Chapter 2
Ranging and Localization in Harsh
Multipath Environments

In this chapter, we will first introduce the basics of geolocation techniques that are
based on Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of
Arrival (AOA), and Received Signal Strength (RSS). Then we introduce the major
challenges to accurate localization: multipath propagation and non-line-of-sight
conditions where we will focus on the two most popular ranging techniques, TOA
and RSS, and evaluate how the accuracy of localization is affected by these
physical challenges. We will further highlight the relationship between the accu-
racy of estimation and the signal to noise ratio and bandwidth parameters through
the well-known Cramer-Rao Lower Bound (CRLB) equations. Finally, we will
introduce measurement and modeling of the RSS/TOA ranging that will highlight
the impact of multipath and NLOS on the accuracy of ranging systems.

2.1 Basics of Geolocation

Classical geolocation techniques (non-survey based) depend on geometrical rela-
tionships between the coordinates of the reference points (satellites in GPS technology)
and the associated range/angle measurements. Typically, reference points are wireless
devices with known location information (e.g. x- and y-coordinates) either pre-pro-
grammed or obtained through GPS. The mobile device (seeking its own position
information) exchanges RF signals with the reference points to estimate the distance or
angle to each of the reference points. Equipped with the range measurements and the
coordinates of the reference points, the mobile device can solve for the unknown
position through a variety of techniques (geometrical, optimization, etc.). The accu-
racy of the location information is affected by three major factors: the accuracy of the
reference points’ position, the accuracy of range/angle estimates, and the geometrical
configuration of the reference points and the unknown position. The non-survey
geolocation techniques computes location estimates through two steps: range/angle
estimation and tri-lateration/angulation. Figure 2.1 illustrates the two-step procedure.
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Fig. 2.1 Classical geolocation system. Range or angle information is extracted from received RF
signals. Location is then estimated by lateration/angulation techniques

In this section we will introduce the most popular geolocation techniques: TOA,
TDOA, AOA, and RSS and provide an evaluation of the achieved accuracy
through the well-known Cramer-Rao Lower Bound (CRLB) analysis.

2.1.1 TOA-Based Techniques

Once distance/range measurements to at least 3(4) reference points are available
the 2(3)-dimensional position estimate can be obtained. The set of distance
measurements from the reference points to the mobile terminal forms a set of
nonlinear equations that can be solved to estimate the position. Here, it is assumed
that the mobile terminals exchanging range measurements are time synchronized
and that they are all in LOS condition (no obstruction between the mobile device
and the base stations). Figure 2.2 illustrates the basic concept of tri-lateration.

The range measurements can be used to estimate the position of a mobile device
through several techniques that are generally grouped under Maximum Likelihood
(ML) and Least-Squares (LS) Techniques. In ML techniques, the solution is the
position that maximizes the conditional probability density function or

0 = arg mgle(&|0) (2.1)
where 0 = [%,7]” and 0 = [x,y]" are the estimated and true position coordinates,
respectively. d = d + w is the measured/estimated distance vector to each base

. 5 Aa A T . .
stationord = [d, d, ... d,,] ,Wiszero-mean Gaussian measurement noise

and np is the number of base stations. Assuming that the noise measurements are
independent and identically distributed (i.i.d), then the conditional distribution is
given by
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Fig. 2.2 TOA-based tri-
lateration. Range
measurements to at least three
base stations make up a set of
nonlinear equations that can
be solved to estimate the
position of a mobile device.
Black points are base stations
with a priori known position

information while the >
intersection of the circles is .“
the position estimate of the

mobile device
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where o7 is the variance of the ith measurement noise. There are two major
problems with this ML approach. The first is that conditional PDF requires the
knowledge of the exact distances, which is not available in practice. The second is
that solving for the position using the maximization approach requires a search
over all possible locations which is neither practical nor computationally efficient
(Guvenc and chong 2009). There are also some variants of the original ML
technique which are the two-step ML and the approximate ML (AML). The
interested reader can find more details about the ML techniques in Guvenc et al.
(2006), Chan and Ho (1994).

The other class of TOA-based localization algorithms is based on the LS
techniques. The range measurements to the reference points form a set of nonlinear
equations of which the solution is the mobile position. The LS techniques are
further subdivided into nonlinear LS (NL-LS) and the linearized LS (L-LS). The
NL-LS technique estimates the position by minimizing a residual error function
(Caffery and Stuber 1998) or

np

A . . ~
0= argnbln{Res(())} = argmﬂm ;ﬁi(d,- — 1|0 — 0,-||)

2

(2.2)

Thus the residual, Res(6), is a measure of error between the measured distances,
d;, and the estimated distance obtained from computing the Euclidean distance
between the reference points and the estimated position, ||0 — 6;||. §; is a weight
that can be used to emphasize range estimates which is proportional to the degree
of confidence in the measurement. The L-LS solution is obtained by linearizing the
nonlinear equations formed by the ngdistances given by
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where [x,,y,] are the coordinates of the nth base station. The linearization is
obtained through the well-known Taylor series expansion around 6, given by
F(0) =~ F(0y) +J(0 — 0y) Kay (1993) where J(0 — ) is the Jacobian of F
evaluated at 6y and it is given by

I=lu » o (24)
oy Oy 0y 0=0,

and the L-LS solution (mobile position estimate) is then given by Kay (1993)

0 =00+ (3"3) '3 [d - F(0y)] (2:5)

where H is the Hermitian operation. Typically, the accuracy of localization is
affected by the accuracy of the base station location; the statistics of the range
measurements and the geometry of the base stations with respect to the mobile
terminal. The performance of TOA-based localization can be examined by eval-
uating the Cramer-Rao Lower Bound (CRLB), which provides the lower bound on
the variance of the estimate or Kay (1993)

E[(é - 0)2] >1(0) (2.6)

where I(0) is the Fisher Information Matrix (FIM) and Ef[e] is the expectation
operation. The FIM is given by Kay (1993)

2
1(0)éEK6—601nf(&|0)) 1 —E

where f(d|) is the joint PDF of d condition on the unknown parameters. The
measured distances are modeled by

a%lnf(&w)- (a%lnf(fiIO)) ] (2.7)

d=d+w (2.8)

where d is the vector containing the actual (exact) distances between the mobile
device and the BS and w is the zero-mean Gaussian measurement noise. Since the
joint PDF is a function of d which is a function of 6, then from the chain rule
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0 A od 0 .
@lnf(d|0) f@-alnf(d\d)‘ (2.9)
So (2.7) can be rewritten as
100) = £| - insaia) - (22 nsala))
60 20
od | 3 ad” (2.10)
—@E[—l (@) (5 ns@la) ) ] i
1(0) = JIaJ”
where J is the Jacobian given in (2.4) or explicitly
X—X| X Xnp T
J— v (xlf;o ;(m—y) V/ g —;);;(,»,B - (2.11)
V=0 +01=9° =0 O )
or alternatively
_ |cosg; ... cos@,,
J= {sinqﬁl sinqb,,J (2.12)

where ¢, is the angle between the mobile device and the nth BS. The joint PDF of
the distance measurements is given by

3 1 1 Ty-1/3
f(d|d) ZWexp{—E(d—d) X (d d)} (213)

where X is the covariance. I4 can then be easily derived and it is given by
Iy = X' = diag(e;?,05%,.. ., a;Bz) (2.14)

The CRLB for the mobile device position is then given by

10) '] = @)™ 2.15
o) '], =) (2.15)
Another popular metric to characterize the accuracy of localization is the

Geometric Dilution of Precision (GDOP) which describes the amplification of the
errors in range measurements to the location error (Patwari et al. 2003) and it is

given by
\Jo2+ a2
GDOP = —— (2.16)

o
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where ¢ and 05 the variances of the position estimate and o, is the standard
deviation of the range measurement error. An alternative expression for the GDOP
could be derived to emphasize the geometrical relationship between the BSs and
the mobile device Spirito (2001)

ng
Z,’Zj_j > i’SiIl (d)[j) |2

GDOP(ng, ¢) = \/ (2.17)

where ¢;; is the angle between the ith and jth BSs.

Although the CRLB derivations in this subsection assumed single-path ideal
propagation (simplified zero-mean Gaussian noise model) it can provide a starting
point to evaluate the performance and understand the main factors that can affect
the accuracy. Different CRLB derivations that address the NLOS problem can be
found in Qi et al. (2006), Dardari et al. (2006), Shen et al. (2007). The accuracy of
the TOA-based techniques relies heavily on the measurement noise and the
multipath condition of the channel. Thus the CRLB will only be meaningful when
the models are realistic in that they reflect the actual propagation conditions. In
addition it is common to assume that the BS and the mobile device are synchro-
nized, but this is not the case in practice.

2.1.2 TDOA Techniques

Time Difference of Arrival (TDOA) technique is based on the idea that the
position of the mobile device can be determined by examining the difference in
time at which the signal arrives at multiple reference points (Liu et al. 2007).
Adopting this technique is useful in practical scenarios where synchronization
between mobile devices is not available. Each TDOA measurement constrains the
location of the mobile device to be on a hyperboloid with a constant range dif-
ference between the two reference points. For two-dimensional position estimation
three reference points are required. Figure 2.3 illustrates the localization technique
based on TDOA measurements.

A TDOA measurement between BS1 and BS2 can be given by Sayed et al.
(2005)

hi=(—t) = (i —t) =r—1 (2.18)

where 1y is the clock time of the mobile device, #; and f, are the TOA between the
mobile device and BS1 and BS2 respectively. The equation can be written in terms
of distance through speed of light scaling or dy; = (f, — #1)c. Thus the time dif-
ference (or range difference) is dy; = dy — dy where d? = (x; — x)2+(y2 - y)2 and
d: = (x)* + (y)*. Without loss of generality, the latter equation is valid with the
assumption that the x- and y-coordinates of BS1 are (0,0). The range difference
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Fig. 2.3 TDOA localization.
At least three BS are required
for two-dimensional
localization. The time (range)
differences d, — dy and d3 —
d; form two hyperboloids of
which the intersection
(solution) is the estimated
position

equation can be rearranged to dp; + di = d,. The TDOA equation can then be
obtained by squaring both sides or

(doy + d1)2: d% = x% +x% = 2xx + y% +y2 = 2y,y (2.19)
Using K7 = x3 + y3 the above equation simplifies to
(da1 + d1)*= K3 — 22,0 — 20y + x° + ¥ (2.20)

which can be further rearranged to solve for the unknowns or

1
—X2X — Y2y = d21d1 + 5 (d%l - K%) (221)

Two equations are required to solve for the two unknowns and the second
TDOA equation between BS3 and BS1 can be similarly obtained

1
—X3X — Y3y = d31d1 + 5 (d%l — K32) (222)

The equations can be arranged in matrix form given by Sayed et al. (2005)

HO=da+b (2.23)
_ | i [ K- ,
where a = [_d31 }, b= 3 K32 _ d§1 . Solving for 0 we have
0=dH'a+H'D. (2.24)

Extension to more reference points and three dimensions is trivial and more
details can be found in Sayed et al. (2005).

The performance of TDOA-based localization can be similarly examined by
evaluating the CRLB. A similar derivation of the CRLB for TDOA localization
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Fig. 2.4 AOA positioning
(angulation). The AOA
estimate from 2 base stations
to the mobile terminal can be
used to estimate the position
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follows from (2.7). In fact it can be shown that the TDOA CRLB is given by Qi
et al. (2006)

_ -1
[ITDOA(B) 1} o (Jrpoaltpoadtpoa) (2.25)
where
cos¢; cos¢, --- cos¢,,
Jipoa = | sing; sing; --- sing,, (2.26)
1 1 . 1
Itpoa = Itoa- (2.27)

where ¢, is the angle between the mobile device and the nth BS.

2.1.3 AOA-Based Techniques

Localization using angle-of-arrival is simpler than time-based techniques in that
only two angle measurements are required, as opposed to three range measure-
ments, in order to estimate the two-dimensional position. However the challenge is
presented when obtaining accurate angle of arrival estimation using wireless
devices. In typical scenarios, the base stations are equipped with K antenna array
elements spaced by A which are capable of estimating the angle of arrival which is
then used to locate the mobile device. Figure 2.4 illustrates the basic concept of
AOA localization.
The relationship between the coordinates and the angles is given by

i:—ii = tan(¢,) z :zz = tan(¢,) (2.28)

These equations can be combined to estimate the position of the mobile ter-
minal as Dempster (2006)

oz{tanqs, l}l{xltanqﬁl yl} (2.29)

tan¢, —1 Xxytan¢g, —y;
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The CRLB for AOA can be similarly obtained from the formulation in (2.6) and
(2.7), but with specific models for the angle measurements. In practice, the antenna
array is capable of measuring a function of the angle or Qi et al. (2006)

where 7 is the index identifying the BS and w, is a zero mean Gaussian noise with
a variance given by Qi et al. (2006)

H -1
do, do,

where a, (¢, ) is the steering vector for a specific antenna array configuration and Y
is the Signal to Noise Ratio (SNR). For an antenna array with K elements spaced
by A the steering vector is given by

a,(p,) =[1 exp(ip,) ... exp(i(K—1)p,)]" (2.32)

where ¢, = 2nA cos ¢,. The variance of the estimation error is then given by Qi
et al. (2006)

3
% TKE+D)RK+ DY (233)

Given the above model parameters of the AOA localization system the CRLB
can be given by Qi et al. (2006)

1

[IAOA(O)_I}MZ (JaoaTaoaJaon) (2.34)
where
K(K+1)2K+1) ..
IAOA = ( )( )dlag( Yl Yz e Yng ) (235)
and
Jaoa = 2ncA
1 (i 2 1 ( 2 1 ( 2
(G AGing)® o (sing,)
—gCosdysing;  —cosgysing, - —glcos¢,, sing,,
(2.36)

The performance of AOA positioning techniques in LOS conditions is satis-
factory. However, in severe NLOS multipath conditions the reliability and accu-
racy of AOA techniques suffers considerably. As a result in these unfavorable
propagation conditions, TOA- or RSS-based techniques are preferred. Further-
more, hybrid positioning techniques can be used to incorporate the advantages of
two different techniques which usually outperform the individual techniques.
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2.1.4 Received Signal Strength Localization

Localization using Received Signal Strength (RSS) is very similar to TOA-based
technique in that the distances to ng base stations are used in a tri-lateration
approach to estimate the position. The difference is the method in which the
distance is estimated. For a mobile device and np base stations, the unknown
location can be estimated using the LS method similar to that of the TOA pre-
sented in (2.5) or

0 =00+ (J73) '3 [drss — F(00)] (237)

The difference between (2.37) and (2.5) is the estimated distance vector. For RSS-
based localization the distance can be estimated through the power—distance rela-
tionship that is very well known for wireless propagation in different environments.
The RSS between the mobile device and the nth base station is modeled by

PB™ = _10ylog,od, + S, (2.38)

where y is the pathloss exponent (governing the rate of power decay with dis-
tance), S, is the log-normal shadow fading component with variance agn and d, is
the distance between the mobile devices and the nth base station. The ML estimate
of the distance is given by d, = 100-7)/(19) Patwari et al. (2003). Then the dis-
tance vector in (2.37) is given by drss = [31,&'2, .. .,cAi,,R}T. The CRLB for RSS-
based localization can be similarly derived from (2.6) to (2.7) (Qi et al. 2006)

- ~1
[IRSS(a) ILXZZ (JrssIrssJTgss) (2.39)
where
Igss = diag( 05 05) ... 05)) (2.40)
and
10 cos¢;  cos ¢, cos ¢, .
_ ')/C- d dy [
Tess =190 | sing, s, sy, |- (2.41)
dy dy d,

ng

2.2 The Multipath Problem

The presence of multipath fading in harsh propagation environments can have a
significant impact on the performance of TOA-, RSS-, or AOA-based ranging and
localization systems. Multipath is the reception of multiple copies of the trans-
mitted signal—each arriving from different propagation paths—which combine in
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Fig. 2.5 LOS multipath channels. a Outdoor open space—single bounce model, b urban LOS,
¢ indoor LOS

either a constructive or destructive manner that distorts the received signal. The
transmitted signal undergoes reflections and diffractions along different propaga-
tion paths to the receiver. At the receiver, replicas of the transmitted signal arrive
attenuated, phase-shifted, and time-delayed. For RSS-based systems, multipath
causes the well-known fast fading phenomenon, where the received power in a
given location fluctuates significantly due to constructive and destructive inter-
ference of incoming multipath signals. For TOA-based systems, the multipath
impacts the distance estimation directly by adding a random bias to the estimation.
In this section, we will introduce the multipath problem and highlight its impact on
RSS- and TOA-based ranging/localization systems.

In order to appreciate the impact of multipath, it is important to analyze it in
LOS environments, since multipath is the major error contributor. LOS propaga-
tion can behave drastically different based on the environment. For example,
performance in outdoor open-field LOS, outdoor urban LOS, and indoor LOS can
exhibit different TOA estimation behavior. In outdoor open-field LOS, the direct
path between the transmitter and receiver is unobstructed and there is at least a
single ground reflection at the receiver. In urban LOS or indoor LOS, there may be
many signals arriving at the receiver that were reflected or diffracted from the
surrounding buildings or objects. Figure 2.5 illustrates different possible LOS
multipath scenarios.

In outdoor open space, the multipath structure is mainly composed of the direct
path signal and a single-bounce ground reflection (see Fig. 2.5a). In urban LOS,
reflections from the surrounding buildings make up the multipath environment (see
Fig. 2.5b). The density of the buildings and surrounding obstacles will dictate the
structure of the multipath environment. Finally, in indoor LOS environments,
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the multipath structure can be significantly different as there are reflections from

the many cluttering objects and also reflections from walls, doors, and windows

with closer interarrival of multipath components at the receiver (see Fig. 2.5c¢).

This creates an environment that is very different from the urban environment.
Formally, the multipath can be modeled by

h(z) = 2 e S(t — 1) (2.42)
k=1

where L, is the number of MPCs, oy and, ¢, and 7; are amplitude, phase and
propagation delay of the kth path, respectively (Pahlavan and Levesque 2005;
Rappaport 1996). The received waveform is then given by r(¢) = h(z) * s(t) where
s(¢) is the transmitted signal waveform and (*) is the convolution operator.

2.2.1 TOA-Based Ranging in LOS Multipath Channels

The basic idea behind TOA-based ranging is to estimate the distance between a
transmitter and a receiver through measuring the signal propagation delay. For a
transmitter at location (xy,y;) and a receiver at location (x,y,) the Euclidean

distance is given by d = \/(xl —x2)* + (y1 — y2)* In practice the distance can be
calculated from the speed of light/propagation delay relationship given by ¢ = d/,
where c is the speed of signal propagation (in free space ¢ = 3e8 m/s) and 7 is the
propagation delay. But in realistic applications, the propagation delay estimates are
always corrupted by noise—additive white Gaussian noise (AWGN). Thus, the
measured distance can be written asd = ¢ x T+ w = d + w. Here w is a zero-mean
Gaussian noise. In practice, the delay can be estimated using two methods: one-way
TOA ranging or two-way TOA ranging. The latter requires no synchronization and it
is the basic ranging technique proposed in IEEE 802.15.4a (IEEE 802.15.TG4a).
The former requires strict synchronization since the distance is estimated from the
received waveform. This is practically challenging for two reasons. The first is that
extracting the TOA of the first path arrival is difficult (Lee and Scholtz 2002; Guvenc
and sahinoglu 2005). The second is that synchronization of wireless devices
in multipath environments is very difficult to achieve and is in fact an open research
area. The main challenges are due to the clock drift over time and the effect of
temperature and humidity on the accuracy of clock frequency (Sundararaman et al.
2005). Two-way TOA ranging techniques are the most popular due to the fact that
they do not require synchronization and the protocols are very simple. For treatment
of one-way TOA ranging further details can be found in (Guvenc and sahinoglu
2005). Two-way TOA ranging is achieved by noting the time that the ranging
reference signal is sent out with the time it takes to receive it. Figure 2.6 illustrates an
example where Device 1 is attempting to estimate the distance to Device 2.
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Fig. 2.6 Two-way TOA
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Device 1 initiates the two-way ranging by sending a ranging packet (signal) to
Device 2 and noting the time as t7x;. Device 2 receives the signal at fgx, and prepares
its own ranging signal (after a processing delay) and sends out a response ranging
signal at time f7y,. Finally Device 1 receives the response at fgx;. Given that Device
2 shares the time stamp information #gx, and t7x, with Device 1 it is now possible to
estimate the propagation delay (distance) between the two devices by

= total — tround—uip _ (trx1 — trx1) — (t7x2 — trx2)
B 2 B 2

(2.43)

where fiotal = 27 + fround—trip 18 the total time it takes for the two-way ranging and
Iround—trip 18 the round-trip delay at Device 2. The assumptions regarding this two-
way TOA ranging are overly simplistic and not valid in practice. In reality, the
clocks of the two devices are not synchronized and not perfect. This means that
with time the clocks will drift and the delay estimation will not be accurate
(biased). Recently, researchers have investigated this problem and proposed some
practical techniques to estimate the delay in non-ideal scenarios (clock drift and
bias) (Zheng and Wu 2010; Wu et al. 2011).

The performance of TOA estimation in single path AWGN ideal scenario is
usually analyzed using the Cramer Rao Lower Bound, which is a statistical
approach to quantifying the variance of TOA estimation. Essentially any algo-
rithm, in theory, can achieve the CRLB given that both the CRLB and algorithm
follow the same assumptions (for example LOS single path model and same noise
variance). The variance of TOA estimation 4, is bounded by the CRLB given
by Gezici et al. (2005),

1
Tron > (2.44)

B2
0

where T is the signal observation time, Y is the SNR, fy is the frequency of
operation, and B is the system bandwidth. This relationship highlights that the
accuracy of TOA estimation can be improved by either increasing the SNR—since
higher signal level will enable the estimation of the direct path signal with greater
accuracy—or increasing the system bandwidth—since higher system bandwidth
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Fig. 2.7 Power delay profile highlighting the multipath error corrupting TOA-based range
estimates

means higher time—domain resolution leading to better range estimates.
The increase in time—domain resolution of the channel can be attributed to narrower
time—domain signals/pulses. This makes it possible to discriminate or resolve the
different multipath arrivals and improve the TOA estimation. Multipath signals
(especially in dense cluttered environment) tend to arrive fairly close to the direct
path. If the interarrival time between the multipath components is much smaller than
the time—domain resolution of the system (low bandwidth systems) then at the
receiver those multiple signals will combine to create a new cluster. The TOA
estimate (from the receiver’s point of view) will then be the peak of the cluster. In
order to clarify this phenomenon, Fig. 2.7 illustrates a power delay profile example
and the resulting envelope. A power delay profile is a representation of the channel
impulse response where the power from different arrival paths can be measured and
analyzed. In the figure there are ten multipath components where the first multipath
component is the strongest and, in this case, is the LOS or direct path. The multipath
components arriving after the direct path fall in close proximity to each other
(because of the nature of the propagation environment). For this narrowband system,
the multipath components arrive and combine (due to low time—domain resolution)
and appear at the receiver as four multipath components (the peaks of the blue
envelope). As aresult, the peaks will ultimately be detected as path arrivals. The first
path arrival will be estimated as the LOS path and thus used for distance estimation.
It is clear in this case that the actual TOA is not equal to the estimated TOA. This
difference in estimation is the multipath error.

For higher system bandwidths, the multipath error in LOS environments is
usually smaller. For example, Fig. 2.8 illustrates a measured channel impulse
response (measurement systems will be described in detail later in the chapter) for
200 MHz bandwidth in a typical LOS office environment.
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As can be seen from the figure, the actual/expected TOA is very close to the
peak of the measured TOA of the first path. Also, note that there are about 15
multipath components for a noise threshold of -85 dBm. These non-direct mul-
tipath components can originate from wall reflections, furniture diffractions, and
scattering from other objects in the office.

One way to assess the performance of TOA-based ranging is to analyze the
ranging error. In LOS environments, the ranging error could be attributed to both
multipath and measurement noise. Let of" and tP¥denote the DP amplitude and
propagation delay, respectively. The distance between the transmitter and the
receiver is dPF = v x tP¥, where v is the speed of signal propagation. Then
ranging error which is defined as the difference between the estimated and the
actual distance or,

¢=d— dpp (2.45)

In a general LOS multipath environment, the ranging device will experience
varying error behavior depending on the structure of the propagation environment
and the system bandwidth. In LOS, the distance estimate can be modeled by

dpp = dpp + epp(B) + w (2.46)

where epp = l;m(B) is a bias induced by the multipath and it is a function of the
system bandwidth and w is a zero-mean additive measurement noise. As we will
later discuss, the statistics of the multipath bias can be modeled differently. One
popular approach is to model it spatially as a zero-mean Gaussian (Alavi and
Pahlavan 2003). This means that an ensemble of LOS measurements in a given
LOS environment will generally result in a Gaussian distribution. The variance of
the distribution will be directly related to the variation in the multipath structure in
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a given environment. For example, the spatial variance in an indoor office envi-
ronment is typically higher than the variance in an outdoor, flat terrain.

An analytical treatment of the performance of TOA estimation in multipath
environments can be found in (Dardari et al. 2009) where Ziv-Zakai Bounds are
introduced for realistic propagation environments.

2.2.2 RSS-Based Ranging in LOS Multipath Environments

Unlike TOA-based ranging, RSS-based ranging depends on an a priori power—
distance relationship or pathloss model. The power—distance relationship has been
investigated extensively in wireless communications for different technologies
(Pahlavan and Levesque 2005; Rappaport 1996). In many of the experimental
findings, the distance is related to the power law. For a narrowband transmitted
signal in free-space with transmitted power P,, the received signal power P, is
given by Pahlavan and Levesque (2005)

1 \2
P, = P,G,G, (4n ) (2.47)
where G, and G, are the transmitter and receiver antenna gains, respectively. 4 is
the wavelength of the transmitted signal and d is the distance between the trans-
mitter and receiver. A reference received power at distance d = 1 m is usually
defined as Py = P,G,G,(1/ 47t)2 then the distance—power relationship in free space
can be given by

=7
RSS ranging is based on models which assume an a priori relationship between
the distance and the received power (or pathloss of the signal). A popular model in

LOS channels relates the received power to the transmitted power by the following
equation

P, (2.48)

log,, P, =log,, Po — 10ylog,, d (2.49)

where 7 is the pathloss exponent that determines the rate of power loss with
increasing distance. Note that this is equivalent to (2.48) for y = 2. If we define
pathloss to be the ratio of received power to transmitted power then the above
power—distance relationship can be rewritten in terms of pathloss L given by

L=Ly+ 10ylog,,d (2.50)

where Ly = 10log,, P, — 10log,, Po and L = 10log,, P; — 10log,, P,. In order to
model the power—distance relationship more accurately, a random component that
models the shadow (slow) fading is included or
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L=Ly+ 10ylog;od + S (2.51)

where S is a normally distributed random variable in the log domain and it models
the fluctuation of the signal away from the median pathloss. This fluctuation stems
from the presence of different obstructions between the transmitter and receiver
which “shadow” the signal. RSS-ranging is mainly affected, however, by fast-
fading (Pahlavan and Levesque 2005; Rappaport 1996). At the receiver, the
attenuated and phase shifted replicas of the transmitted signal combine either
constructively or destructively. The effect is a fast fluctuation of power at a given
distance. One way to deal with this fast fading problem is to collect more RSS
measurements and “average out” the fluctuations by taking the mean of the
measurements. Then, for a given pathloss exponent and Py, the Maximum Like-
lihood Estimate (MLE) of the distance between a transmitter and a receiver can be
estimated from the measured received power as Patwari et al. (2003)

dyiis = 10Fo=F)/(107) (2.52)

The major weakness with RSS-based distance estimation is the assumption that
the pathloss exponent (pathloss model) is known a priori when in fact the exponent
changes between multipath environments—and even within the same environ-
ment. Furthermore, the accuracy of the range estimate cannot be improved by
averaging the received signal power alone. Averaging of the RSS prior to esti-
mating the distance will only remove the small-scale fading (fast fading) due to the
multipath but not the shadow fading (which is more common in NLOS environ-
ments). Typical values for the pathloss exponent in LOS multipath environments
range between 1 and 2 (Pahlavan and Levesque 2005). There are approaches that
attempt to estimate the pathloss exponent prior to the localization stage, but that
approach presents some challenges as well (Li 2006). The statistical performance
of RSS ranging can be analyzed through the well-known CRLB given by Qi and
Kobayashi (2003)

,  _ (In10)*62d>

Orss > 100, (2.53)

where ag is the variance of the shadow fading term. This relationship indicates that
RSS-based ranging estimation is affected by the pathloss exponent and the vari-
ance of the shadow-fading in addition to the distance. As the distance increases,
RSS estimation degrades. More importantly, as the variance of the shadow fading
increases, the variance of RSS ranging also increases. This basic, yet powerful
relationship highlights the challenges of RSS-based ranging. In typical multipath
environments, the shadow fading variance is significant and thus reliable estima-
tion of the distance can be difficult. In addition, the inverse dependency on the
pathloss exponent indicates that performance of RSS ranging in LOS environ-
ments (lower pathloss exponent ~ 1-2) is expected to be much better than NLOS
environments (typical pathloss exponents ~3-5). These challenges to RSS-based
ranging make it a more practical, but inaccurate option for localization.
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2.3 The NLOS Problem

This section introduces the NLOS problem and describes the impact of NLOS
channels on TOA- and RSS-based ranging. For the former, NLOS affects the
estimation of the direct path signal. Since in most cases the direct path will not be
detectible, ranging is achieved through non-direct path components which bias
TOA-based estimation. For the latter, NLOS introduces the problem of shadow
fading, where RSS is attenuated randomly as the mobile device moves from one
area to the other.

2.3.1 TOA-Based Ranging in NLOS Multipath Environments

In the previous section, the basics of TOA-based ranging in LOS environments
were introduced. A natural extension of the LOS case is a more challenging and
complex situation where the transmitter and receiver experience an NLOS mul-
tipath channel. Specifically, when considering NLOS cases, there is an obstruction
in the path of the transmitter and receiver. Depending on the type of obstruction
and the relative distances of the transmitter/receiver to the obstruction, the channel
behavior can vary significantly. There are two specific NLOS cases that occur in
typical obstructed environments. The first is when the direct path (DP) signal is
attenuated but detected (albeit weak SNR). This situation can arise naturally when
the transmitter and receiver are separated by “light” obstructions such as a glass or
a wooden door. Indeed, in this scenario TOA estimates can be obtained with good
accuracy due to the detection of the DP signal. The second NLOS case is when
there is a “heavy” or severe obstruction between the transmitter and receiver,
where the direct path is severely attenuated and “buried” under the noise floor of
the receiver, making it undetectable. The first non-Direct path (NDP) component is
then used for TOA estimation. This results in a significant bias that corrupts the
TOA estimation and ultimately the position estimate. In this severe NLOS con-
dition, the variance of TOA estimation with time is usually large due to the fact
that the estimated first arrival path varies significantly due to the shadowing
problem. For a quasi-static channel, the first path can be detected. However, when
some perturbation is introduced to the multipath structure (another person moves
around/close to the TX-RX path), then the estimation of the first path arrival will
fluctuate significantly. It is clear, then, that NLOS does not only introduce a bias,
but also introduces significant TOA estimation perturbations that can degrade the
real-time distance estimation.

Formally stated, in the absence of the DP, ranging is achieved using the amplitude
and propagation delay of the first Non-Direct Path (NDP) component—denoted as
oNPP and <NPP respectively—resulting in a longer distance d™PP = v x t\PP where
d™PP > gPP In order for the receiver to successfully identify the DP, the ratio of the
strongest multipath component to that of the DP, given by
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max(|oci|fil)

U (2.54)

K1 =
must be less than the receiver dynamic range, k, and the power of the DP must be
greater than the receiver sensitivity, ¢. These constraints are given by

K1 <k (2.55)
Ppp > ¢ (2.56)

where Ppp = 201log,, («5F).

In an indoor environment the mobile device will experience varying error
behavior depending on the availability of the DP and, in the case of its absence, on
the characteristics of the DP blockage. It is possible to categorize the error based
on the following ranging states (Alsindi et al. 2009). In the presence of the DP,
both the constraints above are met and the distance estimate is accurate, yielding

ANLOS — g + gNLOS 4 (2.57)
NLOS — b+ b,(B) (2.58)

where b,, is the zero-mean random bias induced by the multipath, by is the bias
corresponding to the propagation delay caused by NLOS conditions and w is a
zero-mean additive measurement noise. It has been shown that Bm is indeed a
function of the bandwidth and signal to noise ratio (SNR) (Pahlavan et al. 1998),
while bpq is dependent on the medium of the obstacles (Gentile and Kik 2007). In
the more severe case, the DP is completely attenuated and the requirement that
k1 < Kk is not met because the DP is shadowed by some obstacle, burying its power
under the dynamic range of the receiver. In this situation, the ranging estimate
experiences a larger error compared to the LOS condition. Emphasizing that
ranging is achieved through the first arriving NDP component, the estimate is then
given by

2111:1111585 =dpp + SE}“)CP)S +w (2.59)
8%115%5 = Em(B) + bpd + bnpP (260)

where bnpp 1s a deterministic additive bias representing the nature of the blockage.
Unlike the multipath biases, and similar to biases induced by propagation delay,
the dependence of bypp on the system bandwidth and SNR has its own limitations,
as reported in Pahlavan et al. (1998). Figure 2.9 illustrates the two specific con-
ditions occurring in NLOS environments.

An example of the measured channel profiles in the NLOS conditions is shown
in Figs. 2.10 and 2.11.

It is clear from the figures that in NLOS channel conditions large ranging errors
are possible, highlighting the major limitation to deploying accurate geolocation
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Fig. 2.9 Indoor NLOS multipath channels. a “Light” NLOS—the DP is attenuated but can be
detected b Severe NLOS—the DP is not detected
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systems in urban and indoor environments. The impact of NLOS range mea-
surements on the localization performance can be evaluated through CRLB-type
bounds. Given that the statistics of the NLOS biases are available then it is pos-
sible to derive the Generalized-CRLB which integrates the statistical information.
The analytical treatment of this problem can be found in Qi et al. (2006).

2.3.2 RSS-Based Ranging in NLOS Multipath Environments

In the previous section, RSS-based ranging in LOS multipath environment was
introduced and it was illustrated how a simple pathloss model can be used to
estimate the distance. Besides the limitation due to the unknown parameters of the



2.3  The NLOS Problem 37

Fig. 2.11 Sample NLOS - Direct Path Absent
measurement of a Severe 40 - : : : . : ; : £
NLOS multipath channel—
the DP is not detected

relative amplitude (dB)

10 15 20 25 330 35 40 45 50 5 80
Delay (ns)

pathloss model, the challenge of RSS ranging in NLOS is exacerbated by the fact
that obstructions between the transmitter and receiver can further complicate the
distance—power relationship, making it difficult to directly estimate the distance
accurately. For example, consider a mobile station moving away from a base
station in a typical LOS environment. The pathloss model for this scenario is a
typical LOS propagation model with pathloss exponent around 1-2 and minimal
shadowing variance. However, as the mobile moves behind a wall, cabinet, or even
an elevator, the power suddenly fluctuates and severe attenuation perturbs the LOS
distance—power relationship. It then becomes very difficult to achieve accurate
distance estimation in light of this problem. Although Li (2006) proposed a
technique to estimate the pathloss exponent in real-time, the limitations still affect
the accuracy and practicality of this approach. As a result, numerous research
efforts have focused instead on an alternative RSS-based localization technique,
namely fingerprinting-based localization, an approach to which Chap. 4 of this
book is completely dedicated.

In NLOS environments the pathloss model introduced earlier for LOS envi-
ronments can be further extended

L=Ly+ 10N log,,d + SN-O5 (2.61)

where yNLOS and SNLOS is the pathloss exponent and shadow fading parameters for

NLOS. Usually yN-OS > 9LOS with yNLOS ranging between 3 and 6 (Pahlavan and
Levesque 2005). The NLOS pathloss model will be significantly different when
considering the type and number of obstructions separating the transmitter and
receiver. For example in indoor NLOS environments, the number of walls between
the transmitter and receiver can significantly change the pathloss behavior. An
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additional parameter to incorporate the wall effect has been modeled in the lit-
erature as

N
L =L+ 10yN%log,,d + SNO5 + Z W, (2.62)

n=1

where W, is the attenuation specific to a type of wall (Durantini and Cassioli 2005).
It is clear that, in practice, it is very difficult to have an accurate pathloss model that
can be used to estimate the distance accurately for all the environments.

2.4 Empirical Evaluation of the Multipath and NLOS
Problems

In order to understand the impact of the propagation channel on the effectiveness of
existing TOA-based and RSS-based algorithms and to appreciate the limitations that
they face, itis necessary to empirically characterize the radio propagation channel for
the ranging- or geolocation-specific application. The TOA- and RSS-specific
propagation studies help to shed light on the fundamental aspects of the ranging
technique and the parameters that control its performance. In this section, we will
provide an overview of the measurement techniques, results, and modeling efforts
that have been carried out for TOA- and RSS-based ranging. The aim of this section is
to introduce the reader to the methodologies used to measure and characterize the
wireless channel for geolocation applications. This will serve as a foundation through
which it is possible to understand the limitations facing some of the popular ranging
and localization techniques that will be introduced in the later chapters.

2.4.1 Channel Measurement Systems

In order to characterize the behavior of TOA- or RSS-based ranging in multipath
environments, the channel impulse response (CIR) or the power delay profile of
the channel must be measured. The CIR is the time-delay characterization of the
multipath and it provides the amplitude/delay relationship of the arriving multipath
components. In practice the CIR can be measured directly by either using a time—
domain measurement system or indirectly by using a frequency—domain mea-
surement system. For geolocation-specific measurements and modeling, either
systems can be used to extract relevant information for TOA-based ranging.
Specifically, the measurement systems can be used to measure the large-scale,
spatial characteristics of the direct path, mainly the 4PF and the PP, which can be
used to examine the ranging coverage (pathloss characterization) and accuracy,
respectively. In the absence of the DP, it is possible to measure the first detected
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Fig. 2.12 Time domain measurement system block diagram

path, #)'P", and analyze the probability of blockage and the error statistics in this

condition. These TOA-based parameters can be extracted directly from the mea-
sured CIR.

2.4.1.1 Time Domain Systems

One way to capture the channel multipath profile is through the well-known time
domain measurement system. The channel is captured by transmitting a known
waveform (with special autocorrelation properties) and post-processing the
received waveform by cross-correlation with the known template. Since
the arriving waveform will be a superposition of shifted and attenuated replicas of
the original signal, then the output of the cross-correlation will contain “peaks” at
the delay values of the multipath components. A typical time domain measurement
system is depicted in Fig. 2.12.

Typically, the template waveform can be either pulses or PN-sequences,
employed in direct-sequence spread spectrum systems (Ciccognani et al. 2005).
After amplification, the received waveform is captured by a digital sampling
oscilloscope and stored for post-processing (Cassioli et al. 2002). Depending on
the waveform type, the multipath profile can be extracted from the received
waveform. In the case of the PN-sequence waveform, the received signal is cor-
related (after demodulation) with a replica of the transmitted sequence (Janssen
and Vriens 1991). Note that for this measurement system the signal generator must
be “synchronized” with the digitally sampling oscilloscope. That is a trigger
signal is typically used to trigger the events for correlation purposes.

2.4.1.2 Frequency Domain Systems

One of the most popular and practical methods to measure the wireless channel is
through the use of the frequency-domain measurement system. For such mea-
surement systems a generic vector network analyzer (VNA) can be used. Fre-
quency-domain measurement techniques have been previously employed to
characterize the channel impulse response (Ghassemzadeh et al. 2004); Chong and
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Fig. 2.14 Measurement post-processing and CIR generation

Yong (2005), Pahlavan and Levesque (2005), Howard and Pahlavan (1990) but for
modeling the communication channel—characterizing RMS delay spread and
power-distance relationships. The frequency measurement system captures the
channel transfer function (CTF) and the time domain CIR can then be obtained by
the inverse Fourier Transform (IFT).

The core of the measurement system is the VNA, which is used to sweep the
frequency spectrum of a desirable system bandwidth with a certain sampling
interval. The CTF can be captured by measuring the S21 S-parameter on the VNA
which are samples of the frequency domain of the channel. Figure 2.13 illustrates
an example measurement system setup. Further details of the measurement system
can be found in Ghassemzadeh et al. (2004), Pahlavan and Levesque (2005) and
Alsindi et al. (2009).
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Table 2.1 Common
frequency/time domain
definitions and relationships
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The CIR is then obtained by an IFT process and Fig. 2.14 highlights the system
block diagram of the post-processing stage.

The uncalibrated measured CTF from the VNA is passed through a post-
measurement calibration process that removes the channel response of the cables,
LNA and PA. The CIR is then obtained by the IFT or the Chirp-Z transform which
has a signal processing “zooming” capability. The time and amplitude of the
multipath delays are then extracted by passing the raw estimated CIR through a
peak detection algorithm, that essentially identifies the peaks in the profile that are
greater than a certain noise threshold (typically —120 to —110 dBm).

The frequency domain measurement parameters are related to the time domain
channel impulse response. The parameters that can be controlled in the VNA when
measuring the frequency response are the swept frequencies (bandwidth), the
number of samples, and the transmitted power. The frequency spacing is deter-
mined by the number of samples in a given bandwidth. For a CTF measurement
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H(f) = H(f1,f2) the VNA can be configured to measure a certain bandwidth
between f; and f>, or B = f, — fi. Selecting the number of points will dictate the
frequency spacing Af. The relationship between the number of measured fre-
quency samples, Ny, and the frequency spacing, Af is Ny = (f, — fi)/Af. The
frequency samples on the VNA directly affect the time domain CIR. The measured
bandwidth B controls the time domain resolution A¢ and the frequency spacing Af
controls the maximum time delay, Ty, that can be measured. Figure 2.15 and
Table 2.1 illustrate and summarize the relationship.

The collected measurement data can be then used to extract the TOA or RSS
parameters for analysis. In the next subsectionss we introduce some of the models
developed for the indoor environment.

2.4.2 Alavi Models

One of the earliest TOA-based ranging measurements and modeling was con-
ducted by Alavi and Pahlavan (2006). The focus of the measurement and modeling
was to characterize the impact of multipath on the accuracy of range estimation.
The measurements and modeling provided an analysis of the impact of system
bandwidth on the multipath-induced error. In addition, the TOA-specific mea-
surements errors were analyzed under different NLOS conditions. Specifically, in
this work, ranging error was referred to as Distance Measurement Error (DME)
and it is given by

ep(d) =dg —d (2.63)

where d is the ground-truth distance, 213 is the measured distance, and its depen-
dence on system bandwidth is explicitly given by the subscript B. As a result, the
error is a function of the distance between the transmitter and receiver and
the bandwidth. Furthermore, depending on the condition of the indoor channel, the
error can be significantly different: in LOS environments, multipath is the domi-
nant source of error while in NLOS the absence of the DP—also known as
Undetected Direct Path (UDP)—dominates the error. UDP is essentially severe
NLOS where the DP cannot be detected due to a large obstruction between the
transmitter and receiver which causes the DP path to be buried under the receiver
noise floor. The models were obtained by conducting frequency domain mea-
surements using the VNA described in the previous subsections. Figures 2.8 and
2.11 illustrate LOS versus NLOS with undetected DP.

By comparing the two measured profiles, it is clear that the error in UDP
conditions contains a combination of the multipath error and a “UDP” error,
which is essentially a bias in the time delay estimation. Note from the figure that
the direct path is severely attenuated and lies below the noise threshold, which
makes its detection very difficult. Based on the measurements in an indoor
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environment, Alavi introduced a model that incorporates the different ranging
conditions. Specifically, the error is modeled as

es(d) = &+ en5(d) + E(B)ey 5(d) (2.64)

where ey p(d) is the multipath error, ey g(d) is the UDP error or bias, and £p(B) is
a random variable that takes the value of “1” when a UDP condition occurs and
“0” otherwise. The model also includes &, which is an error that models the
inaccuracies occurring during measurement of the actual distance between the
transmitter and receiver. Typically, this error can be assumed zero-mean Gaussian
with a variance that depends on the accuracy of the measurement error. Since &
cannot be separated from the multipath error, it 1is assumed that
¢+ ey g(d) = ey p(d), which simplifies the model to

SB(d) = SMﬁB(d) + éB(B)SUAB(d). (265)
The multipath error &y g(d) can been modeled by
e, p(d) = X (mu, 5, om,5) log(1 + d) (2.66)

where X(my g, ou ) is a Gaussian random variable with mean my, p and standard
deviation oy, 5. The UDP error component was similarly modeled as Gaussian
X(myp,0up). As a result, the overall model is given by

d = d + MDME + ¢5(d)UDME

(2.67)
= d + X(mM‘B, GMJ;) lOg(l + d) + éB(d)X(mUﬁ, GU,B)

The random variable £z(d) can be modeled as

Jew ) = (1= pus(d))d(y) + pus(d)d(y — 1). (2.68)

The proposed models have been verified to fit actual data in Alavi and Pahlavan
(20006).

The work in Alavi and Pahlavan (2006) also investigated the impact of the
system bandwidth on the DME. Basically, as the system bandwidth increases,
the error decreases due to enhanced time resolution. The finding further supports
the idea that one way to mitigate the multipath problem is to increase the system
bandwidth. This observation was also highlighted in Gentile and Kik (2007).

2.4.3 Alsindi Models

As stated earlier, the Alavi models were the first models developed for TOA-based
ranging that analyzed the impact of LOS/NLOS and system bandwidth on the
accuracy. The results of these models highlighted the fundamental limitations and
challenges facing TOA-based ranging in harsh multipath environments. The
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Fig. 2.16 Firefighter/soldier localization scenario in hostile indoor environments

measurements and models, however, were limited in scope since they were based
on a single floor/office of an indoor environment and thus lacked comprehensive
analysis in different buildings/environments. In addition, the models do not pro-
vide any indication of the coverage aspect of the ranging systems. As a continu-
ation of the modeling efforts, Alsindi’s work focused on developing models for
Ultra-Wideband (UWB) TOA-based systems that characterize in detail some of
the fundamental parameters such as ranging coverage, ranging error in LOS,
NLOS-presence of DP, and NLOS-absence of DP (Alsindi et al. 2009). UWB is
defined as any system operating with a bandwidth of 500 MHz or with a band-
width exceeding 20 % of the center frequency.

The objective of the measurement campaign was to develop models for fire-
fighter/soldier TOA-based ranging/localization in hostile indoor environments. In
such scenarios, beacons or anchors were placed surrounding a given building in
order to aid firefighters/soldiers to localize and navigate themselves in an indoor
environment through cooperative localization using wireless sensor networks
(WSN). Cooperative localization is dealt with in Chaps. 6 and 7 where centralized
and distributed techniques will be discussed in more detail. Figure 2.16 illustrates
the localization scenario that was considered for the measurement campaign.

In order to develop reliable systems operating in these challenging environ-
ments, it is necessary to understand the propagation characteristics that impact
ranging and localization accuracy. It is clear from the figure that three distinct
ranging scenarios are possible: Indoor-to-Indoor (ITI), Outdoor-to-Indoor (OTT)
and Roof-to-Indoor (RTI). In addition four different building types were investi-
gated: old office (Atwater Kent—AK), new office (Fuller Labs), residential
(Schussler) and manufacturing floor (Norton). All the buildings are in Worcester,
MA, USA. From this application point of view, it is then interesting to investigate
the following issues:
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Fig. 2.17 NLOS challenges Indoors Outdoors
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For the outdoor beacons (OTI & RTI), how far can the devices reliably provide
TOA-based ranging estimates? What is the ranging coverage?

What is the probability of DP blockage in NLOS environments?

What are the ranging error characteristics in ITI, OTI and RTI?

How is the ranging/localization performance impacted for different building
types: residential, office, etc.?

For the firefighter/soldier localization scenario, the multipath and NLOS
problems can be difficult challenges that will impact the accuracy of the locali-
zation directly. Figure 2.17 highlights the NLOS challenges facing OTI/RTI and
ITT scenarios.

For OTI/RTI scenarios, the signal propagating through the external walls of the
building typically undergoes significant attenuation because the walls are usually
thick in construction and are composed of brick and steel material. As a result, the
ranging coverage can be limited significantly and, in most cases, is much less than
the ITI scenarios. For ITI scenarios the ranging coverage, although higher than
OTI/RTI, is significantly different for LOS and NLOS scenarios.

Alsindi’s models focused on characterizing the ranging coverage and ranging
error in these different scenarios and environments. For the former the distance—
power relationship of the Direct Path (DP) signal provides an empirical evaluation
of the ranging coverage which is the maximum distance where the DP can be
detected. For the latter the spatial distribution of the ranging error in different
scenarios and environments provides an empirical evaluation of the physical
limitation facing indoor geolocation.

In indoor environments, the distance-dependence of the received power, which
can be used to determine the communication coverage, is usually predicted from
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Table 2.2 Summary of TOA-based ranging error conditions

LOS NLOS-DP NLOS-NDP/UDP
dpp = dpp + epp(B) +w dNEOS — dpp + eNLOS 4y dNEOS — dpp + eNEOS 4 vy
SDP(CU) = b, (B) GIBI}),OS = bpd + by, (B) 8%16(35 = by, (B) + bpd + bnpp

experimental pathloss models of the total signal energy in different environments
and scenarios (Durgin et al. 1998; Molisch 2005; Ghassemzadeh et al. 2004).
Similarly, the distance-dependence behavior of the power of the DP can be used to
determine the ranging coverage. Unlike communication coverage which is related
to the received power of all the multipath components at a given distance, ranging
coverage is related to the received power of the DP component. For a given system
dynamic range, k, ranging coverage, R,, is defined as the distance in which the
maximum tolerable average pathloss of the DP is within x (Alsindi et al. 2009).
This is represented by

max{?} = 10ylog,o(R,) <k (2.69)

where @ is the average pathloss of the DP and 7 is the pathloss exponent. The
pathloss behavior of the DP is distance-dependant, but because of the attenuation
and energy removed by scattering, its intensity decreases more rapidly with dis-
tance compared with the total signal energy (Siwiak et al. 2003). This means that
for typical indoor multipath scattering environment, communication coverage is
greater than ranging coverage, R, > R,. Operating out of ranging coverage causes
large TOA estimation errors and performance degradation (always in NLOS-NDP
condition). The characterization of ranging error in different scenarios has been
introduced earlier in the chapter and it is summarized in Table 2.2 for
convenience.

2.4.3.1 Modeling the Pathloss: Ranging Coverage

Using the same established pathloss modeling approach used in the literature,
(Ghassemzadeh et al. 2004; Pahlavan and Levesque 2005), Alsindi characterized
the distance—power dependence of the measured DP (Alsindi et al. 2009) and
compared it to the distance—power relationship of the total received power (RSS).
The pathloss exponent is determined from measurement data through least-square
(LS) linear regression. The pathloss relationship is provided in (2.61) but an
additional factor attributed to the power loss due to penetration through walls can
be incorporated as Ly (which is depending on the ranging scenario OTI, RTI, etc.).
Thus the modified expression is given by

L(d) = Lo + Lx + 10y log,o(d/do) + S, d>dy. (2.70)
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Fig. 2.18 Pathloss scatter plots in Fuller ITI LOS at 3 GHz bandwidth

All the parameters of the model in (2.70) are a function of the building type/
propagation environment. Figures 2.18, 2.19 and 2.20 show sample measured
scatter plots of the pathloss as a function of TX-RX separation for different
buildings and ranging scenarios.

The pathloss model parameters are summarized in Table 2.3.

Several observations can be made from the table and the figures. The first is that
for all the measurement data the pathloss exponent is higher for the DP relative to
the total signal power, which is consistent with the modeling approach. Second,
the DP power experiences greater fluctuations around the mean pathloss as
compared with the total signal counterpart. This observation makes sense because
small variations on the transmitter location affect the DP power more than the total
power. Third, Ly changes for the different penetration scenarios. In ITI scenarios
Schussler NLOS suffers 6 dB penetration loss due to the walls compared to 7.5 in
AK. Norton ITT measurements are a mixture of LOS/NLOS because the manu-
facturing floor contained scattered machines. The impact can be clearly seen on the
pathloss exponent when the bandwidth increases, hence higher attenuation. Results
of OTI measurements show that Fuller and AK exhibit the largest penetration loss
mainly because the signal had to penetrate a thicker building construction when
compared with Norton and Schussler. In addition, the pathloss exponents in AK
are large mainly because the measurement locations were conducted inside a metal
shop on the edge of the building and between concrete corridors and rooms. AK in
general imposes a very challenging environment for ranging because of the
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Table 2.3 Pathloss modeling parameters

Scenario Environment Lx(dB) Direct Path Total signal
500 MHz 3 GHz
v S(dB) S@B) vy S (dB)
ITI Fuller (LOS) 0 3.2 8.9 33 7.1 2.4 55
Norton (Mixed) 0 3.5 8.5 4.5 9.1 2.6 34
Schussler (NLOS) 6 34 7.9 4.0 8.4 3.0 4.6
AK (NLOS) 7.5 54 6.2 5.6 8.5 3.6 6.2
OTI Fuller 14.3 34 13.7 3.7 14.1 2.2 7.7
Norton 8.7 3.9 7.8 5.0 10.1 33 44
Schussler 7.6 4.1 10.5 4.2 11.1 3.2 6.1
AK 10 4.6 8.7 5.1 8.9 3.1 32
RTI AK 24.5 4.3 7.6 53 8.8 2.9 1.7

building material and dense cluttering. RTI measurements experienced the largest
penetration loss and high pathloss exponent. Finally, note that the harsher the
indoor environment, the higher the pathloss exponent difference when moving to a
higher system bandwidth. This is mainly due to the fact that larger system
bandwidths provide better time domain resolution at the cost of reduced power per
multipath component. This implies that the advantage of higher time domain
resolution comes at a cost of shorter ranging coverage.

2.4.3.2 Modeling the Ranging Error

The spatial characteristics of the ranging errors are determined through the
behavior of the biases, which are random due to the unknown structure of the
indoor environment and the relative location of the user to them. Since the errors
are highly dependent on the absence or the presence of the DP, the models
introduced by Alsindi are based on the classification in Table 2.2. Further, in order
to model and compare the behavior in different building environments and sce-
narios, the normalized ranging error was modeled instead as

v = & (EZ — d)
d  d
The range error observed in an indoor environment can then be modeled by

combining the conditions in Table 2.2 through the following expression

(2.71)

=y, + G(lppd JrXF”NDP) (2.72)

where ,, is the normalized multipath error that exists in both the presence and
absence of the DP. 4 is the normalized propagation delay-induced error, and

Ynpp 1s the normalized error due to DP blockage. In order to distinguish between
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Table 2.4 Probabilities of the presence and absence of the DP

Scenario Environment 500 MHz 3 GHz
p(y) p(2) p(1) ()
ITI Fuller 0.1 0.90 0.2 0.98
Norton 0.96 0.4 0.83 0.17
Schussler 0.89 0.11 0.87 0.13
AK 0.39 0.61 0.32 0.68
OTI Fuller 0.42 0.58 0.39 0.61
Norton 0.57 0.43 0.24 0.76
Schussler 0.77 0.23 0.60 0.40
AK 0.40 0.60 0.22 0.78
RTI AK 0.58 0.42 0.37 0.63

the error behavior in LOS and NLOS, a Bernoulli random variable, G was used.
That is,

0, LOS
G—{l, NLOS (2.73)

where p(G = 0) = p(LOS) is the probability of being in LOS and p(G =1) =
p(NLOS) is the probability of being in NLOS. Similarly, X is a Bernoulli random
variable that models the occurrence of DP blockage and is given by

_ 07 Cl
X= { Db (2.74)

where p(X =0) =p({;) denote the probability of detecting a DP, while
p(X =1) = p({,) denotes the probability of the occurrence of blockage. It is
important to emphasize that Alsindi’s modeling approach focuses on the DP and
not the traditional definition of NLOS used for communications. This means that a
mobile station and a base station separated by a wall, for instance, is considered
NLOS, but does not necessarily imply the absence of the DP. In the remainder of
the chapter, ranging error, bias, and normalized error will be used interchangeably.

The results of the measurement and modeling also revealed a significant dif-
ference in the probability of DP blockage among the different environments, which
is highlighted in Table 2.4.

Several observations can be concluded. First, a positive correlation between the
system bandwidth and the blockage probability p({,) exists due to lower energy
per MPCs in higher system bandwidths. Second, as expected, DP blockage
increases from ITI, to OTI, and RTI. Attenuation due to penetration from exterior
walls and ceiling results in higher p({,). Third, blockage is highly correlated with
the building type. In residential environments, blockage probability is low since
the interior is composed of wooden structures with few metallic objects (e.g. a
fridge, laundry room, etc.). Office buildings, however, pose harsher conditions
with thicker walls, metallic beams, vending machines, metallic cabinets, shelves,
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Fig. 2.21 Norton ITI at 500 MHz bandwidth: confirming the normality of the biases in LOS
conditions

and elevator shafts, resulting in a substantial blockage up to 90 %, see Fuller and
AK (ITI/OTI). Also, ITI measurements on the manufacturing floor highlight the
impact of occasional clutter of machineries. Finally, it is worth mentioning that
these results were measured using a 120 dB dynamic range provided by the
external amplifiers and LNA extending the measured range. In realistic UWB
systems, unfortunately, this would be prohibitively high in terms of implementa-
tion expense, which means that the results here can be seen as a lower bound.

The models also analyze the behavior of ranging error in the presence and in the
absence of the DP. The measurement results of the ranging error in LOS scenarios
revealed that the impact of the multipath can be modeled through a normal dis-
tribution since the DP is available and the error deviates in both directions relative
to the actual distance. In addition, normality of the ranging error in this condition
has been reported in Alavi and Pahlavan (2003, 2006). The error distribution can
then be explicitly modeled as,

—_0) — 1 (Y - .“Los)2
fY|G=0)= mexp [— 00 ] (2.75)

with mean pyog and standard deviation opps specific to the LOS multipath-
induced errors. Figure 2.21 further confirms the normality of errors in this
condition.

A similar observation of the multipath effect in indoor LOS environments has
been reported through measurements (Alavi and Pahlavan 2006). In NLOS
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Fig. 2.22 Schussler ITI NLOS—mean of biases is larger than LOS

scenarios, when the DP is present, the amount of propagation delay and multipath
due to obstructing objects such as wooden walls causes the biases to be more
positive. The results show (see Fig. 2.22) that the spatial characteristics retain the
statistics of the LOS counterpart but with a higher mean and standard deviation.

According to these results, the normalized ranging error is modeled similar to
(2.75), but with emphasis on the condition. This is given by,

exp | — (¥ — :uNLostP)Z (2.76)

2
20N1.0s-DP

WG =0,x = 0) =

1
2
\V/ 210N 0s—pp

The subscripts in (2.76) specify the contributing error factors. Table 2.5 pro-
vides the modeling parameters of all the scenarios and environments in the
presence of the DP.

The results show a positive correlation between the statistics of the normal
distribution with the complexity of environment and/or ranging scenario. Negative
correlation can be seen between the statistics and the system bandwidth due to
reduction of multipath error in higher bandwidths.

The ranging error behavior in the absence of the DP is significantly different.
The shadowing of the DP impacts the error behavior in several ways. First, only
positive errors occur, since the blockage induces a higher positive bias that
dominates compared to the multipath counterpart. Second, there are occasionally
large positive range errors that occur due to heavier indoor constructions such as
elevator shafts, clustering of cabinets, or even metallic doors. Third, the diversity
of blocking material in indoor environments means that the spatial distribution of
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Table 2.5 DP normal distribution modeling parameters for normalized ranging error

Scenario Environment 500 MHz 3 GHz
Hros 0LOS Hros OLOS
ITI Fuller (LOS) 0 0.028 0 0.006
Norton (LOS) 0 0.022 0 0.007
HUNLOS-DP ONLOS—DP HUNLOS-DP ONLOS-DP
Fuller (NLOS) 0.058 0.028 0.003 0.01
Schussler 0.029 0.047 0.014 0.016
AK (NLOS) 0.023 0.020 0.009 0.004
OTI Fuller 0.015 0.017 0.002 0.011
Norton 0.019 0.029 0.002 0.015
Schussler 0.041 0.045 0.011 0.013
AK 0.034 0.023 0.012 0.004
RTI AK 0.029 0.041 0.012 0.012
QBB+ Schussler OTINDP 3 GHz |:2203
0.9 Lognormal Fit

Probability

10"
Normalized Ranging Error

Fig. 2.23 Schussler OTI at 3 GHz bandwidth—confirming the lognormality of the measured
normalized ranging error

errors will in general exhibit a heavier positive tail. By examining the PDF of the
errors in this condition, it is observed that different subsets of the data showed
varying tail behavior. The “heaviness” of the tail depended on the ranging envi-
ronment and scenario. Thus harsher blockage conditions, i.e., higher number of
blocked MPCs, exhibited heavier tails. As a result, the ranging error in this con-
dition was modeled as log-normally distributed. The lognormal model is then
given by,
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Table 2.6 Lognormal distribution modeling parameters of the normalized ranging error in the
absence of the direct path

Scenario Environment 500 MHz 3 GHz
HUNLOS—NDP ONLOS—NDP HUNLOS—NDP ONLOS—NDP
ITI Norton (NLOS) —3.13 0.62 —4.29 0.45
Fuller (NLOS) —1.68 0.88 —1.90 1.13
Schussler —1.59 0.49 —2.72 0.53
AK (NLOS) —2.17 0.45 —2.89 0.81
OTI Fuller —2.33 0.75 —2.99 1.17
Norton —2.78 0.65 —3.82 0.52
Schussler —2.03 0.58 —3.16 0.45
AK —2.32 0.51 —-3.11 0.77
RTI AK —1.99 0.54 —3.01 0.61

exp | — (Iny — /"NLOS7NDP)2 (2.77)

2
20N1.0s—NDP

1
FWIG=1,x=1) =
2V 27750'12\1LOS—NDP

where N os—npp and onLos—npp are the mean and standard deviation of the
ranging error’s logarithm. The subscripts emphasize the contributing factors.
Figure 2.23 provides a sample measurement result confirming the lognormal
behavior of the error.

The estimated parameters of the lognormal distribution, obtained using Maxi-
mum Likelihood (ML) estimation techniques, for different ranging scenarios and
environments, are given in Table 2.6. Similar observations compared with earlier
models can be observed for the correlation between the error statistics with
bandwidth and ranging conditions.

However, there are several scenarios where the extent of the correlation
diminishes. For example, Fuller OTI and ITI contain measurements in severe
NLOS conditions and increasing system bandwidth has a limited impact on the
parameters of the model. This is mainly due to ranging conditions that induce large
blockage errors which are effectively insensitive to bandwidth changes, e.g., ele-
vator shafts.

The measurement and modeling introduced in this section provides realistic
insight into these challenges, which is necessary for performance evaluation
through CRLB and algorithm design and development.

2.5 Conclusion

The development of location-enabled services is mainly hindered by the realities
of harsh propagation in environments where the devices are to be deployed—
typically the dense urban and indoor environments. These environments pose
serious challenges to system designers and engineers developing next generation
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location enabled devices. Specifically, multipath and NLOS are the two main
physical limitations that need to be resolved in order to enable accurate and
reliable localization. In this chapter we have first introduced the basics of geolo-
cation techniques such as TOA, TDOA, AOA, and RSS. Then the multipath and
NLOS problems for TOA- and RSS-based ranging techniques were presented.

Through channel measurements and modeling, the impact of multipath on
TOA-based ranging as a function of bandwidth was investigated. It was shown that
an increase in system bandwidth can reduce the multipath error significantly. For
RSS-based ranging systems, however, the bandwidth does not play a major role in
mitigating the multipath problem. Instead, averaging can remove the fast-fading
variations of power due to multipath, yielding better distance estimation. With
regard to the NLOS problem, both RSS- and TOA-based ranging suffer from the
physical limitations. For the former, large power variations (shadow fading) affect
the power—distance relationship and make it difficult to accurately estimate the
distance; for the latter, NLOS introduces biases that corrupt the distance estimation
and cause large errors that can affect the accuracy of any localization algorithm. In
the next chapter, we will investigate popular techniques to mitigate the multipath
and NLOS problems.
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