
Chapter 4
Survey-Based Location Systems

The two main primitives in location systems—range and angle-of-arrival—were
introduced in Chap. 2. By measuring either of the two between a mobile device
and the base stations in a backbone network, the primitives can be respectively
triangulated or angulated to an estimated location for the mobile. For indoor
systems that require high accuracy and fidelity, the range primitive—when mea-
sured through time-of-arrival (TOA) techniques—is the more robust of the two to
signal fading, as explained in Chap. 2. The success of time-of-arrival techniques
hinges upon the predictable mapping between the TOA and the distance travelled
by the signal. The range primitive can also be measured through received-signal-
strength techniques, however, in harsh propagation environments, the mapping is
very sensitive to fading, which is nondeterministic in nature. Hence, range-based
mapping cannot be reliably exploited for RSS systems in such environments.

Yet, received signal strength has been shown to deliver decent accuracy even in
indoor environments—when used in survey-based location systems. In survey-
based systems, RSS is not mapped to range, but directly to location. The technique
is just to assume that because signal loss occurs in the environment—not only due
to path loss, but also due to penetration loss and specular effects such as reflection
and diffraction—such a mapping exists. Because the mapping is so complex, there
is no attempt to explicitly model the received signal strength as a function of
location. Instead, the mapping is constructed by observing the ‘‘fingerprints’’ that
the RSS ‘‘leaves’’ throughout the environment. From the observed fingerprints, the
RSS-location mapping can be reconstructed. In practice, fingerprinting systems
associate values of a physically measureable feature to discrete locations
throughout a survey area. RSS is the most common feature but, as we shall see,
others have become popular recently. Then, a mobile device can estimate its
location based on the value it measures during a query. The feature value at a
particular location is known as a fingerprint, or signature, because it can be used to
identify the location.
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One of the earlier and most simple fingerprinting systems, known as RADAR
(Bahl and Padmanadhan 2000), is based on the received signal strength. The
simplicity of this indoor location system stems from the fact that RSS measure-
ments are readily available in the IEEE 802.11 standards implementation. For
outdoor systems, on the other hand, the RSS is measured from cellular towers or
satellites. More on cellular systems is discussed in the following chapter. Since
base stations (access points) typically have overlapping coverage, the actual fea-
ture is the vector of RSS values received from all available base stations. Before
the system can be operational, a radio map of the environment must be constructed
in a so-called fingerprinting stage. In this stage, a discrete set of nM candidate sites
xi; i ¼ 1. . .nM; for the mobile is selected throughout the survey area a priori. At
each site, the received powers from the base stations are recorded and stored in a
database. Let nB denote the maximum number of base stations from which a
mobile device can receive a distinct signal. Then, the signature at location xi is the

vector of received powers denoted as Pi ¼ Pi1;Pi2; . . .;Pi;nB

� �T
. We refer to an

ordered pair composed from a location and its associated signature xi;Pið Þ as a
training pair.

During system operation—which is known as the localization stage—a vector

P̂ ¼ P̂1; P̂2; . . .; P̂nB

� �T
of received powers is measured at the mobile device.

RADAR uses the nearest neighbor method as a mapping algorithm from the
measured power to the estimated location for the mobile. Specifically, the mobile’s
location is determined as the location xc of the registered site whose fingerprinted
power Pc is closest to the measured power P̂ in terms of some similarity metric in
the RSS vector space.

Location fingerprinting systems can be differentiated for the most part by the
following two characteristics: (1) the feature selected to fingerprint the sites; and
(2) the mapping algorithm to determine the mobile’s location. In this chapter, we
introduce several fingerprinting techniques. Given its prevalence, we concentrate
on the RSS feature in the first part of the chapter. The same techniques, however,
apply to other features as well. In the first section, an analytical model of a generic
fingerprinting system is presented. The model describes how the salient parameters
common to most systems affect their performance. The subsequent section
showcases a number of methods to compute the similarity metric for memoryless
systems—that is—systems which estimate location based on readings taken at a
single time instant. Section 4.3 introduces systems with memory and shows how
maintaining some historic path data can enhance location precision significantly.
In the remainder of the chapter, we introduce some non-RSS features. Section 4.4
investigates the use of the channel impulse response as an alternative radio fre-
quency signature. Conversely, Sect. 4.5 reports on non-RF features altogether—
features which are available from devices such as smartphones, namely sound,
motion, and color.
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4.1 Analytical Models

Besides the selection of the feature (or features) in any fingerprinting system, there
are a number of system factors which affect performance, most notably the number
of base stations, the number of fingerprinted sites, and the spacing between the sites.
Naturally, the harshness of the propagation environment also affects performance.
In this section, we describe two analytical models proposed in Kaemarungsi and
Krishnamurthy (2004) to investigate these factors. Again, although the proposed
models are specific to RSS-feature systems, the principles apply to all types of
fingerprinting systems. As in the RADAR system, it is assumed that the vector of
received signal strengths from the base stations is used to fingerprint the sites.

4.1.1 A Stochastic Model for the Similarity Metric

A popular similarity metric between the measured power, P̂; and fingerprinted
power at a particular site indexed as i, Pi; is the square Euclidean norm in the nB-
dimensional space (Liu et al. 2007):

qi ¼ P̂� Pi

�� ��

¼
XnB

j¼1

P̂j � P̂ij

� �2
:

ð4:1Þ

The units for the power are in dBm. In practice, a mobile device may not receive a
signal from all nB base stations. This is because when a mobile device is far away
from a site—especially in large deployment areas—the set of base stations from
which it receives may differ from the set registered at the site. In this case, the
similarity metric can compare only the signal strengths from the common base
stations. So, a penalty term q0 is added to (4.1) instead for each base station which is
not common to both sets, where q0 is a system-specific tuned constant. Figure 4.1
illustrates a simple case for which the penalty term is functional. Site a is registered
to both stations whereas Site b, since it lies beyond the coverage area of Base 2, is
only registered to Base 1. Since the mobile is at Site b, it also cannot receive from
Base 2. As such, the similarity metric is computed only from Base 1. Since both
sites are equidistant from Base 1, without the penalty term they would have equal
similarities; on the other hand, by penalizing Site a because there is no reception
from Base 2, the mobile’s location can be successfully resolved to Site b.

In the fingerprinting stage, the sites are selected on a square grid throughout the
deployment area. The fingerprinted power at a site is the expected value of the
received power at the location, i.e., neglecting the stochastic effects of shadowing.
The measured power at the mobile device during a location query can be modeled
as the sum of three terms. The sum is expressed as
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P̂ ¼ Pc þ DPþ S: ð4:2Þ

The first term is the signature power of the site which is most similar to the
measured power. This site is indexed as site c because it indicates the correct
estimate for the mobile’s location. The second term is the offset between the
mobile’s expected power and the fingerprinted power at site c. And the third term
is the fluctuation of the signal due to shadowing. Figure 4.2 illustrates these three
components. Shown is a 5 9 5 grid of fingerprinted sites (red). The expected
location of the mobile is at the center of the radial pattern. Due to shadow fading,

Fig. 4.1 Site a is within the coverage areas of both base stations while Site b is only within the
coverage area of Site b. Although both sites are equidistant from Base 1, because the mobile only
receives from Base 1, the mobile’s location can be resolved to Site b

Pc

P
S

P̂

Fig. 4.2 A 5 9 5 grid of
fingerprinted sites (red). The
actual location of the mobile
device is shown in black. The
expected location of the
mobile is in the middle of the
radial pattern, however, due
to shading, the mobile may be
found anywhere. The
probability of finding the
mobile decreases as the radial
pattern fades away
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however, the mobile (black) may be found anywhere. The probability of finding
the mobile decreases as the radial pattern fades away.

Since the power is measured on a logarithmic scale, the nB individual com-
ponents of S are distributed normally as Sj�N 0; rð Þ [see Chap. 3]. By substituting
Eq. (4.2) into (4.1), the latter then reduces to qc ¼ DPk k þ Sk k. The resultant
distribution for the similarity metric of the correct location is the non-central Chi-
square probability density function (pdf) with nB degrees of freedom:

fqc
qð Þ = e

�
DPk kþqð Þ

2r2 1
2r2

q
DPk k

� � nB�2ð Þ
4

JnB�2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DPk kq

p

r2

 !

; q� 0; ð4:3Þ

where J#ð�Þ is the #-th order Bessel function of the first kind.
The effects of r, nB, and DP on the similarity metric are illustrated in Fig. 4.3.

Naturally, the pdf spreads out as the amount of shadowing, represented by r
increases. Adding base stations to the system magnifies this effect since there will
be more shadowing components in S: The latter phenomenon is captured in Eq.
(4.3) through the associated parameter nB, which spreads the curve out yet further.
Although with additional stations the similarity metric is more susceptible to
shadowing, the enhanced identifiability that the stations bring to the sites delivers
better performance overall. This is highlighted in the following subsection.

The maximum achievable offset power occurs when the mobile device lies as
far as possible from any one of the fingerprinted sites, i.e. at the midpoint of the
square formed by the four sites closest to the mobile. By increasing the grid
spacing, this maximum displacement will also increase. Hence, DPk k is propor-
tional to the grid spacing. The non-centrality of the distribution is attributed to the
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Fig. 4.3 The non-central Chi-squared distribution represents the pdf of the similarity metric qc:
r is the standard deviation of the shadow fading parameter, nB is the number of base stations in
the system, and the parameter k DP k is proportional to the grid spacing between the fingerprinted
sites in the area
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offset term, DP, which shifts the peak of the pdf to q ¼ DPk k; and since fqc
0ð Þ ¼ 0

invariably, when the curve is shifted to the left, it also spreads out. Therefore,
larger grid spacing also leads to more uncertainty in the pdf.

4.1.2 A Stochastic Model for the Correct Localization

The model in the previous subsection assumes that the location system associates
the mobile’s location to the site which has the smallest similarity metric. In this
subsection, the same assumption is made. Under this assumption, the mobile
device is correctly localized if the shadowing component of the measured power
does not cause it to deviate closer to the signature power of a different site. In the
sequel, a model for the probability of correct localization is developed.

4.1.2.1 Model Description

Formally stated, the system correctly localizes the mobile device if the measured
power, P̂; is more similar to the fingerprinted power of site c, Pc, than to the
fingerprinted power of any another site i. The marginal probability of correct
localization when considering a single site i can be expressed as

p qc� qið Þ ¼ p
XnB

j¼1

P̂j � Pcj

� �2�
XnB

j¼1

P̂j � Pij

� �2

 !

: ð4:4Þ

By expanding and collecting terms, the expression can be reduced to

p Ci� 0ð Þ; ð4:5Þ

where Ci ¼
PnB

j¼1 2P̂jbij þ DPij is a newly defined random variable with associated

constants DPij ¼ Pij � Pcj

� �
and bij ¼ P2

cj � P2
ij


 �
. Note that vector DPi is the

offset power between the fingerprints of sites i and c. The vector bi is a second-
order offset. It follows that since P̂j is normally distributed due to shadowing, Ci is
also normally distributed, however with mean and variance

lci
¼
XnB

j¼1

2Pijbij þ DPij

r2
ci
¼
XnB

j¼1

2bijr
� �2

:

ð4:6Þ

Now, the total probability of correctly localizing the mobile device to site
c—total here implies when considering all of the other nM � 1 sites, not just site
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i—can be computed. This probability, pðCÞ, can be expressed as the joint prob-
ability of all the other sites having a greater similarity metric than site c:

pðCÞ ¼ pðC1� 0;C2� 0; . . .;Cc�1� 0;Ccþ1� 0; . . .;CnM � 0Þ: ð4:7Þ

Note, however, that the nM � 1 events above are interdependent. This can be seen
by considering a simple example with only one base station in the deployment area
for which Pc1\P̂1\Pi1\Piþ1;1. It follows that pðCi� 0Þ implies pðCiþ1� 0Þ.
Unfortunately, computing the joint probability in Eq. (4.7) results in a complicated
expression. Rather, as an approximation, the events are considered to be inde-
pendent. As such,

pðCÞ �
YnM

i¼1
i 6¼c

pðCi� 0Þ: ð4:8Þ

The validity of this approximation is examined in the paper. It shows that for
nB [ 2, which is the case in most practical implementations, the approximation
holds very well. This demonstrates that adding base stations to the system dec-
orrelates the events. The events were further decorrelated because the experiments
were conducted in non-line-of-sight conditions—conditions for which the size of
the random component (shadow fading) is yet larger. The details of the experi-
ments are included next.

4.1.2.2 Performance Evaluation

The probability of correctly localizing the mobile device—the performance metric
of the system—was analyzed by considering an example deployment with 25 sites
arranged as a 5 9 5 grid (see Fig. 4.2). The grid spacing was 1 m. The nB base
stations were positioned randomly at grid points around the outermost square and
the mobile device was fixed at the grid center. The simple path loss model from
(2.24) was employed. In it, the path loss is modeled as a deterministic function of
the distance, dij, between site i and base station j:

LðdijÞ ¼ L0 þ 10a log10
dij

d0

� �
: ð4:9Þ

The reference path loss and the reference distance were set respectively to
L0 = 37.7 dB and d0 = 1 m and the base stations all transmitted at
PTX = 15 dBm. Neglecting the transmitter and receiver antenna gains, the
received power is computed as the transmit power minus the path loss, plus a
shadowing component, or:

Pij ¼ PTX � LðdijÞ þ S: ð4:10Þ
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The shadowing was assumed to be distributed as a zero-mean Gaussian with
standard deviation r: In the fingerprinting stage, the feature vector of a site was
calculated as the deterministic received power—i.e., with zero shadow fading—
from each base station. Only nM ¼ 9 of the sites were fingerprinted: the center grid
point and its eight adjacent points.

Figure 4.4a investigates the effect of the shadowing parameter r on the proba-
bility of correct localization. The set of parameters associated with the green curve
could represent the outdoor propagation environment (a ¼ 4 is a typical value for
the path loss exponent) with three base stations. For these parameters, the perfor-
mance of the system is shown to degrade rapidly—from a probability above 0.8 to a
value below 0.2—as the standard deviation increases from 2 dB beyond 4 dB. But
typical values of r outdoors can be as high as 10 dB in urban environments; even
indoors, the experiments in Gentile et al. (2008) report values in the range
2.8–5.4 dB. This demonstrates that a localization resolution of 1 m is practically
unattainable for these parameters—which correspond to the best-case scenario of
the three shown—even with such fine grid spacing, which in practice would require
a laborious fingerprinting stage. In fact, most physical implementations of
memoryless fingerprinting systems using RSS report errors above 2 m (Bahl and
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Fig. 4.4 The probability of correct localization. a Probability of correct localization as a
function of the standard deviation of shadow fading for different numbers of base stations and
path loss exponents. b Probability of correct localization as a function of path loss exponent for
different numbers of base stations and shadow fading standard deviations. c Probability of correct
localization as a function of the number of base stations for different shadow fading standard
deviations and path loss exponents
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Padmanadhan 2000; Brunato and Battiti 2005). As we shall see in later sections,
implementing memory systems or using different features, namely the channel
impulse response to better characterize the sites, can greatly improve results.

Figure 4.4b investigates the effect of the path loss exponent on the system. The
performance is shown to improve as a increases, meaning that the system localizes
better in a harsher propagation environment. The explanation for this is that the
fingerprinted power between sites dropped off more rapidly, enhancing the dis-
criminatory properties of the system, thereby decreasing the chances of mis-
classification. Hence, the fingerprinting technique exploits the very weaknesses of
the RSS ranging technique—which is intended for quasi-line-of-sight conditions
only—described in Chap. 2. So, in fact, the two techniques are complementary.

The probability of correct localization—that is selecting the correct nearest
neighbor grid point—improves as the grid spacing increases. The effect seen through
the model is equivalent to increasing the path loss exponent. This is because, since
the sites are farther apart, there is more variability in the signal strength between
them. In fact, when plotting the performance metric as a function of grid spacing, the
curves look very similar to the ones in Fig. 4.4b. Of course, the disadvantage of
larger grid spacing is that it lowers the maximum attainable resolution.

Finally, the number of base stations in the system was varied. As seen in
Fig. 4.4c, the performance of the system for the parameters corresponding to the
red curve, which assumes harsh propagation environment a ¼ 4ð Þ and low shadow
fading standard deviation r ¼ 2:5ð Þ, stabilizes at nB ¼ 5. Beyond this value it
continues to increase, but at a diminishing rate. In a more favorable propagation
environment, there is a bit more benefit from adding base stations (blue curve), and
with higher shadow fading (green curve) there is more consistent benefit. As
mentioned earlier, the effect of shadowing weighs more heavily on the system as
the number of base stations increases; this is seen by the shallower slope of the
green curve with respect to the blue. Yet, this effect is offset by the benefit of
greater identifiability; hence the performance continues to improve monotonically.

4.2 Memoryless Systems

The analysis in the previous section assumes the nearest neighbor method—the
most simplistic of mapping algorithms—is employed to determine the mobile’s
location from a measured feature. However, more sophisticated methods, such as
the k-nearest neighbor method (kNN), probabilistic methods, neural networks,
support vector machines, and the smallest M-vertex polygon method in Liu et al.
(2007) can enhance localization accuracy. For example, Agiwal et al. (2004)
introduced the LOCATOR algorithm, which is an RSS-based fingerprinting tech-
nique incorporating a number of different approaches. Specifically, in the finger-
printing stage, the radio map is subdivided into clusters to reduce the computational
cost in the localization stage. The authors further use RSS distribution functions at
the sites and interpolations to improve performance. In Moustafa and Ashok (2005),
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the Horus RSS-based system models the RSS distribution received from base
stations through parametric and non-parametric distributions, exploiting this
information to reduce temporal variations in the radio map. Also, Fang et al. (2008)
demonstrated further improvements by using an RSS averaging technique on a
logarithmic scale to mitigate noise resulting from multipath.

The purpose of this section is to provide an overview of some of the afore-
mentioned methods. Specifically, we present the comparison which was published
in Brunato and Battiti (2005) between the weighted k-nearest neighbor method,
support vector machines, Bayesian inference, and neural networks. As mentioned
earlier, although these methods implement the received-signal-strength feature,
they can be readily extended to features such as the channel impulse response or
the frequency channel coherence function.

4.2.1 The Weighted k-Nearest Neighbors Method

The first of the mapping algorithms we investigate is the k-Nearest Neighbor
method, which is just an extension of the nearest neighbor method providing
enhanced robustness to shadowing. Precisely, rather than map the mobile’s loca-
tion to the single nearest neighbor site, the k nearest neighbor sites are employed,
where k is a fixed constant. In practice, the mobile’s location is estimated as the
centroid of the k site locations—together these sites form subset K—which have
the smallest similarity metrics among all the sites. A refinement of the method is
the weighted kNN method proposed in Brunato and Battiti (2005), which scales
the contribution of each by the reciprocal of the similarity metric. Specifically, the
mobile’s location is estimated as a linear combination from the subset:

~x ¼

P

i2K

xi
qiþq0

P

i2K

1
qiþq0

: ð4:11Þ

As such, the location will fall within the convex hull of the site locations. By
associating to location xi a weight inversely proportional to the similarity metric
qi, greater importance is given to sites whose signature power is closer to the
measured power. The constant q0 is a small quantity added to ensure numerical
stability when the similarity metric is close to zero, and the denominator of (4.11)
serves to normalize the weights such that their sum is equal to one.

4.2.2 Support Vector Machines

Support vector machines (SVM) were developed in the area of supervised machine
learning in order to solve nonlinear regression and statistical classification
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problems. RSS-based fingerprinting methods based on support vector machines
have been reported in Wu et al. (2004), Li Wu et al. (2007). In Brunato and Battiti
(2005), they provide a direct mapping from the measured power at the mobile
device to its estimated location through nonlinear regression1—nonlinear regres-
sion on the training pairs xi;Pið Þ; i ¼ 1. . .nM . Two mappings from the measured
power vector, P̂; to the estimated ðx; yÞ-coordinates of the mobile location,
x—denoted as xðP̂Þ and yðP̂Þ—are generated separately. Henceforth, we concen-
trate on the x-mapping, as the method applies equivalently to the y-mapping.

The x mapping can be expressed as a weighted sum of M prescribed nonlinear
functions, gmð�Þ;m ¼ 1. . .M, or

xðP̂Þ ¼
XM

m¼1

wmgmðP̂� PÞ þ x; ð4:12Þ

where �x ¼
PnM

i¼1 xi is the x-centroid and P ¼
PnM

i¼1 Pi is the mean power vector.
The solution to the regression yields values for the weights wm. For instance, if

gmð�Þ ¼ ð�Þm�1 is selected, xðP̂Þ is represented by an ðM � 1Þth-degree polynomial,
where the weights form the associated set of coefficients.

The regression is obtained by solving a convex quadratic program with the
following objective function:

C
XnM

i¼1

ni þ
1
2

XM

m¼1

w2
m: ð4:13Þ

The main objective of the program, which is embodied by the first term, is to find
the mapping which yields the best fit to the training pairs; this is achieved by
minimizing the sum of residuals ni ¼ xi � xðPiÞj j over all the pairs. The secondary
objective, embodied by the second term, is to reduce the complexity of the
mapping such that it can be represented in the lowest dimensional space, where
M is the maximum dimension; this is achieved by minimizing the norm of the
weights. The constant, C, balances the importance of the two objectives. Then the
quadratic program can be stated completely as:

min C
PnM

i¼1
nþi þ n�i þ 1

2

PM

m¼1
w2

m

subject to
xi � xðPiÞ� nþi
xðPiÞ � xi� n�i

nþi ; n
�
i � 0

8
<

:

ð4:14Þ

By decomposing the residuals into positive and negative components, as
ni ¼ nþi � n�i , the absolute values on the residuals are removed such that the

1 Their application to statistical classification is similar.
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problem can be written in standard form. Figure 4.5 illustrates an example
regression for the function gðPÞ ¼ P3 in the one-dimensional power vector space.

As is often the case in convex programing, here it is more practical to solve the
dual quadratic program in (4.15) instead by introducing Lagrange multipliers,
kþi ; k

�
i

� �
; i ¼ 1. . .nM (Smola and Schoelkoepf 2004):

max � 1
2

PnM

i¼1

PnM

k¼1
kþi � k�i
� �

K Pi;Pkð Þ kþk � k�k
� �

þ
PnM

i¼1
xiðkþi � k�i Þ

subject to

PnM

i¼1
kþi � k�i
� �

¼ 0;

0� kþi ; k
�
i �C

ð4:15Þ

where K Pi;Pkð Þ ¼
PM

m¼1 gm Pi � Pð ÞgmðPk � PÞ is known as the kernel function.
The solution to the dual problem yields the values for ðkþi ; k

�
i Þ. From them, the

components of the weight vector in (4.12) can be found as

wm ¼
XnM

i¼1

kþi � k�i
� �

gmðPi � PÞ: ð4:16Þ

4.2.3 Neural Networks

In contrast to the well-defined mathematical formulation provided by Support
Vector Machines, a ‘‘black box’’ approach for generating the mapping between the
measured power vector space and the estimated mobile location space is through

x(P)

PPi

x

xi

εi

^

^

Fig. 4.5 The Support Vector Machine (SVM) mapping between the measured received signal
power space, P̂, and the mobile location space, x
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the application of neural networks. Neural networks are powerful tools for solving
ill-posed problems, i.e., problems for which the causes of certain observations are
either not understood or too complex to define mathematically, and for which there
is often no unique solution. This applies to fingerprinting systems in that an
observed radio frequency feature value—depending on the number of base stations
in the system—may correspond to multiple locations in the survey area; moreover,
the value depends on the structure of the environment (building blueprint, wall
materials, furniture characteristics, etc.). For such systems, there is no attempt to
explicitly model the complex propagation environment which causes these
observations. Rather, it is simply acknowledged that such a nonlinear relationship
exists. By observing the RF signatures at specific locations, the neural network
learns the relationship. Neural network methods for RSS-based location finger-
printing have been reported in Battiti et al. (2002), Edgar et al. (2004), Brunato and
Battiti (2005).

A neural network is a network composed from entities, known as neurons,
which have multiple input ports and a single output port. In Brunato and Battiti
(2005), the multilayer perceptron neural network is implemented. The multilayer
perceptron, in particular, is a feedforward network partitioned into distinct layers.
Feedforward means that the input of a neuron in one layer is connected only from
the outputs of a neuron in the immediate lower layer. Each connection has an
associated weight which serves to scale the output value between the two layers. In
the RSS-fingerprinting application, the inputs to the lowest layer of the network
are the nB elements of the measured power vector—there is one neuron for each
base station. Likewise, the outputs of the highest layer are the two coordinates of
the location vector—there is one neuron for each coordinate dimension. Figure 4.6
shows a diagram of the network.

The role of the individual neuron in the network is simply to compute its output
value from the collection of its inputs. This is executed by summing over the input
values and then mapping the sum to the output through an activation function. By
choosing a nonlinear function for the neuron, the network is capable of repre-
senting any nonlinear function for the network as a whole. In fact, the Cybenko
theorem, also known as the universal approximation theorem, states that a feed-
forward network with a single hidden layer and a finite number of neurons can
approximate any continuous function (assuming a ‘‘well-behaved’’ activation
function) (Cybenko 1989). A commonly used activation function for the percep-
tron is the sigmoid function:

hðzÞ ¼ 1
1þ e�kz

; ð4:17Þ

where k controls the linearity of the function. Figure 4.7 illustrates the curve for
several values of the parameter. As in the SVM framework, neural networks can be
implemented for both regression problems and classification problems. For small
values of k, the function is linear around z ¼ 0 and then saturates at the extrema.
This range of k is applicable to regression problems, such as ours, so that the
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output can assume continuous values. As k approaches infinity, hðzÞ becomes a
step function. This range is applicable to classification problems for which the
output is either a one or a zero, meaning that the input either belongs to a certain
class or belongs respectively to a different class.

The network learns the mapping through an iterative algorithm, such as the
well-known Backpropagation Algorithm, which tunes the connection weights
according to the input/output excitations. During each iteration, by clamping the
inputs and outputs of the network with the values of the training pair ðxi;PiÞ, the
weights are adjusted such that the network yields xi as an output given Pi as an
input. The details of network design and training can be found in Bose (1995).

Fig. 4.6 A three-layer feed forward neural network. The inputs to the first layer are the measured
received signal strengths from six base stations. The outputs are the two-dimensional coordinates
of the estimated location of the mobile device. The network has one hidden layer
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4.2.4 Bayesian Inference

Probabilistic approaches for estimating the location of a mobile device in finger-
printing systems have been reported in Roos et al. (2002), Youssef et al. (2003),
Fox et al. (2003), Madigan et al. (2005), Kushki et al. (2007). As in the kNN,
SVM, and neural network frameworks, the estimated location is not constrained to
any one of the discrete fingerprinted sites, meaning that it can assume any position
throughout the deployment area. The problem is posed in the framework of
Bayesian inference: given the measured power vector, P̂, the posterior probability
(or simply the posterior), pðxjP̂Þ, that the mobile is located at position x is cal-
culated for all candidate positions in the area. Then, from this probability, the
mobile’s location is estimated either through Maximum Likelihood as

~x ¼ max arg
x

p xjP̂
� �

ð4:18Þ

or as an expected value over the area:

~x ¼
Z

x

x � pðxjP̂Þdx: ð4:19Þ

The posterior probability, pðxjP̂Þ, can be viewed as a mapping from the power
vector space to the mobile location space. In the SVM and neural network
frameworks, such mappings are computed through some sort of nonlinear
regression on the training pairs. In the Bayesian framework, however, a mapping is
first computed in the opposite direction, i.e., from x to P̂. This inverse mapping,
denoted as pðP̂jxÞ, is known as the likelihood function (or simply the likelihood)
and effectively serves as the RSS signature for the site. It is the probability
function that the power vector P̂ will be measured if the mobile device is at x. The
benefit of this approach is that likelihood can be computed directly from the
training pairs. For example, in (Roos), (Kuschki), (Fox), (Madigan) the likelihood
function is constructed from the histogram of RSS values registered at each site.
(More details about how to generate the histogram are provided in Sect. 4.3). Once
the likelihood is computed, it is related back to the posterior probability through
Bayes’ Rule, as we shall see in the sequel.

As an alternative to constructing histograms at the discrete sites, (Brunato and
Battiti 2005) invoke a path loss model to calculate the likelihood function. The path
loss model enables generating RSS signature values at continuous points throughout
the survey area—rather than at discrete points only—in the hope of improving
localization resolution. The path loss model employed is similar to the traditional
model in (4.9), however, it also accounts for the attenuation of the walls between a
base and mobile pair. This more comprehensive path loss model can be expressed as:

LjðxÞ ¼ L0
j þ 10aj log10

djðxÞ
d0

� �
þ Lw

j � nw
j ðxÞ ð4:20Þ
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Note that, in order to represent the radio environment more precisely, each base
station j has it own path loss, LjðxÞ. The first term is the associated reference path
loss, L0

j , and the second term is the propagation loss, where aj is the loss exponent
and djðxÞ is the distance between the base station and the mobile device. The last
term is the penetration loss due to walls, with nw

j ðxÞ denoting the number of walls
between the base and the mobile and Lw

j denoting the penetration loss per wall.
The unknown parameters of the path loss model can be extracted through the

data points given by the training pairs ðxi;PiÞ; i ¼ 1. . .nM: To this end, recall from
Eq. (4.10) that the deterministic received power at the mobile is given from the
loss as

PjðxÞ ¼ PTX � LjðxÞ; ð4:21Þ

where PTX is the known transmit power. Then for each base station j; the training
pair ðxi;PiÞ furnishes exactly one linear equation with three unknowns from (4.21).
The system of nM equations, which is overdetermined for nM [ 3, can be solved
for the values of ðL0

j ; aj; LW
j Þ through Least Squares Regression. Note that it is also

possible to assume the same loss model for all base stations by removing the index
j in (4.20), however the authors report that this causes degradation in performance.

With the parameters of the path loss model in hand, the likelihood function can
now be obtained. Recall that in the shadow fading model, the measured power, P̂j,
from base station j at location x deviates from the deterministic power, PjðxÞ, by
the random variable S. In other words,

P̂j ¼ PjðxÞ þ S ð4:22Þ

Since S is a zero-mean normally distributed random variable, the likelihood that P̂j

was measured at location x is given through the Gaussian kernel2:

pðP̂jjxÞ ¼
1
ffiffiffiffiffiffiffiffi
2pr
p e

�
P̂j � PjðxÞ
� �2

2r2 : ð4:23Þ

For simplicity of computation—although not always true in practice—the signals
from the nB base stations are assumed to experience independent and identically
distributed shadowing such that the received powers from each base station are
also statistically independent. Note that this is directly related to the independence
assumption in (4.8), which was experimentally shown to be a valid approximation
for nB [ 2. This assumption is also made in (Roos), (Kuschki), (Fox), (Madigan).
As a result, the likelihood of the measured power vector can be calculated as the
product of the measured powers from each of the base stations:

2 On a similar note, in (Roos), (Kuschki), (Fox), (Madigan) mathematical expressions which are
close to the Nadaraya-Watson Kernel regression are developed.
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pðP̂jxÞ ¼
YnB

j¼1

pðP̂jjxÞ ð4:24Þ

Finally, the likelihood, pðP̂jxÞ, is related back to the posterior probability,
pðxjP̂Þ, through Bayes’ Rule:

pðxjP̂Þ ¼ pðP̂jxÞ � pðxÞ
p P̂
� � ð4:25Þ

If all the locations throughout the survey area are visited with equal frequency, the
prior probability or simply the prior, pðxÞ, is uniformly distributed. Otherwise, if
certain locations have higher or lower frequencies, the prior will be distributed
proportionately; as a simple example, in most households more time is spent in the
living room than in the attic. The value of pðP̂Þ is computed through the law of
total probability:

pðP̂Þ ¼
Z

x

pðP̂jxÞ � pðxÞdx ð4:26Þ

4.2.5 Comparison of Methods

The specific parameters implemented for comparing the four methods described in
this section are provided in Brunato and Battiti (2005). The test experiments were
conducted in a deployment area of roughly 750 m2. The area was partitioned into
five rooms and in each room a separate Wi–Fi base station was deployed. While for
the most part LOS conditions existed within the individual rooms, the walls
throughout the area between the base stations and the mobile device created NLOS
conditions. The fingerprinted sites were spaced at about 3.5 m apart, for a total of
257 sites in the area. For the parameter settings in the paper, the weighted k-nearest
neighbor and the support vector machine methods delivered the best performance,
both averaging a location error of about 3 m. While the computational complexity
for training the kNN is lower than that of the SVM, the latter boasts a much lower
complexity in the localization stage. The average location error for the neural
network method was about 3.2 m, but the time required for tuning the 60 weights
was the highest among all methods; once tuned, however, the neural network
localized the quickest. The Bayesian interference was both computationally inef-
ficient and also sustained the worst average error of 3.35 m. The authors attributed
the poor performance to the adopted path loss model in (4.20) with a total of only 20
tunable parameters—four for each of the five base stations. The Bayesian method
required only a few training points for parameter fitting but, once fit, providing
more training points did not improve the results further. On the other hand, the
neural network, with a total of 60 tunable weights, offered a better degree of fitting.
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Another performance evaluation of different RSS-based fingerprinting methods
is presented in Lin and Lin (2005). The authors compare the kNN, a probabilistic
method, and neural networks. The results of the analysis and experiments reveal
that the kNN reports the best overall performance for indoor positioning. The
performance of histogram, nearest neighbor, parametric and kernel location fin-
gerprinting methods were evaluated in Honkavirta October (2008), Honkavirta
et al. March (2009). Again, the results revealed that the k-nearest neighbor method
fared the same or better than the other methods depending on the environment.

In practice, it is difficult to rank the performance of the four methods described
here because they are sensitive—each to one extent or another—to the choice of
implementation parameters. As a matter of fact, the methods are more similar to
each other than they are different—all essentially just fit a curve to the training
pairs. The parameters selected for each determine to what degree the fitting can be
achieved. In support vector machines, the degree of freedom increases with the
order of the nonlinear functions gmð�Þ;m ¼ 1. . .M in (4.12) and with the number
M of functions itself. In addition— and more explicitly—by increasing the
parameter C in Eq. (4.13), greater importance is given to the minimizing the
fitting error; in contrast, by decreasing this parameter, the system order is mini-
mized. In neural networks, the relationship to the system order is even more
explicit: increasing the number of neurons in the hidden layer increases the degree
of freedom. In Bayesian inference, as just mentioned, the degree of freedom is
dictated by the number of unknowns in the path loss equation in Eq.( 4.20).
Finally, in the k-nearest neighbor method the estimated location is determined as a
curve interpolated between the k-nearest neighbors. By increasing the value of k,
although more robust to measurement error, the estimated location is more
constrained.

For illustrative purposes only, Fig. 4.8 shows three curves fit to a set of training
pairs (red). The orange curve represents a function which is overfit; in order to
reduce the fitting error to zero, a high-order curve is allowed. While the error is
zero for the set of training pairs, the curve does not interpolate well between the
training pairs. The large oscillations indicate that a small change in the measured
RSS vector maps to a completely different location, making for an unstable sys-
tem. On the other hand, the green curve represents an underfit function; because
the function has only a few degrees of freedom, it is very robust to fluctuations in
signal strength. At the same time, the poor fitting to the training pairs can also lead
to large location errors. Lastly, the blue curve presents a good balance between
location accuracy and robustness.

4.3 Memory Systems

Thus so far we have considered only memoryless systems, which estimate the
location of a mobile device based solely on the received signal strength observed at
a single instant in time. While these systems may deliver acceptable performance

116 4 Survey-Based Location Systems



for some applications, by integrating observations available from previous time
instants as well, both precision and stability can be enhanced. In this section, we
describe techniques first developed to solve the wake-up robot problem (Burgard
et al. 1996) which have been adapted to fingerprinting. The scope of wake-up robot
problem is for a robot, which is placed in an arbitrary environment, to discern its
position by gathering and processing sensory data with no prior knowledge.
Chapter 9 is completely dedicated to these techniques—often referred to as
Simultaneous Localization and Mapping (SLAM)—with specific application to
inertial based localization. In the following, we first investigate a technique which
is an adaptation of the Bayesian interference method introduced in Sect. 4.2.4 to
memory systems. We then present an evolution of this technique, known as grid-
based Markov localization, which delivers enhanced stability.

4.3.1 Bayesian Inference in Memory Systems

In this section, we consider an application for which the orientation of the mobile
device, in additional to its location, is estimated. This is achieved by augmenting
the fingerprinted information gathered at site i—previously only the location
coordinates, xi, were fingerprinted—with an orientation identifier denoted as hi.
The orientation identifier can assume one of two values: hi ¼ 1 signifies that the
user is facing a designated direction at the site while hi ¼ �1 signifies that the user
is facing the opposite direction. Of course more than just two orientations can be

 

x

PPi

xi

^

Fig. 4.8 The four methods presented in this section—each through a different algorithm—
generate some mapping between the signal strength space and the location space. The parameters
of each determine the degree of fitting to the training pairs. Shown here are three fits for
illustrative purposes
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incorporated, if desired. We now define a state variable sk ¼ xk; hkf g for the
mobile, which indicates both its location and its orientation. The mobile can lie in
any of ns possible states indexed through k ¼ 1. . .ns. Note that for a total nM

fingerprinted sites with two orientations per site, ns ¼ 2nM :
The Bayesian inference method enables constructing a time-varying posteriori

probability for the state of a mobile device. This probability, denoted as
p skjP̂t; . . .; P̂0
� �

, represents the probability that the mobile lies in state k given the
observations from initialization ðt ¼ 0Þ to time t � 1. These observations are
indexed accordingly as P̂t�1; . . .; P̂0. The system is initialized by setting
p skjP̂0
� �

¼ 1=ns; k ¼ 1. . .ns: This means that in the absence of any observations,
all locations are equally probable. Assuming the posterior at time t � 1 has been
computed, when the most recent observation, P̂t, becomes available, Bayes’ Rule
is applied to compute the posterior at the next time step:

p skjP̂t; P̂t�1; . . .; P̂0
� �

¼
p P̂tjsk; P̂

t�1; . . .; P̂0
� �

� p skjP̂t�1; . . .; P̂0
� �

p P̂tjP̂t�1; . . .; P̂0
� � ð4:27Þ

The denominator in the equation above follows from the law of total probability
as p P̂tjP̂t�1; . . .; P̂0

� �
¼
Pns

k¼1 p P̂tjsk; P̂
t�1; . . .; P̂0

� �
� p skjP̂t�1; . . .; P̂0
� �

, i.e. the
sum of the k-indexed numerator over all the ns states. The denominator effectively
serves as a normalizing factor such that

Pns
k¼1 p skjP̂t; P̂t�1; . . .; P̂0

� �
¼ 1, meaning

that the mobile device will lie necessarily in one of the ns states at time t. The
likelihood, pðP̂tjsk; P̂

t�1; . . .; P̂0Þ, in the numerator is the probability that the signal
strength vector P̂t will be observed when the mobile lies in state sk. Since this
probability is assumed to be stationary—meaning that the observed power when
the mobile user is at a particular location and in a particular orientation is static
over time—the readings from previous time instants have no bearing on it. This
assumption can be stated mathematically as p P̂tjsk; P̂

t�1; . . .; P̂0
� �

¼ p P̂tjsk

� �
.

The probability p P̂jsk

� �
represents the distribution of the received signal

strength vector, P̂, when the mobile is in state sk. In this application, the distri-
bution acts as the RSS signature for the corresponding location and orientation of
the mobile. Indeed it has been shown in Gentile and Klein-Berndt (2004), Ladd
et al. (2005) that the signature varies not only by location but also by orientation.
While the distribution of the received power from a single base station is often
assumed to be normal, in fact it is typically more complex and even multimodel.
Rather, for a more accurate characterization of the RSS signature, the same authors
propose generating a histogram of signal strength values empirically from a
training set, Pl

k; l ¼ 1. . .L of L readings gathered at the mobile over a fixed window
of time during the fingerprinting stage. Let hkjðfÞ stand for the histogram of signal
strength values collected from base station j when the mobile is in sk. The his-
togram can be expressed mathematically as
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hkjðfÞ ¼
1
L

XL

l¼1

dðPl
kj � fÞ; ð4:28Þ

where d is the Kronecker delta function and f is an indicator variable which spans
the range of all possible signal strength values. The range depends on the speci-
fications of the equipment used.

When the most recent observation becomes available, the likelihood probability
is computed as a product of the measured power mapped by the histogram, or:

pðP̂tjskÞ ¼
YnB

j¼1

hkjðP̂t
jÞ: ð4:29Þ

To improve the accuracy of the system, the implementation in Gentile et al. (2004)
actually fingerprints the signal strengths of packets both to and from the base
stations as two separate readings. Each site will then have two histograms per base
station rather than one, doubling the factors in Eq. (4.29). The expression is based
on the same assumption, as in Eq. (4.24), of independent RSS value between the
nB base stations. In reality, the histograms of different states will be correlated to
some degree, however the independence assumption yields good results regardless.

As suggested in Ladd et al. (2005), the stability of the system can be enhanced
through a simple post-processing step, where a modified posterior probability is
generated at each update as

~pðskjP̂t; P̂t�1; . . .; ðP̂0Þ ¼ p skjP̂t; . . .; P̂0
� �

þ u1
� �

� p skjP̂t�1; . . .; P̂0
� �

þ u2
� �

:

ð4:30Þ

The modified posterior filters any spurious values which may appear as spikes in
the system at a single time instant due to glitches or erroneous observations. The
values of (u1, u2) are small constants which keep the modified probability from
collapsing to zero. Then from the modified posterior, the estimated state of the
mobile at time t is given through the Maximum Likelihood Estimation as

~sk ¼ arg max
k

~p skjP̂t; . . .; P̂0
� �

: ð4:31Þ

4.3.2 Grid-Based Markov Localization

By integrating observations over a period of time, Bayesian inference can deliver
enhanced stability over static localization. However, the method is still susceptible
to large fluctuations in received signal strength due to fading, even while the
mobile remains in the same state. So that these fluctuations are not converted into
random motion, a sort of temporal averaging mentioned above is incorporated by
post-processing the estimated output; in addition, estimated locations that do not
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support human motion, such as hops between mutually distant sites in the
deployment area are filtered out. While filtering [e.g. Kalman filtering (Kalman
1960)] can improve location tracking in simple experiments—for instance, a
mobile user walking up and down a hallway—it fails with more complex trajec-
tories such as turning from a corridor into a room.

As an alternative to post-processing, in this subsection, the problem is cast in
the framework of a Markov random process through which the dynamics of human
movement can be encoded intrinsically as transition probabilities. In this frame-
work, the system can be tuned for fluid motion and direction while still providing
for abrupt changes where appropriate.

4.3.2.1 Motion Dynamics

In order to capture the system dynamics, the definition of a state sk; which indi-
cates a unique location and orientation of the user, is extended to a sequence
sk ¼ s1

k ; . . .; sn
k

� 
: A sequence is defined as a set of states ordered in time repre-

senting the last n states traversed by the mobile device, from time t � nþ 1 to time
t. Accordingly, ns now denotes the total number of possible sequences. Integrating
more than a single state captures not only the location and orientation of the
mobile at consecutive instants in time, but also the dynamics of the motion
between the states. How these sequences are composed is discussed later in the
subsection.

At time step t, the localization algorithm calculates the posterior probabilities of
the sequences, pðskjP̂0; . . .; P̂tÞ, given the observations since initialization. A first-
order Markov process governs the transition of the sequences from step t � 1 to the
next (Fox et al. 1999):

p skjP̂0; . . .; P̂t
� �

¼ gt � p P̂tjsk

� �Xns

~k¼1

p skjs~k

� �
� p s~kjP̂0; . . .; P̂t�1
� �

ð4:32Þ

Note the similarity of the expression to Eq. (4.27). The only difference is the
incorporation of the sequence transition probabilities, pðskjs~kÞ: in the Bayesian
framework, the posterior of sk at t is computed only from the posterior of sk at
(t � 1). In the Markov framework, rather, it is computed from the posteriors of all
ns sequences at t � 1 through the sequence transition probabilities. The algorithm
reports the output state of the system at each step t as ~sn;~s ¼ arg maxk

pðskjP̂0; . . .; P̂tÞ. Again, the normalization factor gt ¼ 1=
Pns

k¼1 pðst
kjP̂0; . . .; P̂tÞ

enforces the law of total probability and, since an observation at time t affects only
the state of a sequence corresponding to the same time instant sn

k , the likelihood

can be simplified to pðP̂tjskÞ ¼ pðP̂tjsn
kÞ. As such, the value of pðP̂tjsn

kÞ is given
from Eq. (4.29).

We now turn our attention to computing the sequence transition probabilities as
in Gentile et al. (2004). First of all, in order to ensure spatiotemporal consistency

120 4 Survey-Based Location Systems



between back-to-back sequences, when the mobile is in sequence s~k the sequences
sk to which it can transition at the next time step are restricted. This is imple-
mented by setting pðskjs~kÞ ¼ 0 if sk does not meet the condition
sl�1

k ¼ sl
~k
; l ¼ 2; . . .; n; in other words, sk must be a left-shift of s~k with replacement

of only the nth state, sn
k ; with a new state. Then, the other sequences, the so-called

allowed sequences, are assigned a nonzero transition probability. The probability
is assigned in order to promote fluid motion—that is motion which follows a
predictable trajectory, such as the mobile moving down a corridor at a fixed
velocity or slowing to a stop. If the ordered states of a sequence reflect fluid
motion, the sequence is assigned a high probability and vice versa. The fluidness is
characterized through an ðn� 1Þ-tap filter. The filter is employed to predict the
most likely nth location in the sequence from the trajectory of the first n� 1
locations:

x̂ ¼
Xn

l¼2

al � xl
k̂
¼
Xn�1

l¼1

al � xl
k; ð4:33Þ

where al are the filter coefficients. Other non-finite impulse response filters, in
particular the popular Kalman filter, may be applied alternatively. A Gaussian
kernel maps the difference—between the actual location of the nth state, xn

k , and its
predicted location, x̂—to the sequence transition probability:

pðskjsk̂Þ ¼
1

c
ffiffiffiffiffiffi
2p
p e

� 1
2c2 xn

k�x̂k k2

: ð4:34Þ

A small difference (high probability) indicates that the sequence conforms well to
the motion dynamics represented by the filter and a large difference (low proba-
bility) the opposite. The parameter c controls the degree of Gaussian rolloff.
Reducing the value of c makes the sequence filtering more selective.

Even by restricting the sequences which are allowed, the number ns may still
grow exponentially large with n. Hence grid-based Markov localization can suffer
from computational overhead and/or overcommitment of the memory require-
ments for the sequence space. Both, indeed, can present significant issues for
location devices which are often very compact in size. The CONDENSATION
algorithm, which falls into the general class of particle filters, offers a solution.
Essentially, rather than maintaining the posterior probability for each discrete
sequence in the model, the algorithm maintains only an abridged set of the most
likely nc � ns sequences, i.e. the ones with the relatively largest associated values
of p skjP̂t�1; . . .; P̂0

� �
. At the next step, these posteriors are updated to time t, as

normal. And again, only the nc sequences which have the relatively largest updated
values are retained. The CONDENSATION algorithm has proven to be a powerful
tool in recent years in the context of Bayesian estimation and computer vision. The
details of the algorithm can be found in Isard and Blake (1998).
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4.3.2.2 Motion Constraints

Certain applications, such as in emergency response, require precision location
discrimination—knowing whether a firefighter lies in a particular room or in the
one adjacent to it can make all the difference in saving a life. While the received
signal strengths from multiple base stations alone may not suffice to make this
distinction—depending on the material and thickness of a wall, the RF signature
may differ little on its opposite sides—tracking the path of the mobile user as he or
she enters the room may. As we shall see, in the framework of Markov locali-
zation, mobile user tracking can be realized by restricting the allowed sequences
further by applying motion constraints.

The percentage of walking space in a typical office environment, which is
furnished with desks, bookshelves, cubicles, and other furniture and equipment,
ranges between 25 and 40 % of the total deployment area. The same is true in
many other environments, namely in residential environments and in public
environments such as libraries, supermarkets, etc. The presence of these obstacles
severely constrains the paths along which humans can move about. Figure 4.9
illustrates a typical office environment. Six paths, displayed in different shadings
of gray, connect any two fingerprinted sites in the environment. The pair of
numbered arrows represents the two states corresponding to the opposite orien-
tations at each site, splitting each path into two tracks. By fingerprinting each site
with the antenna orientation aligned with the heading of the person, a mobile user
walking forward on a path follows the states on either one track or on its com-
plementary track. Under the assumption that a human walks only forward and that
the antenna orientation remains constant with respect to the person’s heading,
motion constraints can be imposed such that the mobile can be localized as moving
only along the tracks.

Motion constraints are applied to the Markov model such that a state can
transition only to a spatially adjacent state from one time instant to the next.
Consequently, the mobile must traverse a sequence of adjacent states or neighbors
in order to reach any one state in the model from another. This is implemented by
assigning the appropriate sequence transition probabilities a zero value. Recall that
the same was explained earlier in application to restricted sequences. This
mechanism, which allows only those sequences in the model which conform to the
motion constraints (and restricts those which do not), turns out to be a highly
effective manner to reconstruct a path from a series of observations during the
localization stage. Classical Kalman filtering may predict the trajectory of a human
advancing through a wall because it considers only the locations on the trajectory;
motion constraints, rather, provide a blueprint of the area encoded through the
sequence transition probabilities. The desired effect is that the system realizes that
humans must go through doors in order to reach locations on opposite sides of a
wall.

We now turn to the description of how neighbors and tracks are encoded in the
Markov model. Most states have three neighbors: (1) itself—to allow stationary
motion in time; (2) the next state on the same track—to allow motion in the same
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direction; (3) the state at the same location on the opposite track—to allow a
change in direction. Exceptions occur for states at the end of tracks with no next
state; they have only two neighbors. Another exception is for states falling at
T-junctions or crossroads between two paths; additional neighbors enable the
mobile to switch paths. In order to promote motion along tracks, sequences which
contain more than one track transition are restricted. Moving backwards on a track
is also not permitted in this particular implementation; such motion, however, is
actually common in some applications; for example, firefighters walk backwards
pulling hoses and crawl backwards downstairs. Of course the system can be tuned
accordingly. Also, in large, open areas, a grid of states, rather than tracks, can be
created and the appropriate motion constraints applied.

As an experiment, in Gentile et al. (2004) a system with sequence length n ¼ 5
was tested against a benchmark system with length n ¼ 1 in the office environment
depicted in Fig. 4.9. For each trial, the localization error was recorded either as (1),
the distance between the estimated location and the ground-truth location; or as (2),
a logical error X when the mobile was localized in a wrong room or on the wrong
side of a partition, bookcase, or table within the same room. Figure 4.10 shows the
cumulative distribution function of the localization error for both systems in the
Conference Room—the area in the office environment where the greatest disparity
in performance between the two systems was observed. Because there was only free
space between sites on opposite sides of the table, the RF signatures there were too

Fig. 4.9 A typical office environment. Shown here are 124 numbered states divided into six
paths—each path is shaded differently. The five base stations in the survey area are labeled as
solid circles. Each path is split into tracks which allow motion in opposite directions, as indicated
by the arrows
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similar for robust discrimination between them. In fact, in the case where a me-
moryless system model is used ðn ¼ 1Þ, almost 50 % of the time it reported a
logical error whereas in the case where a five-state sequence was used, the error was
reported only 10 % of the time. Clearly, information about a single state alone does
not suffice to correctly identify the trajectory; rather, information provided from
multiple states taken collectively must be considered. This experiment underscores
the strength of the Markov localization technique using sequences.

4.4 Channel Impulse Response Fingerprinting

Thus far we have considered only the received signal strength feature for finger-
printing. RSS is typically used for localization in WLAN and 3G cellular networks
(cellular localization systems are presented in Chap. 5). In these networks, signal
strength is measured as the carrier power sensed over a period of time. While it
varies by technology, the period is normally the duration of a packet. The power
sensed is that of the transmitted signal arriving along the direct path from the base
station. Also sensed are copies of the transmitted signal which arrive along other
propagation paths. As explained in detail in Chap. 2, the collection of copies is
referred to as multipath. The multipath copies arrive delayed with respect to the
direct path due to the characteristics of the propagation environment. When
indexed according to delay, the power is referred to as the power delay profile or

Fig. 4.10 The cumulative distribution function of the localization error measured during testing
in the Conference Room. Logical errors, denoted as X, were identified when the mobile was
localized in a wrong room or on the wrong side of a partition, bookcase, or table within the same
room
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the channel impulse response (CIR). Figure 4.11a illustrates the CIR for a 6 GHz
signal and Fig. 4.11b illustrates another channel CIR from the same base station,
however with the mobile displaced to a different location (more examples can be
found in Chaps. 2 and 3). Notice the distinct properties between the two profiles.
The profiles provide unique characterization of the mobile sites whereas the RSS
signatures at the two sites—which is essentially just the integration of the power
across the profile—may be very similar. As such, the channel impulse response
can serve as an alternative fingerprint with enhanced identifiability. The CIR-
fingerprinting technique was first introduced by US Wireless Corporation of San
Ramon, California (Koshima and Hoshen 2000). Fingerprinting using the channel
impulse response was also proposed for cellular UMTS localization (Ahonen and
Eskelinen 2003a, b).

Channel impulse responses first appeared in localization in time-of-arrival
based systems. Ideally, the first multipath arrival in the power delay profile will
correspond to the direct propagation path between the base and the mobile. This
then begs the question: if the channel impulse response is available, why not just
use it to extract time-of-arrival? While TOA systems are capable of delivering
accuracy on the order of several centimeters in line-of-sight conditions, the
accuracy can degrade significantly in non-line-of-sight depending on the number,
size, and material type of the obstacles between the radios. For example, in
industrial environments rich in metal scatterers, deflection of the direct path off the
straight line between the TX to the RX can cause a significant delay in the first
arrival; or in subterranean mines, being that the walls are impenetrable by the
direct path, the first arrival detected must necessarily correspond to some other
path with a longer delay. In these cases, CIR fingerprinting offers a viable solution.
In fact, radio frequency fingerprinting systems thrive on environments rich in
scattering, such as the industrial environment. The scattering helps create dis-
tinctive signatures even between trained sites in close proximity. Since the mul-
tipath signature is unique and varies from one location to the next, it is even
possible to implement a fingerprinting system with a single base station.
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Fig. 4.11 a Channel impulse responses for a 6 GHz signal a line-of-sight (LOS) conditions.
b non-line-of-sight (NLOS) conditions
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One benefit of survey-based techniques is that they can be implemented with
existing infrastructure, necessitating no proprietary location and tracking equip-
ment. For example, RSS fingerprinting systems exploit Wi–Fi base stations, which
are both cheap and evermore ubiquitous worldwide, reducing deployment costs
significantly. In the past, measuring the channel impulse response required
expensive laboratory equipment such as the Vector Network Analyzer system
described in Chap. 2. Nowadays, channel impulse responses can be measured with
complex receivers used in high-speed, wide-bandwidth systems. For instance, in
wideband 4G cellular networks which use Orthogonal Frequency Division Mul-
tiplexing (OFDM), the frequency response of the channel, otherwise known as the
Channel Transfer Function (CTF), is measured from the preamble of a packet in
order to enable channel estimation and equalization. The channel impulse response
can then be recovered from the CTF by converting it to the delay domain through
the inverse Fourier Transform. The wider the bandwidth of the telecommunica-
tions system, the better its capacity to resolve multipath (Gentile and Kik 2007). In
fact, because narrowband systems have poor resolution, the different arrivals
appear as if they were grouped all as one. As a result, the power from the different
paths cannot be discriminated and it is detected, rather, as a single quantity over
the period, i.e. as the RSS value.

Two CIR-based systems are considered in this section. In Sect. 4.4.1, a system
which was implemented inside a mine tunnel is described. The system only pro-
cesses the magnitude information of the multipath delay components. An
improvement to the implementation, in which a nonparametric regression tech-
nique also exploits the phase information, is described in Sect. 4.4.2.

4.4.1 Mapping Using a Neural Network

Since mine shafts are typically void of objects, they tend to have poor scattering
properties. Then for the reasons explained earlier, received signal strength fin-
gerprinting may deliver unacceptable resolution. As demonstrated in Nerguizian
et al. (2006), channel impulse response fingerprinting in the mine environment,
instead, can achieve good performance. In this subsection, we provide an overview
of this paper. In the fingerprinting stage, the CIR was recorded at a number of sites
throughout the mine using a Vector Network Analyzer, which acted as the sole
base station3. In reference to Eq. (3.38), the channel impulse response can be
represented mathematically as a train of uniformly sampled complex amplitudes,
hðskÞ, indexed according to delay sk; 1� k� Lp. Each fingerprinted site was
characterized by seven representative features extracted from the channel impulse
response. The main features, which have already been introduced in Chap. 3, are
the received signal power

3 Details of the VNA are described in Chap. 2.
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P ¼
XLp

k¼1

hðskÞj j2; ð4:35Þ

the mean excess delay

s ¼ 1
P

XLp

k¼1

sk � hðskÞj j2; ð4:36Þ

and the root mean square delay spread

sRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

XLp

k¼1

ðsk � �sÞ2 � hðskÞj j2
vuut : ð4:37Þ

The other features are the number of components LSNR whose power is above a
designated signal-to-noise ratio threshold TSNR, i.e. LSNR ¼ sum

hðskÞj j2 � TSNR

k; the time-

of-arrival s1 ¼ min
jhðskÞj2 �TSNR

sk the power of the first arrival P1 ¼ hðs1Þj j2, and the

maximum arrival time sMAX ¼ max
jhðskÞj2 � TSNR

sk.

For the experiment in Nerguizian et al. (2006), close to 400 sites were fin-
gerprinted throughout a surveyed mine. The multilayer perceptron, which was
described in Sect. 4.2.3, was utilized to perform the mapping from the CIR-feature
space to the location space. The seven features extracted for each of the sites,
coupled with the two-dimensional location coordinates of each site, were used to
train the perceptron. Accordingly, the neural network had seven inputs and two
outputs. In this application, only one hidden layer with ten neurons was sufficient
for training. The results for this method are presented in a side-to-side comparison
in the next subsection.

4.4.2 Mapping Using a Gaussian Kernel

In the work presented above, the seven features of the channel impulse response
described were deemed sufficient to discriminate the sites throughout the survey
area. Aside from the benefits of a compact representation, the authors in Jin et al.
(2010) argue that, by extracting these features only, useful information available for
location identification is discarded. In their paper, the authors show that by
exploiting the unreduced CIR, results can be improved significantly. To this end, let
the channel impulse response at site i from base station j, denoted as hij, be a vector
of L received power values sampled at uniform delay intervals. The signature at site
i is then given through the collection of the CIR vectors from each of the nB base

stations; together they form the concatenated supervector Hi ¼ hi1hi2. . .hi;nB

� �T
of

length nB x L:
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Once the sites have been fingerprinted, the mobile location is estimated as a
linear combination of the locations of the nM trained sites:

~x ¼ 1
nM

XnM

i¼1

qixi ð4:38Þ

The weight associated with each site is the similarity metric—between the CIR
supervector, Ĥ, measured during localization and the fingerprinted CIR super-
vector, Hi. In the paper, the similarity metric is selected as the Gaussian kernel
function

qi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnM

P
j j

p e�
1
2ðĤ�HiÞT

P�1ðĤ�HiÞ; ð4:39Þ

where
P

is the sample covariance matrix of the nM fingerprinted supervectors.
The sample covariance matrix is defined as

X
¼ 1

nM

XnM

i¼1

Hi �HT
i ð4:40Þ

In practice, fingerprinted sites throughout a survey area will be statistically
correlated. For instance, adjacent sites collocated in a hallway will receive cor-
related multipaths—both in strength and in delay—from the same base station,
especially those multipaths reflected into the hallway from the same direction. The
key strength of the Gaussian kernel function as a similarity metric is that through
the covariance matrix, the statistical correlation between the CIR supervectors of
the fingerprinted sites is captured. This is a departure from the independence
assumptions of Eq. (4.8) in Sect. 4.1.2.1 and of Eq. (4.24) in Sect. 4.2.4. Note that
in Nerguizian et al. (2006), this statistical correlation is also captured, however,
more implicitly through a neural network. Whereas in the latter the CIRs are
processed on a linear scale, in Jin et al. (2010) the CIRs are processed on a
logarithmic scale for the following reason. Since arrivals with larger delay are
significantly attenuated with respect to the direct path, the logarithmic scale serves
to leverage the contribution of each arrival; otherwise the contribution of the later
arrivals would be dwarfed by the earlier arrivals. Figure 4.12 shows the same
channel impulse response on a linear scale in (a) and on a logarithmic scale in (b).

We now present the results from the performance comparison in Jin et al.
(2010). The paper compares the method described in this subsection, referred to as
LOG-ACIR-NKR, to the method described in the previous subsection, referred to
as ACIR-GRNN. Also compared was the RSS-Kernel method which draws on the
same Gaussian kernel function in (4.39), however by replacing the CIR-super-
vector features, Ĥ and Hi, with the RSS-vector features, P̂ and Pi (the RSS value,
P, was computed from the generated CIR as in (4.35)). The three methods were
implemented using raytracing software: given the three-dimensional CAD model
of a building together with the thickness and the dielectric properties of the walls,
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the software can generate high-resolution CIRs based on the configured positions
of the base stations and the mobile device throughout the environment. The
bandwidth of the system was set to 60 MHz and there were two base stations and
173 fingerprinted sites spaced at 1.5 m in the deployment area. Based on the
cumulative distribution function of the location error for all three methods, the
LOG-ACIR-NKR method achieves an average location error as low as 1 m, fol-
lowed by the ACIR-GRNN method with an average error of 1.7 m, and then by the
RSS-Kernel method with an error of 3.2 m. The LOG-ACIR-NKR method out-
performs the ACIR-GRNN method mainly because it operates on a logarithmic
scale as opposed to on a linear scale, making full use of distinctive properties of
even the weakest arrivals in the CIRs. As expected, the LOG-ACIR-NKR method
easily outperforms the RSS-Kernel method because it exploits the supplemental
information provided by the CIR, with the arrivals sorted by delay rather than
grouped as a single value.

4.4.3 Variations of CIR Fingerprinting

Analogous to the time domain channel impulse response, the channel transfer
function can be used alternatively for fingerprinting. The CTF contains the same
multipath channel information, however in the form of complex samples in
the frequency domain. Similarly, the CTF correlation function, known as the
Frequency Channel Coherence Function (FCF), is also proposed as a signature in
(Malik and Allen Nov. 2006). The paper shows that the FCF is more stable and has
superior performance to the CTF. A patent application proposes a similar technique
that integrates FCF-based fingerprinting in existing OFDM-based systems (such as
WLANs) (Bevan et al. 2010). Finally, the multipath characteristics alone can be
further enhanced by incorporating an antenna array at the receiver. The antenna
array enables the spatial characteristics, not just the temporal, of multipath—
indexed according to both arrival angle and delay—to be captured. This results in a
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Fig. 4.12 The channel impulse responses for a 6 GHz signal in line-of-sight conditions. a The
signal power on a linear scale. b The signal power on a lograithmic scale
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richer signature defined as the power spatial delay profile (PSDP) (Triki et al. 2006;
Gentile and Braga 2008).

4.5 Non-Radio Frequency Features

Thus so far we have considered only radio frequency features for survey-based
location systems. Depending on which features are selected for a particular
application—as well as other design parameters such as the number of base sta-
tions and the number of fingerprinted sites in a survey area—systems typically
deliver localization accuracy between 1 and 3 m. For many applications, the
expenses associated with the equipment and infrastructure necessary to deliver this
level of accuracy are too high. For such applications, precise physical location
within a certain environment is not required; rather, determining whether a mobile
user lies within a confined space with a high degree of reliability takes priority.
This type of logical localization is important in environments such as stores,
museums, libraries, gas stations, etc. For instance, in a museum the appropriate
automated tour can be offered as the visitor approaches the entry of an exhibition.
In a grocery store, location-based services can notify a shopper of available
coupons for items while walking along the aisles where they are stocked; in this
environment, even if a device can deliver accuracy up to 2 m, this accuracy may
not suffice to determine whether the mobile is in one aisle or the one adjacent to it.

Other features can be used to supplement, or even substitute, radio frequency
fingerprinting. In this section, we investigate the application of the features
described in Azizyan et al. (2009), namely the non-RF features of sound, motion,
and color and the RF-feature of connectivity. For example, in a Laundromat the
authors observed that sound is characterized by moving mechanical parts while in
a library, on that other hand, it is very quiet. Analogously, typical motion in a
supermarket involves walking up and down aisles with periodic pauses to select
items; this contrasts static motion in a restaurant where the customer remains
mostly seated for the duration of the stay. The chromatic features take advantage
of the fact that many stores have trademark colors which are accentuated
throughout the environment, such as red and white in Target � or pink and orange
at Dunkin’ Donuts �. Finally, regarding connectivity, a mobile device can form a
radio link only with base stations within the vicinity of the environment; hence,
connectivity alone—as opposed to the degree of connectivity expressed by
received signal strength—can be exploited as a signature for the environment.
While the individual features may be similar from environment-to-environment,
combining all four of the features together can prove to be highly discriminatory.
The authors show that it is possible to achieve logical-localization accuracy of up
to 87 % in 51 different environments using only these features which are acces-
sible on most smartphones. In the remainder of this section, we described these
four features in greater detail.
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4.5.1 Sound Features

Sound in an environment is characterized through the temporal distribution of its
volume intensity. This distribution is represented by a histogram of the intensity
values recorded over a 1 min segment. The histogram is divided into 100 bins of
equal size ranging from the minimum to maximum volume of the mobile device.
In the Laundromat environment, for example, the histogram is very sharp at the
center, indicating a constant buzz of medium intensity; this can be attributed to the
rotation of the internal parts of the washers and dryers. Conversely, the distribution
in a coffee shop is wider by virtue of the traits of human conversation, composed
from a greater range of volumes—from the baristas preparing the items and calling
out orders to conversational chatter in the background. The histogram vector
serves as the signature for an environment. When compared against a vector
measured during the localization stage, the inverse of the Euclidean distance—the
distance is computed in the 100-dimensional space of the histogram vector—is
used as the similarity metric. Notice that, as opposed to the previous sections in
this chapter, the authors’ convention in Azizyan et al. (2009) is that a larger
similarity metric is more favorable.

4.5.2 Motion Features

Most smartphones now offer location services. When GPS is available, mainly
outdoors and in some indoor environments—especially indoor environments with
many windows through which the signal can penetrate—GPS can furnish the
location of the mobile device. In GPS-denied areas, however, accelerometers can
be employed to interpolate between the GPS readings (details of inertial-based
systems are provided in Chap. 8). It turns out that in application to fingerprinting,
accelerometers can be exploited to a second end in order to classify the types of
motion which are common in an environment. This is accomplished by extracting
signatures from the accelerometer readings. In Azizyan et al. (2009), each reading
is the output of one of three-dimensional accelerometer axes. When sampled over
time, two sequences are generated from each one of the three readings: one is the
moving averages of the readings and one is their moving variances. The sequences
are then fed to a Support Vector Machine (see Sect. 4.2.2) which classifies the
sequences into one of two categories: either moving or stationary. The SVM is
trained from the samples of the two sequences.

The actual signature is then computed as the quantity r, which is the ratio of
time the mobile device is moving to the time it is stationary—over some obser-
vation window. The signature is then categorized into three classes: sitting for
0� r� 0:2; browsing for 0:2\r� 2:0, and walking for r [ 2:0. By associating
one or more classes to each of the fingerprinted environments, the signature can be
used for the purpose of discriminating between the environments in which the
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different classes occur. Then, the similarity metric between the signature measured
during the localization stage and the signature of a fingerprinted environment is a
value between 0 and 3. The value indicates the number of classes which the two
signatures have in common.

4.5.3 Color Features

In order to capture the color of an environment, the floor is chosen as the target
area. The reason is twofold: first of all the view of the floor (tiles, carpeting, wood,
etc.) is relatively static over time, changing mainly due to obstructions from
pedestrian walking. The ceiling would make for an even better candidate since it
lacks such obstructions, however smartphones usually have their camera installed
on the back of the device and so the camera is seldom pointed toward the ceiling.
This makes for the second reason why the floor is chosen. Based on how the smart
phone is held, the phone can discern one of its six possible orientations. From its
orientation, the phone can determine at which times it is pointed towards the floor.

The camera’s charge-couple device digitizes the captured image into RGB
(Red–Green–Blue) pixels. Because the RGB chromatic space was found to be too
sensitive to shadows and reflections, the pixels were transformed into the more
robust HSL (Hue-Saturation-Lightness) space. The fingerprinting procedure con-
sisted of the following steps. First the HSL pixels from all the images taken in the
same environment were captured and grouped into clusters in the three-dimen-
sional space via the k-Nearest Neighbor method (see Sect. 4.2.1). The number of
clusters in any environment ranged from 3 to 7. Each cluster was represented by its
HSL centroid and the signature of the environment was designated as the centroids
of the clusters identified. Finally the similarity metric was computed as the dis-
tance between the centroids of the image(s) captured during localization and the
centroids of environment i. Specifically, the similarity metric is expressed as:

qi ¼
X

k

X

l

1
diðk; lÞ

N̂k

N̂

� �
Nl

i

Ni

� �
ð4:41Þ

where diðk; lÞ is the Euclidean distance in the HSL space between centroid k of the
captured image(s) and centroid l of environment i. The value N̂k indicates the
number of pixels in cluster k and the value Nl

i indicates the number in cluster l.
Analogously, the value N̂ indicates the total number of pixels over all the clusters
of the captured image(s) while Ni indicates the total number over all the clusters of
environment i. Note that each term in Eq. 4.41 corresponds to a cluster pair in the
measured and fingerprinted spaces. Since the similarity metric is inversely pro-
portional to the distance between the pair, the distance between the closest pair
will have the greatest influence on the metric; likewise, the cluster pairs farthest
apart will have the least influence. Each term is also weighted by the relative
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number of pixels in the respective clusters of the pair. This downplays the con-
tribution of smaller clusters which may just be outliers representing background
noise.

4.5.4 Connectivity Features

As the mobile device moves from one environment to another, its connectivity will
change. Rather than measure the degree of connectivity between a base station and
a mobile device through a similarity metric between their received signal
strengths, a hard limit can also be used—that is—whether a radio link between the
two can be established or not. Since the mobile device pings the surrounding base
stations periodically in order to register their MAC addresses, the frequency of
acknowledgment can be used as a similarity metric of connectivity instead. The
authors quantify the frequency of the connectivity, f , as the fraction of
acknowledgments the mobile receives from a particular base station to the total
number it receives from all the nB base stations during a fixed time period. The
vector of connectivity values f i ¼ fij

� �
; j ¼ 1. . .nB, that a mobile registers within

environment i is designated as the signature of the environment. Then, the simi-

larity metric between signature f̂ ¼ f̂j

� �
; j ¼ 1. . .nB measured during localization

and signature i is:

qi ¼
XnB

j¼1

ðf̂j þ fijÞ �
minðf̂j; fijÞ
maxðfj; fijÞ

ð4:42Þ

Term j is large when the measured and fingerprinted connectivities to station j
have a comparably high frequency; if they are not comparable then the min over
max factor will be very small and will attenuate the weight of the term in the sum.

There are many ways in which the sound, motion, color, and connectivity
features described in this section can be leveraged in order to estimate the mobile’s
location. For example, their individual similarity metrics can be weighted in a
linear combination to formulate a comprehensive similarity metric4. Alternatively,
the authors in Azizyan et al. (2009) chose to apply the features in the following
manner. First of all, the sound, motion, and connectivity features were used
sequentially to filter out unlikely environments. For each, an appropriate threshold
value was set and any candidate environment with a corresponding similarity
metric below that value was discarded. Once the initial filtering was performed,
the color feature was selected to ultimately determine the location of the mobile as
the one with the largest similarity metric among the remaining environments.

4 This requires normalization of the individual similarity metrics such that each of their
minimum and maximum values falls between 0 and 1, respectively.
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4.6 Remarks

Some of the most practical fingerprinting techniques and system applications have
been described in this chapter. While survey-based techniques may benefit from
exploiting existing wireless infrastructure or from the deployment of low-cost
nonproprietary equipment, they still suffer from the drawbacks of a required fin-
gerprinting stage. One drawback is that the system cannot be deployed ad hoc,
rather necessitating hours, weeks, or even months of training for large-scale net-
works, e.g., cellular. (Apropos, the following chapter investigates geolocation
systems in cellular networks). Another drawback is that the radio frequency
characteristics of the sites vary with any environmental changes. Such changes
may arise from the movement of furniture, partitions, and any other objects,
altering the path loss exponent and shadow fading in the environment; also, the
addition or removal of base stations modifies the structure of the database. It is
worth mentioning that some recent effort has been dedicated to research in auto-
matic fingerprint training (Kim et al. 2010; Eleryan et al. 2011).

The drawbacks of fingerprinting preclude mission-critical applications for
which localization services are vital, such as in emergency response and for
firefighting in particular. Even if, in theory, a fingerprinting system could be
trained in advance and its database updated automatically, the signature charac-
teristics of the environment would change drastically during the rapid progression
of a fire. Walls and floors may collapse and the water from the fire extinguishing
hoses (which has the property of high RF reflectivity) and the ambient smoke are
suspected to change the propagation characteristics of the environment. Other
factors may be the flame itself as well as any dust produced from the deteriorating
structure. Studies of these factors are currently underway at the National Institute
of Standards and Technology.
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