
Chapter 9
Localization and Mapping Corrections

In the last chapter, the main focus was on inertial body reference, idiothetic
sensors, which provide internal information about the subject’s movements. In this
chapter, we add information from local reference, or allothetic sensors, which
provide external information about the environment. In Chaps. 2–7, there has been
much discussion of RF ranging sensors which are a type of allothetic sensor
providing ranging to fixed beacons or other tracked personnel/platforms. Another
example of a common local reference sensor is an image sensor. Even inertial
sensors, which are typically used as body reference sensors, can provide local map
reference data by inferring the location of terrain features based on the sensor data
(Funk et al. 2007; Bandyopadhyay et al. 2008). These allothetic sensors allow us to
create a feature map of what is around us and to locate ourselves within that map—
localization and mapping.

In this chapter, we review some different allothetic sensors and the types of
features that can be extracted for localization. The ability to extract unique features
that can be recognized when ‘‘seen’’ again is the basis for creating feature maps
that can be used to aid in localization. Next, the theoretical formulation and
common solution approaches for the localization and mapping problem are
reviewed. Finally, an example is given that addresses some of the practical issues
for implementing localization and mapping solutions.

9.1 Localization and Mapping Overview

The goal of localization and mapping is to compute the most probable observer
location within the discovered map given the past sensor and control values (if
available). Called simultaneous localization and mapping (SLAM), SLAM requires
the use of sensors to construct a geometric or topological map of the environment
and then use that map for localization (Smith and Cheeseman 1986; Durrant–Whyte
1988; Smith et al. 1990; Dissanayake et al. 2001; Guivant and Nebot 2001;
Montemerlo et al. 2003a; Montemerlo and Thrun 2003b; Thrun et al. 2006).
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The map information also enables us to constrain the growth of errors in body
reference sensor systems. The ability to constrain the errors is dependent on the
quality the idiothetic and allothetic sensors.

In SLAM, both the trajectory of the observer—positions, velocities, and
headings (etc.)—together with features of the map are estimated online without the
requirement for any a priori knowledge of location. Although, navigation and
mapping systems may have access to pre-existing map data. This map data might
consist of GIS (geographic information system) shape files (including building
outlines, roads, etc.), satellite imagery, elevation maps, and building maps (CAD
files, floor plans, etc.). This existing map information can be used for to refine
SLAM algorithms results where map data exists while still allowing new features
that are discovered to be included in the global map.

Work by Meyer and Filliat (Filliat and Meyer 2003; Meyer and Filliat 2003)
provides a useful summary of map-based navigation, which involves three
processes:

• Map-learning—the process of transforming the data acquired during explora-
tion to a suitable representation and structure constituting a map.

• Localization—the process of deriving the current position within the map.
• Path-planning—the process of choosing a course of actions to reach a goal,

given the current position and map.

Localization and map-learning are interdependent processes; the positions of
tracked entities and discovered features/landmarks are estimated relative to the
currently known map. On the other hand, path-planning is a somewhat indepen-
dent process that takes place once the map has been built and the subject’s position
estimated.

These three processes may rely on both idiothetic and allothetic sensor data.
Idiothetic information may include speed, acceleration, leg movement for dis-
mounts, wheel rotation for vehicles, etc. Through dead reckoning, these data
provide position estimates of the subject in a metric space. Idiothetic sensors can
also provide local map reference data by inferring the location of terrain features
based on how the subject moves through the environment. For example, they have
been effectively used to locate features in structured environments such as stair-
ways and elevators in buildings (Funk et al. 2007; Bandyopadhyay et al. 2008).

Allothetic information can be used to directly recognize a place or a situation;
in this case, any cue such as image features, sonar time-of-flight, color, etc., may
be used. Allothetic information can also be used to derive subject motion from
measurements of the environment. That is accomplished by converting informa-
tion expressed in the space related to the idiothetic data based on metric models of
the associated sensors. With such a metric model, it is possible to infer the relative
positions of two places in which allothetic information has been gathered (Filliat
and Meyer 2003). For example, frame-to-frame stereo camera feature tracking can
be used to solve for six degrees of freedom motion of the camera (see Chap. 8).

The limitations and advantages of these two sources of information are com-
plementary. Indeed, the main problem associated with the derived metric motion
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information is that, because it involves a dead reckoning process, it is subject to
cumulative error (for example, heading error in an inertial system). This leads to a
continuous decrease in quality; therefore, such information cannot be trusted over
long periods of time. On the contrary, the quality of feature based map information
is constant over time, but it suffers from the perceptual aliasing problem, e.g., for
a given sensor system, two distinct places (landmarks) in the environment may
appear the same, for example, doors or light fixtures.

Consequently, to build reliable maps and to navigate for long periods of time,
the user track and map information must be combined. In other words, map
information must compensate for sensor information drift while user motion/track
information must allow perceptually aliased allothetic information to be disam-
biguated. When both allothetic and idiothetic sources of information are available,
there are many ways to integrate them in a representation useful for navigation.
Classically, the corresponding representations are referred to as metric maps or
topological maps (Filliat and Meyer 2003).

In metric maps, geometric properties of the environment such as the positions
of objects are stored in a common reference frame. A metric map can be repre-
sented as a 2D floor plan or a 3D architectural map. The quality of the synthetic
metric map is dependent on the quality of the idiothetic and allothetic sensors. For
example, the scale and shape of the metric map are affected by the quality of the
position estimated by idiothetic sensors. The drift of the position estimate is dif-
ficult to correct without making assumptions about particular properties of the
environment, such as orthogonal hallways; or alternatively, without closing the
loop, that is, revisiting a feature with previously recorded location and using that
knowledge to estimate biases and correct computed position errors. Converting
raw allothetic information such as range to a feature into a metric space is
dependent on the properties of the sensor, such as measurement accuracy, and also
on the local properties of the environment, for example, optical features are dif-
ficult to extract from blank walls or dimly lit areas.

In topological maps, it is the allothetic characterizations of places (features/
landmarks) that the subject can reach that are stored, along with some information
about their relative positions, for example, a list of discovered features/landmarks
with connections to other features that can be directly accessed from the given
feature. This type of high-level connection diagram of the environment is valuable
in path planning. Additional details about the advantages and drawbacks of these
representations can be found in Filliat and Meyer (2003).

9.2 Map Features

For each sensor type, extracting reference information from sensor measurements
that can be used for navigation requires finding ‘‘unique’’ information, a feature, in
the sensor data that is suitable for tracking. This means a feature that can be
recognized by the sensor algorithms when encountered again. The sensor features
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(also referred to as landmarks) can be saved to form a map of the environment
which is used to aid navigation. Mapped features can be used to provide navigation
corrections when a feature is revisited.1

When we think of a map for navigation, several types of maps may come to mind,
for example, GIS maps like Open Street Maps or elevation contour maps. These are
maps that humans can interpret to aid in navigation. In SLAM, as the subjects
traverse the world, they collect map landmarks or features to be used by navigation
algorithms. The types of features collected can be quite different. In this section, we
review a few types of map features that might be used by a navigation system.

9.2.1 Optical Features

The easiest setting to think about SLAM is in the context of an optical navigation
system. The system ‘‘sees’’ a landmark and its relative location and logs it. Then,
when the subject revisits the landmark, if any errors in position have accumulated,
the subject’s location can be updated based on the landmark’s prior location
estimate. The human brain is quite adept at selecting and matching landmarks in
varying conditions, but this is a difficult problem for a machine vision system.

One of the classic challenges for computer vision systems is to make object
identification reliable when the same object is viewed from different perspectives
and distances, and in different lighting conditions. The premise of many vision
algorithms is that interesting features on an object can be extracted together with
their relative spatial locations to provide a feature based description of the object
that is robust to changes in these parameters.

Another classic challenge for computer vision is to detect objects and structures
that are partially blocked. Feature based approaches are well suited to tackle these
problems because they treat an object as the sum of its parts rather than the precise
match of the whole.

Optical landmarks also suffer from perceptual aliasing, for example, in an office
building, many doors look the same. There has been significant research in com-
puter vision system to address these issues and algorithms have been developed
with varying degrees of robustness. Algorithms trade off computational complexity
to achieve better object recognition performance.

In computer vision research, feature extraction methods have been developed in
an attempt to overcome these issues. Corner based features are useful for detecting,
characterizing and identifying man-made objects. A well-known algorithm is
Harris corner detector (Harris and Stephens 1988). Selected features must be suf-
ficiently distinct so there is low probability of mismatch. Identifying distinctive
landmarks is not always simple. For example, viewed from varying distances the

1 Feature tracking can also be used to directly solve for the resulting motion of a sensor if enough
information is gathered to infer the relative movement of features in a metric map as a result of
the subject motion, for example, stereo camera feature tracking.
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objects will have different scales. Lindeberg introduced the concept of automatic
scale selection. He showed that for feature detectors expressed in terms of Gaussian
derivatives, when estimating image deformations, such as in image matching
computations, scale levels with associated deformation estimates can be selected
from the scales at which normalized measures of uncertainty assume local minima
with respect to scales (Lindeberg 1998).

Another common image processing algorithm used for object identification is
Scale Invariant Feature Transform (SIFT). (Lowe 1999) The algorithm is
designed to detect and describe local features in images. Its basic premise is that
objects can most reliably be recognized based on local features and their relative
spatial locations. The SIFT algorithm identifies ‘‘key points’’ based on contrast
gradients. The SIFT key points allow one to efficiently match small portions of
cluttered images under rotations, scaling, change of brightness and contrast, and
other transformations (Lowe 1999, 2004).

SIFT gets mixed reviews when used for SLAM applications. One major
complaint is that the algorithm is computationally intensive (Lemaire and Lacroix
2007), which hinders real-time implementation. When Lowe used SIFT as a means
for conducting stereo vision SLAM, the system ran at 2 Hz on a Pentium III
700 MHz processor (Se et al. 2005), a very slow computer by today’s standards.
The positive aspect of SIFT is its ability to produce distinctive features from
natural landmarks (Miro et al. 2005; Se et al. 2005; Sim et al. 2005; Elinas et al.
2006). The distinctiveness of SIFT allows SLAM algorithms to perform global
localization more easily and allows closing-the-loop approaches to work robustly
(Se et al. 2005; Elinas et al. 2006).

Speeded Up Robust Features (SURF) Bay et al. (2008) was developed to address
some of the computational issues of SIFT. It is loosely based on SIFT, but it uses
integral images for image convolutions which is computationally faster. An integral
image is an image where the value at any point (x, y) in the image is the sum of all
the pixels from the origin of the original image up to and including (x, y) (Bay et al.
2006). SURF approximated, and even outperformed, SIFT and select variants
(PCA–SIFT and GLOH) with respect to repeatability, distinctiveness, robustness; it
also computed and compared features much faster (Bay et al. 2006).

In work for TRX, Karvounis implemented a SURF demonstration running at
30 Hz on a desktop computer—I7 Quad-Core 2.4 GHz processor (Karvounis
2011a). For these tests, a Logitech 9000 webcam at 320 9 240 resolutions was
used to capture images. A database of known landmarks was created manually
containing images of several ‘‘landmarks’’ in an office setting.

A SURF visualization was created that displays real-time updates of the camera
image in the bottom panel (see Fig. 9.1). Then, as the camera is moved, each
captured camera frame from the bottom box is compared with all the landmark
images stored in the database. The top image displays a black box until the bottom
frame matches one of the images stored in the database. Once a match is found, see
Fig. 9.1, the top image shows the matched landmark from the database. The green
lines indicate the feature matches and the cyan frame indicates the relative position
of the captured image with respect to the database landmark image.
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Color is not used in these algorithms. Color is an important property used by
humans for object recognition; however, color perception in machine vision is
very complex. A person is able to perceive color as relatively constant in differing
lighting conditions. On the other hand, machine vision systems are generally not so
sophisticated. For example, the color histogram derived from a digital image may
vary markedly for the same object under differing lighting conditions. But as long
as the illumination is held fairly constant, color histograms can be a very effective
feature for object identification (Abdel-Hakim and Farag 2006; Sande et al. 2010).
Frame-to-frame lighting is more likely to be nearly constant but over longer
periods lighting is likely to change.

The discussion of the algorithms and software in this section is centered on
image recognition. An in-depth discussion of hardware is beyond the scope of this
chapter; however, since a camera may serve as the ‘‘eye’’ of the navigation system,
its characteristics can greatly affect the functionality of the system. The quality of
the images produced by the camera directly affects the processing speed as well as
the ability to identify objects. The properties of the lens directly affect the field of
view and the ability to carry out optical ranging. At greater distances, the reso-
lution of the camera can be the limiting factor for feature recognition and ranging.

9.2.2 Inference-Based Features

The desire for improved localization using only the sensors available on a cell
phone is driving researchers to focus on developing methods that leverage only the
cell phone’s embedded sensor information to its maximum benefit for pedestrian

Fig. 9.1 Surf feature match
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navigation. A useful source of environmental information can be derived from a
tracked subject’s motion. A standard approach to tracking is to use an inertial
navigation unit (INU) in a dead reckoning mode making use of only the idiothetic
dead reckoning information provided by the INU sensors. Inertial sensors can
provide allothetic map reference data by inferring the location of terrain features
based on how the subject moves through the environment. In making use of this
additional information, the capability of the INU is improved to function as a
smart, standalone positioning device providing a rich set of inputs for SLAM
algorithms. For example, just as a stereo-optical sensor might provide SURF
features and descriptors with range information for each selected feature detected
in an optical frame, a ‘‘smart’’ navigation unit can provide inertial building and
shape features and signal-based features (e.g., magnetic or signal strength when
these sensors are available in the navigation unit) for input to SLAM algorithms.

For example, in buildings, floor plans represent a specific partition of a 2D space
into spatially characteristic areas such as hallways, rooms, points of entry or exit
including stairwells, elevators, and escalators. The existence of a hallway might be
inferred if a subject moves for a long period in a confined straight area. Climbing
stairs indicates the presence of a stairwell and an elevation change without climbing
stairs might imply an elevator. The location and orientation of each inferred feature
are known based on the idiothetic information. Several researchers have now shown
that these inferred features can be used to mitigate the accumulation of inertial dead
reckoning errors (Funk et al. 2007; Bandyopadhyay et al. 2008; Robertson et al.
2009a, b, 2010; Borenstein 2010; Wang et al. 2012). For example, inferred
knowledge of hallways and other building grid constraints may be enforced on the
navigation solution to yield an effective angular drift correction.

TRX has developed algorithms that detect such building features from track
histories (Funk et al. 2007; Bandyopadhyay et al. 2008). These types of algorithms
have been tested and evaluated in realistic scenarios with inertial sensors alone and
found to markedly improve position accuracy. For example, in one 25 min long
test, the error from pure inertial-based location estimate was reduced from 48 m to
less than 3 m using the mapped-based constraint algorithms; see Fig. 9.2. Adding
other sensor signature data can be used to improve uniqueness of inferred features.
Investigators from Duke University and EJUST have begun to pick up on these
ideas for recognizing and associating inertial signal features with fixed building
features (Wang et al. 2012).

Investigators at the German Aerospace Center have developed a similar
pedestrian 2D map inference system called FootSLAM (Robertson et al. 2009a, b,
2010). The algorithms builds on occupancy grid methods developed for robotic
SLAM that use odometry based path data to develop a 2D map of open areas based
on where the robot travelled. Instead of odometry, FootSLAM uses inertial-based
dead reckoning as the input to FAST-SLAM algorithms (see section on Particle
Filter based SLAM). Similar to the work at TRX, no visual or ranging sensors are
used; instead the 2D is inferred based on the path data.

GPS and INUs are baseline metric sensors but they can provide inferred allo-
thetic information. They should be distinguished from cameras, thermal imagers,
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etc. that can produce ‘‘pure’’ topological measurements of relative range, range
rate or bearing to a landmark. Composite sensors, for example combining vision
and inertial measurements (Fig. 9.3) can combine metric and topological data to
build hybrid maps that enable long term navigation. Together the combined sen-
sors produce a ‘‘composite data array’’ consisting of a vector-valued path of INU
position, velocity, heading, etc., together with the time-space paths of environ-
mental features extracted from the cameras and inferred from subject motion.

For example, one might infer a hallway in a building by walking down it with
only an inertial sensor; however, combining the inertial data with optical (or other)
information, one may be able to estimate the length and width of the hallway as
well. Figure 9.4 shows the stereo left and right camera images from the optical
INU. The blue lines indicate algorithm detected hallway features. The red blocks
show features that had a stereo match and the yellow lines link to matched features
in the left and right image. The hallway width estimation results based on stereo
line detection and matching is 1.61 m. The actual width of the hallway is about
1.52 m so the estimate is off by 0.09 m (3.5 inches).

In buildings, rigid assumptions can be made on the architecture of buildings to
aid in identifying building features and the underlying map. These same
assumptions do not necessarily hold in natural structures, such as caves.

Fig. 9.3 A composite
sensor—an optical INU
integrating stereo vision for
feature extraction with an
INU

Fig. 9.2 a Uncompensated inertial path. b Generated map and compensated inertial path
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Nevertheless, it is reasonable to assume that natural trackable features will exist.
Assumptions on the types of features can be adapted to allow the identification of
key natural features in the environment. For example, different regions can have
unique magnetic signatures, which can be measured by three-axis magnetic field
sensors found in most smartphones, or received signal strength signatures (RSS),
which can be accessed from most radios including, for example, Wi-Fi and
Bluetooth. Fingerprinting methods for radio and other signals was discussed in
detail in Chap. 4. In these techniques, the facility signatures are mapped a priori
and then the signature map is used for localization.

9.2.3 Magnetic Features

Figure 9.5 shows an example of results from one of a sequence of magnetic
signature experiments collected using a YAS529—MS-3C 32 axis magnetic field
sensor while the tracked subject traversed the hallways of the AV Williams
Building at the University of Maryland. Each corridor was found to display a
consistent magnetic signature when the corridor was traversed multiple times.
These signatures were recorded for three corridors as shown in Fig. 9.5. In each of
the plots, the total magnetic field magnitude is plotted (y-axis) versus the sample
number (x-axis) for two different traversals of each hallway. Note, there is some
small variation between the two traversals for each hallway, but the hallways are
clearly distinguishable.

To further test the uniqueness of the signatures, once the magnetic signatures
for each hallway were recorded, tests were conducted where a small segment of
one of the hallways was traversed resulting in a magnetic path signature. These
magnetic signatures were tested against the three corridor database and the seg-
ments could be correctly identified in the part of the corridor where they were

Fig. 9.4 Stereo images displaying feature matched hallway width computation

2 http://pdf1.alldatasheet.com/datasheet-pdf/view/205144/YAMAHA/YAS529.html.
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recorded.3 These results clearly demonstrate the promise of magnetic signature
fingerprints in aiding indoor localization when the signatures are available a priori.

A limitation of recording sampled signature data is that the data is speed and
direction dependent. A computational method such as dynamic time warping is
needed to account for variations in walking speed during the data collections.
Dynamic time warping is a well-known technique for finding optimal alignment
between two time dependent sequences and it is often is used in video and audio
processing (Sakoe and Chiba 1978; Muller 2007).

Continuously matching path segments (in a large dataset) is computationally
costly. Additionally, one may not have an a priori map as we did in the above
experiment. Building a map of magnetic or signal features as the subject traverses
an area, and using them for corrections in a SLAM implementation is an alter-
native to the fingerprinting techniques from Chap. 4.

Selecting only interesting features will minimize computation. Careful con-
sideration of feature selection is critical for robustness. For example, an

Fig. 9.5 Unique magnetic signatures of hallways

3 The subjects walked close to the center of the hallways during these tests at constant speed.
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approximately constant field may be fairly easy to match. Indoor environments
typically provide a rich set of features for magnetic signatures. In outdoor envi-
ronments, magnetic features may be sparse or indistinguishable. Once a feature is
confirmed it can be deemed a landmark with an associated position. Recognized
revisits to the landmark would subsequently provide a mechanism for mitigating
accumulated dead reckoning errors.

To simplify computation, consider a well-localized magnetic feature, for
example, an extreme or a sharp transition in magnetic magnitude. Sharp transi-
tions are common in manmade structures with power systems and other metal
causing magnetic disturbances. Figure 9.6 shows the magnitude of the magnetic
field vector as a subject traverses back and forth in the hallway in an office
building demonstrating the consistency of the signature. From Fig. 9.6, three sharp
transition features are selected from the hallway traversal. These same three
transition features are easily seen in each traversal.

The magnetic features are shown superimposed on a plot of the inertial path
data of a user traversing back and forth in this hallway 10 times (Fig. 9.7). The
inertial path shows clear scaling and drift errors. The path color represents the
magnetic field magnitude. For each of the three magnetic features a minimum
(triangle) and maximum (square) value are marked on the path.

Figure 9.8 shows a zoomed view of going back and forth in the hallway once. It
is clear from these figures that the features may offer some scaling and drift
correction if the features can be recognized and matched.

For signal based features such as magnetic fields, high sample rate data or other
derived parameters can be saved as a feature descriptor detailing the unique
aspects of the feature which can be used for matching if the features are observed
at a later time. While the example above focuses on magnetic data, signature
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features are also valuable from other types of sensor data, such as radiation
measurements or received signal strength.

We have highlighted a few allothetic sensors that provide map features that can
be used for SLAM formulations. There are others we have not touched on such as
LIDAR and SONAR. In Thrun et al. (2006) provide models for these and other

Fig. 9.7 Magnetic features superimposed on inertial track (X, Y position in meters from start
point)
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sensors in the context of SLAM application. In the next sections, the formulation
and solution of the SLAM problem, as well as issues with real-time implemen-
tation are discussed.

9.3 Simultaneous Localization and Mapping Formulation

In robotics, the SLAM problem is considered ‘‘solved.’’ This theoretical solution
has been one of the notable successes of the robotics community (Smith and
Cheeseman 1986; Durrant-Whyte 1988; Smith et al. 1990; Durrant-Whyte and
Bailey 2006a, b). Because position estimates and measurements are imperfect, the
solution to the SLAM problem required the development of a way to update an
uncertain geometric or topological environment model based on new observations
that maintained consistent interpretation of relations between all of the uncertain
features (Smith and Cheeseman 1986; Durrant-Whyte 1988). Work by Smith and
Cheesman and Durrant-Whyte (Smith and Cheeseman 1986; Durrant-Whyte 1988)
established a statistical basis for describing relationships between fixed landmarks
with geometric uncertainty. A key contribution of this work was to show that, due
to the common error in estimated observer location between landmarks, there must
be a high degree of correlation between estimates of the location of different
landmarks in a map. In fact, these correlations grow with successive observations
of the landmarks. Practically, this means that the relative location between any
two landmarks may be known with high accuracy, even when the absolute location
of a specific landmark is quite uncertain. The combined mapping and localization
problem, once formulated as a single estimation problem, is convergent—that is,
the estimated map converges monotonically to a relative map with zero uncer-
tainty. Additionally, the absolute accuracy of the map and subject location reaches
a lower bound defined only by the uncertainty in the initialization (Smith and
Cheeseman 1986; Durrant-Whyte 1988). The correlations between landmarks are
the critical part of the problem and the stronger the correlations grow, the better
the solution (Smith and Cheeseman 1986; Durrant-Whyte 1988; Smith et al. 1990;
Durrant-Whyte and Bailey 2006a, b).

The SLAM problem can be broken into two pieces. The observation model (or
sensor model) pðztjxtÞ describes the probability of making an observation zt of
selected landmarks when the observer location and landmark locations are known.
In SLAM, the system state xt includes the observer pose as well as the map. It is
reasonable to assume that once the observer location and map are defined,
observations are conditionally independent given the map and the current observer
state. The motion model pðxtjut; xt�1Þ for the observer is assumed to be a Markov
process in which the next state depends only on the immediately preceding state
xt�1 and the applied control ut (which may be unknown as is the case in personnel
tracking) and is independent of both the observations and the map. The SLAM
algorithm is then solved by a Bayes filter in a standard two-step time update,
measurement update form.
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1. Time Update: prediction of the state given the previous state and the control
input

pðxtjz1:t�1; u1:tÞ ¼
Z

pðxtjut; xt�1Þpðxt�1jz1:t�1; u1:t�1Þdxt�1;

and
2. Measurement Update: update of the predicted value given the most recent

sensor data

pðxtjz1:t; u1:tÞ ¼ gpðztjxtÞpðxtjz1:t�1; u1:tÞ

where g is a normalization constant (Thrun et al. 2006).
The derivation of this and similarly all the popular recursive state estimation

filters rely on the Markov assumption, which postulates that past and future data
are independent given the current state. The Bayes filter is not practically im-
plementable at this level of abstraction. Approximations are often made to control
computational complexity, e.g., linearity of the state dynamics, Gaussian noise,
etc. The resulting unmodeled dynamics or other model inaccuracies can cause
violations of this assumption. In practice, the filters are surprisingly robust to such
violations (Thrun et al. 2006).

In probabilistic form, the SLAM problem requires that the joint posterior
probability density of the landmark locations and tracked subject’s state (at time t),
given the recorded observations and control inputs up to and including time
t together with the initial state of the tracked subject, be computed for all times
t. Solutions to the probabilistic SLAM problem involve finding an appropriate
representation for both the observation model and the motion model, preferably
recursive, which allows efficient and consistent computation of the prior and
posterior distributions.

The SLAM problem has been formulated and solved as a theoretical problem in
a number of different forms. However, issues remain in realizing general SLAM
solutions in practice and notably in building and using perceptually rich maps as
part of a SLAM algorithm. By far, the most common representation is in the form
of a state-space model with additive Gaussian noise, leading to the use of the
extended Kalman filter (EKF) to solve the SLAM problem.

The popularity stems from the fact that the EKF provides a recursive solution to
the navigation problem and a means of computing consistent estimates for the
uncertainty in subject and map landmark locations. This is despite the fact that
many sensor noise models are not well represented by additive Gaussian noise.

9.3.1 Kalman Filter

Here, we take a short diversion to briefly discuss one of the most popular Bayesian
filters, the Kalman Filter and a couple of its extensions, and to highlight some of the
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properties of the Kalman filter that drive its popularity. More detailed discussions
and complete derivations can be found in Kailath (1980), Thrun et al. (2006).

A Kalman filter is a computationally tractable mechanism to incorporate

1. imprecise knowledge about a system—system dynamic models, noise models
2. system observations—measurements, sensor models

to yield an estimate of the current state. Under the assumptions that the system is
linear and the model and observation errors are independent Gaussian random
variables, the Kalman state estimate is an optimal estimate. There are several
possible definitions for optimality

Minimum Mean Square Error ĥ ¼
argmin

h
y� f ðhÞk k2

Maximum Likelihood ĥ ¼
argmax

h
pðhjyÞ

Minimum Variance ĥ ¼
argmin

h
^ Eðh� h

^

Þ2

Maximum a Posteriori (MAP) ĥ ¼
argmax

h
pðyjhÞ

It turns out because of the nice properties for linear systems and Gaussian noise,
the Kalman state estimate satisfies all of these optimality criteria. In addition, the
estimate is

• Unbiased4: the expected value of the estimate is the same as the parameter, and
• Consistent: the variance decreases to 0 with further observations

Because computer realizations of the algorithm are necessarily implemented in
discrete time, here we summarize the Kalman filter for a discrete linear system. The
linear system state is xk 2 R

n; the control uk 2 R
p; the measurements yk 2 R

m; and
additive, independent, zero mean, state noise wk 2 R

n and measurement noise
vk 2 R

m:

xk ¼ Axk þ Buk þ wk

yk ¼ Cxk þ vk
;

wk

vk

� �
�N

0

0

� �
;

Q 0

0 R

� �� �

Figure 9.9 shows the system model and Fig. 9.10 shows the standard form of
the recursive estimator. Starting with an estimate of the initial state, x̂0 2 R

n and
given a control input u1 2 R

p the next state, x̂2j1; is predicted. The observations at
time 2 are then used to update the state x̂2j2 and so on. It would be a good guess
that the best prediction of the state given the control inputs can be obtained by

4 The Cramer Rao Lower Bound (CRLB) gives smallest variance achievable by an unbiased
estimate.
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simply applying the system model, the difficult piece is to decide how to optimally
update the state given the observations. The Kalman filter provides the optimal
update and additionally provides an error covariance that provides information on
how good the estimate is.

Figure 9.11 shows the discrete time Kalman Filter algorithm.
The Kalman filter prediction step uses the system model to update the state

given the control x̂kþ1jk ¼ Ax̂kjk þ Buk and the state estimate given observations is

x̂kþ1jkþ1 ¼ x̂kjkþ1 þ K ykþ1 � Cx̂kþ1jk
� �

: The Kalman gain, K, is chosen to minimize
the error covariance, P.

The derivations of the update equations for the Kalman gain and error
covariance are made under the assumptions that the system is linear and the model
and observation errors are independent Gaussian random variables. Given a
complete system model, these assumptions imply a Markov property that past and
future data are independent given the current state (Kailath 1980; Thrun et al.
2006).

The mathematical model introduced above is similar to the Markov model
introduced in Chap. 4 for robot localization. A key difference is that each saved
map feature is added to the system state and also tracked. This can cause a large
increase in computational complexity over methods that assume a known map. A
method for overcoming some of the practical implementation issues associated
with the added computational complexity is discussed in the section SLAM
Implementation.

If the system and or measurement model is nonlinear,

xk ¼ f ðxk; uk;wkÞ
yk ¼ gðxk; vkÞ

an extension of the Kalman Filter (the Extended Kalman Filter EKF) is made by

substituting a linearized version of the system model, �Ak ¼ of
ox

��
ðx̂kjk ;ukÞ,

�Bk ¼ of
ou

��
ðx̂kjk ;ukÞ and measurement model �Ck ¼ og

ox

��
ðxkjkÞ

; into the computation of the

prediction and update of error covariance, and computation of Kalman gain.

ku

kv

ky
+

+
System

kx

Fig. 9.9 System model

Predict Update

kkx |1ˆ +

1|1ˆ ++ kkx

1+ky

0x̂

1+ku

Fig. 9.10 Recursive
estimator
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The model prediction and update use the full nonlinear system model. The
resulting unmodeled dynamics or other model inaccuracies induce violations of the
original assumptions of the Kalman Filter derivation and so the EKF is no longer
an optimal solution. Despite this, in practice the EKF often provides a useful
solution when the linearization offers a good estimate over the current operating
range of the system. Unfortunately, this is not always the case. This is because the
linearization does not preserve the true mean and true covariance of the posterior
distributions (Thrun et al. 2006).

A popular method that often performs better is the unscented Kalman Filter
(UKF). The UKF performs a stochastic linearization through the use of a weighted
statistical linear regression process, see Thrun et al. (2006) for more details. While
the EKF is accurate to the first-order Taylor series expansion, the UKF is accurate
to the first two terms in the expansion (Thrun et al. 2006).

The standard formulation of both the EKF-SLAM and UKF-SLAM solution is
especially vulnerable to incorrect association of observations to landmarks. A
single incorrect data association can induce divergence into the algorithm for map
estimation, often causing catastrophic failure of the localization algorithm.
(Durrant-Whyte and Bailey 2006a, b) One way to handle uncertain association of
observations to landmarks is to generate a separate track estimate for each asso-
ciation hypothesis, creating over time an everbranching tree of tracks. This multi-
hypothesis data association is important for robust SLAM implementation.
Multihypothesis data association is especially important in loop closure, allowing
a separate hypothesis for suspected loops and also a ‘‘no-loop’’ hypothesis for
cases where the perceived environment is structurally similar.

A major hurdle in multihypothesis data association is the computational
overhead of maintaining separate map estimates for each hypothesis. The number

kkkkk BuxAx +=+ ||1 ˆˆ
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Fig. 9.11 Discrete time Kalman filter
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of tracks is typically limited by the available computational resources, and low-
likelihood tracks must be pruned from the hypothesis tree.

9.3.2 Particle Filter

An important alternative to Kalman Filtering methods is the use of particle filters.
Particle filters are a class of nonlinear filters that impose no restriction on the
system model, measurement model, or nature of the noise statistics. Particle filters
compute a solution based on sequential Monte Carlo simulations of particles that
are selected to represent the posterior distributions. Particle filters are only optimal
given infinite computational resources, but even with limited resources, they can
give better solutions than the EKF in cases where the operational region is highly
nonlinear. (Gustafssson et al. 2002; Ristic et al. 2004; Thrun et al. 2006).

One thing to be very cautious about is that computational complexity for
nonlinear filters generally grows exponentially with the dimension of the system,
whereas for the Kalman filter computational complexity grows as the cube of the
dimension. While there are ways to keep the computational complexity under
control, it is something that cannot be overlooked. The particle filter approach to
modeling uncertainty is only possible because of the availability of fast, low-cost
computers with large memories.

FAST-SLAM, with its basis in recursive Monte Carlo sampling, or particle
filtering, was the first method to directly represent the nonlinear process model and
nonGaussian pose distribution (Montemerlo et al. 2003a; Montemerlo and Thrun
2003b). Prior to the development of FAST-SLAM, the large state-space dimension
in SLAM due to the number of map states made direct application of particle filters
computationally infeasible. This issue is solved in FAST-SLAM by using a Rao-
Blackwellized particle filter where the joint subject and map state is factored into a
subject component, and a map component that is conditioned on the subject
trajectory:

pðx0:t;mjz0:t; u0:t; x0Þ ¼ pðx0:tjz0:t; u0:t; x0Þpðmjx0:t; z0:tÞ:

Note that, the probability distribution of the subject is on the entire trajectory
rather than the single state as it is in EKF. When conditioned on the trajectory, the
map landmarks become independent. This follows since given the exact pose
states from which the observations are made, the observations are independent and
therefore the map states are also independent.

The independence of map states is an important difference and the reason
behind the speed improvements of FAST-SLAM over EKF algorithms. Because of
the independence of the map states, updating the map, for a given pose trajectory
particle (a single realization of the subject trajectory) is very fast. The map can be
represented as a set of independent Gaussians. Each observed landmark can
be processed individually as an EKF measurement update from a known pose.
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FAST-SLAM linearizes the observation model, which is typically a reasonable
approximation for range-bearing measurements when the subject’s pose is known.
Unobserved landmarks are independent and so unchanged.

Propagating the pose states is performed by particle filtering. The essential
structure of FAST-SLAM, then, is a trajectory represented by weighted samples
(particles) and a map is computed by EKF updates. The map accompanying each
particle is composed of independent Gaussian distributions.

The FAST-SLAM algorithm is inherently a multihypothesis solution, with each
particle having its own map estimate. A significant advantage of the FAST-SLAM
algorithm is its ability to perform per particle data association (Montemerlo and
Thrun 2003b).

Many types of recursive probabilistic state estimate algorithms have been
developed to solve the SLAM problem in an approximate, computationally trac-
table way. While EKF-SLAM and FAST-SLAM are the two most important
solution methods, newer alternatives have been proposed (Durrant-Whyte and
Bailey 2006a, b; Karvounis 2011a). Information Filters and their extensions are of
particular interest. Information Filters are duals of the Kalman Filter that have both
computational and representation advantages when applied to location and map-
ping problems (Thrun et al. 2006).

9.3.3 Graph SLAM

GraphSLAM algorithms are also important SLAM implementations but the
solution is typically not computed in real-time so we will not cover them here. For
more information on GraphSLAM methods refer to Thurn and Montemerlo
(2005); Thrun et al. (2006); Koller and Friedman (2009).

One particular GraphSLAM algorithm that supports real-time implementation
is based on Factor Graphs (Loeliger 2004). Factor graphs provide a unified
approach for modeling complex systems and to deriving practical message passing
algorithms for the associated detection and estimation problems. Factor graphs
allow most well-known signal processing techniques including Kalman and par-
ticle filtering to be used as components of such algorithms (Loeliger 2004).

Researchers at Georgia Tech and MIT have applied factor graph methods for
incremental smoothing in inertial navigation systems (Indelman et al. 2012; Kaess
et al. 2012). The system navigation states are nodes in the graph and each IMU
measurement introduces a new factor to the graph connecting to the navigation
state nodes. This factor may also be connected to other nodes used for parame-
terizing errors in the IMU measurements such as bias and scale factor. These nodes
can be added at a lower frequency than the navigation state nodes. Other aiding
sensors are simply additional sources of factors that get added to the graph
asynchronously whenever their measurements are available. In this way, the factor
graph formulation allows multirate, asynchronous measurements to be incorpo-
rated in a natural way (Indelman et al. 2012). The nonlinear optimization problem
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encoded by the factor graph is solved by repeated linearization within a standard
Gauss–Newton style nonlinear optimizer. The optimization can proceed incre-
mentally because most of the calculations are the same as in the previous step and
can be reused. As long as only sequential IMU measurements are processed, the
resulting graph will have a chain-like structure. By maintaining all information
within a single graph, the filter and smoother can operate asynchronously. This
allows the problem to be split into a high speed navigation component and a higher
latency loop closure component (Kaess et al. 2012).

9.4 SLAM Implementation

While theoretically the SLAM problem has been solved, a major issue that is faced
in developing real-time implementations of SLAM is that as the number of tracked
features/landmarks increases, the computation required at each step increases as a
square of the number of landmarks. Required map storage also increases as a
square of the number of landmarks (Dissanayake et al. 2001). Many people have
developed SLAM implementations to address this issue (Montemerlo et al. 2003a;
Montemerlo and Thrun 2003b; Kim and Sukkarieh 2004; Veth 2011; Karvounis
2011a). For example, computational complexity can be reduced by subdividing the
map and by making the covariance matrix more sparse.

Here, we consider a particular implementation done at TRX Systems that
attempts to address the computational issues in tracking an increasing number of
features. Karvounis implemented an extreme version of this approach called
Hierarchical SLAM or HAR-SLAM. Figure 9.12 gives a flow chart overview of
how the system works. Full details of the algorithms are described in Karvounis

Fig. 9.12 HAR-SLAM Algorithm flow chart
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(2011a, c). The HAR-SLAM algorithm has similarities to the factor graph
approach (Loeliger 2004; Kaess et al. 2012) in that both result in a chain-like
structure of system states.

In this approach, the lowest level SLAM algorithm (Forgetful-SLAM: Fig. 9.12
left hand side) maintains active tracking of only the landmarks that can currently
be seen or have been seen in the last N minutes (up to some max number of
tracked landmarks). By limiting the set of landmarks tracked, the computational
complexity remains bounded. Note that in Forgetful-SLAM landmarks are only
matched to the landmarks currently seen by the camera; they are not matched to
landmarks from the global map. This is a purely local SLAM layer and it will not
offer the capability of correcting based on a previously known landmark (often
referred to as ‘‘closing the loop’’). That type of correction is handled by the higher
level algorithm, HAR-SLAM.

The landmarks/features that are dropped from the Forgetful-SLAM algorithm
are not actually forgotten; instead they are promoted and tracked within the global
map by the HAR-SLAM algorithm, if they are determined to be ‘‘good’’, meaning
that their covariance matrix Plandmark is small and ‘‘relevant’’, meaning that
changes in the landmark location will affect the pose. To determine how much a
good landmark can affect a pose, a metric combining the cross-covariance matrix
between the landmark and pose, Pcross; with the inverse of the landmark covariance
matrix, Plandmark; is used:

max Eigen value PT
cross Plandmarkð Þ�1Pcross

	 


Landmarks are promoted when the max Eigenvalue is greater than a threshold. As
landmarks are removed from Forgetful-SLAM and promoted, their correlations are
tied to the last pose (historical position and orientation). There is a state vector and
covariance matrix per pose, a state vector and covariance matrix per landmark, and
a cross-covariance matrix per link.

As new poses are promoted from Forgetful-SLAM, any updates ripple back
through the chain of historical pose estimates. Each pose is updated through a
correlating Kalman Filter, and each landmark is updated through its own Kalman
Filter. This directional update procedure defines the global level update (HAR-
SLAM). A key advantage of this method is that both storage and computations
grow only linearly with the number of landmarks and poses. (Karvounis 2011a, c).

The global coordinate manager is secondary loop that is run to manage the
coordinate transforms for merging map data from other tracked subjects when
matching features are detected in their respective maps. This is discussed in more
detail later in this chapter. This property of remembering all poses and linking
landmarks only to a single pose allows multiple tracked subjects to link maps
together and asynchronously update portions of the map.

Figure 9.13 shows a high level diagram of HAR-SLAM. Each landmark and
pose has a state vector xi and associated covariance matrix Pi: In the Forgetful-
SLAM section, features are fully linked to each other and the tracked subject’s
pose by cross-covariances Pi; j: Features no longer in view may be selected for
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promotion. Once features are promoted cross-correlations tie them to only the last
pose from which the landmark was seen. All other links are broken. In the HAR-
SLAM update, each pose and any associated landmark(s) are updated depending
only on their direct links using Kalman gains.

Remembering the entire path instead of only the best current estimate allows
HAR-SLAM to more quickly recover from errors by adjusting the entire historical
path and all associated landmarks. This property of remembering historical poses
and linking landmarks only to a single pose allows multiple tracked subjects to
link maps together and asynchronously update portions of the map.

Feature management and promotion are the key differences between Forgetful-
SLAM and the standard EKF-SLAM. In Forgetful-SLAM, features that are no
longer seen are removed and considered for promotion to the global map. In order
for a high level SLAM algorithm to assemble and track the ‘‘forgotten’’ features,
the features need to be recoverable. A cross-correlation matrix is generated per lost
feature that relates the feature to the previous pose (the last pose from which the
feature was observed). Only features/landmarks where the max eigenvalue metric
is greater than a threshold are promoted.

Karvounis developed HAR-SLAM primarily with the goal of limiting com-
putation. As such, a main advantage of HAR-SLAM is its low computational cost.
The cost grows linearly with the number of states and landmarks, while typical
Kalman based SLAM algorithms are quadratic in cost (Fig. 9.14). FAST-SLAM is
the closest to HAR-SLAM in computational cost, with the same linear growth with
poses and number of landmarks; however, FAST-SLAM is based on particle fil-
tering and so it maintains several particles, each with its own map, whereas a
single map is maintained in HAR-SLAM.

Fig. 9.13 Overview diagram of HAR-SLAM
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The Markov assumptions or complete state assumption that underlies all
Bayesian Filters would imply that knowledge of prior states is not needed.
However, unmodeled dynamics, other model inaccuracies or approximations, and
correlations in inputs to the filters are all common in implementations and cause
violations of the assumption. As it turns out, there are other benefits to maintaining
prior pose history.

An added benefit that comes from linking landmarks through poses is that the
pose history provides a directed approach for actively correcting the map and the
entire path history. Because the historical corrections do not affect the current pose
estimate, the rippling changes can have some delay, if necessary, to manage
computational resources. Another advantage of keeping the entire pose history is
that it facilitates closing the loop when matching features. A simple shortest path
algorithm can find the chain of connecting poses between two landmarks, and this
provides a directed path for updating the entire system (and computing needed
cross correlations). Breaking the update into a chain reduces computation com-
plexity to a point where the lower level SLAM and feature extraction algorithms
are where the majority of computational resources are spent.

A key contribution in the development of the first SLAM algorithms was to
show that, due to the common error in estimated observer location, there must be a
high degree of correlation between estimates of the location of different landmarks
in a map (Durrant-Whyte 1988; Smith et al. 1990; Durrant-Whyte and Bailey
2006a, b). The correlations between landmarks are a critical part of the problem
and the more the correlations grow, the better the solution (Durrant-Whyte 1988;
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Smith et al. 1990; Durrant-Whyte and Bailey 2006a, b). In Forgetful-SLAM, all
feature to feature and feature to pose correlations are tracked and only the best
features are promoted. Once promoted, in HAR-SLAM the features are extracted
into a chain and tied to only to the last pose from which the feature was seen (as
shown in Fig. 9.13). This eliminates cross-correlation links between features and
between all but one pose. This change from the theoretical fully connected solution
was made to improve computational speed and it is been demonstrated to be an
effective approach in practice.

9.4.1 Outlier Removal

Kalman Filters are the method of choice for many navigation problems because
the Kalman filter offers a computationally efficient optimal solution in the case that
the underlying system has linear dynamics and the noise is Gaussian additive.
Unfortunately, these assumptions do not hold for many navigation systems.

The standard Kalman filter algorithm is unable to handle the nonGaussian
errors frequently encountered in various types of ranging systems, for example:

• incorrectly matching stereo image features,
• missed or incorrect detections caused by poor lighting
• ranging to unexpected people/objects moving in the field of the sensor.

Failure to recognize and reject these disturbances can cause non recoverable
navigation errors in Kalman filter based navigation systems.

One option is to estimate the nonGaussian error probability and then apply a
particle filter which can handle nonGaussian disturbances (Ristic et al. 2004).
Particle filters have been used successfully in this way but at some computational
cost. Another option is to develop a robust method for recognizing and rejecting
outliers before allowing them to enter the Kalman filter. To minimize computa-
tional burden, Karvounis developed a Robust Kalman Filter that is able to rec-
ognize and reject the disturbances based on expected motion (Karvounis 2011a, b,
c).

Typically, robust filters remove outliers before entering the Kalman Filter stage.
What is novel and interesting about Karvounis’ approach is that the median filter is
inserted between the prediction and measurement update step of the Kalman Filter
(Karvounis 2011b). Principle Component Analysis (PCA) is used to map the
multidimensional observed features into a 1D space. Error vectors are computed
by multiplying the error between the measured and the predicted observation
values by the Kalman gain to find the effect of individual observation errors on the
state. PCA is used to compute the principal vector in the state error space that
causes the projected errors to be maximally distributed, making it sensitive to
outliers. This technique is agnostic to the number of dimensions and the number of
measurements. Including the Kalman gain scaling is important because it provides
a weighting of the observation errors based on the how much the state is affected

272 9 Localization and Mapping Corrections



by the error, not just on the quality of the measurement. Combining PCA with a
median filter provides a robust way to remove outliers.

Consider a nonlinear system model

xk ¼ f ðxk; uk;wkÞ
yk ¼ gðxk; vkÞ

where the system state is xk 2 R
n; the control uk 2 R

p, the measurements yk 2 R
m,

with the assumption of Gaussian zero mean state noise wk 2 R
n with variance Qk

and Gaussian zero mean measurement noise vk 2 R
m variance Rk: The linearized

system is given by

xk ¼ Akxk þ Bkuk þ wk

yk ¼ Ckxk þ vk
;

wk

vk

� �
�N

0
0

� �
;

Qk 0
0 Rk

� �� �

where, Ak ¼ of
ox

��
ðx̂kjk ;ukÞ; Bk ¼ of

ou

��
ðx̂kjk ;ukÞ and Ck¼ og

ox

��
ðxkjkÞ

:

The Kalman filter prediction step is the same as in a standard EKF. It uses the
system model to update the state given the control x̂kþ1jk ¼ Akþ1x̂kjk þ Bkuk and

compute a predicted estimate covariance Pkþ1jk ¼ Akþ1PkjkA
0
kþ1 þ Qk:

In order to accommodate the fact that the measurement noise is not actually
Gaussian in practice, the outlier removal function is inserted at this stage into the
Kalman Filter. Assuming that each of the N observed features is independent from
other features, each feature’s covariance can be extracted from the block diagonal
measurement covariance matrix Rk: The weights are determined by considering
the effect each feature has on the state if the Kalman gain is applied. So for each
observed feature,

K ¼ Pkþ1jkCðiÞ
0

kþ1 CðiÞkþ1Pkþ1jkCðiÞ
0

kþ1 þ RðiÞkþ1

� ��1

~xðiÞ
kþ1
¼ K yðiÞkþ1 � gðiÞðx̂kþ1jkÞ

	 


For measurement related functions, CðiÞkþ1;R
ðiÞ
kþ1; g

ðiÞ; yðiÞkþ1; the superscript ðiÞ indi-
cates the portion related to the selected feature. Note that each of

K;Pkþ1jk; x̂kþ1jk;~x
ðiÞ
kþ1; are full size. For ~xðiÞkþ1; the superscript ðiÞ indicates that this is

the state correction that is indicated due to the variation of that observed feature
from what was predicted.

The mean and variance of the state corrections is then computed over the set of
all features.

�xkþ1 ¼
1
n

XN

i¼1

~xðiÞ
kþ1

~Xkþ1 ¼
XN

i¼1

ð~xðiÞ
kþ1
� �xkþ1Þð~xðiÞkþ1

� �xkþ1Þ
0

The largest eigenvector v of ~Xkþ1 is the principal vector in the state space that
causes the projected error corrections to be maximally distributed. Each feature’s
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weight is then determined by projecting the state correction for that feature onto
that principle vector: wi ¼ v

0
xðiÞ

kþ1
: Outliers in this space are then eliminated using a

median filter (see Chap. 8). Note that by using the state correction as a common
metric for selecting outliers, measurements of different dimensions can be
compared.

Next, for each of measurement related functions, CðiÞkþ1;R
ðiÞ
kþ1; g

ðiÞ; yðiÞkþ1; for all i
in the set of features that were not eliminated by the median filter, the matrices and
functions must be reformed (now having reduced observation dimension). To
make clear the reduction in dimension, we indicate them by ~Ckþ1; ~Rkþ1; ~g;~ykþ1 in
the update equations for the EKF.

K ¼ Pkþ1jk ~C
0

kþ1
~Ckþ1Pkþ1jk ~C

0

kþ1 þ ~Rkþ1

	 
�1

x̂ðiÞkþ1jkþ1 ¼ x̂ðiÞkþ1jk þ K ~yðiÞkþ1 � ~gðx̂ðiÞkþ1jkÞ
	 


Pkþ1jkþ1 ¼ ðI � K ~C
0

kþ1ÞPkþ1jk

In the next section, we review some experiments that show the performance
benefit of the Robust Kalman Filter when using stereo-optical measurements as
part of an optical SLAM algorithm.

9.4.2 Experimental Results

Experiments to compare the performance of selected SLAM algorithms were
conducted at TRX. The test was conducted using a robot from the University of
Maryland’s Autonomous Systems Lab (ASL). The ASL robot has the capability to
report location via encoders, which provides a position estimate with roughly a
0.1 % error over distance travelled,5 however, the robot uses gyros for heading,
and these can have a drift in the heading estimate. Figure 9.15, the right image,
shows in the center a PC that controls the robot and processes all data. The rear of
the robot has a router that is setup to network with other robots but this capability
was not used in the experiments reported here. Sonar sensors surrounding the robot
were also available but not used in this experiment. The PC is powered by lithium
ion batteries and the robot is powered by nickel metal hydride batteries.

The ASL robot was equipped with a TRX INU containing six-axis inertial,
three-axis magnetic and barometric pressure sensors and enhanced with stereo
Firefly cameras from Point Gray, as circled in the left image of Fig. 9.15. The
Firefly cameras have a global shutter, which minimizes image blur, and a trigger
that allow us to sync the images with the inertial measurements from the TRX
INU. To selected and track stereo-optical features, LK-SURF, a hybrid feature

5 This assumes traveling in a straight line track without wheel slip.
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tracker, was implemented that uses SURF features for detection and stereo
matching then modifies them to use Lucas–Kanade feature tracking over time
(Karvounis 2011a, c).

Figure 9.16 shows a CAD drawing of the test location layout with approximate
location of furniture.

9.4.2.1 Robust Kalman Filter Versus Standard Extended Kalman Filter

Tests were first run to show the performance of the Robust Kalman Filter versus
the standard Extended Kalman Filter for integrating optical and inertial mea-
surements. While the robots have capabilities for autonomous operations, data was
collected by remotely controlling the robot in

Fig. 9.15 University of Maryland automatic systems lab robot with TRX INU and machine
vision cameras

Fig. 9.16 CAD drawing of
the test location
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1. a short path around the lab table,
2. a long path around the center offices,
3. a figure-eight path around the center offices and lab table, and
4. four laps around the center offices.

Images were collected at 20 frames per second and extracted/matched features
were logged at each time step to enable a comparison of exactly the same path/
features for each algorithm.

On these simple paths traversed by a robot in a lab, it was demonstrated that the
Robust Kalman Filter did not suffer from poorly matched or tracked features and
produced a path within about a meter of the true path as long as 50 % of the
observed features align with the expected model (Hampel et al. 1986; Karvounis
2011a). The standard Kalman Filter (with no pre-filtering), on the other hand,
drastically altered the estimated position of the robot inducing an error of over
60 m in location.

Forgetful-SLAM using a linearized version of a Robust Kalman Filter was
evaluated over a series of robot paths and compared with a path based on wheel
encoders and gyroscopic angle and Forgetful-SLAM using a standard EKF
(without outlier removal). The encoder/gyro path is included as a baseline for
performance if the controller has access to other vehicle sensors; optical SLAM
algorithms are not used in this computation of this path.

Table 9.1 gives an estimate percent error over distance travelled for each path/
filter. The wheel encoders measure the total distance travelled, and the error is
determined by how far the end of the path is from the true location. In each of the
test paths, the true location of the end of path is the same as the start location.
While percent of distance travelled is not the best metric in for tracking system
performance (Chap. 8, section Accuracy Metrics), it allows a comparison of
performance of different algorithms on the same base data set when a system for
measure ground truth course data is not available. Note that, scaling error is not
captured by this metric because the path begins and ends at the same point.

Above each result is a set of small images of the path. This shows the various
path shapes and allows us to see visually how each filter performed on the path.
The encoder and gyroscope path has error introduced by deviations in distance and
by small amount of gyroscopic drift, however the path shape over the first three
short tests is visually close to the actual course and the effect of drift is clear in the
final test. The EKF and Robust Kalman Filter are able to reduce drift but are
affected by outliers.

The Robust Kalman Filter consistently matches shape to the baseline encoder
and gyroscopic path. The EKF path suffers significantly from outliers, causing the
path to be distorted. The Robust Kalman Filter performed the best by a significant
margin in some cases but was out performed by the encoder/gyro path in one of the
shorter paths. As the path length/complexity increased, the Robust Kalman Filter
showed more consistently good performance. The standard EKF always performed
worse because it was unable to reject the outliers.
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While the Robust Kalman Filter appears to remove most outliers, it is not
entirely immune to outliers; the four loop path shows anomalies indicating outliers
are present. The median filter outlier rejection rule only works when outliers make
up less than 50 % of the samples. If, for example, a moving object covers the
entire image frame, there is no guarantee that there are any correctly tracked
features. These anomalies may be able to be corrected if the higher level HAR
SLAM algorithm were performed to allow a global map to be created. Without the
global map, loop closure is not performed.

Table 9.1 Path snapshot and filter performance comparison using percent error over distance
travelled. Eight paths used to compare inertial paths, Robust Kalman Filter paths, and Extended
Kalman Filter paths

Path Wheel Encoder 
and Gyroscope 

Forgetful SLAM 
using an EKF

Forgetful SLAM 
using RKF

Short 
Clockwise 

Path

Short 
Clockwise

0.85% 2.75% 1.06%

Long 
Clockwise 

Path

Long 
Clockwise

2.44% 2.48% 1.76%

-
Path

Figure-Eight
2.75% 18.41% 1.35%

Four Loop 
Path

Four Loop
3.85% 8.50% 2.65%
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9.4.2.2 HAR-SLAM

In the next test, we reexamine the data from the figure-eight loop, to demonstrate
that the loop closure in HAR-SLAM is able to correct errors caused by outliers.

To illustrate the importance of feature management methods in any real-time
implementation of SLAM, an implementation of EKF-SLAM was run with no
attempt to prune selected features, neither to remove outliers nor to reduce com-
putation. The EKF-SLAM implementation (with every single feature ever seen
saved!) took approximately 16 h to compute the path estimate for a 2 min path
(Karvounis 2011a, c). Even with the extensive time taken, the result has many
errors induced by outliers (Fig. 9.17). Simple feature management methods can
improve this considerably.

In Forgetful-SLAM, a Robust Kalman Filter is used (Karvounis 2011a), which
significantly reduces, but does not eliminate, the affect of outliers on the solution.
An error caused by an outlier can be seen at (1, 6) in Fig. 9.18. On the same
computer, Forgetful-SLAM took about 5 min to run the same path. While not yet
real-time, this is a huge improvement over the EKF-SLAM running time.
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7Fig. 9.17 EKF-SLAM

Fig. 9.18 Forgetful-SLAM
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Closing the loop in HAR-SLAM by recognizing a feature and correcting the
location enables the errors caused by outliers to be almost completely eliminated.
HAR-SLAM took an additional minute to run, making it 6 min total. Figure 9.19
shows the HAR-SLAM map features (gray), filtered sonar data (black) and the
HAR-SLAM path (red) overlaid on the CAD drawing. The HAR-SLAM path is
very close to the true path.

9.4.3 Map-Joining

HAR-SLAM allows multiple robots to join maps on the fly in near real-time;
whereas, other algorithms such as SEIF (Sparse Extended Information Filter)
proposed joining maps in batch mode (Dissanayake et al. 2001). As depicted in the
HAR-SLAM flow diagram in Fig. 9.12, as landmarks are promoted, a function is
run to check for loop closures and another to compare features to map data from
other tracked subjects in order to merge the features into a joint map. The pro-
motion criteria is potentially different for the individual subject’s global map
which used to determine loop closure and the joint map, higher confidence being
required to be promoted to the joint map. Landmarks promoted to the joint map are
and shared among all tracked subjects on the network. Each landmark promoted to
the joint map is check for matching by each individual. The same landmark
matching technique that is used in loop-closing is used to determine matches
between maps.

In order to join maps, a coordinate transform from each tracked subject’s local
coordinate system into the common coordinate system must be estimated. The
transform consists of a translation to move the origin of the local coordinate

Fig. 9.19 HAR-SLAM map
and path drawn on top of the
CAD drawing
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system to that of the common coordinate system, and rotation to align the axes.
Because of the uncertainty in map features, the global coordinate manager uses an
EKF to estimate the coordinate transform for each track subject. Details of the
update can be found in Karvounis (2011a, c) along with some discussion of a
method for improving robustness.

The global coordinate manager can update the coordinate transform estimates
as often as each time the coordinate manger detects that two or more tracked
subjects have seen the same feature, but this is not necessary and computationally
it may be too expensive. Each update can affect large portions of the joint map, and
as those features are moved, in turn, each individual subject’s map and historical
track must also be updated. To conserve resources the update might be operated at
some fixed interval or after some fixed number of feature matches are detected.

Figures 9.20, 9.21, and 9.22 show the HAR-SLAM results from three inde-
pendent paths taken in the same test location. The associated features for each path
are indicated by ’+’. In one path the robot loops around a lab table (small loop), in
another the robot loops around the lab table and the center offices (small and big
loop), and in a third the robot loops around the center offices (big loop). In addition
to path corrections, HAR-SLAM maintains a map of landmarks/promoted features.
In each of the figures, the promoted features are circled.

This ability to merge the maps relies on selecting robust optical features. In this
experiment only a few features are selected for promotion. The joint map is created
by matching promoted features and then performing a global coordinate transform.

Figure 9.23 shows the three paths and the features in the joint map. Many of the
selected landmarks are brought within close range of each other.

This example shows the promise of near-real-time joint map discovery using
optical features but more work is needed in variable environments (including
natural features, variable lighting, moving objects, etc.).
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9.5 Summary

This chapter gave an overview of localization and mapping with a focus on near
real-time implementation. Methods for feature detection using selected allothetic
sensors were reviewed. It is possible to create maps that enable long-term tracking
with good accuracy by combining allothetic feature information with the idiothetic
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inertial tracking data (Chap. 8), using their complementary characteristics to
compensate for sensor drift and allow disambiguation of perceptually aliased
features. This ability to simultaneously localize and map is called SLAM.

A probabilistic SLAM problem formulation was given and different approaches
for obtaining theoretical solutions were reviewed. A major portion of the chapter
was focused on a hierarchical implementation of SLAM (HAR SLAM) designed
to address some of the practical implementation issues including rejection of
anomalous feature measurements and management of tracked features. A main
advantage of HAR-SLAM is that it provides a structure for managing computa-
tional cost which facilitates real-time implementation.

The HAR SLAM algorithm was shown to be able join maps created from
different traversals of the same environment using only a small subset of good
features from each traversal. This early result shows promise for the use of this
algorithm in crowd source mapping. This work will be discussed in a later paper.
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