
Chapter 19
Analogies and Conjectures

In this final chapter, we end our story by beginning another. Although we have
mostly worked over C, and occasionally over a general algebraically closed field,
algebraic geometry can be done over any field. Each field has its own character:
transcendental over C, and arithmetic over fields such as Q,Fp, . . . . It may seem
that aside from a few formal similarities, the arithmetic and transcendental sides
would have very little to do with each other. But in fact they are related in deep and
mysterious ways. We start by briefly summarizing the results of Weil, Grothendieck,
and Deligne for finite fields. Then we return to complex geometry and prove Serre’s
analogue of the Weil conjecture. This result inspired Grothendieck to formulate his
standard conjectures. We explain some of these along with the closely related Hodge
conjecture. These are among the deepest open problems in algebraic geometry.

19.1 Counting Points and Euler Characteristics

Let Fq be the field with q = pr elements, where p is a prime number. Consider the
algebraic closure k = F̄p =

⋃
Fqn . Suppose that X ⊆ Pd

k is a quasiprojective variety
defined over Fp, that is, assume that the coefficients of the defining equations lie in
Fp. Let X(Fpn) be the set of points of PN

Fpn
satisfying the equations defining X . Let

Nn(X) be the number of points of X(Fpn). Here are a few simple computations:

Example 19.1.1. Nn(Am
Fp

) = pnm.

Example 19.1.2. Expressing Pm = Am∪Am−1∪·· · as a disjoint union yields

Nn(Pm
Fp

) = pnm + pn(m−1) + · · ·+ pn + 1.

Example 19.1.3. Nn((P1
Fp

)m) = (pn + 1)m.

The last two computations are based on the following obvious properties.
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308 19 Analogies and Conjectures

(1) Additivity:
Nn(X) = Nn(X −Z)+ Nn(Z)

whenever Z ⊂ X is closed.
(2) Multiplicativity:

Nn(X ×Y ) = Nn(X)Nn(Y ).

Now let us return to complex geometry, so that k = C. The Euler characteristic
with respect to compactly supported cohomology is

χc(X) =∑(−1)i dimHi
c(X ,R).

It is not difficult to compute this number in the above examples using the techniques
from the earlier chapters:

χc(Am
C) = 1, χc(Pm

C) = m, χc((PC)m) = 2m.

This leads to the following curious observation that if we set p = 1 in the above
formulas, then we get χc. Is there a deeper reason for this? First note that although
we defined compactly supported cohomology using differential forms in Section 5.4,
there is a purely topological definition that works for any locally compact Hausdorff
space. We can set

Hi
c(X) = Hi(X̄ , X̄ −X)

for any (or some) compactification X̄ . Then (7.2.1) and a little diagram chasing
yields the long exact sequence

· · · →Hi
c(X)→ Hi

c(X)→ Hi
c(X −Z)→ Hi+1

c (X)→ ··· . (19.1.1)

The first clue that there is a deeper relation between Nn and χc is the following.

Lemma 19.1.4. The invariant χc is additive and multiplicative i.e.,

χc(X) = χc(X −Z)+ χc(Z),

χc(X ×Y ) = χc(X)χc(Y )

holds.

Proof. The additivity follows immediately from (19.1.1). The multiplicativity
follows from the Künneth formula

Hi
c(X ×Y,R) =

⊕
j+l=i

H j
c (X ,R)⊗Hl

c(Y,R). 	


Suppose we start with a complex quasiprojective algebraic variety X with a fixed
embedding into PN

C. If the defining equations (and inequalities) have integer coeffi-
cients, then we can reduce these modulo a prime p to get a quasiprojective variety
(or more accurately scheme) Xp defined over the finite field Fp. In less prosaic terms,
we have a scheme over SpecZ, and Xp is the fiber over p. (In practice, Z might be
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replaced by something bigger such as the ring of integers of a number field, but the
essential ideas are the same.) Then we can count points on Xp and compare it to
χc(X). To avoid certain pathologies, we should take p sufficiently large.

Lemma 19.1.5. If X is expressible as a disjoint union of affine spaces, then Nn(Xp)
is a polynomial in pn for sufficiently large p. Substituting p = 1 yields χc(X).

Proof. If X =
⋃

Ami is a disjoint union, then we get a similar decomposition for Xp

with p � 0. Therefore Nn(Xp) = ∑ pnmi and χc(X) = ∑1nmi . 	

The lemma applies to the above examples of course, as well as to the larger class

of toric varieties [41, p. 103], Grassmannians, and more generally flag varieties [42,
19.1.11]. Nevertheless, most varieties do not admit such decompositions (e.g., a
curve of positive genus does not). So this is of limited use.

It is worth pointing out that these days, the material of this section is usually
embedded into the framework of motivic integration. A succinct introduction to this
is given in [81].

Exercises

19.1.6. Let G = G(2,4) be the Grassmannian of two-dimensional subspaces of k4.
Calculate Nn(G) over Fp and χ(G) over C and compare.

19.1.7. Generalize this to G(2,n).

19.2 The Weil Conjectures

We may ask whether something like Lemma 19.1.5 holds for arbitrary varieties.
We start by looking at an elliptic curve, which is the simplest example where the
lemma does not apply.

Example 19.2.1. Let X be the elliptic curve given by the affine equation y2 = x3−1.
This defines a smooth curve Xp over Fp when p≥ 5. So let us analyze what happens
when p = 5. When n is odd, 5n−1 is not divisible by 3. This implies that x �→ x3 is an
automorphism of F∗5n . Therefore y2 +1 has a unique cube root. Thus Nn(X5)= 1+5n

if n is odd. When n is even, we can compute a few values by brute force on a
machine.

pn Nn

52 36 = 1 + 52 + 2 ·5
54 576 = 1 + 54−2 ·52

56 15876 = 1 + 56 + 2 ·53

58 389376 = 1 + 58−2 ·54

510 9771876 = 1 + 510 + 2 ·55
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So at least empirically, we have the formula

Nn(X5) =

{
1 + 5n if n odd,

1 + 5n−2(−5)n/2 if n even,

= 1 + 5n− (
√−5)n− (−√−5)n.

Example 19.2.2. Calculating the number of points for the elliptic curve defined by
y2 = x3− x with p = 3, we get

pn Nn

3 4 = 1 + 3
32 16 = 1 + 32 + 2 ·3
33 28 = 1 + 33

34 64 = 1 + 34−2 ·32

35 244 = 1 + 35

Then
Nn(X3) = 1 + 3n− (

√−3)n− (−√−3)n

fits this data.

From these and additional examples, we observe a pattern that on an elliptic
curve, Nn = 1 + pn−λ n

1 −λ n
2 for appropriate constants λi with order of magnitude√

p. We can generate more examples by taking products of these with the previous
ones. Based on this data, we may guess that in general Nn(Xp) is a linear combi-
nation of powers λ n

i , and setting λi = 1 yields the Euler characteristic. This turns
out to be correct, but it seems to come out of nowhere. We need some guiding
principle to explain these formulas. The basic insight goes back to Weil [119] (who
proved a number of cases). Suppose that X ⊂ Pd

C is a nonsingular projective variety
with equations defined over Z as above. Let us denote by X̄p the variety over the
algebraic closure F̄p determined by reducing the equations modulo p. The Frobe-
nius morphism Fp : X̄p → X̄p is the map that raises the coordinates to the pth power
(see [60, p. 301] for a more precise description). Then Xp(Fpn) are the points of
X̄p fixed by Fn

p . If this were a manifold with a self-map F (satisfying appropriate
transversallity conditions), then we could calculate this number using the Lefschetz
trace formula. Weil conjectured that this sort of argument could be carried out in the
present setting for some suitable cohomology theory. He made some additional con-
jectures that will be discussed a bit later. Grothendieck eventually constructed such
a Weil cohomology theory—in fact several. For each prime � �= p, he constructed
functors Hi

et(−,Q�) called �-adic cohomology such that:

(1) Hi
et(X̄p,Q�) is a vector space over the field of �-adic numbers Q� = (lim←−Z/�n)⊗

Q.
(2) dimHi

et(X̄p,Q�) is the usual ith Betti number of X .
(3) Fp acts on these spaces. The action on H0

et (X̄p,Q�) is trivial, but nontrivial in
general.
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(4) There is a Lefschetz trace formula that implies that

Nn(Xp) =∑
i
(−1)i trace[Fn∗

p : Hi
et(X̄p,Q�)→ Hi

et(X̄p,Q�)].

Grothendieck constructed this by generalizing sheaf cohomology. The details,
which are quite involved, can be found in the books by Freitag and Kiehl [39] or
Milne [85]. The last formula can be rewritten as

Nn(Xp) =∑
i
(−1)i∑λ n

i j,

where λi j are the generalized eigenvalues of F∗
p on Hi

et(X̄p,Q�). In the previous
examples, the numbers ±√−5,±√−3 above were precisely the eigenvalues of Fp

acting on H1. Although this is overkill, we can also use this formalism to re-prove
the formulas of the last section. For example,

Hi
et(P

m
F̄p

,Q�) =

{
Q� with Fp acting by pi/2 if i < 2m is even,

0 otherwise,
(19.2.1)

gives the formula for Nn(Pm). Notice that the absolute values of the eigenvalues
in these examples have very specific sizes. This is consistent with a deep theorem
of Deligne proving the last of Weil’s conjectures on the analogue of the Riemann
hypothesis. (For more background and in particular what this has to do with the
Riemann hypothesis, see [39], [60, Appendix C], [69], [85] and of course [25].)

Theorem 19.2.3 (Deligne). Let X be a smooth and projective variety defined over
Fp, and X̄ its extension to F̄p. Then the eigenvalues of the Frobenius action on
Hi

et(X̄ ,Q�) are algebraic numbers λ all of whose absolute values satisfy |λ |= pi/2.

Remark 19.2.4. This is valid over any finite field. The word “eigenvalue” above
really means generalized eigenvalue, although in fact the action of Fp has been con-
jectured to be diagonalizable. This is still wide open.

This abstract theorem has concrete consequences. The first goes from topology
to number theory, and the second goes in the opposite direction.

Corollary 19.2.5. Let X ⊂ PN+1 be a smooth degree-d hypersurface defined over
Fp. Then

|Nn(X)− (1 + p + · · ·+ pN)| ≤ bN · pN/2,

where bN is the Nth Betti number of a smooth degree-d hypersurface in Pn
C.

Proof. We can assume that X comes from a hypersurface over C by reducing
modulo a prime. By the weak Lefschetz theorem, Hi(X ,Q) ∼= Hi(PN+1,Q) for
i ∈ [0,2N]−{N}. So the Betti numbers of X and PN+1 are the same in this range.
In fact, the action of Fp would be compatible with this isomorphism. Therefore
eigenvalues would be the same in both spaces for i ∈ [0,2N]−{N}. For PN+1, these
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are given in (19.2.1). Let λ jN denote the eigenvalues on the Nth cohomology of X .
Then

|N1(X)− (1 + p + · · ·+ pN)| ≤ |
bN

∑
j=1

λ jN | ≤ bN · pN/2. 	


Corollary 19.2.6. If X is determined by reducing a complex smooth projective
variety mod p� 0 as above, the Betti numbers of the complex variety can be deter-
mined from Nn(X).

In most cases, the Betti numbers are easier to calculate than Nn. A nontrivial
example in which the last corollary was usefully applied was given by Harder and
Narasimhan [57].

When X is singular or open, then the above theorem is no longer true. Deligne
[27] has shown that the eigenvalues can have varying sizes or weights independent
of cohomological degree. Surprisingly, this has Hodge-theoretic meaning. If one
counts the number of eigenvalues on Hi

et(X̄p,Q�) of a given absolute value pk/2,
then this is the dimension of the weight-k quotient of the mixed Hodge structure on
Hi(X) that we touched on in §12.6. See [26] for a more precise summary of these
results.

Exercises

19.2.7. Assuming Theorem 19.2.3, deduce the Hasse–Weil bound that if X is a
smooth projective genus-g curve over Fp, then |Nn(X)−1− pn| ≤ 2gpn/2. (Of course
this bound came first.)

19.3 A Transcendental Analogue of Weil’s Conjecture

After this excursion into arithmetic, let us return to Hodge theory and prove an ana-
logue of the Weil–Riemann hypothesis found by Serre [102]. To set up the analogy
let us replace X̄ above by a smooth complex projective variety Y , and Fp by an
endomorphism f :Y →Y . As for p, if we consider the effect of the Frobenius on PN

F̄p
,

the pullback of O(1) under this map is O(p). To complete the analogy, we require
the existence of a very ample line bundle OY (1) on Y , so that f ∗OY (1)∼= OY (1)⊗q.
We can take c1(OY (1)) to be the Kähler class ω . Then we have f ∗ω = qω .

Theorem 19.3.1 (Serre). If f : Y →Y is a holomomorphic endomorphism of a com-
pact Kähler manifold with Kähler class ω such that f ∗ω = qω for some q∈R, then
q is an algebraic integer, f ∗ : Hi(Y,Q)→Hi(Y,Q) is diagonalizable, and its eigen-
values are algebraic integers with absolute value qi/2.

Proof. The theorem holds for H2n(Y ), since ωn generates it. Note that qn is the
degree of f , which is necessarily a (rational) integer. Therefore q is an algebraic
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integer. By hypothesis, f ∗ preserves the Lefschetz decomposition (Theorem 14.1.1).
Thus we can replace Hi(Y ) by primitive cohomology Pi(Y ). Recall from Corol-
lary 14.1.4 that

Q̃(α,β ) = Q(α,Cβ̄ )

is a positive definite Hermitian form on Pi(Y ), where

Q(α,β ) = (−1)i(i−1)/2
∫
α ∧β ∧ωn−i.

Consider the endomorphism F = q−i/2 f ∗ of Pi(Y ). We have

Q(F(α),F(β )) = (−1)i(i−1)/2q−n
∫

f ∗(α ∧β ∧ωn−i) = Q(α,β ).

Moreover, since f ∗ is a morphism of Hodge structures, it preserves the Weil operator
C. Therefore F is unitary with respect to Q̃, so its eigenvalues have norm 1. This
gives the desired estimate on absolute values of the eigenvalues of f ∗. 	


Since f ∗ can be represented by an integer matrix, the set of its eigenvalues is a
Galois-invariant set of algebraic integers. So we get a stronger conclusion that all
Galois conjugates have absolute value qi/2. This would imply that when q = 1 (e.g.,
if f is an automorphism) then these are roots of unity.

Exercises

19.3.2. Verify the above theorem for Y a complex torus, and f :Y →Y multiplication
by a nonzero integer n, by direct calculation.

19.3.3. Show, by example, that if f ∗ω is not a multiple of ω , then the eigenvalues
of f ∗ on Hi(Y ) can have different absolute values.

19.4 Conjectures of Grothendieck and Hodge

Prior to Deligne’s proof, Grothendieck [54] had suggested a strategy for carrying
out a proof of the Weil–Riemann hypothesis similar to Serre’s proof of the transcen-
dental version. This required first establishing his standard conjectures [54, 71]. All
but one of these conjectures are open over C. The exception follows from the Hodge
index theorem. For general fields, they are essentially all wide open. Grothendieck
had also formulated his conjectures in order to construct his theory of motives, which
gives a deeper explanation for some of the analogies between the worlds of arith-
metic and complex geometry. So even though Deligne managed to prove the last of
Weil’s conjectures by another method, the problem of solving these conjectures is
fundamental.
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We want to spell out some of these conjectures in the complex case, and indicate
their relation to a better-known Hodge conjecture [65]. Let X be an n-dimensional
nonsingular complex projective variety. A codimension-p algebraic cycle is a finite
formal sum ∑niZi, where ni ∈ Z and Zi ⊂ X are codimension-p closed subvarieties.
These form an abelian group Zp(X) of infinite rank. The first task is to cut it down
to a more manageable size. Given a nonsingular ι : Z ↪→ X , we defined its funda-
mental class [Z] = ι!(1) ∈ H2p(X ,Z). The fundamental class can be defined even
when Z has singularities. This can be done in several ways (see [7]). A quick but
nonelementary method is to use Hironaka’s famous theorem [62] on resolution of
singularities. This implies that there exists a smooth projective variety Z̃ with a bira-
tional map π : Z̃ → Z. Let ĩ : Z̃ → X denote the composition of π and the inclusion.
Then set [Z] = i!(1) ∈ H2p(X ,Z).

Lemma 19.4.1. This class is independent of the choice of resolution of singularities.

Proof. Let Z̃′ → Z be another resolution. Then by applying Hironaka’s theorem to
the fibered product, we see that there exists a third resolution Z̃′′ → Z fitting into a
commutative diagram

Z̃′′
ψ ��

��

Z̃

π
��

Z̃′
π ′ �� Z

Then i!(1) = i!(ψ!1) = (i ◦ ψ)!(1). Therefore Z̃ and Z̃′′ give the same class.
By symmetry, Z̃′ and Z̃′′ also give the same class. 	


We thus get a homomorphism [ ] : Zp(X) → H2p(X ,Z) by sending ∑niZi �→
∑ni[Zi]. The space of algebraic cohomology classes is given by

H2p
alg(X ,Z) = im[Zp(X)→ H2p(X ,Z)],

H2p
alg(X ,Q) = im[Zp(X)⊗Q→ H2p(X ,Q)].

We define the space of codimension-p Hodge cycles on X to be

H2p
hodge(X) = H2p(X ,Q)∩H pp(X)

and let H2p
hodge(X ,Z) denote the preimage of H pp(X) in H2p(X ,Z).

Lemma 19.4.2. H2p
alg(X ,Z)⊆ H2p

hodge(X ,Z)

Proof. It is enough to prove that the fundamental class [Z] of a codimension-p sub-
variety is a Hodge class. Let Z̃ → Z be a resolution of singularities, and let i : Z̃ → X
be the natural map. By Corollary 12.2.10, the map

i! : H0(Z̃) = Z→H2p(X ,Z)(−p)

is a morphism of Hodge structures. Therefore it takes 1 to a Hodge class.
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In more down-to-earth terms, this amounts to the fact that for any form α of type
(r,2n−2p− r) on X , ∫

Z̃
i∗α = 0

unless r = n− p. 	

The Hodge conjecture asserts the converse.

Conjecture 19.4.3 (Hodge). H2p
alg(X ,Q) and H2p

hodge(X ,Q) coincide.

Note that in the original formulation, Z was used in place of Q, but Atiyah and
Hirzebruch have shown that this version is false [7]. It is also worth pointing out
that Voisin [114] has shown that the Hodge conjecture (in various formulations) can
fail for compact Kähler manifolds. On the positive side, we should mention that for
p = 1, the conjecture is true — even over Z — by the Lefschetz (1,1) theorem,
Theorem 10.3.3. We prove that it holds for p = dimX −1.

Proposition 19.4.4. If the Hodge conjecture holds for X in degree 2p (i.e., if
H2p

alg(X ,Q) = H2p
hodge(X ,Q)) with p < n = dimX, then it holds in degree 2n−2p.

Proof. Let L be the Lefschetz operator corresponding to a projective embedding
X ⊂PN . Then for any subvariety Y , we have L[Y ] = [Y ∩H], where H is a hyperplane
section chosen in general position. It follows that Ln−2p takes H2p

alg(X) to H2n−2p
alg (X).

Moreover, the map is injective by hard Lefschetz. Thus

dimH2p
hodge(X) = dimH2p

alg(X)≤ dimH2n−2p
alg (X)≤ dimH2n−2p

hodge (X).

On the other hand, Ln−2p induces an isomorphism of Hodge structures H2p(X ,Q)
(p− n) ∼= H2n−2p(X ,Q), and therefore an isomorphism H2p

hodge(X) ∼= H2n−2p
hodge (X).

This forces equality of the above dimensions. 	

Corollary 19.4.5. The Hodge conjecture holds in degree 2n− 2. In particular, it
holds for three-dimensional varieties.

Given a cycle Y ∈ Zn−p(X), define the intersection number

Z ·Y =
∫

X
[Z]∪ [Y ] ∈ Z.

This can be defined by purely algebrogeometric methods over any field [42].

Definition 19.4.6. A cycle Z ∈ Zp(X) is said to be homologically equivalent to 0
if [Z] = 0. It is numerically equivalent to 0 if for any Y ∈ Zn−p(X) we have Z ·
Y = 0. Two cycles are homologically (respectively numerically) equivalent if their
difference is homologically (respectively numerically) equivalent to 0.

Numerical equivalence is a purely algebrogeometric notion, independent of any
cohomology theory. (This is clearly an issue in positive characteristic where one
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has several equally good cohomology theories, such as the various �-adic theories.)
On the other hand, it is usually easier to prove things about homological equiva-
lence. For example, H2p

alg(X), which is Zp(X) modulo homological equivalence, is

finitely generated, since it is sits in the finitely generated group H2p(X ,Z). There-
fore Zp(X) modulo numerical equivalence is also finitely generated, because clearly
homological equivalence implies numerical equivalence. The converse is one of
Grothendieck’s standard conjectures.

Conjecture 19.4.7 (“Conjecture D”). Numerical equivalence coincides with homo-
logical equivalence.

In order to explain the relationship to Hodge, we state another of Grothendieck’s
conjectures.

Conjecture 19.4.8 (“Conjecture A”). The Lefschetz operator induces an isomor-
phism on the spaces of algebraic cycles

Li : Hn−i
alg (X ,Q)→ Hn+i

alg (X ,Q)

There are several other conjectures, which we will not state. One of them, which
is a version of the Hodge index theorem, is true over C. The remaining conjectures
are known to follow if Conjecture A is true for all X [54, 71]. These conjectures
are weaker than Hodge’s and are known in many more cases. For example, they are
known for all abelian varieties, while Hodge is still open for this class.

Proposition 19.4.9. If the Hodge conjecture holds for X, then Conjecture A will also
hold for it. If Conjecture A holds for X, then conjecture D holds for it.

Proof. By the hard Lefschetz theorem,

Li : Hn−i(X ,Q)→ Hn+i(X ,Q)

is an isomorphism of vector spaces. It follows that Li gives an isomorphism
Hn−i(X) ∼= Hn+i(X)(i) of Hodge structures. Therefore it induces an isomorphism
on the spaces of Hodge cycles

Hn−i
hodge(X ,Q)→Hn+i

hodge(X ,Q).

This is an isomorphism of the spaces of algebraic cycles, since we are assuming the
Hodge conjecture.

By the Hodge index theorem, Theorem 14.1.4, we get a positive bilinear form Q
on Hi(X) given by

Q(α,β ) =
∫

X
α ∪β ′,

where
β ′ =∑±Ln−i+ jβ j
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with β =∑Ljβ j the decomposition into primitive parts in Theorem 14.1.1. Suppose
that Conjecture A holds for X . Then we have a Lefschetz decomposition on the
space of algebraic cycles

H2p
alg(X) =

⊕
Lj(P2p−2 j(X)∩H2p−2 j

alg (X)).

Therefore β ′ ∈ H2n−2p
alg (X) whenever β ∈ H2p

alg(X). Suppose that Z ∈ Zp(X) is
numerically equivalent to 0. Then [Z] = 0, since otherwise we get a contradiction
Z · [Z]′ = Q([Z], [Z]) > 0. 	


Further information about the Hodge conjecture, and related conjectures, can be
found in Lewis [80]. See André [3] for an introduction to motives, which have been
lurking behind the scenes. The historically minded reader will find a fascinating
glimpse into how these ideas evolved in the letters of Grothendieck and Serre [21].

Exercises

19.4.10. Prove that the Hodge conjecture holds for products of projective spaces.
(Hint: the Hodge conjecture is trivially true for a variety whose cohomology is
spanned by algebraic cycles.)

19.4.11. Let X be an n-dimensional smooth projective variety. Another of Grothen-
dieck’s standard conjectures asserts that the components in Hi(X ,Q)⊗H2n−i(X ,Q)
of the class of the diagonal [Δ ] ∈ H∗(X ×X ,Q) under the Künneth decomposition
are algebraic. Show that this follows from the Hodge conjecture.

19.5 Problem of Computability

As we saw in this book, it is relatively straightforward to compute Hodge numbers.
For things like hypersurfaces, we obtained formulas. More generally, given explicit
equations for a subvariety X ⊂ Pn, we may use the following strategy for computing
Hodge numbers.

• View the sheaves Ω p
X as coherent sheaves on Pn. Specifically:

Ω p
X =Ω p

Pn/(IΩ p
Pn + dI ∧Ω p−1

Pn ),

where I is the ideal sheaf of X . These sheaves can be given an explicit presen-
tation by combining this formula with the presentation

OPn(−p−2)(
n+1
p+2) →OPn(−p−1)(

n+1
p+1) →Ω p

Pn

coming from Corollary 17.1.3.
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• Resolve these as in Theorem 15.3.9.
• Calculate cohomology using the resolution.

This can be turned into an algorithm using standard Gröbner basis techniques.
(We are using the term “algorithm” somewhat loosely, but to really get one we
should assume that the coefficients are given to us in some computable subfield of
C such as Q or Q(

√
2,π).)

If one wanted to verify (or disprove) the Hodge conjecture in an example, one
would run up against the following problem, which by contrast to the case of Hodge
numbers seems extremely difficult:

Problem 19.5.1. Find an algorithm to compute the dimensions of H∗
alg(X ,Q) and

H∗
hodge(X ,Q) given the equations (or some other explicit representation).

The following special case of the problem would already be interesting and prob-
ably very hard.

Problem 19.5.2. Find an algorithm for computing the Picard number of a surface in
P3 or of a product of two curves.

We end with a few comments. Given a variety X , the Hodge structure on Hk(X)
is determined by the period matrices

Pp =
(∫

γi
ω j

)
,

where γi is a basis of Hk(X ,Z) and ω j a basis of Hk−p(X ,Ω p
X). When X is defined

over Q, we should in principle be able to compute the entries of these matrices to
any desired degree of accuracy, by combing symbolic methods with numerical ones.
But this does not (appear to) help. However, Kontsevich and Zagier [74] propose that
there may be an algorithm to determine whether such a number (which they call a
period) is rational. More generally, we can ask for an algorithm for deciding whether
any finite set of periods is linearly dependent over Q. Such an algorithm would be
instrumental in finding an algorithm for computing dimH∗

hodge(X ,Q).
Regarding H∗

alg(X), Tate [113] made a conjecture that can be loosely viewed as
an arithmetic version of the Hodge conjecture, although there is even less evidence
for it. Suppose that X is defined over Q and in fact for simplicity Z. We obtain
varieties Xp defined by reducing X mod p. These are smooth for all but finitely
many p. Given an algebraic cycle Z ∈ Zi(X) on X defined over Z (but this is not
essential), we get induced cycles Zp ∈ Zi(Xp). We can form a fundamental class
in [Zp] ∈ H2i

et (X̄p,Q�) ∼= H2i
et (X̄ ,Q�), and it will be an eigenvector for the Frobe-

nius Fp with eigenvalue exactly pi for p � 0. Tate conjectured conversely that the
dimension of the intersection of the pith eigenspaces of Fp, as p varies, is precisely
H2i

alg(X ,Q). Even without assuming the conjecture, this should give some sort of

bound on H2i
alg(X ,Q). The challenge would be to make this effective.
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As we have seen, Hodge theory has a number of important consequences for the
cohomology of a smooth complex projective variety X :

(1) Hodge decomposition

∑
p+q=i

hpq(X) = bi(X).

(2) Hodge symmetry
hpq(X) = hqp(X).

(3) Kodaira vanishing
Hi(X ,Ω n

X ⊗L) = 0

for i > 0, n = dimX , and L an ample line bundle on X .

Thanks to GAGA, we can replace (the dimensions of) the above analytic
cohomology groups by their algebraic counterparts. To be precise, for bi(X) we can
use the dimension of either the hypercohomology dimHi(X ,Ω •

X) or some suitable
Weil cohomology such as �-adic theory. A rather natural question, which occurs for
example in [53], is whether these consequences can be established directly with-
out analysis. In particular, can these be extended to arbitrary fields? First, the bad
news: the answer to the second question is in general no. Counterexamples have
been constructed in positive characteristic by Mumford [90], Raynaud [96], and
others. In spite of this, the first question has a positive answer. Faltings [36] gave
the first entirely algebraic proof of (1). This was soon followed by an easier alge-
braic proof of (1) and (3) by Deligne and Illusie [29], which made surprising use of
characteristic-p techniques. An explanation of their proof can be found in Esnault
and Viehweg’s book [35].

The only thing left is see how to prove (2) without harmonic forms. In outline,
first apply the decomposition (1) and hard Lefschetz (which also has an algebraic
proof [27]) to get

hpq(X) = hn−q,n−p(X).

Now combine this with Serre duality [60, Chapter III, Corollary 7.13],

hn−q,n−p(X) = hqp(X).

At this point, we should remind ourselves that Hodge theory gives much more
than the items (1), (2), and (3). For instance, we have seen how to associate a
canonical Hodge structure to every smooth projective variety over C. As far as the
author knows, there is no purely algebraic substitute for this. Nevertheless, we can
devise the following test to see how close we can get. Suppose that X is a smooth
complex projective variety defined by equations ∑ai0...in xi0

0 · · ·xin
n = 0 with coeffi-

cients in Q⊂C (or some other algebraically closed subfield). Given σ ∈Gal(Q/Q),
we get a new complex variety Xσ defined by ∑σ(ai0...in)x

i0
0 · · ·xin

n = 0.

news:the
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Problem 19.6.1. Now suppose that Y is another smooth projective variety defined
over Q such that Hi(X ,Q)∼= Hi(Y,Q) as Hodge structures. Show that Hi(Xσ ,Q)∼=
Hi(Yσ ,Q) as Hodge structures for every σ ∈ Gal(Q/Q).

If we assumed the Hodge conjecture, we would get a solution as follows. The
isomorphism Hi(X)∼= Hi(Y ) would give a class in H∗

hodge(X ×Y ), which would be

an algebraic cycleα , necessarily defined over a field Q(t1, . . . ,tN). After specializing
the ti, we can assume that α is defined over Q. Then σ∗(α) would induce the desired
isomorphism Hi(Xσ ,Q) ∼= Hi(Yσ ,Q). To make this work, we really need only the
following weak form of the Hodge conjecture due to Deligne [31]:

Conjecture 19.6.2 (“Hodge cycles are absolute”). If α ∈ H2p(X ,Ω •
X ) is a rational

(p, p) class, then σ∗α is a rational (p, p) class on Xσ .

This conjecture is known in many more cases than the Hodge conjecture.
Although it looks rather technical, it does have some down-to-earth applications
to showing that certain natural constants are algebraic numbers.
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