 Top-Down Approaches
	UPML
	DAML-S / OWL-S
	Capabilities Model
	Active SWS
	DIANE
	Semantic MOBY
	SWSO
	USDL
	WSMO
	Core Ontology of Web Services (COWS)
	Web Service Ontology
	Fusion Ontology
	Minimal Service Model
	ServONT
	ServFace
	SSWAP
	ReLL
	ROSM

	7.4 Bottom-Up Approaches
	WSDL-S
	GPO/PSAM
	QuASAR / ISPIDER
	BPEL4SWS
	SAWSDL
	YASA
	MicroWSMO/hRESTS
	WSMO-Lite
	SA-REST
	Semantic annotation based on ER model
	Linked Data Services

	7.5 Atlas and Evolution of Semantic Web Services Approaches
	7.6 Conclusions
	References

	Part II USDL — Meta-Model
	Chapter 8 Design Overview of USDL
	8.1 Introduction
	8.2 Universe of Discourse
	8.2.1 Services
	8.2.2 Service Agents and Networks
	8.2.3 Service Dependencies and Composition
	8.2.4 Service Delivery
	8.2.5 Service Consumption

	8.3 Language Requirements for USDL
	8.3.1 Generic Language Requirements
	8.3.1.1 Conceptualization
	8.3.1.2 Expressive Power
	8.3.1.3 Modularity
	8.3.1.4 Extensibility
	8.3.1.5 Comprehensibility
	8.3.1.6 Formal Foundation

	8.3.2 Service Concept Formation Requirements
	8.3.2.1 Organizational Embedding
	8.3.2.2 Cognitive Sufﬁciency
	8.3.2.3 Service Information Hiding
	8.3.2.4 Deployment Symmetry
	8.3.2.5 Execution Resilience

	8.4 Structure of USDL
	8.5 How USDL Supports Requirements
	8.6 Construction of USDL
	8.7 Running Example
	8.8 Discussion
	References

	Chapter 9 Service Pricing
	9.1 Introduction
	9.2 The Idiosyncrasies of Pricing Services
	9.3 Related Approaches
	9.3.1 Standard Business Software Applications
	9.3.2 Standalone Billing Engines
	9.3.3 Dedicated Pricing Meta-Models

	9.4 Content
	9.4.1 Modeling of the Static Information
	9.4.2 Modeling of the Context-Dependent Dynamic Information
	9.4.3 Interconnection of USDL Modules with Pricing Module
	9.4.4 Extending the USDL Pricing Module

	9.5 Requirements Capabilities of the Pricing Module
	9.6 Example
	9.7 Conclusion
	References

	Chapter 10 Service Licensing
	10.1 Introduction
	10.2 Related Work
	10.2.1 Creative Commons Rights Expression Language
	10.2.2 Open Digital Rights Language
	10.2.3 Open Digital Rights Language Services
	10.2.4 Extensible Rights Markup Language
	10.2.5 METSRights
	10.2.6 Intellectual Property Rights Ontology
	10.2.7 O’Sullivan
	10.2.8 Conclusion

	10.3 Modeling Copyright in USDL
	10.3.1 The Module According to the German Copyright Act
	10.3.1.1 Work
	10.3.1.2 UsageRight and UsageType
	10.3.1.3 TimeRestriction, SpatialRestriction, and ContentRestriction
	10.3.1.4 Requirement
	10.3.1.5 License

	10.3.2 Integration with Other USDL Modules
	10.3.3 Comparison to the U.S. Legal Module

	10.4 Example — 2PL Airline Manager
	10.4.1 Terms of Usage
	10.4.2 Terms of Usage Transferred to USDL

	10.5 Conclusion
	References

	Chapter 11 Service Functionality and Behavior
	11.1 Introduction
	11.2 Modeling Functionality, Technical Interfaces, and Behavior in USDL
	11.2.1 State of the Art and its Inﬂuence on the Module Design
	11.2.1.1 On Functional Modeling
	11.2.1.2 On Modeling Technical Interfaces
	11.2.1.3 On Behavioral Modeling

	11.2.2 Design and Relationship of USDL Modules

	11.3 The Functional Module
	11.3.1 Overview and Main Constructs
	11.3.2 Illustrative Example

	11.4 The Technical Module
	11.4.1 Overview and Main Constructs
	11.4.2 Illustrative Example

	11.5 The Interaction Module
	11.5.1 Overview and Main Constructs
	11.5.2 Illustrative Example

	11.6 Conclusion
	References

	Chapter 12 Service Levels, Security, and Trust
	12.1 Introduction
	12.2 State of the Art
	12.2.1 SLA Speciﬁcation
	12.2.2 SLA Monitoring
	12.2.3 SLA Negotiation and Enforcement

	12.3 The Service Level Module
	12.3.1 Position within USDL
	12.3.2 Construction Rationale
	12.3.3 Module Overview

	12.4 USDL and Security
	12.4.1 SecurityAttribute
	12.4.2 SecurityMetric

	12.5 Trustworthiness of Service Providers
	12.5.1 Trust Directly Based in Service Description
	12.5.2 Using the Service Description to Harness User Ratings

	12.6 Conclusion
	References
	Listings

	Chapter 13 Modeling Foundations
	13.1 Introduction
	13.2.1 State of the Art and its Inﬂuence on the Module Design
	13.2.1.1 On Service Composition and Bundling
	13.2.1.2 On Service Participants
	13.2.1.3 On Time and Location
	13.2.1.4 On Organizational Modeling

	13.2 Modeling Foundational Service Aspects in USDL
	13.2.2 Design and Relationship of USDL Modules

	13.3 The Service Module
	13.3.1 Overview and Main Constructs
	13.3.2 Illustrative Example

	13.4 The Participant Module
	13.4.1 Overview and Main Constructs
	13.4.2 Illustrative Example

	13.5 The Foundation
	13.5.1 Overview and Main Constructs
	13.5.1.1 Time and Location
	13.5.1.2 Generic Description Elements
	13.5.1.3 Agents and Resources
	13.5.1.4 Connecting Interfaces

	13.5.2 Illustrative Example

	13.6 Conclusion
	References

	Part III USDL — Methods
	Chapter 14 Representing USDL for Humans and Tools
	14.1 Introduction
	14.2 Serialization of USDL models
	14.2.1 Model Requirements for an XML-based Concrete Syntax
	14.2.2 The USDL Serialization Model
	14.2.2.1 Lightweight USDL Meta-model
	14.2.2.2 Full-ﬂedged USDL Meta-model

	14.2.3 Serialization Model
	14.2.4 Mapping the USDL Serialization Model to XML
	14.2.5 Serialization and Exchange of USDL Models Using SML
	14.2.5.1 SML Models
	14.2.5.2 SML Interchange Format
	14.2.5.3 USDL Models as SML Models

	14.3 Representing USDL as Linked Data
	14.3.1 Linked USDL
	14.3.1.1 Integrating USDL in the Web of Data Through Reuse

	14.3.2 Design Decisions
	14.3.2.1 Classifications and SKOS Schemes
	14.3.2.2 Types as Properties
	14.3.2.3 Partonomy
	14.3.2.4 Agents and Roles
	14.3.2.5 Geospatial Modeling
	14.3.2.6 Temporal Modeling and Reasoning

	14.3.3 Services and Service Vocabularies
	14.3.4 Summary of USDL as Linked Data

	14.4 USDL Documentation Generation using USDL-Doc
	14.4.1 USDL-Doc Architecture
	14.4.2 HTML Generation Example using USDL-Doc
	14.4.3 Summary of USDL-Doc

	14.5 Conclusion
	References

	Chapter 15 Enabling USDL by Tools
	15.1 Introduction
	15.2 Editors
	15.2.1 USDL Editor for Experts
	15.2.1.1 Requirements and Design Choices
	15.2.1.2 Realization Concepts

	15.2.2 USDL Light Editor for Casual Users
	15.2.2.1 Requirements and Design Choices
	15.2.2.2 Realization Concepts

	15.3 Repositories
	15.3.1 USDL Repository as an Enterprise Application
	15.3.2 Building a USDL Repository as a Service
	15.3.2.1 High Level Design Rationale
	15.3.2.2 A Design which Meets the Requirements
	WS-* and REST Services with Multi-granular Access
	Object Identification across Address Spaces

	15.3.2.3 Implementation
	Tool Reuse
	Combining the Tools and Frameworks

	15.3.3 Conclusion

	15.4 USDL Marketplace
	15.4.1 USDL Service Publishing and Presentation
	15.4.2 Business Scenarios— Enhanced User Guidance through Abstract Services

	15.5 Deployment Scenarios
	15.5.1 Simple USDL Tool-Chain
	15.5.2 Value Chains for Multiple Stakeholders

	15.6 Service Integration Framework
	15.6.1 Example: Consumption of a Business Service “Eco Value Calculator” within a PLM Application
	15.6.2 Architecture and Main Components of a Service Integration Framework
	15.6.3 Prototype of a Service Integration Modeling Environment

	15.7 Conclusion
	References

	Chapter 16 Supporting USDL by a Governance Framework
	16.1 Introduction
	16.2 Related Work
	Governance Policies
	Organizational Structure
	Roles and Responsibilities
	Artifact Management and Software Support
	Service Lifecycle
	Strategic Alignment
	SOA Procedure Model
	Governance Processes and Policy Enforcement
	SOA Maturity Measurement
	SOA Metrics
	Summary

	16.3 Building Blocks of a Service Governance Framework
	16.3.1 Stakeholder Map
	16.3.1.1 Service Provider
	16.3.1.2 Platform Host
	16.3.1.3 Service Consumer
	16.3.1.4 Community Member
	16.3.1.5 Service Innovator

	16.3.2 Process Framework
	16.3.2.1 Design
	16.3.2.2 Deployment
	16.3.2.3 Delivery
	16.3.2.4 Monitoring
	16.3.2.5 Change

	16.3.3 Measurement Framework
	16.3.4 Maturity Model and Capability Profile

	16.4 Service Description Management for USDL
	16.4.1 Service Description Management Processes
	16.4.2 Exemplary Application

	16.5 Conclusion
	References

	Chapter 17 Managing Variants of USDL
	17.1 Introduction
	17.2 Motivation
	17.3 Canonical Data Model
	17.4 Context Driver
	17.5 Governance Processes
	17.6 Tooling
	17.6.1 Common Repository
	17.6.2 Collaborative Governance
	17.6.3 Evolutionary Optimization
	17.6.4 Semi-automatic Mapping

	17.7 Related Work
	17.7.1 Canonical Data Model
	17.7.2 Context Driver Principle
	17.7.3 Governance Processes
	17.7.4 Tooling

	17.8 Discussion
	References

	Part IV USDL — Evaluation
	Chapter 18 Case Studies
	18.1 Introduction
	18.2 Case Study: Energy
	18.2.1 Changes in the Energy Domain
	18.2.2 Services as Emerging Technology
	18.2.3 Standards Pave the Way to User Acceptance
	18.2.4 The Use Case: Services for Energy Markets
	18.2.5 Example: Services for Weather Forecast
	18.2.6 Implementation of the Service Marketplace
	18.2.7 Marketplace Functionalities and Roles
	18.2.8 Lessons Learned
	18.2.9 Demand of a USDL Standard in the Energy Domain

	18.3 Case Study: Mobility
	18.3.1 Composition of Services
	18.3.2 Technical Components
	18.3.3 Lessons Learned
	18.4 Case Study: Craft Services
	18.4.1 The openXchange Project
	18.4.2 The Roles of Services and Service Description in Craft Services
	18.4.3 Use Case: openXchange Crafts Search
	18.4.4 Experiences
	18.4.5 Lessons Learned

	18.5 Case Study: Business Integration
	18.5.1 The Next Generation of Hosted B2B Solutions
	18.5.2 Integrating USDL into the “B2B Directory” Data Model
	18.5.3 USDL for Platform Services: Marketplaces as Channels
	18.5.4 Lessons Learned

	18.6 Conclusion
	References

	Chapter 19 Experience Report on Real-World ManualService Modeling in USDL
	19.1 Introduction
	19.2 Evaluation Methodology
	19.2.1 Identification of Service-Centric Companies
	19.2.2 Inventory of Existing Service Offering and Usage
	19.2.3 Service Modeling
	19.2.4 Service Registration
	19.2.5 Further Phases
	19.2.6 Methodology Summary and Questionnaire

	19.3 Findings
	19.3.1 Suitability of USDL
	19.3.2 Acceptance of IoS Concepts among Companies

	19.4 Conclusion
	References

	Chapter 20 Requirements for a Service Description Language— Findings from a Delphi Study
	20.1 Introduction
	20.2 Fundamentals of Modeling Language Design
	20.2.1 Models and Information Models
	20.2.2 Characteristics of Modeling Languages
	A Semiotic Theory Perspective to Modeling Languages
	Modeling Methods

	20.2.3 Method Engineering and Language Design Process
	20.2.4 User Requirements for the Unified Service Description Language (USDL)

	20.3 A Delphi Method Process for Exploring Requirements for a Service Description Language
	20.3.1 Delphi Method
	20.3.2 Specific Setting and Procedure

	20.4 Results from the Study: Requirements for a Service Description
	20.4.1 Level of Detail
	20.4.2 Domain-specific Extensions
	20.4.3 Discovery and Matchmaking
	20.4.4 Ordering, Negotiation and Access
	20.4.5 Composition and Aggregation
	20.4.6 Multi-Channeling, TCO and Outsourcing
	20.4.7 Resources

	20.5 Conclusion and Outlook
	References

	Chapter 21 How Complete is the USDL? A Theoretical Evaluation of its Capability to Specify Software Services
	21.1 Motivation
	21.2 Existing Approaches to Describe Reusable Software Artifacts
	21.3 Theoretical Evaluation Framework
	21.4 Evaluation of the USDL
	21.4.1 General and Commercial Information
	21.4.2 Information about the Business Semantics
	21.4.3 Information about the Software Architecture
	21.4.4 Information about the Quality

	21.5 Conclusions
	References

