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Preface

Algebraic geometry is the geometric study of sets of solutions to polynomial equa-
tions over a field (or ring). These objects, called algebraic varieties (or schemes
or . . . ), can be studied using tools from commutative and homological algebra.
When the field is the field of complex numbers, these methods can be supplemented
with transcendental ones, that is, by methods from complex analysis, differential
geometry, and topology. Much of the beauty of the subject stems from the rich
interplay of these various techniques and viewpoints. Unfortunately, this also makes
it a hard subject to learn. This book evolved from various courses in algebraic
geometry that I taught at Purdue. In these courses, I felt my job was to act as a
guide to the vast terrain. I did not feel obligated to cover everything or to prove
everything, because the standard accounts of the algebraic and transcendental sides
of the subject by Hartshorne [60] and Griffiths and Harris [49] are remarkably
complete, and perhaps a little daunting as a consequence. In this book I have
tried to maintain a reasonable balance between rigor, intuition, and completeness.
As for prerequisites, I have tried not to assume too much more than a mastery of
standard graduate courses in algebra, analysis, and topology. Consequently, I have
included discussions of a number of topics that are technically not part of alge-
braic geometry. On the other hand, since the basics are covered quickly, some prior
exposure to elementary algebraic geometry (at the level of say Fulton [40], Harris
[58, Chapters 1–5] or Reid [97]) and calculus with manifolds (as in Guillemin and
Pollack [56, Chapters 1 & 4] or Spivak [109]) would certainly be desirable, although
not absolutely essential.

This book is divided into a number of somewhat independent parts with slightly
different goals. The starred sections can be skipped without losing much continuity.
The first part, consisting of a single chapter, is an extended informal introduction
illustrated with concrete examples. It is really meant to build intuition without a
lot of technical baggage. Things really get going only in the second part. This is
where sheaves are introduced and used to define manifolds and algebraic varieties
in a unified way. A watered-down notion of scheme—sufficient for our needs—
is also presented shortly thereafter. Sheaf cohomology is developed quickly from
scratch in Chapter 4, and applied to de Rham theory and Riemann surfaces in the

vii
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next few chapters. By Part III, we move into Hodge theory, which is really the
heart of transcendental algebraic geometry. This is where algebraic geometry meets
differential geometry on the one hand, and some serious homological algebra on the
other. Although I have skirted around some of the analysis, I did not want to treat
this entirely as a black box. I have included a sketch of the heat equation proof of
the Hodge theorem, which I think is reasonably accessible and quite pretty. This
theorem along with the weak and hard Lefschetz theorems have some remarkable
consequences for the geometry and topology of algebraic varietes. I discuss some
of these applications in the remaining chapters. From Hodge theory, one extracts
a set of useful invariants called Hodge numbers, which refine the Betti numbers.
In the fourth part, I consider some methods for actually computing these numbers
for various examples, such as hypersurfaces. The task of computing Hodge numbers
can be converted to an essentially algebraic problem, thanks to the GAGA theorem,
which is explained here as well. This theorem gives an equivalence between certain
algebraic and analytic objects called coherent sheaves. In the fifth part, I end the
book by touching on some of the deeper mysteries of the subject, for example, that
the seemingly separate worlds of complex geometry and characteristic p geometry
are related. I will also explain some of the conjectures of Grothendieck, Hodge, and
others along with a context to put them in.

I would like to thank Bill Butske, Harold Donnelly, Ed Dunne, Georges
Elencwajg, Anton Fonarev, Fan Honglu, Su-Jeong Kang, Mohan Ramachandran,
Peter Scheiblechner, Darren Tapp, and Razvan Veliche for their suggestions and
clarifications. My thanks also to the NSF for their support over the years.

Donu Arapura
Purdue University

November, 2011
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Chapter 1
Plane Curves

Algebraic geometry is geometry. This sounds like a tautology, but it will be easy to
forget once we start learning about sheaves, cohomology, Hodge structures, and so
on. So perhaps it is a good idea to keep ourselves grounded by taking a very quick
tour of the classical theory of complex algebraic curves in the plane, using only
primitive, and occasionally nonrigorous, tools. This will hopefully provide a better
sense of where the subject comes from and where we want to go. Once we have
laid the proper foundations in later chapters, we will revisit these topics and supply
some of the missing details.

The treatment here is very much inspired by Clemens’s wonderful book [20] as
well as the first chapter of Arbarello, Cornalba, Griffiths, and Harris’s treatise [5].

1.1 Conics

A complex affine algebraic plane curve is the set of zeros

X = V ( f ) = {(x,y) ∈ C2 | f (x,y) = 0} (1.1.1)

of a nonconstant polynomial f (x,y) ∈ C[x,y]. Notice that we call this a curve
because it has one complex dimension. However, we will be slightly inconsistent
and refer to this occasionally as a surface, especially when we want to emphasize
its topological aspects. The curve X is called a conic if f is a quadratic polynomial.
The study of conics over R is something one learns in school. The complex case
is actually easier, since distinctions between ellipses and hyperbolas disappear. The
group of affine transformations(

x
y

)
�→

(
a11x + a12y + b1

a21x + a22y + b2

)

, , 
DOI 10.1007/978-1-4614-1809-2_1, © Springer Science+Business Media, LLC 2012
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4 1 Plane Curves

with det(ai j) �= 0 acts on C2. High-school methods can be used to show that
after making a suitable affine transformation, there are three possibilities along with
subcases:

1. A union of two (possibly identical, parallel, or incident) lines.
2. A circle x2 + y2 = 1.
3. A parabola y = x2.

Things become simpler if we add a line at infinity. This can be achieved by
passing to the projective plane P2 = P2

C, which is the set of lines in C3 contain-
ing the origin. To any (x0,x1,x2) ∈ C3 − {0}, there corresponds a unique point
[x0,x1,x2] = span{(x0,x1,x2)} ∈ P2. We embed C2 ⊂ P2 as an open set by send-
ing (x,y) �→ [x,y,1]. The line at infinity is the complement given by x2 = 0. The xi

are called homogeneous coordinates, although these are not coordinates in the tech-
nical sense of the word. The true coordinates are given by the ratios x0/x2,x1/x2 on
the chart {x2 �= 0}, x0/x1,x2/x1 on {x1 �= 0}, and x1/x0,x2/x0 on {x0 �= 0}. We iden-
tify x = x0/x2, y = x1/x2. The closure of an affine plane curve X = V ( f ) in P2 is the
projective algebraic plane curve

X = {[x0,x1,x2] ∈ P2 | F(x0,x1,x2) = 0}, (1.1.2)

where
F(x0,x1,x2) = xdeg f

2 f (x0/x2,x1/x2)

is the homogenization of f .
The projective linear group PGL3(C) = GL3(C)/C∗ acts on P2 via the standard

GL3(C) action on C3. The game is now to classify the projective conics up to a
projective linear transformation. The list simplifies to three cases including all the
degenerate cases: a single line, two distinct lines that meet, and the projectivized
parabola C given by

x2
0− x1x2 = 0. (1.1.3)

If we allow nonlinear transformations, then things simplify further. The map from
the complex projective line to the plane given by [s,t] �→ [st,s2, t2] gives a bijection
of P1 to C. The inverse can be expressed as

[x0,x1,x2] �→
{

[x1,x0] if (x1,x0) �= 0,

[x0,x2] if (x0,x2) �= 0.

Note that these expressions are consistent by (1.1.3). These formulas show that C is
homeomorphic, and in fact isomorphic in a sense to be explained in the next chapter,
to P1. Topologically, this is just the two-sphere S2.
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Exercises

1.1.1. Show that the subgroup of PGL3(C) fixing the line at infinity is the group of
affine transformations.

1.1.2. Deduce the classification of projective conics from the classification of
quadratic forms over C.

1.1.3. Deduce the classification of affine conics from Exercise 1.1.1.

1.2 Singularities

We recall a version of the implicit function theorem:

Theorem 1.2.1. If f (x,y) is a polynomial such that fy(0,0) = ∂ f
∂y (0,0) �= 0, then in

a neighborhood of (0,0), V ( f ) is given by the graph of an analytic function y = φ(x)
with φ ′(0) �= 0.

In outline, we can use Newton’s method. Set φ0(x) = 0, and

φn+1(x) = φn(x)− f (x,φn(x))
fy(x,φn(x))

.

Then φn will converge to φ . Proving this requires some care, of course.
A point (a,b) on an affine curve X = V ( f ) is a singular point if

∂ f
∂x

(a,b) =
∂ f
∂y

(a,b) = 0;

otherwise, it is nonsingular. In a neighborhood of a nonsingular point, we can use
the implicit function theorem to write x or y as an analytic function of the other
variable. So locally at such a point, X looks like a disk. By contrast, the nodal curve
y2 = x2(x+1) looks like a union of two disks touching at (0,0) in a small neighbor-
hood of this point given by |t±1|< ε in the parameterization

x = t2−1,

y = xt.

See Figure 1.1 for the real picture.

The two disks are called branches of the singularity. Singularities may have only
one branch, as in the case of the cusp y2 = x3 (Figure 1.2).
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Fig. 1.1 Nodal curve.

Fig. 1.2 Cuspidal curve.

In order to get a better sense of the topology of a complex singularity, we can
intersect the singularity f (x,y) = 0 with a small 3-sphere,

S3 = {(x,y) ∈C2 | |x|2 + |y|2 = ε2},

to get a circle S1 embedded in S3 in the case of one branch. The embedded circle is
unknotted when this is nonsingular, but it would be knotted otherwise. For the cusp,
we would get a trefoil or (2,3) torus knot [87].

The affine plane curve X (1.1.1) is called nonsingular if all its points are non-
singular. The projective curve X (1.1.2) is nonsingular if all of its points including
points at infinity are nonsingular. In explicit terms, this means that the affine curves
f (x,y) = F(x,y,1) = 0, F(1,y,z) = 0, and F(x,1,z) = 0 are all nonsingular. A non-
singular curve is an example of a Riemann surface or a one-dimensional complex
manifold.
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Exercises

1.2.2. Prove the convergence of Newton’s method in the ring of formal power series
C[[x]], where φn → 0 if and only if the degree of its leading term→∞. Note that this
ring is equipped with the x-adic topology, where the ideals (xN) form a fundamental
system of neighborhoods of 0.

1.2.3. Prove that Fermat’s curve xn
0 + xn

1 + xn
2 = 0 in P2 is nonsingular.

1.3 Bézout’s Theorem

An important feature of the projective plane is that any two lines meet. In fact, it has
a much stronger property:

Theorem 1.3.1 (Weak Bézout’s theorem). Any two algebraic curves in P2

intersect.

We give an elementary classical proof here using resultants. Given two monic
polynomials

f (y) = yn + an−1yn−1 + · · ·+ a0 =
n

∏
i=1

(y− ri),

g(y) = ym + bm−1ym−1 + · · ·+ b0 =
m

∏
j=1

(y− s j),

their resultant is the expression

Res( f ,g) =∏
i j

(ri− s j).

It is obvious that Res( f ,g) = 0 if and only if f and g have a common root. From
the way we have written it, it is also clear that Res( f ,g) is a polynomial of degree
mn in r1, . . . ,rn,s1, . . . ,sm that is symmetric separately in the r’s and s’s. So it can be
rewritten as a polynomial in the elementary symmetric polynomials in the r’s and
s’s. In other words, Res( f ,g) is a polynomial in the coefficients ai and b j. Standard
formulas for it can be found, for example, in [76].

Proof. Assume that the curves are given by homogeneous polynomials F(x,y,z)
and G(x,y,z) respectively. After translating the line at infinity if necessary, we can
assume that the polynomials f (x,y) = F(x,y,1) and g(x,y) = G(x,y,1) are both
nonconstant in x and y. Treating these as polynomials in y with coefficients in C[x],
the resultant Res( f ,g)(x) can be regarded as a nonconstant polynomial in x. Since
C is algebraically closed, Res( f ,g)(x) must have a root, say a. Then f (a,y) = 0 and
g(a,y) = 0 have a common solution. 	
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It is worth noting that this argument is entirely algebraic, and therefore applies
to any algebraically closed field, such as the field of algebraic numbers Q. So as a
bonus, we get the following arithmetic consequence.

Corollary 1.3.2. If the curves are defined by equations with coefficients in Q, then
the there is a point of intersection with coordinates in Q.

Suppose that the curves C,D ⊂ P2 are irreducible and distinct. Then it is not
difficult to see that C ∩D is finite. We can ask how many points are in the inter-
section. To get a more refined answer, we can assign a multiplicity to the points
of intersection. If the curves are defined by polynomials f (x,y) and g(x,y) with a
common isolated zero at the origin O = (0,0), then define the intersection multi-
plicity at O by

iO(C,D) = dimC[[x,y]]/( f ,g),

where C[[x,y]] is the ring of formal power series in x and y. The ring of convergent
power series can be used instead, and it would lead to the same result. The multipli-
cities can be defined at other points by a similar procedure. While this definition is
concise, it does not give us much geometric insight. Here is an alternative: ip(D,E)
is the number of points close to p in the intersection of small perturbations of these
curves. More precisely, we have the following:

Lemma 1.3.3. ip(D,E) is the number of points in { f (x,y) = ε}∩{g(x,y) = η}∩
Bδ (p) for small positive |ε|, |η |,δ , where Bδ (p) is a δ -ball around p.

Proof. This follows from [42, 1.2.5e]. 	

There is another nice interpretation of this number worth mentioning. If K1,K2 ⊂

S3 are disjoint knots, perhaps with several components, their linking number is
roughly the number of times one of them passes through the other. A precise
definition can be found in any basic book on knot theory (e.g., [98]).

Theorem 1.3.4. Given a small sphere S3 about p, ip(D,E) is the linking number of
D∩S3 and E ∩S3.

Proof. See [42, 19.2.4]. 	

We can now state the strong form of Bézout’s theorem. We will revisit this in

Corollary 11.2.7.

Theorem 1.3.5 (Bézout’s theorem). Suppose that C and D are algebraic curves
with no common components. Then the sum of intersection multiplicities at points
of C∩D equals the product of degrees degC ·degD, where degC and degD are the
degrees of the defining polynomials.

Corollary 1.3.6. The cardinality #C∩D is at most degC ·degD.



1.4 Cubics 9

Exercises

1.3.7. Show that the vector space C[[x,y]]/( f ,g) considered above is finite-
dimensional if f = 0 and g = 0 have an isolated zero at (0,0).

1.3.8. Suppose that f = y. Using the original definition show that iO(C,D) equals
the multiplicity of the root x = 0 of g(x,0). Now prove Bézout’s theorem when C is
a line.

1.4 Cubics

We now turn our attention to the very rich subject of cubic curves. In the degene-
rate case, the polynomial factors into a product of a linear and quadratic polynomial
or three linear polynomials. Then the curve is a union of a line with a conic or
three lines. So now assume that X (1.1.2) is defined by an irreducible cubic polyno-
mial. It is called an elliptic curve because of its relationship to elliptic functions and
integrals.

Lemma 1.4.1. After a projective linear transformation, an irreducible cubic can be
transformed into the projective closure of an affine curve of the form y2 = p(x),
where p(x) is a cubic polynomial. This is nonsingular if and only if p(x) has no
multiple roots.

Proof. See [105, III §1]. 	

We note that nonsingular cubics are very different from conics, even topologi-

cally.

Proposition 1.4.2. A nonsingular cubic X is homeomorphic to a torus S1×S1.

There is a standard way to visualize this (see Figure 1.3). Mark four points
a,b,c,d = ∞ on P1, where the first three are the roots of p(x). Join a to b and c to d
by nonintersecting arcs α and β . The preimage of the complement Y = P1−(α∪β )
in X should fall into two pieces both of which are homeomorphic to Y . So in other
words, we can obtain X by first taking two copies of the sphere, slitting them along
α and β , and then gluing them along the slits to obtain a torus.

Perhaps that was not very convincing. Instead, we will use a parameterization
by elliptic functions to verify Proposition 1.4.2 and more. By applying a further
projective linear transformation, we can put our equation for X into Weierstrass
form

y2 = 4x3− a2x−a3 (1.4.1)

with discriminant a3
2−27a2

3 �= 0. The idea is to parameterize the cubic by the elliptic
integral
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Fig. 1.3 Visualizing the cubic.

E(z) =
∫ z

z0

dx
y

=
∫ z

z0

dx√
4x3−a2x−a3

. (1.4.2)

While the integrand appears to have singularities at the zeros of p(x) = 4x3−a2x−
a3, by differentiating y2 = p(x) and substituting, we see that

dx
y

=
2dy
p′(x)

has no singularities at these points. Thus the integral (1.4.2) should determine a
holomorphic function E , but it would be “multivalued” because it depends on the
path of integration. We should understand this to mean that E is really a holomorphic
function on the universal cover X̃ of X . To understand the multivaluedness more
precisely, let us introduce the set of periods L ⊂ C as the set of integrals of dx/y
around closed loops on X . The set L is actually a subgroup. To see this, let Loop(X)
be the free abelian group consisting of finite formal integer linear combinations
of ∑niγi of closed loops on X . The map γ �→ ∫

γ dx/y gives a homomorphism of
Loop(X) → C. The image is exactly L, and it is isomorphic to the first homology
group H1(X ,Z), which will discussed in more detail later on. We can see that E
descends to a map X → C/L, which is in fact the homeomorphism alluded to in
Proposition 1.4.2.

The above story can be made more explicit by working backward in some sense.
First, we characterize the group L in a different way.
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Theorem 1.4.3. There exists a unique lattice L⊂C, i.e., an abelian subgroup gene-
rated by two R-linearly independent numbers, such that

a2 = g2(L) = 60 ∑
λ∈L,λ �=0

λ−4,

a4 = g3(L) = 140 ∑
λ∈L,λ �=0

λ−6.

Proof. [106, I 4.3]. 	

Fix the period lattice L as above. The Weierstrass℘-function is given by

℘(z) =
1
z2 + ∑

λ∈L,λ �=0

(
1

(z−λ )2 −
1
λ 2

)
.

This converges to an elliptic function, which means that it is meromorphic on C
and doubly periodic:℘(z +λ ) =℘(z) for λ ∈ L [105]. This function satisfies the
Weierstrass differential equation

(℘′)2 = 4℘3− g2(L)℘2−g3(L).

Thus℘gives exactly the inverse to the integral E . We get an embedding C/L→ P2

given by

z �→
{

[℘(z),℘′(z),1] if z /∈ L,

[0,1,0] otherwise.

The image is the cubic curve X defined by (1.4.1). This shows that X is a torus
topologically as well as analytically. See [105, 106] for further details.

Exercises

1.4.4. Prove that the projective curve defined by y2 = p(x) is nonsingular if and only
if p(x) has no repeated roots.

1.4.5. Prove that the singular projective curve y2 = x3 is homeomorphic to the
sphere.

1.5 Genus 2 and 3

A compact orientable surface is classified up to homeomorphism by a single number
called the genus. The genus is 0 for a sphere, 1 for a torus, and 2 for the surface
depicted in Figure 1.4.
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Fig. 1.4 Genus-2 surface.

We claim that a nonsingular quartic in P2 is a three-holed or genus-3 surface.
A heuristic argument is as follows. Let f ∈ C[x,y,z] be the defining equation of
our nonsingular quartic, and let g = (x3 + y3 + z3)x. The degenerate quartic g = 0
is the union of a nonsingular cubic and a line. Topologically this is a torus meet-
ing a sphere in three points (Figure 1.5). Consider the pencil ft = t f +(1− t)g. As t
evolves from t = 0 to 1, the three points of intersection in ft = 0 open up into circles,
resulting in a genus-3 surface (Figure 1.6).

Fig. 1.5 Degenerate quartic.

Fig. 1.6 Nonsingular quartic.

In going from degree 3 to 4, we seem to have skipped over genus 2. It is possible to
realize such a surface in the plane, but only by allowing singularities. Consider the
curve X ⊂ P2 given by

x2
0x2

2− x2
1x2

2 + x2
0x2

1 = 0.
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This has a single singularity at the origin [0,0,1]. To analyze this, switch to affine
coordinates x = x0/x2,y = x1/x2. Then the polynomial x2− y2 + x2y2 is irreducible,
so it cannot be factored into polynomials, but it can be factored into convergent
power series

x2− y2 + x2y2 = (x + y +∑ai jx
iy j)︸ ︷︷ ︸

f

(x− y +∑bi jx
iy j)︸ ︷︷ ︸

g

.

By the implicit function theorem, the branches f = 0 and g = 0 are local analytically
equivalent to disks. It follows that in a neighborhood of the origin, the curve looks
like two disks touching at a point. We get a genus-2 surface by pulling these apart
(Figure 1.7).

Fig. 1.7 Normalization of singular quartic.

The procedure of pulling apart the points described above can be carried out
within algebraic geometry. It is called normalization:

Theorem 1.5.1. Given a curve X, there exist a nonsingular curve X̃ (called the
normalization of X) and a proper surjective morphism H : X̃ → X that is finite-
to-one everywhere and one-to-one over all but finitely many points. This is uniquely
characterized by these properties.

The word “morphism” will not be defined precisely until the next chapter. For
the present, we should understand it to be a map definable by algebraic expressions
such as polynomials. We sketch the construction, which is entirely algebraic. Further
details will be given later on. Given an integral domain R with field of fractions K,
the integral closure of R is the set of elements x ∈ K such that xn +an−1xn−1 + · · ·+
a0 = 0 for some ai ∈ R. This is closed under addition and multiplication. Therefore
it forms a ring [8, Chapter 5]. The basic facts can be summarized as follows:

Theorem 1.5.2. If f ∈C[x,y] is an irreducible polynomial, then the integral closure
R̃ of the domain R = C[x,y]/( f ) is finitely generated as an algebra. If C[x1, . . . ,xn]→
R̃ is a surjection, and f1, . . . , fN generators for the kernel, then

V ( f1, . . . , fN) = {(a1, . . . ,an) | fi(a1, . . . ,an) = 0}

is nonsingular in the sense that the Jacobian matrix has expected rank (§2.5).
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Proof. See [8, Proposition 9.2] and [33, Corollary 13.13]. 	

Suppose that X = V ( f ). Then we set X̃ = V ( f1, . . . , fN) ⊂ Cn. We can lift the

inclusion R⊂ R̃ to a homomorphism of polynomial rings by completing the diagram

C[x1, . . . ,xn] �� R̃

C[x,y] ��

h

���
�
�

R

��

This determines a pair of polynomials h(x),h(y)∈C[x1, . . . ,xn], which gives a poly-
nomial map H : Cn → C2. By restriction, we get our desired map H : X̃ → X . This
is the construction in the affine case. In general, we proceed by gluing these affine
normalizations together. The precise construction will be given in §3.4.

Exercises

1.5.3. Verify that x2
0x2

2− x2
1x2

2 + x2
0x2

1 = 0 is irreducible and has exactly one singular
point.

1.5.4. Verify that x2−y2 +x2y2 can be factored as above using formal power series.

1.5.5. Show that t = y/x lies in the integral closure R̃ of C[x,y]/(y2−x3). Show that
R̃∼= C[t].

1.5.6. Show that t = y/x lies in the integral closure R̃ of C[x,y]/(x2 − y2 + x2y2).
Show that R̃∼= C[x, t]/(1− t2− x2t2).

1.6 Hyperelliptic Curves

An affine hyperelliptic curve is a curve of the form y2 = p(x), where p(x) has distinct
roots. The associated hyperelliptic curve X is gotten by taking the closure in P2 and
then normalizing to obtain a nonsingular curve. (We are bending the rules a bit here;
usually the term hyperelliptic is applied only when the degree of p(x) is at least 5.)
Once again we start by describing the topology.

Proposition 1.6.1. X is a genus-g = �deg p(x)/2� − 1 surface, where � � means
round up to the nearest integer.

We postpone a rigorous proof. For now, we can see this by using a cut-and-paste
construction generalizing what we did for cubics. Let a1, . . . ,an denote the roots of
p(x) if deg p(x) is even, or the roots together with ∞ otherwise. These points, called
branch points, are exactly where the map X → P1 is one-to-one. Take two copies of
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P1 and make slits from a1 to a2, a3 to a4, and so on, and then join them along the
slits. The genus of the result is n/2−1.

Corollary 1.6.2. Every natural number is the genus of some algebraic curve.

The original interest in hyperelliptic curves stemmed from the study of integrals
of the form

∫
q(x)dx/

√
p(x). As with cubics, these are well defined only modulo

their periods Lq = {∫γ q(x)dx/
√

p(x) | γ closed}. However, this is usually no longer
a discrete subgroup, so C/Lq would be a very strange object. What turns out to be
better is to consider all these integrals simultaneously.

Theorem 1.6.3. The differentials xidx√
p(x)

, i = 0, . . . ,g−1, span the space of holomor-

phic differentials on X, and the set

L =

⎧⎨⎩
(∫

γ

xidx√
p(x)

)
0≤i<g

| γ closed

⎫⎬⎭
is a lattice in Cg, i.e., L is a discrete subgroup of maximal rank 2g.

So it appears that the genus plays a deeper role than one might have initially
suspected. That these differentials are holomorphic can be seen by the same sort
of calculation we did in Section 1.4. The remaining assertions will follow almost
immediately from the Hodge decomposition (see Section 10.3). We thus get a well-
defined map from X to the torus J(X) = Cg/L given by

α(x) =

(∫ x

x0

xidx√
p(x)

)
mod L . (1.6.1)

The torus J(X) is called the Jacobian of X , and α is called the Abel–Jacobi map.
Together these form one of the cornerstones of algebraic curve theory.

We can make this more explicit in an example.

Example 1.6.4. Consider the curve X defined by y2 = x6−1. This has genus two, so
that J(X) is a two-dimensional torus. Let E be the elliptic curve given by v2 = u3−1.
We have two morphisms πi : X → E defined by

π1 : u = x2, v = y,

π2 : u = x−2, v =
√−1yx−3.

The second map appears to have singularities, but one can appeal to either general
theory or explicit calculation to show that it is defined everywhere. We can see that
the differential du/v on E pulls back to 2xdx/y and 2

√−1dx/y under π1 and π2

respectively. Combining these yields a map π1×π2 : X → E ×E under which the
lattice defining E×E corresponds to a sublattice L′ ⊆ L. Therefore

J(X) = C2/L = (C2/L′)/(L/L′) = (E×E)/(L/L′).
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We express this relation by saying that J(X) is isogenous to E ×E , which means
that it is a quotient of the second by a finite abelian group.

It is worthwhile understanding what is going on at a more abstract level, so as to
identify some important players later on in the story. The lattice L can be identified
with either the first homology group H1(X ,Z) via the homomorphism Loop(X)→
Cg as before, or with the first cohomology group H1(X ,Z) = Hom(H1(X ,Z),Z)
using Poincaré duality. Using the second description, we have a map

H1(E,Z)⊕H1(E,Z)∼= H1(E×E,Z)→ H1(X ,Z),

and L′ is the image.
A hyperelliptic curve with eight branch points has genus 3. We have also encoun-

tered genus-3 curves as quartics in P2. These constructions yield distinct classes of
examples:

Proposition 1.6.5. A genus-3 curve is either a quartic in P2 or hyperelliptic, and
these cases are mutually exclusive.

We give just the broad outline of the last part. First, note that α : X → J(X) can
be defined for any curve X hyperelliptic or otherwise, by a similar recipe replacing
xidx/

√
p(x) with a basis of holomorphic differentials (see §10.3). Let us see how

it can used to distinguish these cases. As we shall see later, dimJ(X) = 3 because
X has genus 3. The set of tangent spaces to any manifold can be assembled into an
object called the tangent bundle, and for J(X) it turns out to be trivial. Thus we may
sensibly identify all the tangent spaces of J(X) with a fixed C3. So now to every
x ∈ X , we have a line Tx ⊂ C3 given by the image of the derivative of the Abel–
Jacobi map. In this way, we get a map α ′ : X → P2, sometimes called the Gauss
map, which is the key to the proposition. In the hyperelliptic case y2 = p(x), we can
calculate the Gauss map by formally differentiating (1.6.1) and projecting to P2 to
obtain the map

α ′(x) =
[

1
y
,

x
y
,

x2

y

]
=

[
1,x,x2] ,

which is nothing but the original map X → P1, defined by (x,y) �→ x, followed by
the embedding of P1 → P2 as a conic. In particular, α ′ would be two-to-one in this
case.

In the nonhyperelliptic case, X is defined by a homogeneous quartic polyno-
mial F(x0,x1,x2) in homogeneous coordinates. Setting x = x0/x2,y = x1/x2 as
usual, a holomorphic differential on X ∩C2 is simply given as a restriction of
ω = g(x,y)dx+h(x,y)dy with g and h holomorphic. It can be shown that a nonzero
ω would become singular at infinity, and this makes it hard to find forms such
that ω |X is holomorphic everywhere. Instead, we do an indirect construction using
residues. We recall that the wedge product is determined by

(gdx + hdy)∧ (pdx + qdy)= (gq−hp)dx∧dy ,
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where dx∧dy �= 0 is a symbol. Let f (x,y) = F(x,y,1). We can wedge ω and d f/ f
together to obtain a 2-form

ω ′ = ω ∧ d f
f

= ω ∧
(

fx

f
dx +

fy

f
dy

)
.

The inverse ω ′ �→ ω is well defined modulo d f . So the restriction ω |X∩C2 depends
only on ω ′ and is called the Poincaré residue of ω ′. (A more complete abstract
treatment of residues will be given in Section 12.6.) Now consider the forms

ωi =
pi(x,y)dx∧dy

f (x,y)
, pi = x,y,1. (1.6.2)

At infinity, we can switch to new coordinates v = x2/x1 = y−1,u = x0/x1 = xy−1

and t = x2/x0 = x−1,s = x1/x0 = yx−1. A direct calculation in these coordinates
shows that these forms have poles of order 1 along X and no other singularities
(Exercise 1.6.8). Therefore their residues will be holomorphic everywhere along X ,
and in fact, they give a basis for the space of such differentials. Thus

α ′ =
[

x
f
,

y
f
,

1
f

]
= [x,y,1],

and this coincides with the given embedding X ⊂ P2.
So we see that the geometry ofα ′ separates the hyperelliptic and nonhyperelliptic

cases.

Exercises

1.6.6. The curve X above can be constructed in Example 1.6.4 explicitly by gluing
charts defined by y2 = x6−1 and y2

2 = 1− x6
2 via x2 = x−1, y2 = yx−3. Check that X

is nonsingular and that it maps onto the projective closure of y2 = x6−1.

1.6.7. Using the coordinates from the previous exercise, show that the above formu-
las for πi define maps from X to the projective closure of v2 = u3−1.

1.6.8. Set v = x2/x1 = y−1,u = x0/x1 = xy−1. Rewrite the 2-forms given in (1.6.2)
in these new coordinates. Verify that these are holomorphic multiples of du ∧
dv/F(u,1,v). Ditto for the coordinates s and t.
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Chapter 2
Manifolds and Varieties via Sheaves

In rough terms, a manifold is a “space” that looks locally like Euclidean space.
An algebraic variety can be defined similarly as a “space” that looks locally like
the zero set of a collection of polynomials. Point set topology alone would not be
sufficient to capture this notion of space. These examples come with distinguished
classes of functions (C∞ functions in the first case, and polynomials in the second),
and we want these classes to be preserved under the above local identifications.
Sheaf theory provides a natural language in which to make these ideas precise.
A sheaf on a topological space X is essentially a distinguished class of functions,
or things that behave like functions, on open subsets of X . The main requirement is
that the condition to be distinguished be local, which means that it can be checked
in a neighborhood of every point of X . For a sheaf of rings, we have an additional
requirement, that the distinguished functions on U ⊆ X should form a commutative
ring. With these definitions, the somewhat vague idea of a space can be replaced
by the precise notion of a concrete ringed space, which consists of a topological
space together with a sheaf of rings of functions. Both manifolds and varieties are
concrete ringed spaces.

Sheaves were first defined by Leray in the late 1940s. They played a key role
in the development of algebraic and complex analytic geometry, in the pioneering
works of Cartan, Grothendieck, Kodaira, Serre, Spencer, and others in the follow-
ing decade. Although it is rarely presented in this way in introductory texts (e.g.,
[110, 111, 117]), basic manifold theory can also be developed quite naturally in this
framework. In this chapter we want to lay the basic foundation for the rest of the
book. The goal here is to introduce the language of sheaves, and then to carry out a
uniform treatment of real and complex manifolds and algebraic varieties from this
point of view. This approach allows us to highlight the similarities, as well as the
differences, among these spaces.

DOI 10.1007/978-1-4614-1809-2_2, © Springer Science+Business Media, LLC 2012
21, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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2.1 Sheaves of Functions

As we said above, we need to define sheaves in order eventually to define mani-
folds and varieties. We start with a more primitive notion. In many parts of mathe-
matics, we encounter topological spaces with distinguished classes of functions on
them: continuous functions on topological spaces, C∞-functions on Rn, holomor-
phic functions on Cn, and so on. These functions may have singularities, so they
may be defined only over subsets of the space; we will be interested primarily in
the case that these subsets are open. We say that such a collection of functions is a
presheaf if it is closed under restriction. Given sets X and T , let MapT (X) denote
the set of maps from X to T . Here is the precise definition of a presheaf, or rather of
the kind of presheaf we need at the moment.

Definition 2.1.1. Suppose that X is a topological space and T a nonempty set.
A presheaf of T -valued functions on X is a collection of subsets P(U)⊆MapT (U),
for each open U ⊆ X , such that the restriction f |V belongs to P(V ) whenever
f ∈P(U) and V ⊂U .

The collection of all functions MapT (U) is of course a presheaf. Less trivially:

Example 2.1.2. Let T be a topological space. Then the set of continuous functions
ContX ,T (U) from U ⊆ X to T is a presheaf.

Example 2.1.3. Let X be a topological space and let T be a set. The set T P(U) of
constant functions from U to T is a presheaf called the constant presheaf.

Example 2.1.4. Let X = Rn. The sets C∞(U) of C∞ real-valued functions form a
presheaf.

Example 2.1.5. Let X = Cn. The sets O(U) of holomorphic functions on U form a
presheaf. (A function of several variables is holomorphic if it is C∞ and holomorphic
in each variable.)

Example 2.1.6. Let L be a linear differential operator on Rn with C∞ coefficients
(e.g., ∑∂ 2/∂x2

i ). Let S(U) denote the space of C∞ solutions to L f = 0 in U . This is
a presheaf with values in R.

Example 2.1.7. Let X = Rn. The sets Lp(U) of measurable functions f : U → R
satisfying

∫
U | f |p < ∞ form a presheaf.

Upon comparing these examples, we see some qualitative differences. The con-
tinuity, C∞, and holomorphic conditions are local conditions, which means that they
can be checked in a neighborhood of a point. The other conditions such as constancy
or Lp-ness, by contrast, are not. A presheaf is called a sheaf if the defining property
is local. More precisely:

Definition 2.1.8. A presheaf of functions P is called a sheaf if given any open set
U with an open cover {Ui}, a function f on U lies in P(U) if f |Ui ∈ P(Ui) for
all i.
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Examples 2.1.2, 2.1.4, 2.1.5, and 2.1.6 are sheaves, while the other examples are
not, except in trivial cases. More explicitly, suppose that T has at least two elements
t1, t2, and that X contains a disconnected open set U . Then we can write U =U1∪U2

as a union of two disjoint open sets. The function τ taking the value of ti on Ui is
not in T P(U), but τ|Ui ∈ T P(Ui). Therefore T P is not a sheaf. Similarly, Lp is not a
sheaf for 0 < p < ∞ because the constant function 1 is not in Lp(Rn), even though
1 ∈ Lp(B) for any ball B of finite radius.

However, there is a simple remedy.

Example 2.1.9. A function is locally constant if it is constant in a neighborhood of
a point. For instance, the function τ constructed above is locally constant but not
constant. The set of locally constant functions, denoted by T (U) or TX(U), is now a
sheaf, precisely because the condition can be checked locally. A sheaf of this form
is called a constant sheaf.

We can always create a sheaf from a presheaf by the following construction.

Example 2.1.10. Given a presheaf P of functions from X to T . Define

Ps(U) = { f : U→ T | ∀x ∈U,∃ a neighborhood Ux of x such that f |Ux ∈P(Ux)}.

This is a sheaf called the sheafification of P .

When P is a presheaf of constant functions, Ps is exactly the sheaf of locally
constant functions. When this construction is applied to the presheaf Lp, we obtain
the sheaf of locally Lp functions.

Exercises

2.1.11. Check that Ps is a sheaf.

2.1.12. Let B be the presheaf of bounded continuous real-valued functions on R.
Describe Bs in explicit terms.

2.1.13. Let π : B → X be a surjective continuous map of topological spaces. Prove
that the presheaf of sections

B(U) = {σ : U → B | σ continuous, ∀x ∈U,π ◦σ(x) = x}

is a sheaf.

2.1.14. Given a sheaf P on X and an open set U ⊂ X , let P|U denote the presheaf
on U defined by V �→P(V ) for each V ⊆U . Check that PU is a sheaf when P is.

2.1.15. Let Y ⊂ X be a closed subset of a topological space. Let P be a sheaf of
T -valued functions on X . For each open U ⊂ Y , let PY (U) be the set of functions
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f : U → T locally extendible to an element of P , i.e., f ∈PY (U) if and only if for
each y ∈U , there exist a neighborhood V ⊂ X and an element of P(V ) restricting
to f |V∩U . Show that PY is a sheaf.

2.1.16. Let F : X → Y be surjective continuous map. Suppose that P is a sheaf of
T -valued functions on X . Define f ∈Q(U) ⊂ MapT (U) if and only if its pullback
F∗ f = f ◦F| f−1U belongs to P(F−1(U)). Show that Q is a sheaf on Y .

2.2 Manifolds

As explained in the introduction, a manifold consists of a topological space with
a distinguished class of functions that looks locally like Rn. We now set up the
language necessary to give a precise definition. Let k be a field. Then Mapk(X) is a
commutative k-algebra with pointwise addition and multplication.

Definition 2.2.1. Let R be a sheaf of k-valued functions on X . We say that R is a
sheaf of algebras if each R(U) ⊆ Mapk(U) is a subalgebra when U is nonempty.
We call the pair (X ,R) a concrete ringed space over k or simply a concrete k-space.
We will sometimes refer to elements of R(U) as distinguished functions.

The sheaf R is called the structure sheaf of X . In this chapter, we usually omit
the modifier “concrete,” but we will use it later on after we introduce a more general
notion. Basic examples of R-spaces are (Rn,ContRn,R) and (Rn,C∞), while (Cn,O)
is an example of a C-space.

We also need to consider maps F : X →Y between such spaces. We will certainly
insist on continuity, but in addition we require that when a distinguished function is
precomposed with F , or “pulled back” along F , it remain distinguished.

Definition 2.2.2. A morphism of k-spaces (X ,R) → (Y,S ) is a continuous map
F : X → Y such that if f ∈S (U), then F∗ f ∈R(F−1U), where F∗ f = f ◦F| f−1U .

It is worthwhile noting that this completely captures the notion of a C∞, or holo-
morphic, map between Euclidean spaces.

Example 2.2.3. A C∞ map F : Rn → Rm induces a morphism (Rn,C∞)→ (Rm,C∞)
of R-spaces, since C∞ functions are closed under composition. Conversely, if F is a
morphism, then the coordinate functions on Rm are expressible as C∞ functions of
the coordinates of Rn, which implies that F is C∞.

Example 2.2.4. Similarly, a continuous map F : Cn → Cm induces a morphism of
C-spaces if and only if it is holomorphic.

This is a good place to introduce, or perhaps remind the reader of, the notion of a
category [82]. A category C consists of a set (or class) of objects ObjC and for each
pair A,B ∈ C , a set HomC (A,B) of morphisms from A to B. There is a composition
law

◦ : HomC (B,C)×HomC (A,B)→ HomC (A,C),
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and distinguished elements idA ∈ HomC (A,A) that satisfy

(C1) associativity: f ◦ (g ◦ h) = ( f ◦ g)◦ h,
(C2) identity: f ◦ idA = f and idA ◦ g = g,

whenever these are defined. Categories abound in mathematics. A basic example
is the category of Sets. The objects are sets, HomSets(A,B) is just the set of maps
from A to B, and composition and idA have the usual meanings. Similarly, we can
form the category of groups and group homomorphisms, the category of rings and
ring homomorphisms, and the category of topological spaces and continuous maps.
We have essentially constructed another example. We can take the class of objects
to be k-spaces, and morphisms as above. These can be seen to constitute a category
once we observe that the identity is a morphism and the composition of morphisms
is a morphism.

The notion of an isomorphism makes sense in any category. We will spell this
out for k-spaces.

Definition 2.2.5. An isomorphism of k-spaces (X ,R) ∼= (Y,S ) is a homeomor-
phism F : X → Y such that f ∈S (U) if and only if F∗ f ∈R(F−1U).

Given a sheaf S on X and an open set U ⊂ X , let S |U denote the sheaf on U
defined by V �→S (V ) for each V ⊆U .

Definition 2.2.6. An n-dimensional C∞ manifold is an R-space (X ,C∞X ) such that

1. The topology of X is given by a metric.
2. X admits an open cover {Ui} such that each (Ui,C∞X |Ui) is isomorphic to

(Bi,C∞|Bi) for some open balls Bi ⊂ Rn.

Remark 2.2.7. It is equivalent and perhaps more standard to require that the topology
be Hausdorff and paracompact rather than metrizable. The equivalence can be seen
as follows. The paracompactness of metric spaces is a theorem of Stone [112, 70].
In the opposite direction, a Riemannian metric can be constructed using a partition
of unity [110]. The associated Riemannian distance function, which is the infimum
of the lengths of curves joining two points, then provides a metric in the sense of
point set topology.

The isomorphisms (Ui,C∞|Ui) ∼= (Bi,C∞|Bi) correspond to coordinate charts in
more conventional treatments. The collection of all such charts is called an atlas.
Given a coordinate chart, we can pull back the standard coordinates from the ball to
Ui. So we always have the option of writing expressions locally in these coordinates.

There are a number of variations on this idea:

Definition 2.2.8.
1. An n-dimensional topological manifold is defined as above but with (Rn,C∞)

replaced by (Rn,ContRn,R).
2. An n-dimensional complex manifold can be defined by replacing (Rn,C∞) by

(Cn,O).
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The one-dimensional complex manifolds are usually called Riemann surfaces.

Definition 2.2.9. A C∞ map from one C∞ manifold to another is just a morphism of
R-spaces. A holomorphic map between complex manifolds is defined as a morphism
of C-spaces.

The class of C∞ manifolds and maps form a category; an isomorphism in this
category is called a diffeomorphism. Likewise, the class of complex manifolds and
holomorphic maps forms a category, with isomorphisms called biholomorphisms.
By definition, any point of a manifold has a neighborhood, called a coordinate
neighborhood, diffeomorphic or biholomorphic to a ball. Given a complex manifold
(X ,OX ), we say that f : X →R is C∞ if and only if f ◦g is C∞ for each holomorphic
map g : B→ X from a coordinate ball B⊂Cn. We state for the record the following:

Lemma 2.2.10. An n-dimensional complex manifold together with its sheaf of C∞

functions is a 2n-dimensional C∞ manifold.

Proof. An n-dimensional complex manifold (X ,OX) is locally biholomorphic to a
ball in Cn, and hence (X ,C∞X ) is locally diffeomorphic to the same ball regarded as
a subset of R2n. 	


Later on, we will need to write things in coordinates. The pullbacks of the stan-
dard coordinates on a ball B ⊂ Cn under local biholomorphism from X ⊃ B′ ∼= B,
are referred to as local analytic coordinates on X . We typically denote these by
z1, . . . ,zn. Then the real and imaginary parts x1 = Re(z1),y1 = Im(z1), . . . give local
coordinates for the underlying C∞-manifold.

Let us consider some examples of manifolds. Certainly any open subset of Rn

(or Cn) is a (complex) manifold in an obvious fashion. To get less trivial examples,
we need one more definition.

Definition 2.2.11. Given an n-dimensional C∞ manifold X , a closed subset Y ⊂ X
is called a closed m-dimensional submanifold if for any point x ∈ Y, there exist a
neighborhood U of x in X and a diffeomorphism to a ball B⊂Rn containing 0 such
that Y ∩U maps to the intersection of B with an m-dimensional linear subspace.
A similar definition holds for complex manifolds.

When we use the word “submanifold” without qualification, we will always mean
“closed submanifold.” Given a closed submanifold Y ⊂ X , define C∞Y to be the sheaf
of continuous functions that are locally extendible to C∞ functions on X (see Exer-
cise 2.1.15). This means that f ∈C∞Y (U) if every point of U possesses a neighbor-
hood V ⊂ X such f |V∩Y = f̃ |V∩Y for some f̃ ∈C∞(V ). For a complex submanifold
Y ⊂ X , we define OY to be the sheaf of functions that locally extend to holomorphic
functions.

Lemma 2.2.12. If Y ⊂ X is a closed submanifold of a C∞ (respectively complex)
manifold, then (Y,C∞Y ) (respectively (Y,OY )) is also a C∞ (respectively complex)
manifold.
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Proof. We treat the C∞ case; the holomorphic case is similar. Choose a local diffeo-
morphism (X ,C∞X ) to a ball B ⊂ Rn such that Y correponds to B∩Rm. Then any
C∞ function f (x1, . . . ,xm) on B∩Rm extends trivially to a C∞ function on B and
conversely. Thus (Y,C∞Y ) is locally diffeomorphic to a ball in Rm. 	


With this lemma in hand, it is possible to produce many interesting examples of
manifolds starting from Rn. For example, the unit sphere Sn−1 ⊂ Rn, which is the
set of solutions to ∑x2

i = 1, is an (n− 1)-dimensional manifold. Further examples
are given in the exercises.

The following example, which was touched upon earlier, is of fundamental
importance in algebraic geometry.

Example 2.2.13. Complex projective space Pn
C = CPn is the set of one-dimensional

subspaces of Cn+1. (We will usually drop the C and simply write Pn unless there is
danger of confusion.) Let π : Cn+1−{0}→ Pn be the natural projection that sends
a vector to its span. In the sequel, we usually denote π(x0, . . . ,xn) by [x0, . . . ,xn].
Then Pn is given the quotient topology, which is defined so that U ⊂ Pn is open if
and only if π−1U is open. Define a function f : U → C to be holomorphic exactly
when f ◦ π is holomorphic. Then the presheaf of holomorphic functions OPn is a
sheaf (Exercise 2.1.16), and the pair (Pn,OPn) is a complex manifold. In fact, if we
set

Ui = {[x0, . . . ,xn] | xi �= 0},
then the map

[x0, . . . ,xn] �→ (x0/xi, . . . , x̂i/xi, . . . ,xn/xi)

induces an isomorphism Ui
∼= Cn. The notation . . . , x̂, . . . means skip x in the list.

Exercises

2.2.14. Given k-spaces X ,Y , prove that morphisms from X to Y can be patched, i.e.,
that the set of morphisms from open subsets of X to Y is a sheaf.

2.2.15. Show that the map f : R → R given by f (x) = x3 is a C∞ morphism and a
homeomorphism, but that it is not a diffeomorphism.

2.2.16. Let f1, . . . , fr be C∞ functions on Rn, and let X be the set of common zeros
of these functions. Suppose that the rank of the Jacobian (∂ fi/∂x j) is n−m at every
point of X . Then show that X is an m-dimensional submanifold using the implicit
function theorem [109, p. 41]. In particular, show that the sphere x2

1 + · · ·+x2
n = 1 is

a closed (n−1)-dimensional submanifold of Rn.

2.2.17. Apply the previous exercise to show that the set O(n) (respectively U(n))
of orthogonal (respectively unitary) n×n matrices is a submanifold of Rn2

(respec-
tively Cn2

).
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2.2.18. A manifold that is also a group with C∞ group operations is called a Lie
group. Show that GLn(C), GLn(R), O(n), and U(n) are examples.

2.2.19. Suppose that Γ is a group of diffeomorphisms of a manifold X . Suppose
that the action of Γ is fixed-point-free and properly discontinuous in the sense that
every point possesses a neighborhood N such that γ(N)∩N = /0 unless γ = id. Give
Y = X/Γ the quotient topology and let π : X → Y denote the projection. Define
f ∈ C∞Y (U) if and only if the pullback f ◦ π is C∞ in the usual sense. Show that
(Y,C∞Y ) is a C∞ manifold. Deduce that the torus T = Rn/Zn is a manifold, and in
fact a Lie group.

2.2.20. Check that the previous exercise applies to complex manifolds, with the
appropriate modifications. In particular, show that E = C/Z + Zτ , Im(τ) > 0, is
Riemann surface (called an elliptic curve).

2.2.21. The complex Grassmannian G = G(2,n) is the set of 2-dimensional sub-
spaces of Cn. Let M⊂C2n be the open set of 2×n matrices of rank 2. Let π : M→G
be the surjective map that sends a matrix to the span of its rows. Give G the quotient
topology induced from M, and define f ∈OG(U) if and only if π ◦ f ∈OM(π−1U).
For i �= j, let Ui j ⊂ M be the set of matrices with (1,0)t and (0,1)t for the ith and
jth columns. Show that

C2n−4 ∼= Ui j
∼= π(Ui j)

and conclude that G is a (2n−4)-dimensional complex manifold.

2.2.22. Generalize the previous exercise to the Grassmannian G(r,n) of r-dimen-
sional subspaces of Cn.

2.3 Affine Varieties

Algebraic varieties are spaces that are defined by polynomial equations. Unlike
the case of manifolds, algebraic varieties can be quite complicated even locally.
We first study the local building blocks in this section, before turning to arbi-
trary algebraic varieties. Standard references for the material of this section and
the next are Eisenbud–Harris [34], Harris [58], Hartshorne [60], Mumford [92], and
Shafarevich [104].

Let k be an algebraically closed field. Affine space of dimension n over k is
defined as An

k = kn. When k = C, we can endow this space with the standard topo-
logy induced by the Euclidean metric, and we will refer to this as the classical
topology. At the other extreme is the Zariski topology, which will be defined below.
It makes sense for any k, and it is useful even for k = C. Unless stated otherwise,
topological notions are with respect to the Zariski topology for the remainder of this
section. On A1

k = k, the open sets consist of complements of finite sets together with
the empty set. In general, this topology can be defined to be the weakest topology
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for which the polynomials An
k → k are continuous functions. The closed sets of An

k
are precisely the sets of zeros

Z(S) = {a ∈ An | f (a) = 0, ∀ f ∈ S}

of sets of polynomials S ⊂ R = k[x1, . . . ,xn]. Sets of this form are also called
algebraic. The Zariski topology has a basis given by open sets of the form D(g) =
X −Z(g), g ∈ R. Given a subset X ⊂ An

k , the set of polynomials

I(X) = { f ∈ R | f (a) = 0, ∀a ∈ X}

is an ideal that is radical in the sense that f ∈ (X) whenever a power of it lies
in I(X). Since k is algebraically closed, Hilbert’s Nullstellensatz [8, 33] gives a
correspondence:

Theorem 2.3.1 (Hilbert). Let R = k[x1, . . . ,xn] with k algebraically closed. There is
a bijection between the collection of algebraic subsets of An

k and radical ideals of R
given by X �→ I(X) with inverse I �→ Z(I).

This allows us to translate geometry into algebra and back. For example, an
algebraic subset X is called irreducible if it cannot be written as a union of two
proper algebraic sets. This implies that I(X) is prime or equivalently that R/I(X)
has no zero divisors. We summarize the correspondence below:

Theorem 2.3.2 (Hilbert). With R as above, the map I �→ Z(I) gives a one-to-one
correspondence between the objects in the left- and right-hand columns below:

Algebra Geometry
maximal ideals of R points of An

maximal ideals of R/J points of Z(J)
prime ideals in R irreducible algebraic subsets of An

radical ideals in R algebraic subsets of An

If U ⊆ An
k is open, a function F : U → k is called regular if it can be expressed

as a ratio of polynomials F(x) = f (x)/g(x) such that g has no zeros on U .

Lemma 2.3.3. Let OAn(U) denote the set of regular functions on U. Then U �→
OAn(U) is a sheaf of k-algebras. Thus (An

k ,OAn) is a k-space.

Proof. It is clearly a presheaf. Suppose that F : U → k is represented by a ratio
of polynomials fi/gi on Ui ⊆ U , where

⋃
Ui = U . Since k[x1, . . . ,xn] has unique

factorization, we can assume that these are reduced fractions. Since fi(a)/gi(a) =
f j(a)/g j(a) for all a ∈Ui ∩Uj, equality holds as elements of k(x1, . . . ,xn). There-
fore, we can assume that fi = f j and gi = g j. Thus F ∈OX (U). 	


An affine algebraic variety is an irreducible subset of some An
k . We give X the

topology induced from the Zariski topology of affine space. This is called the Zariski
topology of X . Suppose that X ⊂ An

k is an algebraic variety. Given an open set
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U ⊂ X , a function F : U → k is regular if it is locally extendible to a regular function
on an open set of An as defined above, that is, if every point of U has an open
neighborhood V ⊂ An

k with a regular function G : V → k for which F = G|V∩U .

Lemma 2.3.4. Let X be an affine variety, and let OX (U) denote the set of regular
functions on U. Then U → OX (U) is a sheaf of k-algebras and OX (X) ∼=
k[x0, . . . ,xn]/I(X).

Proof. The sheaf property of OX is clear from Exercise 2.1.15 and the previous
lemma. So it is enough to prove the last statement. Let S = k[x0, . . . ,xn]/I(X).
Clearly there is an injection of S → OX (X) given by sending a polynomial to the
corresponding regular function. Suppose that F ∈OX(X). Let J = {g∈ S | gF ∈ S}.
This is an ideal, and it suffices to show that 1∈ J. By the Nullstellensatz, it is enough
to check that Z(J′) = /0, where J′ ⊂ k[x0, . . . ,xn] is the preimage of J. By assumption,
for any a ∈ X there exist polynomials f ,g such that g(a) �= 0 and F(x) = f (x)/g(x)
for all x in a neighborhood of a. We have ḡ ∈ J, where ḡ is the image of g in S.
Therefore a /∈ Z(J′). 	


Thus an affine variety gives rise to a k-space (X ,OX). The ring of global regular
functions O(X) = OX(X) is an integral domain called the coordinate ring of X .
Its field of fractions k(X) is called the function field of X . An element f/g of this
field that determines a regular function on the open subset D(g) is called a rational
function on X .

As we will explain later, O(X) is a complete invariant for an affine variety, that is,
it is possible to reconstruct X from its coordinate ring. For now, we will be content
to recover the underlying topological space. Given a ring R, we define the maximal
ideal spectrum Specm R as the set of maximal ideals of R. For any ideal I ⊂ R, let

V (I) = {p ∈ Specm R | I ⊆ p}.

The verification of the following standard properties will be left as an exercise.

Lemma 2.3.5.

(a) V (IJ) = V (I)∪V (J).
(b) V (∑ Ii) =

⋂
i V (Ii).

As a corollary, it follows that the collection of sets of the form V (I) constitutes
the closed sets of a topology on Specm R called the Zariski topology once again.
A basis of the Zariski topology on Specm R is given by D( f ) = X −V( f ).

Lemma 2.3.6. Suppose that X is an affine variety. Given a ∈ X, let

ma = { f ∈ O(X) | f (a) = 0}.

Then ma is a maximal ideal, and the map a �→ ma induces a homeomorphism

X ∼= Specm O(X).
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Proof. The set ma is clearly an ideal. It is maximal because evaluation at a induces
an isomorphism O(X)/ma

∼= k. The bijectivity of a �→ma follows from the Nullstel-
lensatz. The pullback of V (I) is precisely Z(I). 	


In the sequel, we will use the symbols Z and V interchangeably.

Exercises

2.3.7. Identify An2

k with the space of square matrices. Determine the closures in the
Zariski topology of

(a) The set of matrices of rank r.
(b) The set of diagonalizable matrices.
(c) The set of matrices A of finite order in the sense that AN = I for some N.

2.3.8. Prove Lemma 2.3.5.

2.3.9. Given affine varieties X ⊂ An
k and Y ⊂ Am

k . Define a map F : X → Y to be a
morphism if

F(a1, . . . ,an) = ( f1(a1, . . . ,an), . . . , fm(a1, . . . ,an))

for polynomials fi ∈ k[x1, . . . ,xn]. Show that a morphism F is continuous and F∗ f
is regular whenever f is regular function defined on U ⊂ Y . Conversely, show that
any map with this property is a morphism. Finally, show that morphisms are closed
under composition, so that they form a category.

2.3.10. Show that the map X → O(X) determines a contravariant functor from the
category of affine varieties to the category of affine domains, i.e., finitely generated
k-algebras that are domains, and algebra homomorphisms. Show that this deter-
mines an antiequivalence of categories, which means

1. Hom(X ,Y )∼= Hom(O(Y ),O(X)).
2. Every affine domain is isomorphic to some O(X).

2.3.11. Given closed (irreducible) subsets X ⊂ An
k and Y ⊂ Am

k , show that X ×Y ⊂
An+m

k is closed (and irreducible). This makes X ×Y into an affine variety called
the product. Prove that O(X ×Y ) ∼= O(X)⊗k O(Y ) as algebras, and deduce that
X ×Y ∼= X ′ ×Y ′ if X ∼= X ′ and Y ∼= Y ′. So it does not depend on the embedding.

2.3.12. An (affine) algebraic group is an algebraic geometer’s version of a Lie group.
It is an affine variety G that is also a group such that the group multiplication G×
G→G and inversion G→G are morphisms. Show that the set G = GLn(k) of n×n

invertible matrices is an algebraic group (embed this into An2+1
k by A �→ (A,detA)).



32 2 Manifolds and Varieties via Sheaves

2.4 Algebraic Varieties

Fix an algebraically closed field k once again. In analogy with manifolds, we can
define an (abstract) algebraic variety as a k-space that is locally isomorphic to an
affine variety and that satisfies some version of the Hausdorff condition. It will be
convenient to ignore this last condition for the moment. The resulting objects are
dubbed prevarieties.

Definition 2.4.1. A prevariety over k is a k-space (X ,OX) such that X is connected
and there exists a finite open cover {Ui}, called an affine open cover, such that
each (Ui,OX |Ui) is isomorphic, as a k-space, to an affine variety. A morphism of
prevarieties is a morphism of the underlying k-spaces.

Before going further, let us consider the most important nonaffine example.

Example 2.4.2. Let Pn
k be the set of one-dimensional subspaces of kn+1. Using the

natural projection π : An+1−{0} → Pn
k , give Pn

k the quotient topology (U ⊂ Pn
k is

open if and only if π−1U is open). Equivalently, the closed sets of Pn
k are zeros of

sets of homogeneous polynomials in k[x0, . . . ,xn]. Define a function f : U → k to be
regular exactly when f ◦π is regular. Such a function can be represented as the ratio

f ◦π(x0, . . . ,xn) =
p(x0, . . . ,xn)
q(x0, . . . ,xn)

of two homogeneous polynomials of the same degree such that q has no zeros on
π−1U . Then the presheaf of regular functions OPn is a sheaf, and the pair (Pn

k,OPn)
is easily seen to be a prevariety with affine open cover {Ui} as in Example 2.2.13.

The Zariski topology is never actually Hausdorff except in the most trivial cases.
However, there is a good substitute called the separation axiom. To motivate it, we
make the following observation:

Lemma 2.4.3. Let X be a topological space. Then the following statements are
equivalent:

(a) X is Hausdorff.
(b) If f ,g : Y → X is a pair of continuous functions, the set {y ∈Y | f (y) = g(y)} is

closed.
(c) The diagonal Δ = {(x,x) |x ∈ X} is closed in X ×X with its product topology.

Proof. Suppose that X is Hausdorff. If f ,g : Y → X are continuous functions with
f (y0) �= g(y0), then f (y) �= g(y) for y in a neighborhood of y0, so (b) holds.
Assuming that (b), (c) is obtained by applying (b) to the projections p1, p2 : X×X →
X . The final implication from (c) to (a) is clear. 	


We use (b) of the previous lemma as the model for our separation axiom.

Definition 2.4.4. A prevariety (X ,OX ) is said to be a variety, or is called separated,
if for any prevariety Y and pair of morphisms f ,g : Y → X , the set {y ∈ Y | f (y) =
g(y)} is closed. A morphism of varieties is simply a morphism of prevarieties.
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Example 2.4.5. Let X = A1∪A1 glued along U = A1−{0} via the identity, but with
the origins not identified. Then X is a prevariety, but it is not a variety, because the
identity U → X extends to A1 in two different ways by sending 0 to the first or
second copy of A1.

Item (c) of Lemma 2.4.3 gives a more usable criterion for separation. Before
we can formulate the analogous condition for varieties, we need products. These
were constructed for affine varieties in Exercise 2.3.11, and the general case can be
reduced to this. Full details can be found in [92, I§6].

Proposition 2.4.6. Let (X ,OX) and (Y,OY ) be prevarieties. Then the Cartesian
product X ×Y carries the structure of a prevariety such that the projections p1 :
X ×Y → X and p2 : X ×Y → Y are morphisms, and if (Z,OZ) is any prevariety
that maps via morphisms f and g to X and Y , then the map f ×g : Z → X ×Y is a
morphism of prevarieties.

Lemma 2.4.7. A prevariety is a variety if and only if the diagonal Δ is closed in
X ×X.

Proof. If X is a variety, then Δ is closed because it is the locus where p1 and p2

coincide. Conversely, if Δ is closed, then so is {y | f (y) = g(y)}= ( f ×g)−1Δ . 	

Here are some basic examples.

Example 2.4.8. Affine spaces are varieties, since the diagonal Δ ⊂ A2n
k = An

k ×An
k

is the closed set defined by xi = xi+n.

Example 2.4.9. Projective spaces are also varieties. The product can be realized as

the image of the Segre map Pn
k ×Pn

k ⊂ P(n+1)(n+1)−1
k given by

([x0, . . . ,xn], [y0, . . . ,yn]) �→ [x0y0,x0y1, . . . ,xnyn].

The diagonal is given by explicit equations. See Exercise 2.4.14.

Further examples can be produced by taking suitable subsets. Let (X ,OX ) be
an algebraic variety over k. A closed irreducible subset Y ⊂ X is called a closed
subvariety. Given an open set U ⊂ Y , define OY (U) to be the set functions that are
locally extendible to regular functions on X .

Proposition 2.4.10. Suppose that Y ⊂ X is a closed subvariety of an algebraic
variety. Then (Y,OY ) is an algebraic variety.

Proof. Let {Ui} be an open cover of X by affine varieties. Choose an embedding
Ui ⊂AN

k as a closed subset. Then Y ∩Ui ⊂AN
k is also embedded as a closed set, and

the restriction OY |Y∩Ui is the sheaf of functions on Y ∩Ui that are locally extendible
to regular functions on AN

k . Thus (Y ∩Ui,OY |Y∩Ui) is an affine variety. This implies
that Y is a prevariety. Denoting the diagonal of X and Y by ΔX and ΔY respectively,
we see that ΔY = ΔX ∩Y ×Y is closed in X ×X , and therefore in Y ×Y . 	
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It is worth making the description of projective varieties, or closed subvarieties of
projective space, more explicit. A nonempty subset of An+1

k is conical if it contains
0 and is stable under the action of λ ∈ k∗ given by v �→ λv. Given X ⊂ Pn

k , CX =
π−1X ∪ {0} ⊂ An+1

k is conical, and all conical sets arise in this way. If I ⊆ S =
k[x0, . . . ,xn] is a homogeneous ideal, then Z(I) is conical and so corresponds to a
closed subset of Pn

k . From the Nullstellensatz, we obtain a dictionary similar to the
earlier one.

Theorem 2.4.11. Let S+ = (x0, . . . ,xn) be the maximal ideal of the origin. Then
there is a one-to-one correspondence as shown in the table below:

Algebra Geometry
homogeneous radical ideals in S other than S+ algebraic subsets of Pn

homogeneous prime ideals in S other than S+ algebraic subvarieties of Pn

Given a subvariety X ⊆ Pn
k , the elements of OX(U) are functions f : U → k such

that f ◦π is regular. Such a function can be represented locally as the ratio of two
homogeneous polynomials of the same degree.

When k = C, we can use the stronger classical topology on Pn
C introduced in

Example 2.2.13. This is inherited by subvarieties, and is also called the classical
topology. When there is danger of confusion, we write X an to indicate a variety X
with its classical topology. (The superscript an stands for “analytic.”)

Exercises

2.4.12. Given an open subset U of an algebraic variety X , let OU = OX |U . Prove that
(U,OU) is a variety. An open subvariety of a projective (respectively affine) variety
is called quasiprojective (respectively quasiaffine).

2.4.13. Let X = An
k −{0} with n > 2. Show that O(X) ∼= k[x1, . . . ,xn]. Deduce that

X is not isomorphic to an affine variety with the help of Exercise 2.3.10.

2.4.14. Verify that the image of Segre’s embedding Pn × Pm ⊂ P(n+1)(m+1)−1 is
Zariski closed, and the diagonal Δ is closed in the product when m = n.

2.4.15. Prove that O(Pn
k) = k. Deduce that Pn

k is not affine unless n = 0.

2.4.16. Fix an integer d > 0 and let N =
(n+d

d

)− 1. The dth Veronese map vd :
Pn

k → PN
k is given by sending [x0, . . . ,xn] to [v], where v is the vector of degree-d

monomials listed in some order. Show that this map is a morphism and that the
image is Zariski closed.

2.4.17. Given a nonconstant homogeneous polynomial f ∈ k[x0, . . . ,xn], define D( f )
to be the complement of the hypersurface in Pn

k defined by f = 0. Prove that
(D( f ),OPn |D( f )) is an affine variety. (Use the Veronese map to reduce to the case of
a linear polynomial.)
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2.4.18. Suppose that X is a prevariety such that any pair of points is contained in an
affine open set. Prove that X is a variety.

2.4.19. Make the Grassmannian Gk(r,n), which is the set of r-dimensional sub-
spaces of kn, into a prevariety by imitating the constructions of Exercise 2.2.22.
Check that Gk(r,n) is in fact a variety.

2.4.20. After identifying k6 ∼= ∧2k4, Gk(2,4) can be embedded in P5
k by sending the

span of v,w ∈ k4 to the line spanned by ω = v∧w. Check that this is a morphism
and that the image is a subvariety given by the Plücker equation ω ∧ω = 0. Write
this out as a homogeneous quadratic polynomial equation in the coordinates of ω .

2.4.21. Given an algebraic group G (Exercise 2.3.12), an action on a variety X is
a morphism G×X → X denoted by “·” such that (gh) · x = g · (h · x). A variety is
called homogeneous if an algebraic group acts transitively on it. Check that affine
spaces, projective spaces, and Grassmannians are homogeneous.

2.4.22. The blowup of the origin of An
k is the set

B = Bl0An = {(v, �) ∈An
k ×Pn−1

k | v ∈ �}.

Show that this is Zariski closed and irreducible. When k = C, show that B is a
complex submanifold of Cn×Pn−1

C . Show that the morphism π : B → An
k given by

projection is an isomorphism over An
k −{0}.

2.4.23. Given an affine variety X ⊂ An
k containing 0, its blowup is given by

Bl0X = π−1(X −{0})⊂ Bl0An ⊂ An
k ×Pn−1

k .

Given a variety x ∈ X with affine open cover {Ui}, show that there exists a variety
BlxX locally isomorphic to Blx(Ui).

2.5 Stalks and Tangent Spaces

Given two functions defined in possibly different neighborhoods of a point x∈X , we
say they have the same germ at x if their restrictions to some common neighborhood
agree. This is is an equivalence relation. The germ at x of a function f defined near
X is the equivalence class containing f . We denote this by fx.

Definition 2.5.1. Given a presheaf of functions P , its stalk Px at x is the set of
germs of functions contained in some P(U) with x ∈U .

It will be useful to give a more abstract characterization of the stalk using direct
limits (which are also called inductive limits, or filtered colimits). We explain direct
limits in the present context, and refer to [33, Appendix 6] or [76] for a more com-
plete discussion. Suppose that a set L is equipped with a family of maps P(U)→ L,
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where U ranges over open neighborhoods of x. We will say that the family is a com-
patible family if P(U)→ L factors through P(V ) whenever V ⊂U . For instance,
the maps P(U)→Px given by f �→ fx form a compatible family. A set L equipped
with a compatible family of maps is called a direct limit of P(U) if for any M with
a compatible family P(U)→M, there is a unique map L→M making the obvious
diagrams commute. This property characterizes L up to isomorphism, so we may
speak of the direct limit

lim−→
x∈U

P(U).

Lemma 2.5.2. Px = lim−→x∈U
P(U).

Proof. Suppose that φ : P(U) → M is a compatible family. Then φ( f ) = φ( f |V )
whenever f ∈P(U) and x ∈V ⊂U . Therefore φ( f ) depends only on the germ fx.
Thus φ induces a map Px →M as required. 	


All the examples of k-spaces encountered so far (C∞-manifolds, complex mani-
folds, and algebraic varieties) satisfy the following additional property.

Definition 2.5.3. We will say that a concrete k-space (X ,R) is locally ringed if
1/ f ∈R(U) when f ∈R(U) is nowhere zero.

Recall that a ring R is local if it has a unique maximal ideal, say m. The quotient
R/m is called the residue field. We will often convey all this by referring to the triple
(R,m,R/m) as a local ring.

Lemma 2.5.4. If (X ,R) is locally ringed, then for any x∈ X, Rx is a local ring with
residue field isomorphic to k.

Proof. Let mx be the set of germs of functions vanishing at x. For Rx to be local with
maximal ideal mx, it is necessary and sufficient that each f ∈Rx−mx be invertible.
This is clear, since 1/ f |U ∈ R(U) for some x ∈U .

To see that Rx/mx = k, it is enough to observe that the ideal mx is the kernel of
the evaluation map ev : Rx → k given by ev( f ) = f (x), and the map is surjective,
because ev(a) = a when a ∈ k. 	


When (X ,OX ) is an n-dimensional complex manifold, the local ring OX ,x can be
identified with ring of convergent power series in n variables. When X is a variety,
the local ring OX ,x is also well understood. We may replace X by an affine variety
with coordinate ring R = OX (X). Consider the maximal ideal

mx = { f ∈ R | f (x) = 0}.

Lemma 2.5.5. OX ,x is isomorphic to the localization

Rmx =
{

g
f
| f ,g ∈ R, f /∈ mx

}
.



2.5 Stalks and Tangent Spaces 37

Proof. Let K be the field of fractions of R. A germ in OX ,x is represented by a regular
function defined in a neighborhood of x, but this is the fraction f/g∈K with g /∈mx.

	

By standard commutative algebra [8, Corollary 7.4], the local rings of algebraic

varieties are Noetherian, since they are localizations of Noetherian rings. This is
also true for complex manifolds, although the argument is a bit more delicate [46,
p. 12]. By contrast, when X is a C∞-manifold, the stalks are non-Noetherian local
rings. This is easy to check by a theorem of Krull [8, pp. 110–111] that implies that
a Noetherian local ring R with maximal ideal m satisfies ∩n mn = 0. When R is the
ring of germs of C∞ functions on R, then the intersection ∩n mn contains nonzero
functions such as {

e−1/x2
if x > 0,

0 otherwise.

Nevertheless, the maximal ideals are finitely generated.

Proposition 2.5.6. If R is the ring of germs at 0 of C∞ functions on Rn, then its
maximal ideal m is generated by the coordinate functions x1, . . . ,xn.

Proof. See the exercises. 	

In order to talk about tangent spaces in this generallity, it will be convenient to

introduce the following axioms:

Definition 2.5.7. We will say that a local ring R with maximal ideal m and residue
field k satisfies the tangent space conditions if

1. There is an inclusion k ⊂ R that gives a splitting of the natural map R → k.
2. The ideal m is finitely generated.

For stalks of C∞ and complex manifolds and algebraic varieties over k, the residue
fields are respectively R,C, and k. The inclusion of germs of constant functions
gives the first condition in these examples, and the second was discussed above.

Definition 2.5.8. When (R,m,k) is a local ring satisfying the tangent space condi-
tions, we define its cotangent space as T ∗

R = m/m2 = m⊗R k, and its tangent space as
TR = Hom(T ∗R ,k). When X is a manifold or variety, we write Tx = TX ,x (respectively
T ∗

x = T ∗
X ,x) for TOX ,x (respectively T ∗

OX ,x
).

When (R,m,k) satisfies the tangent space conditions, R/m2 splits canonically as
k⊕T ∗x .

Definition 2.5.9. Let (R,m,k) satisfy the tangent space conditions. Given f ∈ R,
define its differential d f as the projection of ( f mod m2) to T ∗

x under the above
decomposition.
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To see why this terminology is justified, we compute the differential when R is
the ring of germs of C∞ functions on Rn at 0. Then f ∈ R can be expanded using
Taylor’s formula,

f (x1, . . . ,xn) = f (0)+∑ ∂ f
∂xi

∣∣∣∣
0

xi + r(x1, . . . ,xn),

where the remainder r lies in m2. Therefore d f coincides with the image of the
second term on the right, which is the usual expression

d f =∑ ∂ f
∂xi

∣∣∣∣
0

dxi.

Lemma 2.5.10. d : R→ T ∗
R is a k-linear derivation, i.e., it satisfies the Leibniz rule

d( f g) = f (x)dg + g(x)d f .

Proof. See the exercises. 	

As a corollary, it follows that a tangent vector v∈ TR = T ∗∗

R gives rise to a derivation
δv = v◦ d : R→ k.

Lemma 2.5.11. The map v �→ δv yields an isomorphism between TR and the vector
space Derk(R,k) of k-linear derivations from R to k.

Proof. Given δ ∈ Derk(R,k), we can see that δ (m2) ⊆ m. Therefore it induces a
map v : m/m2 → R/m = k, and we can check that δ = δv. 	

Lemma 2.5.12. When (R,m,k) is the ring of germs at 0 of C∞ functions on Rn

(or holomorphic functions on Cn, or regular functions on An
k). Then a basis for

Derk(R,k) is given by

Di =
∂
∂xi

∣∣∣∣
0
, i = 1, . . . ,n.

A homomorphism F : S → R of local rings is called local if it takes the maximal
ideal of S to the maximal ideal of R. Under these conditions, we get map of cotangent
spaces T ∗

S → T ∗
R called the codifferential of F . When residue fields coincide, we can

dualize this to get a map dF : TR → TS. We study this further in the exercises.
A big difference between algebraic varieties and manifolds is that the former can

be very complicated, even locally. We want to say that a variety over an algebraically
closed field k is nonsingular or smooth if it looks like affine space (very) locally, and
in particular if it is a manifold when k = C. The implicit function suggests a way
to make this condition more precise. Suppose that X ⊆ AN

k is a closed subvariety
defined by the ideal ( f1, . . . , fr) and let x ∈ X . Then x ∈ X should be nonsingular
if the Jacobian matrix ( ∂ fi

∂x j
|x) has the expected rank N − dimX , where dimX can

be defined as the transcendence degree of the function field k(X) over k. We can
reformulate this in a more intrinsic fashion thanks to the following:

Lemma 2.5.13. The vector space TX ,x is isomorphic to the kernel of ( ∂ fi
∂x j
|x).
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Proof. Let R = OAN ,x, S = OX ,x
∼= R/( f1, . . . , fr) and π : R→ S be the natural map.

We also set J = ( ∂ fi
∂x j
|x). Then any element δ ′ ∈Derk(S,k) gives a derivation δ ′ ◦π ∈

Derk(R,k), which vanishes only if δ ′ vanishes. A derivation in δ ∈Derk(R,k) comes
from S if and only if δ ( fi) = 0 for all i. We can use the basis ∂/∂x j|x to identify
Derk(R,k) with kN . Putting all of this together gives a commutative diagram

0 �� Der(S,k) �� Der(R,k)
δ �→δ ( fi)��

∼=
��

kr

=

��
kN J �� kr

from which the lemma follows. 	

Definition 2.5.14. A point x on a (not necessarily affine) variety X is called a non-
singular or smooth point if dimTX ,x = dimX ; otherwise, x is called singular; X is
nonsingular or smooth if every point is nonsingular.

The condition for nonsingularity of x is usually formulated as saying that the
local ring OX ,x is a regular local ring, which means that dimOX ,x = dimTx [8, 33].
But this is equivalent to what was given above, since dimX coincides with the Krull
dimension [8, 33] of the ring OX ,x. Affine and projective spaces are examples of
nonsingular varieties.

Over C, we have the following characterization.

Proposition 2.5.15. Given a subvariety X ⊂ CN and a point x ∈ X, the point x is
nonsingular if and only if there exists a neighborhood U of x in CN for the classical
topology such that X ∩U is a closed complex submanifold of CN, with dimension
equal to dimX.

Proof. This follows from the holomorphic implicit function theorem
[66, Theorem 2.1.2]. 	

Corollary 2.5.16. Given a nonsingular algebraic subvariety X of An

C or Pn
C, the

space X an is a complex submanifold of Cn or Pn
C.

Finally, we note the following result:

Proposition 2.5.17. The set of nonsingular points of an algebraic variety forms an
open dense subset.

Proof. See [60, II Corollary 81.6]. 	
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Exercises

2.5.18. Prove Proposition 2.5.6. (Hint: given f ∈m, let

fi =
∫ 1

0

∂ f
∂xi

(tx1, . . . ,txn)dt.

Show that f = ∑ fixi.)

2.5.19. Prove Lemma 2.5.10.

2.5.20. Let F : (X ,R)→ (Y,S ) be a morphism of locally ringed k-spaces. If x ∈ X
and y = F(x), check that the homomorphism F∗ : Sy → Rx taking a germ of f to
the germ of f ◦F is well defined and is local. Conclude that there is an induced
linear map dF : Tx → Ty, called the differential or derivative.

2.5.21. Let F : Rn → Rm be a C∞ map taking 0 to 0. Calculate dF : T0 → T0, con-
structed above, and show that this is given by a matrix of partial derivatives.

2.5.22. Check that with the appropriate identification given a C∞ function on X
viewed as a C∞ map from f : X → R, d f in the sense of Definition 2.5.9 and in
the sense of the previous exercise coincide.

2.5.23. Check that the operation (X ,x) �→ Tx determines a functor on the category
of C∞-manifolds and base-point-preserving maps. (The definition of functor can be
found in §3.1.) Interpret this as the chain rule.

2.5.24. Given a Lie group G with identity e, an element g ∈ G acts on G by h �→
ghg−1. Let Ad(g) : Te → Te be the differential of this map. Show that Ad defines a
homomorphism from G to GL(Te) called the adjoint representation.

2.5.25. The ring of dual numbers D is defined as k[ε]/(ε2). Let (R,m,k) be a local
ring satisfying the tangent space conditions. Show that TR is isomorphic to the space
of k-algebra homomorphisms Homk-alg(R,D).

2.5.26. Prove the identity det(I + εA) = 1 + trace(A)ε for square matrices over D.
Use this to prove that the tangent space TI to SLn(k) is isomorphic to the space of
trace-zero n× n matrices, where SL− n(k) is the group of matrices with determi-
nant 1.

2.5.27. If f (x0, . . . ,xn) is a homogeneous polynomial of degree d, prove Euler’s
formula∑xi

∂ f
∂xi

= d · f (x0, . . . ,xn). Use this to show that the point p on the projective
hypersurface defined by f is singular if and only if all the partials of f vanish at p.
Determine the set of singular points defined by x5

0 + · · ·+ x5
4−5x0 · · ·x4 in P4

C.

2.5.28. Prove that if X ⊂ AN
k is a variety, then dimTx ≤ N. Give an example of a

curve in AN
k for which equality is attained, for N = 2,3, . . . .

2.5.29. Give a direct proof of Proposition 2.5.17 for hypersurfaces in An
k .

2.5.30. Show that a homogeneous variety is nonsingular.
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2.5.31. Let f (x0, . . . ,xn) = 0 define a nonsingular hypersurface X ⊂ Pn
C. Show that

there exists a hyperplane H such that X ∩H is nonsingular. This is a special case of
Bertini’s theorem.

2.6 1-Forms, Vector Fields, and Bundles

A C∞ vector field on a manifold X is essentially a choice vx ∈ Tx, for each x∈ X , that
varies in a C∞ fashion. The dual notion, called a covector field, a differential form
of degree 1, or simply a 1-form, is easier to make precise. So we start with this.
Given a C∞ function f on X , we can define d f as the collection of local derivatives
d fx ∈ T ∗

x . This is the basic example of a 1-form.

Definition 2.6.1. A C∞ 1-form on X is a finite linear combination ∑gid fi with
fi,gi ∈C∞(X). Let E 1(X) denote the space of these.

Clearly, E 1(X) is a module over the ring C∞(X). Also, given an open set
U ⊂ X , a 1-form can be restricted to U as a

⋃
T ∗

x -valued function. In this way,
U �→ E 1(U) becomes a presheaf and in fact a sheaf. If U is a coordinate neighbor-
hood with coordinates x1, . . . ,xn, then any 1-form on U can be expanded uniquely
as ∑ fi(x1, . . . ,xn)dxi with C∞ coefficients. In other words, E 1(U) is a free module
with basis dxi. The module E 1(X) is generally not free.

Now we can define vector fields as the dual in the appropriate sense. Let 〈,〉
denote the pairing between Tx and T ∗x .

Definition 2.6.2. A C∞ vector field on X is a collection of vectors vx ∈ Tx, x ∈ X ,
such that the map x �→ 〈vx,d fx〉 lies in C∞(U) for each open U ⊆ X and f ∈C∞(U).
Let T (X) denote the set of vector fields.

The definition is rigged to ensure that any D ∈ T (X) defines a derivation
C∞(U)→ C∞(U) by f �→ 〈D,d f 〉. It can be seen that T is a sheaf of

⋃
Tx-valued

functions. If U is a coordinate neighborhood with coordinates x1, . . . ,xn, then any
vector fields on U are given by ∑ fi∂/∂xi.

There is another standard approach to defining vector fields on a manifold X . The
disjoint union of the tangent spaces TX =

⋃
x Tx can be assembled into a manifold

called the tangent bundle TX , which comes with a projection π : TX → X such that
Tx = π−1(x). We define the manifold structure on TX in such a way that the vector
fields correspond to C∞ cross sections. The tangent bundle is an example of a struc-
ture called a vector bundle. In order to give the general definition simultaneously in
several different categories, we will fix a choice of:

(a) a C∞-manifold X and the standard C∞-manifold structure on k = R,
(b) a C∞-manifold X and the standard C∞-manifold structure on k = C,
(c) a complex manifold X and the standard complex manifold structure on k = C,
(d) an algebraic variety X with an identification k ∼= A1

k .

A rank-n vector bundle is a map π : V → X that is locally a product X × kn → X .
Here is the precise definition.
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Definition 2.6.3. A rank-n vector bundle on X is a morphism π : V → X such that
there exist an open cover {Ui} of X and commutative diagrams

π−1Ui

����
��

��
�� φi

∼= �� Ui× kn

����
��

��
��

�

Ui

such that the isomorphisms

φi ◦φ−1
j : Ui∩Uj× kn ∼= Ui∩Uj× kn

are k-linear on each fiber. A bundle is called C∞ real in case (a), C∞ complex in case
(b), holomorphic in case (c), and algebraic in case (d). A rank-1 vector bundle will
also be called a line bundle.

The product X × kn is an example of a vector bundle, called the trivial bundle of
rank n. A simple nontrivial example to keep in mind is the Möbius strip, which is a
real line bundle over the circle. The datum {(Ui,φi)} is called a local trivialization.
Given a C∞ real vector bundle π : V → X , define the presheaf of sections

V (U) = {s : U → π−1U |s is C∞, π ◦ s = idU}.

This is easily seen to be a sheaf. When V = X ×Rn is the trivial vector bundle, a
section is given by (x, f (x)), where f : X → Rn, so that V (X) is isomorphic to the
space of vector-valued C∞ functions on X . In general, a section s ∈ V (U) is deter-
mined by the collection of vector-valued functions on Ui ∩U given by projecting
φi ◦ s to Rn. Thus V (U) has a natural R-vector space structure. Later on, we will
characterize the sheaves, called locally free sheaves, that arise from vector bundles
in this way.

Theorem 2.6.4. Given an n-dimensional manifold X, there exists a C∞ real vector
bundle TX of rank n, called the tangent bundle, whose sheaf of sections is exactly
TX .

Proof. Complete details for the construction of TX can be found in [110, 111,
117]. We outline a construction when X ⊂ RN is a submanifold. (According to
Whitney’s embedding theorem [111], every manifold embeds into a Euclidean
space. So in fact, this is no restriction at all.) Fix standard coordinates y1, . . . ,yN

on RN . We define TX ⊂ X ×RN such that (p;v1, . . . ,vN) ∈ TX if and only if

∑vi
∂ f
∂y j

∣∣∣∣
p

= 0

whenever f is a C∞ function defined in a neighborhood of p in RN such that X∩U ⊆
f−1(0). We have the obvious projection π : TX → X . A sum v = ∑ j g j∂/∂y j, with
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g j ∈C∞(U), defines a vector field on U ⊆ X precisely when (p;g1(p), . . . ,gN(p)) ∈
TX for a p ∈U . In other words, vector fields are sections of TX .

It remains to find a local trivialization. We can find an open cover {Ui} of X by

coordinate neighborhoods. Choose local coordinates x(i)
1 , . . . ,x(i)

n in each Ui. Then
the map

(p;w) �→
⎛⎝p;

⎛⎝ ∂y j

∂x(i)
k

∣∣∣∣∣
p

⎞⎠w

⎞⎠
identifies Ui×Rn with π−1Ui. 	


Tangent bundles also exist for complex manifolds and nonsingular algebraic
varieties. However, we will postpone the construction. An example of an algebraic
vector bundle of fundamental importance is given below.

Example 2.6.5. Projective space Pn
k is the set of lines {�} in kn+1 through 0, and we

can choose each line as a fiber of L. That is,

L = {(x, �) ∈ kn+1×Pn
k |x ∈ �}.

Let π : L → Pn
k be given by projection onto the second factor. Then L is a rank-one

algebraic vector bundle, or line bundle, over Pn
k . It is called the tautological line

bundle. When k = C, this can also be regarded as a holomorphic line bundle or a C∞

complex line bundle.

L is often called the universal line bundle for the following reason:

Theorem 2.6.6. If X is a compact C∞ manifold with a C∞ complex line bundle p :
M → X, then for n� 0, there exists a C∞ map f : X → Pn

C, called a classifying map,
such that M is isomorphic (as a bundle) to the pullback

f ∗L = {(v,x) ∈ L×X |π(v) = f (x)} → X .

Proof. We just sketch the proof. Here we consider the dual line bundle M∗ (see
Exercise 2.6.14). Sections of this correspond to C-valued functions on M that are
linear on the fibers. Choose a local trivialization φi : M|Ui

∼= Ui ×C. A section of
M∗(Ui) can be identified with a function by M∗(Ui) =C∞(Ui)φ−1

i (1). For each point
x∈Ui, we can choose a C∞ function f with compact support in Ui such that f (x) �= 0
(which exists by Exercise 2.6.9). This can be extended by 0 to a global section. Thus
by compactness, we can find finitely many sections f0, . . . , fn ∈ M∗(X) that do not
simultaneously vanish at any point x ∈ X . Therefore we get an injective bundle
map M ↪→ X ×Cn given by v �→ ( f0(v), . . . , fn(v)). Or in more explicit terms, if we
view f j|Ui as functions, M|Ui can be identified with the span of ( f0(x), . . . , fn(x)) in
Ui×Cn.

The maps
x �→ [ f0(x), . . . , fn(x)] ∈ Pn, x ∈Ui,
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are independent of the choice of trivialization. So this gives a map f : X → Pn. The
pullback f ∗L can also be described as the sub-line bundle of X ×Cn spanned by
( f0(x), . . . , fn(x)). So this coincides with M. 	

Remark 2.6.7. When M → X is a holomorphic bundle on a complex manifold, the
map f : X → Pn

C need not be holomorphic. This will follow from Exercise 2.7.13.

Exercises

2.6.8. Show that v = ∑ fi(x) ∂
∂xi

is a C∞ vector field on Rn in the sense of Definition
2.6.2 if and only if the coefficients fi are C∞.

2.6.9. Show that the function

f (x) =

{
exp

(
1

‖x‖2−1

)
if ‖x‖< 1,

0 otherwise,

defines a nonzero C∞-function on Rn with support in the unit ball. Conclude that
any C∞-manifold possesses nonconstant C∞-functions.

2.6.10. Check that L is an algebraic line bundle.

2.6.11. Given a vector bundle π : V → X over a manifold and a C∞ map f : Y → X ,
show that the set

f ∗V = {(y,v) ∈ Y ×V |π(v) = f (y)}
with its first projection to Y determines a vector bundle.

2.6.12. Given a vector bundle V → X with local trivialization φi : V |Ui

∼→Ui × kn,
check that the matrix-valued functions gi j = φ−1

i ◦φ j on Ui∩Uj satisfy the cocycle
identity gik = gi jg jk on Ui∩Uj ∩Uk. Conversely, check that any collection gi j satis-
fying this identity arises from a vector bundle.

2.6.13. Given a vector bundle V with cocycle gi j (as in the previous exercise), show
that a section can be identified with a collection of vector-valued functions fi on Ui

satisfying fi = gi j f j .

2.6.14. Suppose we are given a vector bundle V =
⋃

Vx → X with cocycle gi j. Show
that the union of dual spaces V ∗ =

⋃
V ∗

x can be made into a vector bundle with
cocycle (g−1

i j )T . Show that the sections of the dual of the tangent bundle T ∗
X , called

the cotangent bundle, are exactly the 1-forms.

2.6.15. Let G = G(r,n) be the Grassmannian of r-dimensional subspaces of kn. This
is an algebraic variety by Exercise 2.4.19. Let S = {(x,V ) ∈ kn×G | x ∈V}. Show
that the projection S → G is an algebraic vector bundle of rank 2. This is called the
universal bundle of rank r on G.
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2.6.16. Prove the analogue of Theorem 2.6.6 for rank-r vector bundles: Any rank-
two C∞ complex vector bundle on a compact C∞ manifold X is isomorphic to the
pullback of the universal bundle for some C∞ map X → G(r,n) with n � 0. You
may assume without proof that for any vector bundle π : V → X , there exist finitely
many sections fi that span the fibers Vx = π−1(x).

2.7 Compact Complex Manifolds and Varieties

Up to this point, we have been treating C∞ and complex manifolds in parallel. How-
ever, there are big differences, owing to the fact that holomorphic functions are
much more rigid than C∞ functions. We illustrate this in a couple of ways. In parti-
cular, we will see that the (most obvious) holomorphic analogue to Theorem 2.6.6
would fail. We start by proving some basic facts about holomorphic functions in
many variables.

Theorem 2.7.1. Let Δn be an open polydisk, that is, a product of disks, in Cn.

(1) If two holomorphic functions on Δn agree on a nonempty open set, then they
agree on all of Δn.

(2) The maximum principle: If the absolute value of a holomorphic function f on
Δn attains a maximum in Δn, then f is constant on Δn.

Proof. This can be reduced to the corresponding statements in one variable [1].
We leave the first statement as an exercise and we do the second. Suppose that
| f | attains a maximum at (a1, . . . ,an) ∈ Δ . The maximum principle in one variable
implies that f (z,a2, . . . ,an) is constant. Fixing z1 ∈ Δ , we see that f (z1,z,a3, . . .) is
constant, and so on. 	


We saw in the exercises that all C∞-manifolds carry nonconstant global C∞-
functions. By contrast we have the following:

Proposition 2.7.2. If X is a compact connected complex manifold, then all holo-
morphic functions on X are constant.

Proof. Let f : X → C be holomorphic. Since X is compact, | f | attains a maximum
somewhere, say at x0 ∈ X . The set S = f−1( f (x0)) is closed by continuity. It is also
open by the maximum principle. So S = X . 	

Corollary 2.7.3. A holomorphic function is constant on a nonsingular complex
projective variety.

Proof. Pn
C with its classical topology is compact, since the unit sphere in Cn+1 maps

onto it. Therefore any submanifold of it is also compact. 	

We want to prove a version of Corollary 2.7.3 for algebraic varieties over arbi-

trary fields. We first need a good substitute for compactness. To motivate it, we make
the following observation:



46 2 Manifolds and Varieties via Sheaves

Lemma 2.7.4. If X is a compact metric space, then for any metric space Y , the
projection p : X ×Y → Y is closed.

Proof. Given a closed set Z ⊂ X×Y and a sequence yi ∈ p(Z) converging to y ∈ Y ,
we have to show that y lies in p(Z). By assumption, we have a sequence xi ∈ X such
that (xi,yi) ∈ Z. Since X is compact, we can assume that xi converges to say x ∈ X
after passing to a subsequence. Then we see that (x,y) is the limit of (xi,yi), so it
must lie in Z because it is closed. Therefore y ∈ p(Z). 	

Definition 2.7.5. An algebraic variety X is called complete or proper if for any
variety Y , the projection p : X ×Y → Y is closed, i.e., p takes closed sets to closed
sets.

Theorem 2.7.6. Projective varieties are complete.

Proof. Complete proofs can be found in [60, 92, 104]. We give an outline, leav-
ing the details for the exercises. First, we can reduce the theorem to showing that
π : Pn

k ×Am
k → Am

k is closed for each m,n. This case can be handled by classical
elimination theory [22, §8.5]. A closed set of the product is defined by a collection
of polynomials fi(x0, . . . ,xn,y1, . . . ,ym) homogeneous in the x’s. Let I be the ideal
in k[x0, . . . ,xn,y1, . . . ,ym] generated by the fi. The elimination ideal is defined by

J = {g ∈ k[y1, . . . ,ym] | ∀i∃ei, xei
i g ∈ I}.

Then the image of the projection π(V(I)) is V (J), hence closed. 	

There is an analogue of Proposition 2.7.2.

Proposition 2.7.7. If X is a complete algebraic variety, then all regular functions
on X are constant.

Proof. Let f be a regular function on X . We can view it as a morphism f : X → A1
k .

Since A1
k ⊂ P1

k , we also have a morphism F : X → P1
k given by composition. The

image f (X) is closed, since it coincides with the image of the graph {(x, f (x)) |
x ∈ X} under projection. Similarly, F(X) is closed. Since X is irreducible, the same
is true of f (X). The only irreducible closed subsets of A1

k are points and A1
k itself.

If f (X) = A1
k , then we would be forced to conclude that F(X) was not closed. There-

fore f (X) must be a point. 	

The converse is false (Exercise 2.7.15).

Corollary 2.7.8. An affine variety is not complete, unless it is a point.

Proof. If p,q∈ X are distinct, there exists a regular function such that f (p) = 1 and
f (q) = 0. 	


We can form the sheaf of regular sections of the tautological line bundle L
(Example 2.6.5) on Pn

k , which we denote by OPn
k
(−1) or often simply by O(−1).

We write OPn
an

(−1), or simply OPn(−1) when there is no danger of confusion, for
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the sheaf of holomorphic sections over the complex manifold Pn
C. These examples

are central to algebraic geometry. For any open set U ⊂ Pn
k viewed as a set of lines,

we have
O(−1)(U) = { f : U → kn+1 | f regular and f (�) ∈ �}.

We saw in the course of proving Theorem 2.6.6 that any line has many C∞-
sections. The corresponding statements in the analytic and algebraic worlds are
false:

Lemma 2.7.9. The spaces of global sections O(−1)(Pn
k) and OPn

an
(−1)(Pn

C) are
both equal to 0.

Proof. We prove the first statement. The second is similar. A global section is given
by a regular function f : Pn → kn+1 satisfying f (�) ∈ �. However, f is constant with
value, say, v. Thus v ∈⋂

� = {0}. 	


Exercises

2.7.10. Finish the proof of Theorem 2.7.1 (1).

2.7.11. Check that Theorem 2.7.6 can be reduced to showing that π : Pn
k×Am

k →Am
k

is closed.

2.7.12. In the notation of the proof of Theorem 2.7.6, show that the elimination
ideal J is an ideal and that V (J) = π(V (I)). For the “hard” direction use the projec-
tive Nullstellensatz that V (K) ⊂ Pn

k is empty if and only if K contains a power of
(x0, . . . ,xn).

2.7.13. If f : X →Pn
C is a nonconstant holomorphic function between compact mani-

folds, prove that f ∗OPn(−1) has no nonzero holomorphic sections.

2.7.14. Let O(1) denote the sheaf of holomorphic sections of the dual L∗
(Exercise 2.6.14) of the tautological bundle on Pn

C. Show that O(1) has at least n+1
independent nonzero sections. Using the previous exercise, deduce that
Theorem 2.6.6 will fail for holomorphic maps and line bundles.

2.7.15. Let X = Pn
k − {p} with n > 1. Show that X has no nonconstant regular

functions, and that it is not complete.

2.7.16. Given a variety X , the collection of constructible subsets of X is the Boolean
algebra generated by Zariski open sets. In other words, it is the smallest collection
containing open sets and closed under finite unions, intersections, and complements.
Prove Chevalley’s theorem that a projection p : An

k → Am
k takes constructible sets to

constructible sets.



Chapter 3
More Sheaf Theory

We introduced sheaves of functions in the previous chapter as a convenient language
for defining manifolds and varieties. However, as we will see, there is much more
to this story. In this chapter, we develop sheaf theory in a more systematic fashion.
Presheaves and sheaves are somewhat more general notions than what we described
earlier. We give the full definitions here, and then explore their formal proper-
ties. We define the notion of an exact sequence in the category of sheaves. Exact
sequences and the associated cohomology sequences, given in the next chapter, form
one of the basic tools used throughout the rest of the book. We also give a brief intro-
duction to Grothendieck’s theory of schemes. A scheme is a massive generalization
of an algebraic variety, and quite a bit of sheaf theory is required just to give the
definition.

3.1 The Category of Sheaves

It will be convenient to define presheaves of things other than functions. For
instance, one might consider sheaves of equivalence classes of functions, distribu-
tions, and so on. For this more general notion of presheaf, the restriction maps have
to be included as part of the data:

Definition 3.1.1. A presheaf P of sets (respectively groups or rings) on a topologi-
cal space X consists of a set (respectively group or ring) P(U) for each open set U ,
and maps (respectively homomorphisms) ρUV : P(U)→P(V ) for each inclusion
V ⊆U such that:

1. ρUU = idP(U);
2. ρVW ◦ρUV = ρUW if W ⊆V ⊆U .

We will usually write f |V = ρUV ( f ). Here is a simple example of a presheaf
given abstractly.

,
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Example 3.1.2. Let X be topological space. Then

P(U) =

{
Z if U = X ,

0 otherwise,

with all ρUV = 0, is a presheaf.

A more natural class of examples, which arises frequently, is given by the
quotient construction.

Example 3.1.3. Let P be a presheaf of abelian groups. Then a subpresheaf P ′ ⊆P
is a collection of subgroups P ′(U)⊆P(U) stable under the restriction maps ρUV .
The presheaf quotient is given by

(P/P ′)P(U) = P(U)/P(U)′

with the induced restrictions. (This somewhat clumsy notation is used to distinguish
this from the quotient sheaf to be defined later on.)

The definition of a sheaf carries over verbatim.

Definition 3.1.4. A sheaf P is a presheaf such that for any open cover {Ui} of U
and fi ∈P(Ui) satisfying fi|Ui∩Uj = f j|Ui∩Uj , there exists a unique f ∈P(U) with
f |Ui = fi. We also require that P( /0) consist of a single element (which is necessarily
0 for sheaves of abelian groups).

In English, this says that a collection of local sections can be patched together
uniquely provided they agree on the intersections. We have already seen plenty
of examples of presheaves that are not sheaves. With this more general defini-
tion comes more pathologies. When X has a nontrivial open cover {Ui �= X},
Example 3.1.2 is not a sheaf, because the local sections 0 ∈P(Ui) can be patched
in many ways. More examples of nonsheaves arise as presheaf quotients (see the
exercises).

Definition 3.1.5. Given presheaves of sets (respectively groups) P,P ′ on the same
topological space X , a morphism f : P →P ′ is a collection of maps (respectively
homomorphisms) fU : P(U)→ P ′(U) that commute with the restrictions. Given
morphisms f : P →P ′ and g : P ′ →P ′′, the compositions gU ◦ fU determine a
morphism P →P ′′. The collection of presheaves of abelian groups and morphisms
with this notion of composition constitutes a category PAb(X).

Definition 3.1.6. The category Ab(X) is the full subcategory of PAb(X) generated
by sheaves of abelian groups on X . In other words, objects of Ab(X) are sheaves,
and morphisms are defined in the same way as for presheaves.

A special case of a morphism is the notion of a subpresheaf of a presheaf P ′ ⊆
P defined above. We call this a subsheaf if both objects are sheaves.

Example 3.1.7. Given a sheaf of rings of functions R over X , and f ∈ R(X), the
collection of maps R(U)→R(U) given by multiplication by f |U is a morphism.
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Example 3.1.8. Let X be a C∞ manifold. Then the differential d : C∞X → E 1
X given in

Section 2.6 is a morphism of sheaves.

Example 3.1.9. Let Y be a closed subset of a k-space (X ,OX ). Then the ideal sheaf
associated to Y ,

IY (U) = { f ∈ OX (U) | f |Y∩U = 0},
is a subsheaf of OX .

Example 3.1.10. Let (X ,OX ) be a C∞ or complex manifold or algebraic variety and
Y ⊂ X a submanifold or subvariety. There is a morphism from the presheaf quotient
(OX/IY )P → OY induced by f �→ f |Y .

We now introduce the notion of a covariant functor (or simply functor) F : C1 →
C2 between categories. This consists of a map F : ObjC1 → ObjC2 and maps

F : HomC1(A,B)→ HomC2(F(A),F(B))

for each pair A,B ∈ ObjC1 such that

(F1) F( f ◦ g) = F( f )◦F(g);
(F2) F(idA) = idF(A).

In most cases, we will be content to just describe the map on objects, and leave the
map on morphisms implicit. There are many examples of functors in mathematics:
the map that takes a ring to its group of units, the map that takes a group to its
group ring, the map that takes a topological space with a distinguished point to its
fundamental group, etc.

Contravariant functors are defined similarly but with

F : HomC1(A,B)→ HomC2(F(B),F(A))

and the rule (F1) for composition adjusted accordingly. For example, the dual V �→
V ∗ gives a contravariant functor from the category of vector spaces to itself.

Presheaves are themselves functors (Exercise 3.1.14). We describe a couple of
additional examples involving presheaves.

Example 3.1.11. Let Ab denote the category of abelian groups. Given a space X , the
global section functor Γ : PAb(X)→ Ab is defined by Γ (P) = Γ (X ,P) = P(X)
for objects, Γ ( f ) = fX for morphisms f : P →P ′.

Fix a space X and a point x ∈ X . We define the stalk Px of P at x as the direct
limit lim−→P(U) over neighborhoods of x. The elements can be represented by germs
of sections of P , as in Section 2.5. Given a morphism φ : P → P ′, we get an
induced map Px →P ′

x taking the germ of f to the germ of φ( f ).

Example 3.1.12. The map P �→Px gives a functor from PAb(X)→ Ab.

We have a functor generalizing the construction given in Example 2.1.10 that is
of fundamental importance.
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Theorem 3.1.13. There is a functor P �→ P+ from PAb(X) to Ab(X) called the
sheafification or the associated sheaf, with the following properties:

(a) There is a canonical morphism P →P+.
(b) The map P →P+ induces an isomorphism on stalks.
(c) If P is a sheaf, then the morphism P →P+ is an isomorphism (see the exer-

cises for the precise meaning).
(d) Any morphism from P to a sheaf factors uniquely through P →P+.

Proof. We sketch the construction of P+. We do this in two steps. First, we con-
struct a presheaf of functions P#. Set Y = ∏x∈X Px. We define a sheaf P#

of Y -valued functions and a morphism P → P# as follows. There is a map
σx : P(U)→Px given by

σx( f ) =

{
the germ fx if x ∈U ,

0 otherwise.

Then f ∈P(U) determines a function f # : U → Y given by f #(x) = σx( f ). Let

P#(U) = { f # | f ∈P(U)}.

This yields a presheaf. We have a morphism P(U) → P#(U) given by f �→ f #.
Now apply the construction given earlier in Example 2.1.10 to produce a sheaf
P+ = (P#)s. The composition P(U) → P#(U) ⊂ P+(U) yields the desired
morphism P → P+. This construction is clearly functorial. Parts (b) and (c) are
given in the exercises. For (d), suppose we are given a morphism from a presheaf to
a sheaf P →F . Then we have a morphism P+ →F+ ∼= F . 	


Sheafification is a very useful operation. Many constructions incorporate it as a
finishing step. For example, given a sheaf S and a subsheaf S ′ ⊆S , we define the
quotient sheaf by S /S ′ = ((S /S ′)P)+. Note that (S /S ′)P by itself need not
be a sheaf (see the exercises).

In the exercises, we give an alternative construction of P+. This is based on the
so called étalé space (not to be confused with étale map), which was popular in older
treatments of sheaf theory such as [45].

Exercises

3.1.14. Let X be a topological space. Fix a symbol ∗. Construct a category Open(X),
whose objects are open subsets of X , and let

HomOpen(X)(U,V ) =

{
∗ if U ⊆V,

/0 otherwise.
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Show that a presheaf of sets (or groups. . . ) on Open(X) is the same thing as a contra-
variant functor to the category of sets (or groups. . . ).

3.1.15. Given a presheaf F ∈ PAb(X) and f ∈ F (X), prove that the support
supp( f ) = {x ∈ X | fx �= 0} is closed. Give an example where the support of F ,
supp(F ) = {x ∈ X |Fx �= 0}, is not closed.

3.1.16. Given a presheaf P , show that the morphisms P → P# and P# → P+

given in the proof of Theorem 3.1.13 are isomorphisms on stalks.

3.1.17. A morphism f : P →Q in the category of presheaves or sheaves is called
an isomorphism if there exists a morphism f−1 : Q → P such that f ◦ f−1 and
f−1 ◦ f are both the identity. Show that f is an isomorphism if and only if each fU is
a bijection. If P,Q are sheaves, show that f is an isomorphism if and only if each
fx : Px →Qx is a bijection. This implies Theorem 3.1.13 (c).

3.1.18. A presheaf is called separated if for any fi ∈ P(Ui) satisfying fi|Ui∩Uj =
f j|Ui∩Uj , there exists at most one f ∈ P(U) with f |Ui = fi. Example 3.1.2 is not
separated. Show that P is separated if and only if P ∼= P#.

3.1.19. Let B be a basis for the topology of X . Fix a presheaf F on B, by which we
mean a contravariant functor on B to sets. Suppose that F satisfies the following
version of the sheaf axiom: for any open covering {Ui} ⊂ B of U ∈ B, if fi ∈ F(Ui)
are compatible in the sense that fi|V = f j|V for all Ui∩Uj ⊇V ∈ B, then there exists
a unique f ∈F (U) with fi = f |Ui . Prove that there is at most one extension of F
to a sheaf on X .

3.1.20. Continuing the notion from the previous exercise, prove that the rule

F e(U) = {families fV ∈F (V ), U ⊇V ∈ B, such that fW = fV |W when W ⊆V}

determines the (unique) sheaf on X extending F . Show that this construction is
functorial in the obvious sense.

3.1.21. Given a submanifold or subvariety Y ⊂ X , show that OY is isomorphic to
the quotient sheaf OX/IY . Give an example to show that (OX/IX)P is not a sheaf in
general.

3.1.22. The étalé space of a presheaf P is the disjoint union of stalks Et(P) =⋃
Px. This carries a projection to π : Et(P) → X by sending Px to x. A section

f ∈ P(U) defines a cross section Et( f ) = ( fx) to π over U . We give E(P) the
weakest topology that makes all the Et( f )’s continuous. Prove that the sheaf of
continuous cross sections of π is isomorphic to P+.

3.2 Exact Sequences

The categories PAb(X) and Ab(X) are additive, which means among other things
that Hom(A,B) has an abelian group structure such that composition is bilinear.
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Actually, more is true. These categories are abelian [44, 82, 118], which implies
that they possess many of the basic constructions and properties of the category
of abelian groups. In particular, given a morphism, we can form kernels, cokernels,
and images, characterized by the appropriate universal properties. This is spelled out
more fully in the exercises. Here we just define these operations. Given a morphism
of presheaves f : A →B, we define the presheaf kernel, image, and cokernel by

(pker f )(U) = ker fU : [A (U)→B(U)],
(pim f )(U) = im fU : [A (U)→B(U)],

(pcoker f )(U) = coker fU : [A (U)→B(U)].

This is an isomorphism if fU is an isomorphism for every U , or equivalently if
pker f = pcoker f = 0.

For a morphism of sheaves f : A →B, the sheaf kernel, etc. is given by

ker f = (pker f )+, im f = (pim f )+, coker f = (pcoker f )+.

We may get a better sense of these by looking at the stalks:

(ker f )x = (pker f )x = ker fx : [Ax →Bx],
(im f )x = (pim f )x = im fx : [Ax →Bx],

(coker f )x = (pcoker f )x = coker fx : [Ax →Bx].

We say that f is an isomorphism of sheaves if it is an isomorphism of presheaves.
It is more natural to require that ker f = coker f = 0, but we will see later that this
is equivalent (Lemma 3.2.6).

We can now introduce the notion of exactness in Ab(X) by copying the usual
definition. But first a few words of warning. The notion of exactness is sensitive
to the category in which we work. Below we give the notion of exactness in the
category Ab(X), since this is the most important case. Exactness in PAb(X), even
when the objects are sheaves, is different. This will be clarified in the exercises.

A sequence

A
f→B

g→ C

of sheaves on X is called a complex if g ◦ f = 0. There is a morphism pim( f ) →
pker(g) given by the canonical morphism im( f )U → ker(g)U . This induces a
morphism im( f )→ ker(g).

Definition 3.2.1. A sequence

A
f→B

g→ C

of sheaves on X is called exact if it is a complex and the canonical morphism
im( f )→ ker(g) is an isomorphism of sheaves.

As special cases, we have natural analogues of injective and surjective maps.
Although, it is better to use neutral terminology, we say that a morphism f : A →B



3.2 Exact Sequences 55

of sheaves is a monomorphism (respectively epimorphism) if ker f = 0 (respectively
im f = B).

Lemma 3.2.2. Given a sequence

A
f→B

g→ C

of sheaves on X, the following are equivalent:

(1) The sequence is exact.
(2) For every U:

(a) gU ◦ fU = 0.
(b) Given b ∈ B(U) with g(b) = 0, there exist an open cover {Ui} of U and

ai ∈A (Ui) such that fUi (ai) = b|Ui .

(3) The sequence of stalks

Ax
fx→Bx

gx→ Cx

is exact for every x ∈ X.

Proof. The equivalence of (1) and (2) is clear after unraveling the definition of
exactness. Condition (a) is equivalent to g ◦ f = 0 and (b) to im( f ) = ker(g).

We will prove that (3) implies (2), leaving the remaining direction as an exercise.
Suppose that A →B → C is exact. To simply notation, we suppress the subscript
U . Given a ∈ A (U), we have g( f (a)) = 0, since g( f (a))x = g( f (ax)) = 0 for all
x ∈U . This proves (a).

Given b ∈B(U) with g(b) = 0, then for each x ∈U , bx is the image of a germ
in Ax. Choose a representative ai for this germ in some A (Ui), where Ui is a
neighborhood of x. After shrinking Ui if necessary, we have f (ai) = b|Ui . As x
varies, we get an open cover {Ui} and sections ai ∈A (Ui), as required. 	

Corollary 3.2.3. If A (U) → B(U) → C (U) is exact for every open set U, then
A →B → C is exact.

Exactness can be extended to longer sequences by requiring that the conditions
of Definition 3.2.1 hold for any two adjacent arrows.

Corollary 3.2.4. A sequence of sheaves on X

· · · →A →B → C → ···

is exact if and only if
· · · →Ax →Bx → Cx → ···

is exact for every x ∈ X. In particular, f : A →B is a monomorphism (respectively
epimorphism) if and only if Ax → Bx is injective (respectively surjective) for all
x ∈ X.



56 3 More Sheaf Theory

The key point of this result is that no matter how complicated X and A ,B,C , . . .
appear in the large, exactness is a local issue, and this is what gives the notion its
power. We will let the symbols A ,B,C stand for sheaves for the remainder of this
section unless stated otherwise.

The converse to Corollary 3.2.3 is false, but we do have the following:

Lemma 3.2.5. If
0→A →B → C → 0

is an exact sequence of sheaves, then

0→A (U)→B(U)→ C (U)

is exact for every open set U.

Proof. Let f : A → B and g : B → C denote the maps. By Lemma 3.2.2,
gu ◦ fU = 0. Suppose a ∈ A (U) maps to 0 under f . Then f (ax) = f (a)x = 0 for
each x ∈U (we are suppressing the subscript U once again). Therefore ax = 0 for
each x ∈U , and this implies that a = 0.

Suppose b ∈ B(U) satisfies g(b) = 0. Then by Lemma 3.2.2, there exist an
open cover {Ui} of U and ai ∈ A (Ui) such that f (ai) = b|Ui . Then f (ai|Ui∩Uj −
a j|Ui∩Uj ) = 0, which implies ai|Ui∩Uj −a j|Ui∩Uj = 0 by the first paragraph. Therefore
{ai} patch together to yield an element of a ∈A (U) such that f (a) = b. 	

Lemma 3.2.6. Given a morphism f : A →B of sheaves, the following statements
are equivalent:

(a) f is an isomorphism of sheaves, i.e., fU : A (U)∼= B(U) for each U.
(b) ker f = coker f = 0.
(c) f induces an isomorphism of abelian groups Ax →Bx for each x ∈ X.

Proof. (a) implies that pker f = pcoker f = 0, and therefore ker f = coker f = 0.
Suppose that (b) holds. Then

ker fx = (ker f )x = 0

and
coker fx = (coker f )x = 0.

Therefore fx : Ax
∼= Bx. Finally, (c) implies A (U)∼= B(U) by Lemma 3.2.5. 	


We give some natural examples to show that B(X) → C (X) is not usually
surjective when B → C is an epimorphism.

Example 3.2.7. Consider the circle S1 = R/Z. Then

0→RS1 →C∞S1
d−→ E 1

S1 → 0

is exact. However, C∞(S1)→ E 1(S1) is not surjective.
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To see the first statement, let U ⊂ S1 be an open set diffeomorphic to an open
interval. Then the sequence

0→R→C∞(U)
f→ f ′−→ C∞(U)dx→ 0

is exact by calculus. Thus we get exactness on stalks. The 1-form dx gives a global
section of E 1(S1), since it is translation-invariant. However, it is not the differential
of a periodic function. Therefore C∞(S1)→ E 1(S1) is not surjective.

Example 3.2.8. Let (X ,OX) be a C∞ or complex manifold or algebraic variety and
let Y ⊂ X be a submanifold or subvariety, with i : Y → X denoting inclusion. Define
the sheaf i∗OY on X by i∗OY (U) = OY (U ∩Y ). Then

0→IY → OX → i∗OY → 0

is exact, but the map OX (X) → OY (Y ) need not be surjective. For example, let
X = P1

C with OX the sheaf of holomorphic functions. Let Y = {p1, p2} ⊂ P1 be
a set of distinct points. Then the function f ∈ OY (X) that takes the value 1 on p1

and 0 on p2 cannot be extended to a global holomorphic function on P1, since all
such functions are constant by Liouville’s theorem.

Exercises

3.2.9. Finish the proof of Lemma 3.2.2.

3.2.10. Let f be a morphism of sheaves. Check that the sheafification step is
unnecessary for ker f , i.e., that pker f is a sheaf. Is this true for coker f and im f ?

3.2.11. Let f : A → B be a morphism of sheaves. Show that if g : C → A is a
morphism such that f ◦ g = 0, then it factors uniquely through ker f . Dually show
that if g : B→ C is a morphism such that g◦ f = 0, then it factors uniquely through
coker f . Show that im f is isomorphic to coker[ker f →A ] and to ker[B→ coker f ].

3.2.12. Define a sequence of presheaves A
f→ B

g→ C to be exact in PAb(X) if
g ◦ f = 0 and pim( f ) ∼= pker(g). Show that this is equivalent to the exactness of
A (U)→B(U)→ C (U) for every U . Show that if a sequence of sheaves is exact
in PAb(X), then it is exact in the sense of Definition 3.2.1, but that the converse can
fail.

3.2.13. LetΓc(F )⊆F (X) consist of sections f whose support supp( f ) is compact.
Prove that a short exact sequence A →B→ C of sheaves gives an exact sequence
0→ Γc(A )→ Γc(B)→ Γc(C ).

3.2.14. Let i : Y → X be as in Example 3.2.8. Show that the stalk (i∗OY )x is
equal to OY,x if x ∈ Y , and (i∗OY )x = 0 if x /∈ Y . Verify that the sequence in the
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example is exact. Show that the restriction to Y given by i∗OY |Y (U ∩Y ) = i∗OY (U)
is well defined and coincides with OY .

3.2.15. Let U ⊆ C be open. Show that there is an exact sequence of sheaves

0→ ZU →OU → O∗
U → 1,

where OU (respectively O∗
U ) is the sheaf of (nowhere zero) holomorphic functions,

and the second map sends f to exp(2π i f ). Give an example where the last map on
global sections is not surjective.

3.2.16. Let U ⊆ R2 be open. Characterize im(∇), where ∇ : C∞U → (C∞U )2 is the

gradient ∇( f ) = ( ∂ f
∂x , ∂ f

∂y ). Show that the map on global sections Γ (U,C∞U ) →
Γ (U, im∇) need not be surjective.

3.3 Affine Schemes

A scheme is a massive generalization of the notion of an algebraic variety. The
canonical reference is Grothendieck and Dieudonné’s “Eléments de géométrie
algébrique” or EGA [55]. In spite of the title, it is certainly not casual reading.
Hartshorne’s book [60] has become the standard introduction to these ideas for most
people. Somewhat less austere (and less comprehensive) treatments can be found in
[34, 92, 104]. We will give a brief introduction to scheme theory in order to gain
a deeper understanding of algebraic varieties. Since we do not want to give a full-
blown treatment of the subject, we will use a much more limited notion of scheme
in this book. To be clear, schemes in our sense are equivalent to Grothendieck’s
schemes that are locally of finite type over an algebraically closed field k.

Perhaps a few words of motivation are in order. In classical algebraic geometry,
we want to consider the line y = 0 as somehow different from the degenerate conic
y2 = 0, even though they are the same as sets; the latter is the limiting case of an
honest conic. We can do this by keeping track of multiplicities. However, in many
situations it is useful to keep track of finer information. It will be instructive to look
at another example. Imagine a collection of n distinct points p1(t), . . . , pn(t) ∈ X =
Ad

k converging to a common value q as t → 0. Then as a first approximation, the limit
of the set can be considered as nq. But we can get a finer portrait by considering the
limit of the defining ideal of the set {pi(t)}, and then forming the corresponding
geometric object, which would be subscheme of X . To make the comparison of
these two approaches clearer, let us form a new affine variety

SnX = X ×·· ·×X︸ ︷︷ ︸
n times

/Sn, (3.3.1)

called the nth symmetric product. (The precise construction will be given in the
exercises.) The points of this variety can be thought of as formal sums, called cycles,
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m1 p1 + · · ·+ mr pr with pi ∈ X , mi ≥ 0, and m1 + · · ·+ mr = n. When d = 1, these
cycles are in bijection with the set of ideals I⊂ k[x] with vector space codimension n.
The correspondence is given by associating I = (∏(x− pi)mi) with the cycle above.
For any d, let HilbnX denote the set of ideals I ⊂ k[x1, . . . ,xd ] with codim I = n. The
ideals I define sets of points Z(I) = {p1, . . . , pr}, and more. We have multplicities
mi = dimOpi/IOpi , where Opi are the localizations of k[x1, . . . ,xd ] at the maximal
ideals at the pi. Thus we can map HilbnX → SnX by sending I to the set of points
Z(I) = {p1, . . . , pr} with multplicities mi. As we saw, this map is a bijection when
d = 1, but in general HilbnX has a much richer structure; its points correspond to
subschemes of Ad

k supported at the points Z(I). What is remarkable is that HilbnX
itself carries the structure of a scheme. This nonclassical object is very important in
algebraic geometry; we will encounter it again much later on.

We start with an ad hoc construction. In Examples 3.1.9 and 3.2.8 and Exer-
cise 3.2.14, we saw how to define the ideal sheaf IY of a subvariety Y ⊂ An

k , and
use it to recover OY as the restriction of (OAn/IY )|Y . The space of global sections
IY (An

k) is the radical ideal defining Y . We can refine this picture by starting with an
arbitrary ideal I ⊂ k[x1, . . . ,xn]. Define a sheaf

Ĩ(U) = IOAn(U) =
{

f
g
| g ∈ k[x1, . . . ,xn] is nowhere 0 on U , f ∈ I

}
on An

k . This is an ideal sheaf in the sense that Ĩ(U) ⊂ OAn(U) is an ideal for each
U . The quotient OAn/Ĩ is an abstract sheaf of rings on An

k supported on Z(I), so we
identify this with its restriction to Z(I). The pair (Z(I),OAn /Ĩ), which is an example
of an abstract ringed space, is the subscheme of An

k defined by I.
Although it is not obvious from the way we obtained it, the isomorphism class

of the pair (Z(I),OAn /Ĩ) depends only on the affine algebra, by which we mean a
finitely generated algebra, k[x1, . . . ,xn]/I. This is called the affine scheme associated
with this algebra. Since this is quite an important point, we give an alternative con-
struction starting from the algebra. We use the case of varieties as a guide. As we
saw in Section 2.3, the underlying topological space associated with an affine variety
X can be identified with Specm R, where R = O(X) is the coordinate ring. It remains
to describe the sheaf. We have some flexibility in doing this, since we will no longer
insist that it be a sheaf of k-valued functions. We will realize it as a subsheaf of the
constant sheaf associated with the function field k(X).

Lemma 3.3.1. Suppose that X is an affine variety, which we identify with
Specm O(X). Then OX (U) is simply the intersection of the localizations⋂

m∈U

O(X)m = { f ∈ k(X) | ∀m ∈U, f /∈ m}.

Proof. Since regular functions are rational, we have an embedding OX(U)⊂ k(X).
A rational function F ∈ k(X) lies in OX(U) exactly when for every x ∈ X , we can
express F = f/g such that f ,g ∈O(X) and g(x) �= 0. This is equivalent to requiring
that F ∈ O(X)mx for each x. 	
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The above description of the structure sheaf does not generalize well to rings
that are not integral domains. So we need an alternative construction. First note that
localizations R[1/ f ] = f−1R can be defined for any ring by formally inverting f [8].
The elements of this ring are equivalence classes of fractions r/ f n, with r ∈R,n∈N,
where r/ f n ∼ r f m/ f n+m. The canonical map R → R[1/ f ] given by r �→ r/1 need
no longer be injective; its kernel is the set of elements annihilated by powers of
f . More generally, one can form localizations with respect to any set of elements
closed under multiplication [8]. In particular, if p ⊂ R is a prime ideal, we define
Rp = (R− p)−1R.

Proposition 3.3.2. Let R be an affine k-algebra. There exists a sheaf of rings OX on
X = Specm R such that

(a) OX(D( f ))∼= R
[

1
f

]
and the restrictions OX (D( f ))→OX (D(g f )) can be identi-

fied with the natural maps R
[

1
f

]
→ R

[
1

g f

]
.

(b) If R is the coordinate ring of an affine algebraic variety X, then OX (U) is
isomorphic to the ring of regular functions on U.

(c) The stalk OX ,p at p ∈ X is isomorphic to the localization Rp.

Proof. The rule OX (D( f )) = R[1/ f ] given in (a) determines a presheaf on the basis
{D( f )} in the sense of Exercise 3.1.19. We want to show that it is a sheaf. Suppose
that {D( fi)}i∈I covers D( f ), and that gi ∈ R[1/ fi] is a collection of elements such
that the images of gi and g j in R[1/ fi f j] coincide. Our goal is to find a unique
element of R[1/ f ] whose images are the gi. To simplify notation, we assume that
f = 1. Also there is no loss in assuming that the index set I = {1, . . . ,n} is finite,
because X is quasicompact. Then we can write gi = hi/ f N

i for some fixed N. Thus
we have

f N
j hi = f N

i h j.

By assumption, Z( f N
1 , . . . , f N

n ) = X −∪D( fi) = /0. Therefore by the Nullstellensatz,
( f N

1 , . . . , f N
n ) is the unit ideal, or equivalently

1 =∑ pi f N
i (3.3.2)

for some pi ∈ R. Set g = ∑ pihi ∈ R. Then by (3.3.2),

f N
j g =∑

i
f N

j pihi =∑
i

f N
i pih j = h j = f N

j g j.

Therefore g maps to the g j for each j. To see that g is unique, suppose that g′ ∈ R is
another such element. Then g−g′ is annihilated by the powers f N

i (after increasing
N if necessary). Therefore g−g′ = 0 by (3.3.2).

By the previous paragraph and Exercise 3.1.20, OX (D( f )) = R[1/ f ] extends
uniquely to a sheaf on X . This proves (a). When X is an affine variety, the sheaf
of regular functions satisfies the conditions of (a). Therefore by uniqueness, it must
coincide with the extension just given.
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For the last statement, note that when f /∈ p, there are natural maps R[1/ f ]→ Rp

that induce a homomorphism

lim−→
f /∈p

R[1/ f ]→ Rp,

which is easily checked to be an isomorphism. 	

Definition 3.3.3. Let R be an affine k-algebra. The k-ringed space (Specm R,
OSpecm R) is the affine scheme associated to R.

Examples include affine varieties. A nonclassical example is the “fat point”
Specm k[ε]/(ε2). As a topological space, it is not particularly interesting, since it
consists of one point. However, as a scheme, it is very interesting. As we shall see,
morphisms from it to other schemes are the same thing as tangent vectors.

Exercises

3.3.4. For a general commutative ring R, Specm R is not well behaved. For instance,
it is not functorial in general. It is better to consider the set of all prime ideals SpecR.
Show that the sets of the form V (I) = {p ∈ SpecR | I ⊆ p}, where I ⊂ R is an ideal,
form the closed sets of a topology, again called the Zariski topology.

3.3.5. Show that the inclusion Specm R ⊂ SpecR is continuous, and that a prime
ideal p is maximal if and only if {p} is closed in SpecR.

3.3.6. Define a sheaf OSpec R such that OSpec R((D( f )) ∼= R[1/ f ], where D( f ) =
SpecR−V( f ). The pair (SpecR,OSpec R) is Grothendieck’s affine scheme associated
to R.

3.3.7. Let X = Ad
k = Specm k[x1, . . . ,xd ], and let R = k[xi j] with 1≤ i≤ d 1≤ j ≤ n.

The symmetric group Sn acts by σ(xi j) = xi,σ( j). The nth symmetric product SnX is
the affine scheme Specm k[xi j]Sn associated with the ring of invariant polynomials.
Show that the points of SnX are exactly as described in (3.3.1).

3.3.8. Show that SnA1 ∼= An and that SnAd is singular when d > 1.

3.3.9. Let 〈,〉 denote the standard inner product on R2. A strongly convex rational
cone in R2 is a subset of the form

σ = {t1v1 + t2v2 | ti ∈ R, ti ≥ 0}

with nonproportional vectors vi ∈Z2 called generators. For each such cone σ , define
Rσ to be the subspace of k[x,x−1,y,y−1] spanned by xmyn for all (m,n) ∈ σ ∩Z2.
Show that this an affine domain. The variety Specm Sσ is called a two-dimensional
affine toric variety. Show that A2,A1 × k∗ and k∗ × k∗ are of this form. We will
continue this in the next set of exercises. A general reference for toric varieties
is [41].
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3.4 Schemes and Gluing

Once again, we fix an algebraically closed field k. Our goal is to define more general
schemes and methods for constructing them, with an eye toward gaining a better
understanding of algebraic varieties. Just as the building blocks of general varieties
are affine varieties, schemes are built from affine schemes.

Definition 3.4.1. Let R be a sheaf of (commutative) k-algebras over a space X . The
pair (X ,R) is called a k-ringed (or usually just ringed) space. It is called locally
ringed if in addition all the stalks are local rings.

For example, any concrete locally ringed k-space (§2.5) or an affine scheme is
a locally ringed k-space. We will formulate the notion of morphisms between such
spaces later on. For the moment, we will be content to explain isomorphisms in a
somewhat ad hoc manner.

Definition 3.4.2. An isomorphism of ringed spaces f : (X ,R)→ (Y,S ) is a homeo-
morphism f : X → Y together with a collection of algebra isomorphisms f ′ :
R(U)→S ( f (U)) compatible with restriction.

Definition 3.4.3. A k-scheme (in our sense) is a k-ringed space that is locally
isomorphic to an affine scheme (Specm R,OSpecm R). (Note that it is necessarily
locally ringed.)

Example 3.4.4. Prevarieties are schemes.

Example 3.4.5. Any affine scheme is a scheme.

By definition schemes, and hence varieties, can be specified by gluing a collec-
tion of affine schemes together. This is similar to giving a manifold by specifying
an atlas for it. Let us describe the process explicitly for a pair of affine schemes. Let
X1 = Specm R1 and X2 = Specm R2, and suppose we have an isomorphism

φ : R1

[
1
r1

]
∼= R2

[
1
r2

]
for some ri ∈ Ri. Then we have a corresponding diagram of schemes

X2 ⊃ D(r2)
Φ∼= D(r1)⊂ X1.

We can define the set X = X1 ∪Φ X2 as the disjoint union modulo the equivalence
relation x ∼ Φ(x) for x ∈ D(r2). We can equip X with the quotient topology, and
then define

OX (U) = {(s1,s2) ∈ O(U ∩U1)×O(U ∩U2) | φ(s1) = s2}.

Then X becomes a scheme with {Xi} as an open cover.
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Example 3.4.6. Setting

R1 = k[x], r1 = x, R2 = k[y], r2 = y, φ(x) = y−1,

or more suggestively
R1 = k[x], R2 = k[x−1],

yields X = P1
k .

Example 3.4.7. Take two copies of the plane

X1 = Specm k[x, t],

X2 = Specm k[xt, t−1],

glued along Specm k[x, t,t−1] via the obvious identification. We obtain the blowup
of A2

k at (0,0), which was described more geometrically in Exercise 2.4.22.

More than two schemes can be handled in a similar way, although the datum is a
bit more cumbersome. It consists of rings Ri and isomorphisms

φ ji : Ri

[
1
ri j

]
∼= R j

[
1
r ji

]
. (3.4.1)

These are subject to a compatibility, or cocycle, condition that the isomorphisms

Ri

[
1

ri jrik

]
∼= Rk

[
1

rkirk j

]
induced by φik and φi jφ jk coincide, and φii = id, φ ji = φ−1

i j . Then the spectra
Specm Ri can then be glued as above. This is described in the exercises. For an
abstractly given scheme X to arise from such a construction it suffices to have a
finite affine open cover {Ui} such that Ui ∩Uj is also affine. For this, it would be
sufficient to assume that X is quasicompact and separated. The last condition means
that the diagonal in X ×X is closed. In particular, this applies to varieties, which is
the case we are really interested in.

Example 3.4.8. Let
Ri = k[x0i, . . . , x̂ii, . . . ,xni]

with gluing isomorphisms determined by

φ ji(xai) = x−1
i j xa j.

Then the glued scheme is precisely Pn
k . This becomes much clearer if we identify

xai = xa/xi for homogeneous coordinates xi. Then {Specm Ri} is the standard cover-
ing by the affine spaces defined by xi �= 0.

The double cover of An
k branched along f (x1, . . . ,xn) = 0 is simply given by

y2 − f (x1, . . . ,xn) = 0 in An+1
k . The projective version is a bit more complicated.

It can be described conveniently by a gluing construction.
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Example 3.4.9. Let f (x0, . . . ,xn) ∈ k[x0, . . . ,xn] be a homogeneous polynomial of
degree 2d. In outline, the double cover of Pn branched along f = 0 is given by

Ri = k

[
x0

xi
, . . . ,

xn

xi
,

y

xd
i

]
/

((
y

xd
i

)2

− f

(
x0

xi
, . . . ,

xn

xi

))

with the obvious gluing.

The gluing method can be used to construct normalizations mentioned in
Theorem 1.5.1.

Proposition 3.4.10. If X is a variety, then there exist a variety X̃ and a continuous
map π : X̃ → X such that for any affine open U ⊆ X, OX̃ (π−1U) is the integral
closure of X.

Remark 3.4.11. π is in fact a morphism, although we defer this to the exercises at
the end of §3.7.

Proof. As pointed out above, X can be obtained by a gluing construction applied
to a finite number of affine domains Ri. Let R̃i be their integral closures. These are
again affine by [33, Corollary 13.13]. The gluing isomorphisms

φ ji : Ri

[
1
ri j

]
∼= R j

[
1
r ji

]
extend to isomorphisms

φ̃i j : R̃i

[
1
ri j

]
∼= R̃ j

[
1
r ji

]
satisfying the compatability conditions. Thus X̃ can be constructed by gluing
Spec R̃i. The maps Specm R̃→ Specm Ri glue to yield π . 	


Further important examples of gluing are discussed in the exercises.

Exercises

3.4.12. Suppose we are given gluing data {Ri,φi j} as described in (3.4.1). Let ∼ be
the equivalence relation on the disjoint union

⋃
Specm Ri generated by x ∼ φ∗i j(x).

Show that X =
⋃

Specm Ri/∼ can be made into a scheme with Specm Ri as an open
affine cover.

3.4.13. An r-fold cyclic cover of affine space is described by the equation yr =
f (x1, . . . ,xn).

3.4.14. An n-jet on a scheme X is a morphism from Speck[ε]/(εn+1) to X . Give an
interpretation of these similar to Lemma 3.7.8.
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Fill in the details for Example 3.4.9, and generalize this to describe cyclic covers
of Pn

k .

3.4.15. We refer to Exercise 3.3.9 for notation and terminology. Let

σ = {t1v1 + t2v2 | ti ∈ R, ti ≥ 0}

be a strongly convex rational cone. Show that the dual cone

σ∨ = {v | 〈v,w〉 ≥ 0,∀w ∈ σ}

is also strongly rational convex. Let τ denote either the degenerate cone spanned by
vi or {0}. Show that Rτ∨ is a localization of Rσ∨ at a single element rστ . Given a
second strongly convex rational cone σ ′ with σ ∩σ ′ = τ , show that Rσ∨ [1/rστ ] and
Rσ ′∨ [1/rσ ′τ ] can be identified. Therefore their spectra can be glued to yield the toric
variety associated with the fan {σ ,σ ′}.

3.4.16. Show that the blowup of A2
k at 0 can be constructed from the fan

where σ1 and σ2 are generated by {(0,1),(1,1)} and {(1,0),(1,1)} respectively.

3.4.17. A fan Δ in R2 is a finite collection of nonoverlapping rational strongly
convex cones. Generalize Exercise 3.4.15 to glue together all the affine toric varieties
Specm Rσ∨ , with σ ∈ Δ .

3.4.18. Show that the toric variety corresponding to the fan

is P2.
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3.5 Sheaves of Modules

Subvarieties or subschemes of affine spaces are given by ideals in polynomial rings.
It is convenient to extend this idea.

Definition 3.5.1. Let (X ,R) be a ringed space. A subsheaf I ⊂R is called an ideal
sheaf if I (U)⊂R(U) is an ideal for every U .

An ideal sheaf determines a sheaf of rings R/I and a subspace called the
support,

supp(R/I ) = {x ∈ X | (R/I )x �= 0}.
Example 3.5.2. The sheaf IY ⊂ OX introduced in Example 3.2.8 is an ideal sheaf.
The support of OX/I is precisely Y .

Example 3.5.3. Given an ideal I ⊂ k[x1, . . . ,xn], we get an associated ideal sheaf

Ĩ(U) = IOAn(U) =
{

f
g
| g ∈ k[x1, . . . ,xn] is nowhere 0 on U , f ∈ I

}
defined in §3.3. The support of the sheaf OAn/I is Z(I), and this sheaf is the
structure sheaf of the scheme Specm(k[x1, . . . ,xn]/I) extended to An

k .

We can construct ideal sheaves on Pn
k fairly concretely as well.

Example 3.5.4. Let I ⊂ S = k[x0, . . . ,xn] be a homogeneous ideal. Let Sd ⊂ be the
set of degree-d polynomials, and let Id = I ∩ Sd . The corresponding ideal sheaf on
Pn is given by

Ĩ(U) =
{

f
g
| ∃d, f ∈ Id,g ∈ Sd &g �= 0 on U

}
.

Note that the support of OPn/Ĩ is Z(I).

Just as in ordinary algebra, it is useful to pass from ideals to more general
modules:

Definition 3.5.5. A sheaf of R-modules or simply an R-module is a sheaf M
such that each M (U) is an R(U)-module and the restrictions M (U) → M (V )
are R(U)-linear.

Clearly ideal sheaves are examples, but there are plenty of others.

Example 3.5.6. Let (X ,C∞X ) be a C∞ manifold. Then the space of vector fields on
U ⊂ X is a module over C∞(U) in a way compatible with restriction. Therefore the
tangent sheaf TX is a C∞X -module, as is the sheaf of 1-forms E 1

X .
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Sheaves of modules form a category R-Mod where the morphisms are
morphisms of sheaves M → N such that each map M (U) → N (U) is R(U)-
linear. This is in fact an abelian category. The notion of exactness in this category
coincides with the notion introduced in Section 3.2.

Before giving more examples, we recall the tensor product and related construc-
tions [8, 33, 76].

Theorem 3.5.7. Given modules M1,M2 over a commutative ring R, there exist an
R-module M1⊗R M2 and a map (m1,m2) �→ m1⊗m2 of M1×M2 →M1⊗R M2 that
is bilinear and universal:

(a) (rm+ r′m′)⊗m2 = r(m⊗m2)+ r′(m′ ⊗m2).
(b) m1⊗ (rm+ r′m′) = r(m1⊗m)+ r′(m1⊗m′).
(c) Any map M1×M2 →N satisfying the first two properties is given by φ(m1⊗m2)

for a unique homomorphism φ : M1⊗M2 → N.

Definition 3.5.8. Given a module M over a commutative ring R,

T ∗(M) = R⊕M⊕ (M⊗R M)⊕ (M⊗R M⊗R M) · · ·

becomes a noncommutative associative R-algebra called the tensor algebra with
product induced by ⊗. The exterior algebra ∧∗M (respectively symmetric algebra
S∗M) is the quotient of T ∗(M) by the two-sided ideal generated m⊗m (respectively
(m1⊗m2−m2⊗m1)).

The product in ∧∗M is denoted by ∧. We denote by ∧pM (SpM) the submodule
generated by products of p elements. If V is a finite-dimensional vector space,
∧pV ∗ (respectively SpV ∗) can be identified with the set of alternating (respectively
symmetric) multilinear forms on V in p-variables. After choosing a basis for V , one
sees that SpV ∗ are degree-p polynomials in the coordinates.

These operations can be carried over to sheaves:

Definition 3.5.9. Let M and N be two R-modules.

1. The direct sum M ⊕N is the sheaf U �→M (U)⊕N (U).
2. The tensor product M⊗N is the sheafification of the presheaf U �→M (U)⊗R(U)

N (U).
3. The dual M ∗ of M is the sheafification of the presheafU �→HomR|U (M |U ,R|U).
4. The pth exterior power ∧pM is the sheafification of U �→ ∧pM (U).
5. The pth symmetric power SpM is the sheafification of U �→ SpM (U).

We will see in the exercises that the sheafification step in the definition of M ∗
is unnecessary. We have already encountered this construction implicitly: the sheaf
of 1-forms E 1

X on a manifold is the dual of the tangent sheaf TX . The objects of
classical tensor analysis are sections of the sheaf T ∗(TX ⊕ E 1

X ). A special case of
fundamental importance is the following:

Definition 3.5.10. The sheaf of p-forms on a C∞-manifold is E p
X = ∧pE 1

X .
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We want to describe some examples in the algebraic setting. First, we describe
some standard methods for transferring modules between rings. If f : R → S is
a homomorphism of commutative rings, then any R-module M gives rise to an
S-module S⊗R M, with S acting by s(s1⊗m) = ss1⊗m. This construction is called
extension of scalars. In the opposite direction, an S-module can always be regarded
as an R-module via f . This is restriction of scalars.

Definition 3.5.11. Let R be an affine k-algebra, and M an R-module. Let X =
Specm R. We define an OX -module M̃ by extending scalars M̃(U) = OX(U)⊗R M.
Such a module is called quasicoherent.

When M = I is an ideal in a polynomial ring, M̃ coincides with the ideal sheaf
constructed in Example 3.5.3.

A final source of examples will come from vector bundles. These examples have
a special property.

Definition 3.5.12. A module M over (X ,R) is locally free (of rank n) if every point
has a neighborhood i : U →X such that i−1M is isomorphic to a finite (n-fold) direct
sum i−1Rn = i−1R⊕·· ·⊕ i−1R. (We will usually write M |U instead of i−1M in
the future.)

Let π : V → X be a rank-n C∞ real (or holomorphic or algebraic) vector bundle
on a manifold or variety (X ,R) with a local trivialization {(Ui,φi)}, as discussed in
§2.6. Recall that we have a sheaf

V (U) = {s : U → π−1U is a morphism |π ◦ s = idU}.

Via the trivialization, V (U) can be identified with a submodule of ∏i R(Ui∩U)n.
In this way, V becomes a sheaf of R-modules. The map φi induces an isomorphism
V |Ui

∼= R|nUi
. Thus V is locally free of rank n. Conversely, we will see in Sec-

tion 7.3 that every such sheaf arises in this way. Further examples can be obtained
by applying the linear algebra operations of Definition 3.5.9.

Locally free modules over affine varieties have a simple characterization:

Theorem 3.5.13. Let M be a finitely generated module over an affine domain R. The
following are equivalent:

(a) M̃ is locally free.
(b) Mp is free for all p ∈ Specm R.
(c) M is projective, i.e., A direct summand of a finitely generated free module.

Under these conditions, the function p �→ dimk(p)⊗R M on Specm R is constant
with value equal to the rank, where k(p) is the quotient field of R/p.

Proof. See [15, Chapter II §5.2]. 	

The last statement in the theorem can be strengthened slightly to give a numerical

characterization. Let R be an affine domain with field of fractions K. Any finitely
generated R-module determines a finite-dimensional K-vector space K⊗R M.
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Lemma 3.5.14. A finitely generated R-module M yields a locally free sheaf M̃ if and
only if

dimk(p)⊗R M = dimK⊗R M

for all p ∈ Specm R.

Proof. If M is locally free, the function p �→ dimk(p)⊗R M is constant. Further-
more, Mp is free, so that

dimk(p)⊗R M = dimk(p)⊗Rp Mp = dimK⊗Rp Mp = dimK⊗R M.

Conversely, suppose that dimk(p)⊗R Mp = dimK ⊗R M = n. Choose a set of
elements m1, . . . ,mn ∈M that maps onto a basis of k(p)⊗R Mp. Then these generate
Mp by Nakayama’s lemma [33, Corollary 4.8]. So we get a surjection φ : Rn

p →Mp.
We will check that kerφ = 0, which will imply that Mp is free. Since Rp is a domain,
it suffices to check this after tensoring by K. After doing so, we get a surjection of
n-dimensional vector spaces, which is necessarily an isomorphism. 	


Exercises

3.5.15. Show that M̃ given in Definition 3.5.11 really is a sheaf, and that its stalk at
p is precisely the localization Mp.

3.5.16. Show that duals, direct sums, tensor products, and exterior and symmetric
powers of locally free sheaves are locally free.

3.5.17. Given two R-modules M ,N , define the presheaf H om(M ,N ) by U �→
HomR|U (M |U ,N |U). Show that this is a sheaf. Show that H om(M ,N )∼= M ∗⊗
N when M ,N are locally free.

3.5.18. Given an R-module M over a locally ringed space (X ,R), the stalk Mx is
an Rx-module for any x ∈ X . If M is a locally free R-module, show that then each
stalk Mx is a free Rx-module of finite rank. Show that the converse can fail.

3.5.19. Suppose that X is an affine algebraic variety. Let M be a finitely generated
O(X)-module. Show that there exists a nonempty open set U ⊆ X such that M̃|U is
locally free of rank dimK⊗M, where K is the field of fractions of O(X).

3.5.20. Show that an ideal is free if and only if it is principal. Prove that the ideal
M = (x,y) in R = C[x,y]/(y2− x(x−1)(x−2)) is locally free but not free.

3.5.21. If M ,N are locally free of rank one on (X ,R), show that M ∗ ⊗N ∼= R.
Use this to show that the set of isomorphism classes of such sheaves forms an abelian
group denoted by Pic(X). In the notation of the exercise, show that M is a 2-torsion
element of X = Specm R .
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3.6 Line Bundles on Projective Space

In this section we define and study certain key examples of sheaves that are of
fundamental importance in algebraic geometry. Fix a positive integer n. Let k be
an algebraically closed field, P = Pn

k , and V = kn+1. Let R = k[x0, . . . ,xn] =
⊕

Rd ,
where Rd is the subspace of homogeneous polynomials of degree d. Given an integer
d, define the subsheaf OP(d) of the constant sheaf of rational functions on P by

OP(d)(U)∼=
{

f
g
| ∃e,g ∈ Re, f ∈ Re+d , g nowhere zero on U

}
. (3.6.1)

Of course, we have OP(0) = OP immediately from the definition. We have products

OP(a)⊗OP(b)→OP(a + b).

given by
f
g
⊗ f ′

g′
�→ f f ′

gg′
.

In particular, this shows that OP(d) is an OP-module.

Lemma 3.6.1.

(a) When d ≥ 0, the space of global sections of OP(d) is Rd.
(b) When d < 0, OP(d) has no nonzero global sections.
(c) Each OP(a) is locally free of rank one.
(d) There are natural isomorphisms OP(a)⊗OP(b) ∼= OP(a + b) and OP(a)∗ ∼=

OP(−a).

Proof. Statements (a) and (b) are immediate consequences of the definition (3.6.1),
since the denominator g is necessarily a nonzero constant. From the definition,
we can also identify

OP(d)(Ui) = xd
i OP(Ui), (3.6.2)

where Ui denotes the complement of xi = 0. The remaining statements follows easily
from this. 	


Part of the importance of these sheaves stems from the following fact:

Lemma 3.6.2. The ideal sheaf of any degree-d > 0 hypersurface in P (see
Example 3.5.4) is isomorphic to OP(−d).

Proof. Given a nonzero degree-d homogeneous polynomial h∈Rd , we can see from
(3.6.1) that we have an embedding OP(−d)→OP given by f/g �→ f h/g. The image
is precisely the ideal sheaf defined by h. 	


We claimed earlier that locally free sheaves arise from vector bundles. We can see
this explicitly in these cases. We treat degree −1 here, and the leave the remaining
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cases as exercises. Recall that the tautological line bundle (Example 2.6.5) on pro-
jective space P is given by

L = {(x, �) ∈V ×P | x ∈ �}

with its natural projection to P.

Lemma 3.6.3. OP(−1) is isomorphic to the sheaf L of sections of L.

Proof. By definition,

L (U) = {H : U → kn+1 |H is regular and H(�) ∈ �}.

Thus the components hi of H are regular functions satisfying

hi(x0, . . . ,xn) = λ (x0, . . . ,xn)xi

for some function λ . Rewriting λ = hi/xi, we see that it lies in OP(−1)(U). This
process can be reversed. 	


When k = C, we can pass to the associated complex analytic line bundle associ-
ated with L. Instead of trying to mimic equation (3.6.1) in the analytic category,
we simply define OPan(−1) as the sheaf of holomorphic sections of L, and

OPan(d) =

{
OPan(−1)⊗·· ·⊗OPan(−1) (|d|-times) if d ≤ 0,

OPan(−1)∗ ⊗ · · ·⊗OPan(−1)∗ (d-times) otherwise.

Note that in the sections where we will be working exclusively in the analytic
category, we usually suppress the subscript an.

Exercises

3.6.4. Show that OP(a) ∼= OP(b) implies that a = b. Using the notation of Exer-
cise 3.5.21, conclude that Z⊂ Pic(P).

3.6.5. Let U = Pn+1−{[0, . . . ,0,1]} and let π : U → P denote projection. Show that
this is a line bundle, and that OP(1) is isomorphic to the sheaf of its sections.

3.6.6. Let v : P → PN = P(SdV ) denote the degree-d Veronese map. Show that
{(x, �) ∈ SdV × P | x ∈ v(�)} determines a line bundle over P, and that OP(−d)
is its sheaf of sections.

3.6.7. Choose a point p ∈ P1. Prove that there is an exact sequence

0→ OP1
an
(d−1)→OP1

an
(d)→ Cp → 0,

where Cp(U)= C if p∈U and 0 otherwise. Use this to prove that dimΓ (OP1
an
(d)) =

d + 1 when d ≥ 0.
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3.7 Direct and Inverse Images

It is useful to transfer a sheaf from one topological space to another via a continuous
map f : X → Y . In fact, we have already done this in special cases. We start by
explaining how to push a sheaf on X down to Y .

Definition 3.7.1. Given a presheaf F on X , the direct image f∗F is a presheaf on
Y given by f∗F (U) = F ( f−1U) with restrictions given by

ρ f−1U f−1V : F ( f−1U)→F ( f−1V ).

Lemma 3.7.2. Direct images of sheaves are sheaves.

Proof. Suppose that f : X →Y is a continuous map and F is a sheaf on X . Let {Ui}
be an open cover of U ⊆ Y , and si ∈ f∗F (Ui) a collection of sections that agree
on the intersections. Then { f−1Ui} is an open cover of f−1U , and we can regard
si ∈F ( f−1Ui) as a compatible collection of sections for it. Thus we can patch si to
get a uniquely defined s ∈ f∗F (U) = F ( f−1U) such that s|Ui = si. This proves that
f∗F is a sheaf. 	


Now we want to consider the opposite direction. Suppose that G is a sheaf on Y .
We would like to pull it back to X . We will denote this by f−1G , since f ∗ is reserved
for something related to be defined later on. Naively, we can simply try to define

f−1G (U) = G ( f (U)).

However, this does not yet make sense unless f (U) is open. So as a first step, given
any subset S⊂ Y of a topological space and a presheaf G , define

G (S) = lim→ G (V ) (3.7.1)

as V ranges over all open neighborhoods of S. When S is a point, G (S) is just the
stalk. An element of G (S) can be viewed as germ of a section defined in a neigh-
borhood of S, where two sections define the same germ if their restrictions agree in
a common neighborhood. If S′ ⊂ S, there is a natural restriction map G (S)→ G (S′)
given by restriction of germs. So our naive attempt can now be made precise.

Definition 3.7.3. If G is a presheaf on Y , the presheaf inverse image f PG is a
presheaf on X given by f PG (U) = G ( f (U)) with restrictions as above. The sheaf
inverse image is the sheafification f−1G = ( f PG )+.

Although the definition of f−1 seems much more complicated compared to f∗,
it is in fact just as natural. The picture becomes clearer if we view the inverse image
in terms of its stalks. We then have

( f−1G )x
∼= G f (x), (3.7.2)
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and there is more. As explained in Exercise 3.1.22, the sheaf G determines the étalé
space π : Et(G ) =

⋃
Gy → Y . The étalé space for f−1G is the fiber product

Et( f−1G ) = {(x,g) ∈ X ×Et(G ) | f (x) = π(g)},

so that f−1G is the sheaf of continuous cross sections of the projection
Et( f−1G )→ X .

If f : X → Y is the inclusion of a closed set, we also call f∗F the extension of
F by 0 and f−1G the restriction of G . We often identify F with its extension, and
denote the restriction by G |X .

These operations extend to functors f∗ : Ab(X) → Ab(Y ) and f−1 : Ab(Y ) →
Ab(X) in an obvious way. While these operations are generally not inverses, there
is a relationship. There are canonical morphisms, called adjunctions, α : F →
f∗ f−1F and β : f−1 f∗G → G induced by the restriction maps

F (U)→F ( f ( f−1(U))) = f∗ f PF (U)→ f∗ f−1F (U), U ⊆ Y,

f P f∗G (V ) = G ( f−1( f (V )))→ G (V ), V ⊆ X .

Lemma 3.7.4. There is a natural isomorphism

HomAb(X)( f−1F ,G )∼= HomAb(Y )(F , f∗G )

given by η �→ ( f∗η)◦α . The inverse is given by ξ �→ β ◦ ( f−1ξ ).

In the language of category theory, this says that the functor f−1 is left adjoint to
f∗. The proof will be left as an exercise.

The collection of ringed spaces will form a category. To motivate the definition of
morphism, observe that from a morphism F of concrete k-spaces (X ,R)→ (Y,S ),
we get a morphism of sheaves of rings S → F∗R given by s �→ s◦F .

Definition 3.7.5. A morphism of (k-)ringed spaces (X ,R)→ (Y,S ) is a continuous
map F : X →Y together with a morphism of sheaves of rings (or algebras) F ′ : S →
F∗R.

By Lemma 3.7.4, to give F ′ is equivalent to giving the adjoint map F−1S →R.
Therefore we have the induced ring homomorphism SF(x) →Rx for each x ∈ X .

Definition 3.7.6. If (X ,R) and (Y,S ) are locally ringed, a morphism F : (X ,R)→
(Y,S ) is called a morphism of locally ringed spaces if it satisfies the additional
requirement that the induced maps SF(x) → Rx be local homomorphisms.
A morphism of schemes is simply a morphism of locally ringed spaces

For affine schemes, we have the following description.

Proposition 3.7.7. Let R and S be affine algebras. There is a bijection

HomSchemes((Specm S,OSpecm S),(Specm R,OSpecm R))∼= Homk-alg(R,S).
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Therefore there is an antiequivalence between the category of affine schemes and
affine algebras.

Proof. Let X = Specm S and Y = Specm R. Given a homomorphism f : R → S,
we just construct the corresponding morphism F = f ∗ : X → Y . If m ⊂ S is a maxi-
mal ideal, then f−1m is again a maximal ideal by Hilbert’s Nullstellensatz. So we
can define F(m) = f−1m. It is easy to see that F is continuous. The induced homo-
morphisms R[1/r]→ S[1/ f (r)] yield morphisms OY →F∗OX of sheaves of rings on
basic open sets, and therefore on their extensions. The maps on stalks are the
induced local homomorphisms fm : RF(m) → Sm. Therefore F is a morphism of
schemes.

In the opposite direction, a morphism F : X → Y induces a homomorphism R =
O(Y )→O(X) = S. This yields the inverse. The remaining details will be left as an
exercise. 	


The simplest example of a scheme that is not a variety is the fat point
Specm k[ε]/(ε2). This has the following interesting property.

Lemma 3.7.8. If X is a scheme, the set of morphisms from Specm k[ε]/(ε2) to X is
in one-to-one correspondence with the set of vectors in the disjoint union of tangent
spaces ∪Tx.

Proof. The scheme D = Specm k[ε]/(ε2) has a unique point m = (ε). We show
that the set of morphisms i : D → X with i(m) = x is in one to one correspon-
dence with Tx. To give such a morphism is equivalent to giving a morphism of
D to a neighborhood of x. Therefore, we may replace X by an affine scheme
Specm R. By Proposition 3.7.7, D → Specm R corresponds to an algebra homomor-
phism i∗ : R→ k[ε]/(ε2) such that (i∗)−1m = mx. The map i∗ factors through R/m2

x .
We can see that any homomorphism

h : R/m2
x = k⊕mx/m2

x → k[ε]/(ε2) = k⊕ kε

is given by h(a,b) = a+v(b)ε for v∈ Tx = (mx/m2
x)
∗. The argument can be reversed

to show that conversely, any vector in v ∈ Tx determines an algebra map i∗ : R →
k[ε]/(ε2) for which (i∗)−1m = mx. 	


Suppose that f : (X ,R) → (Y,S ) is a morphism of ringed spaces. Given an
R-module M , f∗M is naturally an f∗R-module, and hence an S -module by
restriction of scalars via S → f∗R. Similarly, given an S -module N , f−1N is
naturally an f−1S -module. We define the R-module

f ∗N = R⊗ f−1S f−1N ,

where the R is regarded as an f−1S -module under the adjoint map f−1S →R.
When f is injective, we often write N |X instead of f ∗N .

The inverse image of a locally free sheaf is easily seen to be locally free. This
has an interpretation in the context of vector bundles. If π : V → Y is a vector
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bundle, the pullback f ∗V → X is the vector bundle given set theoretically as the
projection

f ∗V = {(v,x) |π(v) = f (x)} → X .

Then
f ∗(V )∼= (sheaf of sections of f ∗V ). (3.7.3)

A special case is that in which X = {y} → Y is the inclusion of a point. Then the
fiber π−1y can be identified with f ∗(V ) = (Ry/my)⊗Vy.

Exercises

3.7.9. Verify (3.7.2).

3.7.10. Prove Lemma 3.7.4.

3.7.11. Give examples where F → f∗ f−1F and f−1 f∗G → G are not isomor-
phisms.

3.7.12. Complete the proof of Proposition 3.7.7.

3.7.13. Given an inclusion of an open set j : U → X and a sheaf F on U , define
j!F to be the sheafification of the presheaf

G (V ) =

{
F (V ) if V ⊆U ,

0 otherwise.

If S is a sheaf on X , show that this fits into an exact sequence

0→ j! j−1S →S → i∗i−1S → 0,

where i : X −U → X is the inclusion of the complement.

3.7.14. Generalize Lemma 3.2.5 to show that an exact sequence 0 → A → B →
C → 0 of sheaves gives rise to an exact sequence 0→ f∗A → f∗B→ f∗C . In other
words, f∗ is left exact.

3.7.15. Prove that f−1 is exact, i.e., that it takes exact sequences to exact sequences.

3.7.16. Verify the assertion given in (3.7.3).

3.7.17. Suppose we have gluing data (Ri,φi j) and (R′i,φ ′i j) and homomorphisms fi :
Ri → R′i such that fiφ ′i j = φi j f j . Show that there is an induced morphism of glued
schemes extending f ∗i : Specm R′i → Specm Ri. Use this to justify Remark 3.4.11.

3.7.18. Let Ld be obtained by gluing Specm k[x,y] to Specm k[x−1,xdy]. Show that Ld

is a line bundle over P1
k whose sheaf of sections is isomorphic to O(±d).
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3.7.19. Let f : Pn−1
k → Pn

k be a linear embedding, given for example by setting xn =
0. Show that f ∗OPn(d) = OPn−1(d).

3.7.20. Let v : Pn
k → PN

k be the dth Veronese embedding. Show that v∗OPN (1) =
OPn(d).

3.7.21. An n-jet on a scheme X is a morphism from Speck[ε]/(εn+1) to X . Give an
interpretation of these similar to Lemma 3.7.8.

3.8 Differentials

With basic sheaf theory in hand, we can now construct sheaves of differential forms
on manifolds and varieties in a unified way. In order to motivate things, let us start
with a calculation. Suppose that X = Rn with coordinates x1, . . . ,xn. Given a C∞

function f on X , we can develop a Taylor expansion about (y1, . . . ,yn):

f (x1, . . . ,xn) = f (y1, . . . ,yn)+∑ ∂ f
∂xi

(y1, . . . ,yn)(xi− yi)+ O((xi− yi)2).

Thus the differential is given by

d f = f (x1, . . . ,xn)− f (y1, . . . ,yn) mod (xi− yi)2.

We can view x1, . . . ,xn,y1, . . . ,yn as coordinates on X ×X = R2n, so that xi− yi = 0
defines the diagonal Δ . Then d f lies in the ideal of Δ modulo its square.

Let X be a C∞ or complex manifold or an algebraic variety over a field k. We take
k = R or C in the first two cases. We have a diagonal map δ : X → X ×X given by
x �→ (x,x), and projections pi : X ×X → X . Let IΔ be the ideal sheaf of the image
of δ , and let I 2

Δ ⊆IΔ be the sub–ideal sheaf locally generated by products of pairs
of sections of IΔ . Then we define the sheaf of 1-forms by

Ω 1
X = (IΔ/I 2

Δ )|Δ .

This has two different OX -module structures; we pick the first one, where OX acts
on IΔ through p−1

1 OX → OX×X . We define the sheaf of p-forms by Ω p
X = ∧pΩ 1

X .
We define a morphism d : OX → Ω 1

X of sheaves (but not OX -modules) by d f =
p∗1( f )− p∗2( f ). This has the right formal properties because of the following:

Lemma 3.8.1. d is a k-linear derivation.

Proof. By direct calculation,

d( f g)− f dg−gd f = [p∗1( f )− p∗2( f )][p∗2(g)− p∗2(g)] ∈I 2
Δ . 	


Differentials behave contravariantly with respect to morphisms. Given a mor-
phism of manifolds or varieties f : Y → X , we get a morphism Y ×Y → X × X
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preserving the diagonal. This induces a morphism of sheaves g∗Ω 1
X → Ω 1

Y that fits
into a commutative square:

g∗OX → OY

d ↓ ↓ d
g∗Ω 1

X → Ω 1
Y

The calculations at the beginning of this section basically show the following:

Lemma 3.8.2. If X is C∞ manifold, then Ω 1
X
∼= E 1

X and d coincides with the deriva-
tive constructed in Section 2.6.

Since complex manifolds are also C∞-manifolds, there is potential for confusion.
So in the sequel, we will use the symbol Ω 1

X only in the holomorphic or algebraic
case. Sections of E 1

X over a coordinate neighborhood are given by sums∑ fidxi with
C∞ coefficients. A similar statement holds for sections ofΩ1

X on complex manifolds,
except that xi should be chosen as analytic coordinates, and the coefficients should
be holomorphic.

Now suppose that X ⊂AN
k is a closed subvariety defined by the ideal ( f1, . . . , fr).

Let S = k[x1, . . . ,xN ] and R = S/( f1, . . . , fr) be the coordinate rings on AN
k and X .

Then Ω 1
X is quasicoherent. In fact, it is given by Ω̃R/k, where the module of Kähler

differentials [33, Chapter 16] is given by

ΩR/k =
ker[R⊗k R→ R]

(ker[R⊗k R→ R])2 .

The differential is induced by the map d : R → ΩR/k given by dr = r⊗ 1− 1⊗ r.
An argument similar to the proof of Lemma 3.8.1 shows that this is a derivation.
The pair (ΩR/k,d) is characterized as the universal k-linear derivation [33, §16.8].
This means that any k-linear derivation δ : R → M factors as R → ΩR/k → M in a
unique way. From this, we can extract an alternative description by generators and
relations:ΩR/k is isomorphic to the free module on symbols {dr | r ∈ R}modulo the
submodule generated by the relations d(ar +bs) = adr +bds and d(rs)− rds− sdr
for r,s ∈ R,a,b ∈ k. With the second description, we easily verify that ΩS/k is the
free S-module on dx1, . . . ,dxN with

d f =∑ ∂ f
∂xi

dxi.

In general, we obtain the following isomorphism:

Lemma 3.8.3.

ΩR/k
∼= coker

(
∂ fi

∂x j

)
.

Proof. Given r ∈ R, dr can be expanded as a sum of dx j, since d is a derivation.
Thus there is a surjection ⊕

j

Rdx j →ΩR/k → 0.
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Let K denote the kernel of this map. The expressions d fi necessarily lie in K. Let
Ω ′ be the quotient of ⊕Rdx j by the span K′ of the d fi. This is exactly the cokernel
of the Jacobian matrix. The composition S→ΩS/k →Ω ′ descends to a well-defined
k-linear derivation d′ : R →Ω ′. Therefore we obtain a map ΩR/k →Ω ′, which can
be seen to be compatible with the projections from ⊕Rdx j. Thus K ⊆ K′, so that
ΩR/k =Ω ′ as claimed. 	


Theorem 3.8.4. X is nonsingular if and only if Ω1
X is locally free of rank equal to

dimX.

Proof. X is nonsingular if and only if the function x �→ dimk(mx)⊗Ω 1
R/k takes the

constant value dimX . So the result follows from Lemma 3.5.14. 	


Exercises

3.8.5. The tangent sheaf to a variety or manifold can be defined by TX = (Ω 1
X )∗.

Show that a section D∈TX (U) determines an OX(U)-linear derivation from OX (U)
to OX (U).

3.8.6. Prove that M ∼= M ∗∗ if M is locally free. Show that Ω 1
X is not isomorphic

to T ∗
X if X is the cusp defined by y2− x3 = 0. Thus Ω 1

X contains more information
in general.

3.8.7. Check that ΩS/k is a free module on dxi as claimed above, where S =
k[x1, . . . ,xN ].

3.8.8. Given a subvariety or submanifold i : X ⊂ Y , show that there is an epimor-
phism i∗Ω 1

Y = OY ⊗Ω 1
Y →Ω 1

X .

3.8.9. When X ⊂ Y is a subvariety with ideal sheaf J , show that there is an exact
sequence

J /J 2 →OY ⊗Ω 1
Y →Ω 1

X → 0.

The sheaf J /J 2 is called the conormal sheaf of X in Y .

3.8.10. Using the identity dx−1 = −x−2dx, show that OP1 ∼= OP1(−2) over any
algebraically closed field.



Chapter 4
Sheaf Cohomology

As we saw in the previous chapter, a “surjection” or epimorphism F → G of
sheaves need not induce a surjection of global sections. We would like to under-
stand what further conditions are required to ensure this. Although this may seem
like a fairly technical problem, it lies at the heart of many fundamental questions in
geometry and function theory. Typically, we may want to know when some inter-
esting class of functions extends from a subspace to the whole space, and this is a
special case of the above problem.

In this chapter, we introduce sheaf cohomology, which gives a framework in
which to answer such questions and more. Our basic approach is due to Godement
[45], but we have set things up as an inductive definition. This will allow us to get
to the main results rather quickly.

4.1 Flasque Sheaves

We start by isolating a class of sheaves for which the extension problem becomes
trivial. These will form the building blocks for cohomology in general.

Definition 4.1.1. A sheaf F on X is called flasque (or flabby) if the restriction maps
F (X)→F (U) are surjective for any nonempty open set U .

Sheaves are rarely flasque. Here are a few examples.

Example 4.1.2. Let X be a space with the property that any open set is connected
(more specifically, suppose X is irreducible). Then any constant sheaf is flasque.

Example 4.1.3. For any abelian group, the so-called skyscraper sheaf

Ax(U) =

{
A if x ∈U ,

0 otherwise,

is flasque.

DOI 10.1007/978-1-4614-1809-2_4, © Springer Science+Business Media, LLC 2012
79, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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The importance of flasque sheaves stems from the following:

Lemma 4.1.4. If 0 → A → B → C → 0 is an exact sequence of sheaves with A
flasque, then B(X)→ C (X) is surjective.

Proof. We will prove this by the unfashionable method of transfinite induction.1

Let γ ∈ C (X). By assumption, there is an open cover {Ui}i∈I such that γ|Ui lifts to
a section βi ∈B(Ui). By the well-ordering theorem, we can assume that the index
set I is the set of ordinal numbers less than a given ordinal κ . We will define

σi ∈B

(⋃
j<i

Uj

)

inductively, so that it maps to the restriction of γ . Set σ1 = β0. Now suppose that σi

exists. Let U =Ui∩(∪ j<iUj). Then βi|U−σi|U is the image of a section α ′i ∈A (U).
By hypothesis, α ′i extends to a global section αi ∈A (X). Then set

σi+1 =

{
σi on

⋃
j<iUj,

βi−αi|Ui on Ui.

If i is a limit (nonsuccessor) ordinal, then the previous σ j’s patch to define σi. Then
σκ is a global section of B mapping to γ . 	

Corollary 4.1.5. The sequence 0 →A (X)→B(X)→ C (X)→ 0 is exact if A is
flasque.

Proof. Combine this with Lemma 3.2.5. 	

Let F be a presheaf. Define the presheaf G(F ) of discontinuous sections of

F by
U �→∏

x∈U
Fx

with the obvious restrictions. This terminology is explained by thinking about this as
the sheaf of discontinuous sections of the étalé space, although it is simpler to define
it directly as we did. There is a canonical morphism γF : F → G(F ), sending
f ∈F (U) to the product of germs ( fx)x∈U .

Lemma 4.1.6. G(F ) is a flasque sheaf, and the morphism γF : F → G(F ) is a
monomorphism if F is a sheaf.

The operation G clearly determines a functor from Ab(X) to itself.

Lemma 4.1.7. The functor G is exact, which means that it takes exact sequences to
exact sequences.

1 See [70, appendix] for background. However, for most cases of interest to us, X will have a
countable basis, so ordinary induction will suffice.
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Proof. Given an exact sequence 0 →A →B → C → 0, the sequence 0 →Ax →
Bx → Cx → 0 is exact by definition. Therefore

0→∏
x∈U

Ax →∏
x∈U

Bx →∏
x∈U

Cx → 0

is exact. Therefore
0→G(A )→G(B)→G(C )→ 0

is an exact sequence of presheaves, and hence of sheaves by Exercise 3.2.12. 	

Let Γ : Ab(X)→Ab denote the functor of global sections, Γ (X ,F ) = Γ (F ) =

F (X).

Lemma 4.1.8. Then Γ ◦G : Ab(X)→Ab is exact.

Proof. Follows from Corollary 4.1.5 and Lemma 4.1.7. 	


Exercises

4.1.9. Prove that any constant sheaf on an irreducible algebraic variety is flasque.

4.1.10. Find a proof of Lemma 4.1.4 that uses Zorn’s lemma.

4.1.11. Given a possibly infinite family of flasque sheaves Gi, prove that their
product (∏Gi)(U) = ∏Gi(U) is flasque, and conclude that G(F ) is flasque for
any presheaf F . Prove that the canonical map F → G(F ) is a monomorphism
when F is a sheaf.

4.1.12. Let Xdisc denote the set X with its discrete topology, and let π : Xdisc → X be
the identity map. Show that G(F ) = π∗π∗F , and that the above map F →G(F )
is the adjunction map (§3.7).

4.1.13. Prove that the sheaf of bounded continuous real-valued functions on R is
flasque.

4.1.14. Prove the same thing for the sheaf of bounded C∞ functions on R.

4.1.15. Prove that if 0→A →B→ C is exact and A is flasque, then 0→ f∗A →
f∗B → f∗C → 0 is exact for any continuous map f .

4.2 Cohomology

Let F be a sheaf on a topological space X . Define the following operations by
induction:
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Ci(F ) =

⎧⎪⎨⎪⎩
F if i = 0,

coker[γF : F →G(F )] if i = 1,

C1(Cn(F )) if i = n + 1.

By definition, γF can be prolonged to an exact sequence

0→F →G(F )→ C1(F )→ 0.

Thus we also have exact sequences

0→Cn(F )→G(Cn(F ))→Cn+1(F )→ 0.

Sheaf cohomology can now be defined inductively:

Definition 4.2.1.

Hi(X ,F ) =

⎧⎪⎨⎪⎩
Γ (X ,F ) if i = 0,

coker[Γ (X ,G(F ))→ Γ (X ,C1(F ))] if i = 1,

H1(X ,Cn(F )) if i = n + 1.

The following can be deduced from the definition by induction.

Lemma 4.2.2. F �→ Hi(X ,F ) is a functor from Ab(X)→ Ab.

We now come to the key result.

Theorem 4.2.3. Given an exact sequence of sheaves

0→A →B → C → 0,

there is a long exact sequence

0→ H0(X ,A )→ H0(X ,B)→ H0(X ,C )→ H1(X ,A )→ H1(X ,B)→ ··· .

The proof will be based on a couple of lemmas.

Lemma 4.2.4 (Snake lemma). Given a commutative diagram of abelian groups

0 �� A1
��

α
��

B1
f ��

β
��

C1
��

γ
��

0

0 �� A2
�� B2 �� C2

with exact rows, there is a canonical exact sequence

0→ ker(α)→ ker(β )→ ker(γ)→ coker(α)→ coker(β )→ coker(γ).

The last map is surjective if B2 →C2 is also surjective.
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The existence of the sequence is standard and can be proved by a diagram chase
(or looked up in many places [8, 33, 76]). The only thing we want to explain is how
the sequence can be made canonical, since this is not always clear from standard
proofs. Canonicity is crucial for us.

Proof. Most of the maps are the obvious ones, and these are clearly natural.
We explain how to construct a canonical connecting (or “snaking”) homomorphism
δ : ker(γ)→ coker(α). Define P = f−1 ker(γ) ⊆ B1 and let K be the kernel of the
surjective homomorphism P → ker(γ). We note that f induces an isomorphism
F : P/K ∼= ker(γ). The image of P under β maps to 0 in C2. Therefore, we have
a canonical map δ ′ : P→ A2 through which β |P factors. A simple chase shows that
δ ′(K)⊆ im(α). Therefore we get an induced map

δ : ker(γ) F−1−→ P/K
δ ′−→ coker(α). (4.2.1)

	

The snake lemma and similar results hold in any abelian category [82]. For

sheaves, we can see this directly.

Lemma 4.2.5 (Snake lemma II). Given a commutative diagram of sheaves of
abelian groups

0 �� A1
��

α
��

B1
��

β
��

C1
��

γ
��

0

0 �� A2
�� B2

�� C2

with exact rows, there is a canonical exact sequence

0→ ker(α)→ ker(β )→ ker(γ)→ coker(α)→ coker(β )→ coker(γ).

The last map is an epimorphism if B2 → C2 is an epimorphism.

Proof. Since we have canonical maps in the previous lemma, these extend to
sheaves. The exactness can be checked on stalks, and so this reduces to the previous
statement. 	

Lemma 4.2.6. The exact sequence of sheaves given in the top row can be extended
to a commutative diagram with exact rows and columns:
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0

��

0

��

0

��
0 �� A

��

�� B

��

�� C

��

�� 0

0 �� G(A )

��

�� G(B)

��

�� G(C )

��

�� 0

0 �� C1(A )

��

�� C1(B)

��

�� C1(C )

��

�� 0

0 0 0

Proof. By Lemma 4.1.7, there is a commutative diagram with exact rows

0

��

0

��

0

��
0 �� A

��

�� B

��

�� C

��

�� 0

0 �� G(A ) �� G(B) �� G(C ) �� 0

The snake lemma gives the rest. 	

We are now ready to prove Theorem 4.2.3.

Proof. From Lemmas 3.2.5, 4.1.8, 4.2.6 we get a commutative diagram with exact
rows:

0 �� Γ (G(A )) ��

��

Γ (G(B)) ��

��

Γ (G(C )) ��

��

0

0 �� Γ (C1(A )) �� Γ (C1(B)) �� Γ (C1(C ))

From the snake lemma, we obtain a six-term exact sequence

0 �� H0(X ,A ) �� H0(X ,B) �� H0(X ,C ) ����
���	

�� H1(X ,A ) �� H1(X ,B) �� H1(X ,C )

(4.2.2)
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which we need to extend. Applying (4.2.2) to

0→C1(A )→ C1(B)→ C1(C )→ 0

yields a six-term sequence

· · · →H0(X ,C1(B))→ H0(X ,C1(C )) δ→ H2(X ,A )→ ··· ,

which is not quite what we want. We will show that the connecting map δ factors
through a map δ̄ of

H1(X ,C ) =
H0(X ,C1(C ))
H0(X ,G(C ))

.

From Lemma 4.2.6 and (4.2.2), we obtain a commutative diagram with exact rows
and columns

H0(G(B)) ��

��

H0(G(C )) ��

��

0

��
H0(C1(B)) ��

��

H0(C1(C ))
δ ��

��

H2(A )

H1(B) �� H1(C )

δ̄
���

�
�

�
�

(4.2.3)

Given an element γ̄ ∈ H1(X ,C ), choose a lift γ ∈ H0(X ,C1(C )) and set δ̄ γ̄ = δγ .
To see that this is well defined, let γ ′ ∈ H0(X ,C1(C )) be another lift. Then γ − γ ′
lies in H0(X ,G(C )), which can be lifted to H0(X ,G(B)) by Lemma 4.1.8. An easy
diagram chase using (4.2.3) shows that δγ = δγ ′ as desired. We also see immedi-
ately that δ̄ γ̄ = 0 if and only if γ̄ lies in the image of H1(X ,B). Thus we have a
six-term cohomology sequence

· · · → H1(X ,B)→ H1(X ,C ) δ→ H2(X ,A )→ ··· ,

which extends the earlier one. Applying this to

0→ Ci(A )→ Ci(B)→Ci(C )→ 0

shows that we can continue this sequence indefinitely. 	

Corollary 4.2.7. B(X)→ C (X) is surjective if H1(X ,A ) = 0.

We make an addendum to the theorem that says that the cohomology sequence
is natural, or in words that the Hi(X ,−) form a “δ -functor” [51, 60]. By a map
or morphism of diagrams (and particularly exact sequences), we will simply mean
a map between objects in the same position that commute with the maps of the
diagram.
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Theorem 4.2.8. A morphism of short exact sequences of sheaves gives rise to a map
of long exact sequences of cohomology.

Exercises

4.2.9. If F is flasque, prove that Hi(X ,F ) = 0 for i > 0. (Prove this for i = 1, and
that F flasque implies that C1(F ) is flasque.)

4.2.10. Prove that Hi(X ,ZX ) = 0 when i > 0 for any irreducible algebraic variety.

4.2.11. Finish all the details in the proof of the snake lemmas.

4.2.12. Give a proof of Theorem 4.2.8.

4.2.13. Given a sheaf A on X , let Ext1(Z,A ) denote the set of exact sequences

0→A →B → Z→ 0

modulo the equivalence relation that two sequences are exact if and only if they fit
into a commutative diagram

0 �� A ��

=
��

B ��

��

Z ��

=
��

0

0 �� A �� C �� Z �� 0

Check that this is in fact an equivalence relation. Show that the class δ (1) ∈
H1(X ,A ) associated to an exact sequence determines a well-defined map
Ext1(Z,A )→H1(X ,A ). Show that this is a bijection.

4.3 Soft Sheaves

We introduce the class of soft sheaves, whose definition is similar to the class of
flasque sheaves. The main advantage is that unlike flasque sheaves, the soft sheaves
often occur “in nature.” We assume throughout this section that X is a metric space,
although the results hold under the weaker assumption that X is paracompact and
Hausdorff.

Definition 4.3.1. A sheaf F is called soft if the map F (X) → F (S) is surjective
for all closed sets, where F (S) was defined in (3.7.1).

Lemma 4.3.2. If 0 → A → B → C → 0 is an exact sequence of sheaves with A
soft, then B(X)→ C (X) is surjective.
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Proof. The proof is very similar to the proof of Lemma 4.1.4. We just indicate
the modifications. Let γ ∈ C (X). We can assume that the open cover {Ui | i < κ},
such that γ|Ui lifts to B, consists of open balls. We can also assume that this cover
is locally finite, which means that every point has a neighborhood that intersects
finitely many members of the cover. This follows from Stone’s theorem [112, 70]
that metric spaces are paracompact. In fact, we are mostly interested in the case
of locally compact spaces, where this fact is trivial. Let {Vi} be a new open cover
where we shrink the radii of each ball, so that V̄i ⊂Ui. We can define

σi ∈B(∪ j<iV̄j)

inductively as before, so that σκ maps to γ . 	

Corollary 4.3.3. If A and B are soft, then so is C .

Proof. For any closed set S, B(X) → B(S) is surjective. The lemma shows that
B(S)→ C (S) is surjective. Therefore B(X)→ C (S) is surjective, and this implies
the same for C (X)→ C (S). 	


One trivially has the following:

Lemma 4.3.4. A flasque sheaf is soft.

Lemma 4.3.5. If F is soft, then Hi(X ,F ) = 0 for i > 0.

Proof. Lemma 4.3.2 applied to 0 → F → G(F ) → C1(F ) → 0 shows that
H1(X ,F ) = 0. Corollary 4.3.3 and the previous lemma imply that C1(F ) is soft.
By induction it follows that all the Ci(F ) are soft. Hence Hi(X ,F ) = 0 for all i.

	

Theorem 4.3.6. The sheaf ContX ,R of continuous real-valued functions on a metric
space X is soft.

Proof. The basic strategy of this proof and many of the subsequent softness proofs
is the construction of a continuous “cutoff” function ρ that is 0 outside a given
neighborhood U of a closed set S, and 1 close to S. Then given any continuous
function f : U → R, ρ f can be extended by 0 to all of X . Since f and ρ f have the
same germ along S, this would prove the surjectivity of ContX ,R(X)→ ContX ,R(S)
as required

To construct ρ we proceed as follows. Let S1 ⊂U be a closed set containing S in
its interior. This can be constructed by expressing U as a union of open balls, and
taking the union of closed balls of half the radii. Let S2 = X −U . Then Urysohn’s
lemma [70] guarantees the existence of a continuous ρ taking a value of 1 on S1 and
0 on S2. 	


We get many more examples of soft sheaves with the following.

Lemma 4.3.7. Let R be a soft sheaf of rings. Then any R-module is soft.
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Proof. Let m be a section of an R-module defined in a neighborhood of a closed set
S, and let S2 be the complement of this neighborhood . Since R is soft, the section
that is 1 on S and 0 on S2 extends to a global section ρ . Then ρm extends to a global
section of the module. 	


Let S1 ⊂ C denote the unit circle, and let e : R → S1 denote the normalized
exponential e(x) = exp(2π ix). Let us say that X is locally simply connected if every
neighborhood of every point contains a simply connected neighborhood.

Lemma 4.3.8. If X is locally simply connected, then the sequence

0→ ZX → ContX ,R
e−→ ContX ,S1 → 1

is exact.

Proof. Exactness of the sequence of sections can be checked in any simply con-
nected neighborhood of a point. This implies exactness of the sequence stalks. 	

Lemma 4.3.9. If X is simply connected and locally simply connected, then
H1(X ,ZX) = 0.

Note that in the future, we will usually write Hi(X ,Z) instead of Hi(X ,ZX ), and
likewise for other constant sheaves.

Proof. Since X is simply connected, any continuous map from X to S1 can be lifted
to a continuous map to its universal cover R. In other words, CR(X) surjects onto
CS1(X). Since CR is soft, Lemma 4.3.8 implies that H1(X ,Z) = 0. 	

Corollary 4.3.10. H1(Rn,Z) = 0.

Exercises

4.3.11. Show that the sheaf of piecewise linear continuous real-valued functions on
R is soft.

4.3.12. Show that ContR,R is not flasque. Conclude that a module over a flasque
sheaf of rings need not be flasque.

4.3.13. Suppose that X is a locally compact metric space. If 0→A →B→ C → 0
is an exact sequence of sheaves with A soft, show thatΓc(B)→Γc(C ) is surjective,
where Γc are the sections with compact support.

4.3.14. Assuming that X is locally compact, we can define cohomology with com-
pact support by setting H0

c (X ,F ) = Γc(F ), H1
c (X ,F ) = coker[Γc(F ) →

Γc(C1(F ))] and so on. Construct a long exact sequence (or at least the first six
terms) analagous to Theorem 4.2.3.

4.3.15. Again assuming that X is locally compact, prove that the higher cohomology
with compact support of a soft sheaf is trivial.
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4.4 C∞-Modules Are Soft

We want to prove that the sheaf of C∞ functions on a manifold is soft. We start with
a few lemmas.

Lemma 4.4.1. Given ε > 0, there exists an R-linear “smoothing” operator Σε :
Cont(Rn)→C∞(Rn) such that if f (x) is constant for all points x in an ε ball about
x0, then Σε( f )(x0) = f (x0).

Proof. Let ψ be a C∞ function on Rn with support in ‖x‖< 1 such that
∫
ψdx = 1.

Rescale this by setting φ(x) = εnψ(x/ε). Then the convolution

Σε( f )(x) =
∫

Rn
f (y)φ(x− y)dy

will have the desired properties. 	

Lemma 4.4.2. Let S⊂Rn be a compact subset, and let U be an open neighborhood
of S. Then there exists a C∞ function ρ : Rn → R that is 1 on S and 0 outside U.

Proof. We constructed a continuous function ρ1 : Rn → R with these properties in
the previous section. Now set ρ = Σε (ρ1) with ε sufficiently small. 	


We want to extend this to a manifold X . For this, we need the following construc-
tion. Let {Ui} be a locally finite open cover of X , which means that every point of
X is contained in a finite number of Ui’s. A partition of unity subordinate to {Ui} is
a collection of C∞ functions φi : X → [0,1] such that

1. The support of φi lies in Ui.
2. ∑φi = 1 (the sum is meaningful by local finiteness).

Partitions of unity always exist for any locally finite cover; see [110, 117] or the
exercises.

Lemma 4.4.3. Let S ⊂ X be a closed subset, and let U be an open neighborhood of
S. Then there exists a C∞ function ρ : X → R that is 1 on S and 0 outside U.

Proof. Let {Ui} be a locally finite open cover of X such that each Ui is diffeomor-
phic to a ball Rn (see the exercises). Then we have functions ρi ∈C∞(Ui) that are 1
on S∩Ui and 0 outside U ∩Ui by the previous lemma. Choose a partition of unity
{φi}. Then ρ = ∑φiρi will give the desired function. 	

Theorem 4.4.4. Given a C∞ manifold X, C∞X is soft.

Proof. Given a function f defined in a neighborhood of a closed set S ⊂ X , let ρ be
given as in Lemma 4.4.3. Then ρ f gives a global C∞ function extending f . 	

Corollary 4.4.5. Any C∞X -module is soft.

These arguments can be extended by introducing the notion of a fine sheaf,
described below.
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Exercises

4.4.6. Let X be an n dimensional C∞ manifold. Prove that it has a locally finite open
cover {Ui} such that each Ui is diffeomorphic to Rn.

4.4.7. Let X and {Ui} be as in the previous exercise. Construct a partition of unity
in this case, by first constructing a family of continuous functions satisfying these
conditions, and then applying Σε .

4.4.8. A sheaf F is called fine if for each locally finite cover {Ui} there exists a
partition of unity that is a collection of endomorphisms φi : F →F such that

1. The endomorphism of Fx induced by φi vanishes for x /∈Ui.
2. ∑φi = 1.

Prove that a fine sheaf on a paracompact Hausdorff space is soft.

4.4.9. Let X = R or S1. Compute H∗(X ,R) using the complex 0 → R → C∞X →
C∞X → 0, where the last map is the derivative.

4.5 Mayer–Vietoris Sequence

Given a continuous map f : Y → X and a sheaf F ∈ Ab(X), we defined the inverse
image f−1F ∈ Ab(Y ) as the sheaf associated with

Γ (Y, f PF ) = F ( f (Y )) = lim−→
U⊇ f (Y )

F (U).

Thus we have a natural map

p0 : Γ (X ,F )→ Γ (Y, f−1F )

induced from restriction.

Theorem 4.5.1. There exist natural maps pi,F : Hi(X ,F )→ Hi(Y, f−1F ), agree-
ing with above map when i = 0, such that a short exact sequence

0→F1 →F2 →F3 → 0

gives rise to a commutative diagram

. . . �� Hi(X ,F1) ��

��

Hi(X ,F2) ��

��

Hi(X ,F3) ��

��

. . .

�� Hi(Y, f−1F1) �� Hi(Y, f−1F2) �� Hi(Y, f−1F3) ��
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Proof. We define the map by induction. For i = 0 the map p0 has already been
defined. We construct a morphism f−1G(F )→ G( f−1F ) as follows. Let U ⊂ Y .
Then let

β : f−1G(F )(U) = ∏
x∈ f (U)

Fx →∏
y∈U

F f (y) = G( f−1F )(U)

be defined as the identity Fx →F f (y) if x = f (y), and 0 otherwise. Then there is a
unique morphism

α1 : f−1C1(F )→ C1( f−1F )

fitting into a commutative diagram.

0 �� f−1F ��

id
��

f−1G(F ) ��

β
��

f−1C1(F ) ��

α1

��

0

0 �� f−1F �� G( f−1F ) �� C1( f−1F ) �� 0

We can iterate this to obtain a morphism

αi : f−1Ci(F )→Ci( f−1F ).

Then from what has been defined so far, we get the diagram below, marked with
solid arrows:

Γ (X ,G(F )) ��

��

Γ (X ,C1(F )) ��

��

H1(X ,F )

p1

���
�
�

�� 0

Γ (Y,G( f−1F )) �� Γ (Y,C1( f−1F )) �� H1(Y, f−1F ) �� 0

This gives rise to the dotted arrow p1. For i > 1, we define pi as the composite

H1(X ,Ci−1(F ))
p1−→H1(Y, f−1Ci−1(F ))

αi−1−→ H1(Y,Ci−1( f−1F )).

The remaining properties are left as an exercise. 	

When f : Y →X is an inclusion of an open set, we will usually write Hi(Y,F ) for

Hi(Y, f−1F ) and refer to the induced map on cohomology as restriction. We will
introduce a basic tool for computing cohomology groups that is a prelude to Čech
cohomology.

Theorem 4.5.2. Let X be a union of two open sets U ∪V and let F be a sheaf on
X. Then there is a long exact sequence, called the Mayer–Vietoris sequence,

· · · →Hi(X ,F )→ Hi(U,F )⊕Hi(V,F )

→ Hi(U ∩V,F )→ Hi+1(X ,F )→ ··· ,
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where the first indicated arrow is the sum of the restrictions, and the second is the
difference.

Proof. The proof is very similar to the proof of Theorem 4.2.3, so we will just sketch
it, leaving some of the details as an exercise. We may construct a commutative
diagram with exact rows

0 → Γ (X ,G(F )) → Γ (U,G(F ))⊕Γ (V,G(F )) → Γ (U ∩V,G(F )) → 0
↓ ↓ ↓

0 → Γ (X ,C1(F )) → Γ (U,C1(F ))⊕Γ (V,C1(F )) → Γ (U ∩V,C1(F ))

Then applying the snake lemma yields the sequence of the first six terms:

· · · → H0(U ∩V,F )→H1(X ,F )→ ··· .

When applied to C1(F ), this yields

· · · →H0(U ∩V,C1(F )) δ→ H2(X ,F )→ ··· .

One checks that δ factors through a map

H1(U ∩V,F ) δ̄→ H2(X ,F )

such that
ker(δ̄ ) = im[H1(U,F )⊕H1(V,F )].

Then repeat with Ci(F ) in place of F . 	


Exercises

4.5.3. Let A be an abelian group. Use Mayer–Vietoris to prove that H1(S1,A)∼= A.

4.5.4. Show that H1(Sn,A) = 0 if n≥ 2.

4.5.5. Let us say that X has finite-dimensional cohomology if ∑dimHi(X ,R)
<∞. These dimensions are called the Betti numbers. Then we define the topological
Euler characteristic e(X) = ∑(−1)i dim Hi(X ,R). Show that if X = U ∪V and U
and V have finite-dimensional cohomology, then the same is true of X , and further-
more e(X) = e(U)+ e(V)− e(U ∩V ).

4.5.6. Let S be the topological space associated with a finite simplicial complex
(jump ahead to Chapter 7 for the definition if necessary). Prove that e(S) is the
alternating sum of the number of simplices.

4.5.7. Let X = X1 ∪X2 be a union of algebraic varieties such that X1 ∩X2 consists
of exactly two points. Prove that H1(X ,Z) = Z and Hi(X ,Z) = 0 for i > 1. (Use
Exercise 4.2.10.)
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4.5.8. Complete the proof of Theorem 4.5.1.

4.5.9. Complete the proof of Theorem 4.5.2.

4.6 Products*

Since this section is a bit technical, it may be better to skip it on first reading.
Suppose that we have sheaves F and G of k-vector spaces, where k is a field.

The tensor product F ⊗k G is the sheafification of the presheaf

U �→F (U)⊗k G (U).

So in particular, we have a product map

Γ (X ,F )⊗kΓ (X ,G )→ Γ (X ,F ⊗k G ). (4.6.1)

Our goal is to extend this to higher cohomology. The restriction to sheaves of vector
spaces is not essential, but it simplifies the discussion. Let ⊗=⊗k below.

We want a canonical family of maps

∪ : Hi(X ,F )⊗H j(X ,G )→ Hi+ j(X ,F ⊗G ),

referred to collectively as the cup product, coinciding with the product in (4.6.1)
when i = j = 0. This is not saying much, since the zero map will satisfy this (for
i �= 0 �= j). So we impose a stronger condition. Suppose

0→F1 →F2 →F3 → 0

is exact. Then
0→F1⊗G →F2⊗G →F3⊗G → 0

remains exact, because we are tensoring sheaves of vector spaces. Let

δ : Hi(X ,F3)→ Hi+1(X ,F1),

δ : H j(X ,F3⊗G )→ H j+1(X ,F1⊗G ),

denote the connecting maps. Then we require that

δ (α ∪β ) = δ (α)∪β (4.6.2)

hold for all choices. We make a similar requirement that

δ (α ∪β ) = (−1)iα ∪δ (β ) (4.6.3)

when F is fixed, and G is replaced by an exact sequence.
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Theorem 4.6.1. There exists a unique family of products satisfying the conditions
(4.6.2) and (4.6.3).

Proof. Since the proof is rather long, we treat only the low-degree cases in detail.
For i = 1, j = 0, we proceed as follows. There is a natural morphism G(F )⊗G →
G(F ⊗G ) given by ( fx)x⊗g �→ ( fx⊗gx)x. Therefore, we get a map

μ10 : C1(F )⊗G → C1(F ⊗G )

making the diagram

0 �� F ⊗G ��

=

��

G(F )⊗G ��

��

C1(F )⊗G ��

���
�
�

0

0 �� F ⊗G �� G(F ⊗G ) �� C1(F ⊗G ) �� 0

commute. Recalling that

H1(X ,F ) =
Γ (X ,C1(F ))

imΓ (X ,G(F ))
,

H1(X ,F ⊗G ) =
Γ (X ,C1(F ⊗G ))

imΓ (X ,G(F ⊗G ))
,

it follows that the product map

Γ (X ,C1(F ))⊗Γ (X ,G )→ Γ (X ,C1(F ⊗G ))

determines a map on first cohomology

∪ : H1(X ,F )⊗H0(X ,G )→ H1(X ,F ⊗G ).

The construction for i = 1, j = 0 proceeds in the same way by first constructing
a map

μ01 : F ⊗C1(G )→C1(F ⊗G ).

Turning to i = j = 1, we have a commutative diagram

C1(F )⊗C1(G ) ��

��

μ11

���������
C1(F ⊗C1(G ))

��
C1(C1(F )⊗G ) �� C2(F ⊗G )

(4.6.4)

where the sides are induced by μ01 and μ10. The diagonal map μ11 induces a product

Γ (X ,C1(F ))⊗Γ (X ,C1(G ))→ Γ (X ,C2(F ⊗G )).
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Using the commutativity of the diagram (4.6.4), we readily verify that the induced
map

∪ : H1(X ,F )⊗H1(X ,G )→H2(X ,F ⊗G )

is well defined.
This can now be iterated to obtain a series of maps

μi j : Ci(F )⊗C j(G )→Ci+ j(F ⊗G ).

The cup product can now be constructed in general using this map and the previous
cases. For example, for i > 1, j > 0, we use the composition

H1(X ,Ci−1(F ))⊗H1(X ,C j−1(G )) → H2(X ,Ci−1(F )⊗C j−1(G ))

→ H2(X ,Ci+ j−2(F ⊗G ))
∼= Hi+ j(X ,F ⊗G )).

The boundary formula (4.6.2) comes down to a diagram chase. We treat just the
first case, which contains all the main ideas. We recall that

δ : H0(X ,F3)→H1(X ,F1),

δ : Hi(X ,F3⊗k G )→ Hi+1(X ,F1⊗k G ),

are constructed from the boundary operators given by the snake lemma (4.2.1)
applied to

0 �� Γ (G(F1)) ��

��

Γ (G(F2)) ��

��

Γ (G(F3)) ��

��

0

0 �� Γ (C1(F1)) �� Γ (C1(F2)) �� Γ (C1(F3))

(4.6.5)

and

0 �� Γ (G(F1⊗G )) ��

��

Γ (G(F2⊗G )) ��

��

Γ (G(F3⊗G )) ��

��

0

0 �� Γ (C1(F1⊗G )) �� Γ (C1(F2⊗G )) �� Γ (C1(F3⊗G ))
(4.6.6)

respectively. Tensoring (4.6.5) with Γ (G ) yields a new diagram (4.6.5)⊗Γ (G ) with
exact rows. The associated boundary operator is seen to be

δ ⊗ idΓ (G ) : H0(X ,F3)⊗Γ (G )→ H1(X ,F1)⊗Γ (G ).

The diagram (4.6.5)⊗Γ (G ) maps to (4.6.6) by the cup product map. The resulting
compatibility of boundary operators means that formula (4.6.2) holds.
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Now we treat a special case of uniqueness. Suppose that ∪ is a family of products
satisfying the conditions of the theorem. Given α ∈ H1(X ,F ) and β ∈ H0(X ,G ),
let us calculate α ∪β . Since the boundary operator

δ : H0(X ,C1(F ))→H1(X ,F )

is surjective, we can write α = δ (γ), so that

α ∪β = δ (γ ∪β ) = δ (γ⊗β ).

The commutivity of the diagram

H0(C1(F )⊗G )
δ ��

μ10

��

H1(F ⊗G )

=
��

H0(C1(F ⊗G ))
δ �� H1(F ⊗G )

shows that
α ∪β = δ (μ10(γ⊗β ))

as in the original construction. 	

The theorem gives an axiomatic characterization of products that allows compari-

son with the more flexible construction given in [45, Chapter II, §6]. As a corollary,
we see that H∗(X ,k) carries a product, which is known to make this into a graded
commutative associative algebra.

Exercises

4.6.2. Verify the commutivity of (4.6.4).

4.6.3. Check that the product with values in H∗(X ,F ⊗G ⊗L ) is associative.

4.6.4. Finish the proof of uniqueness.



Chapter 5
De Rham Cohomology of Manifolds

In this chapter, we study the topology of C∞-manifolds. We define the de Rham
cohomology of a manifold, which is the vector space of closed differential forms
modulo exact forms. After sheafifying the construction, we see that the de Rham
complex forms a so-called acyclic resolution of the constant sheaf R. We prove a
general result that sheaf cohomology can be computed using such resolutions, and
deduce a version of de Rham’s theorem that de Rham cohomology is sheaf coho-
mology with coefficients in R. It follows that de Rham cohomology depends only
on the underlying topology. Using a different acyclic resolution that is dual to the de
Rham complex, we prove Poincaré duality. This duality makes cohomology, which
is normally contravariant, into a covariant theory. We devote a section to explain-
ing these somewhat mysterious covariant maps, called Gysin maps. We end this
chapter with the remarkable Lefschetz trace formula, which in principle, calculates
the number of fixed points for a map of a manifold to itself.

A systematic development of topology from the de Rham point of view is given
in Bott and Tu [14].

5.1 Acyclic Resolutions

We start by reviewing some standard notions from homological algebra.

Definition 5.1.1. A complex of (sheaves of) abelian groups is a possibly infinite
sequence

· · · → Fi di−→ Fi+1 di+1−→ ·· ·
of (sheaves of) groups and homomorphisms satisfying di+1di = 0.

These conditions guarantee that im(di)⊆ ker(di+1). We denote a complex by F•,
and we often suppress the indices on d. The ith cohomology of F• is defined by

H i(F•) =
ker(di)

im(di−1)
.

DOI 10.1007/978-1-4614-1809-2_5, © Springer Science+Business Media, LLC 2012
97, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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(We reserve the regular font “H” for sheaf cohomology.) These groups are zero
precisely when the complex is exact.

Definition 5.1.2. A sheaf F is called acyclic if Hi(X ,F ) = 0 for all i > 0.

For example, flasque sheaves and soft sheaves on a metric space are acyclic.

Definition 5.1.3. An acyclic resolution of a sheaf F is an exact sequence

0→F →F 0→F 1→···

of sheaves such that each F i is acyclic.

A functor between abelian categories, such as Ab or Ab(X), need not take exact
sequences to exact sequences, but it will always take complexes to complexes.
In particular, given a complex of sheaves F •, the sequence

Γ (X ,F 0)→ Γ (X ,F 1)→ ···

is necessarily a complex of abelian groups.

Theorem 5.1.4. Given an acyclic resolution F • of F , we have

Hi(X ,F )∼= H i(Γ (X ,F •)).

Proof. Let K −1 = F and K i = ker(F i+1 →F i+2) for i≥ 0. Then there are exact
sequences

0→K i−1 →F i →K i → 0

for i≥ 0. Since each F i is acyclic, Theorem 4.2.3 implies that

0→ H0(K i−1)→H0(F i)→ H0(K i)→H1(K i−1)→ 0 (5.1.1)

is exact, and
H j(K i)∼= H j+1(K i−1) (5.1.2)

for j > 0. We have a diagram

H0(K i−1)� �

		����������

H0(F i−1) ��



����������
H0(F i) ��

											
H0(F i+1)

H0(K i)
� �

������������

which is commutative, since the morphism F i−1 →F i factors through K i−1 and
so on. The oblique line in the diagram is part of (5.1.1), so it is exact. In parti-
cular, the first hooked arrow is injective. The injectivity of the second hooked arrow
follows for similar reasons. Thus
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im[H0(F i)→ H0(K i)] = im[H0(F i)→ H0(F i+1)]. (5.1.3)

Suppose that α ∈ H0(F i) maps to 0 in H0(F i+1). Then it maps to 0 in H0(K i).
Therefore α lies in the image of H0(K i−1). Thus

H0(K i−1) = ker[H0(F i)→ H0(F i+1)]. (5.1.4)

This already implies the theorem when i = 0. Replacing i by i + 1 in (5.1.4) and
combining it with (5.1.1) and (5.1.3) shows that

H1(K i−1)∼= H0(K i)
im[H0(F i)→ H0(K i)]

=
ker[H0(F i+1)→ H0(F i+2)]

im[H0(F i)→H0(F i+1)]
.

Combining this with the isomorphisms

Hi+1(F ) = Hi+1(K −1)∼= Hi(K 0)∼= · · · ∼= H1(K i−1)

of (5.1.2) proves the theorem for positive exponents. 	

Example 5.1.5. Let F be a sheaf. Using the notation from Section 4.2, define
Gi(F ) = G(Ci(F )). We define d : Gi(F ) → Gi+1(F ) as the composition of the
natural maps Gi(F )→ Ci+1(F )→Gi+1(F ). This can be seen to give an acyclic
resolution of F .

Exercises

5.1.6. Check that G•(F ) gives an acyclic resolution of F .

5.1.7. A sheaf I is called injective if given a monomorphism of sheaves A →B,
any morphism A →I extends to a morphism of B →I . Show that an injective
module is flasque and hence acyclic. (Hint: given an open set U ⊆ X , let ZU =
ker[ZX → ZX−U ]; check that Hom(ZU ,F ) = F (U).) Conclude that if 0 →F →
I 0 → I 1 → ··· is an injective resolution, then Hi(X ,F ) = H i(Γ (X ,I •)); this
is usually taken as the definition of Hi.

5.1.8. A morphism of complexes is a collection of maps F i → G i commuting
with the differentials d. This would induce a map on cohomology. Suppose that
F → F 0 → ··· and G → G 0 → ··· are acyclic resolutions of sheaves F and G ,
and suppose that we have a morphism F → G that extends to a morphism of the
resolutions. Show that we can choose the isomorphisms so that the diagram

Hi(F ) ∼= H i(Γ (F •))
↓ ↓

Hi(G ) ∼= H i(Γ (G •))

commutes.
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5.2 De Rham’s Theorem

Let X be a C∞ manifold and E k = E k
X the sheaf of k-forms on it. Note that E 0

X = C∞X .
If U ⊂ X is a coordinate neighborhood with coordinates x1, . . . ,xn, then E k(U) is a
free C∞(U)-module with basis

{dxi1 ∧·· ·∧dxik | i1 < · · ·< ik}.

Theorem 5.2.1. There exist canonical R-linear maps d : E k
X → E k+1

X , called exterior
derivatives, satisfying the following:

(a) d : E 0
X → E 1

X is the operation introduced in Section 2.6.
(b) d2 = 0.
(c) d(α ∧β ) = dα ∧β +(−1)iα ∧dβ for all α ∈ E i(X), β ∈ E j(X).
(d) If g : Y → X is a C∞ map, g∗ ◦ d = d ◦ g∗.

Proof. A complete proof can be found in almost any book on manifolds (e.g.,
[110, 117]). We will only sketch the construction. When U ⊂ X is a coordinate
neighborhood with coordinates xi, we can see that there is a unique operation satis-
fying the above rules (a) and (c) given by

d

(
∑

i1<···<ik

fi1...ik dxi1 ∧·· ·∧dxik

)
= ∑

i1<···<ik
∑

j

∂ fi1...ik

∂x j
dx j ∧dxi1 ∧·· ·∧dxik .

By uniqueness, these local d’s patch to define an operator on X . Taking the derivative
again yields

∑
i1...
∑
j,�

∂ 2 fi1...ik

∂x j∂x�
dx j ∧dx�∧dxi1 ∧·· ·dxik

=∑
i1...
∑
j<�

(
∂ 2 fi1...ik

∂x j∂x�
− ∂ 2 fi1...ik

∂x�∂x j

)
dx j ∧dx�∧dxi1 ∧·· ·dxik ,

= 0

which proves (b). 	

When X = R3, d can be realized as the div, grad, curl of vector calculus. The

theorem tells us that E •(X) forms a complex, called the de Rham complex.

Definition 5.2.2. The de Rham cohomology groups (actually vector spaces) of X
are defined by

Hk
dR(X) = H k(E •(X)).

A differential form α is called closed if dα = 0 and exact if α = dβ for some
β . Elements of de Rham cohomology are equivalence classes [α] represented by
closed forms, where two closed forms are equivalent if they differ by an exact form.
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Given a C∞ map of manifolds g : Y → X , we get a map g∗ : E ∗(X) → E ∗(Y ) of
the de Rham complexes that induces a map g∗ on cohomology. We easily have the
following lemma:

Lemma 5.2.3. X �→Hi
dR(X) is a contravariant functor from manifolds to real vector

spaces.

We compute the de Rham cohomology of Euclidean space.

Theorem 5.2.4 (Poincaré’s lemma). For all n and k > 0,

Hk
dR(Rn) = 0.

Proof. Assume, for the inductive hypothesis, that the theorem holds for n−1. Con-
sider the maps p : Rn → Rn−1 and ι : Rn−1 → Rn defined by p(x1,x2, . . . ,xn) =
(x2, . . . ,xn) and ι(x2, . . . ,xn) = (0,x2, . . . ,xn). Let R = (ι ◦ p)∗. More explicitly,
R : E k(Rn)→ E k(Rn) is the R-linear operator defined by

R( f (x1, . . . ,xn)dxi1 ∧·· ·∧dxik)

=

{
f (0,x2, . . . ,xn)dxi1 ∧·· ·∧dxik if 1 /∈ {i1, i2, . . .},
0 otherwise,

where we always choose i1 < i2 < · · · . The image of R can be identified with
p∗E k(Rn−1). Note that R commutes with d. Therefore if α ∈ E k(Rn) is closed,
dRα = Rdα = 0. By the induction assumption, Rα is exact.

For each k, define a linear map h : E k(Rn)→ E k−1(Rn) by

h( f (x1, . . . ,xn)dxi1 ∧·· ·∧dxik) =

{
(
∫ x1

0 f dx1)dxi2 ∧·· ·∧dxik if i1 = 1,

0 otherwise.

Then the fundamental theorem of calculus shows that dh+hd = I−R, where I is the
identity. (In other words, h is homotopy from I to R.) Given α ∈ E k(Rn) satisfying
dα = 0, we have α = dhα+ Rα , which is exact. 	


We have an inclusion of the sheaf of locally constant functions RX ⊂ E 0
X . This is

precisely the kernel of d : E 0
X → E 1

X .

Theorem 5.2.5. The sequence

0→ RX → E 0
X → E 1

X → ···

is an acyclic resolution of RX .

Proof. Any ball is diffeomorphic to Euclidean space, and any point on a mani-
fold has a fundamental system of such neighborhoods. Therefore, Poincaré’s lemma
implies that the above sequence is exact on stalks, and hence exact.

By Corollary 4.4.5, the sheaves E k are soft, hence acyclic. 	
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Corollary 5.2.6 (De Rham’s theorem). There is an isomorphism

Hk
dR(X)∼= Hk(X ,R).

In particular, de Rham cohomology depends only on the underlying topological
space.

Recall that by our convention, Hk(X ,R) is Hk(X ,RX). Later on, we will work
with complex-valued differential forms. Essentially the same argument shows that
H∗(X ,C) can be computed using such forms.

Exercises

5.2.7. We will say that a manifold is of finite type if it has a finite open cover {Ui}
such that any nonempty intersection of the Ui are diffeomorphic to the ball. Compact
manifolds are known to have finite type [110, pp. 595–596]. Using Mayer–Vietoris
and de Rham’s theorem, prove that if X is an n-dimensional manifold of finite type,
then Hk(X ,R) vanishes for k > n, and is finite-dimensional otherwise.

5.2.8. Let X be a manifold, and let t be the coordinate along R in R×X . Consider
the maps ι : X →R×X and p : R×X → X given by x �→ (0,x) and (t,x) �→ x. Since
(p ◦ ι) = id, conclude that ι∗ : Hi

dR(R×X)→ Hi
dR(X) is surjective.

5.2.9. Continuing the notation from the previous exercise, let R : E k(R× X) →
E k(R× X) be the operator (i ◦ p)∗, and let h : E k(R× X) → E k−1(R× X) be
the operator that is integration with respect to dt (as in the proof of the Poincaré
lemma). Show that dh + hd = I−R. Use this to show that R induces the identity
on Hi

dR(R× X). Conclude that ι∗ : Hi
dR(R× X) → Hi

dR(X) is also injective, and
therefore an isomorphism.

5.2.10. Show that C−{0} is diffeomorphic to R× S1, and conclude that H1
dR(C−

{0}) is one-dimensional. Show that Re( dz
iz ) = −ydx+xdy

x2+y2 generates it.

5.2.11. Let Sn denote the n-dimensional sphere. Use Mayer–Vietoris with respect to
the cover U = Sn−{north pole} and V = Sn−{south pole} to compute H∗(Sn,R).
(Hint: show that U ∩V ∼= Sn−1×R.)

5.3 Künneth’s Formula

Suppose that X is a C∞ manifold. If α ∈ E i(X) and β ∈ E j(X) are closed forms,
then α ∧ β is also closed, by Theorem 5.2.1. The cup product of the associated
cohomology classes is defined by [α]∪ [β ] = [α ∧β ]. This is a well-defined opera-
tion that makes de Rham cohomology into a graded ring. An extension of de Rham’s
theorem shows that this operation is also a topological invariant.
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Theorem 5.3.1 (Multiplicative de Rham’s theorem). Under the de Rham isomor-
phism, the product given above coincides with the cup product in sheaf cohomology
constructed in Section 4.6.

We outline the argument, concentrating on those parts that will be needed later.
First, we need a more convenient method for computing cup products. Given com-
plexes of (sheaves of) vector spaces (A•,dA) and (B•,dB) over a field k, their tensor
product is the complex

(A• ⊗B•)n =
⊕

i+ j=n

Ai⊗B j

with differential

d(a⊗b) = dAa⊗b +(−1)ia⊗dBb, a ∈ Ai,b ∈ B j.

The cohomology of this is easily computed by the following result:

Theorem 5.3.2 (Algebraic Künneth formula). If A• and B• are complexes of
vector spaces, then

Hn((A• ⊗B•)•)∼=
⊕

i+ j=n

Hi(A•)⊗H j(B•),

where the map (from right to left) is induced by the inclusion of kerdA⊗ kerdB ⊂
kerd.

Proof. A proof can be found in [108, Chapter 5 §3, Lemma 1; §4] for instance. 	

The next lemma is left as an exercise.

Lemma 5.3.3. The tensor product of two soft sheaves of vector spaces is soft.

Lemma 5.3.4. If F → F • and G → G • are soft resolutions of sheaves of vector
spaces, then F ⊗G → (F • ⊗G •)• is again a soft resolution.

Proof. The previous lemma shows that the sheaves (F •⊗G •)• are soft. To see that
it resolves F ⊗G , use Theorem 5.3.2 to obtain

H i((F • ⊗G •)•x) =

{
Fx⊗Gx if i = 0,

0 otherwise.
	


Choosing soft resolutions F → F • and G → G •, we have a morphism of
complexes

(Γ (F •)⊗Γ (G •))• → Γ ((F • ⊗G •))•,

which induces a map on cohomology. The cohomology on the left decomposes into
a sum of tensor products of the cohomology of F and G . Thus on each summand
we get a map

Hi(X ,F )⊗H j(X ,G )→Hi+ j(X ,F ⊗G ). (5.3.1)



104 5 De Rham Cohomology of Manifolds

Lemma 5.3.5. The map in (5.3.1) coincides with the product defined in Section 4.6.

Proof. This hinges on the fact that the product given in (5.3.1) is well defined and
satisfies the axioms of Theorem 4.6.1 by [45, pp. 255–259]. 	


We can now sketch the proof of Theorem 5.3.1.

Proof. By the previous lemmas and [45, Chapter II, Theorem 6.6.1], it suffices to
observe that the diagram

R⊗R
∼ ��

=

��

(E •
X ⊗E •

X )•

∧
��

R
∼ �� E •

X

commutes. 	

We can adapt these arguments to deduce a more geometric version of Künneth’s

formula.

Theorem 5.3.6 (Künneth formula). Let X and Y be C∞ manifolds. Then the
product Z = X ×Y is also a C∞ manifold. Let p : Z → X and q : Z → Y denote
the projections. Then the map

∑αi⊗β j �→∑ p∗αi∪q∗β j

induces an isomorphism⊕
i+ j=k

Hi
dR(X)⊗R H j

dR(Y )∼= Hk
dR(Z).

Proof. The proof involves the sheaves p∗E i
X ⊗R q∗E j

Y . Their sections on basic opens
are

p∗E i
X ⊗q∗E j

Y (U ×V ) = E i
X(U)⊗E j

Y (V ).

These map to E i+ j
Z (U×V ) under κ(α⊗β )= p∗α∧q∗β . Locally constant functions

lie in p∗E 0
X ⊗q∗E 0

Y . Thus we have a commutative triangle

RZ
� � ι ��

ι ′

������������� E •
Z

(p∗E •
X ⊗q∗E •

Y )•

κ

��

The map ι is a soft resolution, as we saw earlier. An argument similar to the proof
of Lemma 5.3.4 shows that ι ′ is also a soft resolution. Therefore the map κ induces
an isomorphism in cohomology. 	
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Exercises

5.3.7. Check that [α]∪ [β ] = [α ∧β ] yields a well-defined product on H∗
dR(X).

5.3.8. Prove Lemma 5.3.3.

5.3.9. Let e(X) = ∑(−1)i dimHi(X ,R) denote the Euler characteristic. Prove that
e(X ×Y ) = e(X)e(Y ).

5.3.10. Show that the cohomology ring of a torus T = (R/Z)n is isomorphic to the
exterior algebra on Rn.

5.4 Poincaré Duality

Let X be a C∞ manifold. Let E k
c (X) denote the set of C∞ k-forms with compact

support. Clearly dE k
c (X)⊂ E k+1

c (X), so these form a complex.

Definition 5.4.1. Compactly supported de Rham cohomology is defined by
Hk

cdR(X) = H k(E •
c (X)).

Lemma 5.4.2. For all n,

Hk
cdR(Rn) =

{
R if k = n,
0 otherwise.

Proof. [14, Corollary 4.7.1]. 	

This computation suggests that these groups are roughly opposite to the usual

de Rham groups. There is another piece of evidence, which is that HcdR behaves
covariantly in certain cases. For example, given an open set U ⊂ X , a form in E k

c (U)
can be extended by zero to E k

c (X). This induces a map Hk
cdR(U)→ Hk

cdR(X).
The precise statement of duality requires the notion of orientation. An orientation

on an n-dimensional real vector space V is a connected component of ∧nV −{0}
(there are two). An ordered basis v1, . . . ,vn is positively oriented if v1∧·· ·∧ vn lies
in the given component. If V were to vary, there is no guarantee that we could choose
an orientation consistently. So we make a definition:

Definition 5.4.3. An n-dimensional manifold X is called orientable if ∧nTX minus
its zero section has two components. If this is the case, an orientation is a choice of
one of these components.

Theorem 5.4.4 (Poincaré duality, version I). Let X be a connected oriented
n-dimensional manifold. Then

Hk
cdR(X)∼= Hn−k(X ,R)∗.
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There is a standard proof of this using currents, which are to forms what dis-
tributions are to functions. However, we can get by with something much weaker.
We define the space of pseudocurrents of degree k on an open set U ⊂ X to be

C k(U) = E n−k
c (U)∗ : = Hom(E n−k

c (U),R).

This is “pseudo” because we are using the ordinary (as opposed to topological) dual.
We make this into a presheaf as follows. Given V ⊆U , α ∈ C k

X (U), β ∈ E n−k
c (V ),

define α|V (β ) = α(β̃ ), where β̃ is the extension of β by 0.

Lemma 5.4.5. C k
X is a sheaf.

Proof. Let {Ui} be an open cover of U , which we may assume is locally finite.
Suppose that αi ∈ C k

X(Ui) is a collection of sections such that αi|Ui∩Uj = α j|Ui∩Uj .
This means that αi(β ) =α j(β ) if β has support in Ui∩Uj. Let {ρi} be a C∞ partition
of unity subordinate to {Ui} (see §4.3 ). Then define α ∈ C k

X (U) by

α(β ) =∑
i

αi(ρiβ |Ui).

We have to show that α(β̃ ) = α j(β ) for any β ∈ E n−k
c (Uj) with β̃ its extension to

U by 0. The support of ρiβ̃ lies in Ui∩ supp(β )⊂Ui∩Uj, so only finitely many of
these are nonzero. Therefore

α(β̃ ) =∑
i
αi(ρiβ̃ ) =∑

i
α j(ρiβ̃ ) = α j(β ),

as required. We leave it to the reader to check that α is the unique current with this
property. 	


Define a map δ : C k
X (U)→ C k+1

X (U) by δ (α)(β ) = (−1)k+1α(dβ ). One auto-
matically has δ 2 = 0. Thus we have a complex of sheaves.

Let X be an oriented n-dimensional manifold. Then we will recall [109] that one
can define an integral

∫
X α for any n-form α ∈ E n

c (X). Using a partition of unity, the
definition can be reduced to the case that α is supported in a coordinate neighbor-
hood U . Then we can write α = f (x1, . . . ,xn)dx1∧·· ·∧dxn, where the order of the
coordinates is chosen so that ∂/∂x1, . . . ,∂/∂xn gives a positive orientation of TX .
Then ∫

X
α =

∫
Rn

f (x1, . . . ,xn)dx1 · · ·dxn.

The functional
∫

X defines a canonical global section of C 0
X .

Theorem 5.4.6 (Stokes’s theorem). Let X be an oriented n-dimensional manifold;
then

∫
X dβ = 0.

Proof. See [109]. 	

Corollary 5.4.7.

∫
X ∈ ker[δ ].
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We define a map RX → C 0
X by sending r to r

∫
X . The key lemma to establish

Theorem 5.4.4 is the following:

Lemma 5.4.8.
0→ RX → C 0

X → C 1
X → ···

is an acyclic resolution.

Proof. Lemma 5.4.2 implies that this complex is exact. Given f ∈ C∞(U) and
α ∈ C k(U), define

fα(β ) = α( fβ ).

This makes C k into a C∞-module, and it follows that it is soft and therefore acyclic.
	


We can now prove Theorem 5.4.4.

Proof. We can use the complex C •
X to compute the cohomology of RX to obtain

Hi(X ,R)∼= H i(C •
X (X)) = H i(E n−•

c (X)∗).

The right-hand space is isomorphic to Hi
cdR(X ,R)∗. This completes the proof of the

theorem. 	

Corollary 5.4.9. If X is a compact oriented n-dimensional manifold, then

Hk(X ,R)∼= Hn−k(X ,R)∗.

The following is really a corollary of the proof.

Corollary 5.4.10. If X is a connected oriented n-dimensional manifold, then the
map α �→ ∫

X α induces an isomorphism∫
X

: Hn
cdR(X ,R)∼= R.

We can make the Poincaré duality isomorphism more explicit:

Theorem 5.4.11 (Poincaré duality, version II). If f ∈ Hn−k
cdR (X)∗, then there exists

a closed form α ∈ E k(X) such that f ([β ]) =
∫

X α ∧β . Moreover, the class [α] ∈
Hk

dR(X) is unique.

Proof. Define
P : E k

X → C k
X

by

P(α)(β ) =
∫

U
α ∧β

for α ∈ E k(U) and β ∈ E n−k
c (U). With the help of Stokes’s theorem, we see that

δP(α) = P(dα). Therefore, P gives a morphism of complexes of sheaves. Note also
that P(1) =

∫
X . Thus we have a morphism of resolutions
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RX → E •
X

|| ↓
RX → C •

X

So the theorem follows from Exercise 5.1.8. 	

Corollary 5.4.12. The cup product (induced by ∧) followed by integration gives a
nondegenerate pairing

Hk
dR(X)×Hn−k

cdR (X)→ Hn
cdR(X)∼= R.

Here is a simple example to illustrate this.

Example 5.4.13. Consider the torus T = Rn/Zn. We will show later, in Section 8.2,
that every de Rham cohomology class on T contains a unique form with constant
coefficients. This will imply that there is an algebra isomorphism H∗(T,R)∼=∧∗Rn.
Poincaré duality becomes the standard isomorphism

∧kRn ∼= ∧n−kRn.

Exercises

5.4.14. Prove that the Euler characteristic∑(−1)i dimHi(X ,R) is zero when X is an
odd-dimensional compact orientable manifold.

5.4.15. If X is a connected oriented n-dimensional manifold, show that

Hn(X ,R)∼=
{

R if X is compact,

0 otherwise.

5.4.16.(a) Let S2 ⊂ R3 denote the unit sphere. Show that

α = xdy∧dz+ ydz∧dx + zdx∧dy

generates H2
dR(S2).

(b) The real projective plane is defined by RP2 = S2/i, where i(x,y,z) = −(x,y,z).
This is a compact manifold. Show that H2

dR(RP2) = 0 by identifying it with the
i∗-invariant part of H2

dR(S2), and conclude that it cannot be orientable.

5.4.17. Assuming the exercises of §4.3, prove that Hi
c(X ,R)∼= Hi

cdR(X).

5.5 Gysin Maps

Let f : Y → X be a C∞ map of compact oriented manifolds of dimension m and n
respectively. Then we have a natural map
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f ∗ : Hk
dR(X)→ Hk

dR(Y )

given by pulling back forms. By Poincaré duality, we can identify this with a map

Hn−k
dR (X)∗ → Hm−k

dR (Y )∗.

Dualizing and changing variables yields a map in the opposite direction,

f! : Hk
dR(Y )→ Hk+n−m

dR (X),

called the Gysin homomorphism. This is characterized by∫
X

f!(α)∪β =
∫

Y
α ∪ f ∗(β ). (5.5.1)

Our goal is to give a more explicit description of this map. Notice that we can factor
f as the inclusion of the graph Y → Y ×X given by y �→ (y, f (y)), followed by a
projection Y ×X → X . Therefore we only need to study what happens in these two
special cases.

5.5.1 Projections

Suppose that Y = X × Z is a product of compact connected oriented manifolds.
Let p : Y → X and q : Y → Z be the projections. Let r = m− n = dimZ. Choose
local coordinates x1, . . . ,xn on X and z1, . . . ,zr on Z. Integration along the fiber∫

p : E k(Y )→ E k−r(X) is defined in local coordinates by

∑ fi1,...,ik−n(x1, . . . ,xn,z1, . . . ,zr)dz1∧·· ·∧dzn∧dxi1 ∧·· ·∧dxik−r �→

∑
(∫

fi1,...,ik−n(x1, . . . ,xn,z1, . . . ,zr)dz1 · · ·dzn

)
dxi1 ∧·· ·∧dxik−r .

Note that
∫

pα = 0 if none of its terms contains dz1∧·· ·∧dzn.

Lemma 5.5.1. p!α is represented by
∫

pα .

Proof. Fubini’s theorem in calculus gives∫
Y
α ∧ p∗β =

∫
X

(∫
p
α

)
∧β , (5.5.2)

so that
∫

p satisfies (5.5.1). 	

The cohomology of Y is the tensor product of the cohomology of X and Z by the

Künneth formula, Theorem 5.3.6. The Gysin map p! is simply the projection onto
one of the Künneth factors,

Hk
dR(Y )→ Hk+n−m

dR (X)⊗Hm−n
dR (Z)∼= Hk+n−m

dR (X).
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5.5.2 Inclusions

Now suppose that i : Y ↪→ X is an inclusion of a closed submanifold. We need the
following:

Theorem 5.5.2. There exists an open neighborhood TubeY of Y in X, called a tubu-
lar neighbourhood. This possesses a C∞ map π : TubeY → Y that makes TubeY a
locally trivial bundle over Y , with fibers diffeomorphic to Rn−m.

Proof. The details can be found in [110, Chapter 9, addendum]. However, we give a
brief outline, since we will need to understand a bit about the construction later on.
We choose a Riemannian metric on X . This amounts to a family of inner products on
the tangent spaces of X ; among other things, this allows one to define the length of
a curve. The Riemannian distance between two points is the infimum of the lengths
of curves joining the points. This is a metric in the sense of point set topology.
TubeY is given by the set of points with Riemannian distance less than ε from Y for
0 < ε " 1. In order to see the bundle structure, we give an alternative description.
We can take the normal bundle N to be the fiberwise orthogonal complement to the
tangent bundle TY in TX |Y . N inherits a Riemannian metric, and we let Tube′Y ⊂ N
be the set of points of distance less than ε from the zero section. Given a point
(y,v) ∈ N, let γy,v(t) be the geodesic emanating from y with velocity v. Then the
map (y,v) �→ γy,v(1) defines a diffeomorphism from Tube′Y to TubeY . 	


Then the map i∗ can be factored as

Hm−k
dR (X)→ Hm−k

dR (TubeY ) ∼→ Hm−k
dR (Y ).

The second map is an isomorphism, since the fibers of π are contractible. Dualizing,
we see that i! is a composition of

Hk
dR(Y ) ∼→ Hk+n−m

cdR (TubeY )→ Hk+n−m
dR (X).

The first map is called the Thom isomorphism. The second map can be seen to
be extension by zero. To get more insight into this, let k = 0. Then H0

dR(Y ) has a
natural generator, which is the constant function 1Y with value 1. Under the Thom
isomorphism, this maps to a class τY ∈ Hn−m

cdR (TubeY ), called the Thom class. This
can be represented by (any) differential form with compact support in TubeY , which
integrates to 1 on the fibers of π . The Thom isomorphism is given explicitly by
α �→ π∗α ∪ τY . So to summarize:

Lemma 5.5.3. i!α is the extension of π∗α ∪ τY to X by zero.

Exercises

5.5.4. Let j : U → X be the inclusion of an open set in a connected oriented mani-
fold. Check that the Poincaré dual of the restriction map j∗ : H∗

dR(X)→ H∗
dR(U) is

given by extension by zero.
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5.5.5. Let π : TubeY → Y be a tubular neighborhood for i : Y ↪→ X as above. Prove
that i∗β =

∫
π τY ∪β for β ∈ E •(X), where

∫
π is defined as above.

5.5.6. With the help of the previous exercise and (the appropriate extension of)
(5.5.2), finish the proof of Lemma 5.5.3.

5.5.7. Prove the projection formula f!( f ∗(α)∪β ) = α ∪ f!β .

5.6 Fundamental Class

We can use Gysin maps to construct interesting cohomology classes. Let i : Y ↪→ X
be a closed connected oriented m-dimensional submanifold of an n-dimensional
oriented manifold.

Definition 5.6.1. The fundamental class of Y in X is [Y ] = i!1Y ∈ Hn−m
dR (X).

Equivalently, [Y ] is the extension of τY by zero. Under the duality isomorphism,
H0

dR(Y )∼= Hm
dR(Y )∗, 1 goes to the functional

β �→
∫

Y
β ,

and this maps to

α �→
∫

Y
i∗α

in Hm(X)∗. Composing this with the isomorphism Hm(X)∗ ∼= Hn−m(X) yields the
basic relation ∫

Y
i∗α =

∫
X
[Y ]∪α. (5.6.1)

Let Y,Z ⊂ X be oriented submanifolds such that dimY + dimZ = n. Then under
the duality isomorphism, [Y ]∪ [Z] ∈ Hn(X ,R) ∼= R corresponds to a number Y ·Z,
called the intersection number. This has a geometric interpretation that we give
under an extra transversality assumption that holds “most of the time.” We say that
Y and Z are transverse if Y ∩Z is finite and if TY,p⊕TZ,p = TX ,p for each p in the
intersection.

Definition 5.6.2. Let Y and Z be transverse, and let p∈Y ∩Z. Choose ordered bases
v1(p), . . . ,vm(p) ∈ TY,p and vm+1(p), . . . ,vn(p) ∈ TZ,p that are positively oriented
with respect to the orientations of Y and Z. The local intersection number at p is

ip(Y,Z) =

⎧⎪⎨⎪⎩
+1 if v1(p), . . . ,vm(p),vm+1(p), . . . ,vn(p)

is a positively oriented basis of TX ,p,

−1 otherwise.

(This is easily seen to be independent of the choice of bases.)
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Proposition 5.6.3. If Y and Z are transverse, then Y ·Z = ∑p∈Y∩Z ip(Y,Z).

Proof. Let m = dimY . Let Up be a collection of disjoint coordinate neighborhoods
for each p ∈ Y ∩ Z. (Note that these Up will be replaced by smaller neighbor-
hoods whenever necessary.) Choose coordinates x1, . . . ,xn around each p such that Y
is given by xm+1 = · · ·= xn = 0 and Z by x1 = · · ·= xm = 0. Next construct suitable
tubular neighborhoods π : T →Y of Y and π ′ : T ′ → Z of Z. Recall that these neigh-
borhoods depend on a choice of Riemannian metric and radii ε,ε ′. By choosing the
radii small enough, we can guarantee that T ∩T ′ lies in the union

⋃
Up. Also, by

modifying the metric to be Euclidean near each p, we can assume that π is locally
the projection (x1, . . . ,xn) �→ (x1, . . . ,xm), and likewise for π ′.

Then with the above assumptions,

Y ·Z =
∫

X
τY ∧ τZ =∑

p

∫
Up

τY ∧ τZ ,

where τY and τZ are forms representing the Thom classes of T and T ′. We will
assume that Up is a ball and hence diffeomorphic to Rn. We can view τY |Up as
defining a class in

H0
dR(Rm)⊗Hn−m

cdR (Rn−m)∼= Hn−m
cdR (Rn−m)

and similarly for τZ |Up . Thus we can see that

τY |Up = f (xm+1, . . . ,xn)dxm+1∧·· ·∧dxn + dη ,

τZ |Up = g(x1, . . . ,xm)dx1∧·· ·∧dxm + dξ ,

with f and g compactly supported such that∫
Rn−m

f (xm+1, . . . ,xn)dxm+1 · · ·dxn =
∫

Rm
g(x1, . . . ,xm)dx1 · · ·dxm = 1.

Fubini’s theorem and Stokes’s theorem then give∫
Up

τY ∧ τZ = ip(Y,Z). 	


The proposition implies that the intersection number is an integer for transverse
intersections. In fact, this is always true. There are a couple of ways to see this.
One is by proving that intersections can always be made transverse without altering
the intersection numbers. A simpler explanation is that the fundamental classes can
actually be defined to take values in integral cohomology H∗(X ,Z). Moreover, we
have a cup product pairing as indicated:

Hk(X ,Z)×Hn−k(X ,Z)→ Hn(X ,Z)∼= Z.

The classes that we have defined are images under the natural map H∗(X ,Z) →
H∗(X ,R).
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Example 5.6.4. Let T = Rn/Zn, let {ei} be the standard basis of Rn, and let xi be
coordinates on Rn. If VI ⊂ Rn is the span of {ei | i ∈ I}, then TI = VI/(Zn∩VI) is a
submanifold of T . Its fundamental class is dxi1 ∧·· · ∧dxid , where i1 < · · · < id are
the elements of I in increasing order. If J is the complement of I, then TI and TJ will
meet transversally at one point. Therefore TI ·TJ =±1.

Example 5.6.5. Consider complex projective space Pn
C. This is the basic example

for us, and it will be studied further in Section 7.2. For now we just state the main
results. We have

Hi
dR(Pn

C) =
{

R if 0≤ i≤ 2n is even,
0 otherwise.

Given a complex subspace V ⊂Cn+1, the subset P(V )⊂ Pn consisting of lines lying
in V forms a submanifold, which can be identified with another projective space.
If W is another subspace with dimW = n− dimV + 2 and dim(V ∩W ) = 1, then
P(V ) and P(W ) will meet transversally at one point. In this case, P(V ) ·P(W ) is
necessarily +1 (see the exercises).

Exercises

5.6.6. Show that if Y,Z ⊂ X are transverse complex submanifolds of a complex
manifold, then ip(Y,Z) = 1 for each p in the intersection. Thus Y ·Z is the number
of points of intersection.

5.6.7. Check that fundamental classes of subtori of Rn/Zn are described as above.

5.6.8. Let T = R2/Z2 and let V,W ⊂ R2 be distinct lines with rational slope. Show
that the images of V and W in T are transverse. Find an interpretation for their
intersection number.

5.7 Lefschetz Trace Formula

Let X be a compact n-dimensional oriented manifold with a C∞ map f : X → X . The
Lefschetz formula is a formula for the number of fixed points counted appropriately.
This needs to be explained. Let

Γf = {(x, f (x)) | x ∈ X},
Δ = {(x,x) | x ∈ X},

be the graph of f and the diagonal respectively. These are both n-dimensional sub-
manifolds of X ×X that intersect precisely at points (x,x) with x = f (x). We define
the “number of fixed points” as Γf ·Δ . Since this number could be negative, we need
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to take this with a grain of salt. If these manifolds are transverse, we see that this
can be evaluated as the sum of local intersection numbers over fixed points,

∑
x

ix(Γf ,Δ),

by Proposition 5.6.3. In particular, Γf ·Δ is the true number of fixed points if each
local intersection number is +1.

Theorem 5.7.1. The number Γf ·Δ is given by

L( f ) =∑
p
(−1)p trace[ f ∗ : H p(X ,R)→ H p(X ,R)].

Proof. The proof will be based on the elementary observation that if F is an endo-
morphism of a finite-dimensional vector space with basis {vi} and dual basis {v∗i },
then the matrix is given by (v∗i (F(v j))). Therefore

trace(F) =∑
i

v∗i (F(vi)).

For each p, choose a basis αp,i of H p(X), and let α∗p,i denote the dual basis trans-
ported to Hn−p(X) under the Poincaré duality isomorphism Hn−p(X)∼= H p(X)∗, so
that ∫

X
αp,i∪α∗p, j = δi j.

Let πi : X ×X → X denote the projections. Then by Künneth’s formula, {Ap,i, j =
π∗1αp,i ∪ π∗2α∗p, j}p,i, j and {A∗p,i, j = (−1)n−pπ∗1α∗p,i ∪ π∗2αp, j} both give bases for
Hn(X ×X), which are dual to this in the sense that∫

X×X
Ap,i, j ∪A∗p′,i′, j′ = δ(p,i, j),(p′,i′, j′).

Thus we can express
[Δ ] =∑cp,i, jAp,i, j.

The coefficients can be computed by integrating against the dual basis:

cp,i, j =
∫

X×X
[Δ ]∪A∗p,i, j =

∫
Δ

A∗p,i, j = (−1)n−p
∫

X
αp,i∪α∗p, j = (−1)n−pδi j.

Therefore
[Δ ] =∑

i,p
(−1)n−pπ∗1αp,i∪π∗2α∗p,i. (5.7.1)
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Consequently,

Γf ·Δ =
∫
Γf

[Δ ]

=∑
p
(−1)n−p∑

i

∫
Γf

π∗1αp,i∪π∗2α∗p,i

=∑
p
(−1)n−p∑

i

∫
X
αp,i∪ f ∗α∗p,i

=∑
p
(−1)n−p trace[ f ∗ : Hn−p(X ,R)→ Hn−p(X ,R)]

= L( f ). 	


Corollary 5.7.2. If L( f ) �= 0, then f has a fixed point.

Proof. If Γf ∩Δ = /0, then Γf ·Δ = 0. 	

Corollary 5.7.3. Δ ·Δ is the Euler characteristic e(X).

Exercises

5.7.4. We say that two C∞ maps f ,g : X → Y between manifolds are homotopic if
there exists a C∞ map h : X ×R → Y such that f (x) = h(x,0) and g(x) = h(x,1).
Using Exercise 5.2.9, show that f ∗ = g∗ if f and g are homotopic. Conclude that g
has a fixed point if L( f ) �= 0.

5.7.5. Let v(x) be C∞ vector field on a compact manifold X . By the existence and
uniqueness theorem for ordinary differential equations, there is an ε > 0 such that
for each x there is unique curve γx : [0,ε]→ X with γx(0) = x and dγx(t) = v(γx(t)).
Moreover, the map x �→ γx(δ ) is a diffeomorphism from X to itself for every δ ≤ ε .
Use this to show that v must have a zero if e(X) �= 0.

5.7.6. Let A be a nonsingular n×n matrix. Then it acts on Pn−1 by [v] �→ [Av], and
the fixed points correspond to eigenvectors. Show that A is homotopic to the identity.
Use this to show that L(A) �= 0, and therefore that A has an eigenvector. Deduce the
fundamental theorem of algebra from this.



Chapter 6
Riemann Surfaces

Riemann surfaces are the same thing as one-dimensional complex manifolds or
nonsingular complex curves. Although the basic concept goes back to Riemann, the
rigorous definition appears to be due to Weyl [122]. We already considered these
briefly in the first chapter. But now we are in a position to make a more thorough
study using the geometric and homological tools introduced in the intervening
chapters. Nevertheless, we will only scratch the surface of this rich subject. Further
details can be found in [5, 20, 49, 38] in addition to Weyl’s book.

6.1 Genus

The coarsest classification is topological. A Riemann surface can be regarded as a
manifold of real dimension 2. It has a canonical orientation: if we identify the real
tangent space at any point with the complex tangent space, then for any nonzero
vector v, we declare the ordered basis (v, iv) to be positively oriented. Let us now
forget the complex structure and consider the purely topological problem of classi-
fying these surfaces up to homeomorphism.

Given two connected 2-dimensional topological manifolds X and Y with points
x∈ X and y∈Y , we can form a new topological manifold X#Y , called the connected
sum. To construct this, choose open disks D1 ⊂X and D2 ⊂Y . Then X#Y is obtained
by gluing X −D1∪S1× [0,1]∪Y −D2 appropriately. The homeomorphism class is
independent of the choices made. Figure 6.1 depicts the connected sum of two tori.

Theorem 6.1.1. A compact connected orientable 2-dimensional topological mani-
fold is classified, up to homeomorphism, by a nonnegative integer called the genus.
A genus-0 surface is homeomorphic to the 2-sphere S2. A manifold of genus g > 0
is homeomorphic to a connected sum of the 2-torus and a surface of genus g−1.

Proof. An equivalent formulation is that every such manifold is homeomorphic to
a sphere with g handles. A classical reference for this is [99, p. 145]. 	
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Fig. 6.1 Genus-2 surface.

There is another standard model for these surfaces [99] that is also quite useful
(for instance for computing the fundamental group). A genus-g surface can be con-
structed by gluing the sides of a 2g-gon. It is probably easier to visualize this in
reverse. After cutting the genus-2 surface of Figure 6.1 along the indicated curves,
it can be opened up to an octagon (see Figure 6.2).

Fig. 6.2 Genus-2 surface cut open.

The topological Euler characteristic of the space X is

e(X) =∑(−1)i dim Hi(X ,R).

From Exercise 4.5.5, we have the following lemma:

Lemma 6.1.2. If X is a union of two open sets U and V , then e(X) = e(U)+e(V)−
e(U ∩V ).

Corollary 6.1.3. If X is a manifold of genus g, then e(X) = 2−2g, and the first Betti
number is given by dimH1(X ,R) = 2g.

Proof. This will be left for the exercises. 	

When g = 2, this gives dimH1(X ,R) = 4. We can find explicit generators by

taking the fundamental classes of the curves a1,a2,b1,b2 in Figure 6.1, after choos-
ing orientations. To see that these generate, H1(X ,R), it suffices to prove that they
are linearly independent. For this, consider the pairing

(α,β ) �→
∫

X
α ∧β
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on H1(X ,R). This restricts to the intersection pairing on fundamental classes. After
orienting the curves suitably, their intersection matrix is⎛⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ ,

and this shows independence. A similar basis with intersection matrix(
0 I
−I 0

)
can be found for any g. These basis vectors will generate a lattice inside H1(X ,R)
that can be identified with H1(X ,Z).

To answer the obvious question, we show that every genus occurs by direct
construction. A much harder question is, what does a typical genus g look like?
Many examples of compact Riemann surfaces can be given explicitly as nonsingu-
lar projective algebraic curves, and we start with this approach. Later, we will see
that all compact Riemann surfaces arise in this way.

Example 6.1.4. Let f (x,y,z) be a homogeneous polynomial of degree d. Suppose
that the partials of f have no common zeros in C3 except (0,0,0). Then the curve
V ( f ) = { f (x,y,z) = 0} in P2

C is nonsingular. We will see later that the genus is
(d−1)(d−2)

2 . In particular, not every genus occurs for these examples.

Example 6.1.5. Given a collection of homogeneous polynomials fi ∈ C[x0, . . . ,xn]
such that X = V ( f1, f2, . . .)⊂ Pn

C is a nonsingular algebraic curve, then X will be a
complex submanifold of Pn

C and hence a Riemann surface. By a generic projection
argument, n = 3 suffices to give all such examples.

Example 6.1.6. Choose 2g + 2 distinct points in ai ∈ C. Consider the affine curve
C1 ⊂C2 defined by

y2 =∏(x−ai).

We can compactify this to obtain a nonsingular projective curve C by taking the
projective closure and normalizing. Here is an alternative description of the same
curve. Consider the affine curve C2:

Y 2 =∏(1−aiX).

Glue this to C1 by identifying X = x−1 and Y = yx−g−1. Since C is nonsingular,
it can be viewed as a Riemann surface. By construction, C comes equipped with a
morphism f : C→P1

C that is 2-to-1 except at the branch points {ai}. In the exercises,
it will be shown that the genus of X is g. Curves of this form are called hyperelliptic
(if g > 1), and they are very nice to work with. However, “most” curves are not
hyperelliptic.
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From a more analytic point of view, we can construct many examples as quotients
of C or the upper half-plane. In fact, the uniformization theorem [38] tells us that all
examples other than P1 arise in this way.

Example 6.1.7. Let L ⊂ C be a lattice, i.e., an abelian subgroup generated by
two R-linearly independent numbers. The quotient E = C/L can be made into a
Riemann surface (Exercise 2.2.20) called an elliptic curve. Since this is topologi-
cally a torus, the genus is 1. Conversely, any genus-1 curve is of this form.

The surface E = C/L can be realized as an algebraic curve in a couple of ways.
As we saw in the first chapter, we can embed it into P2 as the cubic curve

zy2 = 4x3−g2(L)xz2−g3(L)z3 (6.1.1)

by z �→ [℘(z),℘′(z),1]. Alternatively,℘ : E → P1 realizes this directly as a two-
sheeted cover branched at four points. We can assume without loss of generality
that these are 0,1,∞,t. Then E is given by Legendre’s equation

y2z = x(x− z)(x− tz). (6.1.2)

Let us now consider quotients of the upper half-plane H = {z | Im(z) > 0}. The
group SL2(R) acts on H by fractional linear transformations:

z �→ az+ b
cz+ d

.

Note that −I acts trivially, so the action factors through PSL2(R) = SL2(R)/{±I}.
The action of subgroup Γ ⊂ SL2(R) on H is properly discontinuous if every point
has a neighborhood V such that γV ∩V �= /0 for all but finitely many γ ∈ Γ . A point
x ∈ V is called a fixed point if its stabilizer in Γ /{±I} is nontrivial. The action is
free if it has no fixed points.

Proposition 6.1.8. If Γ acts properly discontinuously on H, the quotient X = H/Γ
becomes a Riemann surface. If π : H →X denotes the projection, the structure sheaf
is defined by f ∈ OX(U) if and only if f ◦π ∈ OH(π−1U).

When Γ acts freely with compact quotient, then it has genus g > 1. The quickest
way to see this is by applying the Gauss–Bonnet theorem [56], which says that
e(H/Γ ) = 2− 2g can be computed by integrating the Gaussian curvature for any
Riemannian metric. The hyperbolic metric on H, which descends to the quotient,
has negative curvature. A fundamental domain for this action is a region R⊂H such
that ∪γ γR̄ = H and such that two translates of R̄ can meet only at their boundaries.
The fundamental domain in this case can be chosen to be the interior of a geodesic
2g-gon.

The modular group SL2(Z) is a particularly important example where the action
is not free.

Theorem 6.1.9. The quotient H/SL2(Z) is isomorphic to C, and its points corres-
pond to isomorphism classes of elliptic curves (which are genus-one curves with a
distinguished point).
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Proof. We sketch the idea. The details can be found in [32, 106] or [103]. A funda-
mental domain for the action is given in Figure 6.3. The marked points in the
diagram are ρ = e2π ı/3, i, and ρ+ 1.

Fig. 6.3 Fundamental domain of SL2(Z).

After identifying the sides of the domain by the transformations

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
,

as indicated in the diagram, one sees that that the quotient H/SL2(Z) is homeo-
morphic to C. By the Riemann mapping theorem, H/SL2(Z) is isomorphic to either
C or H. To see that it is C, we show that the one-point compactification H/SL2(Z)∪
{∗} can also be made into a Riemann surface, necessarily isomorphic to P1. Any
continuous function f defined in a neighborhood of ∗ can be pulled back to an
SL2(Z)-invariant function f̃ on H. Invariance under T implies that f̃ is periodic;
hence it can be expanded in a Fourier series

f̃ (z) =
∞

∑
n=−∞

ane2π inz.

We declare f to be holomorphic if all the an are zero for n < 0. To put this another
way, q = e2π iz is taken as a local analytic coordinate at ∗.

The relation to elliptic curves is given in the exercises. 	


Exercises

6.1.10. Prove Corollary 6.1.3.
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6.1.11. Check that the genus of the hyperelliptic curve constructed above is g, either
by triangulating in such way that the {ai} are included in the set of vertices or by
applying Lemma 6.1.2 directly to a suitable open cover.

6.1.12. Let g(x,y,z) be a homogeneous polynomial of degree d such that its partials
have no common zeros. Let f0(x,y,z) be a product of d linear polynomials, and let
ft (x,y,z) = f0 + tg. The variety V ( f0) is a union of lines Li, and let X = V ( ft ) for
small t. Choose small closed balls Bi j around each crossing point. Show that Bi j∩X
is diffeomorphic to the cylinder S1× [0,1].

6.1.13. Continuing the notation from the previous exercise, the complements
X −∪Bi j and V ( f0)−∪Bi j can be seen to be diffeomorphic using a version of
Ehressman’s Theorem 13.1.3. Granting this, we obtain the following topological
model for X . Take d copies L1, . . . ,Ld of S2, remove d− 1 disjoint disks Di, j from
each Li, and join Li to Lj by gluing a cylinder from ∂Di, j to ∂D j,i to get X . Use this
to verify that its genus is (d−1)(d−2)/2.

6.1.14. Fix τ,τ ′ ∈ H. Check that the following are equivalent:

(a) The elliptic curves C/Z+Zτ and C/Z+Zτ ′ are isomorphic, i.e., there exists a
holomorphic bijection preserving 0 and taking Z+Zτ to Z+Zτ ′.

(b) There exists λ ∈ C∗ such that λ (Z+Zτ) = Z+Zτ ′.
(c)

τ ′ =
aτ+ b
cτ+ d

with

(
a b
c d

)
∈ SL2(Z).

6.2 ∂̄ -Cohomology

Let U ⊂C be an open set. Let x and y be real coordinates on C, and z = x+ iy. Given
a complex-valued C∞ function f : U → C, let

∂ f
∂ z

=
1
2

(
∂ f
∂x

− i
∂ f
∂y

)
,

∂ f
∂ z̄

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
.

With this notation, the Cauchy–Riemann equation is simply ∂ f
∂ z̄ = 0. Define the

complex-valued 1-forms dz = dx+ idy and dz = dx− idy. With this notation, we can
formulate Cauchy’s formula for C∞ functions.



6.2 ∂̄ -Cohomology 123

Theorem 6.2.1. Let D⊂ C be a disk. If f ∈C∞(D̄), then

f (ζ ) =
1

2π i

∫
∂D

f (z)
z− ζ dz+

1
2π i

∫
D

∂ f (z)
∂ z̄

dz∧dz̄
z− ζ .

Proof. This follows from Stokes’s theorem; see [49, pp. 2–3]. 	

The following is an analogue of the Poincaré lemma for ∂̄ .

Theorem 6.2.2. Let D ⊂ C be an open disk. Given f ∈ C∞(D̄), the function g ∈
C∞(D) given by

g(ζ ) =
1

2π i

∫
D

f (z)
z− ζ dz∧dz̄

satisfies ∂g
∂ z̄ = f .

Proof. Decompose f (z) = f1(z)+ f2(z) into a sum of C∞ functions, where f1(z)≡
f (z) in a small neighborhood of z0 ∈D and vanishes near the boundary of D. In parti-
cular, f2 is zero in a neighborhood of z0. Let g1 and g2 be the functions obtained by
substituting f1 and f2 for f in the integral of the theorem. Differentiating under the
integral sign yields

∂g2(ζ )
∂ ζ̄

=
1

2π i

∫
D

∂
∂ ζ̄

(
f2(z)
z− ζ

)
dz∧dz̄ =

1
2π i

∫
D

d

(
f2(z)dz
z− ζ

)
= 0

for ζ close to z0. Since f1 is compactly supported,

g1(ζ ) =
1

2π i

∫
C

f1(z)
z− ζ dz∧dz̄.

Then doing a change of variables w = z− ζ yields

g1(ζ ) =
1

2π i

∫
C

f1(w+ ζ )
w

dw∧dw̄.

Thus for ζ close to z0,

∂g(ζ )
∂ ζ̄

=
∂g1(ζ )
∂ ζ̄

=
1

2π i

∫
C

∂ f1(w+ ζ )
∂ ζ̄

dw∧dw̄
w

=
1

2π i

∫
D

∂ f1(z)
∂ z̄

dz∧dz̄
z− ζ .

Since f1 vanishes on the boundary, the last integral equals f1(ζ ) = f (ζ ) by
Cauchy’s formula in Theorem 6.2.1. 	


In order to make it easier to globalize the above operators to Riemann surfaces,
we reinterpret them in terms of differential forms. Let C∞(U) and E •(U) denote
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the space of complex-valued C∞ functions and forms on U ⊆ C (we will continue
this convention from now on). The exterior derivative extends to a C-linear operator
between these spaces. Set

∂ f =
∂ f
∂ z

dz ,

∂̄ f =
∂ f
∂ z̄

dz̄ .

(6.2.1)

We extend this to 1-forms by

∂ ( f dz̄) =
∂ f
∂ z

dz∧dz̄ ,

∂ ( f dz) = 0,

∂̄ ( f dz) =
∂ f
∂ z̄

dz̄∧dz ,

∂̄ ( f dz̄) = 0.

(6.2.2)

A 1-form α = f dz with f holomorphic is holomorphic. This is equivalent to the
condition ∂̄ α = 0. The following identities can be easily verified:

d = ∂ + ∂̄ ,

∂ 2 = ∂̄ 2 = 0,

∂ ∂̄ + ∂̄∂ = 0.

(6.2.3)

Let X be a Riemann surface with OX and Ω 1
X its sheaves of holomorphic

functions and holomorphic 1-forms respectively. We write C∞X and E n
X for the

sheaves of complex-valued C∞ functions and n-forms for n = 1,2. We define a

C∞X -submodule E
(1,0)
X ⊂ E 1

X (respectively E
(0,1)
X ⊂ E 1

X ), by E
(1,0)
X (U) = C∞(U)dz

(respectively E
(0,1)
X (U) = C∞(U)dz̄) for any coordinate neighborhood U with holo-

morphic coordinate z. We have a decomposition

E 1
X = E

(1,0)
X ⊕E

(0,1)
X .

We set E
(1,1)
X = E 2

X , since this is locally generated by dz∧dz̄.

Lemma 6.2.3. There exist C-linear maps ∂ , ∂̄ on the sheaves E •
X that coincide with

the previous expressions (6.2.1) and (6.2.2) in local coordinates.

It follows that the identities (6.2.3) hold globally. We have inclusions OX ⊂C∞X
and Ω 1

X ⊂ E
(1,0)
X .
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Lemma 6.2.4. The sequences of sheaves

0→ OX →C∞X
∂̄−→ E

(0,1)
X → 0,

0→Ω 1
X → E

(1,0)
X

∂̄−→ E
(1,1)
X → 0

are acyclic resolutions.

Proof. The exactness can be checked on a disk, where it follows from
Theorem 6.2.2. The sheaves C∞X ,E •

X are C∞-modules and hence soft. 	

Corollary 6.2.5.

H1(X ,OX) =
E (0,1)(X)
∂̄C∞(X)

,

H1(X ,Ω 1
X) =

E (1,1)(X)

∂̄E
(1,0)
X (X)

,

and
Hi(X ,OX) = Hi(X ,Ω 1

X) = 0

if i > 1.

Next, we give a holomorphic analogue of the de Rham complex.

Proposition 6.2.6. There is an exact sequence of sheaves

0→ CX → OX
d−→Ω 1

X → 0.

Proof. The only nontrivial part of the assertion is that OX →Ω 1
X is an epimorphism.

We can check this by replacing X by a disk D. A holomorphic 1-form α on D is
automatically closed; therefore α = d f by the usual Poincaré lemma. Since d f is
holomorphic, ∂̄ f = 0. Therefore f is holomorphic. 	

Corollary 6.2.7. There is a long exact sequence

0→ H0(X ,C)→ H0(X ,OX )→ H0(X ,Ω 1
X)→ H1(X ,C)→ ··· .

Holomorphic 1-forms are closed, and

H0(X ,Ω 1
X)→ H1(X ,C) (6.2.4)

is the map that sends a holomorphic form to its class in (complex-valued) de Rham
cohomology.

Lemma 6.2.8. When X is compact and connected, the map (6.2.4) is an injection.
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Proof. Since global holomorphic functions on X are constant (Proposition 2.7.2),

H0(X ,C)→ H0(X ,OX )

is surjective. 	

We will postpone the proof of the following proposition to Section 9.1.

Proposition 6.2.9. The dimensions of H0(X ,Ω 1
X ) and H1(X ,OX ) both coincide with

the genus.

Corollary 6.2.10. H1(X ,Ω 1
X)∼= C.

Proof. The proposition implies that the map

H1(X ,C)→ H1(X ,OX )

is surjective, and therefore that H1(X ,Ω 1
X) is isomorphic to H2(X ,C) = C. 	


Exercises

6.2.11. Check the identities (6.2.3). Show that a form f (z)dz is closed if and only if
it is holomorphic.

6.2.12. Let V be a vector space with a nondegenerate skew-symmetric pairing 〈,〉.
A subspace W ⊂ V is called isotropic if 〈w,w′〉 = 0 for all w,w′ ∈W . Prove that
dimW ≤ dimV/2 if W is isotropic. Let X be a compact Riemann surface of genus
g. Show that H0(X ,Ω 1

X ) is isotropic for the pairing
∫
α ∧β . Use this to conclude

that dim H0(X ,Ω 1
X)≤ g.

6.2.13. Show that the differentials xidx/y, with 0 ≤ i < g, are holomorphic on the
hyperelliptic curve in Example 6.1.6. Conclude directly that H0(X ,Ω 1

X ) = g in this
case.

6.3 Projective Embeddings

Fix a compact Riemann surface X . We introduce some standard shorthand: hi =
dim Hi and ωX = Ω 1

X . We will follow standard practice of referring to locally free
OX -modules of rank one as “line bundles.” (As we will see, there is a one-to-one
correspondence, so this not unreasonable.)

Definition 6.3.1. A divisor D on X is a finite integer linear combination ∑ni pi,
where pi ∈ X . It is effective if all the coefficients are nonnegative. The degree deg D
is equal to ∑ni.
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Divisors form an abelian group Div(X) in the obvious way. For every mero-
morphic function defined in a neighborhood of p ∈ X , let ordp( f ) be the order
of vanishing (or minus the order of the pole) of f at p. If D is a divisor, define
ordp(D) to be the coefficient of p in D (or 0 if p is absent). Define the sheaf
OX (D) by

OX (D)(U) = { f : U → C∪{∞} meromorphic | ordp( f )+ ordp(D)≥ 0, ∀p ∈U}.

Lemma 6.3.2.

(a) OX(D) is a line bundle.
(b) OX(D+ D′)∼= OX(D)⊗OX(D′).

Proof. Let z be a local coordinate defined in a neighborhood U . Let D =∑nipi +E ,
where pi ∈U and E is a sum of points not in U . Then it can be checked that

OX(D)(U) = OX (U)
1

(z− p1)n1(z− p2)n2 · · · ,

and this is free of rank one. If D′ = ∑n′i pi + E ′ is a second divisor, then

[O(D)⊗O(D′)](U)∼= OX (U)
1

(z− p1)n1 · · ·
1

(z− p1)n′1 · · · = O(D+ D′)(U) 	


In terminology to be discussed later, this says that D �→ OX(D) is a homo-
morphism from Div(X) to Pic(X). If D is effective, O(−D) is a sheaf of ideals.
In particular, OX (−p) is exactly the maximal ideal sheaf at p. We have an exact
sequence

0→ OX(−p)→OX → Cp → 0, (6.3.1)

where

Cp(U) =

{
C if p ∈U ,

0 otherwise,

is a so-called skyscraper sheaf. Observe that Cp⊗L ∼= Cp for any line bundle L .
Therefore tensoring (6.3.1) by OX(D) yields

0→OX (D− p)→OX (D)→ Cp → 0. (6.3.2)

In the same way, we get a sequence

0→ ωX (D− p)→ ωX (D)→ Cp → 0, (6.3.3)

where ωX(D) = ωX ⊗OX(D).

Lemma 6.3.3. For all D, Hi(X ,OX (D)) and Hi(X ,ωX (D)) are finite-dimensional
for i = 0,1, and zero if i > 1.
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Proof. We prove this for OX (D), since the argument for ωX (D) is the same. Let
D =∑np p. The proof goes by induction on d =∑ |np|. The initial case D = 0 follows
from Propositions 2.7.2, 6.2.9 and Corollary 6.2.5.

Observe that Cp is flasque, and thus has no higher cohomology. The exact
sequence (6.3.2) yields

0→ H0(OX (D− p))→ H0(OX(D))→ C→ H1(OX (D− p))→H1(OX (D))→ 0

and isomorphisms
Hi(OX (D− p))∼= Hi(OX (D))

for i > 1. By adding or subtracting a point, we can drop d by one, and use induction.
	


A meromorphic 1-form is a holomorphic form on the complement of a finite set
S such that it has finite-order poles at the points of S. The residue of a meromorphic
1-form α at p is

resp(α) =
1

2π i

∫
C
α,

where C is any loop “going once counterclockwise” around p and containing no
singularities other than p. Alternatively, if α = f (z)dz locally for some local coor-
dinate z at p, resp(α) is the coefficient of 1

z in the Laurent expansion of f (z).

Lemma 6.3.4 (Residue theorem). If α is a meromorphic 1-form, the sum of its
residues is 0.

Proof. Let {p1, . . . , pn} denote the set of singular points of α . For each i, choose an
open disk Di containing pi and no other singularity. Then by Stokes’s theorem,

∑ respiα =
1

2π i

∫
X−∪Di

dα = 0. 	


Theorem 6.3.5. Suppose that D is a nonzero effective divisor. Then

(a) (Kodaira vanishing) H1(ωX (D)) = 0.
(b) (Weak Riemann–Roch) h0(ωX(D)) = degD+ g−1.

Proof. This can be proved by induction on the degree of D. We carry out the initial
step here; the rest is left as an exercise. Suppose D = p. Then H0(ωX (p)) consists of
the space of meromorphic 1-forms α with at worst a simple pole at p and no other
singularities. The residue theorem implies that such an α must be holomorphic.
Therefore H0(ωX(p)) = H0(ωX ). Therefore h0(ωX (p)) = g as predicted by (b).
By the long exact sequence of cohomology groups associated to (6.3.3), we have

0→ C→ H1(ωX )→ H1(ωX(p))→ 0.

Since the space in the middle is one-dimensional by Corollary 6.2.10,
H1(ωX(p)) = 0. 	
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Corollary 6.3.6. There exists a divisor K (called a canonical divisor) such that
ωX

∼= OX (K). If g > 0, then K can be chosen to be effective.

Proof. Given a meromorphic 1-form α , locally α = f dz, we define ordp(α) =
ordp( f ) (this is independent of the coordinate z). A section of H0(ωX(D)) can be
interpreted as a meromorphic form α , so that ordpα + ordpD ≥ 0 for all p ∈ X .
Therefore, we may choose D so that H0(ωX(D)) possesses a nonzero section α .
Then

K = (α)−D =∑ordp(α)p−D

satisfies the required properties. 	

The degree of K is given by the following proposition:

Proposition 6.3.7. For any canonical divisor, degK = 2g−2.

The proof will be given in the exercises.
We say that a line bundle L on X is globally generated if for any point x ∈ X ,

there exists a section f ∈H0(X ,L ) such that f (x) �= 0. Suppose that this is the case.
Choose a basis f0, . . . , fN for H0(X ,L ). If we fix an isomorphism τ : L |U ∼= OU ,
then τ( fi) are holomorphic functions on U . Thus we get a holomorphic map U →
CN+1 given by x �→ (τ( fi(x))). By our assumption, the image lies in the complement
of 0, and thus descends to a map to projective space. The image is independent of
τ , and hence we get a well-defined holomorphic map

φL : X → PN .

This map has the property that φ∗L OPN (1) = L. The line bundle L is called very
ample if φL is a closed immersion, that is, if it is an isomorphism onto φL (X).

Proposition 6.3.8. A sufficient condition for L to be globally generated is that
H1(X ,L (−p)) = 0 for all p ∈ X. A sufficient condition for L to be very ample
is that H1(X ,L (−p−q)) = 0 for all p,q ∈ X.

Proof. We have an exact sequence

0→L (−p)→L →Cp → 0.

Then H1(L (−p)) = 0 implies that H0(L ) surjects onto H0(Cp). This implies that
L has a global section that is nonzero at p.

To show that φL (X) is a closed immersion, we need to check that it is injective
and injective on tangent spaces. When p �= q, the assumption H1(L (−p−q)) = 0
would imply that H0(L ) surjects onto H0(Cp ⊕Cq). Therefore L has sections
vanishing at p but not q and at q but not p. This shows that φL is injective. If p = q,
then we see that H0(L ) surjects onto H0(Op/m2

p). Therefore there is a section fi

with nonzero image in mp/m2
p = T ∗p ∼= C. After identifying fi with a function, this

just means that f ′i (p) �= 0. Thus the derivative of φL at p is nonzero, and hence
injective. 	
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Corollary 6.3.9. ωX(D) is very ample if D is nonzero and effective with
degD > 2. In particular, any compact Riemann surface can be embedded into a
projective space.

We will use this much later on (Corollary 15.4.5) to prove that every compact
Riemann surface is a nonsingular projective algebraic curve.

Exercises

6.3.10. Finish the proof of Theorem 6.3.5 by writing D = p + D′ and applying
(6.3.3).

6.3.11. A divisor is called principal if it is given by ( f ) = ∑ordp( f )p for some
nonzero meromorphic function f . Prove that a principal divisor has degree 0.
Conclude that any two canonical divisors have the same degree.

6.3.12. Prove Proposition 6.3.7 by checking it for P1, and then showing that it
behaves like Riemann-Hurwitz for a branched covering f : X → P1.

6.3.13. Suppose that X is a compact Riemann surface. Prove that H1(X ,OX (−p))∼=
H1(X ,OX) for any p ∈ X .

6.3.14. Using the previous exercise, show that H1(X ,O(q− p)) = 0 for any p,q
if X has genus 0. Then conclude that OX (q) is globally generated. Show that the
corresponding map X → P1 is an isomorphism.

6.3.15. The Euler characteristic is given by χ(OX(D)) = dimH0(X ,OX(D)) −
dimH1(X ,OX (D)). Show that χ(O(D+ p)) = χ(O(D))+ 1.

6.3.16. We stated a version of the Riemann–Roch theorem above. The actual theo-
rem says that for any divisor D on a genus-g compact Riemann surface, χ(OX (D))=
degD+ 1−g. Prove this by induction.

6.4 Function Fields and Automorphisms

Fix a smooth projective curve X over C. By the results of the previous section, all
compact Riemann surfaces are of this form. The function field C(X) is the field of
rational functions on X , or equivalently, by Exercise 15.4.7, the field of meromor-
phic functions on it. Since C(X) = C(U) for any affine open set, we can see that
this field is a finitely generated extension of C with transcendence degree one. Let
us refer to such fields as function fields. We claim, conversely, that any such field F
arises in this way. We can write F as an algebraic extension of C(x). By the primitive
element theorem [76], it is necessarily obtained by adjoining one element, say y, sat-
isfying a polynomial f ∈ C(x)[t]. After clearing denominators, we have f (x,y) = 0
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with f ∈ C[x,t]. Thus F is the function field of the curve V ( f ). After replacing this
by the normalization of its projective closure, we see that F is the function field of a
smooth projective curve. A more refined argument yields the following equivalence:

Theorem 6.4.1. There is an antiequivalence between the category of smooth pro-
jective curves and surjective morphisms, and the category of function fields and
inclusions.

Recall that two categories are (anti-)equivalent if there is a (contravariant) functor
inducing an isomorphism of Hom’s and if every object in the target is isomorphic to
an object in the image.

Proof. The details can be found in [60, I, 6.12], but it is worth understanding some
key steps. A point of a smooth projective curve X gives a discrete valuation v =
ordp : C(X)∗ → Z, which means that it satisfies

1. v( f g) = v( f )+ v(g).
2. v( f + g)≥min(v( f ),v(g)).

In fact, any surjective discrete valuation is of this form for a unique p. Thus we can
recover the points from the function field. To see that an inclusion C(Y ) ⊆ C(X)
of fields corresponds to a map f : X → Y , we can proceed as follows. A surjective
discrete valuation v on C(X) yields a discrete valuation on the subfield by restriction.
This can be made surjective by rescaling it to v′ = 1

e v|C(Y )∗ for a unique integer e > 0.
Then v �→ v′ determines a set-theoretic map X → Y , which can be checked to be a
morphism. 	

Corollary 6.4.2 (Lüroth’s theorem). Any subfield of C(x) properly containing C
is abstractly isomorphic to C(x).

Proof. Let L ⊆ C(x) be such a field. It is necessarily a function field. Therefore L
is the function field of some curve Y , and the inclusion corresponds to a surjective
morphism f : P1 → Y . The following lemma implies that Y has genus 0, and is
therefore isomorphic to P1 by Exercise 6.3.14. 	

Lemma 6.4.3. If f : X → Y is a surjective holomorphic map between compact
Riemann surfaces, then the genus of Y is less than or equal to the genus of X.

Proof. If α is a nonzero holomorphic 1-form on Y , f ∗α is easily seen to be nonzero.
Therefore, there is an injection H0(Y,Ω 1

Y ) ↪→ H0(X ,Ω 1
X). 	


The set of holomorphic automorphisms of a compact Riemann surface X forms
a group Aut(X), which can be identified with the group of automorphisms of C(X)
fixing C. For X = P1, this group is infinite, since it contains (and is in fact equal
to) PGL2(C). Likewise, for an elliptic curve X = C/L, Aut(X) is infinite, since it
contains translations. For curves of larger genus, we have the following result.

Theorem 6.4.4 (Hurwitz). If X is a compact Riemann surface of genus g≥ 2, Then
Aut(X) is a finite group of cardinality at most 84(g−1).
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We want to sketch a proof of the finiteness part, since it gives a nice application
of the ideas developed so far. Given an automorphism f : X → X , let Γf ⊂ X ×X
be its graph. The Lefschetz trace formula, Theorem 5.7.1, computes the intersection
number of Γf and the diagonal as an alternating sum of traces of the induced maps
f ∗ : Hi(X ,R)→Hi(X ,R). For i = 0,2, these maps are easily seen to be the identity;
thus

Γf ·Δ = 2− trace[ f ∗ : H1(X ,R)→ H1(X ,R)].

Lemma 6.4.5. If f is different from the identity, then Γf ·Δ ≥ 0.

Proof. The point here is that Γf · Δ can be computed as a sum of intersection
numbers. These are necessarily nonnegative, as we will see in Section 11.2. For the
special case of transversal intersections, this was discussed already in Section 5.6
and its exercises. 	

Corollary 6.4.6. If X has genus g ≥ 2, then f is the identity if and only if f ∗ :
H1(X ,R)→ H1(X ,R) is the identity.

Proof. If f ∗ is the identity, then Γf ·Δ < 0. The other direction is clear. 	

We are now ready to sketch the proof of the finiteness statement of Theorem 6.4.4.

Proof. The previous corollary implies that there is an injective homomorphism
Aut(X) → Aut(H1(X ,R)), and it suffices to prove that the image is finite. We do
this by proving that the group is both compact and discrete. For discreteness we
note that for any automorphism, f ∗ preserves the lattice H1(X ,Z). After choosing
a basis lying in H1(X ,Z), this amounts to asserting that Aut(X) lies in GL2g(Z),
which is certainly a discrete subgroup of GL2g(R).

The automorphisms f ∗ preserves the Hermitian pairing

〈α,β 〉=
∫

X
α ∧β

on H1(X ,R). This pairing will be shown to be positive definite in the exercises of
Section 9.1. Therefore Aut(X) lies in the corresponding unitary group, which is
compact. 	


Exercises

6.4.7. Prove that Aut(P1) = AutC(C(x)) = PGL2(C) acting by Möbius transfor-
mations x �→ ax+b

cx+d .

6.4.8. Classify the discrete valuations on C(x) and show that they are all of the form
e ·ordp for a unique e ∈ {1,2,3, . . .} and p ∈ P1. (Hint: first show that any discrete
valuation on C is zero.)



6.5 Modular Forms and Curves 133

6.4.9. If X is as in Hurwitz’s theorem with G = Aut(X), then Y = X/G can be made
into a compact Riemann surface of genus say h. At the level of function fields,
C(Y ) = C(X)G. A special case of Riemann–Hurwitz’s formula gives

2g−2 = |G|(2h−2)+∑
x

(|stab(x)|−1),

where stab(x) is the stabilizer of x. Assuming this, show that (2g−2)/|G| ≥ 1/42,
and thus complete the proof of the theorem.

6.4.10. Given a finite group G, construct a compact Riemann surface X with G ⊆
Aut(X). (It is enough to do this for the symmetric group.)

6.5 Modular Forms and Curves

Let Γ ⊂ SL2(R) be a subgroup acting properly discontinuously on H such that
H/Γ is compact. Let k be a positive integer. An automorphic form of weight 2k is a
holomorphic function f : H → C on the upper half-plane satisfying

f (z) = (cz+ d)−2k f

(
az+ b
cz+ d

)
(6.5.1)

for each (
a b
c d

)
∈ Γ .

Choose a weight-2k automorphic form f . Then f (z)(dz)⊗k is invariant under the
group precisely when f is automorphic of weight 2k. Let us suppose that the group
Γ̄ = Γ /{±I} acts freely. Then the quotient X = H/Γ is a Riemann surface, and
an automorphic form of weight 2k descends to a section of the sheaf ω⊗k

X . We can
apply Theorem 6.3.5 to calculate the dimensions of these spaces.

Proposition 6.5.1. Suppose that Γ̄ acts freely on H and that the quotient X = H/Γ
is compact of genus g. Then the dimension of the space of automorphic forms of
weight 2k is {

g if k = 1,

(g−1)(2k−1) if k > 1.

Proof. When k = 1, this is clear. When k > 1, we have

h0(ω⊗k) = h0(ω((k−1)K)) = (k−1)(degK)+ g−1 = (2k−1)(g−1). 	


The above conditions are a bit too stringent, since they exclude some of the most
interesting examples such as the modular group SL2(Z) and its finite-index sub-
groups such as the nth principal congruence group
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Γ (n) =
{(

a b
c d

)
∈ SL2(Z) | a−1≡ d−1≡ b≡ c≡ 0 mod n

}
.

The quotient H/SL2(Z) can be identified with C, as we saw. The natural
compactification P1

C can be constructed as a quotient as follows: H corresponds to
the upper hemisphere of P1

C = S2, and R∪{∞} corresponds to the equator. We take
H and add rational points on the boundary H∗ = H ∪Q∪ {∞}. These are called
cusps. Then SL2(Z) acts on H∗. The cusps form a single orbit, so we may iden-
tify H∗/SL2(Z) ∼= P1 by sending this orbit to the point at infinity in P1. We can
define a topology on H∗ by pulling back the open sets under the quotient map
π : H∗ → P1. This makes π continuous. It follows that H∗/Γ is a topological space
with a continuous projection to P1 for any subgroupΓ ⊆ SL2(Z). In fact, somewhat
more is true.

Theorem 6.5.2. Given a finite-index subgroup Γ ⊆ SL2(Z), H∗/Γ can be made
into a compact Riemann surface, called a modular curve, such that H∗/Γ →
H∗/SL2(Z)∼= P1 is holomorphic.

Proof. See [32, §2.4]. 	

Modular curves are of fundamental importance in number theory. A more

immediate application is the construction of Riemann surfaces with large auto-
morphism groups. When Γ is normal, then PSL2(Z)/Γ̄ lies in Aut(H∗/Γ ) and
H∗/Γ →H∗/SL2(Z) is the quotient map. This is discussed further in the exercises.

A modular form of weight 2k for Γ ⊆ SL2(Z) is a holomorphic function f :
H → C satisfying (6.5.1) and certain growth conditions that force it to correspond
to a holomorphic (or possibly meromorphic) object on H∗/Γ . For example, the
Eisenstein series

G2k(z) = ∑
(m,n)∈Z2−{(0,0)}

1
(m+ nz)2k

are modular of weight 2k for SL2(Z) if k > 1. Their significance for elliptic curves
is that g2 = 60G4(τ), g3 = 140G6(τ) give coefficients of the Weierstrass equation
(6.1.1) for the lattice Z+Zτ .

As we saw, the points of the quotient H/SL2(Z) correspond to isomorphism
classes of elliptic curves. More generally, the points of the quotient H/Γ (n) corre-
spond to elliptic curves with some extra structure. Let us spell this out for n = 2.
An elliptic curve is an abelian group, and a level-two structure is a minimal set of
generators for its subgroup of 2-torsion elements.

Proposition 6.5.3. There is a bijection between

(a) The points of H/Γ (2).
(b) The set of elliptic curves with level-two structure.
(c) P1−{0,1,∞}.

Proof. Given τ ∈ H, we get an elliptic curve Eτ = C/(Z+ Zτ) with the level-two
structure (1/2,τ/2) mod Z+Zτ . If τ ′ lies in the orbit of τ underΓ (2), then there is
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an isomorphism Eτ ∼= Eτ ′ taking (1/2,τ/2) mod Z+ Zτ to (1/2,τ ′/2) mod Z+
Zτ ′. Furthermore, any elliptic curve is isomorphic to an Eτ , and the isomorphism
can be chosen so that a given level-two structure goes over to the standard one.
Thus H/Γ (2) classifies elliptic curves with level-two structure as claimed. We can
describe the set of such curves in another way. Given an elliptic curve E defined
by Legendre’s equation (6.1.2), with t ∈ P1−{0,1,∞}, the ramification points (the
points on E lying over 0,1,∞,t) are precisely the 2-torsion points. We can take
the ramification point at ∞ to be the origin, and then any other pair of branch points
determines a level-two structure. Conversely, given an elliptic curve E , with origin o
and a level-two structure (p,q), we have h0(OE(2o)) = 2. This means that there is a
meromorphic function f : E → P1

C with a double pole at o. It is not hard to see that f
is ramified precisely at the 2-torsion points o, p,q, p+q (+ refers to the group law on
E). By composing f with a (unique) automorphism of P1

C, we can put E in Legendre
form such that f is projection to the x-axis, and f (o) =∞, f (p) = t ∈ P1−{0,1,∞},
f (q) = 0, f (p + q) = 1. Thus H/Γ (2) is isomorphic to P1−{0,1,∞}. 	


We note that Γ (2)/{±I} acts freely on H, and the quotient is isomorphic to
P1−{0,1,∞} as a Riemann surface. A nice application of this to complex analysis
is given in the following theorem:

Theorem 6.5.4 (Picard’s little theorem). An entire function omitting two or more
points must be constant.

Proof. The universal cover of P1−{0,1,∞} is H, which is isomorphic to the unit
disk D. Let f be an entire function omitting two points, which we can assume are
0 and 1. Then f lifts to a holomorphic map C → D that is bounded and therefore
constant by Liouville’s theorem [1]. 	


Exercises

Let p be an odd prime in the following exercises.

6.5.5. Show that the stabilizers of the action of PSL2(Z) on points of H are trivial
unless they lie in the orbit of i or ρ = e2π i/3, in which case they are cyclic of order
2 and 3 respectively. (Hint: refer back to the fundamental domain in Figure 6.3.)

6.5.6. If Γ ⊂ PSL2(Z) is a finite-index normal subgroup, show that π : H∗/Γ →
H∗/SL2(Z)

j
= P1 is a Galois cover with Galois group G = PSL2(Z)/Γ . Show that

the branch points of π are the images j(i), j(ρ),∞ in P1.

6.5.7. Show that |PSL2(Z/pZ)|= p3−p
2 = dp. Check that the order of the stabilizers

of the PSL2(Z/pZ)-action on H∗/Γ (p) at points lying over j(i), j(ρ),∞ are 2,3,
and p respectively.
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6.5.8. Use the Riemann–Hurwitz formula (as stated in Exercise 6.4.9) to calculate
that the genus of H∗/Γ (p) is

g = 1 +
dp(p−6)

12p
.

Show that Hurwitz’s bound is attained with this example when p = 7.



Chapter 7
Simplicial Methods

In this chapter, we introduce simplicial methods that can be used to give concrete
realizations for many of the cohomology theories encountered so far. We start with
simplicial (co)homology, which is historically the first such theory. It is highly com-
putable, at least in principle, but it suffers the disadvantage of depending on a trian-
gulation. This can be overcome by working with singular (co)homology, which we
briefly discuss, since it is the standard approach in topology. Fortunately, for reason-
able spaces singular cohomology coincides with sheaf cohomology with constant
coefficients. So all is well.

Simplicial cohomology also provides a model for Čech cohomology for arbi-
trary sheaves, which is dealt with later in this chapter. Čech cohomology coincides
with sheaf cohomology in good cases, and for many problems is a more convenient
theory to work with. In particular, it will be used for many of the computations
done later on. Since it is quite concrete, Čech theory is often given a primary role in
many expositions of sheaf theory. Nevertheless, as we shall see, it is not without its
drawbacks.

7.1 Simplicial and Singular Cohomology

A systematic development of the ideas in this section can be found in Hatcher [61]
or Spanier [108]. The standard n-simplex is

Δn =
{
(t1, . . . ,tn+1) ∈ Rn+1 |∑ti = 1, ti ≥ 0

}
.

The ith face Δn
i is the intersection of Δn with the hyperplane ti = 0 (see Figure 7.1).

Each face is homeomorphic to an (n− 1)-simplex, and this can be realized by an
explicit affine map δi : Δn−1 → Δn

i . In general, we refer to the intersection of Δ with
the linear space ti1+1 = · · ·= tik+1 = 0 as a face. The faces are labeled by nonempty
subsets of {0, . . . ,n}.

DOI 10.1007/978-1-4614-1809-2_7, © Springer Science+Business Media, LLC 2012
137, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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Fig. 7.1 2-simplex.

Some fairly complicated topological spaces, called polyhedra or triangulable
spaces, can be built up by gluing simplices. It is known, although by no means
obvious, that manifolds and algebraic varieties (with classical topology) can be
triangulated. The combinatorics of the gluing is governed by a simplicial complex.

Definition 7.1.1. A simplicial complex (V,Σ) consists of a set V , called the set of
vertices, and a collection of finite nonempty subsets Σ of V containing all the single-
tons and closed under taking nonempty subsets.

We can construct a topological space |(V,Σ)| out of a simplicial complex roughly
as follows. To each maximal element S ∈ Σ , choose an n-simplex Δ(S), where n+1
is the cardinality of S. Glue Δ(S) to Δ(S′) along the face labeled by S∩S′ whenever
this is nonempty. (When V is infinite, this gluing process requires some care; see
[108, Chapter 3].)

Let K = (V,Σ) be a simplicial complex, and assume that V is linearly ordered.
We will refer to an element of Σ as a n-simplex if it has cardinality n+1. We define
an n-chain on a simplicial complex to be a finite formal integer linear combination
∑i niΔi where the Δi are n-simplices. In other words, the set of n-chains Cn(K) is
the free abelian group generated by the set of n-simplices of K. Given an abelian
group, let Cn(K,A) = Cn(K)⊗Z A. Dually, the set of n-cochains with values in A is
Cn(K,A) = Hom(Cn(K),A). In other words, an n-cochain is a function that assigns
an element of A to every n-simplex. One can think of an n-cochain as some sort of
combinatorial analogue of an n-form. As in integration theory, we need to worry
about orientations, and this is where the ordering comes in. An alternative, which is
probably more standard, is to use oriented simplices; the complexes one gets in this
way are bigger, but the resulting cohomology theory is the same.

We define the ith face of a simplex

δi({v0, . . . ,vn}) = {v0, . . . , v̂i, . . . ,vn},
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v0 < v1 < · · · < vn. (The notation x̂ means omit x.) Given an n-chain C = ∑ j a jΔ j,
we define an (n−1)-chain ∂ (C), called the boundary of C, by

δ (C) =∑∑(−1)i a jδi(Δ j).

This operation can be extended by scalars to C•(K,A), and it induces a dual
operation ∂ : Cn(K,A)→Cn+1(K,A) by ∂ (F)(C) = F(δC). The key relation is as
follows:

Lemma 7.1.2. δ jδi = δiδ j−1 for i < j.

Corollary 7.1.3. δ 2 = 0 and ∂ 2 = 0.

Thus we have a complex. The simplicial homology of K is defined by

Hn(K,A) =
ker[δ : Cn(K,A)→Cn−1(K,A)]
im[δ : Cn+1(K,A)→Cn(K,A)]

.

Elements of the numerator are called cycles, and elements of the denominator are
called boundaries. The simplicial cohomologies are defined likewise by

Hn(K,A) = H n(C•(K,A)) =
ker[∂ : Cn(K,A)→Cn+1(K,A)]
im[∂ : Cn−1(K,A)→Cn(K,A)]

.

Note that when V is finite, these groups are automatically finitely generated and
computable. The choices of A of interest to us are Z,R, and C. The relationships are
given by the following theorem:

Theorem 7.1.4 (Universal coefficient theorem). If A is torsion-free, then there are
isomorphisms

Hi(K,A) ∼= Hi(K,Z)⊗A,

Hi(K,A) ∼= Hi(K,Z)⊗A∼= Hom(Hi(K,Z),A).

Proof. [108]. 	

One advantage of cohomology over homology is that it has a multiplicative struc-

ture. When A is replaced by a commutative ring R, there is a product on cohomology
analogous to the product in de Rham induced by wedging forms. Given two cochains
α ∈Cn(K,R), β ∈Cm(K,R), their cup product α ∪β ∈Cn+m(K,R) is given by

α ∪β ({v0, . . . ,vn+m}) = α({v0, . . . ,vn})β ({vn, . . . ,vn+m}), (7.1.1)

where v0 < v1 < · · · .
Lemma 7.1.5. ∂ (α ∪β ) = ∂ (α)∪β +(−1)nα ∪∂ (β ).

Corollary 7.1.6. ∪ induces an operation on cohomology that makes H∗(K,R) into
a graded ring.
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Singular (co)homology was introduced partly in order to give conceptual proof
of the fact that Hi(K) and Hi(K) depend only on |K|, i.e., that these are indepen-
dent of the triangulation. Here we concentrate on singular cohomology. A singular
n-simplex on a topological space X is simply a continuous map from f : Δn to X .
When X is a manifold, we can require the maps to be C∞. We define a singular
n-cochain on X to be a map that assigns an element of A to any n-simplex on X . Let
Sn(X ,A) (or Sn

∞(X ,A)) denote the group of (C∞) n-cochains with values in A. When
F is an n-cochain, its coboundary is the (n + 1)-cochain

∂ (F)( f ) =∑(−1)iF( f ◦ δi).

The following has more or less the same proof as Corollary 7.1.3.

Lemma 7.1.7. ∂ 2 = 0.

The singular cohomology groups of X are

Hi
sing(X ,A) = H i(S∗(X ,A)).

Singular cohomology is clearly contravariant in X . A basic property of this cohomo-
logy theory is its homotopy invariance. We state this in the form that we will need.
A subspace Y ⊂ X is called a deformation retract if there exists a a continuous map
F : [0,1]×X → X such that F(0,x) = x, F(1,X) = Y , and F(1,y) = y for y ∈ Y ; X
is called contractible if it deformation retracts to a point.

Proposition 7.1.8. If Y ⊂ X is a deformation retract, then

Hi
sing(X ,A)→ Hi

sing(Y,A)

is an isomorphism for any A.

Corollary 7.1.9. In particular, the higher cohomology vanishes on a contractible
space.

The corollary is an analogue of Poincaré’s lemma. We call a space locally con-
tractible if every point has a contractible neighborhood. Manifolds and varieties
with classical topology are examples of such spaces.

Theorem 7.1.10. If X is a paracompact Hausdorff space (e.g., a metric space) that
is locally contractible, then Hi(X ,AX)∼= Hi

sing(X ,A) for any abelian group A. More-
over, the cup product in sheaf cohomology coincides with the cup product in singular
cohomology.

A complete proof, excluding the last statement, can be found in [108, Chapter 6
§§7–§9] (note that Spanier uses the Čech approach discussed in the next section).
A proof that is more natural from our point of view can be found in [117], although
it is stated only for manifolds. The key step is to consider the sheaves S n associated
to the presheaves U �→ Sn(U,A). These sheaves are soft. When A = R this is clear,
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since they are modules over the sheaf of real-valued continuous functions. The local
contractability guarantees that

0→ AX →S 0 →S 1 → ···

is a soft resolution. Thus one gets

Hi(X ,AX)∼= H i(S ∗(X)).

The product (7.1.1) also extends to these sheaves, and thus we can conclude the
coincidence of cup products using [45, Theorem 6.6.1]. It remains to check that the
natural map

S∗(X ,A)→S ∗(X)

induces an isomorphism on cohomology. We refer the reader to [117, pp. 196–197]
for this.

As a corollary of this (and the universal coefficient theorem), we obtain the form
of de Rham’s theorem that most people think of.

Corollary 7.1.11 (De Rham’s theorem, version 2). If X is a manifold, then

H∗
dR(X ,R)∼= H∗

sing(X ,R)∼= H∗
sing(X ,Z)⊗R

as graded algebras.

The theorem and its corollary also hold when C∞ cochains are used. In this case,
the map can be defined directly on the level of complexes by

α �→
(

f �→
∫
Δ

f ∗α
)

.

Singular cohomology carries a cup product given by formula (7.1.1). A stronger
form of de Rham’s theorem shows that the above map is a ring isomorphism [117].
Fundamental classes of oriented submanifolds can be constructed in H∗(X ,Z). This
can be used to show that the intersection numbers Y ·Z are always integers. This can
also be deduced from Proposition 5.6.3 and transervsality theory.

Exercises

7.1.12. Prove Lemma 7.1.2 and it corollary.

7.1.13. Calculate the simplicial cohomology with Z coefficients for the “tetrahe-
dron,” which is the power set of V = {1,2,3,4} with /0 and V removed.

7.1.14. Let Sn be the n-sphere realized as the unit sphere in Rn+1. Let U0 = Sn−
{(0, . . . ,0,1)} and U1 = Sn −{(0, . . . ,0,−1)}. Prove that Ui are contractible, and
that U0∩U1 deformation retracts onto the “equatorial” (n−1)-sphere.
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7.1.15. Prove that

Hi(Sn,Z) =

{
Z if i = 0, n,

0 otherwise,

using Mayer–Vietoris.

7.2 Cohomology of Projective Space

Our goal in this section is to calculate the cohomology of projective space. But
first we will need to develop a few more tools. Let X be a space satisfying the
assumptions of Theorem 7.1.10, and Y ⊂ X a closed subspace satisfying the same
assumptions. We will insert the restriction map

Hi(X ,Z)→ Hi(Y,Z)

into a long exact sequence. This can be done in a number of ways: by defining
cohomology of the pair (X ,Y ), by using sheaf theory, or by using a mapping cone.
We will choose the last option, which is the most geometric.

Proposition 7.2.1. Let X/Y denote the space obtained by collapsing Y to a point.
Then for i > 0, there is a long exact sequence

· · · → Hi(X/Y,Z)→ Hi(X ,Z)→ Hi(Y,Z)→ Hi+1(X/Y,Z)→ ··· . (7.2.1)

The sequence is constructed as follows. Let C be obtained by first gluing the base
of the cylinder {0}×Y ⊂ [0,1]×Y to X along Y , and then collapsing the top {1}×Y
to a point P (Figure 7.2).

Let U1 =C−P, and let U2 ⊂C be the open cone (0,1]×Y/{1}×Y . One sees that
U1 deformation retracts to X , U2 is contractible, and U1 ∩U2 deformation retracts
to Y . The Mayer–Vietoris sequence, together with Proposition 7.1.8, yields a long
exact sequence

· · · →Hi(C,Z)→Hi(X ,Z)→ Hi(Y,Z)→ Hi+1(C,Z)→ ···

when i > 0. To make this really useful, note that the map C →C/U2 that collapses
the closed cone to a point is a homotopy equivalence. Therefore it induces an
isomorphism on cohomology. Since we can identify C/U2 with X/Y , we obtain
a sequence (7.2.1)

We can now carry out a basic computation. Let Pn = Pn
C with its classical

topology.

Theorem 7.2.2.

Hi(Pn,Z) =

{
Z if 0≤ i≤ 2n is even,

0 otherwise.
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Fig. 7.2 Mapping cone.

Proof. We apply this when X = Pn and Y = Pn−1 embedded as a hyperplane. The
complement X−Y is equal to Cn. Collapsing Y to a point amounts to adding a point
at infinity to Cn; thus X/Y = S2n. Since projective spaces are connected,

H0(Pn,Z) ∼= H0(Pn−1,Z) ∼= Z.

For i > 0, (7.2.1) and the previous exercise yield isomorphisms

Hi(Pn,Z) ∼= Hi(Pn−1,Z), when i < 2n, (7.2.2)

H2n(Pn,Z) ∼= Z.

Theorem 7.2.2 now follows by induction. 	


Exercises

7.2.3. Let L⊂ Pn be a linear subspace of codimension i. Prove that its fundamental
class [L] is generated by H2i(Pn,Z).

7.2.4. Let X ⊂ Pn be a smooth projective variety. Then [X ] = d[L] for some d, where
L is a linear subspace of the same dimension; d is called the degree of X . Bertini’s
theorem, which you can assume, implies that there exists a linear space L′ of com-
plementary dimension transverse to X . Check that X ·L′ = #(X ∩L′) = d.

7.2.5. An algebraic variety X admits an affine cell decomposition if there is a
sequence of Zariski closed sets X = Xn ⊃ Xn−1 ⊃ ·· · such that each difference
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Xi−Xi−1 is an affine space. Generalize the above procedure to compute H∗(X ,Z)
assuming that X possesses such a decomposition.

7.2.6. Let G = G(2,4) be the Grassmannian of lines in P3. We define a sequence
of subsets by imposing so-called Schubert conditions. Fix a plane P ⊂ P3, a line
L ⊂ P, and a point Q ∈ L. Let G3 be the set of lines meeting L, G2 the set of lines
containing Q or contained in P, G1 ⊂ G the set of lines containing Q and contained
in P, and let G0 = {L}. Show that this gives an affine cell decomposition. Use this
to calculate the cohomology of G.

7.3 Čech Cohomology

We return to sheaf theory proper. We will introduce the Čech approach to cohomo-
logy, which has the advantage of being quite explicit and computable (and the dis-
advantage of not always giving the “right” answer). Roughly speaking, Čech bears
the same relation to sheaf cohomology as simplicial does to singular cohomology.

One starts with an open cover {Ui | i ∈ I} of a space X indexed by a linearly
ordered set I. If J ⊆ I, let UJ be the intersection of Uj with j ∈ J. Let F be a sheaf
of abelian groups on X . The group of Čech n-cochains is

Cn = Cn({Ui},F ) = ∏
i0<···<in

F (Ui0...in).

The coboundary map ∂ : Cn →Cn+1is defined by

∂ ( f )i0...in+1 =∑
k

(−1)k fi0...îk ...in+1
|Ui0 ...in+1

. (7.3.1)

By an argument similar to the proof of corollary 7.1.3, we have the following:

Lemma 7.3.1. ∂ 2 = 0.

Definition 7.3.2. The nth Čech cohomology group is

Ȟn({Ui},F ) = H n(C•({Ui},F )) =
ker(∂ : Cn →Cn+1)
im(∂ : Cn−1 →Cn)

.

To get a feeling for this, let us write out the first couple of groups explicitly:

Ȟ0({Ui},F ) = {( fi) ∈∏ F (Ui) | fi = f j on Ui j }= F (X),

Ȟ1({Ui},F ) =
{( fi j) ∈∏ F (Ui j) | fik = fi j + f jk on Ui jk }

{( fi j) |∃(φi), fi j = φi−φ j} . (7.3.2)

There is a strong similarity with simplicial cohomology. This can be made precise
by introducing a simplicial complex called the nerve of the cover. For the set of
vertices, we take the index set I. The set of simplices is given by
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Σ = {{i0, . . . in}|Ui0,...in �= /0}.

If we assume that each Ui0,...in is connected, then we see that the Čech complex
Cn({Ui},AX) coincides with the simplicial complex of the nerve with coefficients
in A.

Even though we are primarily interested in sheaves of abelian groups, it will be
convenient to extend (7.3.2) to a sheaf of arbitrary groups G ,

Ȟ1({Ui},G ) =

{
(gi j) ∈∏

i< j
G (Ui j) |gik = gi jg jk on Ui jk

}/
∼,

where (gi j)∼ (ḡi j) if there exists (γi) ∈∏G (Ui) such that gi j = γiḡi jγ−1
j . Note that

in general this is not a group, but just a set with distinguished element gi j = 1. The
(gi j) are called 1-cocycles with values in G . It will be useful to drop the requirement
i < j by setting g ji = g−1

i j and gii = 1. This will not affect the outcome. See Exercise
7.3.8 for a generalization of this.

As an example of a sheaf of nonabelian groups, take U �→ GLn(R(U)), where
(X ,R) is a ringed space (i.e., a space with a sheaf of commutative rings).

Theorem 7.3.3. Let (X ,R) be a manifold or a variety over k, an {Ui} an open cover
of X. There are one-to-one correspondences between the following sets:

A = The set of isomorphism classes of rank-n vector bundles over (X ,R) trivializ-
able over {Ui}.

B = The set of isomorphism classes of locally free R-modules M such that M |Ui
∼=

R|nUi
.

C = Ȟ1({Ui},GLn(R)).

Proof. We merely describe the correspondences.

A→ B: Given a vector bundle V on X , let V be its sheaf of sections.
B→C: Given a locally free sheaf V , choose isomorphisms Fi : Rn

Ui
→ V |Ui . Set

gi j = Fi ◦F−1
j . This determines a well-defined element of Ȟ1.

C → A: Define an equivalence relation ≡ on the disjoint union W =
⋃

Ui× kn as
follows. Given (xi,vi) ∈Ui× kn and (x j,v j) ∈Uj × kn, (xi,vi) ≡ (x j,v j) if
and only if xi = x j and vi = gi j(x)v j. Let V = (W/≡) with the quotient
topology. Given an open set (U ′/≡) = U ⊂ V , define f : U → k to be
regular, C∞, or holomorphic (as the case may be) if its pullback to U ′ has
this property. 	


Implicit above is a construction that associates to a 1-cocycle γ = (gi j), the
locally free sheaf

Mγ (U) =
{
(vi) ∈∏R(U ∩Ui)n |vi = gi jv j

}
.

Example 7.3.4. Consider the case of projective space P = Pn
k . Suppose x0, . . . ,xn are

homogeneous coordinates. Let Ui be the complement of the hyperplane xi = 0. Then
Ui is isomorphic to An

k by
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[x0, . . . ,xn]→
(

x0

xi
, . . . ,

x̂i

xi
, . . .

)
.

Define gi j = x j/xi ∈ OP(Ui j)∗. This is a 1-cocycle, and Mgi j
∼= OP(1). Likewise,

(x j/xi)d is the 1-cocyle for OP(d).

We get rid of the dependence on covers by taking direct limits. If {Vj} is a
refinement of {Ui}, in the sense that each Vj lies in some Ui, then there is a natural
restriction map

Ȟi({Ui},F )→ Ȟi({Vj},F ).

Definition 7.3.5. The nth Čech cohomology group is the direct limit

Ȟi(X ,F ) = lim→ Ȟi({Uj},F )

over all open covers under refinement.

From Theorem 7.3.3, we can extract the following corollary:

Corollary 7.3.6. There are one to one correspondences between the following sets:

A = The set of isomorphism classes of rank n-vector bundles over (X ,R).
B = The set of isomorphism classes of locally free R-modules M of rank n.
C = Ȟ1(X ,GLn(R)).

A line bundle is a rank-one vector bundle. We will not distinguish between
line bundles and rank-one locally free sheaves. The set of isomorphism classes of
line bundles carries the structure of a group, namely Ȟ1(X ,R∗). This group is called
the Picard group, and is denoted by Pic(X).

Exercises

7.3.7. Check that the Čech coboundary satisfies ∂ 2 = 0.

7.3.8. It is often convenient to use alternating cochains, where

Cn
alt({Ui},F )⊂∏F (Ui0...in)

consists of families such that fi0...in+1 = 0 when indices are repeated and

fσ(i0)...σ(in+1) = sign(σ) fi0 ...in+1

for any permutation σ . Show that the coboundary (7.3.1) preserves this condition.
Define ι : Cn({Ui},F )→Cn

alt({Ui},F ) by

ι( f )i0 ,...ip =

{
sign(σ) fσ(i0)...σ(in+1) where σ(i0) < · · ·< σ(in+1),
0 if there are repetitions.
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Show that this induces an isomorphism of complexes and therefore an isomorphism
on cohomology.

7.3.9. Fill in the details of the proof of Theorem 7.3.3.

7.3.10. Show that multiplication in Pic(X) can be interpreted as tensor product of
line bundles. Show that the determinant map det : GLn(R) → R∗ induces a map
Ȟ1(X ,GLn(R)) → Pic(X) corresponding to the operation M �→ ∧nM on locally
free sheaves.

7.3.11. Given an exact sequence of sheaves 0 →A → B → C → 0 on X and γ ∈
C (X), define δ (γ) as follows. Choose an open cover {Ui} so that γ|Ui = im(βi),
with βi ∈B(Ui). Let δ (γ) be the class of βi−β j ∈C1({Ui},A ).

(a) Show that δ (γ) gives a well-defined element of Ȟ1(X ,A ).
(b) Show that δ (γ) = 0 if and only if γ lies in the image of B(X).

7.3.12. Let X be an algebraic variety and let K∗ be the constant sheaf associated
to the nonzero elements of the function field k(X)∗. There is a natural inclusion
O∗

X ⊂ K∗. A (principal) Cartier divisor is an element F ∈ K∗/O∗
X(X) (respec-

tively imK∗(X)). The obstruction to being principal is the class δ (F) ∈ Ȟ1(X ,O∗
X ).

Describe this in explicit terms.

7.4 Čech Versus Sheaf Cohomology

We define a sheafified version of the Čech complex. Given a sheaf F on a space X
and an open cover {Ui}, let

C n({Ui},F ) = ∏
i0<...<in

ι∗F |Ui0 ...in
,

where ι denotes the inclusion Ui0...in ⊂ X . We construct a differential ∂ using
the same formula as before (7.3.1). Taking global sections yields the usual Čech
complex.

Lemma 7.4.1. These sheaves fit into an exact sequence

0→F → C 0({Ui},F )→ C 1({Ui},F )→ ··· . (7.4.1)

Proof. [60, III, Lemma 4.2]. 	

Lemma 7.4.2. Suppose that F is flasque. Then Ȟn({Ui},F ) = 0 for all n > 0.

Proof. If F is flasque, then the sheaves C n({Ui},F ) are also seen to be flasque.
Then (7.4.1) gives an acyclic resolution of F . Therefore

Ȟn({Ui},F ) = H n(C •({Ui},F )) = Hn(X ,F ) = 0. 	
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Lemma 7.4.3. Suppose that H1(UJ,A ) = 0 for all nonempty finite sets J. Then
given an exact sequence

0→A →B → C → 0

of sheaves, there is a long exact sequence

0→ Ȟ0({Ui},A )→ Ȟ0({Ui},B)→ Ȟ0({Ui},C )→ Ȟ1({Ui},A )→ ··· .

Proof. The hypothesis guarantees that there are short exact sequences

0→A (UJ)→B(UJ)→ C (UJ)→ 0.

Thus we have an exact sequence of complexes

0→C•({Ui},A )→C•({Ui},B)→C•({Ui},C )→ 0.

The long exact sequence now follows from a standard result in homological algebra
(cf. [118, Theorem 13.1]). 	

Definition 7.4.4. An open cover {Ui} is called a Leray cover for a sheaf F if
Hn(UJ,F ) = 0 for all nonempty finite sets J and all n > 0.

Theorem 7.4.5. If {Ui} is a Leray cover for the sheaf F , then

Ȟn({Ui},F )∼= Hn(X ,F )

for all n.

Proof. This is clearly true for n = 0. With the notation of Section 4.2, we have an
exact sequence

0→F →G(F )→ C1(F )→ 0

with
H1(X ,F ) = coker[Γ (X ,G(F ))→ Γ (X ,C1(F ))] (7.4.2)

and
Hn+1(F ) = Hn(C1(F )). (7.4.3)

Lemmas 7.4.3 and 7.4.2 imply that

Ȟ1(F ) ∼= coker[Γ (X ,G(F ))→ Γ (X ,C1(F ))] (7.4.4)

and
Ȟn+1(F ) = Ȟn(C1(F )) (7.4.5)

for n > 0. Formulas (7.4.2) and (7.4.4) already imply the theorem when n = 1. The
remaining cases when n > 1 can be handled by induction, using (7.4.3), (7.4.5), and
the fact that the cover is also Leray with respect to C1(F ):

Hi(UJ,C1(F )) = Hi+1(UJ,F ) = 0. 	
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Corollary 7.4.6. If every cover admits a Leray refinement, then Ȟn(X ,F ) ∼=
Hn(X ,F ).

We state a few more general results for the record.

Proposition 7.4.7. For any sheaf F ,

Ȟ1(X ,F )∼= H1(X ,F ).

Proof. See [45, Chapter II, Corollary 5.9.1]. 	

Corollary 7.4.8. If (X ,R) is a ringed space, Pic(X)∼= H1(X ,R∗).

Theorem 7.4.9. If X is a paracompact Hausdorff space (e.g., a metric space), then
for any sheaf and all i,

Ȟi(X ,F ) ∼= Hi(X ,F )

for all i.

Proof. See [45, Chapter II, Corollary 5.10.1]. 	


Exercises

7.4.10. If {Ui} is an open cover of a space X such that every nonempty intersection
UI is contractible, show that it is Leray with respect to a constant sheaf AX . Thus
Hi(X ,AX) is the simplicial cohomology of the nerve associated to such a cover.

7.4.11. A finite-dimensional cell complex, which refines the notion of a simplicial
complex, is a space constructed as follows. Start with a set of points X0, then glue a
set of intervels (1-cells) by attatching their endpoints to X0 to obtain X1. Glue a set
of 2-disks (2-cells) by attaching their boundaries to X1, and so on. X = Xn for some
n. Show that X admits an open cover as in the previous exercise.

7.4.12. When X = U1∪U2, Mayer–Vietoris yields a map F (U1∩U2)→H1(X ,F ).
This induces a map Ȟ1({U1,U2}F )→ H1(X ,F ), which is an isomorphism when
the cover is Leray. Show more generally that for any finite cover {Uj}, there is a
natural map Ȟi({Uj},F )→ Hi(X ,F ) with the same property.

7.4.13. Let X be an algebraic variety. Prove that Pic(X) is isomorphic to the quotient
of the group of Cartier divisors (Exercise 7.3.12) by principal divisors.

7.4.14. Let A = A2
k , where k is algebraically closed, and let C ⊂ A be the union of

two irreducible curves Ci meeting in two points. Let K = ker[ZA → ZC]. Show that
H2(X ,Z) = Z using Exercise 5 of §4.5. On the other hand, it can be shown that
Ȟ2(X ,Z) = 0; cf. [51, pp. 177–179].
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7.5 First Chern Class

Let (X ,OX) be a complex manifold or algebraic variety over C. Then we have
isomorphisms

Pic(X)∼= Ȟ1(X ,O∗
X )∼= H1(X ,O∗

X ).

Let e(x) = exp(2π ix) be the normalized exponential.

Lemma 7.5.1. When X is a complex manifold, there is an exact sequence

0→ ZX →OX
e−→ O∗

X → 1 (7.5.1)

called the exponential sequence.

Proof. It suffices to check this when X is replaced by a ball. Since a ball is simply
connected, given a holomorphic function f ∈ O∗(X), we can find a single-valued
branch of the logarithm log f . Then f = e(log f/2π i). This proves surjectivity. The
remaining steps are straightforward. 	

Definition 7.5.2. Given a line bundle L, its first Chern class c1(L) ∈H2(X ,Z) is the
image of L under the connecting map Pic(X)→ H2(X ,Z) associated to (7.5.1).

This can be carried out for C∞ manifolds as well, provided one interprets OX as
the sheaf of complex-valued C∞ functions, and Pic(X) as the group of C∞ complex
line bundles. In this case, c1 is an isomorphism. It is clear that the construction is
functorial:

Lemma 7.5.3. If f : X → Y is a C∞ map between manifolds, then c1( f ∗L) =
f ∗c1(L).

We want to calculate the first Chern class explicitly for a compact Riemann sur-
face X . Note that in this case, H2(X ,Z)∼= Z, so we can view c1 as a number. To make
things even more explicit, we note that this isomorphism is given by the inclusion
H2(X ,Z) ⊂ H2(X ,C) followed by integration. In order to get a de Rham represen-
tative, we consider the commutative diagram

0 �� ZX
��

��

OX
e ��

��

O∗
X

��

1
2πi d log

��

1

0 �� CX
�� E 0

X
d �� E 1

X ,cl
�� 0

(7.5.2)

where E 1
X ,cl is the sheaf of closed 1-forms. By definition, it fits into an exact

sequence
0→ E 1

X ,cl → E 1
X → E 2

X → 0.

From this we obtain

E 1(X)→ E 2(X)→ H1(X ,EX ,cl)→ 0.
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Given a 1-cocycle γ jk representing an element of H1(X ,EX ,cl), we can find an
explicit lift to β ∈ E 2(X) as follows. Regarding γ jk as a cocycle in E 1

X , we express
it as a coboundary

γ jk = α j|Ujk −αk|Ujk , α j ∈ E 1
X (Uj)

because E 1
X is soft. Since γ jk is closed, we have dα j = dαk on Ujk. Thus these forms

patch to give a global 2-form β .
From the diagram (7.5.2), we obtain a commutative square

H1(X ,O∗
X )

c1 ��

1
2πi d log

��

H2(X ,Z)

��
H1(X ,EX ,cl) �� H2(X ,C)

Combining all of this leads to the following recipe for computing c1. Apply d log
2π i to

a 1-cocycle g jk ∈ O∗
X (Ujk). Then write it as a boundary:

d logg jk

2π i
= α j|Ujk −αk|Ujk , α j ∈ E 1

X (Uj).

Then dα j patches to give a well-defined global closed 2-form β that represents the
image of c1 in H2(X ,C). Finally, we integrate β to get a number.

Lemma 7.5.4. On P1 with the above identification, we have c1(O(1)) = 1.

Proof. Set P = P1
C. We can use the standard cover Ui = {xi �= 0}. We identify

U1 with C with the coordinate z = x0/x1. The 1-cocycle of OX (1) is g01 = z−1

(Example 7.3.4). Carrying out the above procedure yields

d log g01

2π i
=− dz

2π iz
= α0−α1

and β = dα j.
In order to evaluate the integral

∫
β , divide the sphere into two hemispheres H1 =

{|z| ≤ 1} and H0 = {|z| ≥ 1}. Let C be the curve |z|= 1 oriented so that the boundary
of H1 is C. Then with the help of Stokes’s theorem, we get∫

P
β =

∫
H0

dα0 +
∫

H1

dα1 =−
(∫

C
α0−

∫
C
α1

)
=

1
2π i

∫
C

dz
z

= 1.

Thus c1(O(1)) is the fundamental class of H2(P1,Z). 	

By the same kind of argument, we obtain the following:

Lemma 7.5.5. If D is a divisor on a compact Riemann surface X, c1(O(D)) =
deg(D).
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We are going to generalize this to higher dimensions. A complex submanifold
D ⊂ X of a complex manifold is called a smooth effective divisor if D is locally
definable by a single equation. In other words, we have an open cover {Ui} of X and
functions fi ∈ O(Ui) such that D∩Ui is given by fi = 0. We define the OX -module
OX (−D) to be the ideal sheaf of D, and OX (D) to be the dual. By assumption,
OX (−D) is locally a principal ideal, and hence a line bundle. The line bundle OX(D)
is determined by the 1-cocycle fi/ f j ∈ O(Ui∩Uj)∗.

Lemma 7.5.6. If H ⊂ Pn is a hyperplane, then OPn(H)∼= OPn(1).

Proof. Although we basically proved this in Section 3.6, we give a different argu-
ment using cocycles. Let H be given by the homogeneous linear form � =∑k akxk =
0. Then for the standard cover Ui = {xi �= 0}, H is defined by

�i =∑ak
xk

xi
= 0.

Thus O(H) is determined by the 1-cocycle �i/� j = x j/xi, which is the cocycle for
O(1). 	

Lemma 7.5.7. c1(OPn(1)) = [H], where H ⊂ Pn is a hyperplane.

Proof. We have already checked this for P1 in Lemma 7.5.4. Embed P1 ⊂ Pn as a
line. The restriction map induces an isomorphism on second cohomology with Z
coefficients such that [H] maps to the fundamental class of P1 by (7.2.2). Since c1

is compatible with restriction, Lemma 7.5.4 implies that c1(OPn(1)) = [H]. 	

Theorem 7.5.8. If D is a smooth effective divisor, then c1(OX (D)) = [D].

Proof. There are several ways to prove this. We are going to outline the proof given
in [63], which reduces it to the previous lemma. We are going to work in the C∞

category, since most of the constructions used here cannot be made holomorphic.
Choose an open tubular neighborhood T of D. This is a complex C∞ line bundle
such that D corresponds to the zero section. So there is a C∞ classifying map X →Pn

such that the line bundle associated to OPn(−1) pulls back to T by Theorem 2.6.6.
By composing this with complex conjugation Pn → Pn, we can arrange that the dual
line bundle U associated to OPn(1) pulls back to T (see the exercises).

The Thom space Th(M) of a line bundle M → X is just the one-point compactifi-
cation of M. The Thom space Th(T ) can simply be obtained by collapsing the
complement of T in X to a point. From Exercise 3.6.5, we can see that Th(U) can
be identified with Pn+1. Under this identification, the zero section corresponds to Pn

embedded as a hyperplane. Since Th(T ) will map to Th(U), we obtain a commuta-
tive diagram.



7.5 First Chern Class 153

D ��

��

��







 X

��
Th(T )

��
Pn �� Pn+1

Using this, we can see that the fundamental class of Pn in Pn+1 pulls back to [D].
Furthermore the C∞ line bundle associated to OX (D) is isomorphic to the pullback of
the C∞ line bundle associated to OPn+1(1). This is because the duals can be identified
with the ideal sheaves of D and Pn respectively. Thus the theorem follows from the
previous lemma. 	


Exercises

7.5.9. Prove Lemma 7.5.5.

7.5.10. Given a vector bundle V of rank r, define det(V ) = ∧rV and c1(V ) =
c1(detV ). Prove that det(V1 ⊕ V2) ∼= det(V1) ⊗ det(V2). Use this to calculate
c1(V1⊕V2).

7.5.11. A Hermitian metric ‖ ‖2 on a holomorphic line bundle L→ X is a complex-
valued C∞ function on the total space L that restricts to an inner product on the
fibers. Every line possesses a metric obtained using a partition of unity. Conclude
that L can be represented by a cocycle gi j with values in the unit circle. Use this
to show that the pullback L̄ of L under complex conjugation is isomorphic to the
dual L∗.

7.5.12. Given a Hermitian metric on L and a local trivialization φi : L|Ui
∼= Ui×C,

let hi = ‖φ−1
i (1)‖2. This gives a collection of positive C∞ functions satisfying hi =

‖gi j‖2h j. Show that the curvature ω = ∂ ∂̄hi is globally defined, and that 1
2π
√−1

ω
represents c1(L). (See (9.2.1) for a discussion of the ∂ , ∂̄ operators.)



Part III
Hodge Theory



Chapter 8
The Hodge Theorem for Riemannian Manifolds

Thus far, our approach has been primarily algebraic or topological. We are going to
need a basic analytic result, namely the Hodge theorem. This says that on a com-
pact oriented manifold equipped with a metric, every de Rham cohomology class
has a unique “smallest” element, called its harmonic representative. When com-
bined with the Kähler identities in later chapters, this will have strong consequences
for complex algebraic geometry. The original proof is due to Hodge [64] with a
correction by Weyl [121]. Different proofs were given by Bidal and de Rham [12]
and Kodaira [72] soon there after. Standard accounts of these results, with the neces-
sary details, can be found in the books of Griffiths and Harris [49], Warner [117],
and Wells [120]. These books follow a similar approach of first establishing a weak
Hilbert space version of the Hodge theorem, and then applying some regularity
results from elliptic PDE theory to deduce the stronger statement. We will depart
slightly from these treatments by outlining the heat equation method of Milgram
and Rosenbloom [84]. This is an elegant and comparatively elementary approach to
the Hodge theorem. As a warmup, we will do a combinatorial version that requires
nothing more than linear algebra.

8.1 Hodge Theory on a Simplicial Complex

In order to motivate the general Hodge theorem, we first work out a simple combi-
natorial analogue. Let K = (V,Σ) be a finite simplicial complex. Then the spaces of
cochains C∗(K,R) are finite-dimensional. For each simplex S, let

δS(S′) =
{

1 if S = S′,
0 otherwise.

These form a basis of C∗(K,R). Now choose inner products on these spaces.
A particularly natural choice is determined by making this basis orthonormal. Let
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∂ ∗ : Ci(K,R)→Ci−1(K,R) be the adjoint to ∂ . Then Δ = ∂∂ ∗+∂ ∗∂ is the discrete
Laplacian.

Lemma 8.1.1. Let α be a cochain. The following are equivalent:

(a) α ∈ (im∂ )⊥ ∩ker∂ .
(b) ∂α = ∂ ∗α = 0.
(c) Δα = 0.

Proof. We prove the equivalences of (a) and (b), and of (b) and (c). Suppose that
α ∈ (im∂ )⊥ ∩ker∂ . Then of course ∂α = 0. Furthermore, since

‖∂ ∗α‖2 = 〈α,∂∂ ∗α〉= 0,

it follows that ∂ ∗α = 0. Conversely, assuming (b), we have α ∈ ker∂ and

〈α,∂β 〉= 〈∂ ∗α,β 〉= 0.

If ∂α = ∂ ∗α = 0, then Δα = 0. Finally, suppose that Δα = 0. Then

〈Δα,α〉 = ‖∂α‖2 +‖∂ ∗α‖2 = 0,

which implies (b). 	

The cochains satisfying the above conditions are called harmonic.

Lemma 8.1.2. Every simplicial cohomology class has a unique harmonic represen-
tative. The harmonic representative minimizes the norm in its cohomology class.

Proof. To prove the first statement, we check that the map

h : (im∂ )⊥ ∩ker∂ →Hn(K,R)

sending a harmonic cochain to its cohomology class is an isomorphism. If α lies in
the kernel of h, then it is a coboundary. Therefore α = ∂β , which implies that

‖α‖2 = 〈α,∂β 〉= 0.

This shows that h is injective. Given a cochain α with ∂α = 0, we can decompose
it as α = α1 +α2 with α1 ∈ (im∂ )⊥ ∩ ker∂ and α2 ∈ im∂ . Thus the cohomology
class of α is equal to h(α1).

Given a harmonic element α ,

‖α+ ∂β‖2 = ‖α‖2 +‖∂β‖2 > ‖α‖2

unless ∂β = 0. 	
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Exercises

8.1.3. Prove that the space of cochains can be decomposed into an orthogonal direct
sum

Cn(K) = kerΔ ⊕ im∂ ⊕ im∂ ∗.

8.1.4. Prove that Δ is a positive semidefinite symmetric operator.

8.1.5. Use the previous exercise to prove that the limit of the “heat kernel”

H = lim
t→∞e−tΔ

exists and is the orthogonal projection to kerΔ .

8.1.6. Green’s operator G is the endomorphism of Cn(K) that acts by 0 on kerΔ and
by 1

λ on the λ -eigenspaces of Δ with λ �= 0. Check that I = H +ΔG.

8.2 Harmonic Forms

Let X be an n-dimensional compact oriented manifold. We want to prove an
analogue of Lemma 8.1.2 for de Rham cohomology. In order to formulate this,
we need inner products. A Riemannian metric (,), is a family of inner products on
the tangent spaces that vary in a C∞ fashion. This means that the inner products
are determined by a tensor g ∈ Γ (X ,E 1

X ⊗ E 1
X ). The existence of Riemannian

metrics can be proved using a standard partition of unity argument [110, 111, 117].
A Riemannian manifold is a C∞ manifold endowed with a Riemannian metric.
A metric determines inner products on exterior powers of the cotangent bundle,
which will also be denoted by (,). In particular, the inner product on the top exterior
power gives a tensor det(g) ∈ Γ (X ,E n

X ⊗E n
X ). Since X is oriented, it is possible to

choose a consistent square root of det(g), called the volume form dvol ∈ E n(X).
In local coordinates,

dvol =
√

det(gi j)dx1∧·· ·∧dxn,

where ∂
∂x1

, . . . , ∂
∂xn

is positively oriented. The Hodge star operator is a C∞(X)-linear

operator ∗ : E k(X)→ E n−k(X), determined by

α ∧∗β = (α,β )dvol. (8.2.1)

This is easy to calculate explicitly. After choosing a local orthonormal basis or frame
ei for E 1

X in a neighborhood of a point, we have

∗(ei1 ∧·· ·∧ eik) = εe j1 ∧·· ·∧ e jn−k ,
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where { j1, . . . , jn−k} = {1, . . . ,n}− {i1, . . . , ik} and ε is given by the sign of the
permutation (

1 . . . k k + 1 . . . n
i1 . . . ik j1 . . . jn−k

)
.

From this, one gets that ∗∗= (−1)k(n−k) on k-forms. The spaces E k(X) carry inner
products,

〈α,β 〉 =
∫

X
(α,β )dvol =

∫
X
α ∧∗β ,

and hence norms.

Lemma 8.2.1. For all α,β ,

〈dα,β 〉=±〈α,∗d ∗β 〉.

In other words, the adjoint d∗ to d is ±∗ d∗.

Proof. The lemma follows by integration by parts. More explicitly, apply Stokes’s
theorem to the identity

d(α ∧∗β ) = dα ∧∗β ±α ∧∗∗d ∗β . 	


The key result of this chapter is the following theorem:

Theorem 8.2.2 (The Hodge theorem). Every de Rham cohomology class has a
unique representative that minimizes the norm. This is called the harmonic represen-
tative.

To understand the meaning of the harmonicity condition, we can treat it as a
variational problem and find the Euler–Lagrange equation. Let α be a harmonic
p-form. Then for any (p−1)-form β , we would have to have

d
dt
‖α+ tdβ‖2|t=0 = 2〈α,dβ 〉= 2〈d∗α,β 〉= 0,

which forces d∗α = 0. Conversely, if d∗α = 0, then

‖α+ dβ‖2 = ‖α‖2 +‖dβ‖2,

which implies that α has the minimum norm in its cohomology class. Thus har-
monicity can be expressed as a pair of differential equations dα = 0 and d∗α = 0.
It is sometimes more convenient to combine these into a single equation. For this
we need the following definition:

Definition 8.2.3. The Hodge Laplacian is Δ = d∗d + dd∗.
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Lemma 8.2.4. The following are equivalent:

(a) α is harmonic.
(b) dα = 0 and d∗α = 0.
(c) Δα = 0.

Proof. The equivalence of the first two conditions is contained in the previous
discussion. The equivalence of the last two conditions follows from the identity
〈Δα,α〉 = ‖dα‖2 +‖d∗α‖2. 	


The hard work is contained in the following result, whose proof will be postponed
until the next section.

Theorem 8.2.5. There are linear operators H (harmonic projection) and G (Green’s
operator) taking C∞ forms to C∞ forms that are characterized by the following
properties:

(a) H(α) is harmonic,
(b) G(α) is orthogonal to the space of harmonic forms,
(c) α = H(α)+ΔG(α),

for any C∞ form α .

Corollary 8.2.6. There is an orthogonal direct sum

E i(X) = (harmonic forms)⊕dE i−1(X)⊕d∗E i+1(X).

Proof. Exercise. 	

We can prove Theorem 8.2.2 modulo Theorem 8.2.5.

Proof. We prove the existence part of the theorem. The uniqueness is straight-
forward and left as an exercise. Let α be a closed form. It can be written as
α = β + dd∗γ+ d∗dγ with β = H(α) and γ = G(α). Since β is harmonic,

〈d∗dγ,β 〉= 〈dγ,dβ 〉= 0.

Furthermore,
〈d∗dγ,dd∗γ〉= 〈d∗γ,d2d∗γ〉= 0.

Thus
‖d∗dγ‖2 = 〈d∗dγ,α〉= 〈dγ,dα〉= 0.

Therefore α = β + dd∗γ is cohomologous to the harmonic form β . 	

Theorem 8.2.5 remains, and this will be dealt with later. For now we consider the

easy, but instructive, example of the torus.

Example 8.2.7. X = Rn/Zn, with the Euclidean metric. A differential form α can be
expanded in a Fourier series
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α = ∑
λ∈Zn

∑
i1<···<ip

aλ ,i1...ipe2π iλ ·xdxi1 ∧·· ·∧dxip . (8.2.2)

By direct calculation, one finds the Laplacian

Δ =−∑ ∂ 2

∂x2
i

,

the harmonic projection

H(α) =∑a0,i1...ipdxi1 ∧·· ·∧dxip ,

and Green’s operator

G(α) = ∑
λ∈Zn−{0}

∑
aλ ,i1...ip

4π2|λ |2 e2π iλ ·xdxi1 ∧·· ·∧dxip .

Since the image of H consists of forms with constant coefficients, this proves the
assertion in Example 5.4.13.

As an application of this theorem, we obtain a new proof of Poincaré duality in a
strengthened form.

Corollary 8.2.8 (Poincaré duality, reprise). The pairing

Hi(X ,R)×Hn−i(X ,R)→ R

induced by (α,β ) �→ ∫
α ∧β is a perfect pairing.

Proof. The operator ∗ induces an isomorphism between the space of harmonic
i-forms and (n− i)-forms. This proves directly that Hi(X ,R) and Hn−i(X ,R) are
isomorphic.

Consider the map
λ : Hi(X ,R)→ Hn−i(X ,R)∗

given by λ (α) = β �→ ∫
α ∧β . We need to prove that λ is an isomorphism. Since

these spaces have the same dimension, it is enough to prove that ker(λ ) = 0. But
this is clear, since λ (α)(∗α) �= 0 whenever α is a nonzero harmonic form. 	


Exercises

8.2.9. Give a careful proof of Lemma 8.2.1 and determine the signs.

8.2.10. Show that a harmonic exact form dγ satisfies ‖dγ‖2 = 0. Use this to prove
the uniqueness in Theorem 8.2.2.

8.2.11. Prove Corollary 8.2.6.

8.2.12. Fill in the details of Example 8.2.7.
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8.2.13. Let X be a compact Riemannian manifold with a group of isometries G, i.e.,
G preserves the metric. Then show that if α is harmonic, then g∗α is also harmonic
for any g ∈ G.

8.2.14. Suppose that G is a connected Lie group with an action G× X → X by
isometries on a compact Riemannian manifold X . Then show that any harmonic
form is G-invariant.

8.3 The Heat Equation*

We will outline an approach to Theorem 8.2.5 using the heat equation due to
Milgram and Rosenbloom [84]. However, we will deviate slightly from their presen-
tation, which is a bit too sketchy in places. The heuristic behind the proof is that
if the form α is thought of as an initial temperature, then the temperature should
approach a harmonic steady state as the manifold cools. So our task is to solve the
heat equation:

∂A(t)
∂ t

= −ΔA(t), (8.3.1)

A(0) = α, (8.3.2)

for all t > 0, and study the behavior as t → ∞. For simplicial complexes, this was
dealt with in the exercises of the first section.

We start with a few general remarks.

Lemma 8.3.1. If A(t) is a C∞ solution of (8.3.1), then ‖A(t)‖2 is (nonstrictly)
decreasing.

Proof. Upon differentiating ‖A(t)‖2, we obtain

2

〈
∂A
∂ t

,A

〉
=−2〈ΔA,A〉=−2(‖dA‖2 +‖d∗A‖2)≤ 0. 	


Corollary 8.3.2. A solution to (8.3.1)–(8.3.2) would be unique.

Proof. Given two solutions, their difference satisfies A(0) = 0, so it remains 0. 	

The starting point for the proof of existence is the observation that when X is

replaced by Euclidean space and α is a compactly supported function, then one has
an explicit solution to (8.3.1)–(8.3.2),

A(x,t) =
∫

Rn
K(x,y,t)α(y)dy = 〈K(x,y, t),α(y)〉y,
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where the heat kernel is given by

K(x,y, t) = (4πt)−n/2e−‖x−y‖2/4t , (8.3.3)

and the symbol 〈,〉y is the L2 inner product with integration carried out with respect
to y.

This can be modified to make sense for a p-form on Rn by replacing K above by

K(x,y,t) = (4πt)−n/2e−‖x−y‖2/4t

(
∑

i
dxi∧dyi

)p

.

When working with forms on X ×X × [0,∞), we will abuse notation a bit and
write them as local expressions such as η(x,y, t). Then dxη(x,y,t) etc. will indicate
that the operations d . . . are preformed with y,t treated as constant (or more correctly,
these operations are preformed fiberwise along a projection).

Theorem 8.3.3. On any compact Riemannian manifold, there exists a C∞ p-form
K(x,y,t) called the heat kernel such that for any p-form α ,

A(x, t) = 〈K(x,y,t)α(y)〉y
gives a solution to the heat equation (8.3.1) with A(x,0) = α(x).

Proof. We sketch the idea, referring to [11, Chapter 2] for details. See also [19, 94]
for alternative presentations. For notational simplicity, assume that p = 0. The start-
ing point is the observation that (8.3.3) makes sense on a general Riemannian
manifold, provided that ‖x− y‖ is replaced by the Riemannian distance, which is
the infimum of lengths of curves connecting x to y. More precisely, let δ (x,y)2 be
a nonnegative C∞ function on X ×X that agrees with the square of the Riemannian
distance function in a neighborhood of the diagonal and vanishes far away from it.
Set

K0(x,y,t) = (4πt)−n/2e−δ (x,y)2/4t .

This is only an approximation to the true heat kernel in general. The idea will be to
add successive corrections to K0, resulting in an infinite series K = K0 + · · · called
a Volterra series. We note that K0 satisfies a crucial property, that it approaches the
“δ -function of x− y” as t → 0 in the sense that

lim
t→0

〈K0(x,y,t),α(y)〉y = α(x).

We define the convolution of two functions C(x,y,t) and B(x,y, t) by

(C ∗B)(x,y,t) =
∫ t

0
〈C(x,z,t− τ),B(z,y,τ)〉zdτ.

This is an associative operation. Let R =
(
Δx + ∂

∂ t

)
K0, which is called the remain-

der. Given a C∞ function B(x,y,t), we claim that



8.3 The Heat Equation* 165(
Δx +

∂
∂ t

)
(K0 ∗B) = B + R∗B. (8.3.4)

To see this, let
h(x,y, t,τ) = 〈K0(x,z,t− τ),B(z,y,τ)〉z

be the integrand of K0 ∗B. Then (8.3.4) follows formally by adding

∂
∂ t

∫ t

0
h(x,y,t,τ)dτ = lim

τ→t
h(x,y,t,τ)+

∫ t

0

∂
∂ t

h(x,y, t,τ)dτ

to

Δx

∫ t

0
h(x,y,t,τ)dτ =

∫ t

0
Δxh(x,y,t,τ)dτ.

The Volterra series is given by

K = K0−K0 ∗R + K0 ∗R∗R−·· ·= K0 + K0 ∗ (−R + R∗R−·· ·). (8.3.5)

Applying (8.3.4) formally term by term gives the telescoping series(
Δx +

∂
∂ t

)
K = R− (R + R∗R)+(R∗R+R∗R∗R)−·· ·= 0.

It would follow that
A(x, t) = 〈K(x,y, t),α(y)〉y

satisfies the heat equation and the required initial condition, provided that these
formal arguments can be justified and also provided that the “tail” K0 ∗ (−R + R ∗
R + · · ·) goes to zero with t. In fact, to guarantee uniform convergence of (8.3.5)
and its derivatives up to second order on X2× [0,T ], K0 needs to be replaced with
an expression KN with better asymptotics. This step, due to Minakshisundaram and
Pleijel, is given by constructing

KN(x,y,t) = K0(x,y,t)[u0(x,y)+ tu1(x,y)+ · · ·+ tNuN(x,y)]

with N � 0 and appropriate explicitly chosen functions ui so that there is an estimate
on its remainder

|RN | ≤CtN−n/2 (8.3.6)

and similarly for its derivatives. This will lead to a bound

|R∗�N | ≤C�t
�(N−n/2)+�−1 (8.3.7)

and a similar estimate on derivatives, where C� are constants that go rapidly to 0 as
�→∞ (Exercise 8.3.8). This suffices to justify convergence of −RN +RN ∗RN−·· ·
along with the other statements. 	


Let
Tt(α) = 〈K(x,y,t),α(y)〉y
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with K as in the last theorem. This is the unique solution to (8.3.1) and (8.3.2).
Theorem 8.2.5 can now be deduced from the following:

Theorem 8.3.4.

(a) The semigroup property Tt1+t2 = Tt1Tt2 holds.
(b) Tt is formally self-adjoint.
(c) Ttα converges to a C∞ harmonic form H(α).
(d) The integral

G(α) =
∫ ∞

0
(Ttα−Hα)dt

is well defined, and yields Green’s operator.

Proof. We give the main ideas. The semigroup property Tt1+t2 = Tt1Tt2 holds
because A(t1 +t2) can be obtained by solving the heat equation with initial condition
A(t2) and then evaluating it at t = t1.

To see that Tt is self-adjoint, calculate

∂
∂ t
〈Ttη ,Tτξ 〉=

〈
∂
∂ t

Ttη ,Tτξ
〉

=−〈ΔTtη ,Tτξ 〉

=−〈Ttη ,ΔTτξ 〉=
〈

Ttη ,
∂
∂τ

Tτξ
〉

=
∂
∂τ
〈Ttη ,Tτξ 〉,

which implies that 〈Ttη ,Tτξ 〉 can be written as a function of t + τ , say g(t + τ).
Therefore

〈Ttη ,ξ 〉= g(t + 0) = g(0 + t) = 〈η ,Ttξ 〉.
Properties (a) and (b) imply that for h≥ 0, we have

‖Tt+2hα−Ttα‖2 = ‖Tt+2hα‖2 +‖Ttα‖2−2〈Tt+2hα,Ttα〉
= ‖Tt+2hα‖2 +‖Ttα‖2−2‖Tt+hα‖2

= (‖Tt+2hα‖−‖Ttα‖)2−2(‖Tt+hα‖2−‖Tt+2hα‖ · ‖Ttα‖);

‖Ttα‖2 converges thanks to Lemma 8.3.1. Therefore ‖Tt+2hα−Ttα‖2 can be made
arbitrarily small for large t. This implies that Ttα converges in the L2 sense to an L2

form H(α), i.e., an element of the Hilbert space completion of E p(X). Fix τ > 0.
The relations Ttα = TτTt−τα , imply in the limit that TτH(α) = H(α). Since Tτ is
given by an integral transform with smooth kernel, it follows that H(α) is C∞. The
equation TτH(α) = H(α) shows that H(α) is in fact harmonic. We also note that H
is formally self-adjoint,

〈Hα,β 〉= lim
t→∞〈Ttα,β 〉= lim

t→∞〈α,Ttβ 〉= 〈α,Hβ 〉.

The pointwise norms ‖Ttα(x)−Hα(x)‖ can be shown to decay rapidly enough
so that the integral

G(α) =
∫ ∞

0
(Ttα−Hα)dt
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is well defined. We will verify formally that this is Green’s operator:

ΔG(α) =
∫ ∞

0
ΔTtαdt =−

∫ ∞

0

∂Ttα
∂ t

dt = α−H(α),

and for β harmonic,

〈G(α),β 〉 =
∫ ∞

0
〈(Tt −H)α,β 〉dt =

∫ ∞

0
〈α,(Tt −H)β 〉dt = 0,

as required. 	

Let us return to the example of a torus, where things can be calculated explicitly.

Example 8.3.5. Let X = Rn/Zn. Given α as in (8.2.2), the solution to the heat
equation with initial value α is given by

Ttα = ∑
λ∈Zn
∑ aλ ,i1...ipe(2π iλ ·x−4π2|λ |2t)dxi1 ∧·· ·∧dxip ,

and this converges to the harmonic projection

H(α) =∑a0,i1...ipdxi1 ∧·· ·∧dxip ;

Ttα−Hα can be integrated term by term to obtain Green’s operator

G(α) = ∑
λ∈Zn−{0}

∑
aλ ,i1...ip

4π2|λ |2 e2π iλ ·xdxi1 ∧·· ·∧dxip .

Exercises

8.3.6. Suppose that α is an eigenfunction, so that Δα = λα . Give an explicit
formula for Ttα .

8.3.7. Check that Example 8.3.5 works as claimed.

8.3.8. Given A(x,y, t), check that

A∗�(x,y,t) =
∫

0≤t1≤···≤t�−1≤t

∫
X�−1

A(x,z1,t− t1)A(z1,z2, t1− t2) · · ·

(suitably interpreted). Deduce a bound

|A∗�| ≤ t�−1vol(X)�−1M�

(�−1)!
,

where M = sup |A(x,y, t)| over X2× (0,t).



Chapter 9
Toward Hodge Theory for Complex Manifolds

From now on, we are going to work almost exclusively with complex-valued func-
tions and forms. So we revise our notation accordingly. Given a C∞ manifold X , let
C∞X (respectively E k

X ) now denote the space of complex-valuedC∞ functions (respec-
tively k-forms). We write C∞X ,R (or E k

X ,R) for the space of real-valued functions or
forms. Let us say that a complex-valued form is exact, closed, or harmonic if its real
and imaginary parts both have this property. Then de Rham’s theorem and Hodge’s
theorem carry over almost word for word: Hk(X ,C) is isomorphic to the space of
complex closed k-forms modulo exact forms, and if X is compact and oriented with
a Riemannian metric, then it is also isomorphic to the space of complex harmonic
k-forms. This can be checked easily by working with the real and imaginary parts
separately.

To go deeper, we should ask how de Rham and Hodge theory interact with the
holomorphic structure when X is a complex manifold. This is really a central ques-
tion in complex algebraic geometry. In this chapter, which is really a warmup for
the next, we take the first few steps toward answering this. Here we concentrate on
some special cases such as Riemann surfaces and tori, which can be handled without
explicitly talking about Kähler metrics. In these cases, we will see that the answer
is as nice as one can hope for. We will see, for instance, that the genus of a Riemann
surface, which a priori is a topological invariant, can be interpreted as the number
of linearly independent holomorphic 1-forms.

9.1 Riemann Surfaces Revisited

Fix a compact Riemann surface X with genus g, which we can define to be one-half
of the first Betti number. In this section, we tie up a loose end from Chapter 6, by
proving Proposition 6.2.9, that

g = dimH0(X ,Ω 1
X) = dimH1(X ,OX ).

DOI 10.1007/978-1-4614-1809-2_9, © Springer Science+Business Media, LLC 2012
169, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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This will be an easy application of the Hodge theorem. In order to use it, we need
to choose a Riemannian metric that is a C∞ family of inner products on the tangent
spaces. We will also impose a compatibility condition that multiplication by i =√−1 preserves the angles determined by these inner products. To say this more
precisely, view X as a two-dimensional real C∞ manifold. Choosing an analytic local
coordinate z = x+ iy in a neighborhood of U , the vectors v1 = ∂

∂x and v2 = ∂
∂y give a

basis (or frame) of the real tangent sheaf TX of X restricted to U . The automorphism
Jp : TX |U → TX |U represented by (

0 1
−1 0

)
in the basis v1,v2 is independent of this basis, and hence globally well defined.
A Riemannian metric (,) is said to be compatible with the complex structure, or
Hermitian, if the transformations Jp are orthogonal. In terms of the basis v1,v2

this forces the matrix of the bilinear form (,) to be a positive multiple of I by
some function h. In coordinates, the metric would be represented by a tensor
h(x,y)(dx⊗dx + dy⊗dy). The volume form is represented by hdx∧dy. It follows
that ∗dx = dy and ∗dy = −dx. In other words, ∗ is the transpose of J, which is
independent of h. Once we have ∗, we can define all the operators from the last
chapter.

Standard partition of unity arguments show that Hermitian metrics always exist.
For our purposes, one metric is as good as any other, so we simply choose one.

Lemma 9.1.1. A 1-form is harmonic if and only if its (1,0) and (0,1) parts are
respectively holomorphic and antiholomorphic.

Proof. Given a local coordinate z = x + iy,

∗dz = ∗(dx + idy) = dy− idx =−idz , (9.1.1)

and similarly
∗dz̄ = idz̄ . (9.1.2)

If α is a (1,0)-form, then dα = ∂̄α . Thus α is holomorphic if and only if it is
closed if and only if dα = d ∗α = 0. The last condition is equivalent to harmonicity
by Lemma 8.2.4. By a similar argument a (0,1)-form is antiholomorphic if and only
if it is harmonic. This proves one direction.

By (9.1.1) and (9.1.2) the (1,0) and (0,1) parts of a 1-form are linear combina-
tions of α and ∗α . Thus if α is harmonic, then so are its parts. 	

Corollary 9.1.2. dim H0(X ,Ω 1

X) equals the genus of X.

Proof. By the Hodge theorem, the first Betti number 2g is the dimension of the
space of harmonic 1-forms, which decomposes into a direct sum of the spaces
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of holomorphic and antiholomorphic 1-forms. Both these spaces have the same
dimension, since conjugation gives a real isomorphism between them. Therefore

2g = 2dimH0(X ,Ω 1
X ). 	


Lemma 9.1.3. The images of Δ and ∂ ∂̄ on E 2(X) coincide.

Proof. On the space of 2-forms, we have Δ =−d ∗ d∗. Computing in local coordi-
nates yields

∂ ∂̄ f =− i
2

(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
dx∧dy

and

d ∗ d f =
(
∂ 2 f
∂x2 +

∂ 2 f
∂y2

)
dx∧dy ,

which implies the lemma. 	

Proposition 9.1.4. The map H1(X ,OX )→ H1(X ,Ω 1

X) induced by d vanishes.

Proof. We use the descriptions of these spaces as ∂̄ -cohomology groups provided
by Corollary 6.2.5. Given α ∈ E 01(X), let β = dα . We have to show that β lies in
the image of ∂̄ . Theorem 8.2.5 shows that we can write β = H(β )+ΔG(β ). Since
β is exact, we can conclude that H(β ) = 0 by Corollary 8.2.6. Therefore β lies in
the image of ∂ ∂̄ =−∂̄ ∂ . 	

Corollary 9.1.5. The map H1(X ,C)→H1(X ,OX ) is surjective, and dimH1(X ,OX )
coincides with the genus of X.

Proof. The surjectivity is immediate from the exact sequence

H1(X ,C)→ H1(X ,OX )→ H1(X ,Ω 1
X).

The second part follows from the equation

dimH1(X ,OX) = dimH1(X ,C)−dimH0(X ,ΩX). 	


Exercises

9.1.6. Show that H1(X ,C) → H1(X ,OX ) can be identified with the projection of
harmonic 1-forms to antiholomorphic (0,1)-forms.

9.1.7. Calculate the spaces of harmonic and holomorphic one-forms explicitly for
an elliptic curve.

9.1.8. Show that the pairing (α,β ) �→ ∫
X α ∧β is positive definite.
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9.2 Dolbeault’s Theorem

We now extend the results from Riemann surfaces to higher dimensions. Given an
n-dimensional complex manifold X , let OX denote the sheaf of holomorphic func-
tions. We can regard X as a 2n-dimensional (real) C∞ manifold as explained in
Section 2.2. As explained in the introduction, E k

X will now denote the sheaf of C∞

complex-valued k-forms. We have

E k
X(U) = C⊗R E k

X ,R(U).

By a real structure on a complex vector space V , we mean a real vector space VR

and an isomorphism C⊗VR
∼= V . This gives rise to a C-antilinear involution v �→ v̄

given by a⊗ v = ā⊗v. Conversely, such an involution gives rise to the real structure
VR = {v | v̄ = v}. In particular, E k

X (U) has a natural real structure.
The sheaf of holomorphic p-formsΩ p

X is a subsheaf of E p
X stable under multipli-

cation by OX . This sheaf is locally free as an OX -module. If z1, . . . ,zn are holomor-
phic coordinates defined on an open set U ⊂ X , then

{dzi1 ∧·· ·∧dzip | i1 < · · ·< ip}

gives a basis for Ω p
X (U). To simplify our formulas, we let dzI = dzi1 ∧ ·· · ∧ dzip ,

where I = {i1, . . . , ip}.

Definition 9.2.1. Let E
(p,0)
X denote the C∞ submodule of E p

X generated by Ω p
X .

Let E
(0,p)

X = E
(p,0)
X and E

(p,q)
X = E

(p,0)
X ∧E

(0,q)
X .

In local coordinates, {dzI ∧ dz̄J | #I = p,#J = q} gives a basis of E
(p,q)
X (U).

All of the operations of Section 6.2 can be extended to the higher-dimensional case.
The operators

∂ : E
(p,q)
X → E

(p+1,q)
X

and
∂̄ : E

(p,q)
X → E

(p,q+1)
X

are given locally by

∂

(
∑
I,J

fI,JdzI ∧dz̄J

)
=∑

I,J

n

∑
i=1

∂ fI,J

∂ zi
dzi∧dzI ∧dz̄J ,

∂̄

(
∑
I,J

fI,JdzI ∧dz̄J

)
=∑

I,J

n

∑
j=1

∂ fI,J

∂ z̄ j
dz̄ j ∧dzI ∧dz̄J.

The identities
d = ∂ + ∂̄ , ∂ 2 = ∂̄ 2 = 0, ∂ ∂̄ + ∂̄∂ = 0, (9.2.1)

hold.
Theorem 6.2.2 has the following extension.
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Theorem 9.2.2. Let D ⊂ Cn be an open polydisk (i.e., a product of disks). Given
α ∈ E (p,q)(D̄) with ∂̄ α = 0, there exists β ∈ E (p,q−1)(D) such that α = ∂̄ β .

Proof. See [49, pp. 25–26]. 	

Corollary 9.2.3 (Dolbeault’s theorem I). For any complex manifold X,

(a)

0→Ω p
X → E

(p,0)
X

∂̄−→ E
(p,1)
X

∂̄−→ ·· ·
is a soft resolution.

(b)

Hq(X ,Ω p
X)∼= ker[∂̄ : E (p,q)(X)→ E (p,q+1)]

im[∂̄ : E (p,q−1)(X)→ E (p,q)]
.

Proof. Since exactness can be checked on the stalks, there is no loss in assuming
X = D for (a). The only thing not stated above is that Ω p

X is the kernel of the ∂̄
operator on E

(p,0)
X . This is a simple calculation. Given a (p,0)-form ∑I fIdzI ,

∂̄

(
∑

I
fIdzI

)
=∑

I

n

∑
j=1

∂ fI

∂ z̄ j
dz̄ j ∧dzI = 0

if and only it is holomorphic. Thus the sheaves E
(p,•)
X give a resolution, which is

soft since these are modules over C∞X .
(b) is now a consequence of Theorem 5.1.4. 	

In the sequel, we will refer to elements of ker ∂̄ (or im ∂̄ ) as ∂̄ -exact (or ∂̄ -closed).

Exercises

9.2.4. Check the identities (9.2.1).

9.2.5. Give an explicit description of the map Hi(X ,C) → Hi(X ,OX) induced by
inclusion CX → OX as a projection from de Rham cohomology to ∂̄ -cohomology.

9.3 Complex Tori

A complex torus is a quotient X = V/L of a finite-dimensional complex vector
space by a lattice (i.e., a discrete subgroup of maximal rank). Thus it is both a com-
plex manifold and a torus. After choosing a basis, we may identify V with Cn. Let
z1, . . . ,zn be the standard complex coordinates on Cn, and let xi = Re(zi), yi = Im(zi).

We give X the flat metric induced by the Euclidean metric on V . Recall that har-
monic forms with respect to this are the forms with constant coefficients
(Example 8.2.7).
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Lemma 9.3.1. A holomorphic form on X has constant coefficients and is therefore
harmonic.

Proof. The coefficients of a holomorphic form ∑ fIdzI are holomorphic functions
on X . These are constant because X is compact. 	


This can be refined.

Proposition 9.3.2. Hq(X ,Ω p
X) is isomorphic to the space of (p,q)-forms with con-

stant coefficients.

Corollary 9.3.3. Set
H(p,q) =

⊕
#I=p,#J=q

CdzI ∧dz̄J.

Then Hq(X ,Ω p
X )∼= H(p,q) ∼= ∧pCn⊗∧qCn.

The isomorphism in the corollary is highly noncanonical. A more natural identi-
fication is

Hq(X ,Ω p
X)∼= ∧pV ∗ ⊗∧qV̄ ∗,

where V ∗ is the usual dual, and V̄ ∗ is the set of antilinear maps from V to C.
The proof of Proposition 9.3.2 hinges on a certain identity between Laplacians

that we now define. The space of forms carries inner products as in Section 8.2,
where X is equipped with the flat metric. Let ∂ ∗ and ∂̄ ∗ denote the adjoints to ∂ and
∂̄ respectively. These will be calculated explicitly below. We can define the ∂ - and
∂̄ -Laplacians by

Δ∂ = ∂ ∗∂ + ∂∂ ∗,

Δ∂̄ = ∂̄ ∗∂̄ + ∂̄ ∂̄ ∗.

Lemma 9.3.4. Δ = 2Δ∂̄ = 2Δ∂ .

We give two proofs. The first is by direct calculation.

Proof. Let
α =∑

I,J
αIJdzI ∧dz̄J.

Then

Δ∂̄ (α) =−2∑
I,J,i

∂ 2αIJ

∂ zi∂ z̄i
dzI ∧dz̄J

=−1
2 ∑I,J,i

(
∂ 2αIJ

∂x2
i

+
∂ 2αIJ

∂y2
i

)
dzI ∧dz̄J

=
1
2
Δ(α).

A similar calculation holds for Δ∂ (α). 	
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This implies Proposition 9.3.2:

Proof. By Dolbeault’s theorem,

Hq(X ,Ω p
X)∼= ker[∂̄ : E (p,q)(X)→ E (p,q+1)]

im[∂̄ : E (p,q−1)(X)→ E (p,q)]
.

Let α be a ∂̄ -closed (p,q)-form. Decompose

α = β +Δγ = β + 2Δ∂̄ γ = β + ∂̄ γ1 + ∂̄ ∗γ2

with β harmonic, which is possible by Theorem 8.2.5. We have

‖∂̄ ∗γ2‖2 = 〈γ2, ∂̄ ∂̄ ∗γ2〉= 〈γ2, ∂̄ α〉= 0.

It is left as an exercise to check that β is of type (p,q), and that it is unique. There-
fore the ∂̄ -class of α has a unique representative by a constant (p,q)-form. 	


We will sketch a second proof of Lemma 9.3.4. Although it is much more compli-
cated than the first, it has the advantage of generalizing nicely to Kähler manifolds.
We introduce a number of auxiliary operators. Let ik and īk denote contraction with
the vector fields 2 ∂

∂ zk
and 2 ∂

∂ z̄k
. Thus for example, ik(dzk ∧α) = 2α . If we choose

our Euclidean metric so that monomials in dxi,dy j are orthonormal, then the con-
tractions ik and īk can be checked to be adjoints to dzk∧ and dz̄k∧. Let

ω =
√−1

2 ∑dzk ∧dz̄k =∑dxk ∧dyk, Lα = ω ∧α,

and

Λ =−
√−1

2 ∑ īkik.

The operators L and Λ are adjoint. Using integration by parts (see [49, p. 113]), we
get explicit formulas

∂ ∗α =−∑ ∂
∂ z̄k

ikα, ∂̄ ∗α =−∑ ∂
∂ zk

īkα,

where the derivatives above are taken coefficient-wise.
Let [A,B] = AB−BA denote the commutator. Then we have the following first-

order Kähler identities:

Proposition 9.3.5.

(a) [Λ , ∂̄ ] =−√−1∂ ∗.
(b) [Λ ,∂ ] =

√−1∂̄ ∗.

Proof. We check the second identity on the space of (1,1)-forms. The general case
is more involved notationally but not essentially harder; see [49, p. 114]. There are
two cases. First suppose that α = f dz j ∧dz̄k, with j �= k. Then
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[Λ ,∂ ]α = Λ∂α

= Λ
(
∑
m

∂ f
∂ zm

dzm∧dz j ∧dz̄k

)
= 2

√−1
∂ f
∂ zk

dz j

=
√−1∂̄ ∗α.

Next suppose that α = f dzk ∧dz̄k. Then

[Λ ,∂ ]α =Λ

(
∑

m�=k

∂ f
∂ zm

dzm∧dzk ∧dz̄k

)
− ∂

(
−2
√−1 f

)
=−2

√−1

(
∑

m�=k

∂ f
∂ zm

dzm−∑
m

∂ f
∂ zm

dzm

)

= 2
√−1

∂ f
∂ zk

dzk

=
√−1∂̄ ∗α. 	


We now give a second proof of Lemma 9.3.4. Upon substituting the first-order
identities into the definitions of the various Laplacians, some remarkable cancella-
tions take place:

Proof. We first establish ∂ ∂̄ ∗+ ∂̄ ∗∂ = 0,
√−1(∂ ∂̄ ∗+ ∂̄ ∗∂ ) = ∂ (Λ∂ − ∂Λ)+ (Λ∂ − ∂Λ)∂ = ∂Λ∂ − ∂Λ∂ = 0.

Similarly, we have ∂ ∗∂̄ + ∂̄∂ ∗ = 0.
Next expand Δ ,

Δ = (∂ + ∂̄)(∂ ∗+ ∂̄ ∗)+ (∂ ∗+ ∂̄ ∗)(∂ + ∂̄)
= (∂∂ ∗+ ∂ ∗∂ )+ (∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ )+ (∂ ∂̄ ∗+ ∂̄ ∗∂ )+ (∂ ∗∂̄ + ∂̄∂ ∗)
= (∂∂ ∗+ ∂ ∗∂ )+ (∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ )+ (∂ ∂̄ ∗+ ∂̄ ∗∂ )+ (∂ ∗∂̄ + ∂̄∂ ∗)
= Δ∂ +Δ∂̄ .

Finally, we check Δ∂ = Δ∂̄ ,

−√−1Δ∂ = ∂ (Λ∂̄ − ∂̄Λ)+ (Λ∂̄ − ∂̄Λ)∂
= ∂Λ∂̄ − ∂ ∂̄Λ +Λ∂̄∂ − ∂̄Λ∂
= (∂Λ −Λ∂ )∂̄ + ∂̄(∂Λ −Λ∂ )

=−√−1Δ∂̄ . 	
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Exercises

9.3.6. Check the first order-Kähler identities (Proposition 9.3.5) on the space of all
2-forms.

9.3.7. Show that β + ∂̄ γ = 0 forces β = 0 if β is harmonic.

9.3.8. Suppose that α = β + ∂̄ γ and that α is of type (p,q) and β harmonic.
By decomposing β = ∑ β (p′,q′) and γ = ∑ γ(p′,q′) into (p′,q′) type and using the
previous exercise, prove that β is of type (p,q) and unique.



Chapter 10
Kähler Manifolds

We come now to the heart of our story. We saw that for Riemann surfaces and tori,
holomorphic forms are harmonic and more. For general compact complex mani-
folds, the relationship is much more complicated. There is, however, an important
class of manifolds, called Kähler manifolds, on which these kinds of results do
hold. More precisely, harmonic forms on such manifolds decompose into holomor-
phic, antiholomorphic, and more generally harmonic (p,q) parts. This is the Hodge
decomposition, which is the central theorem in the subject.

Kähler manifolds are complex manifolds that carry a special metric called a
Kähler metric. Unlike Riemannian or Hermitian metrics, there are topological
obstructions for a manifold to carry a Kähler metric. Fortunately, all projective mani-
fold do possess such metrics, and this is the key. Other references that cover this
material in more detail are Griffiths and Harris [49], Huybrechts [67], Morrow and
Kodaira [89], Voisin [115], and Wells [120].

10.1 Kähler Metrics

Let X be a compact complex manifold with complex dimension n. A Hermitian
metric H on X could be defined as in the previous chapter as a Riemannian metric
for which multiplication by

√−1 is orthogonal. However, it is more convenient
for our purposes to view it as a choice of Hermitian inner product on the complex
tangent spaces that vary in C∞ fashion. More precisely, H will be given by a section

of E
(1,0)
X ⊗E

(0,1)
X such that in some (any) local coordinate system zi = xi +

√−1yi

around each point, H is given by

H =∑hi jdzi⊗dz̄ j

with hi j positive definite Hermitian. The real part of this matrix is positive definite
symmetric, and the tensor

DOI 10.1007/978-1-4614-1809-2_10, © Springer Science+Business Media, LLC 2012
179, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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∑Re(hi j)(dxi⊗dxi + dyi⊗dyi)

gives a globally defined Riemannian structure on X . We also have a (1,1)-form, ω
called the Kähler form, which is the normalized image of H under

E
(1,0)
X ⊗E

(0,1)
X → E

(1,0)
X ∧E

(0,1)
X = E (1,1)(X).

In coordinates,

ω =
√−1

2 ∑hi jdzi∧dz̄ j.

The normalization makes ω real, i.e., ω̄ = ω . It is clear from this formula that ω
determines the metric.

Definition 10.1.1. A Hermitian metric on X is called a Kähler metric for any p ∈ X
if there exist analytic coordinates z1, . . . ,zn with zi = 0 at p for which the metric
becomes Euclidean up to second order:

hi j ≡ δi j mod (x1,y1, . . . ,xn,yn)2.

A Kähler manifold is a complex manifold that admits a Kähler metric. (Sometimes
the term is used for a manifold with a fixed Kähler metric.)

In such a coordinate system, a Taylor expansion gives

ω =
√−1

2 ∑dzi∧dz̄i + terms of second order and higher.

Therefore dω = 0 at zi = 0. Since such coordinates can be chosen around any point,
dω is identically zero. This gives a nontrivial obstruction for a Hermitian metric to
be Kähler. In fact, this condition characterizes Kähler metrics and is usually taken
as the definition:

Proposition 10.1.2. Given a Hermitian metric H, the following are equivalent:

(a) H is Kähler.
(b) The Kähler form is closed: dω = 0.
(c) The Kähler form is locally expressible as ω = ∂ ∂̄ f .

Proof. Condition (c) clearly implies (b), and (b) will be shown to imply (c) in the
exercises.

That (a) implies (b) was explained above. So as to dispel any mystery, we explain
the broad strategy for the reverse implication, and refer to [49, p. 107] for further
details. Observe that by a linear change of coordinates it is easy to arrange that
hi j(p) = δi j for any p ∈ X , so that near p, we have

ω =
√−1

2 ∑(δi j + ai
jkzi + bi

jkz̄ jk + O(2))dz j∧dz̄k,
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where O(2) refers to terms of higher order. We want to eliminate the linear
coefficients ai

jk,b
i
jk, by setting zi = wi +∑ci

jkw jwk and solving for the ci
jk. At first

glance, this seems hopeless, since there are many more equations than variables.
Fortunately, there are redundancies:

b j
ik = āi

jk

and
ai

jk = ak
ji,

which stem from the Hermitianness of the metric and the closedness of ω . With the
help of these relations, one can check that

c j
ki =−ai

jk

gives a solution. 	

We will refer to the cohomology class of ω as the Kähler class. The function f

such that ω =
√−1∂ ∂̄ f is called a Kähler potential. A function f is plurisubhar-

monic if it is a Kähler potential, or equivalently in coordinates, this means that

∑ ∂ 2 f
∂ zi∂ z̄ j

ξiξ̄ j > 0

for any nonzero vector ξ .
The following are basic examples of compact Kähler manifolds:

Example 10.1.3. Any Hermitian metric on a Riemann surface is Kähler, since dω
vanishes for trivial reasons.

Example 10.1.4. Complex tori are Kähler. Any flat metric will do.

Example 10.1.5. Complex projective space Pn carries a Kähler metric called the
Fubini–Study metric. In homogeneous coordinates the Kähler form is given by

ω =
√−1
2π

∂ ∂̄ log(|z0|2 + · · ·+ |zn|2).

This really means that its pullback to Cn+1−{0} is given by this formula. In inho-
mogeneous coordinates we can write ω as

√−1
2π

∂ ∂̄ log

(∣∣∣∣ z0

zi

∣∣∣∣2

+ · · ·+ 1 + · · ·+
∣∣∣∣zn

zi

∣∣∣∣2
)

. (10.1.1)

We leave it as an exercise to check that this is in fact a Kähler form. The significance

of the normalization
√−1
2π will be clear shortly.

The key examples of Kähler manifolds are provided by the following lemma.
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Lemma 10.1.6. A complex submanifold of a Kähler manifold inherits a Kähler
metric such that the Kähler class is the restriction of the Kähler class of the ambient
manifold.

Proof. The Kähler form locally, has a plurisubharmonic potential f . It follows
immediately from the definition that f restricts to a plurisubharmonic function on a
complex submanifold. Thus the Kähler form will restrict to a Kähler form. 	

Corollary 10.1.7. A smooth projective variety X ⊂ Pn is Kähler, with Kähler metric
induced from the Fubini–Study metric.

The Kähler class above has algebrogeometric meaning. Recall that for a line
bundle L, we have its first Chern class c1(L) ∈ H2(X ,Z). We can take its image in
H2(X ,C).

Lemma 10.1.8. The Kähler class of the Fubini–Study metric on Pn coincides with
c1(O(1)).

Proof. Since H2(Pn,C) is one-dimensional, the Kähler class [ω ] would have to be
a nonzero multiple of c1(O(1)). We can check that the constant is 1 by integrating
(10.1.1) over the embedded line z2 = · · ·= zn = 0 and setting z = z0/z1 to obtain

√−1
2π

∫
P1
∂ ∂̄ log(1 + |z|2) =

1
4π

∫ 2π

0

∫ ∞

0

4r dr dθ
(1 + r2)2 = 1. 	


Definition 10.1.9. A line bundle L on a compact complex manifold X is called very
ample if there is an embedding X ⊂ Pn such that L ∼= OPn(1)|X . L is ample if some
positive tensor power L⊗k = L⊗·· ·⊗L is very ample.

Corollary 10.1.10. If X is a smooth projective variety with an ample line bundle L,
then c1(L) is the Kähler class associated to a Kähler metric.

Proof. Any positive constant multiple of a Kähler form is another Kähler form.
Since c1(L⊗k) = kc1(L), we can assume that L is very ample. In this case, the result
follows from the previous lemma and Corollary 10.1.8. 	


Kähler classes arising as Chern classes are necessarily rational. The converse is
the famous Kodaira embedding theorem.

Theorem 10.1.11 (Kodaira embedding theorem). Suppose that X is a compact
Kähler manifold whose Kähler class lies in the image of H2(X ,Q). Then X can be
embedded as a submanifold of projective space.

Proof. See [49, 120]. 	

Using Chow’s theorem (which will discussed later on, in Section 15.4) we obtain

the following:

Corollary 10.1.12. A compact complex manifold is a nonsingular projective alge-
braic variety if and only if it possesses a Kähler metric with rational Kähler class.
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Exercises

10.1.13. Show that the product of two Kähler manifolds is Kähler.

10.1.14. If π : Y → X is a covering space, or equivalently a local biholomorphism,
show that a Kähler form on X pulls back to a Kähler form on Y . In the opposite
direction, show that if Y is Kähler and X = Y/Γ , where Γ is a discrete group acting
nicely (properly discontinuously, freely, holomorphically, and isometrically), then
X is Kähler.

10.1.15. Prove (b) ⇒ (c) in Proposition 10.1.2. (Use Poincaré’s lemma to locally
solve ω = dα , then apply the ∂̄ -Poincaré lemma (9.2.2) to the (0,1)-part of α and
the conjugate of the (1,0)-part.)

10.1.16. Show that the Fubini–Study metric is Kähler by checking that∣∣∣∣ z0

zi

∣∣∣∣2

+ · · ·+ 1 + · · ·+
∣∣∣∣zn

zi

∣∣∣∣2

is plurisubharmonic.

10.1.17. Given a Kähler manifold, prove that the Kähler formω is nondegenerate in
the sense that for every x ∈ X , the associated bilinear form Tx×TX → R on the real
tangent space is nondegenerate. A manifold with a nondegenerate closed 2-form is
called symplectic.

10.1.18. Let X be an n-dimensional Kähler manifold. Show that the volume form
dvol for the underlying Riemannian metric is proportional to ωn = ω ∧·· ·∧ω , and
determine the constant of proportionality. Conclude, in particular, that dvol is of
type (n,n). (Hint: for the almost Euclidean coordinates around p, in the sense of
Definition 10.1.1, dvol = dx1∧dy1∧·· ·dyn at p.)

10.1.19. Use the previous exercise to show that when X is compact and Kähler, the
Kähler class [ω ] is nonzero. Therefore the second Betti number is nonzero. This
provides a nontrivial topological obstruction to the existence of a Kähler metric.

10.1.20. Construct a complex torus T with no nonzero forms ω of type (1,1) that
are rational in the sense that

∫
2-toriω ∈Q. Conclude that T is not projective.

10.2 The Hodge Decomposition

Fix an n-dimensional Kähler manifold X with a Kähler metric. Since Kähler metrics
are Euclidean up to second order, we have the following metatheorem: Any iden-
tity involving geometrically defined first-order differential operators on Euclidean
space will automatically extend to Kähler manifolds. Let us introduce the relevant
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operators. Since X is a complex manifold, it has a canonical orientation given by
declaring ∂

∂x1
, ∂
∂y1

, ∂
∂x2

, . . . to be positively oriented for any choice of analytic local
coordinates. Thus the Hodge star operator associated to the Riemannian structure
can be defined. The operator ∗ will be extended to a C-linear operator on E •

X , and
set ∗̄(α) = ∗α = ∗α. (Be aware that many authors, notably Griffiths and Harris [49],
we define ∗ to be what we call ∗̄.) If we let ( , ) be the pointwise Hermitian inner
product on E •(X), then (8.2.1) becomes

α ∧∗β = (α,β )dvol.

It follows easily from this and the fact that dvol is of type (n,n) (Exercise 10.1.18)
that

∗E (p,q)(X)⊆ E (n−p,n−q)(X),

∗E (p,q)(X)⊆ E (n−q,n−p)(X).

Let ∂ ∗ =−∗̄∂ ∗̄=−∗∂∗ and ∂̄ ∗ =−∗̄∂̄ ∗̄=−∗ ∂̄∗. These operators are the adjoints
of ∂ and ∂̄ , and have bidegree (−1,0) and (0,−1) respectively. Then we can define
the operators with bidegrees indicated on the right:

Δ∂ = ∂ ∗∂ + ∂∂ ∗ (0,0)
Δ∂̄ = ∂̄ ∗∂̄ + ∂̄ ∂̄ ∗ (0,0)

L = ω∧ (1,1)
Λ =−∗L∗=−∗̄L∗̄ (−1,−1)

A form is called ∂̄ -harmonic if it lies in the kernel of Δ∂̄ . For a general Hermitian
manifold there is no relationship between harmonicity and ∂̄ -harmonicity. However,
these notions do coincide for the class of Kähler manifolds, by the following:

Theorem 10.2.1. Δ = 2Δ∂̄ = 2Δ∂ .

Proof. Since Laplacians are of second order, the above metatheorem cannot be
applied directly. However, the first-order identities of Proposition 9.3.5 do gene-
ralize to X by this principle. The rest of the argument is the same as the proof of
Lemma 9.3.4. 	

Corollary 10.2.2. If X is compact, then Hq(X ,Ω p

X) is isomorphic to the space of
harmonic (p,q)-forms.

Proof. Since harmonic forms are ∂̄ -closed (Exercise 10.2.9), we have a map from
the space of harmonic (p,q)-forms to Hq(X ,Ω p

X ). The rest of the argument is iden-
tical to the proof of Proposition 9.3.2. 	


We obtain the following special case of Serre duality as a consequence:

Corollary 10.2.3. When X is compact, H p(X ,Ω q
X)∼= Hn−p(X ,Ω n−q

X ).
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Proof. ∗̄ induces an R-linear isomorphism between the corresponding spaces of
harmonic forms. 	

Theorem 10.2.4 (The Hodge decomposition). Suppose that X is a compact Kähler
manifold. Then a differential form is harmonic if and only if its (p,q) components
are. Consequently, we have (for the moment) noncanonical isomorphisms

Hi(X ,C)∼=
⊕

p+q=i

Hq(X ,Ω p
X).

Furthermore, complex conjugation induces R-linear isomorphisms between the
space of harmonic (p,q)- and (q, p)-forms. Therefore

Hq(X ,Ω p
X)∼= H p(X ,Ω q

X).

Proof. The operator Δ∂̄ preserves the decomposition

E i(X) =
⊕

p+q=i

E (p,q)(X).

Therefore a form is harmonic if and only if its (p,q) components are. Since complex
conjugation commutes with Δ , conjugation preserves harmonicity. These argu-
ments, together with Corollary 10.2.2, finish the proof. 	


The next two results are true more generally. However, for Kähler manifolds, we
get these almost for free.

Corollary 10.2.5. The Hodge numbers hp,q(X) = dimHq(X ,Ω p
X) are finite.

Corollary 10.2.6. Suppose that X and Y are compact Kähler. Then there is an
isomorphism

Hq(X ×Y,Ω q
X×Y )∼=

⊕
a+b=q
c+d=p

Ha(X ,Ω c
Y )⊗Hb(Y,Ω d

Y ).

Proof. We make the previous identifications of Ha(X ,Ω c
X )∼= Hca(X) with harmonic

(c,a)-forms X etc. Let πi be the projections on X ×Y . Recall that we have an
isomorphism

κ :
⊕

i+ j=k

Hi(X ,C)⊗H j(Y,C)∼= Hk(X ×Y,C)

(Theorem 5.3.6), where the map κ(α ⊗ β ) equals π∗1α ∪π∗2β . Decomposing into
type, we see that

κ(Hca(X)⊗Hdb(Y ))⊂Hc+d,a+b(X ×Y).

These restrictions are necessarily isomorphisms, since their sum is an isompor-
phism. 	




186 10 Kähler Manifolds

The Hodge decomposition theorem has a number of subtle implications for the
topology of compact Kähler manifolds.

Corollary 10.2.7. If i is odd, then the ith Betti number bi of X is even.

Proof.
bi = 2 ∑

p<i/2

hp,i−p. 	


Corollary 10.2.8 (Johnson–Rees). The fundamental group of X cannot be free
(unless it is trivial).

Proof. The proof is taken from [4], which gives a bit more detail. If π1(X) were free
on an odd number of generators, then the first Betti number would be odd, which
is ruled out as above. If π1(X) is free on an even number of generators, then it can
be checked that it contains a subgroup of finite index that is free on an odd number
of generators. This subgroup is the fundamental group of a finite sheeted covering
Y → X . Since Y inherits a Kähler structure from X (Exercise 10.1.14), this is again
impossible. 	


More information about the structure of fundamental groups of compact Kähler
manifolds—called Kähler groups—can be found in [2]. The finite-dimensionality of
Hq(X ,Ω p

X) is also true for compact complex non-Kähler manifolds by
Theorem 16.3.5, but the other corollaries may fail. The Hodge numbers give an
important set of holomorphic invariants for X . We can visualize them by arranging
them in a diamond:

h00 = 1
h10 h01

h20 h11 h02

. . .
hn,n−1 hn−1,n

hnn = 1

The previous results imply that this picture has both vertical and lateral symmetry
(e.g., h10 = h01 = hn,n−1 = hn−1,n).

Exercises

10.2.9. Prove that a form α on a compact Kähler manifold is harmonic if and only
if ∂̄α = ∂̄ ∗α = 0. Deduce that a (p,0)-form is harmonic if and only if it is holomor-
phic.

10.2.10. Check that the operators ∂ ∗, ∂̄ ∗, and Λ defined in Section 9.3 for the flat
metric are special cases of the corresponding operators defined here.

10.2.11. The Hopf surface S is a complex manifold obtained as a quotient of C2−
{0} by Z acting by z �→ 2nz. Show that S is homeomorphic to S1×S3, and conclude
that it cannot be Kähler.



10.3 Picard Groups 187

10.3 Picard Groups

Recall that the Picard group Pic(X) ∼= H1(X ,O∗
X ) of a complex manifold is the

group of isomorphism classes of holomorphic line bundles. Our goal is to analyze
the structure of this group when X is compact Kähler. There is a discrete part, which
is the image of the first Chern class map Pic(X)→H2(X ,Z), and a continuous part,
which is the kernel. We start by describing the image. Let us identify H2(X ,C) with
the space of harmonic 2-forms with respect to a fixed Kähler metric. Let H11(X) be
the subspace of harmonic forms of type (1,1). Let us write H2(X ,Z)∩H11(X) for
the preimage of H11(X) under the map H2(X ,Z) → H2(X ,C). This is the sum of
the true intersection im[H2(X ,Z)→ H2(X ,C)]∩H11(X) with the torsion subgroup
H2(X ,Z)tors.

Theorem 10.3.1 (The Lefschetz (1, 1) theorem). c1(Pic(X)) = H2(X ,Z) ∩
H11(X).

Proof. The map f : H2(X ,Z) → H2(X ,OX ) can be factored as H2(X ,Z) →
H2(X ,C) followed by projection of the space of harmonic 2-forms to the space
of harmonic (2,0)-forms. From the exponential sequence, c1(Pic(X)) = ker( f ), and
this certainly contains H2(X ,Z)∩H11(X).

Conversely, suppose that α ∈ ker( f ). Then its image in H2(X ,C) can be repre-
sented by a sum of a harmonic (0,2)-form α1 and a harmonic (1,1)-form α2. Since
ᾱ = α , α1 must be zero. Therefore α ∈ H2(X ,Z)∩H11(X). 	

Proposition 10.3.2. Pic0(X) = ker(c1) is a complex torus.

Proof. From the exponential sequence, we obtain

H1(X ,Z)→ H1(X ,OX )→ Pic(X)→ H2(X ,Z).

Pic0 is the cokernel of the first map, that is, H1(X ,OX )/H1(X ,Z). We have to prove
that H1(X ,Z) sits inside H1(X ,OX ) as a lattice. Since

H1(X ,Z)⊂ H1(X ,R)∼= H1(X ,Z)⊗R

is a lattice, it suffices to prove that the natural map

π : H1(X ,R)→ H1(X ,OX )

is an isomorphism of real vector spaces. We know that these spaces have the same
real dimension b1 = 2h10, so it is enough to check that π is injective. The Hodge
decomposition implies thatα ∈H1(X ,R) can be represented by a sum of a harmonic
(1,0)-form α1 and a harmonic (0,1)-form α2. Since α = ᾱ , α1 = ᾱ2, it follows that
π(α) is just α1. Therefore π(α) = 0 implies that α = 0. 	
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Combining both results gives the following structure theorem:

Theorem 10.3.3. Let X be a compact Kähler manifold. Then Pic(X) fits into an
exact sequence

0→ Pic0(X)→ Pic(X)→H2(X ,Z)∩H11(X)→ 0

with Pic0(X) a complex torus of dimension h01(X):

Pic0(X) is called the Picard torus (or variety when X is projective). When X is
a compact Riemann surface, Pic0(X) is usually called the Jacobian and denoted by
J(X).

Example 10.3.4. When X = V/L is a complex torus, Pic0(X) is a new torus called
the dual torus. Using Corollary 9.3.3, it can be seen to be isomorphic to V̄ ∗/L∗,
where V̄ ∗ is the antilinear dual and

L∗ = {λ ∈V ∗ | Im(λ )(L)⊆ Z}.

The dual of the Picard torus is called the Albanese torus Alb(X). Since H01 =
H̄01, Alb(X) is isomorphic to

H0(X ,Ω 1
X)∗

H1(X ,Z)/H1(X ,Z)tors
,

where the elements γ of the denominator are identified with the functionalsα �→ ∫
γ α

in the numerator. In a sense that will be discussed in the exercises, Alb(X) is the
torus that is closest to X .

Exercises

10.3.5. Show that X �→ Pic0(X) extends to a contravariant functor from compact
Kähler manifolds to complex tori. Show that X �→ Alb(X) is covariant.

10.3.6. Let X be a compact Riemann surface. Show that the pairing 〈α,β 〉=
∫

X α ∧
β induces an isomorphism J(X)∼= Alb(X); in other words, J(X) is self-dual.

10.3.7. Fix a base point x0 ∈ X . Show that the so-called Abel–Jacobi map α : X →
Alb(X) given by x �→ ∫ x

x0
(which is well defined modulo H1) is holomorphic.

10.3.8. Show that every holomorphic 1-form on X is the pullback of a holomor-
phic 1-form from Alb(X). In particular, the Abel–Jacobi map cannot be constant if
h01 �= 0.

10.3.9. Prove that Alb(T ) ∼= T if T is a complex torus. Given a holomorphic map
f : X → T sending x0 to 0, prove that it factors through Alb(X)→ Alb(T )∼= T .

10.3.10. Consider the map Xn →Alb(X) given by (x1, . . . ,xn) �→∑α(xi). Show that
this is surjective for some n. (Hint: calculate the derivate at a general point.)



Chapter 11
A Little Algebraic Surface Theory

Let us return to geometry armed with what we have learned so far. We have already
looked at Riemann surfaces (which will be referred to as complex curves from now
on) in some detail. So we consider the next step up. A nonsingular complex surface
is a two-dimensional complex manifold. By an algebraic surface, we will mean a
two-dimensional nonsingular projective variety. So in particular, they are Kähler
manifolds. In this chapter, we will present a somewhat breezy account of surface
theory, concentrating on topics that illustrate the general theorems from the previous
chapters.

Much more systematic introductions to algebraic surface theory can be found in
the books by Barth, Peters, and Van de Ven [9] and Beauville [10].

11.1 Examples

The basic discrete invariant of a curve is its genus. For algebraic surfaces, there
are several numbers that play a similar role. We can use the Hodge numbers. By the
symmetry properties considered earlier, there are only three that matter: h10,h20,h11.
The first two are traditionally called (and denoted by) the irregularity (q = h10) and
geometric genus (pg = h20). The basic topological invariants are the Betti numbers,
which by Poincaré duality and the Hodge decomposition theorem can be expressed
as

b1 = b3 = 2q, b2 = 2pg + h11.

It is also convenient to consider the Euler characteristic,

e = b0−b1 + b2−b3 + b4 = 2−4q + 2pg+ h11.

Let us now start our tour.

DOI 10.1007/978-1-4614-1809-2_11, © Springer Science+Business Media, LLC 2012
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Example 11.1.1. The most basic example is the projective plane X = P2 = P2
C.

We computed the Betti numbers b1 = 0, b2 = 1 in Section 7.2. Therefore q = pg = 0
and h11 = 1.

Example 11.1.2. If X = C1×C2 is a product of two nonsingular curves of genus g1

and g2, then by Künneth’s formula (Theorem 5.3.6 and Corollary 10.2.6),

q = h10(X) = h10(C1)h00(C2)+ h00(C1)h10(C2) = g1 + g2.

Similarly, pg = g1g2 and h11 = 2g1g2 + 2.

Example 11.1.3. As a special case of the previous example, when we have a product
of a curve C with P1, the invariants are q = g, pg = 0, and h11 = 2. More generally,
we can consider ruled surfaces over C, which are P1-bundles that are locally iso-
morphic to Ui×P1, for a Zariski open cover {Ui} of C. (See Section 14.5 for a bit
more explanation of what this means.) We will see shortly that the invariants are the
same as above, although they are not generally products. When C = P1, there are,
up to isomorphism, countably many ruled surfaces. Here is a simple description. Let
Cn ⊂ Pn be the closure of {(t,t2, . . . ,tn) | t ∈ C}. Choose a point p0 ∈ Pn−Cn. Let
Fn be the set of pairs (q, p) ∈ Pn×Cn such that q lies on the line connecting p0 to q.

Example 11.1.4. Let X ⊂ P3 be a smooth surface of degree d. Then q = 0. We will
list the first few values of the remaining invariants:

d pg h11

2 0 2
3 0 7
4 1 20
5 4 45
6 10 86

These can be calculated using formulas given later (17.3.4).

A method of generating new examples from old is by blowing up. We start by
describing the blowup of C2 at 0:

Bl0C2 = {(x, �) ∈ C2×P1 |x ∈ �}.

The projection p1 : Bl0C2 →C2 is one-to-one away from 0 ∈C2. This can be gene-
ralized to yield the blowup BlpX → X of a surface X at the point p. Let B⊂ X be a
coordinate ball centered at p. After identifying B with a ball in C2 centered at 0, we
can let Bl0B be the preimage of B in Bl0C2. The boundary of Bl0B can be identified
with the boundary of B. Thus we can glue X −B∪Bl0B to form BlpX . When X is
algebraic, BlpX is again algebraic by Exercise 2.4.23.

Let us compute H∗(BlpX ,Z). Set Y = BlpX and compare Mayer–Vietoris
sequences:
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Hi(X) ��

��

Hi(X −B′)⊕Hi(B) ��

��

Hi(X −B′ ∩B)

=
��

Hi(Y ) �� Hi(Y −BlpB′)⊕Hi(BlpB) �� Hi(Y −BlpB′ ∩BlpB)

where B′ ⊂ B is a smaller ball. We thus have the following result:

Lemma 11.1.5. H1(BlpX)∼= H1(X) and H2(BlpX) = H2(X)⊕Z.

Corollary 11.1.6. q and pg are invariant under blowing up. h11(BlpX) =
h11(X)+ 1.

Proof. The lemma implies that b1 = 2q is invariant and b2(Y ) = b1(X)+ 1. Since
b2 = 2pg + h11, the only possibilities are h11(Y ) = h11(X) + 1, pg(Y ) = pg(X),
and pg(Y ) < pg(X). The last inequality means that there is a nonzero holomorphic
2-form on X that vanishes on X − p, but this is impossible. 	


A birational map κ : X ��� Y is simply an isomorphism in the category of
varieties and rational maps. In more explicit terms, it is given by an isomorphism
of Zariski open sets X ⊃ U ∼= V ⊂ Y . Blowups and their inverses (“blowdowns”)
are examples of birational maps. Two varieties are birationally equivalent if a bira-
tional map exists between them. For example, any two ruled surfaces over P1 are
birationally equivalent to each other and to P2, because they all contain A2.

For surfaces, the structure of birational maps is explained by the following
theorem:

Theorem 11.1.7 (Castelnuovo). Any birational map between algebraic surfaces is
given by a finite sequence of blowups and blowdowns.

Proof. See [60, 9]. 	

Corollary 11.1.8. The numbers q and pg depend only on the birational equivalence
class of the surface.

This implies that pg = g,q = 0 for ruled surfaces over a genus-g curve, as claimed
above.

Blowing up of singular points figures in the proof of the next important theorem.

Theorem 11.1.9 (Zariski). Given a singular algebraic surface Y , there exist a non-
singular surface X and a morphism π : X → Y , called a resolution of singularities,
that is an isomorphism away from the singular points.

Proof. See [9]. 	

Corollary 11.1.10 (Zariski). If f : X ��� V is a rational function from an algebraic
surface to a variety V , then there is a finite sequence of blowups Y → X such that f
extends to a holomorphic map f ′ : Y →V.
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Proof. We can construct Y by resolving singularities of the closure of the graph
of f . 	


Analogues of Zariski’s and Castelnuovo’s theorems in higher dimensions have
been established by Hironaka and Włodarczyk respectively. These are much harder.

An elliptic surface is a surface X that admits a surjective morphism f : X →C to
a smooth projective curve such that all nonsingular fibers are elliptic curves.

Example 11.1.11. A simple example of an elliptic surface is given as follows:
choose two distinct nonsingular cubics E0,E1 ⊂ P2 defined by f0(x,y,z) and
f1(x,y,z). These generate a pencil of cubics Et = V (t f1 + (1− t) f0) with t ∈ P1.
Define

X = {(p,t) ∈ P2×P1 | p ∈ Et}.
Projection to P1 makes this an elliptic surface. X can be identified with the blowup
of P2 at the nine points E0∩E1. So q = pg = 0 and h11 = 10.

Example 11.1.12. Consider the family of elliptic curves in Legendre form

E = {([x,y,z], t) ∈ P2×C−{0,1} | y2z− x(x− z)(x− tz) = 0}→ C .

The above equation is meaningful if t = 0,1, and it defines a rational curve with a
single node. By introducing s = t−1, we get an equation

sy2z− x(x− z)(sx− z) = 0

that defines a union of lines when s = 0. In this way, we can extend E to a surface
E ′ → P1. Unfortunately, E ′ is singular, and it is necessary to resolve singularities to
get a nonsingular surface Ē containing E (we can take the minimal desingulariza-
tion, which for our purposes means that b2(Ē ) is chosen as small as possible).

Exercises

11.1.13. Finish the proof of Lemma 11.1.5.

11.1.14. Given a ruled surface X over a curve C, check that e(X) = e(P1)e(C), and
use this to verify that h11(X) = 2.

11.1.15. Show that there is a nonsingular quartic X ⊂ P3 containing a line �,
which we can assume to be x2 = x3 = 0. Show that the map P3 ��� P1 defined
by [x0, . . . ,x3] �→ [x0,x1] determines a morphism X → P1 that makes it an ellptic
surface.

11.1.16. Given a smooth projective curve C, the symmetric product is given by
S2C = C×C/σ , where σ is the involution interchanging factors. This has the struc-
ture of a smooth algebraic surface such that Hi(S2C,Q) = Hi(C×C,Q)σ . Compute
the Betti and Hodge numbers for S2C.
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11.2 The Neron–Severi Group

Let X be an algebraic surface. The image of the first Chern class map

c1 : Pic(X)→ H2(X ,Z)

is the Neron–Severi group NS(X). The rank of this group is called the Picard
number ρ(X). By Lefschetz’s Theorem 10.3.1, NS(X)= H2(X ,Z)∩H11(X). There-
fore ρ ≤ h11 with equality if pg = 0.

A divisor on X is a finite integer linear combination ∑niDi of possibly singular
irreducible curves Di ⊂X . We can define a line bundle OX (D) as we did for Riemann
surfaces in Section 6.3. If fi are local equations of Di∩U in some open set U , then

OX(D)(U) = OX (U)
1

f n1
1 f n2

2 . . .

is a fractional ideal. In particular, when ni = 1, OX(−D) is the ideal sheaf of D, and
an ideal sheaf of a subscheme supported on D when ni ≥ 0.

Lemma 11.2.1. If Di are smooth curves, then c1(OX (∑niDi)) = ∑ni[Di].

Proof. This is an immediate consequence of Theorem 7.5.8. 	

When D is singular, we simply define its fundamental class to be c1(OX(D)).
The cup product pairing

H2(X ,Z)×H2(X ,Z)→ H4(X ,Z)∼= Z

restricts to a pairing on NS(X) denoted by “·”. Note that the last isomorphism
follows from a stronger form of Poincaré duality than what we proved earlier [61].

Lemma 11.2.2. Given a pair of transverse smooth curves D and E,

D ·E =
∫

X
c1(O(D))∪ c1(O(E)) =

∫
D

c1(OX (E))|D = #(D∩E).

Proof. By Lemma 11.2.1 and Proposition 5.6.3, D · E is a sum of local inter-
section numbers ip(D,E). The numbers ip(D,E) are always +1 in this case by
Exercise 5.6.6. 	


If the intersection of the curves D and E is finite but not transverse, it is still
possible to give a geometric meaning to the above product. Choose local coordinates
centered at p, and local equations f and g for D and E respectively.

Definition 11.2.3. The local intersection number is given by ip(D,E) = dimOp/
( f ,g). (This depends only on the ideals ( f ) and (g), so it is well defined.)

Proposition 11.2.4. If D,E are curves such that D∩E is finite, then

D ·E = ∑
p∈X

ip(D,E).
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Proof. We assume for simplicity that D and E are smooth, although this argument
can be made to work in general. As in the proof of Proposition 5.6.3, the number on
the left is given by ∫

X
τD ∧ τE

for appropriate representatives τD,τE for the Thom classes. In particular, we assume
that the supports are small enough that it breaks up into a sum of integrals over
disjoint coordinate neighborhoods of p ∈ D∩E .

We need a convenient expression for the Thom classes. We first note that if ρ :
R+ → [0,1] is a cutoff function, 1 in a neighborhood of 0 and 0 in a neighborhood
of ∞, then − 1

2π dρ(r)∧ dθ gives a local expression for the Thom class of 0 ∈ R2.
Thus after choosing local equations of D,E at p ∈ D∩E as above, we can assume
that (locally) τD = τ f and τE = τg, where

τ f =− 1

2π
√−1

dρ(| f |)∧ d f
f

.

Let h(z1,z2) = ( f (z1,z2),g(z1,z2)). It maps a small ball 0 ∈U ⊂ C2 to another
small ball 0 ∈U ′. The degree of h is the number of points in the fiber h−1(y) for
almost all y. This coincides with ip(E,D) by Lemma 1.3.3. Computing the integral
by a change of variables gives∫

U
τ f ∧ τg =

∫
U ′

h∗(τ f ∧ τg) = (degh)
∫
τz1 ∧ τz2 = degh = ip(E,D). 	


Example 11.2.5. Recall that H2(P2,Z) = Z, and the generator of H2(P2,Z) is the
class of the line [L]. Since [L] = [L′] for any other line, we have L2 = L · L′ = 1,
where L2 = L ·L.

Example 11.2.6. H2(P1×P1,Z) = Z2 with generators given by fundamental classes
of the horizontal and vertical lines H = P1 ×{0} and V = {0}×P1. We see that
H2 = V 2 = 0 and H ·V = 1.

Given a curve D⊂ P2 defined by a polynomial f , we let degD = deg f .

Corollary 11.2.7 (Bézout). If D,E are curves on P2 with a finite intersection, then

∑
p∈X

ip(D,E) = deg(D)deg(E).

Proof. We have [D] = c1(O(degD)) = (degD)[L], and likewise [E] = (degE)[L].
Therefore D ·E = degDdegE(L2) = degDdegE . 	

Corollary 11.2.8. If D,E are distinct irreducible curves, then D·E ≥ 0, and equality
holds only if they are disjoint.

This nonnegativity can fail when D = E . For example, by Corollary 5.7.3, the
diagonal in a product of curves Δ ⊂C×C has negative self-intersection as soon as
the genus of C is greater than 1. From Lemma 11.2.1, we obtain the following:



11.3 Adjunction and Riemann–Roch 195

Lemma 11.2.9. If D is a smooth curve, then

D2 =
∫

D
c1(OX (D)) = deg(OD(D)).

Given a surjective morphism f : X → Y of algebraic surfaces, the pullback
f ∗ : H2(Y,Z) → H2(X ,Z) preserves the Neron–Severi group and the intersection
pairing. This can be interpreted directly in the language of divisors. Given an irre-
ducible divisor D on Y , we can make the set-theoretic preimage f−1D into a divisor
by pulling back the ideal, i.e.,

OX (− f−1D) = im[ f ∗OY (−D)→OX ].

We extend this operation to all divisors by linearity. The operation satisfies
f ∗OY (D) = OX( f−1D). Since c1 is functorial, we get the following:

Lemma 11.2.10. f−1 is compatible with f ∗ on NS(X).

Exercises

11.2.11. Let X = C×C be the product of a curve with itself. Consider the divisors
H =C×{p}, V = {p}×C and the diagonal Δ . Compute their intersection numbers,
and show that these are linearly independent in NS(X)⊗Q. Thus the Picard number
is at least 3. Show that this is at least 4 if C admits a nontrivial automorphism with
the appropriate conditions.

11.2.12. Let E = C/(Z+Zτ) be an elliptic curve, and let X = E×E . Show that the
Picard number is 3 for “most” τ , but that it is 4 for τ =

√−1.

11.2.13. The ruled surface F1 can be described as the blowup π : F1 → P2 of P2 at
some point p. Let L1 be a line in P2 containing p, and L2 another line not containing
p. Show that π∗L1 = π∗L2 and π∗L1 = E + F , where E = π−1(p) and F is the
closure in Y of L1−{p} (F is called the strict transform of L1). Use all of this to
show that E2 =−1. Conclude that F1 and P1×P1 are not isomorphic.

11.2.14. A divisor is called (very) ample if OX(H) is. If H is ample, then prove
that H2 > 0 and that H ·C > 0 for any curve C ⊂ X . This pair of conditions char-
acterizes ampelness (Nakai–Moishezon). Show that the first condition alone is not
sufficient.

11.3 Adjunction and Riemann–Roch

In this section, we introduce two of the most basic tools of surface theory. The first
result, called the adjunction formula, computes the genus of a curve on a surface.
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To set things up, recall that the canonical divisor K of a smooth projective curve
is a divisor such that OC(K) ∼= Ω 1

C. Since this determines K uniquely up to linear
equivalence, we can talk about the canonical divisor class KC. A canonical divisor
KX (class) on a surface X is divisor such that OX(KX )∼=Ω 2

X . The linear equivalence
class is again well defined. For the present, we need only its image in NS(X), and
this can be defined to be c1(Ω 2

X ).

Theorem 11.3.1. If C is a smooth curve of genus g on an algebraic surface X, then

2g−2 = (KX +C) ·C .

Proof. Let Ω 2
X(logC) be the OX -module generated by rational 2-forms of the form

dz1∧dz2
f , where f is a local equation for C. This is the same as the tensor product

Ω 2
X ⊗OX (C). Such expressions can be rewritten as α ∧ d f

f , with α holomorphic.

We define the residue map Ω 2
X (logC)→ Ω 1

c by sending α ∧ d f
f to α|C. The kernel

consists of the holomorphic differentialsΩ 2
X , leading to a sequence

0→Ω 2
X →Ω 2

X (logC)→Ω 1
C → 0, (11.3.1)

which is seen to be exact. The holomorphic forms Ω2
X are spanned locally by

f dz1∧dz2
f . Thus we can identify the inclusion in (11.3.1) with the tensor product of

the map OX(−C)→ OX with Ω 2
X ⊗OX(C). The cokernel of the map just described

is OC ⊗Ω 2
X(C), that is, the restriction of Ω 2

X ⊗OX (C) to C. So in summary, Ω 1
C is

isomorphic to the restriction of Ω 2
X ⊗OX(C) to C. Therefore∫

C
c1(Ω 1

C) =
∫

C
c1(Ω 2

X ⊗OX(C)) =
∫

C
(c1(Ω 2

X )+ c1(OX (C)) = (KX +C) ·C .

The left side is the degree of the KC, but this is 2g−2 by Proposition 6.3.7. 	

We can use this to recover the formula for the genus of a degree-d curve C ⊂ P2.

Since NS(P2)⊆ H2(P2) = Z, we can identify KP2 with an integer k. Therefore

g =
1
2
(k + d)d + 1.

When d = 1, we know that g = 0, so k =−3. Thus

g = (d−1)(d−2)/2.

A fundamental, and rather difficult, problem in algebraic geometry is to estimate
dimH0(X ,OX (D)). As a first step, one can calculate the Euler characteristic

χ(OX(D)) =∑(−1)dimHi(X ,OX(D))

by the Riemann–Roch formula given below. The higher cohomologies can then be
controlled in some cases by other techniques. The advantage of the Euler character-
istic is the additivity property:
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Lemma 11.3.2. If 0 →F1 →F2 →F3 → 0 is an exact sequence of sheaves with
∑dimHi(X ,F j) < ∞, then χ(F2) = χ(F1)+ χ(F3).

This is a consequence of following elementary lemma:

Lemma 11.3.3. If
· · · → Ai → Bi →Ci → Ai+1 → ···

is a finite sequence of finite-dimensional vector spaces,

∑(−1)i dimBi =∑(−1)i dimAi +∑(−1)i dimCi.

Theorem 11.3.4 (Riemann–Roch). If D is a divisor on a surface X, then

χ(OX(D)) =
1
2

D · (D−KX)+ χ(OX).

Proof. We prove this under the assumption that D = ∑i niDi is a sum of smooth
curves. (In fact, by a simple trick, it is always possible to reduce to this case. The
basic idea can be found, for example, in the proof of [60, Chapter V, Theorem 1.1].)
By induction, it suffices to prove Riemann–Roch for D = D′ ±C, where the formula
holds for D′ and C is smooth. The idea is to do induction on ∑ |ni|. We will use
the Riemann–Roch theorem for C as given in Exercise 6.3.16. We treat the case of
D = D′+C, leaving the remaining case for the exercises. Tensoring the sequence

0→ OX (−C)→ OX →OC → 0

by O(D) yields
0→OX (D′)→OX (D)→OC(D)→ 0.

Therefore, using this together with the adjunction formula and Riemann–Roch on
C, we obtain

χ(OX(D)) = χ(OX (D′))+ χ(OC(D))

=
1
2

D′(D′ −K)+ χ(OX)+ deg(D|C)+ 1−g(C)

=
1
2

D′(D′ −K)+C ·D− 1
2

C(C + K)+ χ(OX)

=
1
2

D(D−K)+ χ(OX). 	


Exercises

11.3.5. Find a formula for the genus of a curve in P1×P1 in terms of its bidegree.

11.3.6. Given a morphism f : C→D, calculate the self-intersection of the graphΓ 2
f .
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11.3.7. Do the case D = D′ −C in the proof of Riemann–Roch.

11.3.8. Find a formula for D ·C in terms of χ(O(D)),χ(O(C)),χ(O(C + D)) and
χ(OX ).

11.3.9. Use the formula of the previous exercise to give another proof of Proposi-
tion 11.2.4.

11.4 The Hodge Index Theorem

The next result is Hodge-theoretic, so we work with a compact Kähler surface X .
Let ω denote the Kähler form.

Lemma 11.4.1. If α is a harmonic 2-form, then ω ∧α is again harmonic.

Proof. By the Kähler identities, it is enough to prove that ∂̄ (ω ∧α) = 0, which is
trivially true, and ∂̄ ∗(ω ∧α) = 0. By Proposition 9.3.5 and some calculation,

∂̄ ∗(ω ∧α) = C1(Λ∂ − ∂Λ)(ω ∧α) = C1∂Λ(ω ∧α) = C2∂α = 0

for appropriate constants C1,C2. 	

Then the form ω is a closed real (1,1)-form. Therefore the Kähler class [ω ] is an

element of H11(X)∩H2(X ,R).

Theorem 11.4.2 (Hodge index theorem). Let X be a compact Kähler surface.
Then the restriction of the cup product to (H11(X)∩H2(X ,R))∩ (R[ω ])⊥ is nega-
tive definite.

Proof. Around each point we have a neighborhood U such that E (1,0)(U) is a free
module. By Gram–Schmid, we can find an orthonormal basis {φ1,φ2} for it. In this
basis, over U , we have

ω =
√−1

2
(φ1∧ φ̄1 +φ2∧ φ̄2)

and the volume form

dvol =
ω2

2
=−1

4
φ1∧ φ̄1∧φ2∧ φ̄2,

using Exercise 10.1.18. It follows from this and the previous lemma that dvol is the
unique harmonic 4-form up to scalar multiples. Choose an element α ∈ (H11(X)∩
H2(X ,R)) and represent it by a harmonic real (1,1)-form. Then over U ,

α =
√−1∑ ai jφi∧ φ̄ j
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with
a ji = āi j. (11.4.1)

By the previous lemma,

α ∧ω = 2(a11 + a22)dvol

is also a harmonic 4-form, and therefore a scalar multiple of dvol. If α is chosen in
(R[ω ])⊥, then

∫
α ∧ω = 0, so that

a11 + a22 = 0. (11.4.2)

Combining (11.4.1) and (11.4.2) yields

α ∧α =−8(|a11|2 + |a12|2)dvol,

so globally, α ∧α is a negative multiple of dvol. Therefore∫
X
α ∧α < 0. 	


Corollary 11.4.3. If H is an ample divisor on an algebraic surface, the intersection
pairing is negative definite on (NS(X)⊗R)∩ (R[H])⊥.

Proof. By Corollary 10.1.10, [H] is a Kähler class. 	

Corollary 11.4.4. If H,D are divisors on an algebraic surface such that H2 > 0 and
D ·H = 0, then D2 < 0 unless [D] = 0.

Proof. This is an exercise in linear algebra using the fact that the intersection form
on (NS(X)⊗R) has signature (+1,−1, . . . ,−1). 	


Exercises

11.4.5. Prove that the restriction of the cup product to (H20(X)+H02(X))∩H2(X ,R)
is positive definite.

11.4.6. Conclude that (the matrix representing) the cup product pairing has 2pg + 1
positive eigenvalues. Therefore pg is a topological invariant.

11.4.7. Let f : X → Y be a morphism from a smooth algebraic surface to a possibly
singular projective surface. Consider the set {Di} of irreducible curves that map to
points under f . Prove a theorem of Mumford that the matrix (Di ·D j) is negative
definite.
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11.5 Fibered Surfaces*

Let us say that a surface X is fibered if it admits a nonconstant holomorphic map
f : X →C to a nonsingular curve. For example, ruled surfaces and elliptic surfaces
are fibered. Not all surfaces are fibered. However, any surface can be fibered after
blowing up: Choose a nontrivial rational function X ��� P1, then blow up X to get a
morphism. The fiber over p ∈C is the closed set f−1(p). Let z be a local coordinate
at p. Then f−1(p) is defined by the equation f ∗z = 0. We can regard f−1(p) as
a divisor ∑niDi, where Di are its irreducible components and ni is the order of
vanishing of f ∗z along Di. Call a divisor on X vertical if its irreducible components
are contained in the fiberes.

Lemma 11.5.1. Suppose that f : X →C is a fibered surface.

(a) If F = f−1(p) and D is a vertical divisor, then F ·D = 0. In particular, F2 = 0.
(b) If D is vertical, then D2 ≤ 0.

Proof. Since the fundamental class of f−1(p) is independent of p, we can assume
that F and D are disjoint. This proves (a).

Suppose that D2 > 0, when combined with (a), we would get a contradiction to
the Hodge index theorem. 	

Corollary 11.5.2. A necessary condition for a surface to be fibered is that there be
an effective divisor with F2 = 0. In particular, P2 is not fibered.

We can give a complete characterization of surfaces fibered over curves of genus
greater than one.

Theorem 11.5.3 (Castelnuovo–de Franchis). Suppose that X is an algebraic sur-
face. A necessary and sufficient condition for X to admit a nonconstant holomorphic
map to a smooth curve of genus g≥ 2 is that there exist two linear independent forms
ωi ∈H0(X ,Ω 1

X) such that ω1∧ω2 = 0.

Proof. The necessity is easy. If f : X → C is a holomorphic map onto a curve of
genus at least 2, then it possesses at least two linearly independent holomorphic
1-forms ω ′i . Set ωi = f ∗ω ′i . By writing this in local coordinates, we see that these
are nonzero. But ω1∧ω2 = f ∗(ω ′1∧ω ′2) = 0.

We will sketch the converse. A complete proof can be found in [9, pp. 123–125].
Choosing local coordinates, we can write

ωi = fi(z1,z2)dz1 + gi(z1,z2)dz2.

The condition ω1∧ω2 = 0 forces

( f1g2− f2g1)dz1∧dz2 = 0.

Therefore f2/ f1 = g2/g1. Call the common value F . Thus ω2 = Fω1. Since the ωi

are globally defined, F = ω2/ω1 defines a global meromorphic function X ��� P1.
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By Corollary 11.1.10, there exists Y → X that is a composition of blowups such
that F extends to a holomorphic function F ′ : Y → P1. The fibers of F ′ need not be
connected. Stein’s factorization theorem [60] shows that the map can be factored as

Y
Φ→C → P1,

where Φ has connected fibers and C → P1 is a finite-to-one map of smooth projec-
tive curves. To avoid too much notation, let us denote the pullbacks of ωi to Y by ωi

as well. We now have a relation ω2 =Φω1.
We claim that the ωi are pullbacks of holomorphic 1-forms on C. We will check

this locally around a general point p ∈ Y . Since the ωi are harmonic (by Exer-
cise 10.2.9) and therefore closed,

dω2 = dΦ ∧ω1 = 0. (11.5.1)

Let t1 be a local coordinate centered atΦ(p) ∈C. Let us also denote the pullback of
this function to neighborhood of p by t1. Then we can choose a function t2 such that
t1, t2 give local coordinates at p. Then (11.5.1) becomes dt1∧ω1 = 0. Consequently,
ω1 = f (t1, t2)dt1, for some function f . The relation dω1 = 0 implies that f is a
function of t1 alone. Thus ω1 is locally the pullback of a 1-form on C, as claimed.
The same reasoning applies to ω2. This implies that the genus of C is at least two.

The final step is to prove that blowing up was unnecessary. Let

Y = Y1
π1−→ Y2 → ···X

be a composition of blowups at points pi ∈ Yi. Then π−1
1 (p2) ∼= P1. Any map from

P1 to C is constant, since it has positive genus. So we conclude that Y →C factors
through Y1, and then likewise through Y2 and so on until we reach Y . 	


An obvious corollary is the following:

Corollary 11.5.4. If q≥ 2 and pg = 0, then X admits a nonconstant map to a curve
as above.

Exercises

11.5.5. Given an elliptic surface X , show that KX is vertical. Conclude that K2
X ≤ 0.

11.5.6. Show that X maps onto a curve of genus≥ 2 if q > pg +1. (This bound can
be sharpened to (pg + 3)/2, but the argument is more delicate; cf. [9, IV, 4.2].)



Chapter 12
Hodge Structures and Homological Methods

Our next goal is to make the Hodge decomposition functorial with respect to holo-
morphic maps. This is not immediate, since the pullback of a harmonic form along
a holomorphic map is almost never harmonic. The trick is to state things in a way
that depends only on the complex structure: a cohomology class is of type (p,q) if
it can be represented by a form with p dzi’s and by a form with q dz̄ j’s. Of course,
just making a definition is not enough. There is something to be proved. The main
ingredients are the previous Hodge decomposition for harmonic forms together with
some homological algebra, which we develop here.

Although projective manifolds are Kähler, there are examples of algebraic mani-
folds that are not. One benefit of this homological approach is that it will allow us
to extend the decomposition to these manifolds where harmonic theory alone would
be insufficient.

The articles and books by Deligne [24], Griffiths and Schmid [50], Peters and
Steenbrink [95], and Voisin [115, 116] cover this material in more detail.

12.1 Pure Hodge Structures

It is useful to isolate the purely linear algebraic features of the Hodge decom-
position. We define a pure real Hodge structure of weight m to be a finite-dimensional
complex vector space with a real structure HR, and a bigrading

H =
⊕

p+q=m

H pq

satisfying H̄ pq = Hqp. We generally use the same symbol for Hodge structure and
the underlying vector space. A (pure weight m) Hodge structure is a real Hodge
structure H together with a choice of a finitely generated abelian group HZ and an
isomorphism HZ⊗R∼= HR. Even though the abelian group HZ may have torsion, it
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is helpful to think of it as a “lattice” in HR. Rational Hodge structures are defined in
a similar way.

Before continuing with the abstract development of Hodge structures, we need
to ask the obvious question. Why is it useful to consider these things? More specifi-
cally, why is it useful for algebraic geometry? To answer, we observe that algebraic
varieties tend to come in families. For example, we may simply allow the coeffi-
cients of the defining equations to vary. Thus varieties tend to come with natural
“continuous” parameters. The cohomological invariants considered up to now are
discrete. Hodge structures, however, also have continuous parameters that some-
times match those coming from geometry. The simplest example is very instructive.
Start with an elliptic curve Xτ = C/(Z + Zτ) with τ in the upper half plane H.
We can identify ι : H1(Xτ ,C) ∼= C2 by mapping a closed differential form α to
(
∫ 1

0 α,
∫ τ

0 α), where the paths of integration are lines. Then

H10 = Cι(dz) = C(1,τ).

So in this case, we recover the basic parameter τ and therefore the curve itself from
its Hodge structure.

Given a pure Hodge structure, define the Hodge filtration by

F pHC =
⊕
p′≥p

H pq.

In many situations, the Hodge filtration is the more natural object to work with. This
determines the bigrading thanks to the following lemma:

Lemma 12.1.1. If H is a pure Hodge structure of weight m, then

HC = F p⊕ F̄m−p+1

for all p. Conversely, if F• is a descending filtration satisfying Fa = HC and Fb = 0
for some a,b ∈ Z and satisfying the above identity, then

H pq = F p∩ F̄q

defines a pure Hodge structure of weight m.

The most natural examples of Hodge structures come from compact Kähler mani-
folds: if HZ = Hi(X ,Z) with the Hodge decomposition on Hi(X ,C)∼= HZ⊗C, then
we get a Hodge structure of weight i. It is easy to manufacture other examples.
For every integer i, there is a rank-one Hodge structure Z(i) of weight −2i. Here
the underlying space is C, with H(−i,−i) = C and lattice HZ = (2π

√−1)iZ (these
factors should be ignored on first reading). The collection of Hodge structures forms
a category HS, where a morphism is a linear map f preserving the lattices and
the bigradings. In particular, morphisms between Hodge structures with different
weights must vanish. This category has the following operations: direct sums of
Hodge structures of the same weight (we will eventually relax this), and (unres-
tricted) tensor products and duals. Explicitly, given Hodge structures H and G of
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weights n and m, their tensor product H ⊗Z G is equipped with a weight-(n + m)
Hodge structure with bigrading

(H⊗G)pq =
⊕

p′+p′′=p
q′+q′′=q

H p′q′ ⊗Gp′′q′′ .

If m = n, their direct sum H⊕G is equipped with the weight-m Hodge structure

(H⊕G)pq =
⊕

p+q=m

H pq⊕Gpq.

The dual H∗ = Hom(H,Z) is equipped with a weight-(−n) Hodge structure with
bigrading

(H∗)pq = (H−p,−q)∗.

The operation H �→ H(i) = H ⊗Z(i) is called the Tate twist. It has the effect of
leaving H unchanged and shifting the bigrading by (−i,−i).

Exercises

12.1.2. Show that there are no free rank-one pure Hodge structures of odd weight,
and up to isomorphism a unique rank-one Hodge structure for every even weight.

12.1.3. Show that HomHS(Z(0),H∗ ⊗G)∼= HomHS(H,G).

12.1.4. Prove Lemma 12.1.1.

12.1.5. Given a g-dimensional complex torus T , use Exercise 10.3.9, that T ∼=
Alb(T ), to conclude that T can be recovered from the Hodge structure H = H1(T ).

12.2 Canonical Hodge Decomposition

The Hodge decomposition involved harmonic forms, so it is tied up with the Kähler
metric. It is possible to reformulate it so as to make it independent of the choice of
metric. Let us see how this works for a compact Riemann surface X . We have an
exact sequence

0→ CX →OX →Ω 1
X → 0,

and we saw in Lemma 6.2.8 that the induced map

H0(X ,Ω 1
X)→ H1(X ,C)
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is injective. If we define

F0H1(X ,C) = H1(X ,C),

F1H1(X ,C) = im[H0(X ,Ω 1
X)→ H1(X ,C)],

F2H1(X ,C) = 0,

then this together with the isomorphism H1(X ,C) = H1(X ,Z)⊗C determines a
pure Hodge structure of weight 1. To see this, choose a metric, which is automati-
cally Kähler because dimX = 1. Then H1(X ,C) is isomorphic to a direct sum of
the space of harmonic (1,0)-forms, which maps to F1, and the space of harmonic
(0,1)-forms, which maps to F̄1.

Before proceeding with the higher-dimensional version, we need some facts from
homological algebra. Let

C• =→ ···Ca d→Ca+1 → ···

be a complex of vectors spaces (or modules or . . .). It is convenient to allow the
indices to vary over Z, but we will require that it be bounded below, which means
that Ca = 0 for all a " 0. Let us suppose that each Ci is equipped with a filtration
F pCi ⊇ F p+1Ci ⊇ ·· · , that is preserved by d, i.e., dF pCi ⊆ F pCi+1. This implies
that each F pC• is a subcomplex. We suppose further that F• biregular, which means
that for each i there exist a and b with FaCi = Ci and FbCi = 0. We get a map on
cohomology

φ p : H •(F pC•)→H •(C•),

and we let F pH •(C•) be the image. Define GrpH i(C•) = F pH i(C•)/F p+1

H i(C•). When C• is a complex of vector spaces, there are noncanonical isomor-
phisms

H i(C•) =
⊕

p

GrpH i(C•).

The filtration is said to be strictly compatible with differentials of C•, or simply just
strict, if all the φ p’s are injective. Let Grp

FC• = GrpC• = F pC•/F p+1C•. Then we
have a short exact sequence of complexes

0→ F p+1C → F pC →GrpC → 0,

from which we get a connecting map δ : H i(GrpC•)→H i+1(F p+1C•). This can
be described explicitly as follows. Given x̄ ∈ H i(GrpC•), it can be lifted to an
element x ∈ F pCi such that dx ∈ F p+1Ci+1. Then δ (x̄) is represented by dx.

Proposition 12.2.1. The following are equivalent:

(1) F is strict.
(2) F pCi+1∩dCi = dF pCi for all i and p.
(3) The connecting maps δ : H i(GrpC•)→H i+1(F p+1C•) vanish for all i and p.

Proof. This proof is due to Su-Jeong Kang.
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(1)⇒ (2). Suppose that z∈ F pCi+1∩dCi. Then z = dx∈ F pCi+1 for some x∈Ci.
Thus we have z∈ ker[d : F pCi+1 → F pCi+2]. Let z̄∈H i+1(F pC•) denote the coho-
mology class of z. Note that φ p(z̄) = 0, since z = dx. Hence from the assumption
that F is strict, z̄ = 0 in H i+1(F pC•), or equivalently z = dy for some y ∈ F pCi.
This shows that F pCi+1∩dCi ⊆ dF pCi. The reverse inclusion is clear.

(2) ⇒ (3). Let x̄ ∈ H i(GrpC•). This lifts to an element x ∈ F pCi with dx ∈
F p+1Ci+1 as above. Then from the assumption (2), we have

dx ∈ F p+1Ci+1∩dCi = dF p+1Ci.

Since δ (x̄) is represented by dx, we have δ (x̄) = 0 in H i+1(F p+1C•).
(3) ⇒ (1). For each i, φ p can be expressed as finite a composition

H i(F pC•)→H i(F p−1C•)→H i(F p−2C•)→ ··· .

These maps are all injective by assumption, since their kernels are the images of the
connecting maps. 	

Corollary 12.2.2. GrpH i(C•) is a subquotient of H i(GrpC•), which means that
there is a diagram

H i(GrpC•)⊇ Ii,p → GrpH i(C•)

where the last map is onto. Isomorphisms GrpH i(C•) ∼= Ii,p ∼= H i(GrpC•) hold
for all i, p if and only if F is strict.

Proof. Let Ii,p = im[H i(F pC•)→H i(GrpC•)]. Then the surjection H i(F pC•)→
GrpH i(C•) factors through I. The remaining statement follows from (3) and a
diagram chase. 	

Corollary 12.2.3. Suppose that C• is a complex of vector spaces over a field such
that dimH i(GrpC•) < ∞ for all i, p. Then

dimH i(C•)≤∑
p

dimH i(GrpC•),

and equality holds for all i if and only if F is strict, in which case we also have

dimF pH i(C•) = ∑
p′≥p

dimH i(Grp′C•).

Proof. We have

dimH i(C•) =∑
p

dimGrpH i(C•)≤∑
p

dim Iip ≤∑
p

dimH i(GrpC•),

and equality is equivalent to strictness of F by the previous corollary. The last state-
ment is left as an exercise. 	


These results are usually formulated in terms of spectral sequences, which we
have chosen to avoid. In this language, the last corollary says that F is strict if and
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only if the associated spectral sequence degenerates at E1. This is partially explained
in the exercises.

Let X be a complex manifold. Then the de Rham complex E •(X) has a filtration
called the Hodge filtration:

F pE •(X) = ∑
p′≥p

E p′q(X).

Its conjugate equals
F̄qE •(X) = ∑

q′≥q

E pq′(X).

Theorem 12.2.4. If X is compact Kähler, the Hodge filtration is strict. The associ-
ated filtration F•Hi(X ,C), on cohomology, gives a Hodge structure

Hi(X ,Z)⊗C∼= Hi(X ,C) =
⊕

p+q=i

H pq(X)

of weight i, where

H pq(X) = F pH i(X ,C)∩ F̄qHi(X ,C)∼= Hq(X ,Ω p
X).

Proof. Dolbeault’s theorem (Corollary 9.2.3) implies that H q(GrpE •(X)) =
H q(E (p,•)

X (X)) is isomorphic to Hq(X ,Ω p
X). Therefore F is strict by

Corollary 12.2.3 and the Hodge decomposition. By conjugation, we see that F̄ is
also strict. Furthermore, these facts together with Corollary 12.2.3 give

dimF pHi(X ,C) = hp,i−p(X)+ hp+1,i−p−1(X)+ · · · (12.2.1)

and

dim F̄i−p+1Hi(X ,C) = hp−1,i−p+1(X)+ hp−2,i−p+2(X)+ · · · . (12.2.2)

A cohomology class lies in F pHi(X ,C) (respectively F̄ i−p+1Hi(X ,C)) if and only
if it can be represented by a form in F pE •(X) (respectively F̄i−p+1E •(X)). Thus
Hi(X ,C) is the sum of these subspaces. Using (12.2.1) and (12.2.2), we see that it
is a direct sum. Therefore the filtrations determine a pure Hodge structure of weight
i on Hi(X ,C). 	


Even though harmonic theory is needed to verify that this Hodge structure, it
should be clear that it involves only the holomorphic structure and not the metric.
Thus we have obtained a canonical Hodge decomposition. The word canonical is
really synonymous with functorial:

Corollary 12.2.5. If f : X → Y is a holomorphic map of compact Kähler mani-
folds, then the pullback map f ∗ : Hi(Y,Z)→Hi(X ,Z) is compatible with the Hodge
structures.
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Corollary 12.2.6. If X is compact Kähler, the maps

Hq(X ,Ω p
X)→ Hq(X ,Ω p+1

X )

induced by differentiation vanish. In particular, global holomorphic differential
forms on X are closed.

Proof. This follows from strictness, as will be explained in the exercises. 	

This corollary, and hence the theorem, can fail for compact complex non-Kähler

manifolds. An explicit example is described in the exercises.

Theorem 12.2.7. If X is a compact Kähler manifold, the cup product

Hi(X)⊗H j(X)→ Hi+ j(X)

is a morphism of Hodge structures.

The proof comes down to the observation that

F pE • ∧FqE • ⊆ F p+qE •.

For the corollaries, we work with rational Hodge structures. We have compati-
bility with Poincaré duality:

Corollary 12.2.8. If dimX = n, then Poincaré duality gives an isomorphism of
Hodge structures

Hi(X)∼= [H2n−i(X)∗](−n).

We have compatibility with the Künneth formula:

Corollary 12.2.9. If X and Y are compact Kähler manifolds, then⊕
i+ j=k

Hi(X)⊗H j(Y )∼= Hk(X ×Y )

is an isomorphism of Hodge structures.

We have compatibility with the Gysin map:

Corollary 12.2.10. If f : X →Y is a holomorphic map of compact Kähler manifolds
of dimension n and m respectively, the Gysin map is a morphism

Hi(X)→ Hi+2(m−n)(Y )(n−m).

Exercises

12.2.11. Finish the proof of Corollary 12.2.3.
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12.2.12. Let C• be a bounded-below complex with biregular filtration F•. Define
E pq

1 = H p+q(GrpC•) and d1 : E pq
1 → E p+1,q

1 as the connecting map associated to

0→ Grp+1C• → F pC•/F p+2C• → GrpC• → 0.

Show that d1 = 0 if F• is strict. (The converse is not quite true, as we will see
shortly.)

12.2.13. When C• = E •(X) with its Hodge filtration, show that E pq
1
∼= Hq(X ,Ω p

X )
and that d1 is induced by α �→ ∂α on ∂̄ -cohomology. Conclude that these maps
vanish when X is compact Kähler.

12.2.14. Continuing the notation from Exercise 12.2.12. Suppose that d1 = 0 for all
indices. Construct a map d2 : E pq

1 →E p+2,q−1
1 that fits into the commutative diagram

H p+q(Grp)
d2

���������������

H p+q(F p/F p+3) �� H p+q(F p/F p+2) ��

��

H p+q+1(Grp+2)

Show that d2 = 0 if F• is strict. Optional messy part: If d1 = d2 = 0, define d3 :
E pq

1 → E p+3,q−2
1 etc. in the same way, and check that strictness is equivalent to the

vanishing of whole lot.

12.2.15. Given a commutative ring R, let U3(R) be the space of upper triangular
3×3 matrices ⎛⎝1 x z

0 1 y
0 0 1

⎞⎠
with entries in R. The Iwasawa manifold is the quotient U3(C)/U3(Z + Z

√−1).
Verify that this is a compact complex manifold with a nonclosed holomorphic form
dz− xdy.

12.3 Hodge Decomposition for Moishezon Manifolds

A compact complex manifold need not have any nonconstant meromorphic func-
tions at all. At the other extreme, a compact manifold X is called Moishezon if
its field of meromorphic functions is as large as possible, that is, if it has transcen-
dence degree equal to dimX (this is the maximum possible by a theorem of Siegel
[104]). This is a very natural class of manifolds, which includes smooth proper alge-
braic varieties. Moishezon manifolds need not be Kähler; explicit examples due to
Hironaka can be found in [60, Appendix B]. Nevertheless, Theorem 12.2.4 holds for
these manifolds. A somewhat more general result is true. Let us say that a holomor-
phic map between complex manifolds is bimeromorphic if it is a biholomorphism
between dense open sets.
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Theorem 12.3.1. Suppose that X is a compact complex manifold for which there
exist a compact Kähler manifold and a surjective holomorphic bimeromorphic map
f : X̃ → X. Then X possesses a canonical Hodge decomposition on cohomology
described exactly as in Theorem 12.2.4.

Corollary 12.3.2. The Hodge decomposition holds for Moishezon manifolds.

Proof. Moishezon [88] proved that that there exists a bimeromorphic map X̃ → X ,
in fact a blowup, with X̃ smooth projective. 	


We have already proved a special case of Serre duality for Kähler manifolds.
In fact, the result holds for a general compact complex manifold X . There is a pairing

〈,〉 : Hq(X ,Ω p
X)⊗Hn−q(X ,Ω n−p

X )→ C (12.3.1)

induced by

(α,β )→
∫

X
α ∧β .

Theorem 12.3.3. Suppose X is a compact complex manifold. Then

(a) (Cartan) dimHq(X ,Ω p
X) < ∞.

(b) (Serre) The pairing (12.3.1) is perfect.

Proof. Both results can be deduced from the Hodge decomposition theorem for the
∂̄ -operator, which works regardless of the Kähler condition. See [49]. 	


We outline the proof of Theorem 12.3.1. Further details can be found in [23, 28].

Proof. Let n = dimX . There is a map

f ∗ : Hq(X ,Ω p
X)→ Hq(X̃ ,Ω p

X̃
)

that is induced by the map α �→ f ∗α of (p,q)-forms. We claim that the map f ∗ is
injective. To see this, define a map

f∗ : Hq(X̃ ,Ω p
X̃
)→: Hq(X ,Ω p

X),

analogous to the Gysin map, as the adjoint 〈 f∗α,β 〉 = 〈α, f ∗β 〉. We leave it as
an exercise to check that f∗ f ∗(α) = α . This proves injectivity of f ∗ as claimed.
By similar reasoning, f ∗Hi(X ,C)→ Hi(X̃ ,C) is also injective.

We claim that F is strict. As we saw in previous exercises (12.2.12,12.2.14), this
is equivalent to the vanishing of the differentials d1,d2 . . . . We check only the first
case, but the same reasoning works in general. Consider the commutative diagram

Hq(Ω p
X)

d1 ��

f ∗

��

Hq(Ω p+1
X )

f ∗
��

Hq(Ω p
X̃
)

d1 �� Hq(Ω p+1
X̃

)

Since the bottom d1 vanishes, the same goes for the top.
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The filtration F̄ can also be shown to be strict. We can now argue as in the proof
of Theorem 12.2.4 that the filtrations give a Hodge structure on Hi(X). 	


Exercises

12.3.4. Check that 〈 f ∗α, f ∗β 〉 = 〈α,β 〉, and deduce the identity f∗ f ∗α = α used
above.

12.4 Hypercohomology*

At this point, it is convenient to give a generalization of the constructions from
Chapter 4. Recall that a complex of sheaves is a possibly infinite sequence of sheaves

· · · →F i di−→F i+1 di+1−→ ·· ·

satisfying di+1di = 0. We say that the complex is bounded (below) if finitely many
of these sheaves are nonzero (or if F i = 0 for i" 0). Given any sheaf F and natural
number n, we get a bounded complex F [n] consisting of F in the −nth position,
and zeros elsewhere. The collection of bounded (respectively bounded below) com-
plexes of sheaves on a space X form a category Cb(X) (respectively C+(X)), where
a morphism of complexes f : E • →F • is defined to be a collection of sheaf maps
E i → F i that commute with the differentials. This category is abelian. We define
additive functors H i : C+(X)→ Ab(X)

H i(F •) = ker(di)/ im(di−1).

A morphism f : E • → F • in C+(X) is a called a quasi-isomorphism if it induces
isomorphisms H i(E •)∼= H i(F •) on all the sheaves.

Theorem 12.4.1. Let X be a topological space. Then there are additive functors
Hi : C+(X)→ Ab, with i ∈ N, such that

(1) For any sheaf F , Hi(X ,F [n]) = Hi+n(X ,F ).
(2) If 0→ E • →F • → G • → 0 is exact, then there is an exact sequence

0→H0(X ,E •)→H0(X ,F •)→H0(X ,G •)→H1(X ,E •)→ ··· .

(3) If E • → F • is a quasi-isomorphism, then the induced map Hi(X ,E •) →
Hi(X ,F •) is an isomorphism.

Hi(X ,E •) is called the ith hypercohomology group of E •.
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Proof. We outline the proof. Further details can be found in [44], [68], or [118].
We start by redoing the construction of cohomology for a single sheaf F . The
functor G defined in Section 4.1, gives a flasque sheaf G(F ) with monomorphism
F →G(F ). The sheaf C1(F ) is the cokernel of this map. Applying G again yields
a sequence

F →G(F )→G(C1(F )).

By continuing as above, we get a resolution by flasque sheaves

F →G0(F )→G1(F )→ ··· .

Theorem 5.1.4 shows that Hi(X ,F ) is the cohomology of the complex
Γ (X ,G•(F )), and this gives a clue how to generalize the construction. The complex
G• is functorial. So given a complex

· · · →F i d−→F i+1 → ··· ,

we get a commutative diagram

. . . F i d ��

��

F i+1

��

. . .

G0(F i)
d ��

∂
��

G0(F i+1)

∂
��. . . . . .

We define the total complex

T i(F •) =
⊕

p+q=i

Gp(F q)

with a differential δ = d +(−1)q∂ . We can now define

Hi(X ,F •) = Hi(Γ (X ,T •(G ))).

When applied to F [n], this yields Hi(Γ (X ,G•(F ))[n]), which as we have seen is
Hi(X ,F ), and this proves (1).

(2) can be deduced from the exact sequence

0→T •(F •)→T •(G •)→ T •(F •)→ 0

given in the exercises.
We now turn to the last statement, and prove it for bounded complexes. For any

complex E • of sheaves (or elements of an abelian category), we can introduce the
truncation operator given by the subcomplex
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τ≤pE
i =

⎧⎪⎨⎪⎩
E p if i < p,

ker(E p → E p+1) if i = p,

0 otherwise.

Truncation yields an increasing filtration τ≤p or a decreasing filtration τ≤−p. The
key property is given in the following lemma:

Lemma 12.4.2. There is an exact sequence of complexes

0→ τ≤q−1E
• → τ≤qE

• →H q(E •)[−q]→ 0

for each q.

A quasi-isomorphism E • →F • induces a quasi-isomorphism τ≤qE • → τ≤qF •
for each q. Thus the lemma can be applied to get a diagram with exact rows:

. . . �� Hi(τ≤q−1E
•) ��

��

Hi(τ≤qE
•) ��

��

Hi−q(H q(E •)) ��

∼=
��

. . .

. . . �� Hi(τ≤q−1F
•) �� Hi(τ≤qF •) �� Hi−q(H q(E •)) �� . . .

Thus (3) follows by induction on q. 	

The precise relationship between the various (hyper) cohomology groups is

usually expressed by the spectral sequence

E pq
1 = Hq(X ,E p)⇒Hp+q(E •).

There are a number of standard consequences that we can prove directly. The first
is a refinement of Theorem 5.1.4.

Corollary 12.4.3. If E • is a bounded complex of acyclic sheaves, then Hi(X ,E •) =
Hi(Γ (X ,E •)).

Proof. There is a map of complexes Γ (X ,E •)→ Γ (X ,T •(F •)) inducing a map
Hi(Γ (X ,E •))→ Hi(X ,E •). We have to check that this is an isomorphism. We do
this by induction on the length, or number of nonzero terms, of E •. With the help of
the “stupid” filtration,

σ pE • = E ≥p = · · · → 0→ E p → E p+1 → ···

is gotten by dropping the first p−1 terms of the complex. We have an exact sequence

0→ E ≥p+1 → E ≥p → E p[−p]→ 0 (12.4.1)



12.4 Hypercohomology* 215

leading to a commutative diagram

. . . �� Hi(Γ (X ,E ≥p+1)) ��

∼=
��

Hi(Γ (X ,E ≥p)) ��

f

��

Hi(E p[−p]) ��

∼=
��

. . .

�� Hi(X ,E ≥p+1) �� Hi(X ,E ≥p) �� Hi(X ,E p[−p]) ��

with exact rows. The arrows marked by∼= are isomorphisms by induction. Therefore
f is an isomorphism by the 5-lemma. 	

Corollary 12.4.4. Suppose that E • is a bounded complex of sheaves of vector
spaces. Then

dimHi(E •)≤ ∑
p+q=i

dimHq(X ,E p).

Proof. The corollary follows by induction on the length (number of nonzero entries)
of E • using the long exact sequences on hypercohomology coming from (12.4.1).

	

Corollary 12.4.5. Suppose that E • is a bounded complex with Hq(X ,E p) = 0 for
all p + q = i. Then Hi(E •) = 0.

We can extract one more corollary, using Lemma 11.3.3.

Corollary 12.4.6. If ∑dimHq(X ,E p)≤ ∞, then

∑(−1)i dimHi(E •) =∑(−1)p+q dimHq(X ,E p).

In order to facilitate the computation of hypercohomology, we need a criterion
for when two complexes are quasi-isomorphic. We will say that a filtration

E • ⊇ F pE • ⊇ F p+1E • ⊇ · · ·

is finite (of length ≤ n) if E • = FaE • and Fa+nE • = 0 for some a.

Lemma 12.4.7. Let f : E • → F • be a morphism of bounded complexes. Suppose
that F pE • and GpF • are finite filtrations by subcomplexes such that f (F pE •) ⊆
GpF •. If the induced maps

Grp
F(E •)→ Grp

G(F •)

are quasi-isomorphisms for all p, then f is a quasi-isomorphism.

Exercises

12.4.8. If F • is a bounded complex with zero differentials, show that Hi(X ,F •) =
⊕ jHi− j(X ,F j).

12.4.9. Prove Lemma 12.4.7 by induction on the length.
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12.5 Holomorphic de Rham Complex*

Let X be a C∞ manifold. We can resolve CX by the complex of C∞ forms E •
X . In other

words, CX and E •
X are quasi-isomorphic. Since E •

X is acyclic, it follows that

Hi(X ,CX ) = Hi(X ,CX [0])∼= Hi(X ,E •
X )∼= Hi(Γ (X ,E •

X )).

We have just re-proved de Rham’s theorem.
Now suppose that X is a (not necessarily compact) complex manifold. Then we

define a subcomplex

F pE •
X = ∑

p′≥p

E p′q
X .

The image of the map
Hi(X ,F pE •

X )→Hi(X ,E •
X )

is the filtration introduced just before Theorem 12.2.4. We want to reinterpret this
purely in terms of holomorphic forms. We define the holomorphic de Rham complex
by

OX →Ω 1
X →Ω 2

X → ··· .
We have a natural map Ω •

X → E •
X that takes σ p to F p, where σ pΩ •

X = Ω≥p
X .

Dolbeault’s Theorem 9.2.3 implies that F p/F p+1 is quasi-isomorphic to σ p/σ p+1 =
Ω p

X [−p]. Therefore, Lemma 12.4.7 implies that Ω•
X → E •

X , and more generally
σ pΩ •

X → F pE •
X , are quasi-isomorphisms.

Lemma 12.5.1. Hi(X ,C)∼= Hi(X ,Ω •
X) and F pHi(X ,C) is the image of Hi(X ,Ω≥p

X ).

When X is compact Kähler, Theorem 12.2.4 implies that the map

Hi(X ,Ω≥p
X )→Hi(X ,Ω •

X )

is injective.
From Corollaries 12.4.4, 12.4.5, 12.4.6 we obtain the following result.

Corollary 12.5.2. If X is compact, the ith Betti number satisfies

bi(X)≤ ∑
p+q=i

dimHq(X ,Ω p
X),

and the Euler characteristic satisfies

e(X) =∑(−1)ibi(X) =∑(−1)p+q dimHq(X ,Ω p
X).

Corollary 12.5.3. If Hq(X ,Ω p
X ) = 0 for all p + q = i, then Hi(X ,C) = 0.

The next corollary uses the notion of Stein manifold that will be discussed later,
in Section 16.1. For the time being, we note that Stein manifolds include smooth
affine varieties. The above results give nontrivial topological information for this
class of manifolds.
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Corollary 12.5.4. Let X be a Stein manifold, or in particular a smooth affine variety.
Then Hi(X ,C) = 0 for i > dimX.

Proof. This follows from Theorem 16.3.3. 	


Exercises

12.5.5. Suppose that Hi(X ,F ) = 0 for i > N and any locally free sheaf F . Show
that bi(X) = 0 for i > N + dimX .

12.5.6. Show that the inequality in Corollary 12.5.2 is strict for the Iwasawa mani-
fold defined in Exercise 12.2.15).

12.6 The Deligne–Hodge Decomposition*

We fix the following: a smooth hypersurface (also called a smooth divisor) X ⊂
Y in a projective smooth variety. Let U = Y − X . Our goal is to understand the
cohomology and Hodge theory of U . This can be calculated using C∞ differential
forms E •

U , but it will more useful to compute this with forms having controlled
singularities. We define Ω p

Y (∗X) to be the sheaf of meromorphic p-forms that are
holomorphic on U . This is not coherent, but it is a union of coherent subsheaves
Ω p

Y (mX) of mermorphic p-forms with at worst poles of order m along X . We also
defineΩ p

Y (logX)⊂Ω p
Y (1X) as the subsheaf of meromorphic formsα such that both

α and dα have simple poles along X . If we choose local coordinates z1, . . . ,zn so
that X is defined by z1 = 0, then the sections of Ω p

Y (logX) are locally spanned as an
OX module by

{dzi1 ∧·· ·∧dzip | i j > 1}∪
{

dz1∧dzi2 ∧·· ·∧dzip

z1

}
;

Ω •
X(logD)⊂Ω •

Y (∗X) is a subcomplex.

Proposition 12.6.1. There are isomorphisms

Hi(U,C)∼= Hi(Y,Ω •
Y (logX))∼= Hi(Y,Ω •

Y (∗X)).

Proof. Details can be found in [49, pp. 449–454]. The key point is to show that the
inclusions

Ω •
Y (logX)⊂Ω •

Y (∗X)⊂ j∗E •
U (12.6.1)

are quasi-isomorphisms, where j : U → Y is the inclusion. This can be reduced
to a calculation in which Y is replaced by a disk with coordinate z, and with X
corresponding to the origin. Then (12.6.1) becomes
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OD
��

d
��

∑n∈Z ODzn ��

d

��

C∞D−0

d
��

OD
dz
z

�� ∑n∈Z ODzndz �� E 1
D−0

d
��

E 2
D−0

The cohomology in each column is C in degrees 0,1, and horizontal maps induce
isomorphisms between these. 	


The spaces in the proposition on the right carry natural filtrations. The Hodge
filtration

F pHi+1(U)= im[Hi+1(0→Ω p
Y (logX)→Ω p+1

Y (logX)→···)→Hi+1(Ω •
Y (logX))]

and the pole filtration induced by

PolepHi+1(U)= im[Hi+1(· · · → 0→Ω p
Y (X)→Ω p+1

Y (2X)→···)→Hi+1(Ω •
Y (∗X))].

It follows more or less immediately that F p ⊆ Polep. Equality need not hold in
general, but it does in an important case studied later, in Section 17.5.

In order to relate this to the cohomology of X , we use residues. We have a map

Res :Ω p
Y (logX)→Ω p−1

X , (12.6.2)

called the Poincaré residue map, given by

Res

(
α ∧ dz1

z1

)
= α|X .

Res commutes with d. Therefore it gives a map of complexes

Ω •
Y (logX)→Ω •

X [−1],

where [−1] indicates a shift of indices by −1. This induces a map

Hi(U,C) = Hi(Ω •
Y (logX))→ Hi−1(X ,C).

After normalizing this by a factor of 1
2π
√−1

, it takes integer cohomology to integer
cohomology (modulo torsion). This can be described topologically as a composition

Hi(U)→ Hi(Tube) ∼→ Hi−1(X),

where Tube is a tubular neighborhood and the second map is the inverse of the Thom
isomorphism, §5.5. The residue map is an epimorphism of sheaves, and the kernel
is precisely the sheaf of holomorphic forms. So we have an exact sequence
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0→Ω •
Y →Ω •

Y (logX)→Ω •
X [−1]→ 0, (12.6.3)

which leads to a long exact sequence

· · · →Hq(Ω p
Y )→ Hq(Ω p

Y (logX))→ Hq(Ω p−1
X )→ Hq+1(Ω p

Y )→ ··· (12.6.4)

· · · →Hi(Y,C)→ Hi(U,C)→ Hi−1(X ,C)
γ→Hi+1(Y,C)→ ··· . (12.6.5)

The second is called the Gysin sequence. Indeed, γ is the Gysin map.

Theorem 12.6.2 (Deligne). The Hodge filtration on Hi(U,C) is strict, i.e., the maps

Hi+1(0→Ω p
Y (logX)→Ω p+1

Y (logX)→ ···)→Hi+1(Ω •
Y (logX))

are injective. In particular, there is a (noncanonical) decomposition

Hi(U,C)∼=
⊕

p+q=i

Hq(Y,Ω p
Y (logX)).

Proof. By Corollary 12.2.3, it is enough to prove that

dimHi(U) = ∑
p+q=i

dimHq(Y,Ω p
Y (logX)).

From (12.6.4) and (12.6.5), we get

dimHq(ΩY (logX)) = dimker[Hq(Ω p−1
X )→ Hq+1(Ω p

Y )]

+ dimim[Hq−1(Ω p−1
X )→ Hq(Ω p

Y )]

and

dimHi(U) = dimker[Hi−1(X)→ Hi+1(Y )]+ dimim[Hi−2(X)→ Hi(Y )].

Combining the last equation with Corollaries 12.2.5 and 12.2.10 shows that

dimHi(U) =∑dimker[Hq(Ω p−1
X )→ Hq+1(Ω p

Y )]

+∑dimim[Hq−1(Ω p−1
X )→ Hq(Ω p

Y )]

=∑dimHq(Y,Ω p
Y (logX)). 	


Corollary 12.6.3 (Weak Kodaira vanishing). If X is a smooth divisor such that
U = X −Y is affine, then Hi(Y,Ω n

Y ⊗OY (X)) = 0 for i > 0.

Proof. By Theorem 12.6.2 and Corollary 12.5.4,

dimHi(Y,Ω n
Y (logX))≤ dimHi+n(U,C) = 0
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when i > 0. A direct calculation shows that

Ω n
Y (logX) =Ω n

Y (X)∼=Ω n
Y ⊗OY (X). 	


Here is a more useful form.

Corollary 12.6.4 (Kodaira vanishing). If L is an ample line bundle, then

Hi(Y,Ω n
Y ⊗L) = 0

for i > 0.

Proof. Here is the outline. By assumption, L⊗m = OY (1) for some m > 0.
By Bertini’s theorem, we can choose a hyperplane H ⊂ Pn such that X = Y ∩H
is smooth. Note that O(X)∼= L⊗m and Y −X is affine. So when m = 1, we can apply
the previous corollary. In general, one can construct a nonsingular cover π : Y ′ → Y
branched over X , which locally is given by ym = f , where f = 0 is the local equation
for X . A precise construction can be found in [77, vol. I, Proposition 4.1.6], along
with the proof of the following properties:

1. The set-theoretic preimage X ′ = π−1X is again smooth,
2. L′ = π∗L has a smooth section vanishing along X ′ without multiplicity, or to be

more precise, O(X ′)∼= L′.
3. The cohomology Hi(Y,Ω n

Y ⊗L) injects into Hi(Y ′,Ω n
Y ′ ⊗L′).

The last property follows from [77, Lemma 4.1.14] plus Serre duality
[60, Chapter III, Corollary 7.7]. Thus the result follows from the previous corollary
applied to (Y ′,X ′). 	

Remark 12.6.5. Kodaira proved a slightly different statement, where ampleness was
replaced by positivity in a differential-geometric sense (cf. [49, Chapter 1§2]). This
form was used in the proof of the Kodaira embedding theorem, Theorem 10.1.11.
The embedding theorem then implies that positivity and ampleness are, a posteriori,
equivalent conditions for line bundles.

Deligne [24] proved (a refinement of) Theorem 12.6.2 en route to constructing a
mixed Hodge structure on cohomology. This is roughly something given by gluing
pure Hodge structures of different weights together. More formally, a mixed Hodge
structure is given by a lattice H with two filtrations W and F defined over Q and
C respectively so that F induces a pure rational Hodge structure of weight k on
Wk/Wk−1 for each k. In the case of Hi(U), where U is the complement of a smooth
divisor in a smooth projective variety X , we have

WkHi(U,Q) =

⎧⎪⎨⎪⎩
0 if k < i,

imHi(Y,Q) if k = i,

Hi(U,Q) otherwise.

A fairly detailed introduction to mixed Hodge theory can be found in the book by
Peters and Steenbrink [95]. Since we can barely scratch the surface, we will be
content to give a simple example to indicate the power of these ideas.
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Example 12.6.6. Given an elliptic curve E , we have seen that H1(E) with its Hodge
structure determines E . Now remove the origin 0 and a nonzero point p and consider
the mixed Hodge structure on H1(E − {0, p}). This determines the complement
E−{0, p} by the work of Carslon [16].

Exercises

12.6.7. Work out (12.6.4) and (12.6.5) explicitly when Y = P2 and X is a smooth
curve of degree d.

12.6.8. Show that forms in H0(Y,Ω p
Y (logX)) are closed. Is this necessarily true for

forms in H0(Y,Ω p
Y (kX))?

12.6.9. Verify the isomorphism Ω n
Y (logX) ∼= Ω n

Y ⊗OY (X) used in the proof of
Corollary 12.6.3.



Chapter 13
Topology of Families

In this chapter, we make a brief detour and study some aspects of the topology of
families of algebraic varieties that will be used later on. As we will see, a family of
smooth projective varieties is locally trivial topologically; in particular, all the fibers
are diffeomorphic. However, the global topology may be nontrivial. An important
measure of the nontriviality is the monodromy, which roughly tells us what happens
to cycles when they are transported around a loop. This can also be understood using
sheaf theory.

13.1 Topology of Families of Elliptic Curves

We briefly encountered elliptic surfaces earlier. Let us analyze the topology of a
couple of examples in some detail. We start with a local example over a disk. Recall
from Section 1.4 that the curve Eτ = C/Z+Zτ is given by the Weierstrass equation

y2 = 4x3−g2(τ)x−g3(τ), (13.1.1)

where the coefficients gk(τ) are constant multiples of the Eisenstein series

∑
(m,n) �=(0,0)

1
(m+ nτ)2k = 2

∞

∑
1

1
m2k + 2

∞

∑
n=1

∞

∑
m=−∞

1
(m+ nτ)2k .

Since these are invariant under τ �→ τ+1, they can be expanded in a Fourier series,
or equivalently in a Laurent series in q = exp(−2π iτ). The explicit formulas, which
can be found in [106, Chapter 1, §7], show that the gk(τ) are holomorphic functions
γk(q).

Example 13.1.1. Therefore, we have a surface given by

E = {([x,y,z],q) ∈ P2×D | zy2 = 4x3− z2γ2(q)x− z3γ3(q)},

which maps to the unit disk D via projection, denoted by π .

DOI 10.1007/978-1-4614-1809-2_13, © Springer Science+Business Media, LLC 2012
223, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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The fiber over q �= 0 is just the elliptic curve Eτ for any (normalized) logarithm τ
of q. The fiber over q = 0 is a nodal cubic. Topologically, this is obtained by gluing
together two points on a sphere.

In order to get a better feeling for this space, let us give a more direct construction
of E ∗ = E − π−1(0). Let Γ be the semidirect product Z2 � Z, where k ∈ Z acts
by the matrix

(
1 k
0 1

)
. More explicitly, the elements are triples (m,n,k) ∈ Z3 with

multiplication

(m,n,k) · (m′,n′,k′) = (m+ m′+ kn′,n + n′,k + k′).

Let Γ act on the product C×H of the complex and upper half-planes by

(m,n,k) : (z, t) �→ (z+ m+ nτ,τ+ k).

The quotient gives back the same family

E ∗ → H/Z
τ→q∼= D∗

over the punctured disk. As Riemann surfaces, the fibers E ∗ → D∗ are all non-
isomorphic. But the C∞ picture is much simpler. All the fibers are diffeomorphic
to the same torus, which we will call T . In fact, E ∗ → D∗ is a locally trivial fiber
bundle with T as fiber. In other words, it is locally diffeomorphic with a product of
T with D∗.

Let us analyze what happens in the limit as τ → ∞ or equivalently as q → 0.
The fiber Eτ is isomorphic to C/(τ−1Z + Z). Let a(τ) be the image in Eτ of the
line segment joining 0 to 1, and let b(τ) be the image of the segment joining 0 to
τ−1. If we orient these curves so that a ·b = 1, they form a basis of H1(Eτ ,Z). The
curve b(t) is called a vanishing cycle, since it shrinks to the node as t → 0; see
Figure 13.1.

In the C∞ category, the bundle E ∗ is locally trivial, but it is not globally trivial.
Its restriction to the circle S = {t | |t| = ε} can be constructed directly by taking
T × [0,1] and gluing the ends T ×{0}∼= T ×{1} using a so-called Dehn twist about
the vanishing cycle b = b(t). This is a diffeomorphism that is the identity outside a
neighborhood U of b and twists “once around” along b (see Figures 13.2 and 13.3;
U is the shaded region).

The twist induces an automorphism μ : H1(T )→H1(T ) called monodromy. It is
given explicitly by the Picard–Lefschetz formula:

μ(a) = a + b, μ(b) = b.

Let us study a global example considered earlier.

Example 13.1.2. The family of elliptic curves in Legendre form is

E = {([x,y,z],t) ∈ P2×C−{0,1} | y2z− x(x− z)(x− tz) = 0}→C.
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Fig. 13.1 Vanishing cycle.

Fig. 13.2 T foliated by meridians.
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Fig. 13.3 T foliated by images of meridians under a Dehn twist.

We can complete it to a projective surface, and then resolve singularities to obtain
a nonsingular surface Ē → P1. Although we will mostly be interested in the original
family E . We claim that this is a fiber bundle, topologically. This is easy enough to
check directly, but at this point we may as well state a much more general result.

First, let us start with some precise definitions. A C∞ map f : X → Y of mani-
folds is called a fiber bundle if it is locally a product of Y with another manifold
F (called the fiber). This means that there exist an open cover {Ui} and diffeo-
morphisms f−1Ui

∼= Ui × F compatible with the projections. If X ∼= Y × F , the
bundle is called trivial. Bundles over S1 can be constructed as follows. Let F be
a manifold with a diffeomorphism φ : F → F . Then glue F ×{0} in F × [0,1] to
F ×{1} by identifying (x,0) to (φ(x),1). This includes the familiar example of
the Möbius strip, where F = R and φ is multiplication by −1. If the induced map
φ∗ : H∗(F)→ H∗(F), called the monodromy transformation, is nontrivial, then the
fiber bundle is nontrivial. For more general bundles, f : X → Y monodromy can be
defined by restricting to embedded circles S1 ⊂Y . We will give a more careful treat-
ment in the next section. A C∞ map f : X → Y is called a submersion if the map on
tangent spaces is surjective. The fibers of such a map are submanifolds. A continu-
ous map of topological spaces is called proper if the preimage of any compact set is
compact.

Theorem 13.1.3 (Ehresmann). Let f : X → Y be a proper submersion of C∞

connected manifolds. Then f is a C∞ fiber bundle; in particular, the fibers are
diffeomorphic.
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Proof. We give a proof when 0 ∈ Y ⊂ R. This suffices to show that the fibers are
diffe0omorphic in the general case, because any two points can be connected by a
smooth path. A complete proof, in general, can be found in [89, 4.1].

The strategy is simple. We choose a nowhere-zero vector field v “normal” to the
fibers, and the flow along it from f−1(0) to the neighboring fibers. To obtain the
vector field, choose a Riemannian metric on X . The gradient v = ∇ f is defined
as the vector field dual to d f under the inner product associated to the metric.
By assumption, d f , and therefore v, is nowhere zero. The existence and unique-
ness theorem for ordinary differential equations [110, Chapter 5, Theorem 5] allows
us to define a neighborhood U of 0, ε > 0, and a family of diffeomorphisms
φt : f−1(U)→ f−1(U) parameterized by |t| < ε . This is given by flowing along v.
In other words, φt (p) = γ(t), where γ : (−ε,ε)→ X is a C∞ path passing through p
at time 0 with velocity v(γ(s)) for all s. Then the map (−ε,ε)× f−1(0)→ X , given
by (t, p) �→ φt(p), gives the desired local trivialization.

There is one subtlety to the story that we skipped over, and that is the role of
properness. The existence and uniqueness theorem quoted above is only a local
statement. So in general, φt would be defined locally near a given p ∈ f−1(0) with
constants εp. But by properness, we can assume that the covering by domains of
the local φt ’s is finite and then choose ε = min(εp). The uniqueness guarantees that
these local flows patch. 	

Example 13.1.4. The projection R2 −{0} → R shows that the result is false for
nonproper submersions,

Let us return to Example 13.1.2 and see how to calculate the monodromy of
going around 0 and 1. The fibers over these points are no longer nodal curves, so
the Picard–Lefschetz formula will not apply. However, it is possible to calculate this
from a different point of view. Recall that H/Γ (2) = P1−{0,1,∞}. E can also be
realized as a quotient of C×H by an action of the semidirect product Z2 �Γ (2) as
above. TheΓ (2) action extends to H∗ = H∪Q∪{∞}. We can choose a fundamental
domain for Γ (2) in H∗ as depicted in Figure 13.4; the three cusps are 0,1,∞.

The subgroup of Γ (2) that fixes ∞ is generated by(
1 2
0 1

)
,

and it follows easily that this is the monodromy matrix for it. We will call Ē the
elliptic modular surface of level two.

Exercises

13.1.5. Calculate the monodromy matrices for the remaining cusps for Γ (2) in
Example 13.1.2.

13.1.6. Construct a family of elliptic curves over D∗ with −I as its monodromy.
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Fig. 13.4 Fundamental domain of Γ (2).

13.2 Local Systems

In this section, we give a more formal treatment of monodromy. This notion is
implicit in the usual proof that

√
z is multivalued: analytically continuing this around

a loop results in −√z. We want to extract the essence of this idea and extend it.

Definition 13.2.1. A sheaf F on a topological space X is locally constant if there
exists an open cover {Ui} such that F |Ui is constant.

Here is a classical example of where this comes up:

Example 13.2.2. Let A be an n× n matrix of holomorphic functions defined on an
open set X ⊂ C. Then the sheaf of solutions of the differential equation

S (U) = { f ∈ O(U)n | f ′ = A f}

is locally constant, because standard existence and uniqueness arguments show that
F |D ∼= Cn

D over a disk.

To see that this is generally not constant, take X = C∗, n = 1, and A = 1
2z . Any

global solution is zero, since otherwise it would be a multiple of the multivalued
function

√
z. As a first step we want to extend the language of “analytic continua-

tion” to locally constant sheaves. Let X be a topological space. A path from x ∈ X
to y ∈ X is a continuous map γ : [0,1] → X such that γ(0) = x and γ(1) = y. Two
paths γ,η are homotopic if there is a continuous map Γ : [0,1]× [0,1]→ X such that
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γ(t) = Γ (t,0), η(t) = Γ (t,1), Γ (0,s) = x, and Γ (1,s) = y. This is an equivalence
relation. We can compose paths: If γ is a path from x to y and η is a path from y to
z, then γ ·η is the path given by following one by the other at twice the speed. More
formally,

γ ·η(t) =

{
γ(2t) if t ≤ 1/2,

η(2t−1) if t > 1/2.

This operation is compatible with homotopy in the obvious sense, and the induced
operation on homotopy classes is associative. We can define a categoryΠ(X) whose
objects are points of X and whose morphisms are homotopy classes of paths. This
makesΠ(X) into a groupoid, which means that every morphism is an isomorphism.
In other words, every (homotopy class of a) path has an inverse. This is not a group,
because it is not possible to compose any two paths. To get around this, we can
consider loops, i.e., paths that start and end at the same place. Let π1(X ,x) be
the set of homotopy classes of loops based (starting and ending) at x. This is just
HomΠ(X)(x,x), and as such it inherits a composition law that makes it a group,
called the fundamental group of (X ,x). We summarize the standard properties that
can be found in almost any algebraic topology textbook, e.g., [61, 108]:

1. π1 is a functor on the category of path-connected spaces with base point and
base-point-preserving continuous maps.

2. If X is path connected, then π1(X ,x) ∼= π1(X ,y) (consequently, we usually sup-
press the base point).

3. Two homotopy equivalent path-connected spaces have isomorphic fundamental
groups.

4. Van Kampen’s theorem: If X is a path-connected simplicial complex that is the
union of two subcomplexes X1∪X2, then π1(X) is the free product of π1(X1) and
π1(X2) amalgamated along the image of π1(X1∪X2).

5. If X is a connected locally path-connected space, then it has a universal cover
π : X̃ → X . π1(X) is isomorphic to the group of deck transformations, i.e., self-
homeomorphisms of X̃ that commute with π .

This already suffices to calculate the examples of interest to us. From item 5
above, we see that the fundamental group of the circle R/Z is Z. The complement
in C of a set S of k points is homotopic to a wedge of k circles. Therefore π1(C−S)
is a free group on k generators.

Let X be a topological space. A local system of abelian groups is a functor F :
Π(X)→ Ab. A local system F gives rise to a π1(X ,x)-module, i.e., abelian group
F(x) with a π1(X ,x) action. We define a sheaf F as follows:

F (U)=
{

f :U →
⋃
x

F(x) | f (x)∈F(x) and ∀γ ∈Π(U), f (γ(1))=F(γ)( f (γ(0)))
}

.

If every point x ∈ X has a neighborhood Ux with trivial fundamental group (i.e., X
is locally simply connected), then the restrictions F |Ux are constant. Therefore F
is locally constant.
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Theorem 13.2.3. Let X be a path-connected locally simply connected topological
space. There is an equivalence of categories between

(1) The category of π1(X)-modules.
(2) The category of local systems and natural transformations.
(3) The full subcategory Ab(X) of locally constant sheaves on X.

Proof. See [68, Chapter IV, §9], [108, p. 360], or the exercises. 	

In view of this theorem, we will treat local systems and locally constant sheaves

as the same.
Let f : X → Y be a fiber bundle. We are going to construct a local system that

takes y to Hi(Xy,Z). Given a path γ : [0,1] → Y joining y0 and y1, the pullback
γ∗X = {(x, t) | f (x) = γ(t)} will be a trivial bundle over [0,1]. Therefore γ∗X will
deformation retract onto both Xy0 and Xy1 , and so we have isomorphisms

Hi(Xy0)
∼← Hi(γ∗X) ∼→ Hi(Xy1).

The map Hi(Xy0) → Hi(Xy1) can be seen to depend only on the homotopy class
of the path. Thus we have a local system. When y0 = y1, this is the monodromy
transformation considered earlier. The corresponding locally constant sheaf will be
described in the next section.

Exercises

13.2.4. For a path-connected space, show that Π(X) and π1(X ,x) (viewed as a
groupoid) are equivalent as categories. Deduce the equivalence of (1) and (2) in
Theorem 13.2.3.

13.2.5. Given a locally constant sheaf F , show that F is isomorphic to the sheaf
associated to a local system, and that this local system is determined up to
isomorphism.

13.2.6. Let V be a holomorphic vector bundle on a Riemann surface X . Define a
connection to be a C-linear morphism ∇ : V →Ω1

X ⊗V such that ∇( f v) = f∇(v)+
d f ⊗V . Show that ker(∇) is a locally constant sheaf. (Hint: check that locally it is
the same as the sheaf in Example 13.2.2.)

13.2.7. Let F be a locally constant sheaf of finite-dimensional C-vector spaces
on a Riemann surface X . Construct a connection ∇ on V = OX ⊗C F such that
ker(∇) = F .

13.3 Higher Direct Images*

Given a product F ×Y , which we can view as a trivial bundle over Y , the coho-
mology is the tensor product of the cohomology of F and Y by the Künneth formula



13.3 Higher Direct Images* 231

(Theorem 5.3.6). For general fiber bundles, the story is more complicated. Let us
start with the simplest case of a fiber bundle over the circle. Here we see that
monodromy enters in a fundamental way.

Theorem 13.3.1 (Wang sequence). Let X → S1 be a fiber bundle with fiber F and
monodromy μ . Then there is an exact sequence

· · · →Hi(X ,Q)→Hi(F,Q)
1−μ−→Hi(F,Q)→ Hi+1(X ,Q)→ ··· .

Proof. The sequence is constructed in [108, Chapter 8,§5]. But in order to see that
the middle map is as claimed, it is better to do this explicitly. To make the job
easier, we will make free use of standard properties of relative homology [108].
Let X̃ = F × [0,1]. Then we can identify X = X̃/ ∼, where ∼ is the equivalence
relation gluing the fibers X̃0 = F×{0} and X̃1 = F×{1} by the twist that determines
monodromy. Although F and the fibers X̃t and Xt of X → S1 are all homeomorphic,
it is useful to distinguish between them until the end. At that point, we can use the
projections F ← X̃ → X to identify H∗(F) = H∗(X̃t) = H∗(X0) and μ : H∗(X1) ∼=
H∗(F). Also X̃ is homotopy equivalent to F , so it has the same homology as F .
By excision, we have an isomorphism of relative homology

H∗(X ,X0)∼= H∗(X̃ , X̃0∪ X̃1). (13.3.1)

The relative groups H∗(X̃ , X̃0 ∪ X̃1) are built using simplicial (or singular) chains
with boundary in X̃0∪ X̃1. These fit into a long exact sequence [108, Chapter 4, §5]

· · · id⊕id−→ Hi+1(X̃)→ Hi+1(X̃ , X̃0∪ X̃1)
∂→ Hi(X̃0)⊕Hi(X̃1)

id⊕id−→ Hi(X̃)→ ··· .
(13.3.2)

Since the maps labeled id⊕ id are surjective, we can truncate the sequence. The
map ∂ is the boundary operator. Since the boundary components F0,F1 have oppo-
site orientations, the signs of ∂γ on these components are opposite. Thus (13.3.2)
reduces to

Hi+1(X̃ , X̃0∪ X̃1) = {(α,−α) | α ∈Hi(F)} ∼= Hi(F). (13.3.3)

Now consider the exact sequence

· · · →Hi+1(X)→Hi+1(X ,X0)
∂→ Hi(X0)→ Hi(X)→ ··· . (13.3.4)

The isomorphisms (13.3.1) and (13.3.3) allows us to identify ∂ with

1− μ : Hi(X0)→ Hi(X0).

So we have obtained the Wang sequence in homology

· · · →Hi+1(X)→ Hi(F)
1−μ−→ Hi(F)→ Hi(X)→ ··· .

Dualizing yields the sequence claimed in the theorem. �
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Corollary 13.3.2. The cohomology of X is isomorphic to the cohomology of the
product F ×S1 if the monodromy is trivial.

Corollary 13.3.3. If X → Y is a fiber bundle over a connected space, the image of
the restriction of cohomology lies in the monodromy invariant part,

im[Hi(X ,Q)→ Hi(Xy,Q)]⊂ Hi(Xy,Q)π1(Y,y).

Proof. By restricting to loops in Y , this can be reduced to the case of Y = S1, where
it follows from the Wang sequence. 	


The last corollary implies that the cohomology of a fiber bundle cannot look
like that of a product unless the monodromy is trivial. Over more general bases,
monodromy is not the only complication.

Example 13.3.4. Let S3 ⊂ C2 be the unit sphere. This maps to P1
C = S2 by sending

v to [v]. The map S3 → S2 is a fiber bundle, with fiber S1, called the Hopf fibration.
There is no monodromy because S2 is simply connected. We have H2(S3) = 0, but
H2(S1×S2) �= 0, so they are not the same.

This example shows that there may be “higher twists” that affect cohomology.
To explain this properly, we return to general sheaf theory and develop the necessary
tools. Let f : X → Y be a continuous map and F ∈ Ab(X) a sheaf. We can define
the higher direct images by imitating the definition of Hi(X ,F ) in Section 4.2:

R0 f∗F = f∗F ,

R1 f∗F = coker[ f∗G(F )→ f∗C1(F )],

Rn+1 f∗F = R1 f∗Cn(F ).

Note that when Y is a point, R f i∗F is just Hi(X ,F ) viewed as a sheaf on it. We have
an analogue of Theorem 4.2.3.

Theorem 13.3.5. Given an exact sequence of sheaves

0→A →B → C → 0,

there is a long exact sequence of sheaves

0→ R0 f∗A → R0 f∗B → R0 f∗C → R1 f∗A → ··· .

There is an alternative description that is a bit more convenient.

Lemma 13.3.6. If f : X →Y is a continuous map, and F ∈Ab(X), then Ri f∗F (U)
is the sheafification of the presheaf U �→Hi(U,F ).

Proof. Let R i denote the presheaf U �→ Hi(U,F ). For i = 0, we have R0 = f∗F
by definition of f∗. By our original construction of H1(U,F ), we have an exact
sequence

f∗G(F )(U)→ f∗C1(F )(U)→R1(U)→ 0.
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This shows that R1 is the cokernel f∗G(F ) → f∗C1(F ) in the category of
presheaves. Hence (R1)+ = R1 f∗F . The rest follows by induction. 	


Each element of Hi(X ,F ) determines a global section of the presheaf R i and
hence of the sheaf Ri f∗F . This map Hi(X ,F )→ H0(X ,Ri f∗F ) is often called an
edge homomorphism.

Let us now assume that f : X → Y is a fiber bundle of triangulable spaces. Then
choosing a contractible neighborhood U of y, we see that Hi(U,Z) ∼= Hi(Xy,Z).
Since such neighborhoods are cofinal, it follows that Ri f∗Z is locally constant.
This coincides with the sheaf associated to the local system Hi(Xy,Z) constructed
in the previous section. The global sections of H0(Y,Ri f∗Z) can be identified
with the space Hi(Xy,Z)π1(Y,y) of cohomology classes of the fiber invariant under
monodromy. We can construct elements of this space using the edge homomor-
phism, which corresponds to restriction

Hi(X)→ Hi(Xy)π1(Y,y) ⊆ Hi(Xy).

The importance of the higher direct images is that they provide a mechanism for
computing the cohomology of X in terms of data on Y . More precisely, construct
G•(F ) as in Section 12.4. Then as we saw that Γ (G•(F )) is a complex whose
cohomology groups are exactly H∗(X ,F ). We can factor this construction through
Y , by considering the complex of sheaves f∗G•(F ) on Y . We will denote this by
R f∗F even though this is not technically quite correct. (R f∗F is really the corre-
sponding object in the derived category, whose definition can be found in [44, 118].)
The interesting features of this complex can be summarized by the following:

Proposition 13.3.7.

(1) The ith cohomology sheaf H i(R f∗F ) is isomorphic to Ri f∗F .
(2) Hi(R f∗F )∼= Hi(X ,F ).

To make the relationship between R f∗F and Ri f∗F clearer, let us use the trun-
cation operators introduced in §12.4. From Lemma 12.4.2, we obtain the following
result:

Lemma 13.3.8. The sequence

0→ τ≤q−1R f∗F → τ≤qR f∗F → Rq f∗F [−q]→ 0 (13.3.5)

is exact for each q.

From here it is a straightforward matter to construct the Leray spectral sequence

E pq
2 = H p(Y,Rq f∗F )⇒ H p+q(X ,F ).

We would rather not get into this, but the exercises give some further hints. The
spectral sequence has standard consequences that can deduced directly.
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Proposition 13.3.9. If F is a sheaf of vector spaces over a field such that
∑dimH p(Y,Rq f∗F ) < ∞, then

dimHi(X ,F )≤ ∑
p+q=i

dimH p(Y,Rq f∗F )

and

∑
i

dim(−1)iHi(X ,F ) =∑
p,q

(−1)p+q dimH p(Y,Rq f∗F ).

Proof. This follows from Lemma 13.3.8 an induction. 	

Corollary 13.3.10. If X →Y is a fiber bundle induced from a map of finite simplicial
complexes, then

dimHi(X ,Q)≤ ∑
p+q=i

dimH p(Y,Rq f∗Q). (13.3.6)

If, moreover, the monodromy acts trivially on the cohomology of the fibers, then

dimHi(X ,Q)≤ ∑
p+q=i

dimH p(Y,Q)⊗Hq(Xy,Q). (13.3.7)

Example 13.3.4 shows that these inequalities may be strict, even when there is
no monodromy.

Exercises

13.3.11. Prove Theorem 13.3.5.

13.3.12. Complete the proof of Proposition 13.3.9. (See Corollary 12.4.4 for some
hints.)

13.3.13. Show that equality holds in Proposition 13.3.9 if and only if τ≤• is strict.

13.3.14. Let Rq = Rq f∗F and R = R f∗F . Define the map d2 : H p(Y,Rq) →
H p+2(Y,Rq−1) as the composition of the connecting map associated to (13.3.5), and
the map H∗(τ≤q−1R)→H∗(Rq−1[−q + 1]). This is the first step in the construction
of the Leray spectral sequence.

(a) Show that d2 vanishes if τ≤• is strict. Therefore this gives an obstruction to
equality in Proposition 13.3.9 by the previous exercise.

(b) Calculate d2 in Example 13.3.4 and show that it is nonzero.

In fact, strictness is equivalent to the vanishing of a countable number of obstruc-
tions d2,d3, . . . (compare Exercise 12.2.14).
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13.3.15.

(a) A locally constant sheaf L of vector spaces on S1 is determined by the vector
space V = L0 and the monodromy operator μ : V →V . Using a Čech complex,
show that

Hi(S1,L) ∼=

⎧⎪⎪⎨⎪⎪⎩
ker[V

1−μ−→V ] if i = 0,

coker[V
1−μ−→V ] if i = 1,

0 otherwise.

(b) If f : X → S1 is a fiber bundle, show that there are exact sequences

0→ H1(Rq−1 f∗Q)→Hq(X ,Q)→ H0(Rq f∗Q)→ 0.

(c) Use this to construct the Wang sequence.

13.4 First Betti Number of a Fibered Variety*

We will return to geometry, and use the previous ideas to compute the first Betti
number of an elliptic surface. Suppose that f : X → C is a morphism of a smooth
projective variety onto a smooth projective curve. Assume that f has connected
fibers. Let S ⊂ C be the set of points for which the fibers are singular, and let U
be its complement. The map f−1U →U is a submersion and hence a fiber bundle.
We have a monodromy representation of π1(U) on the cohomology of the fiber.

Theorem 13.4.1. b1(C)≤ b1(X)≤ b1(C)+ dimH1(Xy,Q)π1(U).

The proof will be carried out in a series of steps. A (reduced) divisor in a complex
manifold is a subset that is locally the zero set of a holomorphic function.

Lemma 13.4.2. Let S ⊂W be a divisor in a complex manifold. Then H1(W,Q)→
H1(W −S,Q) is injective.

Proof. We prove this under the extra assumption that W has finite topological type.
Then using Mayer–Vietoris and induction, we can reduce to the case that W is a
ball, where the lemma is trivially true, since H1(W ) = 0. 	


Let j : U → C denote the inclusion, and let F = R1 f∗Q. The restriction j∗F
is locally constant, but F need not be. Nevertheless, we can still control it. There
is a canonical morphism F → j∗ j∗F induced by the restriction maps F (V ) →
F (V ∩U) as V ranges over open subsets of C.

Corollary 13.4.3. F → j∗ j∗F is a monomorphism.

Proof. This follows from the injectivity of the restriction maps H1(V,Q) →
H1(V ∩U,Q). 	
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We can now prove the theorem.

Proof. Proposition 13.3.9 gives

b1(X)≤ dimH1(C, f∗Q)+ dimH0(C,R1 f∗Q).

Since the fibers of f are connected, f∗Q is easily seen to be Q. So the dimension of
its first cohomology is just b1(C). The previous corollary implies that

H0(C,R1 f∗Q)→H0(C, j∗ j∗F ) = H0(U,R1 f∗Q) = H1(Xy,Q)π1(U)

is injective. This proves the upper inequality

b1(X)≤ b1(C)+ dimH1(Xy,Q)π1(U).

For the lower inequality, note that a nonzero holomorphic 1-form on C will pull
back to a nonzero form on X . Thus h10(C)≤ h10(X). 	

Corollary 13.4.4. If E → C is an elliptic surface such that its monodromy is non-
trivial, then b1(E ) = b1(C).

Proof. By assumption, dimH1(Ey)π1(U) ≤ 1. Therefore b1(C)≤ b1(X)≤ b1(C)+1.
Since b1(X) is even, this forces b1(E ) = b1(C). 	


Exercises

13.4.5. Let G be a finite group of automorphisms of a curve C̃. Suppose that G acts
on a smooth projective variety F and therefore on C̃×F by the diagonal action.
Let f : X = (C̃×F)/G →C = C̃/G be the projection. Check that b1(X) = b1(C)+
dimH1(Xy,Q)π1(C).



Chapter 14
The Hard Lefschetz Theorem

The pioneering study of the topology of algebraic varieties was carried out by
Lefschetz in his monograph [79] published in 1924. He suggested working induc-
tively, by comparing the homology of a smooth projective variety with its inter-
section with a single hyperplane and eventually a suitable family of them. There
were two basic results, nowadays called the weak and hard Lefschetz theorems.
In this chapter, we discuss both of these but focus on the latter. In one of its incar-
nations, it gives the structure of cohomology under cup product with a hyperplane
class. The first correct proof of this was due to Hodge using harmonic forms, and
we present a version of this. The hard Lefschetz theorem has a number of impor-
tant consequences for the topology of projective, and more generally Kähler, mani-
folds, and we will discuss a number of these. We also want to interpret this using
Lefschetz’s original more geometric point of view, which, remarkably, played a role
in Deligne’s proof of the Weil conjectures [25] and in his subsequent arithmetic
proof of hard Lefschetz [27].

14.1 Hard Lefschetz

Let X be an n-dimensional compact Kähler manifold. Recall that L was defined by
wedging (or more correctly cupping) with the Kähler class [ω ]. The space

Pi(X) = ker[Ln−i+1 : Hi(X ,C)→ H2n−i+2(X ,C)]

is called the primitive cohomology.

Theorem 14.1.1 (Hard Lefschetz). For every i,

Li : Hn−i(X ,C)→ Hn+i(X ,C)

DOI 10.1007/978-1-4614-1809-2_14, © Springer Science+Business Media, LLC 2012
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is an isomorphism. For every i,

Hi(X ,C) =
[i/2]⊕
j=0

LjPi−2 j(X).

We indicate the proof in the next section. As a simple corollary, we find that
the Betti numbers satisfy bn−i = bn+i. Of course, this is nothing new, since this
also follows from Poincaré duality. However, it is easy to extract some less trivial
“numerology.”

Corollary 14.1.2. The Betti numbers satisfy bi−2 ≤ bi for i≤ n/2.

Proof. The theorem implies that the map L : Hi−2(X)→ Hi(X) is injective. 	

Suppose that X = Pn with the Fubini–Study metric of Example 10.1.5. The

Kähler class ω is equal to c1(O(1)). The class c1(O(1))i �= 0 is the fundamental
class of a codimension-i linear space (see Sections 7.2 and 7.5), so it is nonzero.
Since all the cohomology groups of Pn are either 0- or 1-dimensional, this implies
the hard Lefschetz theorem for Pn. Things get much more interesting when X ⊂ Pn

is a nonsingular subvariety with induced metric. By Poincaré duality and the
previous remarks, we get a statement closer to what Lefschetz would have stated,
namely, that any element of Hn−i(X ,Q) is homologous to the intersection of a class
in Hn+i(X ,Q) with a codimension-i subspace.

The Hodge index theorem for surfaces generalizes to a set of inequalities, called
the Hodge–Riemann bilinear relations, on an n-dimensional compact Kähler mani-
fold X . Consider the pairing

Hi(X ,C)×Hi(X ,C)→ C

defined by

Q(α,β ) = (−1)i(i−1)/2
∫

X
α ∧β ∧ωn−i.

Theorem 14.1.3. Hi(X) =
⊕

H pq(X) is an orthogonal decomposition with respect
to Q. If α ∈ Pp+q(X)∩H pq(X) is nonzero, then

√−1
p−q

Q(α, ᾱ) > 0.

Proof. See [49, p. 123]. 	

We define the Weil operator C : Hi(X) → Hi(X), which acts on H pq(X) by

multiplication by
√−1

p−q
.

Corollary 14.1.4. The form Q̃(α,β ) = Q(α,Cβ̄ ) on Pi(X) is positive definite
Hermitian.
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Exercises

14.1.5. When X is compact Kähler, show that Q gives a nondegenerate skew-
symmetric pairing on Pi(X) with i odd. Use this to give another proof that bi(X)
is even.

14.1.6. Determine which products of spheres Sn×Sm can admit Kähler structures.

14.2 Proof of Hard Lefschetz

Let X be as in the previous section. We defined the operators L,Λ acting on forms
E •(X) in Section 10.1. We define a new operator H that acts by multiplication by
n− i on E i(X). Then we have the following additional Kähler identities:

Proposition 14.2.1. The following hold:

(1) [Λ ,L] = H.
(2) [H,L] =−2L.
(3) [H,Λ ] = 2Λ .

Furthermore, these operators commute with Δ .

Proof. See [49, pp. 115, 121]. 	

This proposition plus the following theorem of linear algebra will prove the hard

Lefschetz theorem.

Theorem 14.2.2. Let V be a complex vector space with endomorphisms L,Λ ,H
satisfying the above identities. Then:

(a) H is diagonalizable with integer eigenvalues.
(b) For each a∈ Z, let Va be the space of eigenvectors of H with eigenvalue a. Then

Li induces an isomorphism between Vi and V−i.
(c) If P = ker(Λ), then

V = P⊕LP⊕L2P⊕·· · .
(d) If α ∈ P∩Vi then Li+1α = 0.

We give the main ideas of the proof. Consider the Lie algebra sl2(C) of traceless
2×2 complex matrices. This is a Lie algebra with a basis given by

λ =
(

0 1
0 0

)
, � =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

These matrices satisfy

[λ , �] = h, [h,λ ] = 2λ , [h, �] =−2�.
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So the hypothesis of the theorem is simply that the linear map sl2(C) → End(V )
determined by λ �→Λ , � �→ L, h �→ H, preserves the bracket, or equivalently, that V
is a representation of sl2(C). The theorem can then be deduced from the following
two facts from representation theory of sl2(C) (which can be found in almost any
book on Lie theory, e.g., [43]):

1. Every representation of sl2(C) is a direct sum of irreducible representations.
Irreducibility means that the representation contains no proper nonzero sub-
representations, i.e., subspaces stable under the action of sl2(C).

2. There is a unique irreducible representation of dimension N +1 for each N ≥ 0,
namely SN(C2), where C2 is the standard representation. Let e1 = (1,0)T and
e2 = (0,1)T be the standard basis of C2. Then eN

1 ,eN−1
1 e2, . . . ,eN

2 gives a basis
of SN(C2), and the operators act by

λ (ei
1e j

2) = jei+1
1 e j−1

2 ,

�(ei
1e j

2) = iei−1
1 e j+1

2 ,

h(ei
1e j

2) = (i− j)ei
1e j

2.

It suffices to check the theorem when V = SN(C2). In this case, we see that the
span of ei

1eN−i
2 is precisely the eigenspace V2i−N of h, and all eigenspaces are of this

form. The operators �,λ shift these eigenspaces as pictured:

0 VN
∼= C

�∼= ��
λ

�� VN−2
∼= C

λ∼=
��

�∼= ��
. . .

λ∼=
��

�∼= ��
V−N

∼= C
λ∼=

��
� �� 0

This implies (b). For the remaining properties, we have that P = ker(λ ) is the span
of eN

1 . Thus
V = P⊕ �P⊕ �2P⊕·· · ,

as expected.

Exercises

14.2.3. Using the relations, check that λ (Va) ⊆ Va+2 and �(Va) ⊆ Va−2 for any
representation V .

14.2.4. If V is a representation and v ∈ ker(λ ), show that {v, �v, �2, . . .} spans a
subrepresentation of V . In particular, this spans V if it is irreducible.
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14.3 Weak Lefschetz and Barth’s Theorem

Recall that a hypersurface Y ⊂ X in a projective variety is called ample if there exist
a projective embedding and a hyperplane H such that Y = X ∩H. The version of
the weak Lefschetz theorem, or Lefschetz hyperplane theorem, that we give here
compares their rational cohomologies, although, in fact, a much stronger statement
can be proved using methods from differential topology, namely Morse theory [86].

Theorem 14.3.1 (Weak Lefschetz). Let X be a smooth projective variety with a
smooth ample divisor Y ⊂ X.

(a) Then the restriction map

Hi(X ,Q)→ Hi(Y,Q)

is an isomorphism when i < dimX −1 and an injection when i = dimX −1.
(b) The Gysin map

Hi(Y,Q)→ Hi+2(X ,Q)

is an isomorphism for i > dimX −1 and a surjection when i = dimX −1.

Proof. Observe that (a) and (b) are equivalent by Poincaré duality. So we prove (b).
Also, by the universal coefficient theorem, we can switch to complex coefficients.
Let U = X −Y . Then using the Gysin sequence (12.6.5)

· · · →Hi+1(U,C)→Hi(Y,C)→ Hi+2(X ,C)→ ··· ,

we see that we have to prove Hi+1(U,C) = 0 for i+1 > dimX . Since U is a closed
subset of a projective space minus a hyperplane, it is affine. So the required vanish-
ing follows from Corollary 12.5.4. 	

Lemma 14.3.2. Let ι : Y ↪→ X be an oriented submanifold of a compact oriented
C∞ manifold. Then the following identities hold:

(a) ι∗(β ∪ γ) = ι∗β ∪ ι∗γ .
(b) ι!ι∗β = [Y ]∪β .
(c) ι∗ι!α = ι∗[Y ]∪α .

Proof. The first identity is simply a restatement of the functoriality of the cup
product. The second is usually called the projection formula, and it can be checked
by applying (5.5.2) and (5.6.1) to obtain∫

X
ι!ι∗β ∪ γ =

∫
Y
ι∗β ∪ ι∗γ =

∫
X
[Y ]∪β ∪ γ.

The same argument shows that (b) holds more generally for Y a compact submani-
fold of a noncompact manifold. In this case, i! and [Y ] would take values in H∗

c (X).
We prove (c) with the help of Lemma 5.5.3, which shows that ι!α = τY ∪π∗α

on a tubular neighborhood Y
π← T → X , where τY is the Thom class of T . Since τY

represents [Y ], we get ι∗ι!α = ι∗[Y ]∪α . 	
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Barth proved a variation on the weak Lefschetz theorem that the cohomologies
of Pn and a nonsingular subvariety coincides in low degree. Hartshorne [59] gave a
short elegant proof, which we reproduce here.

Theorem 14.3.3 (Barth). If Y ⊂ Pn is a nonsingular complex projective variety,
then Hi(Pn,Q)→ Hi(Y,Q) is an isomorphism for i≤ 2dimY −n.

Remark 14.3.4. This theorem is of course vacuous unless dimY ≥ n/2. When
dimY = dimX −1, Y is ample, so this is exactly what we get from weak Lefschetz.

Proof. Let P = Pn, m = dimY , and let ι : Y → P denote the inclusion. Let L be
the Lefschetz operators associated to a hyperplane H and to H|Y (it will be clear
from context which is which). Then H2(n−m)(P) is generated by Hn−m. Therefore
[Y ] = d[H]n−m with d �= 0. Consider the diagram

Hi(P) Ln−m
��

ι∗
��

Hi+2(n−m)(P)

ι∗
��

Hi(Y ) Ln−m
��

(1/d)ι!
������������

Hi+2(n−m)(Y )

(14.3.1)

The diagram commutes thanks to the previous lemma.
The map Ln−m : Hi(P)→Hi+2(n−m)(P) is an isomorphism because P = Pn. So it

follows that the restriction ι∗ : Hi(X)→Hi(Y ) is injective. Therefore it is enough to
prove that they have the same dimension. Hard Lefschetz for Y implies that Ln−m :
Hi(Y )→Hi+2(n−m)(Y ) is injective. Therefore the same is true of ι! by (14.3.1). Thus

bi(X)≤ bi(Y )≤ bi+2(n−m)(X) = bi(X). 	


Exercises

14.3.5. Check that the bound in the weak Lefschetz theorem is sharp for dimX ≤ 3.

14.3.6. Show that a product of three curves of positive genus cannot embed into P4

or P5.

14.4 Lefschetz Pencils*

In this section, we explain Lefschetz’s original approach to the hard Lefschetz
theorem. Modern references for this material are [75], [30], and [116]. Given an
n-dimensional smooth projective variety X ⊂ PN , Bertini’s theorem [60] shows that
for “most” hyperplanes H, Y = X∩H is smooth. The weak Lefschetz theorem yields
an isomorphism Hi(X ,Q) ∼= Hi(Y,Q) for i < n− 1. To go beyond this, Lefschetz
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suggested letting H move in a sufficiently nice family Ht , and letting the cycles move
as well. We then have two geometrically defined subspaces of Hn−1(Y ) (which can
be identified with homology). There is the subspace of cycles Van ⊂ Hn−1(Y ) that
vanish as X ∩Ht acquires a singularity, and the subspace Inv⊂ Hn−1(Y ) of cycles
that stay invariant as Ht travels in a loop around such singularities. The original
formulation of the hard Lefschetz theorem amounted to the following statement:

Theorem 14.4.1. Hn−1(Y ) = Inv⊕Van.

Our goal is to explain more precisely what this means, and then outline the proof.
Let P̌N be the dual projective space whose points correspond to hyperplanes of PN .
Choose a general element H ∈ P̌N and let Y = X ∩H. We define

I = im[ι∗ : Hn−1(X ,Q)→ Hn−1(Y,Q)]

and
V = ker[ι! : Hn−1(Y,Q)→Hn+1(X ,Q)],

where ι : Y → X is the inclusion. As we will see below, these will coincide with the
spaces Inv and Van. So as a first step, we establish the following result:

Proposition 14.4.2. Hn−1(Y ) = I⊕V.

Proof. The composition

Hn−1(X)→ Hn−1(Y )→ Hn+1(X)

can be identified with the Lefschetz operator L, which is an isomorphism. Therefore
given ι∗β ∈ I∩V , we get β = L−1ι!(β ) = 0. Furthermore, given α ∈Hn−1(Y ),

α = ι∗L−1ι!(α)+ (α− ι∗L−1ι!(α))

decomposes it into an element of I +V . 	

Let us try to make sense of the constructions indicated above. We can and will

assume that X ⊂ PN is nondegenerate, which means that X does not lie on a hyper-
plane. The dual variety

X̌ = {H ∈ P̌N |H contains a tangent space of X}

parameterizes hyperplanes such that H ∩X is singular.

Proposition 14.4.3. If H ∈ X̌ is a smooth point, then H∩X has exactly one singular
point, which is a node (i.e., the completed local ring of the singularity is isomorphic
to C[[x1, . . . ,xn]]/(x2

1 + · · ·+ x2
n)).

Proof. See [30, Chapter XVII]. 	

A line {Ht}t∈P1 ⊂ P̌N is called a pencil of hyperplanes. Any two hyperplanes of

the pencil will intersect in a common linear subspace called the base locus. A pencil
{Ht} is called a Lefschetz pencil if Ht ∩X has at worst a single node for all t ∈ P1

and if the base locus H0∩H∞ is transverse to X .
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Corollary 14.4.4. The set of Lefschetz pencils forms a nonempty Zariski open set of
the Grassmannian of lines in P̌N.

Proof. A general pencil will automatically satisfy the transversality condition.
Furthermore, a general pencil will be disjoint from the singular set X̌sing, since it
has codimension at least two in P̌N . 	


Given a pencil, we form an incidence variety X̃ = {(x,t) ∈ X × P1 | x ∈ Ht}.
The second projection p gives a map onto P1 whose fibers are intersections Ht ∩X .
There is a finite set S of t ∈ P1 with X̃t = p−1t singular. Let U = P1 − S and fix
t0 ∈U . By Ehresmann’s Theorem 13.1.3, X̃ is a fiber bundle over U . Thus we have
a monodromy representation of π1(U, t0) on the cohomology of the fiber H∗(X̃t0).
We want to make this explicit. It will be convenient to switch back and forth between
homology and cohomology using the Poincaré duality isomorphism Hk(X̃t0 ,Q) ∼=
H2n−2−k(X̃t0 ,Q).

Consider the diagram
X X̃

p

��

π
��

X̃t0

ι

��
ι̃



��������
P1

Choose small disks Δi around each ti ∈ S, and connect these by paths γi to the base
point t0 (Figure 14.1).

Fig. 14.1 Loops.

The space p−1(γi∪Δi) is homotopic to the singular fiber X̃ti = p−1(ti).

Theorem 14.4.5. Let n = dimX. Then

Hk(X̃t0 ,Q)→Hk(p−1(γi∪Δi),Q)

is an isomorphism if k �= n− 1, and it is surjective with a one-dimensional kernel if
k = n−1.
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Proof. Since p−1(γi∪Δi) is homotopic to p−1(Δi), we can assume that t0 is a point
on the boundary of Δi. Let yi ∈ X̃ti be the singular point. We can choose coordinates
about yi such that p is given by z2

1 + z2
2 + · · ·+ z2

n. Pick 0 < ρ < ε " 1, and let

B = {(z1, . . . ,zn) | |z1|2 + |z2|2 + · · ·+ |zn|2 ≤ ε, |z2
1 + z2

2 + · · ·+ z2
n| ≤ ρ}.

We assume, after shrinking Δi if necessary, that Δi is the disk of radius ρ and choose
t0 = ρ . If x = Re(z), y = Im(z), then we can identify

X̃t0 ∩B = {(x,y) ∈Rn×Rn | ||x||2 + ||y||2 ≤ ε, ||x||2−||y||2 = ρ , 〈x,y〉= 0}.

These inequalities imply that ||x|| �= 0 and ||y||2≤ ε−ρ
2 . Therefore (x,y) �→( x

||x|| ,
2y
ε−ρ )

gives a homeomorphism

X̃t0 ∩B∼= {(x,y) ∈Rn×Rn | ||x||2 = 1, ||y||2 ≤ 1, 〈x,y〉= 0}.

The latter space deformation retracts onto the sphere Sn−1 = {(x,0) | ||x|| = 1}.
It follows that Hk(X̃t0 ∩ B) is generated by the fundamental class of Sn−1 when
k = n− 1 and is zero for all other k > 0. By Poincaré duality it follows that Hn−1

c
(X̃t0 ∩B)∼= Hn−1(X̃t0 ∩B) �= 0. Thus we can find a form α with compact support in
X̃t0 ∩B such that ∫

Sn−1
α �= 0.

Therefore the fundamental class δi of Sn−1 in X̃t0 is nonzero.
Let Bo denote the interior of B. To conclude, we need to appeal to a refinement

of Ehresmann’s fibration theorem [75], which will imply that p−1Δi −B0 → Δi is
trivial as a bundle of manifolds with boundary. This implies, by excision [61, 108],
that there is an isomorphism of cohomologies of the pairs

Hk(X̃t0 , X̃t0 ∩B)∼= Hk(p−1Δi,B).

Thus by the exact sequence for a pair we have a commutative diagram with exact
rows:

Hk+1(X̃t0 , X̃t0 ∩B) → Hk(X̃t0 ∩B) → Hk(X̃t0) → Hk(X̃t0 , X̃t0 ∩B)
‖ ↓ ↓ ‖

Hk+1(p−1Δi,B) → Hk(B) = 0 → Hk(p−1Δi) → Hk(p−1Δi,B)

A straightforward diagram chase shows that Hk(X̃t0)→Hk(p−1Δi) is surjective with
kernel spanned by δi when k = n−1 and an isomorphism otherwise. 	


Let δi ∈ Hn−1(X̃t0) be the fundamental class of Sn−1 constructed above. It is
called the vanishing cycle about ti. We can now define Van ⊂ Hn−1(X̃t0 ,Q) to
be the subspace spanned by all of the vanishing cycles δi. The subspace Inv =
Hn−1(X̃t0)

π1(U) will be the space of classes invariant under π1(U). We will need to
describe the monodromy explicitly. This is given by the Picard–Lefschetz formula
(which refines the formula encountered in Section 13.1).
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Theorem 14.4.6 (Picard–Lefschetz). Let μi : Hn−1(X̃t0 ,Q) denote the action of
the loop going once around ti. Then μi(α) = α +(−1)n(n+1)/2〈α,δi〉δi, where 〈,〉
denotes the cup product pairing on Hn−1(X̃t0).

Proof. See [75] or [6, Section 2.4]. 	

Corollary 14.4.7. The orthogonal complement Van⊥ coincides with Inv.

Proof. μi(α) = α if and only if 〈a,δi〉= 0. 	

We now identify Y = X̃t0 , and compare these spaces with the spaces V and I

introduced earlier.

Proposition 14.4.8. V = Van.

Proof. A proof can be found in [75]. We sketch the proof of one inclusion. Utilizing
the Poincaré duality isomorphism Hn−1(Y ) ∼= Hn−1(Y ), as we have been doing,
we note that the Gysin map ι! corresponds to the natural (pushforward) map in
homology Hn−1(Y ) → Hn−1(X). Therefore its kernel can be identified with V .
By Theorem 14.4.5, δi lies in ker[Hn−1(Y )→ Hn−1(p−1(γ ∪Δi))] and therefore in
V . Therefore Van⊂V . 	

Proposition 14.4.9. I = Inv.

Proof. We prove this when n is odd, which implies that 〈,〉 is a nondegenerate
symmetric pairing on Hn−1(Y ). Then by Corollary 14.4.7,

dimInv = dimHn−1(Y )−dimVan.

The image of Hn−1(X ,Q) lies in Inv = Hn−1(X̃t0)
π1(U), since it factors through

Hn−1(X̃ ,Q), and Hn−1(X̃ ,Q) → Hn−1(X̃t0) is the edge homomorphism; see
Section 13.3. Thus it suffices to prove that I and Inv have the same dimension. But
this is a consequence of Propositions 14.4.2 and 14.4.8 and the previous equation:

dim I = dimHn−1(Y )−dimV = dimInv. 	


With the above identifications, Theorem 14.4.1 will follow from Proposi-
tion 14.4.2. We finally state the following for later use.

Proposition 14.4.10. V is an irreducible π1(U)-module, i.e., it has no π1(U)-
submodules other than 0 or V .

Proof. We give a proof modulo the basic fact that any two vanishing cycles are
conjugate up to sign under the action of π1(U) [75, 7.3.5]. Suppose that W ⊂ V is
a π1(U) submodule, and let w ∈W be a nonzero element. We claim that 〈w,δi〉 �= 0
for some i. If not, we would have w ∈ V⊥ = I, which would force it to be zero.
Therefore

μi(w)−w =±〈w,δi〉δi ∈W

implies that W contains δi, and thus all the vanishing cycles by the above fact.
Therefore W = V . 	
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14.5 Cohomology of Smooth Projective Maps*

In this final section, we give some subtle applications of hard Lefschetz. The first,
due to Deligne [23], analyzes the cohomology of a family of smooth projective
varieties. A morphism f : X → Y of algebraic varieties is called projective if it
factors through a projection Y ×PN → Y . We also have an analogue of submer-
sion in algebraic geometry. When X ,Y are nonsingular, the morphism f is smooth if
the induced maps on Zariski tangent spaces are surjective. This definition is really
provisional; a better definition is given later, in Section 18.1. Ehresmann’s theorem
implies that smooth projective maps are C∞ fiber bundles. In general, the cohomo-
logy of a fiber bundle can be very complicated. However, Deligne shows that in the
absence of monodromy the cohomology of a smooth projective map is as simple as
it can be.

Theorem 14.5.1 (Deligne). Let f : X → Y be a smooth projective map of smooth
complex algebraic varieties. Then the inequalities in (13.3.6) are equalities, i.e.,

dimHi(X ,Q) = ∑
p+q=i

dimH p(Y,Rq f∗Q).

Here is a somewhat more concrete consequence.

Corollary 14.5.2. If the monodromy action of π1(Y,y) on the cohomology of the
fiber Xy is trivial (e.g., if Y is simply connected), then the Betti numbers are the
same as for a product, i.e.,

bi(X) = ∑
p+q=i

bp(Y )bq(Xy).

We sketch the proof of the theorem. A somewhat more detailed treatment can be
found in [49, pp. 462–468].

Proof. In Exercise 13.3.14, we constructed a map d2 : H p(Y,Rq)→ H p+2(Y,Rq−1),
where Rq = Rq f∗Q. The vanishing of d2 and the higher differentials is equivalent to
the conclusion of the theorem. We check this for d2 only.

Let n be the dimension of the fibers. By assumption, there is an inclusion
X ↪→ PN ×Y that gives Lefschetz operators on the fibers. For each y, we have a
corresponding Lefschetz decomposition

Hi(Xy,Q) =
[i/2]⊕
j=0

LjPi−2 j(Xy).

In fact, we get a decomposition of sheaves

Li : Rn−i ∼= Rn+i, Ri =
[i/2]⊕
j=0

LjPi−2 j,
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where
Pi = ker[Ln−i+1 : Ri → R2n−i+2].

This allows us to decompose

H p(Y,Rq)∼=
⊕

H p(Y,Pq−2 j).

Thus it suffices to check the vanishing of the restrictions of d2 to these factors.
Consider the diagram

H p(Y,Pn−k)
d2 ��

Lk+10
��

H p+2(Y,Rn−k−1)

Lk+1∼=
��

H p(Y,Pn+k+2)
d2 �� H p+2(Y,Rn+k+1)

The first vertical arrow is zero by the definition of P, and the second vertical arrow
is an isomorphism by hard Lefschetz. Therefore the top d2 vanishes. 	


A projective morphism p : P → X of varieties is said to be a Brauer–Severi
morphism if it is smooth and all the fibers are isomorphic to projective space. The
cohomology is easy to analyze using the previous results.

Lemma 14.5.3. If π : P→ X is Brauer–Severi with n-dimensional fibers, then

Hi(P,Q)∼=
n⊕

j=0

Hi−2 j(X ,Q).

Proof. Choose an embedding ι : P ↪→ PN ×X that commutes with the projection.
Then H2(PN ,Q) = Q maps nontrivially and therefore isomorphically to
H2(Px,Q) = Q. Since H2(Px) generates H∗(Px), the monodromy action is trivial.
Therefore the lemma follows from Corollary 14.5.2. 	


Note that the proof gives the somewhat stronger result that H∗(P,Q) is gene-
rated as an algebra by H∗(P,Q) and H2(PN ,Q). If h denotes the positive generator
c1(ι∗OPN (1)) of the latter space, then in fact

Hi(P,Q) =
n⊕

j=0

Hi−2 j(X ,Q)∪h j. (14.5.1)

The Brauer–Severi morphisms of interest to us arise as follows. Let E be a rank-
(n + 1) algebraic vector bundle on X in the original geometric sense (as opposed to
a locally free sheaf). Define

P(E) = {� | � a line in some Ex}=
⋃

P(Ex).

This comes with a projection π : P(E)→X , which sends � to x. The fiber is precisely
P(Ex). The map π is projective, and therefore carries a class h as above. This can be
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constructed directly as follows. Let gi j be a 1-cocycle for E with respect to a cover
{Ui}. Then we construct P(E) by gluing (x, [v]) ∈Ui ×Pn to (x, [gi jv]) ∈Uj ×Pn.
Consider the line bundle

L = {(v, �) | v ∈ �, � a line in some Ex}

on P(E). We define OP(E)(−1) as the sheaf of its sections, and OP(E)(1) =
OP(E)(−1)∗. This need not be ι∗OPN (1) as above; however, a power will be. There-
fore their first Chern classes will be proportional. Therefore we have the following
corollary:

Corollary 14.5.4. The decomposition (14.5.1) is valid for X = P(E) and
h = c1(OP(E)(1)).

Remark 14.5.5. It is possible to give a much more elementary proof using the Leray–
Hirsch theorem [61, Theorem 4D.1]. This has the advantage of working over the
integers and for complex C∞ vector bundles.

Although the additive structure is now determined, the multiplicative structure
is more subtle. If E = On+1

Y is trivial, then P(E) = Pn×X . Therefore hn+1 = 0 by
Künneth’s formula. In general, it can be nontrivial. We can express hn+1 as a linear
combination of 1,h, . . . ,hn with coefficients in H∗(X). These coefficients are, by
definition, the Chern classes of E . More precisely, we define the ith Chern class
ci(E) ∈ H2i(X ,Q) by

hn+1− c1(E)∪hn + · · ·+(−1)n+1cn+1(E) = 0. (14.5.2)

By the above remark, these classes can be defined in H2i(Y,Z). This method of
defining Chern classes, which is due to Grothendieck [52], is one of many. Regard-
less of the method, the key point is the following characterization.

Theorem 14.5.6. Chern classes satisfy the following properties:

(a) For a line bundle L, c1(L) is given by the connecting map Pic(X)→ H2(X ,Z)
and ci(L) = 0 for i > 1.

(b) The classes are functorial, i.e., ci( f ∗E) = f ∗ci(E) for any map f : Y → X.
(c) If 0→ E1 → E → E2 → 0 is an exact sequence of vector bundles, then

1 + c1(E)+ c2(E)+ · · ·= (1 + c1(E1)+ · · ·)∪ (1 + c1(E2)+ · · ·).

Moreover, any assignment of cohomology classes to vector bundles satisfying
these properties coincides with the theory of Chern classes.

Proof. We give a sketch. For the first property, note that when L is a line bundle,
P(L) = X and OP(E)(1) = L. The second is more or less immediate from the con-
struction. A special case of (c) will be given in the exercises.

The uniqueness is based on the splitting principle [42, §3.2], which says that
given X ,E , there exists a map f : Y → X that induces an injection in cohomology
such that f ∗E is a successive extension of line bundles Li. Then (c) will imply that
the pullback of the Chern classes are determined by c1(Li). 	
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We want to end this chapter with one last application of hard Lefschetz. A vector
bundle E is called negative if OP(E)(1) is ample, and E is ample if E∗ is negative.
We should point out that our definition of P(E) is dual to the one given in [55, 60],
so our definitions appear to be the opposites of the usual ones. Also, our signs for
the Chern classes have been adjusted accordingly. The following is a very special
case of a result of Bloch and Gieseker [13].

Theorem 14.5.7 (Bloch–Gieseker). If E is a negative vector bundle of rank n + 1
on a smooth projective variety X with d = dimX ≤ n + 1, then cd(E) �= 0.

Proof. Let h = c1(OP(E)(1)), and let

η = hd−1− c1(E)hd−1 + · · ·± cd−1(E) ∈ H2d−2(P(E)).

Since OP(E)(1) is ample, the hard Lefschetz theorem guarantees that

hn+2−d∪ : H2d−2(P(E))→H2n+2(P(E))

is injective. We have
η ∪hn+2−d =±cd(E)∪hn+1−d

by (14.5.2) and the fact that ci(E) = 0 for i > d. Therefore cd(E) cannot vanish. 	


Exercises

14.5.8. Let π : C2−{0}→ P1
C be the usual projection. This is smooth, and in fact a

Zariski locally trivial C∗-bundle. The restriction S3 → P1
C to the unit sphere is called

the Hopf fibration. Show that the conclusion of Corollary 14.5.2 fails for π and the
Hopf fibration.

14.5.9. Show that b1(X) = b1(C)+ dimH1(Xy,Q)π1(C) when f : X → C is smooth
and projective.

14.5.10. Show that there is an epimorphism π∗E → OP(E)(1).

14.5.11. Let E = L1⊕L2 be a sum of line bundles.

1. Show that the divisors Zi ⊂ P(E) defined by the sections σi ∈ H0(OP(E)(1)⊗
L−1

i ) corresponding to the maps π∗Li → π∗E →OP(E)(1) are disjoint.
2. Deduce that the product [Z1]∪ [Z2] is zero.
3. Conclude that (3) holds for E = L1⊕L2, i.e., that c1(E) = c1(L1)+ c1(L2) and

c2(E) = c1(L1)∪ c1(L2).

14.5.12. Let G = G(2,n) and F = {(x, �)∈Pn−1×G | x∈ �}. Show that both projec-
tions Pn−1 ← F → G are Brauer–Severi morphisms. Use this to calculate the Betti
numbers of G.
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14.5.13. F above can be identitified with P(V ), where V is the vector constructed in
Exercise 2.6.15. With the help of the previous exercise, show that the cohomology
of H2(G(2,4)) is spanned by c1(V )2 and c2(V ).

14.5.14. The obstruction for a Brauer–Severi morphism to be given by P(E), for
some vector bundle E , lies in the Brauer group H2(Y,O∗

Y ) (this is the obstruction
for lifting a class from Ȟ1(Y,PGLn(OY )) to Ȟ1(Y,GLn+1(OY ))). Show that the
Brauer group vanishes when Y is a Riemann surface. However, the obstruction can
be nontrivial in general.



Part IV
Coherent Cohomology



Chapter 15
Coherent Sheaves

Chow showed that every complex submanifold of Pn
C is an algebraic variety. The

eventual goal of this chapter and the next is to outline the proof of a refined version
of this due to Serre [101], usually referred to as “GAGA,” which is an acronym
derived from the title of his paper. The first part of the theorem gives a correspon-
dence between certain objects on Pn

C viewed as an algebraic variety and objects
on Pn

C viewed as a complex manifold. These objects are coherent sheaves that are
O-modules that are locally finitely presented in a suitable sense. Some of the formal
properties of coherent sheaves are given here. Over affine and projective spaces there
is a complete description of coherent sheaves in elementary algebraic terms, which
makes this class particularly attractive. Chow’s theorem is recovered by applying
GAGA to ideal sheaves, which are coherent.

As general references, we mention Hartshorne [60] and Serre [100] for the alge-
braic side of the story, and Grauert and Remmert [47] for the analytic.

15.1 Coherence on Ringed Spaces

In order to deal simultaneously with the analytic and algebraic cases, we return to
the general setting of a ringed space (X ,R). We will be interested in R-modules
that have good finiteness properties. We ought to say what “good” should actually
mean here. We would like the property to satisfy the two out of three principle: in
any short exact sequence where two sheaves satisfy the property, the third does as
well. So in particular, the class of sheaves satisfying the property should be stable
under direct sums. The weakest finiteness condition is the following:

Definition 15.1.1. An R-module E has finite type if E is locally finitely generated,
i.e., each point has a neighborhood U such that there is an epimorphism R|nU → EU

for some n < ∞.

The class of sheaves of finite type is certainly stable under direct sums. However,
the two out of three principle will fail in general.
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Example 15.1.2. Let R be a non-Noetherian commutative ring regarded as a ringed
space over a point. A nonfinitely generated ideal I gives a counterexample, because
it fits into the exact sequence 0→ I → R → R/I → 0.

The solution is to impose finiteness on kernels whenever they arise.

Definition 15.1.3. An R-module E is coherent if and only if:

(1) E is of finite type,
(2) If R|nU → E |U is any morphism defined over an open set U , the kernel has finite

type.

Proposition 15.1.4.

(a) A submodule of finite type of a coherent module is coherent.
(b) The two out of three principle holds for coherence.

Proof. The first statement is automatic. We do one case of (b), leaving the rest for
the exercises. Suppose that

0→ E1 → E2 → E3 → 0

is exact with E1 and E2 coherent. Then clearly E3 has finite type. Now choose a
morphism φ : Rn|U → E3|U . We have to show that kerφ has finite type. Since this
is a local condition, we are free to shrink U to a neighborhood of any given point
x ∈U . After doing this, we can assume that φ lifts to a morphism ψ : Rn|U → E2|U .
After shrinking U again, we can choose an epimorphism Rm

U → E3|U . By the snake
lemma, there is an epimorphism of E3|U , and hence of Rm|U , onto the cokernel
of kerψ → kerφ over U . We can lift this to a morphism Rm|U → kerφ such that
images of kerψ and Rm|U generate kerφ . This implies that kerφ has finite type
because kerψ does. 	

Corollary 15.1.5. Given a morphism of coherent R-modules, the kernel, image, and
cokernel are coherent. The sum of two coherent modules is coherent. So in parti-
cular, the collection of coherent R-modules and morphisms between them forms an
abelian category.

Proof. Suppose that φ : E →F is a morphism of coherent modules. Coherence of
the image follows from (a). Coherence of the kernel and cokernel follow by applying
(b) to

0→ kerφ → E → imφ → 0,

0→ imφ →F → cokerφ → 0. 	


While the structure sheaf R of a ringed space obviously has finite type, it need
not be coherent in general. However, it is true for a scheme in our sense by straight-
forward arguments (Exercise 15.2.8). In the analytic case, this is somewhat deeper.

Theorem 15.1.6 (Oka). If (X ,OX ) is a complex manifold, then OX is coherent.
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Proof. See [47, p. 59] 	

Corollary 15.1.7. Let X be a complex manifold. Any locally free OX -module is
coherent. The ideal sheaf of a submanifold Y ⊂ X is coherent.

Exercises

15.1.8. Finish the proof of Proposition 15.1.4.

15.1.9. Prove that if Mi are coherent, then so are M1⊗M2 and H om(M1,M2).

15.1.10. Suppose that R is coherent and let M be an R-module. Prove that M is
coherent if and only if it is locally finitely presented, i.e., there is a covering {Ui}
with exact sequences

Rmi |Ui →Rni |Ui →M |Ui → 0.

15.1.11. Let f : F → G be a morphism of coherent sheaves over (X ,R). Suppose
that fx0 is an injection (respectively surjection) for some x0 ∈ X . Then prove that
fx0 is an injection (respectively surjection) for all x in a neighborhood of x0. Is this
property true for morphisms of arbitrary R-modules?

15.1.12. A ring R is called coherent if the kernel of any map Rn → R is finitely
generated. Give an example of a noncoherent ring. Show that the structure sheaf of
the associated ringed space given in Example 15.1.2 will not be coherent.

15.2 Coherent Sheaves on Affine Schemes

Coherent sheaves over affine schemes have a particularly nice description. They
correspond to finitely generated modules over the coordinate ring. Let R be an affine
algebra over an algebraically closed field. Let us first recall that in Definition 3.5.11,
we constructed a sheaf of modules M̃ on Specm R associated to an R-module M.
On basic open sets, we have

M̃(D( f )) = R[1/ f ]⊗R M ∼= M[1/ f ],

where the localization M[1/ f ] of M is constructed as for rings [8]. Important exam-
ples of such sheaves include ideal sheaves associated to subschemes of Specm R.

Lemma 15.2.1. If M is a finitely generated R-module, M̃ is coherent.

Proof. This is Exercise 15.2.8. 	

It convenient to extend this class of sheaves M̃ to more general schemes.
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Definition 15.2.2. Let (X ,OX) be a scheme in our sense over an algebraically closed
field k. A sheaf of modules E over X is called quasicoherent if there is a covering
by affine open sets {Ui

∼= Specm Ri} such that E ∼= M̃i for Ri-modules Mi.

We shall see shortly that coherent sheaves are quasicoherent, as the terminology
suggests. Clearly sheaves of the form M̃ on Specm R are quasicoherent. The converse
statement is also true, although it is not entirely trivial.

Proposition 15.2.3. If R is an affine k-algebra, any quasicoherent sheaf E on X =
Specm R is isomorphic to M̃ with M = Γ (X ,E ).

Proof. The elements of M[1/ f ] can be represented by fractions m/ f n, with m ∈M.
Each such element determines a section 1

f n m|D( f ) ∈ E (D( f )). In this way, we get

a homomorphism r f : M̃(D( f )) → E (D( f )), which gives rise to a morphism of
sheaves r : M̃ → E . We have to prove that this is an isomorphism. In fact, we will
prove that each r f is an isomorphism, and this is sufficient.

By assumption, there is an affine open covering {Ui} of X such that E |Ui = M̃i.
By quasicompactness, we can assume that this is a finite covering by basic open
sets Ui = D(gi). Suppose that m ∈ M is a section mapping to 0 in E (D( f )). Then
the images mi ∈ Mi. vanish in Mi[1/ fi]. This implies that f ni mi = 0, for some ni,
because the kernel of Mi →M[1/ f ] consists of elements annihilated by f . Therefore
taking n = maxni, we see that f nm = 0 or that the image of m vanishes in M[1/ f ].
The upshot is that r f : M[1/ f ]→ E (D( f )) is injective.

Suppose that e ∈ E (D( f )). The images of e in Mi[1/ f ] can be written as mi/ f n,
where mi ∈ Mi and the exponent n can be chosen independently of i. Now mi and
m j agree with f ne, and therefore each other, on the intersection D( f gig j) = D( f )∩
D(gi)∩D(g j). Therefore f N(mi−m j) = 0 for some N independent of i, j. Thus we
can patch the f Nmi to obtain a section m ∈ M. It follows that m/ f n+N ∈ M[1/ f ]
maps to e. That is, r f is surjective. 	


The operation M → M̃ clearly extends to a functor. The above results show that
E → Γ (E ) is an inverse. Therefore we may state the following theorem:

Theorem 15.2.4. If R is an affine k-algebra and X = Specm R, then M �→ M̃ gives
an equivalence between the category of R-modules and quasicoherent modules
on X.

Corollary 15.2.5. The functors M �→ M̃ and E �→ Γ (X ,E ) on the above categories
are exact, i.e., if

0→M1 →M2 →M3 → 0

is exact, then so is
0→ M̃1 → M̃2 → M̃3 → 0,

and likewise for the second functor.

Lemma 15.2.6. Coherent sheaves on a scheme are quasicoherent.
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Proof. Any coherent sheaf is locally of the form

coker[On
U → Om

U ] = coker[Rn → Rm]∼

for an affine open U = Specm R. 	

Theorem 15.2.7. With X = Specm R as above, the functor M �→ M̃ gives an equi-
valence between the category of finitely generated R-modules and coherent modules
on X.

Proof. This is a consequence of the previous results and Exercise 15.2.9. 	


Exercises

15.2.8. Let X = Specm R, with R affine. Prove that OX is coherent, and therefore
conclude that M̃ is coherent if M is finitely generated.

15.2.9. If E is coherent on Specm R, then show M = Γ (E ) is finitely generated.

15.2.10. Prove that quasicoherence on any scheme satisfies the “two out of three”
property.

15.2.11. Let i :Y ↪→X be a closed subscheme of a scheme. If M is a (quasi)coherent
sheaf on Y , show that i∗M is (quasi)coherent on X .

15.2.12. Let j : U ↪→ X be a proper open subset of an affine variety. Show that the
sheaf

j!OU =

{
O(V ) if V ⊆U,

0 otherwise,

is an OX -module that is not isomorphic to M̃ for any M. In particular, it is not
coherent.

15.3 Coherent Sheaves on Pn

Our goal in this section is to describe all coherent sheaves on Pn = Pn
k . Let S =

k[x0, . . . ,xn] be its homogeneous coordinate ring, with its standard grading S =
⊕

Si.
Then the category of coherent sheaves on Pn will turn out to be almost equiva-
lent to the category of finitely generated graded S-modules. We will see this by
making explicit constructions, but let us first explain why we might expect this on
a more conceptual level. Projective space is the quotient Pn = (An+1 −{0})/k∗,
so a coherent sheaf on it ought to be the same as a coherent sheaf on An+1−{0}



260 15 Coherent Sheaves

on which k∗ acts in the appropriate sense. Then taking global sections would pro-
duce an S-module M with a good k∗-action. The eigenspaces for this action yield a
grading and conversely.

A Z-graded S-module is an S-module M with a decomposition M =
⊕

i∈Z Mi into
subspaces such that SiMj ⊂ Mi+ j. If M is also finitely generated as an S-module,
then each of the components Mi is finite-dimensional, and Mi = 0 for i " 0. Given
a graded module M, we define a new grading on the same underlying module by

M(d)i = Mi+d .

The collection of graded modules becomes a category, where morphisms f : M→N
are S-module maps such that f (Mi)⊆ Ni.

Starting with a graded S-module M, we can construct a sheaf of modules on Pn

by doing a graded version of the construction given in Definition 3.5.11. Given an
open set U ⊆ Pn, OPn(U) ⊂ k(x0, . . . ,xn) carries the grading given by deg( f/g) =
deg f −degg. The tensor product M⊗S OPn(U) carries an induced grading deg(m⊗
( f/g)) = degm+ deg( f/g). Let

M̃(U) = (M⊗S OPn(U))0 (15.3.1)

denote the subgroup of graded 0 elements. This is obviously a presheaf of modules,
and in fact it can be seen to be a sheaf. To see that this is coherent, recall that a basis
of the topology of Pn is given by D( f ) = {a ∈ Pn | f (a) �= 0} as f varies over the
set of homogeneous polynomials. We can identify D( f ) = Specm S[1/ f ]0. Then by
comparing formulas, we can see that the following lemma most hold:

Lemma 15.3.1. Suppose that f ∈ S is homogeneous. Let Ñ denote the sheaf defined
on D( f ) by N = M[1/ f ]0. Then M̃|D( f ) = Ñ.

Corollary 15.3.2. The sheaf M̃ is coherent if M is finitely generated, and quasico-
herent in general.

It is clear that M �→ M̃ yields a functor from the category of graded (respectively
finitely generated graded) modules to the category of quasicoherent (respectively
coherent) sheaves on Pn.

Lemma 15.3.3. The functor M �→ M̃ is exact.

Proof. This follows from the previous lemma and Corollary 15.2.5. 	

We have already seen examples of this construction previously.

Lemma 15.3.4. S̃(d)∼= OPn(d).

Proof. This follows from (3.6.2) and (15.3.1). 	

Example 15.3.5. Let I ⊂ S be a homogenous ideal. Then Ĩ coincides with the sheaf
defined in Example 3.5.4. This defines a closed subscheme of Pn that is a subvariety
if I is prime.



15.3 Coherent Sheaves on Pn 261

Definition 15.3.6. A collection of global sections fi ∈H0(X ,F ) generates the sheaf
F if their germs span the stalk Fx for every x ∈ X . A coherent sheaf F on X is
generated by global sections or globally generated if there exist sections with this
property.

Theorem 15.3.7 (Serre).

(a) If F is a coherent sheaf on Pn
k , then there exists d0 such that for any d ≥ d0,

F (d) = F ⊗OPn(d) is globally generated.
(b) Every coherent sheaf on Pn

k is isomorphic to a sheaf of the form M̃ for some
finitely generated graded module M.

We make a few preliminary remarks before starting the proof. The sheaf O(−1)
is the ideal sheaf of the hyperplane xi = 0. Thus global sections of O(d) =
(O(−1)∗)⊗d , when d > 0, can be interpreted as regular functions on Ui with poles
of order d along xi. Therefore H0(Ui,F ) can be identified with the directed union⋃

d H0(Pn,F (d)).

Proof. Let F be coherent. Then there are finitely generated modules Mi such that
the restrictions F |Ui are isomorphic to M̃i. Choose a finite set of generators {m ji}
for each Mi. From the above remarks, we can view these as global sections of F (d)
for some fixed d � 0. These sections generate F (d).

Let M′ =
⊕∞

e=0 H0(F (e)). The argument of the previous paragraph shows that
for some d > 0, F (d) is generated by finitely many sections mi ∈H0(F (d)) = M′

d .
Let M ⊆ M′ be the submodule generated by these sections. Consider the subsheaf
G = M̃ ⊆ F . Since the sections mi ∈ H0(G (d)) generate F (d), we see that the
stalks G (d)x equal F (d)x. Therefore G (d) = F (d). Tensoring by O(−d) implies
that G = F . 	


As we will see in the exercises, the map from isomorphism classes of graded
modules to isomorphism classes of coherent sheaves is many-to-one. Fortunately,
the ambiguity is easy to describe. Given two graded modules M,N, let us say that
they are stably isomorphic, or M ∼ N, if for some i0,⊕

i≥i0

Mi
∼=

⊕
i≥i0

Ni

as graded S-modules.
Now suppose that M is a coherent OP-module. Define

Γ∗(M ) =
∞⊕

d=−∞
Γ (Pn,M (d)).

We state without proof some refinements of the last theorem.
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Theorem 15.3.8.

1. Γ∗(M̃)∼M.

2. Γ̃∗(M )∼= M .

Proof. See [100, p. 258, Proposition 4] for the proof of the first statement, and [60,
Chapter II, Proposition 5.15] for the second. 	

Theorem 15.3.9. Any coherent sheaf E on Pn fits into an exact sequence

0→ Er → Er−1 → ··· → E0 → E → 0,

where r ≤ n and each Ei is a sum of a finite number of line bundles OPn( j).

Proof. The Hilbert syzygy theorem [33, 1.13] says that any finitely generated
graded S-module has a finite free graded resolution of length at most n. The theorem
is a consequence of this and Lemma 15.3.3. 	


For many standard examples, it is possible to construct explicit resolutions of this
type.

Example 15.3.10. The tangent sheaf fits into an exact sequence

0→ OPn

⎛⎜⎜⎝
x0

x1

. . .

⎞⎟⎟⎠
−→ OPn(1)n+1 → TPn → 0.

This will be justified later.

Exercises

15.3.11. Check that if Mi = 0 for i � 0, i.e., that if M ∼ 0, then M̃ = 0. Use this to
show that M ∼ N implies M̃ ∼= Ñ.

15.3.12. Given a pair of graded S-modules M and N, define a grading on their tensor
product M⊗N = M⊗S N by

(M⊗N)i = ∑
a+b=i

Ma⊗Nb.

Prove that M̃⊗N ∼= M̃⊗OPn Ñ.

15.3.13. Given a graded S-module M, show that

π∗(M̃|An+1−{0}) =
⊕
d∈Z

M̃(d),

where π : An+1−{0}→ Pn is the canonical projection.
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15.4 GAGA, Part I

We now want to compare the algebraic and analytic points of view. A nonsingular
subvariety X ⊂ An

C, determines a complex submanifold Xan ⊂ Cn defined by the
same equations. We refer to (Xan,OXan) as the associated complex manifold; this
does not depend on the embedding. We can extend this to any nonsingular algebraic
variety X over C, choosing an affine covering {Ui} and then gluing Ui,an to Uj,an

by the original transition maps, which are holomorphic. When applied to (Pn
C,OPn),

we obtain the complex projective (Pn
an,OPn

an
) viewed as a complex manifold.

For any nonsingular variety X , the analytic topology is finer than the Zariski
topology, and the regular functions are holomorphic. Therefore we have a morphism
of ringed spaces

ι : (Xan,OXan)→ (X ,OX )

given by the inclusion
OX(U)⊂ OXan(U).

Given an OX -module E , define the OXan-module Ean = ι∗E . Then Ean is coher-
ent if E is. This operation gives a functor between the categories of coherent
OX - and OXan-modules. We will sometimes refer to a coherent OX -module (respec-
tively OXan-module) as a coherent algebraic (respectively analytic) sheaf.

For locally free sheaves, we can also describe this operation as follows. A locally
free sheaf E is the sheaf of sections of an algebraic vector bundle V → X . Then Ean

is the sheaf of sections of the associated complex analytic vector bundle Van → Pan.
This applies, in particular, to the line bundles OPn(d) and the bundle of p-forms
(Ω p

X )an =Ω p
Xan

.

Lemma 15.4.1. On a nonsingular algebraic variety X, the functor E �→ Ean is exact
and conservative (the last condition means that E �= 0 ⇒ Ean �= 0). It takes locally
free sheaves to locally free sheaves of the same rank.

Proof. The second statement follows from what we said above. It suffices to check
the first statement at the stalk level, and this can then be reduced to some standard
commutative algebra [8]. Given p∈ X , let R = OX ,p denote the local ring. This is the
localization of the ring of regular functions in a neighborhood of p at the maximal
ideal m corresponding to this point. Choose a minimal set of generators x1, . . . ,xn for
m. Note that n = dimX because R is regular. The local ring Ran = OXan,p is the ring
of convergent power series C{x1, . . . ,xn}. We can identify the m-adic completions
of both rings with the ring of formal power series R̂ = C[[x1, . . . ,xn]]. On stalks, the
operation E �→ Ean is given by extension of scalars E �→ Ran⊗R E . This operation
is exact and conservative precisely when the ring extension R⊂ Ran is faithfully flat
by definition. This can be reduced to the faithful flatness of the completions R ⊂ R̂
and Ran ⊂ R̂ [8, Chapter 10, Exercise 7] or [55, Chapter 0, 7.3.5]. 	

Corollary 15.4.2. Given an ideal sheaf I ⊆OX , the support of OXan/Ian coincides
with V (I ).
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We can now state the following remarkable GAGA theorem, of Serre, which
compares the categories of coherent algebraic and analytic sheaves on projective
space.

Theorem 15.4.3 (Serre). The functor E �→ Ean induces an equivalence between the
categories of coherent OPn and OPn

an
-modules. In particular, any coherent OPn

an
-

module arises from an OPn -module, which is unique up to isomorphism.

We will defer discussion of the proof until Section 16.4, but we note some
important corollaries.

Corollary 15.4.4 (Chow’s theorem). Every complex submanifold of Pn is a non-
singular projective algebraic subvariety.

Proof. The analytic ideal sheaf J of a submanifold X of Pn is a coherent OPn
an

-
module. Thus J = Ian, for some coherent submodule I ⊂ OPn . The subvariety
V (I ) defined by I is easily seen to coincide with X as a set. It is nonsingular by
2.5.15. 	


A more elementary noncohomological proof of Chow’s theorem can be found in
[104, Chapter VIII §3]. Note that it implies the assertion we made some time ago:

Corollary 15.4.5. Any compact Riemann surface X is a projective algebraic curve.

Proof. This is a consequence of Chow’s theorem, because X embeds into projective
space by Corollary 6.3.9. 	

Corollary 15.4.6. A holomorphic map between nonsingular projective algebraic
varieties is a morphism of varieties.

Proof. Apply Chow’s theorem to the graph of the map. 	


Exercises

15.4.7. Show that a meromorphic function on a smooth projective curve is the same
thing as a rational function. This is also true in higher dimensions, but the proof
would be harder.



Chapter 16
Cohomology of Coherent Sheaves

In this chapter, we continue the study of coherent sheaves, by studying their
cohomology. The first key result is that the higher cohomology groups for coher-
ent sheaves vanish for affine schemes. Using this we can compute cohomology for
projective spaces using the Čech complex for the standard open affine cover, and
establish finite-dimensionality and other basic results. We also consider analogous
statements for complex manifolds. With these results in hand, we complete our
discussion of the GAGA theorems. The second basic result is that if E is a coherent
algebraic sheaf on Pn

C, its cohomology is isomorphic to the cohomology of Ean.
Thus the calculation of the latter reduces to a purely algebraic problem. This coho-
mological result is also needed for the proof of the first GAGA theorem stated in the
previous chapter.

16.1 Cohomology of Affine Schemes

Corollary 15.2.5 tells us that the global section functor for quasicoherent sheaves on
affine schemes is exact. Since higher sheaf cohomology measures the obstruction to
exactness of this functor, we might guess that there is no higher cohomology. This
is correct, as will see shortly, but the result is not quite automatic. The key piece of
algebra is the following.

Definition 16.1.1. Given a commutative ring R, an R-module I is injective if for
any for injective map N → M of R-modules, the induced map HomR(M, I) →
HomR(N, I) is surjective.

Example 16.1.2. If R = Z, then I is injective, provided that it is divisible, i.e., if
a = nb has a solution for every a ∈ I and n ∈ Z−0.

A standard result of algebra is the following.

Theorem 16.1.3 (Baer). Every module is (isomorphic to) a submodule of an injec-
tive module.

DOI 10.1007/978-1-4614-1809-2_16, © Springer Science+Business Media, LLC 2012
265, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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Proof. A proof can be found, for example, in [33, p. 627]. 	

Proposition 16.1.4. Let X = Specm R be an affine scheme. If I is an injective
R-module, then Ĩ is flasque.

Proof. A complete proof can be found in [60, III, 3.4]. We indicate one step in the
argument to illustrate the role of injectivity of I. We have to prove that Ĩ(X)→ Ĩ(U)
is surjective for any open U . We do this when U = D( f ). Then this amounts to the
surjectivity of the canonical map κ : I → I[1/ f ]. Let Jr = {g ∈ R | g f r = 0} denote
the annihilator of f r. We have J1 ⊆ J2 ⊆ ·· · . Since R is Noetherian by Hilbert’s
basis theorem [8], the sequence stabilizes. So there is an r such that Jr = Jr+1 = · · · .
An element of I[1/ f ] can be written as a fraction e/ f n with e ∈ I. We have to
show that this lies in the image of κ . There is an isomorphism between the ideal
K = ( f n+r) and R/Jn+r. Since the element f re ∈ I is annihilated by Jr = Jn+r, we
obtain a map φ : K → I satisfying φ( f n+r) = f re. Since I is injective, φ extends
to a map ψ : R → I. Let e′ = ψ(1) ∈ I. We have f n+re′ = f re. Therefore e/ f n =
f re/ f n+r = e′. 	

Theorem 16.1.5 (Grothendieck–Serre). Let R be an affine ring, and let Y =
Specm R. Then for any R-module M,

Hi(Y,M̃) = 0.

Remark 16.1.6. The proof given here works for arbitrary Noetherian affine schemes.
That is why we give the dual attribution.

Proof. The module M embeds into an injective module I. Let N = I/M.
By Corollary 15.2.5, the functor M �→ M̃ is exact. Therefore we have an exact
sequence of sheaves

0→ M̃ → Ĩ → Ñ → 0.

Since Hi(Y, Ĩ) = 0 for i > 0, we obtain

I → N → H1(Y,M̃)→ 0

and
Hi+1(Y,M̃)∼= Hi(Y, Ñ).

Since I→N is surjective, H1(Y,M̃) = 0. This proves the theorem for i = 1. Applying
this case to N shows that

H2(Y,M̃)∼= H1(Y, Ñ) = 0.

We can kill all higher cohomology groups in the same fashion. 	

We get a new proof of (a strengthened form of) Lemma 2.3.4.

Corollary 16.1.7. If X ⊂Y is a closed subscheme of an affine scheme defined by an
ideal sheaf I , then O(X)∼= O(Y )/I (Y ).
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Proof. The sequence

0→I (Y )→O(Y )→ O(X)→ 0

is exact. 	

Corollary 16.1.8. An open affine cover of a variety is Leray with respect to any
coherent sheaf.

Exercises

16.1.9. Let U = {D( fi)} be a finite cover of X = Specm R with R affine. Prove that
Ȟ1(U ,OX ) = 0 as follows.

(a) Show that for every n > 0 there exists ri ∈ R such that ∑ri f n
i = 1.

(b) Given an alternating cocycle gi j ∈C1
alt(U ,OX ) (Exercise 7.3.8), choose n such

that f n
i f n

j gi j ∈ R for all i, j. Show that

hi =∑
�

r� f n
� g�i ∈ R[1/ fi].

(c) Check that g =±∂h.

16.1.10. Generalize the argument from the previous exercise to prove that
Ȟi(U ,OX ) = 0 for all i > 0.

16.2 Cohomology of Coherent Sheaves on Pn

In this section, we do the important computation of the cohomology of line bundles
over projective space. We use this to extract some more general statements regarding
cohomology of coherent sheaves. Let us be clear about the notation. We will write
(Pn = Pn

k,OPn) for projective space over a fixed field k, viewed as an algebraic
variety. This convention applies to the case of k = C as well. We recall that the line
bundles are given by OP(d) with d ∈ Z. Let S = k[x0, . . . ,xn] be the homogeneous
coordinate ring. Let Si ⊂ S be the space of homogeneous polynomials of degree i.
It is convenient to allow i to be negative, in which case Si = 0. The degree of a
ratio of homogeneous polynomials is the difference of the degrees of the numerator
and denominator. Consequently, the localization S[1/ f ] carries a Z-grading for any
homogeneous polynomial f .

Theorem 16.2.1 (Serre).

(a) H0(Pn,OP(d))∼= Sd.
(b) Hi(Pn,OP(d)) = 0 if i �∈ {0,n}.
(c) Hn(Pn,OP(d))∼= S−d−n−1.
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Proof. We use Čech cohomology with respect to the standard open affine cover
{Ui}, where Ui = {xi �= 0}. This is a Leray cover by Corollary 16.1.8. Our first task
is to identify the Čech complex with a complex of polynomials. As explained above,
the localization

S

[
1
xi

]
=

⊕
d

S

[
1
xi

]
d
⊂ K = k(x0, . . . ,xn)

has a natural Z-grading such that the degree-0 piece of S[1/xi] is exactly k[x0/xi,
. . . ,xn/xi] = O(Ui); recall that Ui can be identified with affine n-space with coordi-
nates

x0

xi
, . . . ,

x̂i

xi
, . . . ,

xn

xi
.

Similar statements apply to localizations S[1/xi1xi2 · · · ] along monomials.
We start with the description of O(d) given in Section 7.3, where we identify

a section of O(d)(U) with a collection of rational functions fi ∈ O(U ∩Ui) ⊂ K
satisfying

fi =
(

x j

xi

)d

f j ,

or equivalently
xd

i fi = xdd
j f j . (16.2.1)

Now identify O(d)(Ui) with S[1/xi]d under the bijection that sends fi to xd
i fi.

Equation (16.2.1) just says that these elements agree in K. By carrying out similar
identifications for elements of O(d)(Ui∩Uj) etc., we can realize the Čech complex
for O(d) as the degree-d piece of the complex

⊕
i

S

[
1
xi

]
→

⊕
i< j

S

[
1

xix j

]
→ ··· , (16.2.2)

where the differentials are defined as alternating sums of the inclusions along the
lines of Section 7.3.

An element of H0(Pn,O(d)) can be represented by an (n + 1)-tuple (p0/xN
0 ,

p1/xN
1 , . . .) of homogeneous rational expressions of degree d, where the pi’s are

polynomials satisfying
p0

xN
0

=
p1

xN
1

=
p2

xN
2

= · · · .

This forces the polynomials pi to be divisible by xN
i . Thus H0(Pn,O(d)) can be

identified with Sd as claimed in (a).
From (16.2.2),

⊕
d Hn(Pn,O(d)) is isomorphic to S[ 1

x0···xn
] modulo the the space

of coboundaries

Bn =∑
i

S

[
1

x0 · · · x̂i · · ·xn

]
.
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S[ 1
x0···xn

] is spanned by monomials xi0
0 · · ·xin

n with arbitrary integer exponents. The
image B is the space spanned by those monomials where at least one of the
exponents is nonnegative. Therefore the quotient can be identified with the comple-
mentary submodule spanned by monomials with negative exponents. In particular,

Hn(Pn,O(d))∼=
⊕

i0+···+in=d
i1,...,in<0

kxi0
0 · · ·xin

n .

This is isomorphic to S−d−n−1 via

xi0
0 · · ·xin

n �→ x−i0−1
0 · · ·x−in−1

n .

This proves (c).
It remains to prove (b). Part of this is easy. Since (16.2.2) has length n,

Hi(Pn,O(d)) is automatically zero when i > n. For the case 0 < i < n, it is con-
venient to do all the degrees simultaneously by showing that Hi(Pn,F ) = 0, where
F =

⊕
d O(d). The advantage here is that the sheaf F has the structure of a graded

S-module. Thus Hi(Pn,F ) inherits the structure of a graded S-module. We claim
that Hi(Pn,F )[1/xn] = 0 when i > 0. Since localization is exact, this can be com-
puted as the cohomology of the localization of (16.2.2) with respect to xn. After
localizing, we obtain the Čech complex for F with respect to the cover {Ui∩Un} of
Un. This complex is necessarily acyclic, because Hi(Un,F ) = 0 for i > 0. Therefore
the claim is proved, and it implies that every element of Hi(Pn,F ) is annihilated
by a power of xn. So to prove (b), it suffices to prove that multiplication by xn is
bijective on Hi(Pn,F ) for 0 < i < n. We do this by induction on n. Let H be the
hyperplane defined by xn = 0. We can identify the ideal of H with OPn(−1). Thus
we have an exact sequence

0→OPn(−1)→ OPn → OH → 0.

After tensoring this with F , we obtain

0→F (−1)→F →FH → 0.

Therefore we get an exact sequence

· · · →Hi(Pn,F (−1)) m→ Hi(Pn,F )→ Hi(H,FH)→ ··· , (16.2.3)

where Hi(Pn,F (−1)) ∼= Hi(Pn,F ) with a shift in grading, and the arrow labeled
m can be identified with multiplication by xn. By induction, Hi(H,FH) = 0 for
0 < i < n− 1, which proves (b) for 1 < i < n− 1. The remaining cases can be
obtained by proving exactness of (16.2.3) at the two ends:

0→H0(Pn,F (−1)) m→ H0(Pn,F ) α→ H0(H,FH)→ 0,

0→ Hn−1(H,FH)
β→ Hn(Pn,F (−1)) m→ Hn(Pn,F )→ 0.
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This can be done by identifying these with

0→ S
xn−→ S

α→ k[x0, . . . ,xn−1]→ 0

and

0→ S

[
1

x0 · · ·xn−1

]
/Bn−1

β→ S

[
1

x0 · · ·xn

]
/Bn

xn−→ S

[
1

x0 · · ·xn

]
/Bn → 0

respectively. 	

We can now deduce finite-dimensionality of cohomology.

Theorem 16.2.2. If E is a coherent sheaf on Pn, then Hi(Pn,E ) is finite-dimensional
for each i, and is zero for i > n. Furthermore, there exist d0 such that Hi(Pn,E (d)) =
0 for d ≥ d0 and i > 0.

Proof. We prove this by induction on r, where r is the length of the shortest syzygy,
i.e., resolution of the type given by Theorem 15.3.9. If r = 0, we are done by
Theorem 16.2.1. Suppose that the theorem holds for all r′ < r. Choose a resolution

0→ Er → Er−1 → ··· → E0 → E → 0

and let E ′ = ker[E0 → E ]. We have exact sequences

0→ Er → Er−1 → ··· → E1 → E ′ → 0

and
0→ E ′ → E0 → E → 0.

Since E ′ has syzygy of length r−1, H∗(Pn,E ′) is finite-dimensional by the induc-
tion hypothesis. Therefore the long exact sequence

· · · →Hi(Pn,E0)→ Hi(Pn,E )→ Hi+1(Pn,E ′)→ ···

implies the finite-dimensionality of Hi(Pn,E ). The vanishing of Hi(Pn,E (d)) for
i > 0 and d � 0 can be proved by induction in a similar manner. Details are left as
an exercise. 	

Corollary 16.2.3. If E is a coherent sheaf on a projective variety X, then the coho-
mology groups Hi(X ,E ) are finite-dimensional.

Proof. Embed ι : X ↪→ Pn. Then ι∗E is a coherent OP-module, so it has finite-
dimensional cohomology. Since ι∗ is exact,

Hi(X ,E )∼= Hi(Pn, ι∗E ). 	


The Euler characteristic of a sheaf F of k-modules on a space X is

χ(F ) =∑(−1)i dimk Hi(X ,F ),



16.2 Cohomology of Coherent Sheaves on Pn 271

provided that the sum is finite. From Lemma 11.3.2, we easily obtain the following
result:

Lemma 16.2.4. If 0→Fr → ··· →F0 →F → 0 is an exact sequence of sheaves
with finite-dimensional cohomology, then

χ(F ) =∑
j

(−1) jχ(F j).

Proof. Break this up into short exact sequences and use induction. 	

Theorem 16.2.5. If E is a coherent sheaf on Pn

k , then i �→ χ(E (i)) is a polynomial
in i of degree at most n. If X is a subvariety of Pn

k and E = OX , then this polynomial
has degree dimX.

Proof. From Theorem 16.2.1,

χ(OPn(i)) =

{
dimSi if i≥ 0,

(−1)n dimS−d−n−1 otherwise,

so that

χ(OPn(i)) =
(

n + i
n

)
, (16.2.4)

which is a polynomial of degree n. This implies that χ(E (i)) is a polynomial of
degree≤ n when E is a sum of line bundles OPn( j). In general, Theorem 15.3.9 and
the above corollary imply that for any coherent E ,

χ(E (i)) =
r

∑
j=0

(−1) jχ(E j(i)),

where E j are sums of line bundles. This shows that χ(E (i)) is a polynomial with
degree at most n.

To get the sharper bound on the degree when E = OX , we use induction on dimX
and the relation

χ(OH∩X (i)) = χ(OX(i))− χ(OX(i−1)),

which follows from the sequence

0→OX (−1)→ OX →OH∩X → 0,

where H is a general hyperplane. 	

The polynomial χ(E (i)) is called the Hilbert polynomial of E . It has an elemen-

tary algebraic interpretation:

Corollary 16.2.6 (Hilbert). Let M be a finitely generated graded S-module. Then
i �→ dimMi is a polynomial for i� 0, and this coincides with the Hilbert polynomial
χ(M̃(i)).
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Proof. This is obtained by combining the last theorem with Theorems 15.3.8 and
16.2.2. 	


Exercises

16.2.7. Compute Hi(P1,OP1(d)) directly using Mayer–Vietoris with respect to
{U0,U1} without referring to the above arguments.

16.2.8. Give a direct proof that H1(P2,OP2(d)) = 0 by solving the equation

pi j

(xix j)n =
qi

xn
i
− q j

xn
j

for any 1-cocycle {pi j/(xix j)n} ∈C1({Ui},O(d)) on P2.

16.2.9. Let f be a homogeneous polynomial of degree d in S = k[x0,x1,x2]. Then
corresponding to the exact sequence of graded modules

0→ S(−d)∼= S f → S → S/( f )→ 0

there is an exact sequence of sheaves

0→ OP2(−d)→OP2 →OX → 0.

Prove that

dimH1(X ,OX ) =
(d−1)(d−2)

2
.

16.2.10. Let f be a homogeneous polynomial of degree d in four variables. Repeat
the above exercise for H1(X ,OX ) and H2(X ,OX ).

16.2.11. Prove the remaining parts of Theorem 16.2.2.

16.2.12. If E is a nonzero coherent sheaf on Pn, prove that the degree of χ(E (i))
coincides with the dimension of its support supp(E ) = {x ∈ Pn | Ex �= 0}.

16.3 Cohomology of Analytic Sheaves

As a preparation for the next section, we summarize some analogues of earlier
results in the analytic setting. We start with Stein manifolds, which can be regarded
as analogues of affine varieties. The characteristic feature of these manifolds is the
abundance of global holomorphic functions. A complex manifold X is called Stein
if the following three conditions hold:

(1) Global homolomorphic functions separate points, i.e., given x1 �= x2, there
exists f ∈ O(X) such that f (x1) �= f (x2).
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(2) Global holomorphic functions separate tangent vectors, i.e., for any x0 ∈ X ,
there exist global holomorphic functions f1, . . . , fn that generate the maximal
ideal at x0.

(3) X is holomorphically convex, i.e., for any sequence xi ∈ X without accumula-
tion points, there exists f ∈ O(X) such that | f (xi)| → ∞.

The third condition is a bit less intuitive than the others. It is best illustrated by an
example where it does not hold. Hartogs’ theorem [66] tells us that any holomorphic
function on X = C2−{0} extends to C2. Thus (3) will fail for any sequence xi → 0.
The first two conditions do hold for this X . Here are a few key examples:

Example 16.3.1. The ball in Cn is Stein.

Example 16.3.2. Closed submanifolds of Cn (hence in particular, nonsingular affine
varieties) are Stein.

The following is an analogue of Theorem 16.1.5, although it predates it.

Theorem 16.3.3 (Cartan’s Theorem B). Let E be a coherent sheaf on a Stein
manifold. Then Hi(X ,E ) = 0 for all i > 0.

Proof. See [66, Theorem 7.4.3] 	

Corollary 16.3.4. An open cover {Ui} is Leray for a coherent analytic sheaf if each
intersection Ui1...ir is Stein. In particular, this applies to open affine covers of non-
singular varieties.

We also have the following finiteness theorem, which is parallel to Corol-
lary 16.2.3.

Theorem 16.3.5 (Cartan–Serre). If E is a coherent sheaf on a compact complex
manifold X, then the cohomology groups Hi(X ,E ) are finite-dimensional.

Proof. A proof can be found in [18, 47] in general. When E is a vector bundle, a
proof due to Kodaira can be given using Hodge theory for the ∂̄ -operator [49, 120].

	


Exercises

16.3.6. Check that a product of Stein manifolds is Stein.

16.3.7. Check that Cn is Stein.

16.3.8. Check that a closed submanifold of a Stein manifold is Stein.

16.3.9. Prove the converse to Cartan’s Theorem B. Hint: Consider exact sequences
0→I →OX →OX/I → 0 for appropriate ideal sheaves.
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16.4 GAGA, Part II

We complete our discussion of the GAGA theorems. So we assume k = C.
We already stated Theorem 15.4.3, which gives an equivalence between the
categories of coherent algebraic and analytic sheaves on projective space. This
will be deduced from another GAGA theorem that gives comparison of their
cohomologies.

Theorem 16.4.1 (Serre). Let E be a coherent OPn -module. Then there is an isomor-
phism

Hi(Pn,E )∼= Hi(Pn
an,Ean).

We start with a special case.

Proposition 16.4.2. The map

ι∗ : Hi(Pn,OPn(d))→ Hi(Pn
an,OPn

an
(d))

is an isomorphism for all n and d.

Proof. We first check the result for d = 0. We have that Hi(Pn
an,OPn,an) =

H(0,i)(Pn
an). From Theorem 7.2.2, it follows that Hi(Pn

an,C) is zero if i is odd, and
generated by the fundamental class of a linear subspace L⊂ Pn otherwise. It follows
that the Hodge structure on Hi(Pn

an,C) is of type (i/2, i/2) when i is even. Therefore
H(0,i)(X) is C if i = 0 and zero otherwise.

Let H ⊂ Pn be a hyperplane. By induction on n, we can assume that the result
holds for H ∼= Pn−1. We have an exact sequence

0→ OPn(d−1)→ OPn(d)→OH(d)→ 0,

which yields a diagram

· · · Hi(OP(d−1)) → Hi(OP(d)) → Hi(OH(d)) · · ·
↓ ↓ ↓

Hi(OPan(d−1)) → Hi(OPan(d)) → Hi(OHan(d))

By the induction assumption and the five lemma, we see that the vertical map ι∗ is
an isomorphism for OPn(d) if and only if it is for OPn(d−1). Since the isomorphism
holds for d = 0 by the previous step, it holds for all d. 	


We can now prove Theorem 16.4.1.

Proof. By Theorem 15.3.9, there is a resolution

0→ Er → Er−1 → ··· → E0 → E → 0,

where r≤ n and each Ei is a sum of a finite number of line bundles OPn( j). Let r(E )
denote the length of the shortest resolution of this type. Proposition 16.4.2 implies
the theorem when r(E ) = 0. If r(E ) > 0, then we can find an exact sequence
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0→R →F → E → 0,

where F is a direct sum of line bundles and r(R) < r(E ). Then the theorem holds
for R and F by induction on the length. Therefore it holds for E by the 5-lemma.

	

The GAGA theorem can fail for nonprojective varieties. For example, H0(OCn

an
)

is the space of holomorphic functions on Cn which is much bigger than the space
H0(OCn) of polynomials.

Corollary 16.4.3. If X is a smooth projective algebraic variety, then dimHq(X ,Ω p
X )

coincides with the Hodge number hpq of the manifold Xan.

We are now ready to outline a proof of Theorem 15.4.3.

Proof. One part of the theorem follows immediately from the previous theorem.
Suppose that E ,F are coherent algebraic on Pn. Then we claim that Hom(E ,F )∼=
Hom(Ean,Fan). The left- and right-hand sides are the spaces of global sections of
H om(F ,E ) and

H om(E ,F )an = H om(Ean,Fan),

respectively. These spaces of global sections are isomorphic by Theorem 16.4.1.
In order to make the remainder of the proof clear, we will break it up into a series

of assertions. The last assertion is precisely what we need to obtain the theorem:

(An) Given a coherent analytic sheaf E on Pn, there exists a constant d0 such that
E (d) is generated by global sections for d ≥ d0.

(Bn) Given a coherent analytic sheaf E on Pn, there exists a constant d0 such that
Hi(Pn,E (d)) = 0 for i > 0 and d ≥ d0.

(Cn) Every coherent analytic sheaf E on Pn arises from a coherent algebraic sheaf.

The logic of the proof is as follows:

An−1&Bn−1 ⇒ An, An ⇒ Bn, An ⇒Cn.

We carry out these steps below.

A: We assume for simplicity that E is a torsion-free coherent analytic sheaf on Pn.
(See the exercises for the general case). Given x ∈ Pn, choose a hyperplane H
passing through x. Consider the sequence

0→OPn(d−1)→ OPn(d)→ OH → 0.

Tensoring this with E yields

0→ E (d−1)→ E (d)→ E |H(d)→ 0

(the injectivity of the first map follows from the torsion-freeness of E ).
By induction, we may assume assertion (B) for H. Therefore we have that
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H1(E |H(d)) = 0 for d ≥ d1. Therefore, there is a d1 such that for d ≥ d1 we
get a sequence of surjections

H1(E (d−1)) � H1(E (d)) � H1(E (d + 1)) � · · · .

Since these spaces are finite-dimensional by Theorem 16.3.5, these maps must
stabilize to isomorphisms for all d ≥ d2 for some d2 ≥ d1. Thus

H0(E (d))→ H0(E |H(d))

is surjective for d ≥ d2. By induction, we can assume that E |H(d) is generated
by global sections H0(E (d)|H) for d ≥ d0 ≥ d2. These can be lifted to sections
H0(E (d)), which will span the stalk E (d)x. This proves (An).

B: (Bn) will be proved by descending induction on i. To start the process, observe
that Hi(Pn,E (d)) can be computed using the Čech complex with respect to the
standard cover by Corollary 16.3.4. Therefore Hi(Pn,E (d)) = 0 for i > n and
any d. From (An), we have that E (a) is generated by global sections s1, . . . ,sN

for some a � 0. These sections can be viewed as maps O(−a)→ E . Thus we
have an exact sequence

0→R →F
∑ s j−→ E → 0,

where F = O(−a)N , and R is the kernel. Since F is a direct sum of line
bundles, by Theorems 16.4.1 and 16.2.1, we have Hi(F (d)) = 0 for i > 0 and
d � 0. Therefore

Hi(E (d))∼= Hi+1(R(d)).

Thus this step follows by descending induction on i.
C: Since E (d) is globally generated for d � 0 by (An), we can argue as in B to

show that E fits into an exact sequence

0→R →F2 → E → 0,

where F2 is a direct sum of line bundles. Repeating this yields an epimorphism

F1 →R → 0,

where F1 is a direct sum of line bundles. Thus we obtain a presentation

F1
f→F2 → E → 0.

In particular, note that the Fi are algebraic. It follows from the previous step
that f is a morphism of the underlying algebraic sheaves. Consequently, E is
the cokernel of an algebraic map, and hence also algebraic. 	
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Exercises

16.4.4. If X is a smooth projective variety, show that H1(X ,O∗
X )∼= H1(Xan,O∗

Xan
).

16.4.5. Consider the setup in as step A of the proof of Theorem 15.4.3, but without
the torsion-freeness assumption for E . Let K = ker[E (−1)→ E ], where the map
is given by tensoring E with the inclusion of the ideal sheaf of H.

(a) Show that K is supported on H. Thus we can apply the induction assumption to
conclude that Hi(K (d)) = 0 for i > 0 and d � 0.

(b) By breaking up

0→K (d)→ E (d−1)→ E (d)→ E (d)|H → 0

into short exact sequences, show that H0(E (d))→H0(E (d)|H) is surjective for
d � 0.



Chapter 17
Computation of Some Hodge Numbers

The Hodge numbers of a smooth projective algebraic variety are very useful
invariants. By Hodge theory, these determine the Betti numbers. In this chapter, we
turn to the practical matter of actually computing these for a number of examples
such as projective spaces, hypersurfaces, and double covers. The GAGA theorem,
Theorem 16.4.1, allows us to do this by working in the algebraic setting, where we
may employ some of the tools developed in the earlier chapters.

17.1 Hodge Numbers of Pn

Let S = k[x0, . . . ,xn] and P = Pn
k for some field k. We first need to determine the

sheaf of differentials.

Proposition 17.1.1. There is an exact sequence

0→Ω 1
P → OP(−1)n+1 →OP → 0.

Proof. LetΩS =⊕Sdxi
∼= Sn+1 be the module of Kähler differentials of S. Construct

the graded S-module

M = Γ∗(Ω 1
P) = Γ (An+1−{0},π∗Ω 1

P),

where π : An+1−{0}→ P is the projection. This can be realized as the submodule
ΩS consisting of those forms that annhilate the tangent spaces of the fibers of π .
The tangent space of the fiber over [x0, . . . ,xn] is generated by the Euler vector field
∑xi

∂
∂xi

. Thus a 1-form ∑ fidxi lies in M if and only if ∑ fixi = 0.
Next, we have to check the gradings. ΩS has a grading such that the dxi lie in

degree 0. Under the natural grading of M = Γ∗(Ω 1
P), sections of Ω 1

P(Ui) that are
generated by

d

(
x j

xi

)
=

xidx j− x jdxi

x2
i

,
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should have degree 0. Thus the gradings on ΩS and M are off by a shift of
one.

To conclude, we have an exact sequence of graded modules

0→M →ΩS(−1)→ m → 0, (17.1.1)

where m =(x0, . . . ,xn) and the first map sends dxi to xi. Since m∼ S, (17.1.1) implies
the result. 	


Dualizing yields the sequence of Example 15.3.10.

Proposition 17.1.2. Suppose we are given an exact sequence of locally free sheaves

0→A →B → C → 0.

If A has rank one, then

0→A ⊗∧p−1C →∧pB →∧pC → 0

is exact for any p≥ 1. If C has rank one, then

0→∧pA →∧pB →∧p−1A ⊗C → 0

is exact for any p≥ 1.

Proof. We prove the first statement, where rank(A ) = 1, by induction, leaving the
second as an exercise. When p = 1 we have the original sequence. In general, the
maps in the putative exact sequence need to be explained. The last map λ : ∧pB →
∧pC is the natural one. The multiplication B⊗∧p−1B → ∧pB restricts to give
μ : A ⊗∧p−1B→∧pB. We claim that μ factors through a map α : A ⊗∧p−1C →
∧pB. For this we can, by induction, appeal to the exactness of

0→A ⊗∧p−2C →∧p−1B →∧p−1C → 0.

Since A has rank one,
μ |A⊗(A⊗∧p−2C ) = 0,

so μ factors as claimed. Therefore all the maps in the sequence are defined.
Exactness can be checked on stalks. For this the sheaves can be replaced by free

modules. Let {b0,b1, . . .} be a basis for B with b0 spanning A . Then the images
b̄1, b̄2, . . . give a basis for C . Then the above maps are given by

α : b0⊗ b̄i1 ∧·· ·∧ b̄ip−1 �→ b0⊗bi1 ∧·· ·∧bip−1 ,

λ : bi1 ∧·· ·∧bip �→ b̄i1 ∧·· ·∧ b̄ip ,

where · · ·> i2 > i1 > 0. The exactness is immediate. 	
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Corollary 17.1.3. There is an exact sequence

0→Ω p
P →OP(−p)(

n+1
p ) →Ω p−1

P → 0

and in particular,
Ω n

P
∼= OP(−n−1).

Proof. This follows from the above proposition and Proposition 17.1.1, together
with the isomorphism

∧p[OP(−1)n+1]∼= OP(−p)(
n+1

p ). 	


This corollary can be understood from another point of view. Using the notation
introduced in the proof of Proposition 17.1.1, we can extend the map ΩS(−1)→ m
to an exact sequence

0→ [∧n+1ΩS](−n−1) δ→ ··· → [∧2ΩS](−2) δ→ΩS(−1) δ→ m→ 0, (17.1.2)

where
δ (dxi1 ∧·· ·∧dxip) =∑(−1)pxi j dxi1 ∧·· ·∧ d̂xi j ∧·· ·∧dxip

is contraction with the Euler vector field. The sequence is called the Koszul complex,
and it is one of the basic workhorses of homological algebra [33, Chapter 17]. The
associated sequence of sheaves is

0→ [∧n+1On+1
P ](−n−1)→ ··· → [∧2On+1

P ](−2)→ [On+1
P ](−1)→OP → 0.

If we break this up into short exact sequences, then we obtain exactly the sequences
in Corollary 17.1.3.

Proposition 17.1.4.

Hq(P,Ω p
P) =

{
k if p = q≤ n,

0 otherwise.

Proof. When p = 0, this follows from Theorem 16.2.1. In general, the same theorem
together with Corollary 17.1.3 implies

Hq(Ω p
P)∼= Hq−1(Ω p−1

P ).

Therefore, we get the result by induction. 	

When k = C, this gives a new proof of the formula for Betti numbers of Pn given

in Section 7.2. By a somewhat more involved induction we can obtain the following
theorem of Raoul Bott:
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Theorem 17.1.5 (Bott). Hq(Pn,Ω p
Pn(r)) = 0 unless

(a) p = q, r = 0,
(b) q = 0, r > p,
(c) or q = n, r <−n + p.

Proof. A complete proof will be left for the exercises. We give the proof for
p ≤ 1. For p = 0, this is a consequence of Theorem 16.2.1. We now turn to p = 1.
Corollary 17.1.3 implies that

Hq−1(O(r))→Hq(Ω 1(r))→ Hq(O(r−1))e (17.1.3)

is exact. We use constants e,e′, . . . for exponents whose exact values are immate-
rial for the argument. The sequence (17.1.3), along with Theorem 16.2.1, forces
Hq(Ω 1(r)) = 0 in the following four cases: q = 0,r < 1; q = 1,r < 0; 1 < q < n;
q = n,r ≥ −n + 1. The remaining cases are q = 0,r = 1 and q = 1,r > 0. The trick
is to apply Corollary 17.1.3 with other values of p. This yields exact sequences

Hq(O(r−2))e → Hq(Ω 1(r))→ Hq+1(Ω 2(r))→ Hq+1(O(r−2))e,

Hq+1(O(r−3))e′ → Hq+1(Ω 2(r))→ Hq+2(Ω 3(r))→ Hq+2(O(r−3))e′ ,

. . .

leading to isomorphisms

H0(Ω 1(1))∼= H1(Ω 2(1))∼= · · · ∼= Hn−1(Ω n(1)) = Hn−1(O(−n)) = 0.

Likewise, for r > 0,

H1(Ω 1(r))∼= H2(Ω 2(r))∼= · · · ∼= Hn(Ω n(r)) = Hn(O(−n−1 + r)) = 0. 	


Exercises

17.1.6. Finish the proof of Proposition 17.1.2.

17.1.7. Given an exact sequence 0 → A → B → C → 0 of locally free sheaves,
prove that the top exterior power detB is isomorphic to (detA )⊗ (detC ). Use this
to rederive the formula for Ω n

Pn .

17.1.8. Finish the proof of Theorem 17.1.5.

17.2 Hodge Numbers of a Hypersurface

We now let X ⊂ P = Pn
k be a nonsingular hypersurface defined by a degree-d poly-

nomial.
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Proposition 17.2.1. The restriction map

Hq(Pn,Ω p
P)→Hq(X ,Ω p

X)

is an isomorphism when p + q < n−1.

We give two proofs, one now, over C, and another later for general k.

Proof. Let k = C. The weak Lefschetz theorem, Theorem 14.3.1, implies that the
restriction map Hi(Xan,C)→Hi(Yan,C) is an isomorphism for i < n−1. The propo-
sition is a consequence of this together with the the canonical Hodge decomposition
(Theorem 12.2.4) and GAGA (Theorem 16.4.1). 	


As a corollary, we can calculate many of the Hodge numbers of X .

Corollary 17.2.2. The Hodge numbers hpq(X) equal δpq, where δpq is the Kronecker
symbol, when n−1 �= p + q < 2n−2.

Proof. We give a proof when k = C. For p+q < n−1, this follows from the above
proposition and Proposition 17.1.4. For p+q > n−1, this follows from GAGA and
Corollary 10.2.3. 	


We prepare for the second proof by establishing a few key lemmas.

Lemma 17.2.3. There is an exact sequence

0→Ω p
P(−d)→Ω p

P →Ω p
P |X → 0.

(Recall thatΩ p
P |X is shorthand for i∗i∗Ω p

P , where i : X → P is the inclusion.)

Proof. Tensor
0→OP(−d)→ OP → OX → 0

with Ω p
P to get

0 �� Ω p
P ⊗OP(−d) ��

∼=
��

Ω p
P ⊗OP

��

∼=
��

Ω p
P ⊗OX ��

∼=
��

0

0 �� Ω p
P(−d) �� Ω p

P
�� Ω p

P |X �� 0

For the last isomorphism, it is simply a matter of expanding the notation. Observe
that if ι : X → P is the inclusion, then

Ω p
P |X = ι∗ι∗Ω p

P = ι∗(ι−1Ω p
P ⊗OX)∼=Ω p

P ⊗OX . 	


Lemma 17.2.4. 0→ OX(−d)→Ω 1
P|X →Ω 1

X → 0 is exact.
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Proof. We have a natural epimorphism Ω 1
P|X →Ω 1

X corresponding to restriction of
1-forms. We just have to determine the kernel. Let f be a defining polynomial of
X , and let M = Γ∗(Ω 1

P) and M = Γ∗(Ω 1
X ). We embed M as a submodule of ΩS(−1)

as in the proof of Proposition 17.1.1. In particular, the symbols dxi have degree 1.
Then ker[M/ f M →M] is a free S/( f )-module generated by

d f =∑
i

∂ f
∂xi

dxi.

Thus it is isomorphic to S/( f )(−d). 	


Corollary 17.2.5. 0→Ω p−1
X (−d)→Ω p

P |X →Ω p
X → 0.

Proof. Apply Proposition 17.1.2 to the lemma. 	

For the second proof of Proposition 17.2.1, it is convenient to prove something

stronger.

Proposition 17.2.6. If p + q < n−1, then

Hq(X ,Ω p
X(−r)) =

{
Hq(Pn,Ω p

P) if r = 0,

0 if r > 0.

Proof. We prove this by induction on p. For p = 0, this follows from the long exact
sequences associated to

0→OP(−d− r)→ OP(−r)→ OX(−r)→ 0

and Theorem 16.2.1.
In general, by induction and Corollary 17.2.5 we deduce

Hq(X ,Ω p
X(−r)) = Hq(Ω p

P(−r)|X)

for r ≥ 0 and p + q < n−1. Lemma 17.2.3 and Theorem 17.1.5 give

Hq(Ω p
P(−r)|X ) =

{
Hq(Pn,Ω p

P) if r = 0,

0 if r > 0.
	


Exercises

17.2.7. Using Exercise 17.1.7, deduce a version of the adjunction formula Ωn−1
X

∼=
OX (d−n−1) with X as above.

17.2.8. Compute Hq(X ,Ω n−1
X ) for all q.
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17.3 Hodge Numbers of a Hypersurface II

As in the previous section, X ⊂Pn is a nonsingular degree-d hypersurface. By Corol-
lary 17.2.2, the Hodge numbers hpq(X) equal δpq when n− 1 �= p + q < 2(n− 1).
So the only thing left to compute are the Hodge numbers in the middle. The formu-
las simplify a bit by setting hpq

0 (X) = hpq(X)− δpq. These can be expressed by the
Euler characteristics:

Lemma 17.3.1. hp,n−1−p
0 (X) = (−1)n−1−pχ(Ω p

X )+ (−1)n.

We can calculate these Hodge numbers by hand using the following recurrence
formulas.

Proposition 17.3.2.

(a)

χ(Ω p
P(i)) =

p

∑
j=0

(−1) j
(

n + 1
p− j

)(
i− p + j + n

n

)
.

(b)

χ(OX (i)) =
(

i+ n
n

)
−

(
i+ n−d

n

)
.

(c)
χ(Ω p

X(i)) = χ(Ω p
P(i))− χ(Ω p

P(i−d))− χ(Ω p−1
X (i−d)).

Proof. Corollary 17.1.3 yields the recurrence

χ(Ω p
P(i)) =

(
n + 1

p

)
χ(OP(i− p))− χ(Ω p−1

P (i)).

Therefore (a) follows by induction on p. The base case was obtained previously in
(16.2.4).

Lemma 17.2.3 and Corollary 17.2.5 imply

χ(Ω p
X(i)) = χ(Ω p

P(i)|X )− χ(Ω p−1
X (i−d))

= χ(Ω p
P(i))− χ(Ω p

P(i−d))− χ(Ω p−1
X (i−d)).

When p = 0, the right side can be evaluated explicitly to obtain (b). 	

Corollary 17.3.3. The Hodge numbers of X depend only on d and n, and are given
by polynomials in these variables.

In principle, formulas for all the Hodge numbers can be calculated using the
above recurrence formulas. For example,

h0,n−1(X) = (−1)n
(

n−d
n

)
=

(
d−1

n

)
, (17.3.1)

h1,n−2
0 (X) = (−1)n

[
(n + 1)

(
n−1

n

)
− (n + 1)

(
n−d−1

n

)
+

(
n−2d

n

)]
.
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But this gets quite messy as p increases. So, instead, we give a closed form for the
generating function below. Let hpq(d) denote the pqth Hodge number of a smooth
hypersurface of degree d in Pp+q+1. Define the formal power series

H(d) =∑
pq

(hpq(d)− δpq)xpyq

in x and y.

Theorem 17.3.4 (Hirzebruch).

H(d) =
(1 + y)d−1− (1 + x)d−1

(1 + x)dy− (1 + y)dx
.

Corollary 17.3.5. Hodge symmetry hpq = hqp holds for smooth hypersurfaces in
projective space over arbitrary fields.

Remark 17.3.6. Hodge symmetry can fail for arbitrary smooth projective varieties
in positive characteristic [90].

Corollary 17.3.7. If X ⊂ Pn+1
C has degree 2, then bn(X) = 0 if n is odd; otherwise,

bn(X) = hn/2,n/2(X) = 2.

Proof.

H(2) =
1

1− xy
. 	


By expanding the series H(3) for a few terms, we obtain the following corollary:

Corollary 17.3.8. If X ⊂ Pn+1 has degree 3, the middle hodge numbers are

1,1

0,7,0

0,5,5,0

0,1,21,1,0

0,0,21,21,0,0

for n≤ 5.

Although this result can be deduced from the previous formulas in principle,
Hirzebruch [63, 22.1.1] obtained this from his general Riemann–Roch theorem.
His original formula gave a generating function for χ(Ω p

X); the above form can
be obtained by a change of variables, cf. [30, Example XI Corollary 2.4]. Similar
formulas are available for complete intersections. We will be content to work out the
case y = 0. On one side we have the generating function ∑hn0(d)xn. By (17.3.1),
this equals

∑
(

d−1
n + 1

)
xn =

(1 + x)d−1−1
x

,

which is what one gets by substituting y = 0 into Hirzebruch’s formula.
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Exercises

17.3.9. Prove Lemma 16.2.4.

17.3.10. Calculate the Hodge numbers of a degree-d surface in P3 (a) using the
recurrence formulas, (b) using the generating function. Compare the expressions.

17.3.11. Prove that for every fixed d and p, there exists q0 such hpq(d) = 0 for
q≥ q0.

17.4 Double Covers

Our goal is to compute the Hodge numbers for another natural class of examples that
generalize hyperelliptic curves. Let f (x0, . . . ,xn) ∈ C[x0, . . . ,xn] be a homogeneous
polynomial of degree 2d such that the hypersurface D ⊂ Pn = P defined by f = 0
is nonsingular. Let π : X → P be the double cover branched along D (Example
3.4.9). By construction, this is gotten by gluing the affine varieties defined by y2

i =
f (x0, . . . ,1, . . . ,xn) over Ui. It follows that X is nonsingular. Using these coordinates,
it is also clear that the local coordinate ring OX (π−1Ui) is a free O(Ui)-module
generated by 1 and yi. Globally, we have

π∗OX
∼= OP⊕L,

where L is the line bundle locally generated by yi. The ratios yi/y j give a cocycle
for L, from which it easily follows that L = O(±d). To get the correct sign, we need
to observe that L is a nontrivial ideal in π∗OX , so it has no nonzero global sections.
Therefore we obtain the following:

Lemma 17.4.1.
π∗OX

∼= OP⊕OP(−d).

It is worth observing that the summands OP and OP(−d) are exactly the invariant
and anti-invariant parts under the action of the Galois group, which is generated by
the involution σ : yi �→ −yi. A more abstract, but less ad hoc, argument involves
observing that OP ⊕OP(−d) is a sheaf of algebras, and defining X as its relative
spectrum [35]. Then the lemma becomes a tautology. We need an extension of the
previous lemma to forms:

Lemma 17.4.2 (Esnault–Viehweg). There are isomorphisms

π∗Ω p
X
∼=Ω p

P ⊕ (Ω p
P(logD)⊗O(−d))

for every p.

Proof. We sketch the proof. See [35, pp. 6–7] for further details. The Galois group
acts on π∗Ω p

X . We check that the invariant and anti-invariant parts correspond to
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Ω p
P and Ω p

P(logD)⊗O(−d) respectively. It is enough to do this for the associated
analytic sheaves. By the implicit function theorem, we can choose new analytic local
coordinates such that X is given locally by y2 = x1. Then y,x2, . . . ,xn are coordinates
on X , so that their derivatives locally spanΩ 1

X . It follows that a local basis for π∗Ω 1
X

is given by

ydy =
1
2

dx1,dx2, . . . ,dxn︸ ︷︷ ︸
invariant

, dy = y
dx1

2x1
,ydx2, . . . ,ydxn︸ ︷︷ ︸

anti-invariant

.

The forms in the first group are invariant and give a local basis for Ω1
P. The

remainder are anti-invariant and form a local basis for Ω1
P(logD) ⊗ O(−d).

By taking wedge products, we get a similar decomposition for p-forms. 	

Corollary 17.4.3.

Hq(X ,Ω p
X )∼= Hq(P,Ω p

P)⊕Hq(P,Ω p
P(logD)⊗O(−d)).

Proof. Let {Ui} be the standard affine cover of Pn. Then Ũi = π−1Ui gives an affine
cover of X . We can compute Hq(X ,Ω p

X ) using the Čech complex

Č({Ũi},Ω p
X) = Č({Ui},Ω p

P)⊕ Č({Ui},Ω p
P(logD)),

which decomposes into a sum. This decomposition passes to cohomology. 	

Corollary 17.4.4. We have

hpq(X) = δpq + dimcoker[Hq−1(Ω p−1
D (−d))→Hq(Ω p

P(−d))]

+dimker[Hq(Ω p
D(−d))→ Hq+1(Ω p

P(−d))]

in general, and hpq(X) = δpq if p + q < n.

Proof. This follows from (12.6.4) from §12.6 together with Bott’s vanishing
theorem, Theorem 17.1.5. 	


We can obtain more explicit formulas by combining this with earlier results.

Exercises

17.4.5. When n = 2, check that h02(X) = (d−1)(d−2)
2 and h11(X) = 3d2−3d + 2.

17.4.6. Verify that hpq(X) = δpq also holds when p + q > n.
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17.5 Griffiths Residues*

In this section, we describe an alternative method for computing the Hodge numbers
of a hypersurface due to Griffiths [48], although the point is really that the method
gives more, namely a method for computing the Hodge structure (or more precisely
the part one gets by ignoring the lattice). Further details and applications can be
found in books of Carlson, Peters, Müller-Stach [17, §3.2] and Voisin [116, Chapter
6] in addition to Griffiths’ paper. We work over C in this section.

Suppose that X ⊂ P = Pn+1 is a smooth hypersurface defined by a polynomial
f ∈ C[x0, . . .xn+1] of degree d. Let U = P−X . The exact sequence (12.6.5) yields

Hn−1(X)→Hn(P)→ Hn+1(U)→ Hn(X)→ Hn+2(P).

The first map is an isomorphism by weak Lefschetz. Therefore Hn+1(U) maps iso-
morphically onto the primitive cohomology Pn(X) = ker[Hn(X)→ Hn+2(P)]. This
is the same as Hn(X) if n is odd, and has dimension one less if n is even. The
Hodge filtration on F pHn+1(U) maps onto the Hodge filtration on X with a shift
F p−1Pn(X). We refer to Section 12.6 for the definition of this and of the pole filtra-
tion PolepHn+1(U). The key step is to compare these filtrations.

Theorem 17.5.1 (Griffiths). The Hodge filtration F pPn(X) coincides with the
shifted pole filtration Polep+1Hn+1(U). This can, in turn, be identified with the
quotient

H0(Ω n+1
P ((n− p + 1)X))

dH0(Ω n
P((n− p)X))

.

Proof. For p = n, this is immediate because

FnPn(X) = Fn+1Hn+1(U) = H0(Ω n+1
P (logX)) = H0(Ω n+1

P (X)).

For p = n−1, we use the exact sequence

0→Ω n
P,cl(logX)→Ω n

P(X) d→Ω n+1
P (2X)→ 0,

where ΩP,cl(. . .) is the subsheaf of closed forms. Then

H0(Ω n
P(X)) d→ H0(Ω n+1

P (2X))→ H1(Ω n
P,cl(logX))→ H1(Ω n

P(X)).

On the right, the group H1(ΩP(X)) is equal to H1(Ω n
P(d)) = 0 by Bott’s

Theorem 17.1.5. Thus FnHn+1(U)= H1(Ω n
P,cl(logX)) is isomorphic to the cokernel

of the first map labeled by d. This proves the theorem for this case. The remaining
p’s can be handled by a similar argument, which is left for the exercises. 	
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This can be made explicit using the following lemma:

Lemma 17.5.2. Let

ω =∑(−1)ixidx0∧·· ·∧ d̂xi∧·· ·∧dxn+1.

Then

H0(Ω n+1
P (kX)) =

{
gω
f k | g homogeneous of deg = kd− (n + 2)

}
.

With these identifications, elements of Pn(X) can be represented by homo-
geneous rational differential forms gω/ f k modulo exact forms. Set

R =
C[x0, . . . ,xn+1]

(∂ f/∂x1, . . . ,∂ f/∂xn+1)
.

The ring inherits a grading R = ⊕Ri from the polynomial ring. We define a map
Pn(X)→ R by sending the class of gω/ f k to the class of g.

Theorem 17.5.3 (Griffiths). Under this map, the intersection of Hn−p(X ,Ω p
X) with

Pn(X) maps isomorphically to Rτ(p), where τ(p) = (n− p + 1)d− (n + 2).

This leads to an alternative method for computing the Hodge numbers of a
degree-d hypersurface.

Corollary 17.5.4. hpq(d)− δpq is the coefficient of tτ(p) in (1 + t + · · ·+ td−2)n+2.

Proof. We can assume that f = xd
0 +xd

1 + · · ·+xd
n+1 is the Fermat equation. It suffices

to prove that the Poincaré series of R, which is the generating function p(t) =
∑dimRiti, is given by

p(t) = (1 + t + · · ·+ td−2)n+2.

Note that

R =
C[x0, . . . ,xn+1]
(xd−1

0 ,xd−1
1 , . . .)

∼= C[x]
(xd−1)

⊗ C[x]
(xd−1)

⊗·· · (n + 2 times).

Since Poincaré series for graded rings are multiplicative for tensor products, p(t)
is the (n + 2) power of the Poincaré series of C[x]/(xd−1), and this is given by the
above formula. 	




17.5 Griffiths Residues* 291

Exercises

17.5.5. Using exact sequences

0→Ω n−i
P,cl(( j−1)X)→Ω n−i

P (( j−1)X)→Ω n−i+1
P ( jX)→ 0

and identifications

F pHn+1(U)∼= Hn+1−p(Ω p
P,cl(logX))∼= Hn+1−p(Ω p

P,cl(X)),

finish the proof of Theorem 17.5.1.



Chapter 18
Deformations and Hodge Theory

We have now come to the penultimate chapter. Over the course of this book, we
have introduced a number of invariants, such as Betti numbers, Hodge numbers,
and Picard numbers, that can be used to distinguish (complex smooth projective)
varieties from one another. Varieties tend to occur in families. For example, we
have encountered the Legendre family y2 = x(x− 1)(x− λ ) of elliptic curves.
We have, at least implicitly, considered the family of all nonsingular hypersurfaces

∑ad0···dnxd0
0 . . .xdn

n = 0 of fixed degree. So the question is, what happens to these
invariants as the coefficients vary? Or in more geometric language, what happens
as the variety deforms? For Betti numbers of complex smooth projective varieties,
we have already seen that as a consequence of Ehresmann’s theorem, they will not
change in a family, because all the fibers are diffeomorphic. However, as algebraic
varieties, or as complex manifolds, they can be very different. So it is perhaps
surprising that the Hodge numbers will not change either. This is a theorem of
Kodaira and Spencer, whose proof we outline. The proof will make use of pretty
much everything we have done, plus one more thing. We will need a basic result due
to Grothendieck in the algebraic setting, and Grauert in the analytic, that under the
appropriate assumptions, the dimensions of coherent cohomology are upper semi-
continuous. This means that the Hodge numbers could theoretically jump upward at
special values of the parameters. On the other hand, by the Hodge decomposition,
their sums, which are the Betti numbers, cannot. That is the basic idea. In the last
section, we look at the behavior of the Picard number. Here the results are much
less definitive. We end with the Noether–Lefschetz theorem, which explains what
happens for general surfaces in P3

C.

18.1 Families of Varieties via Schemes

Fix an algebraically closed field k. Let R = O(Y ) be the coordinate ring of an affine
variety Y over k. Given a collection of polynomials f j(x1, . . . ,xn;y) ∈ R[x1, . . . ,xn],
the collection of subschemes

DOI 10.1007/978-1-4614-1809-2_18, © Springer Science+Business Media, LLC 2012
293, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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V ( f j(x,b)) = {a ∈ An
k | f j(a,b) = 0}, b ∈ Y, (18.1.1)

is what we mean by a family of subschemes of An
k parameterized by Y . This can be

formulated more geometrically as follows. Affine space over Y or R is

An
Y = An

R = Specm R[x1, . . . ,xn]∼= An
k ×Y.

Let I ⊂ R[x1, . . . ,xn] be the ideal generated by the f j’s. We get a morphism

Specm(R[x1, . . . ,xn]/I)→ Specm R = Y,

and the members of the above family are precisely the fibers

Specm(R[x1, . . . ,xn]/I⊗R/mb) = Specm k[x1, . . . ,xn]/( f j(x,b))

over the points b ∈Y .
Given a collection of polynomials f j(x0, . . . ,xn;y) ∈ S = R[x0, . . . ,xn] homoge-

nous in the x’s, the above setup (18.1.1) can be easily modified to define a family
of subschemes of Pn

k . In more coordinate-free terms, let I ⊂ S be the homogeneous
ideal generated by the f j’s. Then we can construct an ideal sheaf I = Ĩ on projective
space over Y ,

Pn
Y = Pn

R = Pn
k ×Y,

by mimicking the procedure in Section 15.3. We then get the associated closed sub-
scheme X = V (I )⊂ Pn

Y , which fits into the diagram

X ��

π

���
��

��
��

� Pn
k ×Y

����
������

Y

The family is the set of fibers of π . An equivalent alternative is to use the Proj functor
from graded rings to schemes given in [60]. Then V (I ) = Proj(S/I). In general, a
family of (projective) schemes over a scheme Y is nothing more than a morphism of
schemes f : X → Y (fitting into a diagram as above).

Example 18.1.1. Fix d,n, and let V = Vd,n be the vector space of all degree-d homo-
geneous polynomials in n + 1 variables. Then

Un,d = {([a0, . . . ,an], [F ]) ∈ Pn
k ×P(V) | F(a0, . . . ,an) = 0}

with its projection to P(Vd,n) is the universal family of degree-d hypersurfaces.

Our notion of a family of schemes needs some fine tuning. At least for a “good”
family, we would like have to some uniformity among fibers. For example, we would
like the dimensions of the fibers to be the same. However, the example of a constant
map An

k → Am
k shows that our present notion is too general. We can certainly avoid

this sort of example by requiring surjectivity, but this is not enough either:
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Example 18.1.2. Consider the morphism

B = {(x,y,t) ∈A3
k | y− xt = 0}→ A2

k

given by projection to (x,y). The fiber over (0,0) is one-dimensional, but the other
fibers are zero-dimensional.

However, on the positive side, we have the following:

Proposition 18.1.3. If f : X → Y is a surjective morphism of a variety to a non-
singular curve, then all fibers have dimension equal to dimX −1.

Proof. Fix p ∈ Y . We can assume that X and Y are affine. By assumption, Y is
the spectrum of a Dedekind domain [8, Chapter 9]. Therefore, we can assume (after
shrinking Y further) that the maximal ideal mp is principal. Therefore the fiber f−1 p
is also defined by a principal ideal, and the result follows from Krull’s principal ideal
theorem [8, Corollary 11.17]. 	


Over more general bases, the right notion, due to Grothendieck, of a good family
is more subtle. To partially motivate it, let us look at a case in which things could
go wrong. Suppose Y = Specm R is affine, and that X were reducible and had a
component X1 that mapped to a proper subvariety of Y . Then fibers need not have the
same dimension. Choosing a nonzero regular function r ∈ R vanishing along f (X1),
r would annihilate any function vanishing along X −X1. So this is something to
avoid; in good cases, T = O(U) should be a torsion-free R-module for any nonempty
open U ⊂ X . Example 18.1.2 shows that torsion-freeness is still too weak, but at
least we are heading in the right direction. Torsion-freeness is equivalent to the
injectivity of I⊗ T → T for every principal ideal I ⊂ R. Requiring this for every
ideal is equivalent to the flatness of T , and this is the key.

Definition 18.1.4. Let R be a commutative ring. An R-module T is flat if T ⊗R N →
T ⊗R M is injective whenever N → M is an injective map of R-modules. If Y =
Specm R, a morphism or family f : X → Y of schemes is flat if O(U) is a flat
R-module for every open set U ⊆ X . For general Y , f is flat if f−1Ui → Ui are
flat for some affine open cover {Ui} of Y .

Standard properties of flat modules can be found in [15, 33], and these show that
the last part of the definition is well defined. Some intuition behind the geometric
meaning of flatness can be found in [34, 60, 92]. Example 18.1.1 is flat. We point
out one aspect that makes this property attractive. We will deduce a special case of
this from a stronger result in the next section.

Proposition 18.1.5. The fibers of a flat surjective morphism of varieties f : X → Y
all have the same dimension dimX −dimY .

Proof. See [60, Chapter III, Proposition 9.5]. 	
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We can recover Proposition 18.1.3 from this by the following observation:

Lemma 18.1.6. If f : X → Y is a surjective morphism of a variety to a nonsingular
curve, then it is flat.

Proof. The lemma is a consequence of the well-known fact that a torsion-free
module over a Dedekind domain is flat. This fact can be proved by observing that
torsion-free modules over Dedekind domains are direct limits of finitely generated
locally free modules, and applying Exercise 18.1.12. 	


We encountered smoothness very briefly already as the algebraic analogue of a
submersion, which is to say that the maps on Zariski tangent spaces were required to
be surjective. This definition does not work well if the varieties are singular. Instead,
we can formulate the definition directly using a Jacobian criterion below.

Definition 18.1.7. A morphism f : X → Y of schemes is smooth (of relative dimen-
sion m) at p ∈ X if it is locally given by

Specm R[x1, . . . ,xn+m]/( f1, . . . , fn)→ Specm R,

where

rank

(
∂ fi

∂x j
(p)

)
= n.

The morphism is smooth if this holds for all p ∈ X .

To be clear, “locally” above means that both X and Y are allowed to be replaced
by neighborhoods of p and f (p) respectively.

Example 18.1.8. Let Vd,n and Ud,n be as in Example 18.1.1. There is a hypersurface
Δ ⊂ P(Vd,n) parameterizing singular hypersurfaces. The restriction of Ud,n →
P(Vd,n) to the complement of Δ is smooth.

Lemma 18.1.9. When Y = Specm k is a point, p ∈ X is smooth in this sense if and
only if it is nonsingular or smooth in the sense of Definition 2.5.14.

Proof. Locally, we have

X = Specm k[x1, . . . ,xn+m]/( f1, . . . , fn),

so that dimX ≥ m by Krull’s theorem [8, Corollary 11.6]. On the other hand, the
Jacobian at p has rank n, which implies that dimTX ,p = m. Since m ≤ dimOX ,p ≤
dimTX ,p by standard commutative algebra, this forces p ∈ X to be nonsingular
or smooth in the sense of Definition 2.5.14. The converse is also true by [92,
Chapter III, §4, Theorem 4], so these are equivalent conditions. 	


In general, we have the following characterizations. In particular, smooth maps
between nonsingular varieties are indeed the same as submersions:
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Theorem 18.1.10. Let f : X → Y be a morphism. Then

(a) The morphism f is smooth of relative dimension m if and only if f is flat and all
the fibers are nonsingular of dimension m.

(b) If X and Y are nonsingular, then f is smooth if and only if it induces a surjection
on all tangent spaces Tx → Tf (x).

Proof. See [92, Chapter III, §10, Theorem 3′] for (a).
Now suppose that the spaces are nonsingular. From our definition of smooth-

ness, it is clear that the map on tangent spaces given by the Jacobian has maximal
rank. Conversely, we may apply [60, Chapter III Propositions 10.1, 10.4] to see that
conditions (a) hold. 	


This can be modified to prove that Definition 18.1.7 is equivalent to the usual
definition of smoothness given in [60].

Exercises

18.1.11. Let R = O(Y ) be the coordinate ring of an affine variety, and let S =
R[x0, . . . ,xn]. Given a graded S-module M, construct a sheaf of modules M̃ on Pn

Y
using (15.3.1) and whatever refinements are needed. Show that this is coherent if M
is finitely generated.

18.1.12. Prove that the following examples are flat R-modules:

(a) Free modules.
(b) Direct summands of flat modules, hence locally free modules.
(c) Unions of a directed families of locally free modules. A family of subsets is

directed, or filtered, if the union of any pair of members of the family is con-
tained in another member.

(d) R[x1, . . . ,xn].

18.1.13. Show that Example 18.1.2 is not flat directly without appealing to
Proposition 18.1.5.

18.1.14. Check the smoothness of Example 18.1.8.

18.1.15. Given a morphism f : X → Y , the relative differentials are defined by
Ω 1

X/Y = coker[Ω 1
Y → Ω 1

X ]. Show that if f is smooth of relative dimension n, then

Ω 1
X/Y is locally free of rank n.

18.2 Semicontinuity of Coherent Cohomology

In the last section, we defined the notion of a family of subschemes of Pn
k , which

amounted to a family of ideal sheaves. It is convenient to extend this a bit. We can
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regard a coherent sheaf M on Pn
Y as a family of coherent sheaves My = M |Pn×{y}

on Pn
k parameterized by Y . In more explicit terms, when Y is affine with coordinate

ring R = O(Y ), a finitely generated graded module M over

S = R[x0, . . . ,xn] =
⊕

Si

gives rise to a coherent sheaf M = M̃ on Pn
R = Pn

k ×Y by Exercise 18.1.11. Then

My = ˜M⊗R R/my. The basic question that we want to address is, how do the dimen-
sions of the cohomology groups

hi(My) = dimHi(My)

vary with y ∈ Y ? Let us consider some examples.

Example 18.2.1. Let M be a finitely generated graded k[x0, . . . ,xn]-module. Then

R⊗k M is a finitely generated graded S-module. M = R̃⊗M is a “constant” family
of sheaves; we have M |y = M̃. This can be constructed geometrically. Let π : Pn

k ×
Y → Y be the projection. Then M = π∗(M̃). Clearly y �→ hi(My) is a constant
function of y.

In general, this is not constant:

Example 18.2.2. Set R = k[s, t], and choose three points

p1 = [0,0,1], p2 = [s,0,1], p3 = [0, t,1]

in P2
k with s, t variable. Let I be the ideal sheaf of the union of these points in

P2
R = P2

k ×A2
k . This can also be described as Ĩ, where I is the product

(x,y,z−1)(x− s,y,z−1)(x,y− t,z−1)⊂ R[x,y,z].

Consider I (1) = Ĩ(1). The global sections of this sheaf correspond to the space of
linear forms vanishing at p1, p2, p3. Such a form can exist only when the points are
collinear, and it is unique up to scalars unless the points coincide. Thus

h0(I (1)(s,t)) =

⎧⎨⎩ 2 if s = t = 0,
1 if s = 0 or t = 0 but not both,
0 if s �= 0 and t �= 0.

One can also see that χ(I (1)(s,t)) = χ(OP2(1))− 3 is constant, so h1 has similar
jumping behavior.

In the above example, the sets where the cohomology jumps are Zariski closed.
This is typical:

Theorem 18.2.3 (Grothendieck). Let R be an affine algebra, and Y = Specm R.
Suppose that M = M̃, where M is a finitely generated graded S = R[x0, . . . ,xn]-
module that is flat as an R-module. Then
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y �→ hi(My)

is upper semicontinuous, i.e., the sets {y | hi(My)≥ r} are Zariski closed. The Euler
characteristic

y �→ χ(My) =∑(−1)ihi(My)

is locally constant.

By GAGA, we deduce semicontinuity of hi(My,an) under the same conditions.
In fact, Grauert has established more general statements in the analytic setting where
GAGA is not available. Precise statements and proofs can be found in [47, 46].
The following important corollary is actually a characterization of flatness [60,
Chapter III, 9.9].

Corollary 18.2.4. If X → Y is a flat family of projective schemes, then the Hilbert
polynomial χ(OXy(d)) is locally constant. In particular, the fibers have the same
dimension over connected components.

We now set up the preliminaries for the proof of Theorem 18.2.3. Let

C•(M) =
⊕

i

M

[
1
xi

]
0
→

⊕
i< j

M

[
1

xix j

]
0
→ ···

denote the Čech complex of M = M̃ with respect to the standard affine cover of
Pn

R. This is a complex of flat R-modules by assumption. The Čech complex of the
fiber My can be identified with C•(M⊗R/my) ∼= C•(M)⊗R/my. Theorem 7.4.5
and Corollary 16.1.8 imply the following:

Lemma 18.2.5.

(a) H i(C•(M)) ∼= Hi(Pn
R,M ).

(b) H i(C•(M)⊗R/my)∼= Hi(Pn
R,My).

Most of the arguments of Chapter 16 can be reprised to prove that these coho-
mologies are finitely generated as R-modules (see [60]). Therefore the flat complex
C•(M) can be replaced by a complex D• of finitely generated locally free R-modules
with the same property (b) by the following lemma:

Lemma 18.2.6. Suppose that C• is a finite complex of flat R-modules with finitely
generated cohomology. Then there exist a finite complex D• of finitely generated
locally free modules and a map of complexes D• →C• such that

H i(D• ⊗N)∼= H i(C• ⊗N)

for any R-module N.

Proof. See [93, pp. 47–49]. 	

We now prove Theorem 18.2.3.
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Proof. We assume that a complex D• of finitely generated locally free modules has
been constructed as above. By shrinking Y if necessary, there is no loss in assuming
that these are free modules. Thus the differentials Di → Di+1 can be represented by
matrices Ai over R = O(Y ). The differentials A•(y) of D• ⊗R/my are obtained by
evaluating these matrices at y. We note that

hi(M̃y) = rank(Di)− rank(Ai(y))− rank(Ai−1(y)).

Thus the inequality hi(M̃y) ≥ r can be expressed in terms of vanishing of the
appropriate minors of these matrices, and this defines a Zariski closed set.
By Lemma 11.3.3, χ(M̃y) is the alternating sum of ranks of the Di. This is inde-
pendent of y. 	


Exercises

18.2.7. The arithmetic genus of a possibly singular curve X is 1−χ(OX ). Calculate
it for a plane curve.

18.2.8. Show that Theorem 16.1.5 fails for j!OU as defined in the Exercises of §15.1.

18.2.9. Let π : Pn
R → Y be the projection. Show that Riπ∗(M ) ∼= H̃ i(D•) with the

notation used above in the proof of the theorem.

18.2.10. Show that the functions hi(My) are all locally constant for all i if and only
if the sheaves Riπ∗(M ) are all locally free for all i.

18.3 Deformation Invariance of Hodge Numbers

In this section, we revert to working over C.

Theorem 18.3.1 (Kodaira–Spencer). If f : X →Y is a smooth projective morphism
of nonsingular varieties, then the Betti and Hodge numbers of all the fibers are the
same.

Proof. The map f is a proper submersion of the associated C∞-manifolds. Therefore
any two fibers Xt and Xs are diffeomorphic by Theorem 13.1.3. Thus they have the
same Betti numbers. By Theorem 18.2.3, for all p,q, there are constants gpq such
that

hpq(Xt)≥ gqp (18.3.1)

for all t ∈ X with equality on a nonempty open set U . Suppose that (18.3.1) is strict
for at least one pair p,q and t /∈U . Choose a point s ∈U . Then we would have

∑
i

bi(Xt) =∑
p,q

hpq(Xt) >∑
p,q

gpq =∑
i

bi(Xs),

which is impossible. 	
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This result relies on the Hodge theorem in an essential way, and generalizes to
compact Kähler manifolds. However, it is known to fail when C is replaced by a field
of positive characteristic. Also it can fail for many of the other invariants considered
so far, even over C. We consider some examples below.

We want to discuss one more positive result. For a smooth projective variety X ,
the canonical bundle ωX =Ω dimX

X and the nth plurigenus is defined by

Pn(X) = h0(X ,ω⊗n
X ).

These invariants are of fundamental importance in the classification theory of sur-
faces, which we briefly touched on, and also in the study of higher-dimensional
varieties. Gentle introductions to the latter highly technical subject can be found in
[73, 83]. There are examples of surfaces that can be distinguished by plurigenera,
but not by Hodge numbers alone. Curves have three distinct types with different
behaviors: P1, elliptic curves, and everything else. A similar division can be made
in higher dimensions using growth rates of the plurigenera as a function of n, which
is called the Kodaira dimension. From this point of view, the analogues of P1 are
the varieties for which all the plurigenera are zero. The “everything else” category
consists of the varieties of general type. These are the X for which Pn(X) grows at
the maximum possible rate, which is to say like a polynomial of degree dimX . For
example, X has general type if ωX is ample. The first plurigenus P1(X) = h1,0(X) is
deformation-invariant by the above theorem, and the result was long conjectured for
all n. Siu [107] proved this for the class of varieties of general type, and later for all
varieties. A simplified presentation of the proof can be found in Lazarsfeld’s book
[78, §11.5]. We can get a very special case quite cheaply from what we have proved
so far.

Theorem 18.3.2. Suppose that f : X → Y is a smooth projective morphism of com-
plex varieties such that ωX0 is ample for some 0 ∈ Y . Then Pn(Xy) = Pn(X0) for all
n > 0 and y in a Zariski open neighborhood of 0.

Proof. We may assume that n > 1. Using standard ampleness criteria [60], one can
see that there is an open neighborhood of 0 such that ωXy is ample for all y ∈ U .
By Kodaira’s vanishing theorem (Corollary 12.6.4),

Hi(Xy,ω⊗n
Xy

) = 0

for y ∈U , i > 0 (and the standing assumption n > 1). Thus

Pn(Xy) = χ(ω⊗n
Xy

)

is constant. 	
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Exercises

18.3.3. Give a formula for the nth plurigenus of a smooth projective curve using
Riemann–Roch.

18.3.4. There exist examples of surfaces X for which ω⊗2
X
∼= OX but with ωX non-

trivial. Check that Pn(X) = 0 when n is odd, and 1 if even.

18.4 Noether–Lefschetz*

The Picard number is an important and subtle invariant that is not stable under
deformation. For example, we saw in Section 11.2 that the Picard number of E×E
is not constant. But any two (products of) elliptic curves are deformation equivalent,
since any elliptic curve can be realized as a smooth cubic in P2. Let us now look at
surfaces in P3.

Theorem 18.4.1 (Noether–Lefschetz). Let d ≥ 4. Then there exists a surface X ⊂
P3

C of degree d with Picard number 1.

Remark 18.4.2. Noether refers not to Emmy, but her father Max, who was also a
mathematician.

Remark 18.4.3. The result is true “for almost all” surfaces. See the exercises.

Before getting to the proof, we need to explain one key ingredient, which is the
space of all curves in P3. In order to motivate this, consider the corresponding prob-
lem for curves in P2. A curve in the plane is determined by a single homogeneous
polynomial in C[x0,x1,x2] unique up to scalars. Thus a plane curve is determined
by its degree d and a point in the projective space of polynomials of degree d. For
a curve C ⊂ P3 (which we understand to mean a 1-dimensional subscheme), things
are more complicated. We first fix the discrete invariants, which are the degree and
genus. These can be identified, up to a change of variables, with coefficients of the
Hilbert polynomial χ(OC(m)). The curve C is determined by a homogeneous ideal
I ⊂ S = C[x0,x1,x2,x3], and the set of these cannot be parameterized directly by any
reasonable algebrogeometric object. The key technical result is the following:

Proposition 18.4.4 (Grothendieck). Fix a linear polynomial p(m) ∈ Q[m]. Then
there exists a constant d depending only on p(m) such that for any curve C ⊂ P3

with χ(OC(m)) = p(m), the ideal IC = Γ∗(IC) is generated by elements of degree
d. Furthermore, e = dim(IC ∩Sd) is determined by p(m).

Proof. The most natural proof can be found in [91, Lecture 14] using what is now
referred to as Castelnuovo–Mumford regularity. 	
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Thus we see that C is determined by the subspace IC ∩ Sd ⊂ Sd . So the set of
curves with Hilbert polynomial p is parameterized by a subset of the Grassmannian
of e-dimensional subspaces of Sd . This is an important first step, but there is more
to do. Then end result is the following theorem:

Theorem 18.4.5 (Grothendieck). Fix a linear polynomial p∈Q[m]. There is a pro-
jective scheme H = Hilbp

P3 , called the Hilbert scheme, with a universal flat family

C → H of curves in P3
C with Hilbert polynomial p. Universality implies that every

curve with Hilbert polynomial p occurs as a fiber of C exactly once.

Proof. An intuitive account can be found in [34, Chapter VI §2.2]. For more precise
details, see [37]. 	

Remark 18.4.6. Although we have stated only a special case, the result is much more
general. It holds for arbitrary subschemes of Pn

Z.

We can now prove Theorem 18.4.1

Proof. Let X ⊂ P3 be a smooth surface of degree d ≥ 4. From the exact sequence

0→OP3(−d)→ OP3 → OX → 0

and Theorem 16.2.1, we can deduce that H1(X ,OX ) = 0 and H2(X ,OX ) �= 0. From
the exponential sequence

H1(X ,OX )→ Pic(X)→ H2(X ,Z)→ H2(X ,OX)

we can conclude that c1 : Pic(X)→H2(X ,Z) is injective but not surjective. In fact,
it is not surjective after tensoring with Q.

Now we will apply the language and results of §14.4. Choose a Lefschetz pencil
{Xt}t∈P1 of surfaces, let X̃ → P1 be the incidence variety, and let U ⊂ P1 be {t|Xt

is smooth}. Call t ∈ P1 special if for some p ∈ Q[m], all the curves parameter-
ized by Hilbp lie on Xt . There are only countably many special values. So we can
choose a nonspecial t0 ∈U . Therefore any curve lying on Xt0 will propagate to all the
members Xt of the pencil. In particular, it can be “pushed along” any path covering
a loop in U . Consequently, the group NS = c1(Pic(Xt0)) generated by curves on
Xt0 is stable under the action of π1(U, t0). (A less fishy argument is outlined in
Exercise 18.4.10.) By Proposition 14.4.10, H2(Xt0 ,Q) = im(H2(P3))⊕V , where V
is generated by vanishing cycles. The fundamental group π1(U, t0) acts irreducibly
on V . Since NS⊗Q contains im(H2(P3)), it follows that either NS⊗Q equals
im(H2(P3)) or it equals H2(Xt0). The last case is impossible, because c1⊗Q was
not surjective. Therefore NS⊗Q = im(H2(P3)) = Q. 	


Exercises

18.4.7. Is the restriction d ≥ 4 in Noether–Lefschetz necessary?
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18.4.8. Let X ⊂ P3 be a smooth quartic containing a line � (refer back to the
exercises of §11.1). Prove that the Picard number of X is at least 2.

18.4.9. Using the Baire category theorem (that a countable union of nowhere-dense
sets in a complete metric space is nowhere dense), show that the subset of surfaces
for which the conclusion of Noether–Lefschetz fails is nowhere dense in the projec-
tive space of all surfaces of degree d ≥ 4.

18.4.10. Let
C ��

��

X

��
V �� U

be a commutative diagram, where V/U is a finite unbranched Galois cover with
Galois group G, and C is a family of curves in the fiber product X ×U V . Choose
s0 ∈V lying over t0. These assumptions ensure that we have an exact sequence

1→ π1(V,s0)→ π1(U, t0)→ G→ 1.

(a) Show that the restriction α = c1(OX (C ))|Xt0
belongs to H2(Xt0)

π1(V ), where we
identify the fiber of X ×U V over s0 with Xt0 .

(b) Show that the span of the G-orbit of α lies in NS(Xt0) and is stable under
π1(U, t0).

For Xt0 as in the proof of Theorem 18.4.1, a Hilbert scheme argument shows that
any curve C ⊂ Xt0 can be extended to such a family C after possiblly shrinking U .



Part V
Analogies and Conjectures*



Chapter 19
Analogies and Conjectures

In this final chapter, we end our story by beginning another. Although we have
mostly worked over C, and occasionally over a general algebraically closed field,
algebraic geometry can be done over any field. Each field has its own character:
transcendental over C, and arithmetic over fields such as Q,Fp, . . . . It may seem
that aside from a few formal similarities, the arithmetic and transcendental sides
would have very little to do with each other. But in fact they are related in deep and
mysterious ways. We start by briefly summarizing the results of Weil, Grothendieck,
and Deligne for finite fields. Then we return to complex geometry and prove Serre’s
analogue of the Weil conjecture. This result inspired Grothendieck to formulate his
standard conjectures. We explain some of these along with the closely related Hodge
conjecture. These are among the deepest open problems in algebraic geometry.

19.1 Counting Points and Euler Characteristics

Let Fq be the field with q = pr elements, where p is a prime number. Consider the
algebraic closure k = F̄p =

⋃
Fqn . Suppose that X ⊆ Pd

k is a quasiprojective variety
defined over Fp, that is, assume that the coefficients of the defining equations lie in
Fp. Let X(Fpn) be the set of points of PN

Fpn
satisfying the equations defining X . Let

Nn(X) be the number of points of X(Fpn). Here are a few simple computations:

Example 19.1.1. Nn(Am
Fp

) = pnm.

Example 19.1.2. Expressing Pm = Am∪Am−1∪·· · as a disjoint union yields

Nn(Pm
Fp

) = pnm + pn(m−1) + · · ·+ pn + 1.

Example 19.1.3. Nn((P1
Fp

)m) = (pn + 1)m.

The last two computations are based on the following obvious properties.

DOI 10.1007/978-1-4614-1809-2_19, © Springer Science+Business Media, LLC 2012
307, , Universitext,D. Arapura Algebraic Geometry over the Complex Numbers
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(1) Additivity:
Nn(X) = Nn(X −Z)+ Nn(Z)

whenever Z ⊂ X is closed.
(2) Multiplicativity:

Nn(X ×Y ) = Nn(X)Nn(Y ).

Now let us return to complex geometry, so that k = C. The Euler characteristic
with respect to compactly supported cohomology is

χc(X) =∑(−1)i dimHi
c(X ,R).

It is not difficult to compute this number in the above examples using the techniques
from the earlier chapters:

χc(Am
C) = 1, χc(Pm

C) = m, χc((PC)m) = 2m.

This leads to the following curious observation that if we set p = 1 in the above
formulas, then we get χc. Is there a deeper reason for this? First note that although
we defined compactly supported cohomology using differential forms in Section 5.4,
there is a purely topological definition that works for any locally compact Hausdorff
space. We can set

Hi
c(X) = Hi(X̄ , X̄ −X)

for any (or some) compactification X̄ . Then (7.2.1) and a little diagram chasing
yields the long exact sequence

· · · →Hi
c(X)→ Hi

c(X)→ Hi
c(X −Z)→ Hi+1

c (X)→ ··· . (19.1.1)

The first clue that there is a deeper relation between Nn and χc is the following.

Lemma 19.1.4. The invariant χc is additive and multiplicative i.e.,

χc(X) = χc(X −Z)+ χc(Z),

χc(X ×Y ) = χc(X)χc(Y )

holds.

Proof. The additivity follows immediately from (19.1.1). The multiplicativity
follows from the Künneth formula

Hi
c(X ×Y,R) =

⊕
j+l=i

H j
c (X ,R)⊗Hl

c(Y,R). 	


Suppose we start with a complex quasiprojective algebraic variety X with a fixed
embedding into PN

C. If the defining equations (and inequalities) have integer coeffi-
cients, then we can reduce these modulo a prime p to get a quasiprojective variety
(or more accurately scheme) Xp defined over the finite field Fp. In less prosaic terms,
we have a scheme over SpecZ, and Xp is the fiber over p. (In practice, Z might be
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replaced by something bigger such as the ring of integers of a number field, but the
essential ideas are the same.) Then we can count points on Xp and compare it to
χc(X). To avoid certain pathologies, we should take p sufficiently large.

Lemma 19.1.5. If X is expressible as a disjoint union of affine spaces, then Nn(Xp)
is a polynomial in pn for sufficiently large p. Substituting p = 1 yields χc(X).

Proof. If X =
⋃

Ami is a disjoint union, then we get a similar decomposition for Xp

with p � 0. Therefore Nn(Xp) = ∑ pnmi and χc(X) = ∑1nmi . 	

The lemma applies to the above examples of course, as well as to the larger class

of toric varieties [41, p. 103], Grassmannians, and more generally flag varieties [42,
19.1.11]. Nevertheless, most varieties do not admit such decompositions (e.g., a
curve of positive genus does not). So this is of limited use.

It is worth pointing out that these days, the material of this section is usually
embedded into the framework of motivic integration. A succinct introduction to this
is given in [81].

Exercises

19.1.6. Let G = G(2,4) be the Grassmannian of two-dimensional subspaces of k4.
Calculate Nn(G) over Fp and χ(G) over C and compare.

19.1.7. Generalize this to G(2,n).

19.2 The Weil Conjectures

We may ask whether something like Lemma 19.1.5 holds for arbitrary varieties.
We start by looking at an elliptic curve, which is the simplest example where the
lemma does not apply.

Example 19.2.1. Let X be the elliptic curve given by the affine equation y2 = x3−1.
This defines a smooth curve Xp over Fp when p≥ 5. So let us analyze what happens
when p = 5. When n is odd, 5n−1 is not divisible by 3. This implies that x �→ x3 is an
automorphism of F∗5n . Therefore y2 +1 has a unique cube root. Thus Nn(X5)= 1+5n

if n is odd. When n is even, we can compute a few values by brute force on a
machine.

pn Nn

52 36 = 1 + 52 + 2 ·5
54 576 = 1 + 54−2 ·52

56 15876 = 1 + 56 + 2 ·53

58 389376 = 1 + 58−2 ·54

510 9771876 = 1 + 510 + 2 ·55
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So at least empirically, we have the formula

Nn(X5) =

{
1 + 5n if n odd,

1 + 5n−2(−5)n/2 if n even,

= 1 + 5n− (
√−5)n− (−√−5)n.

Example 19.2.2. Calculating the number of points for the elliptic curve defined by
y2 = x3− x with p = 3, we get

pn Nn

3 4 = 1 + 3
32 16 = 1 + 32 + 2 ·3
33 28 = 1 + 33

34 64 = 1 + 34−2 ·32

35 244 = 1 + 35

Then
Nn(X3) = 1 + 3n− (

√−3)n− (−√−3)n

fits this data.

From these and additional examples, we observe a pattern that on an elliptic
curve, Nn = 1 + pn−λ n

1 −λ n
2 for appropriate constants λi with order of magnitude√

p. We can generate more examples by taking products of these with the previous
ones. Based on this data, we may guess that in general Nn(Xp) is a linear combi-
nation of powers λ n

i , and setting λi = 1 yields the Euler characteristic. This turns
out to be correct, but it seems to come out of nowhere. We need some guiding
principle to explain these formulas. The basic insight goes back to Weil [119] (who
proved a number of cases). Suppose that X ⊂ Pd

C is a nonsingular projective variety
with equations defined over Z as above. Let us denote by X̄p the variety over the
algebraic closure F̄p determined by reducing the equations modulo p. The Frobe-
nius morphism Fp : X̄p → X̄p is the map that raises the coordinates to the pth power
(see [60, p. 301] for a more precise description). Then Xp(Fpn) are the points of
X̄p fixed by Fn

p . If this were a manifold with a self-map F (satisfying appropriate
transversallity conditions), then we could calculate this number using the Lefschetz
trace formula. Weil conjectured that this sort of argument could be carried out in the
present setting for some suitable cohomology theory. He made some additional con-
jectures that will be discussed a bit later. Grothendieck eventually constructed such
a Weil cohomology theory—in fact several. For each prime � �= p, he constructed
functors Hi

et(−,Q�) called �-adic cohomology such that:

(1) Hi
et(X̄p,Q�) is a vector space over the field of �-adic numbers Q� = (lim←−Z/�n)⊗

Q.
(2) dimHi

et(X̄p,Q�) is the usual ith Betti number of X .
(3) Fp acts on these spaces. The action on H0

et (X̄p,Q�) is trivial, but nontrivial in
general.
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(4) There is a Lefschetz trace formula that implies that

Nn(Xp) =∑
i
(−1)i trace[Fn∗

p : Hi
et(X̄p,Q�)→ Hi

et(X̄p,Q�)].

Grothendieck constructed this by generalizing sheaf cohomology. The details,
which are quite involved, can be found in the books by Freitag and Kiehl [39] or
Milne [85]. The last formula can be rewritten as

Nn(Xp) =∑
i
(−1)i∑λ n

i j,

where λi j are the generalized eigenvalues of F∗
p on Hi

et(X̄p,Q�). In the previous
examples, the numbers ±√−5,±√−3 above were precisely the eigenvalues of Fp

acting on H1. Although this is overkill, we can also use this formalism to re-prove
the formulas of the last section. For example,

Hi
et(P

m
F̄p

,Q�) =

{
Q� with Fp acting by pi/2 if i < 2m is even,

0 otherwise,
(19.2.1)

gives the formula for Nn(Pm). Notice that the absolute values of the eigenvalues
in these examples have very specific sizes. This is consistent with a deep theorem
of Deligne proving the last of Weil’s conjectures on the analogue of the Riemann
hypothesis. (For more background and in particular what this has to do with the
Riemann hypothesis, see [39], [60, Appendix C], [69], [85] and of course [25].)

Theorem 19.2.3 (Deligne). Let X be a smooth and projective variety defined over
Fp, and X̄ its extension to F̄p. Then the eigenvalues of the Frobenius action on
Hi

et(X̄ ,Q�) are algebraic numbers λ all of whose absolute values satisfy |λ |= pi/2.

Remark 19.2.4. This is valid over any finite field. The word “eigenvalue” above
really means generalized eigenvalue, although in fact the action of Fp has been con-
jectured to be diagonalizable. This is still wide open.

This abstract theorem has concrete consequences. The first goes from topology
to number theory, and the second goes in the opposite direction.

Corollary 19.2.5. Let X ⊂ PN+1 be a smooth degree-d hypersurface defined over
Fp. Then

|Nn(X)− (1 + p + · · ·+ pN)| ≤ bN · pN/2,

where bN is the Nth Betti number of a smooth degree-d hypersurface in Pn
C.

Proof. We can assume that X comes from a hypersurface over C by reducing
modulo a prime. By the weak Lefschetz theorem, Hi(X ,Q) ∼= Hi(PN+1,Q) for
i ∈ [0,2N]−{N}. So the Betti numbers of X and PN+1 are the same in this range.
In fact, the action of Fp would be compatible with this isomorphism. Therefore
eigenvalues would be the same in both spaces for i ∈ [0,2N]−{N}. For PN+1, these
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are given in (19.2.1). Let λ jN denote the eigenvalues on the Nth cohomology of X .
Then

|N1(X)− (1 + p + · · ·+ pN)| ≤ |
bN

∑
j=1

λ jN | ≤ bN · pN/2. 	


Corollary 19.2.6. If X is determined by reducing a complex smooth projective
variety mod p� 0 as above, the Betti numbers of the complex variety can be deter-
mined from Nn(X).

In most cases, the Betti numbers are easier to calculate than Nn. A nontrivial
example in which the last corollary was usefully applied was given by Harder and
Narasimhan [57].

When X is singular or open, then the above theorem is no longer true. Deligne
[27] has shown that the eigenvalues can have varying sizes or weights independent
of cohomological degree. Surprisingly, this has Hodge-theoretic meaning. If one
counts the number of eigenvalues on Hi

et(X̄p,Q�) of a given absolute value pk/2,
then this is the dimension of the weight-k quotient of the mixed Hodge structure on
Hi(X) that we touched on in §12.6. See [26] for a more precise summary of these
results.

Exercises

19.2.7. Assuming Theorem 19.2.3, deduce the Hasse–Weil bound that if X is a
smooth projective genus-g curve over Fp, then |Nn(X)−1− pn| ≤ 2gpn/2. (Of course
this bound came first.)

19.3 A Transcendental Analogue of Weil’s Conjecture

After this excursion into arithmetic, let us return to Hodge theory and prove an ana-
logue of the Weil–Riemann hypothesis found by Serre [102]. To set up the analogy
let us replace X̄ above by a smooth complex projective variety Y , and Fp by an
endomorphism f :Y →Y . As for p, if we consider the effect of the Frobenius on PN

F̄p
,

the pullback of O(1) under this map is O(p). To complete the analogy, we require
the existence of a very ample line bundle OY (1) on Y , so that f ∗OY (1)∼= OY (1)⊗q.
We can take c1(OY (1)) to be the Kähler class ω . Then we have f ∗ω = qω .

Theorem 19.3.1 (Serre). If f : Y →Y is a holomomorphic endomorphism of a com-
pact Kähler manifold with Kähler class ω such that f ∗ω = qω for some q∈R, then
q is an algebraic integer, f ∗ : Hi(Y,Q)→Hi(Y,Q) is diagonalizable, and its eigen-
values are algebraic integers with absolute value qi/2.

Proof. The theorem holds for H2n(Y ), since ωn generates it. Note that qn is the
degree of f , which is necessarily a (rational) integer. Therefore q is an algebraic
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integer. By hypothesis, f ∗ preserves the Lefschetz decomposition (Theorem 14.1.1).
Thus we can replace Hi(Y ) by primitive cohomology Pi(Y ). Recall from Corol-
lary 14.1.4 that

Q̃(α,β ) = Q(α,Cβ̄ )

is a positive definite Hermitian form on Pi(Y ), where

Q(α,β ) = (−1)i(i−1)/2
∫
α ∧β ∧ωn−i.

Consider the endomorphism F = q−i/2 f ∗ of Pi(Y ). We have

Q(F(α),F(β )) = (−1)i(i−1)/2q−n
∫

f ∗(α ∧β ∧ωn−i) = Q(α,β ).

Moreover, since f ∗ is a morphism of Hodge structures, it preserves the Weil operator
C. Therefore F is unitary with respect to Q̃, so its eigenvalues have norm 1. This
gives the desired estimate on absolute values of the eigenvalues of f ∗. 	


Since f ∗ can be represented by an integer matrix, the set of its eigenvalues is a
Galois-invariant set of algebraic integers. So we get a stronger conclusion that all
Galois conjugates have absolute value qi/2. This would imply that when q = 1 (e.g.,
if f is an automorphism) then these are roots of unity.

Exercises

19.3.2. Verify the above theorem for Y a complex torus, and f :Y →Y multiplication
by a nonzero integer n, by direct calculation.

19.3.3. Show, by example, that if f ∗ω is not a multiple of ω , then the eigenvalues
of f ∗ on Hi(Y ) can have different absolute values.

19.4 Conjectures of Grothendieck and Hodge

Prior to Deligne’s proof, Grothendieck [54] had suggested a strategy for carrying
out a proof of the Weil–Riemann hypothesis similar to Serre’s proof of the transcen-
dental version. This required first establishing his standard conjectures [54, 71]. All
but one of these conjectures are open over C. The exception follows from the Hodge
index theorem. For general fields, they are essentially all wide open. Grothendieck
had also formulated his conjectures in order to construct his theory of motives, which
gives a deeper explanation for some of the analogies between the worlds of arith-
metic and complex geometry. So even though Deligne managed to prove the last of
Weil’s conjectures by another method, the problem of solving these conjectures is
fundamental.
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We want to spell out some of these conjectures in the complex case, and indicate
their relation to a better-known Hodge conjecture [65]. Let X be an n-dimensional
nonsingular complex projective variety. A codimension-p algebraic cycle is a finite
formal sum ∑niZi, where ni ∈ Z and Zi ⊂ X are codimension-p closed subvarieties.
These form an abelian group Zp(X) of infinite rank. The first task is to cut it down
to a more manageable size. Given a nonsingular ι : Z ↪→ X , we defined its funda-
mental class [Z] = ι!(1) ∈ H2p(X ,Z). The fundamental class can be defined even
when Z has singularities. This can be done in several ways (see [7]). A quick but
nonelementary method is to use Hironaka’s famous theorem [62] on resolution of
singularities. This implies that there exists a smooth projective variety Z̃ with a bira-
tional map π : Z̃ → Z. Let ĩ : Z̃ → X denote the composition of π and the inclusion.
Then set [Z] = i!(1) ∈ H2p(X ,Z).

Lemma 19.4.1. This class is independent of the choice of resolution of singularities.

Proof. Let Z̃′ → Z be another resolution. Then by applying Hironaka’s theorem to
the fibered product, we see that there exists a third resolution Z̃′′ → Z fitting into a
commutative diagram

Z̃′′
ψ ��

��

Z̃

π
��

Z̃′
π ′ �� Z

Then i!(1) = i!(ψ!1) = (i ◦ ψ)!(1). Therefore Z̃ and Z̃′′ give the same class.
By symmetry, Z̃′ and Z̃′′ also give the same class. 	


We thus get a homomorphism [ ] : Zp(X) → H2p(X ,Z) by sending ∑niZi �→
∑ni[Zi]. The space of algebraic cohomology classes is given by

H2p
alg(X ,Z) = im[Zp(X)→ H2p(X ,Z)],

H2p
alg(X ,Q) = im[Zp(X)⊗Q→ H2p(X ,Q)].

We define the space of codimension-p Hodge cycles on X to be

H2p
hodge(X) = H2p(X ,Q)∩H pp(X)

and let H2p
hodge(X ,Z) denote the preimage of H pp(X) in H2p(X ,Z).

Lemma 19.4.2. H2p
alg(X ,Z)⊆ H2p

hodge(X ,Z)

Proof. It is enough to prove that the fundamental class [Z] of a codimension-p sub-
variety is a Hodge class. Let Z̃ → Z be a resolution of singularities, and let i : Z̃ → X
be the natural map. By Corollary 12.2.10, the map

i! : H0(Z̃) = Z→H2p(X ,Z)(−p)

is a morphism of Hodge structures. Therefore it takes 1 to a Hodge class.
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In more down-to-earth terms, this amounts to the fact that for any form α of type
(r,2n−2p− r) on X , ∫

Z̃
i∗α = 0

unless r = n− p. 	

The Hodge conjecture asserts the converse.

Conjecture 19.4.3 (Hodge). H2p
alg(X ,Q) and H2p

hodge(X ,Q) coincide.

Note that in the original formulation, Z was used in place of Q, but Atiyah and
Hirzebruch have shown that this version is false [7]. It is also worth pointing out
that Voisin [114] has shown that the Hodge conjecture (in various formulations) can
fail for compact Kähler manifolds. On the positive side, we should mention that for
p = 1, the conjecture is true — even over Z — by the Lefschetz (1,1) theorem,
Theorem 10.3.3. We prove that it holds for p = dimX −1.

Proposition 19.4.4. If the Hodge conjecture holds for X in degree 2p (i.e., if
H2p

alg(X ,Q) = H2p
hodge(X ,Q)) with p < n = dimX, then it holds in degree 2n−2p.

Proof. Let L be the Lefschetz operator corresponding to a projective embedding
X ⊂PN . Then for any subvariety Y , we have L[Y ] = [Y ∩H], where H is a hyperplane
section chosen in general position. It follows that Ln−2p takes H2p

alg(X) to H2n−2p
alg (X).

Moreover, the map is injective by hard Lefschetz. Thus

dimH2p
hodge(X) = dimH2p

alg(X)≤ dimH2n−2p
alg (X)≤ dimH2n−2p

hodge (X).

On the other hand, Ln−2p induces an isomorphism of Hodge structures H2p(X ,Q)
(p− n) ∼= H2n−2p(X ,Q), and therefore an isomorphism H2p

hodge(X) ∼= H2n−2p
hodge (X).

This forces equality of the above dimensions. 	

Corollary 19.4.5. The Hodge conjecture holds in degree 2n− 2. In particular, it
holds for three-dimensional varieties.

Given a cycle Y ∈ Zn−p(X), define the intersection number

Z ·Y =
∫

X
[Z]∪ [Y ] ∈ Z.

This can be defined by purely algebrogeometric methods over any field [42].

Definition 19.4.6. A cycle Z ∈ Zp(X) is said to be homologically equivalent to 0
if [Z] = 0. It is numerically equivalent to 0 if for any Y ∈ Zn−p(X) we have Z ·
Y = 0. Two cycles are homologically (respectively numerically) equivalent if their
difference is homologically (respectively numerically) equivalent to 0.

Numerical equivalence is a purely algebrogeometric notion, independent of any
cohomology theory. (This is clearly an issue in positive characteristic where one
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has several equally good cohomology theories, such as the various �-adic theories.)
On the other hand, it is usually easier to prove things about homological equiva-
lence. For example, H2p

alg(X), which is Zp(X) modulo homological equivalence, is

finitely generated, since it is sits in the finitely generated group H2p(X ,Z). There-
fore Zp(X) modulo numerical equivalence is also finitely generated, because clearly
homological equivalence implies numerical equivalence. The converse is one of
Grothendieck’s standard conjectures.

Conjecture 19.4.7 (“Conjecture D”). Numerical equivalence coincides with homo-
logical equivalence.

In order to explain the relationship to Hodge, we state another of Grothendieck’s
conjectures.

Conjecture 19.4.8 (“Conjecture A”). The Lefschetz operator induces an isomor-
phism on the spaces of algebraic cycles

Li : Hn−i
alg (X ,Q)→ Hn+i

alg (X ,Q)

There are several other conjectures, which we will not state. One of them, which
is a version of the Hodge index theorem, is true over C. The remaining conjectures
are known to follow if Conjecture A is true for all X [54, 71]. These conjectures
are weaker than Hodge’s and are known in many more cases. For example, they are
known for all abelian varieties, while Hodge is still open for this class.

Proposition 19.4.9. If the Hodge conjecture holds for X, then Conjecture A will also
hold for it. If Conjecture A holds for X, then conjecture D holds for it.

Proof. By the hard Lefschetz theorem,

Li : Hn−i(X ,Q)→ Hn+i(X ,Q)

is an isomorphism of vector spaces. It follows that Li gives an isomorphism
Hn−i(X) ∼= Hn+i(X)(i) of Hodge structures. Therefore it induces an isomorphism
on the spaces of Hodge cycles

Hn−i
hodge(X ,Q)→Hn+i

hodge(X ,Q).

This is an isomorphism of the spaces of algebraic cycles, since we are assuming the
Hodge conjecture.

By the Hodge index theorem, Theorem 14.1.4, we get a positive bilinear form Q
on Hi(X) given by

Q(α,β ) =
∫

X
α ∪β ′,

where
β ′ =∑±Ln−i+ jβ j
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with β =∑Ljβ j the decomposition into primitive parts in Theorem 14.1.1. Suppose
that Conjecture A holds for X . Then we have a Lefschetz decomposition on the
space of algebraic cycles

H2p
alg(X) =

⊕
Lj(P2p−2 j(X)∩H2p−2 j

alg (X)).

Therefore β ′ ∈ H2n−2p
alg (X) whenever β ∈ H2p

alg(X). Suppose that Z ∈ Zp(X) is
numerically equivalent to 0. Then [Z] = 0, since otherwise we get a contradiction
Z · [Z]′ = Q([Z], [Z]) > 0. 	


Further information about the Hodge conjecture, and related conjectures, can be
found in Lewis [80]. See André [3] for an introduction to motives, which have been
lurking behind the scenes. The historically minded reader will find a fascinating
glimpse into how these ideas evolved in the letters of Grothendieck and Serre [21].

Exercises

19.4.10. Prove that the Hodge conjecture holds for products of projective spaces.
(Hint: the Hodge conjecture is trivially true for a variety whose cohomology is
spanned by algebraic cycles.)

19.4.11. Let X be an n-dimensional smooth projective variety. Another of Grothen-
dieck’s standard conjectures asserts that the components in Hi(X ,Q)⊗H2n−i(X ,Q)
of the class of the diagonal [Δ ] ∈ H∗(X ×X ,Q) under the Künneth decomposition
are algebraic. Show that this follows from the Hodge conjecture.

19.5 Problem of Computability

As we saw in this book, it is relatively straightforward to compute Hodge numbers.
For things like hypersurfaces, we obtained formulas. More generally, given explicit
equations for a subvariety X ⊂ Pn, we may use the following strategy for computing
Hodge numbers.

• View the sheaves Ω p
X as coherent sheaves on Pn. Specifically:

Ω p
X =Ω p

Pn/(IΩ p
Pn + dI ∧Ω p−1

Pn ),

where I is the ideal sheaf of X . These sheaves can be given an explicit presen-
tation by combining this formula with the presentation

OPn(−p−2)(
n+1
p+2) →OPn(−p−1)(

n+1
p+1) →Ω p

Pn

coming from Corollary 17.1.3.
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• Resolve these as in Theorem 15.3.9.
• Calculate cohomology using the resolution.

This can be turned into an algorithm using standard Gröbner basis techniques.
(We are using the term “algorithm” somewhat loosely, but to really get one we
should assume that the coefficients are given to us in some computable subfield of
C such as Q or Q(

√
2,π).)

If one wanted to verify (or disprove) the Hodge conjecture in an example, one
would run up against the following problem, which by contrast to the case of Hodge
numbers seems extremely difficult:

Problem 19.5.1. Find an algorithm to compute the dimensions of H∗
alg(X ,Q) and

H∗
hodge(X ,Q) given the equations (or some other explicit representation).

The following special case of the problem would already be interesting and prob-
ably very hard.

Problem 19.5.2. Find an algorithm for computing the Picard number of a surface in
P3 or of a product of two curves.

We end with a few comments. Given a variety X , the Hodge structure on Hk(X)
is determined by the period matrices

Pp =
(∫

γi
ω j

)
,

where γi is a basis of Hk(X ,Z) and ω j a basis of Hk−p(X ,Ω p
X). When X is defined

over Q, we should in principle be able to compute the entries of these matrices to
any desired degree of accuracy, by combing symbolic methods with numerical ones.
But this does not (appear to) help. However, Kontsevich and Zagier [74] propose that
there may be an algorithm to determine whether such a number (which they call a
period) is rational. More generally, we can ask for an algorithm for deciding whether
any finite set of periods is linearly dependent over Q. Such an algorithm would be
instrumental in finding an algorithm for computing dimH∗

hodge(X ,Q).
Regarding H∗

alg(X), Tate [113] made a conjecture that can be loosely viewed as
an arithmetic version of the Hodge conjecture, although there is even less evidence
for it. Suppose that X is defined over Q and in fact for simplicity Z. We obtain
varieties Xp defined by reducing X mod p. These are smooth for all but finitely
many p. Given an algebraic cycle Z ∈ Zi(X) on X defined over Z (but this is not
essential), we get induced cycles Zp ∈ Zi(Xp). We can form a fundamental class
in [Zp] ∈ H2i

et (X̄p,Q�) ∼= H2i
et (X̄ ,Q�), and it will be an eigenvector for the Frobe-

nius Fp with eigenvalue exactly pi for p � 0. Tate conjectured conversely that the
dimension of the intersection of the pith eigenspaces of Fp, as p varies, is precisely
H2i

alg(X ,Q). Even without assuming the conjecture, this should give some sort of

bound on H2i
alg(X ,Q). The challenge would be to make this effective.
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19.6 Hodge Theory without Analysis

As we have seen, Hodge theory has a number of important consequences for the
cohomology of a smooth complex projective variety X :

(1) Hodge decomposition

∑
p+q=i

hpq(X) = bi(X).

(2) Hodge symmetry
hpq(X) = hqp(X).

(3) Kodaira vanishing
Hi(X ,Ω n

X ⊗L) = 0

for i > 0, n = dimX , and L an ample line bundle on X .

Thanks to GAGA, we can replace (the dimensions of) the above analytic
cohomology groups by their algebraic counterparts. To be precise, for bi(X) we can
use the dimension of either the hypercohomology dimHi(X ,Ω •

X) or some suitable
Weil cohomology such as �-adic theory. A rather natural question, which occurs for
example in [53], is whether these consequences can be established directly with-
out analysis. In particular, can these be extended to arbitrary fields? First, the bad
news: the answer to the second question is in general no. Counterexamples have
been constructed in positive characteristic by Mumford [90], Raynaud [96], and
others. In spite of this, the first question has a positive answer. Faltings [36] gave
the first entirely algebraic proof of (1). This was soon followed by an easier alge-
braic proof of (1) and (3) by Deligne and Illusie [29], which made surprising use of
characteristic-p techniques. An explanation of their proof can be found in Esnault
and Viehweg’s book [35].

The only thing left is see how to prove (2) without harmonic forms. In outline,
first apply the decomposition (1) and hard Lefschetz (which also has an algebraic
proof [27]) to get

hpq(X) = hn−q,n−p(X).

Now combine this with Serre duality [60, Chapter III, Corollary 7.13],

hn−q,n−p(X) = hqp(X).

At this point, we should remind ourselves that Hodge theory gives much more
than the items (1), (2), and (3). For instance, we have seen how to associate a
canonical Hodge structure to every smooth projective variety over C. As far as the
author knows, there is no purely algebraic substitute for this. Nevertheless, we can
devise the following test to see how close we can get. Suppose that X is a smooth
complex projective variety defined by equations ∑ai0...in xi0

0 · · ·xin
n = 0 with coeffi-

cients in Q⊂C (or some other algebraically closed subfield). Given σ ∈Gal(Q/Q),
we get a new complex variety Xσ defined by ∑σ(ai0...in)x

i0
0 · · ·xin

n = 0.
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Problem 19.6.1. Now suppose that Y is another smooth projective variety defined
over Q such that Hi(X ,Q)∼= Hi(Y,Q) as Hodge structures. Show that Hi(Xσ ,Q)∼=
Hi(Yσ ,Q) as Hodge structures for every σ ∈ Gal(Q/Q).

If we assumed the Hodge conjecture, we would get a solution as follows. The
isomorphism Hi(X)∼= Hi(Y ) would give a class in H∗

hodge(X ×Y ), which would be

an algebraic cycleα , necessarily defined over a field Q(t1, . . . ,tN). After specializing
the ti, we can assume that α is defined over Q. Then σ∗(α) would induce the desired
isomorphism Hi(Xσ ,Q) ∼= Hi(Yσ ,Q). To make this work, we really need only the
following weak form of the Hodge conjecture due to Deligne [31]:

Conjecture 19.6.2 (“Hodge cycles are absolute”). If α ∈ H2p(X ,Ω •
X ) is a rational

(p, p) class, then σ∗α is a rational (p, p) class on Xσ .

This conjecture is known in many more cases than the Hodge conjecture.
Although it looks rather technical, it does have some down-to-earth applications
to showing that certain natural constants are algebraic numbers.
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3. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas
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23. Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst.
Hautes Études Sci. Publ. Math. (35), 259–278 (1968)
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Mathematics, Vol. 340. Springer-Verlag, Berlin (1973). Séminaire de Géométrie Algébrique
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40. Fulton, W.: Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing
Company Advanced Book Program, Redwood City, CA (1989). An introduction to algebraic
geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original

41. Fulton, W.: Introduction to toric varieties, Annals of Mathematics Studies, vol. 131. Princeton
University Press, Princeton, NJ (1993). The William H. Roever Lectures in Geometry

42. Fulton, W.: Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics], vol. 2, second edn. Springer-Verlag,
Berlin (1998)

43. Fulton, W., Harris, J.: Representation theory, Graduate Texts in Mathematics, vol. 129.
Springer-Verlag, New York (1991). A first course, Readings in Mathematics

44. Gelfand, S.I., Manin, Y.I.: Methods of homological algebra, second edn. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin (2003)
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119–221 (1957)
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102. Serre, J.P.: Analogues kählériens de certaines conjectures de Weil. Ann. of Math. (2) 71,

392–394 (1960)
103. Serre, J.P.: A course in arithmetic. Springer-Verlag, New York (1973). Translated from the

French, Graduate Texts in Mathematics, No. 7
104. Shafarevich, I.R.: Basic algebraic geometry, study edn. Springer-Verlag, Berlin (1977).

Translated from the Russian by K. A. Hirsch, Revised printing of Grundlehren der mathe-
matischen Wissenschaften, Vol. 213, 1974

105. Silverman, J.H.: The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106.
Springer-Verlag, New York (1992). Corrected reprint of the 1986 original



326 References

106. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves, Graduate Texts in
Mathematics, vol. 151. Springer-Verlag, New York (1994)

107. Siu, Y.T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998). DOI 10.1007/
s002220050276. URL http://dx.doi.org/10.1007/s002220050276

108. Spanier, E.H.: Algebraic topology. Springer-Verlag, New York (1981). Corrected reprint
109. Spivak, M.: Calculus on manifolds. A modern approach to classical theorems of advanced

calculus. W. A. Benjamin, Inc., New York-Amsterdam (1965)
110. Spivak, M.: A comprehensive introduction to differential geometry. Vol. One. Published by

M. Spivak, Brandeis Univ., Waltham, Mass. (1970)
111. Sternberg, S.: Lectures on differential geometry, second edn. Chelsea Publishing Co.,

New York (1983). With an appendix by Sternberg and Victor W. Guillemin
112. Stone, A.H.: Paracompactness and product spaces. Bull. Amer. Math. Soc. 54, 977–982

(1948)
113. Tate, J.T.: Algebraic cycles and poles of zeta functions. In: Arithmetical Algebraic Geometry

(Proc. Conf. Purdue Univ., 1963), pp. 93–110. Harper & Row, New York (1965)
114. Voisin, C.: A counterexample to the Hodge conjecture extended to Kähler varieties.

Int. Math. Res. Not. (20), 1057–1075 (2002). DOI 10.1155/S1073792802111135. URL
http://dx.doi.org/10.1155/S1073792802111135

115. Voisin, C.: Hodge theory and complex algebraic geometry. I, Cambridge Studies in
Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2002). DOI
10.1017/CBO9780511615344. URL http://dx.doi.org/10.1017/CBO9780511615344. Trans-
lated from the French original by Leila Schneps

116. Voisin, C.: Hodge theory and complex algebraic geometry. II, Cambridge Studies in
Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003). Translated
from the French by Leila Schneps

117. Warner, F.W.: Foundations of differentiable manifolds and Lie groups, Graduate Texts in
Mathematics, vol. 94. Springer-Verlag, New York (1983). Corrected reprint of the 1971 edi-
tion

118. Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

119. Weil, A.: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc. 55, 497–
508 (1949)

120. Wells Jr., R.O.: Differential analysis on complex manifolds, Graduate Texts in Mathematics,
vol. 65, third edn. Springer, New York (2008). With a new appendix by Oscar Garcia-Prada

121. Weyl, H.: On Hodge’s theory of harmonic integrals. Ann. of Math. (2) 44, 1–6 (1943)
122. Weyl, H.: The concept of a Riemann surface. Translated from the third German edition by

Gerald R. MacLane. ADIWES International Series in Mathematics. Addison-Wesley Pub-
lishing Co., Inc., Reading, Mass.-London (1964)

http://dx.doi.org/10.1007/s002220050276
http://dx.doi.org/10.1155/S1073792802111135
http://dx.doi.org/10.1017/CBO9780511615344


Index

acyclic resolution, 98
acyclic sheaf, 98
adjunction, 195
affine

scheme, 61
space, 28
variety, 29

algebraic cycle, 314
algebraic group, 31
ample, 182, 250
automorphic form, 133

Betti number, 92
birational map, 191
Bloch–Gieseker, 250
blowup, 35
Brauer–Severi, 248

canonical divisor, 129, 196
Chern class, 150, 249
Chow’s theorem, 264
classical topology, 28
coherent sheaf, 256
cohomology

Čech, 144
compactly supported, 105, 308
de Rham, 100
�-adic, 310
of a complex, 97
sheaf, 82
simplicial, 139
singular, 140

complete variety, 46
complex, 97
complex manifold, 25
constructible set, 47
coordinate ring, 30

cotangent bundle, 44
cotangent space, 37
cup product, 93, 102, 139

differential of a map, 37
direct image, 72
divisor, 126, 193, 235
Dolbeault’s theorem, 173

elliptic curve, 9, 28, 120
equivalence of categories, 131
Euler characteristic, 92, 196
exponential sequence, 150

family of schemes, 294
fiber bundle, 226
flasque sheaf, 79
flat

family, 295
module, 295
morphism, 295

form, differential form, p-form, 41, 76
free action, 120
Fubini–Study metric, 181
function field, 130
fundamental class, 111

GAGA, 264
genus, 11, 117
Grassmannian, 28
Gysin homomorphism, 109

Hard Lefschetz, 237
harmonic form, 160
heat equation, 163
Hermitian metric, 170
higher direct image, 232
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Hilbert polynomial, 271
Hilbert scheme, 303
Hilbert’s Nullstellensatz, 29
Hodge

conjecture, 315
decomposition, 185
filtration, 204, 208
index theorem, 198, 238
number, 185
star, 159
structure, 203
theorem, 160

hypercohomology, 212
hyperelliptic curve, 14, 119

ideal sheaf, 66
injective

module, 265
sheaf, 99

inverse image, 72

Jacobian, 15, 188
Jacobian matrix, 38

Kähler
class, 181
form, 180
manifold, 180

Kähler differentials, 77
Kähler identities, 175, 239
Kähler metric, 180
Künneth formula, 104
Kodaira embedding theorem, 182
Kodaira vanishing theorem, 220

Laplacian, 160
Lefschetz (1,1) theorem, 187
Lefschetz pencil, 243
Lefschetz trace formula, 114
Leray cover, 148
Lie group, 28
line bundle, 42
local ring, 36
local system, 229
locally constant sheaf, 228
locally free, 68
locally ringed space, 36

manifold, 25
C∞, 25
complex, 25
Kähler, 180
Moishezon, 210
Stein, 272

Mayer–Vietoris, 91
mixed Hodge structure, 220
modular curve, 134
modular form, 134
Moishezon manifold, 210
monodromy, 226, 230
morphism

projective, 247
scheme, 73
sheaf, 50
variety, 32

negative, 250
Neron–Severi group, 193
Noether–Lefschetz, 302
nonsingular point, 39
Nullstellensatz, 29

Picard group, 146
Picard Lefschetz, 246
Picard number, 193
plurisubharmonic, 181
Poincaré duality, 105
Poincaré residue, 218
Poincaré’s lemma, 101
presheaf, 22, 49
primitive cohomology, 237
projective

morphism, 247
space, 27, 32
variety, 34

quasi-isomorphism, 212

regular function, 29
Riemann surface, 26
Riemann–Roch, 130, 197
Riemannian manifold, 159
Riemannian metric, 159
ringed space, 24, 62

scheme, 62
Hilbert, 303

sheaf, 22, 50
coherent, 256
constant, 23
direct image, 72
epimorphism, 55
exact sequence, 54
fine, 90
flasque, 79
ideal, 66
injective, 99
inverse image, 72
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isomorphism, 54
monomorphism, 55
morphism, 50
sheaf associated to, 52
sheaf of modules, 66
sheafification, 52
skyscraper, 79
soft, 86
subsheaf, 50

sheaf cohomology, 82
simplicial complex, 138
simplicial homology, 139
singular point, 39
smooth morphism, 296
smooth point, 39
soft sheaf, 86
spectral sequence, 207, 214, 233
spectrum, 30
stalk, 35, 51
standard conjectures, 313
Stein manifold, 272

strict filtration, 206
support, 53

tangent
bundle, 41
sheaf, 66
space, 37

tautological line bundle, 43
Thom class, 110
Thom isomorphism, 110
tubular neighborhood, 110

vector bundle, 42
vector field, 41
very ample, 129, 182

Wang sequence, 231
weak Lefschetz, 241

Zariski topology, 28
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