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Glossary

Non-smooth dynamical system Systems derived from
ordinary differential equations when the non-unique-
ness of solutions is allowed. In this article we deal with
discontinuous vector fields in Rn where the disconti-
nuities are concentrated in a codimension-one surface.

Bifurcation In a k-parameter family of systems, a bifur-
cation is a parameter value at which the phase portrait
is not structurally stable.

Typical singularity Are points on the discontinuity set
where the orbits of the system through them must be
distinguished.

Definition of the Subject

In this article we survey some qualitative and geometric as-
pects of non-smooth dynamical systems theory. Our goal
is to provide an overview of the state of the art on the
theory of contact between a vector field and a manifold,
and on discontinuous vector fields and their perturbations.
We also establish a bridge between two-dimensional non-
smooth systems and the geometric singular perturbation
theory. Non-smooth dynamical systems is a subject that
has been developing at a very fast pace in recent years due
to various factors: its mathematical beauty, its strong rela-
tionship with other branches of science and the challenge
in establishing reasonable and consistent definitions and
conventions. It has become certainly one of the common
frontiers between mathematics and physics/engineering.
We mention that certain phenomena in control systems,
impact in mechanical systems and nonlinear oscillations

are the main sources of motivation for our study concern-
ing the dynamics of those systems that emerge from differ-
ential equations with discontinuous right-hand sides. We
understand that non-smooth systems are driven by appli-
cations and they play an intrinsic role in a wide range of
technological areas.

Introduction

The purpose of this article is to present some aspects of the
geometric theory of a class of non-smooth systems. Our
main concern is to bring the theory into the domain of
geometry and topology in a comprehensive mathematical
manner.

Since this is an impossible task, we do not attempt
to touch upon all sides of this subject in one article. We
focus on exploring the local behavior of systems around
typical singularities. The first task is to describe a generic
persistence of a local theory (structural stability and bi-
furcation) for discontinuous systems mainly in the two-
and three-dimensional cases. Afterwards we present some
striking features and results of the regularization process
of two-dimensional discontinuous systems in the frame-
work developed by Sotomayor and Teixeira in [44] and
establish a bridge between those systems and the funda-
mental role played by the Geometric Singular Perturbation
Theory (GSPT). This transition was introduced in [10]
and we reproduce here its main features in the two-di-
mensional case. For an introductory reading on the meth-
ods of geometric singular perturbation theory we refer
to [16,18,30]. In Sect. “Definition of the Subject” we in-
troduce the setting of this article. In Sect. “Introduction”
we survey the state of the art of the contact between a vec-
tor field and a manifold. The results contained in this sec-
tion are crucial for the development of our approach. In
Sect. “Preliminaries” we discuss the classification of typi-
cal singularities of non-smooth vector fields. The study of
non-smooth systems, via GSPT, is presented in Sect. “Vec-
tor Fields near the Boundary”. In Sect. “Generic Bifurca-
tion” some theoretical open problems are presented.

One aspect of the qualitative point of view is the prob-
lem of structural stability, the most comprehensive of
many different notions of stability. This theme was stud-
ied in 1937 by Andronov–Pontryagin (see [3]). This prob-
lem is of obvious importance, since in practice one obtains
a lot of qualitative information not only on a fixed system
but also on its nearby systems.

We deal with non-smooth vector fields in RnC1 having
a codimension-one submanifold M as its discontinuity set.
The scheme in this work toward a systematic classification
of typical singularities of non-smooth systems follows the
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ideas developed by Sotomayor–Teixeira in [43] where the
problem of contact between a vector field and the bound-
ary of a manifold was discussed. Our approach intends to
be self-contained and is accompanied by an extensive bib-
liography. We will try to focus here on areas that are com-
plimentary to some recent reviews made elsewhere.

The concept of structural stability in the space of non-
smooth vector fields is based on the following definition:

Definition 1 Two vector fields Z and Z̃ are C0 equivalent
if there is an M-invariant homeomorphism h : RnC1 !

RnC1 that sends orbits of Z to orbits of Z̃.

A general discussion is presented to study certain unsta-
ble non-smooth vector fields within a generic context. The
framework in which we shall pursue these unstable sys-
tems is sometimes called generic bifurcation theory. In [3]
the concept of kth-order structural stability is also pre-
sented; in a local approach such setting gives rise to the
notion of a codimension-k singularity. In studies of classi-
cal dynamical systems, normal form theory has been well
accepted as a powerful tool in studying the local theory
(see [6]). Observe that, so far, bifurcation and normal form
theories for non-smooth vector fields have not been exten-
sively studied in a systematic way.

Control Theory is a natural source of mathematical
models of these systems (see, for instance, [4,8,20,41,45]).
Interesting problems concerning discontinuous systems
can be formulated in systems with hysteresis ([41]), eco-
nomics ([23,25]) and biology ([7]). It is worth mentioning
that in [5] a class of relay systems in Rn is discussed. They
have the form:

X D Ax C sgn(x1)k

where x D (x1; x2; : : : ; xn), A 2 MR(n; n) and k D (k1;

k2; : : : ; kn) is a constant vector in Rn. In [28,29] the
generic singularities of reversible relay systems in 4D were
classified. In [54] some properties of non-smooth dynam-
ics are discussed in order to understand some phenomena
that arise in chattering control. We mention the presence
of chaotic behavior in some non-smooth systems (see for
example [12]). It is worthwhile to cite [17], where the main
problem in the classical calculus of variations was car-
ried out to study discontinuous Hamiltonian vector fields.
We refer to [14] for a comprehensive text involving non-
smooth systems which includes many models and appli-
cations. In particular motivating models of several non-
smooth dynamical systems arising in the occurrence of
impacting motion in mechanical systems, switchings in
electronic systems and hybrid dynamics in control sys-
tems are presented together with an extensive literature

on impact oscillators which we do not attempt to survey
here. For further reading on some mathematical aspects
of this subject we recommend [11] and references therein.
A setting of general aspects of non-smooth systems can be
found also in [35] and references therein. Our discussion
does not focus on continuous but rather on non-smooth
dynamical systems and we are aware that the interest in
this subject goes beyond the approach adopted here.

The author wishes to thank R. Garcia, T.M. Seara and
J. Sotomayor for many helpful conversations.

Preliminaries

Now we introduce some of the terminology, basic con-
cepts and some results that will be used in the sequel.

Definition 2 Two vector fields Z and Z̃ on Rn with
Z(0) D Z̃(0) are germ-equivalent if they coincide on some
neighborhood V of 0.

The equivalent classes for this equivalence are called germs
of vector fields. In the same way as defined above, we may
define germs of functions. For simplicity we are consider-
ing the germ notation and we will not distinguish a germ of
a function and any one of its representatives. So, for exam-
ple, the notation h : Rn ; 0! R means that the h is a germ
of a function defined in a neighborhood of 0 in Rn. Refer
to [15] for a brief and nice introduction of the concepts of
germ and k-jet of functions.

Discontinuous Systems

Let M D h�1(0), where h is (a germ of) a smooth function
h : RnC1; 0 �! R having 0 2 R as its regular value. We
assume that 0 2 M.

Designate by �(nC 1) the space of all germs of Cr vec-
tor fields on RnC1 at 0 endowed with the Cr-topology with
r > 1 and large enough for our purposes. Call-(nC1) the
space of all germs of vector fields Z in RnC1; 0 such that

Z(q) D

(
X(q) ; for h(q) > 0 ;
Y(q) ; for h(q) < 0 ;

(1)

The above field is denoted by Z D (X;Y). So we are con-
sidering -(n C 1) D �(n C 1) � �(n C 1) endowed with
the product topology.

Definition 3 We say that Z 2 -(n C 1) is structurally
stable if there exists a neighborhood U of Z in -(n C 1)
such that every Z̃ 2 U is C0-equivalent with Z.

To define the orbit solutions of Z on the switching sur-
face M we take a pragmatic approach. In a well character-
ized open set O of M (described below) the solution of Z
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A discontinuous system and its regularization

through a point p 2 O obeys the Filippov rules and on
M � O we accept it to be multivalued. Roughly speaking,
as we are interested in studying the structural stability in
-(nC1) it is convenient to take into account all the leaves
of the foliation in RnC1 generated by the orbits of Z (and
also the orbits of X and Y) passing through p 2 M. (see
Fig. 1)

The trajectories of Z are the solutions of the au-
tonomous differential system q̇ D Z(q).

In what follows we illustrate our terminology by pre-
senting a simplified model that is found in the classical
electromagnetism theory (see for instance [26]):

ẍ � «x C ˛signx D 0 :

with ˛ > 0.
So this system can be expressed by the following ob-

jects: h(x; y; z) D x and Z D (X;Y) with X(x; y; z) D
(y; z; z C ˛) and Y(x; y; z) D (y; z; z � ˛).

For each X 2 �(nC 1) we define the smooth function
Xh : RnC1 ! R given by Xh D X � rh where � is the
canonical scalar product in RnC1.

We distinguish the following regions on the disconti-
nuity set M:

(i) M1 is the sewing region that is represented by h D 0
and (Xh)(Y h) > 0;

(ii) M2 is the escaping region that is represented by h D 0,
(Xh) > 0 and (Y h) < 0;

(iii) M3 is the sliding region that is represented by h D 0,
(Xh) < 0 and (Y h) > 0.

We setO DSiD1;2;3 Mi .
Consider Z D (X;Y) 2 -(nC 1) and p 2 M3. In this

case, following Filippov’s convention, the solution 
 (t) of

Z through p follows, for t � 0, the orbit of a vector field
tangent to M. Such system is called sliding vector field as-
sociated with Z and it will be defined below.

Definition 4 The sliding vector field associated to Z D
(X;Y) is the smooth vector field Zs tangent to M and de-
fined at q 2 M3 by Zs(q) D m � q with m being the point
where the segment joining q C X(q) and q C Y(q) is tan-
gent to M.

It is clear that if q 2 M3 then q 2 M2 for �Z and then we
define the escaping vector field on M2 associated with Z by
Ze D �(�Z)s . In what follows we use the notation ZM for
both cases.

We recall that sometimes ZM is defined in an open re-
gion U with boundary. In this case it can be Cr extended
to a full neighborhood of p 2 @U in M.

When the vectors X(p) and Y(p), with p 2 M2
S

M3
are linearly dependent then Z M(p) D 0. In this case we say
that p is a simple singularity of Z. The other singularities
of Z are concentrated outside the set O.

We finish this subsection with a three-dimensional ex-
ample:

Let Z D (X;Y) 2 -(3) with h(x; y; z) D z, X D
(1; 0; x) and Y D (0; 1; y). The system determines four
quadrants around 0, bounded by �X D fx D 0g and
�Y D fy D 0g. They are: QC1 D fx > 0; y > 0g,
Q�1 D fx < 0; y < 0g, Q2 D fx < 0; y > 0g (sliding
region) and Q3 D fx > 0; y < 0g (escaping region). Ob-
serve that M1 D QC1

S
Q�1 .

The sliding vector field defined in Q2 is expressed by:

Zs(x; y; z) D (y � x)�1
�

x C y;
y C x

8
; 0
�
:

Such a system is (in Q2) equivalent to G(x; y; z) D (xC y;
yCx

8 ; 0)). In our terminology we consider G a smooth ex-
tension of Zs, that is defined in a whole neighborhood of
0. It is worthwhile to say that G is in fact a system which is
equivalent to the original system in Q2.

In [50] a generic classification of one-parameter fami-
lies of sliding vector fields is presented.

Singular Perturbation Problem

A singular perturbation problem is expressed by a differ-
ential equation z0 D ˛ (z; ") (refer to [16,18,30]) where
z 2 RnCm , " is a small non-negative real number and ˛ is
a C1 mapping.

Let z D
�
x; y

�
2 RnCm and f : RmCn ! Rm ;

g : RmCn ! Rn be smooth mappings. We deal with equa-
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tions that may be written in the form
(

x0 D f (x; y; ")
y0 D "g(x; y; ")

x D x(�); y D y(�) : (2)

An interesting model of such systems can be obtained
from the singular van der Pol’s equation

"x00 C (x2 C x)x0 C x � a D 0 : (3)

The main trick in the geometric singular perturbation
(GSP) is to consider the family (2) in addition to the family

(
"ẋ D f (x; y; ")
ẏ D g(x; y; ")

x D x(t); y D y(t) (4)

obtained after the time rescaling t D "� .
Equation (2) is called the fast system and (4) the slow

system. Observe that for " > 0 the phase portrait of fast
and slow systems coincide.

For " D 0, let S be the set of all singular points of (2).
We call S the slow manifold of the singular perturbation
problem and it is important to notice that Eq. (4) defines
a dynamical system on S called the reduced problem.

Combining results on the dynamics of these two lim-
iting problems (2) and (4), with " D 0, one obtains in-
formation on the dynamics for small values of ". In fact,
such techniques can be exploited to formally construct ap-
proximated solutions on pieces of curves that satisfy some
limiting version of the original equation as " goes to zero.

Definition 5 Let A; B 
 RnCm be compact sets. The
Hausdorff distance between A and B is D(A; B) D
maxz12A;z22Bfd(z1; B); d(z2;A)g.

The main question in GSP-theory is to exhibit conditions
under which a singular orbit can be approximated by regu-
lar orbits for " # 0, with respect to the Hausdorff distance.

Regularization Process

An approximation of the discontinuous vector field Z D
(X;Y) by a one-parameter family of continuous vector
fields will be called a regularization of Z. In [44], So-
tomayor and Teixeira introduced the regularization proce-
dure of a discontinuous vector field. A transition function
is used to average X and Y in order to get a family of con-
tinuous vector fields that approximates the discontinuous
one. Figure 1 gives a clear illustration of the regularization
process.

Let Z D (X;Y) 2 -(nC 1).

Definition 6 A C1 function ' : R �! R is a transition
function if '(x) D �1 for x � �1, '(x) D 1 for x � 1

and '0(x) > 0 if x 2 (�1; 1). The �-regularization of Z D
(X;Y) is the one-parameter family X" 2 Cr given by

Z"(q) D
�

1
2
C
'"(h(q))

2

�
X(q)C

�
1
2
�
'"(h(q))

2

�
Y(q):

(5)

with h given in the above Subsect. “Discontinuous Sys-
tems” and '"(x) D '(x/"), for " > 0.

As already said before, a point in the phase space which
moves on an orbit of Z crosses M when it reaches the
region M1. Solutions of Z through points of M3, will re-
main in M in forward time. Analogously, solutions of Z
through points of M2 will remain in M in backward time.
In [34,44] such conventions are justified by the regulariza-
tion method in dimensions two and three respectively.

Vector Fields near the Boundary

In this section we discuss the behavior of smooth vector
fields in RnC1 relative to a codimension-one submanifold
(say, the above defined M). We base our approach on the
concepts and results contained in [43,53]. The principal
advantage of this setting is that the generic contact be-
tween a smooth vector field and M can often be easily rec-
ognized. As an application the typical singularities of a dis-
continuous system can be further classified in a straight-
forward way.

We say that X;Y 2 �(nC 1) are M-equivalent if there
exists an M-preserving homeomorphism h : RnC1; 0 �!
RnC1; 0 that sends orbits of X into orbits of Y . In this way
we get the concept of M-structural stability in �(nC 1).

We call �0(n C 1) the set of elements X in �(n C 1)
satisfying one of the following conditions:

0) Xh(0) ¤ 0 (0 is a regular point of X). In this case X is
transversal to M at 0.

1) Xh(0) D 0 and X2h(0) ¤ 0 (0 is a 2-fold point of X;)
2) Xh(0) D X2h(0) D 0, X3h(0) ¤ 0 and the set
fDh(0);DXh(0);DX2h(0)g is linearly independent (0
is a cusp point of X;)
. . .

n) Xh(0) D X2h(0) D � � � D Xn h(0) D 0 and
XnC1h(0) ¤ 0. Moreover the set fDh(0);DXh(0);
DX2h(0); : : : ;DXn h(0)g is linearly independent, and 0
is a regular point of the mapping XhjM .

We say that 0 is an M-singularity of X if h(0) D Xh(0) D
0. It is a codimension-zero M-singularity provided that X 2
�0(n C 1).

We know that �0(n C 1) is an open and dense set in
�(n C 1) and it coincides with the M-structurally stable
vector fields in �(nC 1) (see [53]).



Perturbation Theory for Non-smooth Systems 1329

Denote by �X 
 M the M-singular set of X 2 �(nC1);
this set is represented by the equations h D Xh D 0. It
is worthwhile to point out that, generically, all two-folds
constitute an open and dense subset of �X . Observe that if
X(0) D 0 then X 62 �0(nC 1).

The M-bifurcation set is represented by �1(n C 1) D
�(nC 1)� �0(nC 1)

Vishik in [53] exhibited the normal forms of a codi-
mension-zero M-singularity. They are:

I) Straightened vector field

X D (1; 0; : : : ; 0)

and

h(x) D xkC1
1 C x2xk�1

1

C x3xk�2
1 C � � � C xkC1 ; k D 0; 1; : : : ; n

or
II) Straightened boundary

h(x) D x1

and

X(x) D (x2; x3; : : : ; xk ; 1; 0; 0; : : : ; 0)

We now discuss an important interaction between vector
fields near M and singularities of mapping theory. We dis-
cuss how singularity-theoretic techniques help the under-
standing of the dynamics of our systems.

We outline this setting, which will be very useful in the
sequel. The starting point is the following construction.

A Construction

Let X 2 �(n C 1). Consider a coordinate system x D
(x1; x2; : : : ; xnC1) in RnC1; 0 such that

M D fx1 D 0g

and

X D (X1; X2; : : : ; XnC1)

Assume that X(0) ¤ 0 and X1(0) D 0. Let N0 be any
transversal section to X at 0.

By the implicit function theorem, we derive that:

for each p 2 M; 0 there exists a unique t D t(p) in
R; 0 such that the orbit-solution t 7! 
 (p; t) of X
through p meets N0 at a point p̃ D 
 (p; t(p)).

We define the smooth mapping X : Rn ; 0 �! Rn ; 0 by
X(p) D p̃. This mapping is a powerful tool in the study
of vector fields around the boundary of a manifold (refer
to [21,42,43,46,53]). We observe that �X coincides with the
singular set of X .

The late construction implements the following
method. If we are interested in finding an equivalence be-
tween two vector fields which preserve M, then the prob-
lem can be sometimes reduced to finding an equivalence
between X and Y in the sense of singularities of map-
pings.

We recall that when 0 is a fold M-singularity of X then
associated to the fold mapping X there is the symmetric
diffeomorphism ˇX that satisfies X ı ˇX D X .

Given Z D (X;Y) 2 -(n C 1) such that X and Y
are fold mappings with X2h(0) < 0 and Y2h(0) > 0 then
the composition of the associated symmetric mappings ˇX
and ˇY provides a first return mapping ˇZ associated to Z
and M. This situation is usually called a distinguished fold-
fold singularity, and the mapping ˇZ plays a fundamental
role in the study of the dynamics of Z.

Codimension-one M-Singularity
in Dimensions Two and Three

Case n D 1 In this case the unique codimension-
zero M-singularity is a fold point in R2; 0. The codimen-
sion-one M-singularities are represented by the subset
�1(2) of �1(2) and it is defined as follows.

Definition 7 A codimension-one M-singularity of X 2
�1(2) is either a cusp singularity or an M-hyperbolic criti-
cal point p in M of the vector field X. A cusp singularity (il-
lustrated in Fig. 2) is characterized by Xh(p) D X2h(p) D
0, X3h(p) ¤ 0. In the second case this means that p is
a hyperbolic critical point (illustrated in Fig. 3) of X with
distinct eigenvalues and with invariant manifolds (stable,
unstable and strong stable and strong unstable) transversal
to M.

Perturbation Theory for Non-smooth Systems, Figure 2
The cusp singularity and its unfolding
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Perturbation Theory for Non-smooth Systems, Figure 3
The saddle point in the boundary and its unfolding

In this subsubsection we consider a coordinate system in
R2; 0 such that h(x; y) D y.

The next result was proved in [46]. It presents the nor-
mal forms of the codimension-one singularities defined
above.

Theorem 8 Let X 2 �1(2). The vector field X is M-struc-
turally stable relative to �1(2) if and only if X 2 �1(2).
Moreover, �1(2) is an embedded codimension-one sub
manifold and dense in �1(2). We still require that any one-
parameter family X�, (� 2 (�"; ")) in �(1) transverse to
�1(2) at X0, has one of the following normal forms:

0.1: X�(x; y) D (1; 0) (regular point);
0.2: X�(x; y) D (1; x) (fold singularity);
1.1: X�(x; y) D (1; �C x2) (cusp singularity);
1.2: X�(x; y) D (ax; x C by C �); a D ˙1; b D ˙2;
1.3: X�(x; y) D (x; x � y C �);
1.4: X�(x; y) D (x C y;�x C y C �).

Case n D 2

Definition 9 A vector field X 2 �(3) belongs to the set
�1(a) if the following conditions hold:

(i) X(0) D 0 and 0 is a hyperbolic critical point of X;
(ii) the eigenvalues of DX(0) are pairwise distinct and the

corresponding eigenspaces are transversal to M at 0;
(iii) each pair of non complex conjugate eigenvalues of

DX(0) has distinct real parts.

Definition 10 A vector field X 2 �(3) belongs to the set
�1(b) if X(0) ¤ 0; Xh(0) D 0; X2h(0) D 0 and one of the
following conditions hold:

(1) X3h(0) ¤ 0; rankfDh(0);DXh(0);DX2h(0)g D 2
and 0 is a non-degenerate critical point of XhjM .

(2) X3h(0) D 0; X4h(0) ¤ 0 and 0 is a regular point of
XhjM .

The next results can be found in [43].

Theorem 11 The following statements hold:

(i) �1(3) D �1(a)[�2(b) is a codimension-one subman-
ifold of �(3).

(ii) �1(3) is open and dense set in �1(3) in the topology
induced from �1(3).

(iv) For a residual set of smooth curves 
 : R; 0 ! �(3); 

meets �1(3) transversally.

Throughout this subsubsection we fix the function h(x; y;
z) D z.

Lemma 12 (Classification Lemma) The elements of
�1(3) are classified as follows:
(a11) Nodal M-Singularity: X(0) D 0, the eigenvalues of

DX(0); �1; �2; and�3, are real, distinct, �1� j > 0;
j D 2; 3 and the eigenspaces are transverse to M at 0;

(a12) Saddle M-Singularity: X(0) D 0, the eigenvalues of
DX(0); �1; �2 and �3, are real, distinct, �1� j < 0;
j D 2 or 3 and the eigenspaces are transverse to M
at 0;

(a13) Focal M-Singularity: 0 is a hyperbolic critical point
of X, the eigenvalues of DX(0) are�12 D a˙ ib; �3 D

c, with a; b; c distinct from zero and c ¤ a, and the
eigenspaces are transverse to M at 0.

(b11) Lips M-Singularity: presented in Definition 8, item
1, when Hess(Fh/S(0)) > 0:

(b12) Bec to Bec M-Singularity: presented inDefinition 8,
item 1, when Hess(Fh/S(0)) < 0;

(b13)Dove’s Tail M-Singularity: presented in Definition
8, item 2.

The next result is proved in [38]. It deals with the normal
forms of a codimension-one singularity.

Theorem 13 i) (Generic Bifurcation and normal forms)
Let X 2 �(3). The vector field X is M-structurally stable
relative to �1(3) if and only if X 2 �1(3). ii) (Versal unfold-
ing) In the space of one-parameter families of vector fields
X˛ in �(3); ˛ 2 (�"; ") an everywhere dense set is formed
by generic families such that their normal forms are:

� X˛ 2 �0(3)
0.1: X˛(x; y; z) D (0; 0; 1)
0.2: X˛(x; y; z) D (z; 0;˙x)
0.3: X˛(x; y; z) D (z; 0; x2 C y)

� X0 2 �1(3)
1.1: X˛(x; y; z) D (z; 0; �3x2Cy2C˛

2 )

1.2: X˛(x; y; z) D (z; 0; �3x2�y2C˛
2 )

1.3: X˛(x; y; z) D (z; 0; 4ıx3CyC˛x
2 ), with ı D ˙1

1.4: X˛(x; y; z) D (axz; byz; axCb yCcz2C˛
2 ), with

(a; b; c) D ı(3; 2; 1), ı D ˙1
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1.5: X˛(x; y; z) D (axz; byz; axCb yCcz2C˛
2 ), with

(a; b; c) D ı(1; 3; 2), ı D ˙1
1.6: X˛(x; y; z) D (axz; byz; axCb yCcz2C˛

2 ), with
(a; b; c) D ı(1; 2; 3), ı D ˙1

1.7: X˛(x; y; z) D (xz; 2yz; xC2y�cz2C˛
2 )

1.8: X˛(x; y; z) D ((�x C y)z; (�x � y)z;
�3x�yCz2C˛

2 )

Generic Bifurcation

Let Z D (X;Y) 2 -r(n C 1). Call by ˙0(n C 1) (resp.
˙1(nC1)) the set of all elements that are structurally stable
in -r(n C 1) (resp. -r

1(n C 1) D -r(n C 1)n˙0(nC1)) in
-r(nC 1). It is clear that a pre-classification of the generic
singularities is immediately reached by:

If Z D (X;Y) 2 ˙0(n C 1) (resp. Z D (X;Y) 2
˙1(nC1)) then X and Y are in�0(nC1) (resp. X 2 �0(nC
1) and Y 2 �1(n C 1) or vice versa). Of course, the case
when both X and Y are in �1(n C 1) is a-codimension-two
phenomenon.

Two-Dimensional Case

The following result characterizes the structural stability
in-r(2).

Theorem A (see [31,44]): ˙0(2) is an open and dense set
of-r(2). The vector field Z D (X;Y) is in˙0(2) if and only
one of the following conditions is satisfied:

i) Both elements X and Y are regular. When 0 2 M is
a simple singularity of Z then we assume that it is a hy-
perbolic critical point of ZM.

ii) X is a fold singularity and Y is regular (and vice-versa).

The following result still deserves a systematic proof. Fol-
lowing the same strategy stipulated in the generic classifi-
cation of an M-singularity, Theorem 11 could be very use-
ful. It is worthwhile to mention [33] where the problem of
generic bifurcation in 2D was also addressed.

Theorem B (Generic Bifurcation) (see [36,43]) ˙1(2) is
an open and dense set of-r

1(2). The vector field Z D (X;Y)
is in ˙1(2) provided that one of the following conditions is
satisfied:

i) Both elements X and Y are M-regular. When 0 2 M
is a simple singularity of Z then we assume that it is
a codimension-one critical point (saddle-node or a Bog-
danov–Takens singularity) of ZM.

ii) 0 is a codimension-one M-singularity of X and Y is
M-regular. This case includes when 0 is either a cusp

Perturbation Theory for Non-smooth Systems, Figure 4
M-critical point for X,M-regular for Y and its unfolding

M-singularity or a critical point. Figure 4 illustrates the
case when 0 is a saddle critical point in the boundary.

iii) Both X and Y are fold M-singularities at 0. In this case
we have to impose that 0 is a hyperbolic critical point of
the Cr-extension of ZM provided that it is in the bound-
ary of M2 [ M3 (see example below). Moreover when
0 is a distinguished fold-fold singularity of Z then 0 is
a hyperbolic fixed point of the first return mapping ˇZ.

Consider in a small neighborhood of 0 in R2, the system
Z D (X;Y) with X(x; y) D (1 � x3 C y2; x), Y(x; y) D
(1CxC y;�xCx2) and h(x; y) D y. The point 0 is a fold-
fold-singularity of Z with M2 D fx < 0g and Zs(x; 0) D
(2x � x2)�1(2x � x4 C x5). Observe that 0 is a hyperbolic
critical point of the extended system G(x; y) D 2x � x4 C

x5.
The classification of the codimension-two singularities

in -r(2) is still an open problem. In this direction [51]
contains information about the classification of codimen-
sion-two M-singularities.

Three-Dimensional Case

Let Z D (X;Y) 2 -r(3).
The most interesting case to be analyzed is when both

vector fields, X and Y are fold singularities at 0 and the
tangency sets �X and �Y in M are in general position at
0. In fact they determine (in M) four quadrants, two of
them are M1-regions, one is an M3-region and the other
is an M2-region (see Fig. 5). We emphasize that the slid-
ing vector field ZM can be Cr-extended to a full neighbor-
hood of 0 in M. Moreover, Z M(0) D 0. Inside this class
the distinguished fold-fold singularity (as defined in Sub-
sect. “A Construction”) must be taken into account. De-
note by A the set of all distinguished fold-fold singulari-
ties Z 2 -r(3). Moreover, the eigenvalues of DˇZ (0) are
� D a ˙

p
(a2 � 1). If � 2 R we say that Z belongs to

As . Otherwise Z is in Ae . Recall that ˇZ is the first return
mapping associated to Z and M at 0 as defined in Sub-
sect. “A Construction”.
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The distinguished fold-fold singularity

It is evident that the elements in the open set Ae are
structurally unstable in-r(3). It is worthwhile to mention
that in Ae we detect elements which are asymptotically sta-
ble at the origin [48]. Concerning As few things are known.

We have the following result:

Theorem C The vector field Z D (X;Y) belongs to˙0(3)
provided that one of the following conditions occurs:

i) Both elements X and Y are regular. When 0 2 M is
a simple singularity of Z then we assume that it is a hy-
perbolic critical point of ZM.

ii) X is a fold singularity at 0 and Y is regular.
iii) X is a cusp singularity at 0 and Y is regular.
iv) Both systems X and Y are of fold type at 0. Moreover:

a) the tangency sets �X and �Y are in general position
at 0 in M; b) The eigenspaces associated with ZM are
transverse to �X and �Y at 0 2 M and c) Z is not in A.
Moreover the real parts of non conjugate eigenvalues
are distinct.

We recall that bifurcation diagrams of sliding vector fields
are presented in [50,52].

Singular Perturbation Problem in 2D

Geometric singular perturbation theory is an important
tool in the field of continuous dynamical systems. Need-
less to say that in this area very good surveys are avail-
able (refer to [16,18,30]). Here we highlight some results
(see [10]) that bridge the space between discontinuous sys-
tems in-r(2) and singularly perturbed smooth systems.

Definition 14 Let U 
 R2 be an open subset and " �
0. A singular perturbation problem in U (SP-Problem) is
a differential system which can be written as

x0 D
dx
d
� D f (x; y; ") ; y0 D

dy
d
� D "g(x; y; ") (6)

or equivalently, after the time re-scaling t D "�

"ẋ D "
dx
d

t D f (x; y; ") ; ẏ D
dy
d

t D g(x; y; ") ; (7)

with (x; y) 2 U and f ; g smooth in all variables.

Our first result is concerned with the transition between
non-smooth systems and GSPT.

Theorem D Consider Z 2 -r(2); Z" its '-regularization,
and p 2 M. Suppose that ' is a polynomial of degree k
in a small interval I � (�1; 1) with 0 2 I. Then the tra-
jectories of Z" in V" D fq 2 R2; 0 : h(q)/" 2 Ig are in
correspondence with the solutions of an ordinary differen-
tial equation z0 D ˛(z; "), satisfying that ˛ is smooth in
both variables and ˛(z; 0) D 0 for any z 2 M. Moreover,
if ((X � Y)hk)(p) ¤ 0 then we can take a Cr�1-local coor-
dinate system f(@/@x)(p); (@/@y)(p)g such that this smooth
ordinary differential equation is a SP-problem.

The understanding of the phase portrait of the vector field
associated to a SP-problem is the main goal of the geomet-
ric singular perturbation-theory (GSP-theory). The tech-
niques of GSP-theory can be used to obtain information
on the dynamics of (6) for small values of " > 0, mainly in
searching minimal sets.
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System (6) is called the fast system, and (7) the slow
system of the SP-problem. Observe that for " > 0 the phase
portraits of the fast and the slow systems coincide.

Theorem D says that we can transform a discontinu-
ous vector field in a SP-problem. In general this transition
cannot be done explicitly. Theorem E provides an explicit
formula of the SP-problem for a suitable class of vector
fields. Before the statement of such a result we need to
present some preliminaries.

Consider C D f� : R2; 0 ! Rg with � 2 Cr and
L(�) D 0 where L(�) denotes the linear part of � at (0; 0).

Let -d 
 -
r(2) be the set of vector fields Z D (X;Y)

in-r(2) such that there exists � 2 C that is a solution of

r�(X � Y) D ˘i (X � Y) ; (8)

wherer� is the gradient of the function and˘ i denote the
canonical projections, for i D 1 or i D 2.

Theorem E Consider Z 2 -d and Z" its '-regulariza-
tion. Suppose that ' is a polynomial of degree k in a small
interval I 
 R with 0 2 I. Then the trajectories of Z" on
V" D fq 2 R2; 0 : h(q)/" 2 Ig are solutions of a SP-prob-
lem.

We remark that the singular problems discussed in the
previous theorems, when " & 0, defines a dynamical sys-
tem on the discontinuous set of the original problem. This
fact can be very useful for problems in Control Theory.

Our third theorem says how the fast and the slow sys-
tems approximate the discontinuous vector field. More-
over, we can deduce from the proof that whereas the fast
system approximates the discontinuous vector field, the
slow system approaches the corresponding sliding vector
field.

Consider Z 2 -r(2) and  : R2; 0 �! R with (x; y)
being the distance between (x; y) and M. We denote bybZ
the vector field given bybZ(x; y) D (x; y)Z(x; y).

In what follows we identify bZ" and the vector field on
ffR2; 0g n M � Rg 
 R3 given by bZ(x; y; ") D (bZ"(x; y);
0).

Theorem F Consider p D 0 2 M. Then there exists an
open set U 
 R2; p 2 U, a three-dimensional manifold M,
a smooth function ˚ : M �! R3 and a SP-problem W on
M such that˚ sends orbits of Wj˚�1(U�(0;C1)) in orbits of
bZj(U�(0;C1)).

Examples

1. Take X(x; y) D (1; x);Y(x; y) D (�1;�3x), and
h(x; y) D y. The discontinuity set is f(x; 0) j x 2 Rg.
We have Xh D x;Y h D �3x, and then the unique

non-regular point is (0; 0). In this case we may apply
Theorem E.

2. Let Z"(x; y) D
�

y/"; 2x y/" � x
�
. The associated partial

differential equation (refer to Theorem E) with i D 2
given above becomes 2(@�/@x)C 4x(@�/@y) D 4x. We
take the coordinate change x D x; y D y � x2. The
trajectories of X" in these coordinates are the solutions
of the singular system

"ẋ D y C x2 ; ẏ D �x :

3. In what follows we try, by means of an example,
to present a rough idea on the transition from non-
smooth systems to GSPT. Consider X(x; y) D (3y2 �

y�2; 1), Y(x; y) D (�3y2�yC2;�1) and h(x; y) D x.
The regularized vector field is

Z"(x; y) D
�

1
2
C

1
2
'
� x
"

��
(3y2 � y � 2; 1)

C

�
1
2
�

1
2
'
� x
"

��
(�3y2 � y C 2;�1) :

After performing the polar blow up coordinates
˛ : [0;C1) � [0; �] � R ! R3 given by x D r cos 	 and
" D r sin 	 the last system is expressed by:

r	̇ D � sin 	(�yC'(cot 	)(3y2�2)) ; ẏ D '(cot 	) :

So the slow manifold is given implicitly by '(cot 	) D
y/(3y2 � 2) which defines two functions y1(	) D (1 Cp

1C 24'2(cot 	))/(6'(cot 	)) and y2(	) D (1 �p
1C 24'2(cot 	))/(6'(cot 	)). The function y1(	) is

increasing, y1(0) D 1; lim	!�/2� y1(	) D C1;

lim	!�/2C

y1(	) D �1 and y1(�) D �1. The function
y2(	) is increasing, y2(0) D �2/3; lim	!�/2 y2(	) D 0
and y2(�) D 2/3. We can extend y2 to (0; �) as a differen-
tial function with y2(�/2) D 0.

The fast vector field is (	 0; 0) with 	 0 > 0 if (	; y) be-
longs to

h�
0;
�

2

�
� (y2(	); y1(	))

[��
2
; �
�
� (y2(	);C1)

[��
2
; �
�
� (�1; y1(	))

i

and with 	 0 < 0 if (	; y) belongs to
h�

0;
�

2

�
� (y1(	);C1)

[�
0;
�

2

�
� (�1; y2(	))

[��
2
; �
�
� (y1(	); y2(	))

i
:

The reduced flow has one singular point at (0; 0) and
it takes the positive direction of the y-axis if y 2 (� 2

3 ; 0)[
(1;1) and the negative direction of the y-axis if y 2
(�1;�1) [ (0; 2

3 ).
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Example of fast and slow dynamics of the SP-Problem

One can see that the singularities (	; y; r) D (0; 1; 0)
and (	; y; r) D (0;�1; 0) are not normally hyperbolic
points. In this way, as usual, we perform additional blow
ups. In Fig. 6 we illustrate the fast and the slow dynam-
ics of the SP-problem. We present a phase portrait on the
blowing up locus where a double arrow over a trajectory
means that the trajectory belongs to the fast dynamical sys-
tem, and a simple arrow means that the trajectory belongs
to the slow dynamical system.

Future Directions

Our concluding section is devoted to an outlook. Firstly we
present some open problems linked with the setting that
point out future directions of research. The main task for
the future seems to bring the theory of non-smooth dy-
namical systems to a similar maturity as that of smooth
systems. Finally we briefly discuss the main results in this
text.

Some Problems

In connection to this present work, some theoretical prob-
lems remain open:

1. The description of the bifurcation diagram of the codi-
mension-two singularities in -(2). In this last class we
find some models (see [37]) where the following ques-
tions can also be addressed. a) When is a typical sin-
gularity topologically equivalent to a regular center? b)

How about the isochronicity of such a center? c) When
does a polynomial perturbation of such a system in
-(2) produce limit cycles? The articles [9,13,21,22,47]
can be useful auxiliary references.

2. Let -(N) be the set of all non-smooth vector fields on
a two-dimensional compact manifold N having a codi-
mension-one compact submanifold M as its disconti-
nuity set. The problem is to study the global generic
bifurcation in -(N). The articles [31,33,40,46] can be
useful auxiliary references.

3. Study of the bifurcation set in -r(3). The arti-
cles [38,40,43,50] can be useful auxiliary references.

4. Study of the dynamics of the distinguished fold-fold sin-
gularity in -r(n C 1). The article [48] can be a useful
auxiliary reference.

5. In many applications examples of non-smooth systems
where the discontinuities are located on algebraic va-
rieties are available. For instance, consider the system
ẍ C xsign(x) C sign(ẋ) D 0. Motivated by such
models we present the following problem. Let 0 be
a non-degenerate critical point of a smooth mapping
h : RnC1; 0 ! R; 0. Let ˚(n C 1) be the space of all
vector fields Z on RnC1; 0 defined in the same way as
-(nC1). We propose the following. i) Classify the typ-
ical singularities in that space. ii) Analyze the elements
of ˚(2) by means of “regularization processes” and the
methods of GSPT, similarly to Sect. “Vector Fields near
the Boundary”. The articles [1,2] can be very useful aux-
iliary references.

6. In [27,29] classes of 4D-relay systems are considered.
Conditions for the existence of one-parameter families
of periodic orbits terminating at typical singularities are
provided. We propose to find conditions for the exis-
tence of such families for n-dimensional relay systems.

Conclusion

In this paper we have presented a compact survey of the
geometric/qualitative theoretical features of non-smooth
dynamical systems. We feel that our survey illustrates that
this field is still in its early stages but enjoying growing
interest. Given the importance and the relevance of such
a theme, we have pointed above some open questions and
we remark that there is still a wide range of bifurcation
problems to be tackled. A brief summary of the main re-
sults in the text is given below.

1. We firstly deal with two-dimensional non-smooth vec-
tor fields Z D (X;Y) defined around the origin in R2,
where the discontinuity set is concentrated on the line
fy D 0g. The first task is to characterize those systems
which are structurally stable. This characterization is
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a starting point with which to establish a bifurcation
theory as indicated by the Thom–Smale program.

2. In higher dimension the problem becomes much more
complicated. We have presented here sufficient condi-
tions for the three-dimensional local structural stability.
Any further investigation on bifurcation in this context
must pass through a deep analysis of the so called fold-
fold singularity.

3. We have established a bridge between discontinuous
and singularly perturbed smooth systems. Many simi-
larities between such systems were observed and a com-
parative study of the two categories is called for.
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