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Abstract Stencil computation is one of the typical kernels of numerical
simulations, which requires acceleration for high-performance computing (HPC).
However, the low operational-intensity of stencil computation makes it difficult to
fully exploit the peak performance of recent multi-core CPUs and accelerators such
as GPUs. Building custom-computing machines using programmable-logic devices,
such as FPGAs, has recently been considered as a way to efficiently accelerate
numerical simulations. Given of the many logic elements and embedded coarse-
grained modules, state-of-the-art FPGAs are nowadays expected to efficiently
perform floating-point operations with sustained performance comparable to or
higher than that given by CPUs and GPUs. This chapter describes a case study of
an FPGA-based custom computing machine (CCM) for high-performance stencil
computations: a systolic computational-memory array (SCM array) implemented
on multiple FPGAs.

1 Introduction

Numerical simulation is now an important and indispensable tool in science and
engineering, which analyzes complex phenomena that are difficult to subject to
experimentation. For a large-scale simulation with sufficient resolution, high-
performance computing (HPC) is required. Stencil computation [4] is one of
the typical kernels of high-performance numerical simulations, which include
computational fluid dynamics (CFD), electromagnetic simulation based on the
finite-difference time-domain (FDTD) method, and iterative solvers of a linear
equation system.
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Since most of their computing time is occupied by the computing kernels,
acceleration techniques for stencil computation have been required. However, the
low operational-intensity of stencil computation makes it difficult to fully exploit
the peak performance of recent accelerators such as GPUs. Operational intensity
is the number of floating-point operations per data size read from an external
DRAM for cache misses [30]. In general, stencil computation requires relatively
many data accesses per unit operation, and therefore its operational-intensity is low.
Although the recent CPUs and GPUs have been getting higher peak-performance for
arithmetic operations by integrating more cores on a chip, their off-chip bandwidth
has not been sufficiently increased in comparison with the peak-performance. As
a result, stencil computation can enjoy only a fraction of the peak performance
because cores are idle for many cycles where required data are not ready. To make
matters worse, a large-scale parallel system with many CPUs and/or GPUs usually
has the problem of parallel processing overhead, which limits speedup especially
for computations with a low operational-intensity due to inefficient bandwidth and
latency of the interconnection network. These inefficiencies of the processor-level
and system-level execution cause the performance per power of supercomputers to
decline. We need to address this efficiency problem because the performance per
power is also a big issue in high-performance computation.

Custom computing machines (CCMs) constructed with programmable-logic
devices, such as FPGAs, are expected to be another way to efficiently accelerate
stencil computation because of their flexibility in building data-paths and memory
systems dedicated to each individual algorithm. Especially, state-of-the-art FPGAs
have become very attractive for HPC with floating-point operations due to their
advancement with a lot of logic elements and embedded modules, such as DSP
blocks, block RAMs, DDR memory-controllers, PCI-Express interfaces, and high-
speed transceivers/receivers. High-end FPGAs are now capable of performing
floating-point operations with sustained performance comparable to or higher than
that achieved by CPUs and GPUs.

This chapter presents a systolic computational-memory array (SCM array)
[20, 22, 23] to be implemented on multiple FPGAs, which is a programmable
custom-computing machine for high-performance stencil computations. The SCM
array is based on the SCM architecture that combines the systolic array [11, 12]
and the computational memory approach [7, 17, 18, 29] to scale both computing
performance and aggregate memory-bandwidth with the array size. Processing
elements of the array perform 3 × 3 star-stencil computations in parallel with
their local memories. Since this architecture is especially designed to achieve
performance scalability on a multi-FPGA system, two techniques are introduced for
the bandwidth and synchronization problems of inter-FPGA data-transfer: a peak-
bandwidth reduction mechanism (BRM) and a local-and-global stall mechanism
(LGSM).

We describe a target computation, an architecture and a design for the SCM
array to be implemented on a multi-FPGA system. For three benchmark prob-
lems, we evaluate resource consumption, performance and scalability of prototype
implementation with three FPGAs. We also discuss feasibility and performance
for implementation with a 2D array of high-end FPGAs. We show that a single
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state-of-the-art FPGA can achieve a sustained performance higher than 400 GFlop/s
and a multi-FPGA system scales the performance in proportion to the number of
FPGAs.

2 Related Work

So far, various trials have been conducted to design FPGA-based CCMs for stencil
computations in the numerical simulations based on finite difference methods,
which include an initial investigation of an FPGA-based flow solver[10], an
overview of an FPGA-based accelerator for CFD applications[26], a design of
FPGA-based arithmetic pipelines with a memory hierarchy customized for a part
of CFD subroutines[16], and proposals for FPGA-based acceleration of FDTD
method [3, 6, 25]. Most of them rely on pipelining data-flow graphs on an FPGA.
However, their design and discussion lack in scalability of performance and memory
bandwidth which is necessary to achieve HPC. Furthermore, discussion and evalu-
ation of the system scalability, particularly for multiple-FPGA implementation, are
indispensable for HPC with a large-scale system.

Recently, several systems with a lot of tightly coupled FPGAs have been devel-
oped: BEE3, Maxwell, Cube, Novo-G, and SSA. BEE3, the Berkeley Emulation
Engine 3, is designed for faster, larger and higher fidelity computer architecture
research [5]. It is composed of modules with four tightly coupled Virtex-5 FPGAs
connected by ring interconnection. The modules can be further connected to each
other to construct a large FPGA computer. Maxwell is a high-performance computer
developed by the FPGA high performance computing alliance (FHPCA), which
has a total of 64 FPGAs on 32 blade servers [2]. Each blade has an Intel Xeon
CPU and two Xilinx Virtex-4 FPGAs. While the CPUs are connected by an
interconnection network, the FPGAs are also connected directly by their dedicated
2D torus network. The Cube is a massively parallel FPGA cluster consisting of 512
Xilinx Spartan 3 FPGAs on 64 boards [15]. The FPGAs are connected in a chain,
so that they are suited to pipeline and systolic architecture.

The Novo-G is an experimental research testbed built by the NSF CHREC
Center, for various research projects on scalable reconfigurable computing [8].
Novo-G is composed of 24 compute nodes, each of which is a Linux server with
an Intel quad-core Xeon processor and boards of ALTERA Stratix IV FPGAs. Data
transfer can be made between adjacent FPGAs, through a wide and bidirectional
bus. The SSA, the scalable streaming-array, is a linear array of ALTERA Stratix III
FPGAs for scalable stencil computation with a constant memory bandwidth [24].
The FPGAs are connected by a 1D ring network to flow data through a lot of
computing stages on the FPGAs. By deeply pipelining iterative stencil computations
with the stages, the SSA achieves scalable performance according to the size of the
system.

These systems provide not only a peak computing performance scalable to
the system size but also low-latency and wide-bandwidth communication among
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FPGAs. Particularly the inter-FPGA communication achieved by direct connection
of FPGAs is very attractive and promising for parallel computing with less overhead.
Present typical accelerators, such as GPUs, suffer from the latency and bandwidth
limitation of their connection via host nodes and a system interconnection network.

However, it is also challenging to efficiently use reconfigurable resources with
flexibility of inter-FPGA connection for large-scale custom computing. We have
to find an answer to the question of how we should use multiple FPGAs, or
what architecture and designs are suitable and feasible for scalable and efficient
stencil-computation. This chapter presents the SCM array as an answer to this
question. The SCM array is a programmable custom-computing machine for
high-performance stencil computations. The SCM array is based on the SCM
architecture that combines the systolic array [11,12] and the computational memory
approach [7,17,18,29] to scale both computing performance and aggregate memory-
bandwidth with the array size. The SCM array behaves as a computing memory,
which does not only store data but also perform computations with them. The
processing elements of the array perform 3× 3 star-stencil computations in parallel
with their local memories. To achieve both flexibility and dedication, we give the
SCM array a hardware layer and a software layer to execute programs with various
stencil computation. The hardware layer has a simple instruction-set for only a
minimum of programmability.

Since this architecture is especially designed for scalable computation on a
multi-FPGA system with different clock-domains, two techniques are introduced
for the bandwidth and synchronization problems of inter-FPGA data-transfer: the
peak-bandwidth reduction mechanism (BRM) and the LGSM. To evaluate resource
consumption, performance, and scalability for three benchmark problems, we
demonstrate that the SCM array prototyped with three FPGAs achieves performance
scalable to the number of devices.

The FPGA-based programmable active memory (PAM) [29] is an approach that
is similar to our SCM array in terms of the PAM concept. PAM is a 2D array of
FPGAs with an external local-memory, which behaves as a memory for a host
machine while processing the stored data. Extensibility is also given by allowing
PAM to be connected with I/O modules or other PAMs. On the other hand, our
SCM array and its concept differ in the following ways from PAM. First, PAM
is not specialized for floating-point computation. Second, the constructive unit of
our SCM array is different from that of PAM. The constructive unit of PAM is
PAM itself, which is an FPGA array where custom circuits are configured over
multiple FPGAs. In our SCM array, each FPGA is a basic unit and has the same
hardware design as a module. The array of FPGAs forms a scalable SCM array, and
therefore we can easily extend the system by adding FPGAs, such as is implemented
on “stackable mini-FPGA-boards.”

Although the peak performance cannot be exploited due to the low operational-
intensity of stencil computation, efforts have also been made to optimize the
computation on GPUs [19]. Williams et al. reported the performance of 3D stencil
computation with a GPU [4]. A single NVidia GTX280 GPU achieves 3D stencil
computation of 36 GFlop/s, which is a much higher performance than that of a multi-
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core processor due to the GPU’s high memory bandwidth of 142 GByte/s. However,
the efficiency is not high, being 46% of the double-precision peak performance of
78 GFlop/s. It is important to note here that the performance is measured without
the data-transfer to/from a host PC. The inefficiency results in a low performance
per power, 0.15 GFlop/sW, even though they measured the power consumption of
only the GPU board.

Phillips et al. reported parallel stencil-computation on a GPU cluster [19].
By applying optimization techniques, they achieved 51.2 GFlop/s with a single
NVidia Tesla C1060 similar to GTX280, which corresponds to 66% of the peak
performance. However, in the case where 16 GPUs were utilized, only a ×10.3
speedup was achieved for a 2562 × 512 grid because of the communication/syn-
chronization overhead among GPUs. As a result, the efficiency is reduced to 42%
from 66%. These results show that while each GPU has a high peak-performance, it
is difficult to obtain high sustained-performance for stencil computation, especially
with multiple GPUs. Scalability is significantly limited in a large parallel system
with many accelerators, and most of the entire performance is easily spoiled. We
need a solution for efficiently scaling performance according to the size of the
system.

3 Target Computation and Architecture

3.1 General Form of Stencil Computations

The SCM array targets iterative stencil-computation, which is described by the
pseudo-code of Fig. 1. In scientific simulations, such as CFD, the partial differential
equations (PDE) that govern the physical phenomena to be simulated are often
numerically solved by the finite difference method. The computational kernels for
the method are of stencil computations, which are given by discretizing values de-
fined at grid points and numerically approximating the derivatives. Here we explain
a 2D case for simplicity. Let v(n, i, j) be values defined on a 2D computational grid,
where n, i and j denote a time step, x- and y-positions, respectively. The nested
inner-loops iterate the stencil computation for each grid-point (i, j) over the grid.
At each grid-point, v(n, i, j) is updated from time-step n to (n+ 1) by computing
F() with only the values in the neighboring grid-points. We refer to the region

Fig. 1 Pseudo code
of iterative stencil
computation
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of these neighboring grid-points as a stencil and denote it with S(i, j). Figure 2
illustrates a 2D simple example of a 3×3 star-stencil containing the five local grid-
points. The outer loop of the pseudo code repeats the grid updates for time-marching
computation along successive time-steps.

As reported in [20–22], F() of typical stencil computation is simply a weighted
sum of the neighboring values, which is written as:

vnew
i, j = c0vi, j + c1vi−1, j + c2vi+1, j + c3vi, j−1 + c4vi, j+1 (1)

for a 3 × 3 star-stencil, where c0–c4 are constants. We refer to (1) as a 2D
neighboring accumulation. Similarly, a 3D neighboring accumulation requires
two more terms for a 3 × 3 × 3 star-stencil in 3D. Although wide stencils are
used for higher-order differential schemes, they can be decomposed into 2D or
3D multiple neighboring-accumulations. Therefore we consider that neighboring
accumulation for 3×3 or 3×3×3 star-stencils is a general form of 2D or 3D stencil
computation, respectively, which should be accelerated. The stencil computation
has parallelism, which allows neighboring accumulations of grid-points to be
independently performed. Furthermore, the computation of each grid-point has
locality because the necessary values are localized around the point. We designed
the SCM array to accelerate the neighboring accumulations by exploiting their
parallelism and locality.

3.2 SCM Architecture

The SCM array is based on the SCM architecture [20,22,23], which is a combination
of the programmable systolic array [11,12] and the computational memory approach
[7, 17, 18, 29]. The systolic array is a regular arrangement of many processing
elements (PEs) in an array, where data are processed and synchronously transmitted
between neighbors across the array. Such an array provides scalable performance
according to the array size by pipelining and spatially parallel processing with input
data passing through the array. However, the external memory access can also be a
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Domain decomposition of a computing grid to sub-grids Array of PEs (2D mesh)

Fig. 3 Grid decomposition into sub-grids and their assignment to a PE array

bottleneck of the performance improvement if the memory bandwidth is insufficient
in comparison with the bandwidth required by the array.

To avoid this limitation of the external memory bandwidth, we adopted the
computational memory approach. This approach is based on the “processing in
memory” concept, where computing logic and memory are arranged very close
to each other [7, 17, 18, 29]. In the SCM architecture, the entire array behaves as
a computing memory, which not only stores data but also performs computations
with them. The memory of the array is formed by the local memories distributed
to the PEs. Since PEs can concurrently access their local memories and perform
computations, the SCM architecture has a computing performance scalable to the
array size without any bottlenecks related to external memories.

The SCM architecture is actually a 2D systolic array of PEs connected by a
mesh network. To exploit the parallelism and locality of stencil computation, we
decompose the entire grid into sub-grids, and assign them to the PEs, as shown
in Fig. 3. Since all the grid data are loaded onto the local memories, the PEs can
perform stencil computations of their assigned sub-grids in parallel, exchanging the
boundary data between adjacent PEs.

4 Design of SCM Array

4.1 2D Array of Processing Elements

Figure 4 shows an overview of the designed SCM array, which is a 2D array
of PEs with local memories. The PEs are connected by a 2D mesh network
via communication FIFOs. Each PE has a floating-point multiply-and-accumulate
(FMAC) unit for the neighboring accumulation with data read from the local
memory or the FIFOs. The result can be written to the memory and/or sent to the
FIFOs of the adjacent PEs. The four communication FIFOs, {S,N,E,W}-FIFOs, hold
the data transferred from the four adjacent PEs until they are read.

Figure 5 shows the data-path of a PE, which is pipelined with the following eight
stages: the instruction sequencing (IS), the memory read (MR), the five execution
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stages of the FMAC unit (EX1 to EX5), and the memory write-back (WB) [22].
In the MR stage, two values are selected from the read data of the local memory,
and the data outputted by the communication FIFOs. The selected values are
inputted to the FMAC unit. The FMAC unit can sequentially accumulate an arbitrary
number of the products of inputs, which are IEEE754 single-precision floating-point
numbers. Since the FMAC unit has the forwarding path from the EX5 stage to the
EX2 stage for accumulation, it can sum up the products of inputs fed every three
cycles. This means that three sets of (1) are required to fully utilize the FMAC unit.
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4.2 Sequencers and Instruction Set

As shown in Fig. 4, the SCM array has sequencers, which give programmability to
the array. In scientific simulation with a computational grid, the PEs taking charge
of the inner grid-points regularly perform the same computation while the PEs for
the boundary grid-points have to execute different computations. In order to achieve
such diversity of control, we partition the PEs into several control groups (CGs),
and assign a sequencer to each of them. Figure 4 shows a typical example of CGs
partitioning. Here the array has the nine CGs: CG1, CG2, . . . , CG9, which are given
the PEs of the top, left, bottom, and right sides; the four corners; and the inner grid-
points. The sequencer of each CG reads instructions from its own sequence memory
and sends control signals to all the PEs of the CG based on the instructions. That
is, the PEs of each CG are controlled in single instruction-stream and multiple data-
stream (SIMD) fashion.

Table 1 shows an instruction set of the SCM array. Instructions are classified
into two major groups: control instructions and execution instructions. Each control
instruction supports the nested loop-control, no operation (nop), and halt. Nested-
loops are executed with the lset and bne operations. The lset initiates the next-level
loop by setting the number of iterations and the starting address of the loop body.
After the lset is executed, the loop counter is decremented and the branch to the
starting address is taken if it is not zero when the bne is executed. Each execution
instruction has an opcode to select operation of the FMAC, two operands to specify
the sources of the FMAC inputs, and two operands to specify the destinations of the
FMAC output for the local memory and the communication FIFOs. Please note that
an execution instruction can be merged with a bne instruction.

The code of Fig. 6 is an example of a sequence for three sets of (1) for grid-points
(0,0), (1,0), and (2,0), where all the constants are 0.25. The grid is decomposed into
3×2 sub-grids as shown in Fig. 7. The PE computing the grid points communicates
with the east, west, and north PEs through the E-, W-, and N-FIFOs, respectively.
Because of the three-cycle forwarding of the FMAC unit, we concurrently perform
the three sets of accumulations every three instructions. The lset instruction is used
to repeat the computation for 1,600 times. Note that the branch is actually performed
after the next instruction to the bne is executed. The code written in the assembly
language is assembled and converted to the sequence binary for sequencers.

4.3 Techniques for Multiple-FPGA Implementation

For performance scalability, we design the SCM array to be scalably implemented
over multiple FPGAs, by partitioning the array into sub-arrays. We can build a larger
SCM array with more FPGAs. Figure 8 shows sub-arrays implemented over FPGAs
A, B, and C.
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QUAD = 0.25 // LABEL definition
lset 1600, LOOP

LOOP: mulp , , v[0;0], QUAD
mulp , , v[1;0], QUAD
mulp , , v[2;0], QUAD
accp , , v[1;0], QUAD
accp , , v[2;0], QUAD
accp , , EFIFO, QUAD
accp , , WFIFO, QUAD
accp , , v[0;0], QUAD
accp , , v[1;0], QUAD
accp , , NFIFO, QUAD
accp , , NFIFO, QUAD
accp , , NFIFO, QUAD
accp SW, vnew[0;0], v[0;1], QUAD
accpbne S, vnew[1;0], v[1;1], QUAD
accp SE, vnew[2;0], v[2;1], QUAD

Fig. 6 Example code of (1) for (0,0), (1,0) and (2,0) on the sub-gird of Fig. 7. QUAD and
“v[0;0]” are labels for local-memory addresses

E-PEW-PE

N-PE

S-PE

NFIFO

SFIFO

EFIFOWFIFO

[-1,0] [2,0] [3,0]

[0,-1] [1,-1] [2,-1]

[0,0] [1,0]

[0,1] [1,1][-1,1] [2,1] [3,1]

[0,2] [1,2] [2,2]

Fig. 7 Assignment of 3×2
sub-grids for Jacobi
computation with PEs

In multi-FPGA implementation, the more devices the system has, the more
difficult it is to uniformly distribute a single clock source to them. To avoid
distributing a single clock to all devices in a large system, we introduce a globally
asynchronous and locally synchronous (GALS) design [13], where each FPGA
is given an independent clock-domain. We transfer data between different clock-
domains without meta-stability by using dual-clock FIFOs (DcFIFOs), which have
different clock sources for input and output. Multiple clock-domains allow us to
easily build an extensible and scalable system with many FPGAs.

4.3.1 Peak-Bandwidth Reduction Mechanism (BRM)

From a programming point of view, we should allow the sub-arrays over mul-
tiple FPGAs to logically operate as a single array. However, multiple-FPGA
implementation presents several problems related to the off-chip bandwidth and
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Fig. 8 SCM sub-arrays implemented over FPGAs A and B with different clock-domains. The
clock-domains are bridged by the dual-clock FIFOs

synchronization, which are not seen in the case of single-FPGA implementation.
In the SCM array implemented with a single FPGA, the adjacent PEs are directly
connected and therefore the PE can send data to the adjacent PEs every cycle. The
abundant on-chip wiring-resources make such direct connection available among
PEs. On the other hand, the off-chip I/O bandwidth is much limited compared to
the internal wires, and therefore it is more difficult for all the PEs to be directly
connected between different FPGAs.

Fortunately, the data transfer between PEs is less frequent than read/write of the
local memory, and we can utilize this characteristic to solve the off-chip bandwidth
problem [22]. When a PE sends the result of computing (1), the data-transfer
occurs only after the cycles necessary for FMAC unit to accumulate the terms. For
example, the code of Fig. 6 has only the three instructions to send data in the fifteen
instructions of the loop body. In addition, only the border grid-points of a sub-grid
cause data transfer between adjacent PEs. Thus, actual stencil computation requires
much less net-bandwidth than the peak bandwidth for sending data every cycle.
Accordingly, the inter-FPGA bandwidth does not have to be as high as the aggregate
memory-bandwidth of the border PEs in the SCM array.

However we still need a technique to handle the successive data-transfers
conducted every cycle, which locally request the peak bandwidth, even if the inter-
FPGA bandwidth is more than the average data-transfer rate. We designed a module
with a peak-bandwidth reduction mechanism (BRM) to buffer the successive
data-transfer requests, which is fully described in [22]. BRM is based on time-
division multiplexing (TDM) for multi-cycle data-transfer with a buffer FIFO.
For explanation, assume that the inter-FPGA bandwidth has the one n-th of the
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aggregate memory bandwidth of the border PEs. In this case, a set of words sent
by the border PEs at a cycle is buffered by BRM, and takes n cycles to arrive at
the adjacent FPGA. We refer to such BRM as “n : 1 BRM,” which reduces the peak
bandwidth to the one n-th with an n-times longer delay. If BRM has a buffer with
a sufficient size for successive data-transfer, it can average out the net bandwidth.
Thus BRM has a trade-off between the peak-bandwidth reduction and the delay
increase. Therefore, we have to additionally take care of the increased delay in
scheduling instructions to send data and use the received data.

4.3.2 Local-and-Global Stall Mechanism

In addition to the off-chip bandwidth problem, multi-FPGA implementation causes
a synchronization problem of execution and data-transfer among devices because of
the slight but inevitable difference in frequency among different clock domains even
if their sources have the same configuration of frequency. Assume that we have two
clock oscillators for 100 MHz. They can be different from each other, for example,
100.001 and 100.002 MHz. Since different frequencies cause the PEs to execute at
different speeds, we need to synchronize the instructions executed by the PEs to send
and receive data. The inter-PE communication is performed by explicitly executing
instructions for communication, which send data to the adjacent PEs and read data
from the communication FIFOs. If all the PEs are synchronized to a single clock,
we can statically schedule instructions for adequate communication. However, if we
use different clocks, PEs operating at a higher frequency could read an empty FIFO
before the corresponding datum is written to the FIFO, and/or write a datum to a full
FIFO before the FIFO is read by another PE. To avoid these data-transfer problems,
we need some hardware mechanism to suspend the PEs in the case of a read-empty
(RE) or write-full (WF).

We can easily think of the simplest design of the SCM array where all the
sequencers and PEs simultaneously stall just after RE or WF is detected. However,
this design is impractical. Although each sequencer can stall immediately when it
locally detects RE or WF, the stall signal takes more than one cycle to be distributed
from the sequencer to the others and make them stall. This is because the stall-signal
distribution requires at least one OR operation for RE and WF detection, long wires
with large fan-out, and another OR operation to generate the global-stall signal. If
we implement the stall-signal distribution within one cycle, it reduces the operating
frequency.

To solve this problem, we introduce a LGSM to the CGs, which is based on
the very simple concept that sequencers stall immediately when they detect RE or
WF, and the others stall several cycles later. Figure 9 shows an overview of the
LGSM. Sequencer 2 of CG 2 observes w.N and f .S to detect RE and WF, which
are the write signal of N(north)-FIFOs of its own PEs and the almost-full signal
of S(south)-FIFOs of the PEs in the different clock-domain, B, respectively. With
w.N, the sequencer counts the number of remaining data in the N-FIFOs for the
issued read-operation at present. When the sequencer issues a read operation for an
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Fig. 9 Local-and-global stall mechanism (LGSM) to guarantee data-transfer synchronization in
the GALS design

empty FIFO or a write operation for an almost-full FIFO, the sequencer immediately
becomes the stall state. Then it sends a local-stall (l.stall) signal to the global-stall
distributor (GSD).

The l.stall signal is latched at the output of each sequencer and reaches GSD at
the next cycle. GSD has the inputs of the l.stall signals from all the sequencers.
In GSD, the OR operation with all the l.stall signals generates a global-stall
(g.stall) signal, which is distributed to all the sequencers. If necessary, we can
insert additional latches into the distribution tree of the g.stall signal to prevent
the operating frequency from decreasing. Sequencers in the execution state stall
immediately when they receive the g.stall signal. Note that the sequencers with
delayed stall issue one more instruction than Sequencer 2 because it locally stalls
prior to the global stall. Therefore, Sequencer 2 issues the instruction before the
other sequencers resume execution. This function is provided by a stall-control unit
in each sequencer. The details of LGSM are described in [13].

5 Implementation and Evaluation

5.1 Implementation

With implementation of SCM arrays on multiple-FPGAs, we demonstrate that SCM
arrays have scalability according to the number of FPGAs. We also evaluate the
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Fig. 10 1×3 FPGA-array of 3 DE3 board

overhead caused by LGSM for its frequency degradation and resource consumption
by comparing 3× 3, 4× 4, and 8× 8 SCM arrays with and without LGSM. We use
Terasic DE3 boards [28] to construct the 1× 3 FPGA-array of Fig. 10, while our
final goal is to build a 2D FPGA-array as shown in Fig. 11.

Figure 12 shows the block diagram of the DE3 board. The DE3 board has an
ALTERA Stratix III EP3SL150 FPGA [1] and four HSTC connectors, which can be
used to connect DE3 boards to each other with a single-end or LVDS signaling.
Each HSTC connector has 130 I/O pins including clock lines. Each pair of the
three DE3 boards is connected by the two HSTC connectors for bi-directional data-
transfer. By using 64 pins of the 130 pins at 100 MHz in single-end, each HSTC
connector provides a uni-directional data-transfer of 0.8 GB/s between FPGAs. The
4:1 BRM allows at most 8×8 PEs to send or receive data between FPGAs with this
connection. The Stratix III EP3S150 FPGA has 113,600 ALUTs (adaptive LUTs),
which is equivalent to 142,000 LEs, block RAMs with a total of 6,390 Kbits, and
96 36-bit DSP blocks. The block RAMs consist of 355 M9K blocks and 16 M144K
blocks. The size of each M9K block is 9 Kbits while each M144K has 144 Kbits.

Figure 13 shows a block diagram of a system implemented on each FPGA. We
wrote verilog-HDL codes of 3× 3, 4× 4, and 8× 8 SCM arrays with or without
LGSM. We implement the 4:1 BRMs and the distributors to reduce the peak-
bandwidth requirement to one-fourth for inter-FPGA connection. We use DcFIFOs
to connect the logics in different clock-domains. We also implement ALTERA’s
system on programmable chip (SOPC) with an NIOS II processor for the USB
interface. The host PC can read and write data and commands to the SCM array’s
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Fig. 11 3×3 FPGA-array of 9 DE3 boards, which is planed to be implemented
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Fig. 12 Block diagram of DE3 board and a 1×3 FPGA array

memories via USB. We compiled the system by using ALTERA Quartus II compiler
version 9.1 with the options of “area,” “standard fit,” and “incremental-compilation
off.”
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Fig. 13 Block diagram of a system including a sub-SCM-array implemented on an FPGA

5.2 Benchmark Computations

PEs perform floating-point operations for (1), and therefore the prototyped system
can actually compute real applications based on the finite difference method. We
program the PEs of the SCM array in the dedicated assembler language [22].
For benchmarks, we use the applications summarized in Fig. 14. The red-black
successive over-relaxation method [9], RB-SOR, is one of the parallelized iterative
solvers for Poisson’s equation or Laplace’s equation. In the RB-SOR method, the
grid points are treated as a checkerboard with red and black points, and each iteration
is split into a red-step and a black-step. The red- and black-steps compute the red
points and the black points, respectively. We solved the heat-conduction problem
on a 2D square plate with RB-SOR. Each PE computes with an 8× 24 sub-grid so
that the 9×3 SCM array on the three FPGAs computes a 72×72 grid for 2.0×106

iterations.
The fractional-method [27], FRAC, is a typical and widely used numerical

method for computing incompressible viscous flows by numerically solving the
Navier–Stokes equations. We simulated the 2D square driven cavity flow with
the FRAC, giving the result shown in Fig. 14. The left, right, and lower walls of
the square cavity are stable, and only the upper surface is moving to the right with a
velocity of u = 1.0. Each PE takes charge of a 5× 15 sub-grid. For the 9× 3 SCM
array on the three FPGAs, we compute 5,000 time-steps with a 45× 45 grid while
the Jacobi computation is performed for 1,000 iterations at each time-step.
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Fig. 14 Benchmark computations

The FDTD method [31], is a powerful and widely used tool to solve a wide
variety of electro-magnetic problems, which provides a direct time-domain solution
for Maxwell’s Equations discretized by difference schemes on a uniform grid and at
time intervals. Since the FDTD method is very flexible and gives accurate results for
many non-specific problems, it is widely used for solving a wide variety of electro-
magnetic problems. We compute the FDTD method to simulate 2D propagation of
electro-magnetic waves with a square-wave source. At the left-bottom corner, we
put the square-wave source with an amplitude of 1 and a period of 80 time-steps.
On the border, Mur’s first-order absorbing boundary condition is applied. Each PE
takes charge of a 4× 6 sub-grid. For the 9× 3 SCM array on the three FPGAs, we
compute 1.6× 106 time-steps with a 36× 18 grid.
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Table 2 Synthesis results for Stratix III FPGA

Without LGSM With LGSM

Array size 3×3 4×4 8×8 3×3 4×4 8×8

fmax[MHz] 128 123 123 128 125 118
ALUTs SCMA 12,248

(10.8%)
20,984
(18.5%)

78,189
(68.8%)

12,420
(10.9%)

21,179
(18.6%)

78,341
(69.0%)

BRM 881
(0.776%)

1,123
(0.989%)

2,274
(2.00%)

878
(0.773%)

1,128
(0.993%)

2,260
(1.99%)

Others 10,041
(8.84%)

7,743
(6.82%)

6,133
(5.40%)

9,080
(7.99%)

10,784
(9.49%)

6,133
(5.40%)

36-bit DSP
blocks

9 (9.38%) 16
(16.7%)

64
(66.7%)

9 (9.38%) 16
(16.7%)

64
(66.7%)

Total memory
bits

1,842,752
(32.7%)

2,072,128
(36.8%)

3,645,592
(64.7%)

1,842,752
(32.7%)

2,072,128
(36.8%)

3,645,592
(64.7%)

5.3 Synthesis Results

Table 2 shows the synthesis results of SCM arrays with and without LGSM for
3× 3, 4× 4, and 8× 8 PEs. The larger the SCM array, the lower the frequency that
is available. This is because of the longer critical paths in the larger array. However,
the 8× 8 array can still operate at more than 118 MHz, which is sufficiently higher
than 100 MHz. The 8×8 array consumes about 75% of the ALUTs, 67% of the 36-
bit DSP blocks, and 65% of the total memory bits. Based on these data, we estimate
that we can implement up to 100 PEs on this FPGA to form a 10× 10 array, giving
1.5 times higher performance than that of the 8× 8 array.

LGSM slightly decreases the maximum operating frequency, fmax, by only a few
MHz. The difference in frequency of the 8× 8 array between SCM arrays with and
without LGSM is only 5 MHz. This means that LGSM does not have a major impact
on the scalability to the array size. There is almost no performance degradation
caused by introducing LGSM. LGSM slightly increases resource consumption by
0.17% at most for the ALUTs of the SCM array and do not increase the total
memory bits. Note that the ratio of resources increased by LGSM is almost constant
regardless of the array size. This is because the number of sequencers, 9, is
unchanged. These results show that we can use LGSM at very low cost in terms
of resources.

5.4 Performance Results

Although we set 100 MHz to all the clocks of the FPGAs, they can be slightly
different because they are generated by different clock sources. The stall cycles
caused by this difference may considerably increase the total cycles of computation
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Table 3 Execution and stall cycles, performance and utilizations for 1, 2 and 3 FPGAs

Computation 1 FPGA 2 FPGAs 3 FPGAs

RB-SOR Exec cycles 1,440,003,040 1,440,003,040 1,440,003,040
Stall cycles 0 (0.0%) 11,207 (0.00078%) 11,250 (0.00078%)
GFlop/s 11.4 22.9 (×2.01) 34.4 (×3.02)
Utilization 89.2% 89.5% 89.7%

FRAC Exec cycles 977,382,044 977,382,044 977,382,044
Stall cycles 0 (0.0%) 7,592 (0.00078%) 7,591 (0.00078%)
GFlop/s 11.2 22.4 (×2.01) 33.7 (×3.02)
Utilization 87.2% 87.6% 87.7%

FDTD Exec cycles 950,432,027 950,432,027 950,432,027
Stall cycles 0 (0.0%) 7,220 (0.00076%) 7,212 (0.00076%)
GFlop/s 10.2 20.6 (×2.02) 30.9 (×3.04)
Utilization 79.6% 80.4% 80.6%

and spoil the scalability by using multiple devices. To evaluate the stall cycles of
SCM arrays operating on multiple FPGAs, we implement the 8 × 8 array with
LGSM on each FPGA and execute the benchmark programs of RB-SOR, FRAC,
and FDTD with SCM arrays on a single FPGA, two FPGAs and three FPGAs
connected as a 1D array. For the execution, we gave the constant size of the sub-
grid computed by each PE so that the size of the entire grid is proportional to the
number of FPGAs. Therefore, the SCM arrays on a different number of FPGAs
require the same cycles for computation while larger SCM arrays provide higher
performance with larger grids computed by more PEs.

Table 3 shows the numbers of execution cycles and stall cycles for the SCM
arrays on the single-, double-, and triple-FPGA arrays. Since the SCM array on a
single FPGA operates with a single clock-domain, no stall cycle is observed for all
the benchmark computations on the single-FPGA SCM array. On the other hand, the
double-FPGA and triple-FPGA SCM arrays have stall cycles due to the difference in
frequency among clock domains, which cause a slight increase in the total number
of cycles. However, the ratios of the stall cycles to the total execution cycles are very
small and ignorable and are about 8×10−4%. With these results, we made sure that
the clock frequencies of 100 MHz have small but inevitable differences, and that the
stall mechanism works well to guarantee the data synchronization with slight loss
of performance.

Table 3 also shows the actual floating-point performance for each benchmark
computation in GFlop/s. We used the measured cycles including the execution and
stall cycles to obtain the performance. We calculated the utilization that is defined
as the actual performance divided by the peak performance. The results show that
high utilization of 80–90% is achieved for the benchmark computations executed
on the SCM arrays irrespective of the number of FPGAs. Note that almost the
same utilization is maintained in increasing the number of FPGAs. The utilization
is slightly improving rather than declining because the ratio of border grid-points is
reduced.
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These results show that the SCM array provides complete scalability to the
array size and the number of devices, so that m FPGAs achieve m times higher
performance to compute an m times larger grid. If we implement a 10×10 sub-array
on each FPGA, the three FPGAs are expected to give 53.8 GFlop/s to RB-SOR.
Note that the total bandwidth of the local memories is also completely proportional
to the size of the SCM array. The single-FPGA, double-FPGA, and triple-FPGA
SCM arrays have the internal bandwidth to read and write local memories of 76.8,
153.6, and 230.4 GByte/s at 100 MHz, respectively. If we implement a 10×10 sub-
array on each FPGA instead of a 8× 8 sub-array, they could provide 120, 240, and
360 GByte/s, respectively.

5.5 Feasibility and Performance Estimation
for State-of-the-Art FPGAs

Here we discuss the feasibility of implementation with 2D FPGA arrays and
estimate their peak performance for high-end FPGA series. We consider the
three high-end ALTERA FPGAs: Stratix III EP3SL340 FPGA (65 nm), Stratix IV
EP4SGX530 FPGA (40 nm), and Stratix V 5SGSD8 FPGA [1]. The resources
of these FPGAs are summarized in Table 4. We obtain the total I/O bandwidth
of each FPGA by multiplying the number of transceivers and the bandwidth per
transceiver. We assume that implementation optimization allows PEs to operate at
125 MHz on these FPGAs. Since an FMAC requires one single-precision floating-
point multiplier to be implemented with one 36-bit or 27-bit DSP block, we
assume that the number of PEs available on each FPGA is the same as the number
of 36-bit or 27-bit DSP blocks. Each PE can perform both multiplication and
addition at 125 MHz. Therefore, the peak performance of each FPGA is obtained
by 0.25× (the number of PEs) [GFlop/s].

As shown in Table 4, while Stratix III and IV FPGAs have a moderate peak-
performance, Stratix V FPGA has a peak performance of 491 GFlop/s per chip. This
is due to integration of many DSP blocks on state-of-the-art FPGA. Since an SCM
array performs stencil computation with a utilization of about 85%, the Strativ V
FPGA is expected to achieve a sustained performance of 491×0.85 = 417 GFlop/s
per chip. This performance is higher than the sustained performance of stencil
computation on a single GPU. Furthermore, due to the complete scalability of an
SCM array, we can efficiently scale the performance by using multiple FPGAs. For
example, we can obtain a sustained performance of 41.7 TFlop/s with 100 Stratix
V FPGAs. The cluster of 100 FPGAs can be cheaper than a larger GPU cluster to
provide comparable performance with much less utilization.

For feasibility, we should discuss whether the I/O bandwidth is sufficient to
connect the FPGAs with a 2D mesh network because a 2D FPGA array is suitable
to scale a 2D SCM array. We also assume an N ×N square array of PEs where
N =

√
(the number of PEs) on each FPGA, the required bandwidth for four links
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Table 4 Estimation of array size and available bandwidth for a 2D array of
high-end FPGAs

Stratix III L
EP3SL340

Stratix IV GX
EP4SGX530

Stratix V
5SGSD8

Technology 64 nm 40 nm 28 nm
Equivalent LEs 337,500 531,200 695,000
Memory [KBytes] 2,034 2,592 6,417
36/27-bit DSPs 144 256 1,963
Transceivers (Gbps/ch) 132 (0.156) 48 (8.5) 48 (1.41)
Total I/O bandwidth [GB/s] 20.6 51 84.6

Assumed PE freq. [MHz] 125 125 125
Estimated # of PEs 144 256 1,963
Peak GFlop/s per FPGA 36 64 491
Required uni-

directional
BW for 4
links [GB/s]

24.0 32 88.6

Reduced BW by n = 2 12.0 16.0 44.3
n : 1 BRM n = 4 6.0 8.0 22.2
[GB/s] n = 8 3.0 4.0 11.1

(Peak GFlop/s) = (# of PEs) × 2 operations × 0.125 GHz)
(Req. unidir BW for 4 links) = 4 × √

(# of PEs) × 4 words × 0.125 GHz

of a 2D mesh network is calculated by 4×N × 4× 0.125 GByte/s. In Table 4, the
required bandwidth for four links is slightly higher than the available I/O bandwidth
for Stratix III and V FPGAs. However, BRM reduces the required bandwidth less
than the I/O bandwidth. Especially, much less bandwidth is required if we use 4:1
BRM. These estimations show that implementation of an SCM array with multiple
FPGAs is feasible and we can build an array of a large number of FPGAs without
inter-FPGA communication bottleneck.

6 Summary

This chapter presents the SCM array for programmable stencil computations. The
target computation of an SCM array is the neighboring accumulation for 3× 3 star-
stencil computations. The SCM array is based on the SCM architecture, which
combines the systolic array and the computational memory approach to scale
both computing performance and aggregate memory-bandwidth in accordance with
the array size. After the structure and behavior of processing elements and their
sequencers are described, we show GALS implementation for multiple FPGAs
with different clock-domains. We also present two techniques, the peak-bandwidth
reduction mechanism (BRM) and the LGSM, which are necessary to solve the
bandwidth and synchronization problems of inter-FPGA data-transfer.
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We implement a prototype SCMA with three Stratix III FPGAs. We demonstrate
that the prototyped SCMAs compute the three benchmark problems: RB-SOR,
FRAC, and FDTD. By implementing 3× 3, 4× 4, and 8× 8 SCMAs, we evaluate
their impact on the synthesis results including operating frequency and resource
consumption. We also evaluate the overhead of LGSM in terms of operating
frequency and resource consumption. We show that the size of the array and LGSM
have a slight influence on the operating frequency, but only frequency degradation is
limited. Thus our design of an SCMA with LGSM is scalable for available resources
on an FPGA.

To evaluate performance scalability for multiple FPGAs, we compare single-
FPGA, double-FPGA, and triple-FPGA SCMA, where each sub-SCMA has an 8×8
array. The number of FPGAs gives complete scalability of sustained performance
maintaining a utilization of 80–90% for each benchmark. As a result, the three
FPGAs operating at 100 MHz achieve 31–34 GFlop/s for single-precision floating-
point computations. We expect that a 10× 10 sub-SCMA can be implemented on
each FPGA to provide 1.5 times higher performance than that of the 8× 8 sub-
SCMA. We ensure the LGSM provides the necessary stalls for the differences in
frequency of the 100 MHz clocks; however, the number of stall cycles is very small,
just 8× 10−4% of the total cycles. This means that sub-SCMAs in different clock-
domains are synchronized by LGSM, but the overhead is ignorable for computing
performance.

A feasibility study of implementation with the high-end FPGA series showed
that the Stratix V FPGA is expected to achieve a peak performance of 419 GFlop/s
and a sustained performance of about 417 GFlop/s. We showed that BRM allows
a large SCM array to be implemented with many FPGAs without a bottleneck in
inter-FPGA communication.

In future work, we will construct a 2D FPGA array and implement a large SCMA
on it for larger 3D computations. We will also develop a compiler for SCM arrays
based on the prototype version of a compiler for a domain-specific language [14].
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