
Chapter 9
Toward Hodge Theory for Complex Manifolds

From now on, we are going to work almost exclusively with complex-valued func-
tions and forms. So we revise our notation accordingly. Given a C∞ manifold X , let
C∞X (respectively E k

X ) now denote the space of complex-valuedC∞ functions (respec-
tively k-forms). We write C∞X ,R (or E k

X ,R) for the space of real-valued functions or
forms. Let us say that a complex-valued form is exact, closed, or harmonic if its real
and imaginary parts both have this property. Then de Rham’s theorem and Hodge’s
theorem carry over almost word for word: Hk(X ,C) is isomorphic to the space of
complex closed k-forms modulo exact forms, and if X is compact and oriented with
a Riemannian metric, then it is also isomorphic to the space of complex harmonic
k-forms. This can be checked easily by working with the real and imaginary parts
separately.

To go deeper, we should ask how de Rham and Hodge theory interact with the
holomorphic structure when X is a complex manifold. This is really a central ques-
tion in complex algebraic geometry. In this chapter, which is really a warmup for
the next, we take the first few steps toward answering this. Here we concentrate on
some special cases such as Riemann surfaces and tori, which can be handled without
explicitly talking about Kähler metrics. In these cases, we will see that the answer
is as nice as one can hope for. We will see, for instance, that the genus of a Riemann
surface, which a priori is a topological invariant, can be interpreted as the number
of linearly independent holomorphic 1-forms.

9.1 Riemann Surfaces Revisited

Fix a compact Riemann surface X with genus g, which we can define to be one-half
of the first Betti number. In this section, we tie up a loose end from Chapter 6, by
proving Proposition 6.2.9, that

g = dimH0(X ,Ω 1
X) = dimH1(X ,OX ).

169  
DOI 10.1007/978-1-4614-1809-2_9, © Springer Science+Business Media, LLC 2012

     , , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers



170 9 Toward Hodge Theory for Complex Manifolds

This will be an easy application of the Hodge theorem. In order to use it, we need
to choose a Riemannian metric that is a C∞ family of inner products on the tangent
spaces. We will also impose a compatibility condition that multiplication by i =√−1 preserves the angles determined by these inner products. To say this more
precisely, view X as a two-dimensional real C∞ manifold. Choosing an analytic local
coordinate z = x+ iy in a neighborhood of U , the vectors v1 = ∂

∂x and v2 = ∂
∂y give a

basis (or frame) of the real tangent sheaf TX of X restricted to U . The automorphism
Jp : TX |U → TX |U represented by (

0 1
−1 0

)
in the basis v1,v2 is independent of this basis, and hence globally well defined.
A Riemannian metric (,) is said to be compatible with the complex structure, or
Hermitian, if the transformations Jp are orthogonal. In terms of the basis v1,v2

this forces the matrix of the bilinear form (,) to be a positive multiple of I by
some function h. In coordinates, the metric would be represented by a tensor
h(x,y)(dx⊗dx + dy⊗dy). The volume form is represented by hdx∧dy. It follows
that ∗dx = dy and ∗dy = −dx. In other words, ∗ is the transpose of J, which is
independent of h. Once we have ∗, we can define all the operators from the last
chapter.

Standard partition of unity arguments show that Hermitian metrics always exist.
For our purposes, one metric is as good as any other, so we simply choose one.

Lemma 9.1.1. A 1-form is harmonic if and only if its (1,0) and (0,1) parts are
respectively holomorphic and antiholomorphic.

Proof. Given a local coordinate z = x + iy,

∗dz = ∗(dx + idy) = dy− idx =−idz , (9.1.1)

and similarly
∗dz̄ = idz̄ . (9.1.2)

If α is a (1,0)-form, then dα = ∂̄α . Thus α is holomorphic if and only if it is
closed if and only if dα = d ∗α = 0. The last condition is equivalent to harmonicity
by Lemma 8.2.4. By a similar argument a (0,1)-form is antiholomorphic if and only
if it is harmonic. This proves one direction.

By (9.1.1) and (9.1.2) the (1,0) and (0,1) parts of a 1-form are linear combina-
tions of α and ∗α . Thus if α is harmonic, then so are its parts. 	

Corollary 9.1.2. dim H0(X ,Ω 1

X) equals the genus of X.

Proof. By the Hodge theorem, the first Betti number 2g is the dimension of the
space of harmonic 1-forms, which decomposes into a direct sum of the spaces
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of holomorphic and antiholomorphic 1-forms. Both these spaces have the same
dimension, since conjugation gives a real isomorphism between them. Therefore

2g = 2dimH0(X ,Ω 1
X ). 	


Lemma 9.1.3. The images of Δ and ∂ ∂̄ on E 2(X) coincide.

Proof. On the space of 2-forms, we have Δ =−d ∗ d∗. Computing in local coordi-
nates yields

∂ ∂̄ f =− i
2

(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
dx∧dy

and

d ∗ d f =
(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
dx∧dy ,

which implies the lemma. 	

Proposition 9.1.4. The map H1(X ,OX )→ H1(X ,Ω 1

X) induced by d vanishes.

Proof. We use the descriptions of these spaces as ∂̄ -cohomology groups provided
by Corollary 6.2.5. Given α ∈ E 01(X), let β = dα . We have to show that β lies in
the image of ∂̄ . Theorem 8.2.5 shows that we can write β = H(β )+ΔG(β ). Since
β is exact, we can conclude that H(β ) = 0 by Corollary 8.2.6. Therefore β lies in
the image of ∂ ∂̄ =−∂̄ ∂ . 	

Corollary 9.1.5. The map H1(X ,C)→H1(X ,OX ) is surjective, and dimH1(X ,OX )
coincides with the genus of X.

Proof. The surjectivity is immediate from the exact sequence

H1(X ,C)→ H1(X ,OX )→ H1(X ,Ω 1
X).

The second part follows from the equation

dimH1(X ,OX) = dimH1(X ,C)−dimH0(X ,ΩX). 	


Exercises

9.1.6. Show that H1(X ,C) → H1(X ,OX ) can be identified with the projection of
harmonic 1-forms to antiholomorphic (0,1)-forms.

9.1.7. Calculate the spaces of harmonic and holomorphic one-forms explicitly for
an elliptic curve.

9.1.8. Show that the pairing (α,β ) �→ ∫
X α ∧β is positive definite.
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9.2 Dolbeault’s Theorem

We now extend the results from Riemann surfaces to higher dimensions. Given an
n-dimensional complex manifold X , let OX denote the sheaf of holomorphic func-
tions. We can regard X as a 2n-dimensional (real) C∞ manifold as explained in
Section 2.2. As explained in the introduction, E k

X will now denote the sheaf of C∞

complex-valued k-forms. We have

E k
X(U) = C⊗R E k

X ,R(U).

By a real structure on a complex vector space V , we mean a real vector space VR

and an isomorphism C⊗VR
∼= V . This gives rise to a C-antilinear involution v �→ v̄

given by a⊗ v = ā⊗v. Conversely, such an involution gives rise to the real structure
VR = {v | v̄ = v}. In particular, E k

X (U) has a natural real structure.
The sheaf of holomorphic p-formsΩ p

X is a subsheaf of E p
X stable under multipli-

cation by OX . This sheaf is locally free as an OX -module. If z1, . . . ,zn are holomor-
phic coordinates defined on an open set U ⊂ X , then

{dzi1 ∧·· ·∧dzip | i1 < · · ·< ip}

gives a basis for Ω p
X (U). To simplify our formulas, we let dzI = dzi1 ∧ ·· · ∧ dzip ,

where I = {i1, . . . , ip}.

Definition 9.2.1. Let E
(p,0)
X denote the C∞ submodule of E p

X generated by Ω p
X .

Let E
(0,p)

X = E
(p,0)
X and E

(p,q)
X = E

(p,0)
X ∧E

(0,q)
X .

In local coordinates, {dzI ∧ dz̄J | #I = p,#J = q} gives a basis of E
(p,q)
X (U).

All of the operations of Section 6.2 can be extended to the higher-dimensional case.
The operators

∂ : E
(p,q)
X → E

(p+1,q)
X

and
∂̄ : E

(p,q)
X → E

(p,q+1)
X

are given locally by

∂

(
∑
I,J

fI,JdzI ∧dz̄J

)
=∑

I,J

n

∑
i=1

∂ fI,J

∂ zi
dzi∧dzI ∧dz̄J ,

∂̄

(
∑
I,J

fI,JdzI ∧dz̄J

)
=∑

I,J

n

∑
j=1

∂ fI,J

∂ z̄ j
dz̄ j ∧dzI ∧dz̄J.

The identities
d = ∂ + ∂̄ , ∂ 2 = ∂̄ 2 = 0, ∂ ∂̄ + ∂̄∂ = 0, (9.2.1)

hold.
Theorem 6.2.2 has the following extension.



9.3 Complex Tori 173

Theorem 9.2.2. Let D ⊂ Cn be an open polydisk (i.e., a product of disks). Given
α ∈ E (p,q)(D̄) with ∂̄ α = 0, there exists β ∈ E (p,q−1)(D) such that α = ∂̄ β .

Proof. See [49, pp. 25–26]. 	

Corollary 9.2.3 (Dolbeault’s theorem I). For any complex manifold X,

(a)

0→Ω p
X → E

(p,0)
X

∂̄−→ E
(p,1)
X

∂̄−→ ·· ·
is a soft resolution.

(b)

Hq(X ,Ω p
X)∼= ker[∂̄ : E (p,q)(X)→ E (p,q+1)]

im[∂̄ : E (p,q−1)(X)→ E (p,q)]
.

Proof. Since exactness can be checked on the stalks, there is no loss in assuming
X = D for (a). The only thing not stated above is that Ω p

X is the kernel of the ∂̄
operator on E

(p,0)
X . This is a simple calculation. Given a (p,0)-form ∑I fIdzI ,

∂̄

(
∑

I
fIdzI

)
=∑

I

n

∑
j=1

∂ fI

∂ z̄ j
dz̄ j ∧dzI = 0

if and only it is holomorphic. Thus the sheaves E
(p,•)
X give a resolution, which is

soft since these are modules over C∞X .
(b) is now a consequence of Theorem 5.1.4. 	

In the sequel, we will refer to elements of ker ∂̄ (or im ∂̄ ) as ∂̄ -exact (or ∂̄ -closed).

Exercises

9.2.4. Check the identities (9.2.1).

9.2.5. Give an explicit description of the map Hi(X ,C) → Hi(X ,OX) induced by
inclusion CX → OX as a projection from de Rham cohomology to ∂̄ -cohomology.

9.3 Complex Tori

A complex torus is a quotient X = V/L of a finite-dimensional complex vector
space by a lattice (i.e., a discrete subgroup of maximal rank). Thus it is both a com-
plex manifold and a torus. After choosing a basis, we may identify V with Cn. Let
z1, . . . ,zn be the standard complex coordinates on Cn, and let xi = Re(zi), yi = Im(zi).

We give X the flat metric induced by the Euclidean metric on V . Recall that har-
monic forms with respect to this are the forms with constant coefficients
(Example 8.2.7).
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Lemma 9.3.1. A holomorphic form on X has constant coefficients and is therefore
harmonic.

Proof. The coefficients of a holomorphic form ∑ fIdzI are holomorphic functions
on X . These are constant because X is compact. 	


This can be refined.

Proposition 9.3.2. Hq(X ,Ω p
X) is isomorphic to the space of (p,q)-forms with con-

stant coefficients.

Corollary 9.3.3. Set
H(p,q) =

⊕
#I=p,#J=q

CdzI ∧dz̄J.

Then Hq(X ,Ω p
X )∼= H(p,q) ∼= ∧pCn⊗∧qCn.

The isomorphism in the corollary is highly noncanonical. A more natural identi-
fication is

Hq(X ,Ω p
X)∼= ∧pV ∗ ⊗∧qV̄ ∗,

where V ∗ is the usual dual, and V̄ ∗ is the set of antilinear maps from V to C.
The proof of Proposition 9.3.2 hinges on a certain identity between Laplacians

that we now define. The space of forms carries inner products as in Section 8.2,
where X is equipped with the flat metric. Let ∂ ∗ and ∂̄ ∗ denote the adjoints to ∂ and
∂̄ respectively. These will be calculated explicitly below. We can define the ∂ - and
∂̄ -Laplacians by

Δ∂ = ∂ ∗∂ + ∂∂ ∗,

Δ∂̄ = ∂̄ ∗∂̄ + ∂̄ ∂̄ ∗.

Lemma 9.3.4. Δ = 2Δ∂̄ = 2Δ∂ .

We give two proofs. The first is by direct calculation.

Proof. Let
α =∑

I,J
αIJdzI ∧dz̄J.

Then

Δ∂̄ (α) =−2∑
I,J,i

∂ 2αIJ

∂ zi∂ z̄i
dzI ∧dz̄J

=−1
2 ∑I,J,i

(
∂ 2αIJ

∂x2
i

+
∂ 2αIJ

∂y2
i

)
dzI ∧dz̄J

=
1
2
Δ(α).

A similar calculation holds for Δ∂ (α). 	
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This implies Proposition 9.3.2:

Proof. By Dolbeault’s theorem,

Hq(X ,Ω p
X)∼= ker[∂̄ : E (p,q)(X)→ E (p,q+1)]

im[∂̄ : E (p,q−1)(X)→ E (p,q)]
.

Let α be a ∂̄ -closed (p,q)-form. Decompose

α = β +Δγ = β + 2Δ∂̄ γ = β + ∂̄ γ1 + ∂̄ ∗γ2

with β harmonic, which is possible by Theorem 8.2.5. We have

‖∂̄ ∗γ2‖2 = 〈γ2, ∂̄ ∂̄ ∗γ2〉= 〈γ2, ∂̄ α〉= 0.

It is left as an exercise to check that β is of type (p,q), and that it is unique. There-
fore the ∂̄ -class of α has a unique representative by a constant (p,q)-form. 	


We will sketch a second proof of Lemma 9.3.4. Although it is much more compli-
cated than the first, it has the advantage of generalizing nicely to Kähler manifolds.
We introduce a number of auxiliary operators. Let ik and īk denote contraction with
the vector fields 2 ∂

∂ zk
and 2 ∂

∂ z̄k
. Thus for example, ik(dzk ∧α) = 2α . If we choose

our Euclidean metric so that monomials in dxi,dy j are orthonormal, then the con-
tractions ik and īk can be checked to be adjoints to dzk∧ and dz̄k∧. Let

ω =
√−1

2 ∑dzk ∧dz̄k =∑dxk ∧dyk, Lα = ω ∧α,

and

Λ =−
√−1

2 ∑ īkik.

The operators L and Λ are adjoint. Using integration by parts (see [49, p. 113]), we
get explicit formulas

∂ ∗α =−∑ ∂
∂ z̄k

ikα, ∂̄ ∗α =−∑ ∂
∂ zk

īkα,

where the derivatives above are taken coefficient-wise.
Let [A,B] = AB−BA denote the commutator. Then we have the following first-

order Kähler identities:

Proposition 9.3.5.

(a) [Λ , ∂̄ ] =−√−1∂ ∗.
(b) [Λ ,∂ ] =

√−1∂̄ ∗.

Proof. We check the second identity on the space of (1,1)-forms. The general case
is more involved notationally but not essentially harder; see [49, p. 114]. There are
two cases. First suppose that α = f dz j ∧dz̄k, with j �= k. Then
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[Λ ,∂ ]α = Λ∂α

= Λ
(
∑
m

∂ f
∂ zm

dzm∧dz j ∧dz̄k

)
= 2

√−1
∂ f
∂ zk

dz j

=
√−1∂̄ ∗α.

Next suppose that α = f dzk ∧dz̄k. Then

[Λ ,∂ ]α =Λ

(
∑

m�=k

∂ f
∂ zm

dzm∧dzk ∧dz̄k

)
− ∂

(
−2
√−1 f

)
=−2

√−1

(
∑

m�=k

∂ f
∂ zm

dzm−∑
m

∂ f
∂ zm

dzm

)

= 2
√−1

∂ f
∂ zk

dzk

=
√−1∂̄ ∗α. 	


We now give a second proof of Lemma 9.3.4. Upon substituting the first-order
identities into the definitions of the various Laplacians, some remarkable cancella-
tions take place:

Proof. We first establish ∂ ∂̄ ∗+ ∂̄ ∗∂ = 0,
√−1(∂ ∂̄ ∗+ ∂̄ ∗∂ ) = ∂ (Λ∂ − ∂Λ)+ (Λ∂ − ∂Λ)∂ = ∂Λ∂ − ∂Λ∂ = 0.

Similarly, we have ∂ ∗∂̄ + ∂̄∂ ∗ = 0.
Next expand Δ ,

Δ = (∂ + ∂̄)(∂ ∗+ ∂̄ ∗)+ (∂ ∗+ ∂̄ ∗)(∂ + ∂̄)
= (∂∂ ∗+ ∂ ∗∂ )+ (∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ )+ (∂ ∂̄ ∗+ ∂̄ ∗∂ )+ (∂ ∗∂̄ + ∂̄∂ ∗)
= (∂∂ ∗+ ∂ ∗∂ )+ (∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ )+ (∂ ∂̄ ∗+ ∂̄ ∗∂ )+ (∂ ∗∂̄ + ∂̄∂ ∗)
= Δ∂ +Δ∂̄ .

Finally, we check Δ∂ = Δ∂̄ ,

−√−1Δ∂ = ∂ (Λ∂̄ − ∂̄Λ)+ (Λ∂̄ − ∂̄Λ)∂
= ∂Λ∂̄ − ∂ ∂̄Λ +Λ∂̄∂ − ∂̄Λ∂
= (∂Λ −Λ∂ )∂̄ + ∂̄(∂Λ −Λ∂ )

=−√−1Δ∂̄ . 	




9.3 Complex Tori 177

Exercises

9.3.6. Check the first order-Kähler identities (Proposition 9.3.5) on the space of all
2-forms.

9.3.7. Show that β + ∂̄ γ = 0 forces β = 0 if β is harmonic.

9.3.8. Suppose that α = β + ∂̄ γ and that α is of type (p,q) and β harmonic.
By decomposing β = ∑ β (p′,q′) and γ = ∑ γ(p′,q′) into (p′,q′) type and using the
previous exercise, prove that β is of type (p,q) and unique.
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