
Chapter 12
Hodge Structures and Homological Methods

Our next goal is to make the Hodge decomposition functorial with respect to holo-
morphic maps. This is not immediate, since the pullback of a harmonic form along
a holomorphic map is almost never harmonic. The trick is to state things in a way
that depends only on the complex structure: a cohomology class is of type (p,q) if
it can be represented by a form with p dzi’s and by a form with q dz̄ j’s. Of course,
just making a definition is not enough. There is something to be proved. The main
ingredients are the previous Hodge decomposition for harmonic forms together with
some homological algebra, which we develop here.

Although projective manifolds are Kähler, there are examples of algebraic mani-
folds that are not. One benefit of this homological approach is that it will allow us
to extend the decomposition to these manifolds where harmonic theory alone would
be insufficient.

The articles and books by Deligne [24], Griffiths and Schmid [50], Peters and
Steenbrink [95], and Voisin [115, 116] cover this material in more detail.

12.1 Pure Hodge Structures

It is useful to isolate the purely linear algebraic features of the Hodge decom-
position. We define a pure real Hodge structure of weight m to be a finite-dimensional
complex vector space with a real structure HR, and a bigrading

H =
⊕

p+q=m

H pq

satisfying H̄ pq = Hqp. We generally use the same symbol for Hodge structure and
the underlying vector space. A (pure weight m) Hodge structure is a real Hodge
structure H together with a choice of a finitely generated abelian group HZ and an
isomorphism HZ⊗R∼= HR. Even though the abelian group HZ may have torsion, it
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is helpful to think of it as a “lattice” in HR. Rational Hodge structures are defined in
a similar way.

Before continuing with the abstract development of Hodge structures, we need
to ask the obvious question. Why is it useful to consider these things? More specifi-
cally, why is it useful for algebraic geometry? To answer, we observe that algebraic
varieties tend to come in families. For example, we may simply allow the coeffi-
cients of the defining equations to vary. Thus varieties tend to come with natural
“continuous” parameters. The cohomological invariants considered up to now are
discrete. Hodge structures, however, also have continuous parameters that some-
times match those coming from geometry. The simplest example is very instructive.
Start with an elliptic curve Xτ = C/(Z + Zτ) with τ in the upper half plane H.
We can identify ι : H1(Xτ ,C) ∼= C2 by mapping a closed differential form α to
(
∫ 1

0 α,
∫ τ

0 α), where the paths of integration are lines. Then

H10 = Cι(dz) = C(1,τ).

So in this case, we recover the basic parameter τ and therefore the curve itself from
its Hodge structure.

Given a pure Hodge structure, define the Hodge filtration by

F pHC =
⊕
p′≥p

H pq.

In many situations, the Hodge filtration is the more natural object to work with. This
determines the bigrading thanks to the following lemma:

Lemma 12.1.1. If H is a pure Hodge structure of weight m, then

HC = F p⊕ F̄m−p+1

for all p. Conversely, if F• is a descending filtration satisfying Fa = HC and Fb = 0
for some a,b ∈ Z and satisfying the above identity, then

H pq = F p∩ F̄q

defines a pure Hodge structure of weight m.

The most natural examples of Hodge structures come from compact Kähler mani-
folds: if HZ = Hi(X ,Z) with the Hodge decomposition on Hi(X ,C)∼= HZ⊗C, then
we get a Hodge structure of weight i. It is easy to manufacture other examples.
For every integer i, there is a rank-one Hodge structure Z(i) of weight −2i. Here
the underlying space is C, with H(−i,−i) = C and lattice HZ = (2π

√−1)iZ (these
factors should be ignored on first reading). The collection of Hodge structures forms
a category HS, where a morphism is a linear map f preserving the lattices and
the bigradings. In particular, morphisms between Hodge structures with different
weights must vanish. This category has the following operations: direct sums of
Hodge structures of the same weight (we will eventually relax this), and (unres-
tricted) tensor products and duals. Explicitly, given Hodge structures H and G of
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weights n and m, their tensor product H ⊗Z G is equipped with a weight-(n + m)
Hodge structure with bigrading

(H⊗G)pq =
⊕

p′+p′′=p
q′+q′′=q

H p′q′ ⊗Gp′′q′′ .

If m = n, their direct sum H⊕G is equipped with the weight-m Hodge structure

(H⊕G)pq =
⊕

p+q=m

H pq⊕Gpq.

The dual H∗ = Hom(H,Z) is equipped with a weight-(−n) Hodge structure with
bigrading

(H∗)pq = (H−p,−q)∗.

The operation H �→ H(i) = H ⊗Z(i) is called the Tate twist. It has the effect of
leaving H unchanged and shifting the bigrading by (−i,−i).

Exercises

12.1.2. Show that there are no free rank-one pure Hodge structures of odd weight,
and up to isomorphism a unique rank-one Hodge structure for every even weight.

12.1.3. Show that HomHS(Z(0),H∗ ⊗G)∼= HomHS(H,G).

12.1.4. Prove Lemma 12.1.1.

12.1.5. Given a g-dimensional complex torus T , use Exercise 10.3.9, that T ∼=
Alb(T ), to conclude that T can be recovered from the Hodge structure H = H1(T ).

12.2 Canonical Hodge Decomposition

The Hodge decomposition involved harmonic forms, so it is tied up with the Kähler
metric. It is possible to reformulate it so as to make it independent of the choice of
metric. Let us see how this works for a compact Riemann surface X . We have an
exact sequence

0→ CX →OX →Ω 1
X → 0,

and we saw in Lemma 6.2.8 that the induced map

H0(X ,Ω 1
X)→ H1(X ,C)
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is injective. If we define

F0H1(X ,C) = H1(X ,C),

F1H1(X ,C) = im[H0(X ,Ω 1
X)→ H1(X ,C)],

F2H1(X ,C) = 0,

then this together with the isomorphism H1(X ,C) = H1(X ,Z)⊗C determines a
pure Hodge structure of weight 1. To see this, choose a metric, which is automati-
cally Kähler because dimX = 1. Then H1(X ,C) is isomorphic to a direct sum of
the space of harmonic (1,0)-forms, which maps to F1, and the space of harmonic
(0,1)-forms, which maps to F̄1.

Before proceeding with the higher-dimensional version, we need some facts from
homological algebra. Let

C• =→ ···Ca d→Ca+1 → ···

be a complex of vectors spaces (or modules or . . .). It is convenient to allow the
indices to vary over Z, but we will require that it be bounded below, which means
that Ca = 0 for all a " 0. Let us suppose that each Ci is equipped with a filtration
F pCi ⊇ F p+1Ci ⊇ ·· · , that is preserved by d, i.e., dF pCi ⊆ F pCi+1. This implies
that each F pC• is a subcomplex. We suppose further that F• biregular, which means
that for each i there exist a and b with FaCi = Ci and FbCi = 0. We get a map on
cohomology

φ p : H •(F pC•)→H •(C•),

and we let F pH •(C•) be the image. Define GrpH i(C•) = F pH i(C•)/F p+1

H i(C•). When C• is a complex of vector spaces, there are noncanonical isomor-
phisms

H i(C•) =
⊕

p

GrpH i(C•).

The filtration is said to be strictly compatible with differentials of C•, or simply just
strict, if all the φ p’s are injective. Let Grp

FC• = GrpC• = F pC•/F p+1C•. Then we
have a short exact sequence of complexes

0→ F p+1C → F pC →GrpC → 0,

from which we get a connecting map δ : H i(GrpC•)→H i+1(F p+1C•). This can
be described explicitly as follows. Given x̄ ∈ H i(GrpC•), it can be lifted to an
element x ∈ F pCi such that dx ∈ F p+1Ci+1. Then δ (x̄) is represented by dx.

Proposition 12.2.1. The following are equivalent:

(1) F is strict.
(2) F pCi+1∩dCi = dF pCi for all i and p.
(3) The connecting maps δ : H i(GrpC•)→H i+1(F p+1C•) vanish for all i and p.

Proof. This proof is due to Su-Jeong Kang.
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(1)⇒ (2). Suppose that z∈ F pCi+1∩dCi. Then z = dx∈ F pCi+1 for some x∈Ci.
Thus we have z∈ ker[d : F pCi+1 → F pCi+2]. Let z̄∈H i+1(F pC•) denote the coho-
mology class of z. Note that φ p(z̄) = 0, since z = dx. Hence from the assumption
that F is strict, z̄ = 0 in H i+1(F pC•), or equivalently z = dy for some y ∈ F pCi.
This shows that F pCi+1∩dCi ⊆ dF pCi. The reverse inclusion is clear.

(2) ⇒ (3). Let x̄ ∈ H i(GrpC•). This lifts to an element x ∈ F pCi with dx ∈
F p+1Ci+1 as above. Then from the assumption (2), we have

dx ∈ F p+1Ci+1∩dCi = dF p+1Ci.

Since δ (x̄) is represented by dx, we have δ (x̄) = 0 in H i+1(F p+1C•).
(3) ⇒ (1). For each i, φ p can be expressed as finite a composition

H i(F pC•)→H i(F p−1C•)→H i(F p−2C•)→ ··· .

These maps are all injective by assumption, since their kernels are the images of the
connecting maps. 	

Corollary 12.2.2. GrpH i(C•) is a subquotient of H i(GrpC•), which means that
there is a diagram

H i(GrpC•)⊇ Ii,p → GrpH i(C•)

where the last map is onto. Isomorphisms GrpH i(C•) ∼= Ii,p ∼= H i(GrpC•) hold
for all i, p if and only if F is strict.

Proof. Let Ii,p = im[H i(F pC•)→H i(GrpC•)]. Then the surjection H i(F pC•)→
GrpH i(C•) factors through I. The remaining statement follows from (3) and a
diagram chase. 	

Corollary 12.2.3. Suppose that C• is a complex of vector spaces over a field such
that dimH i(GrpC•) < ∞ for all i, p. Then

dimH i(C•)≤∑
p

dimH i(GrpC•),

and equality holds for all i if and only if F is strict, in which case we also have

dimF pH i(C•) = ∑
p′≥p

dimH i(Grp′C•).

Proof. We have

dimH i(C•) =∑
p

dimGrpH i(C•)≤∑
p

dim Iip ≤∑
p

dimH i(GrpC•),

and equality is equivalent to strictness of F by the previous corollary. The last state-
ment is left as an exercise. 	


These results are usually formulated in terms of spectral sequences, which we
have chosen to avoid. In this language, the last corollary says that F is strict if and
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only if the associated spectral sequence degenerates at E1. This is partially explained
in the exercises.

Let X be a complex manifold. Then the de Rham complex E •(X) has a filtration
called the Hodge filtration:

F pE •(X) = ∑
p′≥p

E p′q(X).

Its conjugate equals
F̄qE •(X) = ∑

q′≥q

E pq′(X).

Theorem 12.2.4. If X is compact Kähler, the Hodge filtration is strict. The associ-
ated filtration F•Hi(X ,C), on cohomology, gives a Hodge structure

Hi(X ,Z)⊗C∼= Hi(X ,C) =
⊕

p+q=i

H pq(X)

of weight i, where

H pq(X) = F pH i(X ,C)∩ F̄qHi(X ,C)∼= Hq(X ,Ω p
X).

Proof. Dolbeault’s theorem (Corollary 9.2.3) implies that H q(GrpE •(X)) =
H q(E (p,•)

X (X)) is isomorphic to Hq(X ,Ω p
X). Therefore F is strict by

Corollary 12.2.3 and the Hodge decomposition. By conjugation, we see that F̄ is
also strict. Furthermore, these facts together with Corollary 12.2.3 give

dimF pHi(X ,C) = hp,i−p(X)+ hp+1,i−p−1(X)+ · · · (12.2.1)

and

dim F̄i−p+1Hi(X ,C) = hp−1,i−p+1(X)+ hp−2,i−p+2(X)+ · · · . (12.2.2)

A cohomology class lies in F pHi(X ,C) (respectively F̄ i−p+1Hi(X ,C)) if and only
if it can be represented by a form in F pE •(X) (respectively F̄i−p+1E •(X)). Thus
Hi(X ,C) is the sum of these subspaces. Using (12.2.1) and (12.2.2), we see that it
is a direct sum. Therefore the filtrations determine a pure Hodge structure of weight
i on Hi(X ,C). 	


Even though harmonic theory is needed to verify that this Hodge structure, it
should be clear that it involves only the holomorphic structure and not the metric.
Thus we have obtained a canonical Hodge decomposition. The word canonical is
really synonymous with functorial:

Corollary 12.2.5. If f : X → Y is a holomorphic map of compact Kähler mani-
folds, then the pullback map f ∗ : Hi(Y,Z)→Hi(X ,Z) is compatible with the Hodge
structures.
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Corollary 12.2.6. If X is compact Kähler, the maps

Hq(X ,Ω p
X)→ Hq(X ,Ω p+1

X )

induced by differentiation vanish. In particular, global holomorphic differential
forms on X are closed.

Proof. This follows from strictness, as will be explained in the exercises. 	

This corollary, and hence the theorem, can fail for compact complex non-Kähler

manifolds. An explicit example is described in the exercises.

Theorem 12.2.7. If X is a compact Kähler manifold, the cup product

Hi(X)⊗H j(X)→ Hi+ j(X)

is a morphism of Hodge structures.

The proof comes down to the observation that

F pE • ∧FqE • ⊆ F p+qE •.

For the corollaries, we work with rational Hodge structures. We have compati-
bility with Poincaré duality:

Corollary 12.2.8. If dimX = n, then Poincaré duality gives an isomorphism of
Hodge structures

Hi(X)∼= [H2n−i(X)∗](−n).

We have compatibility with the Künneth formula:

Corollary 12.2.9. If X and Y are compact Kähler manifolds, then⊕
i+ j=k

Hi(X)⊗H j(Y )∼= Hk(X ×Y )

is an isomorphism of Hodge structures.

We have compatibility with the Gysin map:

Corollary 12.2.10. If f : X →Y is a holomorphic map of compact Kähler manifolds
of dimension n and m respectively, the Gysin map is a morphism

Hi(X)→ Hi+2(m−n)(Y )(n−m).

Exercises

12.2.11. Finish the proof of Corollary 12.2.3.
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12.2.12. Let C• be a bounded-below complex with biregular filtration F•. Define
E pq

1 = H p+q(GrpC•) and d1 : E pq
1 → E p+1,q

1 as the connecting map associated to

0→ Grp+1C• → F pC•/F p+2C• → GrpC• → 0.

Show that d1 = 0 if F• is strict. (The converse is not quite true, as we will see
shortly.)

12.2.13. When C• = E •(X) with its Hodge filtration, show that E pq
1
∼= Hq(X ,Ω p

X )
and that d1 is induced by α �→ ∂α on ∂̄ -cohomology. Conclude that these maps
vanish when X is compact Kähler.

12.2.14. Continuing the notation from Exercise 12.2.12. Suppose that d1 = 0 for all
indices. Construct a map d2 : E pq

1 →E p+2,q−1
1 that fits into the commutative diagram

H p+q(Grp)
d2

���������������

H p+q(F p/F p+3) �� H p+q(F p/F p+2) ��

��

H p+q+1(Grp+2)

Show that d2 = 0 if F• is strict. Optional messy part: If d1 = d2 = 0, define d3 :
E pq

1 → E p+3,q−2
1 etc. in the same way, and check that strictness is equivalent to the

vanishing of whole lot.

12.2.15. Given a commutative ring R, let U3(R) be the space of upper triangular
3×3 matrices ⎛⎝1 x z

0 1 y
0 0 1

⎞⎠
with entries in R. The Iwasawa manifold is the quotient U3(C)/U3(Z + Z

√−1).
Verify that this is a compact complex manifold with a nonclosed holomorphic form
dz− xdy.

12.3 Hodge Decomposition for Moishezon Manifolds

A compact complex manifold need not have any nonconstant meromorphic func-
tions at all. At the other extreme, a compact manifold X is called Moishezon if
its field of meromorphic functions is as large as possible, that is, if it has transcen-
dence degree equal to dimX (this is the maximum possible by a theorem of Siegel
[104]). This is a very natural class of manifolds, which includes smooth proper alge-
braic varieties. Moishezon manifolds need not be Kähler; explicit examples due to
Hironaka can be found in [60, Appendix B]. Nevertheless, Theorem 12.2.4 holds for
these manifolds. A somewhat more general result is true. Let us say that a holomor-
phic map between complex manifolds is bimeromorphic if it is a biholomorphism
between dense open sets.
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Theorem 12.3.1. Suppose that X is a compact complex manifold for which there
exist a compact Kähler manifold and a surjective holomorphic bimeromorphic map
f : X̃ → X. Then X possesses a canonical Hodge decomposition on cohomology
described exactly as in Theorem 12.2.4.

Corollary 12.3.2. The Hodge decomposition holds for Moishezon manifolds.

Proof. Moishezon [88] proved that that there exists a bimeromorphic map X̃ → X ,
in fact a blowup, with X̃ smooth projective. 	


We have already proved a special case of Serre duality for Kähler manifolds.
In fact, the result holds for a general compact complex manifold X . There is a pairing

〈,〉 : Hq(X ,Ω p
X)⊗Hn−q(X ,Ω n−p

X )→ C (12.3.1)

induced by

(α,β )→
∫

X
α ∧β .

Theorem 12.3.3. Suppose X is a compact complex manifold. Then

(a) (Cartan) dimHq(X ,Ω p
X) < ∞.

(b) (Serre) The pairing (12.3.1) is perfect.

Proof. Both results can be deduced from the Hodge decomposition theorem for the
∂̄ -operator, which works regardless of the Kähler condition. See [49]. 	


We outline the proof of Theorem 12.3.1. Further details can be found in [23, 28].

Proof. Let n = dimX . There is a map

f ∗ : Hq(X ,Ω p
X)→ Hq(X̃ ,Ω p

X̃
)

that is induced by the map α �→ f ∗α of (p,q)-forms. We claim that the map f ∗ is
injective. To see this, define a map

f∗ : Hq(X̃ ,Ω p
X̃
)→: Hq(X ,Ω p

X),

analogous to the Gysin map, as the adjoint 〈 f∗α,β 〉 = 〈α, f ∗β 〉. We leave it as
an exercise to check that f∗ f ∗(α) = α . This proves injectivity of f ∗ as claimed.
By similar reasoning, f ∗Hi(X ,C)→ Hi(X̃ ,C) is also injective.

We claim that F is strict. As we saw in previous exercises (12.2.12,12.2.14), this
is equivalent to the vanishing of the differentials d1,d2 . . . . We check only the first
case, but the same reasoning works in general. Consider the commutative diagram

Hq(Ω p
X)

d1 ��

f ∗

��

Hq(Ω p+1
X )

f ∗
��

Hq(Ω p
X̃
)

d1 �� Hq(Ω p+1
X̃

)

Since the bottom d1 vanishes, the same goes for the top.
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The filtration F̄ can also be shown to be strict. We can now argue as in the proof
of Theorem 12.2.4 that the filtrations give a Hodge structure on Hi(X). 	


Exercises

12.3.4. Check that 〈 f ∗α, f ∗β 〉 = 〈α,β 〉, and deduce the identity f∗ f ∗α = α used
above.

12.4 Hypercohomology*

At this point, it is convenient to give a generalization of the constructions from
Chapter 4. Recall that a complex of sheaves is a possibly infinite sequence of sheaves

· · · →F i di−→F i+1 di+1−→ ·· ·

satisfying di+1di = 0. We say that the complex is bounded (below) if finitely many
of these sheaves are nonzero (or if F i = 0 for i" 0). Given any sheaf F and natural
number n, we get a bounded complex F [n] consisting of F in the −nth position,
and zeros elsewhere. The collection of bounded (respectively bounded below) com-
plexes of sheaves on a space X form a category Cb(X) (respectively C+(X)), where
a morphism of complexes f : E • →F • is defined to be a collection of sheaf maps
E i → F i that commute with the differentials. This category is abelian. We define
additive functors H i : C+(X)→ Ab(X)

H i(F •) = ker(di)/ im(di−1).

A morphism f : E • → F • in C+(X) is a called a quasi-isomorphism if it induces
isomorphisms H i(E •)∼= H i(F •) on all the sheaves.

Theorem 12.4.1. Let X be a topological space. Then there are additive functors
Hi : C+(X)→ Ab, with i ∈ N, such that

(1) For any sheaf F , Hi(X ,F [n]) = Hi+n(X ,F ).
(2) If 0→ E • →F • → G • → 0 is exact, then there is an exact sequence

0→H0(X ,E •)→H0(X ,F •)→H0(X ,G •)→H1(X ,E •)→ ··· .

(3) If E • → F • is a quasi-isomorphism, then the induced map Hi(X ,E •) →
Hi(X ,F •) is an isomorphism.

Hi(X ,E •) is called the ith hypercohomology group of E •.
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Proof. We outline the proof. Further details can be found in [44], [68], or [118].
We start by redoing the construction of cohomology for a single sheaf F . The
functor G defined in Section 4.1, gives a flasque sheaf G(F ) with monomorphism
F →G(F ). The sheaf C1(F ) is the cokernel of this map. Applying G again yields
a sequence

F →G(F )→G(C1(F )).

By continuing as above, we get a resolution by flasque sheaves

F →G0(F )→G1(F )→ ··· .

Theorem 5.1.4 shows that Hi(X ,F ) is the cohomology of the complex
Γ (X ,G•(F )), and this gives a clue how to generalize the construction. The complex
G• is functorial. So given a complex

· · · →F i d−→F i+1 → ··· ,

we get a commutative diagram

. . . F i d ��

��

F i+1

��

. . .

G0(F i)
d ��

∂
��

G0(F i+1)

∂
��. . . . . .

We define the total complex

T i(F •) =
⊕

p+q=i

Gp(F q)

with a differential δ = d +(−1)q∂ . We can now define

Hi(X ,F •) = Hi(Γ (X ,T •(G ))).

When applied to F [n], this yields Hi(Γ (X ,G•(F ))[n]), which as we have seen is
Hi(X ,F ), and this proves (1).

(2) can be deduced from the exact sequence

0→T •(F •)→T •(G •)→ T •(F •)→ 0

given in the exercises.
We now turn to the last statement, and prove it for bounded complexes. For any

complex E • of sheaves (or elements of an abelian category), we can introduce the
truncation operator given by the subcomplex
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τ≤pE
i =

⎧⎪⎨⎪⎩
E p if i < p,

ker(E p → E p+1) if i = p,

0 otherwise.

Truncation yields an increasing filtration τ≤p or a decreasing filtration τ≤−p. The
key property is given in the following lemma:

Lemma 12.4.2. There is an exact sequence of complexes

0→ τ≤q−1E
• → τ≤qE

• →H q(E •)[−q]→ 0

for each q.

A quasi-isomorphism E • →F • induces a quasi-isomorphism τ≤qE • → τ≤qF •
for each q. Thus the lemma can be applied to get a diagram with exact rows:

. . . �� Hi(τ≤q−1E
•) ��

��

Hi(τ≤qE
•) ��

��

Hi−q(H q(E •)) ��

∼=
��

. . .

. . . �� Hi(τ≤q−1F
•) �� Hi(τ≤qF •) �� Hi−q(H q(E •)) �� . . .

Thus (3) follows by induction on q. 	

The precise relationship between the various (hyper) cohomology groups is

usually expressed by the spectral sequence

E pq
1 = Hq(X ,E p)⇒Hp+q(E •).

There are a number of standard consequences that we can prove directly. The first
is a refinement of Theorem 5.1.4.

Corollary 12.4.3. If E • is a bounded complex of acyclic sheaves, then Hi(X ,E •) =
Hi(Γ (X ,E •)).

Proof. There is a map of complexes Γ (X ,E •)→ Γ (X ,T •(F •)) inducing a map
Hi(Γ (X ,E •))→ Hi(X ,E •). We have to check that this is an isomorphism. We do
this by induction on the length, or number of nonzero terms, of E •. With the help of
the “stupid” filtration,

σ pE • = E ≥p = · · · → 0→ E p → E p+1 → ···

is gotten by dropping the first p−1 terms of the complex. We have an exact sequence

0→ E ≥p+1 → E ≥p → E p[−p]→ 0 (12.4.1)
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leading to a commutative diagram

. . . �� Hi(Γ (X ,E ≥p+1)) ��

∼=
��

Hi(Γ (X ,E ≥p)) ��

f

��

Hi(E p[−p]) ��

∼=
��

. . .

�� Hi(X ,E ≥p+1) �� Hi(X ,E ≥p) �� Hi(X ,E p[−p]) ��

with exact rows. The arrows marked by∼= are isomorphisms by induction. Therefore
f is an isomorphism by the 5-lemma. 	

Corollary 12.4.4. Suppose that E • is a bounded complex of sheaves of vector
spaces. Then

dimHi(E •)≤ ∑
p+q=i

dimHq(X ,E p).

Proof. The corollary follows by induction on the length (number of nonzero entries)
of E • using the long exact sequences on hypercohomology coming from (12.4.1).

	

Corollary 12.4.5. Suppose that E • is a bounded complex with Hq(X ,E p) = 0 for
all p + q = i. Then Hi(E •) = 0.

We can extract one more corollary, using Lemma 11.3.3.

Corollary 12.4.6. If ∑dimHq(X ,E p)≤ ∞, then

∑(−1)i dimHi(E •) =∑(−1)p+q dimHq(X ,E p).

In order to facilitate the computation of hypercohomology, we need a criterion
for when two complexes are quasi-isomorphic. We will say that a filtration

E • ⊇ F pE • ⊇ F p+1E • ⊇ · · ·

is finite (of length ≤ n) if E • = FaE • and Fa+nE • = 0 for some a.

Lemma 12.4.7. Let f : E • → F • be a morphism of bounded complexes. Suppose
that F pE • and GpF • are finite filtrations by subcomplexes such that f (F pE •) ⊆
GpF •. If the induced maps

Grp
F(E •)→ Grp

G(F •)

are quasi-isomorphisms for all p, then f is a quasi-isomorphism.

Exercises

12.4.8. If F • is a bounded complex with zero differentials, show that Hi(X ,F •) =
⊕ jHi− j(X ,F j).

12.4.9. Prove Lemma 12.4.7 by induction on the length.
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12.5 Holomorphic de Rham Complex*

Let X be a C∞ manifold. We can resolve CX by the complex of C∞ forms E •
X . In other

words, CX and E •
X are quasi-isomorphic. Since E •

X is acyclic, it follows that

Hi(X ,CX ) = Hi(X ,CX [0])∼= Hi(X ,E •
X )∼= Hi(Γ (X ,E •

X )).

We have just re-proved de Rham’s theorem.
Now suppose that X is a (not necessarily compact) complex manifold. Then we

define a subcomplex

F pE •
X = ∑

p′≥p

E p′q
X .

The image of the map
Hi(X ,F pE •

X )→Hi(X ,E •
X )

is the filtration introduced just before Theorem 12.2.4. We want to reinterpret this
purely in terms of holomorphic forms. We define the holomorphic de Rham complex
by

OX →Ω 1
X →Ω 2

X → ··· .
We have a natural map Ω •

X → E •
X that takes σ p to F p, where σ pΩ •

X = Ω≥p
X .

Dolbeault’s Theorem 9.2.3 implies that F p/F p+1 is quasi-isomorphic to σ p/σ p+1 =
Ω p

X [−p]. Therefore, Lemma 12.4.7 implies that Ω•
X → E •

X , and more generally
σ pΩ •

X → F pE •
X , are quasi-isomorphisms.

Lemma 12.5.1. Hi(X ,C)∼= Hi(X ,Ω •
X) and F pHi(X ,C) is the image of Hi(X ,Ω≥p

X ).

When X is compact Kähler, Theorem 12.2.4 implies that the map

Hi(X ,Ω≥p
X )→Hi(X ,Ω •

X )

is injective.
From Corollaries 12.4.4, 12.4.5, 12.4.6 we obtain the following result.

Corollary 12.5.2. If X is compact, the ith Betti number satisfies

bi(X)≤ ∑
p+q=i

dimHq(X ,Ω p
X),

and the Euler characteristic satisfies

e(X) =∑(−1)ibi(X) =∑(−1)p+q dimHq(X ,Ω p
X).

Corollary 12.5.3. If Hq(X ,Ω p
X ) = 0 for all p + q = i, then Hi(X ,C) = 0.

The next corollary uses the notion of Stein manifold that will be discussed later,
in Section 16.1. For the time being, we note that Stein manifolds include smooth
affine varieties. The above results give nontrivial topological information for this
class of manifolds.
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Corollary 12.5.4. Let X be a Stein manifold, or in particular a smooth affine variety.
Then Hi(X ,C) = 0 for i > dimX.

Proof. This follows from Theorem 16.3.3. 	


Exercises

12.5.5. Suppose that Hi(X ,F ) = 0 for i > N and any locally free sheaf F . Show
that bi(X) = 0 for i > N + dimX .

12.5.6. Show that the inequality in Corollary 12.5.2 is strict for the Iwasawa mani-
fold defined in Exercise 12.2.15).

12.6 The Deligne–Hodge Decomposition*

We fix the following: a smooth hypersurface (also called a smooth divisor) X ⊂
Y in a projective smooth variety. Let U = Y − X . Our goal is to understand the
cohomology and Hodge theory of U . This can be calculated using C∞ differential
forms E •

U , but it will more useful to compute this with forms having controlled
singularities. We define Ω p

Y (∗X) to be the sheaf of meromorphic p-forms that are
holomorphic on U . This is not coherent, but it is a union of coherent subsheaves
Ω p

Y (mX) of mermorphic p-forms with at worst poles of order m along X . We also
defineΩ p

Y (logX)⊂Ω p
Y (1X) as the subsheaf of meromorphic formsα such that both

α and dα have simple poles along X . If we choose local coordinates z1, . . . ,zn so
that X is defined by z1 = 0, then the sections of Ω p

Y (logX) are locally spanned as an
OX module by

{dzi1 ∧·· ·∧dzip | i j > 1}∪
{

dz1∧dzi2 ∧·· ·∧dzip

z1

}
;

Ω •
X(logD)⊂Ω •

Y (∗X) is a subcomplex.

Proposition 12.6.1. There are isomorphisms

Hi(U,C)∼= Hi(Y,Ω •
Y (logX))∼= Hi(Y,Ω •

Y (∗X)).

Proof. Details can be found in [49, pp. 449–454]. The key point is to show that the
inclusions

Ω •
Y (logX)⊂Ω •

Y (∗X)⊂ j∗E •
U (12.6.1)

are quasi-isomorphisms, where j : U → Y is the inclusion. This can be reduced
to a calculation in which Y is replaced by a disk with coordinate z, and with X
corresponding to the origin. Then (12.6.1) becomes
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OD
��

d
��

∑n∈Z ODzn ��

d

��

C∞D−0

d
��

OD
dz
z

�� ∑n∈Z ODzndz �� E 1
D−0

d
��

E 2
D−0

The cohomology in each column is C in degrees 0,1, and horizontal maps induce
isomorphisms between these. 	


The spaces in the proposition on the right carry natural filtrations. The Hodge
filtration

F pHi+1(U)= im[Hi+1(0→Ω p
Y (logX)→Ω p+1

Y (logX)→···)→Hi+1(Ω •
Y (logX))]

and the pole filtration induced by

PolepHi+1(U)= im[Hi+1(· · · → 0→Ω p
Y (X)→Ω p+1

Y (2X)→···)→Hi+1(Ω •
Y (∗X))].

It follows more or less immediately that F p ⊆ Polep. Equality need not hold in
general, but it does in an important case studied later, in Section 17.5.

In order to relate this to the cohomology of X , we use residues. We have a map

Res :Ω p
Y (logX)→Ω p−1

X , (12.6.2)

called the Poincaré residue map, given by

Res

(
α ∧ dz1

z1

)
= α|X .

Res commutes with d. Therefore it gives a map of complexes

Ω •
Y (logX)→Ω •

X [−1],

where [−1] indicates a shift of indices by −1. This induces a map

Hi(U,C) = Hi(Ω •
Y (logX))→ Hi−1(X ,C).

After normalizing this by a factor of 1
2π
√−1

, it takes integer cohomology to integer
cohomology (modulo torsion). This can be described topologically as a composition

Hi(U)→ Hi(Tube) ∼→ Hi−1(X),

where Tube is a tubular neighborhood and the second map is the inverse of the Thom
isomorphism, §5.5. The residue map is an epimorphism of sheaves, and the kernel
is precisely the sheaf of holomorphic forms. So we have an exact sequence
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0→Ω •
Y →Ω •

Y (logX)→Ω •
X [−1]→ 0, (12.6.3)

which leads to a long exact sequence

· · · →Hq(Ω p
Y )→ Hq(Ω p

Y (logX))→ Hq(Ω p−1
X )→ Hq+1(Ω p

Y )→ ··· (12.6.4)

· · · →Hi(Y,C)→ Hi(U,C)→ Hi−1(X ,C)
γ→Hi+1(Y,C)→ ··· . (12.6.5)

The second is called the Gysin sequence. Indeed, γ is the Gysin map.

Theorem 12.6.2 (Deligne). The Hodge filtration on Hi(U,C) is strict, i.e., the maps

Hi+1(0→Ω p
Y (logX)→Ω p+1

Y (logX)→ ···)→Hi+1(Ω •
Y (logX))

are injective. In particular, there is a (noncanonical) decomposition

Hi(U,C)∼=
⊕

p+q=i

Hq(Y,Ω p
Y (logX)).

Proof. By Corollary 12.2.3, it is enough to prove that

dimHi(U) = ∑
p+q=i

dimHq(Y,Ω p
Y (logX)).

From (12.6.4) and (12.6.5), we get

dimHq(ΩY (logX)) = dimker[Hq(Ω p−1
X )→ Hq+1(Ω p

Y )]

+ dimim[Hq−1(Ω p−1
X )→ Hq(Ω p

Y )]

and

dimHi(U) = dimker[Hi−1(X)→ Hi+1(Y )]+ dimim[Hi−2(X)→ Hi(Y )].

Combining the last equation with Corollaries 12.2.5 and 12.2.10 shows that

dimHi(U) =∑dimker[Hq(Ω p−1
X )→ Hq+1(Ω p

Y )]

+∑dimim[Hq−1(Ω p−1
X )→ Hq(Ω p

Y )]

=∑dimHq(Y,Ω p
Y (logX)). 	


Corollary 12.6.3 (Weak Kodaira vanishing). If X is a smooth divisor such that
U = X −Y is affine, then Hi(Y,Ω n

Y ⊗OY (X)) = 0 for i > 0.

Proof. By Theorem 12.6.2 and Corollary 12.5.4,

dimHi(Y,Ω n
Y (logX))≤ dimHi+n(U,C) = 0
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when i > 0. A direct calculation shows that

Ω n
Y (logX) =Ω n

Y (X)∼=Ω n
Y ⊗OY (X). 	


Here is a more useful form.

Corollary 12.6.4 (Kodaira vanishing). If L is an ample line bundle, then

Hi(Y,Ω n
Y ⊗L) = 0

for i > 0.

Proof. Here is the outline. By assumption, L⊗m = OY (1) for some m > 0.
By Bertini’s theorem, we can choose a hyperplane H ⊂ Pn such that X = Y ∩H
is smooth. Note that O(X)∼= L⊗m and Y −X is affine. So when m = 1, we can apply
the previous corollary. In general, one can construct a nonsingular cover π : Y ′ → Y
branched over X , which locally is given by ym = f , where f = 0 is the local equation
for X . A precise construction can be found in [77, vol. I, Proposition 4.1.6], along
with the proof of the following properties:

1. The set-theoretic preimage X ′ = π−1X is again smooth,
2. L′ = π∗L has a smooth section vanishing along X ′ without multiplicity, or to be

more precise, O(X ′)∼= L′.
3. The cohomology Hi(Y,Ω n

Y ⊗L) injects into Hi(Y ′,Ω n
Y ′ ⊗L′).

The last property follows from [77, Lemma 4.1.14] plus Serre duality
[60, Chapter III, Corollary 7.7]. Thus the result follows from the previous corollary
applied to (Y ′,X ′). 	

Remark 12.6.5. Kodaira proved a slightly different statement, where ampleness was
replaced by positivity in a differential-geometric sense (cf. [49, Chapter 1§2]). This
form was used in the proof of the Kodaira embedding theorem, Theorem 10.1.11.
The embedding theorem then implies that positivity and ampleness are, a posteriori,
equivalent conditions for line bundles.

Deligne [24] proved (a refinement of) Theorem 12.6.2 en route to constructing a
mixed Hodge structure on cohomology. This is roughly something given by gluing
pure Hodge structures of different weights together. More formally, a mixed Hodge
structure is given by a lattice H with two filtrations W and F defined over Q and
C respectively so that F induces a pure rational Hodge structure of weight k on
Wk/Wk−1 for each k. In the case of Hi(U), where U is the complement of a smooth
divisor in a smooth projective variety X , we have

WkHi(U,Q) =

⎧⎪⎨⎪⎩
0 if k < i,

imHi(Y,Q) if k = i,

Hi(U,Q) otherwise.

A fairly detailed introduction to mixed Hodge theory can be found in the book by
Peters and Steenbrink [95]. Since we can barely scratch the surface, we will be
content to give a simple example to indicate the power of these ideas.
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Example 12.6.6. Given an elliptic curve E , we have seen that H1(E) with its Hodge
structure determines E . Now remove the origin 0 and a nonzero point p and consider
the mixed Hodge structure on H1(E − {0, p}). This determines the complement
E−{0, p} by the work of Carslon [16].

Exercises

12.6.7. Work out (12.6.4) and (12.6.5) explicitly when Y = P2 and X is a smooth
curve of degree d.

12.6.8. Show that forms in H0(Y,Ω p
Y (logX)) are closed. Is this necessarily true for

forms in H0(Y,Ω p
Y (kX))?

12.6.9. Verify the isomorphism Ω n
Y (logX) ∼= Ω n

Y ⊗OY (X) used in the proof of
Corollary 12.6.3.
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