
Chapter 1
Plane Curves

Algebraic geometry is geometry. This sounds like a tautology, but it will be easy to
forget once we start learning about sheaves, cohomology, Hodge structures, and so
on. So perhaps it is a good idea to keep ourselves grounded by taking a very quick
tour of the classical theory of complex algebraic curves in the plane, using only
primitive, and occasionally nonrigorous, tools. This will hopefully provide a better
sense of where the subject comes from and where we want to go. Once we have
laid the proper foundations in later chapters, we will revisit these topics and supply
some of the missing details.

The treatment here is very much inspired by Clemens’s wonderful book [20] as
well as the first chapter of Arbarello, Cornalba, Griffiths, and Harris’s treatise [5].

1.1 Conics

A complex affine algebraic plane curve is the set of zeros

X = V ( f ) = {(x,y) ∈ C2 | f (x,y) = 0} (1.1.1)

of a nonconstant polynomial f (x,y) ∈ C[x,y]. Notice that we call this a curve
because it has one complex dimension. However, we will be slightly inconsistent
and refer to this occasionally as a surface, especially when we want to emphasize
its topological aspects. The curve X is called a conic if f is a quadratic polynomial.
The study of conics over R is something one learns in school. The complex case
is actually easier, since distinctions between ellipses and hyperbolas disappear. The
group of affine transformations(

x
y

)
�→

(
a11x + a12y + b1

a21x + a22y + b2

)
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4 1 Plane Curves

with det(ai j) �= 0 acts on C2. High-school methods can be used to show that
after making a suitable affine transformation, there are three possibilities along with
subcases:

1. A union of two (possibly identical, parallel, or incident) lines.
2. A circle x2 + y2 = 1.
3. A parabola y = x2.

Things become simpler if we add a line at infinity. This can be achieved by
passing to the projective plane P2 = P2

C, which is the set of lines in C3 contain-
ing the origin. To any (x0,x1,x2) ∈ C3 − {0}, there corresponds a unique point
[x0,x1,x2] = span{(x0,x1,x2)} ∈ P2. We embed C2 ⊂ P2 as an open set by send-
ing (x,y) �→ [x,y,1]. The line at infinity is the complement given by x2 = 0. The xi

are called homogeneous coordinates, although these are not coordinates in the tech-
nical sense of the word. The true coordinates are given by the ratios x0/x2,x1/x2 on
the chart {x2 �= 0}, x0/x1,x2/x1 on {x1 �= 0}, and x1/x0,x2/x0 on {x0 �= 0}. We iden-
tify x = x0/x2, y = x1/x2. The closure of an affine plane curve X = V ( f ) in P2 is the
projective algebraic plane curve

X = {[x0,x1,x2] ∈ P2 | F(x0,x1,x2) = 0}, (1.1.2)

where
F(x0,x1,x2) = xdeg f

2 f (x0/x2,x1/x2)

is the homogenization of f .
The projective linear group PGL3(C) = GL3(C)/C∗ acts on P2 via the standard

GL3(C) action on C3. The game is now to classify the projective conics up to a
projective linear transformation. The list simplifies to three cases including all the
degenerate cases: a single line, two distinct lines that meet, and the projectivized
parabola C given by

x2
0− x1x2 = 0. (1.1.3)

If we allow nonlinear transformations, then things simplify further. The map from
the complex projective line to the plane given by [s,t] �→ [st,s2, t2] gives a bijection
of P1 to C. The inverse can be expressed as

[x0,x1,x2] �→
{

[x1,x0] if (x1,x0) �= 0,

[x0,x2] if (x0,x2) �= 0.

Note that these expressions are consistent by (1.1.3). These formulas show that C is
homeomorphic, and in fact isomorphic in a sense to be explained in the next chapter,
to P1. Topologically, this is just the two-sphere S2.
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Exercises

1.1.1. Show that the subgroup of PGL3(C) fixing the line at infinity is the group of
affine transformations.

1.1.2. Deduce the classification of projective conics from the classification of
quadratic forms over C.

1.1.3. Deduce the classification of affine conics from Exercise 1.1.1.

1.2 Singularities

We recall a version of the implicit function theorem:

Theorem 1.2.1. If f (x,y) is a polynomial such that fy(0,0) = ∂ f
∂y (0,0) �= 0, then in

a neighborhood of (0,0), V ( f ) is given by the graph of an analytic function y = φ(x)
with φ ′(0) �= 0.

In outline, we can use Newton’s method. Set φ0(x) = 0, and

φn+1(x) = φn(x)− f (x,φn(x))
fy(x,φn(x))

.

Then φn will converge to φ . Proving this requires some care, of course.
A point (a,b) on an affine curve X = V ( f ) is a singular point if

∂ f
∂x

(a,b) =
∂ f
∂y

(a,b) = 0;

otherwise, it is nonsingular. In a neighborhood of a nonsingular point, we can use
the implicit function theorem to write x or y as an analytic function of the other
variable. So locally at such a point, X looks like a disk. By contrast, the nodal curve
y2 = x2(x+1) looks like a union of two disks touching at (0,0) in a small neighbor-
hood of this point given by |t±1|< ε in the parameterization

x = t2−1,

y = xt.

See Figure 1.1 for the real picture.

The two disks are called branches of the singularity. Singularities may have only
one branch, as in the case of the cusp y2 = x3 (Figure 1.2).
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Fig. 1.1 Nodal curve.

Fig. 1.2 Cuspidal curve.

In order to get a better sense of the topology of a complex singularity, we can
intersect the singularity f (x,y) = 0 with a small 3-sphere,

S3 = {(x,y) ∈C2 | |x|2 + |y|2 = ε2},

to get a circle S1 embedded in S3 in the case of one branch. The embedded circle is
unknotted when this is nonsingular, but it would be knotted otherwise. For the cusp,
we would get a trefoil or (2,3) torus knot [87].

The affine plane curve X (1.1.1) is called nonsingular if all its points are non-
singular. The projective curve X (1.1.2) is nonsingular if all of its points including
points at infinity are nonsingular. In explicit terms, this means that the affine curves
f (x,y) = F(x,y,1) = 0, F(1,y,z) = 0, and F(x,1,z) = 0 are all nonsingular. A non-
singular curve is an example of a Riemann surface or a one-dimensional complex
manifold.
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Exercises

1.2.2. Prove the convergence of Newton’s method in the ring of formal power series
C[[x]], where φn → 0 if and only if the degree of its leading term→∞. Note that this
ring is equipped with the x-adic topology, where the ideals (xN) form a fundamental
system of neighborhoods of 0.

1.2.3. Prove that Fermat’s curve xn
0 + xn

1 + xn
2 = 0 in P2 is nonsingular.

1.3 Bézout’s Theorem

An important feature of the projective plane is that any two lines meet. In fact, it has
a much stronger property:

Theorem 1.3.1 (Weak Bézout’s theorem). Any two algebraic curves in P2

intersect.

We give an elementary classical proof here using resultants. Given two monic
polynomials

f (y) = yn + an−1yn−1 + · · ·+ a0 =
n

∏
i=1

(y− ri),

g(y) = ym + bm−1ym−1 + · · ·+ b0 =
m

∏
j=1

(y− s j),

their resultant is the expression

Res( f ,g) =∏
i j

(ri− s j).

It is obvious that Res( f ,g) = 0 if and only if f and g have a common root. From
the way we have written it, it is also clear that Res( f ,g) is a polynomial of degree
mn in r1, . . . ,rn,s1, . . . ,sm that is symmetric separately in the r’s and s’s. So it can be
rewritten as a polynomial in the elementary symmetric polynomials in the r’s and
s’s. In other words, Res( f ,g) is a polynomial in the coefficients ai and b j. Standard
formulas for it can be found, for example, in [76].

Proof. Assume that the curves are given by homogeneous polynomials F(x,y,z)
and G(x,y,z) respectively. After translating the line at infinity if necessary, we can
assume that the polynomials f (x,y) = F(x,y,1) and g(x,y) = G(x,y,1) are both
nonconstant in x and y. Treating these as polynomials in y with coefficients in C[x],
the resultant Res( f ,g)(x) can be regarded as a nonconstant polynomial in x. Since
C is algebraically closed, Res( f ,g)(x) must have a root, say a. Then f (a,y) = 0 and
g(a,y) = 0 have a common solution. 	
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It is worth noting that this argument is entirely algebraic, and therefore applies
to any algebraically closed field, such as the field of algebraic numbers Q. So as a
bonus, we get the following arithmetic consequence.

Corollary 1.3.2. If the curves are defined by equations with coefficients in Q, then
the there is a point of intersection with coordinates in Q.

Suppose that the curves C,D ⊂ P2 are irreducible and distinct. Then it is not
difficult to see that C ∩D is finite. We can ask how many points are in the inter-
section. To get a more refined answer, we can assign a multiplicity to the points
of intersection. If the curves are defined by polynomials f (x,y) and g(x,y) with a
common isolated zero at the origin O = (0,0), then define the intersection multi-
plicity at O by

iO(C,D) = dimC[[x,y]]/( f ,g),

where C[[x,y]] is the ring of formal power series in x and y. The ring of convergent
power series can be used instead, and it would lead to the same result. The multipli-
cities can be defined at other points by a similar procedure. While this definition is
concise, it does not give us much geometric insight. Here is an alternative: ip(D,E)
is the number of points close to p in the intersection of small perturbations of these
curves. More precisely, we have the following:

Lemma 1.3.3. ip(D,E) is the number of points in { f (x,y) = ε}∩{g(x,y) = η}∩
Bδ (p) for small positive |ε|, |η |,δ , where Bδ (p) is a δ -ball around p.

Proof. This follows from [42, 1.2.5e]. 	

There is another nice interpretation of this number worth mentioning. If K1,K2 ⊂

S3 are disjoint knots, perhaps with several components, their linking number is
roughly the number of times one of them passes through the other. A precise
definition can be found in any basic book on knot theory (e.g., [98]).

Theorem 1.3.4. Given a small sphere S3 about p, ip(D,E) is the linking number of
D∩S3 and E ∩S3.

Proof. See [42, 19.2.4]. 	

We can now state the strong form of Bézout’s theorem. We will revisit this in

Corollary 11.2.7.

Theorem 1.3.5 (Bézout’s theorem). Suppose that C and D are algebraic curves
with no common components. Then the sum of intersection multiplicities at points
of C∩D equals the product of degrees degC ·degD, where degC and degD are the
degrees of the defining polynomials.

Corollary 1.3.6. The cardinality #C∩D is at most degC ·degD.
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Exercises

1.3.7. Show that the vector space C[[x,y]]/( f ,g) considered above is finite-
dimensional if f = 0 and g = 0 have an isolated zero at (0,0).

1.3.8. Suppose that f = y. Using the original definition show that iO(C,D) equals
the multiplicity of the root x = 0 of g(x,0). Now prove Bézout’s theorem when C is
a line.

1.4 Cubics

We now turn our attention to the very rich subject of cubic curves. In the degene-
rate case, the polynomial factors into a product of a linear and quadratic polynomial
or three linear polynomials. Then the curve is a union of a line with a conic or
three lines. So now assume that X (1.1.2) is defined by an irreducible cubic polyno-
mial. It is called an elliptic curve because of its relationship to elliptic functions and
integrals.

Lemma 1.4.1. After a projective linear transformation, an irreducible cubic can be
transformed into the projective closure of an affine curve of the form y2 = p(x),
where p(x) is a cubic polynomial. This is nonsingular if and only if p(x) has no
multiple roots.

Proof. See [105, III §1]. 	

We note that nonsingular cubics are very different from conics, even topologi-

cally.

Proposition 1.4.2. A nonsingular cubic X is homeomorphic to a torus S1×S1.

There is a standard way to visualize this (see Figure 1.3). Mark four points
a,b,c,d = ∞ on P1, where the first three are the roots of p(x). Join a to b and c to d
by nonintersecting arcs α and β . The preimage of the complement Y = P1−(α∪β )
in X should fall into two pieces both of which are homeomorphic to Y . So in other
words, we can obtain X by first taking two copies of the sphere, slitting them along
α and β , and then gluing them along the slits to obtain a torus.

Perhaps that was not very convincing. Instead, we will use a parameterization
by elliptic functions to verify Proposition 1.4.2 and more. By applying a further
projective linear transformation, we can put our equation for X into Weierstrass
form

y2 = 4x3− a2x−a3 (1.4.1)

with discriminant a3
2−27a2

3 �= 0. The idea is to parameterize the cubic by the elliptic
integral
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Fig. 1.3 Visualizing the cubic.

E(z) =
∫ z

z0

dx
y

=
∫ z

z0

dx√
4x3−a2x−a3

. (1.4.2)

While the integrand appears to have singularities at the zeros of p(x) = 4x3−a2x−
a3, by differentiating y2 = p(x) and substituting, we see that

dx
y

=
2dy
p′(x)

has no singularities at these points. Thus the integral (1.4.2) should determine a
holomorphic function E , but it would be “multivalued” because it depends on the
path of integration. We should understand this to mean that E is really a holomorphic
function on the universal cover X̃ of X . To understand the multivaluedness more
precisely, let us introduce the set of periods L ⊂ C as the set of integrals of dx/y
around closed loops on X . The set L is actually a subgroup. To see this, let Loop(X)
be the free abelian group consisting of finite formal integer linear combinations
of ∑niγi of closed loops on X . The map γ �→ ∫

γ dx/y gives a homomorphism of
Loop(X) → C. The image is exactly L, and it is isomorphic to the first homology
group H1(X ,Z), which will discussed in more detail later on. We can see that E
descends to a map X → C/L, which is in fact the homeomorphism alluded to in
Proposition 1.4.2.

The above story can be made more explicit by working backward in some sense.
First, we characterize the group L in a different way.
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Theorem 1.4.3. There exists a unique lattice L⊂C, i.e., an abelian subgroup gene-
rated by two R-linearly independent numbers, such that

a2 = g2(L) = 60 ∑
λ∈L,λ �=0

λ−4,

a4 = g3(L) = 140 ∑
λ∈L,λ �=0

λ−6.

Proof. [106, I 4.3]. 	

Fix the period lattice L as above. The Weierstrass℘-function is given by

℘(z) =
1
z2 + ∑

λ∈L,λ �=0

(
1

(z−λ )2 −
1
λ 2

)
.

This converges to an elliptic function, which means that it is meromorphic on C
and doubly periodic:℘(z +λ ) =℘(z) for λ ∈ L [105]. This function satisfies the
Weierstrass differential equation

(℘′)2 = 4℘3− g2(L)℘2−g3(L).

Thus℘gives exactly the inverse to the integral E . We get an embedding C/L→ P2

given by

z �→
{

[℘(z),℘′(z),1] if z /∈ L,

[0,1,0] otherwise.

The image is the cubic curve X defined by (1.4.1). This shows that X is a torus
topologically as well as analytically. See [105, 106] for further details.

Exercises

1.4.4. Prove that the projective curve defined by y2 = p(x) is nonsingular if and only
if p(x) has no repeated roots.

1.4.5. Prove that the singular projective curve y2 = x3 is homeomorphic to the
sphere.

1.5 Genus 2 and 3

A compact orientable surface is classified up to homeomorphism by a single number
called the genus. The genus is 0 for a sphere, 1 for a torus, and 2 for the surface
depicted in Figure 1.4.
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Fig. 1.4 Genus-2 surface.

We claim that a nonsingular quartic in P2 is a three-holed or genus-3 surface.
A heuristic argument is as follows. Let f ∈ C[x,y,z] be the defining equation of
our nonsingular quartic, and let g = (x3 + y3 + z3)x. The degenerate quartic g = 0
is the union of a nonsingular cubic and a line. Topologically this is a torus meet-
ing a sphere in three points (Figure 1.5). Consider the pencil ft = t f +(1− t)g. As t
evolves from t = 0 to 1, the three points of intersection in ft = 0 open up into circles,
resulting in a genus-3 surface (Figure 1.6).

Fig. 1.5 Degenerate quartic.

Fig. 1.6 Nonsingular quartic.

In going from degree 3 to 4, we seem to have skipped over genus 2. It is possible to
realize such a surface in the plane, but only by allowing singularities. Consider the
curve X ⊂ P2 given by

x2
0x2

2− x2
1x2

2 + x2
0x2

1 = 0.
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This has a single singularity at the origin [0,0,1]. To analyze this, switch to affine
coordinates x = x0/x2,y = x1/x2. Then the polynomial x2− y2 + x2y2 is irreducible,
so it cannot be factored into polynomials, but it can be factored into convergent
power series

x2− y2 + x2y2 = (x + y +∑ai jx
iy j)︸ ︷︷ ︸

f

(x− y +∑bi jx
iy j)︸ ︷︷ ︸

g

.

By the implicit function theorem, the branches f = 0 and g = 0 are local analytically
equivalent to disks. It follows that in a neighborhood of the origin, the curve looks
like two disks touching at a point. We get a genus-2 surface by pulling these apart
(Figure 1.7).

Fig. 1.7 Normalization of singular quartic.

The procedure of pulling apart the points described above can be carried out
within algebraic geometry. It is called normalization:

Theorem 1.5.1. Given a curve X, there exist a nonsingular curve X̃ (called the
normalization of X) and a proper surjective morphism H : X̃ → X that is finite-
to-one everywhere and one-to-one over all but finitely many points. This is uniquely
characterized by these properties.

The word “morphism” will not be defined precisely until the next chapter. For
the present, we should understand it to be a map definable by algebraic expressions
such as polynomials. We sketch the construction, which is entirely algebraic. Further
details will be given later on. Given an integral domain R with field of fractions K,
the integral closure of R is the set of elements x ∈ K such that xn +an−1xn−1 + · · ·+
a0 = 0 for some ai ∈ R. This is closed under addition and multiplication. Therefore
it forms a ring [8, Chapter 5]. The basic facts can be summarized as follows:

Theorem 1.5.2. If f ∈C[x,y] is an irreducible polynomial, then the integral closure
R̃ of the domain R = C[x,y]/( f ) is finitely generated as an algebra. If C[x1, . . . ,xn]→
R̃ is a surjection, and f1, . . . , fN generators for the kernel, then

V ( f1, . . . , fN) = {(a1, . . . ,an) | fi(a1, . . . ,an) = 0}

is nonsingular in the sense that the Jacobian matrix has expected rank (§2.5).
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Proof. See [8, Proposition 9.2] and [33, Corollary 13.13]. 	

Suppose that X = V ( f ). Then we set X̃ = V ( f1, . . . , fN) ⊂ Cn. We can lift the

inclusion R⊂ R̃ to a homomorphism of polynomial rings by completing the diagram

C[x1, . . . ,xn] �� R̃

C[x,y] ��

h

���
�
�

R

��

This determines a pair of polynomials h(x),h(y)∈C[x1, . . . ,xn], which gives a poly-
nomial map H : Cn → C2. By restriction, we get our desired map H : X̃ → X . This
is the construction in the affine case. In general, we proceed by gluing these affine
normalizations together. The precise construction will be given in §3.4.

Exercises

1.5.3. Verify that x2
0x2

2− x2
1x2

2 + x2
0x2

1 = 0 is irreducible and has exactly one singular
point.

1.5.4. Verify that x2−y2 +x2y2 can be factored as above using formal power series.

1.5.5. Show that t = y/x lies in the integral closure R̃ of C[x,y]/(y2−x3). Show that
R̃∼= C[t].

1.5.6. Show that t = y/x lies in the integral closure R̃ of C[x,y]/(x2 − y2 + x2y2).
Show that R̃∼= C[x, t]/(1− t2− x2t2).

1.6 Hyperelliptic Curves

An affine hyperelliptic curve is a curve of the form y2 = p(x), where p(x) has distinct
roots. The associated hyperelliptic curve X is gotten by taking the closure in P2 and
then normalizing to obtain a nonsingular curve. (We are bending the rules a bit here;
usually the term hyperelliptic is applied only when the degree of p(x) is at least 5.)
Once again we start by describing the topology.

Proposition 1.6.1. X is a genus-g = �deg p(x)/2� − 1 surface, where � � means
round up to the nearest integer.

We postpone a rigorous proof. For now, we can see this by using a cut-and-paste
construction generalizing what we did for cubics. Let a1, . . . ,an denote the roots of
p(x) if deg p(x) is even, or the roots together with ∞ otherwise. These points, called
branch points, are exactly where the map X → P1 is one-to-one. Take two copies of
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P1 and make slits from a1 to a2, a3 to a4, and so on, and then join them along the
slits. The genus of the result is n/2−1.

Corollary 1.6.2. Every natural number is the genus of some algebraic curve.

The original interest in hyperelliptic curves stemmed from the study of integrals
of the form

∫
q(x)dx/

√
p(x). As with cubics, these are well defined only modulo

their periods Lq = {∫γ q(x)dx/
√

p(x) | γ closed}. However, this is usually no longer
a discrete subgroup, so C/Lq would be a very strange object. What turns out to be
better is to consider all these integrals simultaneously.

Theorem 1.6.3. The differentials xidx√
p(x)

, i = 0, . . . ,g−1, span the space of holomor-

phic differentials on X, and the set

L =

⎧⎨⎩
(∫

γ

xidx√
p(x)

)
0≤i<g

| γ closed

⎫⎬⎭
is a lattice in Cg, i.e., L is a discrete subgroup of maximal rank 2g.

So it appears that the genus plays a deeper role than one might have initially
suspected. That these differentials are holomorphic can be seen by the same sort
of calculation we did in Section 1.4. The remaining assertions will follow almost
immediately from the Hodge decomposition (see Section 10.3). We thus get a well-
defined map from X to the torus J(X) = Cg/L given by

α(x) =

(∫ x

x0

xidx√
p(x)

)
mod L . (1.6.1)

The torus J(X) is called the Jacobian of X , and α is called the Abel–Jacobi map.
Together these form one of the cornerstones of algebraic curve theory.

We can make this more explicit in an example.

Example 1.6.4. Consider the curve X defined by y2 = x6−1. This has genus two, so
that J(X) is a two-dimensional torus. Let E be the elliptic curve given by v2 = u3−1.
We have two morphisms πi : X → E defined by

π1 : u = x2, v = y,

π2 : u = x−2, v =
√−1yx−3.

The second map appears to have singularities, but one can appeal to either general
theory or explicit calculation to show that it is defined everywhere. We can see that
the differential du/v on E pulls back to 2xdx/y and 2

√−1dx/y under π1 and π2

respectively. Combining these yields a map π1×π2 : X → E ×E under which the
lattice defining E×E corresponds to a sublattice L′ ⊆ L. Therefore

J(X) = C2/L = (C2/L′)/(L/L′) = (E×E)/(L/L′).
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We express this relation by saying that J(X) is isogenous to E ×E , which means
that it is a quotient of the second by a finite abelian group.

It is worthwhile understanding what is going on at a more abstract level, so as to
identify some important players later on in the story. The lattice L can be identified
with either the first homology group H1(X ,Z) via the homomorphism Loop(X)→
Cg as before, or with the first cohomology group H1(X ,Z) = Hom(H1(X ,Z),Z)
using Poincaré duality. Using the second description, we have a map

H1(E,Z)⊕H1(E,Z)∼= H1(E×E,Z)→ H1(X ,Z),

and L′ is the image.
A hyperelliptic curve with eight branch points has genus 3. We have also encoun-

tered genus-3 curves as quartics in P2. These constructions yield distinct classes of
examples:

Proposition 1.6.5. A genus-3 curve is either a quartic in P2 or hyperelliptic, and
these cases are mutually exclusive.

We give just the broad outline of the last part. First, note that α : X → J(X) can
be defined for any curve X hyperelliptic or otherwise, by a similar recipe replacing
xidx/

√
p(x) with a basis of holomorphic differentials (see §10.3). Let us see how

it can used to distinguish these cases. As we shall see later, dimJ(X) = 3 because
X has genus 3. The set of tangent spaces to any manifold can be assembled into an
object called the tangent bundle, and for J(X) it turns out to be trivial. Thus we may
sensibly identify all the tangent spaces of J(X) with a fixed C3. So now to every
x ∈ X , we have a line Tx ⊂ C3 given by the image of the derivative of the Abel–
Jacobi map. In this way, we get a map α ′ : X → P2, sometimes called the Gauss
map, which is the key to the proposition. In the hyperelliptic case y2 = p(x), we can
calculate the Gauss map by formally differentiating (1.6.1) and projecting to P2 to
obtain the map

α ′(x) =
[

1
y
,

x
y
,

x2

y

]
=

[
1,x,x2] ,

which is nothing but the original map X → P1, defined by (x,y) �→ x, followed by
the embedding of P1 → P2 as a conic. In particular, α ′ would be two-to-one in this
case.

In the nonhyperelliptic case, X is defined by a homogeneous quartic polyno-
mial F(x0,x1,x2) in homogeneous coordinates. Setting x = x0/x2,y = x1/x2 as
usual, a holomorphic differential on X ∩C2 is simply given as a restriction of
ω = g(x,y)dx+h(x,y)dy with g and h holomorphic. It can be shown that a nonzero
ω would become singular at infinity, and this makes it hard to find forms such
that ω |X is holomorphic everywhere. Instead, we do an indirect construction using
residues. We recall that the wedge product is determined by

(gdx + hdy)∧ (pdx + qdy)= (gq−hp)dx∧dy ,
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where dx∧dy �= 0 is a symbol. Let f (x,y) = F(x,y,1). We can wedge ω and d f/ f
together to obtain a 2-form

ω ′ = ω ∧ d f
f

= ω ∧
(

fx

f
dx +

fy

f
dy

)
.

The inverse ω ′ �→ ω is well defined modulo d f . So the restriction ω |X∩C2 depends
only on ω ′ and is called the Poincaré residue of ω ′. (A more complete abstract
treatment of residues will be given in Section 12.6.) Now consider the forms

ωi =
pi(x,y)dx∧dy

f (x,y)
, pi = x,y,1. (1.6.2)

At infinity, we can switch to new coordinates v = x2/x1 = y−1,u = x0/x1 = xy−1

and t = x2/x0 = x−1,s = x1/x0 = yx−1. A direct calculation in these coordinates
shows that these forms have poles of order 1 along X and no other singularities
(Exercise 1.6.8). Therefore their residues will be holomorphic everywhere along X ,
and in fact, they give a basis for the space of such differentials. Thus

α ′ =
[

x
f
,

y
f
,

1
f

]
= [x,y,1],

and this coincides with the given embedding X ⊂ P2.
So we see that the geometry ofα ′ separates the hyperelliptic and nonhyperelliptic

cases.

Exercises

1.6.6. The curve X above can be constructed in Example 1.6.4 explicitly by gluing
charts defined by y2 = x6−1 and y2

2 = 1− x6
2 via x2 = x−1, y2 = yx−3. Check that X

is nonsingular and that it maps onto the projective closure of y2 = x6−1.

1.6.7. Using the coordinates from the previous exercise, show that the above formu-
las for πi define maps from X to the projective closure of v2 = u3−1.

1.6.8. Set v = x2/x1 = y−1,u = x0/x1 = xy−1. Rewrite the 2-forms given in (1.6.2)
in these new coordinates. Verify that these are holomorphic multiples of du ∧
dv/F(u,1,v). Ditto for the coordinates s and t.
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