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George Peponides



Preface

In the simulation of large power system dynamics for stability analysis on a digital
computer, there is always a tug of war between capturing as much detail as
possible in the simulation and completing the simulation in a reasonable amount of
time so that the results can be useful. Dynamic equivalencing, that is, obtaining a
reduced-order power system model to capture the relevant dynamics, has been an
active research area since the early 1970s led by the work of Robin Podmore. It is
interesting to note that the original dynamic equivalencing procedure of Podmore
is still being used in the industry today, although some of the algorithms in the
procedure have been updated.

In the late 1970s, Petar Kokotović and a few of his students investigated the
applications of singular perturbations and time scales for power system analysis. In
a somewhat surprising development, they were able to show a relationship linking
weak connections between coherent areas and the slow interarea modes. This
relationship becomes an analytical basis for large power system analysis. These
results were published in a 1982 Springer monograph [1]. The monograph was out-
of-print a few years after it was published, but now is again available in electronic
form from the Springer website.

After the 1982 monograph went out-of-print, I thought about writing a new
monograph with some incremental updates, but that idea did not seem to be
productive. Most recently, however, with many new model reduction results, a
monograph summarizing the old monograph and some early results, and encom-
passing several new results, including synchrophasor measurements, becomes
much more appealing. Thus, the objectives of this new monograph include the
following:

1. A summary of the original coherency and aggregation procedure and the slow
coherency theory—This description is intended to help a reader to quickly
catch on to the coherency idea, especially a student interested in pursuing
research in this area, or a practicing engineer planning to use the dynamic
equivalencing (DYNRED) program (Chaps. 2, 3, and 7).

2. Recent applications of linear model reduction methods for power systems—The
linear model reduction methods available now are more rigorous than the
modal equivalents originally proposed by John Undrill and William Price.
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3. Other methods for obtaining nonlinear reduced power system models, such as
artificial neural networks—They can be quite useful as these methods are
response based and not model based.

4. Application of synchrophasor measurements—Instead of developing reduced-
order models using power system model data, it is possible to use synchro-
phasor measurements to develop simple reduced-order models to capture across
a power transfer interface.

5. Tracing interarea modes—Illustrations of interarea modes in a power network
will help to extend various notions, such as mode shapes and damping control
design.

6. Availability of dynamic equivalencing software—Some of the slow coherency
and aggregation algorithms presented in this monograph and built on the
MATLAB based Power System Toolbox [2] are now available as part of
toolbox, which can be downloaded for free from the author’s website [3].

I hope that a reader will find the updated materials and extended coverage of
this new monograph useful in understanding power system coherency, interarea
modes, and model reduction.

I would like to thank Professor M. A. Pai, the editor of this Springer monograph
series, for his encouragement in the development of the monograph, as well as
being an author, and Ms. Ania Levison at Springer for coordinating the publication.
Dr. Barbara Lewis at the RPI Communications Center helped me in polishing the
text. I would like to thank the contributors: Robin Podmore, Vijay Vittal, Feng Ma,
Luis Rouco, Luis Pagola, Ignacio Peréz-Arriaga, George Verghese, Shanshan Liu,
Peter Sauer, Dimitrios Chaniotis, Lei Wang, Kip Morrison, and Yuwa Chompoo-
butrgool, for writing some excellent chapters, and my former students, Ranjit Date,
Ricardo Galarza, Aranya Chakrabortty, and Luigi Vanfretti. I am also grateful to
Felipe Wilches and Amy Chow for drawing some of the figures.

My power system coherency and model reduction research has been supported
by industry and several government funding agencies. The most recent ones are
the Power System Research Consortium at Rensselaer Polytechnic Institute, fun-
ded by AEP, FirstEnergy, ISO-NE, NYISO, and PJM, the Engineering Research
Center Program of the US National Science Foundation, and the US Department of
Energy under NSF Award Number EEC-1041877.

This monograph is dedicated to Robin and Bill, two of the early pioneers of
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University of Illinois, Urbana–Champaign, and General Electric Company,
Schenectady, New York.
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Chapter 1
Introduction

Joe H. Chow

Abstract This introductory chapter gives a brief overview of power system
coherency and model reduction literature. This survey focuses on both the early
results and some more recent developments, and organizes power system model
reduction techniques into two broad categories. One category of methods is to use
coherency and aggregation methods to obtain reduced models in the form of nonlin-
ear power system models. The other category is to treat the external system or the
less relevant part of the system as an input–output model and obtain a lower order
linear or nonlinear model based on the input–output properties. This chapter also
provides a synopsis of the remaining chapters in this monograph.

1.1 Introduction

In the simulation of power system dynamics for stability analysis on a digital
computer, a prudent approach is to develop the most comprehensive power sys-
tem models so that the relevant dynamics can be accurately simulated given the
computing resources and a desired simulation completion time.

One of the decisions that a power system engineer has to make is the geographic
extent of the power system data set. Although the purpose of a stability investigation
is to determine the dynamic response of generators and control systems in a study
region due to disturbances inside the region, because of the interconnected nature of
large power systems, these disturbances will impact the neighboring and other areas,
the so-called external system, which in turn will impact the study region (Fig. 1.1).1

For example, a short-circuit fault cleared by a line trip will redistribute the pre-fault

J. H. Chow (B)
Rensselaer Polytechnic Institute, Troy, New York, USA
e-mail: chowj@rpi.edu

1 This discussion can readily be extended to multiple external systems, as well as some buffer or
boundary systems between the study system and the external system.

J. H. Chow (ed.), Power System Coherency and Model Reduction, 1
Power Electronics and Power Systems 94, DOI: 10.1007/978-1-4614-1803-0_1,
© Springer Science+Business Media New York 2013



2 J. H. Chow

Fig. 1.1 Separation of a power system into a study system and an external system

Fig. 1.2 Loop flow through the external system

flow on the tripped line to other paths, some of which may circulate through the
external system. This situation is illustrated in Fig. 1.2, in which tripping the line
from Bus A to Bus B causes a portion of the pre-fault line flow to be exported into the
external system at one boundary bus and to return via another boundary bus. These
uncontrolled loop flows need to be modeled accurately in order for the stability
simulation to be valid. On the other hand, disturbances in the study region will most
likely not excite significantly the internal dynamics of the external system. Thus a
less detailed model of the external system can be used. As a result, for system studies
with a strict turnaround time requirement, such as contingency analysis, or limited
computing resources, power engineers commonly construct low-order models with
the study region modeled in full detail and a reduced external system. For practical
applications in large power grids, the low-order models, after reducing the size of
the external system, may still have upwards of 5,000 buses and 1,000 generators.

To facilitate the discussions in the rest of this monograph, we express the power
system model in the nonlinear differential-algebraic equation form for the study
system as

ẋs = fs(xs, Vs, us, t), Vs = gs(xs, xe, us, ue, t) (1.1)

and the external system as

ẋe = fe(xe, Ve, ue, t), Ve = ge(xs, xe, us, ue, t) (1.2)

where x denotes the state vector, V is a vector of the real and imaginary parts of
the voltage phasors Ṽ , u is the control, t denotes time, f represents the dynamic
equations such as the swing equation and excitation system models, g contains the
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algebraic network equations, and the subscripts s and e denote “study” and “external”,
respectively. Note that fs and fe depend only on the bus voltage phasors within the
study area and the external system, respectively. The bus voltage phasors are, in
general, functions of all the states of the interconnected study and external systems.

Thus the objective of the model reduction task is to obtain a model

ẋs = fs(xs, Vs, us, t), Vs = gs(xs, x̄e, us, ūe, t) (1.3)

˙̄xe = f̄e(x̄e, V̄e, ūe, t), V̄e = ḡe(xs, x̄e, us, ūe, t) (1.4)

in which the external system has been reduced. Here x̄e, V̄e, and ūe are the variables,
f̄e is the dynamic equation, and ḡe is the network equation for the reduced external
system. Often the boundary bus voltages Ṽbi , i = 1, ..., k, are kept in the reduced
external system, so that the interface currents Ĩi , i = 1, ..., k, between the study
system and the reduced external system can still be computed individually. The
reduced external system may also be a linear model.

Many model reduction techniques for general applications have been proposed
and advanced techniques are still being developed. We will limit the model reduction
overview here to those methods that have been applied to power systems. To provide
some structure to the overview, we group the methods under coherency and aggre-
gation, linear and nonlinear input–output methods, and the relatively new phasor
measurement-based method.

1.2 Coherency

The practical method most commonly used by power utilities to derive reduced
models of large power systems is based on the concept of coherency and aggregation.
This method uses the inherent properties, such as line admittances and loading, and
machine inertias, in a practical power system to derive a reduced nonlinear external
system that retains the relevant dynamics (1.4). The method consists of two main
steps: (1) identifying coherent groups of machines, and (2) aggregating each coherent
group of machines into a single equivalent machine.

1.2.1 Time Simulation

Coherency means that some machines exhibit similar rotor angle swings after a
disturbance. Podmore, deMello, and Germond proposed using linear time simulation
to identify the coherent groups of machines [1–3]. The advantage is that linear time
simulation can be computed much more quickly than a full nonlinear simulation.
System disturbances can be modeled as equivalent injections so that the admittance
matrix does not need to be rebuilt and refactorized. From the time response of the
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synchronous machines, a grouping algorithm with a specific tolerance value for
coherency can be used to identify the coherent machines.

1.2.2 Modal Coherency

Following Podmore’s coherency result and Undrill’s modal equivalent result (see
Sect. 1.4), Schlueter and coworkers [4] proposed a modal-coherency approach in
identifying coherent groups that can approximately capture the modal frequencies.
The key idea is the use of a zero-mean, independent, and identically distributed
disturbance to compute a rms coherency measure. By letting the time period of sim-
ulation approach infinity, an analytical formula without numerical integration can be
developed. The success of the method was partly attributed to the rms measure being
determined by the synchronizing torque coefficients, which depends on transmission
line stiffness and generator inertias.

1.2.3 Slow Coherency

Shortly after the work of [2, 3], a group of singular perturbations researchers from
the University of Illinois, Urbana-Champaign and the General Electric Company,
Schenectday, New York, investigated the use of singular perturbations for power
system model reduction. One of the significant results is establishing the connec-
tion between slow coherency and weak connections in power systems [5, 6]. Slow
coherency is coherency arising from the slower interarea modes, which are oscilla-
tory modes due to groups of machines oscillating against each other across power
transfer interfaces. These interarea modes, if negatively damped, can lead to system
separation and extensive loss of load [7].

From the slow coherency theory, the eigen-subspace of the interarea modes can be
used to identify the slow coherent machines. To apply this grouping method, only the
slowest electromechanical modes and their mode shapes represented by eigenvectors
need to be computed. For large power systems, sparsity-based computation methods
for calculating only the slow eigenvalues and their corresponding eigenvectors are
preferred. An early attempt using the Lanzcos method was documented in [8]. More
successful methods include the inverse iteration method [9], the S-matrix method
[10], and the Arnoldi method [11].

1.2.4 Weak-Link Methods

The grouping algorithm proposed in [5] requires the computation of eigenvalues,
which can be time consuming for large power systems, despite the availability of
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sparsity-based partial eigenvalue and eigenvector computation routines as mentioned
earlier. It may be desirable to develop methods to identify the coherent areas without
eigensubspace computation. The weak-connection and slow-coherency relationship
in [5] points to exploring weak connections to find the coherent groups. In [12], a
clustering algorithm based on the state matrix derived from the synchronizing torque
coefficients and the machine inertias has been proposed to find the weakly connected
machine clusters. A reduced incidence matrix is constructed by setting rows of off-
diagonal entries of the state matrix whose sum is less than a threshold to zero. The
connectivity that remains in the incidence matrix defines the slow coherent groups
of machines.

The results in [13] extend the search of weak links to form weakly coherent
areas and strongly coherent areas. The identification procedure starts by iteratively
computing a coupling factor derived from the synchronizing torque coefficients,
through a sequential search of the machines. Then relative changes in the coupling
factors define the weakly coherent groups, similar to the slow coherent groups from
the grouping algorithm [5]. In addition, relative changes in the second variation of the
coupling factors can be used to determine the strongly coherent areas. The technique
has been demonstrated on a 50-machine model of the northern India power grid.

1.3 Aggregation

The second part of the coherency approach is to aggregate each coherent group of
machines into a single equivalent machine, followed by eliminating load buses in
the external system that are not needed.

1.3.1 Generator Aggregation

The technique proposed by Podmore and Germond [3] is to connect all the coherent
generators to a common bus. All the generators are then aggregated into a single
generator. This equivalent generator construction preserves the power flow in the
power system as well as the power system model and data structure. Furthermore,
exciter and governing capability of the equivalenced generator can be obtained from
an aggregate frequency response approximation.

1.3.2 Singular Perturbation Models

An advantage of the singular perturbations method is that it generates asymptotic
series expansion terms to improve the slow subsystem [14]. For power system
model reduction, it is possible to improve the reduced model by aggregating the
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coherent generators at the generator internal node, rather than at the generator bus
as in the Podmore aggregation [15, 16]. The inertia aggregation method and the
Podmore method both stiffen the power network by adding connections with infinite
admittances. This stiffening causes the reduced model to have higher interarea mode
frequency. Another term can be taken from the asymptotic series expansion to reduce
the stiffening effect using only parameters from within the coherent area [15, 16].

1.4 Linear Equivalent Input–Output Models

One of the premises of reducing the external system is that it is not perturbed sig-
nificantly by a disturbance in the study area. As a result, the external system can
be represented by a linear model. To derive the linear model, one can detach the
external system from the study system, in which the tielines to the study system are
represented by current injections, as shown in Fig. 1.3.

The input–output model of the external system can be represented by

˙̄xe = f̄e(x̄e, V̄e, ue, Ī , t), V̄e = ḡe(x̄e, ue, Ī , t), V̄b = ḡbe(x̄e, ue, Ī , t) (1.5)

in which the tieline current injections Ī are the input to the model and the boundary bus
voltages V̄b are the output. The dynamic equation f̄e is driven by the bus voltages
V̄e and the input Ī . Note that the network equation ḡe is no longer dependent on
the study network variables. In particular, the current injection Ī is an independent
variable, and no longer a function of both the study and external systems.

Note that it is also possible to use a formulation with the boundary bus voltages as
input variables and the currents injected into the study system as the output variables
[17]. This formulation is equivalent to (1.5) if the boundary buses are extended into
the study system.

One of the first model reduction ideas is to simply linearize the external model
(1.5) as

Δ ˙̄xe = AΔx̄e + BΔI, ΔV̄b = CΔx̄e + DΔI (1.6)

Fig. 1.3 Input–output model
of the external system



1 Introduction 7

at the pre-fault power flow condition. The network equation and any feedback
control have been included in (1.6) without showing them explicitly. Expressions
for linearized models can be found in [18]. Alternatively, linearized models can be
obtained via a numerical derivative process [19].

Representing the external system with a linear model would decrease the compu-
tation needed for simulating a disturbance in the study system. The linear model will
be able to account for the loop flow shown in Fig. 1.2. In addition, a linear network
is solved in the external system. To achieve further computation reduction, various
approaches have been proposed for reducing the linear model of the external system.
A recent survey of linear model reduction approaches can be found in [20].

1.4.1 Modal Truncation

In the early 1970s, Undrill, Price, and others developed a modal truncation approach
[17, 21–23] following such work as Davison [24] by determining the modes to be
retained in the reduced external systems. In this approach, (1.6) is represented by a
reduced model in the modal form

Δ ˙̄xm = AmΔx̄m + BmΔI, ΔV̄b = CmΔx̄m + DΔI (1.7)

in which only the dominant modes, including the electromechanical modes, are
retained. The dimension of Δx̄m is less than that of Δx̄e.2 Furthermore, if the state
matrix Am is expressed as a diagonal matrix, in which 2 × 2 diagonal blocks are
used for complex eigenvalues, the computation needs during simulation can be fur-
ther reduced. Special computer code needs to be developed to interface the reduced
linear model of the external system to the study system in a nonlinear power system
simulation program.

One of the concerns with the modal truncation approach is that it does not preserve
steady-state values [20]. This shortfall can be overcome using the singular perturba-
tions technique [14]. However, the modes kept by the reduced model, the so-called
slow subsystem, will no longer be identical to the modes of the full external system
model.

1.4.2 Selective Modal Analysis

The modal truncation method [24] and the singular perturbations method [14]
eliminate the modes with fast decaying transients and as such are less important.

2 Note that (1.7) can be shown to be equivalent to the formulation in [17] using the study system
boundary buses as inputs and current injected into the study system as the outputs, and maintaining
a linearized model of the external system power network.
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The selective modal analysis technique designates the modes with high modal
participating factors as relevant modes which will be retained, and those modes
with lower modal participating factors as less relevant modes which will be elimi-
nated [25, 26]. From a state-space model form, the relevant reduced model can be
computed iteratively. The reduced models are also suitable for designing damping
controllers, such as power system stabilizers.

1.4.3 Krylov and Balanced Model Reduction Methods

Another modal elimination approach is based on balanced truncation methods, which
eliminate modes that are less controllable or observable [27, 28]. With balanced
truncation, the reduced linear model of the external system will have the model

Δ ˙̄xbr = AbrΔx̄br + BbrΔI, ΔV̄b = CbrΔx̄br + DΔI (1.8)

where the reduced matrices (Abr, Bbr,Cbr) are obtained using controllability and
observability Gramians. Such methods do not keep the external system modes exactly
but provide a better frequency response approximation of the input–output model
compared to the modal truncation method. These balanced truncation methods are
supported by efficient computation algorithms [29].

A third class of linear model reduction methods is based on the Krylov method
[30], in which the Markov parameters of the linear input–output model (1.6) are
preserved up to a certain index. This matching part of the controllability-observability
subspace is also known as moment matching. The Krylov is less computationally
expensive than the balanced truncation method. The method does not provide any
error bounds but, in general, seems to work well.

1.5 Nonlinear Equivalent Input–Output Models

Besides reduced linear models, an alternative approach for capturing the nonlinear
dynamics of the input–output model (1.5) shown in Fig. 1.3 is to use reduced nonlin-
ear models. In general, such nonlinear model reduction methods have to be tailored
to the characteristics of the physical processes. Power systems have many different
types of nonlinearities, such as sinusoidal functions, deadbands, saturation functions,
and limits, to name a few. The coherency and aggregation method discussed earlier
attempts to preserve these nonlinearities. A few methods have been proposed for
developing reduced nonlinear external systems, including the two methods described
next.
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1.5.1 Singular Perturbations Methods

Once slow coherency has been identified for a power system, one can obtain the
quasi-steady-state approximation from singular perturbations as presented in [31].
In this approach, the intraarea modes within each coherent area are assumed to be
fast and have settled to their quasi-steady-state values. As a result, the differential
equations describing the intra-area modes are solved as algebraic equations. This
approach would require the development of special computer code to perform the
quasi-steady solution in a conventional power system simulation program [31].

1.5.2 Computational Intelligence Methods

Computation intelligence methods have been used to capture nonlinear model
dynamics [32]. One such non-model based method is the artificial neural network
(ANN) approach [32]. In an ANN, neurons represented by selected nonlinear func-
tions are arranged in layers connected by weights. These weights are trained from
input–output data using a variety of tuning methods. Upon convergence, the method
provides a reduced nonlinear model. The ANN can be used to represent all or part
of an external system.

1.6 Measurement-Based Reduced Models

Most of the model reduction techniques developed until recently are all based on
power system load flow and dynamic data sets. With the advent of synchrophasor
measurement technology [33], time-synchronized voltage and current phasor mea-
surements across wide areas can be obtained. These synchrophasor measurements,
obtained from phasor measurement units (PMUs), are particularly useful for extract-
ing interarea oscillatory modes and their mode shapes [34]. Such a capability opens
up the possibility of using synchrophasor measurements to construct simple inter-
area models. The results in [35] show that by monitoring voltage phasors at both
ends of a power transfer path, it is possible to develop a simple two-area model to
emulate the oscillatory modes and establish an energy function. Interestingly, the
results were derived from examining the voltage magnitude oscillation of the inter-
area mode along the transfer path such that the effective impedance connecting the
two areas can be computed. This property has been overlooked in coherency and
other power system dynamics literature. Research is ongoing to extend this interarea
model estimation method to develop simple models for multiple interarea modes.
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1.7 Applications

In this section, we discuss some of the impacts of the research on power system
model reduction. This list is by no means exhaustive.

1.7.1 Dynamic Model Reduction Programs

Model reduction programs are available for practicing power engineers to reduce
data sets of upwards of 30,000 buses to a more manageable 5,000–10,000 buses,
which can be handled by power system analysis programs with functions such as
transient stability simulation, voltage stability analysis, and optimal power flow. The
main steps of the model reduction programs still follow the original coherency and
aggregation approach [2] proposed more than 30 years ago.

1.7.2 Interarea Mode Analysis and Damping Control Design

The development of coherency has contributed to the understanding of interarea
mode oscillations. Interarea mode damping is an operational concern for systems
with heavily loaded long distance transmission lines. Recommendations for inter-
area mode damping enhancement with power system stabilizers can be found in
[36] and for flexible AC transmission systems in [37, 38]. An interarea damping
controller applied to a Thyristor-Controlled Series Compensator (TCSC) is critical
in the operation of the Brazil North–South Intertie [39]. With the deployment of
synchrophasor measurement systems [33], the center of angle or speed of a coherent
area, can be measured precisely. Hence, the interarea modes can be computed accu-
rately in real-time and be used to improve the performance of wide-area damping
control.

1.7.3 Islanding

System separation or islanding is often a last but necessary resort to prevent a cascad-
ing blackout by preserving viable islands of generation and load. This is a difficult
task because it needs to balance a number of factors, such as the load and generation
balance in each island and the subsequent generator swings after separation. An adap-
tive out-of-step relay-based islanding strategy using synchrophasors and coherency
on a radial-like system (US Florida-Georgia interface) is described in [40]. Another
islanding strategy [41, 42] for a more complex situation is to identify the tielines
connecting multiple slow coherent groups as cutsets. Such islands have the advantage
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of strong internal connections such that after islanding, the sum of the synchronizing
torques and hence the potential energy [43] in the islands are high.

1.7.4 Dynamic Security Analysis

Power system dynamic security analysis concerns transient, voltage, and small-signal
stability [44] and normally gives a yes-or-no answer for a given set of contingencies.
An important issue that is not well studied is how interarea modes travel through the
various coherent areas for each of the contingencies and the voltage fluctuations on the
transfer paths. A practical example of such an application is that the power import on
a HVDC system is limited by the voltage stability of a transfer path in a neighboring
area; that is, a bipolar fault on the HVDC system would cause voltage collapse on
that transfer path. Such wide-area stability issues will become more important with
higher power transfer levels between operating regions. Some investigations of the
interarea modes in power networks can be found in [45].

1.8 Chapter Guide

In this monograph, we selectively cover three of the model reduction concepts and
approaches discussed earlier in this chapter.

The first topic is on coherency and aggregation and is covered in the following
chapters:

1. Chapter 2 describes the coherency and aggregation ideas.
2. Chapter 3 describes the slow coherency concept and algorithms.
3. Chapter 4 describes a method to obtain equivalent nonlinear exciter models.
4. Chapter 7 describes the practical application of the dynamic model reduction

program (DYNRED) on a large power system.

The second topic is on input–output models for external systems. Chapter 5
describes an approach using ANN to model the external system as a nonmodel-
based nonlinear system. The ANN is successfully trained to show an improvement
in the time response of the reduced-order model. There are also two chapters on
linear reduced-order models:

1. Chapter 6 is on the Krylov method and the balanced truncation method.
2. Chapter 9 describes the selective modal analysis method.

In Chap. 9, the use of selective modal analysis technique for control design is also
discussed.

The third topic is on using synchrophasor measurements to develop simple inter-
area models. Chapter 8 describes the Interarea Model Estimation method and uses
measured PMU data from several WECC disturbances to develop two-area models
for two transfer paths in the WECC system.

http://dx.doi.org/10.1007/978-1-4614-1803-2
http://dx.doi.org/10.1007/978-1-4614-1803-3
http://dx.doi.org/10.1007/978-1-4614-1803-4
http://dx.doi.org/10.1007/978-1-4614-1803-7
http://dx.doi.org/10.1007/978-1-4614-1803-5
http://dx.doi.org/10.1007/978-1-4614-1803-6
http://dx.doi.org/10.1007/978-1-4614-1803-9
http://dx.doi.org/10.1007/978-1-4614-1803-9
http://dx.doi.org/10.1007/978-1-4614-1803-8
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Many of the model reduction methods are based on analyzing interarea modes.
Although coherency depends only on the mode shapes of the generators, there are
many other interesting and important issues related to interarea modes. The last
chapter, Chap. 10, in this monograph discusses the use of synchrophasor data to track
the propagation of interarea mode oscillations resulting from large disturbances.

1.9 Conclusions

In this chapter, we have provided a brief survey of some of the fundamental
approaches and results in equivalencing and model reduction of dynamic power
system models. Methods using similar concepts or techniques are grouped together
to provide a reader with a better perspective of the field. In the reminder of this
monograph, various authors will share their many years of research and develop-
ment results in this important field.
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Chapter 2
Coherency in Power Systems

Robin Podmore

Abstract There has been a continuing need over the past several decades to model
larger and larger interconnection wide models. Models of the complete interconnec-
tions with up to 50,000 buses are regularly used for system planning studies. These
models typically go down to 115 and 69 kV levels, but ignore underlying 35 kV
sub-transmission networks. With the growing deployment of plug-in vehicles, dis-
tributed generation and smart load controls, along with the need to perform realistic
system restoration drills there is a need to model interconnections down to the feeder
breaker level. Restoration drills also require modeling of power plant auxiliaries and
emergency generator systems, especially for nuclear units. It is conceivable that the
size of interconnection wide models could grow by another order of magnitude. The
EPRI DYNRED (Dynamic Reduction) computer program reduces a large-scale sys-
tem model into a smaller equivalent model for use in transient stability studies. The
program has been used since the 1970s to build equivalent models of the Eastern U.S.
and Western U.S. interconnected power systems. The DYNRED program accepts a
normal transient stability database as input, and develops an equivalent that is a frac-
tion of the size of the full power system representation, while adequately retaining
the dynamic characteristics of the full system. The reduction process requires only
a fraction of the time needed for a transient stability simulation.

2.1 Introduction

2.1.1 Background

Electric utilities expend a considerable effort performing transient stability studies
to evaluate a power system’s ability to withstand large disturbances; such a distur-
bance might be caused by a faulted transmission line, which might lead to a loss of
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synchronism and possible customer interruptions. Many transient stability solutions
are routinely required for both long-range planning studies, short-range planning
studies, near-term operations planning studies and real-time on-line studies. Long-
range studies may require solutions involving various combinations of proposed
transmission and generator configurations. Short-range planning may involve solu-
tions for coordination of protection schemes and design of control systems. Near
term operational planning studies may be used to determine secure transfer limits.
Real-time on-line transient stability studies can support system operator situation
awareness and decision making.

Since most major disturbances can propagate through tie-lines to neighboring
systems, it is important for transient stability studies to represent not only the power
system in question, but also the neighboring utilities. The representation of the
neighboring utilities can be difficult because most power systems in the United
States are extensively interconnected. For example, to study the dynamic behavior
of a power system in California, it is often necessary to represent systems as far
north as British Columbia, as far south as Arizona and New Mexico, and as far east
as Colorado. As a result, transient stability studies still require large computers and
use a significant amount of computer time even though Moore’s law continues to
provide improvements in price and performance of computers.

2.1.2 EPRI Coherency-Based Dynamic Equivalents Project

The foundation for Coherency-Based Dynamic Equivalents was laid by two EPRI
sponsored projects performed by Systems Control Inc., Palo Alto in the mid-1970s
[1–4]. Generators that are closely coupled in an electrical sense tend to swing together
in groups during disturbances, and this characteristic behavior can be exploited to
reduce the size of the power system model. The characteristic of generators swinging
together is referred to as coherency and is illustrated in Fig. 2.1, which shows the
swing curves for a coherent group of 21 generators when a fault occurs in the Western
U.S. system [3]. In the coherency-based method, each coherent group of generators
is replaced by a single equivalent generator.

The EPRI Dynamic Equivalents projects accomplished the following:

• Highly efficient methods for computing dynamic equivalents, without requiring a
transient stability simulation of the full system, were developed.

• The coherency-based equivalencing techniques were extended to encompass more
comprehensive and detailed models of generating units and loads.

• The EPRI DYNRED program was written for forming coherency-based dynamic
equivalents.

• The methods and DYNRED program were tested and successfully validated on
two large-scale models: one representing the Eastern U.S. interconnected systems
and one representing the Western U.S. interconnected systems.
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Fig. 2.1 Swing curves for a group of 21 generators in Arizona area of WECC system

The dynamic equivalents were typically two to six times more efficient than the
original system model in terms of computer running time. Also, the results which
are obtained by using the dynamic equivalent are not significantly different than
those obtained from using the original system model. The dynamic equivalencing
procedure has been successfully applied and validated using models of the Eastern
U.S. [5] and Western U.S. interconnected systems.

2.1.3 Industry Applications and Benefits

The DYNRED program is structured to interface conveniently with existing transient
stability programs and data files. It may therefore be implemented by utilities with
a modest manpower effort. The various benefits that would result directly from a
utility’s implementation and application of the programs are summarized below:

• Reduction of engineering effort in preparing the system representation. The alter-
nate manual methods for obtaining system equivalents for transient stability studies
are tedious, time consuming, and expensive in terms of experienced engineering
effort. These are replaced by a dynamic equivalencing program package that forms
dynamic equivalents for large-scale systems in a routine manner comparable to
the formation of steady-state equivalents for load flow studies.

• Less dependence on engineering judgment when forming dynamic equivalents.
Some judgment would be helpful in deriving the maximum benefits, but the situa-
tion of two engineers obtaining different equivalents, both apparently valid, would
no longer occur.

• Reduction of computational costs for transient stability studies. The DYNRED
program can achieve significant reductions in size of the system model without
any notable loss of accuracy.
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• More effective planning studies. Engineering skill can be concentrated on sys-
tem planning with less distraction by problems associated with the boundaries of
system representation. Also, the reduced system representation provides greater
insight into the system behavior and better opportunity for testing alternative plans.

• Ability to perform on-line transient stability studies for larger system models, with
the same amount of computing power.

2.1.4 Problem Formulation

For the purpose of analysis, the power system is divided into two parts:

• A study area in which the system behavior is of direct interest and where all faults
and configuration changes are assumed to occur.

• An external area where detailed information on the system responses is not
required. The network configuration and the status of the generating units in the
external system are assumed to be unaffected by the fault.

The study area may be defined in various ways and its buses need not be con-
tiguous. For example, two alternative definitions for the study area are described
below:

• A generating station and its local transmission system could be defined as the study
area in order to analyze the stability of the station with respect to the rest of the
system.

• The high voltage bulk transmission system and major generating units could be
defined as the study area in order to assess the regional stability of an interconnected
system.

The following requirements were used to guide the development of the DYNRED
program:

• The method should achieve reductions in the size of the transient stability model
without introducing significant differences between the equivalent and full system
simulations.

• The equivalents should be efficiently computed. Preferably, the computer effort
for calculating an equivalent should be much less than the effort for a transient
stability run on the original system.

• The method and associated software should be developed in a form which allows
it to be readily implemented in a utility planning or operating department with a
modest manpower effort. To this end, the equivalent must be composed of nor-
mal power system components and is therefore compatible with existing transient
stability programs.
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2.1.5 Overview of Procedure

The overall procedure for forming coherency-based dynamic equivalents for a
defined study area can be divided into four basic steps:

1. Identification of groups of coherent generators that are valid for faults in the study
area.

2. Reduction of generator buses.
3. Reduction of load buses.
4. Dynamic aggregation of generating unit models.

The procedure is illustrated by the 39-bus network shown in Fig. 2.2. Consider
that the study area is defined as shown. Also, assume for the sake of illustration,
that we are interested in a fault on Bus 29 and that units 2, 3, 4, 5, 6, and 7 have
been determined to be coherent for this fault. In the generator bus reduction, all the
generator terminal buses are replaced by an equivalent bus, as shown in Fig. 2.3.
Subsequently, the load buses are eliminated to obtain the network in Fig. 2.4.

At this point, the size of the network has been reduced but the number of gener-
ating units is unchanged. The dynamic aggregation procedure replaces each group
of parallel generating units with a single equivalent generating unit, as shown in
Fig. 2.5, except that several equivalent generating units may be sometimes used to
avoid combining units which have markedly different characteristics, e.g., steam and
hydro units.

The problem of reducing the network, which is described by algebraic equations,
is decoupled from the problem of reducing the dynamic order of the system through
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aggregation of the generating unit models. This decoupling effect is a key to the
development of a procedure which is efficient and generally applicable to a wide
range of system models.

The four steps in the procedure are described in the following sections.
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Fig. 2.5 System configuration after dynamic aggregation of generating unit models

2.2 Identification of Coherent Generators

Two generator buses are defined as coherent if their angular difference is constant
within a certain tolerance over a certain time interval. The coherency of both genera-
tor internal and terminal buses is of interest. The coherency of the generator terminal
buses forms the basis for the network reduction step. The coherency of the generator
internal bus is assumed in the dynamic aggregation step. Coherent groups of genera-
tors can be defined for a single fault or multiple faults occurring within an area. In the
remainder of this section a procedure for identifying coherency for a single fault is
described briefly. The extension to considering multiple faults is straight-forward
and is discussed toward the end of the section.

The method for identifying coherent generators is based upon the formation of a
simplified model of the power system which uses the following assumptions:

• The coherent groups of generators are independent of the size of the disturbance.
Therefore, coherency can be determined by considering a linearized system model.

• The coherent groups are independent of the amount of detail in the generating unit
models. Therefore, a classical synchronous machine model is considered and the
excitation and turbine-governor systems are ignored.

• The effect of a fault may be reproduced by considering the unfaulted network and
pulsing the mechanical powers to achieve the same accelerating powers that would
have existed in the faulted network.

The first assumption may be confirmed by considering a fault on a certain bus,
and observing that the coherency behavior of the generators is not significantly
changed as the fault clearing time is increased. The second assumption is based upon
the observation that although the amount of detail in the generating unit models
has a significant effect upon the swing curves, particularly the damping, it does
not radically affect the more basic characteristics such as the natural frequencies
and mode shapes. The third assumption recognizes that the generator accelerating
powers are approximately constant during faults with typical clearing times.
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Based upon these assumptions, the coherent groups of generators can be detected
by generating power angle curves using a linear time step simulation of the decoupled
power angle equations. By using the numerically robust trapezoidal integration rule
[6], step sizes of 0.1 s can be used. The solution is non-iterative, so the overall
solution time can be 10–50 times faster than a full transient stability solutions. More
sophisticated methods can be developed, but it is hard to improve on the performance
of the linear simulation method.

The mechanical equations for the motion of a synchronous generator are

Mi
dΔωi

dt
= ΔPMi −ΔPGi − DiΔωi (2.1)

dΔδi

dt
= 2π foΔωi (2.2)

where

i subscript for generator i
Δ indicates that this variable represents a deviation from

a specific steady-state operating point
Mi inertia constant (pu)
Δωi speed deviation (pu)
Δδi rotor angle deviation (radians)
Di damping constant (pu)
fo synchronous frequency (Hz)

ΔPMi change in mechanical input power (pu)
ΔPGi change in electrical output power (pu)

The linearized loadflow expression relating the change in active and reactive power
generation and load to the generator and load bus voltages and angles are given by

⎡
⎢⎢⎣
ΔPG

ΔPL

ΔQG

ΔQL

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
∂PG/∂δ ∂PG/∂θ ∂PG/∂E ∂PG/∂V
∂PL/∂δ ∂PL/∂θ ∂PL/∂E ∂PL/∂V
∂QG/∂δ ∂QG/∂θ ∂QG/∂E ∂QG/∂V
∂QL/∂δ ∂QL/∂θ ∂QL/∂E ∂QL/∂V

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Δδ

Δθ

ΔE
ΔV

⎤
⎥⎥⎦ (2.3)

The variables used in (2.3) are defined as

PG , QG real and reactive power injections (pu) at the internal generator buses
PL , QL real and reactive power loads (pu) at the load buses
E , δ voltage magnitudes (pu) and angles (radians) at generator internal buses
V , θ voltage magnitudes (pu) and angles (radians) at load buses

The voltage dependence of the load powers is included in the ∂PL/∂V and
∂QL/∂V terms, and the changes in the power residuals ΔPL and ΔQL are nor-
mally zero. But they may be assigned certain values in order to model a disturbance
such as bus load shedding.



2 Coherency in Power Systems 23

Equation (2.3) may be simplified by accounting for the decoupling which exists
between the real and reactive power flows for a transmission system with high X/R
ratios [7]. The real power flows are largely dependent upon the voltage angles, and
as a first order approximation, the effect of variations in load bus voltage magnitude
may be neglected by setting the terms ∂PG/∂V and ∂PL/∂V to zero. The voltage
behind the generator transient reactance is constant, thus ΔE = 0.

Equation (2.3) therefore simplifies to

[
ΔPG

ΔPL

]
=

[
∂PG/∂δ ∂PG/∂θ

∂PL/∂δ ∂PL/∂θ

] [
Δδ

Δθ

]
(2.4)

For convenience, (2.4) is rewritten with the following notation

[
ΔPG

ΔPL

]
=

[
HGG HGL

HLG HL L

] [
Δδ

Δθ

]
(2.5)

The partial derivatives in (2.4) are most precisely calculated using the voltages
and angles at the pre-fault steady-state operating point. As a further simplification,
it is possible to assume a flat voltage profile with unit voltage magnitudes and zero
voltage angles.

The simplified linear model can be applied to model various power system distur-
bances. The electrical power output of the generating units during a fault is computed
by solving the faulted network equations with the generator transient voltages fixed at
the pre-fault values. For typical clearing times the relative rotor angles do not change
by more than a few degrees and the generator accelerating powers are approximately
constant during the fault. This characteristic response allows the effects of the faulted
network condition to be closely duplicated by considering an unfaulted network and
increasing the generator mechanical powers by the accelerating power for a time
equal to the fault clearing time.

A bus load-dropping disturbance can be modeled by introducing step changes
in the ΔPL and ΔQL variables for the selected bus at the appropriate time. The
dropping of a generating unit can also be modeled by introducing step changes in the
ΔPL andΔQL variables for the generating unit terminal bus. The generator internal
bus and transient reactance is not included in the formation of the Jacobian matrix
in this case.

The modeling of line outages is illustrated by considering the sample system
shown in Fig. 2.6. Figure 2.6a shows the pre-fault state. Figure 2.6b shows a hypo-
thetical network situation in which the line from Bus 2 to Bus 3 has been removed but
injections equal to the original line flows have been inserted so that the bus voltages
are not changed. This hypothetical steady-state operating condition is used as the
base point for linearizing the system equations. The effect of line removal is then
modeled by introducing load changes so that the equivalent injections at Buses 2 and
3 are set to zero as shown in Fig. 2.6c.
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Fig. 2.6 Illustrating treatment of line outages. a Prefault network. b Hypothetical network.
c Postfault network

The trapezoidal integration technique [6] is applied to obtain a time domain
solution of the linearized swing equations. The trapezoidal integration algorithm
is ideal for this application because a highly accurate solution is not required and
because the method is numerically stable, large step sizes can be used. Also, a direct
non-iterative solution is obtained at each time step since the system of equations is
linear. These two factors combine to allow a highly efficient algorithm to be devel-
oped. The application of the trapezoidal integration rule to (1) and (2) yields

MiΔωi (t) = MiΔωi (t −Δt)− (Δt/2)Di (Δωi (t)+Δωi (t −Δt))

− (Δt/2)(ΔPGi (t)+ΔPGi (t −Δt))+ΔtΔPMi (t) (2.6)

Δδi (t) = Δδi (t −Δt)+ (Δt/2)2π fo(Δωi (t)+Δωi (t −Δt)) (2.7)

The variables Δω, Δδ and ΔPG are assumed to vary linearly over the interval
t − Δt to t . In order to facilitate the modeling of disturbances, the input variables
ΔPM (t) andΔPL(t) are assumed to vary in a stepwise fashion. The value ofΔPM (t)
is defined to be constant from t −Δt to t , and a similar definition applies toΔPL(t).
Equations (2.6) and (2.7) are solved simultaneously with (2.5) at each integration
time step to calculate the variables at time t in terms of the variables at time t −Δt .

The overall algorithm has the following steps.
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A Linear Time Simulation Algorithm

Step 1. Initialize Δδ(0), Δω(0), and ΔPG(0).
Step 2. Increment the time from t −Δt to t .
Step 3. Set ΔPM (t) and ΔPL(t) according to the disturbance being modeled.
Step 4. Calculate the following variables for each generating unit using

Ai (t −Δt) =
(

1 − DiΔt

2Mi

)
Δωi (t −Δt)− Δt

2Mi
ΔPGi (t −Δt)

+ Δt

Mi
ΔPMi (t) (2.8)

Bi (t −Δt) = π foΔtΔωi (t −Δt)+Δδi (t −Δt) (2.9)

Ci (t −Δt) = 2Mi

Δt
Ai (t −Δt)− 2Mi

Δt2π fo

(
1 + DiΔt

2Mi

)
Bi (t −Δt) (2.10)

Step 5. Solve the following matrix equation

[
ΔC(t −Δt)
ΔPL(t)

]
=

[
H ′

GG HGL

HLG HL L

] [
Δδ(t)
Δθ(t)

]
(2.11)

for the new voltage angles Δθ(t) and Δδ(t), where H ′
GG is the matrix

HGG with
2Mi

Δt2π fo

(
1 + DiΔt

2Mi

)
(2.12)

added to the diagonal elements.
Step 6. Calculate the new generator electric power using

ΔPGi (t) = 2Mi

Δt
Ai (t −Δt)− 2Mi

Δt2π fo

(
1 + DiΔt

2Mi

)
(Δδi (t)− Bi (t −Δt))

(2.13)
Step 7. Calculate the new generator speeds using (2.9) rearranged as

Δωi (t) = Δδi (t)− Bi (t −Δt)

π foΔt
(2.14)

Step 8. Stop if time t exceeds the specified value; otherwise, return to Step 2.

The matrix in Step 5 is constant and has the same sparse symmetric structure as
the power-angle Jacobian matrix. The diagonal terms for the internal generator buses
are the only ones which distinguish it from the power-angle Jacobian. The triangular
factors for the matrix in Step 5 are precomputed and are used at each integration
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time interval. The bulk of the computation effort for the algorithm consists of: one
triangular factorization of a real sparse matrix with the same structure as the power-
angle Jacobian, and one repeat solution of this matrix at each integration time step.

The natural frequencies of the rotor angle oscillations typically lie in the range
0.25–2.0 Hz. An integration time step of 0.1 s is quite accurate enough for this range,
and in some cases 0.2 s is also satisfactory.

2.2.1 Generator Clustering Algorithm

A clustering algorithm is used to process the approximate swing curves which are
produced by the linear simulation and thereby determine the coherent generator
groups. The clustering algorithm can actually be applied to either generator internal
voltage swing curves or terminal voltage swing curves. In the procedure that was
found most convenient, the clustering algorithm is initially applied to the terminal
voltage angles. The groups of coherent terminal buses so obtained are saved for use
by the network reduction program. An additional check on the coherency of the
generator internal bus voltages is then made to determine if all the generators within
each group should be dynamically aggregated; generally this is the case.

The clustering algorithm minimizes the number of data curve comparisons by
recognizing that the coherency of the generators is a transitive process; i.e., if Unit A
is coherent with Unit C, and Unit B is coherent with Unit C, then it follows that Units
A and B are coherent. A reference generator is defined in each group, and other
generators are always compared against this reference unit in order to determine
whether they should fall in the same group. The first generating unit is arbitrarily
defined as the reference unit for group one. The remainder of the generating units
are evaluated in turn with two alternative consequences; either the unit is combined
with an existing group or the unit does not combine with any existing group, and a
new group is created with the unit defined as the reference.

The criterion used for determining whether a unit should be added to an existing
group is

Δθi (t)−Δθr (t) < ε (2.15)

for all the samples of t , where

ε the specified tolerance in degrees
i the index for generator being clustered
r the index for the reference generator of the group under consideration.

2.3 Reduction of Generator Buses

This section describes the generator bus reduction procedure as a series of operations
on the physical network elements. This physical interpretation of the procedure is
used as a basis for developing an efficient algorithm. It is also useful for obtaining
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Fig. 2.7 Configuration of coherent generators in original network

REMAINDER OF ORIGINAL NETWORK

321

Y

Fig. 2.8 Coherent generator buses are connected to an equivalent bus through ideal transformers
with complex ratio

insight into how the equivalent model should characteristically perform in a transient
stability simulation.

The procedure consists of four basic steps. Each of the steps is described in turn
below. The example network in Fig. 2.7 is used to illustrate the procedure; consider
that the generator terminal buses 1, 2, and 3 have been identified as coherent and are
to be replaced by a single equivalent Bus 4.

Step 1: The voltage Vt in the equivalent bus is defined; either an average voltage
of the group or the voltage of an individual bus is selected. Each terminal bus is
connected through an ideal transformer with complex turns ratio to the equivalent
bus. The turns ratio is directed as shown in Fig. 2.8 and is calculated as: ãk = Vk/Vt ,
where Vk is the voltage on Bus k.

Under coherent conditions, the ratio ãk is constant for each bus in the group and
no circulating power flows through any of the phase shifters. It follows that the
introduction of the phase shifters will have no effect on the response of the network
voltages and currents under these conditions. The situation described is analogous
to the well-known method for simplifying dc networks, where a short circuit is
introduced between two nodes that always have the same dc voltage (Fig. 2.9).
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REMAINDER OF ORIGINAL NETWORK

21 3

4

Fig. 2.9 Branch between coherent buses 2 and 3 is replaced by equivalent shunt admittance on
buses 2 and 3

Step 2: The generator terminal buses will generally be connected radially through
a step-up transformer to the rest of the network. However, in some cases the low
voltage bus may have been eliminated by combining the transformer reactance with
the generator internal reactance. In this circumstance, several non-radial buses may
be included within the coherent group and a common branch may connect them (e.g.,
the branch between Buses 2 and 3 in Fig. 2.6b). The function of the second step is to
detect this situation and to remove the intragroup branch by replacing it by equivalent
shunt admittances. To explain this, consider the current flow in the branch between
Buses 2 and 3

I23 = (V2 − V3)Y23 (2.16)

Because V2/V3 is constant, the current can be expressed as a linear function of either
V2 or V3. The effect of the branch can thus be replaced by a shunt admittance
(1 − V3/V2)Y23 at Bus 2 and a shunt admittance (1 − V2/V3)Y23 at Bus 3.
Step 3: The generation, load, and shunt admittances on the coherent buses are trans-
ferred and summed on the equivalent bus as illustrated in Fig. 2.10. The generation
and load are not modified by the transfer. The shunt admittance is scaled to account
for the off-nominal tap ratio of the ideal transformer. If a nonlinear load representa-
tion is used, then the constant MVA, constant current, and constant impedance load
components are transferred individually and kept separate.
Step 4: The original coherent buses are eliminated by series combination of the
original branch and the ideal transformer (see Fig. 2.11). If several original branches
connect to the eliminated bus (as for Bus 1), the ideal transformer is combined with
each of them.

The reduction procedure only affects those branches connected to buses in the
coherent group. The balanced load flow condition on the original buses is preserved,
and a balanced load flow condition is created for the equivalent bus.

The connection of the generator terminal buses to the equivalent bus through the
ideal transformers introduces infinitely strong synchronizing ties between them. For
this reason, it is preferable that the coherency-based reduction be performed on the



2 Coherency in Power Systems 29

REMAINDER OF ORIGINAL NETWORK
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4

Fig. 2.10 Generation, loads, and shunt admittances on original buses are transferred to the equiv-
alent bus

REMAINDER OF ORIGINAL NETWORK

Fig. 2.11 Original generator terminal buses are Eliminated by Series Combination of ideal trans-
formers with original branches

generator low voltage buses in order that the effect of this artificial tie, as seen from
the rest of the network, be minimized by the relatively high transformer reactances.

2.4 Reduction of Load Buses

In this section we shall first consider the reduction of buses which have constant
impedance loads. In this case, a linear relation exists between the load voltage and
current, and an exact reduction method is possible. Later, an approximate method
for reducing buses with more general nonlinear load characteristics is described.

The Ward-Hale [8] or Gaussian elimination method has been applied extensively
to reduce constant impedance load buses for purposes of load flow and transient
stability. Although the Gaussian elimination method effectively reduces the number
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of buses, there is no guarantee that the number of lines will also decrease. This is
significant because with modern transient stability programs the overall computation
time is dependent mainly upon the number of lines and not the number of buses.

The network representing the original power system is naturally very sparse;
typically the number of lines is only 1.5–2.0 times the number of buses. When a
network reduction is performed and buses are eliminated, additional equivalent lines
are introduced into the network. In the worst case, when complete fill-in of the
bus admittance matrix occurs; the number of branches will equal N × (N − 1)/2
(N is the number of retained buses). Because N may easily exceed several hundred,
it is obvious that elimination of nodes should be applied judiciously; otherwise the
equivalent network may have many more branches than the original one.

Sparsity techniques can be applied successfully to the network reduction problem
in order to minimize the number of branches introduced into the equivalent network
[9]. In sparsity oriented reduction, certain key buses that are special in a topological
sense are identified and are retained in the equivalent network. These key buses
tend to be buses which either have a high number of connections or buses which
connect subareas that have few ties to the rest of the system. Figure 2.12 shows an
example network in which two key buses should be retained to enhance sparsity.
At present the most effective automatic method for identifying the key buses is to
order the bus eliminations using a sparsity oriented scheme and to terminate the bus
eliminations when the number of terms in the equivalent admittance matrix starts
increasing instead of decreasing. Three alternative bus ordering schemes have been
described [10], and the one referred to as Scheme II has been utilized in the DYNRED
program. In this scheme, the bus with the minimum number of connections is always
eliminated at each step. Figure 2.13 illustrates the application of this method to the
WECC system.

The past need for retaining generator buses has been a limiting factor in network
reduction even when sparsity techniques are applied. The generator buses tend to
be connected radially and scattered throughout the network. Their retention does
not enhance sparsity and inhibits the process of deriving a smaller equivalent. For
example, if only the generator buses are retained, then the equivalent admittance
matrix will be completely full for almost all practical networks. Reduction of the
generator buses using coherency has the beneficial effect of reducing the number
of buses that have to be retained, and thus enables the possibility of computing an

Fig. 2.12 Retention of bus
1 and bus 2 prevents intro-
duction of equivalent lines
between subarea A and sub-
area B

1

2

SUB-AREA A SUB-AREA B



2 Coherency in Power Systems 31

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

Without Reduction of
Generator Buses

With Reduction of
Generator Buses

Number of Eliminated Load Buses

N
u

m
b

er
 o

f 
T

er
m

s 
in

 E
q

u
iv

al
en

t 
A

d
m

it
ta

n
ce

 M
at

ri
x

→

→

Fig. 2.13 Sparsity-oriented reduction of load buses in WECC system with and without prior reduc-
tion of generator buses

equivalent which has many less admittances than would otherwise be possible. To
illustrate this, Fig. 2.13 compares the reduction of load buses in the WECC network
with and without prior reduction of generator buses using coherency. As shown, a
much smaller network is obtained when the generator buses are eliminated first.

The DYNRED program includes the capability for reducing nonlinear loads that
consist of constant impedance, constant current (at fixed power factor) and constant
power components. The Gaussian elimination procedure is extended to handle the
nonlinear constant current and constant power components by approximating them
as ideal current sinks. A pair of current sinks is introduced to replace the constant
current and constant power components of load at each bus. The base case load flow
voltages are used to perform this conversion. The current sinks are reduced using the
standard Gaussian elimination formula. Each pair of equivalent current sources on
each retained bus is then reconverted to an equivalent constant current component
and an equivalent constant power component, respectively.

In order to maintain accuracy with the current sink reduction method, the network
is divided into subareas which are roughly coherent. The tie-lines that interconnect
the subareas are retained during the reduction. As a result, when a nonlinear load
within a subarea is eliminated, the equivalent nonlinear loads which replace this
are confined to the same subarea. In order to preserve the sparsity of the equivalent
network, it is also necessary that the subareas be loosely connected in a topological
sense. At the present time, the subareas are defined by grouping one or more control
areas, as illustrated in Fig. 2.14.
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Fig. 2.14 Areas within WECC System

2.5 Dynamic Aggregation of Generating Unit Models

The procedure of coherency-based network and load reduction has the effect of
producing an electrically equivalent network model connecting a reduced number
of buses. Each of these equivalent buses represents a coherent area of the original
power system, and the generating units of each coherent area are now all connected
in parallel to the equivalent bus for this area. This is illustrated in Fig. 2.4 for the
39-bus New England system. The order of the differential system representing the
dynamic part of the system can be reduced now by grouping the generating units
that are in parallel on the same bus and replacing them by an equivalent generating
unit. This procedure is called dynamic aggregation. After dynamic aggregation, the
system of Fig. 2.4 will appear as the equivalent system of Fig. 2.5. The criteria for
an acceptable equivalent model of generating units, from the dynamic viewpoint, is
that its electric power output response matches the total electric power output of the
units it replaces, and that the voltage response at its terminal bus matches the voltage
response of the bus with the individual unit models.

In the simple case where the units to be aggregated are all classical machine
models, all with the same model of excitation system and the same model of
governor-turbine, it was found empirically that logarithmic averages of the individual
parameters of the excitation and governor-turbine models could be calculated and
used as the parameters of the equivalent excitation and governor-turbine models [6].
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Table 2.1 Generating unit models used from WECC data base

Synchronous machine models
Classical model
Two-axes model with one damping winding and saturation
Excitation system models
Continuously acting DC rotating excitation system
Westinghouse continuously acting brushless excitation system
GE Alterex excitation system
Westinghouse static excitation system
SCR excitation system
Non-continuously acting rheostatic excitation system
Turbine-governor models
Steam governor system
Non reheat turbine
Tandem compound single reheat turbine
Tandem compound double reheat turbine
Cross compound single reheat turbine
Cross compound double reheat turbine
Hydro turbine governor system
Hydro-mechanical governor-turbine
Cross-compound governor-turbine
Power system stabilizer models
Shaft slip input signal
Frequency deviation input signal
Accelerating power input signal

In the general case, the models of the individual unit excitation and governor
systems may be different types. The procedure was been implemented with the data
base of the Western Electricity Coordinating Council, which includes the machine,
governor, turbine, excitation system, and power system stabilizer models listed in
Table 2.1. Each generating unit is modeled as a synchronous machine with a turbine,
a governor and an excitation system. Some units also have a power system stabilizer
(Fig. 2.15).

The aggregation method requires that the units to be aggregated are attached to
the same bus and have the same terminal voltage, and assumes that these units are
coherent and have the same speed. Thus, every excitation system among a group of
coherent units measures the same input voltage signal. Also every governor-turbine
system among a group of coherent units measures the same input speed signal.

2.5.1 Aggregation of the Governor-Turbine Systems

The response of each individual governor-turbine system can be calculated for a
given perturbation of the speed input signal. The total mechanical power output for
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Fig. 2.15 Generating Unit Model

the coherent group is obtained by summing-up the individual mechanical power
output responses.

The problem of the aggregation of the governor-turbine models is to identify the
parameters of an equivalent governor-turbine model, with the objective that its output
approximates as closely as possible the total mechanical power output, if the same
speed signal is applied as input. Two types of speed input signals are considered:
periodic inputs of small amplitude and step inputs. For periodic inputs of small
amplitude the problem is solved as follows: nonlinearities in the governor-turbine
models are ignored; the transfer function of each individual governor-turbine model
is calculated for discrete values of the frequency in the range of 0.01–10 Hz, which
is of practical importance; and these transfer functions are added. This corresponds
to having the individual governor-turbine block-diagrams in parallel as shown on
Fig. 2.16. The summation of transfer-functions is called the “aggregated transfer
function”.

A model for the equivalent governor-turbine is chosen and its parameters are
adjusted until its transfer function fits the “aggregated transfer function” within
a specified accuracy. The technique for adjusting these parameters is a numerical
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Fig. 2.16 Aggregation of governor turbine systems
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Fig. 2.17 Illustration of bode plots for an aggregated and an equivalent governor turbine transfer
function

gradient search. The objective function that is minimized is the sum, over the fre-
quency range, of the squares of the relative error between the equivalent and the
aggregated transfer functions. The Bode plot for an equivalent transfer function is
shown in Fig. 2.17, together with the Bode plot for the aggregated transfer function.

The nonlinear features of the equivalent model, such as gate limit and gate velocity
limit, are evaluated separately by calculating the effect of a step input.
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2.5.2 Aggregation of Synchronous Machines

The same principle of transfer-function fitting is applied to the operational admit-
tances, in the direct and in the quadrature axis separately. This is possible since all
the synchronous machines of a coherent group exhibit the same terminal voltage.

The mechanical characteristics (rotor dynamics) of the equivalent machine are
represented by summing-up the individual inertias and damping factors, respectively.

2.5.3 Aggregation of the Excitation System and Power System
Stabilizer Models

The aggregated transfer function to be approximated is a weighted sum of the transfer
functions for the individual excitation systems. The weighting factor for an individual
excitation system depends upon the parameters of the synchronous machine to which
it is connected, and upon the parameters of the equivalent synchronous machine.
The weighting factors take into account the fact that the field voltage of larger units
has more influence upon the terminal voltage of the coherent group than the field
voltage of small units.

Finally, after evaluation of the parameters for the equivalent excitation system, the
aggregated power system stabilizer transfer function is calculated and approximated.

2.6 Program Description

The DYNRED program performs the three basic equivalencing steps as outlined
below:

• Identification of coherent groups of generators for one or more disturbances. Three
programs are used: ACCEL, LINSIM, and GROUP.

• Network Reduction. Two programs are used: GENRED and LODRED.
• Dynamic Aggregation, using the program DYNAGG.

An overall flow diagram illustrating co-ordination of the programs is shown in
Fig. 2.18.

The functions of the programs are described respectively:

• ACCEL calculates the generator accelerating powers for a specific fault condition.
These are saved on file.

• LINSIM reads the accelerating powers and performs a linear simulation of the
disturbance. The approximate swing curves so generated are stored on file.

• GROUP clusters the approximate swing curves for one or several disturbances in
parallel and determines the coherent groups of generators. These groups are saved
on file.

• GENRED utilizes the coherent groups and performs the coherency-based reduc-
tion of generator buses.
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Fig. 2.18 Overview of dynamic equivalencing program

The bus, line, and load data which is output from GENRED describes an inter-
mediate equivalent network in which the generator buses have been reduced but the
load buses have not. The generator data is modified only to reflect that the units for
a coherent group are now paralleled on a common equivalent bus.

• LODRED performs the reduction of load buses using Gaussian elimination.
The bus, line, and load data output from LODRED represents the final equiva-
lent network data.

• DYNAGG reads the modified generator data and combines those units which have
the same terminal bus into one or several equivalent units depending upon the
types (e.g., steam or hydro) which are present. DYNAGG also requires the bus
data produced by either GENRED or LODRED to reconstruct the generating unit
initial conditions. The output from GENRED is the final equivalent generating
unit data.

The programs are written in Fortran IV and have been executed under the
Windows operating system. The programs are available under license from EPRI
Grid Operations and Planning Division.
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2.7 Conclusions

The coherency-based dynamic equivalents program has been a useful tool to assist
utilities in reducing the costs and long computer running times associated with tran-
sient stability studies. The program is in a form where it can be implemented by
utilities with a modest manpower effort to provide immediate benefits.

The EPRI DYNRED program has been successfully applied to large-scale models
of both the Eastern U.S. and Western U.S. interconnected systems. These reduced
models are being used by utilities and consultants for system planning and operating
studies.

The dynamic equivalents have produced simulation responses which agree very
closely with responses obtained by simulating the full system. In the case of the
WSCC system, the agreement was obtained over 7.0 s simulation interval.

The computer time for running the dynamic equivalents program is a fraction of
the time for a transient stability simulation of the full system. A significant saving in
computer time is obtained even if an equivalent is calculated and used to study only
a single disturbance condition.

Coherency-based dynamic equivalents can be represented by the same models
which are presently used for representing normal power system components. There-
fore, they can be used without changes to existing transient stability programs and
their implementation does not require a large utility investment.
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Chapter 3
Slow Coherency and Aggregation

Joe H. Chow

Abstract This chapter presents the theory and analysis of slow coherency and
aggregation. The main idea is that slow coherency arises from interarea modes, that
is, groups of machines swinging together against each other at oscillatory frequencies
slower than the local modes of the machines in the same coherent group swinging
against each other. We show analytically that this phenomenon can be attributed to
the coherent areas being weakly coupled, either because of higher impedance trans-
mission lines, heavily loaded transmission lines, or fewer connections between the
coherent areas compared to the connections within a coherent area. These system
properties allow the use of singular perturbations to display the time-scale separation
of the interarea modes and local modes, resulting in eigenvector-based algorithms
to identify coherent machines. In addition, the singular perturbations technique has
the capability to provide correction terms for improving reduced-order models in
capturing the slow coherent dynamics.

3.1 Introduction

In Chap. 2, Dr. Podmore has provided a discourse on the coherency phenomenon
and discussed methods to aggregate the coherent machines to obtain reduced models
of large power systems. In this chapter, we will provide the analytical basis for
coherency, or to be more specific, slow coherency, because the coherent groups of
machines are swinging against each other with respect to the slower interarea modes,
as opposed to the higher frequency local modes of machines within each coherent
group swinging against each other. This time-scale separation can be exploited using
the singular perturbations theory [1].

J. H. Chow (B)
Rensselaer Polytechnic Institute, Troy, New York, USA
e-mail: chowj@rpi.edu

J. H. Chow (ed.), Power System Coherency and Model Reduction, 39
Power Electronics and Power Systems 94, DOI: 10.1007/978-1-4614-1803-0_3,
© Springer Science+Business Media New York 2013

http://dx.doi.org/10.1007/978-1-4614-1803-0_2


40 J. H. Chow

Gen 1

Gen 2

Load 3

1

2

3 Gen 11

Gen 12

1310 20 101 120 110 11

12

Load 13

Fig. 3.1 Two-area, four-machine system

The physical origin of slow coherency is perhaps not by accident. Traditional
power systems consist of operating regions (such as New York and California). In
each region there are large load centers at big cities (such as New York City and
Los Angeles), served by large central generating stations, some of which may be
close to the loads, but often farther away. The high-voltage transmission systems
from 230 to 765 kV have evolved to connect these central generating stations to the
loads. As load consumption increases, the individual operating regions have found
it more economical to exchange power by building tielines to share baseload and
seasonal power resources as well as to rely on each other for reserves. Thus a practical
interconnected power system necessarily will have by design strong connections
within each operating region and weaker connections between the regions. In the
remainder of this chapter, we will use a time-scale analysis to develop the slow-
coherency property and algorithms to identify the coherent machines, as well as
improvements to reduced-order models.

In this chapter, we will use the popular Klein-Rogers-Kundur two-area, four-
machine system [2] shown in Fig. 3.1 to illustrate various aspects of the slow-
coherency concepts and algorithms. The data for this system can be found in the
appendix of this chapter. If we apply a short duration 3-phase fault at Bus 3, cleared
by removing one of the lines from Bus 3 to Bus 101, Generators 1 and 2 will swing
coherently against Generators 11 and 12, as shown in the machine speed plot in
Fig. 3.2. Note that Fig. 3.2 also shows the faster oscillations between Generators 1
and 2, which are in the same coherent areas.

This chapter is organized in the following sections. Section 3.2 develops the
electromechanical model. Section 3.3 establishes the linkage between weakly con-
nected areas in power systems and slow coherency. Two grouping algorithms to
identify the coherent groups of machines are developed in Sect. 3.4. Section 3.5 dis-
cusses and compares three methods of aggregation, that is, combining generators
while retaining the power network structure. In Sect. 3.6, a 48-machine system is
used to compare these model reduction methods. Section 3.7 is a brief note on the
availability of the “Coherency Toolbox.”

The materials of this chapter are based largely on Chow et al. [3, 7]. There is,
however, a new extension of the grouping algorithm to identify the load buses for
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Fig. 3.2 Machine speed response of the two-area, four-machine system

the coherent areas in Sect. 3.4. Also the MATLAB computer code to perform the
slow-coherency operations in this chapter is now available.

3.2 Power System Electromechanical Models

To capture the time scales of the electromechanical oscillations in power systems, we
will use the classical electromechanical model [8] with loads modeled as constant
impedances. Consider an n-machine, N -bus power system. Machine i is modeled as
a constant voltage Ei behind a transient reactance x ′

di . The motion of the machine
rotor angle δi is modeled as

mi δ̈i = Pmi − Pei = Pmi − Ei Vj sin(δi − θ j )

x ′
di

= fi (δ, V ) (3.1)

where

Vj =
√

V 2
jre + V 2

j im, θ j = tan−1
(

Vj im

Vjre

)
(3.2)

Pmi is the input mechanical power, Pei is the output electrical power, Vjre and Vj im
are the real and imaginary parts of the bus voltage phasor at Bus j which is the
terminal bus of Machine i , δ is an n-vector of the machine angles, V is the 2N -
vector of the real and imaginary parts of the load bus voltages, mi = 2Hi/Ω where
Hi is the inertia of the machine most commonly used in power system stability
simulation programs, andΩ = 2π f0 is the nominal system frequency in rad/s. Note
that damping is neglected in (3.1) so that we can express the electromechanical model
in the second-derivative form.
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For each load bus j , the active power flow balance at the bus is

Pej − Real

⎧⎨
⎩

N∑
k=1,k �= j

(Vjre + j Vj im − Vkre − j Vkim)

(
Vjre + j Vj im

RL jk + j X L jk

)∗
⎫⎬
⎭ − V 2

j G j

= g2 j−1 = 0 (3.3)

and the reactive power flow balance is

Qej − Imag

⎧⎨
⎩

N∑
k=1,k �= j

(Vjre + j Vj im − Vkre − j Vkim)

(
Vjre + j Vj im

RL jk + j X L jk

)∗
⎫⎬
⎭

− V 2
j B j + V 2

j
BL jk

2
= g2 j = 0 (3.4)

where RL jk , X L jk , and BL jk are the resistance, reactance, and line charging, respec-
tively, of the line connecting buses j and k, Pej and Qej are generator active and
reactive electrical output power, respectively, if bus j is a generator bus, and G j

and B j are the load conductance and susceptance at bus j . Note that j denotes the
imaginary number if it is not used as an index.

Equations (3.1), (3.3), and (3.4) can be combined into a vector form

M δ̈ = f (δ, V ), 0 = g(δ, V ) (3.5)

where M is the diagonal machine inertia matrix, f is a vector of acceleration torques,
and g is the power flow equation of the transmission network.

The slow coherency is an inherent system property that is valid for both linearized
and nonlinear electromechanical models of power systems [3, 9]. Our discussion will
be based on linear analysis using eigenvalues and eigenvectors, which will provide
much more insight.

We linearize (3.5) about a nominal power flow equilibrium (δ0, V0) to obtain the
linear model

MΔδ̈ = ∂ f (δ, V )

∂δ

∣∣∣∣
δ0,V0

+ ∂ f (δ, V )

∂V

∣∣∣∣
δ0,V0

= K1Δδ + K2ΔV (3.6)

0 = ∂g(δ, V )

∂δ

∣∣∣∣
δ0,V0

+ ∂g(δ, V )

∂V

∣∣∣∣
δ0,V0

= K3Δδ + K4ΔV (3.7)

where Δδ is an n-vector of the machine angle deviations from δ0, and ΔV is a
2N -vector of the real and imaginary parts of the load bus voltage deviations from
V0. The matrices K1, K2, and K3 consist of the partial derivatives of the power
transfer between the machines and their terminal buses. In particular, K1 is diago-
nal. The matrix K4 is the network admittance matrix. This formulation allows for
nonconforming loads, which make the 2 × 2 diagonal blocks of K4 nonsymmetric.
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The analytical expressions of the sensitivity matrices Ki can be derived from (3.1),
(3.3), and (3.4). Alternatively, they can be computed numerically by introducing
perturbations and evaluating sensitivities [10]. Because K4 is nonsingular, we can
solve (3.6) for

ΔV = −K −1
4 K3Δδ (3.8)

and eliminate ΔV in (3.7) to obtain a linearized electromechanical model reduced
to the machine internal nodes

MΔδ̈ = KΔδ (3.9)

where
K = K1 − K2 K −1

4 K3 (3.10)

The (i, j) entry of K has the form

Ki j = Ei E j (Bi j cos(δi − δ j )− Gi j sin(δi − δ j ))
∣∣
δ0,V0

, i �= j (3.11)

where Ei is the internal voltage of generator i , and Gi j + j Bi j is the equivalent
admittance between machine i and j . Furthermore, the diagonal entries of K are in
the form

Kii = −
n∑

j=1, j �=i

Ki j (3.12)

Thus the row sum of K will be equal to zero. In general, Gi j � Bi j . The entries
Ki j of K are known as the synchronizing torque coefficients, as they represent the
torque that keeps the machines synchronized and stably connected.

3.3 Two-Time-Scale Power System Models

We define a slow coherent area to be composed of a slow coherent group of machines
and the load buses that interconnect these machines. In the next section, we will
discuss some algorithms to find the slow coherent areas. Assume that the system
(3.6) and (3.7) has r slow coherent areas of machines. For notational convenience,
we define
Δδαi = the deviation of the rotor angle of machine i in area α from its equilibrium

value
mα

i = the inertia of machine i in area α.
We also order the machines such that Δδαi from the same coherent areas appears

consecutively in Δδ.
We attribute the slow-coherency phenomenon to be primarily due to the

connections between the machines in the same coherent areas being stiffer than
those between different areas. This stiffness can be due to two reasons:
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1. The admittances of the external connections B E
i j , that is, connections between the

areas are much smaller than the admittances of the internal connections B I
pq , that

is, connections within an area. This condition can be represented by the small
parameter

ε1 = B E
i j

B I
pq

(3.13)

where E denotes external, I denotes internal, and i, j, p, q are bus indices.
This situation also includes heavily loaded high-voltage, long transmission lines
between two coherent areas.

2. The number of external connections is much less than the number of internal
connections, which can be represented by the small parameter [4]

ε2 = γ̄ E

γ I
(3.14)

where
γ̄ E = max

α
{γ E
α }, γ I = min

α
{γ I
α }, α = 1, . . . , r (3.15)

γ E
α = (the number of external connections of area α)/Nα

γ I
α = (the number of internal connections of area α)/Nα

and Nα is the number of buses in area α.

For a large power system, the weak connections between coherent areas would
be due to a combination of these two situations. Thus a weak connection parameter
indicating the strength of external connections relative to the internal connections
can be represented by

ε = ε1ε2 (3.16)

Using the weak connection parameter ε, we separate the network admittance
matrix K4 into

K4 = K I
4 + εK E

4 (3.17)

where K I
4 is the matrix of internal connections between the buses in the same coherent

areas and K E
4 is the matrix of external connections between different coherent areas.

Including the effect of the weak external connections, the synchronizing torque
or connection matrix K of the model (3.10) can be expressed as

K = K1 − K2(K
I
4 + ε(K I

4 ))
−1 K3

= K1 − K2(K
I
4 (I + ε(K I

4 )
−1 K E

4 ))
−1 K3

= K I + εK E (3.18)
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where
K I = K1 − K2(K

I
4 )

−1 K3 (3.19)

is the block-diagonal matrix of internal connections between the machines in the
same coherent areas,

K E = −K2 K E
4εK3 (3.20)

is the matrix of external connections between different coherent areas, and

K4ε = (−(K I
4 )

−1 K E
4 + ε((K I

4 )
−1 K E

4 )
2 + · · · )(K I

4 )
−1 (3.21)

is an asymptotic expansion in ε. In the separation (3.18), the property that each row
of K I sums to zero is preserved.

We now introduce a transformation to obtain the aggregate variables and the
difference variables to reveal the time scales of a power system with the property
(3.18). To describe the slow motion, we define for each area an inertia weighted
aggregate variable

yα =
nα∑

i=1

mα
i Δδ

α
i /mα, α = 1, 2, . . . , r (3.22)

where mα
i is the inertia of machine i in area α, nα is the number of machines in area

α, and

mα =
nα∑

i=1

mα
i , α = 1, 2, . . . , r (3.23)

is the aggregate inertia of area α. Denoting by y the r -vector whose αth entry is yα ,
the matrix form of (3.22) is

y = CΔδ = M−1
a U T MΔδ (3.24)

where
U = blockdiag(u1, u2, . . . , ur ) (3.25)

is the grouping matrix with nα × 1 column vectors

uα = [
1 1 . . . 1

]T
, α = 1, 2, . . . , r (3.26)

Ma = diag(m1,m2, . . . ,mr ) = U T MU (3.27)

is the r × r diagonal aggregate inertia matrix.
For the fast dynamics, we select in each area a reference machine, say the first

machine, and define the motions of the other machines in the same area relative to
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this reference machine by the local variables

zαi−1 = Δδαi −Δδα1 , i = 2, 3, . . . , nα, α = 1, 2, . . . , r (3.28)

Denoting by zα the (nα − 1)-vector whose i th entry is zαi and considering zα as the
αth subvector of the (n − r)-vector z, we rewrite (3.28) as

z = GΔδ = blockdiag(G1,G2, . . . ,Gr )Δδ (3.29)

where Gα is the (nα − 1)× nα matrix

Gα =

⎡
⎢⎢⎣

−1 1 0 . 0
−1 0 1 . 0
. . . . .

−1 0 0 . 1

⎤
⎥⎥⎦ (3.30)

We have thus defined a transformation of the original state Δδ into the aggregate
variable y and the local variable z as

[
y
z

]
=

[
C
G

]
Δδ (3.31)

The inverse of this transformation is explicitly known

Δδ = [
U G+ ] [

y
z

]
(3.32)

where
G+ = GT (GGT )−1 (3.33)

is block-diagonal.
Applying the transformation (3.31) to the model (3.9), (3.18), we obtain

Ma ÿ = εKa y + εKad z

Md z̈ = εKda y + (Kd + εKdd)z
(3.34)

where

Md = (G M−1GT )−1, Ka = U T K EU

Kda = U T K E M−1GT Md , Kda = Md G M−1 K EU (3.35)

Kd = Md G M−1 K I M−1GT Md , Kdd = Md G M−1 K E M−1GT Md
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Note that Ka , Kad , and Kda are independent of K I because K I U = 0. System
(3.34) is in the standard singularly perturbed form [1] showing that y is the slow
variable and z is the fast variable. Thus ε is both the weak connection parameter and
the singular perturbation parameter, giving rise to slow coherency.

The transformation (3.31) can also be applied to the model (3.6) and (3.7) to
obtain

Ma ÿ = K11 y + K12z + K13ΔV

Md z̈ = K21 y + K22z + K23ΔV (3.36)

0 = K31 y + K32z + (K I
4 + εK E

4 )ΔV

where

K11 = U T K1U, K12 = U T K1G+, K13 = U T K2, K21 = (G+)T K1U

K22 = (G+)T K1G+, K23 = (G+)T K2, K31 = K3U, K32 = K3G+

(3.37)

Because the load bus elimination process involves the solution of linear equations, it
follows that eliminating the ΔV variables would reduce (3.37) to (3.34), that is, the
transformation and the load bus elimination commute.

From the singular perturbations theory [1], we can construct an asymptotic expan-
sion in the small parameter ε for the slow subsystem. For our applications, only the
zeroth- and the first-order terms are of interest. Observe from (3.34) that the slow
variable y is coupled into the fast variable equation through ε. Thus, as a zeroth-order
approximation, z can be considered constant and equal to zero. Consequently, (3.37)
reduces to

Ma ÿ = K11 y + K13ΔV

0 = K31 y + K4ΔV
(3.38)

This is the inertial aggregate model which is equivalent to linking the internal nodes
of the coherent machines by infinite admittances. The model (3.38) is different from
the model obtained using the technique in Chap. 2, which aggregates the coherent
machines at the terminal buses, not the internal nodes as in (3.38). Thus the inertial
aggregate model should be more accurate than the machine terminal bus aggregate
model.

If ΔV in (3.38) is eliminated, we obtain the inertial aggregate model as

Ma ÿ = εKa y (3.39)

For a model more accurate than the inertial aggregate model, we consider z to
vary with y. As a first-order approximation, from (3.37) the quasi-steady-state of z
is obtained as

http://dx.doi.org/10.1007/978-1-4614-1803-0_2
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z = −K −1
22 (K21 y + K23ΔV ) (3.40)

Eliminating z from (3.37) results in the slow-coherency (aggregate) model

Ma ÿ = K11s y + K13sΔV

0 = K31s y + K4sΔV
(3.41)

where

K11s = K11 − K12 K −1
22 K21, K13s = K13 − K12 K −1

22 K23

K31s = K31 − K32 K −1
22 K21, K4s = K4 − K32 K −1

22 K23
(3.42)

The major difference between this model and the inertial aggregate model is that
in (3.41), the internal nodes of the coherent machines are no longer connected by
infinite admittances. Instead, the singular perturbation method introduces impedance
correction terms to the connection matrices K11, K13, K31, and K4. The aggregate
models will be discussed further in Sect. 3.5.

To complete the model reduction process, the voltage variables for the load buses
that need not be retained can be eliminated from (3.38) or (3.41). The reduced-order
model would then consist of the aggregate machines and the critical load buses.

IfΔV in (3.41) is completely eliminated, we obtain the slow-coherency aggregate
model as

Ma ÿ = εKas y (3.43)

where
εKas = K11s − K13s K −1

4s K31s (3.44)

Consider the two-area system in Fig. 3.1. With the parameters and the loading
given in the Appendix, and the ordering of δ as

δ = [
δ1

1 δ
1
2 δ

2
1 δ

2
2

]T
(3.45)

representing the rotor angles of Generators 1, 2, 11, and 12, respectively, the inertia
matrix in pu on system MVA base is, in a 60 Hz system,

M = diag(117, 117, 91, 143)/(2π × 60) (3.46)

and the connection matrix is

K =

⎡
⎢⎢⎣

−9.4574 8.0159 0.5063 0.9351
8.7238 −11.3978 0.9268 1.7472
0.6739 0.9520 −9.6175 7.9917
1.3644 1.9325 8.1747 −11.4716

⎤
⎥⎥⎦ (3.47)
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Decomposing K into the internal connection part and the external connection part
according to the areas, we obtain

K I =

⎡
⎢⎢⎣

−8.0159 8.0159 0 0
8.7238 −8.7238 0 0

0 0 −7.9917 7.9917
0 0 8.1747 −8.1747

⎤
⎥⎥⎦ (3.48)

εK E =

⎡
⎢⎢⎣

−1.4414 0 0.5063 0.9351
0 −2.6739 0.9268 1.7472

0.6739 0.9520 −1.6258 0
1.3644 1.9325 0 −3.2969

⎤
⎥⎥⎦ (3.49)

Comparing the off-diagonal entries of εK E to the smallest value of K I , we see a
ratio of external connections to internal connections ranging from 0.5063/8.0159
to 1.9325/8.0159. The average of the off-diagonal entries of εK E compared to the
average of the off-diagonal entries of K E is 1.1298/8.2265 = 0.1373, which can be
taken to be ε, from which K E can be found.

The eigenvalues of the matrix M−1 K are

λ(M−1 K ) = 0,−14.2787,−60.7554,−62.2531 (3.50)

The corresponding eigenvector vectors are

v1 =

⎡
⎢⎢⎣

0.5
0.5
0.5
0.5

⎤
⎥⎥⎦ , v2 =

⎡
⎢⎢⎣

0.4878
0.4031

−0.5672
−0.5271

⎤
⎥⎥⎦ , v3 =

⎡
⎢⎢⎣

0.6333
−0.7446

0.1924
−0.0863

⎤
⎥⎥⎦ , v4 =

⎡
⎢⎢⎣

0.1102
−0.1494
−0.8098

0.5566

⎤
⎥⎥⎦

(3.51)

Because (3.9) is in the second-order form, the eigenvalues of the two-area system
consist of two poles at the origin corresponding to the system reference mode, an
interarea mode of

√−14.279 = ± j3.779 rad/s of oscillation between the two areas,
and the local modes

√−60.755 = ± j7.795 rad/s and
√−62.253 = ± j7.890 rad/s.

The eigenvectors (3.51) are indications of the mode shapes, that is, the relative
motions of the machines. For example, v1 represents the system mode in which all
machines move together in the same direction and proportion, and v2 represents the
3.779 rad/s interarea mode in which Generators 1 and 2 oscillate against Generators
11 and 12. The local mode oscillations are represented by v3 and v4, with v3 being
mostly the oscillation of Generator 1 versus Generator 2, and v4 being mostly the
oscillation of Generator 11 versus Generator 12.

From K E we compute the initial aggregation model as

Ma = 1

2π × 60

[
234 0
0 234

]
, εKa =

[−4.1154 4.1154
4.9227 −4.9227

]
(3.52)



50 J. H. Chow

Table 3.1 Electromechanical modes computed from various models

Exact model Inertial Error Slow Error
(rad/s) aggregation (rad/s) (%) coherency

Interarea mode 3.779 3.816 0.98 3.799 rad/s 0.53 %
Area 1 local mode 7.795 7.344 −5.79
Area 2 local mode 7.890 7.393 −6.30

The eigenvalues of M−1
a Ka are 0 and −14.561, giving rise to an interarea mode

frequency of
√−14.561 = ± j3.816 rad/s. For the fast local dynamics, we obtain

Md = 1

2π × 60

[
58.500 0

0 55.611

]
, Kd =

[−8.3699 0
0 −8.0628

]
(3.53)

The eigenvalues of M−1
d Kd are −53.939 and −54.660, resulting in the local modes

of ± j7.3443 and ± j7.3932 rad/s.
Applying a correction term to the slow subsystem, we obtain

εKas = K11s − K13s K −1
4s K31s =

[−4.0698 4.0699
4.8861 −4.8860

]
(3.54)

so that the approximated interarea mode becomes ± j3.799 rad/s.
A summary of the interarea mode and local mode frequencies from the various

models is given in Table 3.1. It is of interest to note that the approximated interarea
mode from the inertia aggregation is higher in frequency than that of the exact
model because the coherent machines are connected with infinite admittances and
the network becomes stiffer (see Sect. 3.5 for additional discussions). On the other
hand, the local modes from the initial aggregation are lower in frequencies than those
of the exact model because impedances connecting two nodes in a local area through
external connections are neglected. That is, the effective stiffness of the connections
within an area is reduced, resulting in lower frequencies of oscillations.

3.4 Identification of Slow Coherent Machines

In the illustration of the two-area system example, we remark that the eigenvectors
of M−1 K show the mode shapes of the electromechanical modes. From the mode
shapes, if machines i and j have similar entries in the eigenvector of mode k, we
can conclude that these two machines are coherent with respect to that mode. Thus
for a group of machines to be slow coherent, their mode shapes with respect to the
low frequency interarea modes must be similar. In other words, if Vs is the matrix of
the eigenvectors corresponding to the small eigenvalues of M−1 K (3.9), then a slow
coherent group of machines must have similar row vectors in Vs . For a system with
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Fig. 3.3 Row vectors of Vs
showing 2 coherent groups

1

2

0

r coherent groups, the row vectors of Vs form r clusters in an r -dimensional space.
Figure 3.3 illustrates the row vectors for r = 2 areas. Thus a practical algorithm
to identify the slow coherent groups is to first find the r most linearly independent
vectors wα from Vs and use them as the reference vectors. Then a machine with the
row vector wi will be grouped in the same area with the reference machine whose
row vector wα is closest to wi .

The representation of the clusters in the r -dimensional space depends on the
eigenbasis vectors used in Vs . To avoid this ambiguity we permute the rows of Vs

into

Vs =
[

Vs1
Vs2

]
(3.55)

such that Vs1 contains the reference rows. Then the row vectors of Vs1 are used
as unit coordinate vectors in a new coordinate system. This is equivalent to the
transformation [

Vs1
Vs2

]
V −1

s1 =
[

I
L

]
(3.56)

In the new coordinate system, the coherent clusters are well separated. If there
are r coherent areas in the system, then

[
I
L

]
=

[
I

Lg

]
+

[
0

O(ε)

]
(3.57)

A function is said to be of O(ε) if it approaches zero as ε approaches zero. The matrix
Lg is similar in structure to a grouping matrix U (3.25) except that the 1 entries may
not appear consecutively depending on the machine ordering and it may have zero
columns, which correspond to single machine areas. The 1 entries in Lg can be used
to group the non-reference machines with the reference machines. The transformed
clusters in Fig. 3.3 are shown in Fig. 3.4.
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Fig. 3.4 Row vectors of Vs in
Fig. 3.3 after transformation

1

2

0 1

1

A coherent machine identification algorithm based on (3.57) has been proposed
as follows.

Slow-Coherency Grouping Algorithm

1. Choose the number of areas r .
2. Compute a basis matrix Vs of the eigensubspace of the r smallest eigenvalues

in magnitude of the model (3.9), including the zero eigenvalue.
3. Apply Gaussian elimination with complete pivoting to Vs and obtain the

machines used for the pivots as the reference machines.
4. Order the machines such that the rows of Vs1 of (3.55) correspond to the

reference machines and solve for L from

V T
1 LT = V T

2 (3.58)

using the LU decomposition of Vs1 already computed in Step 2.
5. Use L to assign the machines to the coherent areas. That is, if the largest

positive entry in a row of L is the αth entry, then the machine corresponding
to that row is grouped into area α.

We have defined a slow coherent area to be composed of both the coherent
machines and the load buses that interconnect those machines. The coherent machine
identification algorithm does not directly identify the load buses in a coherent area.
However, from (3.8), we can extend the mode shapes of the machine angles in Vs to
the voltage angles of the load buses

Vθ = (−K −1
4 K3)θVs (3.59)

The notation (−K −1
4 K3)θ is the projection of −K −1

4 K3 to the bus voltage sensitivity
with respect to the machine angles Δδ, because ΔV in (3.6) and (3.7) is in the
rectangular coordinates. Thus the Grouping Algorithm can be applied to the rows of
the extended slow eigenvectors
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V e
s =

[
Vs

Vθ

]
(3.60)

with the proviso that the rows of Vθ would not be used as the reference vector for a
coherent group.

For a system with an unknown number of coherent groups, it may be necessary to
try several possible values of r . In this case, use a sufficiently large r to compute the
eigensubspace of the r smallest eigenvalues. Then Steps 3 to 5 can be repeated for
different values of r by extracting the appropriate columns of Vs . The computationally
intensive part of the algorithm is Step 2 if the system size is large. Earlier, a sparsity-
based Lanczos algorithm has been developed to compute the eigenvectors of the
small eigenvalues [11]. More recently, the Arnoldi method [12] has been shown to
provide superior computational efficiency, which can be used for the identification
of coherent machines in very large power systems.

An advantage of the slow-coherency method is that the coherent groups deter-
mined from the slow eigenvectors are disturbance independent, that is, the machines
do not switch groups for different disturbances. Thus the slow coherent groups are
determined from the base case. In disturbances involving line trips, we expect the
boundaries of weak and strong connections to remain the same. If a line connect-
ing two coherent areas is tripped, then the external connecting strength would be
weakened further. If a line within a coherent area is tripped, its impact on the overall
connection strength would not be significant. However, if a disturbance study requires
tripping of multiple lines, then additional slow coherent machine identifications may
be required.

We will illustrate the Grouping Algorithm for the two-area system. The slow
eigensubspace is given by v1 and v2 (3.51) as

Vs =

⎡
⎢⎢⎣

0.5 0.4878
0.5 0.4031
0.5 −0.5672
0.5 −0.5271

⎤
⎥⎥⎦

Gen 1
Gen 2
Gen 11
Gen 12

(3.61)

The entries in the first column of Vs are all equal. Thus we arbitrarily pick Generator
1 as one of the reference machines and perform a Gaussian elimination on Vs to
arrive at

V 1
s =

⎡
⎢⎢⎣

0.5 0.4878
0.0 −0.0846
0.0 −1.0550
0.0 −1.0149

⎤
⎥⎥⎦

Gen 1
Gen 2
Gen 11
Gen 12

(3.62)

At this point, Generator 11 has the largest magnitude in the second row and is selected
as the reference of the second area. Thus

Vs1 =
[

0.5 0.4878
0.5 −0.5672

]
Gen 1
Gen 11

(3.63)
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Exchanging the second and third row in Vs to form V ′
s , we obtain

V ′
s V −1

s1 =

⎡
⎢⎢⎣

1 0
0 1

0.9198 0.0802
0.0380 0.9620

⎤
⎥⎥⎦

Gen 1
Gen 11
Gen 2
Gen 12

(3.64)

The largest positive entries in the rows of Generators 2 and 12 are underlined. Thus
we can conclude that Generators 1 and 2 are coherent, and Generators 11 and 12 are
coherent, consistent with the observation from the time response shown in Fig. 3.2.

Extending the Grouping Algorithm to the load buses, we compute Vθ using [10]
and use it to obtain VθV −1

s1

Vθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.4283
0.5 0.3535
0.5 0.2556
0.5 0.3844
0.5 −0.5018
0.5 −0.4667
0.5 −0.3556
0.5 0.3128
0.5 −0.0523
0.5 −0.4671
0.5 −0.4125

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bus 1
Bus 2
Bus 3
Bus 10
Bus 11
Bus 12
Bus 13
Bus 20
Bus 101
Bus 110
Bus 120

VθV −1
s1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9436 0.0564
0.8727 0.1273
0.7800 0.2200
0.9020 0.0980
0.0620 0.9380
0.0953 0.9047
0.2006 0.7994
0.8342 0.1658
0.4880 0.5120
0.0949 0.9051
0.1466 0.8534

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.65)

Note that the largest positive entry in each row of VθV −1
s1 is used to group a bus with

the reference machine. If none of the entries for a bus is close to 1, such as Bus 101
whose two entries are roughly equal, that bus should be regarded as a connection bus
between the areas. These connection buses are normally not eliminated in the load
bus elimination stage, in order to retain network sparsity.

In summary, the 2 coherent areas for the two-area, four-machine systems are given
in Table 3.2.

As a second illustration on a larger system, consider the 48-machine NPCC
system given in Price [13], which is an expansion of the 16-machine systems with
more machines modeled in New York and the neighboring areas. Choosing the nine
slowest modes, including the system mode, the Grouping Algorithm yields the 9-
area partition shown in Fig. 3.5. Note that the boundaries of the areas are mostly
along operating regions, confirming the notion that they form the weak connection
boundaries.

Table 3.2 Coherent areas of
the two-area system

Area Generators Load buses

1 1, 2 1, 2, 3, 10, 20
2 11, 12 11, 12, 13, 110, 120
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Fig. 3.5 Nine-area partition of the NPCC 48-machine system

3.4.1 A Tolerance-Based Grouping Algorithm

The objective of model reduction is to determine a model that can accurately capture
the interarea modes of interest. The parameter r is selected based on the number
of areas needed to model the desired interarea modes. However, for a large system,
using r coherent areas to model r − 1 interarea modes may not yield the desired
accuracy on the interarea modes. For large coherent groups, the largest entries in
the rows of the Lg may not be close to unity, in which case machines that are not
electrically close may still be assigned to the same coherent areas. An example is the
9-area partition of the 48-machine system, where machine 33 is quite far away from
the other machines in area 9.

To control the accuracy of coherency, we develop a tolerance-based grouping
algorithm to indirectly control the size of the coherent areas. In some sense this is
an easier way of obtaining the coherent areas, as one does not need to specify r , the
number of areas. Instead, one only needs to specify the interarea modes of interest,
and adjust a tolerance value to achieve the desired degree of accuracy.

A tolerance-based grouping algorithm would set a measure of the slow coherency
between the machines. Let the columns of Vs be normalized to unity, and define the
slow-coherency measure

di j = wi w
T
j /(|wi ||w j |) (3.66)
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Fig. 3.6 Contour plot of Cm for the NPCC 48-machine system

as the cosine of the angle between wi and w j , which are the row of Vs corresponding
to machines i and j , respectively. If machines i and j are perfectly coherent with
respect to the slow modes, then wi = w j and di j = 1. A tolerance, γ , typically in
the range of 0.9–0.95, can be selected such that two machines are said to be coherent
if di j > γ . We define a coherency matrix Cm to be a matrix whose (i, j) entry is
given by

(Cm)i j = di j − γ. (3.67)

A contour plot of Cm of the NPCC system using the eigenvector matrix of the 9
slowest modes and γ = 0.95 is shown in Fig. 3.6. Note that in Fig. 3.6, the negative
values in Cm have been set to 0 to accentuate the coherency. These negative values
are not plotted in Fig. 3.6. If the (i, j) grid shows a nonzero value, then machines
i and j are coherent. The Cm plot depicts clearly the coherency between machines
1–9 in New England and machines 13–26 in New York.

Based on the coherency measure γ , we formulate a set of coherency rules:

1. Machines i and j are coherent if (Cm)i j > 0.
2. If machines i and j are coherent and machines j and k are coherent, then machines

i and k are also coherent.
3. A loose coherent area Jα is formed by the machines that are coherent under Rules

1 and 2. Let (Cm)α be a submatrix of Cm corresponding to Jα .
4. If the column sums of (Cm)α excluding the diagonal entries are all positive, then

Jα is a tight coherent area.
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5. If any of the column sums of (Cm)α excluding the diagonal entries is negative,
then Jα should be decomposed into smaller tight coherent areas.

6. The least coherent machine in Jα corresponds to the columns of (Cm)α with the
smallest sum.

7. The coherency of Jα may be improved by removing the least coherent machine
and reassigning it to a different area.

8. Given two partitions I1 and I2 of Jα , I1 is tighter than I2 if the sum of the off-
diagonal entries of (Cm)α corresponding to I1 is larger than that of I2.

These coherency rules can be used to construct the following algorithm.

Tolerance-Based Coherency Grouping Algorithm

1. Find the loose coherent areas using Rules 1–3.
2. For each loose coherent area Jα ,

a. Use Rule 4 to determine whether it is also a tight coherent area, which
requires no further decomposition.

b. If the area is not tight, decompose the area into tight coherent areas. Start
the decomposition by identifying the least coherent machine using Rule
6 and reassigning it using Rule 8. Continue until the loose coherent area
has been decomposed into tight coherent areas and no improvement is
possible under Rule 8.

When the tolerance-based coherency grouping algorithm is applied to the NPCC
system with L containing the eigenvectors of the 9 slowest modes and γ = 0.95,
17 slow-coherent areas are found. The machine groups are listed in Table 3.3 and
shown in Fig. 3.7. For a comparison, the slow-coherency grouping algorithm with
L containing the eigenvectors of the 17 slowest modes is used to find 17 areas for
the NPCC system. The resulting areas are also listed in Table 3.3. Note that the first
machine listed in each group is the reference machine for that particular group. These
two 17-area partitions have a lot of similarities, but also some differences.

To assess the significance between the two different 17-area partitions, and to
show the improvement of the 17-area partition over the 9-area partition, we perform
the aggregation based on these partitions and compute the slow eigenvalues of the
linearized reduced-order models. For a comprehensive illustration, we use both the
inertial aggregation and slow-coherency aggregation. In the inertial aggregations,
nonlinear reduced networks are first constructed using the algorithms described in
the next section. Eigenvalues are then computed from the linearized models. For the
slow-coherency aggregation, eigenvalues are directly computed from (3.41). The
frequencies of the 8 slowest modes (excluding the system mode) are shown in
Tables 3.4 and 3.5.

From Tables 3.4 and 3.5, we conclude that the 17-area partition from the slow-
coherency grouping algorithm does not necessarily provide a better eigenvalue
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Table 3.3 Seventeen-area
partitions using
tolerance-based slow
coherency and slow
coherency

Area 9 Slowest modes, γ = 0.95 Slow coherency, 17 areas

1 3 4 5 6 7 8 6 3 7 9
2 1 2 9 1 2
3 10 8
4 11 12 11 12
5 13 14 24 25 26 13 10 14 24 25 26
6 15 16 17 18 19 20 21 22 23 16 17 18 19 20 21 22
7 27 28 29 30 29 27 28 30
8 31 15 23
9 32 37 38 40 42 32 31 33 37 38
10 33 40
11 34 35 34 35
12 36 36
13 39 39 42
14 41 41
15 43 44 45 46 44 43 45 46 47
16 47 5 4
17 48 48

approximation than the 9-area partition. However, the 17-area tolerance-based par-
tition shows a substantial improvement over both the 9-area and 17-area partitions
from the slow-coherency grouping algorithm.

3.5 Generator and Network Aggregation

Thus far we have discussed slow coherency using linearized models. However, it
is also important to develop nonlinear reduced models based on slow coherency so
that they can be used for dynamic security assessment, such as transient stability
simulations of faults and line trips. Although linearized models are derived for the
inertial and slow-coherency aggregations, aggregates with conventional network and
machine models can be reconstructed from the linearized reduced models. For com-
pleteness, we will discuss these two aggregation techniques, as well as the Podmore
aggregation method in Chap. 2, and show the improvements between the techniques.

The Podmore aggregation for two machines A and B is shown in Fig. 3.8 where a
and b are the generator terminal buses. In this technique, it is assumed that coherency
occurs at the generator terminal buses a and b (Fig. 3.8a) . As a result these buses are
tied together to a common bus q with infinite admittances (Fig. 3.8b). The voltage at
bus q can be set either to an average of the voltages at buses a and b or a weighted
average with respect to the active and reactive power generation. To preserve the
power flow, ideal transformers with no leakage reactance and complex turns ratios
αa arg(φa) and αb arg(φb) link the buses a and b to bus q, respectively. The phases

http://dx.doi.org/10.1007/978-1-4614-1803-0_2
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Fig. 3.7 Seventeen-area partition of the NPCC 48-machine system

Table 3.4 Interarea modes from inertial aggregation

Full model Grouping algorithm Grouping algorithm Tolerance-based
9 areas 17 areas 17 areas

Frequency Frequency Error (%) Frequency Error (%) Frequency Error (%)
(Hz) (Hz) (Hz) (Hz)

0.2697 0.2958 9.7 0.2958 9.7 0.2747 1.8
0.3815 0.4049 6.1 0.4277 12.1 0.3932 3.0
0.4873 0.5378 10.4 0.5352 9.8 0.5034 3.3
0.5328 0.5847 9.7 0.5822 9.3 0.5472 2.7
0.7069 0.8315 17.6 0.7582 7.3 0.7123 0.8
0.7405 0.8514 15.0 0.7995 8.0 0.7515 1.5
0.8040 0.8918 10.9 0.8397 4.4 0.8365 4.0
0.8411 0.9678 15.1 0.8592 2.1 0.8562 1.8

φa and φb can be represented separately as phase shifters. The machines A and B are
then aggregated into a single equivalent machine with an inertia meq and a transient
reactance (x ′

d)eq equal to

meq = m A + m B, (x ′
d)eq = (1/(x ′

d)A + 1/(x ′
d)B)

−1 (3.68)
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Table 3.5 Interarea modes of slow-coherency aggregation

Full model Slow coherency Slow coherency Tight coherency
9 areas 17 areas 17 areas

Frequency Frequency Error (%) Frequency Error (%) Frequency Error (%)
(Hz) (Hz) (Hz) (Hz)

0.2697 0.2772 2.8 0.2786 3.3 0.2709 0.4
0.3815 0.4087 7.1 0.4348 14.0 0.3862 1.2
0.4873 0.5554 14.0 0.5580 14.5 0.4904 0.6
0.5328 0.5745 7.8 0.5999 12.6 0.5297 0.6
0.7069 0.8532 20.7 0.7629 7.9 0.7119 0.7
0.7405 0.8545 15.4 0.7987 7.9 0.7463 0.8
0.8040 0.8827 9.8 0.8369 4.1 0.8304 3.3
0.8411 0.9708 15.4 0.8606 2.3 0.8485 0.9

Transformer

a

A

b

B

Phase shifter

q

a b

A B

(a) (b)

Fig. 3.8 Podmore aggregation: (a) two coherent generators, (b) generators connected to a common
bus

where m A and m B are the inertias and (x ′
d)A and (x ′

d)B the transient reactances of
machines A and B, respectively.

In the initial aggregate model (3.38), the dynamics inside a coherent area are
assumed to be infinitely fast and thus neglected. This is akin to connecting the states
of (3.38), which are the internal nodes of the machines, with infinite impedances.
To illustrate, this inertial aggregation for two machines A and B is shown in Fig. 3.9
where a and b are the generator terminal buses. In the inertial aggregation technique,
the machine internal node voltages E ′

A and E ′
B , are computed (Fig. 3.9a). These two

generator internal nodes are tied together to a common bus p with infinite admittances
(Fig. 3.9b). The voltage at bus p, E ′

eq, can be set either to an average of E ′
A and E ′

B
or a weighted average with respect to the active and reactive power generation. To
preserve the power flow, ideal transformers with complex turns ratios αa arg(φa) and
αb arg(φb) and zero impedances link the buses a and b to bus p.

The linking of the internal nodes creates an equivalent generator with multi-
ple terminal buses, which is not a conventional power system network representa-
tion. Taking (x ′

d)eq from (3.68) as an equivalent transient reactance, the network is
extended beyond node p by two buses with reactances of −(x ′

d)eq and (x ′
d)eq, as

shown in Fig. 3.9c. The node r serves as the internal node of the equivalent machine,
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Fig. 3.9 Inertial aggregation: (a) two coherent generators, (b) generator internal node connected,
(c) aggregate generator transient reactance created

and the node q the generator terminal bus. The node p can be eliminated if desired.
Finally, the inertia of the equivalent machine, meq, is computed from (3.68).

The construction of the slow-coherency model (3.41) is more involved. There are
two important observations. First recall that (3.41) requires a singular perturbation
correction involving only the network within the coherent area, which we refer to
as the “per coherent area” aggregation. This property does not hold if additional
corrections are made to (3.41). The second observation is that we need to derive a
nonlinear power system model from the linearized model (3.41).

To perform the network aggregation, the coherent areas of generators and load
buses must first be specified, using the generator and load bus grouping algorithms
from Sect. 3.3. Then the boundary buses are identified as the load buses with direct
connections to the neighboring areas, and all the other load buses are the internal
buses. In the per coherent area aggregation procedure, the model of each coher-
ent area is linearized and aggregated, and the non-essential internal load buses are
eliminated. The linearization of the coherent areas is similar in concept to the modal
dynamic equivalencing technique [14, 15] of linearizing the external networks. Then
the reduced models of the coherent areas are reconnected and the non-essential
boundary buses are eliminated. Finally, the resulting linear model is used to recon-
struct a network model with transmission lines and load parameters. We shall first
discuss these operations and summarize the procedure in an algorithm.

For notational convenience, we assume that the coherent machines appear con-
secutively in δ and the load buses in each coherent area also appear consecutively in
V . The nonlinear model of coherent area α, α = 1, 2, . . . , r , is given by
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Mαδ̈α = f α(δα, V α)

I α = gα(δα, V α)
(3.69)

where δα is an nα-vector of the machine angles, V α is a 2Nα-vector of the real
and imaginary part of load bus voltages, Mα is the inertia matrix, f α is a vector
of acceleration torques, and gα is the loadflow equation of the power network in
area α. The current injection I α is nonzero at a boundary bus and represents the
connections to the neighboring areas. These injections need not be computed as
the current injections at the boundary buses will cancel as the coherent areas are
reconnected to form the complete system. We linearize (3.69) about a nominal power
flow equival(δα0 , V α

0 ) to obtain the model

Mαδ̈α = ∂ f α(δα, V α)

∂δα
Δδα + ∂ f α(δα, V α)

∂V α
ΔV α = K α

1Δδ
α + K α

2ΔV α

ΔI α = ∂gα(δα, V α)

∂δα
Δδα + ∂gα(δα, V α)

∂V α
ΔV α = K α

3Δδ
α + K α

4ΔV α

(3.70)

where Δδα is an nα-vector of the machine angle deviations from δα0 , and ΔV α is a
2Nα-vector of the real and imaginary parts of the load bus voltage deviations from
V α

0 . The matrices K α
i are similar to the matrices Ki in (3.5). As in (3.70), ΔI α also

need not be computed.
Applying a partition of the transformation (3.31) as

[
yα
zα

]
=

[
Cα
Gα

]
Δδα (3.71)

whose inverse is

Δδα = [
uα G+

α

] [
yα
zα

]
(3.72)

where Cα and G+
α are the αth diagonal blocks of C and G+, respectively, to (3.70),

we obtain the standard singularly perturbed form of area α as

mα
a ÿα = K α

11 yα + K α
12zα + K α

13V α

Mα
d z̈α = K α

21 yα + K α
22zα + K α

23V α (3.73)

ΔI α = K α
31 yα + K α

32zα + K α
4 V α

where Mα
d is the αth diagonal block of Md , and

K α
11 = uT

α K α
1 uα, K α

12 = uT
α K α

1 G+
α , K α

13 = uT
α K α

2

K α
21 = (G+

α )
T K α

1 uα, K α
22 = (G+

α )
T K α

1 G+
α , K α

23 = (G+
α )

T K α
2 (3.74)

K α
31 = K α

3 uα, K α
32 = K α

3 G+
α
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From (3.73), the slow-coherency aggregate model can be obtained as

mα
a ÿα = K α

11s yα + K α
13sΔV α

ΔI α = K α
31s yα + K α

4sΔV α
(3.75)

where

K α
11s = K α

11 − K α
12(K

α
22)

−1 K α
21

K α
13s = K α

13 − K α
12(K

α
22)

−1 K α
23

K α
31s = K α

31 − K α
32(K

α
22)

−1 K α
21

K α
4s = K α

4 − K α
32(K

α
22)

−1 K α
23

(3.76)

To complete the model reduction process, the voltage variables for the internal load
buses that need not be retained can be eliminated from (3.69). The reduced order
model of the αth area would then consist of the aggregate machine, the retained load
buses and the boundary buses

mα
a ÿα = K̄ α

11s yα + K̄ α
13sΔV̄α

Δ Īα = K̄ α
31s yα + K̄ α

4sΔV̄α
(3.77)

After the aggregate models (3.77) for all the coherent areas have been obtained,
they are reconnected to form the aggregate system model

Ma ÿ = K̄11s y + K̄13sΔV̄

0 = K̄31s y + K̄4sΔV̄
(3.78)

where K̄i js are diagonal block matrices of the corresponding matrices K̄ α
i js , and the

current injections I α’s are now modeled by the connections between the boundary
buses as the off-diagonal blocks of K̄4s . It is shown in Date [16], Date and Chow [6]
that (3.78) and (3.41) are the same dynamic model. This invariance property is due to
the fact that from a singular perturbation analysis, the first-order correction terms to
the slow subsystem involve only the connections from the generator internal nodes
to the terminal buses. For higher order correction terms, the per area aggregation
concept is no longer applicable since the impedance corrections will depend on
parameters in the other areas.

The slow-coherency aggregation for two machines A and B is illustrated in
Fig. 3.10. In slow-coherency aggregation, the machine internal node voltages E ′

A
and E ′

B are computed to obtain the linearized model (3.78) (Fig. 3.10a). In the
construction of (3.78), only the fast variable z is eliminated, while all the bus voltage
variables are retained. This allows the reconstruction from the connection matri-
ces K11s , K13s , K31s , and K4s of a power network consisting of impedances and
phase shifters (Fig. 3.10b). Although branch parameters can be reconstructed from
the connection matrices, the recovered network, in general, would not have a balanced
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Fig. 3.10 Slow-coherency aggregation: (a) two coherent generators, (b) generator internal node
connected with finite admittance between the generator buses, (c) aggregate generator transient
reactance created

load flow. For tightly connected areas, the load flow mismatch would be small
and loads can be added to the generation terminal buses to balance the load flow.
The elimination of the fast variable z results in K4s being a dense matrix. Thus
in the reconstruction, all the generator terminal buses in the same area will be
interconnected. This interconnection is dependent only on the parameters within an
coherent area, and represents the improvement to the inertial aggregate. For practical
reasons, such as implementing voltage regulator control, it is desirable to have the
machine connected to only one terminal bus. Thus for each aggregate machine, we
modify (3.78) by inserting two buses which are connected with reactances of x ′

d and
−x ′

d between the machine internal node and the remaining network (Fig. 3.10c). The
reactance x ′

d is an aggregate machine transient reactance, which can be computed as
the MVA-weighted average of the individual machine transient reactances.

Finally, all the non-essential buses including the boundary buses can be eliminated
from the model to form

Ma ÿ = K̄11 y + K̄12ΔV̄

0 = K̄21 y + K̄22ΔV̄
(3.79)

As the last step, the linear aggregate model (3.79) has to be converted into a phys-
ical power system model whose data can be used directly by conventional stability
analysis and simulation programs. The parameters of interest are, for each transmis-
sion line, the line resistance, reactance, transformer ratio and phase shifter angle, and
for each load bus, the active and reactive parts of the constant impedance, current and
power type loads. The aggregate network needs to retain the dynamics represented
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by the aggregate sensitivity matrices K̄ ’s, as well as preserve the network loadflow
on the portions of the system retained in full detail.

If the nonlinear network representation of (3.79) is in the form

Ma ÿ = fa(y, V̄ ) (3.80)

0 = ga(y, V̄ ) (3.81)

where fa and ga are the same types of nonlinear functions as those in (3.5) but with
aggregate network parameters, then the aggregate sensitivity matrices K̄ ’s in (3.79)
must satisfy

K̄i j = K̂i j , i, j = 1, 2 (3.82)

where

K̂11 = ∂ fa(y, V̄ )

∂y

∣∣∣∣
y0,V̄0

, K̂12 = ∂ fa(y, V̄ )

∂V

∣∣∣∣
y0,V̄0

K̂21 = ∂ga(y, V̄ )

∂y

∣∣∣∣
y0,V̄0

, K̂22 = ∂ga(y, V̄ )

∂V

∣∣∣∣
y0,V̄0

(3.83)

With the introduction of the aggregate machine terminal buses, the matrix equal-
ities in (3.83) will be exactly satisfied except for

K̄22 = K̂22 (3.84)

Thus the aggregate network reconstruction process is to solve for the aggregate
network parameters to satisfy (3.84), subject to the constraint of achieving a balanced
loadflow. The presence of an adequate number of network parameters will be essential
for an exact solution. In addition, there are constraints on the various entries of
K̂22 which are functions of these physical parameters. As a result some network
parameters do not provide any additional degrees of freedom for the solution. Thus
we use, for a line, only 3 out of 4 parameters, namely, the line resistance, reactance
and phase shifter angle, and for a load, 4 out of 6 load parameters, namely, the
constant impedance and constant current active and reactive types of loads.

In general, the equality (3.84) will not be satisfied exactly. As a result, we propose
a two-step least-squares optimization scheme. We denote the line and load parameters
by the vectors γ and β, respectively, and the set of physically realizable parameter
values of γ and β by G and B, respectively.

In the first step, the parameters for each line are solved independently from an
optimization problem. For the i th line, the problem is to solve for

min
γ∈G

‖K̂ i (γ )− K̄ i‖ (3.85)

where K̂ i (γ ) and K̄ i are the portions of the matrices K̂22 and K̄22 due to the i th line.
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In the second step, the parameters of each load are solved independently from a
similar optimization problem. For the j th load, the problem is to solve for

min
β∈B

‖K̂ j (β)− K̄ j‖, subject to S j (β) = 0 (3.86)

where K̂ j (β) and K̄ j are the 2 × 2 diagonal blocks of K̂22 and K̄22 due to the j th
load, and S j (β) is the function representing the current balance of the j th load.

The optimization scheme would yield an aggregate power system model with
physical machine, line, and load parameters. In addition to being a close approximate
of the slow dynamics of the original system, the aggregate model also preserves the
power flow as well as approximates the network flow sensitivities of the original
system.

The slow-coherency aggregation algorithm is now summarized as follows.

Slow-Coherency Aggregation Algorithm

Step 1: For coherent area α, α = 1, 2, . . . , r ,

1. Linearize the coherent area model (3.69) to obtain the model (3.70).
2. Apply the transformation (3.71) to (3.70) and eliminate the fast variables to

obtain (3.77).
3. Eliminate the non-essential internal buses of (3.77) to form (3.77).

Step 2.

1. Reconnect the aggregate models of the coherent areas to form (3.78).
2. Introduce aggregate generator terminal buses as needed.
3. Eliminate all the non-essential buses to form (3.79).

Step 3.

1. For each line, solve the optimization (3.85) to obtain the line parameters.
2. For each load, solve the optimization (3.86) to obtain the load parameters.

We remark that an inertial aggregate model can be obtained from the same
algorithm except that in Step 1.2, the fast variables are assumed to be identi-
cally zero. The network aggregation algorithms will be illustrated in the next
section.

To summarize, the slow-coherency aggregation method represents an improve-
ment over the generator terminal bus aggregation technique by providing impedance
corrections to the aggregate models and a more accurate loadflow sensitivity. The
additional computation effort required by the slow-coherency aggregate is modest.
An immediate consequence of the impedance corrections is the improved low fre-
quency approximation by a slow-coherency aggregate network. The improved load-
flow sensitivity is important in using the aggregate model for nonlinear simulations.
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We note that simulations using the slow-coherency aggregate model are equivalent
to the nonlinear simulation technique (A3) in Winkelman et al. [17], which used a
specialized simulation program because the approach eliminated all the load buses.
Given the simulation experience in Newell et al. [18], Troullinos et al. [19] using the
DYNRED programs in Podmore and Germond [20], the slow-coherency aggrega-
tion technique can potentially achieve the same level of approximations with smaller
reduced models.

3.6 Simulation Studies

To provide a comparison of the nonlinear aggregate models obtained from the three
techniques, we apply the techniques to the 17-area tight coherency partition of the
NPCC system. The disturbance considered is a 6-cycle short-circuit fault at the
Medway bus (Bus 7 in the data set) located in Area 1, which is cleared by removing
the line from Medway to the Sherman Road bus (Bus 6 in the data set). The study
region in which local machine dynamics are of interest is designated to be Areas 1
and 2. As a result, all the machines in these two areas are retained individually and no
aggregation is required. The aggregation algorithms are applied to the other coherent
areas to combine areas with more than one coherent machine into single equivalent
machine areas. As a result, all the aggregate models contain 24 machines, of which
7 are equivalent machines.

The Medway disturbance is simulated on the full model and the three aggre-
gate models. The responses for machines 1 and 4 are shown in Figs. 3.11 and 3.12,
respectively. Note that the Podmore aggregate model provides good approxima-
tions up to 4 seconds, after which the error in the slow interarea mode frequency
approximation becomes evident. The inertial aggregate model shows an improve-
ment over the Podmore aggregate model. The slow-coherency aggregate shows a
small improvement over the inertial aggregate model. From the eigenvalue analysis
results in Tables 3.4 and 3.5, more improvement would have been expected. How-
ever, the addition of loads to balance the power flow in the slow-coherency algorithm
introduces an approximation that reduces the improvement.

For a practical power system, a reduced model may consist of a mixture of indi-
vidual machines, inertial aggregates, and slow-coherency aggregates. In general,
no aggregation is performed within the study region such that the machines in the
study region are kept separately. Furthermore, areas immediately adjacent to the
study region, the so-called buffer regions, are also kept in detail. Only the areas
remote to the study region are aggregated. In Chow et al. [21], a study is reported
in which various aggregates are used for the external areas to achieve an optimal
aggregation.
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Fig. 3.11 Time response of machine 1 for the Medway disturbance

3.7 Coherency Toolbox

Users of the Power System Toolbox [10] can try out the various coherency and
aggregation algorithms discussed in this chapter using the “Coherency Toolbox.”
The Coherency Toolbox contains functions to perform the two grouping algorithms
presented in Sect. 3.4. It also provides functions to perform the Podmore aggre-
gation, the initial aggregation, and the slow-coherency aggregation. A load bus
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Fig. 3.12 Time response of machine 4 for the Medway disturbance

reduction function is also available [22]. Three system data are included: the Klein-
Rogers-Kundur 2-area system, and the NPCC 16-machine and 48-machine systems.1

The software can be obtained via the author’s website www.ecse.rpi.edu/~chowj. A
manual is available to provide some guidance in using the software.

1 The 16-machine system has been used in several coherency papers such as Chow et al. [3].

www.ecse.rpi.edu/~chowj
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3.8 Conclusions

In this chapter, we have provided an analytical foundation for the slow-coherency
phenomenon in power systems. The main idea is that coherency is due to the
slow interarea oscillations arising from weak connections. The singular perturba-
tions method is used to develop this slow-coherency result, from which grouping
algorithms based on eigenvalues and eigenvectors can be developed. An extension to
group load buses is introduced. The method has the advantage of having the coherent
groups of machines not dependent on the disturbance.

The singular perturbations method can also be used to generate more accurate
aggregate models, with correction terms required only from within a coherent area.
For a user of such techniques, there will be a number of tradeoffs. If the area to be
aggregated is small, then the inertial aggregation technique would provide adequate
accuracy. If the area to be aggregated is large, a user may consider using the slow-
coherency aggregation with more corrections.

In addition to obtaining reduced-order models, other applications of slow
coherency includes interconnected power system islanding as a means for power sys-
tem emergency control [23]. The singular perturbations method for slow coherency
can be extended to other network systems and models of Markov chains [24].

3.9 Appendix

The Appendix contains the data for the 2-area, 4-machine Klein-Rogers-Kundur
system [2], on 100 MVA base, with modifications of the generator parameters and
power flow data.

1. Bus parameters with solved power flow solutions:

Bus |Ṽ |, pu ∠Ṽ , deg Pgen, pu Qgen, pu Pload, pu Qload, pu

1 1.0500 0.1117 7.000 1.492 0 0
2 1.0500 −9.306 7.000 2.810 0 0
3 0.9917 −23.49 0 0 12.76 0.5
10 1.0323 −6.089 0 0 0 0
11 1.0500 0.000 9.247 2.344 0 0
12 1.0500 −16.60 5.000 3.225 0 0
13 0.9813 −29.27 0 0 14.76 0.5
20 1.0114 −15.63 0 0 0 0
101 1.0242 −26.59 0 0 0 0
110 1.0234 −8.263 0 0 0 0
120 1.0019 −21.15 0 0 0 0
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2. Line parameters:

From bus To bus Circuit R, pu X , pu B, pu

1 10 1 0.0 0.0167 0.00
2 20 1 0.0 0.0167 0.00
3 20 1 0.001 0.0100 0.0175
3 101 1 0.011 0.110 0.1925
3 101 2 0.011 0.110 0.1925
10 20 1 0.0025 0.025 0.0437
11 110 1 0.0 0.0167 0.0
12 120 1 0.0 0.0167 0.0
13 101 1 0.011 0.11 0.1925
13 101 2 0.011 0.11 0.1925
13 120 1 0.001 0.01 0.0175
110 120 1 0.0025 0.025 0.0437

3. Generator parameters:

Generator Bus Rated MVA x ′
d , pu H , pu

1 1 900 0.25 6.5
2 2 900 0.25 6.5
11 11 1100 0.25 6.5
12 12 700 0.25 6.5
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Chapter 4
Excitation System Aggregation

Joe H. Chow and Ricardo J. Galarza

Abstract Constructing a dynamic equivalent for a power system involves several
steps: the partition of the system into coherent areas, the aggregation of coherent
generator buses, and the aggregation of the coherent generators and their control
devices. These steps have been discussed in previous chapters, including a method
in Chap. 2 to aggregate the exciter models using frequency response. In this chapter,
we investigate a trajectory sensitivity method to tune the aggregate exciter parameters
of the equivalenced model. The optimal parameters of the aggregated exciter yielding
the least error are used to evaluate the sensitivity technique against the aggregation
method in the DYNRED program and a weighted MVA-based method. A three-
machine system with one coherent area satisfying the theoretical coherency condi-
tions is used to investigate the impact of the variations of the individual generator,
network, and exciter parameters on the aggregate exciter model parameters. The tech-
nique is then applied to the exciter aggregation of a larger NPCC 48-machine system.

4.1 Introduction

As illuminated in the previous chapters, the modern approach of dynamic
equivalencing involves the following steps:

1. identification of the groups of coherent generators,
2. aggregation of the generator buses,
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3. aggregation of the generator models and their associated control devices,
4. reduction of the load buses.

Steps 1, 2, and 4 have been discussed quite extensively in the previous chapters.
In most practical applications of dynamic equivalencing (see Chap. 7), the equiva-
lenced generators in the external coherent areas are modeled with classical or electro-
mechanical models using an weighted MVA method to obtain an equivalent inertia
and transient reactance. In some applications, such as a simulation of the power
system lasting 10–15 s, it may be important to maintain some equivalent impact in
the reduced models of the generator control devices, such as excitation systems and
governors. Chapter 2 describes a method of using the frequency response of transfer
functions to tune the parameters of the aggregate exciter, governor, and power system
stabilizer models.

In this chapter, we develop a sensitivity method to determine optimal parameters
for the aggregate exciter model [1]. The results are compared to the DYNRED results.
In addition, a second goal of the investigation is to develop simple rules for computing
aggregate exciter parameters that closely approximate the optimal parameters.

The remainder of the chapter is organized as follows. Section 4.2 describes the
input–output model of a coherent area and the application of the sensitivity technique
to identify the reduced model parameters. In Sect. 4.3, the concept of theoretical
coherency is presented for a coherent area with detailed machine models. In Sect. 4.4
we present the exciter aggregation results of a three-machine system to test the
sensitivity method. Section 4.5 contains the results of the exciter aggregation of the
Northeast Power Coordinating Council (NPCC) 48-machine system.

4.2 Coherent Area Input–Output Model and Sensitivity
Method

In aggregating the control devices, we assume that the groups of coherent machines
are already known. The coherent groups that are not in the study area will constitute
the external system. Based on the slow coherency concept that the coherent machines
are strongly connected among themselves and weakly connected between the dif-
ferent coherent groups, we can decouple the detailed dynamic model aggregation of
the coherent groups. That is, to a first approximation, the aggregation of a coherent
group can be done independently of the other coherent groups.

To develop the reduced model of a coherent group, we define a slow-coherent
area to consist of:

1. the coherent generators and their control devices,
2. the generator terminal buses,
3. the load buses strongly connected to the generator buses, and
4. all the transmission lines connecting the generator and load buses in the area.

http://dx.doi.org/10.1007/978-1-4614-1803-0_7
http://dx.doi.org/10.1007/978-1-4614-1803-0_2
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Fig. 4.1 Coherent area input–output model

Figure 4.1 shows a coherent area connected to the rest of the system. The buses in the
coherent area with lines connected to the study area and the other coherent areas are
called boundary buses. Their voltages are denoted by Ṽbj, j = 1, 2, . . . , k. Within
the coherent area, all the buses are interconnected, that is, there are no isolated buses
or groups of buses.

A nonlinear input–output model for coherent area i can be expressed as

ẋi = fi(xi,Vi, Ii) (4.1)

0 = gi(xi,Vi, Ii) (4.2)

where the state vector xi contains all the generator and exciter state variables in the
area, the current injection vector Ii

Ii = [I1 I2 · · · Ik]T (4.3)

is the input, and the boundary bus voltage vector Vb

Vb = [Vb1 Vb2 · · · Vbk]T (4.4)

which is a subvector of the bus voltage vector Vi, is the model output. The nonlinear
vector function fi represents the dynamics of the generators and exciters present in the
area i. Note that each vector Vbi or Ii consists of a real part and an imaginary part, the
same notation used in Sect. 3.2. The network equations are represented by the vector
of nonlinear functions gi. Disturbances applied in the study area will affect the current
injections Ii, which will perturb the coherent area from its equilibrium condition. The
resulting boundary bus voltages will then affect the power flows between the coherent
area and the rest of the system, which will lead to further variations in Ii.

The choice of Ii and Vbi as the input vector and the output vector, respectively,
is based on modeling and simulation procedures commonly found in power system
simulation programs [2]. At each integration step, the generator currents are com-
puted and injected into the power network. Then the new voltage solution of the
power network is obtained using these generator currents and injections due to the

http://dx.doi.org/10.1007/978-1-4614-1803-0_3
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loads. Thus using the current injections Ii as inputs to the coherent area, the voltage
phasors of all the buses within the coherent area can be computed. The boundary
bus voltage phasors can be used as output variables to tune the parameters of the
equivalent excitation system model.

The exciter aggregation problem is shown in Fig. 4.2 and is formulated as follows.
First aggregate the detailed models of the generators of coherent area i into a single
generator using a MVA-weighted-average algorithm (Chaps. 2 and 3). Then apply
an aggregate exciter to the aggregate generator so that the reduced nonlinear model
of the coherent area is modeled by

ẋri =fri(xri,Vri, Ii, αi) (4.5)

0 =gri(xri,Vri, Ii) (4.6)

where the state vector xri has a smaller dimension than that of xi, and the bus voltage
vector Vri could have a dimension different from that of Vi. However, the dimensions
of the current injection vector and the boundary bus voltage vector remain unchanged.
The exciter parameters are contained in the vector αi. The objective of the exciter
aggregation problem is to tuneαi so that the boundary bus voltages Vrbi of the reduced
model (4.5), (4.6) match well Vbi with the full model (4.1), (4.2) for a selected set of
disturbances in the study area.

The tuning of the exciter parameters of the reduced model to match the boundary
bus voltages of the full model is a nonlinear optimization problem. Here we will
utilize the trajectory sensitivity technique [3] to find the optimal exciter parameters.
The procedure for applying the trajectory sensitivity technique is depicted in Fig. 4.3.
A more detailed description and application of the technique can be found in [4, 5].
The trajectory sensitivity method has been applied to machine parameter estimation
[6], exciter model parameter estimation [7, 8], reduced transformer models [9], and
hybrid system simulation [10].

The parameter tuning procedure requires the following steps.

Other Coherent Areas

1I

Power System Including Equivalenced Area

2I

kI

1bV

2bV

bkVEquivalent 
Gen + Exciter

Fig. 4.2 Coherent area input–output model

http://dx.doi.org/10.1007/978-1-4614-1803-0_2
http://dx.doi.org/10.1007/978-1-4614-1803-0_3
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Fig. 4.3 Sensitivity-based reduced-order model parameter identification

Parameter tuning algorithm

1. Simulate the time response of the full model subject to a particular distur-
bance in the study area

2. Store the current injections Ii and the boundary bus voltages Vbi
3. Aggregate the coherent generators into an equivalent generator using a

weighted MVA-weighted average of the generator parameters in the coher-
ent area

4. Add to the equivalent generator an exciter model of a type similar to the
exciters in the coherent area. Set the nominal exciter model data to be the
same as the most dominant unit in the area. Typically this is the largest unit
or the one with the most responsive exciter

5. Simulate the reduced model using Ii as the input to obtain Vrbi
6. Select a subset of the exciter model parameters αi and use the trajectory

sensitivity method to tune them to match Vrbi to Vbi

The algorithm for performing this procedure was coded using functions in the
Power System Toolbox [2]. To use the program, a user has to provide the full model,
the disturbances, and the coherent areas. The simulation of the equivalenced model
(4.5) and (4.6) in Fig. 4.3 is accomplished by lifting the equivalenced model data
from the complete data set and simulating its response to Ii modeled as time-varying
constant current injections at the boundary buses. The procedure is tested using a
small system as described in Sect. 4.4.
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4.3 Theoretical Coherency

In general, a nonlinear model of a coherent area cannot be reduced exactly to an
input-output model consisting of one equivalent generator. However, under certain
ideal conditions, an exact reduced model can be achieved. The theoretical coherency
concept in [11] denotes such a special case. If the coherent area satisfies the theoretical
coherency conditions, a disturbance external to the area will not excite any relative
motions between the machines in the coherent area. To an observer outside the
coherent area, the motions of these machines are seen as if they were originated
from one single machine. Thus, it presents an ideal case in which generators can
be aggregated exactly in an input–output sense. This is an important idea because
if we know that a coherent area satisfies approximately the theoretical coherency
conditions, then the reduced model can provide a good approximation of the coherent
area. In addition, the parameters of the equivalent model would be similar to those of
the individual machines. Thus coherent areas close to satisfying theoretical coherency
conditions provide good test cases for the sensitivity method of parameter tuning.

To show the theoretical coherency conditions, consider a coherent area consisting
of two identical machines as shown in Fig. 4.4. This coherent area is connected to
the rest of the power system through the boundary Bus 3, and the flow exchange
with the external system is denoted by the current injection I1. We let Y13 = Y23 and
the loading of the two generators be identical, that is, V1 = V2 and Ig1 = Ig2. The
admittance Y12 of the line connecting the generator terminal buses can be arbitrary.

The generators in Fig. 4.4 have the same MVA rating and generator and exciter
models. The dynamic models are represented as

ẋj = f
(
xj,Vj

)
, Igj = h

(
xj,Vj

)
, j = 1, 2 (4.7)

where xj is the vector of the state variables for machine j, and the network equation is
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2gI
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1gI
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13Y

23Y
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Fig. 4.4 An area illustrating theoretical coherency
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Ĩg1

Ĩg2

Ĩ1

⎤
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where Y11 = Y22. In (4.8), we use the complex phasor form for the voltages and
currents as the admittance terms Yij are complex. For any deviation of the injected
current Ĩ1 from its equilibrium value, the dynamic response of the system will satisfy

x1(t) = x2(t) = x(t), Ṽ1(t) = Ṽ2(t) = Ṽ(t), Ĩg1(t) = Ĩg2(t) (4.9)

Thus the first and second network equations in (4.8) can be expressed as

(Y11 + Y12) Ṽ + Y13Ṽ3 = Ĩg1 (4.10)

Then (4.8) reduces to

[
2 (Y11 + Y12) 2Y13
2Y13 Y33

] [
Ṽ
Ṽ3

]
=

[
Ĩg

Ĩ1

]
(4.11)

where Ĩg = 2Ĩg1. The machine dynamics are now governed by

ẋ = f (x,V) , Ig = 2h (x,V) (4.12)

Equation (4.12) represents a machine with the same model and parameters as Gen-
erators 1 and 2, except that it has double the MVA rating. The model (4.11), (4.12)
forms an exact equivalent of the coherent area for any variation of the injected cur-
rent I1 caused by a disturbance. The theoretical coherency concept can be readily
extended to coherent areas with more than 2 machines.

Summarizing, a set of sufficient conditions for theoretical coherency consists of:

1. identical machine and control device models, parameters, and power output levels,
2. identical admittances connecting the generator buses to each boundary bus.

There are no restrictions on the admittances between the generator buses and between
the boundary buses. These conditions, however, are in general not satisfied in the
coherent areas of a real power system.1 As a result, it is necessary to study practical
aggregation techniques for generators and control devices, to account for the varia-
tions of model and network parameters from the theoretical coherency conditions.

1 A practical means of check theoretical coherency is that if any large disturbance external to a
coherent area does not significantly excite the local modes within the coherent area, then the theo-
retical coherency conditions are approximately satisfied by the coherent area. Figure 3.1 illustrates
this situation for the coherent areas in the 2-area, 4-machine system.

http://dx.doi.org/10.1007/978-1-4614-1803-0_3
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4.4 A Three-Machine Test System

In this section, we investigate a small power system having a coherent area whose
nominal models and parameters satisfy the theoretical coherency conditions. Then
we perturb some of the parameters so that not all the theoretical coherency conditions
are satisfied. For the perturbed model, we use the trajectory sensitivity method to find
the optimal aggregate exciter parameters for the reduced model to produce a good
approximation of the boundary bus voltage. The objective is to develop fundamental
insights on exciter aggregation, which can then be applied to larger systems.

Figure 4.5 shows a three-machine system whose data can be found in the
Appendix. Generators 1 and 2 and Buses 1, 2, and 3 form the coherent area, with Bus
3 being the boundary bus. For the nominal parameters, the coherent area satisfies the
theoretical coherency conditions and Generators 1 and 2 can be aggregated exactly.
Generator 3 is considered as the study area. The exciter models used for Machines
1 and 2 are Type DC1A [12], shown in Fig. 4.6, which is a common exciter model
type in the stability data of the US power systems.
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In a coherent area not satisfying the theoretical coherency conditions, the accuracy
of the reduced model of the coherent area will depend strongly on many factors,
including:

1. the machine sizes and power output levels,
2. the admittances of the lines connecting the machine terminal buses to the boundary

buses,
3. the exciter models and parameters,
4. the type of disturbances.

Based on the above list, we introduce the following perturbations to the nominal
parameters to study the impact of the variations on the tuning of aggregate exciter
parameters for the reduced model:

1. Change the MVA bases of Machines 1 and 2 such that MVA2 = 2 × MVA1. The
power output levels are also changed accordingly.

2. Change the terminal voltage V1 at Bus 1 from 1.05 to 1.03 pu.
3. Change the impedance and charging of the line connecting Buses 1 and 3 (Line

1–3) to 1/3 of its nominal values.
4. Change the exciter voltage regulator gain, KA.

These perturbed parameters represent substantial violations of the theoretical
coherency conditions.

For each perturbation, the coherent area is reduced to a single-machine system.
The performance of the reduced-order model is evaluated using two different distur-
bances outside the coherent area:

1. a three-phase, three-cycle short-circuit fault on Bus 5 without line removal
(denoted as SC),

2. a 0.5 pu increase in the reactive power loading on Bus 4 (denoted as Q).

The SC disturbance tests the transient performance of the aggregate exciter. In the Q
disturbance the post-fault operating condition is different from the pre-fault operating
condition. Thus the Q disturbance tests the steady-state regulation of the aggregate
exciter. A summary of all the cases is given in Table 4.1.

For the given disturbances, the trajectory sensitivity technique was used to tune the
exciter parameters to match the boundary bus voltage response of the reduced model
to that of the full model. Our first conclusion was that the dominant parameter is the
aggregate regulator gain KA, which will be denoted by KAr . Once an optimal KAr

was found, tuning the other exciter parameters resulted in only small improvement.
Thus we will only present the results of tuning KAr in this chapter, with the other
exciter parameters set to their nominal values.

Table 4.2 summarizes the results of parameter tuning for both the SC and Q
disturbances. For comparison purposes, we also include the aggregate regulator gains
KAr obtained using the DYNRED program.2

The main conclusions are listed as follows:

2 DYNRED computes KAr using a weighted least-squares frequency response technique.
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Table 4.1 Summary of cases Case Description

A Theoretical coherency
A1 KA1 = 299, KA2 = 100
B MVA2 = 2 × MVA1

B1 B and A1

C V1 = 1.03 pu
C1 C and A1

D Line 1–3: 1/3 of nominal values
D1 D and A1

E C and D
E1 C, D, and A1

Table 4.2 Tuning aggregate
exciter voltage regulator gain

Case Individual KA Optimal KAr DYNRED
KA1 KA2 SC Q Aggregate KAr

A 299 299 299 299 299
A1 299 100 170 182 208
B 299 299 299 299 299
B1 299 100 164 175 175
C 299 299 299 299 299
C1 299 100 200 200 208
D 299 299 299 299 299
D1 299 100 200 200 208
E 299 299 277 283 299
E1 299 100 180 180 208

1. Case A is the theoretical coherency case. The reduced model response matches
exactly the full model response when the nominal exciter parameters are used for
the aggregate exciter model.

2. In Case A1, the theoretical coherency conditions are no longer satisfied. The
algorithm yields different optimal values of KAr for the two disturbances. This
shows that the optimal values are disturbance dependent. The optimal KAr’s are
close to the average of the individual KA’s.

3. In Cases B, C, and D when KA1 = KA2, the optimal aggregate KAr achieved by
the algorithm has the same value.

4. In Case B1 when the individual exciter KA’s are different, the optimal aggregate
KAr’s obtained can be approximated by using a MVA-base weighted average

KAr = (1 × KA1 + 2 × KA2)/3 = 166

This result shows the effect of machine ratings on the aggregate KAr .
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Fig. 4.7 Case E1, full versus reduced model—optimal KAr

5. The optimal aggregate KAr’s achieved in Cases C1 and D1 are only slightly higher
than those obtained in Case A1, indicating that the terminal voltage and line
impedance variations do not significantly impact the aggregate KAr .

6. Cases E and E1 are combinations of Cases C and D. However, the optimal aggre-
gate KAr’s have lower values than those achieved in Cases C and D. This illustrates
that the optimal aggregate KAr depends nonlinearly on the deviation from the the-
oretical coherency conditions.

7. The aggregate KAr’s obtained from DYNRED are usually within 10 % of the
optimal values obtained from the trajectory sensitivity method. Thus these values
can be used instead of the optimal values.

We now illustrate the approximation achieved by the reduced models for Case E1
using nonlinear time simulation of the SC disturbance. We show the results for the
reduced model with three different sets of exciter model parameters:

1. optimal KAr with the other exciter parameters at their nominal values,
2. all aggregate exciter parameters from DYNRED,
3. KAr from DYNRED with the other exciter parameters at their nominal values.

In the DYNRED model, the time constants of the exciter parameters are obtained
from a least-squares frequency-response method and are in general different from
the nominal values.

The comparisons of the time responses of the full and reduced models are shown
in Figs. 4.7, 4.8, and 4.9. The reduced model with the optimal KAr is almost an exact
match of the full model, and the reduced model with only KAr from DYNRED also
shows a good match. The reduced model with all exciter parameters from DYNRED
is somewhat less accurate.



84 J. H. Chow and R. J. Galarza

0 1 2 3 4 5 6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

B
ou

nd
ar

y 
B

us
 V

ol
ta

ge
 M

ag
. (

pu
)

Time (seconds)

solid:full model, dotted: reduced model

Fig. 4.8 Case E1, full versus reduced model—KAr from DYNRED
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Fig. 4.9 Case E1, full versus reduced model—DYNRED parameters

Only the type DC1A exciter is investigated here. The other two common exciter
types, AC (alternator supplied rectifier excitation system) and ST (static excitation
system), contain nonlinearities arising from the rectifier circuits, limits, and sat-
urations. These exciters would exhibit substantial nonlinear transients if they are
equipped on machines close to a disturbance. However, exciter aggregation should
only be performed for coherent machines away from the disturbance. As a result,
these nonlinearities may not be significant, and KA may still be the most important
parameter. Further work is required to investigate the aggregation of the AC and ST
exciter types.
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Table 4.3 Coherent machine
groups and models

Area Machine number Dynamic models
DM CM EXC

1 3,4,5,6,7,8 6 0 6
2 1,2,9 3 0 3
3 10 1 0 1
4 11,12 2 0 2
5 13,14,24,25,26 2 3 2
6 15,16,17,18,19,20,21,22,23 7 2 7
7 27,28,29,30 3 1 3
8 31 0 1 0
9 32,37,38,40,42 1 4 0
10 33 0 1 0
11 34,35 0 2 0
12 36 0 1 0
13 39 1 0 0
14 41 0 1 0
15 43,44,45,46 0 4 0
16 47 0 1 0
17 48 0 1 0

4.5 NPCC 48-Machine System

The exciter aggregation results from the three-machine system are applied to a larger
NPCC 48-machine system used in Chap. 3 [13].

Following the dynamic equivalencing procedure, the 48-machine system was
partitioned into 17 coherent areas using the tolerance-based coherency algorithm in
Chap. 3 with the 9 slowest modes and a tolerance of 0.95. The machines in each area
are listed in Table 3.3. Here we expanded the Table (4.3) to show the dynamic models
used: CM: classical machine model; DM: detailed machine model; and EXC: IEEE
DC1A exciter model. For example, Area 5 has 5 machines, of which two are repre-
sented by detailed models and the other three by classical models. All the machines
with detailed models are equipped with exciters. A map with the geographical loca-
tion of the machines and coherent areas is shown in Fig. 3.7.

Areas 1 and 2, which correspond to the New England power system, are taken to
be the study area. The external system consists of all the other areas. In the study
area, all 9 machines are kept in full detail. In the external system, both machines in
Area 4 has exciter models. Areas 5, 6, and 7 consist of both detailed machine models
with exciters as well as machines with classical models. DYNRED will aggregate
the classical models separately from the detailed machine models. We follow this
idea and subdivide Areas 5, 6, and 7 into two areas. The subareas with detailed
machine and exciter models are denoted as 5e, 6e, and 7e, respectively. To focus on
the exciter aggregation, we only aggregate the external areas containing exciters. In

http://dx.doi.org/10.1007/978-1-4614-1803-0_3
http://dx.doi.org/10.1007/978-1-4614-1803-0_3
http://dx.doi.org/10.1007/978-1-4614-1803-0_3
http://dx.doi.org/10.1007/978-1-4614-1803-0_3
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addition, we test the aggregation by constructing dynamic equivalence with only one
aggregated area. We also test a reduced model with all four areas (Areas 4, 5e, 6e,
and 7e) aggregated. The resulting reduced 31-machine system (denoted as the R31
model) consists of

1. the study area: 9 machines (Areas 1 and 2) in full detail
2. the external system:

• 4 aggregate machines with exciter models,
• 1 machine in Area 10 with an exciter model,
• 17 machines with classical models.

The network is aggregated using the inertial aggregation method (see Sect. 3.5).
Although we can use the trajectory sensitivity method to tune the aggregate exciter

parameters individually for Areas 4, 5e, 6e, and 7e, we make use of the MVA weighted
average results from the three-machine system. Let KAj be the regulator gain of the
exciter for machine j, and ng be the number of generators with exciter models in the
coherent area. The exciter parameter KAr for the aggregated machine is computed as
follows

KAr =
∑ng

j=1 MVAj × Hj × KAj∑ng
j=1 MVAj × Hj

(4.13)

where MVAj and Hj are the machine j MVA base and inertia constant, respectively.
The machine inertia is included in (4.13) because in the system data, the MVA base
of the machines in the external system has all been set to 100. The ratio of MVA bases
between the machines can be recovered approximately by multiplying the MVA base
of 100 with Hj.

For each of the equivalenced systems, we evaluate three different means of obtain-
ing the aggregated exciter parameters:

1. KAr from (4.13), and the other aggregate exciter parameters from the exciter of
the most dominant machine in the area.

2. KAr from DYNRED, and the other aggregate exciter parameters from the exciter
of the most dominant machine in the area.

3. All aggregated exciter parameters from DYNRED.

These models are evaluated by applying a 3-phase, 6-cycle short-circult fault on
Bus 7 (Medway) in the study area. The fault is cleared by removing the line from
Bus 7 to Bus 6 (Medway to Sherman Road). As a measure of the accuracy of the
reduced models, we compute the error function Ja(k)

Ja(k) = 1

T

∫ T

0
| δrk − δk | dt (4.14)

for machine k in a time period from 0 to T , where δrk and δk are the rotor angles of
machine k in the reduced and full model, respectively.

http://dx.doi.org/10.1007/978-1-4614-1803-0_3
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Table 4.4 Error functions for machine 1—different aggregated exciter parameters

Area aggregated Error Ja(1)
KAr from (4.13) KAr from DYNRED DYNRED

4 0.0217 0.0217 1.291
5e 0.2702 0.2700 0.2718
6e 0.1128 0.1128 0.1182
7e 0.0321 0.0319 0.0324
R31 2.012 2.013 3.046
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Fig. 4.10 Time response of machine 1, full versus reduced 31-machine system (MVA weighted)

Table 4.4 shows the error functions of Machine 1 for the disturbance simulation.
All three methods yield comparable results when only Areas 5e, 6e, and 7e are
aggregated one at a time. However, for Area 4, even though the two machines have
identical generator and exciter models and parameters, DYNRED yields a set of
aggregate exciter time constants that are different from those of the individual exciter
time constants. This area is located next to the study area, and hence has a large
influence on the study area. Thus the all-DYNRED-parameter model shows a much
larger error Ja(1) than the other two schemes. The last row in Table 4.4 shows
the performance of the reduced 31-machine system R31. The error from the all-
DYNRED model is again higher because of Area 4.

Figures 4.10 and 4.11 are plots of the Machine 1 response of the full model versus
the R31 model using the MVA-weighted KAr and the all-DYNRED exciter para-
meters, respectively. The MVA-weighted KAr model shows a better approximation
compared to the DYNRED model. The simulation for the reduced model using KAr

from DYNRED is very similar to that of MVA-weighted KAr and hence is not shown
here. We also found that tuning the aggregate exciter parameter KAr using the trajec-
tory sensitivity method did not improve the performance of the reduced model very
much. Hence the value of KAr used here is close to the optimal.
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Fig. 4.11 Time response of machine 1, full versus reduced 31-machine system (DYNRED
parameters)

A more detailed analysis of the aggregation results of the 48-machine systems
can be found in [5].

4.6 Conclusions

In this chapter, we have reported on an investigation of the aggregation of exciters for
use in constructing power system dynamic equivalents. Starting from a small three-
machine system under theoretical coherency conditions, several perturbations have
been applied to investigate the effect of these variations on the aggregate exciter
parameters. For the type DC1A exciter model, we have concluded that the most
important parameter is the regulator gain KA. Furthermore, we show that an MVA-
base weighted KAr is a close approximate of the optimal KAr . A similar value of
KAr is computed by DYNRED. Thus we recommend using either the DYNRED or
the MVA-base weighted KAr , with the time constants of the aggregate exciter set to
those from the exciter of the most dominant unit in the coherent area.

The sensitivity method used in this chapter serves as a tool for studying the impact
of the different exciter parameters and as a benchmark for evaluating other methods.
The results here show that the much simpler weighted MVA base method provides
close to optimal KAr . Thus it may not be always necessary to use the sensitivity
method to obtain the optimal aggregate KAr if computation time is of concern.

Only the type DC1A exciter is investigated in this chapter. Further work is required
to investigate the optimal aggregation of other types of exciters as well as turbine-
governor models.
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Appendix:Three-machine system data

The power flow data of the 3-machine system in Fig. 4.5 are given in Tables 4.5 and
4.6, on 100 MVA base.

Table 4.5 Three-machine system bus data

Bus # Voltage Generation Load
Magnitude pu Phase degree Active pu Reactive pu Active pu Reactive pu

1 1.0500 22.51 0.0 0.0 4.0 1.0073
2 1.0500 22.51 0.0 0.0 4.0 1.0073
3 1.0055 10.98 6.0 1.2 0 0
4 1.0186 5.39 0.0 0.0 0 0
5 1.0300 0.00 2.0 0.4 0.2125 0.7873

Table 4.6 Three-machine
system line data

Line R, pu X , pu B, pu Tap
From bus To bus

1 2 0.0000 0.0330 0.0
1 3 0.0056 0.0536 0.2 1.014
2 3 0.0056 0.0536 0.2 1.014
3 4 0.0056 0.0536 0.2
4 5 0.0056 0.0536 0.2

The parameters of the generators are: base = 450 MVA, xd = 1.87 pu, xq =
1.77 pu, xl = 0.21 pu, x′

d = 0.365 pu, x′
q = 0.61 pu, x′′

d = 0.28 pu, x′′
q = 0.28 pu,

T ′
do = 7.3 s, T ′

qo = 0.73 s, T ′′
do = 0.032 s, T ′′

qo = 0.056 s, H = 4.74 pu, S(1.0)
= 0.072, and S(1.2) = 0.282.

The parameters of the IEEE type DC1A exciter model are: KA = 299, TA = 0.02 s,
KE = 1, TE = 0.785 s, E1 = 2.87 pu, SE(E1) = 0.67, E2 = 3.82 pu, SE(E2) = 0.91,
KF = 0.015, TF = 1 s, TB = 0 s, TC = 0 s, VRmax = 7.3 pu, and VRmin = −7.3 pu.
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Chapter 5
A Hybrid Dynamic Equivalent Using
ANN-Based Boundary Matching Technique

Vijay Vittal and Feng Ma

Abstract In this chapter, a hybrid dynamic equivalent consisting of both a
coherency-based conventional equivalent and an artificial neural network (ANN)-
based equivalent is developed and analyzed. The ANN-based equivalent comple-
ments the coherency-based equivalent at all the boundary buses of the retained area.
It is designed to compensate for the discrepancy between the full system model and
the reduced equivalent developed using any commercial software package, such as
the dynamic reduction program (DYNRED), by providing appropriate power injec-
tions at all the boundary buses. These injections are provided by the ANN-based
equivalent which is trained using the outputs from a trajectory sensitivity simulation
of the system responses to a candidate set of disturbances. The proposed approach
is tested on a system representing a portion of the Western Electricity Coordinating
Council (WECC) system. The case study shows that the hybrid dynamic equiva-
lent can enhance the accuracy of the coherency-based dynamic equivalent without
significantly increasing the computational effort.

5.1 Introduction

With the evolution of heavily interconnected power systems, it is computationally
burdensome to represent the entire system in detail to conduct numerous stabil-
ity studies [1]. This is especially true for real-time power system transient stability
assessment as there is a strict limitation on the size of the system that can be simu-
lated. Therefore, it is necessary to build a reduced order model which can preserve
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the dynamic properties of the specific subsystem that is of interest. To account for
this challenge, power system dynamic equivalents have received renewed attentions
recently and have been widely applied for the purpose of reducing the computational
effort of dynamic security assessment.

Dynamic equivalents are commonly developed using a coherency-based approach
[2–8] in which a retained area and an external area are demarcated first. Then the
coherency patterns of the generators in the external area are evaluated. A commonly
used method is to introduce faults on the retained area boundary and to group the
generators with similar dynamic responses in the external area. The other methods,
such as weak-link method [2] and slow coherency-based method [3], have also been
proposed and implemented. As a result of generator coherency identification, the
coherent generators in the external area are aggregated. Network reduction is then
performed at the interface between the retained area and the external area to suitably
interconnect the equivalent generators.

When building a dynamic equivalent, the retained area boundary definition can
significantly affect the equivalencing accuracy of the reduced system model. As more
components are included in the retained area, more attributes related to the dynamic
characteristics of the retained area can be preserved. In conventional dynamic equiv-
alent applications, however, the retained area and external area are arbitrarily deter-
mined without thoroughly examining the system dynamic behaviors. An improperly
defined retained area boundary can have a detrimental impact on the effectiveness of
the equivalenced model in preserving dynamic characteristics of the original unre-
duced system. Under realistic situations, generator coherency information obtained
under one particular operating condition might not be applicable to another system
operating condition. When operating condition changes, the errors resulting from
generator aggregation cannot be completely eliminated. This is especially true for
the classical generator aggregation method [4] because the detailed representation
of the generators, exciters, and governors are neglected in forming the equivalent
generator models. Furthermore, the accuracy of the equivalent model of the external
area might be even more questionable as detailed information about the network and
component models within the external system is often inaccessible to a single entity
in the deregulated electric utility environment.

Recently, artificial neural network (ANN) technique has been successfully applied
to the subject of dynamic equivalents due to its superior capability of capturing arbi-
trary input-and-output mappings from training samples. The ANN-based equivalent,
represented by a set of neural networks, is a “black box” in nature. It only needs
the measurements at the retained area boundary buses instead of the detailed model
information in the external area. In [9–11], different types of neural networks, such
as bottleneck network and recurrent network, have been studied. In an attempt to
effectively capture the dynamic characteristics of the external area, these efforts
demonstrate the need for a complicated neural network structure to achieve reason-
able equivalencing accuracy.

In order to overcome the disadvantage of a complex neural network structure,
a hybrid dynamic equivalent model that combines the advantages of both the
coherency-based and ANN-based equivalent methods has been proposed in this
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chapter. The data for neural network training are generated using a trajectory sen-
sitivity-based approach [12, 13]. In the proposed hybrid model, the ANN-based
equivalent works in conjunction with the coherency-based equivalent formed using
the dynamic reduction package (DYNRED) [14] at the retained area boundary buses.
By providing the desirable supplementary compensation in terms of power injections
at the boundary buses, the ANN-based equivalent compensates for the discrepancy
between the full system and the conventionally reduced system responses. The test on
a portion of the Western Electricity Coordinating Council (WECC) system shows that
the hybrid dynamic equivalent method can improve the accuracy of the coherency-
based equivalent for both trained and untrained cases. The proposed approach also
shows great potential to improve the equivalent models for online dynamic secu-
rity assessment (DSA) using measurements collected by the synchronized phasor
measurements units (PMUs) at the boundary buses.

5.2 Coherency-Based Dynamic Equivalent

As shown in Fig. 5.1, the study area, buffer area, and external area are defined prior
to building a dynamic equivalent:

• Study area: the core subsystem that is of direct interest and must be retained in
detail. For the reduced system to effectively represent the full system behavior, the

Study Area

External Area

Coherent 
Generators

Coherent 
Generators

Buffer Area

Fig. 5.1 Definitions of study area, buffer area, and external area
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power flow and dynamic responses within this area are supposed to be the same
as those in the full system representation.

• Buffer Area: the area that is geographically or electrically close to the retained area.
It has significant impact on study area due to its tight electrical coupling with the
study area. For better equivalencing accuracy, this area along with its component
models is retained in detail.

• External area: this is the portion of the system for which detailed information on
the system responses is not required and where the models can be replaced by
proper equivalent models.

In practice, all the models in the study area and buffer area are retained; therefore,
both areas together are denoted as the retained area. After dynamic equivalenc-
ing process, the reduced system consisting of both the retained area and equivalent
model of the external area can be formulated. In the literature, the methods based on
generator coherency have been extensively studied. The basic idea is to aggregate
the generators in the external area that present similar dynamic characteristics. The
extent of the similarity is measured by generator coherency. For example, if two gen-
erators present similar rotor angle responses following a system disturbance, they
are considered tightly coherent. Otherwise, they are considered weakly coherent. To
evaluate generator coherency, the most intuitive approach is to compare the genera-
tor responses following certain system disturbances. Based on this idea, the authors
in [5] proposed a linear simulation method for coherency evaluation. For example,
two generators are considered tightly coherent when the maximum deviation of their
rotor angle responses subjected to a specific disturbance is smaller than a predefined
threshold value. Although classical generator models are used for coherency eval-
uation, the simulation-based method is still time-consuming when different system
disturbances need to be investigated on a large-scale inter-connected power sys-
tem. The weak-link method was first introduced in [2]. Unlike the linear simulation
method, it measures the coupling of generators directly based on the system state
matrix. A group of generators are considered coherent if the coupling coefficients
among them are high. In [3], the slow coherency technique based on the singular
perturbation theory was implemented to separate slow and fast dynamics in large
power systems and to identify the coherent generators from the perspective of the
slow dynamic process. As a simplified realization of the slow coherency method, a
coherency index is developed based on the similarity of the mode shapes associated
with a set of specific slow oscillation modes within the system [4].

After identifying the coherent generators that belong to a group, the parameters of
an equivalent generator model are aggregated from individual coherent generators.
The frequency-domain method [6] and the structure preserving method [7] have been
proposed in the literature. When forming the equivalenced generators with detailed
representation, however, these methods might lead to problematic parameters in cer-
tain cases. Therefore, the classical aggregation method [4] is widely implemented
in practice. By this method, the equivalenced generator is formed using a classi-
cal representation. Its inertia is the sum of individual generator inertias, and its
transient reactance is the parallel combination of individual transient reactances.
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The aggregated damping coefficient is computed based on the user-defined ratio of
aggregated damping to aggregated inertia.

As the final step in building an equivalent system, the electrical network in the
external area is reduced. During this process, the buses in the external area are
eliminated using the Gaussian elimination. In the meantime, detailed load models
are aggregated and replaced by appropriate equivalent load models.

5.3 Hybrid Dynamic Equivalent

In the coherency-based dynamic equivalent, the coherent generators in the exter-
nal area are aggregated and replaced by appropriate classical equivalent generator
models. Because of the errors accumulated in the generator aggregation process, a
large retained area is commonly defined to achieve reasonable equivalencing accu-
racy. However, this improvement might become insignificant when the retained area
itself is already large enough [15, 16]. This limitation becomes more significant as the
detailed information about the network and component models within the external
system is often inaccessible to a single entity in the deregulated electric utility envi-
ronment. To address this challenge, a novel hybrid dynamic equivalent, comprised
of both a coherency-based equivalent and an ANN-based equivalent, is developed.
The evolution of the proposed hybrid dynamic equivalent is shown in Fig. 5.2.

Using the voltages at the boundary buses as inputs, the ANN-based equivalent
dynamically adjusts its power injections to minimize the voltage response mis-
matches at all the boundary buses between the unreduced system and the conven-
tionally reduced system. With a properly trained neural network, the hybrid reduced
system is expected to more accurately represent the dynamic characteristics of the
retained area. It is to be noted that in the proposed hybrid equivalent, the coherency-
based (conventional) equivalent still plays a dominant role, and the ANN-based
equivalent is merely used to capture additional dynamic characteristics that have not
been captured in the conventionally reduced system. The hybrid equivalent connec-
tion configuration allows great flexibility for practical implementation. For example,
the hybrid reduced system can convert back to the conventionally reduced system
with the ANN-based equivalent disconnected.

5.3.1 Training Data for ANN-Based Equivalent

As shown in Fig. 5.2, the ANN-based equivalent complements the conventional
equivalent developed using DYNRED. At each time instant, the training samples
containing the connection bus voltages together with the power injections from the
ANN-based equivalent need to be obtained. In the literature, the trajectory sensitivity
method [12, 13] provides an effective approach to estimate system variable deviations
with respect to single or multiple system parameter changes. Therefore this method
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Fig. 5.2 Evolution of the hybrid dynamic equivalent

is utilized to determine the gradient for computing the desirable power injections
of the ANN-based equivalent that matches the boundary voltage responses in the
reduced systems to the unreduced system.

In general, a power system can be represented by a set of differential algebraic
equations (DAEs) that is given by:

ẋ = f(x, y, β)
0 = g(x, y, β)

(5.1)

where x is the state variable vector, y is the algebraic variable vector, β is a system
parameter subject to change, and β0 is the initial value of β. The vector of differ-
ential equations f represents the dynamics of system components, and the vector of
algebraic equations g represents the power flow balance equation at each bus in the
system.

To numerically solve the DAEs in (5.1) in a time-domain simulation, an implicit
method like the trapezoidal rule is applied. At the time instant n, the following
equations need to be solved to determine xn and yn :
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F(xn, yn) = xn − xn−1 − 1
2�t

[
f(xn, yn, β)+ f(xn−1, yn−1, β)

] = 0

G(xn, yn) = g(xn, yn, β) = 0
(5.2)

where �t is the integration time step.
To solve the set of nonlinear equations in (5.2), the Newton-Raphson (NR) iterative

algorithm is implemented. At the kth iteration, the following equation can be formed:

[
Fk

x Fk
y

Gk
x Gk

y

] [
�xk

n

�yk
n

]
=

[−F(xk
n, yk

n)

−G(xk
n, yk

n)

]
(5.3)

where Fk
x = ∂F/∂x = I − 0.5�t∂f/∂x, Fk

y = ∂F/∂y = −0.5�t∂f/∂y, Gk
x =

∂G/∂x = ∂g/∂x, and Gk
y = ∂G/∂y = ∂g/∂y are the partial derivative matrices

formulated at x = xk
n and y = yk

n . I is an identity matrix.
Then the system variables are updated to xk+1

n = xk
n +�xk

n and yk+1
n = yk

n +�yk
n ,

respectively. The entire iterative procedure terminates when the increment is smaller
than a specified tolerance.

For β that is sufficiently close to β0, the perturbed trajectory solution can be deter-
mined by taking the derivatives of the system variables with respect toβ. Accordingly,
a new set of linear DAEs can be formed:

ẋβ = fxxβ + fyyβ + fβ

0 = gxxβ + gyyβ + gβ
(5.4)

where xβ = ∂x/∂β and yβ = ∂y/∂β are the trajectory sensitivities of x and y
at β = β0, respectively. fx = ∂f/∂x, fy = ∂f/∂y, fβ = ∂f/∂β, gx = ∂g/∂x,
gy = ∂g/∂y, and gβ = ∂g/∂β.

Similar to (5.3), the trapezoidal rule is also applied to solve (5.4). At the time
instant n, the following linear equation holds:

xβ,n − xβ,n−1 − �t

2

[
fx,nxβ,n + fy,nyβ,n + fβ,n
+fx,n−1xβ,n−1 + fy,n−1yβ,n−1 + fβ,n−1

]
= 0

gx,nxβ,n + gy,nyβ,n + gβ,n = 0 (5.5)

where fx,n , fy,n , gx,n , and gy,n are the partial derivative matrices formed at the last
iteration of (5.3). To determine the unknowns, namely xβ,n and yβ,n , (5.5) can be
re-formatted as:

[
I − �t

2 fx,n −�t
2 fy,n

gx,n gy,n

] [
xβ,n
yβ,n

]

=
[

xβ,n−1 + �t
2 fβ,n + �t

2

(
fx,n−1xβ,n−1 + fy,n−1yβ,n−1 + fβ,n−1

)
−gβ,n

]
(5.6)
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It can be seen that the additional computational effort for calculating the trajectory
sensitivity is manageable as (5.6) is a linear equation, and all the entries on the left-
hand side have already been computed when calculating the initial trajectory with
β = β0 at the time instant n in (5.2). Based on the specific changing pattern of β, the
remaining unknown coefficients can be easily determined. Without loss of generality,
it is assumed that at the time instant n the active power injected from ANN-based
equivalent to Bus j , namely PANN j,n , is the changing system parameter. It can be
shown that:

• PANN j,n is the parameter variable defined specifically for the time instant n, and
it does not have any impact on the system dynamics at previous time instants.
Therefore at the time instant n-1, ∂x/∂PANN j,n = 0, ∂y/∂PANN j,n = 0, and
∂f/∂PANN j,n = 0. Accordingly, xβ,n−1 = 0, yβ,n−1 = 0, and fβ,n−1 = 0.

• gβ,n is the derivatives of g with respect to PANN j,n at the time instant n. At Bus j ,
the active power balance equation, namely gP j , is:

gP j = Pj,n + PANN j,n −
N∑

k=1

Vj,n Vk,n
(
G jk cos θ jk,n + B jk sin θ jk,n

) = 0 (5.7)

where Pj,n is the existing active power injection at Bus j , Vj,n∠θ j,n and Vk,n∠θk,n

are the voltages at Bus j and Bus k, respectively. G jk + jB jk are ( j, k)th element
of the system admittance matrix. N is the total number of buses in the system. It
can be proven that gβ,n is a column vector with 1 at the entry corresponding to gpj

and zeros elsewhere.
• fβ,n denotes the derivatives of f with respect to PANN j,n at the time instant n.

Because PANN j,n is independent of any dynamic states that are represented in f
and is only modeled as an additional power injection at Bus j , it can be proven
that fβ,n = 0.

Let B denote the set comprising the boundary buses, then (5.6) can be directly
solved for ∂Vi,n/∂PANN j,n and ∂θi,n/∂PANN j,n(i ∈ B and j ∈ B) at the time
instant n. The sensitivities of the boundary bus voltages with respect to the reac-
tive power injections of the ANN-based equivalent, namely ∂Vi,n/∂QANN j,n and
∂θi,n/∂QANN j,n can be obtained in a similar manner. The only difference is that
gβ,n in (5.6) now becomes a column vector with 1 at the entry corresponding to the
reactive power balance equation of Bus j and zeros elsewhere.

An example of the iterative procedure to compute the required power compensa-
tions from the ANN-based equivalent at the time instant n is illustrated in Fig. 5.3.
Vri,n−1 and V f i,n−1 are the voltage at Bus i at the previous time instant n − 1. At
the beginning of the procedure, it is assumed that Vri,n−1 = V f i,n−1.

During the process shown in Fig. 5.3, the power injections are updated iteratively to
modify the voltage responses at the boundary buses in the reduced system. At the last
iteration, the voltage matches the response obtained in the full system representation.
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Fig. 5.3 Example of the training data formulation iterations

For a specific system disturbance, the general procedure to build the training samples
includes the following steps:

• Step 1: n = n + 1, the power injections of the ANN-based equivalent are
initialized to the same values obtained at the previous time instant n − 1.

• Step 2: Calculate the voltage response in the reduced system with the power
injections of the ANN-based equivalent fixed by solving (5.2) for the present
time instant. Determine the voltage mismatch at the boundary buses, namely
�Vn = [V f,n −Vr,n] and�θn = [θ f,n −θr,n]. The subscripts f and r denote
the full system and reduced system, respectively. If the mismatch is smaller
than a specified tolerance, then go to Step 4; otherwise go to Step 3.

• Step 3: Calculate the power injection increments of the ANN-based equivalent
by solving the following equation

[
�PANN,n

�QANN,n

]
=

[
∂Vr,n/∂PANN,n ∂Vr,n/∂QANN,n

∂θr,n/∂PANN,n ∂θr,n/∂QANN,n

]−1 [
�Vn

�θn

]
(5.8)

where the coefficient matrix elements on the right-hand side, namely ∂Vri,n/

∂PANN j,n , ∂θri,n/∂PANN j,n , ∂Vri,n/∂QANN j,n , and ∂θri,n/∂QANN j,n (i ∈ B
and j ∈ B), are the trajectory sensitivities computed in (5.6). Then, the power
injections of the ANN-based equivalent are updated to PANN,n = �PANN,n +
PANN,n and QANN,n = �QANN,n+ QANN,n . Go to Step 2.

• Step 4: if n < n f (n f is the time instant until which the responses are
compared), then go to Step 1. Otherwise terminate the procedure.
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Fig. 5.4 Flowchart for building an ANN training set

To minimize the number of modifications to the existing transient simulation
software packages, the flowchart shown in Fig. 5.4 is proposed. Prior to the proposed
routine, the voltage responses at the boundary buses in the full system representation
are simulated and stored for the same system disturbance of interest. The voltage
responses are then used as the reference in determining the proper power injections
of the ANN-based equivalent.

For a given disturbance, the following training set can be formed:

Training Set =
([

Vr,n

θr,n

]
,

[
PANN,n

QANN,n

])
, n = 0, ..., nf (5.9)

It can be seen that the proposed algorithm is a type of boundary matching tech-
nique specifically for the dynamic simulation. Throughout simulation, the trajectory
sensitivity can be calculated without extensively increasing the computational bur-
den. Besides, the trajectory sensitivity with respect to a specific system parameter
is independent of other parameters. The computational efficiency in Step 3 can be
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further enhanced using either the parallel or the cluster computation techniques.
Another advantage of the proposed method is that the real-time data collected by
PMUs installed at the boundary buses can be directly used as the reference in forming
the training set. It allows the ANN-based equivalent to capture the real discrepancy
between the planning models that are used for building the conventionally reduced
system and the exact system models under realistic operating conditions, leading to
improved models for on-line DSA.

5.3.2 Formulation of the ANN-Based Equivalent

As a dynamic system, the present outputs of the ANN-based equivalent depend not
only on the present inputs but also on the inputs and outputs at previous instants.
To accommodate this characteristic, a fully recurrent neural network (FRNN) [17]
is utilized. A typical structure of the proposed ANN-based equivalent is shown in
Fig. 5.5. Unlike a typical multilayer perceptron network (MLP), a feedback loop
is added between the output and input sides in the FRNN. Both bus voltages and
power injection predictions are fed into the network through the tapped-delay-line-
memories with l and m delayed units, respectively. At the time instant n, the ANN-
based equivalent can be represented by a nonlinear equation vector defined as:

SANN,n = h(VANN,n,VANN,n−1, ...,VANN,n−l ,SANN,n−1, ...,SANN,n−m) (5.10)

where VANN,n−l is the voltage vector at the time instant n−l, and SANN,n−m =
[PANN,n−m

T QANN,n−m
T]T is the power injection vector at the time instant n−m.

The vector h is composed of nonlinear mapping functions determined by the embed-
ded MLP.

For the FRNN to achieve a better performance of capturing the input-and-output
mapping stored in the training set and to limit the number of neuron parameters to
be optimized, an embedded MLP with three layers of neurons in Fig. 5.6 is formed.

In Fig. 5.6, x1 = [VANN,n
T,VANN,n−1

T, . . ., VANN,n−l
T,SANN,n−1

T, . . .,

SANN,n−m
T]T is the input vector; x2 and x3 are the internal state vectors; W(1),

W(2), and W(3) are the weighting matrices; b(1), b(2), and b(3) are the bias vectors;
and φ1, φ2, and φ3 are the activation functions. The subscript 1, 2, and 3 denote
layers 1, 2, and 3, respectively. Assuming n1 × 1, n2 × 1, n3 × 1, and n4 × 1 are the
dimensions of x1, x2, x3, and SANN,n , respectively, for layer 1 it can be proven that:

x2k = φ1

⎛
⎝

n1∑
j=1

wkj (1)x1 j + bk(1)

⎞
⎠ , k = 1, ..., n2 (5.11)

where x1 j is the j th element of x1, wkj (1) is the (k, j)th element of W(1), bk(1) is
the kth element of b(1), and x2k is the kth element of x2. Similarly, the following
equations hold for layers 2 and 3:
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x3k = φ2

⎛
⎝

n2∑
j=1

wkj (2)x2 j + bk(2)

⎞
⎠ , k = 1, ..., n3 (5.12)

SANN,nk = φ3

⎛
⎝

n3∑
j=1

wkj (3)x3 j + bk(3)

⎞
⎠ , k = 1, ..., n4 (5.13)

Then the characteristic equation vector h in (5.10) can be determined uniquely as
the combination of (5.11)–(5.13). It is noted that at the time instant n, the inputs
[VANN,n−1

T, . . .,VANN,n−l
T]T and [SANN,n−1

T, . . . , SANN,n−m
T]T have already been

calculated and can be treated as constants. Then (5.10) can be simplified to a nonlinear
mapping from VANN,n to SANN,n.

For the training purpose, the FRNN in Fig. 5.5 is equivalenced to a static feed-
forward network after disconnecting the feedback loop. The equivalent neural net-
work is shown in Fig. 5.7.

In the equivalent network, the exact inputs and outputs at any time instants are
available in the training set. Therefore, more efficient back-propagation training
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Fig. 5.7 Equivalent neural network for training purpose

methods can be implemented. For example, by forming the approximated Hessian
matrix of the prediction error with respect to the weights and biases, the Levenberg-
Marquardt (LM) algorithm can achieve a second-order convergence speed in search-
ing for the optimum weights and biases. It provides an efficient solution for the
problems involving the network with up to a few hundred weights [18].

5.3.3 Integration of ANN-Based Dynamic Equivalent

When considering the ANN-based equivalent, the entire reduced system becomes a
hybrid system. It includes both the continuous system (described by a set of DAEs)
and the discrete system (ANN-based equivalent). The ANN-based equivalent can be
modeled as a set of adjustable P −Q sources using the terminal voltages as inputs. To
model the hybrid reduced system, the impacts of the ANN-based equivalent on the
power balance equations g and the partial derivative matrix gy need to be considered.
At the time instant n, the new power balance equations at Bus i ∈ B are given by:

gPi = Pi,n + PANNi,n −
N∑

j=1

Vi,n Vj,n(Gi j cos θi j,n + Bi j sin θi j,n)

gQi = Qi,n + QANNi,n −
N∑

j=1

Vi,n Vj,n(Gi j sin θi j,n − Bi j cos θi j,n)

(5.14)
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Corresponding to the power injections defined as PANNi,n and QANNi,n , additional
partial derivatives, namely ∂PANNi,n/∂Vj,n , ∂PANNi,n/∂θ j,n , ∂QANNi,n/∂Vj,n , and
∂QANNi,n/∂θ j,n( j ∈ B), need to be formulated. For instance, ∂PANNi,n/∂Vj,n is
given by:

∂PANNi,n

∂Vj,n
=

(
∂PANNi,n

∂x3

) (
∂x3

∂x2

) (
∂x2

∂x1

) (
∂x1

∂Vj,n

)
(5.15)

Assuming φ1 and φ2 are tan-sigmoid activation functions and φ3 is a liner activation
function, the elements of each derivative matrix are given by:

∂PANNi,n/∂x3m = wkm(3) (5.16)

where k is the index of PANNi,n in SANN,n .

∂x3m/∂x2p =
⎡
⎢⎣1 −

⎛
⎝

n2∑
j=1

wkj (2)x2 j + bk(2)

⎞
⎠

2
⎤
⎥⎦ wmp(2) (5.17)

where m = 1,…, n3, and p = 1,…, n2.

∂x2m/∂x1p =
⎡
⎢⎣1 −

⎛
⎝

n1∑
j=1

wkj (1)x2 j + bk(1)

⎞
⎠

2
⎤
⎥⎦ wmp(1) (5.18)

where m = 1,…, n2, and p = 1,…, n1.

∂x1/∂Vj,n = [0, . . . , 1, . . . , 0]T (5.19)

where the element of x1 at the entry associated with Vj,n is 1 and zeros elsewhere.
The same procedure as in (5.15)–(5.19) are followed to model the impacts of

QANNi,n but are omitted for the sake of brevity. The computed derivative elements are
appended to the corresponding entries of the original derivative matrix gy formulated
in the dynamic simulation software package. The detailed flowchart of the proposed
integration method is depicted in Fig. 5.8.

During the iterative procedure in Fig. 5.8, both the power balance equations and
system Jacobian matrix are updated to model the power injections of the ANN-based
equivalent. It is to be noted that in a realistic setting, the number of boundary buses
connected with the ANN-based equivalent are substantially smaller than the total
number of buses in the entire reduced system. In addition, the appended derivatives
in (5.16)–(5.19) can also be readily obtained due to the superior derivative char-
acteristics of the activation functions. Therefore, additional computational effort to
simulate the hybrid reduced system can be limited.
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Fig. 5.8 Flowchart of hybrid reduced system simulation

5.4 Case Study

The system representing a portion of the WECC system is tested to validate the
proposed approach. A schematic diagram of the test system is presented in Fig. 5.9.
Within the entire test system, the detailed generator unit models with exciters, gov-
ernors, and power system stabilizers (PSS) are used.

In Fig. 5.9, the network at 230 kV and above within the retained area is detailed.
The remaining portion is defined as the external area. After loading the power flow
and dynamic data into DYNRED, all the coherent generators are identified using
the weak-link method [2]. In the external area, a total of 115 groups of coherent
generators are identified with 24 of them having only one generator in each group.
In each group, the coherent generators are aggregated and replaced by a classical
equivalent generator model, followed by the network reduction and load aggregation.
In the end, a conventionally reduced system, consisting of both the study area and
the equivalenced external area, is formulated. The summary of the full system and
the conventionally reduced system is given in Table 5.1.

It is observed from Table 5.1 that a significant reduction in the system size can be
achieved after the dynamic equivalencing procedure. In the conventionally reduced
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Fig. 5.9 Schematic diagram of the test system

Table 5.1 Summary of full
system and the conventionally
reduced system

Full system Conventionally % of
reduced system full system (%)

Buses 2240 806 36.0
Branches 3015 1573 52.2
Loads 913 481 52.7
Generators 342 145 42.4

system, 57.6 % of the generators in the full system have been eliminated. Similar
reduction in the number of buses, branches, and loads can also be found.

To validate the equivalencing accuracy of the conventionally reduced system, a
three-phase fault is applied on Bus 360 at 0.5 s, and it is cleared after 0.1 s by
tripping the 500 kV line from Bus 360 to Bus 468. For the studied case, the root
mean square error (RMSE) [8] is computed to numerically measure the mismatch
between the dynamic responses obtained in the full system and the reduced systems.
For Generator i , the RMSEi is defined as:

RMSEi =
√

1

T

∫ T

0

(
δ

full
i (t)− δreduced

i (t)
)2

dt (in degree) (5.20)
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Fig. 5.10 System response comparison for Case OP1_2. a Relative rotor angle responses of Gen-
erator 15 b Voltage responses at Bus 131

where δ f ull
i (t) and δreduced

i (t) are the relative rotor angle of Generator i obtained in
the full system and reduced system, respectively. T is the entire simulation duration.

In simulation, the relative rotor angle of Generator 15 in the retained area that has
the largest RMSE and the voltage magnitude at one of the boundary buses (Bus 131)
are plotted in Fig. 5.10.

It is seen from Fig. 5.10 that the conventionally reduced system formed in
DYNRED cannot fully capture the dynamic characteristics of the retained area, and
the discrepancy becomes significantly larger as the simulation evolves. To account
for the observed mismatch between the full system and the conventionally reduced
system, the ANN-based equivalent is formed. Specifically, all the buses (in the case
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Table 5.2 Tested contingencies in training set

Contingency 3-Phase faulted bus Clearing time (ms) Tripped line
From bus To bus

CON_1 360 60 360 468
CON_2 360 100 360 468
CON_3 832 100 464 832
CON_4 832 160 464 832
CON_5 716 100 232 716
CON_6 716 160 232 716

considered there are only three buses) on the original retained area boundary, namely
131, 806, and 536, are connected to the ANN-based equivalent. The retained bound-
ary is formed based on the original balancing area definition. More details about
how to formulate a right-sized retained area boundary for improved equivalencing
accuracy can be found in [15, 16]. In most applications, a fixed coherency-based
dynamic equivalent model is utilized for different operating conditions. Therefore,
an effective hybrid dynamic equivalent requires the ANN-based equivalent to be
capable of providing essential compensations when the system condition changes.
In forming the training set, six typical contingencies summarized in Table 5.2 are
evaluated under both the base system condition (OP1) and the revised system con-
dition (OP2). In the full system under the revised operating condition, the loads and
generations in the retained area are increased by 10 % and the remaining imbalance
is compensated by the generators in the external area based on their own capabilities.
The same dispatching pattern is applied to the conventionally reduced system under
OP2, in which the equivalent model obtained under the base operating condition OP1
is used. For all training cases, the simulation duration is 10 s.

For each contingency in Table 5.2, two training cases are formed for both operat-
ing conditions OP1 and OP2. For example, Case OP1_1 denotes the case in which
contingency CON_1 is applied under the operating condition OP1. For the cases con-
sidered, the trajectory sensitivity-based approach is applied to compute the desired
power injections of the ANN-based equivalent. Using the fixed integration step of
0.02 s, a total of 6012 training samples are created for the training set. In Case
OP1_2, for example, the required power injections of the ANN-based equivalent at
each connection bus are presented in Fig. 5.11.

For the same case, the number of iterations required in the trajectory-sensitivity
approach for the required power injections to converge is shown in Fig. 5.12.

It is seen from Fig. 5.12 that because the trajectory-sensitivity-approach provides
accurate estimation of the voltage deviations at the connection buses, one iteration is
often needed to obtain the power injections that can match the boundary bus voltage
responses. At the worst scenarios, such as the fault occurrence and clearing instants,
only two iterations are needed. The FRNN network in Fig. 5.13 is formed to model
the ANN-based equivalent.
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Fig. 5.11 Required power injections of ANN-based equivalent for Case OP1_2. a Required active
power injections at Buses 131, 806, and 536 b Required reactive power injections at Buses 131,
806, and 536

In Fig. 5.13, n1 = 84, n2 = 8, n3 = 8, n4 = 6, l = 6, and m = 7. To avoid the
potential saturation issues with the tan-sigmoid activation functions at layers 1 and
2, the following pre-processing functions are defined,

V ′
ANNi,n = VANNi,n/3, θ ′

ANNi,n = θANNi,n/3 (5.21)

P ′
ANNi,n = PANNi,n/6, Q′

ANNi,n = QANNi,n/6 (5.22)
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Fig. 5.12 Iteration number of power injection convergence for Case OP1_2
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Fig. 5.13 Diagram of the ANN-based equivalent

where i is the boundary bus number, namely 131, 806, and 536 (see Fig. 5.9).
Using the above pre-processing functions, the inputs and outputs are mapped to

the unsaturated section of the tan-sigmoid activation function. In the meantime, in
order to improve the numerical stability of the FRNN, a gain of 0.01 is applied to
the feedbacks from the output side. After forming the pre-processed training data
and opening the feedback loop, the LM routine in MATLAB [18] is deployed to
optimize the unknown parameters in the neural network to simulate the input-and-
output mapping stored in the training set. The mean square error (MSE) during the
training process is shown in Fig. 5.14.
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It is seen in Fig. 5.14 that the training error decreases dramatically during the initial
iterations. Then it reaches the threshold of 10−5 at the 62nd iteration. On an Intel�
Core i5 Processor (2.50 GHz) PC with 3.48 GB of RAM, the entire training process is
completed within 224 s. It is to be noted that the number of the neurons at each layer
needs to be tuned cautiously to avoid the potential over-fitting problem. A trial-and-
error method is used in order to determine an appropriate configuration for the FRNN.
After being trained, the ANN-based equivalent is connected to the conventionally
reduced system at the boundary buses, and the resulting hybrid reduced is shown in
Fig. 5.15.
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Fig. 5.16 Comparison of system responses for Case OP1_2. a Relative rotor angle responses of
Generator 15 b Voltage responses at Bus 131

For Case OP1_2, the relative rotor angle response of Generator 15 and the voltage
response at Bus 131 are shown in Fig. 5.16.

It can be seen in Fig. 5.16 that the response mismatches between the full system and
the conventionally reduced system are compensated by the ANN-based equivalent.
As expected, more accurate responses are obtained in the hybrid reduced system
throughout the entire simulation duration. For the same case, the RMSEs of the
generators in the retained area are compared between the conventionally reduced
system and the hybrid reduced system. The results are shown in Fig. 5.17.
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Table 5.3 Summary of
average RMSEs in the
reduced systems under OP1

Case Average RMSE (degree)
Conventionally Hybrid
reduced system reduced system

OP1_1 2.61 0.13
OP1_2 2.64 0.11
OP1_3 0.24 0.10
OP1_4 0.33 0.12
OP1_5 0.36 0.10
OP1_6 0.52 0.19

It is observed from Fig. 5.17 that with the supplementary power injections pro-
vided by the ANN-based equivalent, the RMSEs decrease significantly for most
of the retained generators. For all the training cases, the average RMSE values in
the conventionally reduced system and the hybrid reduced system are compared in
Tables 5.3 and 5.4. It is seen that the ANN-based equivalent can effectively improve
the accuracy of the coherency-based equivalent formed in DYNRED. Its effectiveness
varies for different cases. For example, the improvement for a severe contingency in
Case OP1_2 and OP2_2 is more significant. For all the trained cases, 60.6 % of the
simulation execution time has been saved using the hybrid equivalent on the same
PC as described before.

To validate the accuracy of the hybrid equivalent for the system disturbances that
are not included in the training set, the following contingencies are tested:

• CON_7: a 3-phase fault at Bus 360 is cleared after 0.12 s by tripping the line from
Bus 360 to Bus 468;
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Table 5.4 Summary of
average RMSEs in the
reduced systems under OP2

Case Average RMSE (degree)
Conventionally Hybrid
reduced system reduced system

OP2_1 3.67 0.15
OP2_2 3.69 0.12
OP2_3 0.28 0.11
OP2_4 0.37 0.13
OP2_5 0.36 0.08
OP2_6 0.52 0.14

Table 5.5 Summary of
average RMSEs in the
reduced systems for untrained
contingencies

Case Average RMSE (degree)
Conventionally Hybrid
reduced system reduced system

OP1_7 2.65 0.14
OP1_8 0.28 0.12
OP2_7 3.70 0.15
OP2_8 0.31 0.14

• CON_8: a 3-phase fault at Bus 504 is cleared after 0.10 s by tripping the line from
Bus 504 to Bus 464.

It can be seen that fault clearing time in CON_7 is different from CON_1 and
CON_2; while a new faulted bus is defined in CON_8. The RMSEs in different
reduced system under OP1 and OP2 are summarized in Table 5.5.

It can be concluded from Table 5.5 that for the untrained contingencies, the ANN-
based equivalent can still generalize its input-and-output mapping obtained from the
most similar cases in the training set and achieve better equivalencing accuracy by
providing essential compensation to the conventionally reduced system.

Table 5.6 Summary of
average RMSEs in the
reduced systems under
untrained operating condition
OP3

Case Average RMSE (degree)
Conventionally Hybrid
reduced system reduced system

OP3_1 3.08 0.14
OP3_2 3.10 0.11
OP3_3 0.20 0.11
OP3_4 0.30 0.12
OP3_5 0.32 0.08
OP3_6 0.49 0.16
OP3_7 3.11 0.14
OP3_8 0.24 0.13
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Fig. 5.18 Comparison of system responses for Case OP3_7. a Relative rotor angle responses of
Generator 15 b Voltage responses at Bus 131

Furthermore, to test the performance of the hybrid dynamic equivalent for an
untrained system condition, a new load condition OP3 is defined with the loads
and generations in the retained area increased by 5 %. For all the contingencies, the
average RMSE values in the conventionally reduced system and the hybrid reduced
system are compared in Table 5.6.

It can be seen from Table 5.6 that for the new operating condition OP3, the
improved equivalencing accuracy can also be obtained using the hybrid equivalent.
The similarity between the trained and untrained conditions is successfully captured
by the ANN-based equivalent. The same conclusion can be drawn from the relative
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Fig. 5.19 Comparison of system responses for Case OP3_8. a Relative rotor angle responses of
Generator 15 b Voltage responses at Bus 131

rotor angle response of Generator 15 and voltage magnitude at Bus 131 for Case
OP3_7 and OP3_8 that are shown in Figs. 5.18 and 5.19, respectively.

Because the generalization accuracy of a neural network is dependent on its train-
ing samples, the ANN-based equivalent might not be effective for certain untrained
cases. To address this issue, an extended training set that includes these unsatisfac-
tory cases might become necessary. It is also noted that when dramatic change in the
system condition occurs, a single hybrid equivalent might not be able to capture all
the characteristics in the external area. To resolve this issue, an adaptive hierarchy
ANN-based equivalent model shown in Fig. 5.20 will become more applicable.
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In Fig. 5.20, a set of ANN-based equivalents are developed for different typical
operating conditions. Then, a master ANN is trained to select an appropriate can-
didate ANN-based equivalent based on the critical information about the present
system operating condition. Because each ANN-based equivalent is only trained
to work within a certain range of operating conditions, a significant reduction in
the computational effort can be achieved in formulating the candidate ANN-based
equivalent models.

5.5 Conclusions

Power system dynamic equivalents play a critical role in on-line dynamic security
assessment given the increasing size of interconnected power systems. To improve
the accuracy of the conventional coherency-based dynamic equivalent, a novel hybrid
dynamic equivalent has been discussed in this chapter. Unlike other research efforts
on dynamic equivalents, the ANN-based equivalent in the proposed hybrid con-
figuration is designed to compensate for the discrepancy between the full system
and the coherency-based reduced system through supplementary power injections
at the retained area boundary buses. The study conducted on a realistic test system
shows that the training set can be efficiently formed using the trajectory sensitivity
of the boundary bus voltages with respect to the power injections of the ANN-based
equivalent. For the selected cases, the ANN-based equivalent is capable of provid-
ing desirable compensations to the coherency-based equivalent and improving the
equivalencing accuracy.

It is to be noted that the accuracy of the proposed hybrid equivalent system can
be easily improved by including more cases into the training set. Accordingly,
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a systematic way to determine an appropriate set of training cases needs to be
investigated. For future applications, a study using the voltage response measured by
PMUs as the references in determining the required power injections of the ANN-
based equivalent could be considered for the application of the proposed method for
on-line DSA.
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Chapter 6
Krylov Subspace and Balanced Truncation
Methods for Power System Model Reduction

Shanshan Liu, Peter W. Sauer, Dimitrios Chaniotis and M. A. Pai

Abstract In this chapter, we discuss two mathematical approaches for model reduc-
tion of power systems which do not use coherency information. The advantages of
these approaches lie in the ability to handle large systems. The Krylov and balanced
truncation methods take into account system reachability and observability in obtain-
ing reduced-order models of the external system, and thus would perform better than
methods based simply on eigenvalues. In the case of balanced truncation approach,
a sensitivity analysis is carried out. Through the eigenvalue information, we also
establish a connection of these methods with the coherency- based approaches.

6.1 Introduction

6.1.1 Background

There is a vast literature on the model reduction of large-scale power systems with
dynamics. Till the 1970s, the techniques were largely based on static models of
a power system. The fundamental work of Podmore [1] in proposing coherency
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as a basis for dynamic model reduction [2] set the stage for a physically based
method. Practical software that emerged from that work has been of great value to
utilities [3]. Another equally powerful method which uses the fast and slow dynam-
ics in a large power system, proposed by Kokotović, Avramović, Winkelman, and
Chow [4], is based on the concept of time-scale separation and has formed the
basis for model reduction techniques, islanding, and study of oscillations. These
topics are discussed in detail in the other chapters. The selective modal analysis
(SMA) approach [5], which is another approach based on eigenvalue information,
is discussed in Chap. 8 of this book. A somewhat related approach using electro-
mechanical distance measure as a means for detecting coherency was proposed in
[6]. Reference [7] proposed a RMS coherency measure approach based on eigen-
system information. An approach which takes into account the changing pattern
of coherency depending on system topology or altered operating conditions is pro-
posed in [8]. Reference [9] uses an artificial neural network approach to coherency
identification.

In contrast to the physically based coherency approaches, a new approach based
on linear model reduction ideas was proposed by Chaniotis and Pai using Krylov
subspace ideas [10]. The application of the balanced truncation method proposed
by Liu [11] is an improvement over the Krylov-based approach for handling very
large systems. Both methods use the concept of input-output properties of a lin-
ear time-invariant system at the boundary buses connecting the study area to the
external system. With this brief overview, we shall discuss first the Krylov subspace
approach.

6.2 Model Reduction Overview

The development of a mathematical model for a physical system can be a chal-
lenging task. A useful model must be able to capture many characteristics of the
system. In power systems, the dimension of the models may easily reach the order
of several thousand for applications like dynamic simulation or trajectory sensitivity
analysis. Therefore, these types of analysis pose a formidable computational burden.
Engineers have long treated this problem by reducing the order of the power sys-
tem models using physically based reasoning. This may result in neglecting several
phenomena that are assumed not to be of great significance to the response of the
system. However, as systems become larger, a theoretically based formal approach
is necessary. Model reduction consists of replacing the original system with one of
a much smaller dimension according to the following guidelines:

• The reduced system must be an accurate representation of the original one for the
analysis performed.

• The cost of generating the reduced model must be much smaller than performing
the analysis using the original model.

http://dx.doi.org/10.1007/978-1-4614-1803-0_8
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For model reduction, power systems may be partitioned into two areas: the study
area and the external area [1, 2]. The study area contains the variables of interest;
therefore, it is modeled in detail. A fault is assumed to occur in the study area. The
external area is important only as far as it influences the analysis in the study area.
Thus, it is necessary to model only its input-output behavior at the boundary buses.
Evidently, the modeling need not be detailed, and hence, model reduction may be
performed in the external area.

6.3 Krylov Subspace approach

Krylov subspace methods were initially proposed for the solution of the eigenvalue
problems [12, 13]. They were quickly adapted for the solution of symmetric, positive-
definite linear systems of equations of the form Ax = b, where A ∈ RN×N and
b ∈ RN×1 are given and x ∈ RN×1 is the unknown vector [14, 15]. These results
formed the basis for the first Krylov subspace technique, called the conjugate gradient
method. Mainly because of the inherent parallelization capabilities and low storage
requirement, Krylov methods offer an attractive technique. There is a great deal of
interest in these methods in other areas of engineering, such as electromagnetics,
where the size of A is extremely high.

The idea behind the conjugate gradient method is to seek the solution of Ax = b
from a Krylov subspace defined as

Kk{A, b} =
[
b Ab · · · Ak−1b

]

so that the A-norm of the error (that is, ||(x−x∗)T A(x−x∗)||2, where x∗ is the solution)
is minimized. There are many variations and improvements on the conjugate gradient
method. Of these, the bi-conjugate gradient (Bi-CG) is perhaps the most interesting
because it opens the field for the treatment of non-symmetric linear systems [16].
Other techniques have also been proposed, such as the quasi-minimum residual
(QMR) method [17], the conjugate gradient squared (CGS) method [18], and the
bi-conjugate gradient stabilized (Bi-CGSTAB) method [19].

The most robust and generic method in the family of Krylov subspace solvers is
the generalized minimal residual (GMRES) method [20]. GMRES is guaranteed to
converge in a finite number of iterations but its cost increases step by step. Therefore,
it is usually restarted after a fixed number of iterations to reduce the cost. The idea
of preconditioning was introduced in order to transform the system into one with a
more favorable eigenvalue distribution for the Krylov subspace solvers. For a list of
references to preconditioning techniques, see [21].

Consider the linear single-input single-output time-invariant system

ẋ(t) = Ax(t)+ bu(t), y(t) = cT x(t)+ du(t) (6.1)
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The vector x(t) ∈ RN×1 is the vector of state variables, A ∈ RN×N is the state matrix,
b ∈ RN×1 is the input vector of the system, cT ∈ R1×N is the output vector of the
system, and d is the scalar feed-through term.

A reduced-order approximation to (6.1) takes the corresponding form

˙̂x(t) = Âx̂(t)+ b̂u(t), ŷ(t) = ĉT x̂(t)+ d̂u(t) (6.2)

where x̂(t) ∈ Rm×1, Â ∈ Rm×m, b̂ ∈ Rm×1, ĉT ∈ R1×m, d̂ is a scalar, and m < N .
The output ŷ(t) approximates the true output y(t). However, in general, no simple
relation exists between x̂(t) and x(t).

An important consideration is the transfer function of a system, denoted by

H(s) = cT (sI − A)−1b (6.3)

where s represents the complex frequency. Without loss of generality, the feed-
through term d of the original model is assumed to be zero. The transfer function of
the reduced-order model, Ĥ(s), can be defined in a similar manner.

The expansion of the transfer function (6.3) around a certain interpolation point
σ is given by

H(s) =
∞∑

j=1

cT
[
(σ I − A)−1

]j
b · (s − σ)j−1

The shifted moments of the system represent the value and the subsequent derivatives
of the transfer function around σ and are given by

cT
[
(σ I − A)−1

]j
b

The Krylov subspace-based moment matching technique approximates the system
transfer function around certain interpolation points of interest σ (k) by using the
Krylov subspaces generated by

V = column span
K⋃

k=1

KJbk

{
(σ (k)I − A)−1, (σ (k)I − A)−1b

}
(6.4)

Z = column span
K⋃

k=1

KJck

{
(σ (k)I − AT )−1, (σ (k)I − AT )−1cT

}
(6.5)

where σ (k) is the interpolation point.
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Using V and Z , we develop the transformation matrices

Tright = [
V V⊥

]
, Tleft = [

Z Z⊥
]
, (6.6)

where V⊥ and Z⊥ are matrices orthogonal to V and Z , respectively, such that Tright
and Tleft are square nonsingular matrices.

Applying this transformation to (6.1), we obtain

[
ZT V ZT V⊥
ZT⊥V ZT⊥V⊥

] [ ˙̂x
˙̂x⊥

]
=

[
ZT AV ZT AV⊥
ZT⊥AV ZT⊥AV⊥

] [
x̂
x̂⊥

]
+

[
ZT b
ZT⊥b

]
u

y = [
cT V cT V⊥

] [
x̂
x̂⊥

]

Then, assuming ZT V is nonsingular, the leading subsystem is retained to form
the reduced model

˙̂x = (ZT V)−1ZT AVx̂ + (ZT V)−1ZT bu, y = cT Vx̂ (6.7)

The moment preserving property of the reduced system is provided by Theorem 1.

Theorem 6.1 [22] Given (6.4) and (6.5), then

−cT [
(
σ (k)I − A

)−1]jk−1(σ (k)I − A)−1b = ĉT [
(
σ (k)I − Â

)−1]jk−1(σ (k)I − A)b̂

for jk = 1, 2, . . . , Jbk + Jck and k = 1, 2, . . . ,K.

Power systems are rarely single-input single-output systems. Therefore, one has
to extend the previous analysis to include multi-input multi-output systems. Then
the Krylov subspaces are replaced by block Krylov subspaces

Kj{A,B} = column span
{

B,AB,A2B, . . . ,Aj−1B
}

to account for the multidimensional input and output matrices B and C. Certain issues
arise when block methods are applied to model reduction. The most important one
is that the dimension of the reduced model is significantly larger because the block
Krylov subspace has to be large in order to contain all the information generated by
the individual Krylov subspaces corresponding to the columns of B and C.

The construction of the bases V and Z in transformation (6.6) is purely an imple-
mentation choice. Various approaches have been developed to construct the bases for
a Krylov subspace. Well-known Krylov subspace methods are the Arnoldi, Lanczos,
GMRES (generalized minimum residual), and BiCGSTAB (stabilized bi-conjugate
gradient) methods. More details can be found in [21].
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The algorithm used in this chapter is shown below.

Krylov-Subspace Algorithm

Define:
p: the number of columns of B
J: the number of moments matched by every interpolation point
|σ (0), σ (1), · · · , σ (K)|: interpolation points

Compute:
B = (σ (0)I − A)−1B
(V ,R) = QR factorization of B
m = p + 1
for j = p : J

for k = 1 : K
ω = (σ (k)I − A)−1V(:,K · (j − p)+ k)
i = 1 : m − 1

h = (ω,V(:, i))
ω = ω − VT (:, i) · h

end
if ||ω||2 > 10−6

V(:, j + 1) = ω/||ω||2
m = m + 1

end
end

end

6.4 Balanced Truncation Method

Balanced truncation is an important projection model reduction method which deliv-
ers high-quality reduced-order models by carefully choosing projection subspaces to
maintain controllability and observability. It has been applied in spacecraft modeling,
control system design, and other areas of large dimension modeling [23].

Rewrite the system (6.1) with multiple inputs and outputs as

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t) (6.8)

where the vector x(t) ∈ RN×1 is the vector of state variables, A ∈ RN×N is the state
matrix, B ∈ RN×r is the input vector of the system, C ∈ Rp×N is the output vector
of the system, and D ∈ Rp×r is the scalar feed-through matrix. The transfer function
of the system is denoted by H(s)

H(s) = C(sI − A)−1B + D (6.9)
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The balanced truncation makes use of two crucial quantities, called the reacha-
bility and observability Gramians. The reachability Gramian is defined as

Wr(0, tf ) =
∫ tf

0
eAτBBT eAT τdτ (6.10)

and the observability Gramian is defined as

Wo(0, tf ) =
∫ tf

0
eAT τCT CeAτdτ (6.11)

The balanced truncation method consists of transforming the state-space model into
a balanced form, together with a truncation of those states that are both difficult to
reach and difficult to observe.

An important property of this method is that asymptotic stability is preserved in the
reduced-order system. Moreover, the existence of a priori error bounds [23] allows
an adaptive choice of the state-space dimension of the reduced model, depending on
how accurate an approximation is desired.

6.4.1 Gramians and Hankel Singular Values

Frequently, system H(s) is assumed asymptotically stable, and the controllability and
observability Gramians Wr and Wo are then solutions of two Lyapunov equations

AWr + WrAT = −BBT , AT Wo + WoA = −CT C (6.12)

The square roots of the eigenvalues of the product WrWo are so-called Hankel singular
values σ of the system H(s)

σi = √
λi(WrWo) (6.13)

In many cases, the eigenvalues of WrWo as well as the Hankel singular values σ
decay very rapidly. We now consider transformation of the above system such that
x = Tx̂, T ∈ RN×N . We have

Â = T−1AT , B̂ = T−1B, Ĉ = CT , D̂ = D (6.14)

and
Ŵr = T−1WrT−T , Ŵo = TT WoT (6.15)

The reachable and observable system H(s) is called Lyapunov balanced if

Ŵr = Ŵo = Σ = diag(Σ1,Σ2) = diag(σ1, . . . , σk, σk+1, . . . , σN ) (6.16)
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where

σ1 > · · · > σk > σk+1 > · · · > σN

Σ1 = diag(σ1, . . . , σk), Σ2 = diag(σk+1, . . . , σN )

It should be pointed out that, while the eigenvalues (or system modes) are invariant
under similarity T , the eigenvalues of the Gramians are not. However, the eigenvalues
of the product of the Gramians, that is, the Hankel singular values, are readily seen
to be similarity invariant.

By truncating the states that are simultaneously difficult to reach and difficult to
observe, which correspond to the small Hankel singular values (σk+1, . . . , σN ), we
can get the reduced-order system

Hr(s) = Cr (sI − Ar)
−1 Br + D (6.17)

The reduced-order system satisfies

||H(s)− Hr(s)||H∞ ≤ 2
N∑

i=k+1

σi, and ||H(s)− Hr(s)||H∞ ≥ σk (6.18)

which equally holds if
∑

2 = diag(σn)

A state-space balancing algorithm is described below [24].

Balanced Truncation Algorithm

1. Compute Cholesky factors of the Gramians (the Gramians themselves are
not actually formed). Let Lr and Lo denote the lower triangular Cholesky
factors of the Gramians Wr and Wo, i.e.,

Wr = LrLT
r , Wo = LoLT

o (6.19)

2. Compute the singular value decomposition

LoLT
o = UΛVT (6.20)

3. Form the balancing transformation

T = LrVΛ−1/2 (6.21)

4. Form the balanced state-space matrices Â, B̂,Ĉ,D.

Several other approaches exist for balancing the system, such as the Schur method
and the square root method. Further details and references can be found in [23–26].
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Other topics including balanced truncation for model reduction of nonlinear systems
and time-varying systems are discussed in [27–29].

6.5 Application to Power Systems

In this section, we apply the Krylov subspace and balanced truncation methods to
obtain linear reduced-order models of an external system. We assume that the external
system is connected to study area with p tie-lines.

The second-order classic model used for the study of model reduction of the
external area is

δ̇i = ωi − ωs

2Hi

ωs
ω̇i = TMi − Di(ωi − ωs)− E2

iiGii

− Ei

NG∑
j=1,j �=i

(
EjGij cos(δi − δj)+ EjBij sin(δi − δj)

)

− Ei

p∑
j=1

(
VjḠij cos(δi − θj)+ VjB̄ij sin(δi − θj)

)
(6.22)

where δi and ωi are the rotor angle and speed of generator i, NG is the number
of generators, and p is the number of tie-lines. Hi and Di represent the inertia and
damping coefficients, respectively, and Ei is the internal voltage of machine i. The
admittance Yij = Gij + jBij connects machines i and j, and the admittance Ȳij =
Ḡij + jB̄ij connects machine i and boundary bus j. A detailed description of how to
deduct derive (6.22) for a power system can be found in [30].

The inputs of the external system, denoted as u, are considered to be the angles θi

and voltage amplitudes Vi of the p connected buses belonging to the study area. The
outputs of the system, denoted as y, are considered to be the angles and voltages of
the p corresponding buses from the external system.

A 16-machine, 68-bus system is assumed to be the study area, and a 50-machine,
145-bus system is taken as the external area [10]. The configuration of the study and
external areas is shown in Fig. 6.1.

Linearizing the system (6.22) around an equilibrium point, we obtain

[

δ̇


ω̇

]
=

[
0 I

(2H)−1K − (2H)−1D

] [

δ


ω

]
+

[
0

(2H)−1B

]

y = [
C 0

] [

δ


ω

]

u

(6.23)



128 S. Liu et al.

where

K(i, j) = EiEj(−Gij sin δo
ij + Bij cos δo

ij), i, j = 1, . . . ,NG

K(i, i) = Ei

NG∑
j=1,j �=i

Ej(Gij sin δo
ij − Bij cos δo

ij), i = 1, . . . ,NG

B(i, j) = EiVj(−Ḡij sin(δi − θj)+ B̄ij cos(δi − θj)),

i = 1, . . . ,NG, j = 1, . . . , p

B(i, j + p) = Ei(−Ḡij cos(δi − θj)− B̄ij sin(δi − θj)),

i = 1, . . . ,NG, j = 1, . . . , p

C(i, j) = 1, if bus i is connected through tie line j,

i = 1, . . . ,NG, j = 1, . . . , p

C(i, j) = 0, if bus i is not connected through tie line j,

i = 1, . . . ,NG, j = 1, . . . , p

δo
ij = δo

i − δo
j , i, j = 1, . . . ,NG

H = diag(Hi/ωs), D = diag(Di), i = 1, . . . ,NG

This formulation allows the external area to be modeled along the lines of (6.1),
and the Krylov subspace model reduction methodology described in Sect. 6.3 can be
applied in a straightforward manner.

6.5.1 Simulation of Single Tie-Line Case

In the first study case, the two areas in Fig. 6.1 are connected with 1 tie-line, from
Bus 58 in the study area to Bus 140 in the external system. The dimension of the
external system is 100 × 100. A self-clearing fault at Bus 27 in the study area is
applied. The duration of the fault is 0.1 s. To compare the results of unreduced and
reduced systems, we perform a full system study using the Power System Toolbox
[32] without partitioning into study and external areas.

Fig. 6.1 The topology of the study and external areas
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In the Krylov subspace method, we start with using only one interpolation point,
at zero frequency (σ = 0) [10]. The dimension of the resulting reduced system is
21×21. For the balanced truncation, the dimension of the reduced system is 13×13.

Figure 6.2 shows the eigenvalue distributions and Fig. 6.3 shows the frequency
response for the full model, the Krylov subspace reduced model, and the balanced
truncation reduced model. Both reduced models capture the dominant modes of
the original system. Also, the frequency response suggests that Krylov subspace
follows the unreduced system well for low frequencies, but is less accurate for high
frequencies. This is because we use σ = 0 as the interpolation point. To improve
the frequency response approximation of the Krylov subspace reduced model, we
add two more frequency points σ = [5, 10] to the interpolation list. The improved
performance at high frequencies is shown in Fig. 6.4.

Figure 6.5 shows the time response simulation results of the reduced models
from the Krylov subspace method and the balanced truncation method compared
to the unreduced system. The labels “UnPartitioned” and “UnReduced” denote two
different simulation methods. “UnPartitioned” means that both the study area and
external area are simulated together. “UnReduced” means that the full study area
and full external system are simulated separately: the voltages and angles of the
boundary buses are used as inputs and outputs and updated each step. As expected,
these two simulation methods will result in slightly different responses. In evaluating
the performance of the reduced models, it is more appropriate to compare their time
responses to that of the “UnReduced” model, as the reduced models are simulated
separately from the study area and then reconnected. The results show not only that
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the reduced systems are good representations of the external system, but also that it
is feasible to partition the system into two areas.

To quantify the accuracy of the two reduced models, we define a time response
approximation error as
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εnx =
√√√√ 1

nt

nt∑
i=1

|Vnx − Vnxfull|2i (6.24)

where nx is the boundary bus number and nt is the number of points in the time
response simulation.

For the Krylov reduced model of dimension 21, the error is εKrylov = 0.0523.
For the balanced truncation model of dimension 13, the error is εBalancing = 0.0125.
We can thus reach the following conclusion: The balanced truncation method can
achieve a better approximation than the Krylov subspace method while using a lower
dimensional system. The balanced truncation model can represent the direct input-
output relation of the external system, without the redundancy in the Krylov subspace
method.

The reduced system preserves most information of the unreduced system regard-
ing the input-output relation. Partitioning the whole system into study and external
areas, however, will sacrifice some accuracy.

6.5.1.1 Sensitivity Analysis

Because we perform model reduction on linearized system models, we now perform
a sensitivity analysis to improve the algorithm. Sensitivity analysis (SA) is the study
of how the variation (uncertainty) in the output of a mathematical model can be
apportioned, qualitatively or quantitatively, to different sources of variation in the
input of a model [33].

There are several possible approaches to perform SA, such as local methods,
sampling-based methods, methods based on emulators, screening methods, variance-
based methods, and high dimensional model representations. We use local methods
for our investigation. Local methods utilize the idea of using the simple derivative
of the output y with respect to a parameter α, |∂y/∂α)|x0 , where the subscript x0
indicates that the derivative is taken at some fixed point in the state space (hence the
“local” in the name of the class). The parameter α can be a model parameter or a
state variable.

In general, the derivative can be obtained either analytically by working on the
system equations or quantitatively by studying the variations of output with respect
to the small variations in parameters. In this problem, our goal is to detect the system
model variation, so we choose the quantitative approach to avoid working on a large
number of variables and complex relationships between parameter and system model
characterization, and to take advantage of computer programming.

From Figs. 6.6 and 6.7, we can see that system (6.22) is more sensitive to machine
angles than bus voltages. It is also worth mentioning that, because the machine angles
tend to change along the same direction, their influences on output variations might
cancel each other out.

We assign an index to each parameter according to the sensitivity analysis and
calculate the aggregated expected variance of the system. When such variance reaches
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some preset threshold, we then update the system model. The importance of such
sensitivity study and system model updating is illustrated in the next section using a
three tie-line case.

6.5.2 Simulation of 3 Tie-Line Case

In this section, a three tie-line case is studied, in which three tie-lines connect the
study and external areas. The same fault is applied to the study area and then is
cleared at 0.1 s.

The dimension of the Krylov subspace method is 27 and the interpolation points
are σ = [0, 5, 10, 15]. The dimension of the balanced truncation reduced model is
also 27. The Hankel singular valve error bound of the reduced model is

||H(s)− Hr(s)||H∞ ≤ 0.0195

Figure 6.8 shows the singular values of original unreduced system, and reduced-
order models of the balanced truncation method and the Krylov subspace method,
as a function of frequency. Note that the reduced-order model from the balanced
truncation method approximates well the full model.
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Fig. 6.8 Singular value frequency response

Figure 6.9 shows a comparison of time response simulations of the full and bal-
anced truncation model. During the simulation, the aggregated index that represent
the expected model variance have been used to decide when to update the balanced
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Fig. 6.9 Three tie-line case. a Tie-line Bus 1. b Tie-line Bus 2. c Tie-line Bus 3

truncation system model. Figure 6.9 shows that the simulation results of the balanced
truncation method with no system model updating appear to have more error, whereas
the simulation results of the balanced truncation method with system model updated
periodically follow the simulation results of unreduced system closely. Because a
linearized system is used, updating the system model based on sensitivity analysis
can improve the performance, as is shown here.
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Fig. 6.9 (Continued)

6.6 Krylov Subspace Reduction and Coherency

The mechanics of the Krylov subspace model reduction dictate that the states of the
unreduced system are confined to the subspace V (6.6), i.e.,

x = Vx̂ (6.25)

Therefore, the rows of V may be a good indication about the relative movement of
the states of the unreduced system.
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Fig. 6.9 (Continued)

Note, however, the equation above does not imply that the actual trajectories lie
on subspace V , but rather that if the trajectories lie on this subspace, then the output
of the reduced system matches the output of the unreduced system

xi − xj = (V(i, :)− V(j, :))x̂ (6.26)

According to the definitions given in EPRIs report [2], the states i and j are coherent
if the difference between xi and xj is small. A possible criterion to determine the
closeness of xi and xj is the angle ϕ between rows V(i, :) and V(j, :), defined as
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cosϕ = V(j, :)V(i, :)T
||V(j, :)||2||V(i, :)||2 (6.27)

Therefore, one can define xi and xj as coherent if the angle ϕ is less than a pre-
specified tolerance. Let G be the matrix

G(i, j) = cos−1
(

V(j, :)V(i, :)T
||V(j, :)||2||V(i, :)||2

)
(6.28)

Thus, the entries of G determine whether or not any two states are coherent. Equation
(6.25) does not distinguish between the modes of the reduced system; it assumes that
all modes may be excited. It is possible to eliminate certain high-frequency modes
that are of no interest and correspond to parasitic modes by ignoring the states of the
reduced system that have a relatively large participation on these modes. The small
dimension of the reduced system allows a complete eigen-analysis in a robust and
efficient way. Therefore, the contribution of each state to the modes of the reduced
system can be identified through the use of participation factors [31]. Let v and w be
the right and left eigenvectors of the reduced system corresponding to an eigenvalue
λ. For complex eigenvectors, the magnitudes of each entry of v and w are considered.
Then, the participation factor of state i to the eigenvalue λ is defined as

pi = viwi

vT w
(6.29)

The participation factors can be normalized so that the largest entry is 1. The modes
of interest are isolated (for example, the ones corresponding to the low frequencies)
and the participation of each state of the reduced system on a certain mode can be
computed from (6.29). The states that contribute the least to the modes of interest
are discarded. This is equivalent to neglecting the corresponding columns of V in
(6.25). Then, G is constructed using the reduced V .

To illustrate the method, the same system setting is examined for the 50-machine
external system, and the coherent generators are grouped in Table 6.1 according to
the values of G. Note that machines in the external areas that are not impacted by
disturbances from the study area are not listed in the table. The modes retained are
the ones with imaginary part less than 5 and real part greater than 1, that is, the

Table 6.1 Coherent groups
for the 50-machine system

Group Coherent generators

1 4,5
2 6,7,9,10,13,15,16,17,18,20,21,22

23,24,25,26,27,28,34
3 8,11
4 14,35,36
5 33,37,38,39
6 42,43
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Fig. 6.10 Coherent groups

low-frequency modes. States with participation factors less than 0.3 on these modes
are eliminated.

Figure 6.10 show the simulation results (using the unreduced model for the
external area). The time responses in Fig. 6.10 imply that generators in Groups
1 and 2 should be termed as coherent even though our method proposes that they
are not.

To test the validity of the method, one of the basic assumptions of coherency
is used [2]: The coherent groups of generators are independent of the size of the
disturbance. Therefore, if a fault at the same bus is considered to be cleared at 0.35 s,
the coherent groups should remain the same. Figure 6.11 shows the time responses of
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Groups 1 and 2. Clearly, the generators belonging to Groups 1 and 2 are not coherent,
which confirms the results shown in Table 6.1.

6.7 Conclusions

Both Krylov subspace and balanced truncation methods are discussed in this chapter
and applied to a power system for model reduction of the external system. The
emphasis on input-output connections in both methods helps in removing the redun-
dant information while preserving the relation between system inputs and outputs.
Simulation results show that the reduced-order system via balanced truncation is a
good approximation of the original high order system. Compared with Krylov sub-
space method, it represents a better approximation with lower orders. Also, the error
of the balanced truncation method is bounded by Hankel singular values. Because a
linearized system is used, updating the system model based on sensitivity analysis
can improve the performance. In the Krylov method, a connection to the coherency
approach is established.
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Chapter 7
Reduction of Large Power System Models:
A Case Study

Kip Morison and Lei Wang

Abstract This chapter illustrates, by a practical case study, an application of the
dynamic model reduction for a large power system model. This example concerns the
creation of a reduced-order model from a full WECC model, to be used by BC Hydro
for on-line dynamic security assessment (DSA). This model reduction was conducted
using the software DYNRED. The focus of this case study is on the objective of the
model reduction, the approach and procedure, the results, and the benchmarking
work to ensure the suitability of the reduced models for the required applications.
It is shown that, following the procedure used in the case study, a reduced model can
be obtained for use with a wide range of system conditions with acceptable results
and computation time saving.

7.1 Introduction

Modern interconnected electric power systems cover very large geographic areas
served by many utilities or grid operators. To perform studies for such systems, it
is often neither practical nor necessary to model in detail an entire interconnected
system. This is particularly true for real-time control center applications for which
the following two factors practically prevent the use of full system models [1]:

• The operating condition of a portion of an interconnected system may not be
available to such applications at real time due to the limited observability of the
SCADA/EMS for a utility or grid operator. Thus, creation of a full real-time system
model is infeasible.
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• Real-time applications usually have rigorous speed performance requirements; for
example, execution time of an application must be guaranteed so as to coordinate
with other applications or operator actions. In this case, using a reduced-order
model for the application is often a viable way to achieve the required speed
performance.

One practice for handling the above issues is to use a reduced-order model for the
large, interconnected power system. This reduced model must preserve the charac-
teristics of the full model for a study region so that it can be used, with acceptable
results, for the analysis of this study region [2].

This chapter illustrates, through a practical case study, an application of the
dynamic model reduction for a large power system model. This example concerns
the creation of a reduced-order model from a full WECC model, to be used by BC
Hydro for on-line dynamic security assessment (DSA) [3]. This work was conducted
using the software DYNRED (for DYNamic REDuction) developed in the 1990s by
EPRI and recently enhanced by Powertech Labs Inc. [4]. The techniques used in
DYNRED are those described in the previous chapters of this manuscript and are not
repeated here. To ensure the suitability of the reduced models for the required appli-
cations, the focus of this case study will be on the objective of the model reduction,
the approach and procedure, the results, and the benchmarking work.

The case study described in this chapter includes the creation of a reduced-order
model that meets the technical requirements of BC Hydro. This is not, however, the
final model used in BC Hydro on-line DSA system because certain business and
operational considerations are not included. Such considerations are not discussed
here as they are out of the scope of this work.

7.2 Objectives and Requirements

7.2.1 BC Hydro Transmission System

The transmission system of BC Hydro (Fig. 7.1a) serves the power in the province
of British Columbia, Canada, and is interconnected with the power grids of the
Canadian province of Alberta and the western US to form the western US/Canada
power system (WECC) as shown in Fig. 7.1b.

Due to the requirements to transfer large amounts of power and the long trans-
mission path, transient and voltage stability has often been a limiting factor for the
operation of BC Hydro’s power system. A viable solution to ensure system stability
and security is to use an on-line DSA system which monitors a system’s stability
status and transfer limits periodically using real-time captured system conditions.

For the implementation of BC Hydro’s on-line DSA system, one of the critical
issues is to determine the model to be used for the on-line transient stability analysis.
The full WECC planning models (currently sized at around 18,000 buses) cannot be
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(a)   (b)

BC Hydro
Alberta

Western United States

Fig. 7.1 BC hydro and WECC. a BC hydro transmission system. b WECC

used directly for reasons mentioned earlier. It was therefore decided that a reduced-
order model be created and used for the on-line DSA system.

7.2.2 Model Reduction Objectives

The objectives of the model reduction work are:

1. To create an equivalent for the external systems in the US. The size of the overall
system model with the reduced external model is targeted at around 7,000 buses.

2. To confirm that one reduced model can be used for all major operating scenarios
with predefined performance criteria. This will allow the reduced model to be
used for all real-time network applications installed in BC Hydro’s EMS.

7.2.3 Performance Requirements

For the second model reduction objective, validation of the reduced model is
conducted at the base system condition as well as at other operating conditions.
For the base system condition, the following performance criteria were set:

1. When comparing the solved powerflow conditions (in the BC Hydro area) of the
full and reduced models, the following should be sufficiently small:

• Differences on bus voltages (>200 kV)
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Table 7.1 Operating scenarios considered in model benchmarking

Scenario Descriptions

1 Pacific DC Intertie (PDCI) is put out of service. As a result, the power carried by DC
is diverted to the parallel AC transmission path

2a BC to US transfer is set to a high value
2b US to BC transfer is set to a high value
3 BC to Alberta transfer is set to a high value
4 A different WECC loading level is considered
5 A different transfer level is considered for a key interface in US
6 System is at the base system condition, but the fault clearance of a contingency is set

to the critical clearance time (CCT) for which the system is marginally stable

• Differences on bus voltages (≤200 kV)
• Differences on branch flows (MW/MVAR)
• Differences on shunt outputs (MVAR)

2. When comparing the simulations of the full and reduced models for the specified
contingencies, the following quantities in the BC Hydro area should be sufficiently
close (the closeness is measured by the index computed in DYNRED described
later):

• Generator rotor angles
• Bus voltages
• Branch flows (MW/MVAR)

3. When comparing the electromechanical oscillatory modes in the system from the
full and reduced models, the main attributes (frequency and damping) should be
sufficiently close.

Model benchmarking performed for the different operating scenarios is shown in
Table 7.1

For simplicity of result presentation, only Scenarios 1, 2a, 3, and 6 are discussed
in this chapter.

7.3 System Description

7.3.1 Full model

The full model to start with for the reduction is a standard WECC planning model.
This model has

• 16,330 buses
• 1,922 generators with matching dynamic models
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Table 7.2 Sizes of the full model

Area No. of buses No. of generators

BC 1 2,220 290
Alberta 2,011 221
US 2 12,099 1,411
1 Includes separately controlled areas in British Columbia
2 Includes all control areas in US

Table 7.2 shows the sizes of BC, Alberta, and US areas in this model.

7.3.2 Reduction Requirements

From model accuracy consideration and also because of availability of real-time
data in BC Hydro’s EMS, BC Hydro wants to retain the full details for the following
portion of the full model in the reduced model:

• BC.
• Alberta.
• A portion of the US system surrounding BC.

The above portion of the system is referred to as the study region. Figure 7.2 shows
this region, in which the red line is the boundary of the study region: all system details

Study region

External system

Study region boundary

Fig. 7.2 Definition of the study region
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above the red line are to be kept in the reduced model and anything below it can be
reduced. The US portion in the study region includes 644 buses, so the entire study
region has 4,875 buses.

7.4 Approach

7.4.1 General Procedure for a Dynamic Reduction Process

Before describing the approach used in this case study to create the reduced model,
it is helpful to first review the general procedure for a dynamic reduction process.
Figure 7.3 shows the flowchart of this procedure.

This process starts with a full model, including a matching powerflow and dynam-
ics data set. This model is sanity checked to ensure its validity for the reduction, and
any issues found need to be resolved by implementing appropriate fixes to data and/or
models. A more important purpose of this step is to identify any characteristics in the
full model (referred to as technical reduction requirements) that need to be preserved
in the reduced model. For example, if there are critical low frequency oscillatory
modes in the study region, such modes should be preserved in the reduced model,
and this requires that generators significantly participating in these modes must be
retained in the reduced model. The technical reduction requirements are then merged
with the reduction requirements provided by the user (user reduction requirements),
which include the specification of the study region, to form the overall reduction
requirements.

After both the full model data and reduction requirements are finalized, they can
be fed to a tool (such as the DYNRED program used in this case study) to perform
the reduction with the specified parameters (the method for coherency identification
and generator aggregation, etc.). At the end of this step, a reduced model with a
matching powerflow and dynamics data set will be produced.

After a (draft) reduced model is created, it is critical to perform sanity checks
and model validation to ensure that the reduced model not only meets the reduction
requirements, but also the performance requirements. This is done by using vari-
ous methods, including powerflow and time-domain simulations, at the base system
condition as well as at other system conditions under which the model may be used.
If the reduced model is deemed unacceptable, the reduction requirements are modi-
fied and a new reduced model is created. The process is iterated until the final reduced
model is created with a set of satisfactory performance metrics.

7.4.2 Creation of the Reduced Model

Before starting reduction in this case study, it was determined that a buffer region
needs to be kept in the reduced model for the following reasons:
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Fig. 7.3 Flowchart of a dynamic reduction process

• To facilitate the use of the reduced model in real-time applications (for example,
the tie-lines connecting the study region shall be easily identified when merging
the real-time system models with the external system contained in the reduced
model).

• To ensure adequate system performance.
• To enable model benchmarking (for example, dispatching the full and reduced

models consistently for scenarios in Table 7.2 and monitoring the system perfor-
mance).

The following is the buffer region defined from the above considerations (with a
total of 270 buses):
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• All circuits connecting the study region.
• All 500 kV buses in the US Northwest outside of the study region.
• Key generators in the US Northwest outside of the study region.
• Buses around PDCI.
• Circuits at key interfaces in WECC.
• Generators required to preserve a 0.4 Hz inter-area mode in WECC (this was

determined from eigenvalue analysis on the full model).

With the above, the portion of the system to be fully retained in the reduced model
has 5,145 buses (study region+buffer region). Thus in order to achieve the target of
around 7,000 buses for the reduced model, 11,185 buses in the system external to
the study region and buffer region must be reduced to about 1,855 buses.

As mentioned earlier, the actual model reduction was done by the DYNRED
program. The following options in DYNRED were used which appear to work well
from past experience:

• Weak links method [5] was used to identify the coherent generator groups.
• Classical aggregation method was used to aggregate the generators in coherent

groups.

7.4.3 Model Benchmarking

For model benchmarking using time-domain simulations, 12 contingencies (8 N-1
and 4 N-2) were considered, as shown in Fig. 7.4. These are all located on the 500 kV

5L51

5L51/5L52

5L44

5L81

5L82

5L81/5L82

5L76/5L79

5L91

5L96

5L91/5L96

5L94

5L87

Fig. 7.4 Contingency code and locations
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Table 7.3 System conditions for model benchmarking

Scenario Description System conditions (MW) Actions applied
Base case Rating Achieved

1 PDCI O/S 2,500 3,100 0 PDCI is blocked to force
the flow through the
parallel AC system

2a High BC-US transfer 233 3,150 2,957 • Increase generation
and decrease load in
BC Hydro area

• Increase load in US
Northwest

3 High BC-Alberta
transfer

−254 1,200 819 • Increase generation in
BC Hydro area

• Increase load in
Alberta

6 Fault clearance at CCT N/A N/A N/A Contingency 5L51 was
examined for this
condition

grid within the BC Hydro area. Each contingency includes a 4-cycle three-phase
fault and circuit tripping to clear the fault. For some N-2 contingencies, the system
is unstable. In such cases, generation and loading shedding is applied to stabilize the
system.

For model benchmarking at different system conditions, system dispatches were
performed to achieve the required operating conditions. The resulting system con-
ditions and the required dispatching actions are shown in Table 7.3 for the selected
scenarios discussed in this chapter.

When comparing the time-domain simulation results from the full and reduced
models, one question is how to measure the closeness of two simulation trajectories.
DYNRED includes a feature that produces an index to facilitate such comparison.
Figure 7.5 shows typical simulation results xf from a full model and xr from a
corresponding reduced model for one quantity x following a contingency. The Time-
Domain (TD) index to measure the closeness for these two curves is defined as

TD index = 1

�x f T

√√√√√
T∫

0

(x f − xr )2dt (7.1)

where T is the length of the simulation and�x f is the peak-to-peak deviation of the
curve from the full model. This index can be viewed as a measure of the difference
of the two curves (the shaded area in Fig. 7.5) with respect to the per-unitized curve
from the full model.
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Fig. 7.5 Comparing two simulation trajectories

7.5 Results

7.5.1 Reduced Model

With the approach described above, a reduced model is created. Table 7.4 shows the
summary of the reduced model.

It is seen that the size of the reduced model is within the range of the BC Hydro
requirements. Note that although the reduction ratio for the number of generators is
less than half at 45.9 %, the actual reduction of dynamics is higher since the equivalent
generators in the external region are all represented by the 2-state classical model.

The key task in this model reduction project is to verify that the reduced model
is suitable for use in stability analysis for a wide range of system conditions. This is
described in the following subsections.

7.5.2 Model Benchmarking: Powerflow at the Base System
Condition

The performance numbers are obtained by comparing the solved full and reduced
powerflow models:

Table 7.4 Summary of the reduced model

Number of buses Number of generators

Full model (F) 16,330 1,922
Reduced model (R) 72,10 1,040
Reduction ratio ( F−R

F ) 55.8 % 45.9 %
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• Differences on bus voltages (>200 kV): 0.01 %
• Differences on bus voltages (≤200 kV): 0.23 %
• Differences on branch flows (MW): 0.62 % (on branches with flows greater than

10 MW)
• Differences on branch flows (MVAR): 5.42 % (on branches with flows greater than

10 MVAR)
• Differences on shunt outputs (MVAR): 0.20 % (on shunts with outputs greater than

5 MVAR)

It is seen that most of the quantities in the reduced model are fairly close to the
full model, except for the branch MVAR flows. The relatively visible differences in
branch MVAR flows are primarily due to small branch reactances on these branches,
and it has been identified that such visible differences occur only on a small number
of branches.

7.5.3 Model Benchmarking: Time-Domain Simulations
at the Base System Condition

Time-domain simulations are performed for all 12 contingencies for the full and
reduced models at the base system condition. The following are the largest TD indices
obtained for each of the four types of monitored quantities from these simulations:

• Generator relative rotor angles: 1.33 %
• Bus voltage magnitudes: 0.69 %
• Branch MW flows: 2.31 %
• Branch MVAR flows: 2.43 %

To correlate the above TD index numbers with the graphical comparison of the
simulations curves, Fig. 7.6 shows the plots from which the above largest TD indices
are obtained. Two conclusions can be made:

• The differences in the simulation results between the full and reduced models in
Fig. 7.6 are acceptable.

• By the definition of the TD index, the differences of all other monitored quantities
between the full and reduced models should be less than those in Fig. 7.6.

Therefore, it is determined that the reduced model performs satisfactorily for
time-domain simulations at the base system condition.
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Fig. 7.6 Comparison of quantities with the largest TD indices. a Generator relative rotor angle.
b Bus voltage magnitude. c Branch MW flow. d Branch MVAR flow

7.5.4 Model Benchmarking: Eigenvalues at the Base System
Condition

Modes of low-frequency electromechanical oscillations in both full and reduced
models between 0.2 and 1.0 Hz and with damping less than 10 % are computed.
Eight modes are identified as associated with the study region (mainly in British
Columbia and Alberta). Table 7.5 shows the comparison of these modes. It is clear
that such modes are well preserved in the reduced model.
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Table 7.5 Comparison of oscillatory modes, where f and ς are the modal frequency and damping
ratio, respectively

Mode No. Full model Reduced model Mode location
f (Hz) ς (%) f (Hz) ς (%)

1 0.40 7.73 0.40 7.66 System-wide interarea mode
2 0.67 9.98 0.67 10.00 British Columbia
3 0.68 7.98 0.68 7.90 Alberta
4 0.71 5.40 0.71 5.13 British Columbia
5 0.72 9.68 0.72 9.81 Alberta
6 0.97 5.39 0.97 5.36 Alberta
7 0.95 7.55 0.95 7.55 British Columbia
8 0.97 5.39 0.97 5.36 Alberta

Table 7.6 TD indices for different system conditions

Scenario No. Generator relative Bus voltage Branch MW Branch MVAR
rotor angle (%) magnitude (%) flow (%) flow (%)

1 2.09 0.88 3.81 2.95
2a 1.77 0.73 2.58 6.83
3 1.24 0.31 1.97 1.06

7.5.5 Model Benchmarking: Time-Domain Simulations
at Different System Conditions

Ensuring satisfactory performance for the reduced model at different system con-
ditions described in Table 7.3 is a more challenging task to achieve in model
benchmarking. Only time-domain simulation comparisons are performed, which are
considered sufficient for validating the reduced model.

Table 7.6 shows the TD indices obtained for the three scenarios (1, 2a, and 3) in
Table 7.3. Results for scenario 6 are presented in the next section.

It is seen that the TD indices are, in general, in the same order as those obtained
from the base system condition; thus it can be concluded that the performance of the
reduced model is very close to that of the full model. A closer comparison indicates
that the TD indices in Table 7.6 are marginally larger than those obtained at the base
system condition, except for scenario 3. This is expected, since

• Scenarios 1 and 2a involve system dispatches applied to the external region that are
different in the full and reduced models; thus the differences in system responses
for these scenarios should be somehow larger than in the base system condition.

• Scenario 3 involves system dispatches only within the study region; therefore,
the powerflows of full and reduced models after the dispatches should be very
close. As a result, the simulation results from these two models should also be
very close. The slightly smaller TD indices signify the fact that the system at this
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Fig. 7.7 Comparison of branch MW flows for scenarios 1 and 3

operating condition is transiently less stable than the base system condition; thus
the normalizing factor (�X f in Eq. 7.1) is larger.

To confirm the above points, two plots are shown in Fig. 7.7 for branch MW flows
for scenarios 1 and 3. These can be compared with plot (c) in Fig. 7.6.

7.5.6 Model Benchmarking: Very Stressed System Condition

The performance of the reduced model under a much stressed system condition is
tested by considering scenario 6 in Table 7.3. First, the CCT of a contingency (5L51)
is obtained for both the full and reduced models, which turns out to be 13.75 cycles
(consistent for both models). Then simulations are performed with fault clearance
time set at 13.75 cycles (marginally stable) for both models. The TD indices obtained
from these simulations are

• Generator relative rotor angles: 2.59 %
• Bus voltage magnitudes: 1.50 %
• Branch MW flows: 3.53 %
• Branch MVAR flows: 3.62 %

These are higher than the indices from the normal fault clearance cases for the
obvious reason, but are still within a small boundary indicating consistent results
between the two models. The plots in Fig. 7.8 confirm this.
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Fig. 7.8 Comparison of simulations with fault clearance at CCT. a Generator relative rotor angle.
b Bus voltage magnitude

7.5.7 Computation Speed Performance

Achieving fast computation speed is one of the motivations to use a reduced model
in stability analysis. A computation speed comparison shows that the time it takes to
complete a typical 10 s simulation using the reduced model is approximately 52 % of
the time required for the full model. Thus, the computation speed can be effectively
doubled when the reduced model is used.

7.6 Conclusions

This chapter illustrates a complete dynamic reduction process through a case study
in which a full WECC system model is reduced for use by BC Hydro. This process
consists of the following steps:

• Specify the reduction requirements.
• Set up the performance requirements.
• Select the reduction method and parameters.
• Perform the dynamic reduction.
• Validate the reduced model.
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It is shown that, following the procedure used in the case study, a reduced model can
be obtained for use with a wide range of system conditions with acceptable results
and computation time saving.
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Chapter 8
Measurement-Based Methods for Model
Reduction of Power Systems Using
Synchrophasors

Aranya Chakrabortty and J. Chow

Abstract Wide-area analysis and control of large-scale electric power systems are
highly dependent on the idea of aggregation. For example, one often hears power
system operators mentioning how “Northern Washington” oscillates against “South-
ern California” in response to various disturbance events. The main question here is
whether we can analytically construct dynamic electromechanical models for these
conceptual, aggregated generators representing Washington and California, which
in reality are some hypothetical combinations of hundreds of actual generators. In
this chapter we present an overview of several new results on how to construct
such simplified interarea models of large power systems by using dynamic measure-
ments available from phasor measurement units (PMUs) installed at limited points
on the transmission lines. Our examples of study are motivated by widely encoun-
tered power transfer paths in the Western Electricity Coordinating Council (WECC),
namely a two-area radial system representing the WA-MT flow, a star-connected
three-area system resembling the Pacific AC Intertie, and a generic multi-area sys-
tem with more than one dominant slow mode of oscillation.

8.1 Introduction

Over the past few years, several catastrophic phenomena, such as cascade failures
and blackouts in different parts of the North American power grid, have forced
power system researchers to look beyond the traditional approach of analyzing
power system functionalities in steady-state, and instead pay serious attention to their
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dynamic characteristics, and in a global or wide-area sense. This mindset has been
particularly facilitated by the recent outburst of measurement and instrumentation
facilities in the context of smart power grids provided by the wide-area measure-
ment system (WAMS) technology, which uses sophisticated digital recording devices
called phasor measurement units (PMUs) to record and export GPS-synchronized
high-sampling-rate (6–60 samples/s) dynamic power system data [1]. Industry plat-
forms, such as the North American Synchrophasor Initiative (NASPI) [2], have been
formed to investigate ways by which PMU measurements from different parts of the
US power system can possibly be exploited to gain insight into their dynamic inter-
dependence, which could indicate how events in one area of the grid can propagate
and have a significant impact on other remote areas.

However, a major road-block to wide-area analysis of large-scale power systems
is the absence of concrete mathematical models that capture the aggregated electro-
mechanical dynamics coupling one area of the system with another. For example, one
often hears power system operators mentioning how “Northern Washington” oscil-
lates against “Southern California” in response to various disturbance events. The
main question here is whether we can analytically construct dynamic electromechan-
ical models for these conceptual, aggregated generators representing Washington
and California, which in reality are some hypothetical combinations of hundreds
of actual generators. For example, it is well known that a 0.25 Hz interarea swing
mode exists between the north–south interconnections of the Western Electricity
Coordinating Council (WECC) extending from Alberta, Canada to Baja Mexico [3],
with additional 0.4–0.7 Hz modes along the pacific AC intertie and the east–west
interconnection. Based on such interarea modal behavior, conceptually speaking,
the map of WECC can be drawn as an equivalent mass-spring-damper model [4], as
in Fig. 8.1a, showing how the electromechanical dynamics of the aggregated parts of
WECC may swing against each other when a disturbance sets in. Figures 8.1b and c
shows the partitioning of the WECC into a 2-area system and a 9-area system. But,
again, the main question to be resolved is how can we construct an explicit dynamic
model for this conceptual figure, preferably in real-time, using voltage, current, or
power flow signal measurements in order to establish a prototype for the nonlin-
ear interarea dynamics of the entire interconnection. Using conventional model-
based equivalencing methods [5] would be impractical for this purpose because
they are highly time-consuming and numerically challenging for large-scale non-
linear simulations. More importantly, they are dependent on the precise knowledge
of the model parameters (such as inertia, transient reactance, transformer reactance)
of all the thousands of generators, transmission lines, and loads constituting each
aggregate area.

Motivated by these fundamental questions of current interest to the PMU research
community, in this chapter we develop a framework for the identification of reduced-
order dynamic models of very large-scale power systems, not by using tradi-
tional model-based methods [5], but from synchrophasor measurements available
from PMUs installed only at selected points on the transfer path. Our models of
study in this chapter represent prototypes of three well-known transfer paths in the
WECC, namely,
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(a)

(b) (c)

Fig. 8.1 Area aggregations in Western Electricity Coordinating Council (WECC). a Spring-mass
system representation of WECC. b WECC 2-area partition. c WECC 9-area partition

1. One-dimensional models such as a two-area radial system with one dominant
slow mode of oscillation (e.g., Washington-Montana transfer),

2. Two-dimensional models with algebraic nodes such as a three-area star-connected
system with one or two dominant slow modes of oscillation (e.g., Pacific AC
intertie),
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3. Two-dimensional models with direct connectivity, i.e., a general multi-area power
system with a given interarea topology, and two or more slow modes of oscillation.

For each of these transfer paths, we first show that the model identification reduces
to a parameter estimation problem for the aggregated intra-area reactances and
machine inertias internal to each area, and then derive analytical results showing
how the voltage, phase angle, and frequency oscillations at multiple buses on the
transfer path, following a small-signal disturbance, can be used to estimate these
parameters. We illustrate our results with real power system disturbance events in
WECC. The objective of this chapter should not, however, be confused with research
on modal identification, the purpose of which is to estimate the eigenvalues and eigen-
vectors of the state matrix of the linearized power system from the measured states.
Several numerical algorithms have been developed for such mode estimation from
both ringed-down disturbance data and ambient measurements, as discussed in the
seminal work of Hauer [6, 7] with established applications in wide-area monitor-
ing in the US as well as in other countries, such as Australia [8, 9], China [10], and
Denmark [11]. This chapter, on the other hand, looks farther beyond mode estimation
towards identifying dynamic model parameters from the “modes”.

The remainder of the chapter is organized as follows. Sections 8.2, 8.3, and 8.4
pose the interarea model estimation (IME) problem for one- and two-dimensional
systems together with the validations of the respective results through PMU data
analysis of WECC. Section 8.5 presents transient stability assessment using these
equivalent models via energy function analysis, while Sect. 8.6 develops PMU place-
ment methods using noisy data. Section 8.7 concludes the chapter.

8.2 Problem Formulation

Mathematical modeling of dynamic equivalents of large-scale electric power systems
has seen some 40 years of long and rich research history. The foundations of this
line of research were laid in the late 1970s by Chow and Kokotović, who introduced
the ideas of aggregation and coherency [5], resulting in algorithms of partitioning a
power network into dynamic aggregates, where each aggregate consists of a group of
strongly connected generators that synchronize over a fast time-scale and, thereafter,
act as a single entity, while the aggregates themselves are weakly connected to each
other, and synchronize over a slower time-scale. Using singular perturbation theory,
they derived analytical expressions for aggregated machine inertias and reactances in
terms of the model parameters of each individual machine contained in an area. Their
approach was complemented by alternative techniques of coherency such as those
by Germond and Podmore [12], and de Mello, Podmore, and Stanton using circuit-
theoretic approaches [13], Undrill and Turner using linear modal decomposition
[14], Zaborszky et al. using enumerative clustering algorithms [15], and Nath et al.
using iterative techniques to compute the coupling strengths between different areas
[16]. Aggregation and coherency reduced the computational complexities of solving
thousands of nonlinear equations in power system stability programs from detailed
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models, and was tested offline on both small-scale (such as the 48-machine NPCC
system1) and large-scale (such as the 12,000-bus NYPP system2) via software pro-
grams such as DYNEQ and DYNRED [17]. However, the main limitations of the
above-mentioned conventional model reduction methods are twofold: first, they are
model-based methods, meaning that to construct reduced-order models using these
methods one would need to know each constituent model explicitly; and second,
in constructing an aggregate motion, most of these methods tend to capture minute
details of the fast local oscillations in each area that not only increase the computa-
tional time but also may be unnecessary at times of emergency when decisions have
to be made fast.

The methods proposed in this chapter are meant to circumvent these traditional
barriers by developing model reduction algorithms that do not depend on individual
component-level model information, and are based on measurements only. PMU
measurements of voltage, current and frequency from disturbance events available
from a limited number of points in the network will be utilized for this purpose.
Our first system of investigation is a commonly encountered power transfer path,
namely, a two-area radial power system, as shown in Fig. 8.2a, containing multiple
strongly connected machines in each area with arbitrary interconnection structure.
Its two-machine dynamic (interarea) model and its classical circuit representation
are shown in Fig. 8.2b. The system consists of two aggregated generators G1 and
G2, which represent coherent combinations of strongly connected machines in each
respective area. Let the equivalent inertias of these aggregated machines be H1 and
H2, respectively. The machines are connected to the high-voltage terminal buses 1
and 2 through equivalent transformers having reactances xT 1 and xT 2, which, in turn,
represent Thevenin equivalents of the transformer reactances in each respective area.
This two-area system is useful for representing a radial transfer path in a large power
system in which one coherent area is exporting power to the other coherent area. The
voltage phasors at Buses 1 and 2 are given as

Ṽi = Vi∠θi , i = 1, 2 (8.1)

where V ∠θ denotes the polar representation V ε jθ . The transmission line between
Buses 1 and 2 is assumed to be lossless with a reactance xe. The line current flowing
from Bus 1 to Bus 2 is Ĩ = I∠θI with G1 supplying power to G2, which acts as a
load. For the classical model representation, the internal voltages of the generators
G1 and G2 are denoted as

Ẽ1 = E1∠δ1, Ẽ2 = E2∠δ2. (8.2)

The total reactances connecting the generator internal voltage nodes to the terminal
Buses 1 and 2 are given as

1 Northeast Power Coordinating Council.
2 New York Power Pool.
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Fig. 8.2 Area aggregations in Western Electricity Coordinating Council (WECC). a Two-area
power system. b Two-machine interarea equivalent

xi = xT i + x ′
di , i = 1, 2 (8.3)

where x ′
d1 and x ′

d2 are the equivalent direct-axis transient reactances of G1 and G2,
respectively. The total reactance of the transfer path is, therefore, given as

x̄ = x1 + xe + x2. (8.4)

The electromechanical model of each aggregated generator, neglecting damping, can
be written as [18]

δ̇i = Ω(ωi − ωs), 2Hi ω̇i = Pmi − Pei , i = 1, 2, (8.5)

whereΩ = 120π for a 60 Hz system, ωs is the synchronous speed, and ωi , Pmi , Pei

are, respectively, the angular velocity, the mechanical power input, and the electrical
power output of the ith machine. All quantities are in per unit except for the phase
angles which are in radians. We assume that inside each area the system configuration
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remains unchanged over the time-scale of the interarea mode. The two swing equa-
tions in (8.5) can then be combined to form a second-order system

δ̇ = Ω ω, 2H ω̇ = Pm − Pe (8.6)

with

Pm = H2 Pm1 − H1 Pm2

H1 + H2
, Pe = E1 E2

x̄
sin(δ) (8.7)

where H = H1 H2/(H1 + H2) is the equivalent inertia, δ = δ1 − δ2, and ω =
ω1 −ω2. Assuming that PMU measurements of voltage, current, and bus frequency
are available from Buses 1 and 2, we then pose the problem of finding the reduced
model in Fig. 8.2b as follows.

Given the measured synchronized phasor variables V1, θ1, V2, θ2, I , and θI in
Fig. 8.2a that exhibit a few cycles of interarea oscillations, compute Ei , δi , xi , and Hi ,
i = 1, 2, and xe of the reduced-order two-machine system in Fig. 8.2b to represent
the interarea dynamic behavior of the two-area power system.

Because Ṽ1, Ṽ2 and Ĩ are measured, xe can be easily computed from j xe =
(Ṽ1−Ṽ2)/ Ĩ . Similarly Ẽ1 and Ẽ2 can be computed if x1 and x2 are known. Therefore,
the above problem, referred to as the Interarea Model Estimation (IME) problem,
reduces to the estimation of four quantities, namely x1, x2, H1, and H2. We next
derive algorithms by which these four parameters can be identified from the interarea
oscillations of voltage and frequency captured by the PMUs on the transfer path.

8.2.1 Reactance Estimation

Without any loss of generality, we fix our reference at the internal node of Generator
2, and assume δ2 = 0 and δ1 = δ. The first step for this algorithm is to choose any
phasor variable measured by the PMUs, for example, magnitude of bus voltages.
The voltage phasor at any point P at a reactance j x away from Generator 2 (or
equivalently at a distance x away if the reactance is uniformly distributed along the
path), can be written as

Ṽ = a E1(cos(δ)+ j sin(δ))+ E2(1 − a) (8.8)

where a = x/(x1+xe+x2) is the normalized reactance of the point P . The magnitude
of Ṽ (x), denoted as V , is, therefore,

V � |Ṽ | =
√

c + 2E1 E2((a − a2) cos(δ)) (8.9)

where c = (1−a)2 E2
2 +a2 E2

1 . Considering a small-signal disturbance in the system,
and linearizing (8.6) and (8.9) about an equilibrium point (δ0, ω0 = 0, Vss), any
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change in V can be written as

ΔV (a, t) = − E1 E2 sin(δ0)(a − a2)

V (a, δ0)
Δδ(t). (8.10)

Of prime importance is that the Jacobian in (8.10) consists of two parts: a numer-
ator part varying with a, and a denominator part which is the steady-state bus mag-
nitude at the point P . From (8.10), we can write

Vn � ΔV (a, t)V (a, δ0) = A a(1 − a)Δδ(t). (8.11)

where A = − E1 E2 sin(δ0). The quantity Vn in (8.11), referred to as the normalized
voltage is a product of two quantities, namely the change in voltage at the point P
at any time instant t following the disturbance from the predisturbance equilibrium
voltage V (a, δ0) at this point, and V (a, δ0) itself. If a PMU is located at this point P ,
then both of these quantities and, therefore, the normalized voltage can be calculated
from the PMU measurement recordings at any fixed point of time. The RHS of (8.11)
consists of the unknown constant A as well as the hypothetical state evolutionΔδ(t),
which depends only on time t and not on the spatial variable a. We refer to this as
the time–space separation property, using which we can simply write

Vn1(a1, t∗)
Vn2(a2, t∗)

= a1(1 − a1)

a2(1 − a2)
(8.12)

where Vn1 and Vn2 are, respectively, the normalized voltages at Bus 1 and Bus 2, t∗
is a fixed point of time, while

a1 = (x2 + xe)

(x1 + xe + x2)
, a2 = x2

(x1 + xe + x2)
(8.13)

are the normalized reactances of these two respective buses. To generate a second
equation we need another measurement point, which, in other words, indicates that
we must have a third PMU installed at some intermediate bus on the transfer path
between Bus 1 and Bus 2 at a known distance from Bus 2. In that case, for the same
time instant t = t∗ as before, we can use

Vn3(a3, t∗)
Vn2(a2, t∗)

= a3(1 − a3)

a2(1 − a2)
(8.14)

where a3 is the normalized reactance corresponding to the third bus. Equations (8.12)
and (8.14) can then be solved for x1 and x2 using numerical algorithms. If damping
is considered in (8.6), then additionally we will have to consider one more data point
and form a third equation similar to (8.14).

Note 1: Even if an actual PMU is not installed between buses 1 and 2, a third
voltage Ṽ3 can still be obtained using the relation Ṽ3 = Ṽ2 + j x23 Ĩ , where x23 is the
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reactance between the third point and Bus 2 (and is assumed to be known), while Ĩ
is the line current measured by the PMU at Bus 2.

Note 2: If the transmission line has both resistance and reactance, then the spatial
variable a simply needs to be defined as a ratio of the impedance of any point
measured from Bus 2 to the total impedance of the transfer path. The rest of the
algorithm will not change under that situation.

8.2.2 Inertia Extrapolation Algorithm

Once x1 and x2 have been computed, the remaining parameters to be computed are
the inertias H1 and H2. We need two pieces of information. First, by measuring the
frequency f of the swing mode in the voltage measurement (which can be done
using modal decomposition algorithms), the equivalent inertia constant H can be
computed from linear circuit theory as [18]

H = (E1 E2 cos(δ0)Ω)/(2 x̄ (2π f )2) (8.15)

Second, to calculate H1 and H2 separately, we develop a companion equation by
exploiting the frequencies measured at Buses 1 and 2. Neglecting losses and machine
damping effects, the conservation of the total angular momentum of the two-machine
system is given as

L = 2H1ω1 + 2H2ω2 = 2
∫
(H1ω̇1 + H2ω̇2) dt

=
∫
(Pm1 − Pe1 + Pm2 − Pe2) dt = 0 (8.16)

from which we obtain

H1

H2
= −ω2

ω1
(8.17)

Hence, (8.17) can be used to solve for H1 and H2, provided that the estimates for
the machine speeds are known. For the two-machine system, we can show that ω1
and ω2 can indeed be estimated from the measured frequencies ϑ1 and ϑ2 at Buses
1 and 2 according to the equations

ϑ1 = g1ω1 + h1(ω1 + ω2) cos(δ1 − δ2)+ k1ω2

g1 + 2h1 cos(δ1 − δ2)+ k1
(8.18)

ϑ2 = g2ω1 + h2(ω1 + ω2) cos(δ1 − δ2)+ k2ω2

g2 + 2h2 cos(δ1 − δ2)+ k2
(8.19)
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where g1 = E2
1(1 − ρ1)

2, h1 = E1 E2ρ1(1 − ρ1), k1 = ρ2
1 E2

2 , g2 = E2
1(1 − ρ2)

2,
h2 = E1 E2ρ2(1 − ρ2), and k2 = ρ2

2 E2
2 , with ρ1 = x1/x̄ and ρ2 = (x1 + xe)/x̄ .

Equations (8.18–8.19) can be derived simply from (8.8) by considering θ =
tan−1(Im(Ṽ )/Re(Ṽ )), and then taking the time derivative to derive ϑ = θ̇ as a
function of a. Because the bus frequencies ϑ1 and ϑ2 are available from PMU
measurements, we can estimate ω1 and ω2 using (8.18) and (8.19), calculate the
ratio ω2/ω1 = −H1/H2, and solve for H1 and H2 using (8.15) and the relation
H = H1 H2/(H1 + H2).

8.2.3 Washington-Montana Transfer Path Modeling

We next model the east–west WECC power transfer between the aggregated gener-
ators of “Canada, Washington, Oregon” and “Montana, Wyoming, Utah” indicated
in Fig. 8.1a, referred to here as WECC transfer path 1. The system consists of a
median-size group of remote machines supplying power via a 600-mile transmission
system to a load center. A disturbance initiated a 0.578 Hz oscillation across the
transfer path. The event recording started 60 s before the disturbance for a total of
5 min. We assume that the transmission line is lossless. The variation of the voltage
magnitudes at the two terminal buses and the midpoint over time are shown by the
field measured data in Fig. 8.3a. We separate the fast and slow components of the
voltage waves by bandpass filtering, as shown in Fig. 8.3b and c. The upper and
lower cut-offs of the filter are chosen as 1 and 0.2 Hz, respectively, covering the
interarea mode frequency. In Fig. 8.3b, we show the voltage oscillations from time
t = 60–90 s. In this figure we can see that the oscillations are not exactly sinusoidal
due to the presence of local modes in addition to the interarea mode. To extract the
interarea mode, we apply the eigenvalue realization algorithm (ERA) on the three bus
voltages [19]. Figures 8.4a and b shows the comparison of the interarea oscillations
with the measured bus voltages at Buses 1 and 2. The oscillations are now free from
the distortions due to the local mode effects, and are purely sinusoidal. Choosing
a fixed time instant of t = 75 s, the amplitudes of the interarea oscillations at the
respective buses are then measured as

V1m = 8.746 × 10−3, V2m = 9.733 × 10−3, V3m = 0.01845 (8.20)

The pre-disturbance equilibrium voltages are measured as

V1ss = 1.082, V2ss = 1.087, V3ss = 1.089 (8.21)

Therefore, the normalized amplitude of oscillations are

V1n = 9.46 × 10−3, V2n = 1.06 × 10−3, V3n = 20.09 × 10−3 (8.22)
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Fig. 8.3 Voltage oscillations in WECC transfer path 1. a Bus voltages in WECC transfer path 1.
b Fast component of voltage magnitude. c Quasi-steady-state voltage magnitude

while xe = 0.077 pu from least-squares estimation. Using the IME algorithm we get
(in pu)

x1 = 0.0121, x2 = 0.0012, H1 = 1050, H2 = 134

The bus frequencies at the sending and receiving ends, their fast and slow components
as well as their interarea components, used for estimating H1 and H2, are shown in
Fig. 8.6. To verify the accuracy of the estimates, we also compare the interarea
modal response of the voltage angles between the equivalent machines (as extracted
via ERA) with the corresponding impulse response of the identified swing model.
Figure 8.4c shows this comparison and confirms that the trajectories are sufficiently
close to each other.

8.3 Star-Connected Three-Area System

Our system of interest in this section, namely a two-dimensional system with
algebraic node(s), is motivated by the five-machine structure of the Pacific AC
intertie model shown in Fig. 8.1a. The schematic circuit diagram of this system
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Fig. 8.4 Slow mode extraction for WECC transfer path 1 voltages. a Interarea oscillation at Bus 1.
b Interarea oscillation at Bus 2. c Interarea versus intermachine oscillations

is shown in Fig. 8.7a. The basic problem formulation for reactance estimation for
this system is similar to that in Sect. 8.2, i.e., using PMU measurements available
from Buses 1, 2, 3 and 4, we need to solve for three unknown reactances, namely,
σi = xei + xT i + x ′

di , i = 1, 2, 3. Consider the star-connected three-machine
equivalent of a three-area power system as shown in Fig. 8.7a. The classical model
representation [18] of this three-machine system is shown in Fig. 8.7b. The system
consists of three generators G1, G2, and G3 with aggregated inertias H1, H2, and
H3 representing each coherent area [5], connected to Buses 1, 2 and 3 through trans-
formers having equivalent reactances xT 1, xT 2 and xT 3, respectively. The voltage
phasors at Buses 1, 2, 3, and 4 are given as Ṽi = Vi∠θi , i = 1, 2, 3, 4, where V ∠θ
denotes the polar representation V ε jθ . The transmission lines between Bus 4 and
the other three buses are all assumed to be lossless, with line reactances xe1 between
Buses 1 and 4, xe2 between Buses 2 and 4, and xe3 between Buses 3 and 4. The line
current phasors shown in Fig. 8.7b are Ĩi = Ii∠θIi , i = 1, 2, 3, with G1 supplying
power to G2 and G3, which act as loads. For the classical model representation, we
denote the internal voltage phasors of the generators G1, G2, and G3 as Ẽi = Ei∠δi ,
i = 1, 2, 3. The reactances connecting the generator internal voltages to Buses 1,
2, and 3 are given by
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Fig. 8.5 Frequency oscillations in WECC transfer path 1. a Sending end frequency. b Receiving
end frequency. c Fast component of sending end frequency

xi = (xT i + x ′
di ), i = 1, 2, 3 (8.23)

where x ′
d1, x ′

d2, and x ′
d3 are the direct-axis transient reactances of G1, G2, and G3,

respectively. For future use, we use the notations

σi = xei + xi , i = 1, 2, 3. (8.24)

It should be noted that unlike the variant of the IME method considered in [20], here
the generator G2 is not necessarily a synchronous condenser, and, hence, there is no
restrictive assumption about the equality of the voltage phase angles of Bus 2 and
Bus 4.

The dynamic model of the three-machine system in Fig. 8.7b, neglecting damping,
is given by

2H1 δ̈1 = Pm1 − E1V4

σ1
sin(δ1 − θ4) (8.25)

2H2 δ̈2 = Pm2 − E2V4

σ2
sin(δ2 − θ4) (8.26)
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Fig. 8.6 Slow mode extraction for WECC transfer path 1 frequencies. a Fast component of receiving
end frequency. b Interarea component of sending end frequency. c Interarea mode component of
receiving end frequency

2H3 δ̈3 = Pm3 − E3V4

σ3
sin(δ3 − θ4) (8.27)

We assume that PMUs are located at Buses 1, 2, 3, and 4. Hence, high-sampling rate
time-synchronized phasor variables Ṽi , i = 1, 2, 3, 4, and Ĩi , i = 1, 2, as a result
of a disturbance are available. We pose the problem of finding the parameters of the
model in Fig. 8.7b as follows.

Given the measured time-synchronized phasor variables V1, θ1, V2, θ2, V3, θ3,
V4, θ4, I1, θI1 , I2, and θI2 that exhibit a few cycles of interarea oscillations, and
assuming that E1, E2 and E3 are some constant values, compute xe1, xe2, xe3, E1,
δ1, E2, δ2, E3, δ3, x1, x2, x3, H1, H2 and H3 to completely characterize the dynamic
behavior of the three-machine reduced system in Fig. 8.7b.

Three of these quantities, namely, xe1, xe2, and xe3, can readily be computed from
the available bus voltages and currents using Ohm’s law

j xe1 = Ṽ1 − Ṽ4

Ĩ1
, j xe2 = Ṽ4 − Ṽ2

Ĩ2
, j xe3 = Ṽ4 − Ṽ3

Ĩ3
. (8.28)
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Fig. 8.7 Area aggregation of three-area power system. a Three-machine power system model.
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Moreover, if x1, x2, and x3 are known, then the machine internal voltages can be
computed from the bus voltages and the line currents. Thus, the problem reduces
to the estimation of x1, x2, and x3, as well as the inertias H1, H2, and H3. In the
following sections we develop techniques to estimate these six constant quantities.

Notations: A few notations used throughout the rest of the chapter are as follows.
Subscripts R, L , and M , respectively, refer to quantities related to the right branch
(between Generator 3 and Bus 4), left branch (between Bus 4 and Generator 1),
and the middle branch (between Bus 4 and Generator 2) of the transfer path. The
constant σi j is equal to σi/σ j . The superscript i for any quantity refers to that quantity
defined for Bus i , (i = 1, 2, 3, 4). A small change in any of the measured variables,
say an angle θ , over an existing equilibrium, is denoted as Δθ while Δθ i j is equal
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to Δθ i/Δθ j where the superscript denotes the bus at which Δθ is measured. All
quantities defined at the equilibrium are subscripted by 0.

8.3.1 Reactance Extrapolation: Branch 1

8.3.1.1 Step 1: Express Ṽ4 as a Function of Generator Voltages

With Ẽ3 as the reference, from circuit equations we can derive that

Ṽ4 = σ(E3 + σ31 Ẽ1 + σ32 Ẽ2) (8.29)

where σ � (σ1σ2)/(σ1σ2 + σ2σ3 + σ3σ1). We will use the expression in (8.29) for
subsequent derivations in the following sections.

8.3.1.2 Step 2: Find Voltage Magnitude at an Arbitrary Point

Consider any point on the branch at a reactance j x away from Generator 3, which is
taken as the reference node for this branch. The voltage phasor at this point can be
written as

ṼR = E3(1 − a3)+ a3Ṽ4 (8.30)

where a3 = x/σ3 ∈ [0, 1]. After a few calculations, it can be shown that the voltage
magnitude at this point is

VR(x, δ1, δ2) = √
ΣR +
R(x, δ1, δ2) (8.31)

where ΣR is a constant that is independent of δ1 and δ2,


(x, δ1, δ2) =
2∑

i=1

αRi cos(δi )+ αR3 cos(δ1 − δ2)

with αR1 = 2E1 E3a3(1 − a3 + a3σ)σσ31, αR2 = 2E2 E3a3(1 − a3 + a3σ)σσ32,
and αR3 = 2E1 E2a2

3σ
2σ31σ32.

8.3.1.3 Step 3: Form Normalized Voltage from a Small-Signal Perturbation

Consider a disturbance in the system, so that a small change in the voltage magnitude
in (8.31), at the given point at time t , over a pre-disturbance equilibrium voltage
VR0(x) can be written as
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ΔVR(x, t) = PR1(x)Δδ1(t)+ PR2(x)Δδ2(t)

VR0(x)
(8.32)

where

PR1(x) = −0.5(αR3 sin(δ120)+ αR1 sin(δ10))

PR2(x) = 0.5(αR3 sin(δ120)− αR2 sin(δ20))

and δ120 = δ10 − δ20. Next, we fix time at t = t∗, and denote VRn(x) =
ΔVR(x, t∗)VR0(x), so that

VRn(x) = PR1(x)Δδ1(t
∗)+ PR2(x)Δδ2(t

∗). (8.33)

Because the normalized voltage can be measured at Buses 3 and 4 from PMU mea-
surements following the disturbance, the quantities

V 3
n � VRn(x3), V 4

n � VRn(x3 + xe3) (8.34)

are known. Denoting P3
Ri = PRi (x3) and P4

Ri = PRi (x3 + xe3), i = 1, 2, we can
write

V 3
n

V 4
n

= P3
R1Δδ1(t∗)+ P3

R2Δδ2(t∗)
P4

R1Δδ1(t∗)+ P4
R2Δδ2(t∗)

. (8.35)

The two hypothetical statesΔδ1(t∗) andΔδ2(t∗) are unknown in (8.35). For the single
interarea mode case of Sect. 8.2, this problem could be very easily bypassed as there
was no term involving Δδ2, due to which the constant Δδ1(t∗) could be cancelled
in the numerator and the denominator of the right hand side of the equation, and the
resulting nonlinear algebraic equation could be used toward solving for the unknown
reactances. In other words, the time–space separation property is lost in (8.35) due
to the extra interarea mode. To fix this problem, we next consider the change in the
phase angles at Bus 3 and 4 as an extra degree of freedom, as follows.

8.3.1.4 Step 4: Derive the Change in Bus Phase Angles

The phase angle at any point on Branch 1, at a reactance x away from the Generator
3 node, is

θ = tan−1
(

cR1 sin(δ1)+ cR2 sin δ2

cR3 + cR1 cos(δ1)+ cR2 cos δ2

)
(8.36)

where cR1 = E1a3σσ31, cR2 = E2a3σσ32, and cR3 = E3(1 − a3 + a3σ). Using the
fact that if θ = tan−1(ψ(δ1, δ2)), then

Δθ = 1

1 + ψ2

(
∂ψ

∂δ1
Δδ1 + ∂ψ

∂δ2
Δδ2

)
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it can be shown that a small change in the LHS of (8.36), at any time t , can be written
as

Δθ(x, t) = SR1(x)Δδ1(t)+ SR2(x)Δδ1(t) (8.37)

where SR1 and SR2 are given as

SR1(x) = c2
R1 + cR1cR3 cos(δ10)+ cR1cR2 cos(δ10 − δ20)

ϑR(x)
(8.38)

SR2(x) = c2
R2 + cR2cR3 cos(δ20)+ cR1cR2 cos(δ10 − δ20)

ϑR(x)
(8.39)

ϑR(x) = c2
R1 + c2

R2 + c2
R3 + 2(cR1cR3 cos(δ10)+ cR3cR2 cos(δ20)

+cR2cR1 cos(δ10 − δ20)) (8.40)

8.3.1.5 Step 5: Formulate a Candidate Algebraic Equation

Fixing time at t = t∗, the fraction of the measured changes in the phase angles at
Buses 3 and 4 in terms of the functions SR1(·) and SR2(·) defined at these respective
bus locations, can then be written as

Δθ3

Δθ4 = S3
R1Δδ1(t∗)+ S3

R2Δδ1(t∗)
S4

R1Δδ2(t∗)+ S4
R2Δδ2(t∗)

. (8.41)

Selecting t∗ such that Δδ1(t∗) �= 0 and Δδ2(t∗) �= 0, (8.35) and (8.41) yield

V 3
n

V 4
n

= P3
R1(Δθ

34S4
R2 − S3

R2)+ P3
R2(S

3
R1 −Δθ34S4

R1)

P4
R1(Δθ

34S4
R2 − S3

R2)+ P4
R2(S

3
R1 −Δθ34S4

R1)
. (8.42)

The LHS of (8.42) as well as the quantity Δθ34 on the RHS are measured while the
other functions on the RHS are known nonlinear functions of (x1, x2, x3). Therefore,
(8.42) serves as a feasible equation to solve for these three unknown reactances. The
remaining two equations are constructed in the following sections using the measured
phasor variables in Branches 2 and 3 of the network.

8.3.2 Reactance Extrapolation: Branch 2

Following an analysis similar to that used in Sect. 8.2.1, the normalized voltage at a
point between Bus 4 and Generator 1, at a reactance x away from Bus 4,

VLn(x) = PL1(x)Δδ1(t
∗)+ PL2(x)Δδ2(t

∗) (8.43)
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where

PLi = 1

2
(−αL3 sin(δ10 − δ20)− αLi sin(δi0)), i = 1, 2

αL1 = 2E1 E3a1(1 − a1)σ + 2E1 E3(1 − a1)
2σ 2σ31

αL2 = 2E2 E3(1 − a1)
2σ 2σ32

αL3 = 2E1 E2a1(1 − a1)σσ32 + 2E1 E2(1 − a1)
2σ 2σ31σ32

The equivalent of (8.42) for Branch 2 can then be written as

V 1
n

V 4
n

= P1
L1(Δθ

14S4
L2 − S1

L2)+ P1
L2(S

1
L1 −Δθ14S4

L1)

P4
L1(Δθ

14S4
L2 − S1

L2)+ P4
L2(S

1
L1 −Δθ14S4

L1)
(8.44)

where the expressions for SL1, SL2 are given as

SLi (x) =
(

c2
Li + cLi cL3 cos(δi0)+ cL1cL2 cos(δ10 − δ20)

)
/ϑL(x), i = 1, 2

ϑL(x) = c2
L1 + c2

L2 + c2
L3 + 2cL3

2∑
i=1

(cLi cos(δi0)+ cL2cL1 cos(δ10 − δ20))

cL1 = a1 E1 + (1 − a1)E1σσ31

cL2 = E2(1 − a1)σσ32, cL3 = E3(1 − a1)σ

8.3.3 Reactance Extrapolation: Branch 3

For any point between Bus 4 and Generator 2, at a reactance x away from Bus 4, we
have

V 2
n

V 4
n

= P2
M1(Δθ

24S4
M2 − S2

M2)+ P2
M2(S

2
M1 −Δθ24S4

M1)

P4
M1(Δθ

24S4
M2 − S2

M2)+ P4
M2(S

2
M1 −Δθ24S4

M1)
(8.45)

where

PMi = 1

2
(−αM3 sin(δ10 − δ20)− αMi sin(δi0)), i = 1, 2

αM1 = 2E1 E3(1 − a2)
2σ 2σ31

αM2 = 2E2 E3a2(1 − a2)σ + 2E2 E3(1 − a2)
2σ 2σ32

αM3 = 2E1 E2a2(1 − a2)σσ31 + 2E1 E2(1 − a2)
2σ 2σ31σ32

with a2 = x/σ2, and the expressions for SM1 and SM2 are given as
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SMi (x) = (c2
Mi + cMi cM3 cos(δi0)+ cM1cM2 cos(δ10 − δ20))/ϑM (x), i = 1, 2

ϑM (x) = c2
L1 + c2

M2 + c2
M3 + 2cM3

2∑
i=1

(cMi cos(δi0)+ cM2cM1 cos(δ10 − δ20))

cM1 = (1 − a2)E1σσ31

cM2 = a2 E2 + E2(1 − a2)σσ32, cM3 = E3(1 − a2)σ

Equations (8.42), (8.44), and (8.45) can now be used to solve for the three
unknowns x1, x2, and x3 using the measurements of the bus voltage magnitudes
and phase angles.

8.3.4 Machine Inertia Estimation

To solve for the three inertias H1, H2, and H3 we need three equations. The first
two equations are given from the expressions for the frequencies of the two interarea
modes. For this we consider the electromechanical swing equations for the three
machines, given by (8.25–8.27). However, we should note that in these equations,
the two variables V4 and θ4 are not constants, but functions of the generator angles
according to (8.29). Considering this fact, we next linearize (8.25–8.27) about the
post-disturbance equilibrium, to get a linear equation of the form

δ̈ = H −1A δ (8.46)

where δ = col(δ1, δ2, δ3), H = diag(2H1, 2H2, 2H3) and A is a 3 × 3 matrix,
whose entries are all known once the three reactances x1, x2, and x3 are solved for,
using the method described in Sects. 8.3.1–8.3.3. To find the interarea dynamics, we
next fix δ3 as the reference angle, and define the relative angular separations as

δ13 = δ1 − δ3, δ23 = δ2 − δ3. (8.47)

Consider A1, A2 and A3 to be the first, second and third rows of the matrix A in
(8.46), respectively. It can be readily seen that

δ̈13 = ( ¯A1 − ¯A3)δ, δ̈23 = ( ¯A2 − ¯A3)δ (8.48)

where ¯A1 = A1/(2H1), ¯A2 = A2/(2H2), ¯A3 = A3/(2H3). Also, we have

[
δ13
δ23

]
=

[
1 0 −1
0 1 −1

]
δ. (8.49)

Combining (8.48) and (8.49) we can write
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[
δ̈13

δ̈23

]
=

[ ¯A1 − ¯A3¯A2 − ¯A3

] [
1 0 −1
0 1 −1

]+

︸ ︷︷ ︸
ϒ

[
δ13
δ23

]
. (8.50)

Denoting Ai = [ai1 ai2 ai3], i = 1, 2, 3, the structure of the 2 × 2 matrix ϒ is
given as

ϒ =
⎡
⎢⎣

2a11 − a12 − a13
H1

− 2a31 − a32 − a33
H3

2a12 − a11 − a13
H1

− 2a32 − a31 − a33
H3

2a21 − a22 − a23
H2

− 2a31 − a32 − a33
H3

2a22 − a21 − a23
H2

− 2a32 − a31 − a33
H3

⎤
⎥⎦

(8.51)

Let the entries of this matrix be denoted as υi j where i is the row index and j is the
column index. Then it follows that the eigenvalues of ϒ are given as

λ1,2 = υ11 + υ22 ± √
(υ11 − υ22)2 + 4υ12υ21

2
, (8.52)

and the respective eigenvectors e1 and e2 are given as solutions to the equations

ϒe1 = λ1e1, ϒe2 = λ2e2. (8.53)

It is clear from (8.51) that λ1, λ2, e1 and e2 are all functions of H1, H2, and H3.
The frequencies of the interarea oscillations can be measured from the difference
signals (θ1 − θ2) and (θ2 − θ3) using modal analysis (such as ERA or a subspace
identification algorithm). Say these frequencies (in Hz) are fs1 and fs2, and the
computed respective eigenvectors are ϕs1 and ϕs2. Then we can write

fs1 = 1

2π

√
λ1, ϕs1 = e1 (8.54)

fs2 = 1

2π

√
λ2, ϕs2 = e2. (8.55)

Either (8.54) or (8.55) may be used as two equations for solving for the three unknown
inertias as fs1, fs2, ϕs1 and ϕs2 are known quantities. An important point to note
here is that although the three-area system under consideration contains two inter-
area modes of oscillation it is sufficient to consider the participation of only one of
these modes in the PMU measurements for solving the EIME problem. For example,
the estimation of the unknown reactances, as in (8.25), (8.33), and (8.34), involves
the elimination of one of the interarea modes by considering the simultaneous mea-
surement of voltage magnitudes and phase angles. Similarly, the estimation of the
unknown inertias in (8.43–8.44) requires the modal decomposition of only one inter-
area mode. The resulting EIME algorithm, as summarized in Fig. 8.9, therefore,
does not depend on which modal component out of the two is selected from the
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PMU measurements for solving for the unknown parameters. The idea is illustrated
in Fig. 8.8.

The third equation is given by the law of conservation of angular momentum,
which can be simply written as

H1ω1 + H2ω2 + H3ω3 = 0 (8.56)

where ωi is the angular speed (rad/s) of the ith generator (i = 1, 2, 3). These speeds
are not measured, but can be estimated from the measured bus frequencies ν1, ν2,
and ν3 at Buses 1, 2, and 3, respectively, as discussed in [20]. The basic methodology
to achieve this is to express the voltage phasor Ṽ at any point in terms of E1∠δ1,
E2∠δ2, and E3∠δ3 and the reactance x with respect to some chosen reference; then
calculate the phasor angle

θ = tan−1(Im(Ṽ )/Re(Ṽ )) (8.57)

and compute the time derivative of θ as a function of x , ω1, ω2 and ω3. For the
three-machine system of Fig. 8.7b, after some calculations it can be shown that the
frequency at any point on the path is given by

ν(x, δ1, δ2, δ3) = Π1(x, δ1, δ2, δ3)

Π2(x, δ1, δ2, δ3)
(8.58)

where the functions Π1(·) and Π2(·) are given as

Π1(x, δ1, δ2, δ3) = ω1
[
n2

1 E2
1 + n1n2 E1 E2 cos(δ1 − δ2)+ n1n3 E1 E3 cos(δ1 − δ3)

]

+ ω2
[
n2

2 E2
2 + n2n3 E2 E3 cos(δ2 − δ3)+ n2n1 E2 E1 cos(δ2 − δ1)

]

+ ω3
[
n2

3 E2
3 + n3n1 E3 E1 cos(δ3 − δ1)+ n3n2 E3 E2 cos(δ3 − δ2)

]

PMU 1

PMU 2

PMU 3

1

2

3

Bus 1

Bus 2

Bus 3

Modal 
Decomposition

Modal 
Decomposition

1 - 3

2 - 3

fs1 s1

fs2 s2

Fig. 8.8 Choice of interarea mode for computation of unknown machine inertias
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A Summary of the EIME Algorithm

1. Consider the three-machine system in Figure 8.1(b). Following a disturbance
in the system, measure the voltage phasors Ṽ1, Ṽ2, Ṽ3, and Ṽ4 at Buses 1, 2, 3
and 4, respectively, and the currents Ĩ1, Ĩ2 and Ĩ3.

2. Calculate the line reactances xe1, xe2, and xe3 using (8.28).
3. Measure the amplitudes of oscillation in the magnitudes of Ṽi (i = 1, .., 4) at

one particular instant of time, for example, when they reach a peak simulta-
neously.

4. Multiply the measured amplitudes with the respective steady-state values of
the voltage waveforms to get the normalized voltage amplitudes at these four
buses.

5. Measure the amplitudes of oscillation in the phase angles of Ṽi (i = 1, ..., 4)
at the same instant of time.

6. Solve for x1, x2, and x3 using equations (8.42), (8.44), and (8.45).
7. Calculate the constant generator internal voltages using the extrapolated re-

actances, the bus voltages, and the line currents.
8. Calculate the inter-area swing frequency (eigenvalue) and the corresponding

eigenvector for any of the two inter-area modes from the measured bus
voltages using modal decomposition such as ERA.

9. Use the extrapolated system parameters and the inter-area frequencies to get
two equations in the machine inertias using (8.51), (8.54), and (8.55).

10. Use the measured bus frequencies 1 and 2 to estimate 1 and 2 using
(8.58) and (8.62).

11. Compute H1, H2 and H3 from Step 9 and equation (8.56) .

Fig. 8.9 A summary of the EIME algorithm

Π2(x, δ1, δ2, δ3) = n2
1 E2

1 + n2
2 E2

2 + n2
3 E2

3 + 2

[
n1n2 E1 E2 cos(δ1 − δ2)

+ n2n3 E2 E3 cos(δ2 − δ3)+ n3n1 E3 E1 cos(δ3 − δ1)

]

with n1, n2, and n3 defined as follows. The references for measuring x are fixed at
Bus 4 for Branches 1 and 3, and at Generator 1 for Branch 1. Also, as defined before,
a1, a2, and a3 denote the normalized reactances (or equivalently distances) measured
along Branches 1, 2, and 3, respectively, from their respective reference points:

1. Branch 1: Between Bus 4 and Generator 3

n1 = σσ31(1 − a3), n2 = σσ32(1 − a3), n3 = σ(1 − a3)+ a3 (8.59)

2. Branch 2: Between Generator 1 and Bus 4

n1 = 1 − a1 + a1σσ31, n2 = a1σσ32, n3 = a1σ (8.60)

3. Branch 3: Between Bus 4 and Generator 2
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n1 = σσ31(1 − a2), n2 = σσ32(1 − a2)+ a2, n3 = σ(1 − a2). (8.61)

Therefore, the frequencies at Buses 1, 2, and 3 can be expressed as

ν1 = Π1(x1, δ1, δ2, δ3)

Π2(x1, δ1, δ2, δ3)
, ν2 = Π1(xe2, δ1, δ2, δ3)

Π2(xe2, δ1, δ2, δ3)
,

ν3 = Π1(xe3, δ1, δ2, δ3)

Π2(xe3, δ1, δ2, δ3)
.

(8.62)

Since the bus frequencies are measured (or derived by passing the bus angles through
high-pass filters), ν1, ν2, and ν3 are known at any chosen time instant. Also, once
x1 and x2 are identified, Ei and δi (i = 1, 2, 3) can be calculated for the same time
instant, and hence, the three equations in (8.62) can be solved for ω1, ω2, and ω3.
The solution of H1 and H2 then follows from (8.54) or (8.55) and (8.56). The entire
algorithm is described step-by-step in Fig. 8.9.

8.3.5 Reduced-Order Modeling of Pacific AC Intertie

This transfer path is a large group of generators supplying power via a 1,200-mile
transmission system to a large load center with an intermediate generation cluster
attached to the path, as shown in Fig. 8.1a. Figure 8.10a shows the bus voltage
magnitudes at 6 buses on the transfer path, with Buses 1, 2, and 3 being the sending
end, receiving end, and the intermediate generation bus, respectively. Figures 8.10b
and c show the separated fast and slow components for each of the six bus voltages.
As both the sending and receiving ends have a large group of generators, a significant
number of swing modes contributes to the oscillations in Fig. 8.10b, only one of which
is the interarea mode. The oscillation due to this mode is dominant in all six voltages.
We apply the eigensystem realization algorithm (ERA) to extract the modes and their
mode shapes in the time response of the voltage oscillations, starting from t = 62 s
to t = 80 s. ERA shows that over this chosen time-window of 18 s, the oscillations
can be approximated by a dominant interarea mode of 0.404 Hz. Figure 8.11 shows
the 0.404 Hz mode components superimposed on the individual voltage magnitude
oscillations at Buses 1, 2, and 3. Similar figures can be drawn for the remaining
buses.

The magnitude Vim (in pu) of the interarea mode components of the ith bus voltage
(i = 1, 2, 3) can be obtained from the approximated (dotted) voltage responses in
Fig. 8.11a, b, and c at a fixed point of time. Choosing this fixed time point at t = 4 s,
where the positive peak of the second cycle occurs, we get (in pu)

V1m = 1.897 × 10−3, V2m = 2.615 × 10−3, V3m = 5.206 × 10−3 (8.63)
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Fig. 8.10 Bus voltage magnitudes for WECC transfer path 2. a Bus 1 voltage. b Bus 2 voltage.
c Bus 3 voltage

As the signals used for mode extraction start from t = 62 s in the original time
response of Fig. 8.10a, the chosen fixed time-point is equal to t = 66 s. The
quasi-steady-state values Viss of the ith bus voltage (i = 1, ..., 6) are obtained from
the slow parts of the voltages shown in Fig. 8.10c at the pre-disturbance time instant as

V1ss = 1.0903, V2ss = 1.046, V3ss = 1.1234 (8.64)

Therefore, the normalized voltage amplitudes are (in pu)

V1n = 2.0683 × 10−3, V2n = 2.7353 × 10−3, V3n = 5.8482 × 10−3 (8.65)

Applying the IME algorithm from (8.42), (8.44), and (8.45), we obtain

x1 = 0.00411, x2 = 0.00655 (8.66)

where x1 (in pu) is the sum of the aggregated transformer reactance and direct-axis
transient reactance of the sending end equivalent generator, and x2 (in pu) is that of
the receiving end equivalent generator. The Jacobian curve is shown in Fig. 8.12.
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Fig. 8.11 Interarea bus voltage magnitudes for WECC transfer path 2. a Bus 1 voltage. b Bus 2
voltage. c Bus 3 voltage

From the curve, it can be easily seen that oscillations are much more damped on the
right half of the transfer path due to the high loading effect on this side.

The inertia constant (pu) between the two dominant generators is approximately
H = 810 pu. However, the voltage droop at the star point is not very significant,
which indicates that the third generator does not produce a strong impact on the
voltage profile. The Jacobian fit without the effect of this extra interarea mode is
shown in Fig. 8.12 as the dashed curve.

8.4 Multi-Modal Interarea Equivalents

In this section we generalize the idea presented in Sect. 8.3 to a multi-area system
where each area is directly connected to its neighboring set of areas without the
existence of any algebraic bus. As before, we represent each area by an equivalent
synchronous machine, and assume that the equivalent topology of the system is
known. Unlike Sect. 8.3 the advantage here is that we do not need to compute the
voltage phasor at any algebraic bus, and can apply the IME algorithm of Sect. 8.2
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directly to every pair of connected areas in a decentralized fashion provided that
the contribution of every slow mode is retained in the bus measurements. The idea
is illustrated by the three-machine system in Fig. 8.13a, where each of the three
machines G1, G2, and G3, connected to each other by a ring topology, represent the
equivalent of an area consisting of multiple local machines. PMUs are assumed to
be installed at the terminal buses of each machine.

The swing dynamics of the equivalent system is given by

2H1δ̈1 = Pm1 − E1 E2

x12
sin(δ1 − δ2)− E1 E3

x13
sin(δ1 − δ3) (8.67)

2H2δ̈2 = Pm2 − E2 E3

x23
sin(δ2 − δ3)− E2 E1

x12
sin(δ2 − δ1) (8.68)

2H3δ̈3 = Pm3 − E3 E1

x13
sin(δ3 − δ1)− E3 E2

x23
sin(δ3 − δ2) (8.69)

where Pmi is the effective mechanical power input to the ith area, and xik is the
total reactance connecting the internal node of the ith and kth equivalent machines.
However, because each area may contain internal loads, we assume the line currents
across each transfer path to be different, namely Ĩ1, Ĩ2, and Ĩ3. All three currents are
available from the respective PMU measurements. The equivalent transmission line
reactances can be calculated from the bus voltage and current measurements using
Ohm’s law, while the total reactance between the internal node of any machine and
any of the terminal buses needs to be estimated using IME. Assuming a classical
model for synchronous machines, this total reactance is assumed to be the sum of the
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Fig. 8.13 Equivalent circuit of a multimodal power system. a 2-dimensional system. b Reactance
matching

direct-axis transient reactance and the transformer reactance, namely, (x ′
di j

+ xTi j ),

for the ith area connected to the jth terminal bus. Because Kirchoff’s law holds for
each transfer path independently, IME can be applied to each pair of machines to
calculate this reactances irrespective of the other paths. However, two important
points must be taken into consideration before applying IME:

1. Because the internal node of each machine is the point of common coupling
between any two neighboring transfer paths, we must make sure that this internal
voltage computed independently from the reactance estimates of each path must
match with each other. For example, using Kirchoff’s law at the internal node of
G1, first for transfer path 1–2 and then for the path 1–3, we get, respectively,

E1 = |Ṽ1 + j (x ′
d11

+ xT11) Ĩ1|, E1 = |Ṽ2 + j (x ′
d13

+ xT13) Ĩ2|, (8.70)

where, Ṽi and Ĩi are available from PMU measurements and the reactances are
estimated independently using IME. Because the LHS may not necessarily match
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for both equations, we, therefore, add two fictitious reactances j xa and j xb on
each side, and tune them till we obtain the same value of E1. The same approach
applies to the internal reactance of all other areas. Physically speaking, this may
be thought of as a variable reactance that matches the internal angle of each
equivalent machine at the cost of decentralized estimation of the area parameters.
These fictitious reactances are illustrated in Fig. 8.13b.

2. Decentralization of IME, however, should not neglect the basic fact that the
dynamics of the three machines are coupled to each other, and, therefore, all
the bus measurements used for estimating the reactances and inertias must con-
tain the contribution of each and every slow mode of oscillation. This can be easily
accounted for from the fundamental principle behind coherency and aggregation
[5]. For example, to obtain an analytical expression for the fast and slow oscilla-
tion dynamics, one may define the slow or aggregate variable for the kth area to
be the so-called center of inertia angle for that area, namely

yk �
∑nk

i=1 Hk
i δ

k
i∑nk

i=1 Hk
i

, k = 1, 2, ...r (8.71)

where δk
i and Hk

i are, respectively, the ith machine angle and inertia in the kth

area, nk is the total number of machines in the kth area, and r is the total number
of areas. Similarly, the fast variable for the kth area can be defined as

zk,i � δk
i − δk

1, i = 1, 2, ...nk, k = 1, 2, ...r. (8.72)

The time-scale separation between the fast and slow oscillations can then be
expressed explicitly in the singular perturbed form

dy

dts
= A11 y + A12z, ε

dz

dts
= A21 y + A22z (8.73)

where ε � 1 is a small parameter, and the exact expressions for the four state
matrices can be found in [5]. Assuming ε ≈ 0, the effective swing dynamics for
the interarea oscillations can then be written as:

dy

dts
= (A11 − A12 A−1

22 A21)y. (8.74)

Because the matrix (A11 − A12 A−1
22 A21) is not necessarily block-diagonal, it is

evident that the interarea oscillation modes are not necessarily decoupled. In other
words, the bus voltage oscillations available from the PMUs at each terminal bus
must retain the cumulative contribution of all slow modes. This can also be seen
from the time-domain representation of the ith bus voltage, namely
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Vk =
( n−1∑

i=1

Ri e
−σi t (sin(ωi t + φi )+ cos(ωi t + φi ))

)

k
(8.75)

where n is the total number of machines in the system. However, the RHS of
(8.75) contains the contribution of both local and interarea modes, only the two
slowest of which will give the contribution of the interarea oscillations in our
example of interest.
The net interarea component of Vk can then be written as

V s
k =

(
R1e−σ1t (sin(ω1t + φ1)+ cos(ω1t + φ1))

+ R2e−σ2t (sin(ω2t + φ2)+ cos(ω2t + φ2))

)

k
(8.76)

where ω1 and ω2 are the two slow frequencies. These two frequencies and their
corresponding residues and damping factors in (8.76) can be easily computed by
applying modal decomposition to the bus voltage measurement Vi , some com-
mon methods including the ERA, Prony analysis, and Matrix Pencil. Once V s

k is
extracted for k = 1, 2, . . . , 6, these voltages can then be used for calculating the
internal reactances of each area (for each connection) via IME in exactly the same
way as in Sect. 8.2 for each pair of machines. The same idea applies to the bus
frequencies for estimating the equivalent machine inertias. One interesting obser-
vation, however, is that the machines do not necessarily have unique inertias,
but have as many distinct inertias as the degree of that node, each representing
the effective weight of that area contributing to the oscillation for each respective
transfer path that the machine is connected to. A schematic of the spatial variation
of voltage at any fixed point of time for this three-machine system is shown in
Fig. 8.14.
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Fig. 8.14 Spatial variation of voltage for 2-dimensional system
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8.5 Transient Stability Assessment Using Energy Functions

In this section we show how the reduced-order models developed in Sect. 8.2 can
be exploited to formulate performance metrics for transient and damping stability
assessment of two-area power systems. We develop the concepts to compute energy
functions using phasor data to assess the stability margin of power transfer paths.
Consider a two-machine equivalent system as in Fig. 8.2b, and let its post-fault
equilibrium angle be δop. The energy function VE of the system can be expressed in
the form

VE = VPE + VKE (8.77)

where the potential energy and the kinetic energy are given by

VPE = E1 E2

x ′
e

(
cos(δop)− cos(δ)+ sin(δop)(δop − δ)

)
(8.78)

VKE = 1

2
(2H)Ωω2 = HΩω2. (8.79)

It should be noted that by virtue of the IME algorithm, the energy function (8.77)
can be computed in terms of the machine angles and voltages extrapolated from the
bus measurements. However, the bus voltages contain high-frequency local modes as
well as slower interarea modes. These fast and slow components need to be separated
before using the voltages to construct the energy function. We call the filtered slow
component of the voltages as the quasi-steady-states V̄1 and V̄2. In real time, the
post-fault equilibrium angle δop or θop is not fixed either, but rather time varying,
due to turbine-generator governing and other generation and load changes. Thus we
can write

δ = δ̂ + δqss (8.80)

where δ̂ and δqss are respectively the swing component and the quasi-steady-state
components of δ. We need to extract the quasi-steady-state value δqss in order to
approximate the post-disturbance equilibrium angle used in the potential energy
function (8.78). Based on this, we propose the transient swing energy function

V̂E (t) = V̂KE(t)+ V̂PE(t) (8.81)

to model the energy due to the dominant interarea mode, where

V̂PE = Ē1 Ē2

x ′
e

(
cos(δqss)− cos(δ)+ sin(δqss)(δqss − δ)

)
(8.82)

V̂KE(t) = HΩω(t)2 (8.83)
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where δqss is obtained in practice by bandpass filtering the δ measurement.
We next illustrate the construction of (8.81–8.83) using a disturbance event in

the two-area WECC transfer path discussed in Sect. 8.2. After applying the IME
algorithm to the bus measurements and extrapolating to the machine internal nodes,
the time variations of the machine angular separation and frequency differences
are calculated, and plotted, respectively, in Fig. 8.15a and b. The machine speed
difference ωB is mostly mono-modal, but the angle difference θ shows a distinct
quasi-steady-state variation. Bandpass filtering is used to separate the oscillation and
the quasi-steady-state components of δ, as shown in Fig. 8.16a and b. For the post-
disturbance case, we get xe = 0.077 pu from least-squares fitting, as in [21]. The
equivalent machine inertia is estimated to be H = 119 pu. Figures 8.17a, b and 8.18
show the energy functions V̂KE, V̂PE, and V̂E , respectively. Note that oscillations are
clearly visible in V̂KE and V̂PE and yet they literally disappear when V̂KE and V̂PE
are added together to form V̂E . The oscillation is small-signal stable, although the
damping is very low, and V̂E eventually decays to a level commensurate with random
perturbations on the system. If the system were negatively damped, V̂E would grow.
The quasi-steady-state angle δqss indicates that the sending end and receiving end of
the transfer path remain synchronized, that is, transiently stable. A sudden increase in
δqss indicates the loss of a portion of the transmission system or the loss of generation
at the load bus, both of which would stress the transfer path. If the disturbance had
caused a separation of the transfer path, δqss would grow as synchronism would
be lost.

It is also worth noting that the amplitudes of oscillations in the interarea angular
separation as well as frequency, following a disturbance, in two-area power systems,
depend significantly on the strength of the interconnection as well as the inertia of
the aggregated machines. We briefly illustrate this fact by comparing the maximum
swing energy functions for two different transfer paths under two different sets of
disturbances. We show that a comparison of energies of coherent machines forming
interconnected transfer paths can be a good indication of the relative strengths of
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path 1. a Machine angular difference δ (deg). b Machine frequency difference (pu)
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Fig. 8.16 Swing component and quasi-steady-state of machine angle difference in transfer path 1.
a Swing component δ̂ on transfer path 1. b Quasi-steady-state δqss on transfer path 1
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Fig. 8.17 Energy functions for transfer path 1. a Kinetic energy function for transfer path 1, b
potential energy function for transfer path 1

disturbances on the transfer paths. Consider the interconnected power system with
three aggregated machines as in Fig. 8.19. Generators 1 and 2 form a coherent
group of machines (transfer path a) with power flowing from Generator 1 to 2, the
inertia of Generator 1 being smaller than that of Generator 2. Generator 3 forms a
coherent group with Generators 1 and 2 together (transfer path b), with the inertia of
Generator 3 being significantly higher than that of Generators 1 and 2. The system
has two interarea modes, namely a slower mode between G3 and (G1, G2), and a
faster mode between G1 and G2 with much smaller amplitude. The line reactance,
or equivalently connection strength, for transfer path a is weaker compared to that
for path b. We consider two sets of disturbance events, namely Events 1 and 2, which
caused perturbations in transfer paths a and b, respectively. Event 1 was actually
caused by a control equipment failure with possible line tripping and, hence, did not
produce any significant oscillations. Event 2, on the other hand, was an earthquake
event leading to significant loss of load, due to which the oscillations were more
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Fig. 8.18 Swing energy function for transfer path 1

Fig. 8.19 Oscillations in two coherent areas for two events

pronounced. We next construct the swing energy functions for each transfer path
for each event. Table 8.1 lists the maximum energy for each of these four cases.
The numbers clearly indicate that the disturbance in transfer path a hardly caused
any oscillations in transfer path b due to the high equivalent inertia of Generators
2 and 3, and the stronger connection strength between them. On the other hand,
the disturbance in transfer path b resulted in a high energy value in transfer path a
because of the lower machine inertia and connection strength of the latter.
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Table 8.1 Swing energies of two paths for two disturbance events

Disturbance event Maximum swing energy in path a Maximum swing energy in path b

1 5 MW-s 0.33 MW-s
2 3.5 MW-s 17 MW-s

8.6 Equivalencing Using Noisy PMU Data

We end our discussion with a brief note on the situation where the aforesaid para-
meter estimation methods have to be carried out using PMU data corrupted with
measurement noise. In that case, unique estimates of the model parameters are no
longer available, and the problem has to be posed in terms of bounds on the estima-
tion error. Such bounds, more commonly referred to as Cramer-Rao bounds (CRB),
are widely used in the statistical signal processing literature [22]. By definition, CRB
is a lower bound for the second-order moment of an unbiased parametric estimator.
In this section we show an interesting fact: the CRB for estimating the interarea
model parameters of a two-machine equivalent of the two-area radial power system
of Sect. 8.2 is a function of the spatial variable a. In other words, the error in esti-
mation depends on the location of the PMU on the transmission line. The problem,
therefore, is to find the optimal location such that the estimation error is minimized.

Returning to the two-area power system model of Sect. 8.2, we linearize the
model (8.6) about an initial equilibrium (δ0, 0) where 0 < δ0 < 90◦, and denote the
perturbed state variables as m = col(Δδ,Δω) to obtain

ṁ =
[

0 1
− E1 E2

2H x̄ cos(δ0) 0

]

︸ ︷︷ ︸
A

m +
[

0
1

]

︸︷︷︸
B

u (8.84)

where u is a small disturbance input to the system. For any point P at reactance x
away from Generator 2, the output matrix from (8.9) can be written as

C =
[−a(1 − a)E1 E2 sin(δ0)

V0
0

]
(8.85)

where V0 =
√

E2
2(1 − a)2 + E2

1a2 + 2E1 E2a(1 − a) cos(δ0). After a few calcula-
tions, it can readily be shown that the discrete-time impulse response of the voltage
at P is

V (k) = ψ(a) ξ(k, x1, x2, H1, H2) (8.86)

where ξ for different values of k is listed in Table 8.2. We next stack the impulse
response as
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Table 8.2 Impulse response
of undamped two-machine
power system

k y(k)

1 ψ(a) K
2 ψ(a) K (1 + 2 cos(

√
γ T ))

3 ψ(a) K (cos(2
√
γ T ))+2 cos(

√
γ T )(1+cos(

√
γ T ))

.

.

.
.
.
.

n ψ(a)K
(

cos((n − 1)
√
γ T )+

(
1 + cos(

√
γ T )

sin(
√
γ T )

)

sin((n − 1)
√
γ T )

)

Y = [
y(1) y(2) . . . y(k)

]
. (8.87)

Assuming that unlimited time-series data are available, k can be any arbitrary positive
integer. We partition the four unknown parameters x1, x2, H1, and H2 into sets
a = {x1, x2}, b = {H1, H2} and define

H(a, b) = ∂Y /∂a, K(a, b) = ∂Y /∂b. (8.88)

Assuming that the actual measured PMU signal is

ỹ(k) = y(k)+ ñ (8.89)

where ñ is zero-mean Gaussian noise with varianceσ 2, the Fisher Information Matrix
for computing the error bounds is next formulated as

J (a,b) = 1

σ 2

[
HHT HKT

KHT KKT

]
. (8.90)

Because CRB is the inverse of J (a,b), the tightest bound will be given by that value
of a, say denoted as a∗, which maximizes the determinant of J . Moreover, as the
PMU can only be placed on the transmission line, a∗ must satisfy

a∗ ∈ [a1, a2], a1 = x2

x̄
, a2 = x2 + xe

x̄
. (8.91)

Applying this procedure for the disturbance event of WECC transfer path 1 of
Sect. 8.3, imposing a 10 dBW noise power on the actual measured data, the deter-
minant of the FIM J plotted against a ∈ [a1, a2] is shown in Fig. 8.20. From this
figure, it follows that the best location P to place a PMU (or, equivalently consider a
measurement from) is approximately at 40 % of the total length of the transmission
line away from Bus 2, i.e., a reactance 0.0308 pu away from Bus 2, considering the
output for estimation is the voltage magnitude at P . If any other variable such as the
phase angle measured at P is used for estimating the parameters, then a different
value of a∗ will be obtained.
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8.7 Conclusions

In this chapter, we presented a collection of new results on model reduction of several
classes of large-scale power systems using synchronized phasor data available only
from a few selected points in the transmission network. The fundamental approach
behind this model reduction is to formulate the reduction problem as an equivalent
parameter estimation problem, which can be solved using the spatial variation of
different phasor quantities from one end of the transfer path to another. The developed
methods can be used to construct approximate interarea models of two representative
transfer paths in the US west coast power system, each of which have been illustrated
with real disturbance event data. Besides the natural benefits of model reduction, the
advantage of such dynamic equivalent models lies in both wide-area monitoring
and wide-area control. For example, these models can be directly used to construct
transient energy functions operating across transfer paths, which in turn can be used
as a performance metric to track the health of the interconnection following any
large disturbance—in terms of damping, mode shape, rise time, settling time, etc., as
shown in [21]. They will also be highly useful for efficient wide-area control designs
at a global or interarea level. For instance, given the scale, size, and complexity
of any realistic power system (e.g., WECC with roughly 2,000 generators, 11,000
transmission lines and 6,500 loads), designing PMU-based distributed controllers
to shape the interarea responses starting from a full-order model would be highly
daunting. We believe that an alternative approach of reducing such large systems into
simpler chunks, and then redistributing their control efforts would give the problem
a much more well-defined and less chaotic formulation. This work, however, should
also be viewed as a point of departure for several future investigations. The variation
of the IME model reactance as a function of power transfer levels and the correlation
of fault clearing times between the IME model and the detailed model also need to
be better understood.
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Chapter 9
Selective Modal Analysis

Luis Rouco, F. L. Pagola, George C. Verghese
and Ignacio J. Pérez-Arriaga

Abstract Selective Modal Analysis (SMA) is a comprehensive methodology for
the modeling, analysis, and control of selected parts of the dynamics of systems
described by large linear time-invariant (LTI) models. The main components of SMA
are sensitivity tools and algorithms for reduced-order eigenanalysis. Sensitivity tools
developed within the SMA framework include participation factors, which measure
the participation of the state variables in the eigenmodes and vice versa. Participation
factors play a central role in SMA developments. This chapter shows the role of
participation factors in the identification of dynamic patterns, design of damping
controllers, and reduced-order eigenanalysis.

9.1 Introduction

Selective Modal Analysis (SMA) is a comprehensive methodology for the modeling,
analysis, and control of selected parts of the dynamics of systems described by large
linear time-invariant (LTI) models. Although SMA is a general approach applicable
to an LTI model for any system, its motivation and main applications have come from
several problems of power system dynamics (small-signal stability, subsynchronous
resonance, dynamic equivalents, etc.).
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The main components of SMA are sensitivity tools and algorithms for reduced-
order eigenanalysis [1, 2]. Sensitivity tools developed within the SMA framework
include participation factors, which measure the participation of the state variables
in the eigenmodes, and vice versa. Algorithms of reduced-order eigenanalysis deter-
mine a set of selected eigenvalues and associated eigenvectors through iterative
processes involving, at each stage, the eigenanalysis of a matrix that can be much
smaller than the system state matrix. Participation factor analysis guides the design
and analysis of these algorithms. Once the algorithms of reduced-order eigenanalysis
have converged to the selected modes, SMA also provides a reduced-order model in
terms of the relevant variables for those modes [3].

Participation factors have become widely used tools in both research and industry
to identify the relationships among state variables and eigenvalues in large power
system models [4, 5]. They have also attracted the attention of scholars who have
tried to provide complementary [6] and alternative [7] explanations. Hence, a deeper
understanding of participation factors is still worth pursuing. Participation factors
play a central role in SMA developments. This chapter shows the role of participation
factors in the identification of dynamic patterns, design of damping controllers, and
reduced-order eigenanalysis.

Dynamic patterns are close associations between subsets of modes and of state
variables. Dynamic patterns are identified using subsystem participation and shown
in several examples of power system dynamic phenomena. It is well-known, for
example, that in small-signal stability of power systems, poorly damped modes in
the frequency range between 0.1 and 2 Hz are associated with the rotor dynamics of
coupled synchronous generators, and because of this are called electromechanical
modes. Not only do participation factors confirm such an association [2–5] but they
have also helped to understand other complex models, such as those arising in the
study of subsynchronous resonance [8] and of wind generators [9, 10].

Participation factors can also be seen as eigenvalue sensitivities and as residues
of certain transfer functions [11]. Eigenvalue sensitivities are powerful tools for
designing power system damping controllers (i.e., power system stabilizers) for syn-
chronous generators [12, 13], FACTS devices [14–16], and wind generators [17].
The use of eigenvalue sensitivities with respect to controller parameters for controller
design is detailed here.

The convergence of the SMA algorithms for reduced-order eigenanalysis is deter-
mined by the participation ratio of the relevant variables in the modes of interest.
In addition to the basic algorithms, more elaborate algorithms have been developed,
aimed at increasing the participation ratio of the relevant variables through variable
transformations [18, 19].

The chapter is organized as follows: Sect. 9.2 defines participation factors;
Sect. 9.3 shows how participation factors help to identify dynamic patterns in a
wide variety of power system models; Sect. 9.4 details the use of participation fac-
tors as sensitivity tools to design power system damping controllers; and Sect. 9.5
explains the role of participation factors in the convergence of reduced-order eigen-
value analysis algorithms.
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9.2 LTI Dynamic Systems and Participation Factors

This section defines participation factors and compares them with eigenvectors in
mass–spring mechanical systems. Mass–spring systems exhibit the same structure
and features of the classical model of power systems, which highlight the electro-
mechanical (rotor) oscillations that are of interest in the power system small-signal
stability problem. This mechanical mass–spring analogy for a power system helps
to gain insight into the meaning and value of participation factors. In this section,
we first introduce LTI models in state-space form for small-signal (or linearized)
behavior of dynamic systems in the neighborhood of an equilibrium point. Then,
eigenvalues and eigenvectors of the system state matrix are used to determine the
solution of LTI systems. This then allows us to define participation factors, which
are then specialized to mass–spring systems.

9.2.1 LTI Dynamic Systems

Let us start by considering a nonlinear time-invariant dynamic system with constant
external inputs, written in the explicit state-space form, with the time-derivatives of
the state variables at time t expressed only in terms of the state variables

ẋ(t) = f
(
x(t)

)
, x(t) ∈ �N (9.1)

Here x(t) is the vector of state variables at time t and f (·) is a vector of nonlin-
ear functions determined by the system dynamics, parameters, and constant external
inputs. The time argument t will be suppressed where possible, for notational sim-
plicity. (Nonlinear time-invariant dynamic systems can also be written in implicit
state-space form, in terms not only of the state variables but also auxiliary algebraic
ones. This can be a more natural way of writing models, preserving their structural
properties and providing several computational advantages [20].)

Linearizing the set of nonlinear differential equations (9.1) by carrying out a first-
order Taylor series expansion of f (x) around an operating point x0, where f (x0) = 0,
results in a set of LTI differential equations in state-space form

Δẋ(t) = ∂f (x)
∂x

∣∣∣∣
x0

Δx = AΔx (9.2)

where
Δx = x − x0, A ∈ �N×N

Here A is the Jacobian matrix of f(x) and contains the partial derivatives of the
components of f(x) with respect to the components of x, all evaluated at x = x0.
We will refer to A as the state matrix of the LTI system. From now on, because our
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focus will be entirely on the linearized system (9.2), and for the sake of notational
simplicity, Δx will be just written as x.

The solution of the set of linear differential equations (9.2) is given in terms of
the exponential of the state matrix and the initial conditions:

x (t) = eAt x(0) (9.3)

where

eAt = I + At + 1

2
At2 + · · · (9.4)

and I is the identity matrix.

9.2.2 Eigenvalues and Eigenvectors

A conceptually meaningful approach to computing the exponential of the state matrix
is based on the eigenvalues and eigenvectors of the state matrix. An eigenvalue λi

of a matrix A and the associated right vi and left wi eigenvectors are defined by the
conditions vi �= 0, wT

i �= 0 and

Avi = λi vi (9.5)

wT
i A = wT

i λi (9.6)

It is clear that the above conditions are also satisfied when any eigenvector is
multiplied by an arbitrary nonzero number, so the eigenvectors are only defined to
within a nonzero scale factor. It may be convenient to normalize the right eigenvector
in some way that uniquely defines it, for instance, by setting its greatest (in absolute
value) entry equal to 1. In the sequel it will be assumed, because many expressions
will then be simpler, that the left eigenvector is normalized according to

wT
i vi = 1 (9.7)

We will assume throughout that the state matrix A has N distinct eigenvalues
(which is the typical case). The N right (and also the N left) eigenvectors are then
guaranteed to be linearly independent. Reliable algorithms to compute the eigenval-
ues and the associated eigenvectors of a general matrix are available in a number of
implementations [21, 22]. With the definitions

� =
⎡
⎢⎣
λ1 · · · 0
...
. . .

...

0 · · · λN

⎤
⎥⎦ , V = [

v1 · · · vN
]
, W =

⎡
⎢⎣

wT
1

...

wT
N

⎤
⎥⎦ (9.8)
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we can now use (9.5–9.7) to obtain

AV = VΛ (9.9)

WA = ΛW (9.10)

WV = I = VW (9.11)

Note that V (respectively, W) is invertible because of the independence of its
columns (rows).

If the identity matrix I and the state matrix A are expressed, respectively, as VW
and VΛW, the exponential of the state matrix (9.4) becomes

eAt = V
(

I +Λt + 1

2
Λt2 + · · ·

)
W = VeΛt W (9.12)

where eΛt is now a diagonal matrix with the i th diagonal entry eλi t . Substituting
(9.12) in (9.3), the solution of the set of differential equations (9.2) becomes

x(t) = VeΛt Wx(0) =
N∑

i=1

vi e
λi t

[
wT

i x(0)
]

(9.13)

The i th term in this sum is referred to as the i th mode of the system. Inspection
of Eq. (9.13) allows one to draw the following conclusions:

• The system response is expressed as a linear combination of the N modes of the
system.

• The eigenvalues of the state matrix A determine the system stability. An eigen-
value with a negative (positive) real part indicates an exponentially decreasing
(increasing) behavior.

• The components of the right eigenvector vi indicate the relative activity of each
state variable in the i th mode.

• The components of the left eigenvector wi weight the effect of the initial conditions
in exciting the i th mode.

The dimensional units of the different components of the right eigenvectors are
those of the corresponding state variables, while the dimensional units of the com-
ponents of the left eigenvectors are the inverses of the dimensional units of the
corresponding state variables.

9.2.3 Participation Factors

The participation factor of the j th state variable in the i th eigenmode is defined as
the product of the j th components of the left and right eigenvectors associated with
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the i th eigenvalue
p ji = wi j v ji

The participation factor p ji can be seen as the weight of the i th mode in the j th
state variable when the initial condition is the j th unit vector

x j =
N∑

i=1

p ji e
λi t

Participation factors are dimensionless, because the dimensions of corresponding
components of the right and left eigenvectors are reciprocal to each other.

Given the normalization (9.7), the sum of the participation factors of all state
variables in an eigenvalue equals 1. It also follows from the second equality in (9.11)
that the sum of the participation factors of all eigenvalues in a state variable is 1. In
equation form, we have

N∑
j=1

p ji =
N∑

i=1

p ji = 1 (9.14)

9.2.4 Participation Factors in Mass–Spring Models

Mass–spring mechanical systems and multi-machine power systems represented
according to the classical model exhibit the same structure. We make use of a simple
mass–spring system to illustrate participation factors and to point out how informa-
tion provided by eigenvectors differs from that provided by participation factors.

An LTI mass–spring mechanical system without external forces in which each
mass only moves along a line can be described by a set of linear differential equations
of the form [

χ̇

υ̇

]
=

[
0 I
−M−1K 0

] [
χ

υ

]

where χ is the vector of mass positions, υ is the vector of mass velocities, M is the
mass matrix, and K is the stiffness matrix.

If the system does not contain any position reference, a system of Nm masses
exhibits Nm − 1 pairs of complex eigenvalues and two real eigenvalues. One of the
real eigenvalues is equal to zero, as a consequence of the fact that each row of K
sums to 0. The other real eigenvalue is also at 0 in the undamped case, but would
otherwise be at some negative real value. If there is a position reference, then there
are Nm − 1 pairs of complex eigenvalues and one real eigenvalue.

Participation factors in mass–spring systems exhibit several interesting properties.
The participations of mass positions and mass velocities are identical
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Fig. 9.1 Three-mass mass–spring system

Table 9.1 Eigenvalues of the
three-masses mass–spring
system

No. λ

1,2 0.0± j0.4588
3,4 0.0± j0.1414
5,6 0.0± j0.0975

Table 9.2 Right eigenvectors
of the three-mass
mass–spring system

Variable λ1 λ3 λ5

χ1 0.0525 1.0000 0.9525
χ2 −1.0000 0.0000 1.0000
χ3 0.0525 −1.0000 0.9525
υ1 j0.0241 j0.1414 j0.0928
υ2 − j0.4588 j0.0000 j0.0975
υ3 j0.0241 − j0.1414 j0.0928

pχ j ,i = pυ j ,i

and therefore
Nm∑
j=1

pχ j ,i =
Nm∑
j=1

pυ j ,i = 1

2

Furthermore, the participation factors in the i th mode can be shown to equal the
peak kinetic energies of the corresponding masses when only this mode is excited.

Let us consider the mass–spring system of three masses shown in Fig. 9.1,
where the ends of the outermost spring are attached to fixed supports. The stiff-
ness coefficients of all the springs are assumed to be identical and equal to 1, while
m1 = m3 = 10m2 and m2 = 10. The state matrix contains three pairs of purely
imaginary eigenvalues, as shown in Table 9.1, because the system includes a posi-
tion reference. The shape of each mode is indicated by the components of the right
eigenvector corresponding to the position variables.

The right eigenvectors and participation factors provide much different infor-
mation. Tables 9.2 and 9.3 list, respectively, the mode shapes and the participation
factors of the eigenvalues with positive imaginary parts.

The mode shape components in the right eigenvector reflect the (amplitude
of) motion of the associated masses in the given mode. The participation factors,
on the other hand, indicate how important the various masses are to determining
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Table 9.3 Participation
factors of the three-mass
mass–spring system

Variable λ1 λ3 λ5

χ1 0.0131 0.2500 0.2369
χ2 0.4739 0.0000 0.0261
χ3 0.0131 0.2500 0.2369
υ1 0.0131 0.2500 0.2369
υ2 0.4739 0.0000 0.0261
υ3 0.0131 0.2500 0.2369

the frequency and shape of the mode. Mass-weighted right eigenvectors reflecting
momentum rather than energy have been proposed in power system applications to
overcome the limitations of the right eigenvectors [23, 24]. Participation factors,
however, emerge as more fundamental.

The mode associated with λ5, for instance, corresponds to a system-wide mode in
which all three masses have approximately equal motion, as indicated by the mode
shape in the last column of Table 9.2. However, the frequency of the mode is mostly
determined by the two large end masses (m1 and m3). This is brought out by the
participation factors in Table 9.3, where the small mass (m2) has a (kinetic energy
and) participation factor one-tenth of those of the larger masses.

At the other extreme, the local mode associated with λ1 has a frequency and shape
that is largely determined by the smallest mass m2. This is made very evident by
the first column of Table 9.3, where the (kinetic energies and) participation factors
for the two larger masses (m1 and m3) are substantially less than that of the small
mass (m2).

Finally, the mode associated with λ3 is analogous to an inter-area mode in a power
system and involves one end mass (m1) swinging against the other (m3). For this
mode, the center mass plays essentially no role, as shown by its participation factor
of 0, indicating no contribution to determining the mode, and its right eigenvector
entries of 0, indicating no motion in this mode.

9.3 Participation Factors and Dynamic Patterns

Power system small-signal stability models are characterized by the existence of
dynamic patterns, or close relationships between subsets of state variables and subsets
of eigenvalues. For example, the poorly damped oscillations of power and frequency
within the 0.1–2 Hz frequency range are well-known to be due to the electromechan-
ical oscillations of the generator rotors.

Participation factors and related tools allow a much fuller understanding of
dynamic patterns. This section illustrates how the notion of subsystem participa-
tion can help to identify dynamic patterns in a great variety of power system models.
Dynamic patterns found in both single-machine infinite bus and multi-machine sys-
tems are first shown and discussed. Revealing dynamic patterns have also been found
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in the subsynchronous resonance phenomenon that occurs when a turbogenerator is
connected through a series-compensated line, and in doubly fed induction generators
(DFIGs) used in wind generation.

The emphasis of the section is on what information can be drawn from a wide
variety of power system models using subsystem participation. Details of the pro-
cedures to build such models can be found elsewhere. Single-machine infinite bus,
multi-machine, and subsynchronus resonance models can be found, for instance, in
[4]. A detailed model of the DFIG model is provided in [9].

9.3.1 Subsystem Participation

The participation of a subsystem S in the i th mode, pSi , is defined as the sum of the
participation factors in the i th mode of all the state variables internal to subsystem S

pSi =
∑
j∈S

p ji = wT
Si vSi

where vSi and wSi are vectors that contain only the components of the right and
left eigenvectors, respectively, corresponding to the state variables that describe the
subsystem S. The subsystem participation is invariant with respect to nonsingular
transformations that only affect the variables involved in the subsystem.

9.3.2 Single-Machine Infinite Bus System

The simplest power system example is a synchronous generator connected to an infi-
nite bus through a step-up transformer and a transmission line, as shown in Fig. 9.2.
The standard model of a synchronous generator contains detailed representations of
the rotor dynamics, the synchronous machine, the speed governor/turbine system,
and the voltage regulator/excitation system.

Assuming a round-rotor synchronous machine [4], a steam turbine-governor [25]
and a static excitation system [26], the explicit state-space form of the linearized
model around an operating point of a synchronous generator connected to an infinite
bus is of the form

Fig. 9.2 Single-line diagram of a synchronous generator connected to an infinite bus
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Table 9.4 Complex eigenvalues of the detailed model of a generator connected to an infinite bus,
with the corresponding damping factor ζ and undamped natural frequency fn

No. λ ζ (%) fn (Hz)

1,2 −0.0858 ± j9.6453 0.89 1.54
3,4 −28.4573 ± j1.5619 99.85 4.54

ẋ = Ax + Bu (9.15)

where:

x = [
δ ω ψ f d ψkd ψkq1 ψkq2 xgov1 xgov2 xgov3 xgov4 xgov5 xexc

]T

u = [
ωref Vref

]T

and

• δ is the rotor angle deviation with respect to synchronous rotating frame, in rad,
• ω is the rotor speed deviation from synchronous speed in pu (per unit, i.e., nor-

malized to the nominal value),
• ψ f d is the deviation from the equilibrium value of the field flux in pu,
• ψkd is the deviation from the equilibrium value of the flux in the d-axis damper

winding in pu,
• ψkqi are the deviations from the equilibrium value of the fluxes in the q-axis

damper windings in pu,
• xgovi are the deviations from the equilibrium values of the state variables that

describe the speed governor/turbine system in pu,
• xexc is the deviation from the equilibrium value of the state variable that describes

the voltage regulator/excitation system in pu,
• ωref is the deviation from the equilibrium value of the reference of the speed

governor/turbine system in pu, and
• Vref is the deviation from the equilibrium value of the reference of the voltage

regulator/excitation system in pu.

The model is described by 12 state variables. This linear model exhibits, for val-
ues of the parameters provided in the Appendix, two pairs of complex conjugate
eigenvalues (see Table 9.4) and eight real eigenvalues (see Table 9.5). All eigenval-
ues lie in the left-half complex plane. Among the complex eigenvalues, there is a
poorly damped complex eigenvalue pair with natural undamped frequency around
1.5 Hz; this is the so-called electromechanical eigenvalue. The other complex pair
is characterized by high damping. The time constants of the real eigenvalues are in
the range between 10 ms and 7 s.

Subsystem participations provide a clear indication of the association of eigen-
values and system components. Table 9.6 provides the magnitude of the subsystem
participations for this model. It should be noted that although participation factors
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Table 9.5 Real eigenvalues
of the detailed model of a
generator connected to an
infinite bus, with the
corresponding time
constant τ

No. λ τ (sec)

5 −0.1422 7.0319
6 −1.6243 0.6156
7 −1.9867 0.5033
8 −2.8678 0.3487
9 −3.9764 0.2515
10 −9.9227 0.1008
11 −11.9528 0.0837
12 −96.8474 0.0103

Table 9.6 Subsystem
participations (magnitude) of
the eigenvalues of detailed
model of a generator
connected to an infinite bus

λ Rotor Machine Turbine Excitation

1,2 0.9812 0.0205 0.0084 0.0048
3,4 0.1659 0.9136 0.0001 0.2223
5 0.0045 0.0001 0.9953 0.0000
6 0.0139 1.0508 0.0363 0.0006
7 0.0071 0.1094 1.1022 0.0000
8 0.0618 0.1184 0.8196 0.0003
9 0.0745 0.0375 1.1126 0.0006
10 0.0023 0.0179 1.0129 0.0028
11 0.0479 1.1326 0.0111 0.1694
12 0.0002 0.0050 0.0000 0.9951

and subsystem participation are in general complex numbers, we are only paying
attention to their magnitude to find the associations between state variables and
eigenvalues. (The phase of the participation factors will be interpreted when the con-
nections between eigenvalue sensitivities and participation factors are presented in
Sect. 9.4.)

The conjugate pair of eigenvalues λ1,2 is associated with the rotor dynamics. The
conjugate pair of eigenvalues λ3,4 and the real eigenvalues λ6 and λ11 correspond to
dynamics of the synchronous machine. Eigenvaluesλ5,λ7,λ8,λ9, andλ10 correspond
to the turbine dynamics. Eigenvalue λ12 corresponds to the excitation dynamics.

9.3.3 Multi-Machine Systems

A power system of six generators and three areas is considered to illustrate the
dynamic patterns of multi-machine systems (see Fig. 9.3). The Appendix provides
its data set. Although the generators are of different ratings, they are represented by
the same model type as the generator connected to an infinite bus in our previous
example. Hence, the linearized model of the system exhibits 72 eigenvalues.
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Fig. 9.3 Single-line diagram of a three-area test system

Table 9.7 Electromechanical eigenvalues of the three-area test system, with the corresponding
damping factor ζ and undamped natural frequency fn

No. λ ζ (%) fn (Hz)

1,2 −0.6543 ± j10.7739 6.06 1.72
3,4 −0.6520 ± j10.7411 6.06 1.71
5,6 −0.7402 ± j10.6533 6.93 1.70
7,8 −0.1727 ± j8.2339 2.10 1.31
9,10 0.2177 ± j4.6645 −4.66 0.74

Five pairs of complex eigenvalues out of 72 eigenvalues are in the 0.1–2 Hz range
(0.7–1.7 Hz); their damping is also very low (less than 10 %) and one mode is even
unstable (see Table 9.7). As in the preceding example, these eigenvalues are called
electromechanical eigenvalues because they correspond to the rotor oscillations.
The mode shapes of the electromechanical eigenvalues of Table 9.7 are displayed in
Table 9.8. The shape of each mode is determined by the right eigenvector compo-
nents corresponding to generator speed deviations. The three fastest pairs of electro-
mechanical eigenvalues (λ1,2, λ3,4, and λ5,6) correspond to local oscillations within
areas A, B, and C, while the two slowest eigenvalues (λ7,8 and λ9,10) correspond to
inter-area oscillations.
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Table 9.8 Mode shapes of the electromechanical eigenvalues of the three-area test system (The
dominant positive components are in boldface, while the dominant negative ones are in italics, to
convey the structure of the mode)

Generator λ1 λ3 λ5 λ7 λ9

1 0.0036∠ 139◦ 0.0049∠−128◦ 0.3168∠179◦ 1.0000∠ 0◦ 0.7793∠ − 4◦
2 0.0144∠−166◦ 0.0073∠−94◦ 1.0000∠ 0◦ 0.9398∠−1◦ 0.7919∠ − 6◦
3 0.0010∠ − 45◦ 0.3296∠ 179◦ 0.0035∠−175◦ 0.0488∠ 161◦ 0.7943∠ 169◦
4 0.0033∠ 132◦ 1.0000∠ 0◦ 0.0093∠ 13◦ 0.0305∠ − 177◦ 0.7474∠ 172◦
5 0.3289∠ − 180◦ 0.0041∠ 130◦ 0.0132∠ 177◦ 0.5296∠ 173◦ 1.0000∠ 0◦
6 1.0000∠ 0◦ 0.0142∠ − 63◦ 0.0189∠ − 8◦ 0.4737∠ − 179◦ 0.9934∠0◦

Table 9.9 Generator
participations (magnitude)
in the electromechanical
eigenvalues of the three-area
test system

Generator λ1 λ3 λ5 λ7 λ9

1 0.0001 0.0001 0.2345 0.5168 0.1050
2 0.0004 0.0001 0.7652 0.1501 0.0350
3 0.0000 0.2532 0.0001 0.0051 0.3560
4 0.0000 0.7468 0.0000 0.0015 0.1146
5 0.2437 0.0000 0.0004 0.2524 0.2945
6 0.7562 0.0000 0.0000 0.0760 0.0971

Table 9.10 Generator rotor
participations (magnitude) in
the electromechanical
eigenvalues of the three-area
test system

Generator λ1 λ3 λ5 λ7 λ9

1 0.0001 0.0001 0.2386 0.5360 0.1034
2 0.0004 0.0001 0.7890 0.1568 0.0348
3 0.0000 0.2502 0.0000 0.0039 0.3305
4 0.0000 0.7682 0.0000 0.0008 0.1032
5 0.2475 0.0000 0.0004 0.2426 0.2836
6 0.7700 0.0000 0.0001 0.0693 0.0935

In the case of multi-machine power systems, not only are the generating unit com-
ponent subsystems of interest, but the generating units themselves are also of interest.
Table 9.9 provides the magnitude of generator participations in the electromechanical
eigenvalues of the three-area test system. Only generators in the same area participate
in the three fastest modes. However, most of the generators participate in the two
slowest eigenvalues, which correspond to inter-area modes. Table 9.10 displays just
the participations of the generator rotor dynamics in the electromechanical modes,
which confirms that the selected eigenvalues are electromechanical ones.

The patterns found in small test cases are also found in very large-scale systems.
Figure 9.4 shows the geographical mode shape of the slowest electromechanical
eigenvalue of a linearized model of the European power system [20, 27]. The geo-
graphical mode shape displays in the geographic location of each generator the
component of the right eigenvector corresponding to the generator speed deviation.
The geographical mode shape of this mode shows that generators in eastern Europe
oscillate against generators in western Europe. This is very similar to what happens
in the three-area test system. In contrast, the generator participation is concentrated



212 L. Rouco et al.

Geographical Shape of Mode Number    1 ( −0.1913,  1.4536J)

Fig. 9.4 Mode shape of the slowest electromechanical eigenvalue of a large-scale system

in a few large generators of the European system, as shown in Fig. 9.5. (The high-
participation generator at the top is actually an equivalent generator representing the
Danish system.)

9.3.4 Subsynchronous Resonance

Subsynchronous resonance is a small-signal phenomenon that arises in the case of
turbogenerators (round-rotor generators driven by steam turbines) connected through
series-compensated transmission lines [28]. The natural frequency of the series-
compensated line appears at the generator rotor as two oscillations: subsynchronous
and supersynchronous. Subsynchronous resonance may occur due to the interaction
between the electrical subsynchronous mode and one of the torsional modes of the
turbine-generator rotor.

The subsynchronous resonance phenomenon can be accurately characterized
using an appropriate model of the generator connected to an infinite bus via a series-
compensated transmission line, as shown in Fig. 9.6. Generator models used in power
system stability studies assume that the individual masses of the turbine-generator
rotor form a single rigid body, and neglect the synchronous machine stator and
network dynamics. In contrast, models used in subsynchronous resonance studies
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Participations in Mode Number    1 ( −0.1913,  1.4536J)

Fig. 9.5 Generator participations in the slowest electromechanical eigenvalues of a large-scale
system

Fig. 9.6 Single-line diagram
of a synchronous generator
connected to an infinite bus
through a series-compensated
line

represent the individual rotor masses and the stator and network dynamics. Hence,
the explicit state-space form of the linearized model of a synchronous generator con-
nected to an infinite bus via a series-compensated transmission line, with the rotor
represented by five masses, is written again in the form (9.15), with the following
state variables representing deviations from equilibrium values:

x =
[
δT ωT ψT xT

gov xexc vT
c

]T

where:

δ = [
δhp δip δlpa δlpb δg

]T

ω = [
ωhp ωip ωlpa ωlpb ωg

]T

ψ = [
ψd ψq ψ f d ψkd ψkq1 ψkq2

]T

xgov = [
xgov1 xgov2 xgov3 xgov4 xgov5

]T

vc = [
vcd vcq

]T
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Table 9.11 Complex
eigenvalues of the detailed
model of a generator
connected to an infinite bus
through a series-compensated
line, with the corresponding
damping factor ζ and
undamped natural
frequency fn

No. λ ζ (%) fn (Hz)

1,2 −1.9343 ± j532.2579 0.36 84.71
3,4 −0.0000 ± j276.4385 0.00 44.00
5,6 1.4972 ± j221.5317 −0.68 35.26
7,8 −0.0218 ± j190.7095 0.01 30.35
9,10 −0.0192 ± j151.6426 0.01 24.13
11,12 −0.0642 ± j102.9266 0.06 16.38
13,14 −0.0063 ± j9.4404 0.07 1.50
15,16 −28.9818 ± j2.2753 99.69 4.63

Table 9.12 Real eigenvalues
of the detailed model of a
generator connected to an
infinite bus through a
series-compensated line, with
the corresponding time
constant τ

No. λ τ (sec)

17 −0.1422 7.0319
18 −1.6243 0.6156
19 −1.9870 0.5033
20 −2.8709 0.3483
21 −3.9655 0.2522
22 −9.9485 0.1005
23 −11.5823 0.0863
24 −97.7062 0.0102

The model of Fig. 9.6 operating at the nominal frequency of 60 Hz is described by
24 state variables. This linear model exhibits, for values of the parameters provided
in the Appendix, nine pairs of complex conjugate eigenvalues (see Table 9.11) and
six real eigenvalue (see Table 9.12). Among the complex eigenvalues, there are six
complex eigenvalue pairs in the range from 16 through 84 Hz that include the four
torsional modes, and the supersynchronous and subsynchronous modes. A poorly
damped complex eigenvalue pair with frequency around 1.5 Hz is very close to
the electromechanical eigenvalue pair of Table 9.4. There is also a complex pair
characterized by its high damping. The time constants of the real eigenvalues are in
the range between 10 ms and 7 s. It should be noted that the operating point of the
generator is the same as in the earlier single-machine infinite bus example, except
that now the complexity of the model has been increased. Hence, not only are the
two complex pairs of Table 9.4 found in Table 9.11 but also all the real eigenvalues
of Table 9.5 can be found in Table 9.12.

Subsystem participations are again suggested to find the associations between
eigenvalues and system components. The following subsystems can be identified in
this model of a generator connected to an infinite bus through a series-compensated
line: turbine-generator rotor, machine stator, machine rotor, speed governor-turbine,
voltage regulator-excitation system, and series capacitor. Table 9.13 provides the
magnitude of the subsystem participations. The table indicates that:

• The complex conjugate pairs λ1,2 and λ5,6 characterize the supersynchronous and
subsynchronous oscillations in which machine stator circuits interact with the
series capacitor.
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Table 9.13 Subsystem participations (magnitude) of the eigenvalues of the detailed model of a
generator connected to an infinite bus through a series-compensated line

λ Rotor Machine Machine Turbine Excitation Series
stator rotor capacitor

1,2 0.0001 0.5001 0.0018 0.0000 0.0001 0.5001
3,4 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5,6 0.0150 0.5076 0.0114 0.0000 0.0007 0.5032
7,8 1.0077 0.0045 0.0002 0.0000 0.0000 0.0033
9,10 1.0028 0.0019 0.0002 0.0000 0.0000 0.0010
11,12 1.0036 0.0027 0.0008 0.0000 0.0001 0.0010
13,14 0.9778 0.0065 0.0121 0.0087 0.0043 0.0014
15,16 0.1008 0.0090 0.9402 0.0001 0.1828 0.0124
17 0.0045 0.0000 0.0001 0.9954 0.0000 0.0000
18 0.0139 0.0024 1.0527 0.0359 0.0006 0.0001
19 0.0069 0.0001 0.1079 1.1010 0.0000 0.0000
20 0.0603 0.0004 0.1155 0.8235 0.0003 0.0000
21 0.0707 0.0001 0.0349 1.1062 0.0007 0.0002
22 0.0018 0.0005 0.0370 1.0312 0.0049 0.0004
23 0.0608 0.0061 1.1172 0.0274 0.1515 0.0070
24 0.0003 0.0001 0.0064 0.0000 1.0066 0.0000

• The complex conjugate pairs λ3,4, λ7,8, λ9,10, λ11,12, and λ13,14 correspond to the
turbine-generator rotor dynamics.

• The complex conjugate pair λ15,16 and real eigenvalues λ22 and λ23 corresponds
to the synchronous machine dynamics.

• The real eigenvaluesλ17,λ19,λ20,λ21, andλ22 correspond to the turbine dynamics.
• The real eigenvalue λ24 corresponds to the excitation dynamics.

9.3.5 Wind Generators

Wind power generation is mostly based on DFIGs due to their ability to operate
at the maximum efficiency point of the wind turbine and their continuous reactive
power control capability. The model of a DFIG comprises models of the induction
machine and the self-commutated converters with the associated vector controllers.
Figure 9.7 displays the control scheme of a DFIG. The rotor windings are fed by
a voltage-sourced three-phase converter with pulse-width modulation that provides
a variable-frequency three-phase voltage system. The variation of the frequency of
rotor currents results in a variation of the rotor speed. Assuming that the stator
frequency f1 is constant, a variation of the rotor frequency f2 results in a change of
rotor speed as ω = (1 − f2/ f1).

The electronic converter is built of two converters coupled through a dc-link
capacitor. The rotor-side converter is used to control either the torque or the rotor
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Fig. 9.7 Control scheme of a doubly fed induction generator

speed and the rotor reactive power [29]. The component in the direct axis of the rotor
current in a reference system aligned with the stator flux is the excitation current
and controls the generator reactive power. The usual strategy is to set it to zero. The
component in the quadrature axis of rotor current in a reference system aligned with
stator flux is the torque current and allows control of the electromagnetic torque and
the rotor speed. The stator-side converter is used to control the overall generator
reactive power and the capacitor voltage. The component in the direct axis of the
stator converter current determines the active power through the stator converter and
controls the capacitor voltage. The component in the quadrature axis of the stator
converter current determines the reactive power provided by the stator-side converter.

Rotor current components and stator-side converter currents are controlled,
respectively, by four PI controllers. Capacitor voltage and speed are controlled,
respectively, by two PI controllers. The PI controllers have been designed in such a
way that the equivalent second-order system exhibits the selected natural frequency
and damping. The four inner PI current controllers have been designed at the natural
undamped frequency of 25 rad/s whereas the two outer PI controllers have been
designed at the natural undamped frequency of 2.5 rad/s. The selected damping is
70 % in all controllers.

The explicit linearized state-space form of the model of a DFIG connected to an
infinite bus through a transformer and a transmission line (9.15) is written in terms
of the following state and input variables:
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x = [
ψsd ψsq ψrd ψrq ψad ψaq xa1 xa2 xa3 v2

C xr1 xr2 xr3 s
]T

u =
[

i∗aq v∗
C

(
iψs
rd

)∗
s∗

]T

where

• ψsd andψsq are the machine stator flux deviations in the d- and q-axis, respectively,
• ψrd andψrq are the machine rotor flux deviations in the d- and q-axis, respectively,
• ψad and ψaq are the stator-side converter flux deviations in the d- and q-axis,

respectively,
• xai are the deviations of the state variables that describe each of the PI controllers

of the stator-side converter,
• v2

C is the deviation of the square of the capacitor voltage,
• xri are the deviations of the state variables that describe each of the PI controllers

of the rotor-side converter,
• s is the deviation of the machine slip,
• i∗aq is the deviation of the reference of the stator-side converter current in the q-axis,
• v∗

C is the deviation of the reference of the capacitor voltage,

•
(

iψs
rd

)∗
is the deviation of the reference of the rotor-side converter current in the

d-axis, and
• s∗ is the deviation of the reference of the machine slip.

The detailed linearized model of a DFIG connected to an infinite bus is described
by 14 state variables. Table 9.14 contains the eigenvalues of this linear model for the
data set detailed in the Appendix. It exhibits seven complex pairs. One pair is close to
the grid frequency (60 Hz). There are four pairs close to 4 Hz (25 rad/s) and two pairs
close to 0.4 Hz (2.5 rad/s). The damping of these six complex pairs is 70 % (or close
to that). Both the natural undamped frequency and damping of these four pairs of
complex eigenvalues correspond to the design values of the PI controllers. It is worth
noting that the dynamics of DFIGs used in wind generation are largely determined
by the converter controllers. The poorly damped oscillation found in synchronous
generators does not arise in DFIGs.

Subsystem participations are also suggested in this case to find the associations
between eigenvalues and system components. The machine stator together with the
two state variables of each control loop are proposed as the subsystems. Table 9.15
displays the magnitudes of the subsystem participations. The subsystem with the
highest participation in each eigenvalue is highlighted. The computed subsystem
participations show that

• the pair λ1,2 is associated with the stator flux dynamics,
• the pairs λ3,4 and λ9,10 correspond to the control loops of the stator current com-

ponents in the q- and d-axis, respectively,
• the pairsλ5,6 andλ7,8 are related to the control loop of the rotor current components

in the q- and d-axis, respectively,
• the pair λ11,12 is related to the control loop of the capacitor voltage, and
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Table 9.14 Eigenvalues of
the detailed model of a DFIG
connected to an infinite bus,
with the corresponding
damping factor ζ and
undamped natural
frequency fn

No. λ ζ (%) fn (Hz)

1, 2 −12.9119 ± j375.8664 3.43 59.86
5, 6 −17.5000 ± j17.8536 70.00 3.98
9,10 −17.1593 ± j17.7982 69.41 3.93
13,14 −15.8447 ± j18.4654 65.12 3.87
17,18 −15.5088 ± j15.6042 70.49 3.50
21,22 −1.9909 ± j2.0335 69.96 0.45
25,26 −1.8362 ± j1.8458 70.52 0.41

Table 9.15 Subsystem participations (magnitude) of the eigenvalues of the detailed model of a
DFIG connected to an infinite bus

λ ψsd , ψsq ψrd , xr2 ψrq , xr1 ψad , xa2 ψaq , xa1 s, xr3 v2
C , xa3

1,2 1.0030 0.0015 0.0016 0.0000 0.0000 0.0000 0.0000
3,4 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
5,6 0.0013 0.1396 1.0874 0.0000 0.0000 0.0107 0.0000
7,8 0.0017 1.1288 0.1341 0.0000 0.0000 0.0886 0.0000
9,10 0.0000 0.0000 0.0000 1.1574 0.0000 0.0000 0.1577
11,12 0.0000 0.0000 0.0000 0.1574 0.0000 0.0000 1.1574
13,14 0.0000 0.0361 0.0000 0.0000 0.0000 1.0355 0.0000

• the pair λ13,14 is associated with the control loop of the rotor speed.

Subsystem participations have proved to be valuable tools to identify the dynamic
patterns that arise in a wide variety of linearized models of power system dynamic
phenomena. Common knowledge of well-known models is confirmed, and better
understanding of new models is achieved. It is also the case in many instances that
dynamic patterns identified in linearized models (and especially if these patterns
persist across multiple operating points) can then be traced back to similar patterns
in the underlying nonlinear model. Some exploration of participation factors in the
setting of limit cycles in nonlinear power system models may be found in [30].

9.4 Participation Factors and Design of Damping
Controllers

The most effective and inexpensive approach to improving the damping of electro-
mechanical oscillations is the installation of power system stabilizers in synchronous
generator excitation systems. Stabilizers vary the reference of the automatic voltage
regulator, using the speed deviation as an input (other inputs like electrical power
or a combination of speed deviation and electrical power are also used) and thereby
modulate the electrical torque applied by the synchronous machine to the rotor. The
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natural oscillation of the rotor is reduced by introducing, in effect, a forced oscillation
of opposite sign.

Power system damping controllers have also been incorporated into other devices
such as HVDC links, Static Var Compensators (SVCs), and Thyristor Controlled
Series Capacitors (TCSCs). The damping controller of an HVDC link can modulate
either the active power or the reactive power at each terminal. The damping controller
of an SVC varies the bus shunt susceptance whereas the damping controller of a TSC
modulates the effective line series reactance.

The design of power system damping controllers has attracted much attention
from both engineers and researchers. Many methods have been proposed and can
be found in the technical literature. A widely used approach combines frequency
response with eigenvalue analysis (see for instance, [4, 5, 31]).

Eigenvalue sensitivities are powerful tools for designing power system damping
controllers and for placing them (see, for instance [15, 16, 32, 33]). The first-order
eigenvalue sensitivity provides an estimate of the eigenvalue shift when a controller
parameter is changed. This section shows that participation factors can also be seen as
eigenvalue sensitivities with respect to state matrix parameters. Moreover, powerful
expressions for eigenvalue sensitivities with respect to feedback controller parame-
ters are provided. Two applications of eigenvalue sensitivities to stabilizer design are
shown: design of a single controller for damping one mode, and coordinated design
of multiple controllers for damping several modes.

9.4.1 Sensitivities to State Matrix Parameters

The first-order sensitivity of the eigenvalue λi with respect to a parameter q of the
state matrix A can be computed as [34]

Si,q = ∂λi

∂q
= wT

i
∂A
∂q

vi

Participation factors can be seen as eigenvalue sensitivities. In fact, the participa-
tion of the j th variable in the i th eigenvalue is the sensitivity of the i th eigenvalue
with respect to the j th diagonal term of the state matrix

dλi

da j j
= wT

i
∂A
∂a j j

vi

= [
wi1 · · · wi j · · · wi N

]

⎡
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+
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System

Fig. 9.8 Feedback around the j th state variable

Fig. 9.9 Closed-loop system
in transfer function form

+ +

It is interesting to note that the j th diagonal term of the state matrix can be seen
as a static feedback around the j-state variable (see Fig. 9.8).

Participation factors are complex numbers. So far, we have only made use of their
magnitudes to identify the relationships among state variables and eigenvalues in
power system models. The interpretation of the participation factors as eigenvalue
sensitivities provides an explanation of both the magnitude and phase of participation
factors: they, respectively, indicate the magnitude and direction of the eigenvalue
shift.

9.4.2 Sensitivity to Feedback Controller Parameters

Much of our interest in eigenvalue sensitivity computation comes from needing to
determine the effect of feedback controller parameters on the closed-loop eigen-
values. The preceding sensitivity results apply directly, provided that the matrix A
describes the complete closed-loop system. However, it is typically the case that
feedback controller parameters appear in many terms of the closed-loop matrices,
and in complicated ways. It is therefore helpful to develop an alternative perspective
for this situation, emphasizing transfer function properties. This point of view also
lends valuable insight for control design.

Consider the feedback system of Fig. 9.9. The plant to be controlled is represented
by the transfer function H(s), and the controller is modeled by the transfer function
F(s, q).

The sensitivity of a pole (eigenvalue) λi of the closed-loop transfer func-
tion y(s)/r(s) with respect to a parameter q of the controller transfer function
F(s, q) is the product of the residue of the closed-loop transfer function y(s)/r(s)
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corresponding to the pole λi and the partial derivative of the controller transfer func-
tion with respect to the parameter q for s = λi

Si,q = ∂λi

∂q
= Ri

∂F(s, q)

∂q

∣∣∣∣
s=λi

(9.16)

Recall that the residue Ri is the coefficient of 1/ (s − λi ) in the partial fraction
expansion of y(s)/r(s). The sensitivity expression (9.16) shows a useful separation
of the effect of the feedback path, which determines the residue of the closed-loop
transfer function y(s)/r(s), and the effect of the parameter q in the controller transfer
function for s = λi .

The computation of the two components of the sensitivity expression (9.16)
exhibits different degrees of difficulty. The partial derivative of the controller transfer
function F(s, q) with respect to parameter q can be computed easily. In contrast,
the residue of the closed-loop transfer function corresponding to the eigenvalue λi

is more difficult to compute. A transfer function representation of the system for
this purpose can be unwieldy for complex systems. It is more preferable to use a
state-space representation for the closed-loop system.

A hybrid formulation can be useful, with a state-space model for the plant H(s)
and the closed-loop system in order to evaluate the residue, while preserving the
transfer function model for the feedback in order to compute its derivative with
respect to the parameter. The feedback system of Fig. 9.9 can be represented in
this hybrid form as in Fig. 9.10 when the plant is represented in explicit state-space
form and there is no direct link between the input and the output. In this case, the
closed-loop residue corresponding to the eigenvalue λi can be computed by taking
into account only the components of the right and left eigenvectors corresponding to
the state variables of the plant

Ri =
(

cT
1 v1,i

) (
wT

1,i b1

)
(9.17)

It should be noted the residue expression (9.17) is obtained using the input vector,
output vector and eigenvectors of the closed-loop state-space model. Of course, in
the simplest case, when there is no feedback present at first, the residue is computed
using the input vector, output vector and eigenvectors of the open-loop state-space
model; this case arises frequently.

9.4.3 Design of a Single Damping Controller for Damping
One Mode

The first-order eigenvalue sensitivity provides an estimate of the eigenvalue shift
when a controller parameter is changed. The estimated eigenvalue λe

i after the vari-
ation in the parameter can be computed as
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+++ +

Fig. 9.10 System in hybrid form with no direct relation between the input and the output of the
part represented in state space form

λe
i = λi + Si,q�q

The same equation can be used to compute the increment �q in the parameter that
will produce a desired eigenvalue λd

i . This can be equal (and usually at least close) to
the estimated eigenvalue, but some approximations can produce a larger difference.
After the parameter is actually changed, a new eigenanalysis is performed and the
true value of the eigenvalue λt

i (hopefully not too far away from λe
i ) is obtained.

If the controller transfer function is in the lead compensation form, the eigenvalue
sensitivity approach to designing a single damping controller to damp a mode com-
prises two steps: the design of the phase compensation network of the controller and
the computation of the controller gain. The phase compensation network of the con-
troller is designed so that the phase of the eigenvalue sensitivity with respect to gain
is set to (approximately) 180◦ at the nominal eigenvalue. In this way, an increase
in gain will increase damping. The controller gain is then determined so that the
decrease in the real part of the eigenvalue is equal to the desired value.

The eigenvalue sensitivity of the i th eigenvalue with respect to the variation of
the gain of the controller is

Si,KS = ∂λi

∂KS
= Ri

∂F (s, KS)

∂KS

∣∣∣∣
s=λi

where Ri is the residue of the transfer function between the output and the input of
the controller associated to the i th mode and F(s, KS) is the transfer function of the
controller

F (s, KS) = KS

(
1 + sTS1

1 + sαTS1

)Ns sTS5

1 + sTS5
(9.18)

where Ns stages are assumed for the phase compensation network.
Transfer function (9.18) corresponds to the stabilizer model of Fig. 9.11 when

Ns = 2, TS1 = TS3, and TS2 = TS4 = αTS1. This is a function of the lead time
constant TS1 because the time constant of the wash-out filter TS5 is assumed to be
given. Combining the preceding equations, we get
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Si,KS (TS1) = Ri

(
1 + λi TS1

1 + λiαTS1

)Ns λi TS5

1 + λi TS5

As previously mentioned, the first step will be to set the phase of the sensitivity
to 180◦. The sensitivity for TS1 = 0 is

Si,KS (TS1 = 0) = Ri
λi TS5

1 + λi TS5

and its argument is
ψ = arg

[
Si,KS (TS1 = 0)

]

It should be noted that the wash-out filter usually adds a small phase lead to the phase
of the residue, but hardly affects the magnitude of the residue.

The total phase lead, ϕ, should now be set to

ϕ = π − ψ (9.19)

and the phase lead φ of each stage is

φ = π − ψ

Ns
(9.20)

The task now is to find values of α and TS1 that produce the desired phase shift

φ = arg

[
1 + λi TS1

1 + λiαTS1

]

Texts that describe frequency response methods for the design of controls and com-
pensations, see for example [35], provide sets of figures and formulas that are strictly
applicable for purely imaginary eigenvalues. They can be used as a good approx-
imation when the real part is small enough, and then either the natural frequency
(imaginary part) or the undamped natural frequency (magnitude) are adequate. We
will use the natural frequency ωdi of the original mode λi = σi + jωdi .

Some easy-to-use formulas are given now. The filtering ratio is determined as

Wash-outPhase compensationGain

Fig. 9.11 Stabilizer model
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Fig. 9.12 Geometric inter-
pretation of the two-step
approach to design a damping
controller to damp a mode

α = 1 − sin φ

1 + sin φ
(9.21)

and the time constant of the numerator is determined as

TS1 = 1√
αωdi

Once the controller phase compensation has been designed, the controller gain is
computed to give the desired shift in the real part of the eigenvalue

KS = Re [Δλi ]

Re
[
Si,KS

] = Re
[
λd

i − λi
]

Re
[
Si,KS

]

Figure 9.12 shows a geometric interpretation of the eigenvalue sensitivity approach
for designing a single damping controller. The starting point is the eigenvalue sensi-
tivity with respect to a variation of the controller gain when TS1 = 0. In Fig. 9.12, a
phase lead ofϕ is provided by the phase compensation network. Once the phase of the
eigenvalue sensitivity Si,Ks is set to (approximately) 180◦, the gain Ks is determined
to achieve the real part of the desired eigenvalue λd

i .

9.4.4 Stabilizer Design for a Single-Machine Connected
to an Infinite Bus

The sensitivity approach is applied here to the design of a power system stabilizer
for the generator represented by the detailed model presented in Sect. 9.3, connected
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to an infinite bus. A stabilizer that uses the rotor speed as input is considered. The
stabilizer is aimed at improving the damping of the electromechanical eigenvalue
from 0.89 to 15 %. The original and the desired electromechanical eigenvalues are,
respectively,

λ = −0.0858 + j9.6453, λd = −1.4468 + j9.6453

The time constant of the wash-out filter is assumed to be 5 s. The residue of the
transfer function ω/Vre f corresponding to the electromechanical mode is

Rω/Vre f = 0.2007∠130.11◦

The sensitivity of the eigenvalue with respect to the gain of the stabilizer assuming
no phase compensation is

SKS (TS1 = 0) = 0.2007∠131.30◦

As previously mentioned, the small effect of the wash-out filter on both the magni-
tude and the phase of the eigenvalue sensitivity can be seen. The total required phase
lead is ϕ = 180◦ − 131.30◦ = 48.70◦. Assuming two equal lead stages, the phase to
be compensated by each one is φ = 24.35◦. The lead ratio that provides this phase
lead is α = 0.4161. The time constant of the numerator of the lead compensation
is TS1 = 0.1607 s, using the damped natural frequency of the electromechanical
eigenvalue ωd = 9.65 rad/s. After designing the phase compensation, the stabilizer
gain can be determined to attain the desired eigenvalue λd . The value of the stabi-
lizer gain that results is KS = 2.8220 pu. The full set of parameters of the designed
power system stabilizer in lead compensation transfer function form is contained in
Table 9.16.

The eigenvalue sensitivity provides an estimate of the electromechanical eigen-
value that results when the power system stabilizer is incorporated. The estimated and
the true electromechanical eigenvalues are, respectively, λe = −1.4468 + j9.6453
and λt = −1.5589 + j9.4030. Both the estimated and the true eigenvalues are
very close, which validates the approximation of the eigenvalue shift provided by
the eigenvalue sensitivity. The damping of the final electromechanical eigenvalue
is 16.36 %, which is greater than the desired value. Figure 9.13 compares the time
response of the linearized model without and with stabilizer in response to a step at
the reference of the excitation system. The generator speed deviation is displayed.
Figure 9.13 confirms the performance of the designed stabilizer.

Table 9.16 Parameters of a
stabilizer for a single
generator connected to an
infinite bus

KS (pu) TS1 = TS3 (s) TS2 = TS4 (s) TS5 (s)

2.8220 0.1607 0.0669 5.0
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Fig. 9.13 Comparison of the time response of the linearized model of a synchronous generator
connected to an infinite bus without and with a stabilizer, following a step at the reference of the
excitation system

9.4.5 Coordinated Design of Multiple Damping Controllers
for Damping Several Modes

The coordinated approach to the design of damping controllers addresses the problem
of designing multiple controllers to improve the damping of several modes. The
eigenvalue sensitivity approach to designing a single damping controller can be
extended to design multiple damping controllers.

The two-step approach to coordinated design of multiple controllers to damp
several modes is considered when the controller transfer function is in the lead com-
pensation form. The first step comprises the independent design of the phase compen-
sation network of each controller whereas the second step performs the coordinated
computation of the gains of all controllers. The phase compensation network of each
controller is first designed so that the phase of the sensitivities (for all significant
eigenvalues) is close to 180◦. Then the gains of all controllers are determined so that
the damping of all eigenvalues is greater than a selected bound.

9.4.5.1 Design of the Controller Phase Compensation Networks

The procedure given in Sect. 9.4.3 can be extended to multiple eigenvalues. Because
it is no longer possible to tune the sensitivity for just one eigenvalue, the idea is to
use average phases to adjust the parameters of each controller.

Assume the transfer function of the j th controller to be
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F
(
s, KSj

) = KSj

(
1 + sTS1 j

1 + sα j TS1 j

)Nsj sTS5 j

1 + sTS5 j
(9.22)

The sensitivities of the eigenvalues with respect to changes in the gains of the
controllers are

Si,KSj

(
TS1 j

) = Ri j

(
1 + λi TS1 j

1 + λiα j TS1 j

)Nsj λi TS5 j

1 + λi TS5 j

The sensitivities for TS1 j = 0 are given by

Si,KSj

(
TS1 j = 0

) = Ri j
λi TS5 j

1 + λi TS5 j

An average phase ψ j will be defined for each controller as the argument of the
sum of the sensitivities (this gives more weight to more significant sensitivities)

ψ j = arg

[ Ne∑
i=1

Si,KSj

(
TS1 j = 0

)]

where Ne is the total number of considered eigenvalues.
The total and partial phase lead, according to the number of stages Nsj and the

filtering ratio of each controller α j , is determined from the average phase ψ j by
using Eqs. (9.19), (9.20), and (9.21).

For the determination of the time constant TS1 j of the transfer function (9.22),
an optimization procedure (in just one variable) is used, taking advantage of the fact
that the cosine when the argument is minimum (−1) is 180◦. A weighting factor βi j

gives more importance to more significant sensitivities. It is normalized so that in
the ideal case (all sensitivities set to 180◦), the value of the function G

(
TS1 j

)
will

be −1. The optimization problem is defined as

min G
(
TS1 j

) = min
Ne∑

i=1

βi j cos
(
arg

[
Si,KSj

(
TS1 j

)])
(9.23)

where the weights are determined from the residues:

βi j =
∣∣Ri j

∣∣
∑Ne

i=1

∣∣Ri j
∣∣
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9.4.5.2 Computation of the Controller Gains

Once the phase of the sensitivities is close to 180◦, the gains of the controllers are
determined to shift the eigenvalues to yield the desired damping. The gains of the
controllers are determined by solving a linear programming problem. The objective
function is to minimize the control action. The control action is expressed as the sum
of the gains, weighted by the sensitivities:

min
Nc∑
j=1

γ j KSj

where Nc is the total number of controllers being designed and

γ j =
Ne∑

i=1

∣∣Si,KSj

∣∣

The weighting function γ j helps to normalize different modeling practices (for
instance, different units).

The constraints are the minimum values of the real parts of the eigenvalues and
the lower and upper bounds of the gains

Nc∑
j=1

Re
[
Si,KSj

]
KSj ≤ Re

[
λd

i − λi

]
, i = 1, . . . , Ne, 0 ≤ KSj ≤ K max

Sj

Should the phase of the eigenvalue sensitivity be 180◦, the imaginary part of the
desired eigenvalue would remain constant and the real part would be defined by the
desired eigenvalue damping.

9.4.6 Coordinated Design of Power System Stabilizers in a
Multi-Machine System

Both approaches to the coordinated design of multiple damping controllers to damp
several modes are illustrated in the design of the power system stabilizers of all
generators in the three-area test system. The aim is the improvement of the damping
of the five electromechanical modes to at least 15 %.

The phase compensation of each generator is independently designed. For each
generator, the average phase ψ j of eigenvalue sensitivities is determined and the
number of phase compensation stages is selected. Then the filtering ratio is obtained.
The time constant is subsequently determined by solving the nonlinear optimization
problem. The results are provided in Table 9.17.
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The average phase of the eigenvalue sensitivities is between 120◦ and 150◦ (this
is related to the fact that all generators are equipped with static excitation systems).
The selected number of stages of the phase compensation networks was always two.
Therefore, the phase φ to be provided by each stage is between 10◦ and 30◦. The
filtering ratio is in all cases around 0.5. The performance of the overall process is quite
satisfactory because the value of G (TS1) after incorporating the lead compensation
is close to −1.

The solution of the linear programming problem, assuming that the upper limits of
the stabilizer gains is 15 pu, provides the values of the gains (see Table 9.18). Among
six generator candidates, only three generators have nonzero gains. This means that
only three generators are needed to provide the required damping. All eigenvalues
were computed after incorporating the designed stabilizers in the system model.
All eigenvalues are stable. The performance of the overall approach is checked by
comparing the original eigenvalues, the estimated, and the new eigenvalues after
incorporating the designed stabilizers (see Table 9.19).

It is not always easy to match the eigenvalues that result from incorporating the
stabilizers with the original ones. A simple approach consists of computing the root
locus as the stabilizer gain increase from zero to the nominal values. Figure 9.14
shows the locus of the electromechanical eigenvalues. Figure 9.15 details the locus
of the electromechanical eigenvalues corresponding to the local oscillations.

The comparison of the estimated and the new eigenvalues confirms the accuracy
of the eigenvalue sensitivities. The damping of the original and the new eigenvalues
can also be compared (see Table 9.20). The damping of the local modes is greater
than the selected bound in three out of four modes, whereas the damping of the
inter-area modes is a bit lower. This is due to two circumstances: (1) the stabilizer
gains are mainly determined to improve the damping of the inter-area modes, and (2)
the eigenvalue shift is only approximated by the first-order eigenvalue sensitivities.
Figure 9.16 compares the time response of the linearized system without and with
stabilizers in response to a step at the reference of the excitation system of generator
1. Differences of the speed deviation of two generators (ω1 − ω3 and ω1 − ω5) are
displayed because they show the inter-area oscillations. Figure 9.16 confirms the
performance of the designed stabilizers.

Table 9.17 Two-step design of speed deviation stabilizers in the three-area test system

Generator ψ (deg) Ns φ (deg) α TS1 (sec) TS2 (sec) G (TS1)

1 167.43 2 20.55 0.480 0.1025 0.0492 −0.9760
2 124.17 2 27.91 0.362 0.1082 0.0392 −0.9956
3 132.25 2 23.88 0.424 0.1118 0.0474 −0.9714
4 119.10 2 30.45 0.327 0.1163 0.0381 −0.9969
5 134.33 2 22.83 0.441 0.1047 0.0461 −0.9607
6 118.60 2 30.70 0.324 0.1139 0.0369 −0.9920

Design of the phase compensation networks
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Table 9.18 Two-step design
of speed deviation stabilizers
in the three-area test system:
Gain computation

Generator KS (pu)

1 10.7947
2 0
3 15
4 0
5 15
6 0

Table 9.19 Two-step design of speed deviation stabilizers in the three-area test system

λ λ λe λt

1,2 −0.6543± j10.7739 −2.3297± j11.3061 −2.4175± j10.3965
3,4 −0.6520± j10.7411 −2.5028± j11.1790 −2.0809± j10.6809
5,6 −0.7402± j10.6533 −1.6522± j10.9335 −1.3028± j9.9813
7,8 −0.1727± j8.2339 −2.1569± j7.9729 −2.6864± j7.9305
9,10 0.2177 ± j4.6645 −0.6997± j4.3800 −0.6261± j4.4179

Original, estimated, and true eigenvalues
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Fig. 9.14 Locus of the electromechanical eigenvalues as the stabilizer gains increase from zero to
the nominal values

9.5 Participation Factors and Reduced-Order Eigenanalysis

Accurate characterization of power system electromechanical oscillations requires
detailed models of the power system. The typical model of a generating unit is
described by 10 state variables. This means that the state matrix of a power system of
100 generators is on the order of 1000 × 1000. As the state matrix of a realistic
linearized model of a power system does not exhibit any special computational
property (symmetry, sparsity, etc.) that can be taken advantage of, a matrix of that size
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Fig. 9.15 Locus of the local
electromechanical eigenval-
ues as the stabilizer gains
increase from zero to the nom-
inal values
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Table 9.20 Two-step design
of speed deviation stabilizers
in the three-area test system:
Original, estimated and true
eigenvalue damping (%)

λ ζ ζ e ζ t

1,2 6.06 20.18 22.65
3,4 6.06 21.85 26.77
5,6 6.93 14.94 12.94
7,8 2.10 26.11 32.08
9,10 −4.66 15.77 14.03

is close to the limits of the eigenvalue analysis algorithms for general matrices based
on the QR transformation [22]. The SMA algorithms of reduced-order eigenanalysis
can be applied to the small-signal stability problem because:

• Only a few modes are of interest, which are those that characterize the poorly
damped oscillations.

• The modes of interest are associated with a subset of state variables that describe
the dynamics of the rotors of the generators.

This section presents the role of participation factors in the convergence of SMA
algorithms of reduced-order eigenanalysis. The basic idea of SMA algorithms is
presented first. Then the core algorithms and the algorithms with variable transfor-
mations are detailed. The application of the algorithms to the small-signal stability
problem of power systems is illustrated throughout the section.

9.5.1 Basic Idea

Let us recall the set of LTI differential equations (9.2) that describe an undriven
LTI dynamic system. SMA algorithms for reduced-order eigenvalue analysis take
advantage of the close association between subsets of modes and subsets of state
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Fig. 9.16 Comparison of the time response of the linearized model of the three-area test system
without and with stabilizers, following a step at the reference of the excitation system of generator 1

variables that typically exist in most physically motivated LTI systems. We have
already referred to such associations as dynamic patterns.

In general, an intimate understanding of the physical system is what leads to the
identification of such dynamic patterns. If, however, the results of a complete eige-
nanalysis are available, the dynamic patterns can be identified more systematically
by using the participation factors, as has been shown in Sect. 9.3. In particular, the
study of small test cases has shown that the electromechanical modes together with
the variables that describe the rotor dynamics constitute a distinct dynamic pattern.

Once the dynamic patterns and the modes of interest have been identified, the state
variables can be separated, for the modes of interest, into two subsets: the relevant
variables r, and the less relevant variables z. According to this partitioning of the
state variables, the original system (9.2) can be rewritten as

[
ṙ
ż

]
=

[
A11 A12
A21 A22

] [
r
z

]
, r ∈ �n, z ∈ �N−n (9.24)

The system (9.24) can be represented in the block diagram form of Fig. 9.17. The
basic idea of the SMA algorithms for the determination of a subset of the system
eigenvalues is to iteratively build a reduced-order system expressed in terms of the
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Fig. 9.17 Relevant and less
relevant dynamics

++

+ +

LESS RELEVANT DYNAMICS

RELEVANT DYNAMICS

Fig. 9.18 Reduced-order
system

++

relevant variables for the desired subset of eigenvalues, incorporating the effects of
the less relevant variables by approximate static equivalents that will be iteratively
refined. The core of the relevant dynamics is characterized by the A11 matrix whereas
the effects of the less relevant dynamics are accounted for by a correction matrix M,
yielding

ṙ = (A11 + M) r = ARr (9.25)

The system of equations (9.25) can be made to possess modes of interest, by a
proper choice of M, as we shall presently show. Although we use the same symbol
r in (9.25) as in (9.24) for notational simplicity, we actually get the same functions
of time if and only if M and the initial conditions are correctly chosen. The system
(9.25) can be represented in the block diagram form of Fig. 9.18.

Let us assume that an eigenvalue λ1 of A and its associated right and left eigen-
vectors, v1 and w1, respectively, are exactly known. The definition of the right eigen-
vector applied to the system written in the partitioned form (9.24) is

[
A11 A12
A21 A22

] [
vr1
vz1

]
=

[
vr1
vz1

]
λ1 (9.26)

It follows from (9.26) that the part of the right eigenvector corresponding to the
relevant variables satisfies
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[
A11 + A12 (λ1I − A22)

−1 A21

]
vr1 = vr1λ1 (9.27)

assuming that λ1 is not an eigenvalue of A22.
Let H (s) denote the transfer function of the less relevant dynamics. So

H (s) = A12 (sI − A22)
−1 A21

If Eqs. (9.25) and (9.27) are now compared, it can be concluded that a choice of
M will cause (9.25) to have λ1 as an eigenvalue and vr1 as the associated right
eigenvector is

M = H (λ1) = H (s)|s=λ1

It should be noted that a dual result can be obtained from the definition of the left
eigenvector applied to the system written in partitioned form (9.24).

9.5.2 Basic Algorithms

This section provides the SMA algorithms of reduced-order eigenanalysis. The start-
ing point is the basic idea presented in the previous section. The algorithm to compute
a single mode is presented first. The algorithm to compute several modes simulta-
neously is provided subsequently. In addition, the convergence conditions of the
algorithms are detailed.

9.5.2.1 Algorithm to Compute a Single Mode

The idea of the algorithm to compute a single mode, say the one associated with
eigenvalue λ1, is very simple. Let us assume that an initial guess of the eigenvalue
is available, and denote this guess by λ0

1. A better approximation may be obtained,
if the selection of relevant and less relevant variables is appropriate, by performing
the eigenanalysis of the following reduced-order system

ṙ =
(

A11 + M1
)

r = A1
Rr

where M1 is the transfer function of the less relevant dynamics evaluated at the initial
guess of the eigenvalue of interest λ0

1

M1 = H
(
λ0

1

)
=

[
A12

(
λ0

1I − A22

)−1
A21

]

The algorithm to compute a single mode can be summarized as follows:
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1. Set the initial value of the iteration count to j = 0.
2. Provide an initial guess λ0

1.

3. Compute H
(
λ

j
1

)
= A12

(
λ

j
1I − A22

)−1
A21.

4. Compute A j+1
R = A11 + H

(
λ

j
1

)
.

5. Perform the eigenanalysis of A j+1
R and select λ j+1

1 from among its eigenvalues.

6. If
∣∣∣λ j+1

1 − λ
j
1

∣∣∣ ≤ ε, then stop; else increment j to j + 1 and go to Step 3.

The initial guess of the eigenvalue λ0
1 could be obtained, in general, from the eige-

nanalysis of A11. A very reasonable initial guess of the eigenvalue when computing
electromechanical modes of power systems is a purely imaginary value λ0

1 = j2π ,
which corresponds to an oscillation at the typical frequency of 1 Hz.

9.5.2.2 Participation Ratio

In Sect. 9.3, we introduced the notion of subsystem participation, which was the sum
of the participation factors associated with the state variables in the subsystem. The
participation of the relevant subsystem in the i th mode can thus be written as wT

ri vri ,
and that of the less relevant subsystem can be written as wT

zi vzi . Their ratio

ρri = wT
ri vri

wT
zi vzi

will be important in describing the local convergence of the basic SMA algorithm.

9.5.2.3 Convergence Condition of Single-Mode Algorithm

We demonstrate in this section that when only one mode is of interest, the algorithm
converges locally if and only if the participation ratio of the relevant variables is
greater than one. Furthermore, the local convergence is linear and the convergence
ratio is precisely the negative of the participation ratio of the relevant variables.

The convergence ratio of a linearly convergent algorithm is defined as

lim
λ

j
i →λi

λ
j
i − λi

λ
j+1
i − λi

(9.28)

The eigenvalue λi in the iteration j + 1 is obtained from the eigenanalysis of the
reduced system built using the eigenvalue of the iteration j

λ
j+1
i = λi

{
A j+1

R

(
λ

j
i

)}
= λi

{
A11 + H

(
λ

j
i

)}
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An approximation of the eigenvalue λi in the iteration j + 1 can be provided using
the first-order sensitivity

λ
j+1
i ≈ λi + dλi {A11 + H (λi )}

dλ

∣∣∣∣
λ=λi

(
λ

j
i − λi

)
(9.29)

Rearranging (9.29), we get

lim
λ

j
i →λi

λ
j
i − λi

λ
j+1
i − λi

=
[

dλi {A11 + H (λ)}
dλ

∣∣∣∣
λ=λi

]−1

(9.30)

The sensitivity of the eigenvalue λi of A11 + H
(
λ

j
i

)
can be determined as

dλi {A11 + H (λ)}
dλ

=
wT

ri
d{A11+H(λ)}

dλ

∣∣∣
λ=λi

vri

wT
ri vri

=
wT

ri
dH(λ)

dλ

∣∣∣
λ=λi

vri

wT
ri vri

= −wT
ri A12 (λi I − A22)

−1 (λi I − A22)
−1 A21vri

wT
ri vri

= −wT
zi vzi

wT
ri vri

= − 1

ρri
(9.31)

Substituting (9.31) in Eq. (9.30) shows that the convergence ratio is precisely the
negative of the participation ratio of the relevant variables

lim
λ

j
i →λi

λ
j
i − λi

λ
j+1
i − λi

= −ρri (9.32)

Thus the algorithm converges locally if and only if the magnitude of the participation
ratio of the relevant variables is greater than one.

9.5.2.4 Performance of the Single-Mode Algorithm

The single-mode algorithm is illustrated first by computing the electromechanical
eigenvalue of the model of a generator connected to an infinite bus described in
Sect. 9.3.2. We have chosen the rotor angle δ and the speed deviation ω as relevant
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Table 9.21 Performance of the single-mode when computing the electromechanical eigenvalue of
a generator connected to an infinite bus

Iteration λ Residue Convergence ratio

1 −0.0177 + j9.6543 6.9 × 10−2

2 −0.0870 + j9.6444 1.5 × 10−3 46.98
3 −0.0858 + j9.6453 3.1 × 10−5 46.53
4 −0.0858 + j9.6453 1.2 × 10−6 46.54
5 −0.0858 + j9.6453 2.6 × 10−8 46.54

variables. The magnitude of the participation ratio with this choice of relevant vari-
ables is 46.54. Table 9.21 details the iterative process. The initial guess of the eigen-
value is j2π . The convergence ratio as defined in (9.28) is provided, together with
the residue of the eigenpair (the eigenvalue and the associated eigenvector) defined
as ‖ (A − λi I) vi‖, with the eigenvector normalized such that its length is unity.

It must be noted that the magnitude of the convergence ratio becomes exactly the
magnitude of the participation ratio when the eigenvalue has almost converged. The
residue of the eigenpair is also provided because it is the most accurate indicator of
convergence.

9.5.2.5 Algorithm to Compute Several Modes

For the case where a single mode λi was of interest, we obtained our reduced-order
model by adding to the core matrix A11 the correction H (λi ), which reflected the
effect of the less relevant dynamics on the mode of interest. If h modes are of interest
(say the first h, i.e., λ1, . . . , λh), with h ≤ n, the reduced-order system is obtained
by adding to the matrix A11 a matrix M that reflects the effect of the less relevant
dynamics on all modes of interest. Accordingly, in the j th iteration of the algorithm
to compute M, we find a matrix M j+1 that satisfies the following constraints

M j+1vri = H
(
λ

j
i

)
v j

ri , i = 1, . . . , h (9.33)

where v j
ri is the approximation to vri available at the j-iteration. The set of equations

(9.33) can also be written in matrix form as

M j+1
[

v j
r1 · · · v j

rh

]
=

[
H

(
λ

j
1

)
v j

r1 · · · H
(
λ

j
h

)
v j

rh

]

M j+1V j
rh = F j (9.34)

When the number of modes of interest h is smaller than the number of relevant
variables n, the solution of the linear system (9.34) is not unique. One way to choose
among the solutions is to find the solution of minimum norm, which would mean that
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the perturbation of A11 due to M is minimum. Letting the superscript + denoting
the Moore–Penrose pseudoinverse, this minimum-norm solution is

M j+1 = F j
(

V j
rh

)+

In case V j
rh has full column rank, the pseudoinverse of V j

rh is determined as

(
V j

rh

)+ =
((

V j
rh

)T
V j

rh

)−1 (
V j

rh

)T

Another way to choose among the solutions of the linear system (9.34) is to have

M j+1 be as close as possible to the set of matrices H
(
λ

j
i

)
for the h modes of interest.

In other words, we can carry out the following minimization

min
h∑

i=1

β2
i

∣∣∣M j+1 − H
(
λ

j
i

)∣∣∣2
(9.35)

The solution to (9.35), subject to the constraints imposed by the linear system
(9.34), is

M j+1 = F j
(

V j
rh

)+ + H
(

I − V j
rh

(
V j

rh

)+)
(9.36)

where

H =
∑h

i=1 β
2
i H

(
λ

j
i

)

∑h
i=1 β

2
i

The M matrix can also be computed in terms of the left eigenvectors. The algorithm
to compute several modes at the same time can be summarized as follows:

1. Set the initial value of the iteration count to j = 0.
2. Provide an initial guess Λ0

h = diag{λ0
i }, V0

rh = [
v0

r1 . . . v
0
rh

]
.

3. Compute H(λ j
i ) for i = 1, . . . , h.

4. Solve M j+1
[
v j

r1 . . . v
j
rh

]
=

[
H(λ j

1)v
j
r1 . . .H(λ

j
h)v

j
rh

]
.

5. Compute A j+1
R = A11 + M j+1.

6. Perform the eigenanalysis of A j+1
R , select Λ j+1

h and V j+1
rh from among its

eigenvalues and right eigenvectors.

7. If
∣∣∣λ j+1

i − λ
j
i

∣∣∣ ≤ ε for i = 1, . . . , h, then stop; else increment j to j + 1 and

go to Step 3.

The initial guess of the eigenvaluesΛ0
h and the associated eigenvectors V0

rh could
be obtained, in general, from the eigenanalysis of A11 as A11 v0

ri = v0
ri λ

0
i . The
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algorithm can start with a single mode of interest, and when computing the electro-
mechanical modes of power systems, we can choose λ0

1 = j2π , corresponding to
an oscillatory frequency of 1 Hz.

9.5.2.6 Convergence Conditions of Multi-Mode Algorithm

Many practical examples have shown that the algorithm of reduced-order eigenanaly-
sis exhibits good convergence if there exists a distinct dynamic pattern incorporating
the modes of interest. In other words, if

|ρr| � 1 for the n modes associated to the N relevant variables, and
|ρr| 
 1 for the remaining N − n modes,

then good convergence is obtained. More precise conditions, though more difficult
to apply, are given in [1].

9.5.2.7 Performance of the Multi-Mode Algorithm

The performance of the multi-mode algorithm is illustrated by computing the electro-
mechanical eigenvalues of the three-area test system discussed in Sect. 9.3.3. We
have chosen δ and ω of the six generators as relevant variables. The participation
ratios of the relevant variables in all modes, except the zero mode, are shown in
Tables 9.22 and 9.23. Six complex eigenvalue pairs (λ5,6, λ7,8, λ9,10, λ11,12, λ15,16,
and λ17,18) together with the δ andω variables of the six generators result in a distinct
dynamic pattern. Only the complex pair λ17,18 will not be of interest because it is a
well-damped mode (its damping is 51 %) related to the system frequency dynamics.
Table 9.24 details the iterative process of the multi-mode algorithm. The initial guess
of the eigenvalue is j2π . Table 9.25 provides the residue of the eigenpair. The itera-
tive process has been stopped when all residues are smaller than 10−4. The algorithm
converges after four iterations.

Table 9.22 Magnitude of the
participation ratio of the
relevant variables in the
complex eigenvalues of the
three-area test system

No. λ ρr

1,2 −18.2022 ± j20.4108 0.0036
3,4 −19.0475 ± j15.5643 0.0150
5,6 −0.6543 ± j10.7739 56.7569
7,8 −0.6520 ± j10.7411 54.8053
9,10 −0.7402 ± j10.6533 36.5220
11,12 −0.1727 ± j8.2339 51.9825
13,14 −20.5979 ± j7.8355 0.0798
15,16 0.2177 ± j4.6645 14.6322
17,18 −0.4591 ± j0.7643 9.6154
19,20 −1.4267 ± j0.3828 0.4504
21,22 −21.4120 ± j0.3112 0.0315
23,24 −2.1695 ± j0.1777 0.1196
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Table 9.23 Magnitude of the participation ratio of the relevant variables in the real eigenvalues of
the three-area test system

No. λ ρr No. λ ρr

25 −0.1406 0.0159 49 −5.2669 0.2290
26 −0.1420 0.0063 50 −7.7110 0.0182
27 −0.1422 0.0047 51 −8.1064 0.0173
28 −0.1422 0.0046 52 −9.1683 0.0101
29 −0.1422 0.0046 53 −9.7709 0.0252
30 −1.4232 0.0132 54 −9.8218 0.0113
31 −1.4504 0.0129 55 −9.8684 0.0027
32 −1.5118 0.0140 56 −9.8856 0.0006
33 −1.5201 0.0087 57 −9.8931 0.0002
34 −1.5614 0.0154 58 −9.8947 0.0004
35 −1.5909 0.0053 59 −23.8707 0.1251
36 −1.9836 0.0086 60 −29.1400 0.0446
37 −1.9861 0.0072 61 −29.3942 0.0683
38 −1.9868 0.0068 62 −29.4908 0.0660
39 −2.0005 0.0003 63 −32.7496 0.0782
40 −2.7431 0.0853 64 −33.4670 0.0861
41 −2.9391 0.0534 65 −33.8097 0.0834
42 −2.9536 0.0517 66 −93.5548 0.0000
43 −2.9598 0.0509 67 −94.6309 0.0001
44 −3.8689 0.0654 68 −95.7101 0.0001
45 −3.8789 0.0660 69 −97.2405 0.0001
46 −3.9057 0.0678 70 −97.5481 0.0001
47 −4.1588 0.0709 71 −97.6598 0.0001
48 −4.6810 0.0056

Table 9.24 Performance of the multi-mode algorithm when computing the electromechanical
eigenvalues of the three-area test system: eigenvalues

λ Iteration
1 2 3 4

1 −0.5336 + j10.8572 −0.6491 + j10.7752 −0.6543 + j10.7739 −0.6543 + j10.7739
2 −0.5404 + j10.8201 −0.6470 + j10.7427 −0.6519 + j10.7412 −0.6520 + j10.7411
3 −0.6585 + j10.7197 −0.7358 + j10.6565 −0.7401 + j10.6534 −0.7402 + j10.6533
4 −0.1657 + j8.2329 −0.1722 + j8.2342 −0.1727 + j8.2339 −0.1727 + j8.2339
5 0.2283 + j4.6506 0.2166 + j4.6719 0.2177 + j4.6644 0.2177 + j4.6645

9.5.3 Algorithms with Variable Transformations

The convergence conditions of the standard SMA algorithm show that its successful
application depends on a good choice of the relevant variables for the modes of
interest. This requires an a priori knowledge of the system behavior, which is not
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Table 9.25 Performance of
the multi-mode algorithm
when computing the
electromechanical
eigenvalues of the three-area
test system: residues

λ Iteration
1 2 3 4

1 1.5 × 10−1 5.4 × 10−3 8.5 × 10−5 1.3 × 10−6

2 1.2 × 10−1 5.2 × 10−3 7.9 × 10−5 1.2 × 10−6

3 2.2 × 10−2 5.4 × 10−3 1.4 × 10−4 3.6 × 10−6

4 7.1 × 10−3 5.7 × 10−4 7.8 × 10−6 2.2 × 10−7

5 1.7 × 10−2 7.4 × 10−3 1.8 × 10−4 2.4 × 10−5

always available. There is an alternative to this procedure: it consists of performing a
variable transformation prior to each iteration of the SMA algorithm. Starting from
some selection of the relevant variables, the proposed transformation is aimed at
increasing as much as possible the participation ratio of the relevant variables.

The proposed transformation can adopt one of two dual forms, depending whether
it is based on the left or the right eigenvectors. The left eigenvector transformation
affects only the relevant variables, whereas the right eigenvector transformation
affects the less relevant ones.

9.5.3.1 The Left Eigenvector Transformation

The left eigenvector transformation is a linear transformation that only affects the
relevant variables: [

r
z

]
=

[
I Li

0 I

] [
r
z

]
(9.37)

The participation ratio of the transformed relevant variables is

ρri = wT
ri vri

wT
zi vzi

(9.38)

If the expressions of the transformed right and left eigenvectors are substituted in
(9.38), it becomes

ρri = wT
ri (vri + Li vzi )

(−wT
ri Li + wT

zi )vzi
(9.39)

It should be noted that although the left eigenvector transformation only affects the
relevant variables, the participation factors of both the relevant and the less relevant
variables are affected.

An infinite participation ratio (9.39) can be achieved if Li satisfies

− wT
ri Li + wT

zi = 0 (9.40)
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An expression for Li can be obtained from the definition of the left eigenvector of
the state matrix written in partitioned form

[
wT

ri wT
zi

] [
A11 A12
A21 A22

]
= λi

[
wT

ri wT
zi

]
(9.41)

The equation corresponding to the less relevant part of the left eigenvector in (9.41) is

wT
ri A12 + wT

zi A22 = λi wT
zi (9.42)

This equation can be rewritten as

− wT
ri A12 (λi I − A22)

−1 + wT
zi = 0 (9.43)

Comparing Eqs. (9.40) and (9.43), the matrix Li can be identified as

Li = A12 (λi I − A22)
−1 (9.44)

When several modes (h) are of interest, a single left eigenvector transformation can
be obtained by solving the linear system

LT [
wr1 · · · wrh

] = [
LT

1 wr1 · · · LT
h wrh

]

9.5.3.2 The Right Eigenvector Transformation

The right eigenvector transformation is a linear transformation that only affects the
less relevant variables [

r
z

]
=

[
I 0
−Ki I

] [
r
z

]
(9.45)

The participation ratio of the transformed relevant variables is

ρri = wT
ri vri

wT
zi vzi

(9.46)

If the expressions of the transformed right and left eigenvectors are substituted in
(9.46), it becomes

ρri =
(
wT

ri + wT
zi Ki

)
vri

wT
zi (−Ki vri + vzi )

(9.47)

It should be noted that although the right eigenvector transformation only affects
the less relevant variables, the participation factors of both the relevant and the less
relevant variables are affected.
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An infinite participation ratio (9.47) can be achieved if Ki satisfies

− Ki vri + vzi = 0 (9.48)

An expression for Ki can be obtained from the definition of the right eigenvector of
the state matrix written in partitioned form

[
A11 A12
A21 A22

] [
vri

vzi

]
=

[
vri

vzi

]
λi (9.49)

The equation corresponding to the less relevant part of the right eigenvector (9.49) is

A21vri + A22vzi = vziλi (9.50)

This can be rewritten as

− (λi I − A22)
−1 A21vri + vzi = 0 (9.51)

Comparing Eqs. (9.48) and (9.51), the matrix Ki can be identified as

Ki = (λi I − A22)
−1 A21

In the case several modes are of interest, a single right eigenvector transformation
can also be obtained by solving the linear system

K
[

vr1 · · · vrh
] = [

K1vr1 · · · Khvrh
]

9.5.3.3 Algorithm with Variable Transformation to Compute
Several Modes

In the case that several modes are of interest, the algorithm of reduced-order eige-
nanalysis that results from the application of the variable transformation can be
implemented in two different forms.

The first form involves explicitly determining a variable transformation valid for
the set of modes of interest. The algorithm of reduced-order eigenanalysis is then
applied to the transformed system.

The second alternative avoids the computation of a variable transformation valid
for all the modes of interest. Instead, for each mode of interest, the variable trans-
formation is applied first, and the reduced-order matrix is obtained subsequently.
The transfer function of the less relevant dynamics is determined from the reduced
matrix. Assuming that the left eigenvectors transformation is applied, the second
form of the algorithm of reduced-order eigenanalysis is as follows:

1. Set the initial value of the iteration count to j = 0.
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2. Provide an initial guess Λ0
h , V0

rh .
3. For each eigenvalue of interest (i = 1, . . . , h):

(a) Compute L j+1
i as L j+1

i = A12

(
λ

j
i I − A22

)
.

(b) Compute Ā
(
λ

j
i

)
, which is the result of applying the similarity transforma-

tion (9.37) to A.

(c) Compute AR

(
λ

j
i

)
= Ā11 + Ā12

(
λ

j
i I − Ā22

)
Ā12.

(d) Compute H(λ j
i ) = AR

(
λ

j
i

)
− A11.

4. Solve M j+1
[
v j

r1 . . . v
j
rh

]
=

[
H(λ j

1)v
j
r1 . . .H(λ

j
h)v

j
rh

]
.

5. Compute A j+1
R = A11 + M j+1.

6. Perform the eigenanalysis of A j+1
R , and select Λ j+1

h and V j+1
rh from among its

eigenvalues and right eigenvectors.

7. If
∣∣∣λ j+1

i − λ
j
i

∣∣∣ ≤ ε for i = 1, . . . , h, then stop; else increment j to j + 1 and go

to Step 3.

9.5.3.4 Convergence Conditions of the Algorithm with Variable
Transformations

The application of variable transformations only results in infinite participation ratio
of the relevant variables if the eigenvalues are exactly known. However, the eigen-
values are only known approximately. The application of a variable transformation
prior to each iteration of the algorithm of reduced-order eigenanalysis makes the
convergence quadratic instead of linear.

Let us assume that the left eigenvector transformation is applied. Then the partic-
ipation ratio of the relevant variables (9.39) becomes

ρri =
1 − wT

zi vzi + wT
ri A12

(
λ

j
i I − A22

)−1
vzi

+wT
zi vzi − wT

ri A12

(
λ

j
i I − A22

)−1
vzi

(9.52)

Assuming that ε j
i = λ

j
i − λi

(
λ

j
i I − A22

)−1 =
[
(λi I − A22)+ ε

j
i I

]−1
(9.53)

The first-order Taylor expansion of Eq. (9.53) is

(
λ

j
i I−A22

)−1 ≈ (λi I−A22)
−1 − (λi I − A22)

−2 ε
j
i (9.54)
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Substituting (9.54) in (9.52) shows

ρri = 1 − wT
zi (λi I − A22)

−1 vzi ε
j
i

wzi (λi I − A22)
−1 vzi ε

j
i

= 1 − kcε
j
i

kcε
j
i

≈ 1

kcε
j
i

(9.55)

where
kc = wT

zi (λi I − A22)
−1 vzi

The coefficient kc is not known a priori. However, an upper limit is

kc ≤
∣∣∣wT

zi

∣∣∣ · min (λi I − λ {A22})−1 · |vzi |

The convergence ratio of the algorithm of reduced-order eigenanalysis (9.32) can
also be expressed as

lim
λ

j
i →λi

λ
j
i − λi

λ
j+1
i − λi

= lim
λ

j
i →λi

ε
j
i

ε
j+1
i

= −ρri (9.56)

Therefore

ε
j+1
i = −1

ρri
ε

j
i = −kc

(
ε

j
i

)2
(9.57)

which means that the convergence ratio is quadratic.

9.5.3.5 Performance of the Algorithm with Variable Transformations

The performance of the single-mode algorithm when computing the electromechan-
ical mode of a generator connected to an infinite bus, taking δ and ω as the relevant
variables, is quite satisfactory, as shown in Table 9.21. However, if the stabilizer
designed in Sect. 9.4.3 is added to the generator model, the magnitude of the par-
ticipation ratio of the relevant variables changes significantly: from 46.54 to 8.51.
Table 9.26 shows the corresponding convergence process assuming that the initial
guess of the eigenvalue is j2π . The convergence can be improved if δ, ω, and ψ f d

(field flux) are taken to be the relevant variables and a variable transformation (either
the left or the right eigenvector transformation) is applied prior to each iteration.
Table 9.27 shows the convergence process in this more challenging case. As shown
in Sect. 9.5.3.4, the convergence becomes quadratic instead of linear.
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Table 9.26 Performance of the single-mode algorithm when computing the electromechanical
eigenvalue of a generator connected to an infinite bus and equipped with a stabilizer

Iteration λ Residue Convergence ratio

1 −1.4095 + j9.3515 1.6 × 10−1

2 −1.5430 + j9.4117 1.8 × 10−2 8.68
3 −1.5584 + j9.4050 2.1 × 10−3 8.53
4 −1.5591 + j9.4032 2.5 × 10−4 8.51
5 −1.5590 + j9.4030 2.9 × 10−5 8.51
6 −1.5589 + j9.4030 5.1 × 10−6 8.51
7 −1.5589 + j9.4030 6.0 × 10−7 8.51

Table 9.27 Performance of the single-mode algorithm with variable transformation when comput-
ing the electromechanical eigenvalue of a generator connected to an infinite bus and equipped with
a stabilizer

Iteration λ Residue Convergence ratio

1 −1.4269 + j9.3756 1.3 × 10−1

2 −1.5588 + j9.4031 2.0 × 10−4 6.7 × 102

3 −1.5589 + j9.4030 6.6 × 10−10 4.5 × 105

9.5.4 Composite Formulation

The composite formulation of the SMA algorithms of reduced-order eigenanalysis
is an alternative that applies when the system can be expressed as a collection of
dynamic subsystems interconnected through a set of static constraints, which is
the case with power system models considered in stability studies. The aim of the
composite formulation is to facilitate the computation of the transfer function of
the less relevant dynamics H(λ j

i ) for each eigenvalue of interest in each iteration

λi . It should be noted that the computation of H(λ j
i ) requires the computation of

the inverse of (λ j
i I − A22). In the case of large systems whose state matrix does

not exhibit any property that can be exploited, the computation of such an inverse
can be a significant obstacle. Even constructing A22 itself from any initial system
description can already be a challenge.

Let us consider that each dynamic subsystem is described by the following equa-
tions:

ẋ� = A�x� + B�u� (9.58)

y� = C�x� + D�u� (9.59)
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where x� is the vector of the state variables of the �th-subsystem, u� is the vector of
input variables of the �th-subsystem, and y� is the vector of output variables of the
�th-subsystem.

The static constraints are represented by a linear system of equations that relate
the subsystem input u and output variables y

Ju = y (9.60)

where
u = [

uT
1 . . . uT

L

]T
, y = [

yT
1 . . . yT

L

]T
(9.61)

The original system (9.2) can be obtained from the interconnection of the dynamic
subsystems (9.58–9.59) through the static constraints (9.60) as

ẋ� =
[
Ad + Bd (J − Dd)

−1 Cd

]
x = Ax (9.62)

where [·]d = diag {[·]�}.
The first step of the composite formulation of the algorithms of reduced-order

eigenanalysis consists in making the selection of relevant and less relevant variables
at the subsystem level. Hence, (9.58–9.59) can be rewritten as

[
ṙ�
ż�

]
=

[
A11� A12�
A21� A22�

] [
r�
z�

]
+

[
B1�
B2�

]
u� (9.63)

y� = [
C1� C2�

] [
r�
z�

]
+ D�u� (9.64)

The key idea of the composite formulation is to perform the modal reduction of the
less relevant dynamics at the subsystem level, substituting ż� by λ j

i z� and eliminating
z� subsequently. Therefore, the equations of each subsystem (9.63–9.64) become

ṙ� = AR�(λ
j
i )r� + BR�(λ

j
i )u� (9.65)

y� = CR�(λ
j
i )r� + DR�(λ

j
i )u� (9.66)

where

AR�(λ
j
i ) = A11� + A12�

(
λ

j
i I − A22�

)−1
A21�

BR�(λ
j
i ) = B1� + A12�

(
λ

j
i I − A22�

)−1
B2�
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CR�(λ
j
i ) = C1� + C2�

(
λ

j
i I − A22�

)−1
A21�

DR�(λ
j
i ) = D� + C2�

(
λ

j
i I − A22�

)−1
B2�

The interconnection of the reduced-order representations of the dynamic sub-
systems (9.65–9.66) through the static constraints results in the state matrix of the
reduced-order system

ṙ =
[

ARd(λ
j
i )+ BRd(λ

j
i )

(
J − DRd(λ

j
i )

)−1
CRd(λ

j
i )

]
r = AR(λ

j
i )r (9.67)

The transfer function of the less relevant dynamics (9.5.1) can be readily obtained
from (9.67) as

H(λ j
i ) = AR(λ

j
i )− A11

This approach to determining the transfer function of the less relevant dynamics
has several advantages over the standard formulation:

• Only the portion of the state matrix corresponding to the relevant variables has to
be built explicitly.

• In the computation of H(λ j
i ), the inverse of a matrix with a size equal to the number

of less relevant variables is substituted by the inverse of a matrix with a size equal
to the total number of input or output variables of the dynamic subsystems.

A particular case of composite systems is when the interconnection of the dynamic
subsystems is done through a set of sparse static constraints. A set of static constraints
can be represented by a graph. For a graph associated with a set of sparse static
constraints, a node only has connections with a small number of other nodes. In this
setting, the interconnection matrix J is sparse, i.e., most of the entries are 0. Dynamic
subsystems are connected only to a small number of nodes of the graph in power
system models arising in stability studies. In this case, Eq. (9.60) becomes

[
Jαα Jαβ
Jβα Jββ

] [
u
uβ

]
=

[
y
0

]
(9.68)

where α denotes the subset of nodes with dynamic subsystems and β denotes the
subset of nodes without dynamic subsystems.

The J matrix of Eq. (9.60) can be obtained by eliminating uβ from Eq. (9.68)
to get

(
Jαα − JαβJ−1

ββ Jβα
)

u = y (9.69)

The sparse structure of the J matrix can be taken advantage of using the implicit
formulation of the reduced-order system (9.67)



9 Selective Modal Analysis 249

⎡
⎣

ṙ
0
0

⎤
⎦ =

⎡
⎣

ARd(λ
j
i ) BRd(λ

j
i ) 0

−CRd(λ
j
i ) Jαα − DRd(λ

j
i ) Jαβ

0 Jβα Jββ

⎤
⎦

⎡
⎣

r
u
uβ

⎤
⎦ (9.70)

which can be written in compact form as

[
ṙ
0

]
=

[
ARd(λ

j
i ) B(λ j

i )

C(λ j
i ) D(λ j

i )

] [
r
uγ

]
(9.71)

where

B(λ j
i ) =

[
BRd(λ

j
i ) 0

]
, C(λ j

i ) =
[−CRd(λ

j
i )

0

]

D(λ j
i ) =

[
Jαα − DRd(λ

j
i ) Jαβ

Jβα Jββ

]
, uγ =

[
u
uβ

]

The reduced-order system can be obtained now as

ṙ =
(

ARd(λ
j
i )− B(λ j

i )D(λ
j
i )

−1C(λ j
i )

)
r = AR(λ

j
i )r (9.72)

It should be noted that the inverse of D(λ j
i ) is not computed explicitly. Rather, the

LU factorization of this matrix is performed and the solution of the resulting linear
system of equations for each column of C(λ j

i ) is achieved using forward-backward
substitutions.

The algorithm of reduced-order eigenanalysis for composite systems is as follows:

1. Set the initial value of the iteration count to j = 0.
2. Provide an initial guess Λ0

h , V0
rh .

3. For each eigenvalue of interest (for i = 1, . . . , h):

(a) Compute AR�(λ
j
i ),BR�(λ

j
i ),CR�(λ

j
i ),DR�(λ

j
i ) for the all subsystems � =

1, . . . , L .
(b) Compute AR(λ

j
i ) = ARd(λ

j
i )− B(λ j

i )D(λ
j
i )

−1C(λ j
i ).

(c) Compute H(λ j
i ) as H(λ j

i ) = AR(λ
j
i )− A11.

4. Solve M j+1
[
v j

r1 . . . v
j
rh

]
=

[
H(λ1)

j v j
r1 . . .H(λh)

j v j
rh

]
.

5. Compute A j+1
R = A11 + M j+1.

6. Perform the eigenanalysis of A j+1
R , and select Λ j+1

h and V j+1
rh from among its

eigenvalues and right eigenvectors.

7. If
∣∣∣λ j+1

i − λ
j
i

∣∣∣ ≤ ε for i = 1, . . . , h, then stop; else increment j to j + 1 and go

to Step (3).
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9.5.5 Application to the Power System Small-Signal Stability
Problem

The composite formulation of SMA detailed in Sect. 9.5.4 shows that when the sys-
tem can be expressed as a collection of dynamic subsystems interconnected through
a set of static constraints, the computational burden of the basic SMA algorithms
can be alleviated, thus resulting in very efficient algorithms. Section 9.5.3 has shown
that variable transformations can greatly improve the performance of the basic SMA
algorithms when the participation ratio of the selected relevant variables becomes
attenuated by the presence of controls such as power system stabilizers. However,
neither the left eigenvector transformation (9.37) nor the right eigenvector trans-
formation (9.45) exploits the properties of the power system model that arises in
small-signal stability studies.

It has been found that if δ, ω, andψ f d of each generator are the relevant variables,
the submatrix Li of (9.37) becomes a diagonal matrix, which means that the left
eigenvector transformation can be applied at generator level

[
r
z

]
=

[
I Ldi

0 I

] [
r
z

]

where
Ldi = diag {L�i } , L�i = A12� (λi I − A22�)

−1

The SMA algorithm with variable transformation exhibits quadratic convergence
in the case that only one mode is of interest. We explore now the convergence
properties when computing several modes at the same time. Figure 9.19 compares
the performance of the SMA algorithm using the left eigenvector transformation
with the basic SMA algorithm in the case of the three-area test system discussed
in Sect. 9.3.3, incorporating the stabilizers designed in Sect. 9.4.5. The variation
of the eigenpair residue (corresponding to the electromechanical eigenvalues) with
the iteration number is displayed. Assuming a common eigenpair residue threshold
(10−4) to reach convergence, the SMA algorithm with the left eigenvector variable
transformation exhibits better performance than the basic SMA algorithm.

The application of the SMA algorithm with the left eigenvector transformation is
limited to medium size systems (300 generators) because the SMA algorithm involves
the eigenanalysis of a matrix whose size is three times the number of generators.

Small-signal stability analysis of very large power systems concerns only a small
fraction of the electromechanical modes: the inter-area modes. Inter-area modes
correspond to low-frequency oscillations. Inter-area modes are poorly damped, in
contrast to local modes because most controls (power system stabilizers) are aimed
at damping local oscillations.

A divide-and-conquer approach has been designed to overcome the size limi-
tations of the SMA algorithm with the left eigenvector transformation. Instead of
computing all electromechanical modes at the same time assuming a single-area
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Fig. 9.19 Comparison of the performance of the basic algorithm and the algorithm left eigenvector
transformation in the computation of electromechanical eigenvalues of the three-area test system

problem, a multi-area approach assumes the existence of areas of coherent genera-
tors and calculates separately the inter-area and local (intra-area) modes of each area.
Inter-area modes correspond to the coherent oscillations among groups of generators
whereas the intra-area modes correspond to the local oscillations within an area.

The determination of inter-area modes is facilitated by the application of a right
eigenvector transformation that exploits the coherent nature of the inter-area oscil-
lations and allows one to represent each area by just one generating unit.

A grouping matrix that associates each generator to one area (Kg(i, j) = 1 if the
i th generator belongs to the area whose reference generator is the j th one; otherwise,
Kg(i, j) = 0) is used as the matrix of a right eigenvector transformation (9.45) for
a set of modes that can be applied at the area level

−KgVr + Vz = 0

The grouping matrix can be determined using either the slow coherency method [36,
37] or the synchrony approach [38, 39].

Figure 9.20 shows the performance of the algorithm to compute the two inter-area
modes of the three-area test system discussed earlier. Three areas are assumed. The
generators are grouped according to: (1,2), (3,4), and (5,6). The reference generators
are generator numbers 1, 3, and 5, respectively. The variation of the eigenpair residue
(corresponding to the inter-area electromechanical eigenvalues) with the iteration
number is displayed. Although the algorithm requires more iterations than the single-
area approach, it proves the feasibility of exploiting through a right eigenvector
transformation the fact that inter-area modes correspond to coherent areas.

The procedure for the computation of the local (intra-area) modes assumes the
local character of these oscillations (i.e., only the generators of the area of interest
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Fig. 9.20 Performance of the algorithm to compute the two inter-area modes of the three-area test
system
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Fig. 9.21 Performance of the algorithm to compute the three local modes of the three-area test
system

are involved) which in SMA parlance means that the dynamics of the remaining
generators are treated as less relevant.

Figure 9.21 shows the performance of the algorithm to compute the three local
modes in the three-area test system discussed in this section. The variation of the
eigenpair residue (corresponding to the local electromechanical eigenvalues) with the
iteration number is displayed. The number of iterations required to converge greatly
depends on the eigenvalue. Nevertheless, the feasibility of the divide-and-conquer
strategy to compute electromechanical modes in large power systems is illustrated.
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Appendix: Power System Data

Single-Machine Infinite Bus System

Table 9.28 provides the synchronous machine operating point of the single-machine
infinite bus system. Tables 9.29–9.32 contain the synchronous machine, excitation
system, governor-turbine, and transformer-transmission line data. Figures 9.22 and
9.23 depict the excitation system and the governor-turbine models.

Table 9.28 Synchronous
machine operating point

P(pu) Q(pu) V (pu)

0.9 0.4359 1.0

Table 9.29 Synchronous machine data

H(s) T ′
d0(s) T ′′

d0(s) T ′
q0(s) T ′′

q0(s) Xd (pu) Xq (pu) X ′
d (pu) X ′′

d (pu) X ′
q (pu) X ′′

q (pu) Ra(pu)

3.558 8.0 0.03 0.4 0.05 1.8 1.7 0.3 0.55 0.25 0.25 0.003

+

+

-

Fig. 9.22 Excitation system model

Table 9.33 provides the transformer, transmission line, and series capacitor data of
the single-machine connected to an infinite bus via a series-compensated transmission
line. It should be noted that the total reactance of the transmission line and the series
capacitor is equal to the line reactance of Table 9.32. Tables 9.34, 9.35 contain the
inertia and stiffness constants of the rotor masses. It is also worth noting that the
total inertia of the masses of Table 9.34 is identical to the rotor inertia provided in
Table 9.29. Figure 9.24 shows the rotor multi-mass model.
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Table 9.30 Excitation data

K A(pu) TA(s) TB (s) TC (s) TR(s)

200 0 0 0 0.01

+ - + -

+ + ++ + +

Rate 
limits

Position 
limits

Fig. 9.23 Governor-turbine model

Table 9.31 Governor-turbine data

K(pu) T1(s) T2(s) T3(s) T4(s) T5(s) T6(s) T7(s) K1(pu) K3(pu) K5(pu) K7(pu)

20 0.1 0 0.3 0.3 7 0.5 0 0.3 0.3 0.2 0.2

Table 9.32 Transformer and
transmission line data in per
unit on synchronous machine
base

Xt X�

0.15 0.1

HP IP LPA LPB G

Fig. 9.24 Rotor multi-mass model

Table 9.33 Transformer,
transmission line, and series
capacitor data in pu on
synchronous machine base

Xt X� XC

0.15 0.2 −0.1

Table 9.34 Inertia of rotor
masses in seconds on
machine base

Hhp Hip Hlpa Hlpb Hg

0.124 0.232 1.155 1.192 0.855

Table 9.35 Stiffness
constants of rotor masses in
pu

Khpip Kiplpa Klpalpb Klpbg

21.8 48.4 75.6 62.3
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9.5.6 Three-Area System

Tables 9.36–9.41 contain the generator, load, transmission line, transformer, series
capacitor, and shunt capacitor data of the three-area system.

Table 9.36 Generator data Generator MVA PG (MW) V (pu)

1 375 300 1.05
2 125 100 1.03
3 (swing bus) 750 658.43 1.05
4 250 200 1.03
5 562.5 450 1.05
6 187.5 150 1.03

Table 9.37 Load data Bus PL (MW) QL (Mvar)

9 800 160
11 500 100
16 200 40
19 300 60

Table 9.38 Line data
(230 kV, 100 MVA,
r = 0.0001 pu/km,
x = 0.001 pu/km,
b = 0.00175 pu/km)

From Bus To Bus Length (km)

7 8 10
8 9 25
9 10 110

10 11 110
11 12 25
12 13 10
14 15 10
15 16 25
16 17 110
18 19 110
16 20 55
20 19 55

Table 9.39 Transformer data
(x = 0.15 pu)

From Bus To Bus MVA

1 7 375
2 8 125
3 13 750
4 12 250
5 14 562.5
6 5 187.5
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Table 9.40 Series capacitor
(100 MVA)

From Bus To Bus x(pu)

17 18 −0.11

Table 9.41 Shunt capacitor Bus Mvar

10 200
20 100

9.5.7 Wind Generator Model

Tables 9.42 and 9.43 contain the induction machine and DC link and network con-
verter filter data. Table 9.44 details the wind generator operating point.

Table 9.42 Induction
machine data

H(s) Rs (pu) Xs (pu) Xm (pu) Rr (pu) Xr (pu)

3 0.01 0.15 5 0.01 0.15

Table 9.43 DC link and
network converter filter data

C(s) Ra(pu) La(pu)

0.05 0.06 0.6

Table 9.44 Wind generator
operating point

vsd (pu) vsq (pu) isd (pu) isq (pu) ird
ψs (pu) ird

ψs (pu)

1 0 −1 0 0 1
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Chapter 10
Interarea Mode Analysis for Large Power
Systems Using Synchrophasor Data

Luigi Vanfretti, Yuwa Chompoobutrgool and Joe H. Chow

Abstract Interarea oscillations are predominantly governed by the slower
electromechanical modes which, in turn, are determined by the coherent machine
rotor angles and speeds. The issue is that, although these rotor angles and speeds
provide the best visibility of such modes, currently they are not available from pha-
sor measurement units (PMU). As such, the aim of this chapter is to demonstrate
that interarea oscillations are observable in the network variables, such as voltages
and line currents, which are measured by PMU. By analyzing the electromechanical
modes in the network variables, we can trace how electromechanical oscillations are
spread through the power network following a disturbance. Applying eigenvalue and
sensitivity analysis, we provide an analytical framework to understand the nature
of these network oscillations through a relationship termed network modeshapes.
Using this relationship, a novel concept, “dominant interarea oscillation paths,” is
developed to identify the passageways where the interarea modes of concern travel
the most. We demonstrate the concept of the dominant path with an equivalent two-
area system. We propose an algorithm for identification of the dominant paths and
illustrate with a reduced model of a large-scale network. Finally, we end this chapter
with an important application of the concept: feedback input signal selection for
damping controller design.
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10.1 Introduction

Electromechanical modes are predominantly determined by the machine rotor angles
and speeds [1–5], and as a result, they provide the best visibility of such modes.
Electromechanical modes are also observable in the network variables, such as volt-
ages and line current phasors, which are measured by Phasor Measurement Units
(PMUs) [6] and observed through simulations [7]. In this study, by computing the
electromechanical modes in the network variables, we can trace how electromechan-
ical oscillations are spread through the power network following a disturbance. In
particular, interarea modes can travel throughout a large network. These network
variables have received less attention because they are algebraic variables which can
change abruptly. Recently, an analytical framework to study interarea oscillations
present in the bus voltage and frequency variables has been proposed [8]. This tech-
nique uses the linearized model of a power system with bus voltages and frequencies
as output variables.

In the first part of this chapter, we aim to generalize the results in [8] to analyze
power system oscillations which may be present in any of the network variables. To
motivate, we first analyze the oscillations observed during a major system disturbance
that took place on 2/26/2008 in the Florida Reliability Coordination Council (FRCC)
service area [9, 10]. The modal components from distributed PMU measurements
have a common feature: they do not peak at the same time instants. Therefore, there
exists a time difference (or delay) between the oscillations at different points of
the network. This time difference is effectively a phase shift between the network
oscillations.

With the goal of explaining the origin of the phase shifts in the network variables,
we use the multi-machine linearized power system electromechanical model [11] and
extend the mode shapes to the network variables. We show that with no damping and
constant impedance loads, all electromechanical oscillations are in phase. However,
when damping or control equipment such as voltage regulator models are included,
the eigenvector matrix will indicate phase shifts. The time delays related to these
phase shifts show a strong resemblance to those observed in PMU data.

To obtain the mode shapes, we perform a detailed sensitivity analysis of the
network variables and provide analytical expressions [12]. This analysis provides
a theoretical understanding of oscillations as directly measured by PMUs on high-
voltage transmission systems. Finally, network sensitivities and eigenvectors are used
to obtain the modal components in the network variables, thus providing a rationale
explaining the phase shifts observed in the modal components of the synchrophasor
data.

In the second part of this chapter, we aim to present two different applications of the
concept of dominant interarea oscillation paths: an algorithm for tracing the spread
of interarea modes (i.e., identification of dominant paths) and an application for feed-
back control input signals selection. We demonstrate the algorithm with a reduced
Nordic grid model while implementing a fundamental study on damping control
design using different input signals, PMU’s and non-PMU’s, with a conceptualized
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two-area system. The results are useful for determining not only proper feedback
input signals but also PMU siting.

The remainder of this chapter is organized as follows: In Sect. 10.2, we analyze the
network oscillations originating from the 2/26/2008 FRCC disturbance. In Sect. 10.3,
we determine the origin of the phase shifts in the electromechanical mode shape. In
Sect. 10.4, we perform sensitivity analysis of the network variables and provide
closed-form expressions of the network sensitivities. Afterward, in Sect. 10.5 we
map the network sensitivities onto the electromechanical mode shapes and discuss
the nature of the modal components in the network variables, illustrating this with a
four-generator, two-area system [12, 13]. Applications for interarea mode tracing and
feedback control input signal selection are demonstrated in Sect. 10.6. Conclusions
are given in Sect. 10.7.

10.2 Nature of Network Oscillations Observed from Phasor
Measurement Data

We study the power system interarea oscillations excited by the FRCC system
disturbance by analyzing archived phasor measurement data. The PMUs consid-
ered in this analysis are: Manitoba, near the city of Winnipeg, Canada; Maine near
Bangor; Florida near Jacksonville; West Tennessee (W. Tenn.) near Memphis; and
East Tennessee (E. Tenn.) near Knoxville, as shown in Fig. 10.1a. In Fig. 10.1b we
show the bus frequency measured during the disturbance by the PMUs, showing the
wide-area impact of the disturbance, the electromechanical swing that propagated
from Florida, to E. Tenn. and W. Tenn., and subsequently to Manitoba, and finally
to Maine.

We aim to analyze the oscillatory components and characteristics contained in
these measurements. We use the Eigensystem Realization Algorithm (ERA) [14] to
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Fig. 10.1 PMU locations and bus frequency traces obtained during the 2008 Florida disturbance.
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identify the individual modal components in the voltage magnitude, voltage angle,
and active power flow measurements available from each PMU [9]. The identi-
fied low-frequency interarea modes include frequencies of 0.22 and 0.49 Hz. In
Fig. 10.2 the voltage phasor measurements of the PMU at W. Tenn. are shown
along with their ERA approximation for the 0.22 and 0.49 Hz components of
the signals.

All identified components for the 0.22 Hz mode in the voltage angle are shown
in Fig. 10.3a, and those for the 0.49 Hz mode are shown in Fig. 10.3b. The starting
time t = 0 s corresponds to 18:10:04.333 h. From the voltage angles of the 0.22 Hz
mode, we note that Florida oscillates against Maine and Manitoba: that is, it is a
North versus South mode.
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The 0.49 Hz mode is more difficult to analyze from this limited data set. However,
it can be noted that the voltage angle at W. Tenn., E. Tenn., and Florida have the
largest oscillations while Manitoba and Maine have a less significant contribution.
More important, E. Tenn. and W. Tenn. are in anti-phase suggesting that the pivot
node of the oscillation is located somewhere between them.

The most important observation that could be made about the oscillations
discussed above is the following: for all of the network variables, the individual
modal components do not peak at the same instants. There is in fact a time shift
(or delay) between the modal components. This time delay can be viewed as a
phase shift between the modal components in the frequency domain. In the next
section, we will investigate this phase shift by analyzing the mode shapes of a
test network.

10.3 The Electromechanical Mode Shape

10.3.1 Multi-Machine Systems Electromechanical Model

In this section, we investigate the origin of electromechanical mode phase shifts
by performing eigenanalysis on different linearized models of multi-machine power
systems. We start with the electromechanical model [1]. For an N-machine power
system, the linearized electromechanical model in state-space form is given by

[
Δδ̇

Δω̇

]

︸ ︷︷ ︸
ẋ

=
[

0 ΩI(N×N)

M−1K M−1D

]

︸ ︷︷ ︸
Ā

[
Δδ

Δω

]

︸ ︷︷ ︸
x

(10.1)

where

Δδ = [Δδ1 · · · ΔδN ]T , (N × 1)

Δω = [Δω1 · · · ΔωN ]T , (N × 1)

M−1 = diag
(

1
2Hi

)
, (N × N)

D = diag (Di) , (N × N); K = [
Kij

]
, (N × N)

(10.2)

where i, j = 1, . . . ,N . We will refer to this model (10.1) as the electromechanical
model with damping, and to matrix Ā as the state matrix with damping. If the damping
terms are neglected (Di ≈ 0), the model becomes
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[
Δδ̇

Δω̇

]

︸ ︷︷ ︸
ẋ

=
[

0 ΩI(N×N)

Aω 0

]

︸ ︷︷ ︸
A

[
Δδ

Δω

]

︸ ︷︷ ︸
x

Aω = M−1K

(10.3)

We will refer to A as the state matrix without damping. Many properties of Ā
and A have been studied [11, 15]. In this investigation, some characteristics of the
eigenvectors of Ā and A are analyzed. These characteristics have strong effects on
the phase shift of network variables as discussed later.

10.3.2 Eigenvectors of the Electromechanical Models

Consider the two-area, four-machine power system in Fig. 10.4 [12, 13] modeled
using (10.3). In the resulting state matrix A, all elements corresponding to the machine
damping M−1D are zero. Eigenanalysis is performed on A resulting in the eigenvector
matrix

W(A) =

⎡
⎢⎢⎣

0.5 −0.5930 0.7871 −0.0547
0.5 −0.5997 −0.6167 −0.0512
0.5 −0.4539 0.0155 0.9972
0.5 0.2876 −0.0015 −0.0041

⎤
⎥⎥⎦ (10.4)

Note that only the components corresponding to the machine angles are shown.
All the components of W(A) are real. Column 2, the interarea mode mode shape,
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Fig. 10.4 Two-area four-machine power system and voltage magnitude interarea mode shape (no
damping)
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shows that G1, G2, and G3 are oscillating against G4: that is, Area 1 oscillates against
Area 2.

Column 3, the mode shape for Local Mode 1, indicates that G1 and G2 are mostly
oscillating against each other. Finally, Local Mode 2 (Column 4) is mostly confined
within Area 1 with G3 oscillating against G1 and G2. The most important character-
istic to note is that the oscillations are either completely in-phase or anti-phase.

Using (10.1), we analyze the effect that machine damping has on the eigenvectors.
The elements corresponding to the machine damping M−1D in Ā are given by

M−1D = diag
([−0.001 −0.3 −0.015 −0.2

])
(10.5)

and all other elements remain unchanged with respect to A.
Eigenanalysis is performed on Ā, yielding the eigenvector matrix

W(Ā) =

⎡
⎢⎢⎣

0.5∠0◦ 0.5882∠172.6196◦ 0.7878∠0◦ 0.0548∠ − 178.5539◦
0.5∠0◦ 0.6066∠ − 180◦ 0.6084∠165.8682◦ 0.0507∠172.6111◦
0.5∠0◦ 0.4548∠176.1869◦ 0.0951∠68.6262◦ 0.9972∠0◦
0.5∠0◦ 0.2814∠ − 6.3759◦ 0.0072∠ − 116.0791◦ 0.0041∠176.6467◦

⎤
⎥⎥⎦

(10.6)

Note that the eigenvector matrix is now complex. For convenience, it is shown
in polar form. The main oscillatory characteristics discussed for the mode shapes
from A are maintained for the mode shapes of Ā. However, the components of each
mode shape now present a phase shift due to the inclusion of machine damping.
This phase shift is readily observed in the phasor diagrams in Fig. 10.5a, b. A more
important observation is that in the time domain these phase shifts translate to time
delays, making the oscillations in each mode peak at different instants as shown
in Fig. 10.5c, d. It is interesting to note that the time-shifts shown in Fig. 10.5c, d
strongly resembles those of the measurement data presented in the previous section.

Why do the network measurements exhibit phase shifts similar to those in the
machine angle mode shapes of Ā? In the following section, we answer this question by
building upon the understanding gained from the mode shapes from Ā, and generalize
the results obtained in [8].

10.4 Sensitivity Analysis of Network Variables

Network sensitivities are used to provide linear relationships that predict changes
in the network variables given a small perturbation in the power system. Here, we
provide closed-form expressions for the network sensitivities [12]. This analysis
gives a rationale about the nature of the network oscillations directly measured by
PMU data.
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Fig. 10.5 Machine angle mode shapes with damping—phasor diagram (a, b), and time response
(c, d). a Interarea mode. b Local mode 1. c Interarea mode. d Local mode 1

10.4.1 Network Sensitivities

By computing the sensitivities of the entire network, it is possible to predict the
incremental behavior of the network variables when a small perturbation occurs
in the power system. This is of particular interest because PMUs are capable of
measuring synchronized network variable changes across wide-areas of the power
system that emerge from small perturbations. Thus, an understanding of network
sensitivities can provide insight for PMU data analysis of small signal oscillations
occurring in large-scale power networks.

To illustrate, consider the n-bus, N-machine power system shown in Fig. 10.6.
Buses i to (i + 4) are transmission and load buses remotely connected to gener-
ators j = 1, . . . ,N . Regardless of their distance from the generators, these buses
will be affected by changes in the internal machine angle of any generator. For
example, a change in the internal angle of Machine j, Δδj, will be reflected in the
voltage magnitude at Bus i, Vi, in a proportion dictated by the network sensitivity
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Ṽ(n − 1) ...

G1

E 1 , δ1

1

Ṽ1
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Fig. 10.6 Changes in the network variables with respect to changes in δj’s

(∂Vi/∂δj)
∣∣
(0).

1 The total change in the voltage magnitude at Bus i, ΔVi, will be the
sum of all the changes in the machine internal angles scaled by their corresponding
network sensitivity.

Similarly, if the current flow among Buses i to (i + 4) is as indicated in
Fig. 10.6, the change in the current flow will also be affected by the change in
machine internal angles. The complex line current flow changes will be proportion-
ally distributed satisfying Kirchhoff’s current law, i.e., ΔĨi(i+1) = ΔĨ(i+1)(i+2) +
ΔĨ(i+1)(i+3) +ΔĨ(i+1)(i+4). Thus, it becomes possible to trace how the current oscil-
lations are being divided among multiple lines/paths and propagated across the
entire network.

To obtain the change of the voltage magnitude (ΔVi) and angle (Δθi) at Bus i
of the network with respect to the change of machine internal angles, we obtain the
Taylor series expansion of Vi and θi about an equilibrium. Ignoring the higher order
terms, the change of voltage magnitude at Bus i due to the change in the machine
internal angles is given by

ΔVi =
(
∂Vi

∂δ1

)∣∣∣∣
0
Δδ1 +

(
∂Vi

∂δ2

)∣∣∣∣
0
Δδ2 + · · · +

(
∂Vi

∂δN

)∣∣∣∣
0
ΔδN (10.7)

where
(
∂Vi/∂δj

)∣∣
0 is the sensitivity of the i-th bus voltage magnitude to the j-th

machine angle at the equilibrium point. In matrix form, the voltage magnitude
changes at Buses i = 1, . . . , n due to the change in the machine internal angles
are given by

1 The subscript (0) denotes the evaluation of the sensitivity at a stable equilibrium point.
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⎡
⎢⎣
ΔV1
...

ΔVn

⎤
⎥⎦

︸ ︷︷ ︸
ΔV

=

⎡
⎢⎢⎢⎣

(
∂V1
∂δ1

)∣∣∣
(0)
. . .

(
∂V1
∂δN

)∣∣∣
(0)

...
. . .

...(
∂Vn
∂δ1

)∣∣∣
(0)
. . .

(
∂Vn
∂δN

)∣∣∣
(0)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
CVδ

⎡
⎢⎣
Δδ1
...

ΔδN

⎤
⎥⎦

︸ ︷︷ ︸
Δδ

(10.8)

where ΔV is the vector of bus voltage magnitude changes of size n × 1, and CVδ is
the bus voltage magnitude sensitivity matrix of size n × N .

Similarly, sensitivities may also be obtained for any other network variable. For
the bus voltage angle changes, we have

Δθ = CθδΔδ (10.9)

where Cθδ is the bus voltage angle sensitivity matrix of size n × N .
In a power system with a total number of � transmission lines connecting the

sending end buses, f , to the receiving end buses, t, the current magnitude and angle
changes with respect to the machine angle changes are given by

ΔIft = CIftδΔδ (10.10)

Δφft = CφftδΔδ (10.11)

whereΔIft andΔφft are the current magnitude and angle changes, respectively. The
matrix CIftδ is the current magnitude sensitivity matrix while Cφftδ is the current angle
sensitivity matrix, both of size �× N .

In general, the sensitivity matrices CVδ and Cθδ are obtained by numerical per-
turbation using simulation software such as PST [16]. Analytical expressions may
provide further insight about their properties and the parameters affecting them. In the
next section, we provide closed-form expressions of different network sensitivities.

10.4.2 Analytical Derivation of the Network Sensitivities

The first step to develop closed-form expressions of the different sensitivities is to
obtain a general expression of the network variables as a function of the machine
internal nodes. To this aim, it is possible to write nodal voltage equations that extend
to the machine internal nodes. To include E′

j , the voltage behind transient reactances
x′

dj, we add N buses to the n-bus power system network, thus extending the admittance
matrix to the machine internal nodes.

The internal machine buses are denoted by n + 1, . . . , n + j, . . . , n + N , which
are the buses behind the transient reactances, x′

dj. The resulting admittance matrix
differs from the admittance matrix used in load flow analysis in that the additional
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internal machine buses are included to account for the machine internal voltages, Ẽ′
j .

In addition, loads are modeled as constant admittances and included in the diagonal
elements of the admittances of the extended Ỹ matrix. As a result, injected currents in
all nodes other than the generator internal nodes are zero, i.e., Ĩi = 0, i = 1, . . . , n.

Denoting all the generator current injections as ĨN , generator voltages as Ẽ′
N , and

bus voltages as Ṽn, the node voltage equations are

[
0
ĨN

]
=

[
Ỹnn ỸnN

ỸT
nN ỸNN

] [
Ṽn

Ẽ′
N

]
(10.12)

From (10.12) an expression for the bus voltage phasors as a function of the machine
internal voltages is obtained as

Ṽn = −Ỹ−1
nn ỸnN Ẽ′

N (10.13)

where Ỹ−1
nn ỸnN is referred to as the bus voltage reconstruction matrix and has a size

of (n × N). The bus voltage reconstruction coefficient matrix is given by

κ̃ = −Ỹ−1
nn ỸnN = κ∠γ (10.14)

where κ and γ are the magnitude and angle of κ̃ . We can now obtain a generalized
expression relating the voltage phasor at Bus i with the machine internal voltages
using (10.14)

Ṽi = κ̃i1Ẽ′
1 + κ̃i2Ẽ′

2 + · · · + κ̃iN Ẽ′
N =

N∑
j=1

κ̃ijẼ
′
j (10.15)

Hence, the voltage at the i-th bus is a function of the machine internal angles δj. In
this expression, Ṽi depends on the value of the machine internal voltage magnitudes
at the equilibrium, E′

j , and the admittances in the voltage reconstruction coefficient
matrix κ̃ij, with j = 1, . . . ,N .

It is also possible to develop a generalized expression for the complex line cur-
rent flow through any line of the power network. Consider the π -equivalent of a
transmission line: the current from Bus f to Bus t is given by

Ĩft = (
ỹft + ỹf 0

)
Ṽf − ỹft Ṽt (10.16)

Letting Ỹft0 = ỹft + ỹf 0 and Ỹft = ỹft , and writing the voltage for Buses f and j in
terms of the internal machine voltages using (10.15), we obtain

Ĩft =
N∑

j=1

(
Ỹft0κ̃fj − Ỹft κ̃tj

)
Ẽ′

j =
N∑

j=1

Ψ̃FTjẼ
′
j (10.17)
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where Ψ̃FTj = ΨFTj∠ψFTj, and

ΨFTj =
∣∣∣Ỹft0κ̃fj − Ỹft κ̃tj

∣∣∣ , ψFTj = ∠
(

Ỹft0κ̃fj − Ỹft κ̃tj

)
(10.18)

The complex line current flow in Line f -t is a function of the machine angles δj.
The phasor Ĩft depends on the value of the machine internal voltage magnitudes at
the equilibrium, E′

j , the admittances in the voltage reconstruction coefficient matrix
κ̃ij, and the admittances and shunts between Buses f and t. Expressions (10.15)
and (10.17) are used to derive closed-form expressions of the network sensitivities.
A complete derivation can be found in [12].

10.4.2.1 Voltage Sensitivities

Given an N-machine power system, the bus voltage magnitude sensitivities for Bus
i with respect to the j-th machine angle are given by

∂Vi

∂δj
= 1

|Ṽi|
(α) , j = p; ∂Vi

∂δj
= 1

|Ṽi|
(−α) , j �= p (10.19)

where

|Ṽi| =
√(∑N

j=1
κ̃ijẼ′

j

)2

(10.20)

α = −
∑N−1

p=1

∑N

q=p+1
κipκiqE′

pE′
q sin

(
δp + γip − δq − γiq

)

+
∑N−1

p=1
p �=j

∑N
q=p+1

q �=j
κipκiqE′

pE′
q sin

(
δp + γip − δq − γiq

)
(10.21)

For the bus voltage angle

∂θi

∂δj
= 1

|Ṽi|2

⎡
⎢⎢⎣κ2

ijE
′2
j +

N∑
q=1
q �=j

κijκiqE′
jE

′
q cos

(
δj + γij − δq − γiq

)
⎤
⎥⎥⎦ (10.22)

is the closed-form formula to obtain the sensitivity of the i-th bus voltage angle to
the j-th machine angle.
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10.4.2.2 Current Sensitivities

The line current magnitude sensitivities in any line from Bus f to Bus t with respect
to the j-th machine angle are given by

∂Ift

∂δj
= 1

|Ĩft |
(β) , j = p ; ∂Ift

∂δj
= 1

|Ĩft |
(−β) , j �= p (10.23)

where

|Ĩft | =
√(∑N

j=1 Ψ̃FTjẼ′
j

)2
(10.24)

is the value of the line current magnitude at equilibrium, and β is given by (10.25)

β = −
∑N−1

p=1

∑N

q=p+1
ΨFTpΨFTqE′

pE′
q sin

(
δp + ψFTp − δq − ψFTq

)

+
∑N−1

p=1
p �=j

∑N
q=p+1

q �=j
ΨFTpΨFTqE′

pE′
q sin

(
δp + ψFTp − δq − ψFTq

)
(10.25)

For the line current angle

∂φft

∂δj
= 1

|Ĩft|2

⎡
⎢⎢⎣Ψ 2

FTjE
′2
j +

N∑
q=1
q �=j

ΨFTjΨFTqE′
jE

′
q cos

(
δj + ψFTj − δq − ψFTq

)
⎤
⎥⎥⎦

(10.26)
is the closed-form formula to obtain the sensitivity of φft with respect to the j-th
machine angle.

Finally, the sensitivities of the real and imaginary part of the line current (10.16)
are given by

∂�{Ĩft}
∂δj

= −
N∑

j=1

ΨFTjE
′
j sin

(
δj + ψFTj

)
(10.27)

∂�{Ĩft}
∂δj

=
N∑

j=1

ΨFTjE
′
j cos

(
δj + ψFTj

)
(10.28)

Similar expressions can be obtained for the current from Bus t to Bus f by substi-
tuting the subscripts ft and FT with tf and TF, and using the appropriate coefficients
and admittances.
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10.4.3 Properties of the Network Sensitivities

We finalize this discussion by providing some intrinsic properties of the sensitivities
discussed above. For the bus voltage sensitivities, the properties are2

N∑
j=1

(
∂Vi

∂δj

)
= 0,

N∑
j=1

(
∂θi

∂δj

)
= 1 (10.29)

and for the line currents the sensitivity properties are

N∑
j=1

(
∂Ift

∂δj

)
= 0,

N∑
j=1

(
∂φft

∂δj

)
= 1 (10.30)

Both voltage and current sensitivities have the same property: the sum of sensitivities
of the magnitude of the phasor w.r.t. all the machine angles is zero, while the sum of
the sensitivities of the angle of the phasor w.r.t. machine angles is equal to unity.

These sensitivity properties can be explained by using the phasor diagram in
Fig. 10.7. The voltage at the i-th bus of a two-machine system, Ṽi = Viε

jθi , is per-
turbed by introducing small changes to the machine angles, Δδ1 and Δδ2, resulting
in the perturbed voltage Ṽ∗

i = V∗
i ε

jθ∗
i . When the perturbations introduced to the

machine angles are identical, the resulting perturbation to the bus angle will be equal
to the value used to perturb the machines. The perturbation of each machine is appro-
priately scaled by the corresponding sensitivity. Hence, the sum of all sensitivities
is one. Note that if only one of the machines is perturbed, the bus angle will only be
changed in the proportion dictated by the sensitivity and the perturbation value.

Fig. 10.7 Illustration of the sensitivity properties

2 A formal proof for each property can be found in [12].



10 Interarea Mode Analysis for Large Power Systems Using Synchrophasor Data 273

In addition, observe that the magnitude before the perturbation is the same as the
magnitude after the perturbation, i.e., Vi = V∗

i . Note from the phasor diagram that
Δδ1 scaled by ∂Vi/∂δ1 will oppose the change in the voltage magnitude from Δδ2
scaled by ∂Vi/∂δ2. Observe that the value of the bus voltage sensitivities for this case
is identical. Because both sensitivities are equal with opposing signs, the change in
the bus voltage magnitude, ΔV = 0.

10.5 Network Modeshapes: Sensitivity Mapping
onto the Electromechanical Mode Shapes

In the previous section, we investigated the origin of network sensitivities, and how
they can be used to compute the total change in the network variables resulting
from small perturbations in the machine internal angles. These changes include
all (N − 1) modal components of the power system. Measurements from PMUs
are able to capture these changes in the network variables, and separation of their
modal components can be performed with various techniques such as ERA or Prony
analysis. In this section, we investigate how the eigenvector matrices discussed in
Sect. 10.3, can be used to separate the components of each oscillatory mode contained
in the total change of the network variables. This result was previously exploited in
[8], where we showed that it is possible to compute the bus voltage magnitude and
frequency mode shapes. Here we extend this concept to include any type of network
variable, and to understand how by mapping the network sensitivities to a particular
mode shape from Ā, it is possible to replicate the phase shift observed in the modal
components of PMU measurements.

By mapping the network sensitivities onto the right eigenvector, we obtain a
network modeshape, which indicates the observability of a particular mode in a
specific network variable. The mode shapes as observed in the bus voltage magnitudes
and angles for all the network buses are given by

SV = CVδW (10.31)

Sθ = CθδW (10.32)

where W is of size N × N .
Similarly, for the line current magnitude and angle we have

SIft = CIftδW (10.33)

Sφft = CφftδW (10.34)

where the subscript ft indicates that these are the modal components from Bus f to
Bus t. Modal components for any other network variable can be obtained in similar
fashion.
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When the eigenvectors are computed from Ā, the phase shifts due to damping
will be mapped onto the bus voltages in a proportion dictated by the sensitivities,
reproducing the phase shifts observed in the network variables measured by PMUs.

To illustrate, consider the two-area four-generator system discussed in Fig. 10.4,
Sect. 10.3.2. The bus voltage magnitude sensitivities of Bus 7 w.r.t. all machine
angles are given by

CVδ(7,k) = [−0.0463 − 0.0270 0.0146 0.0587] (10.35)

Multiplying by the eigenvector column corresponding to the interarea mode, the
interarea mode shape viewed from the bus voltage magnitude at Bus 7 is

SV(7,2) = ∂V7
∂δ1

W(1,2) + ∂V7
∂δ2

W(2,2) + ∂V7
∂δ3

W(3,2) + ∂V7
∂δ4

W(4,2)

SV(7,2) = −0.0463 W(1,2) − 0.0270 W(2,2) + 0.0146 W(3,2) + 0.0587 W(4,2)

(10.36)

Note that each sensitivity scales its corresponding element of interarea mode shape.
The eigenvector matrix computed from (10.3) has the interarea mode shape given

by Column 2 of (10.4)

W(j,2)(A) = [−0.5930 − 0.5997 − 0.4539 0.2876]T (10.37)

Using this mode shape, it is possible to compute the interarea component of the bus
voltage magnitude at Bus 7 (10.36)

SV(7,2) (A) = (−0.0463)(−0.5930)+ (−0.0270)(−0.5997)

+ (0.0146)(−0.4539)+ (0.0587)(0.2876) = 0.05391 (10.38)

Similarly, if the eigenvector matrix is computed from model (10.1), the interarea
mode shape is given by Column 2 of (10.6), and the interarea component of the bus
voltage magnitude becomes

SV(7,2) (Ā) = 0.0534∠ − 5.25◦ (10.39)

Comparing (10.39) to (10.5) helps in illustrating the origin of the phase shifts
observed from phasor measurement data: that is, the presence of damping.

10.5.1 Illustration with the Two-Area Four-Machine System

We extend our discussion to consider the different network variables across the
entire power system. The bus voltage magnitude mode shapes (the mapping of the
sensitivities onto the electromechanical mode shapes) for all network buses are shown
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in the one-line diagrams in Figs. 10.4 and 10.8 for the interarea mode, for both the
case without damping and with damping, respectively, and the phasor diagrams
in Fig. 10.9. These figures clearly show that the damping in Ā will give rise to
the phase shifts across all bus voltage magnitudes in the power system. Consider
the phase shift introduced to the voltage magnitude at Bus 1: when no damping
is included SV(1,2) (A) = 0.0544∠0◦ and, with the effect of damping SV(1,2) (Ā) =
0.0547∠ − 7.14◦. Thus the phase shift −7.14◦ is a result of damping. Similarly for
Bus 4 SV(4,2) (A) = 0.0085∠180◦, while SV(4,2) (Ā) = 0.0085∠176.14◦. The 3.86◦ of
difference between these two last quantities are the result of including damping. A
more interesting case is Bus 8, which lies at the right end of the tie-line. Note that
SV(8,2) (A) = 0.0057∠0◦, while SV(4,2) (Ā) = 0.0056∠ − 6.05◦, the −6.05◦ being a
result of the inclusion of damping.

It is worthwhile to note that this holds for any mode. For example, consider the
bus voltage magnitude mode shape for Local Mode 1 shown in Fig. 10.10. In this
case, there is a more prominent phase shift between Buses 1 and 12 than in Fig. 10.9
because Local Mode 1 mostly involves G1 and G2. This is also reflected in the voltage
mode shapes. It is also important to highlight that the observations above also hold
for any network variable. Consider the bus voltage angle mode shapes in Fig. 10.11.
In the case without damping in Fig. 10.11a, it is observed that the bus voltage angles
are either completely in phase or anti-phase. In contrast, Fig. 10.11b shows that the
result of including damping is to have phase shifts in all the mode shapes. Another
important feature of this mode shape is that when comparing Figs. 10.11b to 10.5b,
the machine angles outline a boundary within which the bus voltage angles exist. In
other words, a bus voltage angle close to a generator will have a smaller relative
phase angle difference with the generator than other generators farther apart from it.

The relative time delay between the voltage magnitudes at Buses p and q can be
calculated from the oscillatory frequency of the k-th mode and the phase shift at each

Area  1 Area  2
0.0541∠ − 3.44°

0.0541∠ − 3.51°

0.0547∠ − 6.97°

0.0540∠ − 3.51°

0.0547∠ − 7.14° 0.0056∠ − 6.05°

15.65∠ − 176.36°

0.0534∠ − 5.25°

0.0547∠ − 6.97° 0.0533∠ − 5.25°

0.0056∠ − 6.05°

0.0061∠176.58° 0.0085°
∠176.14°
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∠ − 179.20°G3G1
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Fig. 10.8 Two-area four-machine power system and voltage magnitude interarea mode shape
(damping)
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Fig. 10.9 Vi interarea mode shape with and without damping. a Without damping. b With damping
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Fig. 10.11 θi Local 1 mode shapes with and without damping. a Without damping. b With damping

bus by computing

τ(p−q,k) = θ(p,k) − θ(q,k)

2π
× 1

fk
(10.40)

where fk is the frequency of the k-th mode of the system, and

θ(p,k) = ∠
(
SV(p,k)

)
, θ(q,k) = ∠

(
SV(q,k)

)
(10.41)

are the k-th mode phase shifts of the voltage magnitude oscillation in rad. at Buses
p and q, respectively, and j = 1, . . . ,N .

As an example, consider the oscillations from Local Mode 1 at Bus 12, SV(12,3) ,
and Bus 1, SV(1,3) , as shown in Fig. 10.10. The relative time delay is given by

τ(12−1,3) = (5.6295)− (3.1291)

2π × 0.21516
= 1.8495 s

This time delay is shown in Fig. 10.12, where we compare oscillations for Local
Mode 1 in the bus voltage magnitude at Bus 1 and Bus 12.

Equation (10.40) can be used to compute the time delays for any network mode
shape by selecting the sensitivity and mode of interest. Conversely, the relative phase
shift between the buses can also be computed by knowledge of the time response of
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the network (or ERA results from processing PMU data) from

θ(p,k) − θ(q,k) = 2π fkτ(p−q,k) (10.42)

where fk is the frequency of the k-th mode of the system. Note that this frequency is
different for each system mode, i.e., the interarea mode frequency is different from
the Local Mode 1 frequency. Using the expression above, and selecting a reference
voltage magnitude, we obtain the mode shapes from the time response, or more
important, from PMU data.

Also of interest is the mapping for the line complex current flow mode shape,
shown in Fig. 10.13 for W(Ā). Note that the phase shifts are also mapped onto
these network variables. The phase lags shown in the phasor diagram in Fig. 10.13a
will translate to the different time delays that can be observed in Fig. 10.13b. More
important, it is interesting to observe how the interarea mode distributes in different
lines as shown in Fig. 10.13c. Note that it is possible to compute the current balance
for the real and imaginary part, and that we can also determine how the interarea
mode is distributed in each line. This new capability to “track” the oscillations has
important implications as discussed next.

10.6 Applications for Interarea Mode Tracing: Identification
of Dominant Interarea Oscillation Paths

One goal of a Wide Area Measurement System (WAMS) is to have tracking tools for
oscillatory dynamics in an interconnected power grid, particularly those which are
critical to operational reliability, i.e., interarea oscillations [17]. Insufficient damping
of low-frequency interarea oscillations arises as weak interconnected power systems
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Fig. 10.13 Interarea mode Ĩft mode shapes (model with damping, imaginary quantities are shown
inside parenthesis). a Phasor diagram. b Time response. c One-line diagram

are stressed to meet up with increasing demand [18]. This inadequacy may lead to
oscillatory instability, resulting in system collapse.

“Interaction paths,” defined in [17] as the group of transmission lines, buses,
and controllers which the generators in a system use for exchanging energy during
swings, are one important source of dynamic information necessary for WAMS. If the
interaction paths of interarea swings can be identified, monitored, and tracked, proper
preventive measures or control actions can be carried out to enhance the system’s
transfer capacity while maintaining high security.

A characteristic of power oscillations is that, for every mode of oscillation, there
exists a series of connecting corridors in which the highest content of the mode
would propagate. For a particular case of interarea modes, the path is termed “dom-
inant interarea oscillation path” [19], a concept based on the notion of interaction
paths. These dominant interarea oscillation paths are deterministic [20]. Furthermore,



280 L. Vanfretti et al.

1 234 5

1
G

2
G

Fig. 10.14 Simplified dominant interarea path represented with a two-area, two-machine system

signals from the dominant path are the most observable and have the highest con-
tent of interarea modes. Results from the study suggest that by using well-selected
dominant path signals for wide-area control, adequate damping performance can be
achieved.

10.6.1 Dominant Interarea Oscillation Paths

Dominant interarea oscillation paths are defined as the passageway containing the
highest content of the interarea oscillations. Consider a simplified dominant inter-
area path, represented by the two-area system shown in Fig. 10.14, where G1 and G2
represent coherent groups of machines involved in the interarea swing while trans-
formers and line impedances represent elements of the dominant path connecting the
two areas.

The characteristics of dominant interarea paths3 can be demonstrated using the
computed bus voltage magnitude (SV ) and angle modeshapes (Sθ ) as illustrated in
Fig. 10.15a, b, respectively. Fig. 10.15c, d illustrate the corresponding magnitude
(|Sθ |) and phase (∠Sθ ) of the voltage angle modeshapes, Sθ . Two transfer levels,
Case A and Case B, are compared in this figure. The labels “1,100” and “900” MW
represent the amount of power transfer over the dominant path. The x-axis represents
the bus number in the dominant path; the distance between buses is proportional to
the line impedance magnitude. According to Fig. 10.15, important features of the
dominant path are summarized below.

• The smallest |Sθ | element(s) (Fig. 10.15c) or the largest SV (Fig. 10.15a) indicates
the center of the path. This center can be considered as the “interarea mode center
of inertia” or the “interarea pivot” for each of the system’s interarea modes.

• The pivot divides the path into two groups where their respective phases are
opposing each other (Fig. 10.15d).

• The difference between the Sθ elements of two edges of the path (Fig. 10.15b)
are the largest among any other pair within the same path. In other words, the
oscillations are the most positive at one end while being the most negative at the
other end. Hence, they can be considered as the “tails” for each interarea mode.

3 These are similar to the characteristics of voltage change and angle change of the first swing mode
in Fig. 13 [21] where the mode is described by a single wave equation with one spatial dimension.



10 Interarea Mode Analysis for Large Power Systems Using Synchrophasor Data 281

−1
−0.5

0

0.5

1(b)

Sθ

0
0.2
0.4
0.6
0.8

1(a)

|SV |

0
0.2
0.4
0.6
0.8

1(c)

|Sθ |

1 4 3 5 2

1 4 3 5 2

1 4 3 5 2

1 4 3 5 2

−100
0

100
(d)

Sθ [deg.] Case A : 1100 MW

Case B : 900 MW

Fig. 10.15 Voltage magnitude and angle modeshapes of the dominant path in the two-area sys-
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modeshape, d Phase of voltage angle modeshape

• The SV elements of the edges (Fig. 10.15a) are the smallest or one of the smallest
within the path.

• The interarea contents of the voltage magnitude modeshapes are more observable
in a highly stressed system.

10.6.2 Dominant Interarea Oscillation Paths Identification
Algorithm

As illustrated in Sect. 10.5.1, the current magnitude modeshapes (SIft ) indicate how
much contents of the interarea modes are distributed among the transfer corridors.
Thus, corridors having the highest content of current magnitude modeshapes signify
the paths where the interarea oscillations will travel the most; hence the term “domi-
nant interarea oscillation paths.” On the other hand, the magnitude of voltage magni-
tude and angle modeshapes (SV and Sθ ) indicates the modal observability of a signal.
The larger in magnitude the modeshape is, the more observable the signal measured
(from the dominant path) becomes. This will be helpful when selecting feedback
signals having high interarea modal content.



282 L. Vanfretti et al.

An algorithm for identification of dominant interarea oscillation paths is proposed
here. Note that this algorithm takes synchrophasor measurements into consideration
by exploiting ambient data.4

Ambient measurements are synthesized by simulating the time response of the
power system with random noise and small step inputs at all loads [23]. The algorithm
for handling ambient measurements is described next.

Dominant Path Identification Algorithm using Ambient PMU data

Step 1. Pre-process a parcel of ambient measurements, ΔIft,ΔV , and Δθ by
filtering all the measurements such that only the interarea modal content
of interest is preserved in the signals.

Step 2. Compute the power spectral densities (PSD) of ΔIft .
Step 3. Select an appropriate window. Find the peak PSD for each signal within

the selected window, and sort the contents in descending order.
Step 4. The dominant interarea oscillation path is determined from the signals

having the largest PSD contents. Compare to the schematic diagram of
the system of study and identify such paths.

Step 5. Using one of the edges of the path in Step 4 as a reference, the cross
power spectral densities (CPSD) of the preprocessed ΔV and Δθ of
the dominant path are computed.

Step 6. Select appropriate windows for each type of signal. Find the corre-
sponding largest CPSD magnitude for each measurement within the
selected window.

Step 7. Verify the characteristics of the dominant path using its correspond-
ing peak CPSD of voltage magnitude and angle. The results should
resemble the dominant interarea oscillation path’s features shown in
Fig. 10.15.

10.6.3 Algorithm Illustration with the KTH-NORDIC32 System

The system under study, namely KTH-NORDIC32 [24] (illustrated in Fig. 10.16),
is a simplified model of the Swedish power system and its neighbors [25]. It has
20 generators and 52 transmission lines. Small signal stability analysis [25] reveals
that the system has two lightly damped low-frequency interarea oscillations: 0.50
and 0.74 Hz. Note that to develop a fundamental understanding, we consider a case
where controls such as exciters and turbine governors are disabled.5 Two scenarios,
namely Case 1 and Case 2, are used to illustrate the algorithm throughout this study.

4 For algorithms dealing with other set of information such as known system model or transient
measurements, refer to [22].
5 The model with controls is studied in [24].
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Fig. 10.16 KTH-NORDIC32 system

Power flow from the northern to the southern regions for each respective scenario are
3,134, and 2,933 MW. Note that the step-by-step demonstration will be described
only for Case 1.

Step 1. ΔIft measurements before and after pre-processing are illustrated in
Fig. 10.17.

Step 2. The computed PSD of ΔIft are illustrated in Fig. 10.18. The dashed (red)
lines indicate the cutoff frequencies used in the preprocessing.

Step 3. The window of the selected data corresponds to the dashed lines in Fig. 10.18.
The peak PSD for each ΔIft are sorted in descending order; the ten largest
values and their corresponding sending and receiving buses are summarized
in Table 10.1.
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Fig. 10.17 ΔIft signals: before and after pre-processing. a Before pre-processing. b After
pre-processing, (from 0 to 20 s)
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Fig. 10.18 PSD of ΔIft , mode 1

Step 4. The dominant interarea oscillation path for Mode 1 is identified to be
52-51-35-37-38-40-48-49-506 as marked by the (yellow) stars in Fig. 10.16.

Step 5. ΔV52 andΔθ52 are used as references for the CPSD computation of voltage
magnitude and voltage angle measurements of the dominant path, respec-
tively. The corresponding computed CPSD are illustrated in Fig. 10.19.

Step 6. After selecting the appropriate windows, the largest (absolute) CPSD values
for each measurement within the dominant path are used to reconstruct the

6 Observe from Table 10.1 that the path 42-43-44-49-50 has considerably high content of Mode
1; however, it has lesser content than that of the specified dominant path. This second path is thus
termed “secondary dominant interarea oscillation path.” For details regarding multiple interaction
paths, refer to [26].
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Table 10.1 Ten largest PSD of ΔIft

Sending bus, f Receiving bus t PSD [dB]

18 50 74.69
40 48 74.14
48 49 71.35
44 49 70.81
49 50 69.77
49 50 69.77
42 43 67.68
43 44 66.60
43 44 66.60
38 40 66.46
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Fig. 10.19 Computed CSD of the dominant path. a Voltage magnitude. b Voltage angle

path. Using the characteristics of the dominant path from Fig. 10.15c and
d, the bus having the smallest magnitude of voltage angle deviations, |Δθ |,
is the pivot of the path and thus used as the reference. The reconstructed
dominant path of Mode 1 is as shown in Fig. 10.20a with blue dots for
Case 1.

Step 7. The characteristics of the obtained path is verified by comparing to that of
Fig. 10.15. The main features of the dominant paths remain preserved, and,
thus, the path is justified.

Comparing the two case studies in Fig. 10.20a, Case 1 has an overall larger modal
content inΔV ’s whileΔθ ’s are about the same in both cases. The differences between
the two edges of both cases are comparable.

Repeating Step 1–7 for Mode 2, the dominant interarea oscillation path for Mode
2 is identified to be 50-49-44-47. Voltage magnitude and angle deviations of the path
are illustrated in Fig. 10.20b. Similar to the result from Mode 1, Case 1 has larger
modal content in ΔV ’s.
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Fig. 10.20 Dominant interarea oscillation paths for both interarea modes, ambient measurements.
a Mode 1. b Mode 2

As a final remark, note that Fig. 10.19b shows clear indications of the coherency
groups: buses with positive CPSD peaks correspond to the group on the left and
those with negative peaks to the group on the right of the dominant path. This is the
characteristic shown in Fig. 10.15b for the two-area system. A similar analogy is
valid for the CPSDs in Figs. 10.19a and 10.15a. In Fig. 10.19a, the CPSD peaks are
all positive and with magnitudes according to the location of the buses within the
dominant path where the signal is taken (see Fig. 10.15a). Observe that according
to the voltage magnitude mode shape in Fig. 10.15a, those buses close to the “tails”
of the dominant path have the lowest voltage oscillation (lowest CPSD magnitude)
while those within the middle of the dominant path experience the highest voltage
oscillations (highest CPSD magnitude). The fact that all CPSDs from the dominant
path are positive corroborates that all voltage magnitude oscillations in a dominant
path are either in phase or showing only a small phase shift between each other. Note
that the shift in the CPSDs peak corresponds also to the phase shift illustrated in
Sect. 10.5.1.

10.6.4 Damping Controller Design: Feedback Signals Selection

One major challenge in damping control design is the selection of feedback input
signals. Conventionally, power system stabilizers (PSSs) use local measurements
for input signals, such as active power in the outgoing transmission line, generator
speed, and frequency at the terminal bus. With the availability of signals from PMUs,
choices of inputs are not only limited to those local but now include wide-area
signals. Several studies suggest that wide-area signals are preferable to local signals
[27, 28]; therefore, the exploitation of PMU signals is desirable. However, the main
issue is which signal, among all the available signals, would give satisfactory damping
performance.
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Results from previous studies on the concept of dominant interarea oscillation
paths [19, 26] have suggested that effective damping control can be achieved by
using signals from the dominant paths. The aim of this section is thus to carry
out a fundamental study on feedback control using PMU signals from a dominant
path. As such, the two-area system introduced in Sect. 10.6.1 is used to illustrate
PSS control design for damping enhancement. Two types of signals, namely voltage
angle and generator rotor speed, are used as inputs for a PSS controller. The first type
represents the signals available from PMU while the latter represents one of the most
commonly used signals in PSS damping design.7 Their corresponding performances
are analyzed and compared. The results of this study offer promising and feasible
choices of signals to be used in feedback control. Although only PSS is considered,
the concepts are applicable for any other damping controllers.

In this study, the impact of different feedback input signals on the damping of the
two-area test system will be evaluated. Each signal requires different controller (PSS)
parameters, as well as different structures. The purpose of the design is to achieve a
specific damping performance. As such, for each input signal, PSS parameters will
be tuned such that the system achieves ζ = 15 % damping ratio.

Voltage angle and generator speeds will be used as feedback input signals. Con-
troller performance is evaluated considering the following factors: (1) effective gain
(the cumulative gain of the PSSs which can be computed from αnKd), (2) overshoot
(Mp), and (3) rise time (tr).

The monitored signal is the bus voltage terminal at G1, V1, which will be used to
evaluate the control performance.

10.6.4.1 Controller Structure

The objective of the design is to improve damping of the interarea mode by installing
a PSS at G1 modulating the AVR error signal. Following the design in [29], the
structure of the PSS includes lead/lag compensators in the form

PSS = Kd

[
α

s + z

s + p

]n [
Tws

1 + Tws

]m

(10.43)

where n and m are the number of compensator stages and Tw is the washout filter
time constant having the value of 10 s. The exponent m = 1 when the input signal
is a generator rotor speed while m = 2 when the input signal is a voltage angle
difference.

Note that generator speed, as well as angle difference, has high components of
torsional modes [4]. Therefore, a torsional filter is added to the PSS structure when
generator speed and bus voltage angle differences are used as feedback input signals.
The impact of the torsional filter on PSS design is represented by a lower-order
transfer function

7 Note that the generator speed is not currently available from PMUs.
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Fig. 10.21 Root-locus plots of the system with Δθ14 as feedback input signal. a No phase
compensation. b With phase-lead compensation

Gtor(s) = 1

0.0027s2 + 0.0762s + 1
. (10.44)

The controller parameters α, poles (p), and zeros (z) can be computed from the
following equations

φm = 180◦ − θdep

n
(10.45)

α = 1 + sin(φm)

1 − sin(φm)
(10.46)

p = √
αωc, z = p/α (10.47)

where θdep, φm, and ωc represent the angle of departure of the interarea mode, the
phase compensation required, and the frequency of the mode in rad/s, respectively.

10.6.5 Controller Design Illustration

In this illustration, the signal Δθ14 = θ1 − θ4, the voltage angle difference between
Bus 1 and Bus 4 (see Fig. 10.14), is used as the feedback input signal. A root-
locus plot of the open-loop system (no phase compensation) including two washout
filters is shown in Fig. 10.21a. The angle of departure (θdep) of the interarea mode
is 16.167◦. Using this angle, the PSS parameters are computed using Eqs. (10.43–
10.47). Applying the designed controller to the system, the root-locus plot is shown
in Fig. 10.21b, which shows a stabilizing direction of the interarea mode; i.e., the
damping of interarea mode is improved. The gain Kd is obtained when moving along
the branch of the root loci of the interarea mode until the desired damping ratio
(15 %) is reached. Finally, for the signal used, the obtained PSS has the form
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Fig. 10.22 Damping control performance using Δθ14 as feedback input signal

Table 10.2 System performance using voltage angle differences as feedback input signals.

Signals Effective gain Mp (%) tr (s)

Δθ14 130.51 18.02 0.60
Δθ43 55.87 16.58 0.59
Δθ45 34.85 15.61 0.58
Δθ42 33.47 15.14 0.57

Note The effective gain is defined as the cumulative gain of the PSSs which can be computed from
αnKd in (10.43)

PSS = 0.00325

[
200.284

s + 0.1659

s + 33.2357

]2 [
10s

1 + 10s

]2

. (10.48)

The responses of the terminal voltage at Bus 1 with and without PSS are compared
in Fig. 10.22.

10.6.5.1 Voltage Angle Differences as Input Signals

Using the same design process, the system performance using voltage angle differ-
ences as feedback input signals is summarized in Table 10.2. All angle differences
in Table 10.2 use a 2-stage lead compensator. Note that θ4 is used as a reference, and
the order of representation corresponds to the location of the buses in Fig. 10.14.

According to the results in Table 10.2, it can be concluded that the overall
performance corresponds to the voltage angle modeshape (Sθ ) relationship. That
is, the larger the angle modeshape (difference), the lesser the gain is required, the
smaller the overshoot is, and the faster the rise time becomes. In other words, the sig-
nal Δθ42, having the largest Sθ difference, requires the smallest gain and has the



290 L. Vanfretti et al.

0 5 10 15 20
0.08

0.09

0.1

0.11

0.12

Time (sec.)

ij

No PSS 14 43 45 42

Δ

Δ

θ

Θ ΔΘ ΔΘ ΔΘ

Fig. 10.23 Damping control performance using Δθij as feedback input signals

Table 10.3 System performance using signal combinations of voltage angle differences as feedback
input signals

Signals Effective gain Mp (%) tr (s)

Δθ12 26.94 15.64 0.58
Δθavg,1 15.19 15.62 0.58
Δθavg,2 22.44 15.60 0.58

smallest overshoot and rise time. This is because the signals have modal contents
proportional to the voltage angle difference dictated by the voltage angle modeshape
(see Fig. 10.15b).

Table 10.2’s corresponding responses of the terminal voltage at Bus 1 are
illustrated in Fig. 10.23. Note that, in order to have the same sign, Δθ14 is used
instead of Δθ41.

The possible signal combinations using angle differences between the two areas
are shown in Table 10.3 where the average angle differences Δθavg,1 represents
(θ1 + θ4)− (θ2 + θ5), andΔθavg,2 represents (θa + θ4)− (θb + θ5). Note that Bus a
is a bus in the middle between Bus 4 and Bus 3, whereas Bus b is a bus in the middle
between Bus 3 and Bus 5. The aim of using the average angle differences in the two
areas is to increase the interarea mode content of the resulting feedback signal, in
larger power networks it can be used to reduce the excitation of the local oscillations
[30]. All two-area angle difference combinations use a 2-stage lead compensator.

According to the results in Table 10.3, by combining signals from both areas,
the effective gains are significantly reduced compared to the results in Table 10.2.
In addition, overshoots are slightly reduced, while rise times are similar. Overall,
Δθavg,1 requires the least amount of gain with comparable overshoot and rise time
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performance. However, in practice, θ1 and θ2 are generator buses and thus not usually
available from PMUs (see [31]). Hence, for any practical implementation, the most
feasible combination is Δθavg,2, for which the desired damping performance can be
achieved while requiring a smaller gain than those from individual signals.

The time responses of the terminal voltage at Bus 1 are illustrated in Fig. 10.24.

10.6.5.2 Rotor Speeds as Input Signals

For comparison purposes, we consider speed signals from generators, although only
available locally and not commonly available from PMUs [31]. The system perfor-
mance using generator speeds as feedback input signals is summarized in Table 10.4.
All signals in Table 10.4 use a 2-stage lead compensator except forω2 which requires
a 3-stage lead compensator.8

According to the results in Table 10.4, overall, using speeds as feedback input
signals not only results in larger overshoots and longer rise times but also requires
considerably larger gain than using bus voltage angle difference signals, particularly
using ω2.9

8 ω2 is in anti-phase to any signals starting from ω1 to the interarea pivot (middle point in Fig.
10.15b). Thus, two compensators are required for a rotation of 180◦ and an additional stage for the
needed phase compensation.
9 Although not shown here, the angle of departure of ω2 is negative while the others are positive.
This is the reason why not only an additional stage compensator is required but also a very high
gain.
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Table 10.4 System performance using generator speed as feedback input signals.

Signals Effective gain Mp (%) tr (s)

ω1 582.27 35.50 0.72
ω2 136,713 20.33 0.49
ω1 − ω2 297.32 35.50 0.72
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Fig. 10.25 Damping control performance using ωi as feedback input signal

The time responses of the terminal voltage at Bus 1 are illustrated in Fig. 10.25.
Note that because responses ofω1 andω1−ω2 are exactly the same, only the response
using ω1 is presented in the figure.

10.6.5.3 Input Signal Comparison

A comparison of Tables 10.2, 10.3, and 10.4 reveals that using bus voltage angle
differences as feedback input signals for damping control is as effective (or even bet-
ter) as using generator speeds, for interarea mode damping. From Tables 10.2, 10.3
and 10.4, it can be observed that usingΔθij as input signals, similar damping perfor-
mance can be obtained while having much lower overshoots and, more important,
using much lower effective gain.10 ComparingΔθ12 to ω1 −ω2, the angle difference
outperforms the speed signals in effective gain required, overshoot, and rise time.11

Results from Sects. 10.6.5.1 and 10.6.5.2 indicate that angle difference is the
most effective feedback input signal with superior overall performance compared to

10 The effective gain for the generator speed signals is naturally higher comparing to the angles due
to the scaling introduced by the system frequency, 2π fb = 314.16.
11 However, it is noted that none of the signals are actually available from PMUs: Δθ12 due to
placement practice [31] and ω1 − ω2 due to PMU characteristics [30].
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generator speed. Future work will investigate the use of relative generator speeds
and bus frequencies for use as feedback input signals.

The overall performance of each signal of the voltage angle differences is in
accordance with their corresponding network modeshapes (see Fig. 10.15). That is,
the performance of signals having high network modeshape is superior to that of
those with lower network modeshape.

Different loading effects are not yet considered in this study. This is relevant
because, for different loading scenarios, the open-loop observability of the dominant
path signals shifts depending on the loading level. Further work is necessary to
determine if the closed-loop observability on different loading levels maintains the
same properties as those revealed in this study.

The selection of the “right” input signals from PMUs is critical for effective
damping control. However, in the case of signal loss (due to communication failures),
the controller must be adjusted even if new signals are used to replace a lost signal so
that the highest damping can be obtained. These adjustments must occur adaptively
and must be initiated by an adequate switch-over logic that guarantees the continued
operation of the damping controller. Depending on the types of signals as well as the
signal combination, the controller structure must be adapted accordingly to achieve
optimal damping. As such, “adaptive” controllers, which can automatically adjust
their parameters for each input signal feeding in, are promising and desirable.

10.7 Conclusions

In this chapter, the fundamental results presented in the analysis of network
modeshapes provide a novel understanding of power system oscillations as viewed
from network variables. Furthermore, they have several applications for interarea
mode tracing and monitoring, PMU placement, and damping of power system oscil-
lations. An algorithm for identifying dominant paths using ambient PMU data was
presented, and the use of signals from the dominant path for feedback control input
signals was investigated for the case of PSS damping control. The demonstration of
these applications corroborates the fact that interarea modes are visible in network
variables measured by PMUs which are readily exploitable.
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