
Chapter 1
Introduction

Joe H. Chow

Abstract This introductory chapter gives a brief overview of power system
coherency and model reduction literature. This survey focuses on both the early
results and some more recent developments, and organizes power system model
reduction techniques into two broad categories. One category of methods is to use
coherency and aggregation methods to obtain reduced models in the form of nonlin-
ear power system models. The other category is to treat the external system or the
less relevant part of the system as an input–output model and obtain a lower order
linear or nonlinear model based on the input–output properties. This chapter also
provides a synopsis of the remaining chapters in this monograph.

1.1 Introduction

In the simulation of power system dynamics for stability analysis on a digital
computer, a prudent approach is to develop the most comprehensive power sys-
tem models so that the relevant dynamics can be accurately simulated given the
computing resources and a desired simulation completion time.

One of the decisions that a power system engineer has to make is the geographic
extent of the power system data set. Although the purpose of a stability investigation
is to determine the dynamic response of generators and control systems in a study
region due to disturbances inside the region, because of the interconnected nature of
large power systems, these disturbances will impact the neighboring and other areas,
the so-called external system, which in turn will impact the study region (Fig. 1.1).1

For example, a short-circuit fault cleared by a line trip will redistribute the pre-fault
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Fig. 1.1 Separation of a power system into a study system and an external system

Fig. 1.2 Loop flow through the external system

flow on the tripped line to other paths, some of which may circulate through the
external system. This situation is illustrated in Fig. 1.2, in which tripping the line
from Bus A to Bus B causes a portion of the pre-fault line flow to be exported into the
external system at one boundary bus and to return via another boundary bus. These
uncontrolled loop flows need to be modeled accurately in order for the stability
simulation to be valid. On the other hand, disturbances in the study region will most
likely not excite significantly the internal dynamics of the external system. Thus a
less detailed model of the external system can be used. As a result, for system studies
with a strict turnaround time requirement, such as contingency analysis, or limited
computing resources, power engineers commonly construct low-order models with
the study region modeled in full detail and a reduced external system. For practical
applications in large power grids, the low-order models, after reducing the size of
the external system, may still have upwards of 5,000 buses and 1,000 generators.

To facilitate the discussions in the rest of this monograph, we express the power
system model in the nonlinear differential-algebraic equation form for the study
system as

ẋs = fs(xs, Vs, us, t), Vs = gs(xs, xe, us, ue, t) (1.1)

and the external system as

ẋe = fe(xe, Ve, ue, t), Ve = ge(xs, xe, us, ue, t) (1.2)

where x denotes the state vector, V is a vector of the real and imaginary parts of
the voltage phasors Ṽ , u is the control, t denotes time, f represents the dynamic
equations such as the swing equation and excitation system models, g contains the
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algebraic network equations, and the subscripts s and e denote “study” and “external”,
respectively. Note that fs and fe depend only on the bus voltage phasors within the
study area and the external system, respectively. The bus voltage phasors are, in
general, functions of all the states of the interconnected study and external systems.

Thus the objective of the model reduction task is to obtain a model

ẋs = fs(xs, Vs, us, t), Vs = gs(xs, x̄e, us, ūe, t) (1.3)

˙̄xe = f̄e(x̄e, V̄e, ūe, t), V̄e = ḡe(xs, x̄e, us, ūe, t) (1.4)

in which the external system has been reduced. Here x̄e, V̄e, and ūe are the variables,
f̄e is the dynamic equation, and ḡe is the network equation for the reduced external
system. Often the boundary bus voltages Ṽbi , i = 1, ..., k, are kept in the reduced
external system, so that the interface currents Ĩi , i = 1, ..., k, between the study
system and the reduced external system can still be computed individually. The
reduced external system may also be a linear model.

Many model reduction techniques for general applications have been proposed
and advanced techniques are still being developed. We will limit the model reduction
overview here to those methods that have been applied to power systems. To provide
some structure to the overview, we group the methods under coherency and aggre-
gation, linear and nonlinear input–output methods, and the relatively new phasor
measurement-based method.

1.2 Coherency

The practical method most commonly used by power utilities to derive reduced
models of large power systems is based on the concept of coherency and aggregation.
This method uses the inherent properties, such as line admittances and loading, and
machine inertias, in a practical power system to derive a reduced nonlinear external
system that retains the relevant dynamics (1.4). The method consists of two main
steps: (1) identifying coherent groups of machines, and (2) aggregating each coherent
group of machines into a single equivalent machine.

1.2.1 Time Simulation

Coherency means that some machines exhibit similar rotor angle swings after a
disturbance. Podmore, deMello, and Germond proposed using linear time simulation
to identify the coherent groups of machines [1–3]. The advantage is that linear time
simulation can be computed much more quickly than a full nonlinear simulation.
System disturbances can be modeled as equivalent injections so that the admittance
matrix does not need to be rebuilt and refactorized. From the time response of the
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synchronous machines, a grouping algorithm with a specific tolerance value for
coherency can be used to identify the coherent machines.

1.2.2 Modal Coherency

Following Podmore’s coherency result and Undrill’s modal equivalent result (see
Sect. 1.4), Schlueter and coworkers [4] proposed a modal-coherency approach in
identifying coherent groups that can approximately capture the modal frequencies.
The key idea is the use of a zero-mean, independent, and identically distributed
disturbance to compute a rms coherency measure. By letting the time period of sim-
ulation approach infinity, an analytical formula without numerical integration can be
developed. The success of the method was partly attributed to the rms measure being
determined by the synchronizing torque coefficients, which depends on transmission
line stiffness and generator inertias.

1.2.3 Slow Coherency

Shortly after the work of [2, 3], a group of singular perturbations researchers from
the University of Illinois, Urbana-Champaign and the General Electric Company,
Schenectday, New York, investigated the use of singular perturbations for power
system model reduction. One of the significant results is establishing the connec-
tion between slow coherency and weak connections in power systems [5, 6]. Slow
coherency is coherency arising from the slower interarea modes, which are oscilla-
tory modes due to groups of machines oscillating against each other across power
transfer interfaces. These interarea modes, if negatively damped, can lead to system
separation and extensive loss of load [7].

From the slow coherency theory, the eigen-subspace of the interarea modes can be
used to identify the slow coherent machines. To apply this grouping method, only the
slowest electromechanical modes and their mode shapes represented by eigenvectors
need to be computed. For large power systems, sparsity-based computation methods
for calculating only the slow eigenvalues and their corresponding eigenvectors are
preferred. An early attempt using the Lanzcos method was documented in [8]. More
successful methods include the inverse iteration method [9], the S-matrix method
[10], and the Arnoldi method [11].

1.2.4 Weak-Link Methods

The grouping algorithm proposed in [5] requires the computation of eigenvalues,
which can be time consuming for large power systems, despite the availability of
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sparsity-based partial eigenvalue and eigenvector computation routines as mentioned
earlier. It may be desirable to develop methods to identify the coherent areas without
eigensubspace computation. The weak-connection and slow-coherency relationship
in [5] points to exploring weak connections to find the coherent groups. In [12], a
clustering algorithm based on the state matrix derived from the synchronizing torque
coefficients and the machine inertias has been proposed to find the weakly connected
machine clusters. A reduced incidence matrix is constructed by setting rows of off-
diagonal entries of the state matrix whose sum is less than a threshold to zero. The
connectivity that remains in the incidence matrix defines the slow coherent groups
of machines.

The results in [13] extend the search of weak links to form weakly coherent
areas and strongly coherent areas. The identification procedure starts by iteratively
computing a coupling factor derived from the synchronizing torque coefficients,
through a sequential search of the machines. Then relative changes in the coupling
factors define the weakly coherent groups, similar to the slow coherent groups from
the grouping algorithm [5]. In addition, relative changes in the second variation of the
coupling factors can be used to determine the strongly coherent areas. The technique
has been demonstrated on a 50-machine model of the northern India power grid.

1.3 Aggregation

The second part of the coherency approach is to aggregate each coherent group of
machines into a single equivalent machine, followed by eliminating load buses in
the external system that are not needed.

1.3.1 Generator Aggregation

The technique proposed by Podmore and Germond [3] is to connect all the coherent
generators to a common bus. All the generators are then aggregated into a single
generator. This equivalent generator construction preserves the power flow in the
power system as well as the power system model and data structure. Furthermore,
exciter and governing capability of the equivalenced generator can be obtained from
an aggregate frequency response approximation.

1.3.2 Singular Perturbation Models

An advantage of the singular perturbations method is that it generates asymptotic
series expansion terms to improve the slow subsystem [14]. For power system
model reduction, it is possible to improve the reduced model by aggregating the
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coherent generators at the generator internal node, rather than at the generator bus
as in the Podmore aggregation [15, 16]. The inertia aggregation method and the
Podmore method both stiffen the power network by adding connections with infinite
admittances. This stiffening causes the reduced model to have higher interarea mode
frequency. Another term can be taken from the asymptotic series expansion to reduce
the stiffening effect using only parameters from within the coherent area [15, 16].

1.4 Linear Equivalent Input–Output Models

One of the premises of reducing the external system is that it is not perturbed sig-
nificantly by a disturbance in the study area. As a result, the external system can
be represented by a linear model. To derive the linear model, one can detach the
external system from the study system, in which the tielines to the study system are
represented by current injections, as shown in Fig. 1.3.

The input–output model of the external system can be represented by

˙̄xe = f̄e(x̄e, V̄e, ue, Ī , t), V̄e = ḡe(x̄e, ue, Ī , t), V̄b = ḡbe(x̄e, ue, Ī , t) (1.5)

in which the tieline current injections Ī are the input to the model and the boundary bus
voltages V̄b are the output. The dynamic equation f̄e is driven by the bus voltages
V̄e and the input Ī . Note that the network equation ḡe is no longer dependent on
the study network variables. In particular, the current injection Ī is an independent
variable, and no longer a function of both the study and external systems.

Note that it is also possible to use a formulation with the boundary bus voltages as
input variables and the currents injected into the study system as the output variables
[17]. This formulation is equivalent to (1.5) if the boundary buses are extended into
the study system.

One of the first model reduction ideas is to simply linearize the external model
(1.5) as

Δ ˙̄xe = AΔx̄e + BΔI, ΔV̄b = CΔx̄e + DΔI (1.6)

Fig. 1.3 Input–output model
of the external system
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at the pre-fault power flow condition. The network equation and any feedback
control have been included in (1.6) without showing them explicitly. Expressions
for linearized models can be found in [18]. Alternatively, linearized models can be
obtained via a numerical derivative process [19].

Representing the external system with a linear model would decrease the compu-
tation needed for simulating a disturbance in the study system. The linear model will
be able to account for the loop flow shown in Fig. 1.2. In addition, a linear network
is solved in the external system. To achieve further computation reduction, various
approaches have been proposed for reducing the linear model of the external system.
A recent survey of linear model reduction approaches can be found in [20].

1.4.1 Modal Truncation

In the early 1970s, Undrill, Price, and others developed a modal truncation approach
[17, 21–23] following such work as Davison [24] by determining the modes to be
retained in the reduced external systems. In this approach, (1.6) is represented by a
reduced model in the modal form

Δ ˙̄xm = AmΔx̄m + BmΔI, ΔV̄b = CmΔx̄m + DΔI (1.7)

in which only the dominant modes, including the electromechanical modes, are
retained. The dimension of Δx̄m is less than that of Δx̄e.2 Furthermore, if the state
matrix Am is expressed as a diagonal matrix, in which 2 × 2 diagonal blocks are
used for complex eigenvalues, the computation needs during simulation can be fur-
ther reduced. Special computer code needs to be developed to interface the reduced
linear model of the external system to the study system in a nonlinear power system
simulation program.

One of the concerns with the modal truncation approach is that it does not preserve
steady-state values [20]. This shortfall can be overcome using the singular perturba-
tions technique [14]. However, the modes kept by the reduced model, the so-called
slow subsystem, will no longer be identical to the modes of the full external system
model.

1.4.2 Selective Modal Analysis

The modal truncation method [24] and the singular perturbations method [14]
eliminate the modes with fast decaying transients and as such are less important.

2 Note that (1.7) can be shown to be equivalent to the formulation in [17] using the study system
boundary buses as inputs and current injected into the study system as the outputs, and maintaining
a linearized model of the external system power network.
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The selective modal analysis technique designates the modes with high modal
participating factors as relevant modes which will be retained, and those modes
with lower modal participating factors as less relevant modes which will be elimi-
nated [25, 26]. From a state-space model form, the relevant reduced model can be
computed iteratively. The reduced models are also suitable for designing damping
controllers, such as power system stabilizers.

1.4.3 Krylov and Balanced Model Reduction Methods

Another modal elimination approach is based on balanced truncation methods, which
eliminate modes that are less controllable or observable [27, 28]. With balanced
truncation, the reduced linear model of the external system will have the model

Δ ˙̄xbr = AbrΔx̄br + BbrΔI, ΔV̄b = CbrΔx̄br + DΔI (1.8)

where the reduced matrices (Abr, Bbr, Cbr) are obtained using controllability and
observability Gramians. Such methods do not keep the external system modes exactly
but provide a better frequency response approximation of the input–output model
compared to the modal truncation method. These balanced truncation methods are
supported by efficient computation algorithms [29].

A third class of linear model reduction methods is based on the Krylov method
[30], in which the Markov parameters of the linear input–output model (1.6) are
preserved up to a certain index. This matching part of the controllability-observability
subspace is also known as moment matching. The Krylov is less computationally
expensive than the balanced truncation method. The method does not provide any
error bounds but, in general, seems to work well.

1.5 Nonlinear Equivalent Input–Output Models

Besides reduced linear models, an alternative approach for capturing the nonlinear
dynamics of the input–output model (1.5) shown in Fig. 1.3 is to use reduced nonlin-
ear models. In general, such nonlinear model reduction methods have to be tailored
to the characteristics of the physical processes. Power systems have many different
types of nonlinearities, such as sinusoidal functions, deadbands, saturation functions,
and limits, to name a few. The coherency and aggregation method discussed earlier
attempts to preserve these nonlinearities. A few methods have been proposed for
developing reduced nonlinear external systems, including the two methods described
next.
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1.5.1 Singular Perturbations Methods

Once slow coherency has been identified for a power system, one can obtain the
quasi-steady-state approximation from singular perturbations as presented in [31].
In this approach, the intraarea modes within each coherent area are assumed to be
fast and have settled to their quasi-steady-state values. As a result, the differential
equations describing the intra-area modes are solved as algebraic equations. This
approach would require the development of special computer code to perform the
quasi-steady solution in a conventional power system simulation program [31].

1.5.2 Computational Intelligence Methods

Computation intelligence methods have been used to capture nonlinear model
dynamics [32]. One such non-model based method is the artificial neural network
(ANN) approach [32]. In an ANN, neurons represented by selected nonlinear func-
tions are arranged in layers connected by weights. These weights are trained from
input–output data using a variety of tuning methods. Upon convergence, the method
provides a reduced nonlinear model. The ANN can be used to represent all or part
of an external system.

1.6 Measurement-Based Reduced Models

Most of the model reduction techniques developed until recently are all based on
power system load flow and dynamic data sets. With the advent of synchrophasor
measurement technology [33], time-synchronized voltage and current phasor mea-
surements across wide areas can be obtained. These synchrophasor measurements,
obtained from phasor measurement units (PMUs), are particularly useful for extract-
ing interarea oscillatory modes and their mode shapes [34]. Such a capability opens
up the possibility of using synchrophasor measurements to construct simple inter-
area models. The results in [35] show that by monitoring voltage phasors at both
ends of a power transfer path, it is possible to develop a simple two-area model to
emulate the oscillatory modes and establish an energy function. Interestingly, the
results were derived from examining the voltage magnitude oscillation of the inter-
area mode along the transfer path such that the effective impedance connecting the
two areas can be computed. This property has been overlooked in coherency and
other power system dynamics literature. Research is ongoing to extend this interarea
model estimation method to develop simple models for multiple interarea modes.
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1.7 Applications

In this section, we discuss some of the impacts of the research on power system
model reduction. This list is by no means exhaustive.

1.7.1 Dynamic Model Reduction Programs

Model reduction programs are available for practicing power engineers to reduce
data sets of upwards of 30,000 buses to a more manageable 5,000–10,000 buses,
which can be handled by power system analysis programs with functions such as
transient stability simulation, voltage stability analysis, and optimal power flow. The
main steps of the model reduction programs still follow the original coherency and
aggregation approach [2] proposed more than 30 years ago.

1.7.2 Interarea Mode Analysis and Damping Control Design

The development of coherency has contributed to the understanding of interarea
mode oscillations. Interarea mode damping is an operational concern for systems
with heavily loaded long distance transmission lines. Recommendations for inter-
area mode damping enhancement with power system stabilizers can be found in
[36] and for flexible AC transmission systems in [37, 38]. An interarea damping
controller applied to a Thyristor-Controlled Series Compensator (TCSC) is critical
in the operation of the Brazil North–South Intertie [39]. With the deployment of
synchrophasor measurement systems [33], the center of angle or speed of a coherent
area, can be measured precisely. Hence, the interarea modes can be computed accu-
rately in real-time and be used to improve the performance of wide-area damping
control.

1.7.3 Islanding

System separation or islanding is often a last but necessary resort to prevent a cascad-
ing blackout by preserving viable islands of generation and load. This is a difficult
task because it needs to balance a number of factors, such as the load and generation
balance in each island and the subsequent generator swings after separation. An adap-
tive out-of-step relay-based islanding strategy using synchrophasors and coherency
on a radial-like system (US Florida-Georgia interface) is described in [40]. Another
islanding strategy [41, 42] for a more complex situation is to identify the tielines
connecting multiple slow coherent groups as cutsets. Such islands have the advantage
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of strong internal connections such that after islanding, the sum of the synchronizing
torques and hence the potential energy [43] in the islands are high.

1.7.4 Dynamic Security Analysis

Power system dynamic security analysis concerns transient, voltage, and small-signal
stability [44] and normally gives a yes-or-no answer for a given set of contingencies.
An important issue that is not well studied is how interarea modes travel through the
various coherent areas for each of the contingencies and the voltage fluctuations on the
transfer paths. A practical example of such an application is that the power import on
a HVDC system is limited by the voltage stability of a transfer path in a neighboring
area; that is, a bipolar fault on the HVDC system would cause voltage collapse on
that transfer path. Such wide-area stability issues will become more important with
higher power transfer levels between operating regions. Some investigations of the
interarea modes in power networks can be found in [45].

1.8 Chapter Guide

In this monograph, we selectively cover three of the model reduction concepts and
approaches discussed earlier in this chapter.

The first topic is on coherency and aggregation and is covered in the following
chapters:

1. Chapter 2 describes the coherency and aggregation ideas.
2. Chapter 3 describes the slow coherency concept and algorithms.
3. Chapter 4 describes a method to obtain equivalent nonlinear exciter models.
4. Chapter 7 describes the practical application of the dynamic model reduction

program (DYNRED) on a large power system.

The second topic is on input–output models for external systems. Chapter 5
describes an approach using ANN to model the external system as a nonmodel-
based nonlinear system. The ANN is successfully trained to show an improvement
in the time response of the reduced-order model. There are also two chapters on
linear reduced-order models:

1. Chapter 6 is on the Krylov method and the balanced truncation method.
2. Chapter 9 describes the selective modal analysis method.

In Chap. 9, the use of selective modal analysis technique for control design is also
discussed.

The third topic is on using synchrophasor measurements to develop simple inter-
area models. Chapter 8 describes the Interarea Model Estimation method and uses
measured PMU data from several WECC disturbances to develop two-area models
for two transfer paths in the WECC system.

http://dx.doi.org/10.1007/978-1-4614-1803-2
http://dx.doi.org/10.1007/978-1-4614-1803-3
http://dx.doi.org/10.1007/978-1-4614-1803-4
http://dx.doi.org/10.1007/978-1-4614-1803-7
http://dx.doi.org/10.1007/978-1-4614-1803-5
http://dx.doi.org/10.1007/978-1-4614-1803-6
http://dx.doi.org/10.1007/978-1-4614-1803-9
http://dx.doi.org/10.1007/978-1-4614-1803-9
http://dx.doi.org/10.1007/978-1-4614-1803-8
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Many of the model reduction methods are based on analyzing interarea modes.
Although coherency depends only on the mode shapes of the generators, there are
many other interesting and important issues related to interarea modes. The last
chapter, Chap. 10, in this monograph discusses the use of synchrophasor data to track
the propagation of interarea mode oscillations resulting from large disturbances.

1.9 Conclusions

In this chapter, we have provided a brief survey of some of the fundamental
approaches and results in equivalencing and model reduction of dynamic power
system models. Methods using similar concepts or techniques are grouped together
to provide a reader with a better perspective of the field. In the reminder of this
monograph, various authors will share their many years of research and develop-
ment results in this important field.
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