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Abstract In this chapter, we focus on the problem of geospatial abduction in the
presence of an adversary who understands how we are reasoning about his behav-
ior. For instance, consider an insurgent group carrying out Improvised Explosive
Device (IED) attacks on US soldiers. Such an adversary may wish to carry out
its attacks and select its cache locations (to support those attacks) in a way that it
believes will most likely evade detection. How can an agent (e.g., US forces) antici-
pate this kind of reasoning by the adversary and find optimal locations to search for
weapons caches? In this chapter, we develop a framework to express both the ad-
versary’s problem and the agent’s problem via the paradigm of Stackelberg games.
We formally specify the Optimal Adversary Strategy (OAS) problem, allowing the
adversary to find a set of cache locations to minimize (what it believes) to be the
probability of being discovered. We describe results on the computational complex-
ity of OAS and algorithms to efficiently compute OAS. As the situation is modeled
as a Stackelberg game, the agent (e.g., US forces) takes the final action (e.g., search
for the IED caches). The agent can decide where to search after considering the
space of options that the adversary has and after considering how the adversary
might act in order to evade detection. We formalize this as the Maximal Counter-
Adversary (MCA) strategy. We describe results on the computational complexity of
MCA, as well as algorithms to efficiently compute MCA. These include algorithms
that provide guaranteed polynomial approximations to MCA. We describe experi-
mental results about the running time, accuracy, and quality of solutions found by
the algorithms to compute OAS and MCA.

4.1 Introduction

We begin by reconsidering several example scenarios given in Chapter 1 where
geospatial abduction is required. While all of these scenarios involve an agent (who
we implicitly treat as the “good guy”) and an adversary (the “bad guy”), we see
that some of these scenarios, but not all, represent cases where an adversary can
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intelligently anticipate what an agent might do, and will take steps to avoid any
negative effects of the agent.

• IED Cache Detection Problem. Here, US forces (the agent) are trying to find
the locations of weapons caches used by insurgents to carry out IED terrorist
attacks against civilians and/or US forces. The adversary is constantly adapting its
tactics by observing what US soldiers do after any given IED attack. It is therefore
clear that after some period of observation of how US forces are searching for
IED weapons caches, they will understand at least some elements of the general
approach described in Chapters 2 and 3. They may not understand the underlying
mathematics, and they will certainly not have the feasibility predicates and lower
bound and upper bound cutoff distances used, but they will be able to watch what
the US military does on the ground and infer that after attacks, US troops search
certain regions and not others. The adversary can therefore be expected to adapt
his attacks to avoid detection, based on the model of search behavior exhibited
by US troops that he may be able to monitor. The problem for the agent (US
troops) is to anticipate how the adversary might adapt, and use that anticipatory
knowledge to discover the location(s) of weapons caches supporting the terror
attacks carried out by the adversary.

• The Tiger Detection Problem. In the tiger detection problem, we are interested
in finding preferred locations where the tiger prefers to reside, based on loca-
tions of tiger kills and information about the suitability of various regions on the
ground for a tiger dwelling. However, the tiger is a solitary and intelligent animal
who would vastly prefer to stay away from human contact. Tigers—and other
animals—have, in recent years, been found occasionally in habitats that are dif-
ferent from the ones they usually inhabit. Can wildlife conservationists determine
how a tiger is likely to adapt its pattern of behavior as we attempt to search for it,
based on the location of tiger kills and habitat information? The ability to do this
would significantly enhance tiger conservation efforts.

• The Criminal Identification Problem. Burglars, serial killers, and other crimi-
nals have a clear interest in avoiding being found by geospatial abduction meth-
ods. Should they learn and/or understand what tools and investigative techniques
law enforcement officials have at their disposal, then they can adapt their own
behavior to minimize the probability of being discovered. Of course, law enforce-
ment officers would like to anticipate how criminals might seek to evade them,
and accordingly adjust their own strategy to hunt down the criminals involved.

In contrast to the above problems where the agent seeks to solve a geospatial
abduction problem in the presence of an adversary which is adapting its behav-
ior, the Virus Host Identification Problem involves an adversary that is certainly
changing—but in its physical makeup rather than in a geospatial sense. Hence, the
work described in this chapter does not directly apply to this situation.1

1 Some of the results in this chapter may still prove useful in situations like the Virus Host Identi-
fication problem. Consider the non-deterministic geospatial abduction algorithms from Chapter 2
such as GREEDY-KSEP-OPT2. Suppose we run one of these algorithms n times, creating n expla-
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In the rest of this chapter, we will first describe how geospatial abduction prob-
lems can be viewed as two-player games. Then, we will define methods by which
an adversary (e.g., insurgents carrying out IED attacks) can best position partner lo-
cations (e.g., locations of weapons caches) so as to minimize discovery if the work
in the previous sections were to be used. Of course, the agent performing such game
theoretic reasoning would like to minimize the probability of being outsmarted by
the adversary, so our next section will focus on how to maximize the adversary’s
probability of being successful. All of these sections will include complexity re-
sults, algorithms, and in some cases, approximation algorithms and implementation
hints. Finally, we will describe a suite of experiments we have conducted showing
that these algorithms work well in a real-life IED cache detection problem using
real data drawn from Baghdad.

4.2 Geospatial Abduction as a Two-Player Game

Throughout this chapter, we view geospatial abduction as a two-player game which,
like many results in game theory, follows the cyclic outline given below.

1. The adversary chooses a set O of locations where he/it will carry out certain
actions that the agent can observe.

2. In order to carry out these attacks, the adversary tries to find a set of locations
that constitute an explanation E1 of the set O of observations.

3. The agent can detect explanation E1 using standard geospatial abduction as de-
scribed in Chapters 2 and 3 (and the adversary knows this), so the adversary tries
to find an explanation E2 where the agent is less likely to detect it.

4. The agent, on the other hand, quickly says to himself: “Aha. If the adversary were
smart, he would try not to put the explanation at locations in E1.” Instead, putting
himself in the adversary’s shoes, the agent quickly detects that the adversary
would put the explanation at locations in E2.

5. The adversary can now say “Aha, but if the agent were smart, he would realize
that I would not be dumb enough to put the explanation in locations E2, so he
would reason about what I might do and would arrive at the conclusion that I
(the adversary) would put them at location E3. At this point, the agent would
perform a similar analysis (reasoning that the adversary would not put it at E2,
etc). This kind of reasoning degenerates into a stage of infinite regress with the
agent and the adversary endlessly trying to stay one step ahead of each other.

Other than purely theoretical interest, the situation where such an infinite regress
occurs is neither realistic nor likely. There is so much noise in the real world that

nations (some of which may be the same). We can view the virus as having a mixed strategy where
it uniformly “selects” one of these n explanations. By framing this as an instance of a Maximal
Counter-Adversary Problem (MCA) with an imposed cardinality constraint k (described later in
this chapter), an agent can then select the k locations that maximize his payoff with respect to the
virus selecting one of the n explanations using a uniform probability distribution.
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going too far down this alternating agent-adversary reasoning pattern is likely to be
extremely complex and not likely to lead to good accuracy or good running time
in a real world setting.2 As a consequence, in this chapter we draw the line at the
situation up to point (4) above, i.e., the adversary decides to reason up to stage (4)
above. But to account for noise, we need to introduce a probabilistic model of how
the adversary and agent reason about each other, together with utilities explaining
the value of various situations for them.

4.2.1 Strategies and Rewards

At the end of the day, each player (agent or adversary) must choose a strategy which
is merely a subset of the space S .

• When the player considered is the agent, the strategy intuitively represents a set
of locations that the agent believes is the explanation. In the case of the IED
detection example, it may be the set of locations that US forces search for an
IED weapons cache. In the case of the tiger detection scenario, it may be the
set of locations that wildlife experts search for the tiger. The agent’s strategy is
unknown to the adversary.

• When the player considered is the adversary, the strategy is the set of locations
chosen by the adversary to be the true explanation for the observations the agent
is causing. For instance, in the tiger detection scenario, the tiger’s strategy might
be the set of places the tiger dwells before or after making his kills (observations).
The adversary’s strategy is unknown to the agent.

Though “strategy” and “observation” are defined identically, we use separate
terms to indicate our intended use. Throughout this chapter, we use A (resp. B)
to denote the strategy of the adversary (resp. agent).

Given a pair (A ,B) of adversary-agent strategies, a reward function measures
how similar the two sets are. The more similar the two strategies are, the better it is
for the agent. As reward functions can be defined in many ways, we choose an ax-
iomatic approach so that our framework applies to many different reward functions
including ones that people may invent in the future.

Definition 4.1 (Reward Function). A reward function is any function rf : 2S ×
2S → [0,1] that for any k-explanation A 
= /0 and set B ⊆S , the function satisfies:

1. If B = A , then rf(A ,B) = 1
2. For B,B′ then

rf(A ,B∪B′)≤ rf(A ,B)+ rf(A ,B′)− rf(A ,B∩B′)

The basic intuition behind the reward function is that the more the strategy of the
agent resembles that of the adversary, the closer the reward is to 1. Axiom 1 says

2 Our complexity results suggest this may be a #P-hard problem
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that if the agent’s strategy is the same set as the adversary’s, then the reward is the
maximum possible. Thus, the magnitude of the reward function always applies to the
reward received by the agent; if the agent guesses precisely where the adversary’s
chosen explanation is, then the agent gets the maximum possible reward of 1.

Axiom 2 says that adding a point to B cannot increase the reward to the agent if
that point is already in B, i.e., double-counting of rewards is forbidden.

A reader might wonder why certain natural ideas do not count as valid axioms for
a reward function. For instance, why is rf(A , /0) = 0 not an axiom? After all, it could
be argued that if the agent does nothing at all, shouldn’t there be a zero reward? This
is not necessarily true. We can imagine cases where doing something is worse than
doing nothing. For instance, in the IED application, the reward to the US military
for searching some location (e.g., the house of the Prime Minister of some country)
might significantly outweigh the advantage of searching it, especially if there was
an error and the hypothetical Prime Minister’s house were to be completely empty
of any suspicious material. This same argument also explains why reward functions
are not necessarily monotonic in the second argument (as the empty strategy for the
agent in the preceding discussion could have a higher reward for the agent than the
strategy of searching the putative Prime Minister’s house).

Nevertheless, there will be cases where some (or many) useful reward functions
set rf(A , /0) = 0 and/or are monotonic in nature. We will consider these later in the
chapter. Our next step is to state that rewards associate a simple payoff for each
player.

Observation 4.2.1 Given adversary strategy A , agent strategy B, and reward
function rf, the payoff for the agent is rf(A ,B) and the payoff for the adversary is
−rf(A ,B).

Thus, payoffs are positive for the agent and negative for the adversary. It is there-
fore easy to see that for any reward function and pair (A ,B), the corresponding
game is a zero-sum game [1]. Our complexity analysis assumes all reward functions
are polynomially computable. All the specific reward functions we propose in this
chapter satisfy this condition.

The following important theorem tells us that every reward function is submod-
ular, i.e., the marginal benefit of adding additional points to the agent’s strategy
decreases as the size of the strategy increases. Submodular functions were defined
by us in Chapter 3 — we now adapt this notion of submodularity to the case of
binary reward functions and show below that reward functions as defined by us are
always submodular.

Proposition 4.1 (Submodularity of Reward Functions). Every reward function
is submodular, i.e., if B ⊆ B′, and point p ∈ S such that p /∈ B and p /∈ B′, then
rf(A ,B∪{p})− rf(A ,B)≥ rf(A ,B′ ∪{p})− rf(A ,B′).

Proof. Suppose, by way of contradiction, with B ⊆ B′, and point p ∈ S such that
p /∈ B and p /∈ B′, then

rf(A ,B∪{p})− rf(A ,B)< rf(A ,B′ ∪{p})− rf(A ,B′)
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We know that B′ ∪{p}= B′ ∪ (B∪{p}). Hence:

rf(A ,B∪{p})− rf(A ,B)< rf(A ,B′ ∪ (B∪{p}))− rf(A ,B′)

Also, we know that B = (B∪{p})∩B′, so we get:

rf(A ,B∪{p})− rf(A ,(B∪{p})∩B′)< rf(A ,B′ ∪ (B∪{p}))− rf(A ,B′)

This leads to:

rf(A ,B′)+ rf(A ,B∪{p})− rf(A ,(B∪{p})∩B′)< rf(A ,B′ ∪ (B∪{p}))

which is a clear violation of Axiom 2, hence we have a contradiction.

What this result says is that if the adversary’s strategy A is fixed, then the
marginal benefit of adding another point to a large agent strategy is not as much
as adding the same point to a smaller agent strategy. Simply put, in the case of the
IED detection application, if an insurgent group has already placed its weapons at
various locations and the agent plans to search either a set B of points or a superset
B′ ⊇ B of places, and then the agent decides to search one more place p, the in-
crease in overall benefit yielded had they decided to search B (and p in addition) is
greater than the increase in benefit they would get if they searched the superset B′
(and p in addition).

4.2.1.1 Penalizing Reward Function

We explained earlier why rf(A , /0) = 0 is not an axiom. While this is true of many
reward functions, we now give a concrete example of a reward function where we
penalize the agent for “bad” strategies because in the real world, executing a bad
strategy may have bad consequences. We call this the penalizing reward function.

Definition 4.2 (Penalizing Reward Function). Given a distance dist, we define the
penalizing reward function, prfdist(A ,B), as follows:

1
2
+

|{p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist}|
2 · |A | − |{p ∈ B| 
 ∃p′ ∈ A s.t. d(p, p′)≤ dist}|

2 · |S |
The penalizing reward function intuitively works as follows. It starts at 0.5. It then
adds to the reward the ratio of the number of points in the adversary’s strategy
which are within distance dist of some point in the agent’s strategy to twice the
number of points in the adversary’s strategy. Intuitively, this ratio is a measure of
the effectiveness of the agent in finding locations in the adversary’s explanation.
After this ratio is added to the reward, the penalizing reward function penalizes the
agent for points in the agent’s explanation that are not within the given distance dist
of any point in the adversary’s explanation. This intuition is captured by the second
ratio in the definition of a penalizing reward function.

Let us consider the IED Cache Detection problem and suppose the agent (US
forces) chooses to search locations in B, but the actual places where the adversary
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has placed his caches are in set A . Intuitively, the prfdist function gives the agent
a reward for all caches within distance dist of a cache location contained in the
agent’s strategy (representing places the agent plans to search), but it penalizes the
agent for all locations searched by the agent that are not within distance dist of any
actual cache placed by the adversary. Thus, it has the effect of forcing the agent to
choose where it searches with great care (e.g., to avoid offending local residents in
areas that are subject to the search).

In the same vein, in the tiger identification problem, wildlife conservationists will
probably incur a cost for each search they make. Unsuccessful searches may have
a cost, both in terms of financial cost, as well as in terms of spooking the tiger and
making it harder to find.

The result below states that prf satisfies the axioms required for reward functions.

Proposition 4.2. prfdist is a valid reward function for any dist ≥ 0.

Proof. In this proof, we define pt1(A ,B), pt2(A ,B) as follows:

pt1(A ,B) =
|{p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist}|

2 · |A |
pt2(A ,B) =

|{p ∈ B| 
 ∃p′ ∈ A s.t. d(p, p′)≤ dist}|
2 · |S |

Hence, prfdist(A ,B) = 0.5+ pt1(A ,B)− pt2(A ,B). As we know the maxi-
mum value of both pt1(A ,B), pt2(A ,B) is 0.5, we know that prf is in [0,1].
As pt1(A ,A ) = 0.5 and pt2(A ,A ) = 0, then Axiom 1 is also satisfied. Con-
sider crf (Definition 4.5). Later, in Proposition 4.3, we show that this function
is submodular, meeting Axiom 2. By Definitions 4.5, we can easily show that
pt1(A ,B) = 0.5 · crfdist(A ,B). As pt1(A ,B) is a positive linear combination
of submodular functions, it is also submodular. Now consider pt2(A ,B). Any ele-
ment added to any set B has the same effect—it either lowers the value by 1

2·|S | or
does not affect it— hence it is trivially submodular. Therefore, it follows that prf is
submodular as it is a positive-linear combination of submodular functions.

The following example revisits the burglary application studied earlier in Chap-
ter 3.

Example 4.1. Consider the two-dimensional space shown in Figure 4.1. Suppose
this diagram shows a set of observations (oi’s) depicting locations where burglar-
ies occurred. Furthermore, the police are convinced based on extra-theoretic con-
siderations that the burglaries were carried out by the same burglar (e.g., by ex-
amining fingerprints or the burglar’s modus operandi). All points in this figure
that are not shown in black are assumed to be feasible, and certain locations pi
are marked with numbers (just the i for readability). Suppose the burglar’s actual
places of residence (e.g., home and office) are given by A = {p40, p46} while the
set B = {p38, p41, p44, p56} represents locations that that the police wish to search.
Suppose we consider distance dist = 100 meters. There is only one point in A that
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is within 100 meters of a point in B (point p40) and 3 points in B more than 100
meters from any point in A (points p38, p44, p56). These relationships are shown
visually in Figure 4.1. Hence, prfdist(A ,B) = 0.5+0.25−0.011 = 0.739.

o1 

o2 

o3 

o4 

o5 

                                                              33  34  35    

44  45 46   47                                 48  49  50    
52                                             56 

 37 38                                    40 41   42  43 

                                 57 

5 46   47
           

 48  49 
  40 410

Fig. 4.1 Dashed circles encompass all feasible points within 100 meters from explanation
{p40, p45}. Regions shown in black are deemed infeasible by the supplied feasibility predicate.

Definition 4.3. A reward function is said to be zero-starting if rf(A , /0) = 0.

Thus, a reward function is zero-starting if the agent gets no reward for having an
empty strategy. As mentioned earlier in this chapter, not all reward functions should
be required to be zero-starting; however, there may be plenty of zero-starting reward
functions that are useful in many cases. We now define monotonic reward functions.

Definition 4.4. A reward function, rf, is monotonic if (i) it is zero-starting and (ii)
if B ⊆ B′ then rf(A ,B)≤ rf(A ,B′).

Note that in standard mathematics, monotonic functions in general are not re-
quired to satisfy the first condition in the above definition. However, our definition
of monotonic reward functions requires them to be zero-starting as well. We now de-
fine several example monotonic reward functions, starting with the “cutoff” reward
function.

4.2.1.2 Cutoff Reward Function

The intuition behind the cutoff reward function crf is simple. Suppose we are given
a distance dist (the “cutoff” distance). The cutoff function looks at the percentage
of locations in the adversary’s strategy that are within dist units of some point in the
agent’s strategy.
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Definition 4.5 (Cutoff Reward Function). Reward function based on a cutoff dis-
tance dist.

crfdist(A ,B) :=
card({p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist})

card(A )

Intuitively, the cutoff reward function assumes that if the agent’s strategy includes a
point p′ and there is a location p in the adversary’s strategy that is within dist units of
p′, then the agent will discover it. Returning to our IED Cache Detection problem,
intuitively this says that the agent will find all caches used by insurgents if those
caches are within dist units of a location that the agent has decided to search. In the
case of the Tiger Identification problem, likewise, this says that if wildlife experts
decide to search a point p′ that is within dist units of an actual tiger dwelling, then
the wildlife experts will in fact discover this.

Thus, in the case of the IED Cache Detection application, the cutoff reward func-
tion intuitively specifies the percentage of enemy caches actually discovered by the
agent’s strategy, while in the case of the Tiger Identification problem, it specifies the
percentage of tiger dwellings that actually exist. The following proposition shows
that the cutoff reward function is a valid, monotonic reward function.

Proposition 4.3. crfdist is a valid, monotonic reward function for any dist ≥ 0.

Proof. CLAIM 1: crf satisfies reward Axiom 1.
Clearly, if B = A , then the numerator is |A |, which equals the denominator.

CLAIM 2: crf satisfies reward function Axiom 2.
Suppose, by way of contradiction, there exists explanations B,B′ such that B∪B′
is an explanation and crfdist(A ,B∪B′)> crfdist(A ,B)+rf(A ,B′)−rf(A ,B∩
B′). Therefore, card({p ∈ A |∃p′ ∈ B ∪B′ s.t. d(p, p′) ≤ dist}) is greater than
card({p∈A |∃p′ ∈B s.t. d(p, p′)≤ dist})+card({p∈A |∃p′ ∈B′ s.t. d(p, p′)≤
dist})−card({p ∈A |∃p′ ∈B∩B′ s.t. d(p, p′)≤ dist}). We have a contradiction;
indeed, by basic set theory we see that both sides of this strict inequality are actually
equal.

CLAIM 3: crf is zero-starting.
Clearly, if B = /0, the numerator must be 0, and the statement follows.

CLAIM 4: crf is monotonic.
Suppose, by way of contradiction, there exists B ⊆ B′ such that rf(A ,B) >
rf(A ,B′). Then card({p∈A |∃p′ ∈B s.t. d(p, p′)≤ dist})> card({p∈A |∃p′ ∈
B′ s.t. d(p, p′)≤ dist}). Clearly, this is not possible as B ⊆B′ and we have a con-
tradiction.

The following example illustrates how the crf reward function works.

Example 4.2. Consider Example 4.1. Here, crfdist(A ,B) returns 0.5 as one element
of A is within 100 meters of an element in B.
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4.2.1.3 Falloff Reward Function

The cutoff reward function uses dist to decide whether a location in the adversary’s
strategy will be discovered by the agent or not. Thus, even if an adversary’s chosen
location is just an inch outside the dist bound from the closest point in the agent’s
strategy, this function would say that the adversary’s location would not be found.
This may not always be realistic.

In contrast, the falloff reward function frf defined below says that for each loca-
tion p in the adversary’s strategy (e.g., where the insurgent group chooses to place its
IED weapons locations, or where the tiger actually resides in practice), the probabil-
ity that the agent will discover this location is inversely proportional to the distance
of p from the nearest point p′ that is in the agent’s strategy.

1 

B 

A 

C 

D 

2 

3 

5 

4 

Fig. 4.2 Example adversary and agent strategies for the falloff reward function (frf). The agent’s
strategy consists of points marked by blue circles, while the adversary’s strategy consists of the red
triangles.

Figure 4.2 shows a simple example. In this figure, we look at each location in
the adversary’s strategy; in the IED detection application, for example, these are the
locations where the insurgents decided to place their weapons caches. For each such
adversary location, we find the location in the agent’s strategy that is closest to it.
The table below summarizes this situation.

Example 4.3.

Adversary Location Nearest Agent Location Distance
A 1 1
B 2 2
C 4 5
D 5 4

The falloff reward function assigns a reward to the agent that is inversely pro-
portional to the distances between each A and 1, B and 2, C and 4, and D and 5.
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As long as the reward increases as the distances in the above table decreases, we
have a function that rewards the agent for a strategy which comes “close” (in terms
of distance) to the strategy of the adversary. The falloff reward function defined be-
low implements this intuition in one way—many other ways to achieve the same
intuition, albeit with slightly different definitions of the falloff reward function, are
possible.

Definition 4.6 (Falloff Reward Function). Reward function with value based on
minimal distances between points.

frf(A ,B) :=

{
0 if B = /0

∑p∈A
1

|A |+minp′∈B(d(p,p′)2)
otherwise

with d(p, p′) :=
√

(px − p′x)2 +(py − p′y)2. In this case, the agent’s reward is in-
versely proportional to the square of the distance between points, as the search area
required grows proportionally to the square of this distance.

The example below extends the preceding example.

Example 4.4. Let us continue with the situation in the table shown in Example 4.3.
In this case, we see that when the agent strategy is {1,2,3,4,5} and the adversary’s
strategy is {A,B,C,D}. In this case, |A |= 4 as the adversary has placed four caches.
Then the falloff reward function returns the following:

1
4+12 +

1
4+22 +

1
4+52 +

1
4+42

which turns out to be 0.2+0.125+0.034+0.05= 0.409 which is the value returned
by the falloff reward function.

The following result specifies that the falloff reward function frf satisfies the
axioms to be a reward function—and, additionally, is monotonic.

Proposition 4.4. frf is a valid, monotonic reward function.

Proof. CLAIM 1: frf satisfies all reward function axioms (i.e., is valid).

Bounds We must show rf(A ,B) ∈ [0,1]. For each point p ∈ A , let lBp =

minp′∈B d(p, p′)2. By the definition of the distance function d, we know 0 ≤
lBp < ∞. Now let function f (lBp ) = 1

|A |+minp′∈B d(p,p′)2 =
1

|A |+lBp
. Since 0≤ lBp <

∞, we see 0< f (lBp )≤ 1
|A | . Clearly, the summation over |A | points p∈A yields

an answer in
(
0, |A | · 1

|A |
]
= (0,1]⊂ [0,1].

Axiom 1 If B = A , for each p ∈ A , there exists p′ ∈ B such that d(p, p′) = 0.
Hence, by the definition of frf, frf(A ,B) = 1 in this case.
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Axiom 2 We must show that our version of the triangle inequality holds, that is
rf(A ,B∪B ′)≤ rf(A ,B)+rf(A ,B′)−rf(A ,B∩B′). From above, rf(A ,B∪
B′) = ∑p∈A f (lB∪B′

p ). For each point p ∈A , let p∗ = argminp′∈B∪B′d(p, p′)2.
Without loss of generality, assume p∗ ∈ B, then lBp = lB∪B′

p thus f (lBp ) =

f (lB∪B′
p ). Since p∗ ∈ B, we have p∗ ∈ B∩B′ or p∗ ∈ B∩ B̄′.

If p∗ ∈ B∩B′: Then f (lB∩B′
p ) = f (lBp ). However, since p∗ ∈B′ we have, as

above, f (lB
′

p ) = f (lBp ) = f (lB∪B′
p ). Thus

∑
p∈A

[
f (lBp )+ f (lB

′
p )− f (lB∩B′

p )
]

(4.1)

= ∑
p∈A

[
f (lB∪B′

p )+ f (lB∪B′
p )− f (lB∪B′

p )
]

(4.2)

= ∑
p∈A

f (lB∪B′
p ) (4.3)

So rf(A ,B∪B′) = rf(A ,B)+ rf(A ,B′)− rf(A ,B∩B′) for this case.
If p∗ ∈ B∩ B̄′: From above, we are still guaranteed that f (lBp ) = f (lB∪B′

p ),
thus rf(A ,B∪B ′)=rf(A ,B). This reduces our problem to showing rf(A ,B ′)−
rf(A ,B∩B′)≥ 0. However, rf is monotonic (shown below); since B∩B′ ⊆
B′, then rf(A ,B∩B′)≤ rf(A ,B′) and our claim holds.

A similar proof holds for the case p∗ ∈ B′.

CLAIM 2: frf is monotonic and zero-starting. The property of zero-starting follows
directly from the definition of frf.

By way of contradiction, assume there is some B ⊂ B′ such that rf(A ,B) >

rf(A ,B′). Then, as above, ∑p∈A f (lBp ) > ∑p∈A f (lB
′

p ). However, since B ⊂ B′,
we have lBp ≥ lB

′
p for each p∈A . Similarly, f (lBp )≤ f (lB

′
p ) and thus ∑p∈A f (lBp )≤

∑p∈A f (lB
′

p ), which is our contradiction.

4.2.1.4 Weighted Reward Function

In all the specific examples of reward functions presented thus far, all locations in
both the agent’s strategy and the adversary’s strategy are considered to be equally
important (though there is a hint that this may not be the case when we discussed
searching a Prime Minister’s house in the discussion on penalizing reward func-
tions). We now define weighted reward functions, where each location p′ in the
agent’s strategy has an associated weight.

Returning to the IED detection example, the weight of searching the Prime Min-
ister’s house might be very low, while a national security analyst may set the weight
of searching a mosque or the grounds of an extremist madrasah (religious school)
to be much higher. Likewise, in the case of the tiger detection example, the wildlife
conservation expert might set the weight of searching a particular location in a way
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that is consistent with the suitability of the habitat (e.g., density of ground cover or
forest, abundance of prey) for the tiger to inhabit. Thus, the weighted reward func-
tion wrf assigns a greater reward for being “closer” to points in A that have high
weight than those with lower weights.

Definition 4.7 (Weighted Reward Function). Given weight function W : S →
R
+, and a cutoff distance dist we define the weighted reward function to be:

wrf(W,dist)(A ,B) :=
∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Thus, the weighted reward function proceeds as follows. For a given cutoff distance
dist, it considers each location p in the adversary’s strategy and checks if there exists
a location p′ in the agent’s strategy. If so, it adds the weight of p (which intuitively
indicates the importance of the adversary’s location p from the point of view of
the GAP application) to a running total. Once all such locations p ∈ A have been
considered, it divides the total obtained by the sum of weights of all points in A
to obtain a fractional value of the locations that the agent is expected to discover,
should the agent and the adversary use strategies B and A , respectively.

The following result establishes that the weighted reward function satisfies the
axioms required to be a reward function—and, moreover, is monotonic.

Proposition 4.5. wrf(W,dist)(A ,B) is a valid, monotonic reward function.

Proof. CLAIM 1: wrf satisfies all reward function axioms (i.e., is valid).

Domain We must show wrf(W,dist)(A ,B) ∈ [0,1]. As (B∩A )⊆ A and W only
returns positive values, this function can only return values in [0,1].

Axiom 1 If B =A , then for each p ∈A , there exists p′ ∈B such that d(p, p′) =
0. This causes the numerator to equal ∑p∈B W (p). As B = A , the numerator is
equivalent to the denominator, so wrf(A ,B) = 1 in this case.

Axiom 2 Wemust show the inequality wrf (W,dist)(A ,B∪B′)≤wrf(W,dist)(A ,B)+
wrf(W,dist)(A ,B′)−wrf(W,dist)(A ,B∩B′). This proof is similar to the proof of
Axiom 2 in Proposition 4.3.

CLAIM 2: wrf is monotonic and zero-starting.
The property of zero-starting if shown by when B = /0, the numerator must be 0,
hence, wrf(A , /0) = 0. By way of contradiction, assume there is some B ⊂B′ such
that wrf(W,dist)(A ,B)> wrf(W,dist)(A ,B′). Then

∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
>

∑{p∈A |∃p′∈B′ s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Since B ⊂ B′, we have

∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
>
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∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
+

∑{p∈A ′|∃p′∈(B′∩B) s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Where A ′ = {p ∈ A | 
 ∃p′ ∈ B s.t. d(p, p′)≤ dist}. Hence,

0 > wrf(W,dist)(A ′,B′ ∩B)

Which violates the first axiom, which was shown to apply to wrf(W,dist) by Claim
1—a contradiction.

It is easy to see that the weighted reward function is a generalization of the cutoff
reward function where all weights are 1.

4.2.2 Incorporating Mixed Strategies

Of course, neither the adversary nor the agent wants to be entirely predictable, as
predictability (in the case of the adversary) would mean that the agent has an easy
way to uncover its hidden locations, while predictability (in the case of the agent)
means the adversary can easily avoid being uncovered. To achieve unpredictability,
they are not likely to pick one strategy and stick with it; rather, they are likely to
pick strategies in accordance with some probability distribution. In this section, we
introduce probability density functions (pdfs) over strategies (or mixed strategies
as they are commonly referred to in game theory [1]) and introduce the notion of
expected reward. We first present explanation/strategy functions which return an
explanation (resp. strategy) of a certain size for a given set of observations.

Definition 4.8 (Explanation/Strategy Function). An explanation (resp. strategy)
function is any function ex fcn : 2S ×N→ 2S (resp. sf : 2S ×N→ 2S ) that, given
a set O ⊆ S and k ∈N, returns a set E ⊆ S such that E is a k-sized explanation of
O (resp. E is a k-sized subset of S ). Let EF be the set of all explanation functions.

Intuitively, all that an explanation function does is to return an explanation of size k,
given a set of observations and an integer k as input. In contrast, a strategy function
just returns a strategy of size k.

Example 4.5. Continuing with Example 4.1, we now define two functions ex fcn1
and ex fcn2. Given the set O (defined in Example 4.1) as input and k ≤ 3, these
functions give the following results:

ex fcn1(O,3) = {p42, p45, p48}
ex fcn2(O,3) = {p40, p46}

These sets may correspond to explanations from various sources. Perhaps they cor-
respond to the answer of an algorithm that police officials use to solve GAPs. Con-
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versely, they could also be places the burglar thinks would make most sense for him
to inhabit.

In theory, the set of all explanation functions can be infinitely large; however, it
makes no sense to look for explanations containing more points than S and so we
assume explanation functions are only invoked with k ≤ (M+1)× (N +1).

A strategy function is appropriate for an agent who wants to select points resem-
bling what the adversary selected, but is not required to produce an explanation.
Our results typically do not depend on whether an explanation or strategy function
is used (when they do, we point it out). Therefore, for simplicity, we use “expla-
nation function” throughout the chapter. In our complexity results, we assume that
explanation/strategy functions are computable in constant time.

Both the agent and the adversary do not know the explanation function (e.g.,
answers to the questions “where is the adversary going to put his weapons caches?”
and “where will US forces search for them?”) in advance. Thus, they use a pdf
over explanation functions to estimate their opponent’s behavior, yielding a mixed
strategy.

Definition 4.9 (Explanation Function Distribution). Given a space S , real num-
bers α,β , feasibility predicate feas, and an associated set of explanation func-
tions EF, an explanation function distribution is a finitary3 probability distribution
exfd : EF → [0,1] with ∑ex fcn∈EF exfd(ex fcn) = 1. Let EFD be a set of expla-
nation function distributions.

We use |exfd| to denote the cardinality of the set EF associated with exfd.

Example 4.6. Following from Example 4.5, we define the explanation function dis-
tribution exfdburglar that assigns a uniform probability to explanation functions in
the set ex fcn1,ex fcn2 (i.e., exfdburglar(ex fcn1) = 0.5).

We now define an expected reward that takes mixed strategies specified by ex-
planation function distributions into account to compute an expected value for the
reward function to return.

Definition 4.10 (Expected Reward). Given a reward function rf, and explanation
function distributions exfdadv,exfdag for the adversary and agent respectively, the
expected reward is a function EXRrf : EFD×EFD → [0,1]. For some explana-
tion function distributions exfdadv,exfdag, we define EXRrf(exfdadv,exfdag) as fol-
lows:

∑
ex fcnadv∈EFadv

⎛
⎝exfdadv(ex fcnadv) · ∑

ex fcnag∈EFag

exfdag(ex fcnag) · rf(ex fcnadv,ex fcnag)

⎞
⎠

This definition can be explained as follows. We consider each possible explana-
tion function ex fcnad that the adversary might use. For each possible explanation
function ex fcnag used by the agent, we find the expected reward to the agent, which

3 That is, exfd assigns non-zero probabilities to only finitely many explanation functions.
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is the probability of the agent using explanation function exfdag(ex fcnag) times the
reward to the agent if he uses ex fcnag and the adversary uses ex fcnadv—this is the
product exfdag(ex fcnag) · rf(ex fcnadv,ex fcnag) in the above formula. However,
this product must be multiplied by the probability that the adversary uses explana-
tion function ex fcnadv, yielding exfdadv×exfdag(ex fcnag)·rf(ex fcnadv,ex fcnag).
This expression is then summed up over all possible explanation functions ex fcnadv
that the adversary might use to give the final expected reward (for the agent).

In this chapter, we will generally not deal with expected reward directly. Rather,
we handle two special cases—expected adversarial detriment and expected agent
benefit—in which the adversary’s and agent’s strategies are not mixed respectively.
We explore these two special cases in the next two sections.

4.3 Selecting a Strategy for the Adversary

In this section, we consider the problem where the adversary has already decided
what the set O of observations should be (e.g., in the case of the insurgents, this
would correspond to the insurgents having selected the targets of their terror at-
tacks, while in the case of the burglar, this corresponds to the set of targets the bur-
glar plans to break into), and now he wants to choose the best strategy A to carry
out his nefarious deeds. Of course, the strategy A needs to be an explanation for O
with respect to a given feasibility predicate. We assume the adversary has a proba-
bilistic model of the agent’s behavior (an explanation function distribution) and that
he wants to eventually find an explanation (e.g., the set of locations for his weapons
caches). Even though he can use “expected reward” to measure how close the agent
will be to the adversary’s explanation, only the agent’s strategy is mixed because
the adversary must physically select his strategy once and for all (e.g., the burglar
must decide where to live/work, while the terrorist must decide where to place his
weapons caches). In other words, the adversary’s strategy is not mixed—it is con-
crete. In order to account for this, we introduce a special case of expected reward
called the expected adversarial detriment (of a given strategy A that he chooses).

Definition 4.11 (Expected Adversarial Detriment). Given any reward function rf

and explanation function distribution exfd, the expected adversarial detriment is the
function EXDrf : EFD×2S → [0,1] defined as follows:

EXDrf(exfd,A ) = ∑
ex fcn∈EF

rf(A ,ex fcn(O,k)) ·exfd(ex fcn)

Intuitively, the expected adversarial detriment is the expected number of partner
locations the agent may uncover according to the explanation function distribution
exfd that the adversary uses to model the agent. To compute this, we consider each
explanation function ex fcn and identify the adversary’s reward—which we call
“detriment”, since it is a measure the adversary wishes to minimize. The product of
the two gives the expected detriment if in fact the explanation function distribution



4.3 Selecting a Strategy for the Adversary 109

is correct and the sum of these products, one for each possible explanation function
ex fcn, gives the total expected detriment.

We illustrate the expected adversary detriment via the following example.

Example 4.7. Following from the previous examples, suppose the burglar is plan-
ning to have three safe locations (e.g., his house, his office, and his significant
other’s house). Suppose, from prior experience of the police (or by appropriate
scouting), he expects that police detectives will look for his safe houses using
exfdburglar (see Example 4.6). One suggestion the burglar may consider is to choose
safe houses at locations p41, p52 (see Figure 4.1). Note that this explanation is op-
timal with respect to cardinality. With dist = 100 meters, he wishes to compute
EXDcrf(exfdburglar,{p41, p52}). We first need to find the reward associated with
each explanation function (see Example 4.5):

crfdist({p41, p52},ex fcn1(O,3)) = 1
crfdist({p41, p52},ex fcn2(O,3)) = 0.5

Thus, EXDcrf(exfdburglar,{p41, p52})= 0.5 ·1+0.5 ·0.5= 0.75. Hence, this is prob-
ably not the best location for the burglar to position his safe houses with respect to
crf and exfd, as the expected adversarial detriment associated with this set of loca-
tions is large.

The expected adversarial detriment is a quantity that the adversary would seek to
minimize. This is now defined as an optimal adversarial strategy below.

Definition 4.12 (Optimal Adversarial Strategy). Given a set of observations O ,
natural number k, reward function rf, and explanation function distribution exfd,
an optimal adversarial strategy is a k-sized explanation A for O such that
EXDrf(exfd,A ) is minimized.

4.3.1 The Complexity of Finding an Optimal Adversarial Strategy

In this section, we formally define the optimal adversarial strategy (OAS) problem
and study its complexity.

OAS Problem

INPUT: Space S , feasibility predicate feas, real numbers α,β , set of observations
O , natural number k, reward function rf, and explanation function distribution exfd.
OUTPUT: The optimal adversarial strategy A .

The result below demonstrates that the known NP-hard problem Geometric Cov-
ering by Discs [2] is polynomially reducible to OAS. This establishes NP-hardness.

Theorem 4.1. OAS is NP-hard.
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Proof. CONSTRUCTION: Given an input 〈P,b,K〉 of GCD, we create an instance
of OAS in PTIME as follows:

• Set S to be a grid large enough that all points in P are also points in S .
• feas(p) = TRUE if and only if p ∈ P
• α = 0, β = b, O = P, k = |P|
• Let rf(E1,E2) = 1 if E1 ⊆ E2, and |E1|

|S | otherwise.
This satisfies reward Axiom 1 as E1 ⊆S , Axiom 2 by definition, and the satisfac-
tion of Axiom 3, along with monotonicity (with respect to the second argument)
can easily be shown by the fact that explanations that are not supersets of E1
(called E2,E3) satisfy rf(E1,E2) = rf(E1,E3).

• Let ex fcn(O,num) that returns set O when num = |O| and is otherwise unde-
fined. Let exfd(ex fcn) = 1 and 0 otherwise.

CLAIM 1: If A as returned by OAS has a cardinality of ≤ K, then the answer to
GCD is “yes”.
Suppose, by way of contradiction, that card(A )≤ K and GCD answers “no.” This
is an obvious contradiction as A is a subset of P (by how feasibility was defined)
where all elements of P are within a radius of b and A also meets the cardinality
requirement of GCD.

CLAIM 2: If the answer to GCD is “yes” then A as returned by OAS has a cardi-
nality of less than or equal to K.
Suppose, by way of contradiction, GCD returns “yes” but A returned by OAS has
a cardinality greater than K. By the result of GCD, there exists a set P′ of cardi-
nality K such that each point in P (hence O) is of a distance ≤ β from a point in
P′. This, along with the definition of feasibility, makes P′ a valid K-explanation
for O . We note that ex fcn(P, |P|) = P and that exfd assigns this reward function
a probability of one. Hence, the expected adversarial detriment for any explanation
A ′ is rf(A ′,P). As P′ is an explanation of cardinality less than A , it follows that
rf(P′,P)< rf(A ,P), which is a contradiction.

The proof of the above theorem yields two insights, stated below as a corollary.

Corollary 4.1. 1. OAS is NP-hard even if the reward function is monotonic (or anti-
monotonic).

2. OAS is NP-hard even if the cardinality of EF is 1.

Thus, we cannot simply pick an “optimal” function from EF. To show an upper
bound, we define OAS-DEC to be the decision problem associated with OAS. If the
reward function is computable in polynomial time, then the following result says
that OAS-DEC is in the complexity class NP.

OAS-DEC

INPUT: Space S , feasibility predicate feas, real numbers α ,β , set of observations
O , natural number k, reward function rf, explanation function distribution exfd, and
number R ∈ [0,1].
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OUTPUT: “Yes” if there exists an adversarial strategy A such that EXDrf(exfd,A )≤
R, and “no” otherwise.

Theorem 4.2. If the reward function is computable in PTIME, then OAS-DEC is
NP-complete.

Proof. NP-hardness follows from Theorem 4.1. To show NP-completeness, a wit-
ness simply consists of A . We note that, as the reward function is computable in
PTIME, finding the expected adversarial detriment for A and comparing it to R can
also be accomplished in PTIME.

Suppose we have an NP oracle that can return an optimal adversarial strategy
and suppose this NP oracle returns A . Quite obviously, this is the best response

of the adversary to the mixed strategy of the agent. Now, how does the agent re-
spond to such a strategy? If we were to assume that such a solution were unique,
then the agent would simply have to find a strategy B such that rf(A ,B) is max-
imized. This is a special case of the problem we discuss in Section 4.4. However,
this is not necessarily the case. A natural way to address this problem is to create
a uniform probability distribution over all optimal adversarial strategies and opti-
mize the expected reward—again a special case of what we will discuss later in
Section 4.4. However, obtaining the set of explanations is not an easy task. Even if
we had an easy way to exactly compute an optimal adversarial strategy, finding all
such strategies is an even more challenging problem. In fact, it is at least as hard
as the counting version of GCD—which we already have shown to be #P-hard and
difficult to approximate (see Chapter 2). The following theorem shows that finding
the set of all optimal strategies (for the adversary) that have an expected adversarial
detriment below a certain threshold is #P-hard.

Theorem 4.3. Finding the set of all adversarial optimal strategies that provide a
“yes” answer to OAS-DEC is #P-hard.

Proof. Let us assume that we know one optimal adversarial strategy and can com-
pute the expected adversarial detriment from such a set. Let us call this value D.
Given an instance of GCD, we can create an instance of OAS-DEC as in Theo-
rem 4.1, where we set R=D. Suppose we have an algorithm that produces all adver-
sarial strategies. If we iterate through all strategies in this set, and count all strategies
with a cardinality ≤ K (the K from the instance of GCD), we have counted all so-
lutions to GCD—thereby solving the counting version of GCD, a #P-hard problem
that is difficult to approximate by Lemma 2.1.

This theorem says that it is infeasible for the adversary to find all strategies that
are optimal for him.

4.3.2 Pre-Processing and Naive Approach

In this section, we present several algorithms to solve OAS. We first present a simple
routine for pre-processing followed by a naive enumeration-based algorithm.
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We use Δ to denote the maximum number of partners per observation and f
to denote the maximum number of observations supported by a single partner. In
general, Δ is bounded by π(β 2 −α2), but may be lower depending on the feasible
points in S . Likewise, f is bounded by min(|O|,Δ) but may be much smaller de-
pending on the sparseness of the observations.

Pre-Processing Procedure. Given a space S , a feasibility predicate feas, real
numbers α,β ∈ [0,1], and a set O of observations, we create two lists (similar to a
standard inverted index) as follows.

• Matrix M. M is an array of size S . For each point p ∈ S , M[p] is a list of
pointers to observations. M[p] contains pointers to each observation o such that
feas(p) is true and such that d(o, p) ∈ [α,β ].

• List L. List L contains a pointer to position M[p] in the array M if and only if
there exists an observation o ∈O such that feas(p) is true and such that d(o, p)∈
[α,β ].

Thus, M[p] points to all observations that are both feasible and which are within
the appropriate lower and upper bounds [α,β ] in distance from point p. In the case
of the insurgent cache detection problem, M[p] specifies the set of attacks that the
insurgent terror group wants to carry that could be carried out if the insurgent group
had a weapons cache at location p. In contrast, list L points to all locations that can
be used to carry out at least one of the attacks that the insurgent group wants to carry
out. What is important to note is that if a point p is not in L, then point p is not a
location where the adversary might want to put his weapons cache.

It is easy to see that we can compute M and L in O(|O| ·Δ) time. The example
below shows how M,L apply to our running burglary example.

Example 4.8. Consider our running example concerning the burglaries and the bur-
glar’s dwellings that started with Example 4.1. The set L consists of {p1, . . . , p67}.
The matrix M returns lists of observations that can be associated with each point.
For example, M(p40) = {o3,o4,o5} and M(p46) = {o1,o2}.
Naive Approach. After pre-processing, a straightforward exact solution to OAS
would be to enumerate all subsets of L that have a cardinality less than or equal to k.
Let us call this set L∗. Furthermore, suppose we eliminate all elements of L∗ that are
not valid explanations. Finally, for each element of L∗, suppose we compute the ex-
pected adversarial detriment and return the element of L∗ for which this value is the
least. Clearly, this approach is impractical as the cardinality of L∗ can be very large.
Furthermore, this approach does not take advantage of the specific reward functions.
We now present mixed integer programs (MIPs) to compute the minimal expected
adversary detriment when the associated reward function is either wrf or frf. We
first write these mixed integer programs—later, we develop methods to reduce the
complexity of solving these MILPs.
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Fig. 4.3 Set L of all possible partners for our burglar’s dwelling locations.

4.3.3 Mixed Integer Programs for OAS under wrf,crf, frf

We present mixed integer linear programs (MILPs) to solve OAS exactly for some
specific reward functions. First, we present a mixed integer linear program for the
reward function wrf. Later, in Section 4.3.4, we show how to improve efficiency—
while maintaining optimality—by reducing the number of variables in the MILP.
Note that these constraints can also be used for crf as wrf generalizes crf. We also
define a MILP for the frf reward function.

While these mixed integer programs may appear nonlinear, Proposition 4.9 gives
a simple transformation to standard linear form. For readability, we define the
MILPs before discussing this transformation.

We start by associating an integer-valued variable Xi with each point pi ∈ L. In-
tuitively, Xi is an (unknown) variable which has the value 0 if the adversary chooses
not to locate a partner location there, and 1 otherwise.

Definition 4.13 (wrf MILP). Given real number dist > 0 and weight function W ,
associate a constant wi with the weight W (pi) of each point pi ∈ L. Next, for each
pi ∈ L and ex fcn j ∈ EF, let constant ci, j = 1 if and only if ∃p′ ∈ ex fcn(O,k) such
that d(p′, pi)≤ dist and 0 otherwise. Finally, associate an integer-valued variable Xi
with each pi ∈ L.
Minimize:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · wi · ci, j

∑pi∈L wi ·Xi

))

subject to:

1. Xi ∈ {0,1}
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2. Constraint ∑pi∈L Xi ≤ k
3. For each o j ∈ O , add constraint

∑pi∈Ld(o j ,pi)∈[α,β ] Xi ≥ 1

We note that the above definition does not define purely linear constraints. For-
tunately, these constraints can be easily linearized using the well-known Charnes-
Cooper transformation [3].

Example 4.9. Continuing from Examples 4.7 (page 109) and 4.8, suppose the bur-
glar wishes to produce an adversarial strategy A using wrf. Consider the case where
we use crf, k ≤ 3, and dist = 100 meters as before (see Example 4.7). Clearly, there
are 67 variables in these constraints, as this is the cardinality of set L (as per Exam-
ple 4.8). The constants ci,1 are 1 for elements in the set:

{p35, p40, p41, p42, p43, p44, p45, p46, p49, p49, p50, p52, p56}

(and 0 for all others). The constants ci,2 are 1 for elements in the set

{p33, p37, p40, p41, p45, p46, p47, p48}

(and 0 for all others).

As in the case of the weighted reward function above, we can create a MILP for
the falloff reward function frf as follows, where Xi has a meaning identical to that
in the preceding case.

Definition 4.14 (frf MILP). For each pi ∈ L and ex fcn j ∈ EF, let constant ci, j =
minp′∈ex fcn(O,k)(d(pi, p′)2). Associate an integer-valued variable Xi with each
pi ∈ L.
Minimize:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · 1

ci, j +∑pi∈L Xi

))

subject to:

1. Xi ∈ {0,1}
2. Constraint ∑pi∈L Xi ≤ k
3. For each o j ∈ O , add constraint

∑pi∈Ld(o j ,pi)∈[α,β ] Xi ≥ 1

The following theorem tells us that solving the above MILPs correctly yields a so-
lution for the OAS problem under both wrf or frf.

Proposition 4.6. Suppose S is a space, O is an observation set, real numbers 0 ≤
α < β ≤ 1, and suppose the wrf and frf MILPs are defined as above.
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1. Suppose A = {p1, . . . , pn} is a solution to OAS with wrf (resp. frf). Consider
the assignment that assigns 1 to each X1, . . . ,Xn corresponding to the pi’s and 0
otherwise. This assignment is an optimal solution to the MILP.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to set
A , then A is a solution to OAS with wrf (resp. frf).

Proof. PART 1: Suppose, by way of contradiction, that there is a set of variables
X ′

1, . . . ,X
′
m that is a solution to the constraints such that the value of the objec-

tive function is less than if variables X1, . . . ,Xn were used. Then, there are points
p′1, . . . , p′m in set L that correspond with the Xi’s such that they cover all observa-
tions and that the expected adversarial detriment is minimized. Clearly, this is a
contradiction.
PART 2: Suppose, by way of contradiction, that there is a set of points A ′ such
that the expected adversarial detriment is less than A . Clearly, A is a valid ex-
planation that minimizes the expected adversarial detriment by the definition of the
constraints—hence a contradiction.

The result below states that setting up either set of constraints can be performed
in polynomial time, where computing the ci, j constants is the dominant operation.

Proposition 4.7. Setting up the wrf/frf constraints can be accomplished in O(|EF| ·
k · |O| ·Δ) time (provided the weight function W can be computed in constant time).

Proof. First, we must run POSS-PART, which requires O(|O| ·Δ) operations. This
results in a list of size O(|O| ·Δ). For each explanation function, ex fcn, we must
compare every element in L with each element of ex fcn(O), which would require
O(k · |O| ·Δ) time. As there are |EF| explanation functions, the statement follows.

The number of variables for either set of constraints is related to the size of L,
which depends on the number of observations, spacing of S , and α,β .

Proposition 4.8. The wrf/frf constraints have O(|O| ·Δ) variables and 1+ |O| con-
straints.

Proof. As list L is of size O(|O| ·Δ), and there is one variable for every element
of L, there are O(|O| ·Δ) variables. As there is a constraint for each observation,
plus a constraint to ensure the cardinality requirement (k) is met, there are 1+ |O|
constraints.

The MILPs for wrf and frf appear nonlinear as the objective function is frac-
tional. However, as the denominator is non-zero and strictly positive, the Charnes-
Cooper transformation [3] allows us to quickly (in the order of number of con-
straints multiplied by the number of variables) transform the constraints into a
purely integer-linear form. Many linear and integer-linear program solvers include
this transformation in their implementation and hence, this transformation is very
standard.

Proposition 4.9. The wrf/frf constraints can be transformed into a purely linear-
integer form in O(|O|2 ·Δ) time.
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Proof. Obviously, in both sets of constraints, the denominator of the objective func-
tion is strictly positive and non-zero. Hence, we can directly apply the Charnes-
Cooper transformation [3] to obtain a purely integer-linear form. This transforma-
tion requires O(number of variables× number of constraints). Hence, the O(|O|2 ·
Δ) time complexity of the operation follows immediately from Proposition 4.8.

We note that a linear relaxation of any of the above three constraints can yield a
lower bound on the objective function in O(|L|3.5) time.

Proposition 4.10. Given the constraints of Definition 4.13 or Definition 4.14, if we
consider the linear program formed by setting all Xi variables to be in [0,1], then the
value returned by the objective function will be a lower bound on the value returned
by the objective function for the mixed integer-linear constraints, and this value can
be obtained in O(|O|3.5 ·Δ 3.5) time.

Proof. CLAIM 1: The linear relaxation of Definition 4.13 or Definition 4.14 pro-
vides a lower bound on the objective function value for the full integer-linear con-
straints. As an optimal value returned by the integer-linear constraints would also
be a solution, optimal with respect to minimality, for the linear relaxation, the state-
ment follows.
CLAIM 2: The lower bound can be obtained in O(|L|3.5) time.
As there is a variable for each element of L, the size of L is O(|O| ·Δ), and the claim
follows immediately from the result of [4].

Likewise, if we solve the mixed integer linear program with a reduced number
of variables, we are guaranteed that the solution will cause the objective function to
be an upper bound for the original set of constraints.

Proposition 4.11. Consider the MILPs in Definition 4.13 and Definition 4.14. Sup-
pose L′ ⊂ L and every variable Xi associated with some pi ∈ L′ is set to 0. The
resulting solution is an upper bound on the objective function for the constraints
solved on the full set of variables.

Proof. Suppose, by way of contradiction, that the solution for the objective function
on the reduced MILP would be less than the actual MILP. Let X1, . . . ,Xn be the
variables set to 1 for the reduced MILP in this scenario. We note, that setting the
same variables to the full MILP would also be a solution, and could not possibly be
less than a minimal solution. This is a contradiction.

4.3.4 Correctly Reducing the Number of Variables for crf

As the complexity of solving MILPs is closely related to the number of variables in
the MILP, the goal of this section is to reduce the number of variables in the MILP
associated above with the crf reward function. In this section, we show that if we can
find a certain type of explanation called a δ -core optimal explanation, then we can
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“build up” an optimal adversarial strategy in polynomial time.4 It also turns out
that finding these special explanations can be accomplished using a MILP which
will often have significantly less variables than the MILP’s of the last section. First,
we consider the wrf constraints applied to crf which is a special case of wrf. The
objective function for this case is:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · ci, j

∑pi∈L Xi

))

where for each pi ∈ L and ex fcn j ∈ EF, ci, j = 1 if and only if ∃p′ ∈ ex fcn j(O,k)
such that d(p′, pi) ≤ dist and 0 otherwise. If we rearrange the objective function,
we see that with each Xi variable associated with point pi ∈ L, there is an associated
constant consti:

consti = ∑
ex fcn j∈EF

exfd(ex fcn j) · ci, j.

This lets us rewrite the objective function as:

∑pi∈L Xi · consti
∑pi∈L Xi

.

Example 4.10. Continuing from Example 4.9, consti = 0.5 for the following ele-
ments: {p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56}; consti = 1 for these ele-
ments: {p40, p41, p45, p46, p48}, and 0 for all others.

4.3.4.1 Relationship with Covering Problems

In many covering problems where we wish to find a cover of minimal cardinal-
ity, we could reduce the number of variables in the integer program by considering
equivalent covers as duplicate variables. However, for OAS, this technique can not
be easily applied. The reason for this is because an optimal adversarial explanation
is not necessarily irredundant (see Definition 2.7, page 24). Consider the follow-
ing. Suppose we wish to find an optimal adversarial strategy of size k. Let P be an
irredundant cover of size k− 1. Suppose there is some element p′ ∈ P that covers
only one observation o′. Hence, there is no p ∈ P−{p′} that covers o′ by the defini-
tion of an irredundant cover. Suppose there is also some p′′ /∈ P that also covers o′.
Now, let m = ∑pi∈P−{p′} consti. In our construction of an example solution to OAS
that is not irredundant, we let const ′ be the value associated with both p′ and p′′.
Consider the scenario where const ′ < m

k−2 . Suppose by way of contradiction that
the optimal irredundant cover is also the optimal adversarial strategy. Then, by the
definition of an optimal adversarial strategy we know that the set P is more optimal
than P∪{p′′}. This would mean that m+const ′

k−1 < m+2·const ′
k . This leads us to infer that

4 Thus, this describes a class of OAS problems that can be solved exactly in polynomial time.



118 4 Geospatial Abduction with Adaptive Adversaries

m < const ′ ·(k−2), which clearly contradicts const ′ < m
k−2 . It is clear that a solution

to OAS need not be irredundant.
However, we do leverage the idea of an irredundant cover in a different exact

approach in this section which may provide a speedup over the exact algorithms
of the previous section. The main intuition is that each OAS solution contains an
irredundant cover, and if we find such a cover, we can build an optimal adversarial
strategy in polynomial time. First, we define a core explanation. Before doing so, we
recall that L is the set of all points in the space S that are feasible and that explain
at least one observation (i.e., is within the [α,β ] distance bounds from at least one
explanation).

Definition 4.15 (Core Explanation). Given an observation set O and set L of pos-
sible partners, an explanation Ecore is a core explanation if and only if for any
pi ∈ Ecore, there does not exist p j ∈ L such that:

1. ∀o ∈ O if o, pi are partners, then o, p j are also partners.
2. const j < consti

We now show that any optimal adversarial strategy contains a subset that is a
core explanation.

Theorem 4.4. If A is an optimal adversarial strategy, there exists a core explana-
tion Ecore ⊆ A .

Proof. CLAIM 1: For any explanation E , there is an explanation E ′ ⊆ E such that
there are no two elements p, p′ ∈ E ′ such that ∀o ∈ O such that o, p are partners,
then o, p′ are also partners.
Consider E . If it does not already have the quality of Claim 1, then by simple induc-
tion, we can remove elements until the resulting set does.
CLAIM 2: If A is an optimal adversarial strategy, there is a no p j ∈ L−A such that
there exists pi ∈ A where const j < consti and ∀o ∈ O such that o, pi are partners,
then o, p j are also partners.
Suppose, by way of contradiction, there is a p j ∈ L−A such that there exists pi ∈A
where const j < consti and ∀o ∈ O such that o, pi are partners, then o, p j are also
partners. Consider the set (A −{pi} ∪ {p j}. This set is still an explanation and
EXDrf(exfd,(A −{pi}∪ p j)< EXDrf(exfd,A )—which would be a contradiction
as A is an optimal adversarial strategy.
CLAIM 3: There is an explanation E ⊆ A such that condition 1 of Definition 4.15
holds.
Consider the set E = {pi ∈ A | 
 ∃p j ∈ A s.t. (const j < consti)∧
(∀o ∈ O s.t. o, pi are partners, then o, p j are also partners)}. By Claim 1, this set
is contained in an OAS. Note that any observation covered by a point in A −E is
covered by a point in E , so E is an explanation. Further, by the definition of E and
Claim 2, this set meets condition 1 of Definition 4.15.
CLAIM 4: Set E from Claim 3 is a core explanation.
By Claim 3, E is a valid explanation and meets condition 1 of Definition 4.15.
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Example 4.11. Continuing from Example 4.10, consider the set A = {p34, p38, p57}
(which would correspond to drug lab locations as planned by the cartel). Later, we
show that this is an optimal adversarial strategy (the expected adversarial detriment
associated with A is 0). Consider the subset p34, p38. As p34 explains observations
o3,o4,o5 and p38 explains observations o1,o2, this set is also an explanation. Obvi-
ously, it is of minimal cardinality. Hence, the set {p34, p38} is a core explanation

of A .

Suppose we have an oracle that, for a given k, O , and exfd returns a core ex-
planation Ecore that is guaranteed to be a subset of the optimal adversarial strategy
associated with k, O , and exfd. The following theorem says we can find the opti-
mal adversarial strategy in polynomial time. The key intuition is that we need not
concern ourselves with covering the observations as Ecore is an explanation. The
algorithm BUILD-STRAT follows from this theorem.

Theorem 4.5. If there is an oracle that for any given k, O , and exfd returns a core
explanation Ecore that is guaranteed to be a subset of the optimal adversarial strat-
egy associated with k, O , and exfd, then we can find an optimal adversarial strategy
in O(Δ · |O| · log(Δ · |O|)+(k−|Ecore|)2) time.

Proof. CLAIM 1: For explanation E and point pi ∈ L − E , EXDrf(exfd,E ) >
EXDrf(exfd,E ∪{pi}) if and only if consti < EXDrf(exfd,E ).
If: Suppose consti <EXDrf(exfd,E ). Let EXDrf(exfd,E )= a

b . Hence, EXD rf(exfd,E ∪
{pi})= a+consti

b+1 . Suppose, by way of contradiction, EXDrf(exfd,E )≤EXD rf(exfd,E ∪
{pi}). Then, a

b ≤ a+consti
b+1 . This give us a · b+ a ≤ a · b+ consti · b, which give us

EXDrf(exfd,E )≤ consti—a contradiction.
Only-if: Suppose EXDrf(exfd,E )> EXDrf(exfd,E ∪{pi}). Let EXDrf(exfd,E ) =
a
b . Hence, a

b > a+consti
b+1 , which proves the claim.

CLAIM 2: For explanation E and points pi, p j ∈ L − E if consti < const j, then
EXDrf(exfd,E ∪{pi})> EXDrf(exfd,E ∪{p j}).
Straightforward algebra similar to Claim 1.
CLAIM 3: Algorithm BUILD-STRAT returns an optimal adversarial strategy.
We know that Ecore must be in the optimal adversarial strategy. Hence, we suppose
BWOC that for the remaining elements there is a better set of elements—cardinality
between 0 and k−|Ecore| such that the expected adversarial detriment is lower. How-
ever, this contradicts Claims 1–2.
CLAIM 4: Algorithm BUILD-STRAT runs in time O(Δ · |O| · log(Δ · |O|)+ (k−
|Ecore|)2).
Sorting the set L−Ecore can be accomplished in O(Δ · |O| · log(Δ · |O|)) time. The
remainder can be accomplished in O((k−|Ecore|)2) time.

We now introduce the notion of δ -core optimal. Intuitively, this is a core expla-
nation of cardinality exactly δ that is optimal w.r.t. expected adversarial detriment
compared to all other core explanations of that cardinality.

Definition 4.16. Given an integer δ > 0, an explanation distribution function exfd,
and a reward function rf, a core explanation Ecore is δ -core optimal if and only if:
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Algorithm 11 BUILD-STRAT
INPUT: Partner list L, core explanation Ecore, natural number k, explanation function distribution
exfd
OUTPUT: Optimal adversarial strategy A

1. If |Ecore|= k, return Ecore
2. Set A = Ecore. Let k′ = |Ecore|
3. Sort the set L−Ecore by consti. Let L′ = {p1, . . . , pk−k′ } be the k− k′ elements of this set with

the lowest values for consti, in ascending order
4. For each pi ∈ L′ let Pi be the set {p1, . . . , pi}
5. For each Pi let Si = ∑ j≤i const j

6. Let ans = minpi∈L′ ({ k′ ·EXDrf
(exfd,Ecore)+Si
k′+i })

7. Let Pans be the Pi associated with ans
8. If ans ≥ EXDrf(exfd,Ecore), return Ecore, else return Ecore ∪Pans

• |Ecore|= δ
• There does not exist another core explanation E ′

core of cardinality exactly δ such
that EXDrf(exfd,E ′

core)< EXDrf(exfd,Ecore)

We now define some subsets of the set L that are guaranteed to contain core
explanations and δ -core optimal explanations as well. In practice, these sets will be
much smaller than L and will be used to create a MILP of reduced size.

Definition 4.17 (Reduced Partner Set). Given observations O and set of possible
partners L, we define the reduced partner set L∗∗ as follows:

L∗∗ = {pi ∈ L| 
 ∃p j ∈ L s.t. (const j < consti)∧ (∀o ∈ O s.t. o, pi are partners,

o, p j are also partners)}

We define L∗ as follows:

L∗ = {pi ∈ L∗∗| 
 ∃p j ∈ L∗∗ s.t. (const j = consti)∧ (∀o ∈ O s.t. o, pi are partners,

o, p j are also partners)}

Lemma 4.1. 1. If explanation E is a core explanation, then E ⊆ L∗∗.
2. If explanation E is δ -core optimal, then E ⊆ L∗∗.
3. If for some natural number δ , there exists an explanation of size δ , then there

exists a δ -core optimal explanation E such that E ⊆ L∗.

Proof. Proof of Part 1:
Suppose, BWOC, E is a core explanation and E 
⊆ L∗∗. Then, there is some element
pi ∈ E ∩ (L−L∗∗). Moreover, by the definition of a core explanation, there does not
exist p j ∈ L such that ∀o ∈O such that o, pi are partners, then o, p j are also partners
and const j < consti. This would also put the element in L∗∗ by the definition of that
set—which is a contradiction.
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Proof of Part 2:
Suppose, BWOC, there exists explanation E such that for some δ , E is δ -core op-
timal and E 
⊆ L∗∗. Then, there exists some pi ∈ E ∩ (L− L∗∗). By the definition
of L∗∗, there exists a p j ∈ L∗∗ such that const j < consti and ∀o ∈ O s.t. o, pi are
partners, then o, p j are also partners. Hence, the set (E −{pi})∪{p j} is also an
explanation of size δ and has a lower expected detriment. From the definition of
δ -core optimal, this is a contradiction.

Proof of Part 3:
Suppose, BWOC, for some δ such that there is an explanation of this size, there
does not exist a δ -core optimal explanation E such that E ⊆ L∗. By the proof of
Part 2, we know that a δ -core optimal explanation must be within L∗∗. Further, by
the definition of L∗, for any point pi ∈ L∗∗ −L∗, there exists point p j ∈ L∗ such that
const j = consti and ∀o ∈ O s.t. o, pi are partners, o, p j are also partners. Hence, for
some δ -core explanation that is not a subset of L∗, any pi ∈ E ∩ (L∗∗ −L∗) can be
replaced by some p j ∈ L∗, and the resulting set is still an explanation, optimal, and
of cardinality δ—a contradiction.

The reduced partner set can be computed in polynomial time. We also note that
under the assumption that |O| � |L|, which we have found to be true in practice, de-
termining the set L∗∗ or L∗ can be accomplished faster (in terms of time complexity)
than solving even a relaxation of the original MILP.

Proposition 4.12. Given set L, set L∗ and L∗∗ can be found in O(|L|2 · |O|2) time.

Proof. Given sets L,O , set L∗∗ can be found with the following steps.

1. For each pi ∈ L, let Oi be the subset of O that can be partnered with pi
2. For each pi ∈ L, let elimi be a boolean variable set to FALSE
3. For each pi ∈ L∗∗, do the following

a. If not elimi
i. For each p j ∈ L∗∗ −{p j}, if O j ⊆ Oi and consti < const j then set elim j =

T RUE

4. Return the set {pi ∈ L|elimi = FALSE}.
Clearly, the correctness of the above procedure follows directly from the definition
of set L∗∗. Further, the complexity of the operation is O(|L|2 · |O|2), as we have
two nested loops, each iterating at most |L| times and a comparison where for some
pi, p j, we examine the elements of Oi,O j. To determine the set L∗, we can simply
adjust line 3(a)i of the above procedure and change the < to a ≤. The correctness
again follows from the definition and the time complexity remains the same.

Example 4.12. Let us continue from Example 4.11. Based on pre-processing and the
computation of consti, we can easily produce the data of Table 4.1 in polynomial
time. Based on this, we obtain a reduced partner set L∗ = {p34, p38, p57}.

Next, the following lemma tells us that an OAS must contain a core explanation
that is δ -core optimal.
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Supported Observations consti = 0 consti = 0.5 consti = 1

o1 p4 − p6, p12 − p16, p22 − p23, p30 − p31 p44
o1,o2 p38 p37, p52 p45, p46
o2 p64, p67 p47
o2,o3 p57
o3 p17 − p19, p24 − p26, p32, p39, p58 − p59
o3,o4 p27 − p28 p33
o4 p1 − p3, p7 − p11, p20 − p21, p29, p51 p50
o3,o4,o5 p34, p53 − p54 p49 p40 − p41
o5 p36, p60 − p66 p35
o4,o5 p42 − p43
o3,o5 p55 p56 p48

Table 4.1 The set L partitioned by consti and supported observations.

Lemma 4.2. Given an optimal adversarial strategy A , there exists some δ ≤ |A |
such that there is a δ -core optimal explanation that is a subset of A (using the crf
reward function).

Proof. By Theorem 4.4, A must contain a core explanation and by Lemma 4.1, any
core explanation must be a subset of L∗∗. Therefore, A ∩L∗∗ is a core explanation.
Let B =A − (A ∩L∗∗) and δ = |A ∩L∗∗|. Suppose A ∩L∗∗ is not δ -core optimal.
Then there is some set Q that is a subset of L∗∗, is disjoint from A ∩L∗∗, and is δ -
core optimal. Note that Q∩B = /0 as Q must be a subset of L∗∗ and B is not. Hence,
since it has a lower expected detriment than A ∩L∗∗ and |Q∪B|= |A |, the set Q∪B
will have a lower expected detriment than A —which is clearly a contradiction as
A is an OAS.

Thus, if we can find the δ -core optimal explanation that is contained in an OAS,
we can then find the OAS. If we know δ , such an explanation can be found using a
MILP. We now present a set of integer-linear constraints to find a δ -core optimal

explanation. Of course we can easily adopt the constraints of the previous section,
but this would offer us no improvement in performance. We therefore create a MILP
that should have a significantly smaller number of variables in most cases.

To create this MILP, we take a given set of possible partners L and calculate the
set L∗—the reduced partner set—which often will have a cardinality much smaller
than L. Next, we use L∗ to form a new set of constraints to find a δ -core optimal
explanation. We now present these δ -core constraints. Notice that the cardinality
requirement in these constraints is “=” and not “≤”. This is because Lemma 4.2
ensures a core explanation that is δ -core optimal, meaning that the core explanation
must have cardinality exactly δ . This also allows us to eliminate variables from the
denominator of the objective function, as the denominator must equal δ as well.

Definition 4.18 (δ -core MILP). Given parameter δ and reduced partner set L∗, we
define the δ -core constraints by first associating a variable Xi with each point pi ∈
L∗, then solving:
Minimize:
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1
δ ∑

pi∈L∗
Xi · consti

subject to:

1. Xi ∈ {0,1}
2. Constraint ∑pi∈L Xi = δ
3. For each o j ∈ O , add constraint

∑pi∈L∗d(o j ,pi)∈[α,β ] Xi ≥ 1

Example 4.13. Using set L∗ from Example 4.12, we can create δ -core constraints as
follows:
Minimize:

1
δ
(X34 · const34 +X38 · const38 +X57 · const57)

subject to:

1. X34,X38,X57 ∈ {0,1}
2. X34 +X38 +X57 = δ
3. X38 ≥ 1 (for observation o1)
4. X38 +X57 ≥ 1 (for observation o2)
5. X34 +X57 ≥ 1 (for observation o3)
6. X34 ≥ 1 (for observations o4,o5)

In the worst case, the set L∗ = L. Hence, we can assert that:

Proposition 4.13. The δ -core constraints require O(Δ · |O|) variables and 1+ |O|
constraints.

Proof. Mirrors proposition 4.6.

Proposition 4.14. Given δ -core constraints:

1. Given set δ -core optimal explanation Ecore = {p1, . . . , pn}, if variables
X1, . . . ,Xn—corresponding with elements in A —are set to 1 and the rest of the
variables are set to 0, the objective function of the constraints will be minimized.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to set
Ecore, then Ecore is a δ -core optimal solution.

Proof. From Lemma 4.1, we know that for any δ such that there exists and expla-
nation of that size, there is a δ -core explanation E that is a subset of L∗. Hence, the
rest of the proof mirrors the proof of Proposition 4.6

We now have all the pieces required to leverage core explanations and reduced
partner sets to find an optimal adversarial strategy. By Theorem 4.11, we know
that any optimal adversarial strategy must have a core explanation. Further, by
Lemma 4.2, such a core explanation is δ -core optimal. Using a (usually) much
smaller mixed integer linear program, we can find such an explanation. We can
then find the optimal adversarial strategy in polynomial time using BUILD STRAT.
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Though we do not know what δ is, we know it must be in the range [1,k]. Fur-
ther, using a relaxation of the OPT-KSEP-IPC constraints for solving geospatial
abduction problems (as presented in Chapter 2; see also[9]), we can easily obtain
a lower bound tighter than 1 on δ . Hence, if we solve k such (most likely small)
mixed-integer-linear programs, we are guaranteed that at least one of them must be
a core explanation for an optimal adversarial strategy. We note that these k MILPs
can be solved in parallel (and the following k instances of BUILD-STRAT can also
be run in parallel as well). An easy comparison of the results of the parallel pro-
cesses would be accomplished at the end. As L∗ is likely to be significantly smaller
than L, this could yield a significant reduction in complexity. Furthermore, various
relaxations of this technique can be used (e.g., only using one value of δ ).

Example 4.14. Continuing from Example 4.13, where the cartel members are at-
tempting to find an OAS to best position drug laboratories, suppose they used the
relaxation of OPT-KSEP-IPC (from Chapter 2 - see also [9]) to obtain a lower
bound on the cardinality of an explanation and found it to be 2. With k = 3, they
would solve two MILPs of the form of Example 4.13—one with δ = 2 and one
with δ = 3. The solution to the first MILP would set X34 and X38 both to 1 while
the second MILP would set X34,X38, and X57 all to 1. As the expected adversarial
detriment for both solutions is 0, they are both optimal and running BUILD-STRAT
is not necessary. Either {p34, p38} or {p34, p38, p57} can be returned as an OAS.

4.4 Finding a Counter-Adversary Strategy

The preceding section explains how an intelligent adversary can try to keep its “part-
ner” locations associated with a given set of observations hidden. To do this, the ad-
versary uses an explanation function distribution—but unfortunately, the agent may
not know what this distribution is. The agent is thus confronted with the problem of
creating a strategy to discover the adversary’s strategy. When attempting to find an
“optimal” strategy for the agent, we first need to understand what benefit each pos-
sible strategy brings to the agent. More formally, we use a special case of expected
reward (Definition 4.2.2 from Section 4.10) defined as the agent’s expected benefit
below.

Definition 4.19 (Expected Agent Benefit). Given a reward function rf and ex-
planation function distribution exfd, the expected agent benefit is the function
EXBrf : 2S ×EFD → [0,1] defined as follows:

EXBrf(B,exfd) = ∑
ex fcn∈EF

rf(ex fcn(O,k),B) ·exfd(ex fcn)

Suppose an agent uses an explanation function distribution exfd to estimate how
the adversary is assigning probabilities to specific explanation functions. EXB rf(B,exfd)
is computed by looking at each explanation function ex fcn, identifying the proba-
bility of ex fcn according to the explanation function distribution, and then finding
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the reward for the counter-adversary strategy B used by the agent if ex fcn were
really the explanation function used. The product of the probability of ex fcn and
the reward to the agent of the counter-adversary strategy B yields an “expected re-
ward” if ex fcn is the actual explanation function—the sum of such products across
all possible explanation functions yields the total expected reward. Thus, this defi-
nition is exactly identical to that of expected adversary detriment—except that we
now consider the agent instead of the adversary.

Example 4.15. Following from Examples 4.1 and 4.6, suppose police detectives
have information (e.g., from a tipster) that the burglar is choosing safe locations ac-
cording to exfddrug. (Such information could also come from multiple runs of the
GREEDY-KSEP-OPT2 algorithm of Chapter 2 (see also [9]). The police detec-
tives wish to consider the set B = {p41, p52}. First, they must calculate the reward
associated with each explanation function (note that k = 3,dist = 100 and rf = crf).

crfdist(ex fcn1(O,3),{p41, p52}) = 0.67
crfdist(ex fcn2(O,3),{p41, p52}) = 0.5

(As an aside, we would like to point out the asymmetry in crf—compare these com-
putations with the results of Example 4.7). Hence, EXBcrf({p41, p52},exfddrug) =
0.634.

We now define a counter-adversary strategy that the agent can use to nullify the
agent’s behavior with maximal effectiveness.

Definition 4.20 (Maximal Counter-Adversary Strategy (MCA)). Given a reward
function rf and explanation function distribution exfd, a maximal counter-adversary

strategy, B, is a subset of S such that EXBrf(B,exfd) is maximized.

Simply put, the maximal counter-adversary strategy is merely any strategy that
yields the highest expected benefit to the agent. Note that in theory, there could
be zero, one, or many potential maximal counter-adversary strategies.

Note that MCA does not include a cardinality constraint. This is because we do
not require reward functions to be monotonic. In the monotonic case, we can triv-
ially return all feasible points in S and be assured of a solution that maximizes
the expected agent benefit. Therefore, for the monotonic case, we include an extra
parameter B ∈ {1, . . . , |S |} (for “budget”) which will serve as a cardinality require-
ment for B. This cardinality requirement for B is not necessarily the same as for
A as the agent and adversary may have different sets of resources. Also, we do
not require that B be an explanation. For a discussion of the special case where
the solution to the MCA problem is required to be an explanation, see the appendix
to [12].
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4.4.1 The Complexity of Finding a Maximal Counter-Adversary
Strategy

In this section, we develop complexity results for finding a maximal counter-
adversary strategy. We start by formally defining the problem of finding a maximal
counter-adversary strategy.

MCA Problem

INPUT: Space S , feasibility predicate feas, real numbers α,β , set of observations
O , natural numbers k,B, reward function rf, and explanation function distribution
exfd.
OUTPUT: Maximal counter-adversary strategy B.

The result below shows that MCA is NP-hard via a reduction of the GCD prob-
lem.

Theorem 4.6. MCA is NP-hard.

Proof. Consider an instance of GCD consisting of set of points P, integer b, and
integer K. We construct an instance of MCA as follows:
CONSTRUCTION:

• Set S to be a grid large enough that all points in P are also points in S . We will
use M,N to denote the length and width of S .

• feas(p) = TRUE if and only if p ∈ P
• α = 0, and β =

√
M2 +N2, O = P, k = K, and B = K

• Let rf(E1,E2) be crf where dist = b.
• Let functions ex fcn1, . . . ,ex fcn|P| be explanation functions, with each ex fcni

corresponding to a unique pi ∈ P. Let ex fcni(O,num) = {pi} for all num > 0.
Note that each pi is an explanation for the set P as it is of cardinality ≤ k, is
feasible, and is guaranteed to be with [α,β ] from all other points in P as [α,β ] =
[0,

√
M2 +N2]

• Let exfd(ex fcni) =
1
|P| for all i.

CLAIM 1: crfdist({pi},B) = 1 if and only if there exists p′ ∈ B such that a disc of
radius b (note b = dist) centered on p′ covers pi. crfdist({pi},B) = 0 if and only if
there does not exist p′ ∈ B such that a disc of radius b centered on p′ covers pi.
Follows directly from the definition of crf.

CLAIM 2: If the expected agent benefit is 1, then for all i, crfdist({pi},B) = 1.
Suppose, by way of contradiction, that the expected agent benefit is 1 and there ex-
ists some pi such that crf dist({pi},B) 
=1. Then, for a singleton set, crf dist({pi},B)=
0. Hence, for the ex fcni associated with pi, crfdist(ex fcni(O),B) = 0. So, by the
definition of expected agent benefit, it is not possible for the expected agent benefit
to be 1—a contradiction.
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CLAIM 3: If MCA returns an optimal counter-adversary strategy with an expected
expected agent benefit of 1, then GCD must also return “yes.”
Suppose, by way of contradiction, MCA returns a strategy with an expected agent
benefit of 1 and the corresponding of GCD returns “no.” Then there does not exist
a K-sized cover for the points in P. However, the set B is of cardinality K and by
Claims 1–2 covers all points in P. Hence, a contradiction.

CLAIM 4: If GCD return ”yes” then MCA must return an optima counter-adversary
strategy with an expected agent benefit of 1.
Suppose, by way of contradiction, GCD returns “yes” and MCA returns a an opti-
mal strategy with an expected agent benefit < 1. However, by the answer to GCD,
there must exist P′ ⊆ P of cardinality k that is within distance b of all points in P.
Hence, for all i, crfdist({pi},B) = 1 (as b = dist). So, the expected agent benefit
must also be 1. Hence, a contradiction.

Proof of theorem: Follows directly from Claims 3–4.

The result below follows immediately from the proof of Theorem 4.6 and shows
that MCA is NP-hard even if the reward function is monotonic.

Corollary 4.2. MCA is NP-hard even if the reward function is monotonic.

Later, in Section 4.4.4, we also show that MCA can encode the NP-hard MAX-
K-COVER problem [6] as well (which provides an alternate proof for NP-hardness
of MCA). We now present the decision problem associated with MCA and show
that it is NP-complete under reasonable conditions.

MCA-DEC

INPUT: Space S , feasibility predicate feas, real numbers α ,β , set of observations
O , natural numbers k,B, reward function rf, explanation function distribution exfd,
and number R ∈ [0,1].
OUTPUT: Counter-adversary strategy B such that EXBrf(B,exfd)≥ R.

The following result says that as long as the reward function can be evaluated in
polynomial time, the MAX-DEC decision problem is NP-complete. We note that all
the example reward functions we have presented in this chapter are all polynomially
computable and hence, the result below applies to them.

Theorem 4.7. MCA-DEC is NP-complete, provided the reward function can be
evaluated in PTIME.

Proof. CLAIM 1: Membership in NP.
Given an explanation, B, we can evaluate it reward and if it is an explanation in
PTIME.

CLAIM 2: MCA-DEC is NP-hard.
Follows directly from Theorem 4.6
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4.4.2 The Complexity of Counting MCA Strategies

Not only is MCA-DEC NP-hard, under the same assumptions as above, the result
below establishes that counting version of the problem is #P-complete. Moreover, it
has no fully polynomial random approximation scheme.

Theorem 4.8. Counting the number of strategies that provide a “yes” answer to
MCA-DEC is #P-complete and has no fully polynomial randomized approximation
scheme (FPRAS for short) unless NP=RP.

Proof. Theorem 4.6 shows a parsimonious reduction from GCD to MCA. Hence,
we can simply apply Lemma 2.1 and the statement follows.

Theorem 4.8 tells us that MCA may not have a unique solution. Therefore, setting
up a mixed strategy across all MCAs to determine the “best response” to the MCA
of an agent by an adversary would be an intractable problem. This mirrors the result
we presented in the preceding section (Theorem 4.3, page 111).

4.4.3 MCA in the General Case: Exact and Approximate
Algorithms

In this section, we first describe an exact algorithm to find a maximal counter-
adversary strategy for the agent. In the case of the IED detection example, for in-
stance, a maximal counter-adversary strategy would correspond to the best places
for US forces to search for IED weapons caches, given the presence of an adversary
who is trying to conceal the locations of his caches. As the results above show, com-
puting MCA is intractable computationally. Therefore, in this chapter, we also de-
velop approximation algorithms that the agent could use to find a maximal counter-
adversary strategy in the general case. Note that throughout this section (as well as
in Section 4.4.4), we assume that the same pre-processing for OAS is used (cf. Sec-
tion 4.3.2). We use the symbol L to refer to the set of all possible partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach to
the MCA problem would simply consider all subsets of L and pick the one which
maximizes the expected agent benefit. Obviously, this approach has a complexity
O(∑|S |

i=0

(|L|
i

)
) and is not practical. This is unsurprising as we showed this to be an

NP-complete problem.
Approximation in the General Case. Despite the impractical time complex-
ity associated with an exact approach, it is possible to approximate MCA with
guarantees—even in the general case. This is due to the fact that when exfd is fixed,
the expected agent benefit is submodular.5

5 Recall that a function f : 2X → R is submodular if and only if for all subsets X1 ⊆ X2 ⊆ X and
for all x /∈ X2, it is the case that f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2).
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Algorithm 12 (MCA-LS)
INPUT: Reward function rf, set O of observations, explanation function distribution exfd, possible
partner set L, real number ε > 0
OUTPUT: Set B ⊂ S

1. Set B∗ = L, for each pi ∈ B∗ let inci = EXBrf({p},exfd)−EXBrf( /0,exfd).
2. Sort the pi’s in B∗ from greatest to least by inci (i.e., p1 is the element with the greatest inci).
3. B = {p1}, B∗ = B∗ −{p1}, cur val = inc1 +EXBrf( /0,exfd), f lag1 = true, i = 2
4. While f lag1

a. new val = cur val + inci
b. If new val > (1+ ε

|L|2 ) · cur val then

i. If EXBrf(B∪{pi},exfd)> (1+ ε
|L|2 ) ·EXBrf(B,exfd) then:

B = B∪{pi}, B∗ = B∗ −{pi}, cur val = EXBrf(B∪{pi},exfd)
c. If new val ≤ (1+ ε

|L|2 ) · cur val or if pi is the last element then
i. j = 1, f lag2 = true, number each p j ∈ B
ii. While f lag2

A. If EXBrf(B−{p j},exfd)> (1+ ε
|L|2 ) ·EXBrf(B,exfd) then:

B = B−{p j}, cur val = EXBrf(B−{p j},exfd)
For each pi ∈ B∗ let inci = EXBrf(B∪{pi},exfd)−EXBrf(B,exfd).
Sort the pi’s in B∗ from greatest to least by inci
i = 0, f lag2 = false

B. Else,
If p j was the last element of B then set f lag1, f lag2 = false
Otherwise, j++

d. i++

5. If EXBrf(L−B,exfd)> EXBrf(B,exfd) then set B = L−B
6. Return B

Theorem 4.9. For a fixed O,k,exfd, the expected agent benefit, EXBrf(B,exfd)
has the following properties:

1. EXBrf(B,exfd) ∈ [0,1]
2. For B ⊆ B′ and some point p ∈ S where p /∈ B′, the following is true:

EXBrf(B∪{p},exfd)−EXB rf(B,exfd)≥EXB rf(B ′∪{p},exfd)−EXB rf(B ′,exfd)

(i.e., expected agent benefit is sub-modular for MCA).

It follows immediately that MCA reduces to the maximization of a submodular
function. We now present the MCA-LS algorithm that leverages this submodularity.

The basic intuition behind MCA-LS is the following.

1. Start with the set of all possible partners (the set L) and for each possible partners
location pi, find the difference of the expected benefit that occurs if we choose
partner pi to put in the agent’s strategy as compared to not putting it in the agent’s
strategy. This value is the “incremental benefit” of adding pi to the agent’s strat-
egy (when the agent’s strategy is empty) and is denoted by inci. This is what
happens in Line 1 of the MCA-LS algorithm.



130 4 Geospatial Abduction with Adaptive Adversaries

2. In Line 2 of the MCA-LS algorithm, we sort L in descending order of the inci
values.

3. In Line 3, we put the pi with the highest inci value into the agent’s strategy and
remove it from consideration.

4. From Line 4 onwards, we execute a loop. In each iteration, we consider the next
possible partner pi from L—this is always the partner with the highest possible
incremental benefit. In Line 4(a), we compute the new value of the agent’s strat-
egy if the incremental value of pi can be directly added to the agent’s strategy
(the sum of the agent’s strategy value plus inci is just an estimate). If this value is
large enough (Line 4(b)), we add it to the agent’s strategy; otherwise we do not
add it.

5. The process is repeated several times until we are done.

We will explain what is meant by “large enough” via an example shortly.
The following two propositions leverage Theorem 4.9 and Theorem 3.4 of [5].

Proposition 4.15. MCA-LS has time complexity of O( 1
ε · |L|3 · F(exfd) · lg(|L|))

where F(exfd) is the time complexity to compute EXBrf(B,exfd) for some set
B ⊆ L.

Proof. We note that one iteration of the algorithm requires O(|L| ·F(exfd)+ |L| ·
lg(|L|)) time. We shall assume that O(|L| ·F(exfd) dominates O(|L| · lg(|L|)). By
Theorem 3.4 of [5], the number of iterations of the algorithm is bounded by O( 1

ε ·
|L|2 · lg(|L|) where F(exfd), hence the statement follows.

The result below now states that MCA-LS is a 1
3 -approximation algorithm for

MCA and thus provides approximation guarantees.

Proposition 4.16. MCA-LS is an ( 1
3 − ε

|L| )-approximation algorithm for MCA.

Proof. By Theorem 4.9, we can be assured that when the “if” statement at line 4c
is TRUE, then there are no further elements in B∗ that will afford an incremental
increase of > (1+ ε

|L|2 ) ·EXBrf(B,exfd), even if the last element is not yet reached.
Hence, we can apply Theorem 3.4 of [5] and the statement follows.

We now return to our burglary example and use it to illustrate the running of our
MCA-LS example.

Example 4.16. Let us consider our running example where law enforcement agents
are attempting to find where a burglar resides in the area depicted in Figure 2.4.
The agents may guess that there are at most k locations where the burglar might
dwell (e.g., home, office, significant other’s house) and they know that these loca-
tions somehow support the burglaries that he carries out (set of observations O).
Furthermore, police assume that the burglar chose his safe locations using some
explanation function distribution exfdburglar (see Example 4.6, page 107).

The law enforcement agents wish to find a maximal counter-adversarial strategy
using the prf reward function (see page 4.2). They decide to use MCA-LS to find
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such a strategy with ε = 0.1. Initially (at line 3), the algorithm selects point p48
(renumbering as p1, note that in this example we shall use pi and inci numbering
based on Example 2.5 rather than what the algorithm uses). Hence, inc40 = 0.208
and cur val = 0.708. As the elements are sorted, the next point to be considered in
the loop at line 4 is p40 which has an incremental increase of 0, so it is not picked.
It then proceeds to point p41, which gives an incremental increase of 0.084 and
is added to B so cur val = 0.792. Point p45 is considered next, which gives an
incremental increase of 0.208 and is picked, so now cur val = 1.0. The algorithm
then considers point p46, which does not afford any incremental increase. After
considering points p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56, and finding they
all give a negative incremental increase (and thus, are not picked), the algorithm
finds that the old incremental increase of the next element, p1, would cause the “if”
statement at line 4c to be true, thus proceeding to the inner loop inside that “if”
statement (line 4(c)iiA). This loop considers if the removal of any picked elements
p48, p41, p45 would cause the expected agent benefit to increase. However, in this
example, if any of the elements are removed, the expected agent benefit decreases.
Hence, the boolean f lag1 is set to false and the algorithm exits the outer loop. The
algorithm then returns the set B = {p48, p41, p45} which is optimal.

4.4.4 Finding a Maximal Counter-Adversary Strategy, the
Monotonic Case

In the previous section we showed a 1
3 approximate solution to MCA can be found

in polynomial time even without any monotonicity restriction. In this section, we
show that under the additional assumptions of monotonicity of reward functions,
we can obtain a better 63% approximation ratio with a faster algorithm. Here, we
also have the additional cardinality requirement of B for the set B (as described
in Section 4.4). We first show that expected agent benefit is monotonic when the
reward function is.

Corollary 4.3. For a fixed O,k,exfd, if the reward function is monotonic, then the
expected agent benefit, EXBrf(B,exfd) is also monotonic.

Proof. The zero-starting aspect of expected agent benefit follows directly from the
definitions of zero-starting and expected agent benefit.

Consider the definition of EXBrf:

EXBrf(B∪{p},exfd)−EXB rf(B,exfd)≥EXB rf(B ′∪{p},exfd)−EXBrf(B′ ,exfd)

As rf is monotonic by the statement, and exfd is fixed, EXBrf is a positive linear
combination of monotonic functions, so the statement follows.
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Algorithm 13 (MCA-GREEDY-MONO)
INPUT: Monotonic reward function rf, set O of observations, real number B > 0, explanation
function distribution exfd, possible partner set L, real number ε > 0
OUTPUT: Set B ⊂ S

1. Initialize B = /0 and B∗ = L
2. For each pi ∈ B∗, set inci = 0
3. Set last val = EXBrf(B,exfd)
4. While |B| ≤ B

a. pbest = null, cur inc = 0
b. For each pi ∈ B∗, do the following

i. If inci < cur inc, break loop and goto line 4c.
ii. Let inci = EXBrf(B∪{p},exfd)− last val
iii. If inci ≥ cur inc then cur inc = inci and pbest = p

c. B = B∪{pbest}, B∗ = B∗ −{pbest}
d. Sort B∗ in descending order by inci.
e. Set last val = EXBrf(B,exfd)

5. Return B

Thus, when we have a monotonic reward function, the MCA problem reduces to
the maximization of a monotonic, normalized6 submodular function with respect to
a uniform matroid7—this is a direct consequence of Theorem 4.9 and Corollary 4.3.
Therefore, we can leverage the result of [7], to develop the MCA-GREEDY-MONO
algorithm below. We improve performance by including “lazy evaluation” using
the intuition that the incremental increase caused by some point p at iteration i
of the algorithm is greater than or equal to the increase caused by that point at a
later iteration. As with MCA-LS, we also sort elements by the incremental increase,
which may allow the algorithm to exit the inner-loop earlier. In most non-trivial
instances of MCA, this additional sorting operation will not affect the complexity
of the algorithm (i.e., under the assumption that the time to compute EXBrf is greater
than lg(|L|), we make this same assumption in MCA-LS as well).

The basic outline of the MCA-GREEDY-MONO algorithm is as follows. As in
the case of MCA-LS, we first assume the agent uses the empty strategy (he hasn’t
decided what to search as yet). We compute the expected benefit to the agent of
using this strategy. We then iteratively add partners to the agent’s strategy till the
agent’s strategy reaches the requisite size B. The key part of the MCA-GREEDY-
MONO algorithm is in how we decide which points to add to the agent’s strategy. In
each iteration of the loop, we consider all remaining members of L and find the one,
which, if added to the agent’s strategy, gives the highest incremental benefit. Thus
member of L then gets added to the agent’s strategy, and the procedure is iteratively
repeated until the agent’s strategy reaches the desired size.

The result below specifies the running time of the MCA-GREEDY-MONO algo-
rithm.

6 As we include zero-starting in our definition of monotonic.
7 In our case, the uniform matroid consists of all subsets of L of size B or fewer.
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Proposition 4.17. The complexity of MCA-GREEDY-MONO is O(B · |L| ·F(exfd))
where F(exfd) is the time complexity to compute EXBrf(B,exfd) for some set B ⊆
L of size B.

Proof. The outer loop at line 4 iterates B times, the inner loop at line 4b iterates
O(|L|) times, and at each inner loop, at line 4(b)ii, the function EXBrf(B,exfd) is
computed with cost F(exfd). There is an additional O(|L| · lg(|L|)) sorting operation
after the inner loop which, under most non-trivial cases, is dominated by the O(|L| ·
F(exfd)) cost of the loop. The statement follows.

The result below shows us that MCA-GREEDY-MONO provides a 0.63 approx-
imation ration for MCA when the reward function is monotonic.

Corollary 4.4. MCA-GREEDY-MONO is an ( e
e−1 )-approximation algorithm for

MCA (when the reward function is monotonic).

Proof. We need a definition of the notion of “incremental increase” in our proof:

Definition 4.21. For a given pi ∈L at some iteration j of the outer loop of GREEDY-
MONO (the loop starting at line 4), the incremental increase, inc( j)

i , is defined as
follows:

inc( j)
i = EXBrf(B( j−1)∪{pi},A )−EXBrf(B( j−1),A )

Where B( j−1) is the set of points in L selected by the algorithm after iteration j−1.

We now continue with the proof of Corollary 4.4.
CLAIM 1: For any given iteration j of GREEDY-MONO and any pi ∈ L, inc( j)

i ≥
inc( j+1)

i
By Definition 4.21, the statement of the proposition is equivalent to the following:

EXBrf(B( j−1)∪{pi},A )−EXBrf(B( j−1),A)≥EXBrf(B( j)∪{pi},A )−EXBrf(B( j),A )

Obviously, as B( j−1) ⊆ B( j), this has to be true by the submodularity of EXBrf, as
proved in Theorem 4.9.

By Claim 1, we can be assured that any point not considered by the inner loop will
not have a greater incremental increase than some point already considered in that
loop. Hence, our algorithm provides the same result as the greedy algorithm of [7].
We know that the results of [7] state that a greedy algorithm for a non-decreasing,
submodularity function F such that F( /0) = 0 is a e

e−1 approximation algorithm for
the associated maximization problem. Theorem 4.9 and Corollary 4.3 show that
these properties hold for finding a maximal counter-adversary strategy when the
reward function is monotonic. Hence, by [7], the statement follows.

In addition to the fact that MCA-GREEDY-MONO is an ( e
e−1 )-approximation

algorithm for MCA, it also provides the best possible approximation ratio unless
P = NP. In particular, the following result shows that there is not other polyno-
mial algorithm that can provide an approximation ration which is strictly better than
( e

e−1 ) unless P = NP. This is done by a reduction of MAX-K-COVER [6].
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Theorem 4.10. MCA-GREEDY-MONO provides the best approximation ratio for
MCA (when the reward function is monotonic) unless P = NP.

Proof. The MAX-K-COVER [6] is defined as follows.
INPUT: Set of elements, S and a family of subsets of S, H = {H1, . . . ,Hmax}, and
positive integer K.
OUTPUT: ≤ K subsets from H such that the union of the subsets covers a maximal
number of elements in S.
In [6], the author proves that for any α ′ < e

e−1 , there is no α ′-approximation algo-
rithm for MAX-K-COVER unless P = NP. We show that an instance of MAX-K-
COVER can be embedded into an instance of MCA where the reward function is
monotonic and zero-starting in PTIME. By showing this, we can leverage the result
of [6] and Corollary 4.4 to prove the statement. We shall define the reward function
srf(A ,B) = 1 if and only if |A ∩B| ≥ 1 and srf(A ,B) = 0 otherwise. Clearly,
this reward function meets all the axioms, is zero-starting, and monotonic. We cre-
ate a space S such that the number of points in S is greater than or equal to |H |.
For each subset in H , we create an observation at some point in the space. We shall
call this set OH and say that oH is the element of OH that corresponds with set
H ∈ H . We set feas(p) = true if and only if p ∈ OH . We set α = 0, β to be equal
to the diagonal of the space, and k = |OH |. Hence, any non-empty subset of OH

is a valid explanation for O . For each x ∈ S, we define explanation function ex fcnx
such that ex fcnx(OH ,k) = {oH ∈OH |x ∈ H}. We define the explanation function
distribution exfd to be a uniform distribution over all ex fcnx explanation functions.
We set the budget B = K. Clearly, this construction can be accomplished in PTIME.
We note that any solution to this instance of MCA must be subset of OH , for if it is
not, we can get rid of the extra elements and have no change to the expected agent
benefit. Hence, each p ∈B will correspond to an element of H , so we shall use the
notation pH to denote a point in the solution that corresponds with some H ∈H (as
each o ∈ OH corresponds with some H ∈ H ).

CLAIM 1: Given a solution B to MCA, the set {H ∈ H |pH ∈ B} is a solution to
MAX-K-COVER.
Clearly, this solution meets the cardinality constraint, as there is exactly one ele-
ment in OH for each element of H and B is a subset of OH . Suppose, by way
of contradiction, there is some other subset of H that covers more elements in S.
Let H ′ be this solution to MAX-K-COVER and B′ be the subset of OH that cor-
responds with it. We note that for some x ∈ S in B′, srf(ex fcnx(OH ,k),B′) = 1 if
and only if there is some H ∈H ′ such that x ∈ H and srf(ex fcnx(OH ,k),B′) = 0
otherwise. Hence, the expected agent benefit is the fraction of elements in S covered
by H ′. If H ′ is the optimal solution to MAX-K-COVER, then B′ must provide a
greater expected agent benefit than B, which is clearly a contradiction.

CLAIM 2: Given a solution H ′ to MAX-K-COVER, the set {oH ∈ OH |H ∈ H ′}
is a solution to MCA.
Again, that the solution meets the cardinality requirement is trivial (mirrors that part
of Claim 1). Suppose, by way of contradiction, there is some set B that provides a
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greater maximum benefit than {oH ∈OH |H ∈H ′}. Let H ′′ = {H ∈H |pH ∈B}.
As with Claim 1, the expected agent benefit for B is equal to the fraction of elements
in S covered by H ′′, which is a contradiction as H ′ is an optimal solution to MAX-
K-COVER.

The following example illustrates how MCA-GREEDY-MONO works.

Example 4.17. Consider the situation from Example 4.16, where the law enforce-
ment agents are attempting to locate the burglar’s places of residence. Suppose they
want to locate these location, but use the crf reward function, which is monotonic
(and hence also zero-starting). They use the cardinality requirement B = 3 in MCA-
GREEDY-MONO. After the first iteration of the loop at Line 4, the algorithm se-
lects point p48 as it affords an incremental increase of 0.417. On the second iter-
ation, it selects point p46, as it also affords an incremental increase of 0.417, so
last val = 0.834. Once p46 is considered, the next point considered is p33, which
had a previous incremental increase (calculated in the first iteration) of 0.25, so the
algorithm can correctly exit the loop to select the final element. On the last itera-
tion of the outer loop, the algorithm selects point p35, which gives an incremental
increase of 0.166. Now the algorithm has a set of cardinality 3, so it exits the outer
loop and returns the set B = {p48, p46, p35}, which provides an expected agent ben-
efit of 1, which is optimal. Note that this would not be an optimal solution for the
scenario in Example 4.16 which uses prf as p35 would incur a penalty (which it
does not when using crf as in this example).

4.5 Implementation and Experiments

In this section, we describe prototype implementations and experiments for solving
the OAS and MCA problems. For OAS, we create a MILP for the crf case and
reduce the number of variables with the techniques we presented in Section 4.3. For
MCA, we implement both the MCA-LS and MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600 processor run-
ning at 2.4GHz with 8GB of memory available, using code written in Java 1.6; all
runs were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM, and made
use of a single core. We also used functionality from the previously-implemented
SCARE software from Chapter 2 to calculate, for example, the set of all possi-
ble partners L and to perform pre-processing (see the discussion in Section 4.3.2,
page 111).

Our experiments are based on 21 months of real-world Improvised Explosive De-
vice (IED) attacks in Baghdad8 (see Chapter 2). The IED attacks in this 25×27 km
region constitute our observations. The data also includes locations of caches associ-
ated with those attacks discovered by US forces. These constitute partner locations.
We used data from the International Medical Corps to define feasibility predicates

8 Attack and cache location data provided by the Institute for the Study of War.
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based on ethnic makeup, location of US bases, and geographic features. We overlaid
a grid of 100m × 100m cells—about the size of a standard US city block. We split
the data into two parts; the first 7 months of data were used as a “training” set to
learn the [α,β ] parameters and the next 14 months of data were used for the obser-
vations. We created an explanation function distribution based on multiple runs of
GREEDY-KSEP-OPT2 algorithm described in Chapter 2.

4.5.1 OAS Implementation

We now present experimental results for the version of OAS, with the crf reward
function, based on the constraints in Definition 4.13 and variable-reduction tech-
niques of Section 4.3.4. First, we discuss promising real-world results for the cal-
culation of the reduced partner set L∗, described in Definition 4.15. Then, we show
that an optimal adversarial strategy can be computed quite tractably using the meth-
ods discussed in Section 4.3.4. Finally, we compare our results to a set of real-world
data, showing a significant decrease in the adversary’s expected detriment across
various parameter settings. Our implementation was written on top of the QSopt9

MILP solver and used 900 lines of Java code.
Reduced Partner Set. As discussed in Section 4.3.2, producing an optimal adver-
sarial strategy for any reward function relies heavily on efficiently solving a (prov-
ably worst-case intractable) integer linear program. The number of integer variables
in these programs is based solely on the size of the partner set L; as such, the ability
to experimentally solve OAS relies heavily on the size of this set.

Our real-world data created a partner set L with cardinality 22,692. We then
applied the method from Definition 4.15 to reduce this original set L to a smaller
subset of possible partners L∗, while retaining the optimality of the final solution.
This simple procedure, while dependent on the explanation function distribution
exfd as well as the cutoff distance for crf, always returned a reduced partner set L∗
with cardinality between 64 and 81. This represents around a 99.6% decrease in the
number of variables required in the subsequent integer linear programs!

Figure 4.4 provides more detailed accuracy and timing results for this reduction.
Most importantly, regardless of parameters chosen, our real-world data is reduced
by orders of magnitude across the board. Of note, we see a slight increase in the
size of the reduced set L∗ as the size of the explanation function distribution exfd
increases. This can be traced back to the strict inequality in Definition 4.17. As
we increase the number of nontrivial explanation functions in exfd, the number of
nonzero constants consti increases. This results in a higher number of candidates
for the intermediary set L∗∗. We see a similar result as we increase the penalizing
cutoff distance. Again, this is a factor of the strict inequality in Definition 4.17 in
conjunction with a higher fraction of nonzero consti constants.

9 http://www2.isye.gatech.edu/˜wcook/qsopt/index.html
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Fig. 4.4 The size of the reduced partner set L∗ (top) and the time required to compute this reduction
(bottom). Regardless of parameters chosen, we see a 99.6% decrease in possible partners—as well
as integer variables in our linear program—in under 3 minutes.

Interestingly, Figure 4.4 shows a slight decrease in the runtime of the reduction
as we increase the penalizing cutoff distance. Initially, this seems counterintuitive;
with more nontrivial constants consti, the construction of the intermediary set L∗∗
requires more work. However, this extra work pays off during the computation of
the final reduced set L∗. In our experiments, the reduction from L to L∗∗ took less
time than the final reduction from L∗∗ to L∗. This is due to frequent short circuiting
in the computation of the right-hand side of the conjunction during L∗∗ creation.
As we increase the penalizing cutoff distance, the size of L∗∗ actually decreases,
resulted in a decrease in the longer computation of L∗. As seen above, this decrease
in L∗∗ did not correspond to a decrease in the size of L∗.

Optimal Adversarial Strategy. Using the set L∗, we now present results to find an
optimal adversarial strategy using δ -core optimal explanations. This is done by min-
imizing the MILP of Section 4.3.4, then feeding this solution into BUILD-STRAT.
Since we do not know the value of δ in advance, we must perform this combined op-
eration multiple times, choosing the best—lowest expected detriment—adversarial
strategy as optimal.
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A note on the lower bound for δ : as shown by [8], finding a minimum-cardinality
explanation is NP-hard. Because of this, it is computationally difficult to find a tight
lower bound for δ . However, this lower bound can be estimated empirically. For
instance, for our set of real-world data from Baghdad, an explanation of cardinal-
ity below 14 has never been returned—even across tens of thousands of runs of
GREEDY-KSEP-OPT2. Building on this strong empirical evidence, the minimum
δ used in our experiments is 14.
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Fig. 4.5 Expected detriment of the optimal adversarial strategy (top) and the runtime of the in-
teger linear program required to produce this strategy in milliseconds (bottom). Note the smooth
decrease toward zero detriment as k increases, corresponding with a near-linear increase in total
runtime.

Figure 4.5 shows both timing and expected detriment results as the size of the
explanation function |exfd| and maximum strategy cardinality k are varied. Note
that a lower expected detriment is better for the adversary, with zero representing no
probability of partner discovery by the reasoning agent. As the adversary is allowed
larger and larger strategies, its expected detriment smoothly decreases toward zero.
Intuitively, as the number of nontrivially-weighted explanation functions in exfd
increases, the expected detriment increases as well. This is a side effect of a larger
|exfd| allowing the reasoning agent to cover a larger swath of partner locations.
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Recall that, as the maximum k increases, we must solve linear programs for each
δ ∈ {klow,k}. This is mirrored in the timing results in Figure 4.5, which assumes
klow = 14. As k increases, we see a near linear increase in the total runtime of the
set of integer programs. Due to the reduced set L∗, we are able to solve dozens of
integer programs in less than 800ms; were we to use the unreduced partner set L, this
would be intractable. Note that the runtime graph includes that of BUILD-STRAT
which always ran in under sixteen milliseconds.
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Fig. 4.6 Expected number of caches found when the adversary uses our strategy instead of the
current state of the art (left - it is better for the adversary if fewer caches are found). Relative im-
provement of the OAS strategy versus the current state of the art (right). We assume the reasoning
agent is using the Spatio-Cultural Abductive Reasoning Engine (SCARE) to provide information
on cache locations.

OAS Performance w.r.t. Real-World Adversarial Strategy. Figure 4.6 compares
the expected number of caches found under the current state of the art—IED cache
locations based on 21 months of real-world data from Baghdad, Iraq—against the
OAS strategy proposed in this paper. We hold the cardinality of the adversary’s
solution (i.e., the number of possible caches) to 14 to match the real-world data. We
assume the reasoning agent uses the Spatial Cultural Abductive Reasoning Engine
(SCARE) introduced in [8] to provide partner locations to these attacks. SCARE is
the state of the art method for finding IED caches.

When tested against real-world adversaries based on real-world Baghdad data,
OAS significantly outperforms what adversaries have done so far in the real-world
(fortunately this is balanced by later experiment results showing that MCA-LS and
MCA-GREEDY-MONO significantly outperform SCARE). The expected number
of caches found by SCARE against an opponent using OAS is significantly lower
than against present day insurgents in Iraq. For instance, while SCARE (using a
cutoff distance of 100 meters) detects 1.6 of the 14 possible caches against a real-
world adversary, it is expected to detect only 0.11 of the caches against an adversary
using OAS. This roughly order of magnitude improvement is seen across all five
cutoff distances, from a minimum of approximately 7x at a cutoff distance of 200m
to a maximum of over 31x at a distance of 500m. Thus, OAS significantly improves
the adversary’s performance.
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4.5.2 MCA Implementation

First, we briefly discuss an implementation of the naive MCA algorithm discussed in
section 4.4.3. Next, we provide promising results for the MCA-LS algorithm using
the prf reward function. Finally, we give results for the MCA-GREEDY-MONO
using the monotonic crf reward function, and qualitatively compare and contrast
the results from both algorithms.
MCA-Naive. The naive, exact solution to MCA—considering all subsets of L with
cardinality kB or more and picking the one which maximizes the expected agent
benefit—is inherently intractable. This approach has a complexity O(

( |L|
kB

)
), and is

made worse by the large magnitude of the set L. In our experimental setup, we typ-
ically saw |L|> 20,000; as such, for even the trivially small kB = 3, we must enu-
merate and rank over a trillion subsets. For any realistic value of kB , this approach
is simply unusable. Luckily, we will see that both MCA-LS and MCA-GREEDY-
MONO provide highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described above, the MCA-LS
algorithm provides (lower-)bounded approximate results in a tractable manner. In-
terestingly, even though MCA-LS is an approximation algorithm, in our experi-
ments on real-world data from Baghdad using the prf reward function, the algo-
rithm returned strategies with an expected benefit of 1.0 on every run. Put simply,
on our practical test data, MCA-LS always completely maximized the expected ben-
efit. This significantly outperforms the lower-bound approximation ratio of 1/3. We
would also like to point out that this is the first implementation (to the best of our
knowledge) of the non-monotonic submodular maximization approximation algo-
rithm of [5].

Since the expected benefit was maximal for every strategy B returned, we move
to analyzing the particular structure of these strategies. Figure 4.7 shows a rela-
tionship between the size |B|, the cutoff distance dist, and the cardinality of the
expectation function distribution |exfd|. Recall that prf penalizes any strategy that
does not completely cover its input set of observations; as such, intuitively, we see
that MCA-LS returns larger strategies as the penalizing cutoff distance decreases.
If the algorithm can cover all possible partners across all expectation functions, it
will not receive any penalty. Still, even when dist is 100m, the algorithm returns
B only roughly twice the size as minimum-sized explanation found by GREEDY-
KSEP-OPT2 (which, based on the analysis of Chapter 2 and [9], is very close to the
minimum possible explanation). As the cutoff dist increases, the algorithm returns
strategies with sizes converging, generally, to a baseline—the smallest-sized expla-
nation found by the algorithm of [9], |E |. This is an intuitive soft lower bound; given
enough leeway from a large distance dist, a single point will cover all expected part-
ners. This is not a strict lower bound in that, given two extremely close observations
with similar expected partners, a single point may sufficiently cover both.

In Figure 4.8, we see results comparing overall computation time to both the
distance dist and the cardinality of exfd. For more strict (i.e., smaller) values of



4.5 Implementation and Experiments 141

0

5

10

15

20

25

30

35

100 150 200 250 300 350 400 450 500

St
ra

te
gy

 S
iz

e

Distance (Penalty Cutoff)

MCA-LS: Strategy Size vs. Distance
min| | = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

100 150 200 250 300 350 400 450 500

St
ra

te
gy

 S
ize

Distance (Penalty Cutoff)

MCA-LS:  Average Strategy Size vs. Distance
min| | = 14, |efd| averaged across {5,10,...,40}

Fig. 4.7 The average size of the strategy recommended by MCA-LS decreases as the distance cut-
off increases. For these experiments, the minimum cardinality for a given explanation E considered
is exfd was 14, which gives us a natural lower bound on the expected size of a strategy. Note the
convergence to this bound at cutoff distances at and above 300 meters.

dist, the algorithm—which, under prf, is penalized for all uncovered observations
across exfd—must spend more time forming a strategy B that minimizes penal-
ization. Similarly, as the distance constraint is loosened, the algorithm completes
more quickly. Finally, an increase in |exfd| results in higher computational cost; as
explained in Proposition 4.15, this is due to an increase in F(exfd), the time com-
plexity of computing EXBrf(B,exfd). Comparing these results to Figure 4.7, we
see that the runtime of MCA-LS is correlated to the size of the returned strategy B.

MCA-GREEDY-MONO. As discussed in Section 4.4.4, MCA-GREEDY-MONO
provides tighter approximation bounds than MCA-LS at the cost of a more restric-
tive (monotonic) reward function. For these experiments, we used the monotonic
reward function crf. Recall that a trivial solution to MCA given a monotonic reward
function is B = L; as such, MCA-GREEDY-MONO uses a budget B to limit the
maximum size |B| � |L|. We varied this parameter B ∈ {1, . . . ,28}.

Figure 4.9 shows the expected benefit EXBrf(B,exfd) increase as the maximum
allowed |B| increases. In general, the expected benefit of B increases as the dis-



142 4 Geospatial Abduction with Adaptive Adversaries

0

20000

40000

60000

80000

100000

120000

140000

100 150 200 250 300 350 400 450 500

Ti
m

e 
(m

s)

Distance (Penalty Cutoff)

MCA-LS: Time vs. Distance
min| | = 14, |efd| = {5,10,...,40}

5

10

15

20

25

30

35

40

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 150 200 250 300 350 400 450 500

Av
er

ag
e 

Ti
m

e 
(m

s)

Distance (Penalty Cutoff)

MCA-LS: Average Time vs. Distance
min| |= 14, |efd| averaged across {5,10,...,40}

Fig. 4.8 The runtime of MCA-LS decreases as the penalizing cutoff distance is relaxed. Note the
relation to Figure 4.7; intuitively, larger recommended strategies tend to take longer to compute.

tance constraint dist is relaxed. However, note the points with B ∈ {3, . . . ,9}; we see
that dist ≤ 100 performs better than dist > 100. We believe this is an artifact of our
real-world data. Finally, as |exfd| increases, the expected benefit of B converges
more slowly to 1.0. This is intuitive, as a wider spread of possible partner positions
will, in general, require a larger |B| to provide coverage.

Figure 4.10 shows that the runtime of MCA-GREEDY-MONO increases as pre-
dicted by Proposition 4.15. In detail, as we linearly increase budget B, we also lin-
early increase the runtime of our F(exfd) = EXBrf(B,exfd). In turn, the over-
all runtime O(B · |L| · F(exfd)) increases quadratically in B, for our specific re-
ward function. Finally, note the increase in runtime as we increase |exfd| = 10 to
|exfd| = 100. Theoretically, this increases F(exfd) linearly; in fact, we see almost
exactly a ten-fold increase in runtime given a ten-fold increase in |exfd|.
MCA Algorithms and SCARE. We now compare the efficacy of the two MCA al-
gorithms proposed in this paper to SCARE [8] which represents the current state of
the art as far as IED cache detection is concerned. Again, our experiments are based
on real-world data from Baghdad, Iraq. For these experiments, we average results
across 100 runs of SCARE; as such, we hold |exfd|= 100 static for the MCA-based
algorithms. Figure 4.11 plots the average number of predicted points within 500
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Fig. 4.9 Expected benefit of the strategy returned by MCA-GREEDY-MONO as the budget in-
creases, with |exfd| = 10 (top) and |exfd| = 100 (bottom). Note the decrease in expected benefit
due to the increase in |exfd|. Similarly, note the increase in expected benefit given a larger cutoff
distance.

meters of an actual cache for both MCA-LS and MCA-GREEDY-MONO. SCARE,
plotted as a horizontal line, predicts an average of 7.87 points within 500 meters
of caches. MCA-LS finds over twice as many points at a low penalizing cutoff dis-
tances, and steadily converges to SCARE’s baseline as the penalizing distance in-
creases (as expected). As shown earlier in Figure 4.7, MCA-LS tends to find larger
strategies given a smaller penalizing cutoff distance; in turn, these larger strategies
yield more close points to actual caches. MCA-GREEDY-MONO shows similar
behavior; as we increase the allowable budget (i.e., maximum strategy size), more
points are within 500 meters of a real-world cache location. Thus, MCA-LS and
MCA-GREEDY-MONO both outperform SCARE, enabling more caches to be dis-
covered.

We note that while the number of points in the strategy close to a real-world
cache location is higher in the MCA-based algorithms than SCARE, the fraction
of close points stays consistently close. SCARE returns a solution of size 14, with
approximately half (7.87/14 ≈ 56%) of these points within 500 meters of cache.
Compare this to, for instance, MCA-LS with a penalizing cutoff distance of 300
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Fig. 4.10 Runtime of MCA-GREEDY-MONO as the budget increases, with |exfd|= 10 (top) and
|exfd|= 100 (bottom). Note the increase in runtime due to the extra determinism of a larger exfd.
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Fig. 4.11 Expected number of points within 500 meters of an actual cache returned by MCA-LS
(left) and MCA-GREEDY-MONO (right) compared against an agent using SCARE (higher is
better). Note that the SCARE software always returns an explanation of size 14, while both MCA
algorithms benefit from the ability to adjust this explanation size.

meters; for these settings, the algorithm returns an average strategy size of 18, with
11 points (approximately 60%) within 500 meters of a cache location. This behavior
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is a product of the strategy size flexibility built into the MCA-based algorithms, and
is beneficial to the reasoning agent. For example, assume the minimal solution to a
problem is of size 2 and the reasoning agent has a budget of size 4. Now assume
SCARE finds 1/2 = 50% of the points near caches, while MCA-GREEDY-MONO
finds 2/4 = 50% of its points near caches. Both algorithms returned the same frac-
tion of points near caches; however, the reasoning agent will spend its budget of 4
resources more effectively under MCA-GREEDY-MONO, instead of wasting 2 of
its resources under the strategy provided by SCARE.

4.6 Conclusion

In this chapter, we recognized that adversaries are not going to sit by passively while
the agent adapts to their behavior. Instead, the adversary is going to adapt its tactics
in response to what the agent does as well. In our IED weapons cache detection
application, for example, US forces observe what the adversary does, and use that
information (using the techniques defined in Chapters 2 and 3) to determine which
regions or locations to search for IED weapons caches. However, the work in those
chapters assume that the adversary does not change his tactics, based on the searches
that US forces carry out (that are very easily visible to them).

This chapter recognizes this reality and describes a mathematical framework,
based on game theory, to determine how the adversary might adapt to his observa-
tions of the agent. We define this problem via notions of reward functions, leading to
the definition of expected adversarial detriment (for the adversary). The adversary
then tries to find a strategy that minimizes the expected adversarial detriment. For
instance, in the case of the IED weapons cache location application, the adversary
wants to find locations that minimize his expected adversarial detriment and, intu-
itively, minimizes the probability that his weapons cache locations will be found.
We study the complexity of this problem and develop both exact and approximation
algorithms to solve them.

The good news, for the agent, is that the adversary must move first. In the IED
weapons cache detection application, the adversary must first decide where to put
his weapons caches. The goal of the agent is to come up with a strategy (which
corresponds to locations to search for weapons caches in the IED weapons cache
detection application) which uncovers a maximal set of IED weapons caches. We
formalize this problem in terms of expected benefit to the agent and find a strategy
that maximizes the agent’s expected benefit.

Our experiments to evaluate both the OAS algorithm to find an optimal adver-
sary strategy and the MCA-Greedy-MONO algorithm to find the maximal counter-
adversary strategy have been tested on real-world data involving IED attacks on US
and Coalition forces in Iraq and have proven to be highly accurate.
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