
Chapter 8
Measurement-Based Methods for Model
Reduction of Power Systems Using
Synchrophasors

Aranya Chakrabortty and J. Chow

Abstract Wide-area analysis and control of large-scale electric power systems are
highly dependent on the idea of aggregation. For example, one often hears power
system operators mentioning how “Northern Washington” oscillates against “South-
ern California” in response to various disturbance events. The main question here is
whether we can analytically construct dynamic electromechanical models for these
conceptual, aggregated generators representing Washington and California, which
in reality are some hypothetical combinations of hundreds of actual generators. In
this chapter we present an overview of several new results on how to construct
such simplified interarea models of large power systems by using dynamic measure-
ments available from phasor measurement units (PMUs) installed at limited points
on the transmission lines. Our examples of study are motivated by widely encoun-
tered power transfer paths in the Western Electricity Coordinating Council (WECC),
namely a two-area radial system representing the WA-MT flow, a star-connected
three-area system resembling the Pacific AC Intertie, and a generic multi-area sys-
tem with more than one dominant slow mode of oscillation.

8.1 Introduction

Over the past few years, several catastrophic phenomena, such as cascade failures
and blackouts in different parts of the North American power grid, have forced
power system researchers to look beyond the traditional approach of analyzing
power system functionalities in steady-state, and instead pay serious attention to their

A. Chakrabortty (B)
North Carolina State University, Raleigh, NC, USA
e-mail: aranya.chakrabortty@ncsu.edu

J. Chow
Rensselaer Polytechnic Institute, Troy, NY, USA
e-mail: chowj@rpi.edu

J. H. Chow (ed.), Power System Coherency and Model Reduction, 159
Power Electronics and Power Systems 94, DOI: 10.1007/978-1-4614-1803-0_8,
© Springer Science+Business Media New York 2013



160 A. Chakrabortty and J. Chow

dynamic characteristics, and in a global or wide-area sense. This mindset has been
particularly facilitated by the recent outburst of measurement and instrumentation
facilities in the context of smart power grids provided by the wide-area measure-
ment system (WAMS) technology, which uses sophisticated digital recording devices
called phasor measurement units (PMUs) to record and export GPS-synchronized
high-sampling-rate (6–60 samples/s) dynamic power system data [1]. Industry plat-
forms, such as the North American Synchrophasor Initiative (NASPI) [2], have been
formed to investigate ways by which PMU measurements from different parts of the
US power system can possibly be exploited to gain insight into their dynamic inter-
dependence, which could indicate how events in one area of the grid can propagate
and have a significant impact on other remote areas.

However, a major road-block to wide-area analysis of large-scale power systems
is the absence of concrete mathematical models that capture the aggregated electro-
mechanical dynamics coupling one area of the system with another. For example, one
often hears power system operators mentioning how “Northern Washington” oscil-
lates against “Southern California” in response to various disturbance events. The
main question here is whether we can analytically construct dynamic electromechan-
ical models for these conceptual, aggregated generators representing Washington
and California, which in reality are some hypothetical combinations of hundreds
of actual generators. For example, it is well known that a 0.25 Hz interarea swing
mode exists between the north–south interconnections of the Western Electricity
Coordinating Council (WECC) extending from Alberta, Canada to Baja Mexico [3],
with additional 0.4–0.7 Hz modes along the pacific AC intertie and the east–west
interconnection. Based on such interarea modal behavior, conceptually speaking,
the map of WECC can be drawn as an equivalent mass-spring-damper model [4], as
in Fig. 8.1a, showing how the electromechanical dynamics of the aggregated parts of
WECC may swing against each other when a disturbance sets in. Figures 8.1b and c
shows the partitioning of the WECC into a 2-area system and a 9-area system. But,
again, the main question to be resolved is how can we construct an explicit dynamic
model for this conceptual figure, preferably in real-time, using voltage, current, or
power flow signal measurements in order to establish a prototype for the nonlin-
ear interarea dynamics of the entire interconnection. Using conventional model-
based equivalencing methods [5] would be impractical for this purpose because
they are highly time-consuming and numerically challenging for large-scale non-
linear simulations. More importantly, they are dependent on the precise knowledge
of the model parameters (such as inertia, transient reactance, transformer reactance)
of all the thousands of generators, transmission lines, and loads constituting each
aggregate area.

Motivated by these fundamental questions of current interest to the PMU research
community, in this chapter we develop a framework for the identification of reduced-
order dynamic models of very large-scale power systems, not by using tradi-
tional model-based methods [5], but from synchrophasor measurements available
from PMUs installed only at selected points on the transfer path. Our models of
study in this chapter represent prototypes of three well-known transfer paths in the
WECC, namely,
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Fig. 8.1 Area aggregations in Western Electricity Coordinating Council (WECC). a Spring-mass
system representation of WECC. b WECC 2-area partition. c WECC 9-area partition

1. One-dimensional models such as a two-area radial system with one dominant
slow mode of oscillation (e.g., Washington-Montana transfer),

2. Two-dimensional models with algebraic nodes such as a three-area star-connected
system with one or two dominant slow modes of oscillation (e.g., Pacific AC
intertie),
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3. Two-dimensional models with direct connectivity, i.e., a general multi-area power
system with a given interarea topology, and two or more slow modes of oscillation.

For each of these transfer paths, we first show that the model identification reduces
to a parameter estimation problem for the aggregated intra-area reactances and
machine inertias internal to each area, and then derive analytical results showing
how the voltage, phase angle, and frequency oscillations at multiple buses on the
transfer path, following a small-signal disturbance, can be used to estimate these
parameters. We illustrate our results with real power system disturbance events in
WECC. The objective of this chapter should not, however, be confused with research
on modal identification, the purpose of which is to estimate the eigenvalues and eigen-
vectors of the state matrix of the linearized power system from the measured states.
Several numerical algorithms have been developed for such mode estimation from
both ringed-down disturbance data and ambient measurements, as discussed in the
seminal work of Hauer [6, 7] with established applications in wide-area monitor-
ing in the US as well as in other countries, such as Australia [8, 9], China [10], and
Denmark [11]. This chapter, on the other hand, looks farther beyond mode estimation
towards identifying dynamic model parameters from the “modes”.

The remainder of the chapter is organized as follows. Sections 8.2, 8.3, and 8.4
pose the interarea model estimation (IME) problem for one- and two-dimensional
systems together with the validations of the respective results through PMU data
analysis of WECC. Section 8.5 presents transient stability assessment using these
equivalent models via energy function analysis, while Sect. 8.6 develops PMU place-
ment methods using noisy data. Section 8.7 concludes the chapter.

8.2 Problem Formulation

Mathematical modeling of dynamic equivalents of large-scale electric power systems
has seen some 40 years of long and rich research history. The foundations of this
line of research were laid in the late 1970s by Chow and Kokotović, who introduced
the ideas of aggregation and coherency [5], resulting in algorithms of partitioning a
power network into dynamic aggregates, where each aggregate consists of a group of
strongly connected generators that synchronize over a fast time-scale and, thereafter,
act as a single entity, while the aggregates themselves are weakly connected to each
other, and synchronize over a slower time-scale. Using singular perturbation theory,
they derived analytical expressions for aggregated machine inertias and reactances in
terms of the model parameters of each individual machine contained in an area. Their
approach was complemented by alternative techniques of coherency such as those
by Germond and Podmore [12], and de Mello, Podmore, and Stanton using circuit-
theoretic approaches [13], Undrill and Turner using linear modal decomposition
[14], Zaborszky et al. using enumerative clustering algorithms [15], and Nath et al.
using iterative techniques to compute the coupling strengths between different areas
[16]. Aggregation and coherency reduced the computational complexities of solving
thousands of nonlinear equations in power system stability programs from detailed
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models, and was tested offline on both small-scale (such as the 48-machine NPCC
system1) and large-scale (such as the 12,000-bus NYPP system2) via software pro-
grams such as DYNEQ and DYNRED [17]. However, the main limitations of the
above-mentioned conventional model reduction methods are twofold: first, they are
model-based methods, meaning that to construct reduced-order models using these
methods one would need to know each constituent model explicitly; and second,
in constructing an aggregate motion, most of these methods tend to capture minute
details of the fast local oscillations in each area that not only increase the computa-
tional time but also may be unnecessary at times of emergency when decisions have
to be made fast.

The methods proposed in this chapter are meant to circumvent these traditional
barriers by developing model reduction algorithms that do not depend on individual
component-level model information, and are based on measurements only. PMU
measurements of voltage, current and frequency from disturbance events available
from a limited number of points in the network will be utilized for this purpose.
Our first system of investigation is a commonly encountered power transfer path,
namely, a two-area radial power system, as shown in Fig. 8.2a, containing multiple
strongly connected machines in each area with arbitrary interconnection structure.
Its two-machine dynamic (interarea) model and its classical circuit representation
are shown in Fig. 8.2b. The system consists of two aggregated generators G1 and
G2, which represent coherent combinations of strongly connected machines in each
respective area. Let the equivalent inertias of these aggregated machines be H1 and
H2, respectively. The machines are connected to the high-voltage terminal buses 1
and 2 through equivalent transformers having reactances xT 1 and xT 2, which, in turn,
represent Thevenin equivalents of the transformer reactances in each respective area.
This two-area system is useful for representing a radial transfer path in a large power
system in which one coherent area is exporting power to the other coherent area. The
voltage phasors at Buses 1 and 2 are given as

Ṽi = Vi∠θi , i = 1, 2 (8.1)

where V ∠θ denotes the polar representation V ε jθ . The transmission line between
Buses 1 and 2 is assumed to be lossless with a reactance xe. The line current flowing
from Bus 1 to Bus 2 is Ĩ = I∠θI with G1 supplying power to G2, which acts as a
load. For the classical model representation, the internal voltages of the generators
G1 and G2 are denoted as

Ẽ1 = E1∠δ1, Ẽ2 = E2∠δ2. (8.2)

The total reactances connecting the generator internal voltage nodes to the terminal
Buses 1 and 2 are given as

1 Northeast Power Coordinating Council.
2 New York Power Pool.
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Fig. 8.2 Area aggregations in Western Electricity Coordinating Council (WECC). a Two-area
power system. b Two-machine interarea equivalent

xi = xT i + x ′
di , i = 1, 2 (8.3)

where x ′
d1 and x ′

d2 are the equivalent direct-axis transient reactances of G1 and G2,
respectively. The total reactance of the transfer path is, therefore, given as

x̄ = x1 + xe + x2. (8.4)

The electromechanical model of each aggregated generator, neglecting damping, can
be written as [18]

δ̇i = Ω(ωi − ωs), 2Hi ω̇i = Pmi − Pei , i = 1, 2, (8.5)

whereΩ = 120π for a 60 Hz system, ωs is the synchronous speed, and ωi , Pmi , Pei

are, respectively, the angular velocity, the mechanical power input, and the electrical
power output of the ith machine. All quantities are in per unit except for the phase
angles which are in radians. We assume that inside each area the system configuration
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remains unchanged over the time-scale of the interarea mode. The two swing equa-
tions in (8.5) can then be combined to form a second-order system

δ̇ = Ω ω, 2H ω̇ = Pm − Pe (8.6)

with

Pm = H2 Pm1 − H1 Pm2

H1 + H2
, Pe = E1 E2

x̄
sin(δ) (8.7)

where H = H1 H2/(H1 + H2) is the equivalent inertia, δ = δ1 − δ2, and ω =
ω1 −ω2. Assuming that PMU measurements of voltage, current, and bus frequency
are available from Buses 1 and 2, we then pose the problem of finding the reduced
model in Fig. 8.2b as follows.

Given the measured synchronized phasor variables V1, θ1, V2, θ2, I , and θI in
Fig. 8.2a that exhibit a few cycles of interarea oscillations, compute Ei , δi , xi , and Hi ,
i = 1, 2, and xe of the reduced-order two-machine system in Fig. 8.2b to represent
the interarea dynamic behavior of the two-area power system.

Because Ṽ1, Ṽ2 and Ĩ are measured, xe can be easily computed from j xe =
(Ṽ1−Ṽ2)/ Ĩ . Similarly Ẽ1 and Ẽ2 can be computed if x1 and x2 are known. Therefore,
the above problem, referred to as the Interarea Model Estimation (IME) problem,
reduces to the estimation of four quantities, namely x1, x2, H1, and H2. We next
derive algorithms by which these four parameters can be identified from the interarea
oscillations of voltage and frequency captured by the PMUs on the transfer path.

8.2.1 Reactance Estimation

Without any loss of generality, we fix our reference at the internal node of Generator
2, and assume δ2 = 0 and δ1 = δ. The first step for this algorithm is to choose any
phasor variable measured by the PMUs, for example, magnitude of bus voltages.
The voltage phasor at any point P at a reactance j x away from Generator 2 (or
equivalently at a distance x away if the reactance is uniformly distributed along the
path), can be written as

Ṽ = a E1(cos(δ)+ j sin(δ))+ E2(1 − a) (8.8)

where a = x/(x1+xe+x2) is the normalized reactance of the point P . The magnitude
of Ṽ (x), denoted as V , is, therefore,

V � |Ṽ | =
√

c + 2E1 E2((a − a2) cos(δ)) (8.9)

where c = (1−a)2 E2
2 +a2 E2

1 . Considering a small-signal disturbance in the system,
and linearizing (8.6) and (8.9) about an equilibrium point (δ0, ω0 = 0, Vss), any
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change in V can be written as

ΔV (a, t) = − E1 E2 sin(δ0)(a − a2)

V (a, δ0)
Δδ(t). (8.10)

Of prime importance is that the Jacobian in (8.10) consists of two parts: a numer-
ator part varying with a, and a denominator part which is the steady-state bus mag-
nitude at the point P . From (8.10), we can write

Vn � ΔV (a, t)V (a, δ0) = A a(1 − a)Δδ(t). (8.11)

where A = − E1 E2 sin(δ0). The quantity Vn in (8.11), referred to as the normalized
voltage is a product of two quantities, namely the change in voltage at the point P
at any time instant t following the disturbance from the predisturbance equilibrium
voltage V (a, δ0) at this point, and V (a, δ0) itself. If a PMU is located at this point P ,
then both of these quantities and, therefore, the normalized voltage can be calculated
from the PMU measurement recordings at any fixed point of time. The RHS of (8.11)
consists of the unknown constant A as well as the hypothetical state evolutionΔδ(t),
which depends only on time t and not on the spatial variable a. We refer to this as
the time–space separation property, using which we can simply write

Vn1(a1, t∗)
Vn2(a2, t∗)

= a1(1 − a1)

a2(1 − a2)
(8.12)

where Vn1 and Vn2 are, respectively, the normalized voltages at Bus 1 and Bus 2, t∗
is a fixed point of time, while

a1 = (x2 + xe)

(x1 + xe + x2)
, a2 = x2

(x1 + xe + x2)
(8.13)

are the normalized reactances of these two respective buses. To generate a second
equation we need another measurement point, which, in other words, indicates that
we must have a third PMU installed at some intermediate bus on the transfer path
between Bus 1 and Bus 2 at a known distance from Bus 2. In that case, for the same
time instant t = t∗ as before, we can use

Vn3(a3, t∗)
Vn2(a2, t∗)

= a3(1 − a3)

a2(1 − a2)
(8.14)

where a3 is the normalized reactance corresponding to the third bus. Equations (8.12)
and (8.14) can then be solved for x1 and x2 using numerical algorithms. If damping
is considered in (8.6), then additionally we will have to consider one more data point
and form a third equation similar to (8.14).

Note 1: Even if an actual PMU is not installed between buses 1 and 2, a third
voltage Ṽ3 can still be obtained using the relation Ṽ3 = Ṽ2 + j x23 Ĩ , where x23 is the
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reactance between the third point and Bus 2 (and is assumed to be known), while Ĩ
is the line current measured by the PMU at Bus 2.

Note 2: If the transmission line has both resistance and reactance, then the spatial
variable a simply needs to be defined as a ratio of the impedance of any point
measured from Bus 2 to the total impedance of the transfer path. The rest of the
algorithm will not change under that situation.

8.2.2 Inertia Extrapolation Algorithm

Once x1 and x2 have been computed, the remaining parameters to be computed are
the inertias H1 and H2. We need two pieces of information. First, by measuring the
frequency f of the swing mode in the voltage measurement (which can be done
using modal decomposition algorithms), the equivalent inertia constant H can be
computed from linear circuit theory as [18]

H = (E1 E2 cos(δ0)Ω)/(2 x̄ (2π f )2) (8.15)

Second, to calculate H1 and H2 separately, we develop a companion equation by
exploiting the frequencies measured at Buses 1 and 2. Neglecting losses and machine
damping effects, the conservation of the total angular momentum of the two-machine
system is given as

L = 2H1ω1 + 2H2ω2 = 2
∫
(H1ω̇1 + H2ω̇2) dt

=
∫
(Pm1 − Pe1 + Pm2 − Pe2) dt = 0 (8.16)

from which we obtain

H1

H2
= −ω2

ω1
(8.17)

Hence, (8.17) can be used to solve for H1 and H2, provided that the estimates for
the machine speeds are known. For the two-machine system, we can show that ω1
and ω2 can indeed be estimated from the measured frequencies ϑ1 and ϑ2 at Buses
1 and 2 according to the equations

ϑ1 = g1ω1 + h1(ω1 + ω2) cos(δ1 − δ2)+ k1ω2

g1 + 2h1 cos(δ1 − δ2)+ k1
(8.18)

ϑ2 = g2ω1 + h2(ω1 + ω2) cos(δ1 − δ2)+ k2ω2

g2 + 2h2 cos(δ1 − δ2)+ k2
(8.19)
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where g1 = E2
1(1 − ρ1)

2, h1 = E1 E2ρ1(1 − ρ1), k1 = ρ2
1 E2

2 , g2 = E2
1(1 − ρ2)

2,
h2 = E1 E2ρ2(1 − ρ2), and k2 = ρ2

2 E2
2 , with ρ1 = x1/x̄ and ρ2 = (x1 + xe)/x̄ .

Equations (8.18–8.19) can be derived simply from (8.8) by considering θ =
tan−1(Im(Ṽ )/Re(Ṽ )), and then taking the time derivative to derive ϑ = θ̇ as a
function of a. Because the bus frequencies ϑ1 and ϑ2 are available from PMU
measurements, we can estimate ω1 and ω2 using (8.18) and (8.19), calculate the
ratio ω2/ω1 = −H1/H2, and solve for H1 and H2 using (8.15) and the relation
H = H1 H2/(H1 + H2).

8.2.3 Washington-Montana Transfer Path Modeling

We next model the east–west WECC power transfer between the aggregated gener-
ators of “Canada, Washington, Oregon” and “Montana, Wyoming, Utah” indicated
in Fig. 8.1a, referred to here as WECC transfer path 1. The system consists of a
median-size group of remote machines supplying power via a 600-mile transmission
system to a load center. A disturbance initiated a 0.578 Hz oscillation across the
transfer path. The event recording started 60 s before the disturbance for a total of
5 min. We assume that the transmission line is lossless. The variation of the voltage
magnitudes at the two terminal buses and the midpoint over time are shown by the
field measured data in Fig. 8.3a. We separate the fast and slow components of the
voltage waves by bandpass filtering, as shown in Fig. 8.3b and c. The upper and
lower cut-offs of the filter are chosen as 1 and 0.2 Hz, respectively, covering the
interarea mode frequency. In Fig. 8.3b, we show the voltage oscillations from time
t = 60–90 s. In this figure we can see that the oscillations are not exactly sinusoidal
due to the presence of local modes in addition to the interarea mode. To extract the
interarea mode, we apply the eigenvalue realization algorithm (ERA) on the three bus
voltages [19]. Figures 8.4a and b shows the comparison of the interarea oscillations
with the measured bus voltages at Buses 1 and 2. The oscillations are now free from
the distortions due to the local mode effects, and are purely sinusoidal. Choosing
a fixed time instant of t = 75 s, the amplitudes of the interarea oscillations at the
respective buses are then measured as

V1m = 8.746 × 10−3, V2m = 9.733 × 10−3, V3m = 0.01845 (8.20)

The pre-disturbance equilibrium voltages are measured as

V1ss = 1.082, V2ss = 1.087, V3ss = 1.089 (8.21)

Therefore, the normalized amplitude of oscillations are

V1n = 9.46 × 10−3, V2n = 1.06 × 10−3, V3n = 20.09 × 10−3 (8.22)
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Fig. 8.3 Voltage oscillations in WECC transfer path 1. a Bus voltages in WECC transfer path 1.
b Fast component of voltage magnitude. c Quasi-steady-state voltage magnitude

while xe = 0.077 pu from least-squares estimation. Using the IME algorithm we get
(in pu)

x1 = 0.0121, x2 = 0.0012, H1 = 1050, H2 = 134

The bus frequencies at the sending and receiving ends, their fast and slow components
as well as their interarea components, used for estimating H1 and H2, are shown in
Fig. 8.6. To verify the accuracy of the estimates, we also compare the interarea
modal response of the voltage angles between the equivalent machines (as extracted
via ERA) with the corresponding impulse response of the identified swing model.
Figure 8.4c shows this comparison and confirms that the trajectories are sufficiently
close to each other.

8.3 Star-Connected Three-Area System

Our system of interest in this section, namely a two-dimensional system with
algebraic node(s), is motivated by the five-machine structure of the Pacific AC
intertie model shown in Fig. 8.1a. The schematic circuit diagram of this system
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Fig. 8.4 Slow mode extraction for WECC transfer path 1 voltages. a Interarea oscillation at Bus 1.
b Interarea oscillation at Bus 2. c Interarea versus intermachine oscillations

is shown in Fig. 8.7a. The basic problem formulation for reactance estimation for
this system is similar to that in Sect. 8.2, i.e., using PMU measurements available
from Buses 1, 2, 3 and 4, we need to solve for three unknown reactances, namely,
σi = xei + xT i + x ′

di , i = 1, 2, 3. Consider the star-connected three-machine
equivalent of a three-area power system as shown in Fig. 8.7a. The classical model
representation [18] of this three-machine system is shown in Fig. 8.7b. The system
consists of three generators G1, G2, and G3 with aggregated inertias H1, H2, and
H3 representing each coherent area [5], connected to Buses 1, 2 and 3 through trans-
formers having equivalent reactances xT 1, xT 2 and xT 3, respectively. The voltage
phasors at Buses 1, 2, 3, and 4 are given as Ṽi = Vi∠θi , i = 1, 2, 3, 4, where V ∠θ
denotes the polar representation V ε jθ . The transmission lines between Bus 4 and
the other three buses are all assumed to be lossless, with line reactances xe1 between
Buses 1 and 4, xe2 between Buses 2 and 4, and xe3 between Buses 3 and 4. The line
current phasors shown in Fig. 8.7b are Ĩi = Ii∠θIi , i = 1, 2, 3, with G1 supplying
power to G2 and G3, which act as loads. For the classical model representation, we
denote the internal voltage phasors of the generators G1, G2, and G3 as Ẽi = Ei∠δi ,
i = 1, 2, 3. The reactances connecting the generator internal voltages to Buses 1,
2, and 3 are given by
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Fig. 8.5 Frequency oscillations in WECC transfer path 1. a Sending end frequency. b Receiving
end frequency. c Fast component of sending end frequency

xi = (xT i + x ′
di ), i = 1, 2, 3 (8.23)

where x ′
d1, x ′

d2, and x ′
d3 are the direct-axis transient reactances of G1, G2, and G3,

respectively. For future use, we use the notations

σi = xei + xi , i = 1, 2, 3. (8.24)

It should be noted that unlike the variant of the IME method considered in [20], here
the generator G2 is not necessarily a synchronous condenser, and, hence, there is no
restrictive assumption about the equality of the voltage phase angles of Bus 2 and
Bus 4.

The dynamic model of the three-machine system in Fig. 8.7b, neglecting damping,
is given by

2H1 δ̈1 = Pm1 − E1V4

σ1
sin(δ1 − θ4) (8.25)

2H2 δ̈2 = Pm2 − E2V4

σ2
sin(δ2 − θ4) (8.26)
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Fig. 8.6 Slow mode extraction for WECC transfer path 1 frequencies. a Fast component of receiving
end frequency. b Interarea component of sending end frequency. c Interarea mode component of
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2H3 δ̈3 = Pm3 − E3V4

σ3
sin(δ3 − θ4) (8.27)

We assume that PMUs are located at Buses 1, 2, 3, and 4. Hence, high-sampling rate
time-synchronized phasor variables Ṽi , i = 1, 2, 3, 4, and Ĩi , i = 1, 2, as a result
of a disturbance are available. We pose the problem of finding the parameters of the
model in Fig. 8.7b as follows.

Given the measured time-synchronized phasor variables V1, θ1, V2, θ2, V3, θ3,
V4, θ4, I1, θI1 , I2, and θI2 that exhibit a few cycles of interarea oscillations, and
assuming that E1, E2 and E3 are some constant values, compute xe1, xe2, xe3, E1,
δ1, E2, δ2, E3, δ3, x1, x2, x3, H1, H2 and H3 to completely characterize the dynamic
behavior of the three-machine reduced system in Fig. 8.7b.

Three of these quantities, namely, xe1, xe2, and xe3, can readily be computed from
the available bus voltages and currents using Ohm’s law

j xe1 = Ṽ1 − Ṽ4

Ĩ1
, j xe2 = Ṽ4 − Ṽ2

Ĩ2
, j xe3 = Ṽ4 − Ṽ3

Ĩ3
. (8.28)



8 Measurement-Based Methods for Model Reduction 173

1V jxe1

1 4

jxe2

jxT2

jxe3

3

2V

Gen 3

4V
jxT3

Gen 2

2

3V
PMU

PMU PMU

PMU

Branch 1 Branch 3

Branch 2

E1, 1

V jxe1jx1

jx2

I
I

jx3

E3, 3 = 0

jxe3
V

I

V

jxe2

V

E2, 2

(a)

(b)

Fig. 8.7 Area aggregation of three-area power system. a Three-machine power system model.
b Classical model representation

Moreover, if x1, x2, and x3 are known, then the machine internal voltages can be
computed from the bus voltages and the line currents. Thus, the problem reduces
to the estimation of x1, x2, and x3, as well as the inertias H1, H2, and H3. In the
following sections we develop techniques to estimate these six constant quantities.

Notations: A few notations used throughout the rest of the chapter are as follows.
Subscripts R, L , and M , respectively, refer to quantities related to the right branch
(between Generator 3 and Bus 4), left branch (between Bus 4 and Generator 1),
and the middle branch (between Bus 4 and Generator 2) of the transfer path. The
constant σi j is equal to σi/σ j . The superscript i for any quantity refers to that quantity
defined for Bus i , (i = 1, 2, 3, 4). A small change in any of the measured variables,
say an angle θ , over an existing equilibrium, is denoted as Δθ while Δθ i j is equal
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to Δθ i/Δθ j where the superscript denotes the bus at which Δθ is measured. All
quantities defined at the equilibrium are subscripted by 0.

8.3.1 Reactance Extrapolation: Branch 1

8.3.1.1 Step 1: Express Ṽ4 as a Function of Generator Voltages

With Ẽ3 as the reference, from circuit equations we can derive that

Ṽ4 = σ(E3 + σ31 Ẽ1 + σ32 Ẽ2) (8.29)

where σ � (σ1σ2)/(σ1σ2 + σ2σ3 + σ3σ1). We will use the expression in (8.29) for
subsequent derivations in the following sections.

8.3.1.2 Step 2: Find Voltage Magnitude at an Arbitrary Point

Consider any point on the branch at a reactance j x away from Generator 3, which is
taken as the reference node for this branch. The voltage phasor at this point can be
written as

ṼR = E3(1 − a3)+ a3Ṽ4 (8.30)

where a3 = x/σ3 ∈ [0, 1]. After a few calculations, it can be shown that the voltage
magnitude at this point is

VR(x, δ1, δ2) = √
ΣR +
R(x, δ1, δ2) (8.31)

where ΣR is a constant that is independent of δ1 and δ2,


(x, δ1, δ2) =
2∑

i=1

αRi cos(δi )+ αR3 cos(δ1 − δ2)

with αR1 = 2E1 E3a3(1 − a3 + a3σ)σσ31, αR2 = 2E2 E3a3(1 − a3 + a3σ)σσ32,
and αR3 = 2E1 E2a2

3σ
2σ31σ32.

8.3.1.3 Step 3: Form Normalized Voltage from a Small-Signal Perturbation

Consider a disturbance in the system, so that a small change in the voltage magnitude
in (8.31), at the given point at time t , over a pre-disturbance equilibrium voltage
VR0(x) can be written as
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ΔVR(x, t) = PR1(x)Δδ1(t)+ PR2(x)Δδ2(t)

VR0(x)
(8.32)

where

PR1(x) = −0.5(αR3 sin(δ120)+ αR1 sin(δ10))

PR2(x) = 0.5(αR3 sin(δ120)− αR2 sin(δ20))

and δ120 = δ10 − δ20. Next, we fix time at t = t∗, and denote VRn(x) =
ΔVR(x, t∗)VR0(x), so that

VRn(x) = PR1(x)Δδ1(t
∗)+ PR2(x)Δδ2(t

∗). (8.33)

Because the normalized voltage can be measured at Buses 3 and 4 from PMU mea-
surements following the disturbance, the quantities

V 3
n � VRn(x3), V 4

n � VRn(x3 + xe3) (8.34)

are known. Denoting P3
Ri = PRi (x3) and P4

Ri = PRi (x3 + xe3), i = 1, 2, we can
write

V 3
n

V 4
n

= P3
R1Δδ1(t∗)+ P3

R2Δδ2(t∗)
P4

R1Δδ1(t∗)+ P4
R2Δδ2(t∗)

. (8.35)

The two hypothetical statesΔδ1(t∗) andΔδ2(t∗) are unknown in (8.35). For the single
interarea mode case of Sect. 8.2, this problem could be very easily bypassed as there
was no term involving Δδ2, due to which the constant Δδ1(t∗) could be cancelled
in the numerator and the denominator of the right hand side of the equation, and the
resulting nonlinear algebraic equation could be used toward solving for the unknown
reactances. In other words, the time–space separation property is lost in (8.35) due
to the extra interarea mode. To fix this problem, we next consider the change in the
phase angles at Bus 3 and 4 as an extra degree of freedom, as follows.

8.3.1.4 Step 4: Derive the Change in Bus Phase Angles

The phase angle at any point on Branch 1, at a reactance x away from the Generator
3 node, is

θ = tan−1
(

cR1 sin(δ1)+ cR2 sin δ2

cR3 + cR1 cos(δ1)+ cR2 cos δ2

)
(8.36)

where cR1 = E1a3σσ31, cR2 = E2a3σσ32, and cR3 = E3(1 − a3 + a3σ). Using the
fact that if θ = tan−1(ψ(δ1, δ2)), then

Δθ = 1

1 + ψ2

(
∂ψ

∂δ1
Δδ1 + ∂ψ

∂δ2
Δδ2

)
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it can be shown that a small change in the LHS of (8.36), at any time t , can be written
as

Δθ(x, t) = SR1(x)Δδ1(t)+ SR2(x)Δδ1(t) (8.37)

where SR1 and SR2 are given as

SR1(x) = c2
R1 + cR1cR3 cos(δ10)+ cR1cR2 cos(δ10 − δ20)

ϑR(x)
(8.38)

SR2(x) = c2
R2 + cR2cR3 cos(δ20)+ cR1cR2 cos(δ10 − δ20)

ϑR(x)
(8.39)

ϑR(x) = c2
R1 + c2

R2 + c2
R3 + 2(cR1cR3 cos(δ10)+ cR3cR2 cos(δ20)

+cR2cR1 cos(δ10 − δ20)) (8.40)

8.3.1.5 Step 5: Formulate a Candidate Algebraic Equation

Fixing time at t = t∗, the fraction of the measured changes in the phase angles at
Buses 3 and 4 in terms of the functions SR1(·) and SR2(·) defined at these respective
bus locations, can then be written as

Δθ3

Δθ4 = S3
R1Δδ1(t∗)+ S3

R2Δδ1(t∗)
S4

R1Δδ2(t∗)+ S4
R2Δδ2(t∗)

. (8.41)

Selecting t∗ such that Δδ1(t∗) �= 0 and Δδ2(t∗) �= 0, (8.35) and (8.41) yield

V 3
n

V 4
n

= P3
R1(Δθ

34S4
R2 − S3

R2)+ P3
R2(S

3
R1 −Δθ34S4

R1)

P4
R1(Δθ

34S4
R2 − S3

R2)+ P4
R2(S

3
R1 −Δθ34S4

R1)
. (8.42)

The LHS of (8.42) as well as the quantity Δθ34 on the RHS are measured while the
other functions on the RHS are known nonlinear functions of (x1, x2, x3). Therefore,
(8.42) serves as a feasible equation to solve for these three unknown reactances. The
remaining two equations are constructed in the following sections using the measured
phasor variables in Branches 2 and 3 of the network.

8.3.2 Reactance Extrapolation: Branch 2

Following an analysis similar to that used in Sect. 8.2.1, the normalized voltage at a
point between Bus 4 and Generator 1, at a reactance x away from Bus 4,

VLn(x) = PL1(x)Δδ1(t
∗)+ PL2(x)Δδ2(t

∗) (8.43)
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where

PLi = 1

2
(−αL3 sin(δ10 − δ20)− αLi sin(δi0)), i = 1, 2

αL1 = 2E1 E3a1(1 − a1)σ + 2E1 E3(1 − a1)
2σ 2σ31

αL2 = 2E2 E3(1 − a1)
2σ 2σ32

αL3 = 2E1 E2a1(1 − a1)σσ32 + 2E1 E2(1 − a1)
2σ 2σ31σ32

The equivalent of (8.42) for Branch 2 can then be written as

V 1
n

V 4
n

= P1
L1(Δθ

14S4
L2 − S1

L2)+ P1
L2(S

1
L1 −Δθ14S4

L1)

P4
L1(Δθ

14S4
L2 − S1

L2)+ P4
L2(S

1
L1 −Δθ14S4

L1)
(8.44)

where the expressions for SL1, SL2 are given as

SLi (x) =
(

c2
Li + cLi cL3 cos(δi0)+ cL1cL2 cos(δ10 − δ20)

)
/ϑL(x), i = 1, 2

ϑL(x) = c2
L1 + c2

L2 + c2
L3 + 2cL3

2∑

i=1

(cLi cos(δi0)+ cL2cL1 cos(δ10 − δ20))

cL1 = a1 E1 + (1 − a1)E1σσ31

cL2 = E2(1 − a1)σσ32, cL3 = E3(1 − a1)σ

8.3.3 Reactance Extrapolation: Branch 3

For any point between Bus 4 and Generator 2, at a reactance x away from Bus 4, we
have

V 2
n

V 4
n

= P2
M1(Δθ

24S4
M2 − S2

M2)+ P2
M2(S

2
M1 −Δθ24S4

M1)

P4
M1(Δθ

24S4
M2 − S2

M2)+ P4
M2(S

2
M1 −Δθ24S4

M1)
(8.45)

where

PMi = 1

2
(−αM3 sin(δ10 − δ20)− αMi sin(δi0)), i = 1, 2

αM1 = 2E1 E3(1 − a2)
2σ 2σ31

αM2 = 2E2 E3a2(1 − a2)σ + 2E2 E3(1 − a2)
2σ 2σ32

αM3 = 2E1 E2a2(1 − a2)σσ31 + 2E1 E2(1 − a2)
2σ 2σ31σ32

with a2 = x/σ2, and the expressions for SM1 and SM2 are given as
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SMi (x) = (c2
Mi + cMi cM3 cos(δi0)+ cM1cM2 cos(δ10 − δ20))/ϑM (x), i = 1, 2

ϑM (x) = c2
L1 + c2

M2 + c2
M3 + 2cM3

2∑

i=1

(cMi cos(δi0)+ cM2cM1 cos(δ10 − δ20))

cM1 = (1 − a2)E1σσ31

cM2 = a2 E2 + E2(1 − a2)σσ32, cM3 = E3(1 − a2)σ

Equations (8.42), (8.44), and (8.45) can now be used to solve for the three
unknowns x1, x2, and x3 using the measurements of the bus voltage magnitudes
and phase angles.

8.3.4 Machine Inertia Estimation

To solve for the three inertias H1, H2, and H3 we need three equations. The first
two equations are given from the expressions for the frequencies of the two interarea
modes. For this we consider the electromechanical swing equations for the three
machines, given by (8.25–8.27). However, we should note that in these equations,
the two variables V4 and θ4 are not constants, but functions of the generator angles
according to (8.29). Considering this fact, we next linearize (8.25–8.27) about the
post-disturbance equilibrium, to get a linear equation of the form

δ̈ = H −1A δ (8.46)

where δ = col(δ1, δ2, δ3), H = diag(2H1, 2H2, 2H3) and A is a 3 × 3 matrix,
whose entries are all known once the three reactances x1, x2, and x3 are solved for,
using the method described in Sects. 8.3.1–8.3.3. To find the interarea dynamics, we
next fix δ3 as the reference angle, and define the relative angular separations as

δ13 = δ1 − δ3, δ23 = δ2 − δ3. (8.47)

Consider A1, A2 and A3 to be the first, second and third rows of the matrix A in
(8.46), respectively. It can be readily seen that

δ̈13 = ( ¯A1 − ¯A3)δ, δ̈23 = ( ¯A2 − ¯A3)δ (8.48)

where ¯A1 = A1/(2H1), ¯A2 = A2/(2H2), ¯A3 = A3/(2H3). Also, we have

[
δ13
δ23

]
=

[
1 0 −1
0 1 −1

]
δ. (8.49)

Combining (8.48) and (8.49) we can write
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[
δ̈13

δ̈23

]
=

[ ¯A1 − ¯A3¯A2 − ¯A3

] [
1 0 −1
0 1 −1

]+

︸ ︷︷ ︸
ϒ

[
δ13
δ23

]
. (8.50)

Denoting Ai = [ai1 ai2 ai3], i = 1, 2, 3, the structure of the 2 × 2 matrix ϒ is
given as

ϒ =
⎡

⎢
⎣

2a11 − a12 − a13
H1

− 2a31 − a32 − a33
H3

2a12 − a11 − a13
H1

− 2a32 − a31 − a33
H3

2a21 − a22 − a23
H2

− 2a31 − a32 − a33
H3

2a22 − a21 − a23
H2

− 2a32 − a31 − a33
H3

⎤

⎥
⎦

(8.51)

Let the entries of this matrix be denoted as υi j where i is the row index and j is the
column index. Then it follows that the eigenvalues of ϒ are given as

λ1,2 = υ11 + υ22 ± √
(υ11 − υ22)2 + 4υ12υ21

2
, (8.52)

and the respective eigenvectors e1 and e2 are given as solutions to the equations

ϒe1 = λ1e1, ϒe2 = λ2e2. (8.53)

It is clear from (8.51) that λ1, λ2, e1 and e2 are all functions of H1, H2, and H3.
The frequencies of the interarea oscillations can be measured from the difference
signals (θ1 − θ2) and (θ2 − θ3) using modal analysis (such as ERA or a subspace
identification algorithm). Say these frequencies (in Hz) are fs1 and fs2, and the
computed respective eigenvectors are ϕs1 and ϕs2. Then we can write

fs1 = 1

2π

√
λ1, ϕs1 = e1 (8.54)

fs2 = 1

2π

√
λ2, ϕs2 = e2. (8.55)

Either (8.54) or (8.55) may be used as two equations for solving for the three unknown
inertias as fs1, fs2, ϕs1 and ϕs2 are known quantities. An important point to note
here is that although the three-area system under consideration contains two inter-
area modes of oscillation it is sufficient to consider the participation of only one of
these modes in the PMU measurements for solving the EIME problem. For example,
the estimation of the unknown reactances, as in (8.25), (8.33), and (8.34), involves
the elimination of one of the interarea modes by considering the simultaneous mea-
surement of voltage magnitudes and phase angles. Similarly, the estimation of the
unknown inertias in (8.43–8.44) requires the modal decomposition of only one inter-
area mode. The resulting EIME algorithm, as summarized in Fig. 8.9, therefore,
does not depend on which modal component out of the two is selected from the
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PMU measurements for solving for the unknown parameters. The idea is illustrated
in Fig. 8.8.

The third equation is given by the law of conservation of angular momentum,
which can be simply written as

H1ω1 + H2ω2 + H3ω3 = 0 (8.56)

where ωi is the angular speed (rad/s) of the ith generator (i = 1, 2, 3). These speeds
are not measured, but can be estimated from the measured bus frequencies ν1, ν2,
and ν3 at Buses 1, 2, and 3, respectively, as discussed in [20]. The basic methodology
to achieve this is to express the voltage phasor Ṽ at any point in terms of E1∠δ1,
E2∠δ2, and E3∠δ3 and the reactance x with respect to some chosen reference; then
calculate the phasor angle

θ = tan−1(Im(Ṽ )/Re(Ṽ )) (8.57)

and compute the time derivative of θ as a function of x , ω1, ω2 and ω3. For the
three-machine system of Fig. 8.7b, after some calculations it can be shown that the
frequency at any point on the path is given by

ν(x, δ1, δ2, δ3) = Π1(x, δ1, δ2, δ3)

Π2(x, δ1, δ2, δ3)
(8.58)

where the functions Π1(·) and Π2(·) are given as

Π1(x, δ1, δ2, δ3) = ω1
[
n2

1 E2
1 + n1n2 E1 E2 cos(δ1 − δ2)+ n1n3 E1 E3 cos(δ1 − δ3)

]

+ ω2
[
n2

2 E2
2 + n2n3 E2 E3 cos(δ2 − δ3)+ n2n1 E2 E1 cos(δ2 − δ1)

]

+ ω3
[
n2

3 E2
3 + n3n1 E3 E1 cos(δ3 − δ1)+ n3n2 E3 E2 cos(δ3 − δ2)

]

PMU 1

PMU 2

PMU 3

1

2

3

Bus 1

Bus 2

Bus 3

Modal 
Decomposition

Modal 
Decomposition

1 - 3

2 - 3

fs1 s1

fs2 s2

Fig. 8.8 Choice of interarea mode for computation of unknown machine inertias
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A Summary of the EIME Algorithm

1. Consider the three-machine system in Figure 8.1(b). Following a disturbance
in the system, measure the voltage phasors Ṽ1, Ṽ2, Ṽ3, and Ṽ4 at Buses 1, 2, 3
and 4, respectively, and the currents Ĩ1, Ĩ2 and Ĩ3.

2. Calculate the line reactances xe1, xe2, and xe3 using (8.28).
3. Measure the amplitudes of oscillation in the magnitudes of Ṽi (i = 1, .., 4) at

one particular instant of time, for example, when they reach a peak simulta-
neously.

4. Multiply the measured amplitudes with the respective steady-state values of
the voltage waveforms to get the normalized voltage amplitudes at these four
buses.

5. Measure the amplitudes of oscillation in the phase angles of Ṽi (i = 1, ..., 4)
at the same instant of time.

6. Solve for x1, x2, and x3 using equations (8.42), (8.44), and (8.45).
7. Calculate the constant generator internal voltages using the extrapolated re-

actances, the bus voltages, and the line currents.
8. Calculate the inter-area swing frequency (eigenvalue) and the corresponding

eigenvector for any of the two inter-area modes from the measured bus
voltages using modal decomposition such as ERA.

9. Use the extrapolated system parameters and the inter-area frequencies to get
two equations in the machine inertias using (8.51), (8.54), and (8.55).

10. Use the measured bus frequencies 1 and 2 to estimate 1 and 2 using
(8.58) and (8.62).

11. Compute H1, H2 and H3 from Step 9 and equation (8.56) .

Fig. 8.9 A summary of the EIME algorithm

Π2(x, δ1, δ2, δ3) = n2
1 E2

1 + n2
2 E2

2 + n2
3 E2

3 + 2

[
n1n2 E1 E2 cos(δ1 − δ2)

+ n2n3 E2 E3 cos(δ2 − δ3)+ n3n1 E3 E1 cos(δ3 − δ1)

]

with n1, n2, and n3 defined as follows. The references for measuring x are fixed at
Bus 4 for Branches 1 and 3, and at Generator 1 for Branch 1. Also, as defined before,
a1, a2, and a3 denote the normalized reactances (or equivalently distances) measured
along Branches 1, 2, and 3, respectively, from their respective reference points:

1. Branch 1: Between Bus 4 and Generator 3

n1 = σσ31(1 − a3), n2 = σσ32(1 − a3), n3 = σ(1 − a3)+ a3 (8.59)

2. Branch 2: Between Generator 1 and Bus 4

n1 = 1 − a1 + a1σσ31, n2 = a1σσ32, n3 = a1σ (8.60)

3. Branch 3: Between Bus 4 and Generator 2
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n1 = σσ31(1 − a2), n2 = σσ32(1 − a2)+ a2, n3 = σ(1 − a2). (8.61)

Therefore, the frequencies at Buses 1, 2, and 3 can be expressed as

ν1 = Π1(x1, δ1, δ2, δ3)

Π2(x1, δ1, δ2, δ3)
, ν2 = Π1(xe2, δ1, δ2, δ3)

Π2(xe2, δ1, δ2, δ3)
,

ν3 = Π1(xe3, δ1, δ2, δ3)

Π2(xe3, δ1, δ2, δ3)
.

(8.62)

Since the bus frequencies are measured (or derived by passing the bus angles through
high-pass filters), ν1, ν2, and ν3 are known at any chosen time instant. Also, once
x1 and x2 are identified, Ei and δi (i = 1, 2, 3) can be calculated for the same time
instant, and hence, the three equations in (8.62) can be solved for ω1, ω2, and ω3.
The solution of H1 and H2 then follows from (8.54) or (8.55) and (8.56). The entire
algorithm is described step-by-step in Fig. 8.9.

8.3.5 Reduced-Order Modeling of Pacific AC Intertie

This transfer path is a large group of generators supplying power via a 1,200-mile
transmission system to a large load center with an intermediate generation cluster
attached to the path, as shown in Fig. 8.1a. Figure 8.10a shows the bus voltage
magnitudes at 6 buses on the transfer path, with Buses 1, 2, and 3 being the sending
end, receiving end, and the intermediate generation bus, respectively. Figures 8.10b
and c show the separated fast and slow components for each of the six bus voltages.
As both the sending and receiving ends have a large group of generators, a significant
number of swing modes contributes to the oscillations in Fig. 8.10b, only one of which
is the interarea mode. The oscillation due to this mode is dominant in all six voltages.
We apply the eigensystem realization algorithm (ERA) to extract the modes and their
mode shapes in the time response of the voltage oscillations, starting from t = 62 s
to t = 80 s. ERA shows that over this chosen time-window of 18 s, the oscillations
can be approximated by a dominant interarea mode of 0.404 Hz. Figure 8.11 shows
the 0.404 Hz mode components superimposed on the individual voltage magnitude
oscillations at Buses 1, 2, and 3. Similar figures can be drawn for the remaining
buses.

The magnitude Vim (in pu) of the interarea mode components of the ith bus voltage
(i = 1, 2, 3) can be obtained from the approximated (dotted) voltage responses in
Fig. 8.11a, b, and c at a fixed point of time. Choosing this fixed time point at t = 4 s,
where the positive peak of the second cycle occurs, we get (in pu)

V1m = 1.897 × 10−3, V2m = 2.615 × 10−3, V3m = 5.206 × 10−3 (8.63)
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Fig. 8.10 Bus voltage magnitudes for WECC transfer path 2. a Bus 1 voltage. b Bus 2 voltage.
c Bus 3 voltage

As the signals used for mode extraction start from t = 62 s in the original time
response of Fig. 8.10a, the chosen fixed time-point is equal to t = 66 s. The
quasi-steady-state values Viss of the ith bus voltage (i = 1, ..., 6) are obtained from
the slow parts of the voltages shown in Fig. 8.10c at the pre-disturbance time instant as

V1ss = 1.0903, V2ss = 1.046, V3ss = 1.1234 (8.64)

Therefore, the normalized voltage amplitudes are (in pu)

V1n = 2.0683 × 10−3, V2n = 2.7353 × 10−3, V3n = 5.8482 × 10−3 (8.65)

Applying the IME algorithm from (8.42), (8.44), and (8.45), we obtain

x1 = 0.00411, x2 = 0.00655 (8.66)

where x1 (in pu) is the sum of the aggregated transformer reactance and direct-axis
transient reactance of the sending end equivalent generator, and x2 (in pu) is that of
the receiving end equivalent generator. The Jacobian curve is shown in Fig. 8.12.
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Fig. 8.11 Interarea bus voltage magnitudes for WECC transfer path 2. a Bus 1 voltage. b Bus 2
voltage. c Bus 3 voltage

From the curve, it can be easily seen that oscillations are much more damped on the
right half of the transfer path due to the high loading effect on this side.

The inertia constant (pu) between the two dominant generators is approximately
H = 810 pu. However, the voltage droop at the star point is not very significant,
which indicates that the third generator does not produce a strong impact on the
voltage profile. The Jacobian fit without the effect of this extra interarea mode is
shown in Fig. 8.12 as the dashed curve.

8.4 Multi-Modal Interarea Equivalents

In this section we generalize the idea presented in Sect. 8.3 to a multi-area system
where each area is directly connected to its neighboring set of areas without the
existence of any algebraic bus. As before, we represent each area by an equivalent
synchronous machine, and assume that the equivalent topology of the system is
known. Unlike Sect. 8.3 the advantage here is that we do not need to compute the
voltage phasor at any algebraic bus, and can apply the IME algorithm of Sect. 8.2
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directly to every pair of connected areas in a decentralized fashion provided that
the contribution of every slow mode is retained in the bus measurements. The idea
is illustrated by the three-machine system in Fig. 8.13a, where each of the three
machines G1, G2, and G3, connected to each other by a ring topology, represent the
equivalent of an area consisting of multiple local machines. PMUs are assumed to
be installed at the terminal buses of each machine.

The swing dynamics of the equivalent system is given by

2H1δ̈1 = Pm1 − E1 E2

x12
sin(δ1 − δ2)− E1 E3

x13
sin(δ1 − δ3) (8.67)

2H2δ̈2 = Pm2 − E2 E3

x23
sin(δ2 − δ3)− E2 E1

x12
sin(δ2 − δ1) (8.68)

2H3δ̈3 = Pm3 − E3 E1

x13
sin(δ3 − δ1)− E3 E2

x23
sin(δ3 − δ2) (8.69)

where Pmi is the effective mechanical power input to the ith area, and xik is the
total reactance connecting the internal node of the ith and kth equivalent machines.
However, because each area may contain internal loads, we assume the line currents
across each transfer path to be different, namely Ĩ1, Ĩ2, and Ĩ3. All three currents are
available from the respective PMU measurements. The equivalent transmission line
reactances can be calculated from the bus voltage and current measurements using
Ohm’s law, while the total reactance between the internal node of any machine and
any of the terminal buses needs to be estimated using IME. Assuming a classical
model for synchronous machines, this total reactance is assumed to be the sum of the
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Fig. 8.13 Equivalent circuit of a multimodal power system. a 2-dimensional system. b Reactance
matching

direct-axis transient reactance and the transformer reactance, namely, (x ′
di j

+ xTi j ),

for the ith area connected to the jth terminal bus. Because Kirchoff’s law holds for
each transfer path independently, IME can be applied to each pair of machines to
calculate this reactances irrespective of the other paths. However, two important
points must be taken into consideration before applying IME:

1. Because the internal node of each machine is the point of common coupling
between any two neighboring transfer paths, we must make sure that this internal
voltage computed independently from the reactance estimates of each path must
match with each other. For example, using Kirchoff’s law at the internal node of
G1, first for transfer path 1–2 and then for the path 1–3, we get, respectively,

E1 = |Ṽ1 + j (x ′
d11

+ xT11) Ĩ1|, E1 = |Ṽ2 + j (x ′
d13

+ xT13) Ĩ2|, (8.70)

where, Ṽi and Ĩi are available from PMU measurements and the reactances are
estimated independently using IME. Because the LHS may not necessarily match
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for both equations, we, therefore, add two fictitious reactances j xa and j xb on
each side, and tune them till we obtain the same value of E1. The same approach
applies to the internal reactance of all other areas. Physically speaking, this may
be thought of as a variable reactance that matches the internal angle of each
equivalent machine at the cost of decentralized estimation of the area parameters.
These fictitious reactances are illustrated in Fig. 8.13b.

2. Decentralization of IME, however, should not neglect the basic fact that the
dynamics of the three machines are coupled to each other, and, therefore, all
the bus measurements used for estimating the reactances and inertias must con-
tain the contribution of each and every slow mode of oscillation. This can be easily
accounted for from the fundamental principle behind coherency and aggregation
[5]. For example, to obtain an analytical expression for the fast and slow oscilla-
tion dynamics, one may define the slow or aggregate variable for the kth area to
be the so-called center of inertia angle for that area, namely

yk �
∑nk

i=1 Hk
i δ

k
i∑nk

i=1 Hk
i

, k = 1, 2, ...r (8.71)

where δk
i and Hk

i are, respectively, the ith machine angle and inertia in the kth

area, nk is the total number of machines in the kth area, and r is the total number
of areas. Similarly, the fast variable for the kth area can be defined as

zk,i � δk
i − δk

1, i = 1, 2, ...nk, k = 1, 2, ...r. (8.72)

The time-scale separation between the fast and slow oscillations can then be
expressed explicitly in the singular perturbed form

dy

dts
= A11 y + A12z, ε

dz

dts
= A21 y + A22z (8.73)

where ε � 1 is a small parameter, and the exact expressions for the four state
matrices can be found in [5]. Assuming ε ≈ 0, the effective swing dynamics for
the interarea oscillations can then be written as:

dy

dts
= (A11 − A12 A−1

22 A21)y. (8.74)

Because the matrix (A11 − A12 A−1
22 A21) is not necessarily block-diagonal, it is

evident that the interarea oscillation modes are not necessarily decoupled. In other
words, the bus voltage oscillations available from the PMUs at each terminal bus
must retain the cumulative contribution of all slow modes. This can also be seen
from the time-domain representation of the ith bus voltage, namely
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Vk =
( n−1∑

i=1

Ri e
−σi t (sin(ωi t + φi )+ cos(ωi t + φi ))

)

k
(8.75)

where n is the total number of machines in the system. However, the RHS of
(8.75) contains the contribution of both local and interarea modes, only the two
slowest of which will give the contribution of the interarea oscillations in our
example of interest.
The net interarea component of Vk can then be written as

V s
k =

(
R1e−σ1t (sin(ω1t + φ1)+ cos(ω1t + φ1))

+ R2e−σ2t (sin(ω2t + φ2)+ cos(ω2t + φ2))

)

k
(8.76)

where ω1 and ω2 are the two slow frequencies. These two frequencies and their
corresponding residues and damping factors in (8.76) can be easily computed by
applying modal decomposition to the bus voltage measurement Vi , some com-
mon methods including the ERA, Prony analysis, and Matrix Pencil. Once V s

k is
extracted for k = 1, 2, . . . , 6, these voltages can then be used for calculating the
internal reactances of each area (for each connection) via IME in exactly the same
way as in Sect. 8.2 for each pair of machines. The same idea applies to the bus
frequencies for estimating the equivalent machine inertias. One interesting obser-
vation, however, is that the machines do not necessarily have unique inertias,
but have as many distinct inertias as the degree of that node, each representing
the effective weight of that area contributing to the oscillation for each respective
transfer path that the machine is connected to. A schematic of the spatial variation
of voltage at any fixed point of time for this three-machine system is shown in
Fig. 8.14.
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Fig. 8.14 Spatial variation of voltage for 2-dimensional system
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8.5 Transient Stability Assessment Using Energy Functions

In this section we show how the reduced-order models developed in Sect. 8.2 can
be exploited to formulate performance metrics for transient and damping stability
assessment of two-area power systems. We develop the concepts to compute energy
functions using phasor data to assess the stability margin of power transfer paths.
Consider a two-machine equivalent system as in Fig. 8.2b, and let its post-fault
equilibrium angle be δop. The energy function VE of the system can be expressed in
the form

VE = VPE + VKE (8.77)

where the potential energy and the kinetic energy are given by

VPE = E1 E2

x ′
e

(
cos(δop)− cos(δ)+ sin(δop)(δop − δ)

)
(8.78)

VKE = 1

2
(2H)Ωω2 = HΩω2. (8.79)

It should be noted that by virtue of the IME algorithm, the energy function (8.77)
can be computed in terms of the machine angles and voltages extrapolated from the
bus measurements. However, the bus voltages contain high-frequency local modes as
well as slower interarea modes. These fast and slow components need to be separated
before using the voltages to construct the energy function. We call the filtered slow
component of the voltages as the quasi-steady-states V̄1 and V̄2. In real time, the
post-fault equilibrium angle δop or θop is not fixed either, but rather time varying,
due to turbine-generator governing and other generation and load changes. Thus we
can write

δ = δ̂ + δqss (8.80)

where δ̂ and δqss are respectively the swing component and the quasi-steady-state
components of δ. We need to extract the quasi-steady-state value δqss in order to
approximate the post-disturbance equilibrium angle used in the potential energy
function (8.78). Based on this, we propose the transient swing energy function

V̂E (t) = V̂KE(t)+ V̂PE(t) (8.81)

to model the energy due to the dominant interarea mode, where

V̂PE = Ē1 Ē2

x ′
e

(
cos(δqss)− cos(δ)+ sin(δqss)(δqss − δ)

)
(8.82)

V̂KE(t) = HΩω(t)2 (8.83)
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where δqss is obtained in practice by bandpass filtering the δ measurement.
We next illustrate the construction of (8.81–8.83) using a disturbance event in

the two-area WECC transfer path discussed in Sect. 8.2. After applying the IME
algorithm to the bus measurements and extrapolating to the machine internal nodes,
the time variations of the machine angular separation and frequency differences
are calculated, and plotted, respectively, in Fig. 8.15a and b. The machine speed
difference ωB is mostly mono-modal, but the angle difference θ shows a distinct
quasi-steady-state variation. Bandpass filtering is used to separate the oscillation and
the quasi-steady-state components of δ, as shown in Fig. 8.16a and b. For the post-
disturbance case, we get xe = 0.077 pu from least-squares fitting, as in [21]. The
equivalent machine inertia is estimated to be H = 119 pu. Figures 8.17a, b and 8.18
show the energy functions V̂KE, V̂PE, and V̂E , respectively. Note that oscillations are
clearly visible in V̂KE and V̂PE and yet they literally disappear when V̂KE and V̂PE
are added together to form V̂E . The oscillation is small-signal stable, although the
damping is very low, and V̂E eventually decays to a level commensurate with random
perturbations on the system. If the system were negatively damped, V̂E would grow.
The quasi-steady-state angle δqss indicates that the sending end and receiving end of
the transfer path remain synchronized, that is, transiently stable. A sudden increase in
δqss indicates the loss of a portion of the transmission system or the loss of generation
at the load bus, both of which would stress the transfer path. If the disturbance had
caused a separation of the transfer path, δqss would grow as synchronism would
be lost.

It is also worth noting that the amplitudes of oscillations in the interarea angular
separation as well as frequency, following a disturbance, in two-area power systems,
depend significantly on the strength of the interconnection as well as the inertia of
the aggregated machines. We briefly illustrate this fact by comparing the maximum
swing energy functions for two different transfer paths under two different sets of
disturbances. We show that a comparison of energies of coherent machines forming
interconnected transfer paths can be a good indication of the relative strengths of
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Fig. 8.17 Energy functions for transfer path 1. a Kinetic energy function for transfer path 1, b
potential energy function for transfer path 1

disturbances on the transfer paths. Consider the interconnected power system with
three aggregated machines as in Fig. 8.19. Generators 1 and 2 form a coherent
group of machines (transfer path a) with power flowing from Generator 1 to 2, the
inertia of Generator 1 being smaller than that of Generator 2. Generator 3 forms a
coherent group with Generators 1 and 2 together (transfer path b), with the inertia of
Generator 3 being significantly higher than that of Generators 1 and 2. The system
has two interarea modes, namely a slower mode between G3 and (G1, G2), and a
faster mode between G1 and G2 with much smaller amplitude. The line reactance,
or equivalently connection strength, for transfer path a is weaker compared to that
for path b. We consider two sets of disturbance events, namely Events 1 and 2, which
caused perturbations in transfer paths a and b, respectively. Event 1 was actually
caused by a control equipment failure with possible line tripping and, hence, did not
produce any significant oscillations. Event 2, on the other hand, was an earthquake
event leading to significant loss of load, due to which the oscillations were more
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Fig. 8.18 Swing energy function for transfer path 1

Fig. 8.19 Oscillations in two coherent areas for two events

pronounced. We next construct the swing energy functions for each transfer path
for each event. Table 8.1 lists the maximum energy for each of these four cases.
The numbers clearly indicate that the disturbance in transfer path a hardly caused
any oscillations in transfer path b due to the high equivalent inertia of Generators
2 and 3, and the stronger connection strength between them. On the other hand,
the disturbance in transfer path b resulted in a high energy value in transfer path a
because of the lower machine inertia and connection strength of the latter.
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Table 8.1 Swing energies of two paths for two disturbance events

Disturbance event Maximum swing energy in path a Maximum swing energy in path b

1 5 MW-s 0.33 MW-s
2 3.5 MW-s 17 MW-s

8.6 Equivalencing Using Noisy PMU Data

We end our discussion with a brief note on the situation where the aforesaid para-
meter estimation methods have to be carried out using PMU data corrupted with
measurement noise. In that case, unique estimates of the model parameters are no
longer available, and the problem has to be posed in terms of bounds on the estima-
tion error. Such bounds, more commonly referred to as Cramer-Rao bounds (CRB),
are widely used in the statistical signal processing literature [22]. By definition, CRB
is a lower bound for the second-order moment of an unbiased parametric estimator.
In this section we show an interesting fact: the CRB for estimating the interarea
model parameters of a two-machine equivalent of the two-area radial power system
of Sect. 8.2 is a function of the spatial variable a. In other words, the error in esti-
mation depends on the location of the PMU on the transmission line. The problem,
therefore, is to find the optimal location such that the estimation error is minimized.

Returning to the two-area power system model of Sect. 8.2, we linearize the
model (8.6) about an initial equilibrium (δ0, 0) where 0 < δ0 < 90◦, and denote the
perturbed state variables as m = col(Δδ,Δω) to obtain

ṁ =
[

0 1
− E1 E2

2H x̄ cos(δ0) 0

]

︸ ︷︷ ︸
A

m +
[

0
1

]

︸︷︷︸
B

u (8.84)

where u is a small disturbance input to the system. For any point P at reactance x
away from Generator 2, the output matrix from (8.9) can be written as

C =
[−a(1 − a)E1 E2 sin(δ0)

V0
0

]
(8.85)

where V0 =
√

E2
2(1 − a)2 + E2

1a2 + 2E1 E2a(1 − a) cos(δ0). After a few calcula-
tions, it can readily be shown that the discrete-time impulse response of the voltage
at P is

V (k) = ψ(a) ξ(k, x1, x2, H1, H2) (8.86)

where ξ for different values of k is listed in Table 8.2. We next stack the impulse
response as
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Table 8.2 Impulse response
of undamped two-machine
power system

k y(k)

1 ψ(a) K
2 ψ(a) K (1 + 2 cos(

√
γ T ))

3 ψ(a) K (cos(2
√
γ T ))+2 cos(

√
γ T )(1+cos(

√
γ T ))

.

.

.
.
.
.

n ψ(a)K
(

cos((n − 1)
√
γ T )+

(
1 + cos(

√
γ T )

sin(
√
γ T )

)

sin((n − 1)
√
γ T )

)

Y = [
y(1) y(2) . . . y(k)

]
. (8.87)

Assuming that unlimited time-series data are available, k can be any arbitrary positive
integer. We partition the four unknown parameters x1, x2, H1, and H2 into sets
a = {x1, x2}, b = {H1, H2} and define

H(a, b) = ∂Y /∂a, K(a, b) = ∂Y /∂b. (8.88)

Assuming that the actual measured PMU signal is

ỹ(k) = y(k)+ ñ (8.89)

where ñ is zero-mean Gaussian noise with varianceσ 2, the Fisher Information Matrix
for computing the error bounds is next formulated as

J (a,b) = 1

σ 2

[
HHT HKT

KHT KKT

]
. (8.90)

Because CRB is the inverse of J (a,b), the tightest bound will be given by that value
of a, say denoted as a∗, which maximizes the determinant of J . Moreover, as the
PMU can only be placed on the transmission line, a∗ must satisfy

a∗ ∈ [a1, a2], a1 = x2

x̄
, a2 = x2 + xe

x̄
. (8.91)

Applying this procedure for the disturbance event of WECC transfer path 1 of
Sect. 8.3, imposing a 10 dBW noise power on the actual measured data, the deter-
minant of the FIM J plotted against a ∈ [a1, a2] is shown in Fig. 8.20. From this
figure, it follows that the best location P to place a PMU (or, equivalently consider a
measurement from) is approximately at 40 % of the total length of the transmission
line away from Bus 2, i.e., a reactance 0.0308 pu away from Bus 2, considering the
output for estimation is the voltage magnitude at P . If any other variable such as the
phase angle measured at P is used for estimating the parameters, then a different
value of a∗ will be obtained.
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8.7 Conclusions

In this chapter, we presented a collection of new results on model reduction of several
classes of large-scale power systems using synchronized phasor data available only
from a few selected points in the transmission network. The fundamental approach
behind this model reduction is to formulate the reduction problem as an equivalent
parameter estimation problem, which can be solved using the spatial variation of
different phasor quantities from one end of the transfer path to another. The developed
methods can be used to construct approximate interarea models of two representative
transfer paths in the US west coast power system, each of which have been illustrated
with real disturbance event data. Besides the natural benefits of model reduction, the
advantage of such dynamic equivalent models lies in both wide-area monitoring
and wide-area control. For example, these models can be directly used to construct
transient energy functions operating across transfer paths, which in turn can be used
as a performance metric to track the health of the interconnection following any
large disturbance—in terms of damping, mode shape, rise time, settling time, etc., as
shown in [21]. They will also be highly useful for efficient wide-area control designs
at a global or interarea level. For instance, given the scale, size, and complexity
of any realistic power system (e.g., WECC with roughly 2,000 generators, 11,000
transmission lines and 6,500 loads), designing PMU-based distributed controllers
to shape the interarea responses starting from a full-order model would be highly
daunting. We believe that an alternative approach of reducing such large systems into
simpler chunks, and then redistributing their control efforts would give the problem
a much more well-defined and less chaotic formulation. This work, however, should
also be viewed as a point of departure for several future investigations. The variation
of the IME model reactance as a function of power transfer levels and the correlation
of fault clearing times between the IME model and the detailed model also need to
be better understood.
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