
Chapter 5
De Rham Cohomology of Manifolds

In this chapter, we study the topology of C∞-manifolds. We define the de Rham
cohomology of a manifold, which is the vector space of closed differential forms
modulo exact forms. After sheafifying the construction, we see that the de Rham
complex forms a so-called acyclic resolution of the constant sheaf R. We prove a
general result that sheaf cohomology can be computed using such resolutions, and
deduce a version of de Rham’s theorem that de Rham cohomology is sheaf coho-
mology with coefficients in R. It follows that de Rham cohomology depends only
on the underlying topology. Using a different acyclic resolution that is dual to the de
Rham complex, we prove Poincaré duality. This duality makes cohomology, which
is normally contravariant, into a covariant theory. We devote a section to explain-
ing these somewhat mysterious covariant maps, called Gysin maps. We end this
chapter with the remarkable Lefschetz trace formula, which in principle, calculates
the number of fixed points for a map of a manifold to itself.

A systematic development of topology from the de Rham point of view is given
in Bott and Tu [14].

5.1 Acyclic Resolutions

We start by reviewing some standard notions from homological algebra.

Definition 5.1.1. A complex of (sheaves of) abelian groups is a possibly infinite
sequence

· · · → Fi di−→ Fi+1 di+1−→ ·· ·
of (sheaves of) groups and homomorphisms satisfying di+1di = 0.

These conditions guarantee that im(di)⊆ ker(di+1). We denote a complex by F•,
and we often suppress the indices on d. The ith cohomology of F• is defined by

H i(F•) =
ker(di)

im(di−1)
.
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(We reserve the regular font “H” for sheaf cohomology.) These groups are zero
precisely when the complex is exact.

Definition 5.1.2. A sheaf F is called acyclic if Hi(X ,F ) = 0 for all i > 0.

For example, flasque sheaves and soft sheaves on a metric space are acyclic.

Definition 5.1.3. An acyclic resolution of a sheaf F is an exact sequence

0→F →F 0→F 1→···

of sheaves such that each F i is acyclic.

A functor between abelian categories, such as Ab or Ab(X), need not take exact
sequences to exact sequences, but it will always take complexes to complexes.
In particular, given a complex of sheaves F •, the sequence

Γ (X ,F 0)→ Γ (X ,F 1)→ ···

is necessarily a complex of abelian groups.

Theorem 5.1.4. Given an acyclic resolution F • of F , we have

Hi(X ,F )∼= H i(Γ (X ,F •)).

Proof. Let K −1 = F and K i = ker(F i+1 →F i+2) for i≥ 0. Then there are exact
sequences

0→K i−1 →F i →K i → 0

for i≥ 0. Since each F i is acyclic, Theorem 4.2.3 implies that

0→ H0(K i−1)→H0(F i)→ H0(K i)→H1(K i−1)→ 0 (5.1.1)

is exact, and
H j(K i)∼= H j+1(K i−1) (5.1.2)

for j > 0. We have a diagram

H0(K i−1)� �

		����������

H0(F i−1) ��



����������
H0(F i) ��

											
H0(F i+1)

H0(K i)
� �

������������

which is commutative, since the morphism F i−1 →F i factors through K i−1 and
so on. The oblique line in the diagram is part of (5.1.1), so it is exact. In parti-
cular, the first hooked arrow is injective. The injectivity of the second hooked arrow
follows for similar reasons. Thus
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im[H0(F i)→ H0(K i)] = im[H0(F i)→ H0(F i+1)]. (5.1.3)

Suppose that α ∈ H0(F i) maps to 0 in H0(F i+1). Then it maps to 0 in H0(K i).
Therefore α lies in the image of H0(K i−1). Thus

H0(K i−1) = ker[H0(F i)→ H0(F i+1)]. (5.1.4)

This already implies the theorem when i = 0. Replacing i by i + 1 in (5.1.4) and
combining it with (5.1.1) and (5.1.3) shows that

H1(K i−1)∼= H0(K i)
im[H0(F i)→ H0(K i)]

=
ker[H0(F i+1)→ H0(F i+2)]

im[H0(F i)→H0(F i+1)]
.

Combining this with the isomorphisms

Hi+1(F ) = Hi+1(K −1)∼= Hi(K 0)∼= · · · ∼= H1(K i−1)

of (5.1.2) proves the theorem for positive exponents. 	

Example 5.1.5. Let F be a sheaf. Using the notation from Section 4.2, define
Gi(F ) = G(Ci(F )). We define d : Gi(F ) → Gi+1(F ) as the composition of the
natural maps Gi(F )→ Ci+1(F )→Gi+1(F ). This can be seen to give an acyclic
resolution of F .

Exercises

5.1.6. Check that G•(F ) gives an acyclic resolution of F .

5.1.7. A sheaf I is called injective if given a monomorphism of sheaves A →B,
any morphism A →I extends to a morphism of B →I . Show that an injective
module is flasque and hence acyclic. (Hint: given an open set U ⊆ X , let ZU =
ker[ZX → ZX−U ]; check that Hom(ZU ,F ) = F (U).) Conclude that if 0 →F →
I 0 → I 1 → ··· is an injective resolution, then Hi(X ,F ) = H i(Γ (X ,I •)); this
is usually taken as the definition of Hi.

5.1.8. A morphism of complexes is a collection of maps F i → G i commuting
with the differentials d. This would induce a map on cohomology. Suppose that
F → F 0 → ··· and G → G 0 → ··· are acyclic resolutions of sheaves F and G ,
and suppose that we have a morphism F → G that extends to a morphism of the
resolutions. Show that we can choose the isomorphisms so that the diagram

Hi(F ) ∼= H i(Γ (F •))
↓ ↓

Hi(G ) ∼= H i(Γ (G •))

commutes.
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5.2 De Rham’s Theorem

Let X be a C∞ manifold and E k = E k
X the sheaf of k-forms on it. Note that E 0

X = C∞X .
If U ⊂ X is a coordinate neighborhood with coordinates x1, . . . ,xn, then E k(U) is a
free C∞(U)-module with basis

{dxi1 ∧·· ·∧dxik | i1 < · · ·< ik}.

Theorem 5.2.1. There exist canonical R-linear maps d : E k
X → E k+1

X , called exterior
derivatives, satisfying the following:

(a) d : E 0
X → E 1

X is the operation introduced in Section 2.6.
(b) d2 = 0.
(c) d(α ∧β ) = dα ∧β +(−1)iα ∧dβ for all α ∈ E i(X), β ∈ E j(X).
(d) If g : Y → X is a C∞ map, g∗ ◦ d = d ◦ g∗.

Proof. A complete proof can be found in almost any book on manifolds (e.g.,
[110, 117]). We will only sketch the construction. When U ⊂ X is a coordinate
neighborhood with coordinates xi, we can see that there is a unique operation satis-
fying the above rules (a) and (c) given by

d

(
∑

i1<···<ik

fi1...ik dxi1 ∧·· ·∧dxik

)
= ∑

i1<···<ik
∑

j

∂ fi1...ik

∂x j
dx j ∧dxi1 ∧·· ·∧dxik .

By uniqueness, these local d’s patch to define an operator on X . Taking the derivative
again yields

∑
i1...
∑
j,�

∂ 2 fi1...ik

∂x j∂x�
dx j ∧dx�∧dxi1 ∧·· ·dxik

=∑
i1...
∑
j<�

(
∂ 2 fi1...ik

∂x j∂x�
− ∂ 2 fi1...ik

∂x�∂x j

)
dx j ∧dx�∧dxi1 ∧·· ·dxik ,

= 0

which proves (b). 	

When X = R3, d can be realized as the div, grad, curl of vector calculus. The

theorem tells us that E •(X) forms a complex, called the de Rham complex.

Definition 5.2.2. The de Rham cohomology groups (actually vector spaces) of X
are defined by

Hk
dR(X) = H k(E •(X)).

A differential form α is called closed if dα = 0 and exact if α = dβ for some
β . Elements of de Rham cohomology are equivalence classes [α] represented by
closed forms, where two closed forms are equivalent if they differ by an exact form.
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Given a C∞ map of manifolds g : Y → X , we get a map g∗ : E ∗(X) → E ∗(Y ) of
the de Rham complexes that induces a map g∗ on cohomology. We easily have the
following lemma:

Lemma 5.2.3. X �→Hi
dR(X) is a contravariant functor from manifolds to real vector

spaces.

We compute the de Rham cohomology of Euclidean space.

Theorem 5.2.4 (Poincaré’s lemma). For all n and k > 0,

Hk
dR(Rn) = 0.

Proof. Assume, for the inductive hypothesis, that the theorem holds for n−1. Con-
sider the maps p : Rn → Rn−1 and ι : Rn−1 → Rn defined by p(x1,x2, . . . ,xn) =
(x2, . . . ,xn) and ι(x2, . . . ,xn) = (0,x2, . . . ,xn). Let R = (ι ◦ p)∗. More explicitly,
R : E k(Rn)→ E k(Rn) is the R-linear operator defined by

R( f (x1, . . . ,xn)dxi1 ∧·· ·∧dxik)

=

{
f (0,x2, . . . ,xn)dxi1 ∧·· ·∧dxik if 1 /∈ {i1, i2, . . .},
0 otherwise,

where we always choose i1 < i2 < · · · . The image of R can be identified with
p∗E k(Rn−1). Note that R commutes with d. Therefore if α ∈ E k(Rn) is closed,
dRα = Rdα = 0. By the induction assumption, Rα is exact.

For each k, define a linear map h : E k(Rn)→ E k−1(Rn) by

h( f (x1, . . . ,xn)dxi1 ∧·· ·∧dxik) =

{
(
∫ x1

0 f dx1)dxi2 ∧·· ·∧dxik if i1 = 1,

0 otherwise.

Then the fundamental theorem of calculus shows that dh+hd = I−R, where I is the
identity. (In other words, h is homotopy from I to R.) Given α ∈ E k(Rn) satisfying
dα = 0, we have α = dhα+ Rα , which is exact. 	


We have an inclusion of the sheaf of locally constant functions RX ⊂ E 0
X . This is

precisely the kernel of d : E 0
X → E 1

X .

Theorem 5.2.5. The sequence

0→ RX → E 0
X → E 1

X → ···

is an acyclic resolution of RX .

Proof. Any ball is diffeomorphic to Euclidean space, and any point on a mani-
fold has a fundamental system of such neighborhoods. Therefore, Poincaré’s lemma
implies that the above sequence is exact on stalks, and hence exact.

By Corollary 4.4.5, the sheaves E k are soft, hence acyclic. 	
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Corollary 5.2.6 (De Rham’s theorem). There is an isomorphism

Hk
dR(X)∼= Hk(X ,R).

In particular, de Rham cohomology depends only on the underlying topological
space.

Recall that by our convention, Hk(X ,R) is Hk(X ,RX). Later on, we will work
with complex-valued differential forms. Essentially the same argument shows that
H∗(X ,C) can be computed using such forms.

Exercises

5.2.7. We will say that a manifold is of finite type if it has a finite open cover {Ui}
such that any nonempty intersection of the Ui are diffeomorphic to the ball. Compact
manifolds are known to have finite type [110, pp. 595–596]. Using Mayer–Vietoris
and de Rham’s theorem, prove that if X is an n-dimensional manifold of finite type,
then Hk(X ,R) vanishes for k > n, and is finite-dimensional otherwise.

5.2.8. Let X be a manifold, and let t be the coordinate along R in R×X . Consider
the maps ι : X →R×X and p : R×X → X given by x �→ (0,x) and (t,x) �→ x. Since
(p ◦ ι) = id, conclude that ι∗ : Hi

dR(R×X)→ Hi
dR(X) is surjective.

5.2.9. Continuing the notation from the previous exercise, let R : E k(R× X) →
E k(R× X) be the operator (i ◦ p)∗, and let h : E k(R× X) → E k−1(R× X) be
the operator that is integration with respect to dt (as in the proof of the Poincaré
lemma). Show that dh + hd = I−R. Use this to show that R induces the identity
on Hi

dR(R× X). Conclude that ι∗ : Hi
dR(R× X) → Hi

dR(X) is also injective, and
therefore an isomorphism.

5.2.10. Show that C−{0} is diffeomorphic to R× S1, and conclude that H1
dR(C−

{0}) is one-dimensional. Show that Re( dz
iz ) = −ydx+xdy

x2+y2 generates it.

5.2.11. Let Sn denote the n-dimensional sphere. Use Mayer–Vietoris with respect to
the cover U = Sn−{north pole} and V = Sn−{south pole} to compute H∗(Sn,R).
(Hint: show that U ∩V ∼= Sn−1×R.)

5.3 Künneth’s Formula

Suppose that X is a C∞ manifold. If α ∈ E i(X) and β ∈ E j(X) are closed forms,
then α ∧ β is also closed, by Theorem 5.2.1. The cup product of the associated
cohomology classes is defined by [α]∪ [β ] = [α ∧β ]. This is a well-defined opera-
tion that makes de Rham cohomology into a graded ring. An extension of de Rham’s
theorem shows that this operation is also a topological invariant.
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Theorem 5.3.1 (Multiplicative de Rham’s theorem). Under the de Rham isomor-
phism, the product given above coincides with the cup product in sheaf cohomology
constructed in Section 4.6.

We outline the argument, concentrating on those parts that will be needed later.
First, we need a more convenient method for computing cup products. Given com-
plexes of (sheaves of) vector spaces (A•,dA) and (B•,dB) over a field k, their tensor
product is the complex

(A• ⊗B•)n =
⊕

i+ j=n

Ai⊗B j

with differential

d(a⊗b) = dAa⊗b +(−1)ia⊗dBb, a ∈ Ai,b ∈ B j.

The cohomology of this is easily computed by the following result:

Theorem 5.3.2 (Algebraic Künneth formula). If A• and B• are complexes of
vector spaces, then

Hn((A• ⊗B•)•)∼=
⊕

i+ j=n

Hi(A•)⊗H j(B•),

where the map (from right to left) is induced by the inclusion of kerdA⊗ kerdB ⊂
kerd.

Proof. A proof can be found in [108, Chapter 5 §3, Lemma 1; §4] for instance. 	

The next lemma is left as an exercise.

Lemma 5.3.3. The tensor product of two soft sheaves of vector spaces is soft.

Lemma 5.3.4. If F → F • and G → G • are soft resolutions of sheaves of vector
spaces, then F ⊗G → (F • ⊗G •)• is again a soft resolution.

Proof. The previous lemma shows that the sheaves (F •⊗G •)• are soft. To see that
it resolves F ⊗G , use Theorem 5.3.2 to obtain

H i((F • ⊗G •)•x) =

{
Fx⊗Gx if i = 0,

0 otherwise.
	


Choosing soft resolutions F → F • and G → G •, we have a morphism of
complexes

(Γ (F •)⊗Γ (G •))• → Γ ((F • ⊗G •))•,

which induces a map on cohomology. The cohomology on the left decomposes into
a sum of tensor products of the cohomology of F and G . Thus on each summand
we get a map

Hi(X ,F )⊗H j(X ,G )→Hi+ j(X ,F ⊗G ). (5.3.1)
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Lemma 5.3.5. The map in (5.3.1) coincides with the product defined in Section 4.6.

Proof. This hinges on the fact that the product given in (5.3.1) is well defined and
satisfies the axioms of Theorem 4.6.1 by [45, pp. 255–259]. 	


We can now sketch the proof of Theorem 5.3.1.

Proof. By the previous lemmas and [45, Chapter II, Theorem 6.6.1], it suffices to
observe that the diagram

R⊗R
∼ ��

=

��

(E •
X ⊗E •

X )•

∧
��

R
∼ �� E •

X

commutes. 	

We can adapt these arguments to deduce a more geometric version of Künneth’s

formula.

Theorem 5.3.6 (Künneth formula). Let X and Y be C∞ manifolds. Then the
product Z = X ×Y is also a C∞ manifold. Let p : Z → X and q : Z → Y denote
the projections. Then the map

∑αi⊗β j �→∑ p∗αi∪q∗β j

induces an isomorphism⊕
i+ j=k

Hi
dR(X)⊗R H j

dR(Y )∼= Hk
dR(Z).

Proof. The proof involves the sheaves p∗E i
X ⊗R q∗E j

Y . Their sections on basic opens
are

p∗E i
X ⊗q∗E j

Y (U ×V ) = E i
X(U)⊗E j

Y (V ).

These map to E i+ j
Z (U×V ) under κ(α⊗β )= p∗α∧q∗β . Locally constant functions

lie in p∗E 0
X ⊗q∗E 0

Y . Thus we have a commutative triangle

RZ
� � ι ��

ι ′

������������� E •
Z

(p∗E •
X ⊗q∗E •

Y )•

κ

��

The map ι is a soft resolution, as we saw earlier. An argument similar to the proof
of Lemma 5.3.4 shows that ι ′ is also a soft resolution. Therefore the map κ induces
an isomorphism in cohomology. 	
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Exercises

5.3.7. Check that [α]∪ [β ] = [α ∧β ] yields a well-defined product on H∗
dR(X).

5.3.8. Prove Lemma 5.3.3.

5.3.9. Let e(X) = ∑(−1)i dimHi(X ,R) denote the Euler characteristic. Prove that
e(X ×Y ) = e(X)e(Y ).

5.3.10. Show that the cohomology ring of a torus T = (R/Z)n is isomorphic to the
exterior algebra on Rn.

5.4 Poincaré Duality

Let X be a C∞ manifold. Let E k
c (X) denote the set of C∞ k-forms with compact

support. Clearly dE k
c (X)⊂ E k+1

c (X), so these form a complex.

Definition 5.4.1. Compactly supported de Rham cohomology is defined by
Hk

cdR(X) = H k(E •
c (X)).

Lemma 5.4.2. For all n,

Hk
cdR(Rn) =

{
R if k = n,
0 otherwise.

Proof. [14, Corollary 4.7.1]. 	

This computation suggests that these groups are roughly opposite to the usual

de Rham groups. There is another piece of evidence, which is that HcdR behaves
covariantly in certain cases. For example, given an open set U ⊂ X , a form in E k

c (U)
can be extended by zero to E k

c (X). This induces a map Hk
cdR(U)→ Hk

cdR(X).
The precise statement of duality requires the notion of orientation. An orientation

on an n-dimensional real vector space V is a connected component of ∧nV −{0}
(there are two). An ordered basis v1, . . . ,vn is positively oriented if v1∧·· ·∧ vn lies
in the given component. If V were to vary, there is no guarantee that we could choose
an orientation consistently. So we make a definition:

Definition 5.4.3. An n-dimensional manifold X is called orientable if ∧nTX minus
its zero section has two components. If this is the case, an orientation is a choice of
one of these components.

Theorem 5.4.4 (Poincaré duality, version I). Let X be a connected oriented
n-dimensional manifold. Then

Hk
cdR(X)∼= Hn−k(X ,R)∗.
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There is a standard proof of this using currents, which are to forms what dis-
tributions are to functions. However, we can get by with something much weaker.
We define the space of pseudocurrents of degree k on an open set U ⊂ X to be

C k(U) = E n−k
c (U)∗ : = Hom(E n−k

c (U),R).

This is “pseudo” because we are using the ordinary (as opposed to topological) dual.
We make this into a presheaf as follows. Given V ⊆U , α ∈ C k

X (U), β ∈ E n−k
c (V ),

define α|V (β ) = α(β̃ ), where β̃ is the extension of β by 0.

Lemma 5.4.5. C k
X is a sheaf.

Proof. Let {Ui} be an open cover of U , which we may assume is locally finite.
Suppose that αi ∈ C k

X(Ui) is a collection of sections such that αi|Ui∩Uj = α j|Ui∩Uj .
This means that αi(β ) =α j(β ) if β has support in Ui∩Uj. Let {ρi} be a C∞ partition
of unity subordinate to {Ui} (see §4.3 ). Then define α ∈ C k

X (U) by

α(β ) =∑
i

αi(ρiβ |Ui).

We have to show that α(β̃ ) = α j(β ) for any β ∈ E n−k
c (Uj) with β̃ its extension to

U by 0. The support of ρiβ̃ lies in Ui∩ supp(β )⊂Ui∩Uj, so only finitely many of
these are nonzero. Therefore

α(β̃ ) =∑
i
αi(ρiβ̃ ) =∑

i
α j(ρiβ̃ ) = α j(β ),

as required. We leave it to the reader to check that α is the unique current with this
property. 	


Define a map δ : C k
X (U)→ C k+1

X (U) by δ (α)(β ) = (−1)k+1α(dβ ). One auto-
matically has δ 2 = 0. Thus we have a complex of sheaves.

Let X be an oriented n-dimensional manifold. Then we will recall [109] that one
can define an integral

∫
X α for any n-form α ∈ E n

c (X). Using a partition of unity, the
definition can be reduced to the case that α is supported in a coordinate neighbor-
hood U . Then we can write α = f (x1, . . . ,xn)dx1∧·· ·∧dxn, where the order of the
coordinates is chosen so that ∂/∂x1, . . . ,∂/∂xn gives a positive orientation of TX .
Then ∫

X
α =

∫
Rn

f (x1, . . . ,xn)dx1 · · ·dxn.

The functional
∫

X defines a canonical global section of C 0
X .

Theorem 5.4.6 (Stokes’s theorem). Let X be an oriented n-dimensional manifold;
then

∫
X dβ = 0.

Proof. See [109]. 	

Corollary 5.4.7.

∫
X ∈ ker[δ ].



5.4 Poincaré Duality 107

We define a map RX → C 0
X by sending r to r

∫
X . The key lemma to establish

Theorem 5.4.4 is the following:

Lemma 5.4.8.
0→ RX → C 0

X → C 1
X → ···

is an acyclic resolution.

Proof. Lemma 5.4.2 implies that this complex is exact. Given f ∈ C∞(U) and
α ∈ C k(U), define

fα(β ) = α( fβ ).

This makes C k into a C∞-module, and it follows that it is soft and therefore acyclic.
	


We can now prove Theorem 5.4.4.

Proof. We can use the complex C •
X to compute the cohomology of RX to obtain

Hi(X ,R)∼= H i(C •
X (X)) = H i(E n−•

c (X)∗).

The right-hand space is isomorphic to Hi
cdR(X ,R)∗. This completes the proof of the

theorem. 	

Corollary 5.4.9. If X is a compact oriented n-dimensional manifold, then

Hk(X ,R)∼= Hn−k(X ,R)∗.

The following is really a corollary of the proof.

Corollary 5.4.10. If X is a connected oriented n-dimensional manifold, then the
map α �→ ∫

X α induces an isomorphism∫
X

: Hn
cdR(X ,R)∼= R.

We can make the Poincaré duality isomorphism more explicit:

Theorem 5.4.11 (Poincaré duality, version II). If f ∈ Hn−k
cdR (X)∗, then there exists

a closed form α ∈ E k(X) such that f ([β ]) =
∫

X α ∧β . Moreover, the class [α] ∈
Hk

dR(X) is unique.

Proof. Define
P : E k

X → C k
X

by

P(α)(β ) =
∫

U
α ∧β

for α ∈ E k(U) and β ∈ E n−k
c (U). With the help of Stokes’s theorem, we see that

δP(α) = P(dα). Therefore, P gives a morphism of complexes of sheaves. Note also
that P(1) =

∫
X . Thus we have a morphism of resolutions
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RX → E •
X

|| ↓
RX → C •

X

So the theorem follows from Exercise 5.1.8. 	

Corollary 5.4.12. The cup product (induced by ∧) followed by integration gives a
nondegenerate pairing

Hk
dR(X)×Hn−k

cdR (X)→ Hn
cdR(X)∼= R.

Here is a simple example to illustrate this.

Example 5.4.13. Consider the torus T = Rn/Zn. We will show later, in Section 8.2,
that every de Rham cohomology class on T contains a unique form with constant
coefficients. This will imply that there is an algebra isomorphism H∗(T,R)∼=∧∗Rn.
Poincaré duality becomes the standard isomorphism

∧kRn ∼= ∧n−kRn.

Exercises

5.4.14. Prove that the Euler characteristic∑(−1)i dimHi(X ,R) is zero when X is an
odd-dimensional compact orientable manifold.

5.4.15. If X is a connected oriented n-dimensional manifold, show that

Hn(X ,R)∼=
{

R if X is compact,

0 otherwise.

5.4.16.(a) Let S2 ⊂ R3 denote the unit sphere. Show that

α = xdy∧dz+ ydz∧dx + zdx∧dy

generates H2
dR(S2).

(b) The real projective plane is defined by RP2 = S2/i, where i(x,y,z) = −(x,y,z).
This is a compact manifold. Show that H2

dR(RP2) = 0 by identifying it with the
i∗-invariant part of H2

dR(S2), and conclude that it cannot be orientable.

5.4.17. Assuming the exercises of §4.3, prove that Hi
c(X ,R)∼= Hi

cdR(X).

5.5 Gysin Maps

Let f : Y → X be a C∞ map of compact oriented manifolds of dimension m and n
respectively. Then we have a natural map
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f ∗ : Hk
dR(X)→ Hk

dR(Y )

given by pulling back forms. By Poincaré duality, we can identify this with a map

Hn−k
dR (X)∗ → Hm−k

dR (Y )∗.

Dualizing and changing variables yields a map in the opposite direction,

f! : Hk
dR(Y )→ Hk+n−m

dR (X),

called the Gysin homomorphism. This is characterized by∫
X

f!(α)∪β =
∫

Y
α ∪ f ∗(β ). (5.5.1)

Our goal is to give a more explicit description of this map. Notice that we can factor
f as the inclusion of the graph Y → Y ×X given by y �→ (y, f (y)), followed by a
projection Y ×X → X . Therefore we only need to study what happens in these two
special cases.

5.5.1 Projections

Suppose that Y = X × Z is a product of compact connected oriented manifolds.
Let p : Y → X and q : Y → Z be the projections. Let r = m− n = dimZ. Choose
local coordinates x1, . . . ,xn on X and z1, . . . ,zr on Z. Integration along the fiber∫

p : E k(Y )→ E k−r(X) is defined in local coordinates by

∑ fi1,...,ik−n(x1, . . . ,xn,z1, . . . ,zr)dz1∧·· ·∧dzn∧dxi1 ∧·· ·∧dxik−r �→

∑
(∫

fi1,...,ik−n(x1, . . . ,xn,z1, . . . ,zr)dz1 · · ·dzn

)
dxi1 ∧·· ·∧dxik−r .

Note that
∫

pα = 0 if none of its terms contains dz1∧·· ·∧dzn.

Lemma 5.5.1. p!α is represented by
∫

pα .

Proof. Fubini’s theorem in calculus gives∫
Y
α ∧ p∗β =

∫
X

(∫
p
α

)
∧β , (5.5.2)

so that
∫

p satisfies (5.5.1). 	

The cohomology of Y is the tensor product of the cohomology of X and Z by the

Künneth formula, Theorem 5.3.6. The Gysin map p! is simply the projection onto
one of the Künneth factors,

Hk
dR(Y )→ Hk+n−m

dR (X)⊗Hm−n
dR (Z)∼= Hk+n−m

dR (X).
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5.5.2 Inclusions

Now suppose that i : Y ↪→ X is an inclusion of a closed submanifold. We need the
following:

Theorem 5.5.2. There exists an open neighborhood TubeY of Y in X, called a tubu-
lar neighbourhood. This possesses a C∞ map π : TubeY → Y that makes TubeY a
locally trivial bundle over Y , with fibers diffeomorphic to Rn−m.

Proof. The details can be found in [110, Chapter 9, addendum]. However, we give a
brief outline, since we will need to understand a bit about the construction later on.
We choose a Riemannian metric on X . This amounts to a family of inner products on
the tangent spaces of X ; among other things, this allows one to define the length of
a curve. The Riemannian distance between two points is the infimum of the lengths
of curves joining the points. This is a metric in the sense of point set topology.
TubeY is given by the set of points with Riemannian distance less than ε from Y for
0 < ε " 1. In order to see the bundle structure, we give an alternative description.
We can take the normal bundle N to be the fiberwise orthogonal complement to the
tangent bundle TY in TX |Y . N inherits a Riemannian metric, and we let Tube′Y ⊂ N
be the set of points of distance less than ε from the zero section. Given a point
(y,v) ∈ N, let γy,v(t) be the geodesic emanating from y with velocity v. Then the
map (y,v) �→ γy,v(1) defines a diffeomorphism from Tube′Y to TubeY . 	


Then the map i∗ can be factored as

Hm−k
dR (X)→ Hm−k

dR (TubeY ) ∼→ Hm−k
dR (Y ).

The second map is an isomorphism, since the fibers of π are contractible. Dualizing,
we see that i! is a composition of

Hk
dR(Y ) ∼→ Hk+n−m

cdR (TubeY )→ Hk+n−m
dR (X).

The first map is called the Thom isomorphism. The second map can be seen to
be extension by zero. To get more insight into this, let k = 0. Then H0

dR(Y ) has a
natural generator, which is the constant function 1Y with value 1. Under the Thom
isomorphism, this maps to a class τY ∈ Hn−m

cdR (TubeY ), called the Thom class. This
can be represented by (any) differential form with compact support in TubeY , which
integrates to 1 on the fibers of π . The Thom isomorphism is given explicitly by
α �→ π∗α ∪ τY . So to summarize:

Lemma 5.5.3. i!α is the extension of π∗α ∪ τY to X by zero.

Exercises

5.5.4. Let j : U → X be the inclusion of an open set in a connected oriented mani-
fold. Check that the Poincaré dual of the restriction map j∗ : H∗

dR(X)→ H∗
dR(U) is

given by extension by zero.
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5.5.5. Let π : TubeY → Y be a tubular neighborhood for i : Y ↪→ X as above. Prove
that i∗β =

∫
π τY ∪β for β ∈ E •(X), where

∫
π is defined as above.

5.5.6. With the help of the previous exercise and (the appropriate extension of)
(5.5.2), finish the proof of Lemma 5.5.3.

5.5.7. Prove the projection formula f!( f ∗(α)∪β ) = α ∪ f!β .

5.6 Fundamental Class

We can use Gysin maps to construct interesting cohomology classes. Let i : Y ↪→ X
be a closed connected oriented m-dimensional submanifold of an n-dimensional
oriented manifold.

Definition 5.6.1. The fundamental class of Y in X is [Y ] = i!1Y ∈ Hn−m
dR (X).

Equivalently, [Y ] is the extension of τY by zero. Under the duality isomorphism,
H0

dR(Y )∼= Hm
dR(Y )∗, 1 goes to the functional

β �→
∫

Y
β ,

and this maps to

α �→
∫

Y
i∗α

in Hm(X)∗. Composing this with the isomorphism Hm(X)∗ ∼= Hn−m(X) yields the
basic relation ∫

Y
i∗α =

∫
X
[Y ]∪α. (5.6.1)

Let Y,Z ⊂ X be oriented submanifolds such that dimY + dimZ = n. Then under
the duality isomorphism, [Y ]∪ [Z] ∈ Hn(X ,R) ∼= R corresponds to a number Y ·Z,
called the intersection number. This has a geometric interpretation that we give
under an extra transversality assumption that holds “most of the time.” We say that
Y and Z are transverse if Y ∩Z is finite and if TY,p⊕TZ,p = TX ,p for each p in the
intersection.

Definition 5.6.2. Let Y and Z be transverse, and let p∈Y ∩Z. Choose ordered bases
v1(p), . . . ,vm(p) ∈ TY,p and vm+1(p), . . . ,vn(p) ∈ TZ,p that are positively oriented
with respect to the orientations of Y and Z. The local intersection number at p is

ip(Y,Z) =

⎧⎪⎨⎪⎩
+1 if v1(p), . . . ,vm(p),vm+1(p), . . . ,vn(p)

is a positively oriented basis of TX ,p,

−1 otherwise.

(This is easily seen to be independent of the choice of bases.)
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Proposition 5.6.3. If Y and Z are transverse, then Y ·Z = ∑p∈Y∩Z ip(Y,Z).

Proof. Let m = dimY . Let Up be a collection of disjoint coordinate neighborhoods
for each p ∈ Y ∩ Z. (Note that these Up will be replaced by smaller neighbor-
hoods whenever necessary.) Choose coordinates x1, . . . ,xn around each p such that Y
is given by xm+1 = · · ·= xn = 0 and Z by x1 = · · ·= xm = 0. Next construct suitable
tubular neighborhoods π : T →Y of Y and π ′ : T ′ → Z of Z. Recall that these neigh-
borhoods depend on a choice of Riemannian metric and radii ε,ε ′. By choosing the
radii small enough, we can guarantee that T ∩T ′ lies in the union

⋃
Up. Also, by

modifying the metric to be Euclidean near each p, we can assume that π is locally
the projection (x1, . . . ,xn) �→ (x1, . . . ,xm), and likewise for π ′.

Then with the above assumptions,

Y ·Z =
∫

X
τY ∧ τZ =∑

p

∫
Up

τY ∧ τZ ,

where τY and τZ are forms representing the Thom classes of T and T ′. We will
assume that Up is a ball and hence diffeomorphic to Rn. We can view τY |Up as
defining a class in

H0
dR(Rm)⊗Hn−m

cdR (Rn−m)∼= Hn−m
cdR (Rn−m)

and similarly for τZ |Up . Thus we can see that

τY |Up = f (xm+1, . . . ,xn)dxm+1∧·· ·∧dxn + dη ,

τZ |Up = g(x1, . . . ,xm)dx1∧·· ·∧dxm + dξ ,

with f and g compactly supported such that∫
Rn−m

f (xm+1, . . . ,xn)dxm+1 · · ·dxn =
∫

Rm
g(x1, . . . ,xm)dx1 · · ·dxm = 1.

Fubini’s theorem and Stokes’s theorem then give∫
Up

τY ∧ τZ = ip(Y,Z). 	


The proposition implies that the intersection number is an integer for transverse
intersections. In fact, this is always true. There are a couple of ways to see this.
One is by proving that intersections can always be made transverse without altering
the intersection numbers. A simpler explanation is that the fundamental classes can
actually be defined to take values in integral cohomology H∗(X ,Z). Moreover, we
have a cup product pairing as indicated:

Hk(X ,Z)×Hn−k(X ,Z)→ Hn(X ,Z)∼= Z.

The classes that we have defined are images under the natural map H∗(X ,Z) →
H∗(X ,R).
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Example 5.6.4. Let T = Rn/Zn, let {ei} be the standard basis of Rn, and let xi be
coordinates on Rn. If VI ⊂ Rn is the span of {ei | i ∈ I}, then TI = VI/(Zn∩VI) is a
submanifold of T . Its fundamental class is dxi1 ∧·· · ∧dxid , where i1 < · · · < id are
the elements of I in increasing order. If J is the complement of I, then TI and TJ will
meet transversally at one point. Therefore TI ·TJ =±1.

Example 5.6.5. Consider complex projective space Pn
C. This is the basic example

for us, and it will be studied further in Section 7.2. For now we just state the main
results. We have

Hi
dR(Pn

C) =
{

R if 0≤ i≤ 2n is even,
0 otherwise.

Given a complex subspace V ⊂Cn+1, the subset P(V )⊂ Pn consisting of lines lying
in V forms a submanifold, which can be identified with another projective space.
If W is another subspace with dimW = n− dimV + 2 and dim(V ∩W ) = 1, then
P(V ) and P(W ) will meet transversally at one point. In this case, P(V ) ·P(W ) is
necessarily +1 (see the exercises).

Exercises

5.6.6. Show that if Y,Z ⊂ X are transverse complex submanifolds of a complex
manifold, then ip(Y,Z) = 1 for each p in the intersection. Thus Y ·Z is the number
of points of intersection.

5.6.7. Check that fundamental classes of subtori of Rn/Zn are described as above.

5.6.8. Let T = R2/Z2 and let V,W ⊂ R2 be distinct lines with rational slope. Show
that the images of V and W in T are transverse. Find an interpretation for their
intersection number.

5.7 Lefschetz Trace Formula

Let X be a compact n-dimensional oriented manifold with a C∞ map f : X → X . The
Lefschetz formula is a formula for the number of fixed points counted appropriately.
This needs to be explained. Let

Γf = {(x, f (x)) | x ∈ X},
Δ = {(x,x) | x ∈ X},

be the graph of f and the diagonal respectively. These are both n-dimensional sub-
manifolds of X ×X that intersect precisely at points (x,x) with x = f (x). We define
the “number of fixed points” as Γf ·Δ . Since this number could be negative, we need
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to take this with a grain of salt. If these manifolds are transverse, we see that this
can be evaluated as the sum of local intersection numbers over fixed points,

∑
x

ix(Γf ,Δ),

by Proposition 5.6.3. In particular, Γf ·Δ is the true number of fixed points if each
local intersection number is +1.

Theorem 5.7.1. The number Γf ·Δ is given by

L( f ) =∑
p
(−1)p trace[ f ∗ : H p(X ,R)→ H p(X ,R)].

Proof. The proof will be based on the elementary observation that if F is an endo-
morphism of a finite-dimensional vector space with basis {vi} and dual basis {v∗i },
then the matrix is given by (v∗i (F(v j))). Therefore

trace(F) =∑
i

v∗i (F(vi)).

For each p, choose a basis αp,i of H p(X), and let α∗p,i denote the dual basis trans-
ported to Hn−p(X) under the Poincaré duality isomorphism Hn−p(X)∼= H p(X)∗, so
that ∫

X
αp,i∪α∗p, j = δi j.

Let πi : X ×X → X denote the projections. Then by Künneth’s formula, {Ap,i, j =
π∗1αp,i ∪ π∗2α∗p, j}p,i, j and {A∗p,i, j = (−1)n−pπ∗1α∗p,i ∪ π∗2αp, j} both give bases for
Hn(X ×X), which are dual to this in the sense that∫

X×X
Ap,i, j ∪A∗p′,i′, j′ = δ(p,i, j),(p′,i′, j′).

Thus we can express
[Δ ] =∑cp,i, jAp,i, j.

The coefficients can be computed by integrating against the dual basis:

cp,i, j =
∫

X×X
[Δ ]∪A∗p,i, j =

∫
Δ

A∗p,i, j = (−1)n−p
∫

X
αp,i∪α∗p, j = (−1)n−pδi j.

Therefore
[Δ ] =∑

i,p
(−1)n−pπ∗1αp,i∪π∗2α∗p,i. (5.7.1)
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Consequently,

Γf ·Δ =
∫
Γf

[Δ ]

=∑
p
(−1)n−p∑

i

∫
Γf

π∗1αp,i∪π∗2α∗p,i

=∑
p
(−1)n−p∑

i

∫
X
αp,i∪ f ∗α∗p,i

=∑
p
(−1)n−p trace[ f ∗ : Hn−p(X ,R)→ Hn−p(X ,R)]

= L( f ). 	


Corollary 5.7.2. If L( f ) �= 0, then f has a fixed point.

Proof. If Γf ∩Δ = /0, then Γf ·Δ = 0. 	

Corollary 5.7.3. Δ ·Δ is the Euler characteristic e(X).

Exercises

5.7.4. We say that two C∞ maps f ,g : X → Y between manifolds are homotopic if
there exists a C∞ map h : X ×R → Y such that f (x) = h(x,0) and g(x) = h(x,1).
Using Exercise 5.2.9, show that f ∗ = g∗ if f and g are homotopic. Conclude that g
has a fixed point if L( f ) �= 0.

5.7.5. Let v(x) be C∞ vector field on a compact manifold X . By the existence and
uniqueness theorem for ordinary differential equations, there is an ε > 0 such that
for each x there is unique curve γx : [0,ε]→ X with γx(0) = x and dγx(t) = v(γx(t)).
Moreover, the map x �→ γx(δ ) is a diffeomorphism from X to itself for every δ ≤ ε .
Use this to show that v must have a zero if e(X) �= 0.

5.7.6. Let A be a nonsingular n×n matrix. Then it acts on Pn−1 by [v] �→ [Av], and
the fixed points correspond to eigenvectors. Show that A is homotopic to the identity.
Use this to show that L(A) �= 0, and therefore that A has an eigenvector. Deduce the
fundamental theorem of algebra from this.
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