
Chapter 3

Region-Based Geospatial Abduction

Abstract Given a set O of observations, in the previous chapter, we developed a set
of methods to find sets E of explanations. However, these explanations consisted of
points. When the geospatial resolution of the space S is small, the non-determinism
in our point-based geospatial abduction algorithms is negligible—making many
points more or less “equivalent” as far as being potential partner locations. As such,
users might want to get regions back as output to their geospatial abduction queries.
Moreover, users might want to reason about real-valued points rather than points
that are integer-valued. In this chapter, we develop the theory and algorithms re-
quired for reasoning in the real-valued domain with regions being returned to the
user rather than points.

3.1 Introduction

In Chapter 2, we developed a theory of geospatial abduction in which a set of points
was returned as an answer (or explanation) to the user. For instance, in our IED
cache detection problem, we returned a set of points consisting of potential loca-
tions of IED caches in Baghdad. In our tiger detection problem, we returned sets of
points where a tiger might dwell, given the locations of various kills attributed to
the tiger. In the same vein, in our virus host detection problem, we returned sets of
points where the host of a virus causing a disease such as monkey-pox might con-
ceivably reside. And in our burglar detection problem, the explanations generated by
point-based geospatial abduction identified explanations consisting of points where
a burglar might reside (e.g., his house, his office, his significant other’s house, etc.).

However, when our space S has a fine-grained resolution, many points might
be more or less “equivalent” as far as being potential IED cache locations is con-
cerned. As a consequence, point-based geospatial abduction yields many potential
points that could be included in an explanation, and sometimes, preferring one point
to another is merely a matter of non-deterministic choice, rather than rational pref-
erence of one point over another.

57
DOI 10.1007/978-1-4614-1794-1_3, © Springer Science+Business Media, LLC 2012

, P. Shakarian and V.S. Subrahmanian, Geospatial Abduction: Principles and Practice

58 3 Region-Based Geospatial Abduction

In this chapter, we try to return explanations for geospatial abduction that consist
of sets of regions rather than points so that such non-determinism can be signifi-
cantly reduced. Thus, our definition of an explanation in this chapter returns a set
or regions. Each region in an explanation says a potential IED weapons cache (or
a tiger dwelling, or a region supporting a virus host, or a set of locations corre-
sponding to a burglar’s residence) might be somewhere (i.e., at any point) within the
region.

In addition, in this chapter, we focus on the real-valued domain. While most real-
world GIS systems only use integer-valued coordinates, real-valued coordinates are
interesting both from a theoretical perspective and often from the perspective of
better computation—for example, solving linear constraints over the continuous,
real-valued domain is polynomial, while solving the same linear constraints over
the domain of the integers is well known to be NP-hard.

3.2 Technical Preliminaries

To address the problem of region-based geospatial abduction, we introduce a frame-
work that resembles that of Chapter 2—but differs in several important aspects.
These include the use of a continuous space and multiple types of explanations. In
Chapter 4, we return to the original framework of Chapter 2.

Unlike the previous chapter, we assume the existence of a real-valued M ×N
space S whose elements are pairs of real numbers (rather than integers) from the
set [0,M]× [0,N]. An observation is any member of S —thus, unlike the preceding
chapter, observations are pairs of real values. We use O to denote an arbitrary, but
fixed, finite set of observations. We assume there are real numbers α ≤ β such that
for each observation o , there exists a partner po (to be found) whose distance from
o is in the interval [α,β].1 Without loss of generality, we also assume that all ele-
ments of O are over β distance away from the edge of S . Example 3.1 presents a
neighborhood as a space and locations tiger dwellings.

Figure 3.1. Tiger kills were found by wildlife rangers at points O = {o1, . . . ,o13}.
Tiger conservation experts, on the basis of historical data, suggest that favored tiger
dwellings are located within 5km of these kills (i.e., α = 0 and β = 5km). Note that
in Figure 3.1, circles of radius 5km are drawn around the observation points. The
tiger conservation experts are interested in the locations of such dwellings.

Throughout this chapter, we assume the notion of a distance function d on S
satisfying the usual properties of such distance functions introduced in Chapter 2.
The methods used in this chapter apply to any notion of distance between two points
as long as the three distance axioms described in Chapter 2 are satisfied.

1 Chapter 2 describes methods to learn α,β automatically from historical data.

Example 3.1 (Tiger Example). A tiger in theAchanakamarWildlife Sanctuary (AMWLS)
has made many kills. Suppose the AMWLS sanctuary is the space S depicted in

3.2 Technical Preliminaries 59

We now define a region and how they relate to the set of observations. Our in-
tuition is simple—a region explains an observation if that region contains a partner
point for that observation.

Definition 3.1 (Region / Super-Explanation / Sub-Explanation). A region r is a
subset of S such that for any two points (x,y),(x′,y′) ∈ r, there is sequence a of
line segments from (x,y) to (x′,y′) s.t. no line segment lies outside r.

1. A region r super-explains point o in S iff there exists a point p ∈ r such that
d(o, p) ∈ [α,β].

2. A region r sub-explains some point o in S iff (∀p ∈ r) d(o, p) ∈ [α,β].

Thus, intuitively, a region r as defined above is connected in the sense that one can
travel from any point in a region to any other point in the region without leaving the
region r. In addition, regions can have any shape and may overlap.

Informally speaking, region r super-explains an observation o if and only if there
is at least one partner in region r for the observation o. On the other hand, region
r sub-explains an observation o if and only if every point in the region explains
observation o. Throughout this chapter, we assume that checking if some point o
is sub-explained (super-explained) by region r can be performed in constant (i.e.,
O(1)) time. This is a reasonable assumption for most regular shaped regions like
circles, ellipses and polygons. The following result follows immediately from Defi-
nition 3.1.

Observation 3.2.1 If region r
= /0 sub-explains point o, then r super-explains point
o.

This observation follows immediately from the definitions. If r sub-explains
point o then the distance of every point in r from observation o lies within the inter-
val [α,β]. Thus, as long as r is non-empty, at least one point in r is at a distance d0
from the observation o where do ∈ [α,β].

We would like to explain observations by finding regions containing a partner. In
some applications, the user may be able to easily search the entire region—hence a
super-explaining region would suffice. In other applications, we may want to be sure
that any point within the region can be a partner as not to waste resources—so only
a sub-explanation would make sense in such a case. Often, these situations may
depend on the size of the regions. We shall discuss the issue of restricting region
size later in this section. For now, we shall consider regions of any shape or size.
Example 3.2 shows regions that super- or sub-explain various observations.

Example 3.2. Consider the scenario from Example 3.1 and the regions
R = {ra,rb,rc,rd ,re,r f ,rg} shown in Figure 3.1. Suppose these regions correspond
with feasible regions for the tiger to live in—i.e., places that have the right amount
of ground cover and the right amount of prey for a tiger to consider this to be a
good habitat. Consider region ra. As it totally lies within the α,β distance of o1, it
both sub-explains and super-explains this observation. Conversely, region rd super-
explains both o6 and o7 but sub-explains neither.

60 3 Region-Based Geospatial Abduction

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10

o11

o12

o9

ra

rb

rc

rd

re

rf

rg

Fig. 3.1 Locations of tiger kills and feasible locations {ra,rb,rc,rd ,re,r f ,rg} where the tiger can
potentially dwell. The β distance for each observation is shown with a dashed circle.

This chapter studies following decision problems.

Sub-(Super-) Region Explanation Problem (Sub/Sup-REP)

INPUT: A space S , distance interval [α,β], set O of observations, set R of regions,
and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and for each o ∈O , there is an r ∈ R such that
r sub-(super-) explains o.

The Sub-(Super) Region Explanation Problem asks us to find all sub-explanations
(resp. super-explanations) R of size k or fewer where size is defined as the number
of regions in R which sub-explain (resp. or super-explain) our set of observations O .

The fact that a set R of regions is part of the input is not an assumption, but a
feature. A user might set R to be all the regions associated with S in which case he
is really making no assumption at all. Alternatively, he might use his knowledge of
the application (e.g., IED cache locations or tiger hangouts or virus host information
or burglary-related information) to define regions, taking into account, the terrain
and/or known aspects of the population living in the area of interest. For instance,
when trying to identify regions containing IED caches in Baghdad used for attacks
by Shi’ite groups, he might define regions to be places that are not predominantly
Sunni and that do not contain US bases or bodies of water. On the other hand, in the
tiger detection application, he might define regions to be places where the tiger has
ample ground cover and ample amount of prey to hunt. In the virus host detection
problem, he might decide based on his knowledge of biology and his knowledge of
the geography of the terrain, that certain regions are feasible locations for the virus
host, while others are not. And finally, the St. Paul, MN, police detective might use

3.2 Technical Preliminaries 61

knowledge of the criminal to decide that the criminal could not live in certain areas
(e.g., there was a police chase not known to the geospatial abduction system where
the perpetrator disappear in a reasonably narrow region, allowing the detective to
eliminate other regions from consideration). Other kinds of logical conditions may
be used when dealing with burglaries or drug trafficking.

Thus, the set R of regions allows an analyst to specify any knowledge he has, and
allows the system to benefit from that knowledge. In short, the set R is similar to the
feasibility predicate in Chapter 2 by saying that only regions in R can be returned
as part of the answer by the region-based geospatial abduction system. If no such
knowledge is available, R can be taken to be the set of all regions associated with
S , and thus, allowing the user to specify R as part of the input leads to no loss of
generality; moreover, it allows the user greater flexibility in specifying where the
regions he is looking for could possibly be. R can also be used to restrict the size of
the region (e.g., only considering regions whose area is less than 5 sq. km.).

There are two different associated optimization problems associated with both
the Sub-REP and Sup-REP problems. The first deals with finding a subset of re-
gions of minimal cardinality that explains all observations.

Sub-(Super-)Region Explanation Problem-Minimum Cardinality (Sub/Sup-REP-

MC)

INPUT: A space, S , distance interval [α,β], set of observations O , and set of re-
gions R.
OUTPUT: Set R′ ⊆ R of minimum cardinality, where for each o ∈ O , there is an
r ∈ R s.t. r sub-(super-) explains o.

The Sub/Sup-REP-MC problems therefore support the principles of Occam’s ra-
zor, long present in research on abduction[3, 6]. Only a minimal-sized set of regions
can be returned—no more regions than strictly necessary should be returned.

Our second optimization problem fixes the number of regions returned in the so-
lution, but maximizes the number of observations that are explained.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-REP-

ME)

INPUT: Given a space S , distance interval [α,β], set O of observations, set R of
regions, and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k such that the number of o ∈ O where there is
an r ∈ R s.t. r sub-(super-) explains o is maximized.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-REP-
ME) problems are similar in spirit to the k-SEP problem by requiring that no more
than k regions be returned as the answer by the geospatial abduction system in re-
sponse to a user request. Consider the following example.

Example 3.3. Consider the scenario from Example 3.2. Consider an instance of Sup-
REP with k = 7. The set {ra,rb,rc,rd ,re,r f ,rg} is a solution to this problem. Now

62 3 Region-Based Geospatial Abduction

consider Sup-REP-MC: the set {ra,rc,rd ,re,r f ,rg} is a solution to this problem.
Finally, consider Sup-REP-ME with k = 2. The set {rc,rd} is a solution to this
problem.

We now consider a special case of these problems that arises when the set R of
regions is created by a partition of the space based on the set of observations (O)
and concentric circles of radii α and β drawn around each o ∈ O . We can associate
regions in such a case with subsets of O . For a given subset O ′, we say that there is
an associated set of induced regions (denoted RO ′), defined as follows:

RO ′ = {{x| ∀o ∈ O ′,d(x,o) ∈ [α,β]∧
∀o′ /∈ O ′,d(x,o′) /∈ [α,β]} }

We note that for a given subset of observations, it is possible to have a set of
induced regions, RO ′ that has more than one element. For example, consider set
R /0 = {r1,r12} in Figure 3.2. For a given set of observations O , we will use the
notation RO do denote the set of all induced regions. Formally:

RO =
⋃

O ′∈2O

RO′
= /0

RO ′

We illustrate the idea of induced regions in the following example.

Example 3.4. In order to identify where the tiger resides, tiger conservation experts
may create 33 induced regions in S by drawing circles of 5km radius around all
observations (see Figure 3.2), the set of which is denoted RO = {r1, . . . ,r33}.

r31 r33

r20

r21

r22
r23

r24 r25 r26

r27

r1 r2

r3 r4
r5

r6

r7

r8

r9

r10

r11

r12
r13 r14

r15 r16

r17

r18
r19

r28
r29

r30 r32

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10 o11
o12

o9

r1 r1

Fig. 3.2 Space S and the regions in set RO .

3.2 Technical Preliminaries 63

For the special case where RO is the set of all possible regions of S , we have the
following result.

Lemma 3.1. Suppose O is a set of observations and RO is the set of induced regions.
A region r ∈ RO sub-explains an observation o ∈ O if and only if it super-explains
o.

Proof. CLAIM 1: Any point in a region r ∈ RO is either within distance [α,β] or
outside the distance [α,β] from each o ∈ O .
As RO is created by drawing circles of radii α,β around each observation, the state-
ment follows by the definition of RO .

CLAIM 2: (⇐) There is no r ∈ RO that super-explains some o ∈ O but does not
sub-explain the observation.
Suppose, by way of contradiction, there is some r ∈ RO that super-explains some
o ∈ O but does not sub-explain it. Then, there must be at least one point in r that
can be partnered with O and at least one point in r that cannot be partnered with o.
However, by Claim 1, this is not possible, hence a contradiction.
CLAIM 3: (⇒) There is no r ∈ RO that sub-explains some o ∈O but does not super-
explain the observation.
Follows directly from Observation 3.2.1.

By this result, for the special case of induced regions, we only need one decision
problem.

Induced Region Explanation Problem (I-REP)

INPUT: Given a space, S , distance interval [α ,β], set O of observations, and nat-
ural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ RO , where |R′| ≤ k and for each o ∈ O , there is an r ∈ R s.t. r
sub-explains o.

As mentioned earlier, the sizes of regions can be regulated by our choice of R.
However, we may also explicitly require that all regions must be less than a certain
area. Consider the following variant of Sup-REP.

Area-Constrained Super-Region Explanation Problem (AC-Sup-REP)

INPUT: Given a space, S , distance interval [α,β], set O of observations, set R of
regions, area A, and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and each r ∈ R′ has an area ≤ A and for each
o ∈ O , there is an r ∈ R such that r super-explains o.

The following proposition tells us that AC-Sup-REP is at least as hard as I-REP,
yet no harder than Sup-REP (an analogous result can easily be shown for an area-
constrained version of Sub-REP). We note that essentially, we eliminate the regions
whose area is above area A, which gives us an instance of Sup-REP. To go the other
direction, we directly encode I-REP into an instance of AC-Sup-REP and have A be
larger than the area of any region.

64 3 Region-Based Geospatial Abduction

Theorem 3.1. I-REP is polynomially reducible to AC-Sup-REP.
AC-Sup-REP is polynomially reducible to Sup-REP.

Proof. CLAIM 1: I-REP ≤p AC-Sup-REP.
Set up an instance of AC-Sup-REP with the input for I-REP plus the parameter
A = π · (β 2 −α2). For direction ⇐, note that a solution to this instance of I-REP is
also a solution to AC-Sup-REP, as any region that sub-explain an observation also
super-explains it for the set of region RO (Lemma 3.1) and the fact that, by defini-
tion, all regions in the set RO must have an area less than A. For direction ⇒, we
know that only regions that can be partnered with observations are considered by
the area restriction, and by Lemma 3.1, all regions in the solution are also super-
explanations for their corresponding observation.

CLAIM 2: AC-Sup-REP ≤p Sup-REP.
Consider the set R from AC-Sup-REP and let set R′ = {r ∈ R| the area of r ≤ A}.
Set up an instance of Sup-REP where the set of regions is R′ and the rest is the input
from AC-Sup-REP. For direction ⇐, it is obvious that any solution to AC-Sup-REP
is also a solution to Sup-REP, as R−R′ are all regions that cannot possibly be in the
solution to the instance of AC-Sup-REP. Going the other direction (⇒), we observe
that by the definition of R′, all regions in the result of the instance of Sup-REP meet
all the requirements of the AC-Sup-REP problem.

In the final observation of this section, we note that the set RO can be used as a
“starting point” in determining regions. For instance, supplemental information on
areas that may be restricted from being partnered with an observation may also be
considered and reduce the area of (or eliminate altogether) some regions in the set.
Consider the following example.

Example 3.5. Consider the tiger scenario from Example 3.4. Tiger conservation ex-
perts may eliminate an open meadow in the area and certain other areas with small
amounts of prey from their search. These “restricted areas” are depicted in Fig-
ure 3.3. Note that several regions from Figure 3.2 are either eliminated or have
decreased in size. However, by eliminating these areas, tiger conservation experts
have also pruned some possibilities from their search. For example, regions r9,r13
were totally eliminated from consideration.

3.3 Complexity

In this section, we study the computational complexity of problems related to
region-based geospatial abduction. In particular, we show that Sub-REP, Sup-REP,
and I-REP are NP-Complete and that the associated optimization problems are NP-
Hard. We also show that the optimization problems Sub-REP-MC, Sup-REP-MC,
and I-REP-MC cannot be approximated by a fully polynomial-time approxima-
tion scheme (FPTAS) unless P = NP. In particular, this means that there are no

3.3 Complexity 65

r33

r20

r21

r22
r23 r24 r25 r26

r27

r1 r2

r3
r4

r5

r6

r7

r8

r9

r10

r11
r12 r13

122
r14

r15
r16

r17

r18
r19

r28
r29

r30

r31

r32

o1

o2

o3

o4 o5

o6

o7
o8

o13

o10
o11

o12

o9

r1 r1

Fig. 3.3 A set of regions in S created based on the distance β = 5km as well as restricted areas
(shown in black).

polynomial-time algorithms to approximate these problems with guarantees of ap-
proximation unless P = NP (the latter, of course, is a central unsolved problem in
computer science and it is widely believed that in fact P
= NP). We also note that
the complexity of the area-constrained versions of these problems follows directly
from the results of this section by the reduction of Theorem 3.1 (page 64).

We first prove that I-REP is NP-complete, which then allows us to correctly iden-
tify the complexity classes of the other problems by leveraging Lemma 3.1. First, we
introduce the problem of “circle covering” (CC) that was proven to be NP-complete
in [11].

Circle Covering (CC)
INPUT: A space S ′, set P of points, real number β ′, natural number k′.
OUTPUT: “Yes” if there is a set of points, Q in S ′ such that all points in P are cov-
ered by discs centered on points in Q of radius β ′ where |Q| ≤ k′—“no” otherwise.

The theorem below establishes that I-REP is NP-complete.

Theorem 3.2. I-REP is NP-Complete.

Proof. CLAIM 1: I-REP is in-NP.
Given a set of regions, R′ ⊆ RO we can easily check in polynomial time that for each
o ∈ O there is an r ∈ R that is a partner for o. Simply check if each r falls within the
distance [α,β] for a given o ∈ O . The operation will take time O(|O| · |R′|)—which
is polynomial.

66 3 Region-Based Geospatial Abduction

CLAIM 2: I-REP is strongly NP-hard.
We show that for an instance of the known strongly NP-complete problem, circle
covering (CC), CC ≤p I −REP by the following transformation.

• Set S = S ′
• Set O = P
• Set β = β ′
• Set α = 0
• Set k = k′

This transformation obviously takes polynomial time. We prove correctness with
the following two sub-claims.

CLAIM 2.1: If there is a k-sized solution R′ for I-REP, then there is a corresponding
k′-sized solution for CC.
Consider some r ∈ R′. Let O ′ be the subset of O (also of P) such that all points in
O ′ are partnered with r. By definition, all points enclosed by r are of distance β or
less away from each point in O ′. Hence, we can pick some point enclosed by r and
we have the center of a circle that covers all elements in O ′. The statement follows.

CLAIM 2.2: If there is a k′-sized solution Q for CC, then there is a corresponding
k-sized set solution for I-REP.
Consider some point q ∈ Q. Let P′ be the subset of P (also of O) such that all points
in P′ are of distance β ′ from q. As p is within β of an element of O , it is in some
region of the set RO . Hence, the region that contains p is a partner region for all
elements of P′. The statement follows.

Further, as the optimization version of circle covering is known to have no FP-
TAS unless P = NP [18], by the nature of the construction in Theorem 3.2, we can
be assured of the same result for I-REP-MC.

Corollary 3.1. I-REP-MC cannot be approximated by a fully polynomial-time ap-
proximation scheme (FPTAS) unless P = NP.

Proof. Follows directly from [11] and Theorem 3.2.

So, from the above Theorem and Corollary and Lemma 3.1, we get the following
results:

Corollary 3.2. 1. Sub-REP and Sup-REP are NP-Complete.
2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and I-

REP-ME are NP-Hard.
3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unless P =

NP.

Proof. All follow directly from Lemma 3.1, Theorem 3.2, and Corollary 3.1.

3.4 Algorithms 67

3.4 Algorithms

In this section we devise algorithms to address the optimization problems associ-
ated with Sup-REP, Sub-REP, and I-REP. First, we show that these optimization
problems reduce to either instances of set-cover (for Sub/Sup-REP-MC) or max-
k-cover (for Sub/Sup-REP-ME). These problems are well-studied and there are
algorithms that provide exact and approximate solutions. We then provide a new
greedy-algorithm for Sub/Sup-REP-MC that also provides an approximation guar-
antee. This is followed by a discussion of approximation for I-REP-ME for the case
where α = 0. Finally, we discuss some practical issues dealing with implementation.

3.4.1 Exact and Approximate Solutions by Reduction

In this section we show that the -MC problems introduced earlier in this chapter can
be reduced to set-cover and that the -ME problems can reduce to the well-known
max-k-cover problem. As these problems have been extensively studied in the core
computer science algorithms community, they offer the potential to solve the various
region-based geospatial abduction problems introduced earlier in this chapter. Set
cover has already been introduced earlier on in Chapter 2. We now present max-k-
cover [7], which is often regarded as the dual of set-cover.
Max-k-Cover

INPUT: Set of elements S, family of subsets of S, H = H1, . . . ,Hm, natural number
k ≤ |S|.
OUTPUT: Subset H ′ ⊆ H s.t. |H ′| ≤ k where |⋃Hi∈H ′ Hi ∩S| is maximized.

The key to showing that Sub/Sup-REP optimization problems can reduce to one
of these problems is to determine the family of subsets. We accomplish this as fol-
lows: for each region r ∈ R, we find the subset of O that can be partnered with r. We
shall refer to this set as Or. This gives us the following algorithm for the optimiza-
tion problems (we simply omit the k parameter for the -MC problems that reduce to
Set-Cover):

REDUCE-TO-COVERING(O set of observations, R set of regions, k natural number) returns
instance of covering problem 〈S,H ,k〉
1. For each r ∈ R, find Or (i.e., o is in Or iff r sub/super-explains o)
2. Return 〈O,

⋃
r∈R{Or},k〉

This algorithm is the analog of the naive KSEP algorithm introduced in Chap-
ter 2. It essentially says that we must perform the following steps.

• For each feasible region r ∈ R, find all the observations “supported” by R (de-
pending on whether we are interested in sub/super-explanations, this means we

68 3 Region-Based Geospatial Abduction

want to find all observations in R that are within a distance of [α,β] of at least
one point in R or all points in R). These are the sets Or for each r ∈ R.

• We then return the union of all these sets Or.

It is clear that this algorithm is potentially wasteful, returning regions that can be fed
as input to a set covering problem because any set that “covers” all the sets Or thus
computed yields a potential region that explains the observations. The following
result describes the complexity of this algorithm.

Proposition 3.1. REDUCE-TO-COVERING requires O(|O| · |R|) time.

Proof. Follows directly from Line 1.

The following theorem shows that REDUCE-TO-COVERING correctly re-
duces a Sub/Sup-REP optimization problem to set-cover or max-k-cover as appro-
priate.

Theorem 3.3. Sub/Sup-REP-MC polynomially reduces to Set-Cover and Sub/Sup-
REP-ME polynomially reduces to Max-k-Cover.

Proof. CLAIM 1: Sub/Sup-REP-MC ≤p Set-Cover
Consider the instance of set-cover 〈O,

⋃
r∈R{Or}〉 obtained from

REDUCE-TO-COVERING(O,R).
Let H ′ be a solution to this instance of set-cover. (⇐) If R′ is a solution to the in-
stance of Sub/Sup-REP-MC, then the set

⋃
r∈R′ {Or} is a solution to set-cover. Obvi-

ously, it must cover all elements of O and a smaller solution to set-cover would in-
dicate a smaller R′—a contradiction. (⇒) Given set H ′, let R′′ = {r ∈ R|Or ∈H ′}.
Obviously, R′′ provides a partner for all observations in O . Further, a smaller solu-
tion to Sub/Sup-REP-MC would indicate a smaller H ′ is possible—also a contra-
diction.

CLAIM 2: Sub/Sup-REP-ME ≤p Max-k-Cover
Consider the instance of max-k-cover 〈O,

⋃
r∈R{Or},k〉 obtained from REDUCE-

TO-COVERING(O,R,k). Let H ′ be a solution to this instance of max-k-cover.
(⇐) If R′ is a solution to the instance of Sub/Sup-REP-ME, then the set

⋃
r∈R′ {Or}

is a solution to max-k-cover. Obviously, both have the same cardinality requirement.
Further, if there is a solution to max-k-cover that covers more elements in O , this
would imply a set of regions that can be partnered with more observations in O—
which would be a contradiction. (⇒) Given set H ′, let R′′ = {r ∈ R|Or ∈ H ′}.
Obviously, R′′ meets the cardinality requirement of k. Furthermore, a solution to
Sub/Sup-REP-ME that allows more observations in O to be partnered with a region
would indicate a more optimal solution to max-k-cover—a contradiction.

This result allows us to leverage any exact approach to the above optimization
problems to obtain a solution to an optimization problem associated with Sub/Sup-
REP. A straightforward algorithm for any of the optimization problems would run in
time exponential in |O| or k and consider every |O| or k sized subset of

⋃
r∈R{Or}.

Clearly, this is not practical for real-world applications.

3.4 Algorithms 69

Fortunately, there are several well-known approximation techniques for both
these problems. First, we address the Sub/Sup-REP-ME problems, both of which
reduce to Max-k-Cover. As the Max-k-Cover problem reduces to the maximization
of a submodular function over uniform matroid2, we can leverage the greedy ap-
proximation algorithm of [12] to solve our problem. We do so below.

Formally, an arbitrary function f : X → R from some set X to the reals is sub-
modular if and only if for all X1,X2 ⊆ X , it is the case that if x ∈ X − X2, then
f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2). Figure 3.4 explains the notion of sub-
modularity; an easy way to explain such functions is given via an intuitive example.
Suppose you have a poor man with very few possessions (X1) and a rich man with
many more possessions (X2). Suppose neither possesses a Ferrari car (x). Giving the
poor man the Ferrari would make a greater difference to his net worth (computed
via f as a function of the person’s possessions) than giving it to the rich man.

Fig. 3.4 Example of a submodular function. The addition of an expensive vehicle to a rich man’s
set of possessions would yield a relative increase in net worth far less than the same addition to a
poorer man’s set of possessions.

GREEDY-REP-ME(O set of observations, R set of regions, k natural number) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. Let O ′ = O , set R′ = /0
3. While k
= 0 loop

a. Let the element Or be the member of O s.t. |Or ∩O ′| is maximized.
R′ = R′ ∪ r
O ′ = O ′ − (Or ∩O ′)
k−−

4. Return R′

2 A matroid is a pair (X , I) where X is some set and I is a set of subsets of X (called independent
sets) satisfying the following axioms: (i) /0 ∈ I, (ii) If Y ∈ I and Y ′ ⊆ Y , then Y ′ ∈ I, and (iii) If
Y,Y ′ ∈ I and Y ′ ⊂ Y , then there is an element y ∈ Y such that (Y ′ ∪ {y}) ∈ I.

70 3 Region-Based Geospatial Abduction

The GREEDY-REP-ME algorithm basically starts by finding all the observa-
tions Or covered by each region r ∈ R where R is the set of regions deemed feasible.
In order to find a subset of regions of R of cardinality k or less, the algorithm looks
at all Or’s. It initially adds that r into the answer such that Or ∩ O is maximized,
i.e., in the first iteration of the loop of algorithm GREEDY-REP-ME, it finds an r
such that Or covers the maximal number of observations in O . In this sense, this
algorithm is greedy. This r is added into the solution. As all elements in Or have
now been “covered” by the insertion of r into the solution, we now only consider
elements in O ′ − (Or ∩O ′). The same process is repeated till either O ′ is empty or
the bound k is reached.

Suppose f denotes the maximum number of observations that can be partnered
with a given region. The following result shows an approximation guarantee for our
algorithm.

Proposition 3.2. GREEDY-REP-ME runs in O(k · |R| · f) time and returns a solu-
tion such that the number of observations in O that have a partner region in R′ is
within a factor

(e
e−1

)
of optimal.

Proof. Follows directly from Line 1.

Example 3.6. Consider Example 3.2 (page 59), where the set of regions is R =
{ra,rb,rc,rd ,re,r f ,rg}. Suppose tiger conservationists want to run GREEDY-REP-
ME to solve an instance of Sup-REP-ME associated with this situation with k = 3.
Initially set O ′ = {o1, . . . ,o13}. On the first iteration of the outer loop, it identifies set
Orc = {o2,o3,o4,o9} where the cardinality of Orc ∩O ′ is maximum. Hence, it picks
region rc. The set O ′ = {o1,o5, . . . ,o8,o10, . . .o13}. On the second iteration, it iden-
tifies Ore = {o5,o13}, which intersected with O ′ provides a maximum cardinality,
causing re to be picked. Set O ′ is now {o1,o6, . . . ,o8,o10, . . . ,o12}. On the last itera-
tion, it identifies Org = {o11,o12}, again the maximum cardinality when intersected
with O ′. The element is picked and the solution is rc,re,rg, and the observations
super-explained are {o2,o3,o4,o5,o9,o11,o12,o13}.

Likewise, we can leverage the greedy algorithm for set-cover [26] applied to
Sub/Sup-REP-MC. This algorithm is identical to the GREEDY-REP-ME algorithm
except in Step (3) where the bound of k is eliminated.

GREEDY-REP-MC(O set of observations, R set of regions,) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. Let O ′ = O , set R′ = /0
3. While O ′
= /0 loop

a. Let the element Or be the member of O s.t. |Or ∩O ′| is maximized.
R′ = R′ ∪ r
O ′ = O ′ − (Or ∩O ′)

4. Return R′

3.4 Algorithms 71

The following result provides approximation guarantees on the solution to the
region-based geospatial abduction problem found by the GREEDY-REP-MC algo-
rithm.

Proposition 3.3. GREEDY-REP-MC runs in O(|O| · |R| · f) time and returns a so-
lution whose cardinality is within a factor of 1+ ln(f) of optimal.

Proof. The outer loop of the algorithm iterates no more than |O| times, while the
inner loop iterates no more than |R| times. The time to compare the number of ele-
ments in a set Or is O(f).

The approximation factor of 1+ ln(f) follows directly from [26].

Example 3.7. Consider the scenario from Example 3.6. To explain all points where a
tiger kill has been observed, tiger conservation experts can create an instance of Sup-
REP-MC and use GREEDY-REP-MC. The algorithm proceeds just as GREEDY-
REP-ME in the first three steps (as in Example 3.6), but will continue on until
all observations are super-explained. So, GREEDY-REP-MC proceeds for three
more iterations, selecting r f (Or f = {o8,o10}), rd (Ord = {o6,o7}), and finally ra
(Ora = {o1}). The solution returned is:

{rc,re,rg,r f ,rd ,ra}

We now focus on speeding up the set-cover reduction via the GREEDY-REP-
MC2 algorithm below.

GREEDY-REP-MC2(O set of observations, R set of regions,) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. For each observation o ∈ O , let GRPo = {Or ∈ O|o ∈ Or}
3. For each observation o ∈ O , let RELo = {o′ ∈ O|o′ ∈⋃

Or∈GRPo Or} and let keyo = |RELo|
4. Let O ′ = O , set R′ = /0
5. While O ′
= /0 loop

a. Let o be the element in O where keyo is minimal.
b. Let the element Or be the member of GRPo s.t. |Or ∩O ′| is maximized.
c. If there are more than one set Or that meet the criteria of line 5b, pick the set with the

greatest cardinality.
d. R′ = R′ ∪ r
e. For each o′ ∈ Or ∩O ′, do the following:

i. O ′ = O ′ −o′
ii. For each o′′ ∈ O ′ ∩RELo′ , decrement keyo′′

6. Return R′

In the GREEDY-REP-MC2 algorithm, we proceed as follows.

• For any observation o ∈ O , the set GRPo is the set of all Or where r is a feasible
region (i.e., a member of R) that explains o. Thus, Or is the set of observations Or
that contain o and that are explained by some region r∈ R.

72 3 Region-Based Geospatial Abduction

• RELo is the set of all observations that are contained in sets Or that are found in
the previous step. Thus, if an observation o′ ∈ RELo, there is at least one region
r ∈ R which explains both o and o′.

• keyo is the size of Relo.
• We pick the o such that keyo is minimal, i.e., an o that is “co-explained” as poorly

as possible.
• We then find a region r that explains o and that overlaps the set of observations as

much as possible. Let Or be the set of observations explained by r—if multiple
such r’s exist, pick the one with the highest cardinality.

• Add r to the “current” answer, and eliminate o from O as it no longer needs to be
explained.

• For every observation o′′ ∈ O that is explained already by O , we reduce keyo′′ by
1 as one explanation for it has already been found.

• This loop is repeated until all observations are explained.

In the rest of this section, we use Δ to denote the maximum number of different
regions that can be partnered with a given observation.

Proposition 3.4. GREEDY-REP-MC2 runs in O(Δ · f 2 · |O|+ |O| · ln(|O|) time
and returns a solution whose cardinality is within a factor of 1+ ln(f) of optimal.

Proof. CLAIM 1: GREEDY-REP-MC2 runs in O(Δ · f 2 · |O|+ |O| · ln(|O|) time.
The pre-processing in lines 1-4 can be accomplished in O(Δ +Δ · f) as the size of
each GRPo is bounded by Δ and the size of each RELo is bounded by Δ · f .

The outer loop of the algorithm iterates O times. In each loop, the selection of
the minimal element (line 5a) can be accomplished in constant time by use of a
Fibonacci heap [13] (i.e., storing observations in O ′ organized by the value keyo).
The next lines of the inner loop (lines 5b-5c) can be accomplished in O(Δ) time.
The next line (line 5d) requires O(ln(|O|) time per observation using a Fibonacci
heap. However, we can be assured that, during the entire run of the algorithm, this
operation is only performed |O| times (hence, we add an |O| · ln(|O|)). The final
loop at line 5e occurs after the inner loop and iterates, at most f times. At each
iteration, it considers, at most f ·Δ elements. Hence, the overall complexity is:

O(|O| · (Δ + f 2 ·Δ)
+ |O| · ln(|O|))

The statement of the claim follows.

CLAIM 2: GREEDY-REP-MC2 returns a solution whose cardinality is within a
factor of 1+ ln(f) of optimal.
The proof of this claim resembles the approximation proof of the standard greedy
algorithm for set-cover (see [5] page 1036).

Let r1, . . . ,ri, . . . ,rn be the elements of R′, the solution to GREEDY-REP-MC2,
numbered by the order in which they were selected. For each iteration (of the outer
loop), let set COVi be the subset of observations that are partnered for the first time

3.4 Algorithms 73

with region ri. Note that each element of O is in exactly one COVi. For each o j ∈O ,
we define cost j to be 1

|COVi| where o j ∈ COVi. Let R∗ be an optimal solution to the
instance of Sub/Sup-REP-MC.

CLAIM 2.1: ∑ri∈R∗ ∑o j∈Ori
cost j ≥ |R|

By the definition of cost j, exactly one unit of cost is assigned every time a region is
picked for the solution R. Hence,

COST (R) = |R|= ∑
o j∈O

cost j

The statement of the claim follows.

CLAIM 2.2: For some region r ∈ R, ∑o j∈Or cost j ≤ 1+ ln(f).
Let P be the subset of O that can be partners with p. At each iteration i of the
algorithm, let uncovi be the number elements in P that do not have a partner. Let last
be the smallest number such that uncovlast = 0. Let RP = {ri ∈R|(i≤ last)∧(COVi∩
P
= /0)}. From here on, we shall renumber each element in RP as r1, . . . ,r|RP| by the
order they are picked in the algorithm (i.e., if an element is picked that cannot partner
with anything in P, we ignore it and continue numbering with the next available
number, we will COVi and the iterations of the algorithm as well, but do not re-
define the set based on the new numbering).
We note that for each iteration i, the number of items in P that are partnered is equal
to uncovi−1 −uncovi. Hence,

∑
o j∈Or

cost j =
last

∑
i=1

uncovi−1 −uncovi

|COVi|

At each iteration of the algorithm, let PCOVi be the subset of observations that are
covered for the first time if region p is picked instead of region ri. We note, that
for all iterations in 1, . . . , last, the region p is considered by the algorithm as one
of its options for greedy selection. Therefore, as p is not chosen, we know that
|COVi| ≤ |PCOVi|. Also, by the definition of ucovi, we know that |PCOVi|= ucovi−1.
This gives us:

∑
o j∈Or

cost j ≤
last

∑
i=1

uncovi−1 −uncovi

ucovi−1

Using the algebraic manipulations of [5] (page 1037), we get the following:

∑
o j∈Or

cost j ≤ H|P|

Where Hj is the jth harmonic number. By definition of the symbol f (maximum
number of observations supported by a single partner), we obtain the statement of
the claim.

74 3 Region-Based Geospatial Abduction

(Proof of Claim 2): Combining claims 1–2, we get |R| ≤ ∑ri∈R∗(1+ ln(f)), which
gives us the statement.

While GREEDY-REP-MC2 considers regions in a different order than GREEDY-
REP-MC, it maintains the same approximation ratio. This is because the region (in
set GRPo) that is partnered with the greatest number of uncovered observations is se-
lected at each iteration, allowing us to maintain the approximation guarantee. There
are two selections at each step: the selection of the observation (in which we use a
minimal key value based on related observations) and a greedy selection in the inner
loop. Any selection of observations can be used at each step and the approximation
guarantee is still maintained. This allows for a variety of different heuristics. Fur-
thermore, the use of a data structure such as a Fibonacci Heap allows us to actually
obtain a better time complexity than GREEDY-REP-MC.

Example 3.8. Consider the situation in Example 3.4 where tiger conservation ex-
perts are considering regions RO = {r1, . . . ,r33} that are induced by the set of ob-
servations and wish to solve I-REP-MC using GREEDY-REP-MC. On the first iter-
ation of the loop at line 5, the algorithm picks o8, as keyo8 = 1. The only possible
region to pick is r19, which can only be partnered with o8. There are no observations
related to o8 other than itself, so it proceeds to the next iteration. It then selects o6 as
keyo6 = 2 because RELo6 = {o6,o7}. It then greedily picks r17 which sub-explains
both o6,o7. As all observations related to o6 are now sub-explained, the algorithm
proceeds with the next iteration. The observation with the lowest key value is o5 as
keyo5 = 3 and RELo5 = {o4,o5,o13}. It then greedily picks region r21 which sub-
explains o5,o13. The algorithm then reduces the key value associated with o4 from
4 to 3 and decrements the keys associated with o10,o11,o12 (the un-explained obser-
vations related to o13) also from 4 to 3. In the next iteration, the algorithm picks o9
as keyo9 = 3. It greedily picks r12 which sub-explains o9,o2. It then decreases keyo4
to 2 and also decreases the keys associated with o1 and o3. At the next iteration, it
picks o1 as keyo1 = 2. It greedily selects r4, which sub-explains o1,o3 and decreases
the keyo4 to 1 which causes o4 to be selected next, followed by a greedy selection
of r11—no keys are updated at this iteration. In the final iteration, it selects o10 as
keyo10 = 3. It greedily selects r25, which sub-explains all un-explained observations.
The algorithm terminates and returns {r11,r12,r17,r19,r21,r25}.

3.4.2 Approximation for a Special Case

In Section 3.3, we showed that circle covering is polynomially reducible to I-REP-
MC. Let us consider a special (but natural) case of I-REP-MC where α = 0, i.e.,
there is no minimum distance between an observation and a partner point that caused
it. We shall call this special case I-REP-MCZ. There is a great similarity between
this problem and circle-covering. It is trivial to modify our earlier complexity proof
to obtain the following result.

Corollary 3.3. I-REP-MCZ is polynomially reducible to CC.

3.4 Algorithms 75

Proof. Follows directly from Theorem 3.2.

Furthermore, we can adopt any algorithm that provides a constructive result for
circle covering to provide a result for I-REP-MCZ in polynomial time with the fol-
lowing algorithm. Given any point p, it identifies the set Or associated with the
region that encloses that point.

FIND-REGION(S space,O observation set,β real , p point) returns set Or

1. Set Or = /0
2. For each o ∈ O , if d(p,o)≤ β then Or = Or ∪{o}
3. Return Or .

What FIND-REGION does is initially set Or to the empty set. It then looks at
all observations o ∈ O . If the observation o is within β units or less from point p, it
inserts p into the set Or.

Proposition 3.5. The algorithm FIND-REGION runs in O(|O|) time, and region r
(associated with the returned set Or) contains p.

Proof. PART 1: FIND-REGION consists of a single loop that iterates |O| times.

PART 2: Suppose, the region enclosing point p has a different label. Then, there is
either a bit in label that is incorrectly set to 1 or 0. As only observations which are
at a distance of β or less from p have the associated bit position set to 1, then all 1
bits are correct. As we exhaustively consider all observations, the 0 bits are correct.
Hence, we have a contradiction.

By pre-processing the regions, we can compute Or a priori and simply pick a
region r associated with the output for FIND-REGION. While there may be more
than one such region, any one can be selected as, by definition, they would support
the same observations.

Example 3.9. Paleontologists working in a 30×26km area represented by space S
have located scattered fossils of prehistoric vegetation at O = {o1,o2,o3,o4}. Previ-
ous experience has led the paleontologists to believe that a fossil site will be within
3km of the scattered fossils. In Figure 3.5, the observations are labeled and circles
with radius of 3km are drawn (shown with solid lines). Induced regions r1, . . . ,r6 are
also labeled. As the paleontologists have no additional information, and α = 0, they
can model their problem as an instance of I-REP-MCZ with k = 3. They can solve
this problem by reducing it to an instance of circle-covering. The circle-covering
algorithm returns three points - p1, p2, p3 (marked with an ‘x’ in Figure 3.5). Note
that each point in the solution to circle-covering falls in exactly one region (when
using induced regions). The algorithm FIND-REGION returns the set {o1,o2} for
point p1, which corresponds with region r2. It returns set {o3} for p2, correspond-
ing with r6 and returns set {o4} for p3, corresponding with r5. Hence, the algorithm
returns regions r2,r6,r5, which explains all observations.

76 3 Region-Based Geospatial Abduction

o1

o2

o3

o4

x

x

x

r1

r2

r3
r4

r5

r6

Fig. 3.5 Given the instance of I-REP-MCZ for Example 3.9 as input for circle-covering, a circle-
covering algorithm returns points p1, p2, p3 (points are denoted with an “x”, dashed circles repre-
sent all points within 3km from the point).

Any algorithm that provides a constructive result for CC can provide a construc-
tive result for I-REP-MCZ. Because of this one-to-one mapping between the prob-
lems, we can also be assured that we maintain an approximation ratio of any ap-
proximation technique.

Corollary 3.4. An a−approximation algorithm for CC is an a-approximation for I-
REP-MCZ.

Proof. Follows directly from Theorem 3.2.

This is useful as we can now use approximation algorithms for CC on I-REP-
MCZ. Perhaps the most popular approximation algorithms for CC are based on the
“shifting strategy” [18]. To leverage this strategy, we would divide the space, S ,
into strips of width 2 ·β . The algorithm considers groups of � consecutive strips—�
is called the “shifting parameter.” A local algorithm A is applied to each group of
strips. The union of all solutions is a feasible solution to the problem. The algorithm
then shifts all strips by 2 · β and repeats the process, saving the feasible solution.
This can be done a total of �−1 times, and the algorithm simply picks the feasible
solution with minimal cardinality. In [18], the following lemma is proved (we state
it in terms of I-REP-MCZ—which is done by an application of Corollary 3.4):

Lemma 3.2 (Shifting Lemma [18]). Let aS(A) be the approximation factor of the
shifting strategy applied with local algorithm A and aA be the approximation factor
for the local algorithm. Then:

aS(A) = aA ·
(

1+
1
�

)
.

3.4 Algorithms 77

Furthermore, the shifting strategy can actually be applied twice, solving the local
algorithm in squares of size 2 ·β · �×2 ·β · �. This gives the following result:

aS(S(A)) = aA ·
(

1+
1
�

)2

.

A good survey of results based on the shifting strategy can be found in [8], which
also provides a linear-time algorithm (this result is later generalized by [9] for mul-
tiple dimensions). The following result leverages this for I-REP-MCZ by Corol-
lary 3.4 (and is proved in [9]).

Proposition 3.6. I-REP-MCZ can be solved with an approximation ratio of x ·(
1+ 1

�

)2
in O(K�,ρ · |O|) time. Where p is the maximum number of points in a fi-

nite lattice over a square of side length 2 ·β ·� s.t. each observation in such a square
lies directly on a point in the lattice and x ∈ {3,4,5,6} (and is determined by β , see
[8] for details) and K�,ρ is defined as follows.

K�,ρ = �2 ·
��·√2�2−1

∑
i=1

(
p
i

)
· i

An alternative to the shifting strategy leverages techniques used for the related
problem of geometric dominating set. In [4], the authors present a 1+ε approxima-

tion that runs in O(|O|O(1
ε2 ·lg2(1

ε))) time.

3.4.3 Practical Considerations for Implementation

We now describe some practical implementation issues. Our primary aim is to find
a set of regions that resembles the set of induced regions, RO . There are several
reasons for doing this. One reason is to implement a fast heuristic to deal with I-
REP optimization problems, specifically when α
= 0. Another, is that such a set of
induced regions in the space may be a starting point for creating a set of regions that
may include other data, such as that shown in Example 3.5.

As most GIS systems view space as a set of discrete points, we discretized the
space using the REGION-GEN algorithm below. The parameter g is the spacing of
a square grid that overlays the space.

The result below specifies the running time complexity of the REGION-GEN
algorithm.

Proposition 3.7. REGION-GEN has a time complexity Θ(|O| · π·β 2

g2).

Proof. For any given observation, the number of points in the grid that can be in a
partnered region is π·β 2−α2

g2 . Hence, the first loop of the algorithm and the size of L

are both bounded by |O| · π·β 2

g2 . We note that the lookup and insert operations for the

78 3 Region-Based Geospatial Abduction

REGION-GEN(S space,O observation set,α,β ,g reals) returns set R

1. Overlay a grid of spacing g on space S . With each grid point, p, associate set Op = /0. This
can easily be represented with an array.

2. Initialize list L of pointers to grid-points.
3. For each o ∈ O , identity all grid points within distance [α,β]. For each point p meeting this

criteria, if Op = /0, add p to L. Also, set Op = Op ∪{o}
4. For some subset O ′ ⊂ O , let str(O ′) be a bit string of length |O| where every position corre-

sponding to an element of O ′ is 1 and all other positions are 0.
5. Let T be a hash table of size �|O| · π·β 2

g2 � regions indexed by bit-strings of length |O|
6. For each p ∈ L, do the following:

a. If T [str(Op)] = null then initialize this entry to be a rectangle that encloses point p.
b. Else, expand the region at location T [str(Op)] to be the minimum-enclosing rectangle that

encloses p and region T [str(Op)].

7. Return all entries in T that are not null.

hash table T do not affect the average-case complexity. We assume these operations
take constant time based on [5], hence the statement follows.

Let us return to our paleontology example from Example 3.9.

Example 3.10. Consider the scenario from Example 3.9. Suppose the paleontolo-
gists now want to generate regions using REGION-GEN instead of using induced
regions. The algorithm REGION-GEN overlays a grid on the space in considera-
tion. Using an array representing the space, it records the observations that can be
explained by each grid point (Figure 3.6, top). As it does this, any grid point that can
explain an observation is stored in list L. The algorithm then iterates through list L,
creating entries in a hash table for each subset of observations, enclosing all points
that explain the same observation with a minimally-enclosing rectangle. Figure 3.6
(bottom) shows the resulting regions r1, . . . ,r6.

One advantage to using REGION-GEN is that we already have the observations
that a region super-explains stored—simply consider the bit-string used to index the
region in the hash table. Another thing that can be done, for use in an algorithm
such as GREEDY-MC2, where the regions are organized by what observation they
support, can also be easily done during the running of this algorithm at an additional
cost of f (the number of observations that can be partnered with a given region). This
is done by updating an auxiliary data structure, shown at line 6a.

3.5 Experimental Results

We implemented REGION-GEN and GREEDY-MC2 in approximately 3000 lines
of Java code and conducted several experiments on a Windows-based computer with
an Intel x86 processor. Our goal was to show that solving the optimization problem

3.5 Experimental Results 79

o1

o2

o3

o4

 3

 1 3 3 3 3 3

 1 1 1 1 1 3 3 3 3 3
 1 1 1 1 1 3 3 3 3

 1 1 1 1 1 3 3 3 3 3
 1 1 1 1 1 3 3 3 3 3

 1 1 12 1 1 4 3

 2 12 12 12 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 24 24 4 4

 2 2 2 2 24 4 4 4 4

 2 2 2 2 24 4 4 4 4

 2 4

o1

o2

o3

o4

r1

r2

r3

r4

r5

r6

Fig. 3.6 REGION-GEN applied to the paleontology example (Example 3.9). First, it identifies ob-
servations associated with grid points (top). It then creates minimally-enclosing rectangles around
points that support the same observations (bottom).

Sup-REP-MC would provide useful results in a real-world scenario. We looked at
counter-insurgency data from [38] that included data on improvised-explosive de-
vice attacks in Baghdad and cache sites where insurgents stored weapons. Under
the assumption that the attacks required support of a cache site a certain distance
away, could we use attack data to locate cache sites using an instance of Sup-REP-
MC solved with GREEDY-MC2 using regions created with REGION-GEN? In our
framework, the observations were attacks associated with a cache (which was a part-
ner). The goal was to find relatively small regions that enclosed partners (caches).
We evaluated our approach based on the following criteria:

1. Do the algorithms run in a reasonable amount of time?
2. Does GREEDY-MC2 return regions of a relatively small size?
3. Do the regions returned by GREEDY-MC2 usually contain a partner (cache)?
4. Is the partner (cache) density within regions returned by GREEDY-MC2 signif-

icantly greater than the partner density of the space?

80 3 Region-Based Geospatial Abduction

5. How does the spacing between grid points affect the runtime and accuracy of the
algorithms?

Overall, the experiments indicate that REGION-GEN and GREEDY-MC2 satis-
factorily meet the requirements above. For example, for our trials considering locat-
ing regions with weapons cache sites (partners) in Baghdad given recent IED attacks
(observations), with a grid spacing of g = 100m, the combined (mean) run-time on
a Windows-based laptop was just over 2 seconds. The algorithm produced (mean)
15.54 regions with an average area of 1.838 km2. Each region, on average, enclosed
1.739 cache sites. If it did not contain a cache site, it was (on average) 275m away
from one. The density of caches within returned regions was 8.09 caches/km2—
significantly higher than the overall density for Baghdad of 0.488 caches/km2.

The rest of this section is organized as follows. Section 3.5.1 describes the data
set we used for our tests and experimental set-up. Issue 1 is addressed in Sec-
tion 3.5.2. We shall discuss the area (issue 2) of the regions returned in Section 3.5.3
and follow this with a discussion of issue 3 in Section 3.5.4. We shall discuss issue 4
in Section 3.5.5. Throughout all the sections, we shall describe results for a variety
of different grid spacings, hence addressing issue 5.

3.5.1 Experimental Setup

We used the Map of Special Groups Activity in Iraq available from the Institute
for the Study of War [38]. The map plots over 1000 insurgent activities attributed
to what are termed as “Special Groups”—groups with access to certain advanced
weaponry. This data set—the same one used in Chapter 2—contains events for 21
months between February 2007 and November 2008. The activity types include the
following categories.

1. Attacks with probable links to Special Groups
2. Discoveries of caches containing weapons associated with Special Groups
3. Detainments of suspected Special Groups criminals
4. Precision strikes against Special Groups personnel

We use this data for two geographic areas: the Baghdad urban area and the Sadr
City district. In our experiment, we will view the attacks by the special groups (item
1) as observations and attempt to determine the minimum set of cache sites (item
3), which we shall view as partners. Hence, a region returned by GREEDY-MC2
encloses a partner iff a cache falls within the region.

For distance constraints, we used a simple algorithm to learn the parameter β
(α was set to zero). This was done using the first 7 months of attack data (1

3 of
the available months) and 14 months of cache data. We used the following simple
algorithm, FIND-BETA, to determine these values. Note we set βmax to 2.5km.

We ran the experiments on a Lenovo T400 ThinkPad laptop with a 2.53 GHz
Intel Core 2 Duo T9400 processor and 4GB of RAM. The computer was running
Windows Vista 64-bit Business edition with Service Pack 1 installed.

3.5 Experimental Results 81

Algorithm 10 Determines β value from historical data
FIND-BETA(Oh historical, time-stamped observations,
Eh historical, time-stamped partners,βmax real)

1. Set β = βmax
2. Set Boolean variable f lag to TRUE
3. For each o ∈ Oh, do the following:

a. For each p ∈ Eh that occurs after o, do the following.
i. Let d be the Euclidean distance function.
ii. If f lag, and d(o, p)≤ βmax then set β = d(o, p)
iii. If not f lag, then do the following:

A. If d(o, p)> β and d(o, p)≤ βmax then set β = d(o, p)

4. Return real β

As the relationship between attacks and cache sites may differ varied on terrain,
we ran tests with two different geographic areas. First, we considered the entire
Baghdad urban area. Then, we considered just the Sadr City district. We ran FIND-
BETA with a βmax of 2.5 km on both areas prior to testing the algorithms. There
were 73 observations (attacks) for Baghdad and 40 for Sadr City. Table 3.1 shows
the exact locations and dimensions of the areas considered.

Area Lower-Left Lower-Left E-W N-S
Latitude Longitude Distance Distance

Baghdad 33.200◦ N 44.250◦ E 27 km 25 km
Sadr City 33.345◦ N 44.423◦ E 7 km 7 km

Table 3.1 Locations and dimensions of areas considered

We conducted two types of tests: tests focusing on GREEDY-MC2 and tests
focusing on REGION-GEN.

For the tests of GREEDY-MC2, we used multiple settings for the grid spacing
g. We tested grid spacings at every 10 meter interval in the range of [70,1000] me-
ters, giving a total of 93 different values for g. Due to the fact that REGION-GEN
produces a deterministic result, we ran that algorithm only once per grid setting.
However, we ran 100 trials of GREEDY-MC2 for each parameter g. This was done
for both Baghdad and Sadr City, giving a total of 18,600 experiments.

To study the effects of grid-spacing on the run-time of REGION-GEN, we also
ran 25 trials for each grid spacing setting for both geographic areas, yielding a total
of 4,650 experiments. To compare the algorithms running with different settings for
g in a statistically valid manner, we used ANOVA [14] to determine if the differ-
ences among grid spacings were statistically significant. For some test results, we
conducted linear regression analysis.

82 3 Region-Based Geospatial Abduction

3.5.2 Running Time

Overall, the run times provided by the algorithms were quite reasonable. For exam-
ple, for the Baghdad trials, 73 attacks were considered for an area of 675km2. With
a grid spacing g = 100m, REGION-GEN ran in 2340ms and GREEDY-MC2 took
less than 30ms.

For GREEDY-MC2, we found that run-time generally decreased as g increased.
For Baghdad, the average run times ranged over [1.39,34.47] milliseconds. For Sadr
City, these times ranged over [0.15,4.97] milliseconds. ANOVAs for both Baghdad
and Sadr City run-times gave p-values of 2.2 ·10−16, which suggests with well over
99% probability that the algorithm run with different grid settings will result in
different run times. We also recorded the number of regions considered in each
experiment (resulting from the output of REGION-GEN). Like run-times, we found
that the number of regions considered also decreased as the grid spacing increased.
For Baghdad, the number of considered regions ranged over [88,1011]. For Sadr
City, this number ranged over [25,356]. ANOVAs for both Baghdad and Sadr City
number of considered regions gave p-values of 2.2 ·10−16, which suggests with well
over 99% probability that the algorithm run with different grid settings will result in
different numbers of considered regions. Note that this is unsurprising as REGION-
GEN run deterministically. We noticed that, generally, only grid spacings that were
near the same value would lead to the same number of considered regions.

The most striking aspect of the run time/number of regions considered results for
GREEDY-MC2 is that these two quantities seem closely related (see Figure 3.7).
This most likely results from the fact that the number of regions that can be associ-
ated with a given observation (Δ) increases as the number of regions increases. This
coincides with our analysis of GREEDY-MC2 (see Proposition 3.4).

SADR CITY BAGHDAD

Grid Spacing (m)

Ti
m

e
in

 m
s

/
10

0s
 o

f R
eg

io
ns

0

1

2

3

4

5

6

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Solid Line = Runtime
Dotted Line = Number of Regions

0

5

10

15

20

25

30

35

40

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Fig. 3.7 The run time of GREEDY-MC2 in ms compared with the number of regions considered.

We also studied the average run-times for REGION-GEN for various dif-
ferent settings of the grid space g. For Baghdad, the average run times ranged
over [16.84,9184.72]ms. For Sadr City, these times ranged over [0.64,308.92]ms.
ANOVAs for both Baghdad and Sadr City run-times gave p-values of 2.2 · 10−16,

3.5 Experimental Results 83

which suggests with well over 99% probability that the algorithm run with differ-
ent grid settings will result in different run times. Our analysis of REGION-GEN
(See Proposition 3.7) states that the algorithm runs in time O(1

g2). We found striking
similarities with this analysis and the experimental results (see Figure 3.8).

SADR CITY BAGHDAD

Grid Spacing (m)

Ti
m

e
in

 m
s

Solid Line = Runtime
Dotted Line = Analytical Results

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

50

100

150

200

250

300

350
70 15

0
23

0
31

0
39

0
47

0
55

0
63

0
71

0
79

0
87

0
95

0

Fig. 3.8 A comparison between analytical (O(1
g2)) and experimental results for the run time of

REGION-GEN compared with grid spacing (g).

3.5.3 Area of Returned Regions

In this section, we examine how well the REGION-GEN/GREEDY-MC2 suite of
algorithms address the issue of returning regions that are generally small. Although
not inherently part of the algorithm, our intuition is that the Sup-REP-MC optimiza-
tion problem will generally return small regions based on the set R produced by
REGION-GEN. The reason for this is that we would expect that smaller regions
generally support more observations (note that this is not always true, even for in-
duced regions, but our conjecture is that it is often the case for induced regions or
the output of REGION-GEN).

To define “small” we look at the area of a circle of radius β as a basis for compar-
ison. As different grid settings led to different values for β , we looked at the smallest
areas. For a given trial, we looked at the average area of the returned regions.

For Baghdad, the average areas ranged over [0.611,2.985]km2. For Sadr City,
these times ranged over (0.01,0.576]km2. ANOVAs for both Baghdad and Sadr City
run-times gave p-values of 2.2 ·10−16, which suggests with over a 99% probability
that the algorithm run with different grid settings will result in different average ar-
eas. Plotting the areas compared with the established “minimum area” described ear-
lier in this section clearly shows that REGION-GEN with GREEDY-MC2 produce
solutions with an average area that is about half of this value (refer to Figure 3.9).

84 3 Region-Based Geospatial Abduction

Overall, there seemed to be little relation between grid spacing and average area
of the returned set of regions—based on grid spacings in [70,1000]m. As an ex-
ample, we provide screenshots of GREEDY-MC2 for g = 100 and g = 1000 (Fig-
ure 3.10). Anecdotally, we noticed that larger grid spacing led to more “pinpoint”
regions—regions encompassing only one point in the grid (and viewed as having an
area of 0). This is most likely due to the fact that overlaps in the circles around ob-
servations points would overlap on fewer grid points for larger values of g. Another
factor is that different settings for g led to some variation of the value β—which
also affects accuracy (note for our analysis we considered only the smallest values
of β as an upper bound for the area (see Figure 3.9).

0

1

2

3

4

5

6

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

SADR CITY BAGHDAD

Grid Spacing (m)

A
vg

 A
re

a
pe

r
Re

gi
on

 (k
m

2)

maximum maximum

Fig. 3.9 Average areas for solutions provided by REGION-GEN with GREEDY-MC2 for Bagh-
dad and Sadr City.

3.5.4 Regions that Contain Caches

In this section we discuss the issue of ensuring that most of the returned regions
enclose at least one partner (cache in the case of our experiments). One measure
of this aspect is to look at the average number of caches enclosed per region in a
given result. We found that for Baghdad, we generally enclosed more than 1 cache
per region in a given result—this number was in the range [0.764,3.25]. The results
for Sadr City were considerably lower—in the range [0,0.322]. ANOVAs for both
Baghdad and Sadr City gave p-values of 2.2 ·10−16, which suggests with over a 99%
probability that the algorithm run with different grid settings will result in different
average number of enclosed caches. However, we did not observe an obvious trend
in the data (see Figure 3.11).

As an alternative metric, we look at the number of regions provided by GREEDY-
MC2 that contain at least one partner. Figure 3.13 shows the number of regions re-
turned in the output. For Baghdad, generally fewer than half the regions in the output
will enclose a cache—the number of enclosing regions was in [1,8], while the total
number of regions was in [10.49,22]. This result, along with the average number

3.5 Experimental Results 85

++
+
+

++ ++

++

++
++

++
++

g= 100 m

g= 1000 m

Fig. 3.10 Results from two runs of GREEDY-MC2 - g = 100m (top), g = 1000m (bottom).
Pinpoint-regions are denoted with plus-signs. Notice that the average areas of the results are com-
parable.

of caches enclosed by a region, may indicate that while sometimes GREEDY-MC2
may find regions that enclose many caches, there are often regions that enclose no
caches as well. This may indicate that for Baghdad, some attacks-cache relation-
ships conform to our model and others do not. Perhaps there is another discrimi-
nating attribute about the attacks not present in the data that may account for this
phenomenon. For example, perhaps some attacks were performed by some group
that had the capability to store weapons in a cache located further outside the city,
or perhaps some groups had the capability to conduct attacks using cache sites that
were never found. We illustrate this phenomenon with an example output in Fig-

86 3 Region-Based Geospatial Abduction

SADR CITY BAGHDAD

Grid Spacing (m)

A
vg

 C
ac

he
s

En
cl

os
ed

 P
er

 R
eg

io
n

0

0.5

1

1.5

2

2.5

3

3.5

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Fig. 3.11 Average caches enclosed per region for Baghdad and Sadr City for various grid-spacing
settings.

ure 3.12. Note that in the figure, regions A–E do not contain any cache sites while
regions G–I all contain numerous cache sites.

C CC CC CC
CC
CC CC CC CC

C
CC CC

CC CC CC CC C C C CC

CC C C C C
C C C C C C CC

CC

CC

CC CC
CC CC

CC
CC C CC CC

C C C
C C

CC
CC

CC
CC CC CC

C
C

C C CC CC
C C

CC CC
CC

CC CC CC CC
CC

CC CC C C C C
C C C

C C CC CC C C
C CC
CC C

C
C
C C

C C CC
CC C

CC

CC
CC
CC CC CC CC CC CC

CC CC

C
C C C CC

CC CC
CC
CC

CC
C

CC CC CC
CC

CC CC CC CC
C

C
CC
CC CC

CC
CC CC CC CC CC

CC
CC
CC CC

CC
CC

CC

CC CC C
C C C C C CC

CC CC C
C C C C CC CC CC

CC CC CC CC CC CC
CC

CC
C C CC

+

C
CC C

C

C

C
CCCC

CC
CC

C

C CC
CC

CCC
CC CC

CC
C

++
++

A

B

C

D

E

F

G

H

I

J

Fig. 3.12 The output of GREEDY-MC2 for Baghdad with g = 100m compared with the locations
of actual cache sites (denoted with a “C”). Notice that regions A–E do not contain any cache sites
while regions G–I all contain numerous cache sites.

For Sadr City, the number of caches that contain one cache was significantly
lower—in the range [0,2]—while the total number of returned regions was in
[3,9.8]. ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16,
which suggests with well over 99% probability that the algorithm, run with dif-
ferent grid settings, will result in different number of regions that enclose a cache
location.

We believe that the low numbers for caches enclosed by regions for Sadr City
were directly related to the smaller areas of regions. However, the mean of the aver-
age area of a returned set of regions was 0 for 49 of the 94 different grid settings (for
Sadr City). This means that for the majority of grid settings, the solution consisted
only of pinpoint regions (see Section 3.5.3 for a description of pinpoint regions).

3.5 Experimental Results 87

SADR CITY BAGHDAD

Grid Spacing (m)

N
um

be
r

of
 R

eg
io

ns

Solid Line = Avg. number of regions enclosing at least one cache
Dotted Line = Average total regions

0

2

4

6

8

10

12

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

0

5

10

15

20

25

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Fig. 3.13 Regions in the output that enclose at least one partner (cache) and total number of
regions returned for Baghdad and Sadr City.

Obviously, it is unlikely for a pinpoint region to contain a cache site merely
due to its infinitesimally small area. To better account for this issue, we develop
another metric: distance to nearest cache. If a region contains a cache, the value
for this metric is 0. Otherwise, it is the distance to the closest cache outside
of the region. For Baghdad, we obtained distances in [0.246,0.712]km, for Sadr
City, [0.080,0.712]km. ANOVAs for both Baghdad and Sadr City gave p-values of
2.2 · 10−16, which suggests with well over 99% probability that the algorithm run
with different grid settings will result in different distances to the nearest cache.
Using linear regression, we observed that this distance increases as grid spacing in-
creases. For Baghdad, we obtained R2 = 0.2396 and R2 = 0.2688 for Sadr City. See
Figure 3.14 for experimental results and the results of the liner regression analysis.

SADR CITY BAGHDAD

Grid Spacing (m) D
is

ta
nc

e
to

 N
ea

re
st

 C
ac

he
 O

ut
si

de
 R

eg
io

n

Solid Line = Avg. Distance
Dotted Line = Linear Regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Fig. 3.14 Distance to nearest cache versus grid spacing (in meters).

88 3 Region-Based Geospatial Abduction

3.5.5 Partner Density

To consider the density of partners in the regions, we compare the number of en-
closed partners to the overall partner density of the area in question. For Bagh-
dad, there were 303 caches in an area measuring 27× 24km, giving a density of
0.488 caches/km2. For Sadr City, there were 64 caches in an area of 7× 7km, giv-
ing a density of 1.306 caches/km2. In our experiments, we looked at the cache
density for each output. For Baghdad, the density was significantly higher, rang-
ing in [0.831,34.9] cache/km2. If we consider g ∈ [70,200], the density is between
[7.19,32.9] cache/km2. For g = 100, the density was 8.09 caches/km2. Most likely
due to the issue of pinpoint regions described in Section 3.5.3, the results for Sadr
City were often lower than the overall density (in [0,31.3] cache/km2). For g = 100,
the density was 2.08 caches/km2. We illustrate these results compared with overall
cache density in Figure 3.15.

SADR CITY BAGHDAD

Grid Spacing (m)

Ca
ch

es
 p

er
 k

m
2

Dotted line = Linear regression
Dashed Line = Overall cache density

Solid Line = Cache density in returned regions

0

5

10

15

20

25

30

35

40

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

5

10

15

20

25

30

35

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

Fig. 3.15 Cache density of outputs produced by GREEDY-MC2 for Baghdad and Sadr City com-
pared with overall cache density and linear-regression analysis.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which
suggests with well over 99% probability that the algorithm run with different grid
settings will result in different cache densities. Using linear regression, we observed
that this cache density decreases as grid spacing increases. For Baghdad, we ob-
tained R2 = 0.1614 and R2 = 0.1395 for Sadr City. See Figure 3.15 for experimental
results and the results of the linear regression analysis.

Although partner density is a useful metric, it does not tell us anything about
partners that lie close to a region, although still outside. For example, consider Fig-
ure 3.12. Although region A does not enclose any caches, there is a cache just out-
side. Region B is similar. Also consider the cluster of caches south of region E
and north of region J—in this situation it appears as though GREEDY-MC2 mis-
positioned a region. We include a close-up of region F in Figure 3.16, which en-
closes a cache, but there are also 4 other caches at a distance of 250m or less.

In order to account for such phenomena, we created an area-quadrupling metric—
that is we uniformly double the sides of each region in the output. Then, we cal-

3.6 Conclusion 89

CC

C

C
C

CC
C
C

CC

CC
CC CC

C
C

F

Fig. 3.16 Close-up of region F from Figure 3.12. While region F contains 1 cache, there are 4 other
caches < 250m from the boundary of that region. The area-quadrupling metric helps us account
for such scenarios.

culated the density of the output with area-quadrupled regions. For Baghdad, this
density was in [0.842,30.3] caches/km2. For Sadr City, this density was in [0,12.3]
caches/km2. These results are depicted in Figure 3.17.

As the regions for Sadr City were often smaller than those in Baghdad, we found
that the cache density for area-quadrupled regions was often higher for Sadr City
(i.e., a region in Sadr City would have nearby cache sites). An example is shown in
Figure 3.16.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which
suggests with well over 99% probability that the algorithm run with different grid
settings will result in different cache densities for area-quadrupled regions. We
also conducted linear regression analysis, and, like the normal partner density, we
found that cache density decreases as grid spacing increases. However, this lin-
ear analysis was more closely correlated with the data than the analysis for non-
area-quadrupled density. For Baghdad, we obtained R2 = 0.3171 (for non-area-
quadrupled, we obtained R2 = 0.1614) and R2 = 0.3983 (for non-area-quadrupled,
we obtained R2 = 0.1395) for Sadr City. See Figure 3.17 for experimental results
and the results of the liner regression analysis.

3.6 Conclusion

In Chapter 2, we developed a formulation of the geospatial abduction problem that
assumed that:

• Space was discretized into integer-valued coordinates and handled in a discretized
manner as is the case with most real-world GISs; and

• The user desires a set of points coming back to him as an explanation.

90 3 Region-Based Geospatial Abduction

SADR CITY BAGHDAD

Grid Spacing (m)

Ca
ch

es
 p

er
 k

m
2

Solid Line = Cache density in quadruple-size regions
Dotted Line = Linear regression

0

5

10

15

20

25

30

35

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

2

4

6

8

10

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

Fig. 3.17 Area quadrupled cache density of output produced by GREEDY-MC2 with linear-
regression analysis.

In contrast, in this chapter, we have developed a formalism that:

• Treats space as a continuous two-dimensional set as in this real world (but unlike
the way most GIS systems on the market treat space); and

• Returned a set of regions to the user.

Returning a set of regions to the user can be highly actionable because each re-
gion deemed feasible (and represented as region r ∈ R) may be just large enough so
the entity interested in geospatial abduction can act upon the results. For instance,
a US military commander looking for weapons caches may know that he cannot
search certain regions (for one reason or another). Then he may specify the set R
in the input to the region-based geospatial abduction problem to ignore such un-
searchable regions. In this chapter, R operates much like a feasibility predicate in
Chapter 2. However, it goes further in two ways: first, it can be used to specify
that regions (as opposed to points) can be feasible or infeasible, and second, it can
be used to regulate the sizes of the regions that an analyst may want to find. The
system would return regions that he can search (i.e., members of R) that offer the
best probability of finding a weapons cache. Likewise, in the virus host location de-
tection problem, a public health analyst may set R to consist of only some regions
(e.g., a public health expert looking at monkey pox in Rwanda may know that he
cannot cross into neighboring countries like Uganda or the Democratic Republic of
Congo to eradicate virus hosts). In this case, he may choose only regions r ∈ R that
are within Rwanda and ask the region-based geospatial abduction system to find the
best regions in Rwanda for him to target for public health interventions even though
there may be better regions in Uganda or the Democratic Republic of Congo for
him to target with public health interventions.

Thus far, in Chapter 2 and Chapter 3, we have assumed that the adversary is non-
chalant and is ignoring our efforts to locate it. This may be reasonable in the case
of the virus host detection problem where perhaps mosquitoes and ticks do not have
the cognitive capabilities to outwit us. But it is 100% certain that insurgents and
terrorists, burglars and other criminals, and even the innocent, but much maligned

References 91

tiger, have the cognitive capabilities to see what we are doing and adjust their strat-
egy to attempt to outwit us. Tigers are likely to move away from areas of human
intervention, just as insurgents in war zones track what we do and react in ways
intended to outwit us. This is the focus of the next chapter.

References

1. Alpaydin, E.: 2010. Introduction to Machine Learning. MIT Press, 2 edition, 2010.
2. Brantingham, P., Brantingham, P.: 2008. Crime Pattern Theory. In Enviromental Criminology

and Crime Analysis, R. Wortley and L. Mazerolle, Eds., pages 78–93.
3. , Bylander, T., Allemang, D., Tanner, M., Josephson, J.R.: 1991. The Computational Com-

plexity of Abduction, Artificial Intelligence.
4. Liao, C., Hu, S.: 2009. Polynomial time approximation schemes for minimum disk cover

problems, Journal of Combinatorial Optimization.
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: 2001. Introduction to Algorithms.

MIT Press, second edition, 2001.
6. Eiter, T., Gottlob, G.: 1995. The complexity of logic-based abduction, J. ACM, 42, 1, pages

3–42.
7. Feige, U.: 1998. A threshold of ln n for approximating set cover, J. ACM, 45, 4, pages 634–

652.
8. Franceschetti, M., Cook, M., Bruck, J.: 2004. A Geometric Theorem for Network Design,

IEEE Transactions on Computers, 53, 4, pages 483–489.
9. Fu, B, Chen, Z., Abdelguerfi, M.: 2007. An Almost Linear Time 2.8334-Approximation Al-

gorithm for the Disc Covering Problem, AAIM ’07: Proceedings of the 3rd international con-
ference on Algorithmic Aspects in Information and Management, pages 317–326, Springer-
Verlag.

10. Hochbaum,D.S.,Maass, W.: 1985. Approximation schemes for covering and packing prob-
lems in image processing and VLSI, J. ACM, 32, pages 130–136.

11. Megiddo, N., Supowit,K.J.: 1984. On the Complexity of Some Common Geometric Location
Problems, SIAM Journal of Computing, 13, 1, pages 182–196.

12. , Nemhauser, G. L., Wolsey, L. A., Fisher, M.L.: 1978. An analysis of approximations for
maximizing submodular set functions I, Mathematical Programming, 14, 1, pages 265–294.

13. Fredman, M.L., Tarjan, R.E.: 1987. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

14. Freedman, D., Purves, R., Pisani, R.: 2007. Statistics. W.W. Norton and Co., 4 edition.
15. Garey, M.R., Johnson, D.S.: 1979. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA.
16. Hochbaum, D.S.: 1982. Approximation Algorithms for the Set Covering and Vertex Cover

Problems. SIAM Journal on Computing, 11(3):555–556.
17. Hochbaum, D.S.: 1997. Approximation Algorithms for NP-Complete Problems. PWS Pub-

lishing Co., 1997.
18. Hochbaum, D.S., Maass, W.: 1985 Approximation schemes for covering and packing prob-

lems in image processing and vlsi. Journal of the ACM, 32:130–136.
19. Jia, L., Rajaraman, R. Suel, T.: 2002. An efficient distributed algorithm for constructing small

dominating sets. Distrib. Comput., 15(4):193–205.
20. Johnson, D.S.: 1982. The np-completeness column: An ongoing guide. Journal of Algo-

rithms, 3(2):182–195, 1982.
21. Karp, R.: 1972. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.

Thatcher, editors, Complexity of Computer Computations, page 85-103.
22. Kuhn, F., Wattenhofer, R.: 2003. Constant-time distributed dominating set approximation. In

In Proc. of the 22 nd ACM Symposium on the Principles of Distributed Computing (PODC,
pages 25–32.

92 3 Region-Based Geospatial Abduction

23. Lu, J., Nerode, A., Subrahmanian, V.S.: 1996. Hybrid Knowledge Bases, IEEE Transactions
on Knowledge and Data Engineering, 8, 5, pages 773-785.

24. Lund, C., Yannakakis, M.: 1994. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981.

25. Papadimitriou, C.H.: 1981. Worst-Case and Probabilistic Analysis of a Geometric Location
Problem, SIAM J. Comput., 10(3):542–557.

26. Paschos, V.T.: 1997. A survey of approximately optimal solutions to some covering and
packing problems. ACM Comput. Surv., 29(2):171–209.

27. Reggia, J.A., Peng, Y.: 1990. Abductive inference models for diagnostic problem-solving.
Springer-Verlag New York, Inc., New York, NY, USA.

28. Rimoin, A. et al.: Endemic Human Monkeypox, Democratic Republic of Congo, 2001-2004,
Emerging Infectious Diseases, 13, 6, pages 934–937, 2007.

29. Rossmo, D. K., Rombouts, S.: 2008. Geographic Profiling. In Enviromental Criminology and
Crime Analysis, R. Wortley and L. Mazerolle, Eds. pages 136-149.

30. H. Samet.: The Design and Analysis of Spatial Data Structures, Addison Wesley, 1989.
31. Shakarian, P., Subrahmanian, V.S., Sapino, M.L. SCARE: A Case Study with Baghdad, Proc.

2009 Intl. Conf. on Computational Cultural Dynamics (eds. D. Nau, A. Mannes), Dec. 2009,
AAAI Press.

32. Shakarian, P., Subrahmanian, V.S., Sapino, M.L. 2012. GAPS: Geospatial Abduction Prob-
lems, ACM Transactions on Intelligent Systems and Technology (TIST), 3, 1, to appear.

33. Shakarian, P., Subrahmanian, V.S. Region-based Geospatial Abduction with Counter-IED
Applications, accepted for publication in: Wiil, U.K. (ed.).Counterterrorism and Open Source
Intelligence, Springer Verlag Lecture Notes on Social Networks, to appear, 2011.

34. Shakarian, P., Nagel, M., Schuetzle, B., Subrahmanian, V.S. 2011. Abductive Inference for
Combat: Using SCARE-S2 to Find High-Value Targets in Afghanistan, in Proc. 2011 Intl.
Conf. on Innovative Applications of Artificial Intelligence, Aug. 2011, AAAI Press.

35. Shakarian, P., Dickerson, J., Subrahmanian, V.S. 2012. Adversarial Geospatial Abduction
Problems, ACM Transactions on Intelligent Systems and Technology (TIST), to appear.

36. Singh, M., Joshi, P.K., Kumar,M., Dash, P.P., Joshi, B.D.: Development of tiger habitat
suitability model using geospatial tools: a case study in Achankmar Wildlife Sanctuary
(AMWLS), Chhattisgarh India, Env. Monitoring and Assessment journal, Vol. 155, pages
555-567, 2009.

37. US Army: Intelligence Preparation of the Battlefiled (US Army Field Manual), FM 34-130
edition, 1994.

38. ”Map of Special Groups Activity in Iraq, Institute for the Study of War”, Institute for the
Study of War, 2008.

39. Vazirani, V.V.: 2004. Approximation Algorithms. Springer, March 2004.

	Chapter 3 Region-Based Geospatial Abduction
	3.1 Introduction
	3.2 Technical Preliminaries
	3.3 Complexity
	3.4 Algorithms
	3.4.1 Exact and Approximate Solutions by Reduction
	3.4.2 Approximation for a Special Case
	3.4.3 Practical Considerations for Implementation

	3.5 Experimental Results
	3.5.1 Experimental Setup
	3.5.2 Running Time
	3.5.3 Area of Returned Regions
	3.5.4 Regions that Contain Caches
	3.5.5 Partner Density

	3.6 Conclusion
	References

