
Chapter 11
A Little Algebraic Surface Theory

Let us return to geometry armed with what we have learned so far. We have already
looked at Riemann surfaces (which will be referred to as complex curves from now
on) in some detail. So we consider the next step up. A nonsingular complex surface
is a two-dimensional complex manifold. By an algebraic surface, we will mean a
two-dimensional nonsingular projective variety. So in particular, they are Kähler
manifolds. In this chapter, we will present a somewhat breezy account of surface
theory, concentrating on topics that illustrate the general theorems from the previous
chapters.

Much more systematic introductions to algebraic surface theory can be found in
the books by Barth, Peters, and Van de Ven [9] and Beauville [10].

11.1 Examples

The basic discrete invariant of a curve is its genus. For algebraic surfaces, there
are several numbers that play a similar role. We can use the Hodge numbers. By the
symmetry properties considered earlier, there are only three that matter: h10,h20,h11.
The first two are traditionally called (and denoted by) the irregularity (q = h10) and
geometric genus (pg = h20). The basic topological invariants are the Betti numbers,
which by Poincaré duality and the Hodge decomposition theorem can be expressed
as

b1 = b3 = 2q, b2 = 2pg + h11.

It is also convenient to consider the Euler characteristic,

e = b0−b1 + b2−b3 + b4 = 2−4q + 2pg+ h11.

Let us now start our tour.
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Example 11.1.1. The most basic example is the projective plane X = P2 = P2
C.

We computed the Betti numbers b1 = 0, b2 = 1 in Section 7.2. Therefore q = pg = 0
and h11 = 1.

Example 11.1.2. If X = C1×C2 is a product of two nonsingular curves of genus g1

and g2, then by Künneth’s formula (Theorem 5.3.6 and Corollary 10.2.6),

q = h10(X) = h10(C1)h00(C2)+ h00(C1)h10(C2) = g1 + g2.

Similarly, pg = g1g2 and h11 = 2g1g2 + 2.

Example 11.1.3. As a special case of the previous example, when we have a product
of a curve C with P1, the invariants are q = g, pg = 0, and h11 = 2. More generally,
we can consider ruled surfaces over C, which are P1-bundles that are locally iso-
morphic to Ui×P1, for a Zariski open cover {Ui} of C. (See Section 14.5 for a bit
more explanation of what this means.) We will see shortly that the invariants are the
same as above, although they are not generally products. When C = P1, there are,
up to isomorphism, countably many ruled surfaces. Here is a simple description. Let
Cn ⊂ Pn be the closure of {(t,t2, . . . ,tn) | t ∈ C}. Choose a point p0 ∈ Pn−Cn. Let
Fn be the set of pairs (q, p) ∈ Pn×Cn such that q lies on the line connecting p0 to q.

Example 11.1.4. Let X ⊂ P3 be a smooth surface of degree d. Then q = 0. We will
list the first few values of the remaining invariants:

d pg h11

2 0 2
3 0 7
4 1 20
5 4 45
6 10 86

These can be calculated using formulas given later (17.3.4).

A method of generating new examples from old is by blowing up. We start by
describing the blowup of C2 at 0:

Bl0C2 = {(x, �) ∈ C2×P1 |x ∈ �}.

The projection p1 : Bl0C2 →C2 is one-to-one away from 0 ∈C2. This can be gene-
ralized to yield the blowup BlpX → X of a surface X at the point p. Let B⊂ X be a
coordinate ball centered at p. After identifying B with a ball in C2 centered at 0, we
can let Bl0B be the preimage of B in Bl0C2. The boundary of Bl0B can be identified
with the boundary of B. Thus we can glue X −B∪Bl0B to form BlpX . When X is
algebraic, BlpX is again algebraic by Exercise 2.4.23.

Let us compute H∗(BlpX ,Z). Set Y = BlpX and compare Mayer–Vietoris
sequences:
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Hi(X) ��

��

Hi(X −B′)⊕Hi(B) ��

��

Hi(X −B′ ∩B)

=
��

Hi(Y ) �� Hi(Y −BlpB′)⊕Hi(BlpB) �� Hi(Y −BlpB′ ∩BlpB)

where B′ ⊂ B is a smaller ball. We thus have the following result:

Lemma 11.1.5. H1(BlpX)∼= H1(X) and H2(BlpX) = H2(X)⊕Z.

Corollary 11.1.6. q and pg are invariant under blowing up. h11(BlpX) =
h11(X)+ 1.

Proof. The lemma implies that b1 = 2q is invariant and b2(Y ) = b1(X)+ 1. Since
b2 = 2pg + h11, the only possibilities are h11(Y ) = h11(X) + 1, pg(Y ) = pg(X),
and pg(Y ) < pg(X). The last inequality means that there is a nonzero holomorphic
2-form on X that vanishes on X − p, but this is impossible. 	


A birational map κ : X ��� Y is simply an isomorphism in the category of
varieties and rational maps. In more explicit terms, it is given by an isomorphism
of Zariski open sets X ⊃ U ∼= V ⊂ Y . Blowups and their inverses (“blowdowns”)
are examples of birational maps. Two varieties are birationally equivalent if a bira-
tional map exists between them. For example, any two ruled surfaces over P1 are
birationally equivalent to each other and to P2, because they all contain A2.

For surfaces, the structure of birational maps is explained by the following
theorem:

Theorem 11.1.7 (Castelnuovo). Any birational map between algebraic surfaces is
given by a finite sequence of blowups and blowdowns.

Proof. See [60, 9]. 	

Corollary 11.1.8. The numbers q and pg depend only on the birational equivalence
class of the surface.

This implies that pg = g,q = 0 for ruled surfaces over a genus-g curve, as claimed
above.

Blowing up of singular points figures in the proof of the next important theorem.

Theorem 11.1.9 (Zariski). Given a singular algebraic surface Y , there exist a non-
singular surface X and a morphism π : X → Y , called a resolution of singularities,
that is an isomorphism away from the singular points.

Proof. See [9]. 	

Corollary 11.1.10 (Zariski). If f : X ��� V is a rational function from an algebraic
surface to a variety V , then there is a finite sequence of blowups Y → X such that f
extends to a holomorphic map f ′ : Y →V.
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Proof. We can construct Y by resolving singularities of the closure of the graph
of f . 	


Analogues of Zariski’s and Castelnuovo’s theorems in higher dimensions have
been established by Hironaka and Włodarczyk respectively. These are much harder.

An elliptic surface is a surface X that admits a surjective morphism f : X →C to
a smooth projective curve such that all nonsingular fibers are elliptic curves.

Example 11.1.11. A simple example of an elliptic surface is given as follows:
choose two distinct nonsingular cubics E0,E1 ⊂ P2 defined by f0(x,y,z) and
f1(x,y,z). These generate a pencil of cubics Et = V (t f1 + (1− t) f0) with t ∈ P1.
Define

X = {(p,t) ∈ P2×P1 | p ∈ Et}.
Projection to P1 makes this an elliptic surface. X can be identified with the blowup
of P2 at the nine points E0∩E1. So q = pg = 0 and h11 = 10.

Example 11.1.12. Consider the family of elliptic curves in Legendre form

E = {([x,y,z], t) ∈ P2×C−{0,1} | y2z− x(x− z)(x− tz) = 0}→ C .

The above equation is meaningful if t = 0,1, and it defines a rational curve with a
single node. By introducing s = t−1, we get an equation

sy2z− x(x− z)(sx− z) = 0

that defines a union of lines when s = 0. In this way, we can extend E to a surface
E ′ → P1. Unfortunately, E ′ is singular, and it is necessary to resolve singularities to
get a nonsingular surface Ē containing E (we can take the minimal desingulariza-
tion, which for our purposes means that b2(Ē ) is chosen as small as possible).

Exercises

11.1.13. Finish the proof of Lemma 11.1.5.

11.1.14. Given a ruled surface X over a curve C, check that e(X) = e(P1)e(C), and
use this to verify that h11(X) = 2.

11.1.15. Show that there is a nonsingular quartic X ⊂ P3 containing a line �,
which we can assume to be x2 = x3 = 0. Show that the map P3 ��� P1 defined
by [x0, . . . ,x3] �→ [x0,x1] determines a morphism X → P1 that makes it an ellptic
surface.

11.1.16. Given a smooth projective curve C, the symmetric product is given by
S2C = C×C/σ , where σ is the involution interchanging factors. This has the struc-
ture of a smooth algebraic surface such that Hi(S2C,Q) = Hi(C×C,Q)σ . Compute
the Betti and Hodge numbers for S2C.
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11.2 The Neron–Severi Group

Let X be an algebraic surface. The image of the first Chern class map

c1 : Pic(X)→ H2(X ,Z)

is the Neron–Severi group NS(X). The rank of this group is called the Picard
number ρ(X). By Lefschetz’s Theorem 10.3.1, NS(X)= H2(X ,Z)∩H11(X). There-
fore ρ ≤ h11 with equality if pg = 0.

A divisor on X is a finite integer linear combination ∑niDi of possibly singular
irreducible curves Di ⊂X . We can define a line bundle OX (D) as we did for Riemann
surfaces in Section 6.3. If fi are local equations of Di∩U in some open set U , then

OX(D)(U) = OX (U)
1

f n1
1 f n2

2 . . .

is a fractional ideal. In particular, when ni = 1, OX(−D) is the ideal sheaf of D, and
an ideal sheaf of a subscheme supported on D when ni ≥ 0.

Lemma 11.2.1. If Di are smooth curves, then c1(OX (∑niDi)) = ∑ni[Di].

Proof. This is an immediate consequence of Theorem 7.5.8. 	

When D is singular, we simply define its fundamental class to be c1(OX(D)).
The cup product pairing

H2(X ,Z)×H2(X ,Z)→ H4(X ,Z)∼= Z

restricts to a pairing on NS(X) denoted by “·”. Note that the last isomorphism
follows from a stronger form of Poincaré duality than what we proved earlier [61].

Lemma 11.2.2. Given a pair of transverse smooth curves D and E,

D ·E =
∫

X
c1(O(D))∪ c1(O(E)) =

∫
D

c1(OX (E))|D = #(D∩E).

Proof. By Lemma 11.2.1 and Proposition 5.6.3, D · E is a sum of local inter-
section numbers ip(D,E). The numbers ip(D,E) are always +1 in this case by
Exercise 5.6.6. 	


If the intersection of the curves D and E is finite but not transverse, it is still
possible to give a geometric meaning to the above product. Choose local coordinates
centered at p, and local equations f and g for D and E respectively.

Definition 11.2.3. The local intersection number is given by ip(D,E) = dimOp/
( f ,g). (This depends only on the ideals ( f ) and (g), so it is well defined.)

Proposition 11.2.4. If D,E are curves such that D∩E is finite, then

D ·E = ∑
p∈X

ip(D,E).
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Proof. We assume for simplicity that D and E are smooth, although this argument
can be made to work in general. As in the proof of Proposition 5.6.3, the number on
the left is given by ∫

X
τD ∧ τE

for appropriate representatives τD,τE for the Thom classes. In particular, we assume
that the supports are small enough that it breaks up into a sum of integrals over
disjoint coordinate neighborhoods of p ∈ D∩E .

We need a convenient expression for the Thom classes. We first note that if ρ :
R+ → [0,1] is a cutoff function, 1 in a neighborhood of 0 and 0 in a neighborhood
of ∞, then − 1

2π dρ(r)∧ dθ gives a local expression for the Thom class of 0 ∈ R2.
Thus after choosing local equations of D,E at p ∈ D∩E as above, we can assume
that (locally) τD = τ f and τE = τg, where

τ f =− 1

2π
√−1

dρ(| f |)∧ d f
f

.

Let h(z1,z2) = ( f (z1,z2),g(z1,z2)). It maps a small ball 0 ∈U ⊂ C2 to another
small ball 0 ∈U ′. The degree of h is the number of points in the fiber h−1(y) for
almost all y. This coincides with ip(E,D) by Lemma 1.3.3. Computing the integral
by a change of variables gives∫

U
τ f ∧ τg =

∫
U ′

h∗(τ f ∧ τg) = (degh)
∫
τz1 ∧ τz2 = degh = ip(E,D). 	


Example 11.2.5. Recall that H2(P2,Z) = Z, and the generator of H2(P2,Z) is the
class of the line [L]. Since [L] = [L′] for any other line, we have L2 = L · L′ = 1,
where L2 = L ·L.

Example 11.2.6. H2(P1×P1,Z) = Z2 with generators given by fundamental classes
of the horizontal and vertical lines H = P1 ×{0} and V = {0}×P1. We see that
H2 = V 2 = 0 and H ·V = 1.

Given a curve D⊂ P2 defined by a polynomial f , we let degD = deg f .

Corollary 11.2.7 (Bézout). If D,E are curves on P2 with a finite intersection, then

∑
p∈X

ip(D,E) = deg(D)deg(E).

Proof. We have [D] = c1(O(degD)) = (degD)[L], and likewise [E] = (degE)[L].
Therefore D ·E = degDdegE(L2) = degDdegE . 	

Corollary 11.2.8. If D,E are distinct irreducible curves, then D·E ≥ 0, and equality
holds only if they are disjoint.

This nonnegativity can fail when D = E . For example, by Corollary 5.7.3, the
diagonal in a product of curves Δ ⊂C×C has negative self-intersection as soon as
the genus of C is greater than 1. From Lemma 11.2.1, we obtain the following:
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Lemma 11.2.9. If D is a smooth curve, then

D2 =
∫

D
c1(OX (D)) = deg(OD(D)).

Given a surjective morphism f : X → Y of algebraic surfaces, the pullback
f ∗ : H2(Y,Z) → H2(X ,Z) preserves the Neron–Severi group and the intersection
pairing. This can be interpreted directly in the language of divisors. Given an irre-
ducible divisor D on Y , we can make the set-theoretic preimage f−1D into a divisor
by pulling back the ideal, i.e.,

OX (− f−1D) = im[ f ∗OY (−D)→OX ].

We extend this operation to all divisors by linearity. The operation satisfies
f ∗OY (D) = OX( f−1D). Since c1 is functorial, we get the following:

Lemma 11.2.10. f−1 is compatible with f ∗ on NS(X).

Exercises

11.2.11. Let X = C×C be the product of a curve with itself. Consider the divisors
H =C×{p}, V = {p}×C and the diagonal Δ . Compute their intersection numbers,
and show that these are linearly independent in NS(X)⊗Q. Thus the Picard number
is at least 3. Show that this is at least 4 if C admits a nontrivial automorphism with
the appropriate conditions.

11.2.12. Let E = C/(Z+Zτ) be an elliptic curve, and let X = E×E . Show that the
Picard number is 3 for “most” τ , but that it is 4 for τ =

√−1.

11.2.13. The ruled surface F1 can be described as the blowup π : F1 → P2 of P2 at
some point p. Let L1 be a line in P2 containing p, and L2 another line not containing
p. Show that π∗L1 = π∗L2 and π∗L1 = E + F , where E = π−1(p) and F is the
closure in Y of L1−{p} (F is called the strict transform of L1). Use all of this to
show that E2 =−1. Conclude that F1 and P1×P1 are not isomorphic.

11.2.14. A divisor is called (very) ample if OX(H) is. If H is ample, then prove
that H2 > 0 and that H ·C > 0 for any curve C ⊂ X . This pair of conditions char-
acterizes ampelness (Nakai–Moishezon). Show that the first condition alone is not
sufficient.

11.3 Adjunction and Riemann–Roch

In this section, we introduce two of the most basic tools of surface theory. The first
result, called the adjunction formula, computes the genus of a curve on a surface.
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To set things up, recall that the canonical divisor K of a smooth projective curve
is a divisor such that OC(K) ∼= Ω 1

C. Since this determines K uniquely up to linear
equivalence, we can talk about the canonical divisor class KC. A canonical divisor
KX (class) on a surface X is divisor such that OX(KX )∼=Ω 2

X . The linear equivalence
class is again well defined. For the present, we need only its image in NS(X), and
this can be defined to be c1(Ω 2

X ).

Theorem 11.3.1. If C is a smooth curve of genus g on an algebraic surface X, then

2g−2 = (KX +C) ·C .

Proof. Let Ω 2
X(logC) be the OX -module generated by rational 2-forms of the form

dz1∧dz2
f , where f is a local equation for C. This is the same as the tensor product

Ω 2
X ⊗OX (C). Such expressions can be rewritten as α ∧ d f

f , with α holomorphic.

We define the residue map Ω 2
X (logC)→ Ω 1

c by sending α ∧ d f
f to α|C. The kernel

consists of the holomorphic differentialsΩ 2
X , leading to a sequence

0→Ω 2
X →Ω 2

X (logC)→Ω 1
C → 0, (11.3.1)

which is seen to be exact. The holomorphic forms Ω2
X are spanned locally by

f dz1∧dz2
f . Thus we can identify the inclusion in (11.3.1) with the tensor product of

the map OX(−C)→ OX with Ω 2
X ⊗OX(C). The cokernel of the map just described

is OC ⊗Ω 2
X(C), that is, the restriction of Ω 2

X ⊗OX (C) to C. So in summary, Ω 1
C is

isomorphic to the restriction of Ω 2
X ⊗OX(C) to C. Therefore∫

C
c1(Ω 1

C) =
∫

C
c1(Ω 2

X ⊗OX(C)) =
∫

C
(c1(Ω 2

X )+ c1(OX (C)) = (KX +C) ·C .

The left side is the degree of the KC, but this is 2g−2 by Proposition 6.3.7. 	

We can use this to recover the formula for the genus of a degree-d curve C ⊂ P2.

Since NS(P2)⊆ H2(P2) = Z, we can identify KP2 with an integer k. Therefore

g =
1
2
(k + d)d + 1.

When d = 1, we know that g = 0, so k =−3. Thus

g = (d−1)(d−2)/2.

A fundamental, and rather difficult, problem in algebraic geometry is to estimate
dimH0(X ,OX (D)). As a first step, one can calculate the Euler characteristic

χ(OX(D)) =∑(−1)dimHi(X ,OX(D))

by the Riemann–Roch formula given below. The higher cohomologies can then be
controlled in some cases by other techniques. The advantage of the Euler character-
istic is the additivity property:



11.3 Adjunction and Riemann–Roch 197

Lemma 11.3.2. If 0 →F1 →F2 →F3 → 0 is an exact sequence of sheaves with
∑dimHi(X ,F j) < ∞, then χ(F2) = χ(F1)+ χ(F3).

This is a consequence of following elementary lemma:

Lemma 11.3.3. If
· · · → Ai → Bi →Ci → Ai+1 → ···

is a finite sequence of finite-dimensional vector spaces,

∑(−1)i dimBi =∑(−1)i dimAi +∑(−1)i dimCi.

Theorem 11.3.4 (Riemann–Roch). If D is a divisor on a surface X, then

χ(OX(D)) =
1
2

D · (D−KX)+ χ(OX).

Proof. We prove this under the assumption that D = ∑i niDi is a sum of smooth
curves. (In fact, by a simple trick, it is always possible to reduce to this case. The
basic idea can be found, for example, in the proof of [60, Chapter V, Theorem 1.1].)
By induction, it suffices to prove Riemann–Roch for D = D′ ±C, where the formula
holds for D′ and C is smooth. The idea is to do induction on ∑ |ni|. We will use
the Riemann–Roch theorem for C as given in Exercise 6.3.16. We treat the case of
D = D′+C, leaving the remaining case for the exercises. Tensoring the sequence

0→ OX (−C)→ OX →OC → 0

by O(D) yields
0→OX (D′)→OX (D)→OC(D)→ 0.

Therefore, using this together with the adjunction formula and Riemann–Roch on
C, we obtain

χ(OX(D)) = χ(OX (D′))+ χ(OC(D))

=
1
2

D′(D′ −K)+ χ(OX)+ deg(D|C)+ 1−g(C)

=
1
2

D′(D′ −K)+C ·D− 1
2

C(C + K)+ χ(OX)

=
1
2

D(D−K)+ χ(OX). 	


Exercises

11.3.5. Find a formula for the genus of a curve in P1×P1 in terms of its bidegree.

11.3.6. Given a morphism f : C→D, calculate the self-intersection of the graphΓ 2
f .
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11.3.7. Do the case D = D′ −C in the proof of Riemann–Roch.

11.3.8. Find a formula for D ·C in terms of χ(O(D)),χ(O(C)),χ(O(C + D)) and
χ(OX ).

11.3.9. Use the formula of the previous exercise to give another proof of Proposi-
tion 11.2.4.

11.4 The Hodge Index Theorem

The next result is Hodge-theoretic, so we work with a compact Kähler surface X .
Let ω denote the Kähler form.

Lemma 11.4.1. If α is a harmonic 2-form, then ω ∧α is again harmonic.

Proof. By the Kähler identities, it is enough to prove that ∂̄ (ω ∧α) = 0, which is
trivially true, and ∂̄ ∗(ω ∧α) = 0. By Proposition 9.3.5 and some calculation,

∂̄ ∗(ω ∧α) = C1(Λ∂ − ∂Λ)(ω ∧α) = C1∂Λ(ω ∧α) = C2∂α = 0

for appropriate constants C1,C2. 	

Then the form ω is a closed real (1,1)-form. Therefore the Kähler class [ω ] is an

element of H11(X)∩H2(X ,R).

Theorem 11.4.2 (Hodge index theorem). Let X be a compact Kähler surface.
Then the restriction of the cup product to (H11(X)∩H2(X ,R))∩ (R[ω ])⊥ is nega-
tive definite.

Proof. Around each point we have a neighborhood U such that E (1,0)(U) is a free
module. By Gram–Schmid, we can find an orthonormal basis {φ1,φ2} for it. In this
basis, over U , we have

ω =
√−1

2
(φ1∧ φ̄1 +φ2∧ φ̄2)

and the volume form

dvol =
ω2

2
=−1

4
φ1∧ φ̄1∧φ2∧ φ̄2,

using Exercise 10.1.18. It follows from this and the previous lemma that dvol is the
unique harmonic 4-form up to scalar multiples. Choose an element α ∈ (H11(X)∩
H2(X ,R)) and represent it by a harmonic real (1,1)-form. Then over U ,

α =
√−1∑ ai jφi∧ φ̄ j



11.4 The Hodge Index Theorem 199

with
a ji = āi j. (11.4.1)

By the previous lemma,

α ∧ω = 2(a11 + a22)dvol

is also a harmonic 4-form, and therefore a scalar multiple of dvol. If α is chosen in
(R[ω ])⊥, then

∫
α ∧ω = 0, so that

a11 + a22 = 0. (11.4.2)

Combining (11.4.1) and (11.4.2) yields

α ∧α =−8(|a11|2 + |a12|2)dvol,

so globally, α ∧α is a negative multiple of dvol. Therefore∫
X
α ∧α < 0. 	


Corollary 11.4.3. If H is an ample divisor on an algebraic surface, the intersection
pairing is negative definite on (NS(X)⊗R)∩ (R[H])⊥.

Proof. By Corollary 10.1.10, [H] is a Kähler class. 	

Corollary 11.4.4. If H,D are divisors on an algebraic surface such that H2 > 0 and
D ·H = 0, then D2 < 0 unless [D] = 0.

Proof. This is an exercise in linear algebra using the fact that the intersection form
on (NS(X)⊗R) has signature (+1,−1, . . . ,−1). 	


Exercises

11.4.5. Prove that the restriction of the cup product to (H20(X)+H02(X))∩H2(X ,R)
is positive definite.

11.4.6. Conclude that (the matrix representing) the cup product pairing has 2pg + 1
positive eigenvalues. Therefore pg is a topological invariant.

11.4.7. Let f : X → Y be a morphism from a smooth algebraic surface to a possibly
singular projective surface. Consider the set {Di} of irreducible curves that map to
points under f . Prove a theorem of Mumford that the matrix (Di ·D j) is negative
definite.
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11.5 Fibered Surfaces*

Let us say that a surface X is fibered if it admits a nonconstant holomorphic map
f : X →C to a nonsingular curve. For example, ruled surfaces and elliptic surfaces
are fibered. Not all surfaces are fibered. However, any surface can be fibered after
blowing up: Choose a nontrivial rational function X ��� P1, then blow up X to get a
morphism. The fiber over p ∈C is the closed set f−1(p). Let z be a local coordinate
at p. Then f−1(p) is defined by the equation f ∗z = 0. We can regard f−1(p) as
a divisor ∑niDi, where Di are its irreducible components and ni is the order of
vanishing of f ∗z along Di. Call a divisor on X vertical if its irreducible components
are contained in the fiberes.

Lemma 11.5.1. Suppose that f : X →C is a fibered surface.

(a) If F = f−1(p) and D is a vertical divisor, then F ·D = 0. In particular, F2 = 0.
(b) If D is vertical, then D2 ≤ 0.

Proof. Since the fundamental class of f−1(p) is independent of p, we can assume
that F and D are disjoint. This proves (a).

Suppose that D2 > 0, when combined with (a), we would get a contradiction to
the Hodge index theorem. 	

Corollary 11.5.2. A necessary condition for a surface to be fibered is that there be
an effective divisor with F2 = 0. In particular, P2 is not fibered.

We can give a complete characterization of surfaces fibered over curves of genus
greater than one.

Theorem 11.5.3 (Castelnuovo–de Franchis). Suppose that X is an algebraic sur-
face. A necessary and sufficient condition for X to admit a nonconstant holomorphic
map to a smooth curve of genus g≥ 2 is that there exist two linear independent forms
ωi ∈H0(X ,Ω 1

X) such that ω1∧ω2 = 0.

Proof. The necessity is easy. If f : X → C is a holomorphic map onto a curve of
genus at least 2, then it possesses at least two linearly independent holomorphic
1-forms ω ′i . Set ωi = f ∗ω ′i . By writing this in local coordinates, we see that these
are nonzero. But ω1∧ω2 = f ∗(ω ′1∧ω ′2) = 0.

We will sketch the converse. A complete proof can be found in [9, pp. 123–125].
Choosing local coordinates, we can write

ωi = fi(z1,z2)dz1 + gi(z1,z2)dz2.

The condition ω1∧ω2 = 0 forces

( f1g2− f2g1)dz1∧dz2 = 0.

Therefore f2/ f1 = g2/g1. Call the common value F . Thus ω2 = Fω1. Since the ωi

are globally defined, F = ω2/ω1 defines a global meromorphic function X ��� P1.
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By Corollary 11.1.10, there exists Y → X that is a composition of blowups such
that F extends to a holomorphic function F ′ : Y → P1. The fibers of F ′ need not be
connected. Stein’s factorization theorem [60] shows that the map can be factored as

Y
Φ→C → P1,

where Φ has connected fibers and C → P1 is a finite-to-one map of smooth projec-
tive curves. To avoid too much notation, let us denote the pullbacks of ωi to Y by ωi

as well. We now have a relation ω2 =Φω1.
We claim that the ωi are pullbacks of holomorphic 1-forms on C. We will check

this locally around a general point p ∈ Y . Since the ωi are harmonic (by Exer-
cise 10.2.9) and therefore closed,

dω2 = dΦ ∧ω1 = 0. (11.5.1)

Let t1 be a local coordinate centered atΦ(p) ∈C. Let us also denote the pullback of
this function to neighborhood of p by t1. Then we can choose a function t2 such that
t1, t2 give local coordinates at p. Then (11.5.1) becomes dt1∧ω1 = 0. Consequently,
ω1 = f (t1, t2)dt1, for some function f . The relation dω1 = 0 implies that f is a
function of t1 alone. Thus ω1 is locally the pullback of a 1-form on C, as claimed.
The same reasoning applies to ω2. This implies that the genus of C is at least two.

The final step is to prove that blowing up was unnecessary. Let

Y = Y1
π1−→ Y2 → ···X

be a composition of blowups at points pi ∈ Yi. Then π−1
1 (p2) ∼= P1. Any map from

P1 to C is constant, since it has positive genus. So we conclude that Y →C factors
through Y1, and then likewise through Y2 and so on until we reach Y . 	


An obvious corollary is the following:

Corollary 11.5.4. If q≥ 2 and pg = 0, then X admits a nonconstant map to a curve
as above.

Exercises

11.5.5. Given an elliptic surface X , show that KX is vertical. Conclude that K2
X ≤ 0.

11.5.6. Show that X maps onto a curve of genus≥ 2 if q > pg +1. (This bound can
be sharpened to (pg + 3)/2, but the argument is more delicate; cf. [9, IV, 4.2].)
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