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Glossary

Dynamical system A rule for time evolution on a state
space. The term system will be used interchangeably.
Here a system is a family given by an ordinary differ-
ential equation (ODE) depending on parameters.

Equilibrium A constant solution of the system, for given
parameter values.

Limit cycle An isolated periodic solution of the system,
for given parameter values.

Bifurcation A qualitative change in the dynamics of a dy-
namical system produced by changing its parameters.
Bifurcation points are the critical parameter combina-
tions at which this happens for arbitrarily small param-
eter perturbations.

Normal form A simplified model system for the analysis
of a certain type of bifurcation.

Codimension The minimal number of parameters
needed to perturb a family of systems in a generic
manner.

Defining system A set of suitable equations so that the
zero set corresponds to a bifurcation of a certain type
or to a particular solution of the system. Also called
defining function or equation.

Continuation A numerical method suited for trac-
ing one-dimensional manifolds, curves (here called

branches) of solutions for a defining system while one
or more parameters are varied.

Test function A function designed to have a regular zero
at a bifurcation. During continuation a test function
can be monitored to detect bifurcations.

Branch switching Several branches of different codimen-
sion can emanate from a bifurcation point. Switching
from the computation of one branch to an other re-
quires appropriate procedures.

Definition of the Subject

The theory of dynamical systems studies the behavior
of solutions of systems, like nonlinear ordinary differen-
tial equations (ODEs), depending upon parameters. Us-
ing qualitative methods of bifurcation theory, the behavior
of the system is characterized for various parameter com-
binations. In particular, the catalog of system behaviors
showing qualitative differences can be identified, together
with the regions in parameter space where the different
behaviors occur. Bifurcations delimit such regions. Sym-
bolic and analytical approaches are in general infeasible,
but numerical bifurcation analysis is a powerful tool that
aids in the understanding of a nonlinear system. When
computing power became widely available, algorithms for
this type of analysis matured and the first codes were
developed. With the development of suitable algorithms,
the advancement in the qualitative theory has found its
way into several software projects evolving over time. The
availability of software packages allows scientists to study
and adjust their models and to draw conclusions about
their dynamics.

Introduction

Nonlinear ordinary differential equations depending upon
parameters are ubiquitous in science. In this article meth-
ods for numerical bifurcation analysis are reviewed, an ap-
proach to investigate the dynamic behavior of nonlinear
dynamical systems given by

ẋ D f (x; p) ; x 2 Rn ; p 2 Rn p ; (1)

where f : Rn � Rn p ! Rn is generic and sufficiently
smooth. In particular, x(t) represents the state of the sys-
tem at time t and its components are called state (or phase)
variables, ẋ(t) denotes the time derivative of x(t), while p
denotes the parameters of the system, representing exper-
imental control settings or variable inputs.

In many instances, solutions of (1), starting at an ini-
tial condition x(0), appear to converge as t ! 1 to
equilibria (steady states) or limit cycles (periodic orbits).
Bounded solutions can also converge to more complex at-
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tractors, like tori (quasi-periodic orbits) or strange attrac-
tors (chaotic orbits). The attractors of the system are in-
variant under time evolution, i. e., under the application of
the time-t map ˚ t, where ˚ denotes the flow induced by
the system (1). Solutions attracting all nearby initial condi-
tions, are said to be stable, and unstable if they repel some
initial conditions.

Generally speaking, it is hard to obtain closed formu-
las for ˚ t as the system is nonlinear. In some cases, one
can compute equilibria analytically, but this is often not
the case for limit cycles. However, numerical simulations
of (1) easily give an idea of how solutions look, although
one never computes the true orbit due to numerical errors.
One can verify stability conditions by linearizing the flow
around equilibria and cycles. In particular, an equilibrium
x0 is stable if the eigenvalues of the linearization (Jacobi)
matrix A D fx (x0; p) (where the subscript denotes differ-
entiation) all have a negative real part. Similarly, for a limit
cycle x0(t) with period T, one defines the Floquet multipli-
ers (or simply multipliers) as the eigenvalues of the mono-
dromy matrix M D ˚T

x (x0(0)). The cycle is stable if the
nontrivial multipliers, there is always one equal to 1, are all
within the unit circle. Equilibria and limit cycles are called
hyperbolic if the eigenvalues and nontrivial multipliers do
not have a zero real part or modulus one, respectively.

For any given parameter combination p, the state space
representation of all orbits constitutes the phase portrait of
the system. In practice, one draws a set of strategic orbits
(or finite segments of them), from which all other orbits
can be intuitively inferred, as illustrated in Fig. 1.

Points X0; X1; X2 are equilibria, of which X0 and X1
are unstable and X2 is stable. In particular, X0 is a repel-

Numerical Bifurcation Analysis, Figure 1
Phase portrait of a two-dimensional system with two attractors
(the equilibrium X2 and the limit cycle � ), a repellor (X0), and
a saddle (X1)

lor, i. e., nearby orbits do not tend to remain close to X0,
while X1 is a saddle, i. e., almost all nearby orbits go away
from X1 except two, which tend to X1 and lie on the so-
called stable manifold; the two orbits emanating from X1
compose the unstable manifold. There are therefore two
attractors, the equilibrium X2 and the limit cycle � , whose
basins of attraction consist of the initial conditions in the
shaded and white areas, respectively. Note that while at-
tractors and repellors can be easily obtained through simu-
lation, forward and backward in time, saddles can be hard
to find.

The analysis of system (1) becomes even more diffi-
cult if one wants to follow the phase portrait under vari-
ation of parameters. Generically, by perturbing a param-
eter slightly the phase portrait changes slightly as well.
Namely, if the new phase portrait is topologically equiva-
lent to the original one, then nothing changed from a qual-
itative point of view, i. e., all attracting, repelling, and sad-
dle sets are still present with unchanged stability prop-
erties, though slightly perturbed. By contrast, the critical
points in parameter space where arbitrarily small param-
eter perturbations give rise to nonequivalent phase por-
traits are called bifurcation points, where bifurcations are
said to occur. Bifurcations therefore result in a partition
of parameter space into regions: parameter combinations
in the same region correspond to topologically equivalent
dynamics, while nonequivalent phase portraits arise for
parameter combinations in neighboring regions. Most of-
ten, this partition is represented by means of a two-dimen-
sional bifurcation diagram, where the regions of a param-
eter plane are separated by so-called bifurcation curves. Bi-
furcations are said to be local if they occur in an arbitrarily
small neighborhood of the equilibrium or cycle; otherwise,
they are said to be global.

Although one might hope to detect bifurcations by
simulating system (1) for various parameter combinations
and initial conditions, a “brute force” simulation approach
is hardly effective and accurate in practice, because bifur-
cations of equilibria and cycles are associated with a loss
of hyperbolicity, e. g., stability, so that one should dramat-
ically increase the length of simulations while approach-
ing the bifurcation. In particular, saddle sets are hard to
find by simulation, but play a fundamental role in bifur-
cation analysis, since they, together with attracting and re-
pelling sets, form the skeleton of the phase portrait. This is
why numerical bifurcation analysis does not rely on sim-
ulation, but rather on continuation, a numerical method
suited for computing (approximating through a discrete
sequence of points) one-dimensional manifolds (curves,
“branches” in regular) implicitly defined as the zero set of
a suitable defining function.
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The general idea is to formulate the computation of
equilibria and their bifurcations as a suitable algebraic
problem (AP) of the form

F(u; p) D 0 ; (2)

where u 2 Rnu is composed of x and possibly other vari-
ables characterizing the system, see, e. g., defining func-
tions as in Sect. “Continuation and Detection of Bifurca-
tions”. Here, however, for simplicity of notation, u will be
considered as in Rn , but the actual dimension of u will al-
ways be clear from the context. Similarly, limit cycles and
their bifurcations are formulated in the form of a bound-
ary-value problem (BVP)

8
<

:

u̇ � f (u; p) D 0 ;
g(u(0); u(T); p) D 0 ;R T

0 h(u(t); p)dt D 0 ;
(3)

with nb boundary conditions, i. e., g : Rn � Rn � Rn p !

Rnb , ni integral conditions, i. e., h : Rn � Rn p ! Rn i ,
and u in a proper function space. In other words, a list of
defining functions is formulated, in the form (2) or (3),
to cover all cases of interest. For example, u D x and
F(x; p) D f (x; p) is the AP defining equilibria of (1).
The commonly used cycle BVP, with the time-rescaling
t D T� , is

8
<

:

ẋ � T f (x; p) D 0 ;
x(0) � x(1) D 0 ;R 1

0 x(�)> ẋ k�1(�)d� D 0 ;
(4)

where from here on > denotes the transpose and, for sim-
plicity, ˙ for d/d� is used. The integral condition is the
so-called phase condition, which ensures that x(�) is the
1 periodic solution of (1) closest to the reference solu-
tion xk�1(�) (typically known from the previous point
along the continuation), among time-shifted orbits x(� �
�0); �0 2 [0; 1].

As will be discussed in Sect. “Discretization of BVPs”,
a proper time-discretization of u(�) allows one to approx-
imate any BVP by a suitable AP. Thus, equilibria, limit
cycles and their bifurcations can all be represented by an
algebraic defining function like (2), and numerical con-
tinuation allows one to produce one-dimensional solu-
tion branches of (2) under the variation of strategic com-
ponents of p, called free parameters. With this approach,
equilibria and cycles can be followed without further diffi-
culty in parameter regimes where these are unstable. Then,
during continuation, the stability of equilibria and cycles is
determined through linearization. Moreover, the charac-
terization of nearby solutions of (1) can be done using nor-
mal forms, i. e., the simplest canonical models to which the

system, close to a bifurcation, can be reduced on a lower-
dimensional manifold of the state space, the so-called cen-
ter manifold. While a branch of equilibria or cycles is fol-
lowed, bifurcations can be detected as the zero of suitable
test functions. Upon detection of a bifurcation, the defin-
ing function can be augmented by this test function or an-
other appropriate function, and the new defining function
can then be continued using one more free parameter.

An analytical bifurcation study is feasible for simple
systems only. Numerical bifurcation analysis is one of the
few but also very powerful tools to understand and de-
scribe the dynamics of systems depending on parameters.
Some basic steps while performing bifurcation analysis
will be outlined and software implementations of contin-
uation and bifurcation algorithms discussed.

First a few standard and often used approaches for
the computation and continuation of zeros of a defin-
ing function are reviewed in Sect. “Continuation and
Discretization of Solutions”. The presentation starts with
the most obvious, but also naive, approaches to contrast
these with the methods employed by software packages.
In Sect. “Normal Forms and the Center Manifold” several
possible scenarios for the loss of stability of equilibria and
limit cycles are discussed. Not all bifurcations are charac-
terized by linearization and for the detection and analy-
sis of these bifurcations, codimension 1 normal forms are
mentioned and a general method for their computation
on a center manifold is presented. Then, a list of suitable
test functions and defining systems for the computation
of bifurcation branches is discussed in Sect. “Continua-
tion and Detection of Bifurcations”. In particular, when
a system bifurcates new solution branches appear. Tech-
niques to switch to such new branches are described in
Sect. “Branch Switching”. Finally, the computation and
continuation of global bifurcations characterized by orbits
connecting equilibria is presented, in particular homoclinic
orbits, in Sect. “Connecting Orbits”. This review concludes
with an overview of existing implementations of the de-
scribed algorithms in Sect. “Software Environments”. Pre-
vious reviews [7,9,22,43] have similar contents. This re-
view however, focuses more on the principles now under-
lying the most frequently used software packages for bifur-
cation analysis and the algorithms being used.

Continuation andDiscretization of Solutions

The continuation of a solution u of (2) with respect to one
parameter p is a fundamental application of the Implicit
Function Theorem (IFT).

Generally speaking, to define one-dimensional solu-
tion manifolds (branches), the number of unknowns in (2)
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should be one more than the number of equations, i. e.,
np D 1. However, during continuation it is better not
to distinguish between state variables and parameters as
will become apparent in Sects. “Pseudo-Arclength Contin-
uation” and “Moore–Penrose Continuation”. Therefore,
write y D (u; p) 2 Y D RnC1 for the continuation vari-
ables in the continuation space Y and consider the contin-
uation problem

F(y) D 0 ; (5)

with F : RnC1 ! Rn .
Let F be at least continuous differentiable, y0 D

(u0; p0) be a known solution point of (5), and the matrix
Fy(y0) D [Fu(u0; p0)jFp(u0; p0)] be full rank, i. e.,

rank(Fy(y0)) D

n,

8
<

:

(i) rank(Fu(u0; p0)) D n ; or
(ii) rank(Fu(u0; p0)) D n � 1 and

Fp(u0; p0) … R(Fu(u0; p0)) ;
(6)

where R(Fu) denotes the range of Fu. Then the IFT states
that there exists a unique solution branch of (5) locally
to y0. Introducing a scalar coordinate s parametrizing the
branch, e. g., the arclength positively measured from y0 in
one of the two directions along the solution branch, then
one can represent the branch by y(s) D (u(s); p(s)) and
the IFT guarantees that F(y(s)) D 0 for jsj is sufficiently
small. Moreover, y(s) is continuous differentiable and the
vector �(s) D ys(s) D (us (s); ps (s)) D (v(s); q(s)), tan-
gent to the solution branch at y(s), exists and is the unique
solution of
8
<

:

Fy(y(s))�(s) D Fu(u(s) ; p(s))v(s)C Fp(u(s) ;
p(s))q(s) D 0 ;

�(s)>�(s) D v(s)>v(s)C q(s)2 D 1 :
(7)

In other words, the matrix Fy(y0) has a one-dimensional
nullspace N (Fy(y0)) spanned by �(0) and y0 is said to be
a regular point of the continuation space Y .

Below, several variants of numerical continuation will
be described. The aim is to produce a sequence of points
yk ; k � 0 that approximate the solution branch y(s) in
one direction. Starting from y0, the general idea is to make
a suitable prediction y0

1, typically along the tangent vector,
from which the Newton method is applied to find the new
point y1. The predictor-corrector procedure is then iter-
ated. First, the simplest implementation is presented and
it is shown where it might fail. Many continuation pack-
ages for bifurcation theory use an alternative implementa-
tion of which two variants are discussed. Many more ad-
vanced predictor-corrector schemes have been designed,
see [1,18,46] and references therein.

Parameter Continuation

Parameter continuation assumes that the solution branch
of (5) can be parameterized by the parameter p 2 R. In-
deed, if Fu has full rank, i. e., case (i) in (6), then this is
possible by the IFT. Starting from (u0; p0) and perturbing
the parameter a little, with a stepsize h, the new parameter
is p1 D p0C h and the most simple predictor for the state
variable is given by u0

1 D u0.
Application of Newton’s method to find u1 satisfying

(5) leads to

u jC1
1 D u j

1 � Fu(u j
1; p1)�1F(u j

1; p1) ; j D 0; 1; 2; : : :

The iterations are stopped when a certain accuracy is
achieved, i. e., k�uk D ku jC1

1 � u j
1k < "u and/or

kF(u j
1; p1)k < "F . In practice, also the maximum num-

ber of Newton steps is bounded, in order to guarantee
termination. If this maximum is reached before conver-
gence, the computation is restarted with a smaller (typi-
cally halved) stepsize. However, in case of quick conver-
gence, e. g., after only a few iterations, the stepsize is mul-
tiplied (1.3 is a typical factor). In any case, the stepsize
is varied between two assigned limits hmin and hmax, so
that continuation cannot proceed when convergence is
not reached even with minimum stepsize. When h is cho-
sen too small, too much computational work may be per-
formed, while for h that is chosen too large, little detail of
the solution branch is obtained.

As a first improved predictor, note that the IFT sug-
gests to use the tangent prediction for the state variables
u0

1 D u0 C hv0, where v0 is obtained from (7) with s D 0
and as v(0)/q(0). Indeed, the tangent vector can be approx-
imated by the difference vk D (uk�uk�1)/hk or, even bet-
ter, computed at negligible cost, since the numerical de-
composition of the matrix Fu(uk ; pk) is known from the
last Newton iteration.

These methods are illustrated in Fig. 2. Note in partic-
ular the folds in the sketch. Here parameter continuation
does not work, since exactly at the fold Fu(u; p) is singu-
lar such that Newton’s method does not converge and be-
yond, for larger p, there is no local solution to (5).

Pseudo-Arclength Continuation

Near folds, the solution branch is not well parameterized
by the parameter, but one can use a state variable for the
parametrization. In fact, the fold is a regular point (case (ii)
in (6)) at which the tangent vector � D (v; q) has no pa-
rameter component, i. e., q D 0. So, without distinguish-
ing between parameters and state variables, one takes the
tangent prediction y0

1 D y0 C h�0, as long as the start-
ing solution y0 is a regular point. Since now both p and u
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Numerical Bifurcation Analysis, Figure 2
Parameter continuationwithout (a) andwith (b) tangent prediction. Thedotted lines indicate subspaceswhere solutions are searched

are corrected, one more constraint is needed. Pseudo-ar-
clength continuation uses the stepsize h as an approxima-
tion of the required distance, in arclength, between y0 and
the next point y1. This leads to the so-called pseudo-ar-
clength equation �>0 (y1 � y0) D h. In this way, solution
branches can be followed past folds. The idea for this con-
tinuation method is due to Keller [50].

The Newton iteration, applied to


F(y1) D 0 ;
�>0 (y1 � y0) � h D 0 ;

is given by

y jC1
1 D y j

1 �

 
cFy(y j

1)
�>0

!�1  
cF(y j

1)
0

!
;

j D 0; 1; 2; : : : ; (8)

where �y D y jC1
1 � y j

1 is forced to lie in the hyperplane
orthogonal to the tangent vector, as illustrated in Fig. 3a.
Upon convergence, the new tangent vector �1 is obtained
by solving (7) at y1.

Moore–Penrose Continuation

This continuation method is based on optimization. Start-
ing with the tangent prediction y0

1 D y0 C h�0, a point y1
with F(y1) D 0 nearest to y0

1 is searched, so the following
is optimized

min
y1
fky1 � y0

1kjF(y1) D 0g :

Each correction is therefore required to be orthogonal to
the nullspace of Fy(y j

1), i. e.,
(

F(y jC1
1 ) D 0 ;

(� j
1)>(y jC1

1 � y j
1) D 0 :

Starting with �0
1 D �0 the Newton iterations are given by

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

y jC1
1 D y j

1 �

 
Fy(y j

1)
(� j

1)>

!�1  
F(y j

1)
0

!
;

�
jC1
1 D

 
Fy(y jC1

1 )
(� j

1)>

!�1 �
0
1

�
; j D 0; 1; 2; : : :

(9)

As illustrated in Fig. 3b, the Moore–Penrose continuation
can be interpreted as a variant of Keller’s method in which
the tangent vector is updated at every Newton step. When
the new point y1 is found, the tangent vector �1 is imme-
diately obtained as � jC1

1 /k� jC1
1 k from the last Newton it-

eration, since � j
1 does not necessarily have unit length.

Finally, for both the pseudo-arclength and Moore-
Penrose continuation methods one can prove that they
converge (with superlinear convergence), provided that y0
is a regular point and the stepsize is sufficiently small.

Discretization of BVPs

In this section, orthogonal collocation [3,15] is described,
a discretization technique to approximate the solution of
a generic BVP (3) by a suitable AP. Let u be at least in the
space C1([0; 1];Rn ) of continuous differentiable vector-
valued functions defined on [0; 1]. For BVPs the rescaled
time t D T� is used, so that the period T becomes a pa-
rameter and in the sequel T will be addressed as such. In-
troduce a time mesh 0 D �0 < �1 < : : : < �N D 1 and,
on each interval [� j�1; � j], approximate the function u by
a vector-valued polynomial } j of degree m, j D 1; : : : ;N .
The polynomials } j are determined by imposing the ODE
in (3) at m collocation points z j;i , i D 1; : : : ;m, i. e.,

}̇ j(z j;i ) D f (} j(z j;i ); p) ;
j D 1; : : : ;N ; i D 1; : : : ;m : (10)
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Numerical Bifurcation Analysis, Figure 3
Pseudo-arclength (a) andMoore–Penrose (b) continuation. Searching a solution in hyperplaneswithout (a) andwith (b) updating the
tangent vector. The open dots correspond to Newton iterations, full dots to points on the curve. The dotted lines indicate subspaces
where solutions are searched

One usually chooses the so-called Gauss points as the
collocation points, the roots of the mth order Legendre
polynomials. Moreover, }1(0) and }N (1) must satisfy the
boundary conditions and the whole piecewise polynomial
must satisfy the integral conditions.

Counting the number of unknowns, the discretization
of (3) leads to nN polynomials, each with (m C 1) de-
grees of freedom, plus np free parameters, so there are
nN(m C 1) C np continuation variables. These variables
are matched by nmN collocation equations from (10),
n(N � 1) continuity conditions at the mesh points, nb
boundary conditions, and ni integral conditions, for a total
of nN(mC 1)C nb C ni � n algebraic equations. Thus, in
order for these equations to compose an AP, the number
of free parameters is generically np D nbCni �nC1 and,
typically, one is the period T.

The collocation method yields high accuracy with su-
perconvergence at the mesh points [15]. The mesh can
also be adapted during continuation, for instance to mini-
mize the local discretization error [68]. The equations can
be solved efficiently by exploiting the particular sparsity
structure of the Jacobi matrix in the Newton iteration. In
particular, a few full but essentially smaller systems are
solved instead of one sparse but large system. During this
process one finds two nonsingular (n�n) -submatrices M0
and M1 such that M0u(0) C M1u(1) D 0, i. e., the mon-
odromy matrix M D �M�1

1 M0 is found as a by-product.
In the case of a periodic BVP (u(1) D u(0)) the Floquet
multipliers are therefore computed at low computational
cost.

Normal Forms and the CenterManifold

Local bifurcation analysis relies on the reduction of the dy-
namics of system (1) to a lower-dimensional center mani-

fold H0 near nonhyperbolic equilibria or limit cycles, i. e.,
when they bifurcate at some critical parameter p0. The
existence of H0 follows from the Center Manifold Theo-
rem (CMT), see, e. g., [11], while the reduction principle
is shown in [72]. The reduced ODE has the same dimen-
sion as H0 given by the number nc of critical eigenval-
ues or nontrivial multipliers (counting multiplicity), and
is transformed to a normal form. The power of this ap-
proach is that the bifurcation scenario of the normal form
is preserved in the original system. The normal form for
a specific bifurcation is usually studied only up to a fi-
nite order, i. e., truncated, and many diagrams for bifur-
cations with higher codimension are in principle incom-
plete due to global phenomena, such as connecting orbits.
Also, H0 is not necessarily unique or smooth [75], but for-
tunately, one can still draw some useful qualitative conclu-
sions.

The codimension (codim) of a bifurcation is the min-
imal number of parameters needed to encounter the bi-
furcation and to unfold the corresponding normal form
generically. Therefore, in practice, one finds codim 1 phe-
nomena when varying a single parameter, and continues
them as curves in two-parameter planes. Codim 2 phe-
nomena are found as isolated points along codim 1 bi-
furcation curves. Still, codim 2 bifurcations are important
as they are the roots of codim 1 bifurcations, in particu-
lar of global phenomena. For this reason they are called
organizing centers as, around these points in parameter
space, one-parameter bifurcation scenarios change. For
parameter-dependent systems the center manifold H0 can
be extended to a parameter-dependent invariant manifold
H(p);H0 D H(p0), so that the bifurcation scenario on
H(p) is preserved in the original system for kp� p0k suffi-
ciently small.
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In the following, the normal forms for all codim 1 bi-
furcations of equilibria and limit cycles are presented and
their bifurcation scenarios discussed. Then a general com-
putational method for the approximation, up to a finite or-
der, of the parameter-dependent center manifold H(p) is
presented. The method gives, as a by-product, explicit for-
mulas for the coefficients of a given normal form in terms
of the vector field f of system (1).

Normal Forms
Bifurcations can be defined by certain algebraic condi-
tions. For instance, an equilibrium is nonhyperbolic if
<(�) D 0 holds for some eigenvalue. The simplest possi-
bilities are � D 0 (limit point bifurcation or branch point,
though the latter is nongeneric, see Sect. “Branch Switch-
ing”) and �1;2 D ˙i!0; !0 > 0 (Hopf bifurcation). Bi-
furcations of limit cycles appear if some of the nontrivial
multipliers cross the unit circle. The three simplest possi-
bilities are � D 1 (limit point of cycles), � D �1 (pe-
riod-doubling) or �1;2 D e˙i	0 ; 0 < 	0 < � (Neimark–
Sacker).

At the bifurcation (p D p0), linearization of system (1)
near the equilibrium x0 or around a limit cycle, does not
result in any stability information in the center manifold.
In this case, nonlinear terms are also necessary to obtain
such knowledge. This is provided by the critical normal
form coefficients as discussed below. The state variable in
the normal form will be denoted by w and the unfolding
parameter by ˛ 2 R, with w D 0 at ˛ D 0 being a non-
hyperbolic equilibrium. Bifurcations are labeled in accor-
dance with the scheme of [38].

Codimension 1 Bifurcations of Equilibria
Limit point bifurcation (LP): The equilibrium has a sim-
ple eigenvalue � D 0 and the restriction of (1) to a one-di-
mensional center manifold can be transformed to the nor-
mal form

ẇ D ˛ C aLPw2 C O(jwj3) ; w 2 R ; (11)

where generically aLP ¤ 0 and O denotes higher or-
der terms in state variables depending on parameters too.
When the unfolding parameter ˛ crosses the critical value
(˛ D 0), two equilibria, one stable and one unstable in the
center manifold, collide and disappear. This bifurcation is
also called saddle-node, fold or tangent bifurcation. Note
that this bifurcation occurs at the folds in Figs. 2 and 3.
Hopf bifurcation (H): The equilibrium has a complex pair
of eigenvalues �1 D ��2 D i!0 and the restriction of (1)
to the two-dimensional center manifold is given by

ẇ D (i!0C ˛)wC cHw2w̄C O(jwj4) ; w 2 C ; (12)

where generically the first Lyapunov coefficient dH D
<(cH) ¤ 0. When ˛ crosses the critical value, a limit cy-
cle is born. It is stable (and present for ˛ > 0) if dH < 0
and unstable if dH > 0 (and present for ˛ < 0). The case
dH < 0 is called supercritical or “soft”, while dH > 0 is
called subcritical or “hard” as there is no (local) attrac-
tor left after the bifurcation. This bifurcation is most of-
ten called Hopf, but also Poincaré–Andronov–Hopf as this
was also known to the first two.

Codimension 1 Bifurcations of Limit Cycles Bifurca-
tions of limit cycles are theoretically very well understood
using the notion of a Poincaré map. To define this map,
choose a (n � 1)-dimensional smooth cross-section ˙

transversal to the cycle and introduce a local coordinate
z 2 Rn�1 such that z D Z(x) is defined on ˙ and
invertible. For example, one chooses a coordinate plane
x j D 0 such that f j(x)jx jD0 ¤ 0. Let x0(t) be the cy-
cle with period T, so that z0 D Z(x0(0)) is the cycle in-
tersection with ˙ , where z D 0 can always be assumed
without loss of generality. Denote by T(z) the return time
to ˙ defined by the flow ˚ with T(z0) D T . Now, the
Poincaré map P : Rn�1 ! Rn�1 maps each point close
enough to z D 0 to the next return point on ˙ , i. e.,
P : z 7! Z(˚T(z)(Z�1(z))). Thus, bifurcations of limit cy-
cles turn into bifurcations of fixed points of the Poincaré
map which can be easily described using local bifurcation
theory. Moreover, it can be shown that the n� 1 eigenval-
ues of the linearization Pz(0) are the nontrivial eigenvalues
of the monodromy matrix M D ˚T

x (x0(0)), which also
has a trivial eigenvalue equal to 1 (the vector f (x0(0); p),
tangent to the cycle at x0(0), is mapped by M to itself).
The eigenvalues of Pz (0) are therefore the nontrivial mul-
tipliers of the cycle. Although the Poincaré map and its
linearization can also be computed numerically through
suitably organized simulations (so-called shooting tech-
niques [17]), it is better to handle both the cycle multipli-
ers and normal form computations associated to nonhy-
perbolic cycles using BVPs [9,23,57]. Here, however, the
normal forms on a Poincaré section are presented, where
w D 0 at ˛ D 0 is the fixed point of the Poincaré map
corresponding to a nonhyperbolic limit cycle.
Limit point of cycles (LPC): The fixed point has one sim-
ple nontrivial multiplier � D 1 on the unit circle and the
restriction of P to a one-dimensional center manifold has
the form

w 7! ˛ C w C aLPCw2 C O(w3) ; w 2 R ;

where aLPC ¤ 0. As for the LP bifurcation two fixed points
collide and disappear when ˛ crosses the critical value,
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provided aLPC ¤ 0. This implies the collision of two limit
cycles of the original vector field f .
Period-doubling (PD): The fixed point has one simple
multiplier � D �1 on the unit circle and the restriction
of P to a one-dimensional center manifold can be trans-
formed to the normal form

w 7! �(1C ˛)w C bPDw3 C O(w4) ; w 2 R ;

where bPD ¤ 0. When the parameter ˛ crosses the critical
value and bPD ¤ 0, a cycle of period 2 for P bifurcates from
the fixed point corresponding to a limit cycle of period 2T
for the original system (1). This phenomenon is also called
the flip bifurcation. If bPD is positive [negative], the bifur-
cation is supercritical [subcritical] and the double period
cycle is stable [unstable] (and present for ˛ > 0[˛ < 0]).
Neimark–Sacker (NS): The fixed point has simple critical
multipliers �1;2 D e˙i	0 and no other multipliers on the
unit circle. Assume that ei k	0 ¤ 1 for k D 1; 2; 3; 4, i. e.,
there are no strong resonances. Then, the restriction of P
to a two-dimensional center manifold can be transformed
to the normal form

w 7! ei	 (˛)(1C ˛)w C cNSw2w̄ C O(jwj4) ; w 2 C ;

where cNS is a complex number and 	(0) D 	0. Provided
dNS D <(e�i	0 cNS) ¤ 0, a unique closed invariant curve
for P appears around the fixed point, when ˛ crosses the
critical value. In the original vector field, this corresponds
to the appearance of a two-dimensional torus with (quasi-)
periodic motion. This bifurcation is also called secondary
Hopf or torus bifurcation. If dNS is negative [positive],
the bifurcation is supercritical [subcritical] and the in-
variant curve (torus) is stable [unstable] (and present for
˛ > 0[˛ < 0]).

Center Manifolds

Generally speaking, the CMT allows one to restrict the dy-
namics of (1) to a suspended system

ẇ D G(w; ˛); G : Rnc �Rn p ! Rnc ; (13)

on the center manifold H and here np is typically 1 or 2 de-
pending on the codimension of the bifurcation. Although
the normal forms (13) to which one can restrict the system
near nonhyperbolic equilibria and cycles are known, these
results are not directly applicable. Thus, efficient numeri-
cal algorithms are needed in order to verify the nondegen-
eracy conditions in the normal forms listed above.

Here, a powerful normalization method due to Iooss
and coworkers is reviewed, see [9,14,29,37,55,59]. This
method assumes very little a priori information, actually

only the type of bifurcation such that the form, i. e., the
nonzero coefficients of G, is known. This fits very well in
a numerical bifurcation setting where one computes fam-
ilies of solutions and monitors and detects the occurrence
of bifurcations with higher codimension during the con-
tinuation.

Without loss of generality it is assumed that x0 D 0
at the bifurcation point p0 D 0. Expand f (x; p) in Taylor
series

f (x; p) D Ax C 1
2 B(x; x)C 1

6 C(x; x; x)C J1 p
C A1(x; p)C : : : ;

(14)

parametrize, locally to (x; p) D (0; 0), the parameter-de-
pendent center manifold by

x D H(w; ˛) ; H : Rnc �Rn p ! Rn ; (15)

and define a relation p D V (˛) between the original and
unfolding parameters. The invariance of the center man-
ifold can be exploited by differentiating this parametriza-
tion with respect to time to obtain the so-called homologi-
cal equation

f (H(w; ˛);V(˛)) D Hw (w; ˛)G(w; ˛) : (16)

To verify nondegeneracy conditions, only an approxima-
tion to the solution of the homological equation is re-
quired. To this end, G;H and V are expanded in Taylor
series:

G(w; ˛) D
X

j�jCj�j�1

1
�!�!

g��w�˛� ;

H(w; ˛) D
X

j�jCj�j�1

1
�!�!

h��w�˛� ;

V(˛) D v10˛1 C v01˛2 C O(k˛k2) ;

(17)

where g�� are the desired normal form coefficients and
�; � are multi-indices. For a multi-index � one has
� D (�1; �2; : : : ; �n ) for nonnegative integers �i, �! D
�1!�2! : : : �n !; j�j D �1 C �2 C : : : C �n , �̃ � � if
�̃i � �i for all i D 1; : : : ; n and w� D w�1

1 : : :w�n
n .

When dealing with just the critical coefficients, i. e., ˛ D 0,
the index � is omitted. Substitution of this ansatz into
(16) gives a formal power series in w and ˛. As both sides
should be equal for all w and ˛, the coefficients of the cor-
responding powers should be equal. For each vector h�� ,
(16) gives linear systems of the form

L��h�� D R�� ; (18)

where L�� D A � 
�� In (
�� is a weighted sum of the
critical eigenvalues) and R�� involves known quantities
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Numerical Bifurcation Analysis, Table 1
Critical normal form coefficients for generic codim 1bifurcations of equilibria and fixed points. Here, A, B andC refer to the expansion
(14) for equilibria, while for fixed points they refer to (19)

Eigenvectors Critical normal form coefficients

LP
Av D 0

A>w D 0
aLP D 1

2w
>B(v; v)

H
Av D i!0v

A>w D �i!0w

cH D
1
2
w̄>

�
C(v; v; v̄)C 2B(v; h11)C B(v̄; h20)

	

h11 D �A�1B(v; v̄); h20 D (2i!0In � A)�1B(v; v)

LPC
Av D v

A>w D w
aLPC D 1

2w
>B(v; v)

PD
Av D �v

A>w D �w

bPD D
1
6
w>

�
C(v; v; v)C 3B(v; h2)

	

h2 D (In�1 � A)�1B(v; v)

NS

Av D ei�0v

A>w D e�i�0w

eik�0 ¤ 1; k D 1; 2; 3; 4

cNS D
1
2
w̄>

�
C(v; v; v̄)C 2B(v; h11)C B(v̄; h20)

	

h11 D (In�1 � A)�1B(v; v̄); h20 D (e2i�0 In�1 � A)�1B(v; v)

of G and H of order less than or equal to j�j C j�j. This
leads to an iterative procedure, where, either system (18) is
nonsingular, or the required coefficients g�� are obtained
by imposing solvability, i. e., R�� lies in the range of L��
and is therefore orthogonal to the eigenvectors of L>�� as-
sociated to the zero eigenvalue. In the second case, the so-
lution of (18) is not unique, and one typically selects the
h�� without components in the nullspace of L�� . How-
ever, the nonuniqueness of the center manifold does not
affect qualitative conclusions. The parameter transforma-
tion, i. e., the v� , is obtained by imposing certain condi-
tions on some normal form coefficients, leading to a solv-
able system.

One can perform an analogous procedure for the
Poincaré map by using a Taylor expansion

P(z; p) D AzC 1
2 B(z; z)C 1

6 C(z; z; z)C : : : (19)

and the homological equation for maps

P(H(w; ˛);V (˛)) D H(G(w; ˛); ˛) : (20)

The detailed derivation of the formulas for all codim 1
and 2 cases for equilibria and cycles can be found in [9,55,
56,59,60]. The formulas for the critical normal form coef-
ficients for codim 1 bifurcations are presented in Table 1.
Note once more that for limit cycles a numerical more
appropriate method exists [57] based on periodic normal
forms [47,48].

Continuation and Detection of Bifurcations

Along a solution branch one generically passes through bi-
furcation points of higher codimension. To detect such an

event, a test function ' is defined, where the event cor-
responds to a regular zero. If at two consecutive points
yk�1; yk along the branch the test function changes sign,
i. e., '(yk )'(yk�1) < 0, then the zero can be located
more precisely. Usually, a one-dimensional secant method
is used to find such a point. Now, if system (1) has a bi-
furcation at y0 D (x0; p0), then there is generically a curve
y D y(s) where the system displays this bifurcation. In or-
der to find this curve, one starts with a known point y 0
and formulates a defining system and then continue that
solution in one extra free parameter.

Test Functions for Codimension 1 Bifurcations

An equilibrium may lose stability through a limit point,
a Hopf bifurcation or in a branch point. At a limit
or branch point bifurcation the Jacobi matrix A D

fx (x0; p0) has an algebraically simple eigenvalue � D 0
(see Sect. “Branch Switching” for branch points), while at
a Hopf point there is a pair of complex conjugate eigenval-
ues � D ˙i!0; !0 ¤ 0 and only one such pair.

The simplest way of detecting the passage through a bi-
furcation during continuation, is to monitor the eigenval-
ues of the Jacobi matrix. For large systems and stiff prob-
lems this is prohibitive as it is numerically expensive and
not always accurate. Instead, one can base test functions
on determinants.

Test Functions for Limit Point Bifurcations Along an
equilibrium curve the product of the eigenvalues changes
sign at a limit point. Recall that the determinant of A is
the product of its eigenvalues. Therefore, the following test
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function can be computed

'LP D det( fx (x; p)) (21)

without computing the eigenvalues explicitly.
For the LP bifurcation the pseudo-arclength or

Moore–Penrose continuation methods provide an excel-
lent test function as a by-product of the continuation. Note
that while passing through the fold, the last component
of the tangent vector � changes sign as the continuation
direction in the parameter reverses. The test function is
therefore defined as

'LP D �nC1 : (22)

Test Functions for Hopf Bifurcations Denote the
eigenvalues of A by �i (x; p) ; i D 1 : : : ; n and consider
the following product

'H D
Y

i< j

(�i (x; p)C � j(x; p)) :

It can be shown that this product has a regular zero at
a simple Hopf point [9], but it should be checked that this
zero corresponds to an imaginary pair and not to the neu-
tral saddle case �i D �� j ; �i 2 R.

Also here one can compute this product without ex-
plicit computation of the eigenvalues using the bi-alter-
nate product [34,42,45,56]. The bi-alternate product of
two (n � n)-matrices A and B, denoted by A ˇ B, is
a (m � m)-matrix C (m D n(n � 1)/2) with row index
(i; j) and column index (k; l) and elements

C(i; j)(k;l ) D
1
2

( ˇ̌
ˇ̌
ˇ

aikail

bjkbjl

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ

bikbil

ajkajl

ˇ̌
ˇ̌
ˇ

)

where
i D 2; 3; : : : ; n; j D 1; 2; : : : i � 1 ;
k D 2; 3; : : : ; n; l D 1; 2; : : : k � 1 :

Let A be an n � n-matrix with eigenvalues �1; : : : ; �n ,
then [73]

� Aˇ A has eigenvalues �i� j ,
� 2Aˇ In has eigenvalues �i C � j .

The test function can now be expressed as

'H D det(2 fx (x; p)ˇ In) : (23)

For higher dimensional systems, this matrix becomes very
large and one should use precondition or subspace meth-
ods, see [36].

Test Functions for Codimension 1 Cycle Bifurcations
Recall that the nontrivial multipliers �1; : : : ; �n�1 deter-
mine the stability of the cycle and can be efficiently com-
puted as the nontrivial multipliers of the monodromy ma-
trix M, see Sect. “Discretization of BVPs”. Now the follow-
ing two sets of test functions can be used to detectLPC, PD
and NS bifurcations

'LPC D

n�1Y

iD1

(�i � 1) ; 'LPC D �p ;

'PD D

n�1Y

iD1

(�i C 1) ; 'PD D det(M C In) ;

'NS D

n�1Y

1Di< j

(�i� j � 1) ; 'NS D det(M ˇM
� In(n�1)/2) :

where �p denotes the parameter component of the tangent
vector similar to (22). It should also be checked that a zero
of 'NS corresponds to nonreal multipliers ei	0 , similar to
the test function to detect the Hopf bifurcation.

There are alternatives for these test functions. One
can define bordered systems using the monodromy ma-
trix [9,42] or a BVP formulation [23].

Defining Systems for Codimension 1 Bifurcations
of Equilibria

To compute curves of codim 1 equilibria bifurcations, first
a defining system of the form (2) needs to be formulated
to define the bifurcation curve, and then a second pa-
rameter for the continuation must be freed, so that now
p 2 R2. This is done by adding to the equilibrium equa-
tion f (x; p) D 0 appropriate equations that characterize
the bifurcation.

Defining systems come in two flavors, fully (also stan-
dard) and minimally augmented systems. The first com-
putes all relevant eigenspaces, while the latter exploits the
rank deficiency of the Jacobi matrix and adds only a few
strategic equations to regularize the continuation problem.
The evaluation of such equations requires the eigenspaces,
but these can be computed separately. As the names sug-
gest, the difference is in the dimension of the defining sys-
tem leading to differently sized problems. In particular,
the advantage of minimally augmented systems is that of
solving several smaller linear problems, instead of a big
one, which is known to be better in terms of both accu-
racy and computational time. For small phase dimension n
there is little difference in computational effort. Both min-
imally and fully extended defining systems for both limit
point and Hopf bifurcations are presented. The regularity
of these systems is also known, e. g., see [42].
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Defining Systems for Limit Point Bifurcations The
first defining system is minimally extended adding the test
function (21)


f (x; p) D 0 ;

det( fx (x; p)) D 0 : (24)

This system consists of nC1 equations in nC2 unknowns
(x; p). One problem is that the computation of the deter-
minant can lose accuracy for large systems. This can be
avoided in two ways, by augmenting the system with the
eigenspaces or using a bordering technique.

Fully extended systems include the eigenvectors and
for a LP bifurcation this leads to

8
<

:

f (x; p) D 0 ;
fx (x; p)v D 0 ;
v>0 v � 1 D 0 ;

(25)

where v0 is a vector not orthogonal to N ( fx (x; p)). This
system consists of 2n C 1 equations in 2n C 2 unknowns
(x; p; v).

The bordering technique uses the bordering
lemma [41]. Let A 2 Rn�n be a singular matrix and
let B;C 2 Rn�m such that the system

�
A B

C> 0m

��
V
g

�
D

�
0n�m

Im

�
(26)

is nonsingular (V 2 Rn�m , g 2 Rm�m ). Typically B and C
are associated to the eigenspaces of A> and A correspond-
ing to the zero eigenvalue, respectively or, during continu-
ation, approximated by their values computed at the previ-
ous point along the branch. It follows from the bordering
lemma that A has rank deficiency m if and only if g has
rank deficiency m.

With A D fx (x; p) and m D 1, one has g D 0 if
and only if det( fx (x; p)) D 0. A modified and minimally
extended system for limit points is thus given by


f (x; p) D 0 ;
g(x; p) D 0 ;

where g is defined by (26) with A>B D AC D 0 at
a previously computed point. During the continuation the
derivatives of g w.r.t. to x and p are needed. They can either
be approximated by finite differences, or explicitly (and ef-
ficiently) obtained from the second-derivatives of the vec-
tor field f , see [42].

Defining Systems for Hopf Bifurcations Defining sys-
tems for Hopf bifurcations are formulated analogously to

the LP case. Adding the test function (23) creates a mini-
mally extended system


f (x; p) D 0 ;

det(2 fx (x; p)ˇ In) D 0 ; (27)

while the fully extended system is given by

8
ˆ̂̂
<̂

ˆ̂̂
:̂

f (x; p) D 0 ;
fx (x; p)v1 C !v2 D 0 ;
fx (x; p)v2 � !v1 D 0 ;

w>1 v1 C w>2 v2 � 1 D 0 ;
w>1 v2 � w>2 v1 D 0 ;

(28)

where w D w1 C iw2 is not orthogonal to the eigenvec-
tor v D v1 C iv2 corresponding to the eigenvalue i!. The
vector w D vk�1 computed at the previous point is a suit-
able choice during continuation. System (28) is expressed
using real variables and has 3n C 2 equations for 3n C 3
unknowns (x; p; v1; v2; !).

A reduced defining system can be obtained from (28)
by noting that the matrix fx (x; p)2 C �In has rank defi-
ciency two at a Hopf bifurcation point with � D !2 [67].
An alternative to (28) is now formulated as

8
ˆ̂<

ˆ̂:

f (x; p) D 0 ;�
fx (x; p)2 C �In

	
v D 0 ;

v>v � 1 D 0 ;
w>v D 0 ;

(29)

where w is not orthogonal to the two-dimensional real
eigenspace of the eigenvalues ˙i!. It has 2n C 2 equa-
tions for 2n C 3 unknowns (x; p; v; �). However, w needs
to be updated during continuation, e. g., as the solution
of
�
[ fx (x; p)2 C �In]>w; v>w

�
D (0; 0) computed at the

previous continuation point.
A further reduction is obtained exploiting the rank de-

ficiency. Consider the system

�
fx (x; p)2 C �In B

C> 02

��
V
g

�
D

�
0n�2

I2

�

and it follows from the bordering lemma that g vanishes
at Hopf points and any two components of g, e. g., g11 and
g22, see [42], can be taken to augment Eq. (2) to obtain the
following minimally augmented system

8
<

:

f (x; p) D 0 ;
g11 D 0 ;
g22 D 0 ;

(30)

which has nC 2 equations for nC 3 unknowns (x; p; �).
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Defining Systems for Codimension 1 Bifurcations
of Limit Cycles

In principle, to study bifurcations of limit cycles one can
compute numerically the Poincaré map and study bifur-
cations of fixed points. If system (1) is not stiff, then the
Poincaré map and its derivatives may be obtained with sat-
isfactory accuracy. In many cases, however, continuation
using BVP formulations is much more efficient.

Suppose a cycle x bifurcates at p D p0, then the BVP
(4) defining the limit cycle must be augmented with suit-
able extra functions. As for codim 1 branches of equilib-
ria, one can define either fully extended systems by includ-
ing the relevant eigenfunctions in the computation [9], or
minimally extended systems using bordered BVPs [23,39].
The regularity of these defining systems is also discussed in
these references. Since the discretization of the cycle leads
to large APs, here the minimally extended approach can
lead to faster results even though some more algebra is in-
volved, see the comparison in [57]. Below only the equa-
tions are presented, which are added to the defining system
(4) for the continuation of limit cycles.

Fully Extended Systems The following equations can be
used to augment (4) and continue codim 1 bifurcations of
limit cycles. The eigenfunctions v need to be discretized in
a similar way to that in Sect. “Discretization of BVPs”. The
previous cycle xk�1 and eigenfunction vk�1 are assumed
to be known.

LPC: For the limit point of cycles bifurcation, the BVP
(4) is augmented with the equations

8
ˆ̂<

ˆ̂:

v̇(�) � T fx (x(�); p)v(�) � � f (x(�); p) D 0 ;
v(1) � v(0) D 0 ;R 1

0 v>(�)ẋ k�1(�)d� D 0 ;R 1
0 v>(�)v(�)k�1d� C �� k�1 D 1 ;

(31)

for the variables (x; p; T; v; �). Note that
8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

v̇(�) � T fx (x(�); p)v(�) � T fp(x(�); p)q
�� f (x(�); p) D 0 ;

v(1) � v(0) D 0 ;R 1
0 v>(�)ẋ k�1(�)d� D 0 ;R 1

0 v>(�)v(�)k�1d� C qk�1qC � k�1� D 1 ;

defines the tangent vector � D (v; q; �) to the solution
branch, so that (31) simply imposes q D 0, i. e., the limit
point. Together with (4), they compose a BVP with 2n
ODEs, 2n boundary conditions, and 2 integral conditions,
i. e., np D 2nC2�2nC1 D 3, namely T and two free pa-
rameters. Similar dimensional considerations hold for the
PD and NS cases below.

PD: For the period-doubling bifurcation, the extra
equations augmenting (4) are

8
<

:

v̇(�) � T fx (x(�); p)v(�) D 0 ;
v(1)C v(0) D 0 ;R 1

0 v>(�)vk�1(�)d� D 1 ;
(32)

for the variables (x; p; T; v). Here v is the eigenfunction
of the linearized ODE associated with the multiplier � D
�1. In fact, the second equation in (32) imposes v(1) D
Mv(0) D �v(0), where M is the monodromy matrix, while
the third equation scales the eigenfunction against the pre-
vious continuation point.

NS: For the Neimark–Sacker bifurcation, the BVP (4)
is augmented with the equations

8
<

:

v̇(�) � T fx (x(�); p)v(�) D 0 ;
v(1) � ei	v(0) D 0 ;R 1

0 v̄>(�)vk�1(�)d� D 1 ;
(33)

for the variables (x; p; T; v; 	) with v 2 C1([0; 1];Cn ).
Here v is the eigenfunction of the linearized ODE asso-
ciated with the multiplier � D ei	 . Of course, the real for-
mulation should be used in practice.

Minimally Extended Systems For limit cycle continua-
tion the discretization of the fully extended BVP (4) with
(31), (32) or (33) may lead to large APs to be solved.
In [39] a minimally extended formulation is proposed to
augmenting (4) with a function g with only a few compo-
nents. The corresponding function g is defined using bor-
dered systems.

LPC: For this bifurcation, one uses suitable bordering
functions v1;w1 and vectors v2;w2;w3 such that the fol-
lowing system linear in (v; �; g) is regular
8
ˆ̂<

ˆ̂:

v̇(�) � T fx (x(�); p)v � f (x(�); p)� C w1 g D 0 ;
v(1) � v(0)C w2 g D 0 ;R 1

0 f (x(�); p)>v(�)d� C w3 g D 0 ;R 1
0 v>1 v(�)d� C v2� D 1 :

(34)

The function g D g(x; T; p) vanishes at a LPC point. The
bordering functions v1;w1 and vectors v2;w2;w3 can be
updated to keep (34) nonsingular, in particular, v1 D vk�1

and v2 D � k�1 from the previously computed point
are used. It is convenient to introduce the Dirac oper-
ator ıi f D f (i) and the integral operator Intv(�) f DR 1

0 v(�)> f (�)d� and to rewrite (34) in operator form
0
BB@

D � T fx (x(�); p) � f (x(�); p) w1
ı0 � ı1 0 w2

Int f (x(�);p) 0 w3
Intv1(�) v2 0

1
CCA

0

@
v
�

g

1

A D

0
BB@

c0
0
0
1

1
CCA :

(35)
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PD: The same notation as for the minimally extended
LPC defining system is used and suitable bordering func-
tions v1;w1 and vector w2 are chosen such that the follow-
ing system is regular

0

@
D � T fx (x(�); p) w1

ı0 C ı1 w2
Intv1(�) 0

1

A
�

v
g

�
D

0

@
0
0
1

1

A : (36)

At a PD bifurcation g(x; T; p) defined by (36) vanishes.
NS: Let �̂ D cos(	 ) denote the real part of the

nonhyperbolic multiplier and choose bordering functions
v1; v2;w11;w12 and vectors w21;w22 such that the follow-
ing system is nonsingular and defines the four components
of g
0
BB@

D � T fx (x(�); p) w11 w12
ı2 � 2�̂ı1 C ı0 w21 w22

Intv1(�) 0 0
Intv2(�) 0 0

1
CCA

�
v
g

�
D

�
0n�2

I2

�
: (37)

At a NS bifurcation the four components of g(x; T; p) de-
fined by (37) vanish, and, similar to the Hopf bifurcation,
the BVP (4) can be augmented with any two components
of g.

Test Functions for Codimension 2 Bifurcations

During the continuation of codim 1 branches, one meets
generically codim 2 bifurcations. Some of which arise
through extra instabilities in the linear terms, while other
codim 2 bifurcations are defined through degeneracies in
the normal form coefficients. For equilibria, codim 2 bifur-
cations of the first type are the Bogdanov–Takens (BT, two
zero eigenvalues with only one associated eigenvector),

Numerical Bifurcation Analysis, Table 3
Test functions along LPC, PD and NS bifurcation curves. The matrix Mc along the Neimark–Sacker bifurcation curve is defined sim-
ilarly as Ac in Table 2 along the Hopf bifurcation as the orthogonal complement of the monodromy matrix M w.r.t. the two-dimen-
sional eigenspace associated with the computed branch of Neimark–Sacker bifurcations

Label LPC PD NS

cusp CP aLPC
degenerate flip GPD bPD
Chenciner CH dNS
resonance 1:1 R1 w>

LPvLP �̂ � 1
resonance 1:2 R2 w>

PDvPD �̂ C 1
resonance 1:3 R3 �̂ C 1

2
resonance 1:4 R4 �̂

fold-flip LPPD 'PD 'LP

fold-Neimark–Sacker LPNS 'NS 'LP

flip-Neimark–Sacker PDNS 'NS 'PD

double Neimark–Sacker NSNS det(Mc ˇMc � I(n�2)(n�3)/2)

the zero-Hopf (ZH, also called Gavrilov-Guckenheimer,
a simple zero eigenvalue and a simple imaginary pair), and
the double Hopf (HH, two distinct imaginary pairs), while
higher order degeneracies lead to cusp (CP, aLP D 0 in
the normal form (11)) or generalized Hopf (GH, dH D 0
in the normal form (12), also called Bautin or degener-
ate Hopf). For cycles, there are strong resonances (R1–
R4), fold-flip (LPPD), fold-Neimark–Sacker (LPNS), flip-
Neimark–Sacker (PDNS), and double Neimark–Sacker
(NSNS) among those involving linear terms, while higher
order degeneracies lead to cusp (CP), degenerate flip
(GPD), and Chenciner (CH) bifurcations. Naturally the
normal form coefficients, see [9,56], are a suitable choice
for the corresponding test functions. In Tables 2 and 3,
test functions are given which are defined along the corre-
sponding codim 1 branches of equilibrium and limit cycle
bifurcations, respectively. The functions refer to the cor-
responding defining system and to Table 1. Upon detect-
ing and locating a zero of a test function it may be neces-

Numerical Bifurcation Analysis, Table 2
Test functions along limit point and Hopf bifurcation curves. The
matrix Ac for the test function of the double Hopf bifurcation can
be obtained as the orthogonal complement in Rn of the Jacobi
matrix A w.r.t. the two-dimensional eigenspace associated with
the computed branch of Hopf bifurcations

Label LP H

cusp CP aLP
generalized Hopf GH dH
Bogdanov–Takens BT w>

LPvLP �

zero-Hopf ZH 'H 'LP

double Hopf HH det(2Ac ˇ In�2)
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Numerical Bifurcation Analysis, Figure 4
(a) Projection of two solution branches of (2), intersecting at yBP , on the null-space of Fy(yBP) (N ), close to yBP (planar representation
in coordinates (˛1; ˛2) with respect to a givenbasis). The two solution branches are approximated by the straight lines inN spanned
by their tangent vectors at yBP (thick vectors). (b) and (c) Projection onN , close to yBP, of the two solution branches of the perturbed
problem (see (43) for b > 0 and b < 0, respectively)

sary to check that a bifurcation is really involved, similar
to the Hopf case where neutral saddles are excluded. For
details about the dynamics and the bifurcation diagrams
at codim 2 points, see [2,44,56].

Branch Switching

This section considers points in the continuation space
from which several solution branches of interest, with
the same codimension, emanate. At these points suit-
able “branch switching” procedures are required to switch
from one solution branch to another. First, the transver-
sal intersection of two solution branches of the same con-
tinuation problem is considered, which occurs at so-called
Branch Points (BP) (also called “singular” or “transcriti-
cal” bifurcation points). Branch points are nongeneric, in
the sense that arbitrarily small perturbations of F in (2)
turn the intersection into two separated branches, which
come close to the “ghost” of the (disappeared) intersec-
tion but then fold (LP) and leave as if they follow the other
branch (see Fig. 4).

BPs, however, are very common in applications due
to particular symmetries of the continuation problem, like
reflections in state space, conserved quantities or the pres-
ence of trivial solutions. This is why BP detection and con-
tinuation recently received attention [16,25,28]. Then, the
switch from a codim 0 solution branch to that of a dif-
ferent continuation problem at codim 1 bifurcations is
examined. In particular, the equilibrium-to-cycle switch
at a Hopf bifurcation and the period-1-to-period-2 cy-
cle switch at a flip bifurcation are discussed. Finally, var-
ious switches between codim 1 solution branches of dif-
ferent continuation problems at codim 2 bifurcations are
addressed.

Branch Switching at Simple Branch Points

Simple BPs are points yBP D (uBP; pBP), encountered
along a solution branch of (2), at which the nullspace
N (Fy(y)) of Fy(y) is two-dimensional, i. e., the nullspace
is spanned by two independent vectors �1; �2 2 Y , with
�>i �i D 1, i D 1; 2. Generically, two solution branches
of (2) pass through yBP, with transversal tangent vectors
given by suitable combinations of �1 and �2. In the follow-
ing, only the case of the AP (2), i. e., Y D RnC1 (u 2 Rn

and p 2 R) and F : RnC1 ! Rn is considered. Similar
considerations hold for the BVP (3) (see [16] for details),
though, loosely speaking, results for APs can be applied to
BVPs after time discretization.

A BP is not a regular point, since rank (Fy(yBP)) D
n � 1. Distinguishing between state and parameters, there
are two possibilities

8
ˆ̂<

ˆ̂:

(i) dimN (Fu(yBP)) D 1; Fp(yBP) 2 R(Fu(yBP))
H) �1 D (v1; 0); �2 D (v2; q2);

(ii) dimN (Fu(yBP)) D 2; Fp(yBP) … R(Fu(yBP))
H) �1 D (v1; 0); �2 D (v2; 0) ;

(38)

for suitably chosen v1; v2; q2. In particular, in the first case,
v1 spans the nullspace of Fu(yBP) and �2 is determined
by solving

�
Fu(yBP)v2 C Fp(yBP)q2; v>1 v2; v>2 v2 C q2

2
�
D

(0; 0; 1).
BPs can be detected by means of the following test

function

'BP D det
�


Fy(y)
�>

��
; (39)

where � is the tangent vector to the solution branch dur-
ing continuation, which indeed vanishes when (2) admits
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a second independent tangent vector. Note from (38) that
test function (21) also vanishes at BPs, so that test function
(22) is more appropriate for LPs.

The vectors tangent to the two solution branches in-
tersecting at yBP can be computed as follows. Parametrize
one of the two solution branches by a scalar coordi-
nate s, e. g., the arclength, so that y(s) and ys (s) denote
the branch and its tangent vector locally to y(0) D yBP.
Then, F(y(s)) is identically equal to zero, so taking twice
the derivative w.r.t. s one obtains Fyy(y(s))[ys (s); ys (s)]C
Fy(y(s))yss(s) D 0, which at yBP reads

Fyy(yBP)[ys (0); ys (0)]C Fy(yBP)yss(0) D 0 ; (40)

with ys(0) D ˛1�1C˛2�2. Let  2 Rn span the nullspace
of Fy(yBP)> with  > D 1. Since the range of Fy(yBP)
is orthogonal to the nullspace of Fy(yBP)>, one can elim-
inate yss(0) in (40) by left-multiplying both sides by  >,
thus obtaining

 >Fyy(yBP)[˛1�1 C ˛2�2; ˛1�1 C ˛2�2] D 0 : (41)

Equation (41) is called the algebraic branching equa-
tion [50] and is often written as

c11˛
2
1 C 2c12˛1˛2 C c22˛

2
2 D 0 ; (42)

with cij D  >Fyy(yBP)[�i ; � j]; i; j D 1; 2. At BP de-
tection, the discriminant c11c22 � c2

12 is generically nega-
tive (otherwise the BP would be an isolated solution point
of (2)), so that two distinct pairs (˛1; ˛2) and ( ˜̨1; ˜̨2),
uniquely defined up to scaling, solve (42) and give the di-
rections of the two emanating branches.

Once the two directions are known, one can easily per-
form branch switching by an initial prediction from yBP

along the desired direction. This, however, requires the
second-order derivatives of F w.r.t. all continuation vari-
ables. Though good approximations can often be achieved
by finite differences, an alternative and computationally
cheap prediction can be taken in the nullspace of Fy(yBP)
along the direction orthogonal to ys(0). The vector ys(s) is
in fact known at each point during the continuation of the
solution branch up to BP detection, so that the cheap pre-
diction for the other branch spans the (one-dimensional)
nullspace of



Fy(yBP)
ys (0)>

�
:

Branch Point Continuation

Generic Problems Several defining systems have been
proposed for BP continuation, see [16,25,28,63,64,65].

Among fully extended formulations, the most compact
one characterizes BPs as points at which the range of Fy(y)
has rank defect 1, i. e., the nullspace of Fy(y)> is one-di-
mensional. BP continuation is therefore defined by
8
ˆ̂<

ˆ̂:

F(u; p) D 0 ;
Fu(u; p)> D 0 ;
Fp(u; p)> D 0 ;
 > � 1 D 0 :

Counting equations, 2nC 2, and variables u;  2 Rn , p 2
R, i. e., 2n C 1 scalar variables, it follows that two extra
parameters generically need to be freed. In other words,
BPs are codim 2 bifurcations, which are not expected along
generic solution branches of (2).

Non-generic Problems BP continuation can be per-
formed in a single extra free parameter for nongeneric
problems characterized by symmetries that persist for all
parameter values. In such cases, the continuation prob-
lem (2) is perturbed into

F(y)C bub D 0 ; (43)

where b 2 R and ub 2 Rn are new variables of the defin-
ing system. The idea is that ub “breaks the symmetry”, in
the sense that problem (43) has no BP for small b ¤ 0,
and BP continuation can be performed in two extra free
parameters, one of which, b, remains zero during the con-
tinuation. The choice of ub is not trivial. Geometrically, ub
must be such that small values of b perturb Fig. 4a into
Fig. 4b, say for b > 0, and into Fig. 4c for b < 0. It turns
out (see, e. g., [16]) that ub D  is a good choice, i. e., per-
turbations not in the range of Fy(yBP) break the symmetry,
since close to the BP, they must be balanced by the nonlin-
ear terms of the expansion of F in (43), and this implies
significant deviations of the perturbed solution branch y
from the unperturbed y(s).

BP continuation for nongeneric problems is therefore
defined by

8
ˆ̂<

ˆ̂:

F(x; p)C b D 0 ;
Fx (x; p)> D 0 ;
Fp(x; p)> D 0 ;
 > � 1 D 0 :

(44)

This defining system is also useful for accurately comput-
ing BPs. In fact, the basin of convergence of the Newton
iterations in (8) or (9) shrinks at BPs (recall Fy(y) does not
have full rank at BPs), while system (44), in the 2nC2 vari-
ables (u; p; b;  ), has a unique solution (uBP; pBP; 0;  )
close to the BP. Thus, when the BP test function (39)
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changes sign along a solution branch of (2), Newton cor-
rections can be applied to (44), starting from the best pos-
sible prediction, i. e., with b D 0 and  as the eigenvector
of Fu(u; p)> associated with the real eigenvalue closest to
zero.

Minimally Extended Formulation A minimally ex-
tended defining system for BP continuation requires two
scalar conditions, g1(u; p) D 0, g2(u; p) D 0, to be
added to the unperturbed or perturbed problem (2) or (43)
for generic and nongeneric problems, respectively. These
functions g1 and g2 are defined in [28] by solving

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

Fy(y)�1 C g1 
k�1 D 0 ;

Fy(y)�2 C g2 
k�1 D 0 ;

(� k�1
1 )>�1 � 1 D 0 ;

(� k�1
2 )>�2 � 1 D 0 ;

(� k�1
1 )>�2 D 0 ;

(� k�1
2 )>�1 D 0 ;

in the unknowns �1; �2; g1; g2, while is updated by solv-
ing


Fy(y)> C g1�1 C g2�2 D 0 ;
 > � 1 D 0 ;

in the unknowns  , g1, g2, after each Newton conver-
gence.

Branch Switching at Hopf Points

At a Hopf bifurcation point yH D (xH; pH), one typ-
ically wants to start the continuation of the emanating
branch of limit cycles. For this, one might think of using
the branch switching procedure described above to switch
from a constant to a periodic solution branch of the limit
cycle BVP (4). Unfortunately, yH is not a simple BP for
problem (4), since the period T is undetermined along
the constant solution branch, so that, formally, an infinite
number of branches emanate from yH. Thus, a prediction
in the proper direction, i. e., along the vector � D (v; q)
tangent to the periodic solution branch, is required.

Let y(s) represent the periodic solution branch, with
y(0) D yH. Then, x and v are period-1 vector-valued func-
tions in C1([0; 1];Rn), p 2 R and T are the free parame-
ters, and q D (ps ; Ts). The Hopf bifurcation theorem [56]
ensures that ps D Ts D 0 and that v is the unit-length
solution of the linearized, time-independent equation v̇ D
T(0) fx (xH; pH)v, i. e., v(�) D sin(2��)wr C cos(2��)wi ,
where w D wr C iwi (w>r wr C w>i wi D 1;w>r wi D 0)
is the complex eigenvector of fx (xH; pH) associated to the
eigenvalue i!, ! D 2�/T(0).

The periodic solution branch of the limit cycle BVP (4)
can therefore be followed, provided the phase condition
(see the last equation in (4)) is replaced by

R 1
0 x>v̇d� D 0

at the first Newton correction. Otherwise, x would be un-
determined among time-shifted solutions.

Branch Switching at Flip Points

At a flip bifurcation point yPD D (xPD; pPD), where xPD 2
C1([0; 1];Rn), xPD(1) D xPD(0), one typically wants to
start the continuation of the emanating branch of “period-
2” limit cycles, i. e., those which close to yPD have approx-
imately the double of the period of the bifurcating cycle.
For this, branch switching at simple BPs can be used. In
fact, two solution branches of the limit cycle BVP (4) trans-
versely intersect at yPD if one considers T as the doubled
period: the branch of interest and the branch along which
the corresponding period-1 cycle is traced twice. In other
words, one can see the period-doubling bifurcation in the
period-1 branch as the “period-halving” bifurcation in the
period-2 branch.

Alternatively, the vector � D (v; q) tangent to the
period-2 branch at yPD is given by the flip theorem [56]
and does not need to be computed by solving the algebraic
branching Eq. (41). In particular, the initial solution of the
period-2 BVP is x(t) D xPD(2t), p D pPD, T D 2TPD,
while q D (ps ; Ts ) D 0 and

v(t) D

(
w(t) ; 0 � t < 1 ;
�w(t � 1) ; 1 � t < 2 ;

where w(t) is the unit-length eigenfunction of the lin-
earized (time-dependent) ODE associated with the mul-
tiplier � 1, i. e.,
8
<

:

ẇ � TPD fx (xPD; pPD)w D 0 ;
w(1)C w(0) D 0 ;R 1

0 w(�)>w(�) d� D 1 :

Branch Switching at Codimension 2 Equilibria

Assume that y2 D (x2; p2), x2 2 Rn , p2 2 R2, iden-
tifies a codim 2 equilibrium bifurcation point of system
(1), either cusp (CP), Generalized Hopf (GH), Bogdanov–
Takens, (BT), zero-Hopf (ZH), or double Hopf (HH). Then,
according to the analysis of the corresponding normal
form (13) with two parameters and critical dimension
nc D 1; 2; 3; 4 at CP, BT and GH, ZH, HH points, re-
spectively, several curves of codim 1 bifurcations of equi-
libria and limit cycles emanate from p2 in the parameter
plane [56]. Here, the problem of how the continuation of
such curves can be started from y2 is discussed, by restrict-
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ing the attention to equilibria bifurcations (an example of
a cycle bifurcation is given at the end, and see [9,61]).

In general, the normal form analysis also provides an
approximation of each emanating codim 1 bifurcation, in
the form of a parameterized expansion

w D
X

��1

1
�!

w�"� ; ˛ D
X

��1

1
�!
˛�"

� ; (45)

for small " > 0 and up to some finite order. Then, the (pa-
rameter-dependent) center manifold (15) maps such an
approximation back to the solution branch of the original
system (1), locally to y2 D (H(0; 0);V (0)), and allows one
to compute the proper prediction from y2 along the direc-
tion of the desired codim 1 bifurcation. However, as will
be concluded in the following, such approximations are
not needed to start equilibria bifurcations and are there-
fore not derived (see [9] for all available details).

Switching at a Cusp Point At a generic cusp point
yCP D (uCP; pCP), two fold bifurcation curves terminate
tangentially. Generically, the cusp point is a regular point
for the fold defining systems (24) and (25), where the tan-
gent vector has zero p-components. The cusp geometri-
cally appears once the fold solution branch is projected in
the parameter plane. Thus, the continuation of the two
fold bifurcations can simply be started as forward and
backward fold continuation from yCP. Since the continu-
ation direction is uniquely defined, neither a tangent pre-
diction nor a nonlinear expansion of the desired solution
branch are necessary.

Switching at a Generalized Hopf Point At a Hopf point
with vanishing Lyapunov coefficient yGH D (xGH; pGH),
a LPC bifurcation terminates tangentially to a Hopf bi-
furcation, which turns from super- to subcritical, and vice
versa. Thus, yGH is a regular point for the Hopf defining
systems (27)–(30).

Switching at a Bogdanov–Takens Point At a generic
Bogdanov–Takens point yBT D (uBT; pBT), a Hopf and
a (saddle) homoclinic bifurcation terminate tangentially to
a fold bifurcation, along which a real nonzero eigenvalue
of the Jacobi matrix fx (x; p) changes sign at yBT. Gener-
ically, yBT is a regular point for the fold defining systems
(24) and (25) and for the Hopf defining systems (27), (29),
and (30). However, yBT is a simple BP for the Hopf defin-
ing system (28). In fact, the fold and Hopf branches are
both solution branches of the continuation problem (28),
where ! D 0 and v1 D v2, with v>1 v1 D v>2 v2 D 1/2,
along the fold branch. The branch switch procedures de-
scribed in this section readily apply in this case.

Switching at Zero-Hopf and Double Hopf Points
Generically, zero-Hopf and double Hopf points are regular
points for codim 1 equilibria bifurcations (fold and Hopf),
so that the proper initial prediction is uniquely defined.
For limit cycle bifurcations and connecting orbits, nonlin-
ear expansions of the fold and Hopf branches are needed
to derive initial predictions for the emanating branches.
For cycles the switching procedure can be set up using the
center manifold [61]. However, initial predictions for ho-
moclinic and heteroclinic bifurcations for both zero-Hopf
and double Hopf cases are not available in general, but
see [35].

The double Hopf bifurcation appears when two differ-
ent branches of Hopf bifurcations intersect. Several bifur-
cation curves are rooted at the double Hopf point. In par-
ticular, it is known that there are generically two branches,
two half-lines in the parameter plane, emanating from this
point along which a Neimark–Sacker bifurcation of limit
cycles occurs [56]. Here it is discussed how to initialize
the continuation of a Neimark–Sacker branch (using (37))
from a double Hopf point after continuation of a Hopf
branch. The initialization requires approximations of the
cycle x, the period T, the parameters p and the real part of
the multiplier �̂. These can be obtained by reducing the dy-
namics of (1) to the center manifold. On the center mani-
fold, the dynamics near a HH bifurcation point is governed
by the following normal form
�

ẇ1
ẇ2

�
D

�
(i!1(˛)C ˛1)w1 C g2100w1jw1j

2 C g1011w1jw2j
2

(i!2(˛)C ˛2)w2 C g1110w2jw1j
2 C g0021w2jw2j

2

�

C O(k (w1;w2)k4) ; (46)

where (w1;w2) 2 C2. In polar coordinates, w1 D 1ei	1 ;

w2 D 2ei	2 , the asymptotics from the normal form as in
(45) for the nonhyperbolic cycle on one branch are given
by

(1; 2; ˛1; ˛2)

D
�
"; 0;�Re(g2100)"2;�<(g1110)"2� ; (47)

with 	1 2 [0; 2�]; 	2 D 0.
Although high-dimensional, the computation of the

coefficients and center manifold vectors is relatively
straightforward. Introduce Avj D i! jv j;A>w j D �i! jw j
with v̄>j v j D w̄>j v j D 1 and let � D (10); (01) and intro-
duce the standard basis vectors e10 D (1; 0); e01 D (0; 1).
Using the expansion (14), the cubic critical normal form
coefficients and the parameter dependence are calculated
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from
g2100 D w̄>1 [C(v1; v1; v̄1)C B(h2000; v̄1)

C 2B(h1100; v1)]
ı

2 ;

g1011 D w̄>1 [C(v1; v2; v̄2)C B(h1010; v̄2)
C B(h1001; v2)C B(h0011; v1)];

g1110 D w̄>2 [C(v2; v1; v̄1)C B(h1100; v2)C B(h1010; v̄1)

C B(h̄1001; v1)] ;

g0021 D w̄>2 [C(v2; v2; v̄2)C B(h0020; v̄2)
C 2B(h0011; v2)]/2 ;

� j;� D p̄>j [A1(v j; e�) � B(v j;A�1 J1e�)]
ı

2 ; (48)

where j D 1; 2 and

h2000 D (2i!1In � A)�1B(v1; v1) ;

h0020 D (2i!2In � A)�1B(v2; v2) ;

h1100 D �A�1B(v1; v̄1) ;

h0011 D �A�1B(v2; v̄2) ;

h1010 D (i(!1 C !2)In � A)�1B(v1; v2) ;

h1001 D (i(!1 � !2)In � A)�1B(v1; v̄2) ;

(49)

where h� are the vectors in the expansion of the center
manifold (17).

Now, to construct a cycle for (46), a mesh for 	1 is de-
fined and the asymptotics (47) are inserted into the polar
coordinates. This cycle is mapped back to the original sys-
tem by using (17) with (47), (48) and (49). The transfor-
mation between free system and unfolding parameters is
given by p(") D R(�1�2)�1(˛1; ˛2)> using (47). Finally,
approximating formulas for the period and the real part of
the multiplier are given by

T D
2�

!1 C d!1"2 ; �̂ D cos(T(!2 C d!2"
2)) ;

(d!1; d!2) D �=(�1�2)>(<(�1�2)>)�1<(g2100; g1110)>

C=(g2100; g1110) ;

where d!1; d!2 indicate the change in rotation in the an-
gles 	1; 	2 for " ¤ 0. This construction is done up to sec-
ond order in " and leads to an initial approximation for
the continuation of a Neimark–Sacker bifurcation curve
starting from a double Hopf point. A similar set up can be
defined for the other branch.

Connecting Orbits

Connecting orbits, such as homoclinic and heteroclinic or-
bits, can be continued using a variety of techniques. To fix
some terminology: a heteroclinic orbit that connects two

equilibrium points x� and xC in the ODE system (1) is an
orbit for which

lim
t!�1

x(t) D x� and lim
t!1

x(t) D xC :

A homoclinic orbit is an orbit connecting an equilibrium
point to itself, that is, if xC D x�. Similarly there exist
heteroclinic connecting orbits between equilibrium points
and periodic orbits, and homoclinic and heteroclinic or-
bits connecting periodic orbits to periodic orbits.

Traditionally, homoclinic orbits to equilibrium points
were computed indirectly using numerical shooting or by
continuing a periodic solution with a large enough but
fixed period, that is close enough to a homoclinic or-
bit [24]. More modern and robust techniques compute
connecting orbits directly using projection boundary con-
ditions. Computing connections with and between peri-
odic orbits is subject to current research [26,27,54]. For
a more detailed description of the methods described here,
see [9].

Formulation as a BVP

A heteroclinic orbit can be expressed as a BVP in the fol-
lowing way:

ẋ(t) D f (x(t); p) ; lim
t!�1

x(t) D x� ;

lim
t!1

x(t) D xC ;
Z 1

�1

(x(t) � x0(t))> ẋ0(t)dt D 0 ;

where the integral condition is with respect to a reference
solution x0(t) and fixes the phase, similarly to the phase
condition for periodic orbits. This BVP, however, operates
on an infinite interval, while, numerically, one can only
operate on a finite, truncated interval [�T�; TC]. In this
case the problem can be reformulated as
8
ˆ̂<

ˆ̂:

ẋ(t) � f (x(t); p) D 0 ;
Ls (p)(x(�T�)� x�(p)) D 0 ;
Lu (p)(x(TC) � xC(p)) D 0 ;R T

C

�T
�

(x(t) � x0(t))> ẋ0(t)dt D 0 ;

where the equations involving Ls(p) and Lu(p) form the
projection boundary conditions. Here Ls(p) is an ns � n
matrix where the rows span the ns-dimensional stable
eigenspace of A>(x�), and similarly Lu(p) is an nu � n
matrix where the rows span the nu-dimensional unstable
eigenspace of A>(xC), where A(x) denotes the Jacobi ma-
trix of (1) at x. The projection boundary conditions then
ensure that the starting point x(�T�) lies in the unstable
eigenspace of x� and that the end point x(TC) lies in the
stable eigenspace of xC (see Fig. 5).
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Projection boundary conditions in two dimensions: the orbit
homoclinic to x0 is approximated by the truncated orbit from
x(�T

�

) on the unstable eigenspace Tu to x(T
C

) on the stable
eigenspace Ts. The unstable and stable manifolds are denoted
by Wu and Ws, respectively: this figure shows that the homo-
clinic orbit is also approximated in parameter space, because the
twomanifolds do not coincide

In parallel, one must also continue of the equilibrium
points x�(p) and xC(p), unless they are fixed. Then the
eigenspaces can be determined by doing a Schur decom-
position of the corresponding Jacobi matrices. These must
be subsequently scaled to ensure continuity in the param-
eter p [6]. Alternatively, one can construct smooth projec-
tors using an algorithm for the continuation of invariant
subspaces which includes the Ricatti equation in the defin-
ing system, see [33] for this new method. All these condi-
tions taken together give a BVP with two free parameters,
since, in general, a homoclinic or heteroclinic connection
is a codim 1 phenomenon.

Detecting Homoclinic Bifurcations

It is then possible to detect codim 2 bifurcations of ho-
moclinic orbits by setting up test functions and monitor-
ing those, detecting when they cross zero. For the contin-
uation of these codim 2 bifurcations in three parameters
such test functions can then be kept constant equal to zero,
which provides an extra boundary condition. Simple test
functions involve the values of leading eigenvalues of the
equilibrium point, i. e., the stable and unstable eigenval-
ues closest to the imaginary axis. Some other bifurcations
such as the inclination flip involve solving the so-called ad-
joint variational equation, which can detect whether the
flow around the orbit is orientable or twisted like a Möbius

strip. Homoclinics to a saddle-node, that is, where one
of the eigenvalues of the equilibrium is zero, can be de-
tected and followed similarly, by constructing appropriate
test functions. For details, see [9] and the references men-
tioned therein.

Homoclinic Branch Switching

It is sometimes desirable to do branch switching from
a homoclinic orbit to an n-homoclinic orbit, that is, a ho-
moclinic orbit that goes through some neighborhood of
the related equilibrium point n � 1 times before finally
converging to the equilibrium. Such n-homoclinic orbits
arise in a number of situations involving the eigenval-
ues of the equilibrium and the orientation of the flow
around the orbit. Suppose that the orbit is homoclinic to
a saddle with complex conjugate eigenvalues (a saddle-
focus). Let the saddle-quantity � be the sum of the real
parts of the leading stable and the leading unstable eigen-
value. If this quantity is positive, then a so-called Shil’nikov
snake exists, which implies the existence of infinitely many
n-periodic and n-homoclinic orbits for nearby parameters.
These n-homoclinic orbits also arise from certain codim 2
bifurcations:

1. Belyakov bifurcations: Either the saddle-quantity of the
saddle-focus goes through zero, or there is a transition
between a saddle-focus and a real saddle (here the equi-
librium has a double leading eigenvalue).

2. Homoclinic flip bifurcations: The inclination flip and
the orbit flip, where the flow around the orbit changes
between orientable and twisted.

3. The resonant homoclinic doubling: A homoclinic orbit
for which the flow is twisted connected to a real saddle
where the saddle quantity � goes through zero.

Case 1. produces infinitely many n-homoclinic orbits,
whereas cases 2. and 3. only produce a two-homoclinic or-
bit.

By breaking up a homoclinic orbit globally into two
parts where the division is in a cross-section away from
the equilibrium, somewhere “half-way”, and then gluing
pieces together, it is possible to construct n-homoclinic
orbits from 1-homoclinic orbits. The gaps between to-
be-glued pieces can be well-defined using Lin’s method,
which leaves the gaps in the direction of the adjoint vector.
This vector can be found by solving the adjoint variational
equation mentioned above at the “half-way” point. Com-
bining gap distances and times taken for the flow in pieces,
one can construct a well-posed BVP. This BVP can then be
continued in those quantities so that if the gap sizes go to
zero, one converges to an n-homoclinic orbit [66].
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Lin’s method was also applied in [54] to compute
point-to-cycle connections by gluing a piece from the
equilibrium to a cross-section to a piece from the cross sec-
tion to the cycle.

Software Environments

This review has outlined necessary steps and suitable
methods to perform numerical bifurcation analysis. Sum-
marizing, the following subsequent tasks can be recog-
nized.

Initial procedure 1. Compute the invariant solution
2. Characterize the linearized behavior

Continuation 3. Variation of parameters
4. Monitor dynamical indicators

Automated analysis 5. Detect special points and compute
normal forms
6. Switch branches

Ideally, these computations are automatically performed
by software and indeed, many efforts have been spent
on implementing the algorithms mentioned in this re-
view and related ones. With the appearance of comput-
ers at research institutes the first codes and noninter-
active packages were developed. For a recent historical
overview of these and their capabilities and algorithms,
see [38]. Here it is worthwhile to mention AUTO86 [24],
LINBLF [51] and DSTOOL [4] as these are the predeces-
sors to the packages AUTO-07P [21], CONTENT [58], MAT-
CONT [19], PyDSTOOL [13] discussed here. In particular,
AUTO86 is very powerful and in use to date, but not al-
ways easy to handle. Therefore, several attempts have been
made to make an interactive graphical user interface. One
example is XPPAUT [32] which is a standard tool in neuro-
science.

The latest version of AUTO is AUTO-07P and written
in Fortran and supports parallelization. It uses pseudo-ar-
clength continuation and performs a limited bifurcation
analysis of equilibria, fixed points, limit cycles and con-
necting orbits using HOMCONT [12]. A recent addition is
the continuation of branch points [16]. It uses fully ex-
tended systems, but has specially adapted linear solvers so
that it is still quite fast.

An interactive package written in C++ is CONTENT,
where the Moore–Penrose continuation was first imple-
mented. It supports bifurcation analysis of equilibria up to
the continuation of codim 2 and detection of some codim
3 bifurcations. It uses a similar procedure as AUTO to con-
tinue limit cycles and detects codim 1 bifurcations of limit
cycles, but does not continue these. It also handles bifur-
cations of cycles of maps up to the detection of codim 2
bifurcations. Normal forms for all codim 1 bifurcations

are computed. Interestingly, both fully and minimally ex-
tended systems are implemented.

A new project MATCONT emerged out of CONTENT. It
is written in MATLAB, a widely used software tool in mod-
eling. In contrast to AUTO it uses Moore–Penrose contin-
uation and minimally extended systems to compute equi-
libria, cycles and connecting orbits. Since MATLAB is an
interpreted language, it is slower than the other packages,
although a considerable speedup is obtained as the code
for the Jacobi matrices for limit cycles and their bifurca-
tions are written in C-codes and compiled. MATCONT
has, however, much more functionality. It computes nor-
mal form coefficients up to codim 2 bifurcations of equi-
libria [20] and for codim 1 of limit cycles normal form co-
efficients are computed using a BVP-algorithm [28]. A re-
cent addition is to switch branches from codim 2 bifur-
cation points of equilibria to codim 1 bifurcations of cy-
cles [61].

Finally PyDSTOOL supports similar functionality for
ODEs as CONTENT.

Future Directions

This review focuses on methods for equilibria and limit cy-
cles to gain insight into the dynamics of a nonlinear ODE
depending on parameters, but, generally speaking, other
characteristics play a role too. For instance, a Neimark–
Sacker bifurcation leads to the presence of tori. The com-
putation and continuation of higher dimensional tori has
been considered in [49,70,71]. The generalization of the
methods for equilibria and cycles is, however, not straight-
forward. Stable and unstable manifolds are another aspect.
In particular their visualization can hint at the presence of
global bifurcations. A review of methods for computing
such manifolds is presented in [52]. Connecting orbits can
be calculated, but initializing such a continuation is a non-
trivial task. This may be started from certain codim 2 bi-
furcation points as in [8], but good initial approximations
are not available for other cases.

This review is also restricted to ODEs, but one can de-
fine other classes of dynamical systems. For instance, if the
system is given by an explicitly defined map, i. e., not im-
plicitly as a Poincaré map, the described approach can also
be carried out [10,37,40,59]. Another important and re-
lated class is given by delay equations, and the algorithms
for equilibria and periodic orbits in the ODE case can
be applied with suitable modifications, see [5,74] and the
software implementations DDE-BIFTOOL [31] and PDDE-
CONT. The computation of normal forms and connecting
orbits for this class is not yet thoroughly investigated or
supported.
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For large systems, e. g., discretizations of a partial
differential equation (PDE), the algebra for some algo-
rithms in this review becomes quite involved and numer-
ically expensive. These problems need special treatment,
see LOCA [69], PDE-CONT [30,62] and related references.
These packages focus on computing (periodic) solutions
and bifurcation curves. Good algorithms for analyzing bi-
furcations of PDEs will be a major research topic.

Finally, there are also slow-fast (stiff) systems or sys-
tems with a particular structure such as symmetries. For
these classes, many questions remain open.

While on most of the mentioned topics pioneering
work has been done, the methods are far from as “com-
plete” as for ODEs. One overview of current research top-
ics in dynamical systems can be found in [53].
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