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Foreword

Increasingly, US forces, multinational coalition troops, and UN peacekeeping forces
worldwide are coming under asymmetric attacks including Improvised Explosive
Device (IED) attacks. These attacks are carried out by adversaries who are out-
matched in conventional military capabilities by opposing forces. However, such
adversaries take advantage of their deep knowledge of the local terrain, ethno-social
makeup of the areas in which they operate, and knowledge of local history and cul-
ture, to launch successful IED attacks.

This book is the first in the field of geospatial abduction—a mathematical and
computational technique invented by the authors to solve a variety of problems in-
cluding locating weapons caches that support IED attacks, identifying habitats that
support hosts of disease-carrying viruses, identifying illegal drug labs and/or drug
distribution centers, and solving problems related to locations of burglars and/or
serial killers. Anyone with an interest in performing geospatial inferences and ana-
lytics involving these and other applications where one needs to identify locations
based on a few observed clues, would find this book invaluable.

College Park, MD, August 2011 Charles P. Otstott
Lieutenant General US Army (Ret.)
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Preface

There are numerous applications in which we make observations about events in
time and space, and where we wish to infer one or more other locations that are
causally related to the observations we made. Such applications span a number of
fields and include finding habitats of hosts of disease carrying viruses (epidemiol-
ogy), identifying locations where elusive animals such as tigers and leopards might
live (wildlife conservation), identifying locations of illegal drug labs and distribu-
tion centers (criminology), and identifying the locations of weapons caches that
facilitate improvised explosive device (IED) attacks on soldiers or civilians.

This book describes the technique of geospatial abduction in which we can use
knowledge about the locations of observations, as well as certain application specific
properties, to make the types of inferences needed to enable applications such as
those listed above.

The book is intended as a research monograph on this emerging new field. The
book provides a detailed technical definition of many forms of geospatial abduc-
tion, as well as many different theoretical results, as well as exact algorithms and
approximation algorithms and heuristics to solve geospatial abduction problems. In
order to facilitate readability, a number of examples are used throughout the book
to illustrate basic concepts and algorithms. Moreover, we discuss in detail, a spe-
cific application to finding weapons caches that terrorist groups use to launch IED
attacks.

The intended audience includes faculty and graduate students in not only com-
puter science, but any field (e.g., geography, epidemiology, wildlife conservation,
criminology) where we need to make intelligent inferences from observational data,
together with application-specific information. Military planners and analysts, as
well as law enforcement officials will also find parts of the book to be of interest.

The authors are indebted to many people who either were involved in some of
our research or who facilitated the work in one of many ways.

First, both authors would like to thank their wives—Jana Shakarian and Mary
Andrews—for their constant love and support.

Second, the authors would like to thank John Dickerson for serving as a co-author
of Chapter 4.
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Both authors would also like to thank several university and Army researchers
who played a role in the technical development of the work, either merely by listen-
ing to the ideas underlying geospatial abduction, or by actively contributing ideas,
data, or critiques and comments. In alphabetical order, these include Jeff Branting-
ham, Damon Earp, Trevon Fuller, Virginia Melissa Holland, Grant Jacoby, Henry
Kautz, Sarit Kraus, Steve LaRocca, Dan LaRocque, Scott Lathrop, Roy Lindelauf,
Cristian Molinaro, Margo Nagel, Dana Nau, Austin Parker, Jeff Remmel, Anne Ri-
moin, Patrick Roos, Maria-Luisa Sapino, Brittany Schuetzle, Gerardo Simari, Amy
Sliva, Tom Snitch, and Michelle Vanni.

Both authors would like to thank several military personnel who have played
important roles in shaping the application of this work to counter-IED opera-
tions. These include Charles Otstott, Keith Collyer, Wayne Skill, Geoff Stoker, Tim
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Chapter 1

Introduction

Abstract This chapter provides an intuitive, easy to read explanation of what
geospatial abduction is. It uses a set of examples to explain what geospatial ab-
duction is, and how it can be used to solve real-world problems in many different
domains. Our examples show how geospatial abduction can be used to (i) identify
the locations of weapons caches supporting improvised explosive device attacks by
terrorists and armed insurgents from information about the locations of the attacks,
(ii) identify the possible locations of tigers from information about locations of their
kills, (iii) identify habitats that support host animals that carry certain viruses from
information about where diseases caused by those viruses occurred, and (iv) iden-
tify the location(s) of a burglar from information about where burglaries he carried
out occurred. These four examples are used continuously throughout the book to
illustrate the mathematical foundations and definitions that are presented in later
chapters.

1.1 Motivation

There are numerous applications in the real world in which we observe that certain
phenomena occur at various locations and where we wish to infer various “partner”
locations that are somehow associated with those observations. Partner locations
could be associated with entities that cause the phenomena we observe or facilitate
the observations that we observe.

Informally speaking, a geospatial abduction problem (GAP) refers to the prob-
lem of finding partner locations that best explain a set of observations (at certain
locations), in the context of some domain-specific information that tells us some-
thing about the relationship between the observations we make and the partner loca-
tions that cause, facilitate, support, or are somehow correlated with the observations.
Geospatial abduction was first introduced by the authors in [4] and later studied by
them in a series of papers [5, 6, 7, 8].

1 
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2 1 Introduction

For instance, we have used geospatial abduction to find the locations of the
weapons caches that allow insurgents and terrorists in Baghdad, Iraq to carry out
improvised explosive device (IED) attacks both on Iraqi civilians, as well as on
multinational troops situated there. In this application of the geospatial abduction
technique, the observations correspond to the locations of the attacks and the part-
ner locations we wish to find are the locations of the weapons caches that facilitate
or support those attacks. Of course, to do so, we must take domain information
into account. What kinds of places are suitable locations for weapons caches? Are
there operational constraints on the insurgents that somehow constrain how far the
weapons caches can be from the locations of the attacks? The answers to these
questions constitute application-specific information related to the problem of de-
tecting IED caches. A generic algorithm, computational engine, or software tool for
geospatial abduction must support application development where the application
(in this case, detection of IED weapons caches) developer can explicitly articulate
such application-specific information to the GAP engine in a manner that is uniform
and application independent.

As another application, consider the case of tiger conservation. The number of
tigers in the world is dwindling rapidly and organizations such as the World Wildlife
Fund (WWF) are making heroic efforts to save the tiger. Unfortunately, the tiger is
not an easy animal to save. Unlike lions, they are solitary creatures that maintain
a very stealthy existence. Their range can be over 100 square miles, often making
it difficult to pinpoint exactly where they like to reside at a given time. We have
been considering the prospect of identifying relatively small regions where tigers
might like to reside based on observations (locations) of tiger kills. Fortunately,
after eating its meal, the tiger does not drag away the carcass or skeleton that is left
behind, providing researchers and conservationists valuable information on where
the tiger has been. In this application as well, we need to take much domain specific
information into account (e.g., a wide open space is not a place where it is likely
that a tiger will dwell, nor is a place where there is a paucity of prey [10]).

A third application we have worked on is an effort led by epidemiologists at
UCLA that involves identifying the habitats of creatures that carry certain viruses.
For instance, monkey pox [2] is a deadly disease that kills and/or irreparably dam-
ages many children—and even adults—in Africa. It is particularly widespread in the
Democratic Republic of Congo. The disease is spread by host animals that are often
eaten raw by a hungry, highly malnourished human population, who are desperate
for food. Thus, a natural public health question arises. Can we somehow identify
the habitats where the host animals live in large numbers so that appropriate public
health measures (e.g., extermination of the hosts or other environmentally appropri-
ate actions) can be taken? As in the case of the tigers above, this requires application
specific knowledge about the types of environments/habitats that the host animals
prefer and/or flourish in.

A fourth application deals with crime. We are all painfully aware of the existence
of burglars and home invasions. How can we identify the locations (home or office
or even a significant other’s house—as long as it is a place where the burglar spends
a fair amount of time) of an unknown burglar or home invader by examining the
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locations where the burglaries or home invasions were committed? In this case,
again, domain specific information can be taken into account. For instance, we know
that burglaries are usually committed in neighborhoods that the burglar knows, but
usually the burglar targets homes that are not too close to either his home or his
office or places where he spends a lot of time and is known to others. How do we
find the burglar’s house or somehow narrow down the space of possible targets?

In the rest of this chapter, we explore these applications in further detail, clearly
articulating the issues involved in further detail. In short, this chapter tries to explain
what types of real-world problems geospatial abduction is supposed to solve, but not
how. Following this chapter, most of the rest of this book will focus on the “how.”

1.2 The IED Cache Detection Problem

Improvised Explosive Devices (IEDs) are crude bombs constructed by insurgents to
attack an external force. The term IED was first introduced by the British Army in
response to attacks by the Irish Republican Army (IRA) in the 1970s. Since then, it
has been used by insurgent groups around the world to attack external forces.

Figure 1.1 shows a screenshot of real-world data gleaned from open sources
about the locations of IED attacks in Baghdad during the February 2007–November
2008 time frame. The map was generated using the Spatio-Cultural Abductive Rea-
soning Engine (SCARE) system [4] which in turn used Google Maps to get geo-
graphic data. The red push pins show the locations of IED attacks during this time
frame.

All the IED attacks shown in Figure 1.1 were believed to have been carried out
by Shiite-militia supported by Iran. Experience has shown that these attacks were
typically carried out by insurgents who placed their munitions in weapons caches.
A weapons cache was then used to support one or more attacks.

Of course, the insurgents were not stupid and had no wish to get caught. Weapons
caches were chosen carefully. In particular, it was clear that the insurgents could not
locate weapons caches within US or international coalition bases. Likewise, they
could not locate weapons caches within Sunni neighborhoods of Baghdad because
of ongoing ethnic conflict between the Shiites and Sunnis. Last, but not least, we
deemed that they could not place weapons caches on the Tigris river because of the
probability of being spotted as well as the logistical difficulties involved in trans-
porting munitions from a river to land. [9] contains further work on IED cache
placement. The shaded regions in Figure 1.2 shows regions where the IED caches
could not be located.

The job of a geospatial analyst is now clear. Is there a way to study the map of
Figure 1.1 showing the locations of the IED attacks, together with the map overlays
shown in Figure 1.2 showing where caches could not possibly occur, and infer the
plausible locations of weapons caches used to support the IED attacks carried out
by Shiite insurgents?
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Fig. 1.1 SCARE [4] screenshot showing locations of IED attacks in Baghdad during the Feb. 1,
2007 to Nov. 2008 time frame.

The problem is highly non-trivial to solve for several reasons. First, we do not
know how many IED caches there are to find. Second, the zones where IED caches
cannot be present (as shown in Figure 1.2) are highly irregular in shape—so sim-
ple geometric reasoning cannot be a solution. Third, the insurgents are constantly
adapting their attack techniques to any counter-measures being taken to find and/or
thwart them. Finally, as we shall show in Chapter 2, the problem of finding a set of
such cache locations is NP-complete, making it intractable to compute in practice.

We have developed two systems called SCARE [4] and SCARE-S2 [7] that use
geospatial abduction. SCARE used a version of geospatial abduction called point-
based geospatial abduction (studied in Chapter 2) that was applied to the problem
of finding IED weapons caches in Baghdad. Using 21 months of data (7 for training,
14 for evaluation), we were able to show that SCARE predicted cache locations that
(on average) were within 0.45 miles of the actual locations of caches discovered in
Baghdad by coalition forces.

SCARE-S2 was applied to the problem of discovering high value targets (or
HVTs) in Helmand and Kandahar provinces of Afghanistan. HVTs were defined
to be either depot-level weapons caches (as opposed to smaller caches designated
for more immediate use) or insurgent commanders. SCARE-S2 used a different
technique than SCARE called region abduction, described in detail in Chapter 3, to
identify regions in these provinces that were highly likely to contain HVTs. Com-
parison with real-world data showed that the regions we discovered had a density
of HVTs that was 35 times higher than the density of HVTs in the two provinces
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Fig. 1.2 SCARE [4] screenshot showing coalition bases, Sunni neighborhoods, and the Tigris
River.

considered as a whole. In addition, these regions contained on average 4.8 villages
that needed to be searched by US and coalition forces.

1.3 The Tiger Detection Problem

As anybody who has ever gone to a tiger reserve knows, getting to the tiger reserve
is easy, but spotting a tiger is hard. Tigers are hunters who live a largely solitary
existence and depend on stealth attacks in order to capture prey. At the time this
chapter was written, the World Wildlife Fund estimated that there are fewer than
3,200 tigers still living in the wild in the entire world.

Wildlife experts have considerable interest in identifying the precise region
where the tigers are living so that appropriate conservation steps can be taken.1 Con-
sider the Achanakamar Wildlife Sanctuary (AMWLS) in the state of Chattisgarh,
India. Tiger conservation experts would like to understand exactly where the tigers
reside. In order to do so, the wildlife conservators looking at a map of AMWLS

1 We thank Tom Snitch for suggesting we consider this problem using geospatial abduction tech-
niques after a meeting he had with World Wildlife Fund officials who expressed concern about the
need for better tracking of tigers.
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need to identify locations in the sanctuary that are feasible for tigers to adopt as
their range. This involves a number of issues. For instance:

• The places where the tigers live needs to have a high concentration of prey which
in the case of this sanctuary includes chital, sambar, as well as wild boar.

• The placess where the tigers live need to have the right kind of vegetation, in-
volving variables such as “canopy cover, canopy height, forest, shrub cover, shrub
height” [10, page 563].

• The number of dung pellets found in a given region is also correlated with the
suitability of a location for the tiger’s habitat as this is closely correlated with the
amount of prey in the area (more dung pellets implies more prey).

Thus, wildlife analysts may first plot a “habitat map” showing locations that are
suitable for the tiger to live versus locations that are not suitable for the tiger to live,
as shown in Figure 1.3 below.

Fig. 1.3 Tiger habitat suitability map for the Achanakamar Wildlife Sanctuary—figure taken from
M. Singh, P.K. Joshi, M. Kumar, P.P. Dash and B.D. Joshi. Development of tiger habitat suitability
model using geospatial tools: a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattis-
garh India, Env. Monitoring and Assessment journal, Vol. 155, pages 555-567, 2009. and reprinted
courtesy of Springer.

A wildlife analyst equipped with such a map (stored in the Keyhole Markup Lan-
guage, or KML, format) can use geospatial abduction through SCARE or SCARE-
S2 to upload an Excel file containing information on the location of various tiger
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kills. Figure 1.4 shows one such example (synthetic data) of locations of tiger kills
in AMWLS.

Fig. 1.4 Tiger kill locations in AMWLS. Synthetic data used for example purposes only.

The goal is to now determine where the tiger responsible for the actual kills lives,
given both the locations of its kills and the habitat suitability map. Region-based
geospatial abduction studied in Chapter 3 provides a suite of techniques to address
this problem. Figure 1.5 shows potential locations predicted by SCARE [4].

1.4 The Virus Host Habitat Identification Problem

A related potential application of geospatial abduction, similar to the tiger habitat
problem, is that of identifying the habitats of animal hosts that carry certain viruses
which cause diseases in human populations.2 Many such diseases fall into the cate-
gory of vector-borne diseases in which a host transmits a virus to humans, usually
via a bite.

Realistic examples of such diseases include diseases spread through mosquito
bites (e.g., malaria, chikungunya fever, yellow fever, West Nile encephalitis and
other types of encephalitis), diseases spread by rodents and rodent fleas (e.g., plague,
monkey pox), diseases caused by ticks and deer flies living on deer (e.g., Lyme dis-

2 We are grateful to Trevon Fuller for thinking of this application.
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Fig. 1.5 Tiger kill locations with predicted tiger locations in AMWLS. Synthetic data used for
example purposes only.

ease, tularemia), diseases caused by various types of flies (e.g., sleeping sickness),
and many others.

In such cases, a public health expert might ask himself the question: How can I
identify the locations of habitats of hosts (e.g., deer, rodents) that support the organ-
isms (e.g., ticks) that spread these diseases? To do this, the public health expert can
use geospatial abduction to carry out the following steps:

• Identify locations where the disease occurred or has been known to occur (per-
haps at a certain level of occurrence or higher so that isolated cases do not skew
the analysis).

• Identify the properties of habitats (e.g., standing bodies of water in the case of
mosquito-borne diseases or the existence of certain types of foliage in the case of
deer) that support the host animals.

Based on these two analyses, the public health analyst can easily use a region-
based geospatial abduction tool to identify regions which have a high probability
of supporting the hosts that carry and spread the disease. Once these regions are
identified, appropriate public health actions can be taken, possibly in conjunction
with public health authorities.
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1.5 The Burglar Detection Problem

Police all over the world are constantly confronted with burglaries. Using a number
of forensic techniques, they can often identify which burglaries were committed by
the same perpetrator(s). A natural question for criminologists and law enforcement
agencies is to figure out how to find the places where the burglar lives or works.

It is well known in criminology [1, 3] that burglars, serial killers, and many other
types of criminals often carry out their criminal activities in areas they know well.
Typically, this condition of “knowing well” means that either the criminals live in
the area where they carry out their crimes, or work there, or grew up there.

Figure 1.6 shows a map of St. Paul, Minnesota, with the locations of various
church burglaries explicitly marked via red push pins. This data shows real church
burglaries that occurred in 2008–2009, not synthetic information. Moreover, the
police in St. Paul believed that these burglaries were all carried out by the same
burglar.

Fig. 1.6 SCARE [4] screenshot showing locations of church burglaries in St. Paul, Minnesota in
2008–2009.

A criminologist or police officer investigating these burglaries might want to give
a geospatial abduction system some information. For instance, he might say that he
does not believe that a burglar would commit such crimes less than a kilometer from
his house or more than seven kilometers from his house (these distances can also
be automatically learned from historical data or explicitly provided by an expert). In
addition, he might mark certain regions on the map as unlikely places for the burglar
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to have his home or office. Such excluded regions are shown in Figure 1.7. Note
that in this example, these are only “notional” excluded regions and real excluded
regions would need to be inserted by a domain expert (e.g., a St. Paul, MN, police
officer investigating the burglaries).

Fig. 1.7 SCARE [4] screenshot showing regions in St. Paul, Minnesota, that were excluded as
potential locations for the church burglar.

Last, but not least, we would like our geospatial abduction system to generate
“predicted” locations for the church burglar. It is too hard to designate whether these
predicted locations represent his home or his office—rather, they represent locations
that are most likely to be locations where he has a significant presence. Figure 1.8
shows the St. Paul, Minnesota, map, together with yellow bull’s-eyes reflecting pre-
dicted locations. Again, we emphasize that these are notional predicted locations;
even though the church burglary data we use is real data, our exclusion zones shown
in Figure 1.7 may not reflect police knowledge of the reality of crime in St. Paul,
and hence, the results shown in Figure 1.8 may be incorrect. Our purpose in this
example is to show how such a system should work.

1.6 Other Applications

The preceding sections highlight four real-world applications in which geospatial
abduction is currently or could be employed. However, the space of possible ap-
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Fig. 1.8 SCARE [4] screenshot showing locations of predicted locations of the burglar with respect
to the church burglaries in St. Paul, Minnesota, in 2008–2009.

plications for geospatial abduction is really much larger; we highlight a few more
examples here, though we will be unable to consider them in further detail in the
rest of the book.

One important application area deals with environmental pollutants in a body of
water. Often times, water is contaminated by unscrupulous organizations or com-
panies that dump toxic waste into a body of water. We do not always know who
the responsible party is, but identifying the location(s) where the dumping is likely
to be occurring allows environmental authorities and police to target their surveil-
lance efforts with a view to catching the culprits. In this case, the observations are
the locations where the pollution was discovered (e.g., contaminated water), and
the partners we want to find are the locations where the polluting substances are
introduced into the water or into the ground. Domain information specifies how the
contamination spreads—either through the water or through the ground.

The same principle also applies to pollution in the ground: we see contaminants
at various locations on the ground and we would like to infer the source of these
contaminants. The source may be a leak in a network of pipes distributing the sub-
stance that is leaking, or an explicit attempt to dump pollutants, or simply an acci-
dent. Knowing the location from which the pollutant is coming can play a key role
in helping solve the problem.

Another important application is identifying the location of illegal drug labs or
distribution centers from information about the locations where various drug dealers
were arrested. Alternatively, with aerial surveillance of the coca plant in countries
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like Colombia and Peru, we know the locations of the base crop that is converted
into an illegal substance. Based on the locations of these fields, can we infer the
locations of the labs that convert these crops into illegal drugs?

1.7 Conclusion

We see in this chapter that geospatial abduction in different forms can be used to
help address a wide variety of problems that have a significant geospatial character.
We have only described a small number of problems that geospatial abduction can
help with. As the technique is studied more extensively, we believe there will be far
more applications.

All of these geospatial abduction applications described have the following char-
acteristics:

1. Observations. There is a set of observations that we start with. The set of observa-
tions could be the locations where IED attacks occurred, where disease outbreaks
occurred, where tiger kills were observed, or where pollutants were spotted.

2. Domain knowledge. The domain knowledge involved in the class of examples we
have discussed include two types of phenomena.

a. Information about the distances between the locations or regions we are try-
ing to find (e.g., locations of IED weapons caches or regions where the tiger
responsible for certain kills may be) and the observations that are causally
linked to the observation; and

b. Maps showing which locations or regions on the ground satisfy various “fea-
sibility requirements” (e.g., having the appropriate type and quantity of prey
in the case of the tiger habitat identification problem, or having the right kinds
of populations for insurgents to blend into after carrying out IED attacks).

These inputs can be specified in a variety of ways; however, in later chapters of
this book, we will show that these inputs can often be specified in a highly (syntac-
tically) restricted format that makes them easy to manipulate computationally.

Once these inputs are provided, we will show in the rest of this book, how we
can find a set of places that best explains the observations in our application while
being consistent with the provided domain knowledge.
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Chapter 2

Point-based Geospatial Abduction

Abstract In this chapter, we will define geospatial abduction problems (GAPs) for-
mally. In particular, we define a GAP to consist of several parts—a set of obser-
vations, two non-negative real numbers α,β denoting lower and upper distance
bounds respectively between locations we want to discover (e.g., IED weapons
cache locations) and observations, and a “feasibility” predicate. Based on this, the
goal of a point-based GAP is to find a set of points that jointly fall within the dis-
tance bounds and are feasible according to the feasibility predicate. We provide
results both on the complexity of GAPs as well as detailed algorithms to solve point-
based GAPs efficiently in practice. We conclude the chapter with experimental re-
sults on real-world IED cache discovery in Baghdad showing that our algorithms
work very well in practice.

2.1 Introduction

Chapter 1 provides a large set of examples of geospatial abduction problems drawn
from many real-world scenarios including defense and security applications, epi-
demiology and public health applications, pollution and environmental applications,
wildlife preservation and conservation applications, and criminology and law en-
forcement applications. In this chapter, we will develop the formal mathematics
required to efficiently solve geospatial abduction problems.

We first need to formally define a geospatial abduction problem in such a way that
the applications described in Chapter 1 can be captured as special cases. Figure 2.1
shows the proposed components of our GAP definition. From this figure, we see
that a GAP consists of three major components:

Observations. A set of observations describing locations corresponding to the
phenomenon under study (e.g., IED attack locations, locations of tiger kills, lo-
cations where a disease was observed, locations where a burglary occurred, loca-
tions where pollution was detected).
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Distance Constraints. A pair of real numbers α,β describing a lower bound (α)
and an upper bound (β ) on the distances between an observation and a related
location (or partner location) we would like to discover. Partner locations we
might like to discover in our applications include the locations of IED weapons
caches, the locations where the tiger likes to reside, the regions where a disease
host flourishes, the home and/or office locations of the burglar, and so forth.

Feasibility Predicate. A feasibility predicate allows an application developer to
specify which points on the map are (or are not) potential locations for a partner.
For instance, a feasibility predicate in the IED detection problem specifies which
points satisfy application-dependent criteria that an IED cache location should
satisfy. A defense analyst may articulate this, for instance, by saying that such
locations cannot lie within a coalition base or within an area occupied by an
ethnic group opposed strongly to the group carrying out the attacks. In our tiger
application, the feasibility predicate might rule out areas with no forest canopy
and/or very little dense vegetation.

Fig. 2.1 Inputs and components of a canonical geospatial abduction definition..

Based on these inputs, the goal of a geospatial abduction system is to find a set
of “partner” locations that:

1. Explain all the observations we see.
2. Fall within the (α,β ) distance constraints.
3. Are all feasible according to the feasibility predicate that has been chosen for the

application.

It is important to note that the observations, the α ,β numbers, and the feasibility
predicate are all inputs to a GAP solver and can be tuned by the analyst or user
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to meet his needs and reflect his own expertise. Moreover, we will show that if
historical data is available, we can easily learn the α,β numbers automatically from
the historical data using a simple algorithm.

The rest of this chapter is organized as follows. We first present a formal def-
inition of geospatial abduction problems, together with several variants. We then
study the computational complexity of these problems, followed by a presentation
of algorithms—both exact and heuristic—to solve arbitrary GAPs. We conclude
with a set of experimental results we have derived on GAPs, showing both that the
algorithms work efficiently in practice and that they are highly accurate.

2.2 Point-based GAPs, Formalized

With the exception of Chapter 3, we assume throughout this book that a map (resp.
space) is represented by a two dimensional grid of size M ×N where M,N ≥ 1 are
integers. The space of all points, therefore, is the set S = {i |0 ≤ i < M}×{ j |0 ≤
j < N}.

Each point (i, j) ∈ S represents the unit square on the map whose lower left
corner is the point (i, j). Each such unit cell has closed left and lower edges, and
open edges on the right and top. This is consistent with virtually all geospatial data
structures such as various types of quadtrees and R-trees [24] and is also consistent
with how most of the major geographic information systems represent spatial data.

The developer of a geospatial abduction application can choose M and N to be
as large as he or she wants. By choosing large M,N to represent a particular region
on the ground, each cell in the grid represents a smaller region on the ground. Thus,
increased M,N yields increased map resolution. As the GAP application developer
gets to choose M,N, he or she can effectively pick the appropriate resolution for a
specific application.

We assume that all observations occur within space S . We use the artificial space
shown in Figure 2.2 throughout this chapter to illustrate the concepts we introduce.
Throughout this book, we assume that S has an associated distance function d sat-
isfying the usual properties of such distance functions. Standard distance functions
d in topology and metric spaces satisfy three simple axioms defined below.

Definition 2.1. A distance function d on S is a mapping from S ×S to the reals
such that:

• d(x,x) = 0. This axiom says that the distance between a point and itself is 0.
• d(x,y) = d(y,x). This axiom says that the distance between two points is not

dependent on the order in which the two points occur when the distance function
is invoked, i.e., the distance function is symmetric.

• d(x,y)+d(y,z)≥ d(x,z). This inequality says that the distance function satisfies
the triangle inequality.

There are numerous distance functions that satisfy these axioms. Examples in-
clude:
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• Euclidean distance where de((x1,y1),(x2,y2)) =
√
(x1 − x2)2 +(y1 − y2)2.

• Manhattan distance where dm((x1,y1),(x2,y2)) = |x1 − x2|+ |y1 − y2|.
• Road distance dr((x1,y1),(x2,y2)) is defined as the length of the shortest path

(along roads) between two points (x1,y1) and (x2,y2), assuming the existence of
a road network.

The methods used in this chapter apply to any notion of distance between two points
as long as the three distance axioms described above are satisfied.

 0                      4                    8                   12                 16     
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Fig. 2.2 An example space. Red dots denote observations. Yellow squares denote infeasible loca-
tions. Green stars show one (0,3) explanation, while pink triangles show another (0,3) explanation.

Definition 2.2 (observation). An observation O is any finite subset of S .

Consider the geospatial universe shown in Figure 2.2. Let us see how the observa-
tions in this “toy” figure apply to our real-world applications.

1. In our IED Detection application, these observations correspond to locations
where IED attacks occurred.

2. In our Tiger Detection application, these observations correspond to locations
where tiger kills were spotted by wildlife conservationists.

3. In our Virus Host Habitat Identification application, these observations corre-
spond to locations where a disease outbreak (caused by the virus in question)
was detected.

4. In our Burglar Detection problem, these observations correspond to the locations
where the burglar committed his burglaries.

As we have mentioned in Chapter 1, there are serious constraints on where the
locations we are searching for (e.g., the location of IED weapons caches or the
locations where the tiger resides or the environments where the virus’ host flourishes
or the places where the burglar’s house could be) can be. For instance, we might
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eliminate a US military base as a potential location for an enemy’s IED weapons
cache as such areas are usually well secured by US military personnel. Likewise, we
can eliminate areas with no ground cover and/or or no prey—tigers are masters of
concealment and are unlikely to want to stay in open areas for any significant length
of time. In our virus host example, certain areas may be inhospitable to certain hosts,
depending upon the biology of the host animal. In our burglar detection problem, we
can probably exclude police stations and military bases from the space of locations
where the burglar might live and/or work, as personnel who work in these areas are
subject to stringent background checks.

The concept of a feasibility predicate defined below captures which points in S
are feasible, and which ones are not.

Definition 2.3 (feasibility predicate). A feasibility predicate feas is a function from
S to {TRUE,FALSE}.
Thus, feas(p) = TRUE means that point p is feasible and must be considered in the
search. Figure 2.2, denotes infeasible places via a yellow square. Throughout this
chapter, we assume that feas is an arbitrary, but fixed predicate.1 Further, as feas
is defined as a function over {TRUE,FALSE}, it can allow for user input based on
analytical processes currently in place.

For instance, in the military, analysts often create Modified Combined Obstacles
Overlays (MCOOs for short) where “restricted terrain” is deemed infeasible [31].
We can also easily express feasibility predicates in a Prolog-style language—we
can easily state (in the burglar identification example) that point p is considered
feasible if p is within R units of distance from some observation and p is not in the
water. Likewise, in the case of the tiger identification example, we could say that a
point p is feasible if p is within R1 units of places with dense land-cover and where
the amount of scat (associated with prey) exceeds a certain amount. A Prolog-style
language that can express such notions of feasibility is the hybrid knowledge base
paradigm [17] in which Prolog-style rules can directly invoke a GIS system.

Suppose now that α,β are two numbers with 0 ≤ α ≤ β .

1. In our IED cache detection application, for example, α,β say that for every ob-
servation (i.e., IED attack), there must be an IED cache which is at least α units
from the observation and at most β units from the observation.

2. In our tiger detection application, the α,β numbers say that for every observation
(i.e., tiger kill location), there must be a tiger preferred residence which is at least
α units from the observation and at most β units from the observation. In a sense,
this describes the tiger’s territory or range.

3. In our virus host habitat detection problem, the α,β numbers say that every lo-
cation where a disease caused by the virus is found must have a corresponding
host habitat that is at least α units from the disease location and at most β units
of distance from the disease location.

1 We also assume throughout the chapter that feas is computable in constant time. This is a realistic
assumption, as for most applications, we assume feas to be user-defined. Hence, we can leverage
a data structure indexed with the coordinates of S to allow for constant-time computation.
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4. In our burglar detection problem, as in the case of the tiger detection problem, the
α,β numbers say that for every observation (i.e., burglary location), there must
be a burglar “hangout” (such as his house or place of work) which is at least α
units from the observation and at most β units from the observation. In a sense,
this describes the burglar’s home turf—it is just not too close to his home/office.

We now come to the important definition of an explanation. Intuitively, given a
set O of observations, an explanation is a set of points E such that every point in
E is feasible and such that for every observation, there is a point in the explanation
that is at least α units away from the observation, but no more than β units away
from the observation.

Definition 2.4 ((α,β ) explanation). Suppose O is a finite set of observations, E is
a finite set of points in S , and 0 ≤ α < β ≤ 1 are some real numbers. E is said to
be an (α,β ) explanation of O iff:

• p ∈ E implies that feas(p) = TRUE, i.e., all points in E are feasible, and
• (∀o ∈ O)(∃p ∈ E )α ≤ d(p,o) ≤ β , i.e., every observation is neither too close

nor too far from some point in E .

Thus, an (α,β ) explanation is a set of points. Each point must be feasible and every
observation must have an analogous point in the explanation which is neither too
close nor too far.

For instance, consider our tiger detection problem. Suppose we found tiger kills
at various locations (i.e., at locations in the set O) and suppose further that we know
all these kills were carried out by the same tiger (wildlife experts can identify tiger
pug marks with the same precision with which they can identify human fingerprints).
Wildlife experts have extensively studied how far tigers travel while seeking prey.
They can place bounds (corresponding to the α,β values) on these prey-seeking
travel distances. In the same way, the feasibility predicate specifies the locations
that constitute a suitable habitat for tigers (e.g., lots of ground cover, lots of prey).
Thus, an explanation E is a set of points that are all feasible and such that for every
tiger kill p1 attributed to this specific tiger, there is a location p2 in E whose distance
from p1 is in the interval [α,β ].

The same phenomenon is true of burglars and serial killers. Criminologists [2, 23]
have observed that various types of criminals also tend to carry out their criminal
activities in areas they know well, but not too close to their home bases. This makes
sense—the criminals know the region well, know good targets for their nefarious ac-
tivities, and have knowledge that allows them to get away quickly after their crime.
This accounts for their not straying too far from their home base (e.g., home, office,
significant other’s house, etc) and thus explains the upper bound, β . At the same
time, the criminals may not want to carry out their activities right next to their home
base; in the case of a murder, for instance, police usually question neighbors and
investigate certain people living within a certain distance of the murder location.
The criminal may not want to come to the police’s attention in this way by staging
his crimes too close to his home base.
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Thus, we see that an (α,β ) explanation E for a given set of observation O must
appropriately explain each observation o ∈ O by postulating the existence of a part-
ner location p ∈ E such that

• The distance d(p,o) between p and o lies within the [α,β ] interval; and
• p is a feasible location.

Of course, given an (α,β ) explanation E , there may be an observation o ∈ O
such that there are two (or more) points p1, p2 ∈ E satisfying the conditions of
the second bullet of Definition 2.4 above. If E is an explanation for O , a partnering
function℘E is a function from O to E such that for all o ∈O , α ≤ d(℘E (o),o)≤ β .
℘E (o) is said to be o’s partner according to the partnering function ℘E . We now
present a simple example of (α,β ) explanations.

Example 2.1. Consider the observations in Figure 2.2 and suppose α = 0,β = 3.
Then the two green stars denote an (α,β ) explanation, i.e., the set {(6,6),(12,8)}
is a (0,3) explanation. So is the set of three pink triangles, i.e., the set {(5,6),(10,6),
(13,9)} is also an (0,3) explanation.

The basic problem that we wish to solve in this chapter is the following.

The Simple (α,β ) Explanation Problem (SEP).

INPUT: Space S , a set O of observations, a feasibility predicate feas, and numbers
0 ≤ α < β ≤ 1.
OUTPUT: “Yes” if there exists an (α,β ) explanation for O , and “no” otherwise.

A variant of this problem is the k-SEP problem which requires, in addition, that
E contains k elements or less, for k < |O|. Yet another variant of the problem tries
to find an explanation E that is “best” according to some cost function.

Definition 2.5 (cost function χ). A cost function χ is a mapping from explanations
to non-negative reals.

We will assume that cost functions are designed so that the smaller the value they
return, the more desirable an explanation is. Intuitively, a cost function allows us to
assess how “good” an explanation function is.

Some example cost functions are given below. The simple one below merely
looks at the mean distances between observations and their partners.

Example 2.2 (Mean-distance). Suppose S ,O, feas,α,β are all given and suppose
E is an (α,β ) explanation for O and℘E is a partnering function. We could initially
set the cost of an explanation E (with respect to this partnering function) to be:

χ℘E
(E ) =

Σo∈O d(o,℘E (o))
|O| .

Suppose ptn(E ) is the set of all partner functions for E in the above setting. Then
we can set the cost of E as:
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χmean(E ) = inf{χ℘E
(E ) |℘E ∈ ptn(E )}.

The above definition removes reliance on a single partnering function as there may
be several partnering functions associated with a single explanation. We illustrate
this definition using a highly simplified version of our tiger kill example.

Example 2.3. Suppose wildlife experts have found tiger kills at the locations shown
in the space S depicted in Figure 2.3. By analyzing the tiger’s pug marks, they know
these kills are all those of the same tiger. Points {o1,o2,o3} indicate locations of
evidence of the tiger kills—they jointly constitute the set O . Points {p1, p2, . . . , p8}
indicate feasible residence locations for the tiger. The concentric rings around each
element of O indicate the distance α = 1.7km and β = 3.7km. These might denote
the fact that the tiger usually cannot catch prey near its residence (perhaps because
the prey are aware of the tiger’s hangout) and the fact that the tiger does not want to
go too far away for its prey.

The set {p3, p6} is a valid (1.7,3.7) explanation for the set O of observations.
However, we note that observation o2 can be partnered with both p3 and p6.

If we wish to partner observations with the nearest partner, we see that d(o2, p3)=
3km and d(o2, p6) = 3.6km, hence p3 is the partner for o2 such that the distance is
minimized.

It is easy to see that there are many possible explanations for a given set of
observations. For instance, according to the definition of an explanation, any super-
set E ′ of an explanation E is an explanation as long as the points in E ′ − E are
feasible. In fact, members of E ′ −E need not even be within the distance bounds
α,β from any observation—they could be completely extraneous. For instance, the
reader can easily verify that the set {p3, p6} of Example 2.3 stays an explanation
irrespective of what other points we add to the set {p3, p6}. In fact, any superset of
{p3, p6} consisting only of feasible points is a valid solution to SEP—and as long
as the size of that super set is k or less, it is also a valid solution to k-SEP.

Thus, we need ways of comparing explanations against each other to determine
whether one explanation is better than another. We do this through the concept an
“optimal” explanation—an explanation that minimizes cost. Cost is represented by
a cost function χ that assigns a non-negative real number to each explanation. Intu-
itively, the higher the cost of an explanation, the less desirable it is.

Definition 2.6. Suppose O is a finite set of observations, E is a finite set of points
in S , 0 ≤ α < β ≤ 1 are some real numbers, and χ is a cost function. E is said to
be an optimal (α,β ) explanation iff E is an (α,β ) explanation for O and there is
no other (α,β ) explanation E ′ for O such that χ(E ′)< χ(E ).

We present an example of optimal (α,β ) explanations below.

Example 2.4. Consider the tiger from Example 2.3 whose behavior is depicted in
Figure 2.3 (above). While {p3, p6} is a valid solution for the k-SEP problem (k = 2),
it does not optimize mean distance. In this case, the mean distance would be 3km.
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Fig. 2.3 Above: Points {o1,o2,o3} indicate locations of tiger kills (i.e., the set O of observations).
Points {p1, p2, . . . , p8} indicate feasible dwellings for the animal. The concentric rings around
each element of O indicate the distance α = 1.7km and β = 3.7km. Below: Points {p1, p2, p3}
are feasible for crime scenes {o1,o2}. {p1, p2} are safe houses within a distance of [1,2] km. from
crime scene o1 and {p2, p3} are safe-houses within a distance of [1,2] km. from crime scene o2.

However, the solution {p3, p7} provides a mean-distance of 2.8km and hence, this
solution would be a better explanation.

Suppose we now consider a burglar who has struck at locations O = {o1,o2} and
we want to locate his “safe houses” (e.g., his home or his office or his significant
other’s home). The points {p1, p2, p3} are feasible locations. This is depicted in
Figure 2.3 (below). Based on historical data, suppose we know that burglars strike
at locations that are at least 1km away from a safe house and at most 2km from the
safe house (α = 1, β = 2). Thus, for k = 2, any valid explanation of size 2 provides
an optimal solution with respect to mean-distance as every feasible location for a
safe house is within 2km of a crime scene.

We are now ready to define the cost-based explanation problem.

The Cost-based (α,β ) Explanation Problem.

INPUT: Space S , a set O of observations, a feasibility predicate feas, numbers
0 ≤ α < β ≤ 1, a cost function χ and a real number v > 0.
OUTPUT: “Yes” if there exists an (α,β ) explanation E for O such that χ(E ) ≤ v,
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and “no” otherwise.

It is easy to see that standard classification problems like k-means2 can be cap-
tured within our framework by simply assuming that α = 0, β > max(M,N)2 and
that all points are feasible. In contrast, standard classification algorithms cannot take
feasibility into account—and this is essential for the above types of applications.

2.2.1 Parsimony Requirements

Typically in abduction literature, certain requirements are added to the explana-
tion. These are called parsimony requirements [21]. In SEP, we enforce no such
requirement—any explanation will suffice. Problems such as k-SEP and cost-based
SEP enforce parsimony requirements based on a cost function. Another common
parsimony requirement is irredundancy.

Definition 2.7. An explanation E is irredundant if and only if no strict subset of E
is an explanation.

Intuitively, if we can remove any element from an explanation—and this action
causes it to cease to be a valid explanation—we say the explanation is irredundant.

Example 2.5. Figure 2.4 shows a map of burglaries depicted in a 18×14 grid. The
distance between grid squares is 100 meters. Observation set O = {o1,o2,o3,o4,o5}
represents the location of the individual burglaries. Based on an informant or from
historical data, law enforcement officials know that the burglar frequently stays
within 150–320 meters from the center mass of each incident (i.e., in a geospatial
abduction problem, we can set [α,β ] = [150,320]). Furthermore, based on the ter-
rain, the law enforcement officials are able to discount certain areas (shown in black
on Figure 2.4, a feasibility predicate can easily be set up accordingly). Based on
Figure 2.4, the set {p40, p46} is an irredundant explanation. The sets {p42, p45, p48}
and {p40, p45} are also irredundant explanations.

Although irredundancy is a good way to apply Occam’s Razor to a geospatial ab-
duction problem, there still exist a potentially exponential number of such solutions.
Hence, an algorithm that simply returns an irredundant solution could potentially
produce results with a high degree of non-determinism. Hence, in this chapter we
will often attempt to find explanations of minimal cardinality, which is the natural
optimization problem associated with k-SEP. We will refer to this problem—that
of finding an (α,β ) explanation for a given set of observations that is of minimal
cardinality—as MINSEP.

2 See [1] for a survey on classification work.
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Fig. 2.4 Map of burglaries for Example 2.5. For each labeled point pi, the “p” is omitted for
readability.

Algorithm 1 (STRAIGHTFORWARD-SEP)
INPUT: Space S , a set O of observations, a feasibility predicate feas, real numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S of size k (or less) that explains O

1. For each o ∈ O , let Po = {p ∈ S | f eas(p) = TRUE ∧ α ≤ d(p,o) ≤ β}. Thus, Po is the set of of locations that
are feasible and that are within the α,β distance bounds from o.

2. If it is the case that Po 
= /0 for all o, then we return “yes”. Otherwise we return “no.”

2.3 Complexity of GAP Problems

In this section, we study the computational complexity of geospatial abduction prob-
lems.

We start by observing that the Simple Explanation Problem (SEP) can be easily
solved in PTIME. To see why, consider the STRAIGHTFORWARD-SEP algo-
rithm.

It is easy to see that this algorithm correctly solves SEP, but does so by creating
an explanation that is potentially redundant (e.g., by taking the union of all the sets
Po or by taking any member of the cross product of all the sets Po.)

An alternative naive algorithm would find the set F of all feasible points and
return “yes” if and only if for every observation o, there is at least one point p ∈ F
such that α ≤ d(p,o) ≤ β . In this case, F is the explanation produced—but it is a
very poor explanation.

In the burglar example, F merely tells the police to search all feasible locations
without trying to do anything intelligent. Likewise, in the case of the tiger detec-
tion problem, it tells wildlife conservationists that the tiger could be in any feasible
location.
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Algorithm 2 (GCD-TO-KSEP)
INPUT: Instance of GCD 〈S,P,b,k〉
OUTPUT: Instance of k-SEP 〈S ,O, feas,α,β ,k′〉
1. Set S to be a set of lattice points in the Euclidean plane that include all points in P
2. Set O = P
3. Let f eas(x) = TRUE iff x ∈ P
4. Set α = 0
5. Set β = b/2
6. Set k′ = k

In contrast to SEP, the k-SEP problem allows the user to constrain the size of
the explanation so that “short and sweet” explanations that are truly meaningful are
produced.

The following result states that k-SEP is NP-Complete. The proof of NP-
hardness is via a reduction from the Geometric Covering by Discs (GCD) [14] that
is known to be NP-complete.

Theorem 2.1. k-SEP is NP-Complete.

Proof. Geometric Covering by Discs. (GCD)
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers
b > 0 and k < |P|.
OUTPUT: “Yes” if there exist k discs of diameter b centered on points in P such
that there is a disc covering each point in P, and “no” otherwise.
CLAIM 1: k-SEP is in the complexity class NP.
Suppose a non-deterministic algorithm can guess a set E that is a k-sized simple
(α,β ) explanation for O . We can check the feasibility of every element in E in
O(|E |) time and compare every element of E to every element of O in O(|O|2)
time. Hence, k-SEP is in the complexity class NP as we can check the solution in
polynomial time.

CLAIM 2: k-SEP is NP-Hard.
We use the polynomial algorithm GCD-TO-KSEP to take an instance of GCD and
create an instance of k-SEP.

CLAIM 2.1: If there is a k′-sized simple (α,β ) explanation for O , then there are k
discs, each centered on a point in P of diameter b that cover all points in P.
Let E be the k′-sized simple (α,β ) explanation for O . Suppose by way of contra-
diction, that there are not k discs, each centered on a point in P of diameter b that
cover all points in P. As k′ = k, and all elements of E must be in P by the definition
of feas, let us consider the k discs of diameter b centered on each element of E . So,
for these discs to not cover all elements of P, there must exist an element of P, that
is not covered by a disc. As P =O , then there must exist an element of O outside of
one of the discs. Note that all elements of O are within a distance β of an element of
E by the definition of a k′-sized simple (α,β ) explanation (as α = 0). As β = b/2,
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each element of O falls inside a disc of diameter b centered on an element of E ,
thus falling within a disc and we have a contradiction.

CLAIM 2.2: If there are k discs, each centered on a point in P of diameter b that
cover all points in P then there is a k′-sized simple (α,β ) explanation for O .
Let set E be the set of points that are centers of the k discs. We note that E ⊆ P.
Assume by way of contradiction, that there is no k′-sized simple (α,β ) explanation
for O . Let us consider if E is a k′-sized simple (α,β ) explanation for O . As k = k′,
α = 0, and all points of E are feasible, there must be some o ∈ O such that ∀e ∈ E,
d(e,o) > β . As O = P, we know that all points in O fall in a disc centered on a
point in E, hence each o ∈O must be a distance of b/2 or less from a point in E. As
β = b/2, we have a contradiction.

In classical abduction [21], there is a desire to obtain minimalistic explanations—
explanations that make the fewest possible assumptions. Defined in Section 2.2.1,
the MINSEP problem aheres to this desire. This problem is obviously NP-hard by
Theorem 2.1. We can adjust STRAIGHTFORWARD-SEP to find a solution to
MINSEP by finding the minimum hitting set of the Po’s.

Example 2.6. Consider the burglar example scenario in Example 2.4 and Figure 2.3.
Burglary location (observation) o1 can be partnered with two possible safe houses
{p1, p2}—likewise, burglary location o2 can be partnered with {p2, p3}. We imme-
diately see that the potential safe house located at p2 is in both sets. Therefore, p2
is an explanation for both crime scenes. As this is the only such point, we conclude
that {p2} is the minimum-sized solution for the SEP problem and hence the only
solution of MINSEP.

While it is theoretically possible for STRAIGHTFORWARD-SEP to return this
set, there are no assurances it does. As we saw in Example 2.4, E = {p1, p2} is a
solution to SEP, although a solution with lower cardinality ({p2}) exists. This is
why we introduce the MINSEP problem.

With the complexity of k-SEP, the following corollary tells us the complexity
class of the Cost-based Explanation problem. We show this reduction by simply
setting the cost function χ(E ) = |E |.
Corollary 2.1. Cost-based Explanation is NP-Complete.

Proof. CLAIM 1: Cost-based Explanation is in the complexity class NP.
This follows directly from Theorem 2.1, instead of checking the size of E , we only
need to apply the function χ to the E produced by the non-deterministic algorithm
to ensure that χ(E )≤ v.

CLAIM 2: Cost-based Explanation is NP-Hard.
We show k-SEP≤p CBE. Given an instance of k-SEP, we transform it into an in-
stance of CBE in polynomial time where χ(E ) = |E | and v = k.
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CLAIM 2.1: If there is a set E such that χ(E )≤ v then |E | ≤ k.
Straightforward.

CLAIM 2.2: If there is a set E of size k or less then χ(E )≤ v
Straightforward.

MINSEP has the feel of a set-covering problem. Although the generalized cost-
based explanation cannot be directly viewed with a similar intuition (as the cost
maps explanations to reals—not elements of S ), there is an important variant of the
cost-based problem that does. We introduce weighted SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)
INPUT: A space S , a set O of observations, a feasibility predicate feas, numbers
0 ≤ α < β ≤ 1, a weight function c : S → ℜ, and a real number v > 0.
OUTPUT: “Yes” if there exists an (α,β ) explanation E for O such that ∑p∈E c(p)≤
v, and “no” otherwise.

In this case, we can easily show NP-Completeness by reduction from k-SEP, we
simply set the weight for each element of S to be one, causing ∑p∈E c(p) to equal
the cardinality of E .

Corollary 2.2. WT-SEP is NP-Complete.

Proof. Membership in the complexity class NP follows directly from Theorem 2.1,
instead of checking the size of E , we check if ∑p∈E c(p) ≤ v. We also note that
the construction for cost-based explanation in Theorem 2.1 is also an instance of
WT-SEP, hence NP-hardness follows immediately.

Cost-based explanation problems presented in this section are very general be-
cause the cost function is not “nailed down”. A researcher or reader might wonder
if things become any easier if the cost function is a specific cost function rather than
being a completely general, arbitrary cost function. We now specify a couple of cost
functions below and the associated version of SEP.

The total-distance minimization explanation problem (TD-SEP) says, intuitively,
that given an explanation E for a given set O of observations, we should consider
the distance between each observation o and its nearest neighbor oe. The cost of
explanation E is the sum of these distances. We want to find the explanation E that
minimizes this cost, while still insisting that E has k elements or less.
Total Distance Minimization Explanation Problem. (TD-SEP)
For space S , let d : S ×S → ℜ be the Euclidean distance between two points in
S .
INPUT: A space S , a set O of observations, a feasibility predicate feas, numbers
0 ≤ α < β ≤ 1, positive integer k < |O|, and real number v > 0.
OUTPUT: “Yes” if there exists an (α,β ) explanation E for O such that |E | ≤ k and
∑oi∈O minp j∈E d(oi, p j)≤ v, and “no” otherwise.

Theorem 2.2. TD-SEP is NP-Complete.
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Proof. CLAIM 1: TD-SEP is in the complexity class NP.
Given a set E , we can easily determine in polynomial time that it meets the stan-
dards of the output specified in the problem statement.

CLAIM 2: TD-SEP is NP-hard.
Consider Euclidean k-Median Problem, as presented and shown to be NP-Complete
in [19], defined as follows:
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integer
k′ < |P|, real number v′ > 0.
OUTPUT: “Yes” if there is a set of points, S ⊆ P such that |S|= k′ and
∑xi∈X mins j∈S d(xi,s j)≤ v′—“no” otherwise.

Given an instance of the Euclidean k-Median Problem, we create an instance of
TD-SEP as follows:

• Set S to be a set of lattice points in the Euclidean plane that include all points in
P

• Set O = P
• Let f eas(x) = TRUE iff x ∈ P
• Set α = 0
• Set β greater than the diagonal of S ′
• Set k = k′
• Set v = v′

CLAIM 2.1: If there is E , a k-sized explanation for O such that
∑oi∈O minp j∈E d(oi, p j) ≤ v, then there is a set S ⊆ P such that |S| = k′ and
∑xi∈P mins j∈S d(xi,s j)≤ v′.
Because of how we set feas and O , E ⊆ P. As α and β do not affect E , the only
real restrictions on E is that its cardinality is k and that ∑oi∈O minp j∈E d(oi, p j)≤ v.
Because of how we set k and v, we can see that E meets all the conditions to be a
solution to the Euclidean k-Median problem, hence the claim follows.

CLAIM 2.2: If there is set S ⊆ P such that |S| = k′ and ∑xi∈P mins j∈S d(xi,s j) ≤ v′,
then there is set E , a k-sized explanation for O such that ∑oi∈O minp j∈E d(oi, p j)≤
v.
In the construction, the arguments α,β and feas allow any element of a solution to
the k-Median problem to be a partner for any observation in O . By how we set k and
v, we can easily see that S is a valid solution to TD-SEP. The claim follows.

The statement of the theorem follows directly from claims 1-2.

The NP-hardness of TD-SEP is based on a reduction from the k-Median Prob-
lem [19]. The k-median classification algorithm, based on the k-median problem,
is a popular way of clustering data. Unfortunately, the k-median problem makes no
provision for the notion of “feasibility”. As we can see from the above reduction,



30 2 Point-based Geospatial Abduction

it is clear that the k-median problem is a special case of GAPs, but k-median prob-
lems cannot handle arbitrary feasibility predicates of the kind that occur in real-life
geospatial reasoning. The same argument applies to k-means classifiers as well.

2.3.1 Counting Solutions to a GAP

In Theorem 2.1, we showed that the problem of finding an explanation of size k
to be NP-Complete based on a reduction from the known NP-Complete problem
Geometric Covering by Discs (GCD) seen in [14]. As with most decision problems,
we define the associated counting problem, #GCD, as the number of “yes” answers
to the GCD decision problem. The result below shows that #GCD is #P-complete
and, moreover, that there is no fully-polynomial random approximation scheme (or
FPRAS for short) for #GCD unless NP equals the complexity class RP.3

Lemma 2.1. #GCD is #P-complete and has no FPRAS unless NP=RP.

Proof. CLAIM 1: #GCD is in #P.
Clearly, as the total number of “yes” answers is bounded by 2K , this problem is in
the complexity class #P.
CLAIM 2: #GCD is #P-hard.
We have to show a parsimonious or weakly parsimonious reduction from a known
#P-complete problem. In [4], the authors show that the counting version of the dom-
inating set problem (#DOMSET) is #P-complete based on a weakly parsimonious
reduction from the counting version of vertex cover. It is important to note that the
construction used in this proof uses a graph with a maximum degree of three. This
shows that the counting version of the dominating set problem on a graph with a
maximum degree of three is also #P-hard as well. In [5], the authors show a par-
simonious reduction from the dominating set problem (with maximum degree of
three) to GCD. Hence, as the reduction is parsimonious, and the associated count-
ing problem is #P-hard, then the statement of the claim follows.
CLAIM 3: There is no FPRAS for #GCD unless NP = RP.
By Lemma 2.1 and [4], consider the following chain of polynomial-time parsimo-
nious or weakly parsimonious reductions:

#SAT → #3CNFSAT → #Pl3CNFSAT

#Pl3CNFSAT → #Pl1Ex3SAT → #Pl1Ex3MonoSAT

#Pl1Ex3MonoSAT → #PlVC → #Pl3DS → #GCD

3 RP is the class of decision problems for which there is a randomized polynomial algorithm that,
for any instance of the problem, returns “false” with probability 1 when the correct answer to the
problem instance is false, and returns “true” with probability (1− ε) for a small ε > 0 when the
correct answer to the problem instance is “true.”
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Hence, as all of the reductions are PTIME, parsimonious or weakly parsimonious,
and planarity preserving (for planar problems), by the results of [6], the statement
follows.

We can leverage the above result to derive a complexity result for the counting
version of k-SEP.

Theorem 2.3. The counting version of k-SEP is #P-Complete and has no FPRAS
unless NP=RP.

2.4 Exact Algorithm for GAP Problems

This section presents four exact approaches to solve k-SEP and WT-SEP. First, we
provide an enumerative approach that exhaustively searches for an explanation. We
then show that the problem reduces to some well known combinatorial optimization
problems. In particular, it reduces to the set-cover, dominating set, and linear-integer
programming problems. Once k-SEP and WT-SEP are reduced to these problems,
we can use existing algorithms for these problems to solve k-SEP and WT-SEP. In
this section, we will show these possible ways of solving k-SEP and WT-SEP.

Throughout this section, we use Δ to represent the bound on the number of part-
ners that can be associated with a single observation and f to represent the bound on
the number of observations supported by a single partner. Note that both values are
bounded by π(β 2−α2), however they can be much less in practice—specifically f
is normally much smaller than Δ .

2.4.1 Naive Exact Algorithm

We now show correctness of NAIVE-KSEP-EXACT. This algorithm provides an
exact solution to k-SEP but takes exponential time (in k). The algorithm first iden-
tifies a set L of all elements of S that could be possible partners for O . Then, it
considers all subsets of L of size less than or equal to k. It does this until it identifies
one such subset as an explanation.

Proposition 2.1. If there is a k-sized simple (α,β ) explanation for O , then NAIVE-
KSEP-EXACT returns an explanation. Otherwise, it returns NO.

Proof. CLAIM 1: If there is a k-sized simple (α,β ) explanation for O , then NAIVE-
KSEP-EXACT returns an explanation.
Suppose, by way of contradiction, that there is a k-sized simple (α,β ) explanation
for O and NAIVE-KSEP-EXACT returns NO. Then there does not exist k bit strings
such that for all oi, ∑k

j=1(� j(i))≥ 1. As each bit string is associated with a point in
S , then by the construction of the bit strings, there are not k points in S such that
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Algorithm 3 (NAIVE-KSEP-EXACT)
INPUT: Space S , a set O of observations, a feasibility predicate feas, real numbers α ≥ 0, β > 0, and natural number
k > 0
OUTPUT: Set E ⊆ S of size k (or less) that explains O

1. Let M be a matrix array of pointers to binary string {0,1}|O|. M is of the same dimensions as S . Each element in
M is initialized to NULL. For a given p ∈ S , M[p] is the place in the array.

2. Let L be a list of pointers to binary strings. L is initialized as null.
3. For each oi ∈ O do the following

a. Determine all points p ∈ S such that α ≤ d(o, p)≤ β such that feas(p) = TRUE.
b. For each of these points, p, if M[p] = NULL then initialize a new array where only bit i is set to 1. Then add a

pointer to M[p] in L.
c. Otherwise, set bit i of the existing array to 1.

4. For any k elements of L (actually the k elements pointed to by elements of L), we shall designate �1, . . . , � j , . . . �k as
the elements. We will refer to the ith bit of element � j as � j(i).

5. Exhaustively generate all possible combinations of k elements of L until one such combination is found where
∀i ∈ [1, |O|], ∑k

j=1(� j(i))> 0
6. If no such combination is found, return NO. Otherwise, return the first combination that was found.

each point is feasible and falls no closer than α and no further than β distance away
from each point in O . This is a contradiction.

CLAIM 2: If there is no k-sized simple (α,β ) explanation for O , then NAIVE-
KSEP-EXACT returns NO.
Suppose, by way of contradiction, that there is no k-sized simple (α,β ) explanation
for O and NAIVE-KSEP-EXACT returns an explanation. Then there must exist k
bit strings such that

∨k
j=1(� j(i)) = 1. As each bit string is associated with a point in

S , then by the construction of the bit strings, there must exist k points in S such
that each point is feasible and falls no closer than α and no further than β distance
away from each point in O . This is a contradiction.

We now state the complexity of the NAIVE-KSEP-EXACT algorithm in the
proposition below.

Proposition 2.2. The complexity of NAIVE-KSEP-EXACT is O( 1
(k−1)! (π(β

2 −
α2)|O|)(k+1)).

Proof. Note that as all pointers in M are initially null, thus there is no need to iterate
through every element in M - rather lists in M can only be initialized as needed.
Hence, the cost to set-up M in O(1) and not the size of the matrix.
As each o ∈ O has, at most π(β 2 −α2) partners, the total complexity of the inner
loop is π(β 2 −α2)|O|.
As we have, at most, π(β 2 −α2)|O| elements in L (recall that L is the subset of
S that can be partnered with elements in O), then there are

(π(β 2−α2)|O|
k

)
iterations

taking place in step 5. Each iteration costs k · |O| as we must compare the |O| bits
of each k bit string. So, (

π(β 2 −α2)|O|
k

)
· k · |O|
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=
(π(β 2 −α2)|O|) · (π(β 2 −α2)|O|−1) · . . . · (π(β 2 −α2)|O|− (k−1))

k!
· k · |O|

< O(
1

(k−1)!
(π(β 2 −α2)|O|)(k+1))

As this term dominates the complexity of the inner loop, the statement follows.

An exact algorithm for the cost-based explanation problems follows trivially
from the NAIVE-KSEP-EXACT algorithm by adding the step of computing the
value for χ for each combination. Provided this computation takes constant time,
this does not affect the O( 1

(k−1)! (π(β
2 −α2)|O|)(k+1)) run time of that algorithm.

2.4.2 An Exact Set-Cover Based Approach

We now show that k-SEP polynomially reduces to an instance of the popular set-
covering problem [15] which allows us to directly apply the well-known greedy
algorithm reviewed in [20]. SET COVER is defined as follows.

The Set-Cover Problem. (SET COVER)
INPUT: Set of elements E, and a family of subsets of E, F = {S1, . . . ,Smax}, and
positive integer k.
OUTPUT: “Yes” if there exists a k-sized (or less) subset of F , Fk, such that⋃

Si∈Fk
Si = E.

Through a simple modification of NAIVE-KSEP-EXACT, we can take an in-
stance of k-SEP and produce an instance of SET COVER. We run the first four
steps, which only takes O(Δ · |O|) time by the proof of Proposition 2.2. (Recall that
Δ represents a bound on the number of partners that can be associated with a single
observation).

Theorem 2.4. k-SEP polynomially reduces to SET COVER.

Proof. We employ the first four steps of NAIVE-KSEP-EXACT. We view the bit-
strings in list L as subsets of O where if the ith bit of the string is 1, oi of O is in the
set.

CLAIM 1: If there are k subsets of L that cover O , then there is a k-sized simple
(α,β ) explanation for O .
Suppose, by way of contradiction, that there are k subsets of L that cover O and there
is no k-sized simple (α,β ) explanation for O . Then, by Proposition 2.1, for every
combination of k bit strings, there is some bit i such that

∨k
j=1(� j(i)) = 1 does not

hold. Hence, by the reduction, a set cover with k sets from L would be impossible.
This is a contradiction.
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CLAIM 2: If there there is a k-sized simple (α,β ) explanation for O , then there are
k subsets of L that cover O .
Suppose, by way of contradiction, there is a k-sized simple (α,β ) explanation for
O and there are not k subsets of L that cover O . Then, for any combination of k
subsets of L, there is at least one element of O not included. Hence, for any bit-
string representation of an element in L, for some bit i,

∨k
j=1(� j(i)) = 1 does not

hold. However, by Proposition 2.1, this must hold or there is no k-sized simple
(α,β ) explanation for O . This is a contradiction.

We now provide an example of how the NAIVE-KSEP-EXACT algorithm solves
the burglar problem.

Example 2.7. Consider the burglar scenario in Example 2.4 and Figure 2.3 (below).
Suppose we want to solve this problem as an instance of k-SEP by a reduction to
set-cover. We consider the set of burglary locations, O = {o1,o2} as the set we wish
to cover. We obtain our covers from the first four steps of NAIVE-KSEP-EXACT.
Let us call the result list L. Hence, we can view the values of the elements in L as
the following sets:

1. S1 = {o1},
2. S2 = {o1,o2},
3. S3 = {o2}.

These correspond to the points p1, p2, p3 respectively. As S2 covers O , p2 is an
explanation.

The traditional approach for approximation of set-cover has a time complexity
of O(|E| · |F | · size), where size is the cardinality of the largest set in the family
F (i.e., size = maxi≤|F | |Si|). This approach obtains an approximation ratio of 1+
ln(size) [20]. As f is the quantity of the largest number of observations supported
by a single partner, the approximation ratio for k-SEP using a greedy-scheme after
a reduction from set-cover is 1+ ln( f ). The NAIVE-KSEP-SC algorithm below
leverages the above reduction to solve the k-SEP problem.

The result belows specifies the complexity of NAIVE-KSEP-SC.

Proposition 2.3. NAIVE-KSEP-SC has a complexity of O(Δ · f · |O|2) and an ap-
proximation ratio of 1+ ln( f ). (Recall that Δ is a bound on the number of partners
that can be associated with a single observation and f is a bound on the number of
observations supported by a single partner).

Proof. CLAIM 1: NAIVE-KSEP-SC has a complexity of O(Δ · f · |O|2).
The loop at line 3, which reduces the problem to set-covering, takes O(Δ · |O|) time.
The loop at line 4 iterates, at most, |O| times.
The first nested loop at line 4b iterates, at most, Δ · |O| times.
The second nested loop at line 4(b)ii iterates, at most, f times.
The updating procedure at line 4d, which is still inside the loop at line 4, iterates, at
most, f times.
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Algorithm 4 (NAIVE-KSEP-SC)
INPUT: Space S , a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O

1. Initialize list E to null. Let M be a matrix array of the same dimensions as S of lists of pointers initialized to null.
For a given p ∈ S , M[p] is the place in the array. Let L be a list of pointers to lists in M, L is initialized to null.

2. Let O ′ be an array of Booleans of length |O|. ∀i ∈ [1, |O|], initialize O ′[i] = TRUE. For some element o ∈ O , O ′[o]
is the corresponding space in the array. Let numObs = |O|

3. For each element o ∈ O , do the following.

a. Determine all elements p ∈ S such that feas(p) = TRUE and d(o, p) ∈ [α,β ]
b. If there does not exist a p∈S meeting the above criteria, then terminate the program and return IMPOSSIBLE.
c. If M[p] = null then add a pointer to M[p] to L
d. Add a pointer to o to the list M[p].

4. While numObs > 0 loop

a. Initialize pointer cur ptr to null, integer cur size to 0
b. For each ptr ∈ L, do the following:

i. Initialize integer this size to 0, let M[p] be the element of M pointed to by ptr
ii. For each obs ptr in the list M[p], do the following

A. Let i be the corresponding location in array O ′ to obs ptr
B. If O ′[i] = TRUE, increment this size by 1

iii. If this size > cur size, set cur size = this size and have cur ptr point to M[p]
c. Add p to E
d. For every obs ptr in the list pointed to by cur ptr, do the following:

i. Let i be the corresponding location in array O ′ to obs ptr
ii. If O ′[i], then set it to FALSE and decrement numObs by 1

e. Add the location in space S pointed to by cur ptr to E

5. Return E

Hence, by the above statements, the total complexity of NAIVE-KSEP-SC is
O(|O| · (Δ · |O| · f + f )+Δ · |O|), hence the statement follows.
CLAIM 2: NAIVE-KSEP-SC has an approximation ratio of 1+ ln( f ).
Viewing list L as a family of subsets, each subset is the set of observations asso-
ciated with a potential partner, hence the size of the subsets is bounded by f . The
approximation ratio follows directly from the analysis of the set-covering problem.

The result below shows that NAIVE-KSEP-SC solves the k-SEP problem.

Proposition 2.4. A solution E to NAIVE-KSEP-SC provides a partner to every
observation in O if a partner exists–otherwise, it returns IMPOSSIBLE.

Proof. Follows directly from Theorem 2.4.

The algorithm NAIVE-KSEP-SC is a naive, straightforward application of the
O(|E| · |F | · size) greedy approach for set-cover as presented in [20]. We note that it
is possible to implement a heap to reduce the time-complexity to O(Δ · f · |O| · lg(Δ ·
|O|))—avoiding the cost of iterating through all possible partners in the inner-loop.

In addition to the straightforward greedy algorithm for set-covering, there are
several other algorithms that provide different time complexity/approximation ratio
combinations. However, with a reduction to the set-covering problem we must con-
sider the result of [18] which states that set-cover cannot be approximated within a
ratio c · log(n) for any c < 0.25 (where n is the number of subsets in the family F)
unless NP ⊆ DT IME[npoly log n].
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Algorithm 5 (KSEP-TO-DOMSET)
INPUT: Space S , a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0,
β > 0
OUTPUT: Graph GO for use in an instance of a DomSet problem

1. Let GO = (VO ,EO ) be a graph. Set VO = S and EO = /0.
2. Let S be a mapping defined as S : S →VO . In words, S takes elements of the space and returns

nodes from GO as defined in the first step. This mapping does not change during the course of
the algorithm.

3. For each oi ∈ O do the following

a. Determine all points p ∈ S that are such that α ≤ d(o, p)≤ β . Call this set Pi
b. For all p ∈ Pi calculate feas(p). If feas(p) = FALSE, remove p from Pi.
c. Let Vi = {v ∈VO |∃p ∈ Pi such that S(p) = v}.
d. Add |Pi| new nodes to VO . Add these nodes to Vi as well.
e. For every pair of nodes v1,v2 ∈Vi, add edge (v1,v2) to EO .

4. Remove all v ∈VO where there does not exist an v′ such that (v,v′) ∈ EO

5. If any Pi = /0 return IMPOSSIBLE. Otherwise return GO .

A reduction to set-covering has the advantage of being straightforward. It also
allows us to leverage the wealth of approaches developed for this well-known prob-
lem. In the next section, we show that k-SEP reduces to the dominating set problem
as well. We then explore alternate approximation techniques based on this reduction.

2.4.3 An Exact Dominating Set Based Approach

We show below that k-SEP also reduces to the well known dominating set prob-
lem (DomSet) [9] allowing us to potentially leverage fast algorithms such as the
randomized-distributed approximation scheme in [13]. DomSet is defined as fol-
lows.

Dominating Set. (DomSet)
INPUT: Graph G = (V,E) and positive integer K ≤ |V |.
OUTPUT: “Yes” if there is a subset V ′ ⊂ V such that |V ′| ≤ K and such that every
vertex v ∈V −V ′ is joined to at least one member of V ′ by an edge in E.

As the dominating set problem relies on finding a certain set of nodes in a graph,
then, unsurprisingly, our reduction algorithm, Algorithm 5, takes space S , an ob-
servation set O , feasibility predicate feas, and numbers α,β and returns graph GO

based on these arguments.
We now present an example to illustrate the relationship between a dominating

set of size k in GO and a k-sized simple (α,β ) explanation for O . The following
example illustrates the relationship between a k-SEP problem and DomSet.
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Example 2.8. Consider the burglar scenario of Example 2.4 as shown in Figure 2.3
(below). Suppose we want to solve this problem as an instance of k-SEP by a
reduction to DomSet. We want to find a 1-sized simple (α,β ) explanation (safe-
house) for O (the set of locations where the burglaries occurred, {o1,o2}). Suppose
that after running an algorithm such as STRAIGHTFORWARD-SEP, we find that
{p1, p2, p3} are elements of S that are feasible. {p1, p2} are all within a distance of
α,β from o1 and {p2, p3} are all within a distance of α,β from o2. We run KSEP-
TO-DOMSET which creates graph, GO . This graph is shown in Figure 2.5. We can
see that {p2} is a 1-sized dominating sets for GO ; hence it is a 1-sized explanation
for O .

Fig. 2.5 Results of KSEP-TO-DOMSET based on data seen in Figure 2.3. Note that
{p1, p2, p′1, p′2} form a complete graph and {p2, p3, p′′2 , p′3} also form a complete graph. More-
over, {p2} is a dominating set of size 1. Hence, {p2} is a 1-sized simple (α,β ) explanation for O ,
as depicted in Figure 2.3 (below).

We note that the inner loop of KSEP-TO-DOMSET is bounded by O(Δ) opera-
tions and the outer loop will iterate |O| times. Thus, the complexity of KSEP-TO-
DOMSET is O(Δ · |O|) as stated in the result below.

Proposition 2.5. The complexity of KSEP-TO-DOMSET is O(Δ · |O|).
Proof. Notice that the number of points in S considered for each o ∈ O examined
in the inner loop is bounded by O(Δ). As the outer loop is bounded by the size of
O , the complexity of KSEP-TO-DOMSET is O(|O|).

Example 2.8 should give us some intuition into why the reduction to DomSet

works. The following result states that the k-SEP problem can be reduced to Dom-

Set in polynomial time.

Theorem 2.5. k-SEP is polynomially reducible to DomSet.

Proof. We can run KSEP-TO-DOMSET that creates graph GO = (VO ,EO) based
on the set of observations. We show that GO has a dominating set of size k if and
only if there is a k-sized simple (α,β ) explanation for O .

CLAIM 1: If GO has a dominating set of size k or less, then there is a k-sized (or
fewer) simple (α,β ) explanation for O .
Suppose, by way of contradiction, that GO has a dominating set of size k and there
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is not a k-sized simple (α,β ) explanation for O . Then, there has to be at least one
element oi ∈ O such that there is no feasible p ∈ S where α ≤ d(oi, p)≤ β . Con-
sider the nodes Vi from the inner loop of KSEP-TO-DOMSET that are associated
with oi. Note that these nodes form a complete subgraph. As each node in Vi is as-
sociated with oi, no node in Vi can be in the dominating set of GO (if one were, then
we would have a contradiction). However, note that half of the nodes in Vi only have
edges to other nodes in Vi, so there must be an element of Vi in the dominating set.
This is a contradiction.
CLAIM 2: If there is a k-sized simple (α,β ) explanation for O , then GO has a
dominating set of size k or less.
Suppose, by way of contradiction, that there is a k-sized simple (α,β ) explanation
for O , and GO has does not have a dominating set of size k or less. Let E be a k-sized
simple (α,β ) explanation for O . Let this also be a subset of the nodes in GO . By the
KSEP-TO-DOMSET, in each set of nodes Vi, there must be at least one element of
E . As each set of vertices Vi is a complete graph, then we have a dominating set of
size k. Hence, a contradiction.

The straightforward approximation scheme for DomSet is to view the prob-
lem as an instance of SET COVER and apply a classical greedy algorithm for
SET COVER. The reduction would view the set of vertices in GO as the elements,
and the family of sets as each vertex and its neighbors. This results in both a greater
complexity and a worse approximation ratio when compared with the reduction di-
rectly to SET COVER. This is shown in the following result.

Proposition 2.6. Solving k-SEP by a reduction to DomSet using a straightforward
greedy approach has time-complexity O(Δ 3 · f · |O|2) and an approximation ratio
bounded by O(1+ ln(2 · f ·Δ)).

Proof. This is done by a well known reduction of an instance of DomSet into an
instance of SET COVER. In the reduction, each node is an element, and the subsets
are formed by each node and its neighbors. The Table 2.1 shows the quantities:

Item Quantity

Number of elements to be covered 2 ·Δ · |O|
(number of nodes in GO )
Number of subsets 2 ·Δ · |O|
(number of nodes in GO )
Number of elements per subset 2 ·Δ · f
(Maximum degree of nodes in GO

determined by the produce of partners per observation
and observations per partner

Table 2.1 Quantities for the Greedy-Approach in the DomSet reduction.

Hence, the total time complexity of the algorithm is O(8 ·Δ 3 · f · |O|2) and the
complexity part of the statement follows. As the maximum number of elements per
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subset is 2 ·Δ · f , the approximation ratio O(1+ ln(2 · f ·Δ)) follows by the well
known analysis of the greedy set-covering algorithm.

There are other algorithms to approximate DomSet [13, 16]. By leveraging [13],
we can obtain an improved complexity while retaining the same approximation ratio
as the greedy approach. This is shown below.

Proposition 2.7. Solving k-SEP by a reduction to DomSet using the distributed,
randomized algorithm presented in [13] has a time complexity O(Δ · |O|+ ln(2 ·Δ ·
|O|) · ln(2 ·Δ · f )) with high probability and approximation ratio of O(1+ ln(2 · f ·
Δ)).

Proof. By Proposition 2.5, the complexity of KSEP-TO-DOMSET is O(Δ · |O|)).
The graph GO has O(2 ·Δ · |O|) nodes, and the maximum degree of each node is
bounded 2 ·Δ · f as per Proposition 2.6. As the algorithm in [13] has a complexity
of O(lg(n) · lg(d)) (with high probability) where n is the number of nodes and d is
the maximum degree, the complexity of this approach requires O(Δ · |O|+ ln(2 ·Δ ·
|O|) · ln(2 ·Δ · f )) with high probability (the statement follows).

As the approach in [13] is greedy, it maintains the O(1+ ln(2 · f ·Δ)) (Propo-
sition 2.6) (the approximation ratio in this case being a factor of the optimal in
expectation).

Hence, although a reduction to dominating set generally gives us a worse approx-
imation guarantee, we can (theoretically) outperform set-cover with the randomized
algorithm for dominating set in terms of complexity.

2.4.4 An Exact Integer Linear Programming based Approach

Given an instance of k-SEP, this section shows how to create a set of integer con-
straints that, if solved, will yield a solution to the problem. We start by defining the
set of integer linear constraints associated with k-SEP.

Definition 2.8 (OPT-KSEP-IPC). The k-SEP integer programming constraints (OPT-
KSEP-IPC) require the following information, obtained in O(|O| ·π(β 2−α2) time:

• Let L be the set of all possible partners generated in the first four steps of NAIVE-
KSEP-EXACT.

• For each p ∈ L, let str(p) be the string of |O| bits, where bit str(p)i is 1 if p is
a partner of the ith observation (this is also generated in the first four steps of
NAIVE-KSEP-EXACT).

For each p j ∈ L, we use the variable x j ∈ {0,1} as follows. We would like x j = 1 iff
p j is in E . Then KSEP-IPC consists of the following:
Minimize ∑p j∈L x j subject to
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1. ∀oi ∈ O , ∑p j∈L x j · str(p j)i ≥ 1
2. ∀p j ∈ L, x j ∈ {0,1} (later, we will relax the integer constraint on variables in the

integer program and use the constraint x j ≤ 1)

The following result describes the size of the above integer linear program.

Proposition 2.8. OPT-KSEP-IPC consists of O(|O|π(β 2 − α2)) variables and
O(|O| ·π(β 2 −α2)) constraints.

Proof. Follows directly from Definition 2.8.

The result below shows that the above integer linear program does in fact cor-
rectly capture the desired solution(s) to k-SEP.

Proposition 2.9. For a given instance of the optimization version k-SEP, if OPT-
KSEP-IPC is solved, then

⋃
p j∈Lx j=1

p j is an optimal solution to k-SEP.

Proof. Suppose, by way of contradiction, that
⋃

p j∈Lx j=1
p j is not an optimal solu-

tion to k-SEP. By the constraint, ∀oi ∈O , ∑p j∈L x j ·str(p j)i ≥ 1, we are ensured that
for each observation, there is a partner p j such that x j = 1. Further, if we associate
x j with the selected parter p j for any solution E to k-SEP, then this constraint must
hold. Hence,

⋃
p j∈Lx j=1

p j is a valid explanation. Therefore, the optimal solution to

the instance of k-SEP, we shall call EOPT , must be smaller than
⋃

p j∈Lx j=1
p j. As the

minimization of ∑p j∈L x j ensures that the cardinality of
⋃

p j∈Lx j=1
p j is minimized.

Therefore, |EOPT | cannot be smaller than |⋃p j∈Lx j=1
p j|, as the constraint ∀oi ∈ O ,

∑p j∈L x j · str(p j)i ≥ 0 holds for any solution to k-SEP. This is a contradiction.

We now return to our burglar example.

Example 2.9. Consider the burglar scenario in Example 2.4, pictured in Figure 2.3
(below). Suppose we want to solve this problem as an instance of MINSEP. We
would set up the constraints as follows:
Minimize x1+x2+x3 subject to 1 ·x1+1 ·x2+0 ·x3 ≥ 1 and 0 ·x1+1 ·x2+1 ·x3 ≥ 1,
where x1,x2,x3 ∈ {0,1}
Obviously, setting x1 = 0,x2 = 1,x3 = 0 provides an optimal solution. Hence, as x2
is the only non-zero variable, p2 is the explanation for the crime-scenes.

A solution to the constraints OPT-KSEP-IPC can be approximated using the
well-known “rounding” technique [10, 32] that relaxes constraints. We present an
OPT-KSEP-IPC using rounding.

Proposition 2.10. NAIVE-KSEP-ROUND returns an explanation for O that is
within a factor Δ from optimal, where Δ is the maximum number of possible part-
ners associated with any observation.



2.5 Greedy Heuristics for GAP Problems 41

Algorithm 6 (NAIVE-KSEP-ROUND)
INPUT: Space S , a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0,
β > 0
OUTPUT: Set E ⊆ S that explains O

1. Run the first four steps of NAIVE-KSEP-EXACT
2. Solve the relaxation of OPT-KSEP-IPC
3. For the o ∈ O with the most possible partners, let Δ be the number of possible partners associ-

ated with o. (This can be done in line 1).
4. Return all p j ∈ L where x j ≥ 1

Δ

There are several things to note about this approach. First, it can be easily adapted
to many of the weighted variants—such as WT-SEP. Second, we note that the
rounding algorithm is not a randomized rounding algorithm—which often produces
a solution that satisfies all of the constraints in the linear-integer program. The above
algorithm guarantees that all of the observations will be covered (if an explanation
exists). Finally, this approach allows us to leverage numerous software packages for
solving linear and linear-integer programs.

2.5 Greedy Heuristics for GAP Problems

In this section, we suggest some greedy approaches to solve geospatial abduction
problems.

2.5.1 A Linear Time Greedy Approximation Scheme

In this section, we introduce a greedy approximation scheme for the optimization
version of k-SEP that has a lower time-complexity than NAIVE-KSEP-SC but still
maintains the same approximation ratio. Our GREEDY-KSEP-OPT1 algorithm
runs in linear time with respect to O . The key intuition is that NAIVE-KSEP-SC
iterates through O(Δ · |O|) possible partners in line 4. Our algorithm first randomly
picks an observation and then greedily selects a partner for it. This results in the
greedy step iterating through only O(Δ) partners.

Example 2.10. Consider the tiger kill example from Example 2.3 and Figure 2.3.
After initializing the necessary data structures in lines 1-3, GREEDY-KSEP-OPT1
iterates through the observations in O where the associated position in O ′ is
TRUE. Suppose the algorithm picks o1 first. It now accesses the list pointed to
from OBS[o1]. This gives us a set of pointers to the following elements of S :
{p1, p2, p3, p4}. Following the greedy selection outlined in line 4 of NAIVE-KSEP-
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Algorithm 7 (GREEDY-KSEP-OPT1)
INPUT: Space S , a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0,
β > 0
OUTPUT: Set E ⊆ S that explains O

1. Run lines 1-2 of NAIVE-KSEP-SC
2. Let OBS be an array, size |O| of lists to pointers in M. For some observation o, let OBS[o] be

the corresponding list in the array.
3. Run the loop in line 3 of NAIVE-KSEP-SC but when partner p of observation o is considered,

add a pointer to M[p] in the list OBS[o]. The list L need not be maintained.
4. While numObs > 0 loop

a. Randomly select an element o ∈ O such that O ′[o] = TRUE
b. Run the greedy-selection loop of line 4 of NAIVE-KSEP-SC, but consider the list OBS[o]

instead of L

5. Return E

SC, the algorithm iterates through these points, visiting the list of observations as-
sociated with each one in the matrix array M.

First, the algorithm accesses the list pointed to by M[p1]. Figure 2.6 (above)
shows the observations considered when p1 is selected. As there is only one obser-
vation in list M[p1] whose associated Boolean in O ′ is TRUE, the variable cur size
is set to 1 (see line 4(b)iii of NAIVE-KSEP-SC). cur ptr is then set to M[p1].

We now consider the next element, p2. Figure 2.6 (right) shows the list pointed
to by M[p2]. As M[p2] points to more observations whose associated O ′ Boolean is
TRUE, we update cur size to 2 and cur ptr to M[p2].

The algorithm then iterates through p3 and p4, but finds they do not offer more
observations than p2. Hence, p2 is added to the solution set (E ). The algorithm
updates the array of Booleans, O ′ and sets O ′[o1] and O ′[o2] to FALSE (depicted
by X’s over those observations in subsequent figures). numObs is decremented by
2.

We now enter the second iteration of line 4. The only element for the algorithm to
pick at this point is o3, as only O ′[o3] is TRUE. The list OBS[o3] points to the posi-
tions {p6, p7, p8}. In Figure 2.7 we look at what happens as the algorithm considers
the p7. As OBS[o2] = FALSE, it only considers o3 when computing this size.

When the algorithm finishes its consideration of all the elements pointed to by
OBS[o3], it will return the first element of that set (p6) as neither p7 nor p8 were
partners to more available observations than p6 (in our implementation of this al-
gorithm, we use a coin-flip to break ties among partners with the same number of
observations). GREEDY-KSEP-OPT1 then adds p6 to E and terminates. The final
solution returned, {p2, p6}, is a valid (and in this case, optimal) explanation.

The result below captures the running time of the GREEDY-KSEP-OPT1 algo-
rithm.

Proposition 2.11 (Complexity of GREEDY-KSEP-OPT1). GREEDY-KSEP-OPT1
has a complexity of O(Δ · f · |O|) and an approximation ratio of 1+ ln( f ).
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Fig. 2.6 Above: GREEDY-KSEP-OPT1 accesses the list pointed to by M[p1] thus considering
all observations available to p1. Below: GREEDY-KSEP-OPT1 accesses the list pointed to by
M[p2] and finds it has more active observations than it found in the list pointed to by M[p1].

Fig. 2.7 GREEDY-KSEP-OPT1 considers the observations available to p7. The X’s on o1 and o2
signify that OBS[o1] and OBS[o2] are set to FALSE.
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Proof. CLAIM 1: GREEDY-KSEP-OPT1 has a complexity of O(Δ · f · |O|).
This follows the same analysis of NAIVE-KSEP-SC in Proposition 2.3, except that
line 4 iterates only Δ times rather than Δ · |O| times. Hence, the total complexity is
O(|O| · (Δ · f + f )+Δ · |O|) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT1 has an approximation ratio of 1+ ln( f ).
The proof of this claim resembles the approximation proof of the standard greedy
algorithm for set-cover (i.e., see [3] page 1036).

Let p1, . . . , pi, . . . , pn be the elements of E , the solution to GREEDY-KSEP-
OPT1, numbered by the order in which they were selected. For each iteration, let
set COVi be the subset of observations that are partnered for the first time with point
pi. Note that each element of O is in exactly one COVi. For each o j ∈ O , we define
cost j to be 1

|COVi| where o j ∈COVi.

CLAIM 2.1: ∑pi∈E ∗ ∑o j∈O pi,o j are partners cost j ≥ |E |
By the definition of cost j, exactly one unit of cost is assigned every time a point is
picked for the solution E . Hence,

COST (E ) = |E |= ∑
o j∈O

cost j

The statement of the claim follows.

CLAIM 2.2: For some point p ∈ L, ∑o j∈O p,o j are partners cost j ≤ 1+ ln( f ).

Let P be the subset of O that can be partners with p. At each iteration i of the
algorithm, let uncovi be the number of elements in P that do not have a partner.
Let last be the smallest number such that uncovlast = 0. Let EP = {pi ∈ E |(i ≤
last)∧ (COVi ∩P 
= /0)}. From here on, we shall renumber each element in EP as
p1, . . . , p|EP| by the order they are picked in the algorithm (i.e., if an element is
picked that cannot partner with anything in P, we ignore it and continue number-
ing with the next available number, we will use this new numbering for COVi and
the iterations of the algorithm as well, but do not redefine the set based on the new
numbering).

We note that for each iteration i, the number of items in P that are partnered is
equal to uncovi−1 −uncovi. Hence,

∑
o j∈O

p,o j are partners

cost j =
last

∑
i=1

uncovi−1 −uncovi

|COVi|

At each iteration of the algorithm, let PCOVi be the subset of observations that are
covered for the first time if point p is picked instead of point pi. We note, that
for all iterations in 1, . . . , last, the point p is considered by the algorithm as one
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of its options for greedy selection. Therefore, as p is not chosen, we know that
|COVi| ≥ |PCOVi|. Also, by the definition of ucovi, we know that |PCOVi|= ucovi−1.
This gives us:

∑
o j∈O

p,o j are partners

cost j ≤
last

∑
i=1

uncovi−1 −uncovi

ucovi−1

Using the algebraic manipulations of [3] (page 1037), we get the following:

∑
o j∈O

p,o j are partners

cost j ≤ H|P|

where Hj is the jth harmonic number. By definition of the symbol f (maximum
number of observations supported by a single partner), we obtain the statement of
the claim.

(Proof of claim 2): Combining claims 1–2, we get |E | ≤ ∑pi∈E ∗(1+ ln( f )), which
gives us the claim.

The result below establishes the correctness of GREEDY-KSEP-OPT1.

Proposition 2.12. GREEDY-KSEP-OPT1 returns a |E |-sized (α,β ) explanation
for O .
GREEDY-KSEP-OPT1 returns IMPOSSIBLE if there is no explanation for O .

Proof. Suppose by way of contradiction that there exists and element o ∈ O such
that there is no in E . We note that set O ′ contains all elements of O and the only
way for an element to be removed from O ′ is if a partner for that element is added
to E . Hence, if the program returns a set E , we are guaranteed that each o ∈ O has
a partner in E .

Suppose by way of contradiction that GREEDY-KSEP-OPT1 returns IMPOS-
SIBLE and there exists a set E that is a valid (α,β ) explanation for O . Then, for
every element of O , there exists a valid partner. However, this contradicts line 3b
of NAIVE-KSEP-SC (called by line 4b of GREEDY-KSEP-OPT1) which causes
the program to return IMPOSSIBLE only if an element of O is found without any
possible partner.

We can bound the approximation ratio for GREEDY-KSEP-OPT1 by O(1+
ln( f )), as it is still essentially a greedy algorithm for a covering problem. The main
difference between GREEDY-KSEP-OPT1 is the way it greedily chooses covers
(partners). This algorithm randomly picks an uncovered observation in each loop
and then greedily chooses a cover that covers that observation. Improving the ac-
curacy of this algorithm (in practice) is tied directly to the selection criteria used
to pick observations, which is random in GREEDY-KSEP-OPT1. In Section 2.5.2
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we develop an algorithm that “smartly” picks observations with a dynamic ranking
scheme while maintaining a time complexity lower than the standard set-covering
approach.

2.5.2 Greedy Observation Selection

GREEDY-KSEP-OPT1 randomly selects observations although subsequent part-
ner selection was greedy. It is easy to implement an a-priori ranking of observations
based on something like the maximum number of other observations which share
a partner with it. Such a ranking could be implemented at the start of GREEDY-
KSEP-OPT1 with no effect on complexity, but the ranking would be static and may
lose its meaning after several iterations of the algorithm. We could also implement
a dynamic ranking. We present a version of GREEDY-KSEP-OPT1 that we call
GREEDY-KSEP-OPT2 that picks the observations based on dynamic ranking, runs
in time O(Δ · f 2 · |O|+ |O| · ln(|O|)), and maintains the usual approximation ratio of
1+ ln( f ) for greedy algorithms. Our key intuition was to use a Fibonacci heap [7].
With such a data structure, we can update the rankings of observations at constant
amortized cost per observation being updated. The most expensive operation is to
remove an observation from the heap—which costs an amortized O(ln(|O|)), how-
ever as we can never remove more than |O| items from the heap, this cost is most
likely dominated by the cost of the rest of the algorithm, which is more expensive
than GREEDY-KSEP-OPT1 by a factor of f . Recall that f is the bound on the
number of observations supported by a single partner - and is often very small in
practice.

In order to leverage the Fibonacci heap, there are some restrictions on how the
ranking can be implemented. First, the heap puts an element with the minimal key
on top, and can only decrease the key of elements—an element in the heap can
never have its key increased. Additionally, there is a need for some auxiliary data
structures as searching for an element in the heap is very expensive. Fortunately, the
k-SEP problem is amenable to these type of data structures.

We based the key (ranking) on a simple heuristic for each observation. The key
for a given observation o is the number of unique observations that share a partner
with o. As we are extracting the minimum-keyed observation, we are taking the ob-
servation that has the “least in common” with the other observations. The intuition
of choosing an observation with “less in common” with other observations ensures
that outliers get covered with larger covers. Meanwhile, elements with a higher rank
in this scheme are covered last, which may lead to a more efficient cover. In Sec-
tion 2.6 we show experimentally that this heuristic was viable for the data-set we
considered—providing more accurate results than the reduction from set-covering.

Example 2.11. The basic intuition behind GREEDY-KSEP-OPT2 is similar to
GREEDY-KSEP-OPT1 in that it iterates through the observations and greedily
chooses a partner. The main difference is that it ranks the observations instead of just
randomly selecting them. Consider the tiger from Example 2.3 whose behavior is
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Algorithm 8 GREEDY-KSEP-OPT2
INPUT: Space S , a set O of observations, a feasibility predicate feas, and real numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O

1. Run lines 1-3 of GREEDY-KSEP-OPT1.
2. Let key1, . . .key|O| be natural numbers associated with each observation. Initially, they are set to 0. For some o ∈ O

let keyo be the associated number.
3. Let REL OBS be an array of lists of pointers to elements of O . The size of the array is O . For element o ∈ O , let

REL OBS[o] be the corresponding space in the array.
4. For each o ∈ O , do the following:

a. For each element p ∈ OBS[o], do the following.
i. For each element obs ptr of the list pointed to by M[p], do the following

A. If obs ptr points to an element of O not pointed to in the list REL OBS[o], then add obs ptr to
REL OBS[o] and increment keyo by 1.

5. Let OBS HEAP be a Fibonacci heap. Let QUICK LOOK be an array (size O) of pointers to elements of the heap.
For each o ∈ O , add the tuple 〈o,keyo〉 to the heap, along with a pointer to the tuple to QUICK LOOK[o]. Note we
are using keyo as the key for each element in the heap.

6. While OBS HEAP is not empty, loop

a. Take the minimum element of OBS HEAP, let o be the associated observation with this element.
b. Greedily select an element of OBS[o] as done in the loop at line 4 of GREEDY-KSEP-OPT1. We shall call

this element p.
c. For every o′ ∈ O pointed to by a pointer in M[p], such that O ′[o′] = TRUE, do the following.

i. Set O ′[o′] = FALSE
ii. Remove the element pointed to by QUICK LOOK[o′] from OBS HEAP
iii. For every element o′′ ∈ O pointed to by an element of REL OBS[o′] where O ′[o′′] = TRUE do the fol-

lowing.
A. Decrease the keyo′′ by 1.

7. Return E

Observation keyi REL OBS[oi]

o1 2 {o1,o2}
o2 2 {o1,o2}
o3 2 {o2,o3}

Table 2.2 key values and related observations for observations in the tiger kill scenario introduced
in Example 2.3.

depicted in Figure 2.3. In Example 2.10, we used GREEDY-KSEP-OPT1 to solve
the associated k-SEP problem for this situation. We shall discuss how GREEDY-
KSEP-OPT2 differs.

The first main difference is that the algorithm assigns a rank to each observation
oi, called keyi, which is also the key used in the Fibonacci heap. This is done in the
loop at line 4. It not only calculates keyi for each observation, but it also records the
elements “related” to it in the array REL OBS. Note that a “related” observation
needs only to share a partner with a given observation. Not all related observations
need to have the same partner. For the tiger kill scenario, we show the keys and
related observations in Table 2.2.

As the key values are the same for all elements of O , let us assume the algorithm
first considers o1 as in Example 2.10. As written, we would take the minimum el-
ement in the Fibonacci heap (a constant time operation). We would then consider
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the partners for o1 which would result in the greedy selection of p2, (just as in
GREEDY-KSEP-OPT1 and NAIVE-KSEP-SC. Also note that we retain the array
of Booleans, O ′ as well as the array of lists, M to help us with these operations).

Now the issue arises that we must update the keys for the remaining observa-
tions, as well as remove observations covered by p2. As we maintain REL OBS
and O ′, the procedure quickly iterates through the elements covered by p2: o1 and
o2. Figure 2.8 shows the status of the observations at this point.

Fig. 2.8 Above: GREEDY-KESP-OPT2 considers all observations that can be partnered with
p2. Notice that in this figure by each observation we show a box that represents the key of the
observation in the Fibonacci heap. Below: GREEDY-KSEP-OPT2 removes o1 from the heap,
and iterates through the elements in REL OBS[o1], causing it to decrease the key of o2.

We remove o1 from the heap, and set O ′[o1] to FALSE. This prevents us from
considering it in the future. We now iterate through each o′′ in the list pointed to
by REL OBS[o1] where O ′[o′′] is TRUE and decrease the key of each by one.
As per Table 2.2, REL OBS[o1] = {o1,o2}. As O ′[o1] = FALSE we do nothing.
As O ′[o2] = TRUE, we decrease the key of the associated node in the Fibonacci
heap. The array QUICK LOOK ensures we can access that element in constant
time. Figure 2.8 (left) graphically depicts this action.

Next, we consider the other element covered by partner p2: o2. After removing
this element from the heap and setting O ′[o2] to FALSE, we can easily see that
there does not exist any o′′ ∈ REL OBS[o2] where O ′[o′′] = TRUE. Hence, we can
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proceed to pick a new minimum observation from the heap - which is o3 in this
case. The greedy selection proceeds (resulting in the choice of p6), followed by the
update procedure (which simply removes the node associated with o3 from the heap
and sets O ′[o3] = FALSE). As there are no more elements in the heap, GREEDY-
KSEP-OPT2 returns the solution {p2, p6}.

The result below analyzes the complexity of the GREEDY-KSEP-OPT2 algo-
rithm.

Theorem 2.6 (Complexity of GREEDY-KSEP-OPT2). GREEDY-KSEP-OPT2
has a complexity of O(Δ · f 2 · |O|+ |O| · ln(|O|)) and an approximation ratio of
1+ ln( f ).

Proof. CLAIM 1: GREEDY-KSEP-OPT2 has a complexity of O(Δ · f 2 · |O|+ |O| ·
ln(|O|)).
Line 1 takes O(Δ · |O|) time.
The loop starting at line 4 iterates |O| times.
The nested loop at line 4a iterates Δ times.
The second nested loop at line 4(a)i iterates f times. The inner body of this loop can
be accomplished in constant time.
In line 5, initializing the Fibonacci heap takes constant time, as does inserting ele-
ments, hence this line takes only O(|O|) time.
The loop at line 6 iterates, at most, |O| times.
Viewing the minimum of a Fibonacci heap, as in line 6a can be done in constant
time.
As per the analysis of GREEDY-KSEP-OPT1, line 6b takes Δ · f iterations. The
updating procedure starts with line 6c which iterates f times.
The removal of an element in line 6(c)ii from a Fibonacci heap costs O(ln(|O) amor-
tized time. However, we perform this operation no more than |O| times, hence we
can add |O| · ln(|O|)) to the complexity.
Note that the size of a list pointed to by REL OBS[o′] is bounded by Δ · f — f ob-
servations associated with each of Δ partners—hence line 6(c)iii iterates, at most,
Δ · f times.
We note that decreasing the key of an item in the Fibonacci heap (in line 6(c)iii)
takes constant time (amortized).
Therefore, by the above statements, the complexity of GREEDY-KSEP-OPT2 is
O(|O| ·(Δ · f +Δ · f 2)+ |O| · ln(|O|)+Δ · f · |O|+Δ · |O|) and the statement follows.
CLAIM 2: GREEDY-KSEP-OPT2 has an approximation ratio of 1+ ln( f ).
Follows directly from Proposition 2.11.

The result below establishes the soundness of the GREEDY-KSEP-OPT2 algo-
rithm.

Proposition 2.13. GREEDY-KSEP-OPT2 returns a |E |-sized (α,β ) explanation
for O .
GREEDY-KSEP-OPT2 returns IMPOSSIBLE if there is no explanation for O .

Proof. Mirrors that of Proposition 2.12.
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2.6 Implementation and Experiments

In this section, we show that our geospatial abduction framework and algorithms
are viable in solving real-world geospatial abduction problems. Using a real-world
data set consisting of counter-insurgency information from Iraq, we were able to
accurately locate insurgent weapons cache sites (partners) given previous attacks
(observations) and some additional data (used for feas and α,β ). This validates our
primary research goal for the experiments - to show that geospatial abduction can
be used to solve problems in the real-world.

We considered the naive set-covering approach along with GREEDY-KSEP-
OPT1 and GREEDY-KSEP-OPT2, which according to our analytical results had
the best approximation ratios and time-complexities. We implemented these algo-
rithms in 4000 lines of Java code, running on a Lenovo T400 ThinkPad laptop run-
ning Vista with an Intel Core 2 Duo T9400 2.53 GHz processor and 4.0 GB of
RAM.

Our SCARE (Social-Cultural Abductive Reasoning Engine) system [25] enabled
us to carry out tests on real-world data. This data includes 21 months of Improvised
Explosive Device or IED attacks in Baghdad4 (a 25x27 km region)—these constitute
our observations. It also included information on locations of caches associated with
those attacks discovered by US forces. The locations of the caches constitute the
(α,β ) explanation we want to learn. We used data from the International Medical
Corps to define feasibility predicates which took the following factors into account:

• the ethnic makeup of neighborhoods in Baghdad—specifically, Sunni locations
were deemed infeasible for cache locations;

• the locations of US bases in Baghdad were also considered infeasible; and
• bodies of water were also deemed infeasible.

We also separately ran tests on that part of the above data focused on Sadr City
(a 7x7 km district in Baghdad) alone. On both these regions, we overlaid a grid
whose cells were 100m x 100m each—about the size of a standard US city block.
All timings were averaged over 100 runs.

We split the data into 2 parts—the first 7 months of data was used as a “train-
ing” set and the next 14 months of data was used for experimental evaluation. We
used the following simple algorithm, FIND-BOUNDS, to automatically learn the
α,β values. We set βmax to 2.5 km. While it is possible to develop more advanced
procedures for learning these parameters, this is not the focus of this book. Such
parameters could also come from an expert.
Accuracy. Our primary goal in the experiments was to determine if the geospatial
abduction framework and algorithms could provide highly accurate results in a real-
world setting. “Accuracy” in this section refers to two aspects: size of the solution
and the distance to the nearest actual cache site. The distance to nearest cache site
was measured by taking the straight-line Euclidean distance to the nearest cache site
that was found after the first attack supported by the projected cache site. We used

4 Attack and cache location data was provided by the Institute for the Study of War.
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Algorithm 9 (FIND-BOUNDS)
INPUT: Historical, time-stamped observations Oh, historical, time-stamped partners, Eh, real num-
ber (distance threshold) βmax
OUTPUT: Real numbers α,β

1. Set α = 0 and β = βmax
2. Set Boolean variable f lag to TRUE
3. For each o ∈ Oh, do the following:

a. For each p ∈ Eh that occurs after o, do the following.
i. Let d be the Euclidean distance function.
ii. If f lag, and d(o, p)≤ βmax then set α = d(o, p) and β = d(o, p)
iii. If not f lag, then do the following:

A. If d(o, p)< α then set α = d(o, p)
B. If d(o, p)> β and d(o, p)≤ βmax then set β = d(o, p)

4. Return reals α,β

the raw coordinate for the actual cache in the data set—not the position closest to
the nearest point in the 100 m resolution grid that we overlaid on the areas. The
accuracy results are summarized in Tables 2.3-2.4.

Area Algorithm Sample Mean Sample Mean
Solution Size Number of Partners

≤ 0.5 km
to actual cache

Baghdad
NAIVE-KSEP-SC 14.53 8.13
GREEDY-KSEP-OPT1 15.02 7.89
GREEDY-KSEP-OPT2 14.00 7.49

Sadr City
NAIVE-KSEP-SC 8.00 3.00
GREEDY-KSEP-OPT1 6.61 4.44
GREEDY-KSEP-OPT2 6.00 5.28

Table 2.3 k-SEP Algorithm Results - Solution Size

Area Algorithm Sample Mean Sample Std Dev Sample Mean
Avg Dist to of Avg Dist to Std Dev of Dist to
actual cache actual cache actual cache

Baghdad
NAIVE-KSEP-SC 0.79 km 0.02 0.64
GREEDY-KSEP-OPT1 0.76 km 0.07 0.60
GREEDY-KSEP-OPT2 0.72 km 0.03 0.63

Sadr City
NAIVE-KSEP-SC 0.72 km 0.03 0.46
GREEDY-KSEP-OPT1 0.45 km 0.03 0.46
GREEDY-KSEP-OPT2 0.35 km 0.03 0.47

Table 2.4 k-SEP Algorithm Results - Distances to Actual Cache Sites
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Overall, GREEDY-KSEP-OPT2 consistently found the smallest solution—of
cardinality 14 for Baghdad and 6 for Sadr City—on all 100 trials. For Baghdad, the
other two algorithms both found a solution of size 14, but both averaged a higher
cost solution. For Sadr City, GREEDY-KSEP-OPT1 often did find a solution of
6 caches while NAIVE-KSEP-SC only found solutions of size 8. Additionally, in
both tests, the solution sizes for GREEDY-KSEP-OPT1 varied more than the other
two algorithms. Moreover, Tukey’s Honest Significant Difference (HSD) test for
both Baghdad and Sadr City indicated significant difference between all pairs of
algorithms with respect to solution size.

Of the partners in a given solution, we also recorded the number of partners less
than 0.5km away from an actual cache. For Baghdad, NAIVE-KSEP-SC performed
best in this regard, averaging 8.13 partners less than 0.5km from an actual cache
site. Although this result for Baghdad is significant based on an analysis of variance
(ANOVA) and honest significant differences (HSD) (p-value of 2.3 ·10−9), we also
note that the greatest difference among averages was still less than one partner. This
same result for Sadr City, however, tells a different story. For this test, NAIVE-
KSEP-SC performed poorly with regard to the other two algorithms, only finding
3 partners meeting these criteria for each of the 100 trials. GREEDY-KSEP-OPT2
performed very well in this aspect (for Sadr City). It averaged over 5 partners less
than 0.5km from an actual cache. Furthermore, for Sadr City, all partners found by
GREEDY-KSEP-OPT2 were within 600m of an actual cache site. The analysis of
variance, or ANOVA, (p-value of 2.2 ·10−16) and HSD of partners less than 0.5km
from an actual cache for the Sadr City trials indicate that these results are significant.

Our primary metric of accuracy was average distance to an actual cache. In this
regard, GREEDY-KSEP-OPT2 performed the best. It obtained an average distance
of 0.72km for Baghdad and 0.35km for Sadr City. This number was 40m less for
Baghdad and 100 m less for Sadr City when compared to GREEDY-KSEP-OPT1,
whose average distance varied widely among the trials. With regard to this metric,
NAIVE-KSEP-SC performed the worst—particularly in Sadr City, where it pre-
dicted caches over twice as far from actual caches as GREEDY-KSEP-OPT2 (on
average). For both Baghdad and Sadr City, the simple ANOVA yielded a p-value
of 2.2 · 10−16, which suggests with over a 99% probability that there is a differ-
ence among the algorithms. Also, for both areas, Tukey’s HSD indicates significant
difference between each pair-wise comparison of algorithms.
Algorithm run times. Table 2.5 shows the run times of our algorithms. In order to
validate the findings suggested by Table 2.5 statistically, we ran analysis of vari-
ance (ANOVA) and Tukey’s Honest Significant Difference test (HSD) for pair-
wise comparisons [8]. An ANOVA for the Baghdad run times gave a p-value of
2.2 · 10−16, which suggests with well over 99% probability that GREEDY-KSEP-
OPT1 is statistically faster than GREEDY-KSEP-OPT2. The HSD for Baghdad
indicates that, with regard to run times, all pair-wise-comparison of the three al-
gorithms are significantly different. For Sadr City, the ANOVA gave a p-value of
4.9 ·10−3, which suggests with a 99% probability that the algorithms differ in run-
times. However, the HSD indicates, with an 82% probability, that there is no dif-
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ference among GREEDY-KSEP-OPT1 and GREEDY-KSEP-OPT2, while both
differ significantly from NAIVE-KSEP-SC.

Area Algorithm Sample Mean Run-Time Sample Run-Time
Standard Deviation

Baghdad
NAIVE-KSEP-SC 354.75 ms 12.86
GREEDY-KSEP-OPT1 162.08 ms 40.83
GREEDY-KSEP-OPT2 201.40 ms 36.44

Sadr City
NAIVE-KSEP-SC 28.85 ms 10.52
GREEDY-KSEP-OPT1 25.44 ms 9.33
GREEDY-KSEP-OPT2 24.64 ms 8.95

Table 2.5 k-SEP algorithm performance results.

2.6.1 A Simple Heuristic to Improve Accuracy

In our implementation of all three algorithms, ties in greedy selection of partners
were determined by a “coin toss.” Specifically, we are considering the case where
this size = cur size in line 4(b)iii of NAIVE-KSEP-SC in Section 2.4.2. Let us re-
phrase the situation as follows. Let O be the entire set of observations and O ′ ⊆O be
the set of observations currently not assigned a partner. Let p be the current partner
that best meets the criteria for greedy selection and p′ be the partner we are consid-
ering. We define P and P′ as subsets of O that are the observations associated with
p and p′ respectively. Hence, if |P′ ∩O ′| > |P∩O ′|, we pick p′. As implemented,
if |P′ ∩O ′| = |P∩O ′|, we flip a coin. We add a simple heuristic that simply states
that partners that cover more observations are preferred. We change the criteria as
follows:

• If |P′ ∩O ′|= |P∩O ′|, then do the following:

• If |P′|> |P|, pick p′
• If |P|> |P′|, pick p
• If |P|= |P′|, flip a coin

We refer to this as the “tie-breaker” heuristic. The result is that the solution set of
partners covers more observations and hence provides a more “dense” solution.

We added this heuristic to our existing code for all three algorithms and ran each
one 100 times for both the Baghdad and Sadr City areas. Unsurprisingly, as this is a
constant-time operation, run-times were not affected. However, accuracy improved
in all cases. As GREEDY-KSEP-OPT2 still provided the most accurate results, the
following exposition focuses on how the heuristics affected the solution size and
accuracy for this algorithm.

Because the tie-breaker heuristic only adjusts how two partners are chosen—
both of which can be paired with the same uncovered observations—the size of
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Area Tie-Breaker Sample Mean Sample Mean
Heuristic Solution Size Number of Partners

≤ 0.5 km
to actual cache

Baghdad No 14.00 7.49
Yes 14.00 7.87

Sadr City No 6.00 5.28
Yes 6.00 6.00

Table 2.6 The Tie-Breaker heuristic on GREEDY-KSEP-OPT2: solution size

Area Tie-Breaker Sample Mean Sample Std Dev Sample Mean
Heuristic Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad No 0.72 km 0.03 0.63
Yes 0.69 km 0.02 0.64

Sadr City No 0.35 km 0.03 0.47
Yes 0.28 km 0.02 0.11

Table 2.7 The Tie-Breaker heuristic on GREEDY-KSEP-OPT2: distances to actual cache sites

the solution was unaffected in both the Baghdad and Sadr City trials. However, the
number of predicted cache sites less than 500m from an actual site increased for
both the Baghdad and Sadr City tests. For Baghdad, more trials returned solutions
with 8 predictions less than 500m from an actual site than returned 7—the opposite
being the case without the tie-breaker heuristic. For Sadr City, all elements of every
solution set returned were less than 500m from an actual cache site. Using the well
known T-Test [8], we showed that these results are statistically significant as this
test returned a p-value of 6.2 ·10−8 for Baghdad and 2.2 ·10−16 for Sadr City.
Summary. The above experiments demonstrate statistically that GREEDY-KSEP-
OPT2 provides a viable solution—consistently producing smaller solution sets
which were closer to actual cache sites faster than the basic set-covering approach, at
times approaching the faster, although less-accurate GREEDY-KSEP-OPT1. The
proximity of the elements of the solution set to actual cache sites is encouraging for
real-world use. The results are strong enough that two US Army units used SCARE
to aid in locating IED caches.
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Chapter 3

Region-Based Geospatial Abduction

Abstract Given a set O of observations, in the previous chapter, we developed a set
of methods to find sets E of explanations. However, these explanations consisted of
points. When the geospatial resolution of the space S is small, the non-determinism
in our point-based geospatial abduction algorithms is negligible—making many
points more or less “equivalent” as far as being potential partner locations. As such,
users might want to get regions back as output to their geospatial abduction queries.
Moreover, users might want to reason about real-valued points rather than points
that are integer-valued. In this chapter, we develop the theory and algorithms re-
quired for reasoning in the real-valued domain with regions being returned to the
user rather than points.

3.1 Introduction

In Chapter 2, we developed a theory of geospatial abduction in which a set of points
was returned as an answer (or explanation) to the user. For instance, in our IED
cache detection problem, we returned a set of points consisting of potential loca-
tions of IED caches in Baghdad. In our tiger detection problem, we returned sets of
points where a tiger might dwell, given the locations of various kills attributed to
the tiger. In the same vein, in our virus host detection problem, we returned sets of
points where the host of a virus causing a disease such as monkey-pox might con-
ceivably reside. And in our burglar detection problem, the explanations generated by
point-based geospatial abduction identified explanations consisting of points where
a burglar might reside (e.g., his house, his office, his significant other’s house, etc.).

However, when our space S has a fine-grained resolution, many points might
be more or less “equivalent” as far as being potential IED cache locations is con-
cerned. As a consequence, point-based geospatial abduction yields many potential
points that could be included in an explanation, and sometimes, preferring one point
to another is merely a matter of non-deterministic choice, rather than rational pref-
erence of one point over another.

57 
DOI 10.1007/978-1-4614-1794-1_3, © Springer Science+Business Media, LLC 2012

, P. Shakarian and V.S. Subrahmanian, Geospatial Abduction: Principles and Practice



58 3 Region-Based Geospatial Abduction

In this chapter, we try to return explanations for geospatial abduction that consist
of sets of regions rather than points so that such non-determinism can be signifi-
cantly reduced. Thus, our definition of an explanation in this chapter returns a set
or regions. Each region in an explanation says a potential IED weapons cache (or
a tiger dwelling, or a region supporting a virus host, or a set of locations corre-
sponding to a burglar’s residence) might be somewhere (i.e., at any point) within the
region.

In addition, in this chapter, we focus on the real-valued domain. While most real-
world GIS systems only use integer-valued coordinates, real-valued coordinates are
interesting both from a theoretical perspective and often from the perspective of
better computation—for example, solving linear constraints over the continuous,
real-valued domain is polynomial, while solving the same linear constraints over
the domain of the integers is well known to be NP-hard.

3.2 Technical Preliminaries

To address the problem of region-based geospatial abduction, we introduce a frame-
work that resembles that of Chapter 2—but differs in several important aspects.
These include the use of a continuous space and multiple types of explanations. In
Chapter 4, we return to the original framework of Chapter 2.

Unlike the previous chapter, we assume the existence of a real-valued M ×N
space S whose elements are pairs of real numbers (rather than integers) from the
set [0,M]× [0,N]. An observation is any member of S —thus, unlike the preceding
chapter, observations are pairs of real values. We use O to denote an arbitrary, but
fixed, finite set of observations. We assume there are real numbers α ≤ β such that
for each observation o , there exists a partner po (to be found) whose distance from
o is in the interval [α,β ].1 Without loss of generality, we also assume that all ele-
ments of O are over β distance away from the edge of S . Example 3.1 presents a
neighborhood as a space and locations tiger dwellings.

Figure 3.1. Tiger kills were found by wildlife rangers at points O = {o1, . . . ,o13}.
Tiger conservation experts, on the basis of historical data, suggest that favored tiger
dwellings are located within 5km of these kills (i.e., α = 0 and β = 5km). Note that
in Figure 3.1, circles of radius 5km are drawn around the observation points. The
tiger conservation experts are interested in the locations of such dwellings.

Throughout this chapter, we assume the notion of a distance function d on S
satisfying the usual properties of such distance functions introduced in Chapter 2.
The methods used in this chapter apply to any notion of distance between two points
as long as the three distance axioms described in Chapter 2 are satisfied.

1 Chapter 2 describes methods to learn α,β automatically from historical data.

Example 3.1 (Tiger Example). A tiger in theAchanakamarWildlife Sanctuary (AMWLS)
has made many kills. Suppose the AMWLS sanctuary is the space S depicted in
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We now define a region and how they relate to the set of observations. Our in-
tuition is simple—a region explains an observation if that region contains a partner
point for that observation.

Definition 3.1 (Region / Super-Explanation / Sub-Explanation). A region r is a
subset of S such that for any two points (x,y),(x′,y′) ∈ r, there is sequence a of
line segments from (x,y) to (x′,y′) s.t. no line segment lies outside r.

1. A region r super-explains point o in S iff there exists a point p ∈ r such that
d(o, p) ∈ [α,β ].

2. A region r sub-explains some point o in S iff (∀p ∈ r) d(o, p) ∈ [α,β ].

Thus, intuitively, a region r as defined above is connected in the sense that one can
travel from any point in a region to any other point in the region without leaving the
region r. In addition, regions can have any shape and may overlap.

Informally speaking, region r super-explains an observation o if and only if there
is at least one partner in region r for the observation o. On the other hand, region
r sub-explains an observation o if and only if every point in the region explains
observation o. Throughout this chapter, we assume that checking if some point o
is sub-explained (super-explained) by region r can be performed in constant (i.e.,
O(1)) time. This is a reasonable assumption for most regular shaped regions like
circles, ellipses and polygons. The following result follows immediately from Defi-
nition 3.1.

Observation 3.2.1 If region r 
= /0 sub-explains point o, then r super-explains point
o.

This observation follows immediately from the definitions. If r sub-explains
point o then the distance of every point in r from observation o lies within the inter-
val [α,β ]. Thus, as long as r is non-empty, at least one point in r is at a distance d0
from the observation o where do ∈ [α,β ].

We would like to explain observations by finding regions containing a partner. In
some applications, the user may be able to easily search the entire region—hence a
super-explaining region would suffice. In other applications, we may want to be sure
that any point within the region can be a partner as not to waste resources—so only
a sub-explanation would make sense in such a case. Often, these situations may
depend on the size of the regions. We shall discuss the issue of restricting region
size later in this section. For now, we shall consider regions of any shape or size.
Example 3.2 shows regions that super- or sub-explain various observations.

Example 3.2. Consider the scenario from Example 3.1 and the regions
R = {ra,rb,rc,rd ,re,r f ,rg} shown in Figure 3.1. Suppose these regions correspond
with feasible regions for the tiger to live in—i.e., places that have the right amount
of ground cover and the right amount of prey for a tiger to consider this to be a
good habitat. Consider region ra. As it totally lies within the α,β distance of o1, it
both sub-explains and super-explains this observation. Conversely, region rd super-
explains both o6 and o7 but sub-explains neither.
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Fig. 3.1 Locations of tiger kills and feasible locations {ra,rb,rc,rd ,re,r f ,rg} where the tiger can
potentially dwell. The β distance for each observation is shown with a dashed circle.

This chapter studies following decision problems.

Sub-(Super-) Region Explanation Problem (Sub/Sup-REP)

INPUT: A space S , distance interval [α,β ], set O of observations, set R of regions,
and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and for each o ∈O , there is an r ∈ R such that
r sub-(super-) explains o.

The Sub-(Super) Region Explanation Problem asks us to find all sub-explanations
(resp. super-explanations) R of size k or fewer where size is defined as the number
of regions in R which sub-explain (resp. or super-explain) our set of observations O .

The fact that a set R of regions is part of the input is not an assumption, but a
feature. A user might set R to be all the regions associated with S in which case he
is really making no assumption at all. Alternatively, he might use his knowledge of
the application (e.g., IED cache locations or tiger hangouts or virus host information
or burglary-related information) to define regions, taking into account, the terrain
and/or known aspects of the population living in the area of interest. For instance,
when trying to identify regions containing IED caches in Baghdad used for attacks
by Shi’ite groups, he might define regions to be places that are not predominantly
Sunni and that do not contain US bases or bodies of water. On the other hand, in the
tiger detection application, he might define regions to be places where the tiger has
ample ground cover and ample amount of prey to hunt. In the virus host detection
problem, he might decide based on his knowledge of biology and his knowledge of
the geography of the terrain, that certain regions are feasible locations for the virus
host, while others are not. And finally, the St. Paul, MN, police detective might use
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knowledge of the criminal to decide that the criminal could not live in certain areas
(e.g., there was a police chase not known to the geospatial abduction system where
the perpetrator disappear in a reasonably narrow region, allowing the detective to
eliminate other regions from consideration). Other kinds of logical conditions may
be used when dealing with burglaries or drug trafficking.

Thus, the set R of regions allows an analyst to specify any knowledge he has, and
allows the system to benefit from that knowledge. In short, the set R is similar to the
feasibility predicate in Chapter 2 by saying that only regions in R can be returned
as part of the answer by the region-based geospatial abduction system. If no such
knowledge is available, R can be taken to be the set of all regions associated with
S , and thus, allowing the user to specify R as part of the input leads to no loss of
generality; moreover, it allows the user greater flexibility in specifying where the
regions he is looking for could possibly be. R can also be used to restrict the size of
the region (e.g., only considering regions whose area is less than 5 sq. km.).

There are two different associated optimization problems associated with both
the Sub-REP and Sup-REP problems. The first deals with finding a subset of re-
gions of minimal cardinality that explains all observations.

Sub-(Super-)Region Explanation Problem-Minimum Cardinality (Sub/Sup-REP-

MC)

INPUT: A space, S , distance interval [α,β ], set of observations O , and set of re-
gions R.
OUTPUT: Set R′ ⊆ R of minimum cardinality, where for each o ∈ O , there is an
r ∈ R s.t. r sub-(super-) explains o.

The Sub/Sup-REP-MC problems therefore support the principles of Occam’s ra-
zor, long present in research on abduction[3, 6]. Only a minimal-sized set of regions
can be returned—no more regions than strictly necessary should be returned.

Our second optimization problem fixes the number of regions returned in the so-
lution, but maximizes the number of observations that are explained.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-REP-

ME)

INPUT: Given a space S , distance interval [α,β ], set O of observations, set R of
regions, and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k such that the number of o ∈ O where there is
an r ∈ R s.t. r sub-(super-) explains o is maximized.

Sub-(Super-)Region Explanation Problem-Maximum Explaining (Sub/Sup-REP-
ME) problems are similar in spirit to the k-SEP problem by requiring that no more
than k regions be returned as the answer by the geospatial abduction system in re-
sponse to a user request. Consider the following example.

Example 3.3. Consider the scenario from Example 3.2. Consider an instance of Sup-
REP with k = 7. The set {ra,rb,rc,rd ,re,r f ,rg} is a solution to this problem. Now
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consider Sup-REP-MC: the set {ra,rc,rd ,re,r f ,rg} is a solution to this problem.
Finally, consider Sup-REP-ME with k = 2. The set {rc,rd} is a solution to this
problem.

We now consider a special case of these problems that arises when the set R of
regions is created by a partition of the space based on the set of observations (O)
and concentric circles of radii α and β drawn around each o ∈ O . We can associate
regions in such a case with subsets of O . For a given subset O ′, we say that there is
an associated set of induced regions (denoted RO ′ ), defined as follows:

RO ′ = {{x| ∀o ∈ O ′,d(x,o) ∈ [α,β ]∧
∀o′ /∈ O ′,d(x,o′) /∈ [α,β ]} }

We note that for a given subset of observations, it is possible to have a set of
induced regions, RO ′ that has more than one element. For example, consider set
R /0 = {r1,r12} in Figure 3.2. For a given set of observations O , we will use the
notation RO do denote the set of all induced regions. Formally:

RO =
⋃

O ′∈2O

RO′ 
= /0

RO ′

We illustrate the idea of induced regions in the following example.

Example 3.4. In order to identify where the tiger resides, tiger conservation experts
may create 33 induced regions in S by drawing circles of 5km radius around all
observations (see Figure 3.2), the set of which is denoted RO = {r1, . . . ,r33}.

r31 r33 

r20 

r21 

r22 
r23 

r24 r25 r26 

r27 

r1 r2 

r3 r4 
r5 

r6 

r7 

r8 

r9 

r10 

r11 

r12 
r13 r14 

r15 r16 

r17 

r18 
r19 

r28 
r29 

r30 r32 

o1 

o2 

o3 

o4 o5 

o6 

o7 
o8 

o13 

o10 o11 
o12 

o9 

r1 r1 

Fig. 3.2 Space S and the regions in set RO .
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For the special case where RO is the set of all possible regions of S , we have the
following result.

Lemma 3.1. Suppose O is a set of observations and RO is the set of induced regions.
A region r ∈ RO sub-explains an observation o ∈ O if and only if it super-explains
o.

Proof. CLAIM 1: Any point in a region r ∈ RO is either within distance [α,β ] or
outside the distance [α,β ] from each o ∈ O .
As RO is created by drawing circles of radii α,β around each observation, the state-
ment follows by the definition of RO .

CLAIM 2: (⇐) There is no r ∈ RO that super-explains some o ∈ O but does not
sub-explain the observation.
Suppose, by way of contradiction, there is some r ∈ RO that super-explains some
o ∈ O but does not sub-explain it. Then, there must be at least one point in r that
can be partnered with O and at least one point in r that cannot be partnered with o.
However, by Claim 1, this is not possible, hence a contradiction.
CLAIM 3: (⇒) There is no r ∈ RO that sub-explains some o ∈O but does not super-
explain the observation.
Follows directly from Observation 3.2.1.

By this result, for the special case of induced regions, we only need one decision
problem.

Induced Region Explanation Problem (I-REP)

INPUT: Given a space, S , distance interval [α ,β ], set O of observations, and nat-
ural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ RO , where |R′| ≤ k and for each o ∈ O , there is an r ∈ R s.t. r
sub-explains o.

As mentioned earlier, the sizes of regions can be regulated by our choice of R.
However, we may also explicitly require that all regions must be less than a certain
area. Consider the following variant of Sup-REP.

Area-Constrained Super-Region Explanation Problem (AC-Sup-REP)

INPUT: Given a space, S , distance interval [α,β ], set O of observations, set R of
regions, area A, and natural number k ∈ [1, |O|].
OUTPUT: Set R′ ⊆ R, where |R′| ≤ k and each r ∈ R′ has an area ≤ A and for each
o ∈ O , there is an r ∈ R such that r super-explains o.

The following proposition tells us that AC-Sup-REP is at least as hard as I-REP,
yet no harder than Sup-REP (an analogous result can easily be shown for an area-
constrained version of Sub-REP). We note that essentially, we eliminate the regions
whose area is above area A, which gives us an instance of Sup-REP. To go the other
direction, we directly encode I-REP into an instance of AC-Sup-REP and have A be
larger than the area of any region.
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Theorem 3.1. I-REP is polynomially reducible to AC-Sup-REP.
AC-Sup-REP is polynomially reducible to Sup-REP.

Proof. CLAIM 1: I-REP ≤p AC-Sup-REP.
Set up an instance of AC-Sup-REP with the input for I-REP plus the parameter
A = π · (β 2 −α2). For direction ⇐, note that a solution to this instance of I-REP is
also a solution to AC-Sup-REP, as any region that sub-explain an observation also
super-explains it for the set of region RO (Lemma 3.1) and the fact that, by defini-
tion, all regions in the set RO must have an area less than A. For direction ⇒, we
know that only regions that can be partnered with observations are considered by
the area restriction, and by Lemma 3.1, all regions in the solution are also super-
explanations for their corresponding observation.

CLAIM 2: AC-Sup-REP ≤p Sup-REP.
Consider the set R from AC-Sup-REP and let set R′ = {r ∈ R| the area of r ≤ A}.
Set up an instance of Sup-REP where the set of regions is R′ and the rest is the input
from AC-Sup-REP. For direction ⇐, it is obvious that any solution to AC-Sup-REP
is also a solution to Sup-REP, as R−R′ are all regions that cannot possibly be in the
solution to the instance of AC-Sup-REP. Going the other direction (⇒), we observe
that by the definition of R′, all regions in the result of the instance of Sup-REP meet
all the requirements of the AC-Sup-REP problem.

In the final observation of this section, we note that the set RO can be used as a
“starting point” in determining regions. For instance, supplemental information on
areas that may be restricted from being partnered with an observation may also be
considered and reduce the area of (or eliminate altogether) some regions in the set.
Consider the following example.

Example 3.5. Consider the tiger scenario from Example 3.4. Tiger conservation ex-
perts may eliminate an open meadow in the area and certain other areas with small
amounts of prey from their search. These “restricted areas” are depicted in Fig-
ure 3.3. Note that several regions from Figure 3.2 are either eliminated or have
decreased in size. However, by eliminating these areas, tiger conservation experts
have also pruned some possibilities from their search. For example, regions r9,r13
were totally eliminated from consideration.

3.3 Complexity

In this section, we study the computational complexity of problems related to
region-based geospatial abduction. In particular, we show that Sub-REP, Sup-REP,
and I-REP are NP-Complete and that the associated optimization problems are NP-
Hard. We also show that the optimization problems Sub-REP-MC, Sup-REP-MC,
and I-REP-MC cannot be approximated by a fully polynomial-time approxima-
tion scheme (FPTAS) unless P = NP. In particular, this means that there are no
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Fig. 3.3 A set of regions in S created based on the distance β = 5km as well as restricted areas
(shown in black).

polynomial-time algorithms to approximate these problems with guarantees of ap-
proximation unless P = NP (the latter, of course, is a central unsolved problem in
computer science and it is widely believed that in fact P 
= NP). We also note that
the complexity of the area-constrained versions of these problems follows directly
from the results of this section by the reduction of Theorem 3.1 (page 64).

We first prove that I-REP is NP-complete, which then allows us to correctly iden-
tify the complexity classes of the other problems by leveraging Lemma 3.1. First, we
introduce the problem of “circle covering” (CC) that was proven to be NP-complete
in [11].

Circle Covering (CC)
INPUT: A space S ′, set P of points, real number β ′, natural number k′.
OUTPUT: “Yes” if there is a set of points, Q in S ′ such that all points in P are cov-
ered by discs centered on points in Q of radius β ′ where |Q| ≤ k′—“no” otherwise.

The theorem below establishes that I-REP is NP-complete.

Theorem 3.2. I-REP is NP-Complete.

Proof. CLAIM 1: I-REP is in-NP.
Given a set of regions, R′ ⊆ RO we can easily check in polynomial time that for each
o ∈ O there is an r ∈ R that is a partner for o. Simply check if each r falls within the
distance [α,β ] for a given o ∈ O . The operation will take time O(|O| · |R′|)—which
is polynomial.
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CLAIM 2: I-REP is strongly NP-hard.
We show that for an instance of the known strongly NP-complete problem, circle
covering (CC), CC ≤p I −REP by the following transformation.

• Set S = S ′
• Set O = P
• Set β = β ′
• Set α = 0
• Set k = k′

This transformation obviously takes polynomial time. We prove correctness with
the following two sub-claims.

CLAIM 2.1: If there is a k-sized solution R′ for I-REP, then there is a corresponding
k′-sized solution for CC.
Consider some r ∈ R′. Let O ′ be the subset of O (also of P) such that all points in
O ′ are partnered with r. By definition, all points enclosed by r are of distance β or
less away from each point in O ′. Hence, we can pick some point enclosed by r and
we have the center of a circle that covers all elements in O ′. The statement follows.

CLAIM 2.2: If there is a k′-sized solution Q for CC, then there is a corresponding
k-sized set solution for I-REP.
Consider some point q ∈ Q. Let P′ be the subset of P (also of O) such that all points
in P′ are of distance β ′ from q. As p is within β of an element of O , it is in some
region of the set RO . Hence, the region that contains p is a partner region for all
elements of P′. The statement follows.

Further, as the optimization version of circle covering is known to have no FP-
TAS unless P = NP [18], by the nature of the construction in Theorem 3.2, we can
be assured of the same result for I-REP-MC.

Corollary 3.1. I-REP-MC cannot be approximated by a fully polynomial-time ap-
proximation scheme (FPTAS) unless P = NP.

Proof. Follows directly from [11] and Theorem 3.2.

So, from the above Theorem and Corollary and Lemma 3.1, we get the following
results:

Corollary 3.2. 1. Sub-REP and Sup-REP are NP-Complete.
2. Sub-REP-MC, Sup-REP-MC, I-REP-MC, Sub-REP-ME, Sup-REP-ME, and I-

REP-ME are NP-Hard.
3. Sub-REP-MC, Sup-REP-MC cannot be approximated by a FPTAS unless P =

NP.

Proof. All follow directly from Lemma 3.1, Theorem 3.2, and Corollary 3.1.
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3.4 Algorithms

In this section we devise algorithms to address the optimization problems associ-
ated with Sup-REP, Sub-REP, and I-REP. First, we show that these optimization
problems reduce to either instances of set-cover (for Sub/Sup-REP-MC) or max-
k-cover (for Sub/Sup-REP-ME). These problems are well-studied and there are
algorithms that provide exact and approximate solutions. We then provide a new
greedy-algorithm for Sub/Sup-REP-MC that also provides an approximation guar-
antee. This is followed by a discussion of approximation for I-REP-ME for the case
where α = 0. Finally, we discuss some practical issues dealing with implementation.

3.4.1 Exact and Approximate Solutions by Reduction

In this section we show that the -MC problems introduced earlier in this chapter can
be reduced to set-cover and that the -ME problems can reduce to the well-known
max-k-cover problem. As these problems have been extensively studied in the core
computer science algorithms community, they offer the potential to solve the various
region-based geospatial abduction problems introduced earlier in this chapter. Set
cover has already been introduced earlier on in Chapter 2. We now present max-k-
cover [7], which is often regarded as the dual of set-cover.
Max-k-Cover

INPUT: Set of elements S, family of subsets of S, H = H1, . . . ,Hm, natural number
k ≤ |S|.
OUTPUT: Subset H ′ ⊆ H s.t. |H ′| ≤ k where |⋃Hi∈H ′ Hi ∩S| is maximized.

The key to showing that Sub/Sup-REP optimization problems can reduce to one
of these problems is to determine the family of subsets. We accomplish this as fol-
lows: for each region r ∈ R, we find the subset of O that can be partnered with r. We
shall refer to this set as Or. This gives us the following algorithm for the optimiza-
tion problems (we simply omit the k parameter for the -MC problems that reduce to
Set-Cover):

REDUCE-TO-COVERING(O set of observations, R set of regions, k natural number) returns
instance of covering problem 〈S,H ,k〉
1. For each r ∈ R, find Or (i.e., o is in Or iff r sub/super-explains o)
2. Return 〈O,

⋃
r∈R{Or},k〉

This algorithm is the analog of the naive KSEP algorithm introduced in Chap-
ter 2. It essentially says that we must perform the following steps.

• For each feasible region r ∈ R, find all the observations “supported” by R (de-
pending on whether we are interested in sub/super-explanations, this means we
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want to find all observations in R that are within a distance of [α,β ] of at least
one point in R or all points in R). These are the sets Or for each r ∈ R.

• We then return the union of all these sets Or.

It is clear that this algorithm is potentially wasteful, returning regions that can be fed
as input to a set covering problem because any set that “covers” all the sets Or thus
computed yields a potential region that explains the observations. The following
result describes the complexity of this algorithm.

Proposition 3.1. REDUCE-TO-COVERING requires O(|O| · |R|) time.

Proof. Follows directly from Line 1.

The following theorem shows that REDUCE-TO-COVERING correctly re-
duces a Sub/Sup-REP optimization problem to set-cover or max-k-cover as appro-
priate.

Theorem 3.3. Sub/Sup-REP-MC polynomially reduces to Set-Cover and Sub/Sup-
REP-ME polynomially reduces to Max-k-Cover.

Proof. CLAIM 1: Sub/Sup-REP-MC ≤p Set-Cover
Consider the instance of set-cover 〈O,

⋃
r∈R{Or}〉 obtained from

REDUCE-TO-COVERING(O,R).
Let H ′ be a solution to this instance of set-cover. (⇐) If R′ is a solution to the in-
stance of Sub/Sup-REP-MC, then the set

⋃
r∈R′ {Or} is a solution to set-cover. Obvi-

ously, it must cover all elements of O and a smaller solution to set-cover would in-
dicate a smaller R′—a contradiction. (⇒) Given set H ′, let R′′ = {r ∈ R|Or ∈H ′}.
Obviously, R′′ provides a partner for all observations in O . Further, a smaller solu-
tion to Sub/Sup-REP-MC would indicate a smaller H ′ is possible—also a contra-
diction.

CLAIM 2: Sub/Sup-REP-ME ≤p Max-k-Cover
Consider the instance of max-k-cover 〈O,

⋃
r∈R{Or},k〉 obtained from REDUCE-

TO-COVERING(O,R,k). Let H ′ be a solution to this instance of max-k-cover.
(⇐) If R′ is a solution to the instance of Sub/Sup-REP-ME, then the set

⋃
r∈R′ {Or}

is a solution to max-k-cover. Obviously, both have the same cardinality requirement.
Further, if there is a solution to max-k-cover that covers more elements in O , this
would imply a set of regions that can be partnered with more observations in O—
which would be a contradiction. (⇒) Given set H ′, let R′′ = {r ∈ R|Or ∈ H ′}.
Obviously, R′′ meets the cardinality requirement of k. Furthermore, a solution to
Sub/Sup-REP-ME that allows more observations in O to be partnered with a region
would indicate a more optimal solution to max-k-cover—a contradiction.

This result allows us to leverage any exact approach to the above optimization
problems to obtain a solution to an optimization problem associated with Sub/Sup-
REP. A straightforward algorithm for any of the optimization problems would run in
time exponential in |O| or k and consider every |O| or k sized subset of

⋃
r∈R{Or}.

Clearly, this is not practical for real-world applications.
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Fortunately, there are several well-known approximation techniques for both
these problems. First, we address the Sub/Sup-REP-ME problems, both of which
reduce to Max-k-Cover. As the Max-k-Cover problem reduces to the maximization
of a submodular function over uniform matroid2, we can leverage the greedy ap-
proximation algorithm of [12] to solve our problem. We do so below.

Formally, an arbitrary function f : X → R from some set X to the reals is sub-
modular if and only if for all X1,X2 ⊆ X , it is the case that if x ∈ X − X2, then
f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2). Figure 3.4 explains the notion of sub-
modularity; an easy way to explain such functions is given via an intuitive example.
Suppose you have a poor man with very few possessions (X1) and a rich man with
many more possessions (X2). Suppose neither possesses a Ferrari car (x). Giving the
poor man the Ferrari would make a greater difference to his net worth (computed
via f as a function of the person’s possessions) than giving it to the rich man.

Fig. 3.4 Example of a submodular function. The addition of an expensive vehicle to a rich man’s
set of possessions would yield a relative increase in net worth far less than the same addition to a
poorer man’s set of possessions.

GREEDY-REP-ME(O set of observations, R set of regions, k natural number) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. Let O ′ = O , set R′ = /0
3. While k 
= 0 loop

a. Let the element Or be the member of O s.t. |Or ∩O ′| is maximized.
R′ = R′ ∪ r
O ′ = O ′ − (Or ∩O ′)
k−−

4. Return R′

2 A matroid is a pair (X , I) where X is some set and I is a set of subsets of X (called independent
sets) satisfying the following axioms: (i) /0 ∈ I, (ii) If Y ∈ I and Y ′ ⊆ Y , then Y ′ ∈ I, and (iii) If
Y,Y ′ ∈ I and Y ′ ⊂ Y , then there is an element y ∈ Y such that (Y ′ ∪ {y}) ∈ I.
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The GREEDY-REP-ME algorithm basically starts by finding all the observa-
tions Or covered by each region r ∈ R where R is the set of regions deemed feasible.
In order to find a subset of regions of R of cardinality k or less, the algorithm looks
at all Or’s. It initially adds that r into the answer such that Or ∩ O is maximized,
i.e., in the first iteration of the loop of algorithm GREEDY-REP-ME, it finds an r
such that Or covers the maximal number of observations in O . In this sense, this
algorithm is greedy. This r is added into the solution. As all elements in Or have
now been “covered” by the insertion of r into the solution, we now only consider
elements in O ′ − (Or ∩O ′). The same process is repeated till either O ′ is empty or
the bound k is reached.

Suppose f denotes the maximum number of observations that can be partnered
with a given region. The following result shows an approximation guarantee for our
algorithm.

Proposition 3.2. GREEDY-REP-ME runs in O(k · |R| · f ) time and returns a solu-
tion such that the number of observations in O that have a partner region in R′ is
within a factor

( e
e−1

)
of optimal.

Proof. Follows directly from Line 1.

Example 3.6. Consider Example 3.2 (page 59), where the set of regions is R =
{ra,rb,rc,rd ,re,r f ,rg}. Suppose tiger conservationists want to run GREEDY-REP-
ME to solve an instance of Sup-REP-ME associated with this situation with k = 3.
Initially set O ′ = {o1, . . . ,o13}. On the first iteration of the outer loop, it identifies set
Orc = {o2,o3,o4,o9} where the cardinality of Orc ∩O ′ is maximum. Hence, it picks
region rc. The set O ′ = {o1,o5, . . . ,o8,o10, . . .o13}. On the second iteration, it iden-
tifies Ore = {o5,o13}, which intersected with O ′ provides a maximum cardinality,
causing re to be picked. Set O ′ is now {o1,o6, . . . ,o8,o10, . . . ,o12}. On the last itera-
tion, it identifies Org = {o11,o12}, again the maximum cardinality when intersected
with O ′. The element is picked and the solution is rc,re,rg, and the observations
super-explained are {o2,o3,o4,o5,o9,o11,o12,o13}.

Likewise, we can leverage the greedy algorithm for set-cover [26] applied to
Sub/Sup-REP-MC. This algorithm is identical to the GREEDY-REP-ME algorithm
except in Step (3) where the bound of k is eliminated.

GREEDY-REP-MC(O set of observations, R set of regions, ) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. Let O ′ = O , set R′ = /0
3. While O ′ 
= /0 loop

a. Let the element Or be the member of O s.t. |Or ∩O ′| is maximized.
R′ = R′ ∪ r
O ′ = O ′ − (Or ∩O ′)

4. Return R′
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The following result provides approximation guarantees on the solution to the
region-based geospatial abduction problem found by the GREEDY-REP-MC algo-
rithm.

Proposition 3.3. GREEDY-REP-MC runs in O(|O| · |R| · f ) time and returns a so-
lution whose cardinality is within a factor of 1+ ln( f ) of optimal.

Proof. The outer loop of the algorithm iterates no more than |O| times, while the
inner loop iterates no more than |R| times. The time to compare the number of ele-
ments in a set Or is O( f ).

The approximation factor of 1+ ln( f ) follows directly from [26].

Example 3.7. Consider the scenario from Example 3.6. To explain all points where a
tiger kill has been observed, tiger conservation experts can create an instance of Sup-
REP-MC and use GREEDY-REP-MC. The algorithm proceeds just as GREEDY-
REP-ME in the first three steps (as in Example 3.6), but will continue on until
all observations are super-explained. So, GREEDY-REP-MC proceeds for three
more iterations, selecting r f (Or f = {o8,o10}), rd (Ord = {o6,o7}), and finally ra
(Ora = {o1}). The solution returned is:

{rc,re,rg,r f ,rd ,ra}

We now focus on speeding up the set-cover reduction via the GREEDY-REP-
MC2 algorithm below.

GREEDY-REP-MC2(O set of observations, R set of regions, ) returns R′ ⊆ R

1. Let O =
⋃

r∈R{Or} (obtained by REDUCE-TO-COVERING)
2. For each observation o ∈ O , let GRPo = {Or ∈ O|o ∈ Or}
3. For each observation o ∈ O , let RELo = {o′ ∈ O|o′ ∈⋃

Or∈GRPo Or} and let keyo = |RELo|
4. Let O ′ = O , set R′ = /0
5. While O ′ 
= /0 loop

a. Let o be the element in O where keyo is minimal.
b. Let the element Or be the member of GRPo s.t. |Or ∩O ′| is maximized.
c. If there are more than one set Or that meet the criteria of line 5b, pick the set with the

greatest cardinality.
d. R′ = R′ ∪ r
e. For each o′ ∈ Or ∩O ′, do the following:

i. O ′ = O ′ −o′
ii. For each o′′ ∈ O ′ ∩RELo′ , decrement keyo′′

6. Return R′

In the GREEDY-REP-MC2 algorithm, we proceed as follows.

• For any observation o ∈ O , the set GRPo is the set of all Or where r is a feasible
region (i.e., a member of R) that explains o. Thus, Or is the set of observations Or
that contain o and that are explained by some region r∈ R.
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• RELo is the set of all observations that are contained in sets Or that are found in
the previous step. Thus, if an observation o′ ∈ RELo, there is at least one region
r ∈ R which explains both o and o′.

• keyo is the size of Relo.
• We pick the o such that keyo is minimal, i.e., an o that is “co-explained” as poorly

as possible.
• We then find a region r that explains o and that overlaps the set of observations as

much as possible. Let Or be the set of observations explained by r—if multiple
such r’s exist, pick the one with the highest cardinality.

• Add r to the “current” answer, and eliminate o from O as it no longer needs to be
explained.

• For every observation o′′ ∈ O that is explained already by O , we reduce keyo′′ by
1 as one explanation for it has already been found.

• This loop is repeated until all observations are explained.

In the rest of this section, we use Δ to denote the maximum number of different
regions that can be partnered with a given observation.

Proposition 3.4. GREEDY-REP-MC2 runs in O(Δ · f 2 · |O|+ |O| · ln(|O|) time
and returns a solution whose cardinality is within a factor of 1+ ln( f ) of optimal.

Proof. CLAIM 1: GREEDY-REP-MC2 runs in O(Δ · f 2 · |O|+ |O| · ln(|O|) time.
The pre-processing in lines 1-4 can be accomplished in O(Δ +Δ · f ) as the size of
each GRPo is bounded by Δ and the size of each RELo is bounded by Δ · f .

The outer loop of the algorithm iterates O times. In each loop, the selection of
the minimal element (line 5a) can be accomplished in constant time by use of a
Fibonacci heap [13] (i.e., storing observations in O ′ organized by the value keyo).
The next lines of the inner loop (lines 5b-5c) can be accomplished in O(Δ) time.
The next line (line 5d) requires O(ln(|O|) time per observation using a Fibonacci
heap. However, we can be assured that, during the entire run of the algorithm, this
operation is only performed |O| times (hence, we add an |O| · ln(|O|)). The final
loop at line 5e occurs after the inner loop and iterates, at most f times. At each
iteration, it considers, at most f ·Δ elements. Hence, the overall complexity is:

O(|O| · (Δ + f 2 ·Δ)
+ |O| · ln(|O|))

The statement of the claim follows.

CLAIM 2: GREEDY-REP-MC2 returns a solution whose cardinality is within a
factor of 1+ ln( f ) of optimal.
The proof of this claim resembles the approximation proof of the standard greedy
algorithm for set-cover (see [5] page 1036).

Let r1, . . . ,ri, . . . ,rn be the elements of R′, the solution to GREEDY-REP-MC2,
numbered by the order in which they were selected. For each iteration (of the outer
loop), let set COVi be the subset of observations that are partnered for the first time
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with region ri. Note that each element of O is in exactly one COVi. For each o j ∈O ,
we define cost j to be 1

|COVi| where o j ∈ COVi. Let R∗ be an optimal solution to the
instance of Sub/Sup-REP-MC.

CLAIM 2.1: ∑ri∈R∗ ∑o j∈Ori
cost j ≥ |R|

By the definition of cost j, exactly one unit of cost is assigned every time a region is
picked for the solution R. Hence,

COST (R) = |R|= ∑
o j∈O

cost j

The statement of the claim follows.

CLAIM 2.2: For some region r ∈ R, ∑o j∈Or cost j ≤ 1+ ln( f ).
Let P be the subset of O that can be partners with p. At each iteration i of the
algorithm, let uncovi be the number elements in P that do not have a partner. Let last
be the smallest number such that uncovlast = 0. Let RP = {ri ∈R|(i≤ last)∧(COVi∩
P 
= /0)}. From here on, we shall renumber each element in RP as r1, . . . ,r|RP| by the
order they are picked in the algorithm (i.e., if an element is picked that cannot partner
with anything in P, we ignore it and continue numbering with the next available
number, we will COVi and the iterations of the algorithm as well, but do not re-
define the set based on the new numbering).
We note that for each iteration i, the number of items in P that are partnered is equal
to uncovi−1 −uncovi. Hence,

∑
o j∈Or

cost j =
last

∑
i=1

uncovi−1 −uncovi

|COVi|

At each iteration of the algorithm, let PCOVi be the subset of observations that are
covered for the first time if region p is picked instead of region ri. We note, that
for all iterations in 1, . . . , last, the region p is considered by the algorithm as one
of its options for greedy selection. Therefore, as p is not chosen, we know that
|COVi| ≤ |PCOVi|. Also, by the definition of ucovi, we know that |PCOVi|= ucovi−1.
This gives us:

∑
o j∈Or

cost j ≤
last

∑
i=1

uncovi−1 −uncovi

ucovi−1

Using the algebraic manipulations of [5] (page 1037), we get the following:

∑
o j∈Or

cost j ≤ H|P|

Where Hj is the jth harmonic number. By definition of the symbol f (maximum
number of observations supported by a single partner), we obtain the statement of
the claim.
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(Proof of Claim 2): Combining claims 1–2, we get |R| ≤ ∑ri∈R∗(1+ ln( f )), which
gives us the statement.

While GREEDY-REP-MC2 considers regions in a different order than GREEDY-
REP-MC, it maintains the same approximation ratio. This is because the region (in
set GRPo) that is partnered with the greatest number of uncovered observations is se-
lected at each iteration, allowing us to maintain the approximation guarantee. There
are two selections at each step: the selection of the observation (in which we use a
minimal key value based on related observations) and a greedy selection in the inner
loop. Any selection of observations can be used at each step and the approximation
guarantee is still maintained. This allows for a variety of different heuristics. Fur-
thermore, the use of a data structure such as a Fibonacci Heap allows us to actually
obtain a better time complexity than GREEDY-REP-MC.

Example 3.8. Consider the situation in Example 3.4 where tiger conservation ex-
perts are considering regions RO = {r1, . . . ,r33} that are induced by the set of ob-
servations and wish to solve I-REP-MC using GREEDY-REP-MC. On the first iter-
ation of the loop at line 5, the algorithm picks o8, as keyo8 = 1. The only possible
region to pick is r19, which can only be partnered with o8. There are no observations
related to o8 other than itself, so it proceeds to the next iteration. It then selects o6 as
keyo6 = 2 because RELo6 = {o6,o7}. It then greedily picks r17 which sub-explains
both o6,o7. As all observations related to o6 are now sub-explained, the algorithm
proceeds with the next iteration. The observation with the lowest key value is o5 as
keyo5 = 3 and RELo5 = {o4,o5,o13}. It then greedily picks region r21 which sub-
explains o5,o13. The algorithm then reduces the key value associated with o4 from
4 to 3 and decrements the keys associated with o10,o11,o12 (the un-explained obser-
vations related to o13) also from 4 to 3. In the next iteration, the algorithm picks o9
as keyo9 = 3. It greedily picks r12 which sub-explains o9,o2. It then decreases keyo4
to 2 and also decreases the keys associated with o1 and o3. At the next iteration, it
picks o1 as keyo1 = 2. It greedily selects r4, which sub-explains o1,o3 and decreases
the keyo4 to 1 which causes o4 to be selected next, followed by a greedy selection
of r11—no keys are updated at this iteration. In the final iteration, it selects o10 as
keyo10 = 3. It greedily selects r25, which sub-explains all un-explained observations.
The algorithm terminates and returns {r11,r12,r17,r19,r21,r25}.

3.4.2 Approximation for a Special Case

In Section 3.3, we showed that circle covering is polynomially reducible to I-REP-
MC. Let us consider a special (but natural) case of I-REP-MC where α = 0, i.e.,
there is no minimum distance between an observation and a partner point that caused
it. We shall call this special case I-REP-MCZ. There is a great similarity between
this problem and circle-covering. It is trivial to modify our earlier complexity proof
to obtain the following result.

Corollary 3.3. I-REP-MCZ is polynomially reducible to CC.
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Proof. Follows directly from Theorem 3.2.

Furthermore, we can adopt any algorithm that provides a constructive result for
circle covering to provide a result for I-REP-MCZ in polynomial time with the fol-
lowing algorithm. Given any point p, it identifies the set Or associated with the
region that encloses that point.

FIND-REGION(S space,O observation set,β real , p point) returns set Or

1. Set Or = /0
2. For each o ∈ O , if d(p,o)≤ β then Or = Or ∪{o}
3. Return Or .

What FIND-REGION does is initially set Or to the empty set. It then looks at
all observations o ∈ O . If the observation o is within β units or less from point p, it
inserts p into the set Or.

Proposition 3.5. The algorithm FIND-REGION runs in O(|O|) time, and region r
(associated with the returned set Or) contains p.

Proof. PART 1: FIND-REGION consists of a single loop that iterates |O| times.

PART 2: Suppose, the region enclosing point p has a different label. Then, there is
either a bit in label that is incorrectly set to 1 or 0. As only observations which are
at a distance of β or less from p have the associated bit position set to 1, then all 1
bits are correct. As we exhaustively consider all observations, the 0 bits are correct.
Hence, we have a contradiction.

By pre-processing the regions, we can compute Or a priori and simply pick a
region r associated with the output for FIND-REGION. While there may be more
than one such region, any one can be selected as, by definition, they would support
the same observations.

Example 3.9. Paleontologists working in a 30×26km area represented by space S
have located scattered fossils of prehistoric vegetation at O = {o1,o2,o3,o4}. Previ-
ous experience has led the paleontologists to believe that a fossil site will be within
3km of the scattered fossils. In Figure 3.5, the observations are labeled and circles
with radius of 3km are drawn (shown with solid lines). Induced regions r1, . . . ,r6 are
also labeled. As the paleontologists have no additional information, and α = 0, they
can model their problem as an instance of I-REP-MCZ with k = 3. They can solve
this problem by reducing it to an instance of circle-covering. The circle-covering
algorithm returns three points - p1, p2, p3 (marked with an ‘x’ in Figure 3.5). Note
that each point in the solution to circle-covering falls in exactly one region (when
using induced regions). The algorithm FIND-REGION returns the set {o1,o2} for
point p1, which corresponds with region r2. It returns set {o3} for p2, correspond-
ing with r6 and returns set {o4} for p3, corresponding with r5. Hence, the algorithm
returns regions r2,r6,r5, which explains all observations.
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Fig. 3.5 Given the instance of I-REP-MCZ for Example 3.9 as input for circle-covering, a circle-
covering algorithm returns points p1, p2, p3 (points are denoted with an “x”, dashed circles repre-
sent all points within 3km from the point).

Any algorithm that provides a constructive result for CC can provide a construc-
tive result for I-REP-MCZ. Because of this one-to-one mapping between the prob-
lems, we can also be assured that we maintain an approximation ratio of any ap-
proximation technique.

Corollary 3.4. An a−approximation algorithm for CC is an a-approximation for I-
REP-MCZ.

Proof. Follows directly from Theorem 3.2.

This is useful as we can now use approximation algorithms for CC on I-REP-
MCZ. Perhaps the most popular approximation algorithms for CC are based on the
“shifting strategy” [18]. To leverage this strategy, we would divide the space, S ,
into strips of width 2 ·β . The algorithm considers groups of � consecutive strips—�
is called the “shifting parameter.” A local algorithm A is applied to each group of
strips. The union of all solutions is a feasible solution to the problem. The algorithm
then shifts all strips by 2 · β and repeats the process, saving the feasible solution.
This can be done a total of �−1 times, and the algorithm simply picks the feasible
solution with minimal cardinality. In [18], the following lemma is proved (we state
it in terms of I-REP-MCZ—which is done by an application of Corollary 3.4):

Lemma 3.2 (Shifting Lemma [18]). Let aS(A) be the approximation factor of the
shifting strategy applied with local algorithm A and aA be the approximation factor
for the local algorithm. Then:

aS(A) = aA ·
(

1+
1
�

)
.
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Furthermore, the shifting strategy can actually be applied twice, solving the local
algorithm in squares of size 2 ·β · �×2 ·β · �. This gives the following result:

aS(S(A)) = aA ·
(

1+
1
�

)2

.

A good survey of results based on the shifting strategy can be found in [8], which
also provides a linear-time algorithm (this result is later generalized by [9] for mul-
tiple dimensions). The following result leverages this for I-REP-MCZ by Corol-
lary 3.4 (and is proved in [9]).

Proposition 3.6. I-REP-MCZ can be solved with an approximation ratio of x ·(
1+ 1

�

)2
in O(K�,ρ · |O|) time. Where p is the maximum number of points in a fi-

nite lattice over a square of side length 2 ·β ·� s.t. each observation in such a square
lies directly on a point in the lattice and x ∈ {3,4,5,6} (and is determined by β , see
[8] for details) and K�,ρ is defined as follows.

K�,ρ = �2 ·
��·√2�2−1

∑
i=1

(
p
i

)
· i

An alternative to the shifting strategy leverages techniques used for the related
problem of geometric dominating set. In [4], the authors present a 1+ε approxima-

tion that runs in O(|O|O( 1
ε2 ·lg2( 1

ε ))) time.

3.4.3 Practical Considerations for Implementation

We now describe some practical implementation issues. Our primary aim is to find
a set of regions that resembles the set of induced regions, RO . There are several
reasons for doing this. One reason is to implement a fast heuristic to deal with I-
REP optimization problems, specifically when α 
= 0. Another, is that such a set of
induced regions in the space may be a starting point for creating a set of regions that
may include other data, such as that shown in Example 3.5.

As most GIS systems view space as a set of discrete points, we discretized the
space using the REGION-GEN algorithm below. The parameter g is the spacing of
a square grid that overlays the space.

The result below specifies the running time complexity of the REGION-GEN
algorithm.

Proposition 3.7. REGION-GEN has a time complexity Θ(|O| · π·β 2

g2 ).

Proof. For any given observation, the number of points in the grid that can be in a
partnered region is π·β 2−α2

g2 . Hence, the first loop of the algorithm and the size of L

are both bounded by |O| · π·β 2

g2 . We note that the lookup and insert operations for the
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REGION-GEN(S space,O observation set,α,β ,g reals) returns set R

1. Overlay a grid of spacing g on space S . With each grid point, p, associate set Op = /0. This
can easily be represented with an array.

2. Initialize list L of pointers to grid-points.
3. For each o ∈ O , identity all grid points within distance [α,β ]. For each point p meeting this

criteria, if Op = /0, add p to L. Also, set Op = Op ∪{o}
4. For some subset O ′ ⊂ O , let str(O ′) be a bit string of length |O| where every position corre-

sponding to an element of O ′ is 1 and all other positions are 0.
5. Let T be a hash table of size �|O| · π·β 2

g2 � regions indexed by bit-strings of length |O|
6. For each p ∈ L, do the following:

a. If T [str(Op)] = null then initialize this entry to be a rectangle that encloses point p.
b. Else, expand the region at location T [str(Op)] to be the minimum-enclosing rectangle that

encloses p and region T [str(Op)].

7. Return all entries in T that are not null.

hash table T do not affect the average-case complexity. We assume these operations
take constant time based on [5], hence the statement follows.

Let us return to our paleontology example from Example 3.9.

Example 3.10. Consider the scenario from Example 3.9. Suppose the paleontolo-
gists now want to generate regions using REGION-GEN instead of using induced
regions. The algorithm REGION-GEN overlays a grid on the space in considera-
tion. Using an array representing the space, it records the observations that can be
explained by each grid point (Figure 3.6, top). As it does this, any grid point that can
explain an observation is stored in list L. The algorithm then iterates through list L,
creating entries in a hash table for each subset of observations, enclosing all points
that explain the same observation with a minimally-enclosing rectangle. Figure 3.6
(bottom) shows the resulting regions r1, . . . ,r6.

One advantage to using REGION-GEN is that we already have the observations
that a region super-explains stored—simply consider the bit-string used to index the
region in the hash table. Another thing that can be done, for use in an algorithm
such as GREEDY-MC2, where the regions are organized by what observation they
support, can also be easily done during the running of this algorithm at an additional
cost of f (the number of observations that can be partnered with a given region). This
is done by updating an auxiliary data structure, shown at line 6a.

3.5 Experimental Results

We implemented REGION-GEN and GREEDY-MC2 in approximately 3000 lines
of Java code and conducted several experiments on a Windows-based computer with
an Intel x86 processor. Our goal was to show that solving the optimization problem
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Fig. 3.6 REGION-GEN applied to the paleontology example (Example 3.9). First, it identifies ob-
servations associated with grid points (top). It then creates minimally-enclosing rectangles around
points that support the same observations (bottom).

Sup-REP-MC would provide useful results in a real-world scenario. We looked at
counter-insurgency data from [38] that included data on improvised-explosive de-
vice attacks in Baghdad and cache sites where insurgents stored weapons. Under
the assumption that the attacks required support of a cache site a certain distance
away, could we use attack data to locate cache sites using an instance of Sup-REP-
MC solved with GREEDY-MC2 using regions created with REGION-GEN? In our
framework, the observations were attacks associated with a cache (which was a part-
ner). The goal was to find relatively small regions that enclosed partners (caches).
We evaluated our approach based on the following criteria:

1. Do the algorithms run in a reasonable amount of time?
2. Does GREEDY-MC2 return regions of a relatively small size?
3. Do the regions returned by GREEDY-MC2 usually contain a partner (cache)?
4. Is the partner (cache) density within regions returned by GREEDY-MC2 signif-

icantly greater than the partner density of the space?
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5. How does the spacing between grid points affect the runtime and accuracy of the
algorithms?

Overall, the experiments indicate that REGION-GEN and GREEDY-MC2 satis-
factorily meet the requirements above. For example, for our trials considering locat-
ing regions with weapons cache sites (partners) in Baghdad given recent IED attacks
(observations), with a grid spacing of g = 100m, the combined (mean) run-time on
a Windows-based laptop was just over 2 seconds. The algorithm produced (mean)
15.54 regions with an average area of 1.838 km2. Each region, on average, enclosed
1.739 cache sites. If it did not contain a cache site, it was (on average) 275m away
from one. The density of caches within returned regions was 8.09 caches/km2—
significantly higher than the overall density for Baghdad of 0.488 caches/km2.

The rest of this section is organized as follows. Section 3.5.1 describes the data
set we used for our tests and experimental set-up. Issue 1 is addressed in Sec-
tion 3.5.2. We shall discuss the area (issue 2) of the regions returned in Section 3.5.3
and follow this with a discussion of issue 3 in Section 3.5.4. We shall discuss issue 4
in Section 3.5.5. Throughout all the sections, we shall describe results for a variety
of different grid spacings, hence addressing issue 5.

3.5.1 Experimental Setup

We used the Map of Special Groups Activity in Iraq available from the Institute
for the Study of War [38]. The map plots over 1000 insurgent activities attributed
to what are termed as “Special Groups”—groups with access to certain advanced
weaponry. This data set—the same one used in Chapter 2—contains events for 21
months between February 2007 and November 2008. The activity types include the
following categories.

1. Attacks with probable links to Special Groups
2. Discoveries of caches containing weapons associated with Special Groups
3. Detainments of suspected Special Groups criminals
4. Precision strikes against Special Groups personnel

We use this data for two geographic areas: the Baghdad urban area and the Sadr
City district. In our experiment, we will view the attacks by the special groups (item
1) as observations and attempt to determine the minimum set of cache sites (item
3), which we shall view as partners. Hence, a region returned by GREEDY-MC2
encloses a partner iff a cache falls within the region.

For distance constraints, we used a simple algorithm to learn the parameter β
(α was set to zero). This was done using the first 7 months of attack data ( 1

3 of
the available months) and 14 months of cache data. We used the following simple
algorithm, FIND-BETA, to determine these values. Note we set βmax to 2.5km.

We ran the experiments on a Lenovo T400 ThinkPad laptop with a 2.53 GHz
Intel Core 2 Duo T9400 processor and 4GB of RAM. The computer was running
Windows Vista 64-bit Business edition with Service Pack 1 installed.
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Algorithm 10 Determines β value from historical data
FIND-BETA(Oh historical, time-stamped observations,
Eh historical, time-stamped partners,βmax real)

1. Set β = βmax
2. Set Boolean variable f lag to TRUE
3. For each o ∈ Oh, do the following:

a. For each p ∈ Eh that occurs after o, do the following.
i. Let d be the Euclidean distance function.
ii. If f lag, and d(o, p)≤ βmax then set β = d(o, p)
iii. If not f lag, then do the following:

A. If d(o, p)> β and d(o, p)≤ βmax then set β = d(o, p)

4. Return real β

As the relationship between attacks and cache sites may differ varied on terrain,
we ran tests with two different geographic areas. First, we considered the entire
Baghdad urban area. Then, we considered just the Sadr City district. We ran FIND-
BETA with a βmax of 2.5 km on both areas prior to testing the algorithms. There
were 73 observations (attacks) for Baghdad and 40 for Sadr City. Table 3.1 shows
the exact locations and dimensions of the areas considered.

Area Lower-Left Lower-Left E-W N-S
Latitude Longitude Distance Distance

Baghdad 33.200◦ N 44.250◦ E 27 km 25 km
Sadr City 33.345◦ N 44.423◦ E 7 km 7 km

Table 3.1 Locations and dimensions of areas considered

We conducted two types of tests: tests focusing on GREEDY-MC2 and tests
focusing on REGION-GEN.

For the tests of GREEDY-MC2, we used multiple settings for the grid spacing
g. We tested grid spacings at every 10 meter interval in the range of [70,1000] me-
ters, giving a total of 93 different values for g. Due to the fact that REGION-GEN
produces a deterministic result, we ran that algorithm only once per grid setting.
However, we ran 100 trials of GREEDY-MC2 for each parameter g. This was done
for both Baghdad and Sadr City, giving a total of 18,600 experiments.

To study the effects of grid-spacing on the run-time of REGION-GEN, we also
ran 25 trials for each grid spacing setting for both geographic areas, yielding a total
of 4,650 experiments. To compare the algorithms running with different settings for
g in a statistically valid manner, we used ANOVA [14] to determine if the differ-
ences among grid spacings were statistically significant. For some test results, we
conducted linear regression analysis.
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3.5.2 Running Time

Overall, the run times provided by the algorithms were quite reasonable. For exam-
ple, for the Baghdad trials, 73 attacks were considered for an area of 675km2. With
a grid spacing g = 100m, REGION-GEN ran in 2340ms and GREEDY-MC2 took
less than 30ms.

For GREEDY-MC2, we found that run-time generally decreased as g increased.
For Baghdad, the average run times ranged over [1.39,34.47] milliseconds. For Sadr
City, these times ranged over [0.15,4.97] milliseconds. ANOVAs for both Baghdad
and Sadr City run-times gave p-values of 2.2 ·10−16, which suggests with well over
99% probability that the algorithm run with different grid settings will result in
different run times. We also recorded the number of regions considered in each
experiment (resulting from the output of REGION-GEN). Like run-times, we found
that the number of regions considered also decreased as the grid spacing increased.
For Baghdad, the number of considered regions ranged over [88,1011]. For Sadr
City, this number ranged over [25,356]. ANOVAs for both Baghdad and Sadr City
number of considered regions gave p-values of 2.2 ·10−16, which suggests with well
over 99% probability that the algorithm run with different grid settings will result in
different numbers of considered regions. Note that this is unsurprising as REGION-
GEN run deterministically. We noticed that, generally, only grid spacings that were
near the same value would lead to the same number of considered regions.

The most striking aspect of the run time/number of regions considered results for
GREEDY-MC2 is that these two quantities seem closely related (see Figure 3.7).
This most likely results from the fact that the number of regions that can be associ-
ated with a given observation (Δ ) increases as the number of regions increases. This
coincides with our analysis of GREEDY-MC2 (see Proposition 3.4).
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Fig. 3.7 The run time of GREEDY-MC2 in ms compared with the number of regions considered.

We also studied the average run-times for REGION-GEN for various dif-
ferent settings of the grid space g. For Baghdad, the average run times ranged
over [16.84,9184.72]ms. For Sadr City, these times ranged over [0.64,308.92]ms.
ANOVAs for both Baghdad and Sadr City run-times gave p-values of 2.2 · 10−16,
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which suggests with well over 99% probability that the algorithm run with differ-
ent grid settings will result in different run times. Our analysis of REGION-GEN
(See Proposition 3.7) states that the algorithm runs in time O( 1

g2 ). We found striking
similarities with this analysis and the experimental results (see Figure 3.8).
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Fig. 3.8 A comparison between analytical (O( 1
g2 )) and experimental results for the run time of

REGION-GEN compared with grid spacing (g).

3.5.3 Area of Returned Regions

In this section, we examine how well the REGION-GEN/GREEDY-MC2 suite of
algorithms address the issue of returning regions that are generally small. Although
not inherently part of the algorithm, our intuition is that the Sup-REP-MC optimiza-
tion problem will generally return small regions based on the set R produced by
REGION-GEN. The reason for this is that we would expect that smaller regions
generally support more observations (note that this is not always true, even for in-
duced regions, but our conjecture is that it is often the case for induced regions or
the output of REGION-GEN).

To define “small” we look at the area of a circle of radius β as a basis for compar-
ison. As different grid settings led to different values for β , we looked at the smallest
areas. For a given trial, we looked at the average area of the returned regions.

For Baghdad, the average areas ranged over [0.611,2.985]km2. For Sadr City,
these times ranged over (0.01,0.576]km2. ANOVAs for both Baghdad and Sadr City
run-times gave p-values of 2.2 ·10−16, which suggests with over a 99% probability
that the algorithm run with different grid settings will result in different average ar-
eas. Plotting the areas compared with the established “minimum area” described ear-
lier in this section clearly shows that REGION-GEN with GREEDY-MC2 produce
solutions with an average area that is about half of this value (refer to Figure 3.9).
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Overall, there seemed to be little relation between grid spacing and average area
of the returned set of regions—based on grid spacings in [70,1000]m. As an ex-
ample, we provide screenshots of GREEDY-MC2 for g = 100 and g = 1000 (Fig-
ure 3.10). Anecdotally, we noticed that larger grid spacing led to more “pinpoint”
regions—regions encompassing only one point in the grid (and viewed as having an
area of 0). This is most likely due to the fact that overlaps in the circles around ob-
servations points would overlap on fewer grid points for larger values of g. Another
factor is that different settings for g led to some variation of the value β—which
also affects accuracy (note for our analysis we considered only the smallest values
of β as an upper bound for the area (see Figure 3.9).

0

1

2

3

4

5

6

70 14
0

21
0

28
0

35
0

42
0

49
0

56
0

63
0

70
0

77
0

84
0

91
0

98
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

70 15
0

23
0

31
0

39
0

47
0

55
0

63
0

71
0

79
0

87
0

95
0

SADR CITY BAGHDAD 

Grid Spacing (m) 

A
vg

 A
re

a 
pe

r 
Re

gi
on

 (k
m

2 )
 

maximum maximum 

Fig. 3.9 Average areas for solutions provided by REGION-GEN with GREEDY-MC2 for Bagh-
dad and Sadr City.

3.5.4 Regions that Contain Caches

In this section we discuss the issue of ensuring that most of the returned regions
enclose at least one partner (cache in the case of our experiments). One measure
of this aspect is to look at the average number of caches enclosed per region in a
given result. We found that for Baghdad, we generally enclosed more than 1 cache
per region in a given result—this number was in the range [0.764,3.25]. The results
for Sadr City were considerably lower—in the range [0,0.322]. ANOVAs for both
Baghdad and Sadr City gave p-values of 2.2 ·10−16, which suggests with over a 99%
probability that the algorithm run with different grid settings will result in different
average number of enclosed caches. However, we did not observe an obvious trend
in the data (see Figure 3.11).

As an alternative metric, we look at the number of regions provided by GREEDY-
MC2 that contain at least one partner. Figure 3.13 shows the number of regions re-
turned in the output. For Baghdad, generally fewer than half the regions in the output
will enclose a cache—the number of enclosing regions was in [1,8], while the total
number of regions was in [10.49,22]. This result, along with the average number
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Fig. 3.10 Results from two runs of GREEDY-MC2 - g = 100m (top), g = 1000m (bottom).
Pinpoint-regions are denoted with plus-signs. Notice that the average areas of the results are com-
parable.

of caches enclosed by a region, may indicate that while sometimes GREEDY-MC2
may find regions that enclose many caches, there are often regions that enclose no
caches as well. This may indicate that for Baghdad, some attacks-cache relation-
ships conform to our model and others do not. Perhaps there is another discrimi-
nating attribute about the attacks not present in the data that may account for this
phenomenon. For example, perhaps some attacks were performed by some group
that had the capability to store weapons in a cache located further outside the city,
or perhaps some groups had the capability to conduct attacks using cache sites that
were never found. We illustrate this phenomenon with an example output in Fig-
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Fig. 3.11 Average caches enclosed per region for Baghdad and Sadr City for various grid-spacing
settings.

ure 3.12. Note that in the figure, regions A–E do not contain any cache sites while
regions G–I all contain numerous cache sites.
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Fig. 3.12 The output of GREEDY-MC2 for Baghdad with g = 100m compared with the locations
of actual cache sites (denoted with a “C”). Notice that regions A–E do not contain any cache sites
while regions G–I all contain numerous cache sites.

For Sadr City, the number of caches that contain one cache was significantly
lower—in the range [0,2]—while the total number of returned regions was in
[3,9.8]. ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16,
which suggests with well over 99% probability that the algorithm, run with dif-
ferent grid settings, will result in different number of regions that enclose a cache
location.

We believe that the low numbers for caches enclosed by regions for Sadr City
were directly related to the smaller areas of regions. However, the mean of the aver-
age area of a returned set of regions was 0 for 49 of the 94 different grid settings (for
Sadr City). This means that for the majority of grid settings, the solution consisted
only of pinpoint regions (see Section 3.5.3 for a description of pinpoint regions).
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Fig. 3.13 Regions in the output that enclose at least one partner (cache) and total number of
regions returned for Baghdad and Sadr City.

Obviously, it is unlikely for a pinpoint region to contain a cache site merely
due to its infinitesimally small area. To better account for this issue, we develop
another metric: distance to nearest cache. If a region contains a cache, the value
for this metric is 0. Otherwise, it is the distance to the closest cache outside
of the region. For Baghdad, we obtained distances in [0.246,0.712]km, for Sadr
City, [0.080,0.712]km. ANOVAs for both Baghdad and Sadr City gave p-values of
2.2 · 10−16, which suggests with well over 99% probability that the algorithm run
with different grid settings will result in different distances to the nearest cache.
Using linear regression, we observed that this distance increases as grid spacing in-
creases. For Baghdad, we obtained R2 = 0.2396 and R2 = 0.2688 for Sadr City. See
Figure 3.14 for experimental results and the results of the liner regression analysis.
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Fig. 3.14 Distance to nearest cache versus grid spacing (in meters).
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3.5.5 Partner Density

To consider the density of partners in the regions, we compare the number of en-
closed partners to the overall partner density of the area in question. For Bagh-
dad, there were 303 caches in an area measuring 27× 24km, giving a density of
0.488 caches/km2. For Sadr City, there were 64 caches in an area of 7× 7km, giv-
ing a density of 1.306 caches/km2. In our experiments, we looked at the cache
density for each output. For Baghdad, the density was significantly higher, rang-
ing in [0.831,34.9] cache/km2. If we consider g ∈ [70,200], the density is between
[7.19,32.9] cache/km2. For g = 100, the density was 8.09 caches/km2. Most likely
due to the issue of pinpoint regions described in Section 3.5.3, the results for Sadr
City were often lower than the overall density (in [0,31.3] cache/km2). For g = 100,
the density was 2.08 caches/km2. We illustrate these results compared with overall
cache density in Figure 3.15.
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Fig. 3.15 Cache density of outputs produced by GREEDY-MC2 for Baghdad and Sadr City com-
pared with overall cache density and linear-regression analysis.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which
suggests with well over 99% probability that the algorithm run with different grid
settings will result in different cache densities. Using linear regression, we observed
that this cache density decreases as grid spacing increases. For Baghdad, we ob-
tained R2 = 0.1614 and R2 = 0.1395 for Sadr City. See Figure 3.15 for experimental
results and the results of the linear regression analysis.

Although partner density is a useful metric, it does not tell us anything about
partners that lie close to a region, although still outside. For example, consider Fig-
ure 3.12. Although region A does not enclose any caches, there is a cache just out-
side. Region B is similar. Also consider the cluster of caches south of region E
and north of region J—in this situation it appears as though GREEDY-MC2 mis-
positioned a region. We include a close-up of region F in Figure 3.16, which en-
closes a cache, but there are also 4 other caches at a distance of 250m or less.

In order to account for such phenomena, we created an area-quadrupling metric—
that is we uniformly double the sides of each region in the output. Then, we cal-
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Fig. 3.16 Close-up of region F from Figure 3.12. While region F contains 1 cache, there are 4 other
caches < 250m from the boundary of that region. The area-quadrupling metric helps us account
for such scenarios.

culated the density of the output with area-quadrupled regions. For Baghdad, this
density was in [0.842,30.3] caches/km2. For Sadr City, this density was in [0,12.3]
caches/km2. These results are depicted in Figure 3.17.

As the regions for Sadr City were often smaller than those in Baghdad, we found
that the cache density for area-quadrupled regions was often higher for Sadr City
(i.e., a region in Sadr City would have nearby cache sites). An example is shown in
Figure 3.16.

ANOVAs for both Baghdad and Sadr City gave p-values of 2.2 · 10−16, which
suggests with well over 99% probability that the algorithm run with different grid
settings will result in different cache densities for area-quadrupled regions. We
also conducted linear regression analysis, and, like the normal partner density, we
found that cache density decreases as grid spacing increases. However, this lin-
ear analysis was more closely correlated with the data than the analysis for non-
area-quadrupled density. For Baghdad, we obtained R2 = 0.3171 (for non-area-
quadrupled, we obtained R2 = 0.1614) and R2 = 0.3983 (for non-area-quadrupled,
we obtained R2 = 0.1395) for Sadr City. See Figure 3.17 for experimental results
and the results of the liner regression analysis.

3.6 Conclusion

In Chapter 2, we developed a formulation of the geospatial abduction problem that
assumed that:

• Space was discretized into integer-valued coordinates and handled in a discretized
manner as is the case with most real-world GISs; and

• The user desires a set of points coming back to him as an explanation.
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Fig. 3.17 Area quadrupled cache density of output produced by GREEDY-MC2 with linear-
regression analysis.

In contrast, in this chapter, we have developed a formalism that:

• Treats space as a continuous two-dimensional set as in this real world (but unlike
the way most GIS systems on the market treat space); and

• Returned a set of regions to the user.

Returning a set of regions to the user can be highly actionable because each re-
gion deemed feasible (and represented as region r ∈ R) may be just large enough so
the entity interested in geospatial abduction can act upon the results. For instance,
a US military commander looking for weapons caches may know that he cannot
search certain regions (for one reason or another). Then he may specify the set R
in the input to the region-based geospatial abduction problem to ignore such un-
searchable regions. In this chapter, R operates much like a feasibility predicate in
Chapter 2. However, it goes further in two ways: first, it can be used to specify
that regions (as opposed to points) can be feasible or infeasible, and second, it can
be used to regulate the sizes of the regions that an analyst may want to find. The
system would return regions that he can search (i.e., members of R) that offer the
best probability of finding a weapons cache. Likewise, in the virus host location de-
tection problem, a public health analyst may set R to consist of only some regions
(e.g., a public health expert looking at monkey pox in Rwanda may know that he
cannot cross into neighboring countries like Uganda or the Democratic Republic of
Congo to eradicate virus hosts). In this case, he may choose only regions r ∈ R that
are within Rwanda and ask the region-based geospatial abduction system to find the
best regions in Rwanda for him to target for public health interventions even though
there may be better regions in Uganda or the Democratic Republic of Congo for
him to target with public health interventions.

Thus far, in Chapter 2 and Chapter 3, we have assumed that the adversary is non-
chalant and is ignoring our efforts to locate it. This may be reasonable in the case
of the virus host detection problem where perhaps mosquitoes and ticks do not have
the cognitive capabilities to outwit us. But it is 100% certain that insurgents and
terrorists, burglars and other criminals, and even the innocent, but much maligned
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tiger, have the cognitive capabilities to see what we are doing and adjust their strat-
egy to attempt to outwit us. Tigers are likely to move away from areas of human
intervention, just as insurgents in war zones track what we do and react in ways
intended to outwit us. This is the focus of the next chapter.
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Chapter 4

Geospatial Abduction with Adaptive

Adversaries

Paulo Shakarian, V.S. Subrahmanian, John P. Dickerson

Abstract In this chapter, we focus on the problem of geospatial abduction in the
presence of an adversary who understands how we are reasoning about his behav-
ior. For instance, consider an insurgent group carrying out Improvised Explosive
Device (IED) attacks on US soldiers. Such an adversary may wish to carry out
its attacks and select its cache locations (to support those attacks) in a way that it
believes will most likely evade detection. How can an agent (e.g., US forces) antici-
pate this kind of reasoning by the adversary and find optimal locations to search for
weapons caches? In this chapter, we develop a framework to express both the ad-
versary’s problem and the agent’s problem via the paradigm of Stackelberg games.
We formally specify the Optimal Adversary Strategy (OAS) problem, allowing the
adversary to find a set of cache locations to minimize (what it believes) to be the
probability of being discovered. We describe results on the computational complex-
ity of OAS and algorithms to efficiently compute OAS. As the situation is modeled
as a Stackelberg game, the agent (e.g., US forces) takes the final action (e.g., search
for the IED caches). The agent can decide where to search after considering the
space of options that the adversary has and after considering how the adversary
might act in order to evade detection. We formalize this as the Maximal Counter-
Adversary (MCA) strategy. We describe results on the computational complexity of
MCA, as well as algorithms to efficiently compute MCA. These include algorithms
that provide guaranteed polynomial approximations to MCA. We describe experi-
mental results about the running time, accuracy, and quality of solutions found by
the algorithms to compute OAS and MCA.

4.1 Introduction

We begin by reconsidering several example scenarios given in Chapter 1 where
geospatial abduction is required. While all of these scenarios involve an agent (who
we implicitly treat as the “good guy”) and an adversary (the “bad guy”), we see
that some of these scenarios, but not all, represent cases where an adversary can
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intelligently anticipate what an agent might do, and will take steps to avoid any
negative effects of the agent.

• IED Cache Detection Problem. Here, US forces (the agent) are trying to find
the locations of weapons caches used by insurgents to carry out IED terrorist
attacks against civilians and/or US forces. The adversary is constantly adapting its
tactics by observing what US soldiers do after any given IED attack. It is therefore
clear that after some period of observation of how US forces are searching for
IED weapons caches, they will understand at least some elements of the general
approach described in Chapters 2 and 3. They may not understand the underlying
mathematics, and they will certainly not have the feasibility predicates and lower
bound and upper bound cutoff distances used, but they will be able to watch what
the US military does on the ground and infer that after attacks, US troops search
certain regions and not others. The adversary can therefore be expected to adapt
his attacks to avoid detection, based on the model of search behavior exhibited
by US troops that he may be able to monitor. The problem for the agent (US
troops) is to anticipate how the adversary might adapt, and use that anticipatory
knowledge to discover the location(s) of weapons caches supporting the terror
attacks carried out by the adversary.

• The Tiger Detection Problem. In the tiger detection problem, we are interested
in finding preferred locations where the tiger prefers to reside, based on loca-
tions of tiger kills and information about the suitability of various regions on the
ground for a tiger dwelling. However, the tiger is a solitary and intelligent animal
who would vastly prefer to stay away from human contact. Tigers—and other
animals—have, in recent years, been found occasionally in habitats that are dif-
ferent from the ones they usually inhabit. Can wildlife conservationists determine
how a tiger is likely to adapt its pattern of behavior as we attempt to search for it,
based on the location of tiger kills and habitat information? The ability to do this
would significantly enhance tiger conservation efforts.

• The Criminal Identification Problem. Burglars, serial killers, and other crimi-
nals have a clear interest in avoiding being found by geospatial abduction meth-
ods. Should they learn and/or understand what tools and investigative techniques
law enforcement officials have at their disposal, then they can adapt their own
behavior to minimize the probability of being discovered. Of course, law enforce-
ment officers would like to anticipate how criminals might seek to evade them,
and accordingly adjust their own strategy to hunt down the criminals involved.

In contrast to the above problems where the agent seeks to solve a geospatial
abduction problem in the presence of an adversary which is adapting its behav-
ior, the Virus Host Identification Problem involves an adversary that is certainly
changing—but in its physical makeup rather than in a geospatial sense. Hence, the
work described in this chapter does not directly apply to this situation.1

1 Some of the results in this chapter may still prove useful in situations like the Virus Host Identi-
fication problem. Consider the non-deterministic geospatial abduction algorithms from Chapter 2
such as GREEDY-KSEP-OPT2. Suppose we run one of these algorithms n times, creating n expla-
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In the rest of this chapter, we will first describe how geospatial abduction prob-
lems can be viewed as two-player games. Then, we will define methods by which
an adversary (e.g., insurgents carrying out IED attacks) can best position partner lo-
cations (e.g., locations of weapons caches) so as to minimize discovery if the work
in the previous sections were to be used. Of course, the agent performing such game
theoretic reasoning would like to minimize the probability of being outsmarted by
the adversary, so our next section will focus on how to maximize the adversary’s
probability of being successful. All of these sections will include complexity re-
sults, algorithms, and in some cases, approximation algorithms and implementation
hints. Finally, we will describe a suite of experiments we have conducted showing
that these algorithms work well in a real-life IED cache detection problem using
real data drawn from Baghdad.

4.2 Geospatial Abduction as a Two-Player Game

Throughout this chapter, we view geospatial abduction as a two-player game which,
like many results in game theory, follows the cyclic outline given below.

1. The adversary chooses a set O of locations where he/it will carry out certain
actions that the agent can observe.

2. In order to carry out these attacks, the adversary tries to find a set of locations
that constitute an explanation E1 of the set O of observations.

3. The agent can detect explanation E1 using standard geospatial abduction as de-
scribed in Chapters 2 and 3 (and the adversary knows this), so the adversary tries
to find an explanation E2 where the agent is less likely to detect it.

4. The agent, on the other hand, quickly says to himself: “Aha. If the adversary were
smart, he would try not to put the explanation at locations in E1.” Instead, putting
himself in the adversary’s shoes, the agent quickly detects that the adversary
would put the explanation at locations in E2.

5. The adversary can now say “Aha, but if the agent were smart, he would realize
that I would not be dumb enough to put the explanation in locations E2, so he
would reason about what I might do and would arrive at the conclusion that I
(the adversary) would put them at location E3. At this point, the agent would
perform a similar analysis (reasoning that the adversary would not put it at E2,
etc). This kind of reasoning degenerates into a stage of infinite regress with the
agent and the adversary endlessly trying to stay one step ahead of each other.

Other than purely theoretical interest, the situation where such an infinite regress
occurs is neither realistic nor likely. There is so much noise in the real world that

nations (some of which may be the same). We can view the virus as having a mixed strategy where
it uniformly “selects” one of these n explanations. By framing this as an instance of a Maximal
Counter-Adversary Problem (MCA) with an imposed cardinality constraint k (described later in
this chapter), an agent can then select the k locations that maximize his payoff with respect to the
virus selecting one of the n explanations using a uniform probability distribution.
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going too far down this alternating agent-adversary reasoning pattern is likely to be
extremely complex and not likely to lead to good accuracy or good running time
in a real world setting.2 As a consequence, in this chapter we draw the line at the
situation up to point (4) above, i.e., the adversary decides to reason up to stage (4)
above. But to account for noise, we need to introduce a probabilistic model of how
the adversary and agent reason about each other, together with utilities explaining
the value of various situations for them.

4.2.1 Strategies and Rewards

At the end of the day, each player (agent or adversary) must choose a strategy which
is merely a subset of the space S .

• When the player considered is the agent, the strategy intuitively represents a set
of locations that the agent believes is the explanation. In the case of the IED
detection example, it may be the set of locations that US forces search for an
IED weapons cache. In the case of the tiger detection scenario, it may be the
set of locations that wildlife experts search for the tiger. The agent’s strategy is
unknown to the adversary.

• When the player considered is the adversary, the strategy is the set of locations
chosen by the adversary to be the true explanation for the observations the agent
is causing. For instance, in the tiger detection scenario, the tiger’s strategy might
be the set of places the tiger dwells before or after making his kills (observations).
The adversary’s strategy is unknown to the agent.

Though “strategy” and “observation” are defined identically, we use separate
terms to indicate our intended use. Throughout this chapter, we use A (resp. B)
to denote the strategy of the adversary (resp. agent).

Given a pair (A ,B) of adversary-agent strategies, a reward function measures
how similar the two sets are. The more similar the two strategies are, the better it is
for the agent. As reward functions can be defined in many ways, we choose an ax-
iomatic approach so that our framework applies to many different reward functions
including ones that people may invent in the future.

Definition 4.1 (Reward Function). A reward function is any function rf : 2S ×
2S → [0,1] that for any k-explanation A 
= /0 and set B ⊆S , the function satisfies:

1. If B = A , then rf(A ,B) = 1
2. For B,B′ then

rf(A ,B∪B′)≤ rf(A ,B)+ rf(A ,B′)− rf(A ,B∩B′)

The basic intuition behind the reward function is that the more the strategy of the
agent resembles that of the adversary, the closer the reward is to 1. Axiom 1 says

2 Our complexity results suggest this may be a #P-hard problem
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that if the agent’s strategy is the same set as the adversary’s, then the reward is the
maximum possible. Thus, the magnitude of the reward function always applies to the
reward received by the agent; if the agent guesses precisely where the adversary’s
chosen explanation is, then the agent gets the maximum possible reward of 1.

Axiom 2 says that adding a point to B cannot increase the reward to the agent if
that point is already in B, i.e., double-counting of rewards is forbidden.

A reader might wonder why certain natural ideas do not count as valid axioms for
a reward function. For instance, why is rf(A , /0) = 0 not an axiom? After all, it could
be argued that if the agent does nothing at all, shouldn’t there be a zero reward? This
is not necessarily true. We can imagine cases where doing something is worse than
doing nothing. For instance, in the IED application, the reward to the US military
for searching some location (e.g., the house of the Prime Minister of some country)
might significantly outweigh the advantage of searching it, especially if there was
an error and the hypothetical Prime Minister’s house were to be completely empty
of any suspicious material. This same argument also explains why reward functions
are not necessarily monotonic in the second argument (as the empty strategy for the
agent in the preceding discussion could have a higher reward for the agent than the
strategy of searching the putative Prime Minister’s house).

Nevertheless, there will be cases where some (or many) useful reward functions
set rf(A , /0) = 0 and/or are monotonic in nature. We will consider these later in the
chapter. Our next step is to state that rewards associate a simple payoff for each
player.

Observation 4.2.1 Given adversary strategy A , agent strategy B, and reward
function rf, the payoff for the agent is rf(A ,B) and the payoff for the adversary is
−rf(A ,B).

Thus, payoffs are positive for the agent and negative for the adversary. It is there-
fore easy to see that for any reward function and pair (A ,B), the corresponding
game is a zero-sum game [1]. Our complexity analysis assumes all reward functions
are polynomially computable. All the specific reward functions we propose in this
chapter satisfy this condition.

The following important theorem tells us that every reward function is submod-
ular, i.e., the marginal benefit of adding additional points to the agent’s strategy
decreases as the size of the strategy increases. Submodular functions were defined
by us in Chapter 3 — we now adapt this notion of submodularity to the case of
binary reward functions and show below that reward functions as defined by us are
always submodular.

Proposition 4.1 (Submodularity of Reward Functions). Every reward function
is submodular, i.e., if B ⊆ B′, and point p ∈ S such that p /∈ B and p /∈ B′, then
rf(A ,B∪{p})− rf(A ,B)≥ rf(A ,B′ ∪{p})− rf(A ,B′).

Proof. Suppose, by way of contradiction, with B ⊆ B′, and point p ∈ S such that
p /∈ B and p /∈ B′, then

rf(A ,B∪{p})− rf(A ,B)< rf(A ,B′ ∪{p})− rf(A ,B′)
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We know that B′ ∪{p}= B′ ∪ (B∪{p}). Hence:

rf(A ,B∪{p})− rf(A ,B)< rf(A ,B′ ∪ (B∪{p}))− rf(A ,B′)

Also, we know that B = (B∪{p})∩B′, so we get:

rf(A ,B∪{p})− rf(A ,(B∪{p})∩B′)< rf(A ,B′ ∪ (B∪{p}))− rf(A ,B′)

This leads to:

rf(A ,B′)+ rf(A ,B∪{p})− rf(A ,(B∪{p})∩B′)< rf(A ,B′ ∪ (B∪{p}))

which is a clear violation of Axiom 2, hence we have a contradiction.

What this result says is that if the adversary’s strategy A is fixed, then the
marginal benefit of adding another point to a large agent strategy is not as much
as adding the same point to a smaller agent strategy. Simply put, in the case of the
IED detection application, if an insurgent group has already placed its weapons at
various locations and the agent plans to search either a set B of points or a superset
B′ ⊇ B of places, and then the agent decides to search one more place p, the in-
crease in overall benefit yielded had they decided to search B (and p in addition) is
greater than the increase in benefit they would get if they searched the superset B′
(and p in addition).

4.2.1.1 Penalizing Reward Function

We explained earlier why rf(A , /0) = 0 is not an axiom. While this is true of many
reward functions, we now give a concrete example of a reward function where we
penalize the agent for “bad” strategies because in the real world, executing a bad
strategy may have bad consequences. We call this the penalizing reward function.

Definition 4.2 (Penalizing Reward Function). Given a distance dist, we define the
penalizing reward function, prfdist(A ,B), as follows:

1
2
+

|{p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist}|
2 · |A | − |{p ∈ B| 
 ∃p′ ∈ A s.t. d(p, p′)≤ dist}|

2 · |S |
The penalizing reward function intuitively works as follows. It starts at 0.5. It then
adds to the reward the ratio of the number of points in the adversary’s strategy
which are within distance dist of some point in the agent’s strategy to twice the
number of points in the adversary’s strategy. Intuitively, this ratio is a measure of
the effectiveness of the agent in finding locations in the adversary’s explanation.
After this ratio is added to the reward, the penalizing reward function penalizes the
agent for points in the agent’s explanation that are not within the given distance dist
of any point in the adversary’s explanation. This intuition is captured by the second
ratio in the definition of a penalizing reward function.

Let us consider the IED Cache Detection problem and suppose the agent (US
forces) chooses to search locations in B, but the actual places where the adversary
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has placed his caches are in set A . Intuitively, the prfdist function gives the agent
a reward for all caches within distance dist of a cache location contained in the
agent’s strategy (representing places the agent plans to search), but it penalizes the
agent for all locations searched by the agent that are not within distance dist of any
actual cache placed by the adversary. Thus, it has the effect of forcing the agent to
choose where it searches with great care (e.g., to avoid offending local residents in
areas that are subject to the search).

In the same vein, in the tiger identification problem, wildlife conservationists will
probably incur a cost for each search they make. Unsuccessful searches may have
a cost, both in terms of financial cost, as well as in terms of spooking the tiger and
making it harder to find.

The result below states that prf satisfies the axioms required for reward functions.

Proposition 4.2. prfdist is a valid reward function for any dist ≥ 0.

Proof. In this proof, we define pt1(A ,B), pt2(A ,B) as follows:

pt1(A ,B) =
|{p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist}|

2 · |A |
pt2(A ,B) =

|{p ∈ B| 
 ∃p′ ∈ A s.t. d(p, p′)≤ dist}|
2 · |S |

Hence, prfdist(A ,B) = 0.5+ pt1(A ,B)− pt2(A ,B). As we know the maxi-
mum value of both pt1(A ,B), pt2(A ,B) is 0.5, we know that prf is in [0,1].
As pt1(A ,A ) = 0.5 and pt2(A ,A ) = 0, then Axiom 1 is also satisfied. Con-
sider crf (Definition 4.5). Later, in Proposition 4.3, we show that this function
is submodular, meeting Axiom 2. By Definitions 4.5, we can easily show that
pt1(A ,B) = 0.5 · crfdist(A ,B). As pt1(A ,B) is a positive linear combination
of submodular functions, it is also submodular. Now consider pt2(A ,B). Any ele-
ment added to any set B has the same effect—it either lowers the value by 1

2·|S | or
does not affect it— hence it is trivially submodular. Therefore, it follows that prf is
submodular as it is a positive-linear combination of submodular functions.

The following example revisits the burglary application studied earlier in Chap-
ter 3.

Example 4.1. Consider the two-dimensional space shown in Figure 4.1. Suppose
this diagram shows a set of observations (oi’s) depicting locations where burglar-
ies occurred. Furthermore, the police are convinced based on extra-theoretic con-
siderations that the burglaries were carried out by the same burglar (e.g., by ex-
amining fingerprints or the burglar’s modus operandi). All points in this figure
that are not shown in black are assumed to be feasible, and certain locations pi
are marked with numbers (just the i for readability). Suppose the burglar’s actual
places of residence (e.g., home and office) are given by A = {p40, p46} while the
set B = {p38, p41, p44, p56} represents locations that that the police wish to search.
Suppose we consider distance dist = 100 meters. There is only one point in A that
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is within 100 meters of a point in B (point p40) and 3 points in B more than 100
meters from any point in A (points p38, p44, p56). These relationships are shown
visually in Figure 4.1. Hence, prfdist(A ,B) = 0.5+0.25−0.011 = 0.739.

o1 

o2 

o3 

o4 

o5 

                                                              33  34  35    

44  45 46   47                                 48  49  50    
52                                             56 

 37 38                                    40 41   42  43 

                                 57 

5 46   47
           

 48  49 
  40 410

Fig. 4.1 Dashed circles encompass all feasible points within 100 meters from explanation
{p40, p45}. Regions shown in black are deemed infeasible by the supplied feasibility predicate.

Definition 4.3. A reward function is said to be zero-starting if rf(A , /0) = 0.

Thus, a reward function is zero-starting if the agent gets no reward for having an
empty strategy. As mentioned earlier in this chapter, not all reward functions should
be required to be zero-starting; however, there may be plenty of zero-starting reward
functions that are useful in many cases. We now define monotonic reward functions.

Definition 4.4. A reward function, rf, is monotonic if (i) it is zero-starting and (ii)
if B ⊆ B′ then rf(A ,B)≤ rf(A ,B′).

Note that in standard mathematics, monotonic functions in general are not re-
quired to satisfy the first condition in the above definition. However, our definition
of monotonic reward functions requires them to be zero-starting as well. We now de-
fine several example monotonic reward functions, starting with the “cutoff” reward
function.

4.2.1.2 Cutoff Reward Function

The intuition behind the cutoff reward function crf is simple. Suppose we are given
a distance dist (the “cutoff” distance). The cutoff function looks at the percentage
of locations in the adversary’s strategy that are within dist units of some point in the
agent’s strategy.
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Definition 4.5 (Cutoff Reward Function). Reward function based on a cutoff dis-
tance dist.

crfdist(A ,B) :=
card({p ∈ A |∃p′ ∈ B s.t. d(p, p′)≤ dist})

card(A )

Intuitively, the cutoff reward function assumes that if the agent’s strategy includes a
point p′ and there is a location p in the adversary’s strategy that is within dist units of
p′, then the agent will discover it. Returning to our IED Cache Detection problem,
intuitively this says that the agent will find all caches used by insurgents if those
caches are within dist units of a location that the agent has decided to search. In the
case of the Tiger Identification problem, likewise, this says that if wildlife experts
decide to search a point p′ that is within dist units of an actual tiger dwelling, then
the wildlife experts will in fact discover this.

Thus, in the case of the IED Cache Detection application, the cutoff reward func-
tion intuitively specifies the percentage of enemy caches actually discovered by the
agent’s strategy, while in the case of the Tiger Identification problem, it specifies the
percentage of tiger dwellings that actually exist. The following proposition shows
that the cutoff reward function is a valid, monotonic reward function.

Proposition 4.3. crfdist is a valid, monotonic reward function for any dist ≥ 0.

Proof. CLAIM 1: crf satisfies reward Axiom 1.
Clearly, if B = A , then the numerator is |A |, which equals the denominator.

CLAIM 2: crf satisfies reward function Axiom 2.
Suppose, by way of contradiction, there exists explanations B,B′ such that B∪B′
is an explanation and crfdist(A ,B∪B′)> crfdist(A ,B)+rf(A ,B′)−rf(A ,B∩
B′). Therefore, card({p ∈ A |∃p′ ∈ B ∪B′ s.t. d(p, p′) ≤ dist}) is greater than
card({p∈A |∃p′ ∈B s.t. d(p, p′)≤ dist})+card({p∈A |∃p′ ∈B′ s.t. d(p, p′)≤
dist})−card({p ∈A |∃p′ ∈B∩B′ s.t. d(p, p′)≤ dist}). We have a contradiction;
indeed, by basic set theory we see that both sides of this strict inequality are actually
equal.

CLAIM 3: crf is zero-starting.
Clearly, if B = /0, the numerator must be 0, and the statement follows.

CLAIM 4: crf is monotonic.
Suppose, by way of contradiction, there exists B ⊆ B′ such that rf(A ,B) >
rf(A ,B′). Then card({p∈A |∃p′ ∈B s.t. d(p, p′)≤ dist})> card({p∈A |∃p′ ∈
B′ s.t. d(p, p′)≤ dist}). Clearly, this is not possible as B ⊆B′ and we have a con-
tradiction.

The following example illustrates how the crf reward function works.

Example 4.2. Consider Example 4.1. Here, crfdist(A ,B) returns 0.5 as one element
of A is within 100 meters of an element in B.
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4.2.1.3 Falloff Reward Function

The cutoff reward function uses dist to decide whether a location in the adversary’s
strategy will be discovered by the agent or not. Thus, even if an adversary’s chosen
location is just an inch outside the dist bound from the closest point in the agent’s
strategy, this function would say that the adversary’s location would not be found.
This may not always be realistic.

In contrast, the falloff reward function frf defined below says that for each loca-
tion p in the adversary’s strategy (e.g., where the insurgent group chooses to place its
IED weapons locations, or where the tiger actually resides in practice), the probabil-
ity that the agent will discover this location is inversely proportional to the distance
of p from the nearest point p′ that is in the agent’s strategy.

1 

B 

A 

C 

D 

2 

3 

5 

4 

Fig. 4.2 Example adversary and agent strategies for the falloff reward function (frf). The agent’s
strategy consists of points marked by blue circles, while the adversary’s strategy consists of the red
triangles.

Figure 4.2 shows a simple example. In this figure, we look at each location in
the adversary’s strategy; in the IED detection application, for example, these are the
locations where the insurgents decided to place their weapons caches. For each such
adversary location, we find the location in the agent’s strategy that is closest to it.
The table below summarizes this situation.

Example 4.3.

Adversary Location Nearest Agent Location Distance
A 1 1
B 2 2
C 4 5
D 5 4

The falloff reward function assigns a reward to the agent that is inversely pro-
portional to the distances between each A and 1, B and 2, C and 4, and D and 5.
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As long as the reward increases as the distances in the above table decreases, we
have a function that rewards the agent for a strategy which comes “close” (in terms
of distance) to the strategy of the adversary. The falloff reward function defined be-
low implements this intuition in one way—many other ways to achieve the same
intuition, albeit with slightly different definitions of the falloff reward function, are
possible.

Definition 4.6 (Falloff Reward Function). Reward function with value based on
minimal distances between points.

frf(A ,B) :=

{
0 if B = /0

∑p∈A
1

|A |+minp′∈B(d(p,p′)2)
otherwise

with d(p, p′) :=
√

(px − p′x)2 +(py − p′y)2. In this case, the agent’s reward is in-
versely proportional to the square of the distance between points, as the search area
required grows proportionally to the square of this distance.

The example below extends the preceding example.

Example 4.4. Let us continue with the situation in the table shown in Example 4.3.
In this case, we see that when the agent strategy is {1,2,3,4,5} and the adversary’s
strategy is {A,B,C,D}. In this case, |A |= 4 as the adversary has placed four caches.
Then the falloff reward function returns the following:

1
4+12 +

1
4+22 +

1
4+52 +

1
4+42

which turns out to be 0.2+0.125+0.034+0.05= 0.409 which is the value returned
by the falloff reward function.

The following result specifies that the falloff reward function frf satisfies the
axioms to be a reward function—and, additionally, is monotonic.

Proposition 4.4. frf is a valid, monotonic reward function.

Proof. CLAIM 1: frf satisfies all reward function axioms (i.e., is valid).

Bounds We must show rf(A ,B) ∈ [0,1]. For each point p ∈ A , let lBp =

minp′∈B d(p, p′)2. By the definition of the distance function d, we know 0 ≤
lBp < ∞. Now let function f (lBp ) = 1

|A |+minp′∈B d(p,p′)2 =
1

|A |+lBp
. Since 0≤ lBp <

∞, we see 0< f (lBp )≤ 1
|A | . Clearly, the summation over |A | points p∈A yields

an answer in
(
0, |A | · 1

|A |
]
= (0,1]⊂ [0,1].

Axiom 1 If B = A , for each p ∈ A , there exists p′ ∈ B such that d(p, p′) = 0.
Hence, by the definition of frf, frf(A ,B) = 1 in this case.
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Axiom 2 We must show that our version of the triangle inequality holds, that is
rf(A ,B∪B ′)≤ rf(A ,B)+rf(A ,B′)−rf(A ,B∩B′). From above, rf(A ,B∪
B′) = ∑p∈A f (lB∪B′

p ). For each point p ∈A , let p∗ = argminp′∈B∪B′d(p, p′)2.
Without loss of generality, assume p∗ ∈ B, then lBp = lB∪B′

p thus f (lBp ) =

f (lB∪B′
p ). Since p∗ ∈ B, we have p∗ ∈ B∩B′ or p∗ ∈ B∩ B̄′.

If p∗ ∈ B∩B′: Then f (lB∩B′
p ) = f (lBp ). However, since p∗ ∈B′ we have, as

above, f (lB
′

p ) = f (lBp ) = f (lB∪B′
p ). Thus

∑
p∈A

[
f (lBp )+ f (lB

′
p )− f (lB∩B′

p )
]

(4.1)

= ∑
p∈A

[
f (lB∪B′

p )+ f (lB∪B′
p )− f (lB∪B′

p )
]

(4.2)

= ∑
p∈A

f (lB∪B′
p ) (4.3)

So rf(A ,B∪B′) = rf(A ,B)+ rf(A ,B′)− rf(A ,B∩B′) for this case.
If p∗ ∈ B∩ B̄′: From above, we are still guaranteed that f (lBp ) = f (lB∪B′

p ),
thus rf(A ,B∪B ′)=rf(A ,B). This reduces our problem to showing rf(A ,B ′)−
rf(A ,B∩B′)≥ 0. However, rf is monotonic (shown below); since B∩B′ ⊆
B′, then rf(A ,B∩B′)≤ rf(A ,B′) and our claim holds.

A similar proof holds for the case p∗ ∈ B′.

CLAIM 2: frf is monotonic and zero-starting. The property of zero-starting follows
directly from the definition of frf.

By way of contradiction, assume there is some B ⊂ B′ such that rf(A ,B) >

rf(A ,B′). Then, as above, ∑p∈A f (lBp ) > ∑p∈A f (lB
′

p ). However, since B ⊂ B′,
we have lBp ≥ lB

′
p for each p∈A . Similarly, f (lBp )≤ f (lB

′
p ) and thus ∑p∈A f (lBp )≤

∑p∈A f (lB
′

p ), which is our contradiction.

4.2.1.4 Weighted Reward Function

In all the specific examples of reward functions presented thus far, all locations in
both the agent’s strategy and the adversary’s strategy are considered to be equally
important (though there is a hint that this may not be the case when we discussed
searching a Prime Minister’s house in the discussion on penalizing reward func-
tions). We now define weighted reward functions, where each location p′ in the
agent’s strategy has an associated weight.

Returning to the IED detection example, the weight of searching the Prime Min-
ister’s house might be very low, while a national security analyst may set the weight
of searching a mosque or the grounds of an extremist madrasah (religious school)
to be much higher. Likewise, in the case of the tiger detection example, the wildlife
conservation expert might set the weight of searching a particular location in a way
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that is consistent with the suitability of the habitat (e.g., density of ground cover or
forest, abundance of prey) for the tiger to inhabit. Thus, the weighted reward func-
tion wrf assigns a greater reward for being “closer” to points in A that have high
weight than those with lower weights.

Definition 4.7 (Weighted Reward Function). Given weight function W : S →
R
+, and a cutoff distance dist we define the weighted reward function to be:

wrf(W,dist)(A ,B) :=
∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Thus, the weighted reward function proceeds as follows. For a given cutoff distance
dist, it considers each location p in the adversary’s strategy and checks if there exists
a location p′ in the agent’s strategy. If so, it adds the weight of p (which intuitively
indicates the importance of the adversary’s location p from the point of view of
the GAP application) to a running total. Once all such locations p ∈ A have been
considered, it divides the total obtained by the sum of weights of all points in A
to obtain a fractional value of the locations that the agent is expected to discover,
should the agent and the adversary use strategies B and A , respectively.

The following result establishes that the weighted reward function satisfies the
axioms required to be a reward function—and, moreover, is monotonic.

Proposition 4.5. wrf(W,dist)(A ,B) is a valid, monotonic reward function.

Proof. CLAIM 1: wrf satisfies all reward function axioms (i.e., is valid).

Domain We must show wrf(W,dist)(A ,B) ∈ [0,1]. As (B∩A )⊆ A and W only
returns positive values, this function can only return values in [0,1].

Axiom 1 If B =A , then for each p ∈A , there exists p′ ∈B such that d(p, p′) =
0. This causes the numerator to equal ∑p∈B W (p). As B = A , the numerator is
equivalent to the denominator, so wrf(A ,B) = 1 in this case.

Axiom 2 Wemust show the inequality wrf (W,dist)(A ,B∪B′)≤wrf(W,dist)(A ,B)+
wrf(W,dist)(A ,B′)−wrf(W,dist)(A ,B∩B′). This proof is similar to the proof of
Axiom 2 in Proposition 4.3.

CLAIM 2: wrf is monotonic and zero-starting.
The property of zero-starting if shown by when B = /0, the numerator must be 0,
hence, wrf(A , /0) = 0. By way of contradiction, assume there is some B ⊂B′ such
that wrf(W,dist)(A ,B)> wrf(W,dist)(A ,B′). Then

∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
>

∑{p∈A |∃p′∈B′ s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Since B ⊂ B′, we have

∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
>
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∑{p∈A |∃p′∈B s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)
+

∑{p∈A ′|∃p′∈(B′∩B) s.t. d(p,p′)≤dist}W (p)

∑p′∈A W (p′)

Where A ′ = {p ∈ A | 
 ∃p′ ∈ B s.t. d(p, p′)≤ dist}. Hence,

0 > wrf(W,dist)(A ′,B′ ∩B)

Which violates the first axiom, which was shown to apply to wrf(W,dist) by Claim
1—a contradiction.

It is easy to see that the weighted reward function is a generalization of the cutoff
reward function where all weights are 1.

4.2.2 Incorporating Mixed Strategies

Of course, neither the adversary nor the agent wants to be entirely predictable, as
predictability (in the case of the adversary) would mean that the agent has an easy
way to uncover its hidden locations, while predictability (in the case of the agent)
means the adversary can easily avoid being uncovered. To achieve unpredictability,
they are not likely to pick one strategy and stick with it; rather, they are likely to
pick strategies in accordance with some probability distribution. In this section, we
introduce probability density functions (pdfs) over strategies (or mixed strategies
as they are commonly referred to in game theory [1]) and introduce the notion of
expected reward. We first present explanation/strategy functions which return an
explanation (resp. strategy) of a certain size for a given set of observations.

Definition 4.8 (Explanation/Strategy Function). An explanation (resp. strategy)
function is any function ex fcn : 2S ×N→ 2S (resp. sf : 2S ×N→ 2S ) that, given
a set O ⊆ S and k ∈N, returns a set E ⊆ S such that E is a k-sized explanation of
O (resp. E is a k-sized subset of S ). Let EF be the set of all explanation functions.

Intuitively, all that an explanation function does is to return an explanation of size k,
given a set of observations and an integer k as input. In contrast, a strategy function
just returns a strategy of size k.

Example 4.5. Continuing with Example 4.1, we now define two functions ex fcn1
and ex fcn2. Given the set O (defined in Example 4.1) as input and k ≤ 3, these
functions give the following results:

ex fcn1(O,3) = {p42, p45, p48}
ex fcn2(O,3) = {p40, p46}

These sets may correspond to explanations from various sources. Perhaps they cor-
respond to the answer of an algorithm that police officials use to solve GAPs. Con-
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versely, they could also be places the burglar thinks would make most sense for him
to inhabit.

In theory, the set of all explanation functions can be infinitely large; however, it
makes no sense to look for explanations containing more points than S and so we
assume explanation functions are only invoked with k ≤ (M+1)× (N +1).

A strategy function is appropriate for an agent who wants to select points resem-
bling what the adversary selected, but is not required to produce an explanation.
Our results typically do not depend on whether an explanation or strategy function
is used (when they do, we point it out). Therefore, for simplicity, we use “expla-
nation function” throughout the chapter. In our complexity results, we assume that
explanation/strategy functions are computable in constant time.

Both the agent and the adversary do not know the explanation function (e.g.,
answers to the questions “where is the adversary going to put his weapons caches?”
and “where will US forces search for them?”) in advance. Thus, they use a pdf
over explanation functions to estimate their opponent’s behavior, yielding a mixed
strategy.

Definition 4.9 (Explanation Function Distribution). Given a space S , real num-
bers α,β , feasibility predicate feas, and an associated set of explanation func-
tions EF, an explanation function distribution is a finitary3 probability distribution
exfd : EF → [0,1] with ∑ex fcn∈EF exfd(ex fcn) = 1. Let EFD be a set of expla-
nation function distributions.

We use |exfd| to denote the cardinality of the set EF associated with exfd.

Example 4.6. Following from Example 4.5, we define the explanation function dis-
tribution exfdburglar that assigns a uniform probability to explanation functions in
the set ex fcn1,ex fcn2 (i.e., exfdburglar(ex fcn1) = 0.5).

We now define an expected reward that takes mixed strategies specified by ex-
planation function distributions into account to compute an expected value for the
reward function to return.

Definition 4.10 (Expected Reward). Given a reward function rf, and explanation
function distributions exfdadv,exfdag for the adversary and agent respectively, the
expected reward is a function EXRrf : EFD×EFD → [0,1]. For some explana-
tion function distributions exfdadv,exfdag, we define EXRrf(exfdadv,exfdag) as fol-
lows:

∑
ex fcnadv∈EFadv

⎛
⎝exfdadv(ex fcnadv) · ∑

ex fcnag∈EFag

exfdag(ex fcnag) · rf(ex fcnadv,ex fcnag)

⎞
⎠

This definition can be explained as follows. We consider each possible explana-
tion function ex fcnad that the adversary might use. For each possible explanation
function ex fcnag used by the agent, we find the expected reward to the agent, which

3 That is, exfd assigns non-zero probabilities to only finitely many explanation functions.
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is the probability of the agent using explanation function exfdag(ex fcnag) times the
reward to the agent if he uses ex fcnag and the adversary uses ex fcnadv—this is the
product exfdag(ex fcnag) · rf(ex fcnadv,ex fcnag) in the above formula. However,
this product must be multiplied by the probability that the adversary uses explana-
tion function ex fcnadv, yielding exfdadv×exfdag(ex fcnag)·rf(ex fcnadv,ex fcnag).
This expression is then summed up over all possible explanation functions ex fcnadv
that the adversary might use to give the final expected reward (for the agent).

In this chapter, we will generally not deal with expected reward directly. Rather,
we handle two special cases—expected adversarial detriment and expected agent
benefit—in which the adversary’s and agent’s strategies are not mixed respectively.
We explore these two special cases in the next two sections.

4.3 Selecting a Strategy for the Adversary

In this section, we consider the problem where the adversary has already decided
what the set O of observations should be (e.g., in the case of the insurgents, this
would correspond to the insurgents having selected the targets of their terror at-
tacks, while in the case of the burglar, this corresponds to the set of targets the bur-
glar plans to break into), and now he wants to choose the best strategy A to carry
out his nefarious deeds. Of course, the strategy A needs to be an explanation for O
with respect to a given feasibility predicate. We assume the adversary has a proba-
bilistic model of the agent’s behavior (an explanation function distribution) and that
he wants to eventually find an explanation (e.g., the set of locations for his weapons
caches). Even though he can use “expected reward” to measure how close the agent
will be to the adversary’s explanation, only the agent’s strategy is mixed because
the adversary must physically select his strategy once and for all (e.g., the burglar
must decide where to live/work, while the terrorist must decide where to place his
weapons caches). In other words, the adversary’s strategy is not mixed—it is con-
crete. In order to account for this, we introduce a special case of expected reward
called the expected adversarial detriment (of a given strategy A that he chooses).

Definition 4.11 (Expected Adversarial Detriment). Given any reward function rf

and explanation function distribution exfd, the expected adversarial detriment is the
function EXDrf : EFD×2S → [0,1] defined as follows:

EXDrf(exfd,A ) = ∑
ex fcn∈EF

rf(A ,ex fcn(O,k)) ·exfd(ex fcn)

Intuitively, the expected adversarial detriment is the expected number of partner
locations the agent may uncover according to the explanation function distribution
exfd that the adversary uses to model the agent. To compute this, we consider each
explanation function ex fcn and identify the adversary’s reward—which we call
“detriment”, since it is a measure the adversary wishes to minimize. The product of
the two gives the expected detriment if in fact the explanation function distribution
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is correct and the sum of these products, one for each possible explanation function
ex fcn, gives the total expected detriment.

We illustrate the expected adversary detriment via the following example.

Example 4.7. Following from the previous examples, suppose the burglar is plan-
ning to have three safe locations (e.g., his house, his office, and his significant
other’s house). Suppose, from prior experience of the police (or by appropriate
scouting), he expects that police detectives will look for his safe houses using
exfdburglar (see Example 4.6). One suggestion the burglar may consider is to choose
safe houses at locations p41, p52 (see Figure 4.1). Note that this explanation is op-
timal with respect to cardinality. With dist = 100 meters, he wishes to compute
EXDcrf(exfdburglar,{p41, p52}). We first need to find the reward associated with
each explanation function (see Example 4.5):

crfdist({p41, p52},ex fcn1(O,3)) = 1
crfdist({p41, p52},ex fcn2(O,3)) = 0.5

Thus, EXDcrf(exfdburglar,{p41, p52})= 0.5 ·1+0.5 ·0.5= 0.75. Hence, this is prob-
ably not the best location for the burglar to position his safe houses with respect to
crf and exfd, as the expected adversarial detriment associated with this set of loca-
tions is large.

The expected adversarial detriment is a quantity that the adversary would seek to
minimize. This is now defined as an optimal adversarial strategy below.

Definition 4.12 (Optimal Adversarial Strategy). Given a set of observations O ,
natural number k, reward function rf, and explanation function distribution exfd,
an optimal adversarial strategy is a k-sized explanation A for O such that
EXDrf(exfd,A ) is minimized.

4.3.1 The Complexity of Finding an Optimal Adversarial Strategy

In this section, we formally define the optimal adversarial strategy (OAS) problem
and study its complexity.

OAS Problem

INPUT: Space S , feasibility predicate feas, real numbers α,β , set of observations
O , natural number k, reward function rf, and explanation function distribution exfd.
OUTPUT: The optimal adversarial strategy A .

The result below demonstrates that the known NP-hard problem Geometric Cov-
ering by Discs [2] is polynomially reducible to OAS. This establishes NP-hardness.

Theorem 4.1. OAS is NP-hard.
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Proof. CONSTRUCTION: Given an input 〈P,b,K〉 of GCD, we create an instance
of OAS in PTIME as follows:

• Set S to be a grid large enough that all points in P are also points in S .
• feas(p) = TRUE if and only if p ∈ P
• α = 0, β = b, O = P, k = |P|
• Let rf(E1,E2) = 1 if E1 ⊆ E2, and |E1|

|S | otherwise.
This satisfies reward Axiom 1 as E1 ⊆S , Axiom 2 by definition, and the satisfac-
tion of Axiom 3, along with monotonicity (with respect to the second argument)
can easily be shown by the fact that explanations that are not supersets of E1
(called E2,E3) satisfy rf(E1,E2) = rf(E1,E3).

• Let ex fcn(O,num) that returns set O when num = |O| and is otherwise unde-
fined. Let exfd(ex fcn) = 1 and 0 otherwise.

CLAIM 1: If A as returned by OAS has a cardinality of ≤ K, then the answer to
GCD is “yes”.
Suppose, by way of contradiction, that card(A )≤ K and GCD answers “no.” This
is an obvious contradiction as A is a subset of P (by how feasibility was defined)
where all elements of P are within a radius of b and A also meets the cardinality
requirement of GCD.

CLAIM 2: If the answer to GCD is “yes” then A as returned by OAS has a cardi-
nality of less than or equal to K.
Suppose, by way of contradiction, GCD returns “yes” but A returned by OAS has
a cardinality greater than K. By the result of GCD, there exists a set P′ of cardi-
nality K such that each point in P (hence O) is of a distance ≤ β from a point in
P′. This, along with the definition of feasibility, makes P′ a valid K-explanation
for O . We note that ex fcn(P, |P|) = P and that exfd assigns this reward function
a probability of one. Hence, the expected adversarial detriment for any explanation
A ′ is rf(A ′,P). As P′ is an explanation of cardinality less than A , it follows that
rf(P′,P)< rf(A ,P), which is a contradiction.

The proof of the above theorem yields two insights, stated below as a corollary.

Corollary 4.1. 1. OAS is NP-hard even if the reward function is monotonic (or anti-
monotonic).

2. OAS is NP-hard even if the cardinality of EF is 1.

Thus, we cannot simply pick an “optimal” function from EF. To show an upper
bound, we define OAS-DEC to be the decision problem associated with OAS. If the
reward function is computable in polynomial time, then the following result says
that OAS-DEC is in the complexity class NP.

OAS-DEC

INPUT: Space S , feasibility predicate feas, real numbers α ,β , set of observations
O , natural number k, reward function rf, explanation function distribution exfd, and
number R ∈ [0,1].
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OUTPUT: “Yes” if there exists an adversarial strategy A such that EXDrf(exfd,A )≤
R, and “no” otherwise.

Theorem 4.2. If the reward function is computable in PTIME, then OAS-DEC is
NP-complete.

Proof. NP-hardness follows from Theorem 4.1. To show NP-completeness, a wit-
ness simply consists of A . We note that, as the reward function is computable in
PTIME, finding the expected adversarial detriment for A and comparing it to R can
also be accomplished in PTIME.

Suppose we have an NP oracle that can return an optimal adversarial strategy
and suppose this NP oracle returns A . Quite obviously, this is the best response

of the adversary to the mixed strategy of the agent. Now, how does the agent re-
spond to such a strategy? If we were to assume that such a solution were unique,
then the agent would simply have to find a strategy B such that rf(A ,B) is max-
imized. This is a special case of the problem we discuss in Section 4.4. However,
this is not necessarily the case. A natural way to address this problem is to create
a uniform probability distribution over all optimal adversarial strategies and opti-
mize the expected reward—again a special case of what we will discuss later in
Section 4.4. However, obtaining the set of explanations is not an easy task. Even if
we had an easy way to exactly compute an optimal adversarial strategy, finding all
such strategies is an even more challenging problem. In fact, it is at least as hard
as the counting version of GCD—which we already have shown to be #P-hard and
difficult to approximate (see Chapter 2). The following theorem shows that finding
the set of all optimal strategies (for the adversary) that have an expected adversarial
detriment below a certain threshold is #P-hard.

Theorem 4.3. Finding the set of all adversarial optimal strategies that provide a
“yes” answer to OAS-DEC is #P-hard.

Proof. Let us assume that we know one optimal adversarial strategy and can com-
pute the expected adversarial detriment from such a set. Let us call this value D.
Given an instance of GCD, we can create an instance of OAS-DEC as in Theo-
rem 4.1, where we set R=D. Suppose we have an algorithm that produces all adver-
sarial strategies. If we iterate through all strategies in this set, and count all strategies
with a cardinality ≤ K (the K from the instance of GCD), we have counted all so-
lutions to GCD—thereby solving the counting version of GCD, a #P-hard problem
that is difficult to approximate by Lemma 2.1.

This theorem says that it is infeasible for the adversary to find all strategies that
are optimal for him.

4.3.2 Pre-Processing and Naive Approach

In this section, we present several algorithms to solve OAS. We first present a simple
routine for pre-processing followed by a naive enumeration-based algorithm.
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We use Δ to denote the maximum number of partners per observation and f
to denote the maximum number of observations supported by a single partner. In
general, Δ is bounded by π(β 2 −α2), but may be lower depending on the feasible
points in S . Likewise, f is bounded by min(|O|,Δ) but may be much smaller de-
pending on the sparseness of the observations.

Pre-Processing Procedure. Given a space S , a feasibility predicate feas, real
numbers α,β ∈ [0,1], and a set O of observations, we create two lists (similar to a
standard inverted index) as follows.

• Matrix M. M is an array of size S . For each point p ∈ S , M[p] is a list of
pointers to observations. M[p] contains pointers to each observation o such that
feas(p) is true and such that d(o, p) ∈ [α,β ].

• List L. List L contains a pointer to position M[p] in the array M if and only if
there exists an observation o ∈O such that feas(p) is true and such that d(o, p)∈
[α,β ].

Thus, M[p] points to all observations that are both feasible and which are within
the appropriate lower and upper bounds [α,β ] in distance from point p. In the case
of the insurgent cache detection problem, M[p] specifies the set of attacks that the
insurgent terror group wants to carry that could be carried out if the insurgent group
had a weapons cache at location p. In contrast, list L points to all locations that can
be used to carry out at least one of the attacks that the insurgent group wants to carry
out. What is important to note is that if a point p is not in L, then point p is not a
location where the adversary might want to put his weapons cache.

It is easy to see that we can compute M and L in O(|O| ·Δ) time. The example
below shows how M,L apply to our running burglary example.

Example 4.8. Consider our running example concerning the burglaries and the bur-
glar’s dwellings that started with Example 4.1. The set L consists of {p1, . . . , p67}.
The matrix M returns lists of observations that can be associated with each point.
For example, M(p40) = {o3,o4,o5} and M(p46) = {o1,o2}.
Naive Approach. After pre-processing, a straightforward exact solution to OAS
would be to enumerate all subsets of L that have a cardinality less than or equal to k.
Let us call this set L∗. Furthermore, suppose we eliminate all elements of L∗ that are
not valid explanations. Finally, for each element of L∗, suppose we compute the ex-
pected adversarial detriment and return the element of L∗ for which this value is the
least. Clearly, this approach is impractical as the cardinality of L∗ can be very large.
Furthermore, this approach does not take advantage of the specific reward functions.
We now present mixed integer programs (MIPs) to compute the minimal expected
adversary detriment when the associated reward function is either wrf or frf. We
first write these mixed integer programs—later, we develop methods to reduce the
complexity of solving these MILPs.
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Fig. 4.3 Set L of all possible partners for our burglar’s dwelling locations.

4.3.3 Mixed Integer Programs for OAS under wrf,crf, frf

We present mixed integer linear programs (MILPs) to solve OAS exactly for some
specific reward functions. First, we present a mixed integer linear program for the
reward function wrf. Later, in Section 4.3.4, we show how to improve efficiency—
while maintaining optimality—by reducing the number of variables in the MILP.
Note that these constraints can also be used for crf as wrf generalizes crf. We also
define a MILP for the frf reward function.

While these mixed integer programs may appear nonlinear, Proposition 4.9 gives
a simple transformation to standard linear form. For readability, we define the
MILPs before discussing this transformation.

We start by associating an integer-valued variable Xi with each point pi ∈ L. In-
tuitively, Xi is an (unknown) variable which has the value 0 if the adversary chooses
not to locate a partner location there, and 1 otherwise.

Definition 4.13 (wrf MILP). Given real number dist > 0 and weight function W ,
associate a constant wi with the weight W (pi) of each point pi ∈ L. Next, for each
pi ∈ L and ex fcn j ∈ EF, let constant ci, j = 1 if and only if ∃p′ ∈ ex fcn(O,k) such
that d(p′, pi)≤ dist and 0 otherwise. Finally, associate an integer-valued variable Xi
with each pi ∈ L.
Minimize:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · wi · ci, j

∑pi∈L wi ·Xi

))

subject to:

1. Xi ∈ {0,1}
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2. Constraint ∑pi∈L Xi ≤ k
3. For each o j ∈ O , add constraint

∑pi∈Ld(o j ,pi)∈[α,β ] Xi ≥ 1

We note that the above definition does not define purely linear constraints. For-
tunately, these constraints can be easily linearized using the well-known Charnes-
Cooper transformation [3].

Example 4.9. Continuing from Examples 4.7 (page 109) and 4.8, suppose the bur-
glar wishes to produce an adversarial strategy A using wrf. Consider the case where
we use crf, k ≤ 3, and dist = 100 meters as before (see Example 4.7). Clearly, there
are 67 variables in these constraints, as this is the cardinality of set L (as per Exam-
ple 4.8). The constants ci,1 are 1 for elements in the set:

{p35, p40, p41, p42, p43, p44, p45, p46, p49, p49, p50, p52, p56}

(and 0 for all others). The constants ci,2 are 1 for elements in the set

{p33, p37, p40, p41, p45, p46, p47, p48}

(and 0 for all others).

As in the case of the weighted reward function above, we can create a MILP for
the falloff reward function frf as follows, where Xi has a meaning identical to that
in the preceding case.

Definition 4.14 (frf MILP). For each pi ∈ L and ex fcn j ∈ EF, let constant ci, j =
minp′∈ex fcn(O,k)(d(pi, p′)2). Associate an integer-valued variable Xi with each
pi ∈ L.
Minimize:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · 1

ci, j +∑pi∈L Xi

))

subject to:

1. Xi ∈ {0,1}
2. Constraint ∑pi∈L Xi ≤ k
3. For each o j ∈ O , add constraint

∑pi∈Ld(o j ,pi)∈[α,β ] Xi ≥ 1

The following theorem tells us that solving the above MILPs correctly yields a so-
lution for the OAS problem under both wrf or frf.

Proposition 4.6. Suppose S is a space, O is an observation set, real numbers 0 ≤
α < β ≤ 1, and suppose the wrf and frf MILPs are defined as above.
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1. Suppose A = {p1, . . . , pn} is a solution to OAS with wrf (resp. frf). Consider
the assignment that assigns 1 to each X1, . . . ,Xn corresponding to the pi’s and 0
otherwise. This assignment is an optimal solution to the MILP.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to set
A , then A is a solution to OAS with wrf (resp. frf).

Proof. PART 1: Suppose, by way of contradiction, that there is a set of variables
X ′

1, . . . ,X
′
m that is a solution to the constraints such that the value of the objec-

tive function is less than if variables X1, . . . ,Xn were used. Then, there are points
p′1, . . . , p′m in set L that correspond with the Xi’s such that they cover all observa-
tions and that the expected adversarial detriment is minimized. Clearly, this is a
contradiction.
PART 2: Suppose, by way of contradiction, that there is a set of points A ′ such
that the expected adversarial detriment is less than A . Clearly, A is a valid ex-
planation that minimizes the expected adversarial detriment by the definition of the
constraints—hence a contradiction.

The result below states that setting up either set of constraints can be performed
in polynomial time, where computing the ci, j constants is the dominant operation.

Proposition 4.7. Setting up the wrf/frf constraints can be accomplished in O(|EF| ·
k · |O| ·Δ) time (provided the weight function W can be computed in constant time).

Proof. First, we must run POSS-PART, which requires O(|O| ·Δ) operations. This
results in a list of size O(|O| ·Δ). For each explanation function, ex fcn, we must
compare every element in L with each element of ex fcn(O), which would require
O(k · |O| ·Δ) time. As there are |EF| explanation functions, the statement follows.

The number of variables for either set of constraints is related to the size of L,
which depends on the number of observations, spacing of S , and α,β .

Proposition 4.8. The wrf/frf constraints have O(|O| ·Δ) variables and 1+ |O| con-
straints.

Proof. As list L is of size O(|O| ·Δ), and there is one variable for every element
of L, there are O(|O| ·Δ) variables. As there is a constraint for each observation,
plus a constraint to ensure the cardinality requirement (k) is met, there are 1+ |O|
constraints.

The MILPs for wrf and frf appear nonlinear as the objective function is frac-
tional. However, as the denominator is non-zero and strictly positive, the Charnes-
Cooper transformation [3] allows us to quickly (in the order of number of con-
straints multiplied by the number of variables) transform the constraints into a
purely integer-linear form. Many linear and integer-linear program solvers include
this transformation in their implementation and hence, this transformation is very
standard.

Proposition 4.9. The wrf/frf constraints can be transformed into a purely linear-
integer form in O(|O|2 ·Δ) time.
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Proof. Obviously, in both sets of constraints, the denominator of the objective func-
tion is strictly positive and non-zero. Hence, we can directly apply the Charnes-
Cooper transformation [3] to obtain a purely integer-linear form. This transforma-
tion requires O(number of variables× number of constraints). Hence, the O(|O|2 ·
Δ) time complexity of the operation follows immediately from Proposition 4.8.

We note that a linear relaxation of any of the above three constraints can yield a
lower bound on the objective function in O(|L|3.5) time.

Proposition 4.10. Given the constraints of Definition 4.13 or Definition 4.14, if we
consider the linear program formed by setting all Xi variables to be in [0,1], then the
value returned by the objective function will be a lower bound on the value returned
by the objective function for the mixed integer-linear constraints, and this value can
be obtained in O(|O|3.5 ·Δ 3.5) time.

Proof. CLAIM 1: The linear relaxation of Definition 4.13 or Definition 4.14 pro-
vides a lower bound on the objective function value for the full integer-linear con-
straints. As an optimal value returned by the integer-linear constraints would also
be a solution, optimal with respect to minimality, for the linear relaxation, the state-
ment follows.
CLAIM 2: The lower bound can be obtained in O(|L|3.5) time.
As there is a variable for each element of L, the size of L is O(|O| ·Δ), and the claim
follows immediately from the result of [4].

Likewise, if we solve the mixed integer linear program with a reduced number
of variables, we are guaranteed that the solution will cause the objective function to
be an upper bound for the original set of constraints.

Proposition 4.11. Consider the MILPs in Definition 4.13 and Definition 4.14. Sup-
pose L′ ⊂ L and every variable Xi associated with some pi ∈ L′ is set to 0. The
resulting solution is an upper bound on the objective function for the constraints
solved on the full set of variables.

Proof. Suppose, by way of contradiction, that the solution for the objective function
on the reduced MILP would be less than the actual MILP. Let X1, . . . ,Xn be the
variables set to 1 for the reduced MILP in this scenario. We note, that setting the
same variables to the full MILP would also be a solution, and could not possibly be
less than a minimal solution. This is a contradiction.

4.3.4 Correctly Reducing the Number of Variables for crf

As the complexity of solving MILPs is closely related to the number of variables in
the MILP, the goal of this section is to reduce the number of variables in the MILP
associated above with the crf reward function. In this section, we show that if we can
find a certain type of explanation called a δ -core optimal explanation, then we can
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“build up” an optimal adversarial strategy in polynomial time.4 It also turns out
that finding these special explanations can be accomplished using a MILP which
will often have significantly less variables than the MILP’s of the last section. First,
we consider the wrf constraints applied to crf which is a special case of wrf. The
objective function for this case is:

∑
ex fcn j∈EF

(
exfd(ex fcn j) · ∑

pi∈L

(
Xi · ci, j

∑pi∈L Xi

))

where for each pi ∈ L and ex fcn j ∈ EF, ci, j = 1 if and only if ∃p′ ∈ ex fcn j(O,k)
such that d(p′, pi) ≤ dist and 0 otherwise. If we rearrange the objective function,
we see that with each Xi variable associated with point pi ∈ L, there is an associated
constant consti:

consti = ∑
ex fcn j∈EF

exfd(ex fcn j) · ci, j.

This lets us rewrite the objective function as:

∑pi∈L Xi · consti
∑pi∈L Xi

.

Example 4.10. Continuing from Example 4.9, consti = 0.5 for the following ele-
ments: {p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56}; consti = 1 for these ele-
ments: {p40, p41, p45, p46, p48}, and 0 for all others.

4.3.4.1 Relationship with Covering Problems

In many covering problems where we wish to find a cover of minimal cardinal-
ity, we could reduce the number of variables in the integer program by considering
equivalent covers as duplicate variables. However, for OAS, this technique can not
be easily applied. The reason for this is because an optimal adversarial explanation
is not necessarily irredundant (see Definition 2.7, page 24). Consider the follow-
ing. Suppose we wish to find an optimal adversarial strategy of size k. Let P be an
irredundant cover of size k− 1. Suppose there is some element p′ ∈ P that covers
only one observation o′. Hence, there is no p ∈ P−{p′} that covers o′ by the defini-
tion of an irredundant cover. Suppose there is also some p′′ /∈ P that also covers o′.
Now, let m = ∑pi∈P−{p′} consti. In our construction of an example solution to OAS
that is not irredundant, we let const ′ be the value associated with both p′ and p′′.
Consider the scenario where const ′ < m

k−2 . Suppose by way of contradiction that
the optimal irredundant cover is also the optimal adversarial strategy. Then, by the
definition of an optimal adversarial strategy we know that the set P is more optimal
than P∪{p′′}. This would mean that m+const ′

k−1 < m+2·const ′
k . This leads us to infer that

4 Thus, this describes a class of OAS problems that can be solved exactly in polynomial time.
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m < const ′ ·(k−2), which clearly contradicts const ′ < m
k−2 . It is clear that a solution

to OAS need not be irredundant.
However, we do leverage the idea of an irredundant cover in a different exact

approach in this section which may provide a speedup over the exact algorithms
of the previous section. The main intuition is that each OAS solution contains an
irredundant cover, and if we find such a cover, we can build an optimal adversarial
strategy in polynomial time. First, we define a core explanation. Before doing so, we
recall that L is the set of all points in the space S that are feasible and that explain
at least one observation (i.e., is within the [α,β ] distance bounds from at least one
explanation).

Definition 4.15 (Core Explanation). Given an observation set O and set L of pos-
sible partners, an explanation Ecore is a core explanation if and only if for any
pi ∈ Ecore, there does not exist p j ∈ L such that:

1. ∀o ∈ O if o, pi are partners, then o, p j are also partners.
2. const j < consti

We now show that any optimal adversarial strategy contains a subset that is a
core explanation.

Theorem 4.4. If A is an optimal adversarial strategy, there exists a core explana-
tion Ecore ⊆ A .

Proof. CLAIM 1: For any explanation E , there is an explanation E ′ ⊆ E such that
there are no two elements p, p′ ∈ E ′ such that ∀o ∈ O such that o, p are partners,
then o, p′ are also partners.
Consider E . If it does not already have the quality of Claim 1, then by simple induc-
tion, we can remove elements until the resulting set does.
CLAIM 2: If A is an optimal adversarial strategy, there is a no p j ∈ L−A such that
there exists pi ∈ A where const j < consti and ∀o ∈ O such that o, pi are partners,
then o, p j are also partners.
Suppose, by way of contradiction, there is a p j ∈ L−A such that there exists pi ∈A
where const j < consti and ∀o ∈ O such that o, pi are partners, then o, p j are also
partners. Consider the set (A −{pi} ∪ {p j}. This set is still an explanation and
EXDrf(exfd,(A −{pi}∪ p j)< EXDrf(exfd,A )—which would be a contradiction
as A is an optimal adversarial strategy.
CLAIM 3: There is an explanation E ⊆ A such that condition 1 of Definition 4.15
holds.
Consider the set E = {pi ∈ A | 
 ∃p j ∈ A s.t. (const j < consti)∧
(∀o ∈ O s.t. o, pi are partners, then o, p j are also partners)}. By Claim 1, this set
is contained in an OAS. Note that any observation covered by a point in A −E is
covered by a point in E , so E is an explanation. Further, by the definition of E and
Claim 2, this set meets condition 1 of Definition 4.15.
CLAIM 4: Set E from Claim 3 is a core explanation.
By Claim 3, E is a valid explanation and meets condition 1 of Definition 4.15.
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Example 4.11. Continuing from Example 4.10, consider the set A = {p34, p38, p57}
(which would correspond to drug lab locations as planned by the cartel). Later, we
show that this is an optimal adversarial strategy (the expected adversarial detriment
associated with A is 0). Consider the subset p34, p38. As p34 explains observations
o3,o4,o5 and p38 explains observations o1,o2, this set is also an explanation. Obvi-
ously, it is of minimal cardinality. Hence, the set {p34, p38} is a core explanation

of A .

Suppose we have an oracle that, for a given k, O , and exfd returns a core ex-
planation Ecore that is guaranteed to be a subset of the optimal adversarial strategy
associated with k, O , and exfd. The following theorem says we can find the opti-
mal adversarial strategy in polynomial time. The key intuition is that we need not
concern ourselves with covering the observations as Ecore is an explanation. The
algorithm BUILD-STRAT follows from this theorem.

Theorem 4.5. If there is an oracle that for any given k, O , and exfd returns a core
explanation Ecore that is guaranteed to be a subset of the optimal adversarial strat-
egy associated with k, O , and exfd, then we can find an optimal adversarial strategy
in O(Δ · |O| · log(Δ · |O|)+(k−|Ecore|)2) time.

Proof. CLAIM 1: For explanation E and point pi ∈ L − E , EXDrf(exfd,E ) >
EXDrf(exfd,E ∪{pi}) if and only if consti < EXDrf(exfd,E ).
If: Suppose consti <EXDrf(exfd,E ). Let EXDrf(exfd,E )= a

b . Hence, EXD rf(exfd,E ∪
{pi})= a+consti

b+1 . Suppose, by way of contradiction, EXDrf(exfd,E )≤EXD rf(exfd,E ∪
{pi}). Then, a

b ≤ a+consti
b+1 . This give us a · b+ a ≤ a · b+ consti · b, which give us

EXDrf(exfd,E )≤ consti—a contradiction.
Only-if: Suppose EXDrf(exfd,E )> EXDrf(exfd,E ∪{pi}). Let EXDrf(exfd,E ) =
a
b . Hence, a

b > a+consti
b+1 , which proves the claim.

CLAIM 2: For explanation E and points pi, p j ∈ L − E if consti < const j, then
EXDrf(exfd,E ∪{pi})> EXDrf(exfd,E ∪{p j}).
Straightforward algebra similar to Claim 1.
CLAIM 3: Algorithm BUILD-STRAT returns an optimal adversarial strategy.
We know that Ecore must be in the optimal adversarial strategy. Hence, we suppose
BWOC that for the remaining elements there is a better set of elements—cardinality
between 0 and k−|Ecore| such that the expected adversarial detriment is lower. How-
ever, this contradicts Claims 1–2.
CLAIM 4: Algorithm BUILD-STRAT runs in time O(Δ · |O| · log(Δ · |O|)+ (k−
|Ecore|)2).
Sorting the set L−Ecore can be accomplished in O(Δ · |O| · log(Δ · |O|)) time. The
remainder can be accomplished in O((k−|Ecore|)2) time.

We now introduce the notion of δ -core optimal. Intuitively, this is a core expla-
nation of cardinality exactly δ that is optimal w.r.t. expected adversarial detriment
compared to all other core explanations of that cardinality.

Definition 4.16. Given an integer δ > 0, an explanation distribution function exfd,
and a reward function rf, a core explanation Ecore is δ -core optimal if and only if:



120 4 Geospatial Abduction with Adaptive Adversaries

Algorithm 11 BUILD-STRAT
INPUT: Partner list L, core explanation Ecore, natural number k, explanation function distribution
exfd
OUTPUT: Optimal adversarial strategy A

1. If |Ecore|= k, return Ecore
2. Set A = Ecore. Let k′ = |Ecore|
3. Sort the set L−Ecore by consti. Let L′ = {p1, . . . , pk−k′ } be the k− k′ elements of this set with

the lowest values for consti, in ascending order
4. For each pi ∈ L′ let Pi be the set {p1, . . . , pi}
5. For each Pi let Si = ∑ j≤i const j

6. Let ans = minpi∈L′ ({ k′ ·EXDrf
(exfd,Ecore)+Si
k′+i })

7. Let Pans be the Pi associated with ans
8. If ans ≥ EXDrf(exfd,Ecore), return Ecore, else return Ecore ∪Pans

• |Ecore|= δ
• There does not exist another core explanation E ′

core of cardinality exactly δ such
that EXDrf(exfd,E ′

core)< EXDrf(exfd,Ecore)

We now define some subsets of the set L that are guaranteed to contain core
explanations and δ -core optimal explanations as well. In practice, these sets will be
much smaller than L and will be used to create a MILP of reduced size.

Definition 4.17 (Reduced Partner Set). Given observations O and set of possible
partners L, we define the reduced partner set L∗∗ as follows:

L∗∗ = {pi ∈ L| 
 ∃p j ∈ L s.t. (const j < consti)∧ (∀o ∈ O s.t. o, pi are partners,

o, p j are also partners)}

We define L∗ as follows:

L∗ = {pi ∈ L∗∗| 
 ∃p j ∈ L∗∗ s.t. (const j = consti)∧ (∀o ∈ O s.t. o, pi are partners,

o, p j are also partners)}

Lemma 4.1. 1. If explanation E is a core explanation, then E ⊆ L∗∗.
2. If explanation E is δ -core optimal, then E ⊆ L∗∗.
3. If for some natural number δ , there exists an explanation of size δ , then there

exists a δ -core optimal explanation E such that E ⊆ L∗.

Proof. Proof of Part 1:
Suppose, BWOC, E is a core explanation and E 
⊆ L∗∗. Then, there is some element
pi ∈ E ∩ (L−L∗∗). Moreover, by the definition of a core explanation, there does not
exist p j ∈ L such that ∀o ∈O such that o, pi are partners, then o, p j are also partners
and const j < consti. This would also put the element in L∗∗ by the definition of that
set—which is a contradiction.
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Proof of Part 2:
Suppose, BWOC, there exists explanation E such that for some δ , E is δ -core op-
timal and E 
⊆ L∗∗. Then, there exists some pi ∈ E ∩ (L− L∗∗). By the definition
of L∗∗, there exists a p j ∈ L∗∗ such that const j < consti and ∀o ∈ O s.t. o, pi are
partners, then o, p j are also partners. Hence, the set (E −{pi})∪{p j} is also an
explanation of size δ and has a lower expected detriment. From the definition of
δ -core optimal, this is a contradiction.

Proof of Part 3:
Suppose, BWOC, for some δ such that there is an explanation of this size, there
does not exist a δ -core optimal explanation E such that E ⊆ L∗. By the proof of
Part 2, we know that a δ -core optimal explanation must be within L∗∗. Further, by
the definition of L∗, for any point pi ∈ L∗∗ −L∗, there exists point p j ∈ L∗ such that
const j = consti and ∀o ∈ O s.t. o, pi are partners, o, p j are also partners. Hence, for
some δ -core explanation that is not a subset of L∗, any pi ∈ E ∩ (L∗∗ −L∗) can be
replaced by some p j ∈ L∗, and the resulting set is still an explanation, optimal, and
of cardinality δ—a contradiction.

The reduced partner set can be computed in polynomial time. We also note that
under the assumption that |O| � |L|, which we have found to be true in practice, de-
termining the set L∗∗ or L∗ can be accomplished faster (in terms of time complexity)
than solving even a relaxation of the original MILP.

Proposition 4.12. Given set L, set L∗ and L∗∗ can be found in O(|L|2 · |O|2) time.

Proof. Given sets L,O , set L∗∗ can be found with the following steps.

1. For each pi ∈ L, let Oi be the subset of O that can be partnered with pi
2. For each pi ∈ L, let elimi be a boolean variable set to FALSE
3. For each pi ∈ L∗∗, do the following

a. If not elimi
i. For each p j ∈ L∗∗ −{p j}, if O j ⊆ Oi and consti < const j then set elim j =

T RUE

4. Return the set {pi ∈ L|elimi = FALSE}.
Clearly, the correctness of the above procedure follows directly from the definition
of set L∗∗. Further, the complexity of the operation is O(|L|2 · |O|2), as we have
two nested loops, each iterating at most |L| times and a comparison where for some
pi, p j, we examine the elements of Oi,O j. To determine the set L∗, we can simply
adjust line 3(a)i of the above procedure and change the < to a ≤. The correctness
again follows from the definition and the time complexity remains the same.

Example 4.12. Let us continue from Example 4.11. Based on pre-processing and the
computation of consti, we can easily produce the data of Table 4.1 in polynomial
time. Based on this, we obtain a reduced partner set L∗ = {p34, p38, p57}.

Next, the following lemma tells us that an OAS must contain a core explanation
that is δ -core optimal.
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Supported Observations consti = 0 consti = 0.5 consti = 1

o1 p4 − p6, p12 − p16, p22 − p23, p30 − p31 p44
o1,o2 p38 p37, p52 p45, p46
o2 p64, p67 p47
o2,o3 p57
o3 p17 − p19, p24 − p26, p32, p39, p58 − p59
o3,o4 p27 − p28 p33
o4 p1 − p3, p7 − p11, p20 − p21, p29, p51 p50
o3,o4,o5 p34, p53 − p54 p49 p40 − p41
o5 p36, p60 − p66 p35
o4,o5 p42 − p43
o3,o5 p55 p56 p48

Table 4.1 The set L partitioned by consti and supported observations.

Lemma 4.2. Given an optimal adversarial strategy A , there exists some δ ≤ |A |
such that there is a δ -core optimal explanation that is a subset of A (using the crf
reward function).

Proof. By Theorem 4.4, A must contain a core explanation and by Lemma 4.1, any
core explanation must be a subset of L∗∗. Therefore, A ∩L∗∗ is a core explanation.
Let B =A − (A ∩L∗∗) and δ = |A ∩L∗∗|. Suppose A ∩L∗∗ is not δ -core optimal.
Then there is some set Q that is a subset of L∗∗, is disjoint from A ∩L∗∗, and is δ -
core optimal. Note that Q∩B = /0 as Q must be a subset of L∗∗ and B is not. Hence,
since it has a lower expected detriment than A ∩L∗∗ and |Q∪B|= |A |, the set Q∪B
will have a lower expected detriment than A —which is clearly a contradiction as
A is an OAS.

Thus, if we can find the δ -core optimal explanation that is contained in an OAS,
we can then find the OAS. If we know δ , such an explanation can be found using a
MILP. We now present a set of integer-linear constraints to find a δ -core optimal

explanation. Of course we can easily adopt the constraints of the previous section,
but this would offer us no improvement in performance. We therefore create a MILP
that should have a significantly smaller number of variables in most cases.

To create this MILP, we take a given set of possible partners L and calculate the
set L∗—the reduced partner set—which often will have a cardinality much smaller
than L. Next, we use L∗ to form a new set of constraints to find a δ -core optimal
explanation. We now present these δ -core constraints. Notice that the cardinality
requirement in these constraints is “=” and not “≤”. This is because Lemma 4.2
ensures a core explanation that is δ -core optimal, meaning that the core explanation
must have cardinality exactly δ . This also allows us to eliminate variables from the
denominator of the objective function, as the denominator must equal δ as well.

Definition 4.18 (δ -core MILP). Given parameter δ and reduced partner set L∗, we
define the δ -core constraints by first associating a variable Xi with each point pi ∈
L∗, then solving:
Minimize:
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1
δ ∑

pi∈L∗
Xi · consti

subject to:

1. Xi ∈ {0,1}
2. Constraint ∑pi∈L Xi = δ
3. For each o j ∈ O , add constraint

∑pi∈L∗d(o j ,pi)∈[α,β ] Xi ≥ 1

Example 4.13. Using set L∗ from Example 4.12, we can create δ -core constraints as
follows:
Minimize:

1
δ
(X34 · const34 +X38 · const38 +X57 · const57)

subject to:

1. X34,X38,X57 ∈ {0,1}
2. X34 +X38 +X57 = δ
3. X38 ≥ 1 (for observation o1)
4. X38 +X57 ≥ 1 (for observation o2)
5. X34 +X57 ≥ 1 (for observation o3)
6. X34 ≥ 1 (for observations o4,o5)

In the worst case, the set L∗ = L. Hence, we can assert that:

Proposition 4.13. The δ -core constraints require O(Δ · |O|) variables and 1+ |O|
constraints.

Proof. Mirrors proposition 4.6.

Proposition 4.14. Given δ -core constraints:

1. Given set δ -core optimal explanation Ecore = {p1, . . . , pn}, if variables
X1, . . . ,Xn—corresponding with elements in A —are set to 1 and the rest of the
variables are set to 0, the objective function of the constraints will be minimized.

2. Given the solution to the constraints, if for every Xi = 1, we add point pi to set
Ecore, then Ecore is a δ -core optimal solution.

Proof. From Lemma 4.1, we know that for any δ such that there exists and expla-
nation of that size, there is a δ -core explanation E that is a subset of L∗. Hence, the
rest of the proof mirrors the proof of Proposition 4.6

We now have all the pieces required to leverage core explanations and reduced
partner sets to find an optimal adversarial strategy. By Theorem 4.11, we know
that any optimal adversarial strategy must have a core explanation. Further, by
Lemma 4.2, such a core explanation is δ -core optimal. Using a (usually) much
smaller mixed integer linear program, we can find such an explanation. We can
then find the optimal adversarial strategy in polynomial time using BUILD STRAT.
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Though we do not know what δ is, we know it must be in the range [1,k]. Fur-
ther, using a relaxation of the OPT-KSEP-IPC constraints for solving geospatial
abduction problems (as presented in Chapter 2; see also[9]), we can easily obtain
a lower bound tighter than 1 on δ . Hence, if we solve k such (most likely small)
mixed-integer-linear programs, we are guaranteed that at least one of them must be
a core explanation for an optimal adversarial strategy. We note that these k MILPs
can be solved in parallel (and the following k instances of BUILD-STRAT can also
be run in parallel as well). An easy comparison of the results of the parallel pro-
cesses would be accomplished at the end. As L∗ is likely to be significantly smaller
than L, this could yield a significant reduction in complexity. Furthermore, various
relaxations of this technique can be used (e.g., only using one value of δ ).

Example 4.14. Continuing from Example 4.13, where the cartel members are at-
tempting to find an OAS to best position drug laboratories, suppose they used the
relaxation of OPT-KSEP-IPC (from Chapter 2 - see also [9]) to obtain a lower
bound on the cardinality of an explanation and found it to be 2. With k = 3, they
would solve two MILPs of the form of Example 4.13—one with δ = 2 and one
with δ = 3. The solution to the first MILP would set X34 and X38 both to 1 while
the second MILP would set X34,X38, and X57 all to 1. As the expected adversarial
detriment for both solutions is 0, they are both optimal and running BUILD-STRAT
is not necessary. Either {p34, p38} or {p34, p38, p57} can be returned as an OAS.

4.4 Finding a Counter-Adversary Strategy

The preceding section explains how an intelligent adversary can try to keep its “part-
ner” locations associated with a given set of observations hidden. To do this, the ad-
versary uses an explanation function distribution—but unfortunately, the agent may
not know what this distribution is. The agent is thus confronted with the problem of
creating a strategy to discover the adversary’s strategy. When attempting to find an
“optimal” strategy for the agent, we first need to understand what benefit each pos-
sible strategy brings to the agent. More formally, we use a special case of expected
reward (Definition 4.2.2 from Section 4.10) defined as the agent’s expected benefit
below.

Definition 4.19 (Expected Agent Benefit). Given a reward function rf and ex-
planation function distribution exfd, the expected agent benefit is the function
EXBrf : 2S ×EFD → [0,1] defined as follows:

EXBrf(B,exfd) = ∑
ex fcn∈EF

rf(ex fcn(O,k),B) ·exfd(ex fcn)

Suppose an agent uses an explanation function distribution exfd to estimate how
the adversary is assigning probabilities to specific explanation functions. EXB rf(B,exfd)
is computed by looking at each explanation function ex fcn, identifying the proba-
bility of ex fcn according to the explanation function distribution, and then finding
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the reward for the counter-adversary strategy B used by the agent if ex fcn were
really the explanation function used. The product of the probability of ex fcn and
the reward to the agent of the counter-adversary strategy B yields an “expected re-
ward” if ex fcn is the actual explanation function—the sum of such products across
all possible explanation functions yields the total expected reward. Thus, this defi-
nition is exactly identical to that of expected adversary detriment—except that we
now consider the agent instead of the adversary.

Example 4.15. Following from Examples 4.1 and 4.6, suppose police detectives
have information (e.g., from a tipster) that the burglar is choosing safe locations ac-
cording to exfddrug. (Such information could also come from multiple runs of the
GREEDY-KSEP-OPT2 algorithm of Chapter 2 (see also [9]). The police detec-
tives wish to consider the set B = {p41, p52}. First, they must calculate the reward
associated with each explanation function (note that k = 3,dist = 100 and rf = crf).

crfdist(ex fcn1(O,3),{p41, p52}) = 0.67
crfdist(ex fcn2(O,3),{p41, p52}) = 0.5

(As an aside, we would like to point out the asymmetry in crf—compare these com-
putations with the results of Example 4.7). Hence, EXBcrf({p41, p52},exfddrug) =
0.634.

We now define a counter-adversary strategy that the agent can use to nullify the
agent’s behavior with maximal effectiveness.

Definition 4.20 (Maximal Counter-Adversary Strategy (MCA)). Given a reward
function rf and explanation function distribution exfd, a maximal counter-adversary

strategy, B, is a subset of S such that EXBrf(B,exfd) is maximized.

Simply put, the maximal counter-adversary strategy is merely any strategy that
yields the highest expected benefit to the agent. Note that in theory, there could
be zero, one, or many potential maximal counter-adversary strategies.

Note that MCA does not include a cardinality constraint. This is because we do
not require reward functions to be monotonic. In the monotonic case, we can triv-
ially return all feasible points in S and be assured of a solution that maximizes
the expected agent benefit. Therefore, for the monotonic case, we include an extra
parameter B ∈ {1, . . . , |S |} (for “budget”) which will serve as a cardinality require-
ment for B. This cardinality requirement for B is not necessarily the same as for
A as the agent and adversary may have different sets of resources. Also, we do
not require that B be an explanation. For a discussion of the special case where
the solution to the MCA problem is required to be an explanation, see the appendix
to [12].
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4.4.1 The Complexity of Finding a Maximal Counter-Adversary
Strategy

In this section, we develop complexity results for finding a maximal counter-
adversary strategy. We start by formally defining the problem of finding a maximal
counter-adversary strategy.

MCA Problem

INPUT: Space S , feasibility predicate feas, real numbers α,β , set of observations
O , natural numbers k,B, reward function rf, and explanation function distribution
exfd.
OUTPUT: Maximal counter-adversary strategy B.

The result below shows that MCA is NP-hard via a reduction of the GCD prob-
lem.

Theorem 4.6. MCA is NP-hard.

Proof. Consider an instance of GCD consisting of set of points P, integer b, and
integer K. We construct an instance of MCA as follows:
CONSTRUCTION:

• Set S to be a grid large enough that all points in P are also points in S . We will
use M,N to denote the length and width of S .

• feas(p) = TRUE if and only if p ∈ P
• α = 0, and β =

√
M2 +N2, O = P, k = K, and B = K

• Let rf(E1,E2) be crf where dist = b.
• Let functions ex fcn1, . . . ,ex fcn|P| be explanation functions, with each ex fcni

corresponding to a unique pi ∈ P. Let ex fcni(O,num) = {pi} for all num > 0.
Note that each pi is an explanation for the set P as it is of cardinality ≤ k, is
feasible, and is guaranteed to be with [α,β ] from all other points in P as [α,β ] =
[0,

√
M2 +N2]

• Let exfd(ex fcni) =
1
|P| for all i.

CLAIM 1: crfdist({pi},B) = 1 if and only if there exists p′ ∈ B such that a disc of
radius b (note b = dist) centered on p′ covers pi. crfdist({pi},B) = 0 if and only if
there does not exist p′ ∈ B such that a disc of radius b centered on p′ covers pi.
Follows directly from the definition of crf.

CLAIM 2: If the expected agent benefit is 1, then for all i, crfdist({pi},B) = 1.
Suppose, by way of contradiction, that the expected agent benefit is 1 and there ex-
ists some pi such that crf dist({pi},B) 
=1. Then, for a singleton set, crf dist({pi},B)=
0. Hence, for the ex fcni associated with pi, crfdist(ex fcni(O),B) = 0. So, by the
definition of expected agent benefit, it is not possible for the expected agent benefit
to be 1—a contradiction.
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CLAIM 3: If MCA returns an optimal counter-adversary strategy with an expected
expected agent benefit of 1, then GCD must also return “yes.”
Suppose, by way of contradiction, MCA returns a strategy with an expected agent
benefit of 1 and the corresponding of GCD returns “no.” Then there does not exist
a K-sized cover for the points in P. However, the set B is of cardinality K and by
Claims 1–2 covers all points in P. Hence, a contradiction.

CLAIM 4: If GCD return ”yes” then MCA must return an optima counter-adversary
strategy with an expected agent benefit of 1.
Suppose, by way of contradiction, GCD returns “yes” and MCA returns a an opti-
mal strategy with an expected agent benefit < 1. However, by the answer to GCD,
there must exist P′ ⊆ P of cardinality k that is within distance b of all points in P.
Hence, for all i, crfdist({pi},B) = 1 (as b = dist). So, the expected agent benefit
must also be 1. Hence, a contradiction.

Proof of theorem: Follows directly from Claims 3–4.

The result below follows immediately from the proof of Theorem 4.6 and shows
that MCA is NP-hard even if the reward function is monotonic.

Corollary 4.2. MCA is NP-hard even if the reward function is monotonic.

Later, in Section 4.4.4, we also show that MCA can encode the NP-hard MAX-
K-COVER problem [6] as well (which provides an alternate proof for NP-hardness
of MCA). We now present the decision problem associated with MCA and show
that it is NP-complete under reasonable conditions.

MCA-DEC

INPUT: Space S , feasibility predicate feas, real numbers α ,β , set of observations
O , natural numbers k,B, reward function rf, explanation function distribution exfd,
and number R ∈ [0,1].
OUTPUT: Counter-adversary strategy B such that EXBrf(B,exfd)≥ R.

The following result says that as long as the reward function can be evaluated in
polynomial time, the MAX-DEC decision problem is NP-complete. We note that all
the example reward functions we have presented in this chapter are all polynomially
computable and hence, the result below applies to them.

Theorem 4.7. MCA-DEC is NP-complete, provided the reward function can be
evaluated in PTIME.

Proof. CLAIM 1: Membership in NP.
Given an explanation, B, we can evaluate it reward and if it is an explanation in
PTIME.

CLAIM 2: MCA-DEC is NP-hard.
Follows directly from Theorem 4.6
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4.4.2 The Complexity of Counting MCA Strategies

Not only is MCA-DEC NP-hard, under the same assumptions as above, the result
below establishes that counting version of the problem is #P-complete. Moreover, it
has no fully polynomial random approximation scheme.

Theorem 4.8. Counting the number of strategies that provide a “yes” answer to
MCA-DEC is #P-complete and has no fully polynomial randomized approximation
scheme (FPRAS for short) unless NP=RP.

Proof. Theorem 4.6 shows a parsimonious reduction from GCD to MCA. Hence,
we can simply apply Lemma 2.1 and the statement follows.

Theorem 4.8 tells us that MCA may not have a unique solution. Therefore, setting
up a mixed strategy across all MCAs to determine the “best response” to the MCA
of an agent by an adversary would be an intractable problem. This mirrors the result
we presented in the preceding section (Theorem 4.3, page 111).

4.4.3 MCA in the General Case: Exact and Approximate
Algorithms

In this section, we first describe an exact algorithm to find a maximal counter-
adversary strategy for the agent. In the case of the IED detection example, for in-
stance, a maximal counter-adversary strategy would correspond to the best places
for US forces to search for IED weapons caches, given the presence of an adversary
who is trying to conceal the locations of his caches. As the results above show, com-
puting MCA is intractable computationally. Therefore, in this chapter, we also de-
velop approximation algorithms that the agent could use to find a maximal counter-
adversary strategy in the general case. Note that throughout this section (as well as
in Section 4.4.4), we assume that the same pre-processing for OAS is used (cf. Sec-
tion 4.3.2). We use the symbol L to refer to the set of all possible partners.

An Exact Algorithm For MCA. A naive, exact, and straightforward approach to
the MCA problem would simply consider all subsets of L and pick the one which
maximizes the expected agent benefit. Obviously, this approach has a complexity
O(∑|S |

i=0

(|L|
i

)
) and is not practical. This is unsurprising as we showed this to be an

NP-complete problem.
Approximation in the General Case. Despite the impractical time complex-
ity associated with an exact approach, it is possible to approximate MCA with
guarantees—even in the general case. This is due to the fact that when exfd is fixed,
the expected agent benefit is submodular.5

5 Recall that a function f : 2X → R is submodular if and only if for all subsets X1 ⊆ X2 ⊆ X and
for all x /∈ X2, it is the case that f (X1 ∪ {x})− f (X1)≥ f (X2 ∪ {x})− f (X2).
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Algorithm 12 (MCA-LS)
INPUT: Reward function rf, set O of observations, explanation function distribution exfd, possible
partner set L, real number ε > 0
OUTPUT: Set B ⊂ S

1. Set B∗ = L, for each pi ∈ B∗ let inci = EXBrf({p},exfd)−EXBrf( /0,exfd).
2. Sort the pi’s in B∗ from greatest to least by inci (i.e., p1 is the element with the greatest inci).
3. B = {p1}, B∗ = B∗ −{p1}, cur val = inc1 +EXBrf( /0,exfd), f lag1 = true, i = 2
4. While f lag1

a. new val = cur val + inci
b. If new val > (1+ ε

|L|2 ) · cur val then

i. If EXBrf(B∪{pi},exfd)> (1+ ε
|L|2 ) ·EXBrf(B,exfd) then:

B = B∪{pi}, B∗ = B∗ −{pi}, cur val = EXBrf(B∪{pi},exfd)
c. If new val ≤ (1+ ε

|L|2 ) · cur val or if pi is the last element then
i. j = 1, f lag2 = true, number each p j ∈ B
ii. While f lag2

A. If EXBrf(B−{p j},exfd)> (1+ ε
|L|2 ) ·EXBrf(B,exfd) then:

B = B−{p j}, cur val = EXBrf(B−{p j},exfd)
For each pi ∈ B∗ let inci = EXBrf(B∪{pi},exfd)−EXBrf(B,exfd).
Sort the pi’s in B∗ from greatest to least by inci
i = 0, f lag2 = false

B. Else,
If p j was the last element of B then set f lag1, f lag2 = false
Otherwise, j++

d. i++

5. If EXBrf(L−B,exfd)> EXBrf(B,exfd) then set B = L−B
6. Return B

Theorem 4.9. For a fixed O,k,exfd, the expected agent benefit, EXBrf(B,exfd)
has the following properties:

1. EXBrf(B,exfd) ∈ [0,1]
2. For B ⊆ B′ and some point p ∈ S where p /∈ B′, the following is true:

EXBrf(B∪{p},exfd)−EXB rf(B,exfd)≥EXB rf(B ′∪{p},exfd)−EXB rf(B ′,exfd)

(i.e., expected agent benefit is sub-modular for MCA).

It follows immediately that MCA reduces to the maximization of a submodular
function. We now present the MCA-LS algorithm that leverages this submodularity.

The basic intuition behind MCA-LS is the following.

1. Start with the set of all possible partners (the set L) and for each possible partners
location pi, find the difference of the expected benefit that occurs if we choose
partner pi to put in the agent’s strategy as compared to not putting it in the agent’s
strategy. This value is the “incremental benefit” of adding pi to the agent’s strat-
egy (when the agent’s strategy is empty) and is denoted by inci. This is what
happens in Line 1 of the MCA-LS algorithm.
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2. In Line 2 of the MCA-LS algorithm, we sort L in descending order of the inci
values.

3. In Line 3, we put the pi with the highest inci value into the agent’s strategy and
remove it from consideration.

4. From Line 4 onwards, we execute a loop. In each iteration, we consider the next
possible partner pi from L—this is always the partner with the highest possible
incremental benefit. In Line 4(a), we compute the new value of the agent’s strat-
egy if the incremental value of pi can be directly added to the agent’s strategy
(the sum of the agent’s strategy value plus inci is just an estimate). If this value is
large enough (Line 4(b)), we add it to the agent’s strategy; otherwise we do not
add it.

5. The process is repeated several times until we are done.

We will explain what is meant by “large enough” via an example shortly.
The following two propositions leverage Theorem 4.9 and Theorem 3.4 of [5].

Proposition 4.15. MCA-LS has time complexity of O( 1
ε · |L|3 · F(exfd) · lg(|L|))

where F(exfd) is the time complexity to compute EXBrf(B,exfd) for some set
B ⊆ L.

Proof. We note that one iteration of the algorithm requires O(|L| ·F(exfd)+ |L| ·
lg(|L|)) time. We shall assume that O(|L| ·F(exfd) dominates O(|L| · lg(|L|)). By
Theorem 3.4 of [5], the number of iterations of the algorithm is bounded by O( 1

ε ·
|L|2 · lg(|L|) where F(exfd), hence the statement follows.

The result below now states that MCA-LS is a 1
3 -approximation algorithm for

MCA and thus provides approximation guarantees.

Proposition 4.16. MCA-LS is an ( 1
3 − ε

|L| )-approximation algorithm for MCA.

Proof. By Theorem 4.9, we can be assured that when the “if” statement at line 4c
is TRUE, then there are no further elements in B∗ that will afford an incremental
increase of > (1+ ε

|L|2 ) ·EXBrf(B,exfd), even if the last element is not yet reached.
Hence, we can apply Theorem 3.4 of [5] and the statement follows.

We now return to our burglary example and use it to illustrate the running of our
MCA-LS example.

Example 4.16. Let us consider our running example where law enforcement agents
are attempting to find where a burglar resides in the area depicted in Figure 2.4.
The agents may guess that there are at most k locations where the burglar might
dwell (e.g., home, office, significant other’s house) and they know that these loca-
tions somehow support the burglaries that he carries out (set of observations O).
Furthermore, police assume that the burglar chose his safe locations using some
explanation function distribution exfdburglar (see Example 4.6, page 107).

The law enforcement agents wish to find a maximal counter-adversarial strategy
using the prf reward function (see page 4.2). They decide to use MCA-LS to find
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such a strategy with ε = 0.1. Initially (at line 3), the algorithm selects point p48
(renumbering as p1, note that in this example we shall use pi and inci numbering
based on Example 2.5 rather than what the algorithm uses). Hence, inc40 = 0.208
and cur val = 0.708. As the elements are sorted, the next point to be considered in
the loop at line 4 is p40 which has an incremental increase of 0, so it is not picked.
It then proceeds to point p41, which gives an incremental increase of 0.084 and
is added to B so cur val = 0.792. Point p45 is considered next, which gives an
incremental increase of 0.208 and is picked, so now cur val = 1.0. The algorithm
then considers point p46, which does not afford any incremental increase. After
considering points p33, p35, p37, p42, p43, p44, p47, p49, p50, p52, p56, and finding they
all give a negative incremental increase (and thus, are not picked), the algorithm
finds that the old incremental increase of the next element, p1, would cause the “if”
statement at line 4c to be true, thus proceeding to the inner loop inside that “if”
statement (line 4(c)iiA). This loop considers if the removal of any picked elements
p48, p41, p45 would cause the expected agent benefit to increase. However, in this
example, if any of the elements are removed, the expected agent benefit decreases.
Hence, the boolean f lag1 is set to false and the algorithm exits the outer loop. The
algorithm then returns the set B = {p48, p41, p45} which is optimal.

4.4.4 Finding a Maximal Counter-Adversary Strategy, the
Monotonic Case

In the previous section we showed a 1
3 approximate solution to MCA can be found

in polynomial time even without any monotonicity restriction. In this section, we
show that under the additional assumptions of monotonicity of reward functions,
we can obtain a better 63% approximation ratio with a faster algorithm. Here, we
also have the additional cardinality requirement of B for the set B (as described
in Section 4.4). We first show that expected agent benefit is monotonic when the
reward function is.

Corollary 4.3. For a fixed O,k,exfd, if the reward function is monotonic, then the
expected agent benefit, EXBrf(B,exfd) is also monotonic.

Proof. The zero-starting aspect of expected agent benefit follows directly from the
definitions of zero-starting and expected agent benefit.

Consider the definition of EXBrf:

EXBrf(B∪{p},exfd)−EXB rf(B,exfd)≥EXB rf(B ′∪{p},exfd)−EXBrf(B′ ,exfd)

As rf is monotonic by the statement, and exfd is fixed, EXBrf is a positive linear
combination of monotonic functions, so the statement follows.
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Algorithm 13 (MCA-GREEDY-MONO)
INPUT: Monotonic reward function rf, set O of observations, real number B > 0, explanation
function distribution exfd, possible partner set L, real number ε > 0
OUTPUT: Set B ⊂ S

1. Initialize B = /0 and B∗ = L
2. For each pi ∈ B∗, set inci = 0
3. Set last val = EXBrf(B,exfd)
4. While |B| ≤ B

a. pbest = null, cur inc = 0
b. For each pi ∈ B∗, do the following

i. If inci < cur inc, break loop and goto line 4c.
ii. Let inci = EXBrf(B∪{p},exfd)− last val
iii. If inci ≥ cur inc then cur inc = inci and pbest = p

c. B = B∪{pbest}, B∗ = B∗ −{pbest}
d. Sort B∗ in descending order by inci.
e. Set last val = EXBrf(B,exfd)

5. Return B

Thus, when we have a monotonic reward function, the MCA problem reduces to
the maximization of a monotonic, normalized6 submodular function with respect to
a uniform matroid7—this is a direct consequence of Theorem 4.9 and Corollary 4.3.
Therefore, we can leverage the result of [7], to develop the MCA-GREEDY-MONO
algorithm below. We improve performance by including “lazy evaluation” using
the intuition that the incremental increase caused by some point p at iteration i
of the algorithm is greater than or equal to the increase caused by that point at a
later iteration. As with MCA-LS, we also sort elements by the incremental increase,
which may allow the algorithm to exit the inner-loop earlier. In most non-trivial
instances of MCA, this additional sorting operation will not affect the complexity
of the algorithm (i.e., under the assumption that the time to compute EXBrf is greater
than lg(|L|), we make this same assumption in MCA-LS as well).

The basic outline of the MCA-GREEDY-MONO algorithm is as follows. As in
the case of MCA-LS, we first assume the agent uses the empty strategy (he hasn’t
decided what to search as yet). We compute the expected benefit to the agent of
using this strategy. We then iteratively add partners to the agent’s strategy till the
agent’s strategy reaches the requisite size B. The key part of the MCA-GREEDY-
MONO algorithm is in how we decide which points to add to the agent’s strategy. In
each iteration of the loop, we consider all remaining members of L and find the one,
which, if added to the agent’s strategy, gives the highest incremental benefit. Thus
member of L then gets added to the agent’s strategy, and the procedure is iteratively
repeated until the agent’s strategy reaches the desired size.

The result below specifies the running time of the MCA-GREEDY-MONO algo-
rithm.

6 As we include zero-starting in our definition of monotonic.
7 In our case, the uniform matroid consists of all subsets of L of size B or fewer.



4.4 Finding a Counter-Adversary Strategy 133

Proposition 4.17. The complexity of MCA-GREEDY-MONO is O(B · |L| ·F(exfd))
where F(exfd) is the time complexity to compute EXBrf(B,exfd) for some set B ⊆
L of size B.

Proof. The outer loop at line 4 iterates B times, the inner loop at line 4b iterates
O(|L|) times, and at each inner loop, at line 4(b)ii, the function EXBrf(B,exfd) is
computed with cost F(exfd). There is an additional O(|L| · lg(|L|)) sorting operation
after the inner loop which, under most non-trivial cases, is dominated by the O(|L| ·
F(exfd)) cost of the loop. The statement follows.

The result below shows us that MCA-GREEDY-MONO provides a 0.63 approx-
imation ration for MCA when the reward function is monotonic.

Corollary 4.4. MCA-GREEDY-MONO is an ( e
e−1 )-approximation algorithm for

MCA (when the reward function is monotonic).

Proof. We need a definition of the notion of “incremental increase” in our proof:

Definition 4.21. For a given pi ∈L at some iteration j of the outer loop of GREEDY-
MONO (the loop starting at line 4), the incremental increase, inc( j)

i , is defined as
follows:

inc( j)
i = EXBrf(B( j−1)∪{pi},A )−EXBrf(B( j−1),A )

Where B( j−1) is the set of points in L selected by the algorithm after iteration j−1.

We now continue with the proof of Corollary 4.4.
CLAIM 1: For any given iteration j of GREEDY-MONO and any pi ∈ L, inc( j)

i ≥
inc( j+1)

i
By Definition 4.21, the statement of the proposition is equivalent to the following:

EXBrf(B( j−1)∪{pi},A )−EXBrf(B( j−1),A)≥EXBrf(B( j)∪{pi},A )−EXBrf(B( j),A )

Obviously, as B( j−1) ⊆ B( j), this has to be true by the submodularity of EXBrf, as
proved in Theorem 4.9.

By Claim 1, we can be assured that any point not considered by the inner loop will
not have a greater incremental increase than some point already considered in that
loop. Hence, our algorithm provides the same result as the greedy algorithm of [7].
We know that the results of [7] state that a greedy algorithm for a non-decreasing,
submodularity function F such that F( /0) = 0 is a e

e−1 approximation algorithm for
the associated maximization problem. Theorem 4.9 and Corollary 4.3 show that
these properties hold for finding a maximal counter-adversary strategy when the
reward function is monotonic. Hence, by [7], the statement follows.

In addition to the fact that MCA-GREEDY-MONO is an ( e
e−1 )-approximation

algorithm for MCA, it also provides the best possible approximation ratio unless
P = NP. In particular, the following result shows that there is not other polyno-
mial algorithm that can provide an approximation ration which is strictly better than
( e

e−1 ) unless P = NP. This is done by a reduction of MAX-K-COVER [6].
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Theorem 4.10. MCA-GREEDY-MONO provides the best approximation ratio for
MCA (when the reward function is monotonic) unless P = NP.

Proof. The MAX-K-COVER [6] is defined as follows.
INPUT: Set of elements, S and a family of subsets of S, H = {H1, . . . ,Hmax}, and
positive integer K.
OUTPUT: ≤ K subsets from H such that the union of the subsets covers a maximal
number of elements in S.
In [6], the author proves that for any α ′ < e

e−1 , there is no α ′-approximation algo-
rithm for MAX-K-COVER unless P = NP. We show that an instance of MAX-K-
COVER can be embedded into an instance of MCA where the reward function is
monotonic and zero-starting in PTIME. By showing this, we can leverage the result
of [6] and Corollary 4.4 to prove the statement. We shall define the reward function
srf(A ,B) = 1 if and only if |A ∩B| ≥ 1 and srf(A ,B) = 0 otherwise. Clearly,
this reward function meets all the axioms, is zero-starting, and monotonic. We cre-
ate a space S such that the number of points in S is greater than or equal to |H |.
For each subset in H , we create an observation at some point in the space. We shall
call this set OH and say that oH is the element of OH that corresponds with set
H ∈ H . We set feas(p) = true if and only if p ∈ OH . We set α = 0, β to be equal
to the diagonal of the space, and k = |OH |. Hence, any non-empty subset of OH

is a valid explanation for O . For each x ∈ S, we define explanation function ex fcnx
such that ex fcnx(OH ,k) = {oH ∈OH |x ∈ H}. We define the explanation function
distribution exfd to be a uniform distribution over all ex fcnx explanation functions.
We set the budget B = K. Clearly, this construction can be accomplished in PTIME.
We note that any solution to this instance of MCA must be subset of OH , for if it is
not, we can get rid of the extra elements and have no change to the expected agent
benefit. Hence, each p ∈B will correspond to an element of H , so we shall use the
notation pH to denote a point in the solution that corresponds with some H ∈H (as
each o ∈ OH corresponds with some H ∈ H ).

CLAIM 1: Given a solution B to MCA, the set {H ∈ H |pH ∈ B} is a solution to
MAX-K-COVER.
Clearly, this solution meets the cardinality constraint, as there is exactly one ele-
ment in OH for each element of H and B is a subset of OH . Suppose, by way
of contradiction, there is some other subset of H that covers more elements in S.
Let H ′ be this solution to MAX-K-COVER and B′ be the subset of OH that cor-
responds with it. We note that for some x ∈ S in B′, srf(ex fcnx(OH ,k),B′) = 1 if
and only if there is some H ∈H ′ such that x ∈ H and srf(ex fcnx(OH ,k),B′) = 0
otherwise. Hence, the expected agent benefit is the fraction of elements in S covered
by H ′. If H ′ is the optimal solution to MAX-K-COVER, then B′ must provide a
greater expected agent benefit than B, which is clearly a contradiction.

CLAIM 2: Given a solution H ′ to MAX-K-COVER, the set {oH ∈ OH |H ∈ H ′}
is a solution to MCA.
Again, that the solution meets the cardinality requirement is trivial (mirrors that part
of Claim 1). Suppose, by way of contradiction, there is some set B that provides a
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greater maximum benefit than {oH ∈OH |H ∈H ′}. Let H ′′ = {H ∈H |pH ∈B}.
As with Claim 1, the expected agent benefit for B is equal to the fraction of elements
in S covered by H ′′, which is a contradiction as H ′ is an optimal solution to MAX-
K-COVER.

The following example illustrates how MCA-GREEDY-MONO works.

Example 4.17. Consider the situation from Example 4.16, where the law enforce-
ment agents are attempting to locate the burglar’s places of residence. Suppose they
want to locate these location, but use the crf reward function, which is monotonic
(and hence also zero-starting). They use the cardinality requirement B = 3 in MCA-
GREEDY-MONO. After the first iteration of the loop at Line 4, the algorithm se-
lects point p48 as it affords an incremental increase of 0.417. On the second iter-
ation, it selects point p46, as it also affords an incremental increase of 0.417, so
last val = 0.834. Once p46 is considered, the next point considered is p33, which
had a previous incremental increase (calculated in the first iteration) of 0.25, so the
algorithm can correctly exit the loop to select the final element. On the last itera-
tion of the outer loop, the algorithm selects point p35, which gives an incremental
increase of 0.166. Now the algorithm has a set of cardinality 3, so it exits the outer
loop and returns the set B = {p48, p46, p35}, which provides an expected agent ben-
efit of 1, which is optimal. Note that this would not be an optimal solution for the
scenario in Example 4.16 which uses prf as p35 would incur a penalty (which it
does not when using crf as in this example).

4.5 Implementation and Experiments

In this section, we describe prototype implementations and experiments for solving
the OAS and MCA problems. For OAS, we create a MILP for the crf case and
reduce the number of variables with the techniques we presented in Section 4.3. For
MCA, we implement both the MCA-LS and MCA-GREEDY-MONO.

We carried out all experiments for MCA on an Intel Core2 Q6600 processor run-
ning at 2.4GHz with 8GB of memory available, using code written in Java 1.6; all
runs were performed in Windows 7 Ultimate 64-bit using a 64-bit JVM, and made
use of a single core. We also used functionality from the previously-implemented
SCARE software from Chapter 2 to calculate, for example, the set of all possi-
ble partners L and to perform pre-processing (see the discussion in Section 4.3.2,
page 111).

Our experiments are based on 21 months of real-world Improvised Explosive De-
vice (IED) attacks in Baghdad8 (see Chapter 2). The IED attacks in this 25×27 km
region constitute our observations. The data also includes locations of caches associ-
ated with those attacks discovered by US forces. These constitute partner locations.
We used data from the International Medical Corps to define feasibility predicates

8 Attack and cache location data provided by the Institute for the Study of War.
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based on ethnic makeup, location of US bases, and geographic features. We overlaid
a grid of 100m × 100m cells—about the size of a standard US city block. We split
the data into two parts; the first 7 months of data were used as a “training” set to
learn the [α,β ] parameters and the next 14 months of data were used for the obser-
vations. We created an explanation function distribution based on multiple runs of
GREEDY-KSEP-OPT2 algorithm described in Chapter 2.

4.5.1 OAS Implementation

We now present experimental results for the version of OAS, with the crf reward
function, based on the constraints in Definition 4.13 and variable-reduction tech-
niques of Section 4.3.4. First, we discuss promising real-world results for the cal-
culation of the reduced partner set L∗, described in Definition 4.15. Then, we show
that an optimal adversarial strategy can be computed quite tractably using the meth-
ods discussed in Section 4.3.4. Finally, we compare our results to a set of real-world
data, showing a significant decrease in the adversary’s expected detriment across
various parameter settings. Our implementation was written on top of the QSopt9

MILP solver and used 900 lines of Java code.
Reduced Partner Set. As discussed in Section 4.3.2, producing an optimal adver-
sarial strategy for any reward function relies heavily on efficiently solving a (prov-
ably worst-case intractable) integer linear program. The number of integer variables
in these programs is based solely on the size of the partner set L; as such, the ability
to experimentally solve OAS relies heavily on the size of this set.

Our real-world data created a partner set L with cardinality 22,692. We then
applied the method from Definition 4.15 to reduce this original set L to a smaller
subset of possible partners L∗, while retaining the optimality of the final solution.
This simple procedure, while dependent on the explanation function distribution
exfd as well as the cutoff distance for crf, always returned a reduced partner set L∗
with cardinality between 64 and 81. This represents around a 99.6% decrease in the
number of variables required in the subsequent integer linear programs!

Figure 4.4 provides more detailed accuracy and timing results for this reduction.
Most importantly, regardless of parameters chosen, our real-world data is reduced
by orders of magnitude across the board. Of note, we see a slight increase in the
size of the reduced set L∗ as the size of the explanation function distribution exfd
increases. This can be traced back to the strict inequality in Definition 4.17. As
we increase the number of nontrivial explanation functions in exfd, the number of
nonzero constants consti increases. This results in a higher number of candidates
for the intermediary set L∗∗. We see a similar result as we increase the penalizing
cutoff distance. Again, this is a factor of the strict inequality in Definition 4.17 in
conjunction with a higher fraction of nonzero consti constants.

9 http://www2.isye.gatech.edu/˜wcook/qsopt/index.html
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Fig. 4.4 The size of the reduced partner set L∗ (top) and the time required to compute this reduction
(bottom). Regardless of parameters chosen, we see a 99.6% decrease in possible partners—as well
as integer variables in our linear program—in under 3 minutes.

Interestingly, Figure 4.4 shows a slight decrease in the runtime of the reduction
as we increase the penalizing cutoff distance. Initially, this seems counterintuitive;
with more nontrivial constants consti, the construction of the intermediary set L∗∗
requires more work. However, this extra work pays off during the computation of
the final reduced set L∗. In our experiments, the reduction from L to L∗∗ took less
time than the final reduction from L∗∗ to L∗. This is due to frequent short circuiting
in the computation of the right-hand side of the conjunction during L∗∗ creation.
As we increase the penalizing cutoff distance, the size of L∗∗ actually decreases,
resulted in a decrease in the longer computation of L∗. As seen above, this decrease
in L∗∗ did not correspond to a decrease in the size of L∗.

Optimal Adversarial Strategy. Using the set L∗, we now present results to find an
optimal adversarial strategy using δ -core optimal explanations. This is done by min-
imizing the MILP of Section 4.3.4, then feeding this solution into BUILD-STRAT.
Since we do not know the value of δ in advance, we must perform this combined op-
eration multiple times, choosing the best—lowest expected detriment—adversarial
strategy as optimal.
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A note on the lower bound for δ : as shown by [8], finding a minimum-cardinality
explanation is NP-hard. Because of this, it is computationally difficult to find a tight
lower bound for δ . However, this lower bound can be estimated empirically. For
instance, for our set of real-world data from Baghdad, an explanation of cardinal-
ity below 14 has never been returned—even across tens of thousands of runs of
GREEDY-KSEP-OPT2. Building on this strong empirical evidence, the minimum
δ used in our experiments is 14.
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Fig. 4.5 Expected detriment of the optimal adversarial strategy (top) and the runtime of the in-
teger linear program required to produce this strategy in milliseconds (bottom). Note the smooth
decrease toward zero detriment as k increases, corresponding with a near-linear increase in total
runtime.

Figure 4.5 shows both timing and expected detriment results as the size of the
explanation function |exfd| and maximum strategy cardinality k are varied. Note
that a lower expected detriment is better for the adversary, with zero representing no
probability of partner discovery by the reasoning agent. As the adversary is allowed
larger and larger strategies, its expected detriment smoothly decreases toward zero.
Intuitively, as the number of nontrivially-weighted explanation functions in exfd
increases, the expected detriment increases as well. This is a side effect of a larger
|exfd| allowing the reasoning agent to cover a larger swath of partner locations.
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Recall that, as the maximum k increases, we must solve linear programs for each
δ ∈ {klow,k}. This is mirrored in the timing results in Figure 4.5, which assumes
klow = 14. As k increases, we see a near linear increase in the total runtime of the
set of integer programs. Due to the reduced set L∗, we are able to solve dozens of
integer programs in less than 800ms; were we to use the unreduced partner set L, this
would be intractable. Note that the runtime graph includes that of BUILD-STRAT
which always ran in under sixteen milliseconds.
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Fig. 4.6 Expected number of caches found when the adversary uses our strategy instead of the
current state of the art (left - it is better for the adversary if fewer caches are found). Relative im-
provement of the OAS strategy versus the current state of the art (right). We assume the reasoning
agent is using the Spatio-Cultural Abductive Reasoning Engine (SCARE) to provide information
on cache locations.

OAS Performance w.r.t. Real-World Adversarial Strategy. Figure 4.6 compares
the expected number of caches found under the current state of the art—IED cache
locations based on 21 months of real-world data from Baghdad, Iraq—against the
OAS strategy proposed in this paper. We hold the cardinality of the adversary’s
solution (i.e., the number of possible caches) to 14 to match the real-world data. We
assume the reasoning agent uses the Spatial Cultural Abductive Reasoning Engine
(SCARE) introduced in [8] to provide partner locations to these attacks. SCARE is
the state of the art method for finding IED caches.

When tested against real-world adversaries based on real-world Baghdad data,
OAS significantly outperforms what adversaries have done so far in the real-world
(fortunately this is balanced by later experiment results showing that MCA-LS and
MCA-GREEDY-MONO significantly outperform SCARE). The expected number
of caches found by SCARE against an opponent using OAS is significantly lower
than against present day insurgents in Iraq. For instance, while SCARE (using a
cutoff distance of 100 meters) detects 1.6 of the 14 possible caches against a real-
world adversary, it is expected to detect only 0.11 of the caches against an adversary
using OAS. This roughly order of magnitude improvement is seen across all five
cutoff distances, from a minimum of approximately 7x at a cutoff distance of 200m
to a maximum of over 31x at a distance of 500m. Thus, OAS significantly improves
the adversary’s performance.
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4.5.2 MCA Implementation

First, we briefly discuss an implementation of the naive MCA algorithm discussed in
section 4.4.3. Next, we provide promising results for the MCA-LS algorithm using
the prf reward function. Finally, we give results for the MCA-GREEDY-MONO
using the monotonic crf reward function, and qualitatively compare and contrast
the results from both algorithms.
MCA-Naive. The naive, exact solution to MCA—considering all subsets of L with
cardinality kB or more and picking the one which maximizes the expected agent
benefit—is inherently intractable. This approach has a complexity O(

( |L|
kB

)
), and is

made worse by the large magnitude of the set L. In our experimental setup, we typ-
ically saw |L|> 20,000; as such, for even the trivially small kB = 3, we must enu-
merate and rank over a trillion subsets. For any realistic value of kB , this approach
is simply unusable. Luckily, we will see that both MCA-LS and MCA-GREEDY-
MONO provide highly tractable and accurate alternatives.

MCA-LS. In sharp contrast to the naive algorithm described above, the MCA-LS
algorithm provides (lower-)bounded approximate results in a tractable manner. In-
terestingly, even though MCA-LS is an approximation algorithm, in our experi-
ments on real-world data from Baghdad using the prf reward function, the algo-
rithm returned strategies with an expected benefit of 1.0 on every run. Put simply,
on our practical test data, MCA-LS always completely maximized the expected ben-
efit. This significantly outperforms the lower-bound approximation ratio of 1/3. We
would also like to point out that this is the first implementation (to the best of our
knowledge) of the non-monotonic submodular maximization approximation algo-
rithm of [5].

Since the expected benefit was maximal for every strategy B returned, we move
to analyzing the particular structure of these strategies. Figure 4.7 shows a rela-
tionship between the size |B|, the cutoff distance dist, and the cardinality of the
expectation function distribution |exfd|. Recall that prf penalizes any strategy that
does not completely cover its input set of observations; as such, intuitively, we see
that MCA-LS returns larger strategies as the penalizing cutoff distance decreases.
If the algorithm can cover all possible partners across all expectation functions, it
will not receive any penalty. Still, even when dist is 100m, the algorithm returns
B only roughly twice the size as minimum-sized explanation found by GREEDY-
KSEP-OPT2 (which, based on the analysis of Chapter 2 and [9], is very close to the
minimum possible explanation). As the cutoff dist increases, the algorithm returns
strategies with sizes converging, generally, to a baseline—the smallest-sized expla-
nation found by the algorithm of [9], |E |. This is an intuitive soft lower bound; given
enough leeway from a large distance dist, a single point will cover all expected part-
ners. This is not a strict lower bound in that, given two extremely close observations
with similar expected partners, a single point may sufficiently cover both.

In Figure 4.8, we see results comparing overall computation time to both the
distance dist and the cardinality of exfd. For more strict (i.e., smaller) values of
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Fig. 4.7 The average size of the strategy recommended by MCA-LS decreases as the distance cut-
off increases. For these experiments, the minimum cardinality for a given explanation E considered
is exfd was 14, which gives us a natural lower bound on the expected size of a strategy. Note the
convergence to this bound at cutoff distances at and above 300 meters.

dist, the algorithm—which, under prf, is penalized for all uncovered observations
across exfd—must spend more time forming a strategy B that minimizes penal-
ization. Similarly, as the distance constraint is loosened, the algorithm completes
more quickly. Finally, an increase in |exfd| results in higher computational cost; as
explained in Proposition 4.15, this is due to an increase in F(exfd), the time com-
plexity of computing EXBrf(B,exfd). Comparing these results to Figure 4.7, we
see that the runtime of MCA-LS is correlated to the size of the returned strategy B.

MCA-GREEDY-MONO. As discussed in Section 4.4.4, MCA-GREEDY-MONO
provides tighter approximation bounds than MCA-LS at the cost of a more restric-
tive (monotonic) reward function. For these experiments, we used the monotonic
reward function crf. Recall that a trivial solution to MCA given a monotonic reward
function is B = L; as such, MCA-GREEDY-MONO uses a budget B to limit the
maximum size |B| � |L|. We varied this parameter B ∈ {1, . . . ,28}.

Figure 4.9 shows the expected benefit EXBrf(B,exfd) increase as the maximum
allowed |B| increases. In general, the expected benefit of B increases as the dis-
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Fig. 4.8 The runtime of MCA-LS decreases as the penalizing cutoff distance is relaxed. Note the
relation to Figure 4.7; intuitively, larger recommended strategies tend to take longer to compute.

tance constraint dist is relaxed. However, note the points with B ∈ {3, . . . ,9}; we see
that dist ≤ 100 performs better than dist > 100. We believe this is an artifact of our
real-world data. Finally, as |exfd| increases, the expected benefit of B converges
more slowly to 1.0. This is intuitive, as a wider spread of possible partner positions
will, in general, require a larger |B| to provide coverage.

Figure 4.10 shows that the runtime of MCA-GREEDY-MONO increases as pre-
dicted by Proposition 4.15. In detail, as we linearly increase budget B, we also lin-
early increase the runtime of our F(exfd) = EXBrf(B,exfd). In turn, the over-
all runtime O(B · |L| · F(exfd)) increases quadratically in B, for our specific re-
ward function. Finally, note the increase in runtime as we increase |exfd| = 10 to
|exfd| = 100. Theoretically, this increases F(exfd) linearly; in fact, we see almost
exactly a ten-fold increase in runtime given a ten-fold increase in |exfd|.
MCA Algorithms and SCARE. We now compare the efficacy of the two MCA al-
gorithms proposed in this paper to SCARE [8] which represents the current state of
the art as far as IED cache detection is concerned. Again, our experiments are based
on real-world data from Baghdad, Iraq. For these experiments, we average results
across 100 runs of SCARE; as such, we hold |exfd|= 100 static for the MCA-based
algorithms. Figure 4.11 plots the average number of predicted points within 500
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Fig. 4.9 Expected benefit of the strategy returned by MCA-GREEDY-MONO as the budget in-
creases, with |exfd| = 10 (top) and |exfd| = 100 (bottom). Note the decrease in expected benefit
due to the increase in |exfd|. Similarly, note the increase in expected benefit given a larger cutoff
distance.

meters of an actual cache for both MCA-LS and MCA-GREEDY-MONO. SCARE,
plotted as a horizontal line, predicts an average of 7.87 points within 500 meters
of caches. MCA-LS finds over twice as many points at a low penalizing cutoff dis-
tances, and steadily converges to SCARE’s baseline as the penalizing distance in-
creases (as expected). As shown earlier in Figure 4.7, MCA-LS tends to find larger
strategies given a smaller penalizing cutoff distance; in turn, these larger strategies
yield more close points to actual caches. MCA-GREEDY-MONO shows similar
behavior; as we increase the allowable budget (i.e., maximum strategy size), more
points are within 500 meters of a real-world cache location. Thus, MCA-LS and
MCA-GREEDY-MONO both outperform SCARE, enabling more caches to be dis-
covered.

We note that while the number of points in the strategy close to a real-world
cache location is higher in the MCA-based algorithms than SCARE, the fraction
of close points stays consistently close. SCARE returns a solution of size 14, with
approximately half (7.87/14 ≈ 56%) of these points within 500 meters of cache.
Compare this to, for instance, MCA-LS with a penalizing cutoff distance of 300
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Fig. 4.11 Expected number of points within 500 meters of an actual cache returned by MCA-LS
(left) and MCA-GREEDY-MONO (right) compared against an agent using SCARE (higher is
better). Note that the SCARE software always returns an explanation of size 14, while both MCA
algorithms benefit from the ability to adjust this explanation size.

meters; for these settings, the algorithm returns an average strategy size of 18, with
11 points (approximately 60%) within 500 meters of a cache location. This behavior
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is a product of the strategy size flexibility built into the MCA-based algorithms, and
is beneficial to the reasoning agent. For example, assume the minimal solution to a
problem is of size 2 and the reasoning agent has a budget of size 4. Now assume
SCARE finds 1/2 = 50% of the points near caches, while MCA-GREEDY-MONO
finds 2/4 = 50% of its points near caches. Both algorithms returned the same frac-
tion of points near caches; however, the reasoning agent will spend its budget of 4
resources more effectively under MCA-GREEDY-MONO, instead of wasting 2 of
its resources under the strategy provided by SCARE.

4.6 Conclusion

In this chapter, we recognized that adversaries are not going to sit by passively while
the agent adapts to their behavior. Instead, the adversary is going to adapt its tactics
in response to what the agent does as well. In our IED weapons cache detection
application, for example, US forces observe what the adversary does, and use that
information (using the techniques defined in Chapters 2 and 3) to determine which
regions or locations to search for IED weapons caches. However, the work in those
chapters assume that the adversary does not change his tactics, based on the searches
that US forces carry out (that are very easily visible to them).

This chapter recognizes this reality and describes a mathematical framework,
based on game theory, to determine how the adversary might adapt to his observa-
tions of the agent. We define this problem via notions of reward functions, leading to
the definition of expected adversarial detriment (for the adversary). The adversary
then tries to find a strategy that minimizes the expected adversarial detriment. For
instance, in the case of the IED weapons cache location application, the adversary
wants to find locations that minimize his expected adversarial detriment and, intu-
itively, minimizes the probability that his weapons cache locations will be found.
We study the complexity of this problem and develop both exact and approximation
algorithms to solve them.

The good news, for the agent, is that the adversary must move first. In the IED
weapons cache detection application, the adversary must first decide where to put
his weapons caches. The goal of the agent is to come up with a strategy (which
corresponds to locations to search for weapons caches in the IED weapons cache
detection application) which uncovers a maximal set of IED weapons caches. We
formalize this problem in terms of expected benefit to the agent and find a strategy
that maximizes the agent’s expected benefit.

Our experiments to evaluate both the OAS algorithm to find an optimal adver-
sary strategy and the MCA-Greedy-MONO algorithm to find the maximal counter-
adversary strategy have been tested on real-world data involving IED attacks on US
and Coalition forces in Iraq and have proven to be highly accurate.
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Chapter 5

Two Real-World Geospatial Abduction

Applications

Abstract In this chapter, we discuss two real-world applications of geospatial
abduction problems (GAPs). While both applications deal with finding weapons
caches that support improvised explosive devices used by insurgent terror groups,
they operate in two different environments. SCARE (Spatio-Cultural Abductive
Reasoning Engine) implements point-based geospatial abduction and was used to
find IED weapons caches in Baghdad. In contrast, SCARE-S2 is an extension of
SCARE to region-based geospatial abduction which has been used, with various
modifications, to find high value targets (either large weapons caches or insurgent
commanders) in certain provinces of Afghanistan. The accuracy of both systems
has been tested on real-world data, and over 18 organizations have requested or
used either SCARE or SCARE-S2.

5.1 Introduction

In this chapter, we describe the basic ideas behind two applications of geospatial
abduction.

1. The Spatio-Cultural Abductive Reasoning Engine (SCARE [20]) implements
point-based geospatial abduction as described in Chapter 2. SCARE tries to iden-
tify the locations of weapons caches in Baghdad. SCARE uses information about
the cultural makeup of Baghdad, as well as information about the locations of
natural features (e.g., the Tigris river) and coalition bases, to define a feasibility
predicate. SCARE was tested for accuracy using 21 months of real-world open
source data about attacks in Baghdad (and about discovery of weapons caches in
Baghdad)—7 months of data was used for training SCARE, while 14 months of
data was used as a blind test data set to check accuracy.

2. The SCARE-S2 system [23], on the other hand, has been applied to the prob-
lem of finding “high value targets” (or HVTs) in the Afghan provinces of Hel-
mand and Kandahar. Again, using detailed information about the tribal geogra-
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phy of these two provinces, we were able to define a feasibility predicate. Rather
than Euclidean distances as used in SCARE, SCARE-S2 leveraged information
about Afghan road networks to use “shortest path by road” distances. In addi-
tion, SCARE-S2 used region-based geospatial abduction as defined in Chapter 3
instead of point-based geospatial abduction. Finally, we used 6 months of real-
world, open source data to train SCARE-S2 and to validate the accuracy of the
system.

In the rest of this chapter, we describe the SCARE application (to IED cache de-
tection) and SCARE-S2. We note that both systems can be applied to the other moti-
vating examples presented earlier in this book if real-world data is available. This is
apparent from the screenshots in the Introductory chapter which show SCARE be-
ing applied to examples such as the St. Paul, Minnesota church burglary scenarios,
and the Tiger Detection application.

5.2 The Counter-IED Problem

The counterinsurgency environment provides a new set of challenges to the military
commander, particularly at the tactical (Division, Brigade, Battalion, and lower)
level. What von Clausewitz called the “fog of war” [1] is certainly present, but
deceptive. Although the enemy in these contemporary conflicts often do not wear
uniforms or operate out in the open, their actions in these complex environments are
not entirely random. The enemy, or enemies, in a counterinsurgency typically have
goals and strategies—not totally dissimilar to standard military units.

As with terrorist tactics, guerrilla tactics are neither mindless nor random. [2]

In the field of criminology, several theories exist that relate the geographic lo-
cation of criminals with the locations of their crimes. Pattern theory [3] and geo-
graphic profiling [4] are extensively used. In the Army, intelligence professionals
root their analysis in the process known as Intelligence Preparation of the Battle-
field (IPB) [5, 25], which can also be extended to counter-insurgency operations [2].
However, traditionally, analysis of attacks in a counter-insurgency environment is to
identify “hot spots” or places where attacks are likely to occur. In this chapter, we ex-
tend such analysis by examining techniques to locate sites used for enemy weapons
caches based on attack data. We examine improvised explosive device (IED) attacks
attributed to certain groups. We attempt to locate weapons cache sites based on at-
tacks and on the locations of arrested enemy personnel using SCARE, the Spatial
Cultural Abductive Reasoning Engine.
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5.2.1 IEDs in an Insurgency

Though improvised explosive devices (IEDs) have been used for several decades
dating from (at least) the time of the British military’s presence in Ireland, they have
emerged as a weapon of choice for the enemy in counter-insurgencies in Iraq and
Afghanistan from 2001–2011. Until the development of SCARE, there were two
main approaches to dealing with the IED problem. One approach is to focus on the
attack: where the blast occurred, what type of explosive, etc. A common practice
of commanders with this approach is to clear routes where IED attacks frequently
occur and target IED networks through intelligence [6]. Another approach—to em-
phasize the IED “network”—is more intelligence focused and seeks to find bomb
makers and emplacers [7].

Our approach with SCARE is a hybrid approach. We are using information about
the attack to automatically create new intelligence about cache sites. These include
information about feasibility predicates (e.g., Shiite-backed attacks in Baghdad will
not have weapons caches in either predominantly Sunni areas or on coalition bases,
or in the middle of the Tigris river), as well as information about the [α,β ] numbers
that focus the search for IED weapons caches to donut-shaped regions centered at
the location of an attack with the two concentric circles (of radii α,β respectively)
defining the donut.

If uncovered, these cache sites can be exploited to gain further intelligence on
the IED network through forensics and document exploitation. This will help lead
to more effective counter-insurgency operations, by impeding the ability of the in-
surgent to transport and emplace the IEDs [8].

In order to use attack information to identify caches, we make some simplifying
assumptions on the behavior of the IED attack cells. We know that IED attacks are
typically conducted by small teams [9] whose members include the following:

• IED manufacturers who make the actual IED
• IED emplacers who place the IED in the designated attack area
• IED triggermen who are present during the IED attack. They may or may not

arm or detonate the IED, but would at least conduct detailed surveillance of the
attack

• IED logisticians ensure that IED manufacturers obtain materials or otherwise
transport IEDs to and from cache sites

• Higher level support such as financial support, leadership, intelligence gather-
ing, etc.

Social network analysis [10] is increasingly used to target IED networks. How-
ever, such analysis primarily focuses on higher-level support and IED manufactur-
ers. On the other end of the spectrum, engagements with IED cell members at the lo-
cation of attack will primarily target the emplacers and triggermen. SCARE will hit
the logisticians and emplacers of the network as the caches are the key places where
material is exchanged between the two. Furthermore, it has the potential to reduce
the enemy’s capability by denying them forward cache areas used for attacks. With-
out such cache sites, the IED cell members will be forced to travel longer distances
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with IED materials before an attack, thereby increasing the chances of compromise.
The full list of assumptions for our model follows below.

1. IED cell members do not store materials at home. Typically, materials are stored
in a common area (cache site).

2. The cache site is accessed prior to the attack to obtain the necessary materials.
3. The cell members have some restrictions on where the cache sites can be—i.e.,

it cannot be in a body of water, on a coalition base, etc.
4. The distance from the cache site to the attack is greater than a certain distance

α . If the cache site were too close, it would increase the chances of being found
and destroyed following an engagement because US forces are likely to cordon
off and search the immediate area in which an attack occurred.

5. The distance from the cache site to the attack must also be less than a certain
distance β . Transporting munitions over too great a distance increases the chance
of the cell members being compromised in transit (i.e., material may only be
moved during hours of darkness). For instance, a transporter may be stopped by
a mobile checkpoint or by a random search team. Methods to reason about where
such mobile checkpoints can and should be deployed have been developed in
separate work by [11, 12] but we do not go into that topic in this book.

These assumptions have been commonly observed in combat enviroments, in-
cluding Iraq and Vietnam [13].

Having this model of IED cell behavior is a starting point to creating an accurate
representation of their behavior. We add a further constraint in that the attacks and
cache sites are affiliated with the same insurgent group (or family of groups). The
line of thinking is that different groups may use different models. Fortunately, we
have open source data for the Iranian-backed “Special Groups” which conducted
numerous IED operations in Iraq during 2007–2008.

5.2.2 Special Groups in Iraq

“Special Groups” operating in Iraq are defined as Shia extremist elements funded,
trained, and armed by Iran [14, 15]. Although their influence seems to wax and
wane over time and political situation [17], these groups leveraged significant insur-
gent military and political power during 2007–2008, and it is likely that US troop
withdrawals will lead to a resurgence of activity by these groups.

Perhaps the most widely known among these groups is Jaysh al-Mahdi (JAM),
headed by the young firebrand Shi’ite cleric Muqtada al-Sadr [18]. However, dif-
fering ideologies and agendas have caused fragmentation in this group. Despite the
primacy of the Iraqi (Arab) Shi’ite identity that these groups publicly state, they re-
ceive a great deal of support from Iran [15] as cited by several sources. Many of the
offshoot organizations of JAM also seem to retain the Iranian support as evidenced
by their access to certain weapon systems.
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The trademark weapon of these group is the explosively-formed penetrator
(EFP). This weapon system is known to be imported from Iran [14]. This is a more
advanced type of IED designed to penetrate armored vehicles. The signature of an
EFP is sufficiently unique to the extent where it is easy to differentiate this type of
attack from a typical IED in Iraq.

In Iraq, the Special Groups operate mainly in the southern provinces of Diyala,
Salah-al-Din, and Baghdad [15]. In Baghdad, their safe havens are traditionally in
districts of Sadr City and Kadamiyah. However, in 2006–2007, they attempted to
exert their influence in other areas of Baghdad [19]. The Institute for the Study
of War has developed a Map of Special Groups Activity in Iraq which we have
used extensively. This map lists over 1000 insurgent activities attributed to Special
Groups throughout Iraq. This data set contains events for the 21 months between
February 2007 and November 2008, which is a period of high activity for these
groups [16]. The events that are plotted are based on Multi-National Force – Iraq
(MNF-I) press releases. According to the Institute for the Study of War, “efforts
have been made to plot the data points with as much accuracy as possible.”

The incidents in the map are only those attributed to the Special Groups. How-
ever, due to the nature of EFPs and militia affiliation, these events were relatively
easy to identify with Special Groups with a high degree of accuracy. The activity
types include the following categories:

1. Attacks with probable links to Special Groups
2. Discoveries of caches containing weapons associated with Special Groups
3. Detainments of suspected Special Groups criminals
4. Precision strikes against Special Groups personnel

In our tests, we utilize this map of Special Group activities as our data set. Next,
we shall briefly describe the implemented SCARE system.

5.2.3 The SCARE System

In this section, we will describe how a user (such as a US soldier or a US com-
mander) could interact with the SCARE system to identify weapons caches in some
city. We do not recapitulate the theory of SCARE, as that has been well described
in Chapter 2. Thus, we will merely go through the use of SCARE.

A user can bring up SCARE either on his local Google Maps-enabled computer
or via a web portal. When he does so, he will see the screen shown in Figure 5.1
below.

This screen presents him with several tabs. He could use the demo data in the
SCARE application which applies to Baghdad. Additionally, he could enter infor-
mation in the Military Grid Reference System (MGRS) or in a Latitude/Longitude
format. In all these cases, he needs to specify a rectangle referencing a rectangular
region on the earth—the rectangle is specified through the coordinates of the lower
left hand corner of the rectangle and the upper right hand corner of the rectangle.
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Fig. 5.1 Main SCARE screen.

As mentioned earlier, these corners can be specified either via latitude/longitude
coordinates or via MGRS coordinates as shown in Figure 5.2.

Fig. 5.2 Main SCARE screen (using Military Grid Reference System, or MGRS).

Once this step is executed and the user has specified the region of the world
in which he is interested (e.g., a part of Baghdad or a part of Afghanistan or a tiger
sanctuary in India), he can specify the distance constraints. These constraints specify
the [α,β ] values described in Chapter 2. The [α,β ] values can either be learned
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from historical data or explicitly specified by the user. Thus, SCARE supports two
possible use cases—one where the user does not want to guess [α,β ] but wants the
system to infer these values from historical data, and another where he thinks he can
specify these values based on his knowledge of the application.

In the next two steps, shown in Figures 5.3 and 5.4, respectively, the user spec-
ifies the feasibility predicate. In step 3, the user specifies regions where the part-
ner locations could be (these are called “support” zones) while in Step 4, the user
can specify regions where the partner locations cannot possibly be (these are called
“excluded zones”). In both cases, the user can specify these zones using Keyhole
Markup Language (KML) files.

Fig. 5.3 Main SCARE screen showing support zones, areas that could feasibly support partner
locations.

In Step 5, SCARE allows the user to specify where the attacks took place. This
can be done by uploading an Excel file with the information on where and when the
attacks took place. This is shown in Figure 5.5.

Then, in step 6, the SCARE system asks the user to specify a number of itera-
tions. Since the algorithm used by SCARE (see Chapter 2) is non-deterministic, the
SCARE algorithm may make these non-deterministic choices a number of times,
and this step of the SCARE system asks the analyst to specify the number of times
the SCARE system should make these non-deterministic choices. This is shown in
Figure 5.6.

Figure 5.7 shows the results screen generated by SCARE. This screen shows a
histogram showing the caches predicted by the algorithms in Chapter 2, together
with the number of attacks “supported” by each predicted cache (i.e., the number
of attacks within the stated [α,β ] distance of each cache location). We can see, for
example, in Figure 5.7, that caches at locations P15, P20 and P31 explain a very



154 5 Two Real-World Geospatial Abduction Applications

Fig. 5.4 Main SCARE screen showing exclusion zones, areas that could never feasibly support a
partner location.

Fig. 5.5 SCARE screen showing how to upload attack information, specifying where and when
attacks occurred.

large number of attacks and so a commander might wish to deploy troops to look
for IED weapons caches around those locations.

Figure 5.7 also contains links that allow us to see where the attacks occurred and
where the predicted caches lie. These links correspond to the “Download Attacks as
KML” and “Download Caches as KML” tabs shown in Figure 5.7. Selecting either



5.2 The Counter-IED Problem 155

Fig. 5.6 SCARE screen showing number of non-deterministic repetitions to be run.

Fig. 5.7 SCARE screen showing results. The histogram represents cache locations predicted by
the algorithm over the set number of non-deterministic runs specified earlier.

of these tabs causes Google Earth to be invoked, showing the screen in Figure 5.8
below, mapping the predictions on their respective locations on the earth.

Thus, we see that SCARE allows users to seamlessly specify a number of pa-
rameters appropriate for their application. They can specify the part of the world in
which they are interested, the feasibility predicate, can control the non-determinism
inherent in the SCARE algorithm, and can visualize both the observations and the
partners generated by SCARE using a Google Earth interface.
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Fig. 5.8 SCARE screen showing attacks and predicted caches using Google Earth.

Of course, the utility of SCARE is based on its ability to accurately predict the
partner locations. We had one real-world data set consisting of IED attacks in Bagh-
dad over a 21 month period, together with locations of IED weapons caches dis-
covered during that same period. We used 7 months of data to train SCARE to
learn the [α,β ] values, and evaluated our predicted cache locations on the remain-
ing 14 months of data. On average, we were able to predict cache locations within
0.45 miles (700m) from actual cache locations. This means that using our predic-
tions, US commanders can search areas about 0.5 miles around predictions made by
SCARE with a high probability of coming across a real world IED cache site.

5.3 The SCARE-S2 System

Unlike SCARE, the SCARE-S2 system focuses on helping find “High Value Tar-
gets” (HVTs) in the Helmand and Kandahar provinces of Afghanistan. Of course,
SCARE-S2 can be applied to many other parts of Afghanistan, as well as many
other parts of the world; however, we collected data pertinent to Helmand and Kan-
dahar, and that is where we applied SCARE-S2. The work is described in detail in
Chapter 3 and [23].

Insurgents operating in Afghanistan require substantial command-and-control
(C2) and logistics support to conduct successful attacks. Military analysts refer to
elements that provide C2 and logistics support for large number of insurgent cells
as high-value targets (HVTs), as the elimination of these HVTs can have a signif-
icant impact on insurgent operations. As a result, NATO and Afghan forces often
concentrate on finding these HVTs in an attempt to reduce the level of violence in
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the country. The insurgents have a limited number of these HVTs that are required
to support the activities of lower-level insurgent cells. Additionally, terrain and cul-
tural considerations place constraints on the relationships between an HVT and the
lower-level insurgent cell it supports. Knowing the locations of the lower-level cells
(based on attack data), as well as these constraints (obtained from socio-cultural
and terrain data), we wish to abductively infer where the HVTs can be found. This
is clearly an instance of a geospatial abduction problem originally introduced by
the authors in [21] and later extended in [22], [24], and this book. We previously ap-
plied geospatial abduction to find small weapons hide-sites related to local attacks
in Baghdad in [20]. However, the environment of Afghanistan provides several chal-
lenges that we did not address in Chapter 3. These include the following:

1. In Afghanistan, the influence of multiple tribes affect relationships between areas
on the ground. How do we account for this influence?

2. In the two provinces we considered in Afghanistan, the terrain is extremely var-
ied, unlike the more uniform urban terrain of Baghdad. How do we account for
this variance in terrain?

3. Unlike our application to Baghdad (25× 27 km area), where we could easily
discretize the space, our data set for Afghanistan includes two provinces covering
a total area 580× 430 km, making discretization of the space impractical. How
do we best represent the space?

We note that using only attack data and socio-cultural information alone will
most likely be insufficient to pinpoint an HVT. However, the real-world require-
ments imposed on the insurgents by logistic and socio-cultural variables should
allow a ground commander to significantly reduce the search space for such tar-
gets. Intelligence professionals identify Named Areas of Interest (NAIs), regions on
the ground where they think HVTs can be located. Then, other intelligence assets
such as unmanned aerial vehicles (UAVs) or tactical human intelligence (HUMINT)
teams can be used in the NAIs to pinpoint targets [25]. In a large area, such as
a province of Afghanistan, UAVs or HUMINT cannot be used effectively with-
out first determining good NAIs. To address this problem for the specific case of
Afghanistan, we adapted the region-based abduction framework of [22] (Chapter 3)
to our scenario by creating an entirely new piece of software for abductive inference
called SCARE-S2, the Spatio-Cultural Abductive Reasoning Engine – System 2.

SCARE-S2 abductively finds regions that can then later be used to cue other in-
telligence assets to find an HVT. Applying SCARE-S2 to our Afghanistan data set
produced regions with a significantly higher density of HVTs (by a factor of 35),
where half of the abduced ground regions (normally of an area less than 100km2)
would contain at least one HVT. Furthermore, each region produced by SCARE-S2
contained, on average, 4.8 villages—hence searching them is not resource-intensive
for many surveillance platforms. Due to the high density of HVTs within the re-
gions, we feel that they could be used for NAIs and aid in combat operations.

As region-based abduction has already been discussed in great detail in Chap-
ter 3, we only focus on how the SCARE-S2 system works, rather than explaining,
once again, how geospatial abduction works. As in the case of SCARE, SCARE-S2
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can be be accessed either through the Internet or through a stand-alone installation
on a single computer.

5.3.1 SCARE-S2 Data Set

The data set used by SCARE-S2 consisted of HVTs and attack data from the Afghan
provinces of Helmand and Kandahar from January–June 2010, supported by tribal
and road network information. Below we provide details of the data set.
Provincial Data. All provincial data, including boundaries of provinces and dis-
tricts, road networks, and village locations were provided by [26]. We considered
the Helmand and Kandahar provinces, which consist of 29 districts. The road net-
work (RN = (V,E)) is an undirected graph of 30,304 vertices (1604 of which are
identified as villages) and 61,064 edges.
Attack Data. We used a series of 203 attack events in Afghanistan from [27]. 103
of these events were from January–April 2010 and were used to learn the [α,β ]
distance constraints, while the remaining 100 attacks (May–June 2010) were used
as set O of observations. We actually divided the set of observations into 12 subsets,
O1 ⊆ O2 ⊆ . . . ⊆ O12, with each subsequent set of observations containing 5 days
more worth of attacks than the previous (i.e., O1 was May 2–6 and O2 was May
2–11). All attacks in the WITS database were identified by village—corresponding
to the AIMS information described earlier.
HVT Data. We collected a total of 78 HVTs based on official reports from [28].
These reports spanned January–September 2010. We used the reports of January–
April 2010 (27 HVTs) to learn the [α,β ] distance constraints and the remainder for
a ground truth comparison. Notice that this time interval is greater than that used
for the set of observations, as an associated HVT with an attack may not necessarily
have been located in the same time window described earlier. As with the attack
data, each HVT was geo-located by the ISAF report with a village, which corre-
sponded to the AIMS information. We manually identified only certain weapons
caches and captured/killed enemy personnel as HVTs. Below we present our crite-
ria in Figure 5.9. It is based on the combat experience of one of the authors.
Tribal Data. To create the tribes function, we used the tribal data from [29] that
associated districts in Afghanistan with a set of tribes. Altogether, there were 23
tribes reported by the NPS.
Distance Constraints. Using the simple algorithm FIND-BOUNDS (see [21] or
Chapter 2), which essentially returns an upper and lower distance bound on the
shortest distance to an HVT given a set of attacks, we determined the [α,β ] bounds
to be [0.0,65.88] km based on the historical attack and HVT data from January–
April 2010.
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• Cache HVTs:

• The cache contains 3 or more mortar rounds
• The cache contains mortar tubes
• The cache contains 3 or more rockets
• The cache contains 10 or more grenades
• The cache contains 5 or more RPG launchers
• The cache contains 20 or more RPG rounds
• The cache contains 15 or more AK-47s (or other similar rifles)
• The cache contains 3 or more land mines
• The cache contains rooms full of communications equipment

(or rooms full of any type of equipment)
• The cache contains a DsHK or any other anti-aircraft weapon

(including any number of Stinger missiles)
• The cache contains 5 or more RPK machine guns (or similar

capable systems such as M60, M249, etc.)
• The cache contains 5 or more sniper rifles (such as a Dra-

gunov)

• Personnel HVTs:

• Reported listed individual as an insurgent “commander”
• Reported listed individual as an insurgent “sub-commander”
• Reported listed individual as an insurgent “planner”

Fig. 5.9 HVT criteria.

5.3.2 Adaptation of Region-Based Geospatial Abduction to
Afghanistan

We used the region-based geospatial abduction method of Chapter 3 to capture
geospatial abduction in Afghanistan.

There are two parts of the formalism of region-based abduction that are generally
defined – the distance function (d) and the set of regions (R). In the experiments
of [21] and Chapter 3, we used a Euclidean distance function and generated the
regions from the REGION-GEN algorithm (see page 77), which discretizes the
entire space—making it impractical for use here. Hence, we use d and R as a way to
adapt region-based abduction to our Afghanistan scenario and address each of the
three concerns outlined in the introduction. Our strategy is to build a special distance
function, dafgh, and use this function and the set of observations, O , to generate R.

To address the first concern, that of multiple tribes, assume we have a set of tribes,
T = {t1, . . . , tm}. Based on our data set, we can assume we have the following
function tribes : S → 2T which takes a point in the space and returns a set of
tribes. Two points in the space, p1, p2, are tribally-related if and only if tribes(p1)∩
tribes(p2) 
= /0. When we create our distance function, we will do so in a way to
enforce this as an additional criterion that there must be at least one tribe that has a
presence in the observation and partner location. The idea here is that an HVT must
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have a tribal-relationship with the lower-level cell conducting the attack, otherwise
the two groups may not have a confluence of interest.

To address the second and third concerns, we appeal to the idea that the road
networks of Afghanistan binds parts of this varied country together. Such sentiments
are echoed in other work such as [30]. For any two villages on the road network (RN,
an undirected graph where the vertices are villages) of Afghanistan, we define the
function spRN : S ×S → ℜ to return the shortest distance on the Afghan road
network between the two points. Using the shortest path on a road network is also
useful as our attack and HVT data were all geo-located by village. Hence, we put
these concepts together to create our new distance function, dafgh, defined below.

dafgh(p, p′) =
{

spRN(p, p′) iff tribes(p)∩ tribes(p′) 
= /0
∞ otherwise

We use this function to generate regions via the algorithm REGION-GEN-
AFGH, presented below. A practical improvement we introduced was in determin-
ing the set Vo for each observation. We first determined the set V Euc

o , which is Vo
computed with a Euclidean distance function on the interval [0,β ]—as the Eu-
clidean distance function can be calculated much faster than shortest path. From
this set, Vo is determined. It should be noted that the algorithm runs with a com-
plexity O(K · |O| ·T (RN)) where K is a constant bound on the number of partners
distance β away from a given observation and T (RN) is the time complexity to find
the shortest path between two points in RN. Another practical extension we added
was to the output of GREEDY-REP-MC2. Any returned region over 1000 km2 was
not included in the output. Our intuition here is that a region so large is not useful
to an analyst attempting to cue other intelligence assets.

REGION-GEN-AFGH
INPUT: Space S , observations O , reals α,β
OUTPUT: Set of regions R

1. Let the road-network, RN = (V,E)
2. For each o ∈ O , find the set Vo = {v ∈V |dafgh(o,v) ∈ [α,β ]
3. Let L =

⋃
o∈O Vo. For each p ∈ L let Op be the set of observations that can be associated with

it.
4. Partition L into subsets, denoted LO ′ , where O ′ ⊆ O and p ∈ LO ′ iff Op = O ′.
5. For each LO ′ , create region r that is the minimum-enclosing rectangle of all elements in LO ′ .

Add r to R.
6. Return set R.
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5.3.3 SCARE-S2 Experiments

The experimental results for SCARE-S2 only focus on villages in Helmand and
Kandahar province being feasible locations. Moreover, distances used to specify the
[α,β ] constraints were road distances in SCARE-S2 instead of Euclidean distance
in SCARE. Finally, the feasibility predicate used by SCARE-S2 used the tribally-
related function to define feasibility (e.g., if a tribe was believed to have carried out
an attack, the only feasible locations for a weapons cache supporting that attack
were villages where the same tribe had a presence).
Setup. Our implementation of and corresponding experiments with SCARE-S2 ran
on a Lenovo T400 ThinkPad laptop equipped with an Intel Core 2 Duo T9400 pro-
cessor operating at 2.53 GHz and 4.0 GB of RAM. The computer was running Win-
dows Vista 64-bit Business edition with Service Pack 1 installed. This modest hard-
ware setup was selected as deploying units to Afghanistan are typically equipped
with Windows-based laptop systems. Isolated command posts, with limited connec-
tivity to a network due to terrain restrictions may only have access to this limited
computational power.

We implemented SCARE in approximately 4000 lines of Java code. Java Run-
time Environment (JRE) Version 6 Update 14 was used. The software was developed
with Eclipse version 3.4.0. We used the JGraphT library version 0.81 to implement
the Fibonacci heap and the graph structure. Additionally, BBN OpenMap was used
for some of the geospatial methods. We also added the capability to output KML
files so that the results could be viewed in Google Earth; we used Google Earth
4.3.7284.3916 (beta) operating in DirectX mode. Experimental results were also
collected in CSV-formatted spreadsheets.

Fig. 5.10 Number of attacks versus runtime (average over 10 trials) and average region area.

Runtime Experiments. We examined runtime of the algorithm by running the algo-
rithm on each of the 12 subsets of observations described earlier. We observed two
things: that the relationship between runtime and number of attacks was linear and
that the runtime of REGION-GEN-AFGH dominated the runtime of GREEDY-
REP-MC2 (which was negligible). This is primarily the result of the calculation of
the shortest path. As stated earlier, this relationship is linear, so our result depicted
in Figure 5.10 is unsurprising.
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Fig. 5.11 Number of attacks versus number of regions and HVT density.

Area of Regions. As with Chapter 3 (also see [22]), we examine the average area
of the regions. In general, smaller regions are preferred and as the set of observa-
tions O grows, the regions should become smaller. In each of the 12 trials, there was
never more than one region over 200 sq km, and as set O increased, the average area
approach 100 sq km. This is exactly what is desired. We plot the average and maxi-
mum areas in Figure 5.10. Note that a few spikes in average area are directly related
to spikes in maximum area from a few outliers produced on some runs. Note that
only a third of our runs produced a region over 200 sq km. Although even 100 sq km
may seem like a large area, we must consider the density of villages, which is where
we are attempting to locate caches. The overall density of villages for the entire
area considered was 0.0064.1 By the nature of how the regions are generated, they
inherently have more villages. We observed that when we considered the entire set
of attacks, no region contained more than 8 villages, with an average village density
of 4.8 villages per region. As such, we feel that the regions produced by SCARE-
S2 will be helpful in directing intelligence, surveillance, and reconnaissance (ISR)
assets.
HVTs Enclosed by Regions. In Figure 5.11, we plot the number of regions returned
by each run, as well as the number of regions that enclose at least one HVT from
the ground truth set. Although the number of regions increases with the number
of attacks (from 1 to 6), the number of regions enclosing an HVT also increases
(from 0 to 3). While we should expect that solutions with more regions enclose
more HVTs, we must also recall that the regions become smaller with each run.
Furthermore, we also examined HVT density (number of HVTs divided by total
area of all regions), which also increased with each run. Note we had two outliers,
identified in Figure 5.11 as points A and B. In these two runs, the software returned
larger regions of size 719.68 sq km and 403.34 sq km that enclosed a large urban
area where many HVTs were found. Eliminating these regions from the solution
would eliminate these artificial spikes in density. When we considered the entire
two months of observed attacks, the HVT density in the regions was over 35 times
greater than the overall HVT density in the provinces. We remind the reader that

1 In the newest version, SCARE-S2 also runs the geospatial abduction algorithm of Chapter 2 (also
see[21]) which abduces points (villages, in this case). Hence, the output now not only included
regions, but villages of interest as well, which allows us to further reduce the search-space for
HVTs.
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the the regions are meant to be used as Named Areas of Interest (NAIs) for use
by intelligence personnel. These NAIs would then be used to cue other intelligence
assets (for example, a UAV or a HUMINT team) to conduct a more fine-grained
search (avoiding a search in a larger area). Therefore, despite only half the returned
SCARE regions containing NAIs, the small size of the regions, along with the high
density of HVTs, make them invaluable for the intelligence process.
Discussion. We shall now consider our final run of the algorithm, where we consid-
ered the entire set of 100 attacks from May–June 2010. This run produced the most
regions enclosing HVTs, the greatest HVT density (discounting spikes A and B),
and the smallest average region area.

Fig. 5.12 Regions returned after considering attacks from May–June 2010.

This trial of the software produced 6 regions, labeled A–F, shown in Figure 5.12.
Half of them enclosed an HVT. There were other ISAF reports that did not include
village information. We did not consider these additional reports in any part of our
experiments. However, all three regions returned by this experiment that did not en-
close an HVT were located in districts where an HVT was reported (with no village
information). For region D, there were 11 such reports, for region F, there were 4
such reports, and for district E there were was one such report. Let us now consider
the HVTs found within regions A–C, depicted in Figure 5.13. Region A (with an
area of 102.5 sq km) encloses the village of Bahram in the Ghorak district of Kanda-
har. According to ISAF PAO report 2010-05-CA-052, on May 5, 2010, a combined
ISAF-Afghan force captured a Taliban commander in this village, who was respon-
sible for several improvised explosive device (IED) attacks as well as movement of
foreign fighters in the country. He also had a cache that included automatic rifles
and heroin. Region B (with an area of 72.0 sq km) encloses the village of Makuan,
in the Zhari district of Kandahar. According to ISAF PAO report 2010-07-CA-11,
on July 18, 2010, a combined Afghan-ISAF force conducted a raid on a compound
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where a Taliban weapons facilitator was believed to reside. The unit received fire
from insurgents, and returned fire killing several of them. As they approached the
compound, they found several IEDs placed to guard the facility. The compound was
found to be a IED factory and a bunker system that contained munitions. Region
C (with an area of 71.0 sq km) encloses the village Kharotan in the Nahri Sarraj
district of Hilmand. ISAF PAO report 2010-08-CA-161 describes how ISAF forces
detained the Taliban deputy-commander of the Lashkar Gah district there on August
14, 2010.

Fig. 5.13 Close-up view of regions A–C with actual HVTs plotted.
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