
Wim Vanderbauwhede · Khaled Benkrid
 Editors

High-
Performance
Computing
Using FPGAs

High-Performance Computing Using FPGAs

Wim Vanderbauwhede • Khaled Benkrid
Editors

High-Performance
Computing Using FPGAs

123

Editors
Wim Vanderbauwhede
School of Computing Science
University of Glasgow
Glasgow, United Kingdom

Khaled Benkrid
School of Engineering and Electronics
The University of Edinburgh
Edinburgh, United Kingdom

ISBN 978-1-4614-1790-3 ISBN 978-1-4614-1791-0 (eBook)
DOI 10.1007/978-1-4614-1791-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013932707

© Springer Science+Business Media, LLC 2013,
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

corrected at 2nd printing 2014

www.springer.com

Foreword

The field programmable gate array (FPGA) was developed in the middle of 1980s
with the original intent to be a prototyping medium. The array of programmable
logic blocks enabled it to be reconfigured to any of a variety of compute functions.
As such it was an attractive vehicle for “in circuit hardware emulation” where
designs could be prototyped and debugged before being committed to silicon. It
was also an attractive teaching vehicle for students learning computer design. It was
with this in mind that I was first introduced to the FPGA by one of the pioneers in
the field, Ross Freeman, the founder of Xilinx (who tragically died just a few years
after Xilinx’s founding).

As the underlying silicon technology improved and the functional potential
was better understood, the FPGA slowly permeated many aspects of computing.
By the 1990s it was an accepted component in most communications technology,
then consumer-electronics and automotive applications became apparent, and by
the early 2000s the FPGA was well established in almost all areas of computing
except high performance computing (HPC). It would seem that HPC is an unlikely
target for FPGAs, as the FPGA with all of its flexibility in both routing and
configuration has a clear disadvantage when compared to custom arithmetic design
when measured in terms of an area time power product. Of course, even then it was
understood that there were some small specialized compute applications for which
the FPGA could offer some significant performance advantages mostly in areas such
as cryptography and specialized arithmetic.

Around 2003 there was a seismic shift in the underlying silicon technology,
and Moore’s law of frequency scaling (processors double performance every 18–24
months) became inoperative because the power densities required to support higher
frequencies could not be economically sustained. The future was parallel in one way
or another. ln HPC the obvious approach was to use multicore implementations, but
there is a problem with attempting to scale performance by simply increasing the
number of cores or processors to execute an application. The programming models
that we have developed over the past decade have been oriented toward sequential
processing and not parallel processing. The introduction of paradigms such as layers

v

vi Foreword

of abstractions that hide the underlying hardware thus makes it difficult to find the
right form of parallelism to best express the execution of an application.

Still the notion of using FPGAs as a fabric to realize HPC for large classes of
applications is surprising to many. It surely was unforeseen a decade ago. So what
enables the FPGA to make its mark in HPC? There are at least three reasons:

1. The aforementioned difficulty in achieving scalable speed up with multicore
implementations.

2. While Moore’s law for frequency scaling ceased in 2003, Moore’s law on
transistor density scaling is still very much active so that over the intervening
decade transistor densities have scaled up on more than an order of magnitude.
These densities enable very large FPGA configurations. An enormous number
of cells are available to realize complex compute engines. And because FPGAs
necessarily operate at lower frequencies, they have not hit the power density
limits of the CPU.

3. The flexibility of the FPGA enables the designer to realize almost any computer
configuration that can be imagined and use any form of parallelism to suit the
application. This flexibility provides the opportunity to create ideal machines for
specific applications and unlike a decade ago where these applications would
necessarily small they now can be of significant scope—really large, important,
and interesting applications.

In a sense we have come full circle: the designer is again using the FPGA to do
emulation but now that emulation is not of some established CPU but an emulation
of an ideal machine for a particular application using techniques, representations,
and processor forms unavailable to conventional processor designs. In effect the
designer is emulating the future of computing high-speed computing.

This extraordinary book brings together the work of the leading technologists in
this important field and points to the direction not only for high speed computing
but also for the very future of computing itself.

Stanford, CA, USA Michael J. Flynn
Palo Alto, CA, USA

Preface

The seamless exponential increase in computing power that scientists, engineers
and computer users at large have enjoyed for decades has come to an end by
the mid-2000s. Indeed, while until then, computer users could rely on computing
power doubling every 18 months or so simply by means of increases in transistor
integration levels and clock frequencies, with no major changes to software,
physical limitations including voltage scaling and heat dissipation meant that this
is no longer possible. Instead, the chip fabrication industry has turned to multicore
chip technology to keep the “possibility” of doubling computer performance every
18 months alive. However, this is just a “potential” performance increase and not
a seamless one as application software needs to be recoded to take full advantage
of the performance potential of multicore technologies. Failing this, the computer
industry would cease to become a growth industry as there would be no need for
computer upgrades for performance sake. Instead, the industry would become a
replacement industry where computers are only bought to replace faulty ones. This
could have serious economic repercussions; hence the explosion of research activity
in industry and academia in recent years aimed at bridging the semantic gap between
applications, traditionally written in sequential code, and hardware, increasingly
parallel in architecture.

The aforementioned semantic gap, however, is also opening a window of
opportunity for niche parallel computer technologies such as field programmable
gate array (FPGAs) and graphics processor units (GPUs) which have become
more mainstream because the problem of parallel programming has to be tackled
for general-purpose processors anyway. FPGAs in particular have the promise of
custom-hardware performance and low power, with the software reprogrammability
advantage of general purpose processors. This is precisely why this technology has
attracted a great deal of attention within the high performance computing (HPC)
community, giving rise to the new discipline of high performance reconfigurable
computing (HPRC).

The aim of this book is to present a comprehensive view of the state of the art
of HPRC to existing and aspiring researchers in the field. This book is split into
three main parts: the first part deals with HPRC applications, the second with HPRC

vii

viii Preface

architectures, and the third with HPRC tools. Each part consists of a number of
contributions from eminent researchers in the field. Throughout the book, emphasis
is made on opportunities, challenges, and possible future developments, especially
in relation to other technologies such as general-purpose multicore processors and
GPUs. Overall, we hope that this book will serve as both a reference and a starting
point for existing and future researchers in the field of HPRC.

Finally, we thank all contributors, reviewers, and Springer’s staff for their efforts
and perseverance in making this book project a reality.

Glasgow, UK Wim Vanderbauwhede
Edinburgh, UK Khaled Benkrid

Contents

Part I Applications

High-Performance Hardware Acceleration of Asset Simulations 3
Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Monte-Carlo Simulation-Based Financial Computing
on the Maxwell FPGA Parallel Machine . 33
Xiang Tian and Khaled Benkrid

Bioinformatics Applications on the FPGA-Based
High-Performance Computer RIVYERA . 81
Lars Wienbrandt

FPGA-Accelerated Molecular Dynamics . 105
M.A. Khan, M. Chiu, and M.C. Herbordt

FPGA-Based HPRC for Bioinformatics Applications . 137
Yoshiki Yamaguchi, Yasunori Osana, Masato Yoshimi,
and Hideharu Amano

High-Performance Computing for Neuroinformatics Using FPGA 177
Will X.Y. Li, Rosa H.M. Chan, Wei Zhang, Chiwai Yu, Dong Song,
Theodore W. Berger, and Ray C.C. Cheung

High-Performance FPGA-Accelerated Real-Time Search 209
Wim Vanderbauwhede, Sai. R. Chalamalasetti, and Martin Margala

High-Performance Data Processing Over N-ary Trees . 245
Valery Sklyarov and Iouliia Skliarova

FPGA-Based Systolic Computational-Memory Array
for Scalable Stencil Computations . 279
Kentaro Sano

ix

x Contents

High Performance Implementation of RTM Seismic Modeling
on FPGAs: Architecture, Arithmetic and Power Issues . 305
Victor Medeiros, Abner Barros, Abel Silva-Filho,
and Manoel E. de Lima

High-Performance Cryptanalysis on RIVYERA
and COPACOBANA Computing Systems . 335
Tim Güneysu, Timo Kasper, Martin Novotný, Christof Paar,
Lars Wienbrandt, and Ralf Zimmermann

FPGA-Based HPRC Systems for Scientific Applications . 367
Tsuyoshi Hamada and Yuichiro Shibata

Accelerating the SPICE Circuit Simulator Using an FPGA:
A Case Study . 389
Nachiket Kapre and André DeHon

Part II Architectures

The Convey Hybrid-Core Architecture . 431
Bernd Klauer

Low Cost High Performance Reconfigurable Computing 453
Javier Castillo, Jose Luis Bosque, Cesar Pedraza, Emilio Castillo,
Pablo Huerta, and Jose Ignacio Martinez

An FPGA-Based Supercomputer for Statistical Physics:
The Weird Case of Janus . 481

Accelerate Communication, not Computation! . 507
Mondrian Nüssle, Holger Fröning, Sven Kapferer,
and Ulrich Brüning

High-Speed Torus Interconnect Using FPGAs . 543
H. Baier, S. Heybrock, B. Krill, F. Mantovani, T. Maurer, N. Meyer,
I. Ouda, M. Pivanti, D. Pleiter, S.F. Schifano, and H. Simma

MEMSCALE: Re-architecting Memory Resources for Clusters 569
Holger Fröning, Federico Silla, and Hector Montaner

M. Baity-Jesi, R.A. Baños, A. Cruz, L.A. Fernandez,
J.M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez,
A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,
J. Monforte-Garcia, A. Mũnoz Sudupe, D. Navarro, G. Parisi,
M. Pivanti, S. Perez-Gaviro, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo,
S.F. Schifano, B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione,
and D. Yllanes

Contents xi

High-Performance Computing Based on High-Speed Dynamic
Reconfiguration . 605
Minoru Watanabe

Part III Tools and Methodologies

Reconfigurable Arithmetic for High-Performance Computing 631
Florent de Dinechin and Bogdan Pasca

Acceleration of the Discrete Element Method: From RTL
to C-Based Design . 665
Benjamin Carrion Schafer and Kazutoshi Wakabayashi

Optimising Euroben Kernels on Maxwell . 695
James Perry, Mark Parsons, and Paul Graham

Assessing Productivity of High-Level Design Methodologies
for High-Performance Reconfigurable Computers . 719
Esam El-Araby, Saumil G. Merchant, and Tarek El-Ghazawi

Maximum Performance Computing with Dataflow Engines 747
Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk

Index . 775

Part I
Applications

The first part of the book covers research on applications in the emerging field
of High-Performance Reconfigurable Computing. The first two chapters present
work on FPGA-based financial computing, an application field which has grown
considerably in the last decade in both research and industry. These are from
de Schryver et al. of the University of Kaiserslautern, Germany, and Tian et al.
from the University of Edinburgh, UK, respectively. These are followed by four
chapter contributions on FPGA-based bioinformatics and computational biology
(BCB), another application area which has attracted considerable attention in the
last decade, mostly in academia but also industry. These are from Lars Wienbrandt
of the Christian-Albrechts-University of Kiel, Germany, Herbordt et al. from Boston
University, USA, Yamaguchi et al. from the Universities of Tsukuba, Ryukyus,
Doshisha and Keio, in Japan, and Will Li et al. from the City University of Hong
Kong, China. The following two contributions are on FPGA-based data search and
processing, another interesting application in our information age characterised
by an explosion of data. The two contributions are from Vanderbauwhede et al.
of Glasgow University, UK, and the University of Massachussets, USA, and
Sklyarov and Skliarova from the University of Aveiro, Portugal. The next two
contributions are on FPGA-based stencil computations, a very important area with
various applications in computational fluid dynamics, electromagnetic simulation
based on the finite-difference time domain method, and iterative solvers e.g. for
seismic modelling. The two contributions are from Kentaro Sano from Tohoku
University, Japan, and Medeiros et al. from Universidad Federal de Pernambuco,
Brazil. The following chapter from Gneysu et al. of Ruhr-University Bochum,
Germany, Czech Technical University in Prague, Czech Republic, and the Christian-
Albrechts-University of Kiel, Germany, presents dedicated FPGA-based cluster
solutions for high performance efficient cryptanalysis. After this, Hamada and
Shibata from Nagasaki University, Japan, present a contribution which deals with
two floating point scientific applications, namely ocean model simulation with a
particular emphasis on fast inter-task communications, and astronomical N-body
simulations with a particular emphasis on performance per $ and performance

2 I Applications

per Watt measures of FPGAs compared to ASICs, GPUs and general purpose
processors. Finally, Kapre and DeHon from Imperial College London, UK, and
the University of Pennsylvania, USA, present an FPGA-accelerated solution for the
SPICE simulator, a widely used open-source tool for the simulation and verification
of analog circuits.

High-Performance Hardware Acceleration
of Asset Simulations

Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Abstract State-of-the-art financial computations based on realistic market models
like the Heston model require a high computational effort, since no closed-
form solutions are available in general. Due to the fact that the underlying asset
behavior predictions are mainly based on number crunching operations, FPGAs are
promising target devices for this task. In this chapter, we give an overview about
current problems and solutions in the finance and insurance domain and show how
state-of-the-art market models and solution methods have increased the necessary
computational power over time. For the reason of universality and robustness, we
focus on Monte Carlo methods that require a huge amount of normally distributed
random numbers. We summarize the state-of-the-art and present efficient hardware
architectures to obtain these numbers, together with comprehensive quality inves-
tigations. Build on these high-quality random number generators, we present an
efficient FPGA architecture for option pricing in the Heston model, tailored to
FPGAs. For the problem pricing European barrier options in the Heston model
we show that a Xilinx Virtex-5 device can save up to 97% of energy, providing the
same simulation throughput as a Nvidia Tesla 2050 GPU.

1 The Need for High Performance Computing in Secure
Economies

The happenings on the financial markets all around the world in the last years have
clearly demonstrated the inherent risks prevailing in our current economic system.

C. de Schryver (�) • S. Weithoffer • N. Wehn
Microelectronic Systems Design Research Group, University of Kaiserslautern, Germany
e-mail: schryver@eit.uni-kl.de; weithoffer@eit.uni-kl.de; wehn@eit.uni-kl.de

H. Marxen
Stochastic Control and Financial Mathematics Group, University of Kaiserslautern, Germany
e-mail: marxen@mathematik.uni-kl.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 1, © Springer Science+Business Media, LLC 2013

3

mailto:schryver@eit.uni-kl.de
mailto:weithoffer@eit.uni-kl.de
mailto:wehn@eit.uni-kl.de
mailto:marxen@mathematik.uni-kl.de

4 C. de Schryver et al.

Due to the permanent news, nowadays every citizen is sensitized to these problems,
even if not everybody (not to say nearly nobody) understands what is really going
on in the financial system right now.

One main reason for the financial crisis was the wrong assessment of financial
products with respect to their values and risks. For example, collateralized debt
obligations (CDOs) considered to be one of the major causes for the crisis [8] are
challenging to evaluate. CDOs bundle other products together and split the resulting
pool again into new tranches with different ratings. Determining realistic risks and
values for these tranches is a highly compute-intensive task.

However, CDOs are just one example of demanding products. Financial institutes
have to price complex product portfolios containing many different ingredients
regularly. In addition to that, countermeasures taken by the governments after the
crisis in 2007 have further increased the demand for a fast simulation environment.
In the European Union, for example the Basel III and Solvency II regulations for
the financial and insurance sector require frequent monitoring and analysis of the
institutions’ financial situation, in particular of the equity risks.

Besides that, the increasing mathematical complexity of the underlying stock
market models and their calibration has already led to a tremendous increase of
simulation effort in the past. For example, the Heston and jump-diffusion stochastic
differential equations (SDEs) lacking closed-form solutions in general are currently
state-of-the-art [11]. The construction of more and more complicated financial
products has further contributed to this, and since those products are available right
now, there is no perspective that the complexity will decrease again in the future.

The energy needed for portfolio pricing is immense and lies in the range of
several megawatts for a single bigger institute nowadays. Already in 2008 the
available power for the financial center of London had to be clipped to assure a
reliable supply for the Olympic games in 2012 [35]. Therefore, there is an urgent
need for bringing down the energy consumption on the one hand, and to allow even
higher simulation speed in the future on the other hand. This gap can only be bridged
by using optimized hardware accelerators for the simulations.

Most institutes are currently running their simulations on standard CPU clusters,
exploiting the highest flexibility by using pure software models. We will see in
Sect. 2 that a lot of simulation methods are based on basic number crunching
operations. So, a standard CPU is certainly not the most efficient architecture for this
task with respect to throughput and energy efficiency. GPUs are currently emerging
in the financial business and are more and more used in productive environments,
for example by JP Morgan Chase, Bloomberg, or BNP Paribas [21]. Optimized
architectures based on FPGAs have a huge potential for saving energy and speed
up the simulations at the same time. However, FPGAs have just been used for
experimental studies in financial business [36, 37], and we are not aware of these
devices being used in productive risk assessment environments today.

In this chapter we cover the following topics:

• We introduce the state-of-the-art Heston model and the Multi-Level Monte Carlo
method to solve derivative pricing in this context in Sect. 2.

High-Performance Hardware Acceleration of Asset Simulations 5

• For the application “pricing European double barrier options in the Heston
model” we shortly present a comprehensive benchmark set that allows to
compare implementations on different target architectures transparently.

• We present a hardware accelerator for European barrier option pricing with
the Heston model in Sect. 3, together with throughput and energy measurement
results. We show that hybrid FPGA-CPU systems can already today save far more
than 60% of the energy consumed by a state-of-the-art Nvidia Tesla C2050 GPU.

• In Sect. 4 we show efficient hardware architectures to generate normally dis-
tributed high-quality random numbers. These random numbers are key for
efficient Monte Carlo simulations.

2 Pricing Options: Model, Algorithm and Comparison

One problem in financial mathematics is the pricing of derivatives. In this chapter
we focus on the valuation of barrier options in particular. In order to solve this real-
world problem, we need a specific model to reflect the behavior of the underlying
asset. In our case we employ the Heston model that is widely used nowadays and is
a further development of the famous Black–Scholes model.

For the solution of the problem we need an algorithm and an implementation
thereof. A detailed systematic methodology to clearly distinguish between these
terms has been given by de Schryver et al. in 2011 [27].

In this section we give an overview about different Monte Carlo methods and
why they fit well to the problem that we target. Section 3 shows the details of our
hardware implementation.

Besides the implementation itself, evaluating and comparing it to different
algorithms and architectures is a challenge. We suggest to rely on standardized ap-
plication benchmarks for this task. In Sect. 2.3 we propose a meaningful benchmark
set for European barrier option pricing in the Heston model.

2.1 The Heston Model

In 1973 Fisher Black and Myron Scholes have introduced the famous Black–Scholes
model [4]. In the same year Robert C. Merton [19] expanded the mathematical
understanding of the model. Therefore, the model is sometimes called Black–
Scholes–Merton model.

Since prices for European vanilla options were easily calculated and for more
complicated ones one could model the behavior of the asset prices, the Black–
Scholes model has fundamentally changed the way how the financial industry
works. In 1997, Merton and Scholes received the Nobel price for their work.

6 C. de Schryver et al.

The Black–Scholes model consists of certain assumptions on the market behav-
ior. The most important ones are the absence of arbitrage—which is needed to fairly
evaluate prices—and the log normal characteristic of the asset price. The price of an
asset under the risk-neutral measure follows the SDE

dS(t) = S(t)rdt + S(t)σdW(t). (1)

S denotes the price process of the asset, r the risk-less interest rate, W a Brownian
motion and σ the volatility. Furthermore, the process has some starting condition
S(0) = s0.

This SDE can be solved. Its solution is

S(t) = S(0)exp

((
r− σ2

2

)
t +σW (t)

)
.

In order to price a derivative of an asset following the SDE above, the funda-
mental theorem of asset pricing states that the price is just the discounted expected
payoff under the risk-neutral measure.

Even though the SDE of the Black–Scholes model can be solved, various
derivatives can only be priced numerically in this setting.

Nevertheless, besides the huge impact on the financial world, the Black–Scholes
model has some drawbacks. The main is that it assumes a constant volatility. From
real market data of asset prices and options it is, however, known that the volatility
is generally not constant.

The Heston model [9] tackles this problem by using a second SDE to describe
the behavior of the volatility process. Under the risk-neutral measure the SDEs of
the Heston model are as follows:

dS(t) = S(t)rdt + S(t)
√

V (t)dW S(t),

dV(t) = κ (θ −V(t))dt +σ
√

V (t)dWV (t).

The asset price process is denoted by S, and V denotes the volatility process. The
latter process has the important property that it is always non-negative. Under
a certain condition, called the Feller condition, the origin cannot be obtained.
This is important for several mathematical results. However, this condition is
seldom satisfied in real-world applications. The Brownian motions W S and WV are
correlated, typically in a negative way. This implies that if the stock price falls, the
variance tends to increase and the market becomes more volatile.

The Heston model fits much better to the data observed in real markets and
provides more realistic results compared to the Black–Scholes model. On the other
hand analytic pricing formulas are known for simple European options. This is
especially important to calibrate the model and one of the reasons why the model is
so popular.

High-Performance Hardware Acceleration of Asset Simulations 7

Fig. 1 A modeled asset price path in the Heston model

Figure 1 shows a realization of an asset price path following the Heston SDE.
The erratic behavior is typical for most models and can be seen on the market.

2.2 The Multi-Level Monte Carlo Method

The price of an option is the discounted expected payoff of the option under the
risk-neutral measure. One can analytically calculate the price of a plain European
call or put option in the Heston model, i.e., E(e−rT ·max((S(T)−K),0)), where E

means the expectation value, T is the maturity time, and K the strike price. However,
for other options such as barrier options this is not the case. In these situations
numerical methods have to be used to estimate the expectation. There are several
methods available that fit best to different situations. To name the most popular
ones, these are finite difference method, the quadrature scheme, tree-based methods
such as binomial or trinomial trees, and the Monte Carlo method.

We will concentrate on the Monte Carlo method in this chapter. It is not always
the fastest method but very flexible and applicable to a wide range of applications.
The basic idea of the Monte Carlo method comes from the Law of Large Numbers.
To calculate EX for some random variable X , one has to simulate independent
realizations Xi of random variables with the same distribution as X . The mean value
of all results is an estimator for the expectation. The variance of the estimator is
depending on the variance of X and the number of simulations. The error introduced
by this is called the statistical error.

8 C. de Schryver et al.

Fig. 2 A simulated Heston path and its discretizations on two different levels

Using Monte Carlo methods for asset simulations in the Heston model, however,
leads to a problem: We cannot simulate S(T) directly in the Heston setting.
Therefore, the two SDEs are discretized and simulated. This introduces a second
type of error called the bias. The bias is a systematic error and can be decreased
by using more discretization steps. The plain Monte Carlo method now fixes the
number of time steps and simulates many paths with these number of time steps.
The chosen discretization has to be carefully selected, since it directly determines
the bias.

It arises a second difficulty in the discretization of the volatility process in the He-
ston model. As we have seen, the variance process is always non-negative. The
discretized version thereof, however, can become negative, if it is not adjusted. The
obvious adjustment of setting a negative value to zero has turned out to be ineffective
in general. More advanced schemes like the full truncation scheme that only set the
volatility to zero when it is used as an argument of sqrt() perform better [16].

Besides the discretization, the algorithm can be modified as well. The Multi-Level
Monte Carlo method, for example, uses a slightly different approach than the plain
Monte Carlo method. First, one simulates on a very coarse scale, that means with
only a few time steps. These coarse scale simulations can be computed very fast.
Then, iteratively, only the difference to the next finer level is simulated. Level in
this context means a finer discretization (see Fig. 2). The variance of the difference
is smaller and therefore less simulations on the finest level are needed compared to
the plain Monte Carlo method. This gain can be a lot bigger than the cost of the
additional simulations on the coarser levels. The benefits of the Multi-Level method
increase with the required precision.

High-Performance Hardware Acceleration of Asset Simulations 9

However, even though the Multi-Level Monte Carlo method is asymptotically
better, the benefit is not always present in practical situations. Therefore, one has
to be careful when to choose the method. In the Heston setting, a start level
optimization that determines whether to use plain or Multi-Level Monte Carlo is
mandatory. For more details about the Multi-Level Monte Carlo method and also
the different discretization schemes in the Heston model, refer to Marxen et al. [16].

2.3 The Need for Fair Metrics: A Benchmark Proposal
for Option Pricing with the Heston Model

Even though the Heston model is state-of-the-art and widely used in the financial
industry, hardware accelerator publications are rare in that field (see Sect. 3.1).
However, for the Black–Scholes model a lot of papers presenting sophisticated
hardware architectures based on different methods exist.

The presented speedups look very impressive and the designs are likely well
done. However, comparing the different implementations is a challenging task.
A variety of attributes like speed, accuracy, and energy consumption can be
considered. Furthermore, many different solutions are available in literature: not
only the implementation and the architecture vary but also the algorithm. It is in
many cases not clear by itself to which extent a speedup results from the employed
algorithm and from the implementation. In addition to that, it is not possible to
differentiate whether the presented algorithm or the implementation has the desired
properties only for a special set of parameters, or if it performs well in a more
general framework.

This challenge can only be bridged by using a unified benchmark set on
application level, that means for a specific problem solved with a certain model.
This application benchmark itself has to be independent of the algorithm and
the implementation used. Morris and Aubury [20] already claimed the need for
a benchmark for option pricing in 2007. By giving performance results for a
benchmark set, authors allow their work to be compared fairly with respect to certain
metrics without looking into details of the algorithm or the implementation.

In this section, we will describe our benchmark set for the application “pricing
European double barrier options with the Heston model” presented in 2011 [26].
The benchmark was developed in a joint work with the financial mathematics group
at the University of Kaiserslautern. It is freely available for download,1 and we
strongly encourage authors of future publications dealing with this problem to
use it and provide application-specific metrics and therefore to make their work
transparently comparable.

Twelve different settings for the Heston model, including parameter sets that have
to be considered to be important in literature already, are used for the benchmark.

1http://www.uni-kl.de/benchmarking.

http://www.uni-kl.de/benchmarking

10 C. de Schryver et al.

Table 1 One example of the benchmark parameters

Parameters for the κ θ σ r S0 V0 ρ
Heston model 2.75 0.035 0.425 0 100 0.0384 −0.4644

Option specific
parameters

Option type Strike Lower
barrier

Upper
barrier

Time to maturity (in years)

Double barrier
call

90 80 120 1

Price of the
option

5.7538 Precision 0.0001

They span a wide range of parameters observable on the markets. Our benchmark
consists of three different components:

• The parameter sets defining the current market situation, such as the current
volatility or the correlation between price and volatility

• The option parameters such as the type of option and the strike price
• The correct reference price or a good approximation thereof, together with a

reference precision

To allow a comparison on application level, we recommend to provide the
following metrics for all presented solutions:

• The consumed energy for pricing one option in joule/option
• The number of priced options per real time in options/second
• The numerical accuracy that is achieved by the proposed design, compared to the

presented benchmark results
• The consumed area on chip for hardware architectures (slices, LUTs or mm2 on

silicon)

Table 1 exemplarily shows one of the twelve cases from the benchmark set [26].
The focus is not only on double barrier calls, but also on other types of options such
as puts and digital calls are included.

In this section, we have briefly introduced our terminology, the Heston model,
and the Multi-Level Monte Carlo method that we use in our hardware implementa-
tion described in Sect. 3, together with a benchmark set that allows to fairly compare
different implementation on application level.

The key for Monte Carlo methods is a huge amount of high-quality random
numbers. For hardware architectures, we therefore require efficient architectures
for in our case non-uniform random numbers. We present suitable architectures for
this task in Sect. 4. The next sections shows our proposed design for FPGA-based
acceleration of option pricing in the Heston model.

High-Performance Hardware Acceleration of Asset Simulations 11

3 Hardware Architectures for Asset Simulations

This section gives a short overview of the available FPGA implementations for op-
tion pricing. In the second part, we present an energy efficient FPGA architecture for
this problem, together with detailed measured numbers for energy and throughput.

3.1 Related Work

Although the Heston model including its varieties (for example, the Heston–Hull–
White model or the Heston model with additional jumps) is currently state-of-the-art
in the financial industry [2, 11], the first GPU accelerators for solving this model
have been presented just in 2010.

Zhang and Oosterlee have used the Fourier-Cosine Series Expansions (COS)
method for multiple strike European and Bermudan option pricing in the Heston
model on a NVIDIA GeForce 9800 GX2 GPU [40]. Compared to an Intel Core2Duo
E6550@2.33 GHz CPU, they could achieve speedups between 10 and 100 for
multiple strike European options, depending on the form of the characteristic
function and on the number of strikes computed simultaneously.

Bernemann et al. have put the random number and path generation for Monte
Carlo simulations on a Nvidia GPU, using a hybrid CPU-GPU option pricing system
on top of the C++ QuantLib [23]. They could achieve up to 340 Gflops on a Nvidia
Tesla C1060 GPU, compared to the maximum of about 11 Gflops given by a multi-
threaded C++ implementation with SSE2 running on an Intel Xeon E5620@2.4
GHz [2]. Energy measurements are not provided in this work.

Based on this setup, investigations for exotic option pricing and Heston model
calibration have been presented in 2011 [3]. Here Bernemann et al. have achieved
a speedup between 10 and 50 for option pricing in the Heston model and 4–25 for
simulations in the Heston–Hull–White model using a Hybrid Taus random number
generator (RNG). The results are similar for a Mersenne Twister. For the Heston
model calibration, they achieve a speedup between 15 and 50 with pseudo random
numbers and 15–35 with quasi-random Sobol sequences, depending on the number
of underlyings.

For option pricing in the Black–Scholes model, several FPGA architectures have
been published in the last years [1,5,10,33,34,38]. These works show the wide range
of potential speedups for FPGA-based accelerators, from 10 to more than 100.

In the last years, commercial FPGA systems have emerged for financial domain
specific acceleration. Maxeler Technologies2 offers hardware and software solution
bundles for financial computing. They provide Xilinx Virtex-6 based platforms for
professional server environments and desktop workstations. Their MaxCompiler for

2www.maxeler.com.

www.maxeler.com

12 C. de Schryver et al.

general purpose applications takes Java code and splits it into parts that remain
on the host CPU and accelerated kernels executed on the FPGAs. The FPGA
programming, including all the glue and interface logic, is done automatically.

Based on this system, the Maxeler CEO Oscar Mencer et al. presented speedup
results for a single-asset Monte Carlo option pricer based on the Heston model with
additional price jumps at the IEEE Workshop on High Performance Computational
Finance (WHPCF) in November 2011. They have used a professional Maxeler
MaxNode system with four MAX3 FPGA cards and could achieve a speedup
of more than 100× over a 12 thread CPU version running on two Intel Xeon
X5650@2.67 GHz CPUs [18]. Energy aspects have not been considered in this
work.

Further available commercial systems are Wall Street FPGA,3 Compaan Design,4

and Impulse Accelerated Technologies.5

Wall Street FPGA uses National Instruments’ LabView to bring a Monte Carlo-
based European call option pricer on a Xilinx Virtex-5 FPGA [29, 30]. They
state that their FPGA accelerated implementation is 131 times faster than the
reference software running on an Alienware Area-51 7500 Dual Core CPU@3.0
GHz. Another application field for Maxeler is oil & gas exploration.

Impulse Accelerated Technologies and Compaan Design do not provide finance
specific tools or benchmarks and cover a much wider application range.

3.2 A Multi-Level Monte Carlo Accelerator for Option Pricing
with the Heston Model

In this section, we describe our dedicated FPGA accelerator architecture for pricing
European double barrier options in the Heston model presented at ReConFig 2011
[25]. We give an overview about the architecture and provide detailed synthesis,
performance, and energy results for a hybrid CPU-FPGA setup.

3.2.1 Architecture

By designing our FPGA-based accelerator, we wanted to achieve the maximum
performance together with a minimal energy consumption. On the other hand, not all
parts of the pricing process described in Sect. 2.1 are suitable for being implemented
in hardware. For example, mathematical operations like exp() or / that are only
needed for the final payoff computation would use up a lot of hardware resources,
but could not contribute very much to increase the overall simulation speed.

3www.wallstreetfpga.com.
4www.compaandesign.com.
5www.impulseaccelerated.com.

www.wallstreetfpga.com
www.compaandesign.com
www.impulseaccelerated.com

High-Performance Hardware Acceleration of Asset Simulations 13

Therefore we have decided to chose a hardware–software partitioning scheme that
only brings those parts of the computation to hardware that are mainly data-flow
oriented and use up most of the simulation time. We call these parts compute-
intensive kernels. Complex mathematical operations or control driven parts remain
on the host-CPU. This partitioning approach is also used by a number of authors
proposing related accelerator designs [2, 3].

In particular, we have decided to chose the following partition for our
implementation:

• The random number generation, the path simulation, and the barrier checking are
ported to the FPGA. These kernels can be conveniently executed in parallel for
different paths and return the final price for each path.

• The final path prices are transmitted to the host over USB. We have used the FTDI
FT2232H interface module with a top average throughput of measured 6 MB/s.

• The reduction of all path results and the payoff computation remain on the
host CPU.

For the random number generation, we have used a Tausworthe 88 uniform
RNG together with our conversion unit described in Sect. 4.2.2. Since it provides
a stream interface with handshaking, it can stall the rest of the design easily if
no random number is present in the current clock cycle. However, any kind of
uniform RNG may be used together with this converter. For example, interleaved
parallel Mersenne Twisters as described in Sect. 4.1 that independent streams of
random numbers from a single generator unit seem to be especially beneficial for
high-quality multi-accelerator setups. Nevertheless, by simulating our benchmark
introduced in Sect. 2.3 we have ensured that three Tausworthe 88 instances with
independent seeds provide sufficient randomness for our application (see results in
Sect. 3.2.2).

Our hardware has been implemented on a Xilinx ML-507 evaluation kit with a
Virtex-5 XC5VFX70T FPGA. It uses single precision floating point units generated
with the Xilinx CoreGen tool.

We have decided to use a similar approach to the automatically generated designs
proposed by Thomas et al. [31]. However, we use our own host interface framework
on top of the USB connection that allows to transparently read and write registers
and data streams from a software application. Therefore we do not require a bus,
but directly use a handshake-driven stream interface for the output prices and
registers for the parametrization. Our protocol allows to dynamically reconfigure the
accelerator parameters for the Monte Carlo simulation, the market and the option at
runtime.

Our hardware design mainly consists of two parts: the control logic and the actual
data path. In order to bring up the clock frequency to the maximum, our data path
implementation is maximally pipelined. To get rid of additional control logic and to
provide maximum scalability, we have decided to use a packet-based concept in our
design:

14 C. de Schryver et al.

Random Number Generator

Control
Logic

Data Path Queue

Interface to PC

Fig. 3 High-level
architecture of our hardware
implementation

• Each packet describes the current state of a single path, including the price,
volatility, step number, and a validity flag. Instead of having complex early
termination strategies for paths that have hit a barrier, we change the status of
those packets to dummy packets by clearing the validity flag. These packets
remain in the processing pipeline, which decreases the throughput to some extent,
but at the same time drastically reduces the hardware complexity.

• The data path is a pipeline that computes price and volatility for the next step
and performs the barrier checking (see Sect. 2.1). It consumes one packet and
produces another one in every clock cycle.

• The pipeline latency with 32-bit single precision floating point numbers is 60.
This means that at every clock cycle, the pipeline outputs a packet that was sent
to it 60 cycles earlier.

• When a packet goes through the pipeline, its contents are updated according to
the selected algorithm for solving the Heston model, that is full truncation with
antithetic variance reduction in our case (see Sect. 2.1).

Figure 3 shows the structure of our design and the interaction between the data
path, a queue and the control logic. The queue buffers all packets coming out of
the data path for future processing or final transmission to the host. This decision is
made by the control logic. The depth of the queue has to be greater than the pipeline
length of the data path, which is 60 in our case. We therefore have exploited the
maximum depth of a BRAM36 slice from the target Virtex-5 device for the queue.
It is important to note that the data path block is only made up of simple pipelined
floating point cores, uses handshake-driven stream interfaces, and does not require
support for any stall signals.

The role of the control logic is to act as a broker between the RNG, the data path
and the host system. It follows the following set of rules:

• If the amount of created packets is less than the queue size, a new path is created.
• If enough packets are active, the control logic checks if a packet is available from

the queue.
• If the queue contains a packet, its step number is checked. If the control logic

sees that it was the last step, the final price is sent to the host, and a new packet
is created. If not, the packet is resent to the pipeline along with a new pair of
random numbers.

High-Performance Hardware Acceleration of Asset Simulations 15

Table 2 Single precision floating point components in the data path

Component Adders Multipliers Subtractors sqrt()

Heston step generator 4 6 2 1
Barrier checker 1 1 1 0

The control logic has been implemented equivalently in a bit-true software
model to allow easy testing of the design. Together with a bit-true model of
the hardware RNG, each hardware component can be validated against the
software reference independently. As the processing order of the packets does not
depend on interface delays, this ensured bit-by-bit equivalence between software
and hardware results.

The decomposition between the control logic and the data path further con-
tributes to the reduction of the validation effort:

• The pipeline can be tested separately from the control logic, only considering the
floating point operations.

• The control logic can be checked on its own by using a dummy pipeline that only
counts the steps and has no floating point logic inside at all.

The internal structure of our pipeline is similar to the GARCH example presented
by Thomas et al. [31], but includes the Heston specific modifications. Table 2 shows
the number of floating point units in the Heston step generator part of the pipeline
(that generates successive values for price and volatility) and the subsequent barrier
checking.

We have used THDL++, a high-level approach for HDL design together with
the free VisualHDL tool for the development.6 For this task, the VisualHDL
tool has been enhanced by a data path pipeline designer plugin that is shown in
Fig. 4. It allows creating a data path by just dragging-and-dropping operations and
connecting them from the inputs in the upper part of the screenshot to the output at
the bottom.

3.2.2 Results

All synthesis results have been generated for a Xilinx Virtex-5 XC5VFX70T
device (as on the ML-507 evaluation board) with the Xilinx ISE Design Suite 13.1.
The results have been optimized for speed, are post place & route, and include the
host interface logic. Although Xilinx is currently releasing the Virtex-7 family, no
evaluation kits are available at the moment. Therefore we use the ML-507 kit in
order to provide system level results for speed and energy (for all details refer to de
Schryver et al. [25]).

Table 3 shows the number and percentage of resources used for two different
corner scenarios: Using no DSP slices in the dataflow at all (the one remaining is

6visualhdl.sysprogs.org.

visualhdl.sysprogs.org

16 C. de Schryver et al.

Fig. 4 VisualPipeline plugin editing the Heston barrier checker

Table 3 Synthesis results for one instance on a Virtex-5

Minimum DSP usage Maximum DSP usage

Number Percentage (%) Number Percentage (%)

Slices 4,862 43 2,497 22
LUTs 11,382 25 5,481 12
Flip-flops 13,530 30 6,950 15
LUT-FF pairs 15,041 33 8,176 18
DSP48E slices 1 1 43 33
BRAM36 slices 5 3 5 3

Max. frequency 102 MHz 100 MHz

occupied by the RNG from [24]) and using the maximum amount of DSP slices,
depending on the Xilinx CoreGen settings.

From Table 3 we see that (without the triple interface logic) in total three
instances can be put on a single XC5VFX70T device. We assume a three-instance
FPGA accelerator for the following considerations. A Virtex-7 device would provide
enough space for several hundreds of accelerator instances.

High-Performance Hardware Acceleration of Asset Simulations 17

Table 4 Speed and energy results for the laptop-FPGA setup

Laptop only Laptop + FPGA Factor (laptop/FPGA)

Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy

32 56 76.31 4 5.38 13.88 14.20
64 116 79.75 8 5.38 14.50 14.84
128 230 79.06 9 3.14 24.64 25.22
256 465 79.84 18 2.46 25.81 32.44
1,024 1,852 79.56 72 2.47 25.60 32.18
4,096 7,344 78.89 287 2.46 25.56 32.13

Average 78.90 3.55 21.66 25.17

Since the host CPU in the hybrid CPU-FPGA setup only computes the final
payoff and performs the communication with the ML-507 board, we have chosen
to use a low-power laptop as host: a Fujitsu Siemens Lifebook E8410 with an Intel
Core 2 Duo T7250@2.0 GHz and 2 GB RAM, running Windows 7 Professional
SP1 64 Bit. In the idle state, the laptop itself consumes around 20 W.

Detailed measured numbers for runtimes and energy consumptions in this setting
are given in Table 4, with and without FPGA acceleration. In each case, ten millions
of paths have been computed.

For the software-only simulations, it can be seen that the measured real time and
consumed energy are linearly related to the number of time steps in the simulation.
This is not surprising, since the power consumption of the laptop with the CPU
fully loaded remains constantly 44 W. In this case, the idle power consumption of
the FPGA board has not been included in the measurements.

Measuring the hybrid setup, the FPGA board with an idle power consumption
of 9 W has been added to the 20 W of the laptop, so that we are talking about a
29 W idle load in total. In this setting Table 4 shows that the energy per step is much
higher for small numbers of time steps (32–128). For 32 and 64 time steps, we
have measured a power consumption of 40 W during the simulations for the whole
system. For 256 and more steps, it remained constant 35 W.

The explanation for this observation is that the host-to-board interface provides
a limited bandwidth. The host CPU also runs the tasks for communicating with the
FPGA board, so that the amount of energy used for communication is very high
for small step sizes, compared to the total energy consumed for one simulation. For
more than 256 step sizes, the computations on the FPGA take enough time, so that
the interface is no longer the limiting factor.

Table 4 also clearly shows that the average speedup of the hybrid system
compared the the CPU-only scenario is 21 times in average, by only consuming
4% of energy per simulation.

Nowadays, financial simulations are performed on high-end CPU and GPU
clusters. To give a fair comparison of our design to the state-of-the-art, we have
implemented our Monte Carlo algorithm on a Nvidia Tesla C2050 graphics card.
Preliminary work in our group has shown that the performance loss of using
OpenCL is insignificant compared to CUDA. Thus, for the reason of higher
flexibility, we have coded our accelerator in OpenCL.

18 C. de Schryver et al.

Table 5 Speed and energy results for the server-GPU setup

Server only GPU accelerated Factor (server/GPU)

Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy

32 5 29.06 0.95 9.22 5.25 3.15
64 10 29.06 1.88 9.09 5.33 3.20
128 21 30.88 3.74 9.05 5.69 3.41
256 41 29.97 7.43 9.00 5.55 3.33
1,024 166 30.20 29.68 8.99 5.60 3.36
4,096 660 29.97 118.46 8.97 5.57 3.34
Average 29.86 9.05 5.50 3.30

The Tesla GPU is hosted by a FluiDyna TWS 1xC2050-1xIQ-8 server work-
station with an Intel Xeon CPU W3550@3.07 GHz and 8 GB RAM running
OpenSuSE Linux 11.4 64 bit with Kernel 2.6.37.6-0.5-default (referred to as server
in the following). The CPU provides four physical cores with hyperthreading, so
that we can count them as eight cores. The idle power consumption for the server
is 87 W without the GPU, and 148 W on average with the Tesla card plugged in.
As in the laptop-FPGA setting, we have removed the GPU for all software-only
measurements.

With the CPU fully loaded (but without the GPU), the server system consumes
186 W in average. If we run the simulations with full load on the GPU, the CPU still
has to compute the payoff at the end of all Monte Carlo simulations. In this case,
the overall power consumption of system is 310 W.

In Table 5 we see all measured runtime and energy results for the server-GPU
setting. Again, we provide the numbers for a software only run on the virtual eight
cores of the server and for the fully loaded GPU setup. We see that on average the
simulations on the GPU run 5.5 times faster than the CPU-only simulations, by only
requiring one third of the energy per simulation. Furthermore, Table 5 shows that the
speedup and energy factors remain constant over different time steps. Therefore we
conclude that in this setting with the fast PCIe connection of the GPU the interface
is not a bottleneck, in contrast to the laptop-FPGA setup.

To provide a unified comparison of our four simulation setups including the GPU
and FPGA accelerators, we have normalized the speedup and energy factors to the
fully loaded 8-core server.

As mentioned above, the Virtex-5 device that we use is no longer state of the
art, and the overhead of the ML-507 board for the idle energy consumption is
immense. The complete board consumes 9 W in the idle mode, and not more than
10 W with the FPGA running. To obtain a power estimation for the FPGA itself, we
used the Xilinx XPower Estimator [39] that gave an upper bound of less than 3 W
for our design. The energy efficiency of the system could therefore be drastically
increased by using optimized boards without peripherals, hosting several FPGAs
with a tailored power supply.

To provide an estimation of potential energy savings, we have constructed the
FPGA chip only scenario that assumes the 3 W from the XPower Estimator, with

High-Performance Hardware Acceleration of Asset Simulations 19

a b

Fig. 5 Speedup and energy factors compared to the fully loaded 8-core server. (a) Average
speedup factors (b) Average energy factors

the payoff computation that is currently performed on the host CPU implemented
on the Virtex-5’s hardwired PowerPC core. On the recent Xilinx Zynq platform, this
part could be computed on the ARM cores.

Figure 5a illustrates the different throughputs of our implementations and the
speedups compared to the eight-core software reference. It is obvious that the state-
of-the-art Tesla C2050 outperforms all other implementations with respect to speed.
However, even our (at least for HPC applications) obsolete Virtex-5 device running
three accelerator instances achieves around 35% of the simulation speed of the
Tesla C2050. With possible several hundreds of accelerators on a Virtex-7 device,
apparently FPGAs have a huge potential to speed up Monte Carlo simulations for
state-of-the-art option pricing.

Considering the consumed energy per simulation as shown in Fig. 5b, the FPGA
setup clearly beats all other architectures. The measured laptop-FPGA setup only
needs 12% of the energy compared to the eight-core server reference, and around
40% of the energy of the Tesla C2050 GPU. The laptop-only run consumes 2.5
times more energy than the server reference, which is not surprising due to the bad
ratio of CPU performance contributing to the simulation and devices that consume
energy but are not needed for the actual computations.

For both speed and energy comparison, we have used the average factors from
the bottom line of Tables 4 and 5. The benefit of the FPGA accelerated setup is even
higher if considering only 128 or more time steps per simulation and therefore going
out of the interface bottleneck.

The FPGA chip only scenario highlights the enormous potential of FPGAs for
energy efficient option pricing. It forecasts only 0.8% of energy per simulation,
compared to the server reference, with a double throughput at the same time.
A system with three FPGAs running three accelerators on each FPGA would achieve

20 C. de Schryver et al.

the same throughput as the Tesla 2050 GPU, but only consume less than 3% of the
energy. This clearly shows that FPGAs can help to reduce the energy consumed in
financial simulations by orders of magnitude.

In the next section, we will give detailed insight into one core element underlying
all Monte Carlo simulations: the random number generation.

4 Hardware Efficient Random Number Generation

Monte Carlo simulations rely on a huge amount of high quality random numbers, in
general with non-uniform distributions. Asset price simulations in particular require
normally distributed random numbers.

Non-uniformly distributed random numbers are usually generated in two steps:

1. The creation of uniformly distributed random numbers with good statistical
properties and

2. A conversion step that transforms this numbers into the desired target
distribution.

Since these two steps are not linked to each other, they have been investigated rather
independently in research up to now. A comprehensive overview of the available
methods for Gaussian random number generation up to 2007 has been given by
Thomas et al. [32].

To obtain meaningful simulation results, a high quality of the employed random
numbers is absolutely crucial. For uniform RNGs, standardized and approved test
suites exist, for example the TestU01 suite from L’Ecuyer and Simard [12]. Non-
uniform RNGs require manual investigations to quantify the quality of the output
distribution. In Sect. 4.2.2 we show which tests provide meaningful results for
this task.

4.1 Uniform Random Number Generation

Pseudo random number generators (PRNGs) are widely used for simulation pur-
poses. In contrast to true RNGs where the randomness comes from a physical
process, for instance, radioactive decay, PRNGs are based on mathematical algo-
rithms that yield deterministic number streams. This deterministic behavior makes it
possible to obtain repeatable simulation results. In addition to that, common PRNGs
are able to produce numbers much faster than true RNGs. The quality of PRNGs is
described among others by the following attributes:

1. Quality of the desired uniform distribution (k-distribution [17])
2. Period length of the generator
3. Memory consumption

High-Performance Hardware Acceleration of Asset Simulations 21

Fig. 6 Schematic view on
the Mersenne Twister
algorithm. Blocks R and T
realize the linear recurrence
and tempering, respectively

The “uniformness” of the generated number streams and the period length of the
generator directly influence the simulation results. A highly uniform distribution
indicates good randomness, as does a long period length.

State-of-the-art PRNGs used in software engineering offer extremely long period
lengths, and, therefore, good statistical properties of the generated random numbers
(RNs). Examples are the WELL [22] and Mersenne Twister [17] generators (see
schematic in Fig. 6). They are based on the generalized feedback shift register
(GFSR) concept proposed by Lewis and Pane [15]. Parallel Monte Carlo simulations
require independent parallel random number streams. An approach to generate
multiple random numbers in parallel with the Mersenne Twister generator is shown
in the next section.

4.1.1 Interleaved Parallelized Mersenne Twister

Dalal and Stefan have described two methodologies for parallelizing GFSR-
generators in 2008 [7]. The Interleaved Parallelization interleaves the state vector
over a number of memory banks. With Chunked Parallelization the state vector is
split into chunks of different sizes. Both methodologies allow for a high degree of
flexibility and parallelism, we focus on the Interleaved Parallelization scheme here.

The recurrences of a GSFR occur at constant offsets (1 and m in the case of
Mersenne Twister). Thus, if multiple memory banks holding the interleaved n-word
state vector are utilized, multiple pseudo random numbers can be generated in
parallel. Interleaving the state vector across β -memory banks gives the following
possibilities:

1. β is a factor of n (i.e. β mod n = 0)
2. β is not a factor of n

In case 1 all memory banks would contain n
β words, while in the latter case

one memory bank would contain less words than the other memory banks. Any
recurrence addresses [(j+mi) mod n] that initially pointed to such a memory bank
for j+Mi < N would point to a different memory bank for j+Mi ≥ N. This leads
to inefficient hardware architectures because additional conditional routing logic

22 C. de Schryver et al.

Fig. 7 Example of a 4-IP MT19337 (n = 624, m = 397). Blocks R and T realize the linear
recurrence and tempering, respectively

(multiplexers) would be required. Thus, for efficient interleaved parallelizations, β
should be a factor of n. This limitation is not too strict as, for example, for the
Mersenne Twister MT19937 n factorizes as 624 = 13 ∗ 3 ∗ 2 ∗ 2 ∗ 2 ∗ 2. The state
vector is interleaved across the β memory banks as follows: each bank bi (0 ≤
i < β) contains the N

β state vector word indices satisfying j mod β = i, while the
corresponding recurrences are found in banks corresponding to (j+Mi) mod β . The
memory banks can now supplement the inputs concurrently to multiple Recurrence
Units, each implementing the recurrence equation. A Mersenne Twister generator
with Interleaved Parallelization is enabled to produce β random numbers in parallel.
Figure 7 illustrates the interleaved parallelization scheme on the example of a 4-IP
Mersenne Twister MT19937.

4.1.2 Implementation Properties

We provide comparable synthesis results for several configurations of each imple-
mented model in this section. Synthesis of the implementation models has been
performed for the Virtex-5 FPGA (XC5VFX70T, package: FF1136, speed: -2) by
Xilinx. The optimization goal for the synthesis process (xst) was set to the default
value (speed), as well as the optimization effort switch (default: 1). Place & route
(par) of the Mersenne Twister implementations was performed with the optimization
strategy configured towards reducing the consumed area, with the effort level set to
high.

Selected post place & route synthesis results for the interleaved parallelized
Mersenen Twister implementations along with synthesis data provided in the paper
by Dalal and Stefan are listed in Table 6. Taking into consideration that the internal
structure was not yet optimized with regard to area and block RAM utilization, the
results are satisfying. With future optimizations, like buffering all near recurrences,
the throughput of our design can be doubled. Additional buffering can also save one
block RAM, which would make the performance of the designs comparable to the
reference.

High-Performance Hardware Acceleration of Asset Simulations 23

Table 6 Post place and route synthesis results for various parameter configurations of the
IP Mersenne Twister implementation model

Max. throughput
Name Used RAMs Used slices Max. freq [MHz] [106 samples

second] Target

2 IP 3 142 243 243 Virtex 5
3 IP 4 157 242 363
4 IP 5 177 232 464

2 IPa 2 159 349 698 Virtex II
3 IPa 3 222 265 795
4 IPa 4 290 277 1,108
aTaken from Dalal and Stefan 2008 [7]

4.2 Obtaining Non-uniform Distributions

Non-uniform distributions are, in general, generated out of uniformly distributed
random numbers by application of appropriate conversion methods. State-of-the
art conversion methods are based on one of the four mechanisms categorized by
Thomas and Luk in 2007 [32]:

• Transformation (mathematical functions that provide a relation between the
uniform and the desired target distribution),

• Rejection sampling (very high accuracy, but introduces unpredictable stalling by
discarding several input numbers),

• Recursion (linear combinations of originally normally distributed random num-
bers), and

• Inversion.

The inversion method applies the inverse cumulative distribution function (ICDF)
of the target distribution to uniformly distributed random numbers. It is the most
genuine method to obtain non-uniform numbers, since it preserves the properties of
the input sample sequence [11]. A piecewise approximation of the ICDF is the basis
of hardware implementations of inversion-based converters, where the coefficients
for various sampling points are stored in lookup tables (LUTs).

The Gaussian ICDF is symmetric at x = 0.5. Therefore, it is sufficient to
implement a converter for only one half of the ICDF and to use one input bit as
a sign bit to determine which half. The range (0,0.5), for example, is divided into
non-equidistant segments with doubling segment sizes from the beginning of the
interval to the end of the interval. Those segments are then subdivided into segments
of equal size. Thus, the steep region of the ICDF (near zero) is covered by more
segments than the more linear region close to 0.5. The inversion is performed by
determining in which segment the input x is contained, retrieving the coefficients
ci of the polynomial for this segment from an LUT and evaluate the polynomial
y = ∑ci · xi.

24 C. de Schryver et al.

k

0

Fig. 8 ICDF lookup architecture presented by Cheung et al. [6]

4.2.1 Related Work

Hardware architectures for ICDF converters using hierarchical segmentation
schemes have, for example, been presented by Cheung et al. [6] and Luk et al.
[13, 14]. Figure 8 shows the architecture presented by Cheung et al. in 2007.

It illustrates how the number of the segment (i.e., the address for the LUT) in
which a given input x in fixed point representation is located can be determined.
First, the number LZ of leading zeros in the binary representation of x is counted.
Numbers starting with a 1 lie in the segment [0.25, 0.5), numbers starting with the
sequence 01 lie in the segment [0.125, 0.25) and so forth. The input x is shifted left
by LZ + 1 bits, such that xsig is the bit sequence following the most significant 1-bit
in x. The equally spaced subsegments are determined by the k most significant bits
(MSBs) of xsig. Thus, the LUT address is the concatenation of LZ and MSBk (xsig).
The remaining bits of xsig are then used to evaluate the approximating polynomial
for the ICDF in that segment.

High-Performance Hardware Acceleration of Asset Simulations 25

However, this architecture has a number of drawbacks:

• More than one uniform RNGs needed for a large output range. Due to the fixed
point implementation, the output range is limited by the available number of input
bits.

• Many input bits are wasted. For example, a multiplier with a 53-bit input for the
linear approximation requires a large amount of hardware resources. Therefore,
the input is quantified to 20 significant bits before the polynomial evaluation.
Thus, in the region close to the 0.5 a large amount of the generated input bits is
just not used, but discarded by this architecture.

• Low resolution in the tail region. For the tail region (close to 0), there are no
longer 20 significant bits available after shifting over the leading zeros (LZ).
Thus, the tail resolution is limited. In fact, since there are no values between
2−53 and 2−52 in this fixed point representation, this architecture can not generate
output samples between icd f (2−52) = 8.13σ and icd f (2−53) = 8.21σ .

4.2.2 A Hardware Efficient Hardware Architecture for Non-uniform
Distributions

To overcome the problems illustrated in Sect. 4.2.1, we propose to use a floating
point based approach for the ICDF converter [24, 28].

The Floating Point Approach

In addition to the architecture shown in Fig. 8, we transform the uniformly dis-
tributed input RN sequences into floating point numbers. Figure 9 shows that for
this step no floating point arithmetic units are used. The unit logically divides the
input bit vector into the sign half bit (that determines which half of the Gaussian
ICDF to use), the exponent part and the mantissa part. sign half and the mantissa
are just mirrored at the output. The mantissa part is mantbw bits width and, therefore,
(with a hidden bit) can have the values 1,1+ 1

2mantbw
,1+ 2

2mantbw
, . . . ,2− 1

2mantbw
. The

output exponent part contains the number of leading zeros in its corresponding input
section. If the input exponent section contains only zeros, another sample is taken
and the number of zeros is accumulated, until a one occurs or the independently
adjustable output range is exceeded. Thus, we can create arbitrary output precision
with our approach, not relying on fixed uniform input bit vector sizes. Any uniform
RNG can be used to generate inputs for this floating point converter unit.

We have carefully validated that the originally provided randomness and distribu-
tion of the input random numbers are preserved [24,28] by applying the standardized
TestU01 test suite [12]. With a MT19337 Mersenne Twister RNG as input, the
output of the uniform floating point generator passed all tests except those, that the
MT19337 is known to fail itself. Thus, we conclude that our floating point converter
unit maintains all the properties of the input RNs.

26 C. de Schryver et al.

0

Fig. 9 Architecture of the proposed floating point converter unit

Table 7 Synthesis results for the proposed inversion based converter
architecture

Slices FFs LUTs BRAMs DSP48E

Floating point converter 13 11 26 − −
LUT evaluator 18 47 7 1 1
Complete design 31 85 34 1 1

Figure 10 illustrates the corresponding ICDF lookup unit. In contrast to the
proposed architecture by Cheung et al., we do no longer need the shifter, but directly
rely on the provided exponent and mantissa values.

With optimized bit widths for the Virtex-5 DSP48E slice that supports a 18 ∗
25 bit+48 bit MAC operation, the parameters are as follows: input bitwidth m= 32,
mant bw = 20, max exp = 54, and k = 3 for subsegment addressing. The coefficient
c0 is quantized to 46 bits, c1 has 23 bits.

Table 7 shows the resource consumption for the proposed architecture. We have
used the Xilinx ISE 12.4 suite and the target device Xilinx Virtex-5 XC5FX70T-3.
All provided results are post place & route. In total, our architecture saves more than
48% of the area compared to the design proposed by Cheung et al. [6], by providing
a higher output resolution at the same time. It can run up to 286 MHz.

High-Performance Hardware Acceleration of Asset Simulations 27

f

k w - k

0 1

d MAC

w

O

Fig. 10 The corresponding ICDF lookup unit for floating point inputs

For the convenience of the users who like to make use of our proposed
architecture, we have developed a flexible C++ class package that creates the LUT
entries for any desired distribution function. It is freely available for download.7

Quality Checking

For the normally distributed output of our unit, we have carried out intensive statistic
analysis manually to verify the quality of the results. Several χ2-tests have been
applied that compare the empirical number of observations in several groups with
the theoretical number of observations. The Kolmogorov–Smirnov test compares
the empirical and the theoretical cumulative distribution function. We have also
carried out this test on our results, and nearly all tests with different batch sizes
were perfectly passed. Those that did not pass did not reveal an extraordinary P
value.

Figures 11 and 12 illustrate the difference in the tail region between our proposed
architecture and the standard R RNG. The random numbers of our generator seem
to have the same distribution as the standard random numbers, with an exception of
the reduced precision in the central region and an improved precision in the extreme
values. It can be seen that our architecture achieves higher extreme values in the tail
region compared to the R RNG. The smallest value from our floating point-based
approach is 1 · 2−54, compared to 1 · 2−32 in standard RNGs. For that reason our

7http://ems.eit.uni-kl.de/fileadmin/downloads/icdf lut tool.tgz.

http://ems.eit.uni-kl.de/fileadmin/downloads/icdf_lut_tool.tgz

28 C. de Schryver et al.

3.5

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

4.0

2^20 normal RNs, 240710, extreme values

4.5

x

dn
or

m
(x

)

5.0

Fig. 11 Tail of the empirical distribution function produced by the proposed architecture

architecture can produce values of −8.37σ and 8.37σ . Therefore we expect our
design to perform very well in the case of simulations rare extreme events can have
a huge impact (consider risk simulations for insurances, for example).

In addition to the statistical investigations, a bit-true model of the Gaussian
RNG has been validated in two application tests for practical scenarios: In an
GNU Octave-based Monte Carlo simulation for option price modeling based on
the Heston model, the Octave RNG randn() was replaced by the bit true model of
the proposed hardware architecture. The same convergence behavior was observed
and the same results were obtained, both for options with and without barriers.

Together with the accelerator structure shown in Sect. 3.2, our presented RNG
architecture allows to build up very hardware efficient FPGA accelerators for asset
simulations based Monte Carlo simulations.

High-Performance Hardware Acceleration of Asset Simulations 29

3.5

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

4.0

2^20 normal R-RNs, extreme values

4.5

xR

dn
or

m
(x

R
)

5.0

Fig. 12 Tail of the empirical distribution function for the R RNG

5 Conclusion

The increasing complexity of financial products and the need for more frequent
simulation runs and higher accuracy have boosted the energy consumption con-
tinuously over time. Nowadays, inefficient standard CPUs and GPUs are still
prevailing to perform very specific number crunching operations that fit much
better to dedicated accelerators. In this chapter we show that optimized hardware
architectures clearly outperform general purpose CPUs and GPUs with respect to
energy efficiency. For the application “pricing European double barrier options in
the Heston model” we present a dedicated FPGA architecture based on the advanced
Multi-Level Monte Carlo method. This method (like all Monte Carlo method)
strongly relies on high-quality random numbers with a Gaussian distribution. We
illustrate how these numbers can be efficiently generated in hardware with an ICDF-
based converter tool. This tool allows to produce random numbers with arbitrary

30 C. de Schryver et al.

output distributions and precisions. On top of this RNG, we have built a dedicated
FPGA circuit for asset path simulations based on the Heston model. Together with
a pricing engine running on the host CPU and the path simulation performed on a
Xilinx Virtex-5 FPGA, we show that this hybrid CPU-FPGA system consumes only
around 12% of the energy of an eight-core CPU-only system, providing twice the
throughput. Compared to a state-of-the-art Nvidia Tesla C2050 GPU, this system
achieves 35% of the simulation speed by consuming around 40% of the energy.
However, an extrapolation with the path simulation and the pricing running on
three FPGAs predicts that a pure FPGA accelerator can save incredible 97% of the
energy compared to a Nvidia Tesla C2050 GPU, providing the same throughput. In
addition, FPGAs are flexible devices that can be reconfigured for different pricing
tasks quickly, allowing to dynamically instantiate different accelerator designs for
the computation of various products. This clearly highlights the enormous potential
for energy saving of FPGAs for financial simulations.

References

1. T. Becker, Q. Jin, W. Luk, S. Weston, Dynamic constant reconfiguration for explicit finite
difference option pricing, in 2011 International Conference on Reconfigurable Computing and
FPGAs (ReConFig) (IEEE Computer Society, Los Alamitos, USA, 2011), pp. 176–181. ISBN-
13: 978-0-7695-4551-6. doi:10.1109/ReConFig.2011.29

2. A. Bernemann, R. Schreyer, K. Spanderen, Pricing structured equity products on GPUs, in
2010 IEEE Workshop on High Performance Computational Finance (WHPCF) (IEEE, Red
Hook, USA, 2010), pp. 1–7. ISBN: 978-1-4244-9061-5. doi:10.1109/WHPCF.2010.5671821

3. A. Bernemann, R. Schreyer, K. Spanderen, Accelerating exotic option pricing and model
calibration using GPUs (2011), http://ssrn.com/abstract=1753596. Accessed 28th January 2013

4. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654 (1973)

5. G. Chatziparaskevas, A. Brokalakis, I. Papaefstathiou, An FPGA-based parallel processor
for Black-Scholes option pricing using finite differences schemes, in Proceedings of Design,
Automation and Test in Europe, 2012 (DATE ’12), EDAA (2012), ISBN: 978-3-9810801-6

6. R.C.C. Cheung, D.U. Lee, W. Luk, J.D. Villasenor, Hardware generation of arbitrary random
number distributions from uniform distributions via the inversion method. IEEE Trans. Very
Large Scale Integrat. (VLSI) Syst. 15(8), 952–962 (2007). doi:10.1109/TVLSI.2007.900748,
http://dx.doi.org/10.1109/TVLSI.2007.900748

7. I.L. Dalal, D. Stefan, A hardware framework for the fast generation of multiple long-period
random number streams, in Proceedings of the 16th International ACM/SIGDA Symposium
on Field Programmable Gate Arrays, FPGA ’08 (ACM, New York, 2008), pp. 245–254.
doi:10.1145/1344671.1344707, http://doi.acm.org/10.1145/1344671.1344707

8. S. Gilani, The real reason for the global financial crisis...the story no one’s talking about (2008),
http://moneymorning.com/2008/09/18/credit-default-swaps/. Accessed 28th January 2013

9. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Rev. Financ. Stud. 6(2), 327 (1993). doi:10.1093/rfs/6.2.327

10. Q. Jin, W. Luk, D.B. Thomas, Unifying finite difference option-pricing for hardware accel-
eration, in International Conference on Field Programmable Logic and Applications (FPL),
2011 (IEEE Computer Society, Los Alamitos, USA, 2011), pp. 6–9. ISBN: 978-0-7695-4529-
5. doi:10.1109/FPL.2011.12

http://ssrn.com/abstract=1753596
http://dx.doi.org/10.1109/TVLSI.2007.900748
http://doi.acm.org/10.1145/1344671.1344707
http://moneymorning.com/2008/09/18/credit-default-swaps/

High-Performance Hardware Acceleration of Asset Simulations 31

11. R. Korn, E. Korn, G. Kroisandt, Monte Carlo Methods and Models in Finance and Insurance
(CRC Press, Boca Raton, 2010)

12. P. L’Ecuyer, R. Simard, TestU01: a C library for empirical testing of random number
generators. ACM Trans. Math. Softw. 33(4), 22 (2007). doi:http://doi.acm.org/10.1145/
1268776.1268777

13. D.U. Lee, W. Luk, J. Villasenor, P.Y. Cheung, Hierarchical segmentation schemes for function
evaluation, in 2003 IEEE International Conference on Field-Programmable Technology (FPT),
2003. Proceedings (The University of Tokyo, Tokyo, Japan, 2003), pp. 92–99. ISBN: 0-7803-
8320-6. doi:10.1109/FPT.2003.1275736

14. D.U. Lee, R. Cheung, W. Luk, J. Villasenor, Hierarchical segmentation for hardware function
evaluation. IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 17(1), 103–116 (2009).
doi:10.1109/TVLSI.2008.2003165

15. T.G. Lewis, W.H. Payne, Generalized feedback shift register pseudorandom number algorithm.
J. ACM 20(3), 456–468 (1973). doi:10.1145/321765.321777, http://doi.acm.org/10.1145/
321765.321777

16. H. Marxen, A. Kostiuk, R. Korn, C. de Schryver, S. Wurm, I. Shcherbakov, N. Wehn,
Algorithmic complexity in the Heston model: an implementation view, in 2011 IEEE Workshop
on High Performance Computational Finance (WHPCF) (ACM, New York, USA, 2011),
ISBN: 978-1-4244-9061-5

17. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8(1), 3–30 (1998).
doi:http://doi.acm.org/10.1145/272991.272995

18. O. Mencer, E. Vynckier, J. Spooner, S. Girdlestone, O. Charlesworth, Finding the right level
of abstraction for minimizing operational expenditure, in 2011 IEEE Workshop on High
Performance Computational Finance (WHPCF) (ACM, New York, USA, 2011), ISBN: 978-
1-4244-9061-5

19. R.C. Merton, Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141–183 (1973)
20. G.W. Morris, M. Aubury, Design space exploration of the European option bench-

mark using hyperstreams, in International Conference on Field Programmable Logic
and Applications, 2007. FPL 2007, IEEE (2007), pp. 5–10. ISBN: 1-4244-1060-6
doi:10.1109/FPL.2007.4380617

21. NVIDIA Corporation: Computational finance website (2012), http://www.nvidia.com/object/
computational finance.html. Accessed 28th January 2013

22. F. Panneton, P. L’Ecuyer, M. Matsumoto, Improved long-period generators based
on linear recurrences modulo 2. ACM Trans. Math. Softw. 32(1), 1–16 (2006).
doi:10.1145/1132973.1132974, http://doi.acm.org/10.1145/1132973.1132974

23. QuantLib - A free/open-source library for quantitative finance (2012), http://quantlib.org.
Accessed 28th January 2013

24. C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, R. Korn, A new hardware
efficient inversion based random number generator for non-uniform distributions, in 2010
International Conference on Reconfigurable Computing and FPGAs (ReConFig) (IEEE
Computer Society, Los Alamitos, USA, 2010), pp. 190–195. ISBN: 978-0-7695-4314-7.
doi:10.1109/ReConFig.2010.20

25. C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk, R. Korn, An
energy efficient FPGA accelerator for Monte Carlo option pricing with the Heston model, in
2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig) (IEEE
Computer Society, Los Alamitos, USA, 2011), pp. 468–474. ISBN-13: 978-0-7695-4551-6.
doi:10.1109/ReConFig.2011.11

26. C. de Schryver, M. Jung, N. Wehn, H. Marxen, A. Kostiuk, R. Korn, Energy efficient
acceleration and evaluation of financial computations towards real-time pricing, in Knowledge-
Based and Intelligent Information and Engineering Systems, ed. by A. König, A. Dengel,
K. Hinkelmann, K. Kise, R.J. Howlett, L.C. Jain. Lecture Notes in Computer Science, vol. 6884
(Springer, Berlin, 2011), pp. 177–186. Proceedings of 15th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems (KES)

http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/321765.321777
http://doi.acm.org/10.1145/321765.321777
http://doi.acm.org/10.1145/272991.272995
http://www.nvidia.com/object/computational_finance.html
http://www.nvidia.com/object/computational_finance.html
http://doi.acm.org/10.1145/1132973.1132974
http://quantlib.org

32 C. de Schryver et al.

27. C. de Schryver, H. Marxen, D. Schmidt, Hardware accelerators for financial mathematics -
methodology, results and benchmarking, in Proceedings of 1st Young Researcher Symposium
(YRS) 2011, pp. 55–60 (Center for Mathematical and Computational Modelling (CM)2,
(CM)2, Nachwuchsring, 2011). http://CEUR-WS.org/Vol-750/yrs08.pdf. ISSN: 1613-0073,
urn:nbn:de:0074-750-0

28. C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, A. Kostiuk, R. Korn, A hardware
efficient random number generator for nonuniform distributions with arbitrary precision. Int.
J. Reconfigurable Comput. (IJRC) 2012 (2012). doi:10.1155/2012/675130. Article ID 675130,
11 pages

29. J. Stratoudakis, Hardware acceleration of Monte Carlo simulation for option pricing (2012),
http://wallstreetfpga.com. Accessed 28th January 2013

30. J. Stratoudakis, Hardware acceleration of Monte Carlo simulation for option pricing (2012),
https://decibel.ni.com/content/docs/DOC-9984. Accessed 28th January 2013

31. D.B. Thomas, J.A. Bower, W. Luk, Automatic generation and optimisation of reconfigurable
financial Monte-Carlo simulations, in IEEE International Conference on Application-Specific
Systems, Architectures and Processors, 2007. ASAP, IEEE (2007), pp. 168–173. ISBN:
1-4244-1027-4. doi:10.1109/ASAP.2007.4429975

32. D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators. ACM
Comput. Surv. 39(4), 11 (2007). doi:http://doi.acm.org/10.1145/1287620.1287622

33. X. Tian, K. Benkrid, American option pricing on reconfigurable hardware using least-
squares Monte Carlo method, in International Conference on Field-Programmable
Technology, 2009. FPT 2009, IEEE (2009), pp. 263–270. ISBN: 978-1-4244-4377-2.
doi:10.1109/FPT.2009.5377662

34. X. Tian, K. Benkrid, X. Gu, High performance Monte-Carlo based option pricing on FPGAs.
Eng. Lett. 16(3), 434–442 (2008)

35. P. Warren, City business races the Games for power. The Guardian (2008), http://www.
guardian.co.uk/technology/2008/may/29/energy.olympics2012. Accessed 28th January 2013

36. S. Weston, J.T. Marin, J. Spooner, O. Pell, O. Mencer, Accelerating the computation of
portfolios of tranched credit derivatives, in 2010 IEEE Workshop on High Performance
Computational Finance (WHPCF) (IEEE, Red Hook, USA, 2010), pp. 1–8. ISBN: 978-1-
4244-9061-5. doi:10.1109/WHPCF.2010.5671822

37. S. Weston, J. Spooner, J.T. Marin, O. Pell, O. Mencer, FPGAs speed the computation of
complex credit derivatives. Xcell J. 74, 18–25 (2011)

38. C. Wynnyk, M. Magdon-Ismail, Pricing the American option using reconfigurable hardware, in
International Conference on Computational Science and Engineering, 2009. CSE ’09, vol. 2
(IEEE Computer Society, Los Alamitos, USA, 2009), pp. 532–536. ISBN-13: 978-0-7695-
3823-5. doi:10.1109/CSE.2009.496

39. Xilinx: XPower estimator (XPE) (2011), http://www.xilinx.com/products/technology/power/
index.htm. Accessed 28th January 2013

40. B. Zhang, C.W. Oosterlee, Acceleration of option pricing technique on graphics processing
units. Tech. Rep. 10-03, Delft University of Technology (2010)

http://CEUR-WS.org/Vol-750/yrs08.pdf
http://wallstreetfpga.com
https://decibel.ni.com/content/docs/DOC-9984
http://doi.acm.org/10.1145/1287620.1287622
http://www.guardian.co.uk/technology/2008/may/29/energy.olympics2012
http://www.guardian.co.uk/technology/2008/may/29/energy.olympics2012
http://www.xilinx.com/products/technology/power/index.htm
http://www.xilinx.com/products/technology/power/index.htm

Monte-Carlo Simulation-Based Financial
Computing on the Maxwell FPGA Parallel
Machine

Xiang Tian and Khaled Benkrid

Abstract Efficient computational solutions for scientific and engineering problems
are a priority for many governments around the world, as they can offer major
economic comparative advantages. Financial computing problems are a prime
example of such problems where even the slightest improvements in execution
times and latency can generate large amounts of extra profits. However, financial
computing has not benefited relatively greatly from early developments in high
performance computing, as the latter aimed mainly at engineering and weapon
design applications. Besides, financial experts were initially focusing on develop-
ing mathematical models and computer simulations in order to comprehend the
behavior of financial markets and develop risk-management tools. As this effort
progressed, the complexity of financial computing applications grew up rapidly.
Hence, high performance computing turned out to be very important in the field
of finance.

Many financial models do not have a practical closed-form solution in which
case numerical methods are the only alternative. Monte-Carlo simulation is one of
the most commonly used numerical methods, in financial modeling and scientific
computing in general, with huge computation benefits in solving problems where
closed-form solutions are impossible to derive. As the Monte-Carlo method relies
on the average result of thousands of independent stochastic paths, massive paral-
lelism can be harnessed to accelerate the computation. For this, high performance
computers, increasingly with off-the-shelf accelerator hardware, are being proposed
as an economic high performance implementation platform for Monte-Carlo-based
simulations. Field programmable gate arrays (FPGAs) in particular have been
recently proposed as a high performance and relatively low power acceleration
platform for such applications.

X. Tian (�) • K. Benkrid
The University of Edinburgh, Institute of Integrated Systems, King’s Buildings,
Mayfield Road, Edinburgh EH9 3JL, Scotland, UK
e-mail: X.Tian@ed.ac.uk; k.benkrid@gmail.com

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 2, © Springer Science+Business Media, LLC 2013

33

mailto:X.Tian@ed.ac.uk
mailto:k.benkrid@gmail.com

34 X. Tian and K. Benkrid

In light of the above, the project presented in this chapter develops novel
FPGA hardware architectures for Monte-Carlo simulations of different types of
financial option pricing models, namely European, Asian, and American options, the
stochastic volatility model (GARCH model), and Quasi-Monte Carlo simulation.
These architectures have been implemented on an FPGA-based supercomputer,
called Maxwell, developed at the University of Edinburgh, which is one of the few
openly available FPGA parallel machines in the world. Maxwell is a 32-CPU cluster
augmented with 64 Virtex-4 Xilinx FPGAs connected in a 2D torus. Our hardware
implementations all show significant computing efficiency compared to traditional
software-based implementations, which in turn shows that reconfigurable comput-
ing technology can be an efficacious and efficient platform for high performance
computing applications, particularly financial computing.

1 Introduction

High performance computing (HPC) is a discipline concerned with the development
and use of supercomputers or computer clusters, with applications in a variety
of fields including bioinformatics, energy, climate modeling, and computational
applications in engineering, of which typical computational demands exceed the
TeraFlop/sec.1 Supercomputers’ development has been through several stages
during the past decades starting with vector computers, and then symmetric mul-
tiprocessors (or SMPs2), to massively parallel processors (MPPs) which mostly use
off-the-shelf commodity microprocessors nowadays [1]. Supercomputers’ perfor-
mance requirements, however, are increasing at a rate that exceeds the rate of chip-
level improvements [2]. In the early days of the technology, mostly engineering and
weapons’ design applications benefited from the developments in high performance
computing. In financial computing, for instance, financial experts were mostly
focused on mathematical models and computer simulations in order to understand
financial markets and develop risk-management tools. Generally, these models are
stochastic process models. As the complexity of these models increased rapidly,
personal computers were no longer able to perform the required computations in
reasonable times; hence the adoption of high performance computing platforms
became the mainstream. In 1999, for instance, a survey of high performance
computing in finance and computer-aided design of financial products introduced
the development of financial models and supercomputer-based high performance
financial computing to a wider community [3].

1TeraFlop/sec is an acronym meaning 1012 floating point operations per second.
2An SMP is a computer system that has two or more processors connected in the same cabinet,
managed by one operating system, sharing the same memory, and having equal access to
input/output devices.

Monte-Carlo Simulation-Based Financial Computing. . . 35

One widely used computational technique in financial computing is Monte-
Carlo simulation. The latter is a numerical computational algorithm which is
often used in simulating physical and mathematical systems. It relies on repeated
random sampling to compute their result. This method is often used when it is
impossible or impractical to get an analytical solution, or closed-form result, to
system equations. The Monte-Carlo method is particularly important in physical
chemistry, computational physics, and related applied fields. These are characterized
by systems with a large number of coupled degrees of freedom, such as liquids,
disordered materials, strongly coupled solids, and cellular structures. Monte-Carlo
simulations are also used to forecast a wide range of events and scenarios, such as
the weather, sales, and consumer demands. In financial computing, the Monte-Carlo
technique is used to simulate the various sources of uncertainty that affect the value
of the underlying instrument, portfolio, or investment in question. Many financial
computing applications have no closed form solutions, as they depend on three or
more stochastic variables. Here, Monte-Carlo simulation tends to be numerically
more efficient than other procedures [4]. This is because the computational time of
Monte-Carlo simulations increases approximately linearly with the number of vari-
ables, whereas in most other methods, computational time increases exponentially
with the number of variables. One of the important characteristics of Monte-Carlo
simulation is parallelism as multiple independent paths need to be computed. This
makes it attractive to parallel implementation using multi-threading and/or multi-
processing.

When evaluating a high performance computing platform, we have to consider
several aspects. The cost of cluster computers and supercomputers can be pro-
hibitive. Area and power consumption can also be a major problem with these
computing platforms. For these reasons, various acceleration technologies are being
considered. Field programmable gate arrays (FPGAs), for instance, offer the high
performance of a dedicated hardware solution of a particular algorithm, with a
fraction of the area and power consumption of equivalent microprocessor-based
solutions. Moreover, the continuous developments in transistor integration levels
mean that it is now possible to implement a considerable number of floating-point
arithmetic units on modern FPGAs. If this trend is to continue, FPGA use is set to
conquer new application domains, including financial computing.

The work presented in this chapter is mainly targeted on an FPGA parallel
machine, called Maxwell. Maxwell was one of the first publicly accessible FPGA
parallel machines and was built in Edinburgh, Scotland, by the FPGA High
Performance Computing Alliance (FHPCA). Established in 2004, the FHPCA’s
aim was to explore the computing capability of a heterogeneous high performance
computing platform, which combines general purpose processors (GPPs) and Xilinx
FPGAs. Led by Edinburgh Parallel Computing Centre (EPCC) at The University of
Edinburgh, the FHPCA was funded by Scottish Enterprise and built on the skills
of Nallatech Ltd., Alpha Data Ltd., Xilinx Development Corporation, Algotronix
and iSLI. The idea developed as a result of increasing FPGA hardware complex-
ity, which makes it possible to execute relatively sophisticated general purpose
numerical computing applications on modern FPGAs at a relatively low power

36 X. Tian and K. Benkrid

budget. The work presented in this project focuses on financial computing with
the aim of implementing a number of financial computing algorithms on Maxwell
and evaluating the latter through a comprehensive strategy, whereby computation
speed is not the only concern, but also accuracy, cost, and energy consumption.
Indeed, the decision making procedure in a financial market always requires real-
time processing of huge amounts of real time data. If the simulation results, which
may need hours to get, can be achieved in few minutes, the benefit would definitely
be remarkable. However, despite the importance of computation speed, we do not
want to lose any considerable accuracy during the computation as an error of
0.001 in simulation, for instance, could bring losses in the thousands of pounds
in trading if we are dealing with million-pound assets. Moreover, power efficiency
is a very important issue nowadays. For instance, the cost of electricity consumed
by modern supercomputers could be in the millions of pounds annually. Here lies
the advantage of FPGAs as they achieve high speed performance not through high
clock frequencies but mainly through massive data and instruction parallelism and
deep pipelining. Indeed, typical clock frequencies of GPPs or graphic processing
units (GPUs) are in the GHz range. However, FPGA chips are often clocked at few
hundred MHzs, hence leading to considerable energy savings.

In light of the above, the aim of the work presented in this chapter is to rigorously
assess the efficiency and efficacy of FPGAs in financial computing applications.
This is done through the development of novel FPGA hardware architectures for a
number of financial computing applications. Comparative evaluation against GPP
and GPU technologies are made using the following criteria:

• Speed performance: a very important aim of our work is to maximize the
computation speed of financial computing applications. This will need careful
hardware design and optimization.

• Arithmetic accuracy: the accuracy requirement, which is critical in financial
computing, needs to be guaranteed.

• Power consumption: since financial computing applications are often deployed in
massively parallel computers, power consumption is a very important measure.

• Cost of purchase and development: the cost of the hardware and development
effort also needs to be considered. Indeed, speed performance can always be
increased arbitrarily if budgets were unlimited.

• Productivity: this is concerned with the return over time. Indeed, in business, time
to market makes the difference between success and failure.

The remainder of this chapter is organized as follows. First, a brief overview
of the state-of-the-art of high-performance financial computing is given. Then,
an overview of the architecture and programming environment of the Maxwell
Parallel FPGA machine is presented. After that, four case-study implementations
of financial models on Maxwell are detailed, before an evaluation of the resulting
implementations is presented. The chapter concludes with a general evaluation of
FPGA-based high performance reconfigurable computing.

Monte-Carlo Simulation-Based Financial Computing. . . 37

2 Brief Overview of the State-Of-The-Art of High
Performance Financial Computing

In the last decade, researchers have started to use acceleration technology, e.g.,
in the form of FPGAs and GPUs in financial computing. In [5] for instance, an
FPGA-based Monte-Carlo simulation core used for computing the BGM (Brace,
Gatarek and Musiela) interest rate model for pricing derivatives was presented. The
BGM interest rate model is commonly used to simulate the fluctuation of interest
rates over time, something which has an influence on nearly all economic activity.
Results show that ∼25x speed-up can be obtained by using an FPGA, compared to
an equivalent Pentium IV 1.5GHz-based software implementation. Other hardware
architectures for Monte-Carlo-based financial simulations were published in [6].
In the latter, five different Monte-Carlo option pricing simulation algorithms were
explored, including log-normal price movements, correlated asset value-at-risk
calculation, and price movements under the GARCH model. Using a Xilinx Virtex-
4 XC4VSX55 device, implementation results show that FPGA implementations run
on-average 80x faster than equivalent software ones (running on a 2.66GHz PC). A
comparison of different FPGA implementations of the European option3 benchmark
against other implementations using GPUs, Cell BE, and a traditional software
implementation was presented in [7]. In this work, the FPGA implementation was
produced using “HyperStreams,” which is a high level abstraction for designing
arithmetic pipelines built on the Handel-C programming language. An acceleration
of 146x compared to a reference software implantation can be obtained using
FPGAs. The implementation mapped onto a Xilinx XC5VSX50T chip is over 64
and 71 times faster than corresponding software running on a 3.4 GHz Intel Xeon
processor, for one-factor and the multi-factor models, respectively.

The combination of cluster technology and reconfigurable hardware acceleration
is a relatively new development in high performance computing, which promises
to combine the relatively high performance and low power consumption of recon-
figurable hardware with established design flows and consequent knowledge base
in traditional microprocessor-based high performance computing. A simple Asian
option4 pricing core was designed as a demonstration application on Maxwell. The
implementation results of this demonstrator application are shown in Fig. 1. Here,
AlphaData (AD) and Nallatech (NT) refer to the two FPGA companies that donated
the FPGA accelerator nodes on the Maxwell machine, 32 each.

The results show that the AlphaData nodes lead to ∼320-time speed-up com-
pared to an equivalent software implementation, whereas the Nallatech nodes lead
to a 109-time speed-up. The discrepancy is due to the design language/flow used
for each node type: VHDL for AlphaData and a proprietary C-based hardware
language, called DIME-C, for Nallatech.

3A European option gives its holder the right to buy (a call option) or sell (a put option) an
underlying asset at a particular fixed price (called Strike price) on a certain maturity date.
4Asian options are a special type of options where the strike price is the average price of the
underlying asset over a period of time and not a fixed strike price as in European options.

38 X. Tian and K. Benkrid

15810

49 145
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

CPU AD NT

S
ec

o
n

d
s

AD: Alpha Data
NT: Nallatech

Fig. 1 Single node execution time of Asian option pricing simulation in a Maxwell-based
demonstrator

Another important type of financial options is American options5. However
there are relatively few corresponding FPGA-based implementations reported in the
literature. One of these, the basic binomial-tree pricing model of American options,
was implemented in [8]. The implementation of this model on a Virtex 4 FPGA
achieved 250x speed-up compared to a 2.2GHz Core2 Duo CPU implementation.
Another accelerated implementation used the LSMC algorithm [9] and implemented
it on a 32 processor IBM BlueGene/P system to achieve 18x speed-up over a single
processor implementation.

The Quasi-Monte Carlo method for financial option pricing has been researched
for more than a decade. Nevertheless, high performance FPGA implementations
of it have been rare in the literature. One such hardware implementation was
reported in [10]. In it, a Quasi-Monte Carlo technique was applied to solve a 3-D IC
partial inductance extraction problem. The number of dimensions of this design was
reported to be 6. A Quasi-Monte Carlo simulator FPGA implementation was also
reported in [11] where speed-ups in excess of 50x over a 3GHz multi-core processor
were achieved.

As GPUs became more widely used for high performance computing, compar-
isons between GPUs, FPGAs, and other computing platforms became plentiful. For
instance, a speed-up figure of 20x on FPGA compared to a CPU implementation for
a European option pricing application was reported in [12], whereas an equivalent
GPU implementation achieved a 2 order of magnitude speed-up. In another paper
[7], the European option pricing application achieved 146x speed-ups on the FPGA
compared to CPU.

As Monte-Carlo simulation relies on a stochastic procedure, random number
generation is a key part of it. Software implementations of random number
generators cannot meet the requirement of hardware Monte-Carlo simulation cores,

5Unlike European options, American options can be exercised at any date up to the maturity date.

Monte-Carlo Simulation-Based Financial Computing. . . 39

and thus hardware random number generation is needed. There are many methods
used for hardware random number generation including the Box–Muller method
[13], Wallace method [14], and other methods [15, 16].

3 Overview of the Maxwell FPGA Parallel Machine

Maxwell was developed by the FPGA High Performance Computing Alliance
in Scotland to demonstrate the feasibility of running computationally demanding
applications efficiently on an array of FPGAs. In this section, we will introduce
both the hardware architecture and the design flow on Maxwell.

3.1 Hardware Architectures

Maxwell comprises 32 blades housed in IBM Blade Centre. Each blade comprises
one 2.8 GHz Xeon with 1 GB memory and 2 Xilinx Virtex4 FPGAs each on a PCI-X
sub-assembly developed by Alpha Data or Nallatech. Each FPGA board has either
512 MB or 1 GB of off-chip memory. Whilst the Xeon CPUs and FPGAs on a
particular blade can communicate with each other over the PCI bus (typical transfer
bandwidths of 600 Mbytes/s), the principal communication infrastructure comprises
a fast Ethernet network with a high-performance switch linking the Xeons together
and RocketIO linking the FPGAs. Each FPGA has 4 RocketIO links enabling the 64
FPGAs to be connected together in an 8× 8 toroidal mesh as shown in Fig. 2. The
RocketIOs have a bandwidth of 2.5 Gbits/s per link [17].

Logically, Maxwell can be regarded as a collection of nodes where a node
is defined as a software process running on a host machine, plus some FPGA
acceleration hardware.

Figure 3 shows the structure of Maxwell, the interconnection, and the detailed
architecture of a single FPGA node.

As we can see in the figure, there are three kinds of interconnection on Maxwell:
FPGA-FPGA interconnection, which is formed by Rocket IO, the CPU-CPU
interconnection, which is Ethernet-based, and the FPGA-CPU connection, which
is the PCI-X interface.

There are totally 64 FPGAs on Maxwell as shown in Fig. 3: half of them are
Nallatech’s off-the-shelf H101-PCIXM with Xilinx XCV4100LX FPGA devices
on them. The other 32 nodes are Alpha Data ADM-XRC-4FX cards using Xilinx
XCV4FX100 FPGAs.

3.2 Design Flow on Maxwell

The design flow on Maxwell can be divided into four main steps:

40 X. Tian and K. Benkrid

Fig. 2 FPGA links on Maxwell supercomputer

• Hardware design, including HDL coding, simulation, synthesis, and generating
bitstream. This stage of work is the main part of the whole design flow.

• Software interface: This step mainly deals with the communication between the
FPGA and CPU. On an Alpha Data board, for example, we use ADM-XRC-4FX
Co-Processor Development Kit (CPDK) as shown in Fig. 4 to control all registers
used to control the behavior of FPGAs.

At higher software level, an API will be used to deal with the standardization of
high-level configuration. This tool is called Parallel Toolkit, developed by FHPCA
and EPCC [18]. The aim is to configure the FPGA chip with target bitstream, as
well as clock setting. The design flow also consists of:

• Message Passing Interface (MPI) [19] coding: communication between nodes is
performed using MPI.

• Sun Grid Engine (SGE) job scheduler [20] scripts: allow for orderly safe job
submission to the Maxwell machine.

4 Case Studies in High Performance Reconfigurable
Computing

4.1 Hardware Random Number Generators

Monte-Carlo methods rely on random samples. Indeed, one random sample is
needed for a single step of a Monte-Carlo simulation. For example, suppose

Monte-Carlo Simulation-Based Financial Computing. . . 41

FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

CPU0 CPU1 CPU2 CPU32

Standard Network
Switch

Rocket IO

PCI-X

Network Protocol

Node
Application Process
(Sofware on Host)

Parallel Toolkit (PTK)

Accelerator
Function on
FPGA logic

blocks

Function on
FPGA logic

blocks

Memory
Function on

PowerPC

External
communication to

neighbour

...

...

...

Fig. 3 Architecture of the Maxwell FPGA parallel machine

that a European option has a life length of 1 year, which is discretized to 100
time steps, and 106 paths are generated in the Monte-Carlo simulation, therefore,
100× 106=108 random variables are needed for the simulation. Several considera-
tions arise when constructing a random number generator [21]:

• Period length: any pseudo-random number generator will eventually repeat itself.
Generally, we want generators with very longer periods.

• Reproducibility: it is often important to be able to re-run a simulation using
exactly the same random samples as the previous simulation.

• Speed: as mentioned above, millions or even billions of samples are needed for a
single simulation. It is very important to keep a very high throughput of random
samples to feed a Monte-Carlo simulation engine.

• Portability: an algorithm for generating random numbers should produce the
same sequence of values on all computing platforms.

• Randomness: this is the most important consideration. Theoretical properties and
statistical tests could be used to evaluate the quality of the random samples.

42 X. Tian and K. Benkrid

User
Processing

Core

CIF Registers

CIF Memory
Interface

CIF Aurora
Local-link
Interface

HAIL

Host
Interface

Aurora
(Rocket IO)

Interface

Memory
Interfaces

Abstract Socket
(clk, rst, system_in,

system_out)

User Application

Fig. 4 Structure of CPDK application

The random samples in Brownian motion (often used to model financial option
drifts) follow a Normal distribution, or say Gaussian distribution. A generally
used method is to produce a set of uniform random samples (over the interval
of (0, 1)), and then convert them to Gaussian random numbers. In the following
two subsections, we will introduce methods for generating uniform and Gaussian
random numbers, respectively.

4.1.1 Uniform Random Number Generator

Uniform random numbers are sampled from a distribution which has the following
probability density function:

p(x) = 1 if 0 < x < 1

= 0 otherwise (1)

It is a convenient distribution as there are many simple methods to transform
uniform samples into samples from other distributions. In this section, three differ-
ent categories of uniform random number generation methods will be introduced,
namely: Linear Feedback Shift Registers (LFSR), Mersenne Twister, and Sobol.

LFSR

A generator introduced in [22] is based on a sequence of 0’s and 1’s generated by a
recurrence of the form:

bi = (apbi−p + ap−1bi−p+1 + · · ·+ a1bi−1)mod2 (2)

Monte-Carlo Simulation-Based Financial Computing. . . 43

where all variables take on values of either 0 or 1. The bs are interpreted as bits
and will be formed into binary representations of integers. Because the modulus is
a prime, the generator can be related to a polynomial:

f (z) = zp − (a1zp−1 + · · ·+ ap−1z+ ap) (3)

over the Galois field GF(2) defined over the integers 0 and 1 with the addition and
multiplication being defined in the usual way followed by a reduction modulo 2. An
important result from the theory developed for such polynomials is that, as long as
the initial vector of b′s is not all 0’s, the period of the recurrence in (2) is 2p − 1 if
and only if the polynomial (3) is irreducible over GF(2).

For computational efficiency, most of the a′s in Eq. (2) should be zero. The
recurrence in Eq. (2) often has the form:

bi = (bi−p + bi−p+q)mod 2 (4)

Addition of 0’s and 1’s modulo 2 is the binary exclusive-or operation (represented
as ⊕), and the recurrence can be written as:

bi = (bi−p ⊕ bi−p+q) (5)

The recurrence can be performed in a feedback shift register, which is a vector of bits
that is shifted, say, to the left, one bit at a time, and the bit shifted out is combined
with other bits in the register to form the rightmost bit.

The uniform random number generator used in this design is called Tausworthe
URNG [22], which is described by the pseudo-code shown in Fig. 5. Although
traditional LFSRs are often sufficient as a uniform random number generator
(URNG), Tausworthe URNGs are fast and occupy less area. Furthermore, they
provide superior randomness when evaluated using the Diehard random number
test suite.

Mersenne Twister

A very popular uniform random number generator, called the Mersenne Twister
[23], is based on a recurrence [24] that has approximately 100 terms in the
characteristic polynomial of a matrix A. Mersenne Twister has a period of 219937−1
and 623-variate uniformity. The Mersenne Twister algorithm generates a sequence
of word vectors, which are considered to be uniform pseudo-random integers
between 0 and 2w − 1. Dividing by 2w − 1, each word vector can be a real
number in [0, 1].

A Mersenne prime is a number with the restriction of 2nw−r − 1. For a word x
with w bit width, it is expressed as the recurrence relation:

xk+n = xk+m ⊕ (xu
k|xl

k+1)A k = 0,1, . . . (6)

44 X. Tian and K. Benkrid

Fig. 5 Tausworthe URNG algorithm

With | as the bitwise or and ⊕ as the bitwise exclusive or (XOR), xu,xl being x
with upper and lower bitmasks applied. We choose a form of the matrix A so that
multiplication by A is very fast:

A = R =

(
0 Iw−1

aw−1 (aw−2, . . .a0)

)
(7)

with In−1 as the (n− 1)× (n− 1) identity matrix (and in contrast to normal matrix
multiplication, bitwise XOR replaces addition). The rational normal form has the
benefit that it can be efficiently expressed as:

xA =

{
shi f tright(x) if x0 = 0
shi f tright(x)⊕ a if x0 = 1

(8)

where
x = (xu

k |xl
k+1) k = 0,1, . . . (9)

where a = (aw−1, aw−2, . . .,a0), x = (xw−1, xw−2, . . .x0).
Each generated word is multiplied by a suitable w×w invertible matrix T from

the right to improve k-distribution to v-bit accuracy. For the tempering matrix x →
z = xT , we chose the following successive transformations:

y = x⊕ (x >> u) (10)

y = x⊕ (y << s)&b (11)

Monte-Carlo Simulation-Based Financial Computing. . . 45

y = x⊕ (y << t)&c (12)

y = x⊕ (x >> l) (13)

In order to improve lower bit equi-distribution, we add the first and last transforms.
The coefficients for MT19937 (the commonly used variant of Mersenne Twister,

which produces a sequence of 32-bit integers, and has a period of 219937 − 1) are:

(w,n,m,r) = (32, 624, 397, 31)

a = 9908B0DF16

u = 11

(s,b) = (7,9D2C568016)

(t,c) = (15,EFC6000016)

l = 18

Figure 6 gives the pseudo code of MT19937. Mersenne Twister implementations
cannot be parallelized across parallel computing cores simply through changing the
initial seed for each core as this does not provide uncorrelated sequences on each
generator sharing identical parameters. To solve this problem and enable Mersenne
Twister parallel implementations, the authors of MT19937 developed a library for
the dynamic creation of Mersenne Twister parameters. This library receives user’s
specification such as word length, period, size of working area, and a process ID, so
that ID number is encoded in the characteristic polynomial of Mersenne Twister.

The process of generating Mersenne Twister numbers can be separated into the
following 4 steps:

• Generating the tempering matrix for each computing core based on the given
word length, size of working area, and process ID.

• Initializing the generator based on the given seed number.
• Generating the untempered numbers.
• Tempering.

After an initial feasibility analysis, we noticed that the first two steps consume the
most of the hardware resources, but the least computing time: both of these two steps
only run once at the beginning of the generation, and this time does not increase
with the length of the random sequence. Moreover, the following two steps only
require shift and XOR operations which consume relatively few logic resources
on FPGA. The output of the first step is the 12 parameters needed by steps 3 and
4, and the output of the second step is 624 initialized numbers. However, since
we target a parallel FPGA machine assuming the same bitstream on each FPGA
node, each FPGA needs different initial numbers. There are two methods to achieve
this: generate the initial numbers on each FPGA in the first stage using a different

46 X. Tian and K. Benkrid

Fig. 6 Pseudo-code of MT19937

seed; or we can generate the initial numbers on CPU, and then transfer them to
the FPGAs’ BlockRAM. The latter needs 624 data to be transferred through the
CPU-FPGA communication or even more if we instantiate more than one simulation
core on one FPGA, which will consume considerable communication time. Hence,
we chose to generate the initial numbers on FPGA at the expense of a slight resource

Monte-Carlo Simulation-Based Financial Computing. . . 47

Generating
untempered

numbers

Tempering

Dual Port

RAM1

624 x 32

raddr
rdata raddr

wdata waddr

rdata

MT
numbers

Parameters

Initialization

Seed

Dual Port

RAM 2

624 x 32

Fig. 7 Mersenne twister
random number generator

overhead (mainly one multiplier for each core). The architecture of a Mersenne
Twister random number generator core is hence given in Fig. 7.

Based on the Eqs. (8) and (9) we have to read two numbers from the BlockRAM
at step 2 each clock cycle. To pipeline the random number generator, two block
RAMs are needed: one is for xl and the other is for xu. Note that we can pre-compute
the parameters and hardwire them to each Mersenne Twister core.

Sobol Random Number Generator

The theory of Sobol numbers starts with modular integer arithmetic. Two integers i
and j are called congruent with respect to the modulus m, i.e.

i
Δ
= j mod m (14)

if and only if the difference i − j is divisible by m. For m being prime, the
combination of addition and multiplication modulo m, plus a neutral element with

48 X. Tian and K. Benkrid

respect to both, is also called a finite commutative ring which is isomorphic to a
Galois Field with m elements, GF[m]. A polynomial P(z) of degree g,

P(z) =
g

∑
j=0

akzg− j, (15)

is considered to be an element of the ring GF[m, z] of polynomials over the finite
field GF [m] if we assume all of the coefficients ak to be ∈GF[m]. A polynomial P(z)
of positive degree is considered to be irreducible modulo m if there are no other two
polynomial Q(z) and R(z) which are not constant or equal to P(z) itself such that:

P(z)
Δ
=Q(z)R(z) mod m, (16)

An irreducible polynomial modulo m in GF[m, z] is the equivalent to a prime
number in the set of integers. The order of a polynomial P(z) modulo m is given
by the smallest positive integer q for which P(z) divides zq − 1, i.e.

q = inf
q′
{q′|zq′ − 1

Δ
=P(z)R(z)mod m} (17)

for some non-constant polynomial.
To construct a Sobol sequence, we initially construct a vector of numbers, known

as direction numbers, of word length w which will serve as a base for the calculation
of the Sobol numbers. We need a direction number for each digit, in base 2, of the
numbers that will be used in the sequence. In our case, we used 24-bit fixed number
representation for our implementation (i.e., w = 24). The dimension will be indexed
by k = 1, 2, . . . D. The construction of direction numbers is sketched below.

Given a series of integers a1, a2, . . . ad−1 that are zero or one, the primitive
polynomial modulo 2 of degree d is defined as:

P = xd + a1xd−1 + a2xd−2 + · · ·+ ad−1x+ 1 (18)

For each dimension k, a particular primitive polynomial is chosen and a series of
integers, mki, dk < i < w, is generated, starting from the following recursion with dk

terms, where dk is the degree of the polynomial associated with the kth dimension:

mki = 2ak,1mk,i−1 ⊕ 22ak,2mk,i−2 ⊕·· ·⊕ 2dk−1ak,dk−1mk,i−dk+1

⊕(2dkmk,i−dk ⊕mk,i−dk) (19)

for k = 1, 2, . . .D, where ⊕ represents the bit to bit sum, XOR (exclusive OR),
applied on the base 2 representation of the integer mki. It is necessary to supply the dk

initial values of mki in each dimension. We used the simple method described in [25]
i.e. use a separate pseudo-random number generator to draw uniform variates from

Monte-Carlo Simulation-Based Financial Computing. . . 49

(0, 1) and initialize as follows: draw ukl from a separate uniform random number
generator such that:

wkl = int[ukl × 2l] (20)

is odd, and set:
mkl = wkl × 2b−l f or l = 1, · · ·dk (21)

The following step is to construct the Sobol numbers using the direction numbers.
The nth Sobol number of kth dimension can be obtained from the (n− 1)th using
the following equation:

ynk =
d ⊕2

∑
j=1

mk j1 { jth bit(counting from the right) of in teger is set} (22)

However, if we realize it using Gray code instead of using the binary representation
of the sequence counter n directly, (18) can be re-written as:

ynk = y(n−1)k ⊕mk j { jth bit is the rightmost zero of n− 1} (23)

where mk j is the direction number associated with the rightmost zero in the binary
representation of n − 1. Hence, the nth Sobol number for kth dimension can be
obtained from the (n− 1)th using just one direction number.

The architecture of our Sobol sequence generator is shown in Fig. 8. The black
block represents a flip-flop. The architecture is a straightforward implementation
of the algorithm above. As the generation of each Sobol number needs the number
produced in the last cycle, we have to store the last Sobol number according to
Eq. (23). Another point that needs to be clarified here is that since the XOR operation
is applied between the direction number and the last Sobol number, we have to store
the previously generated Sobol numbers for each dimension. In the case of a 100-
day simulation, we have to keep 100 Sobol numbers (in a dual port RAM as shown
in Fig. 8). The random number generator picks the Sobol number of the last path of
the next day and pushes the current Sobol number in the RAM in each clock cycle.

After building the low-discrepancy numbers, we have to separate them into
several sub-streams to implement the distributed Quasi-Monte Carlo simulation.
There are two possible approaches of partitioning [26]:

Blocking: disjoint contiguous blocks of overall length l of the original sequence
are generated by separate processing elements (PEs). This is achieved by simply
using a different starting point on each PE (e.g. PEi, i = 0, . . ., p− 1, generates the
vectors xil , xil+1, xil+2, . . . , xil+l−1).

Leaping: interleaved streams of the original sequence are generated by the PEs.
Each PE skips those consumed by other PEs (leap-frogging) (e.g., PEi, i = 0, . . . ,
p− 1, generates the vectors xi, xi+p, xi+2p, xi+3p, . . .).

We adopt the blocking method to perform the partitioning in our implementa-
tions. In it, the separation of a Sobol stream can be realized by using a different
initial number in each core as depicted in Fig. 9. Apart from the separation in a

50 X. Tian and K. Benkrid

Dimension
Number

Caculation

Direction
Number
Address

Caculation

Single port
RAM

(2400 x 24)
(Direction Numbers)

XOR

Dual port

RAM

(100 x

24)

(Sobol

Numbers)

Direction Number
Address

Direction Number

Read
Address

Sobol Number

Write Address

Integer
Caculation

Initial Number Days Number

Previous
Sobol Number

Right-most-
zero Search

Fig. 8 Architecture of our Sobol sequence generator

single FPGA, or say, node, we have to separate the sequence twice, in the case of a
multi-FPGA implementation. In that case, two levels of partitioning are necessary.

The architecture is different from the work mentioned in [10]. We parallelize the
Sobol RNG by separating the whole sequence to several sub-sections. This is done
by choosing a different initial number for each RNG, which can be seen in Fig. 9.
This can be seen as blocking method.

Note finally that since Sobol sequence numbers are always integer numbers, the
same module can be used for any subsequent processing arithmetic type, e.g., fixed
or floating point.

4.1.2 Gaussian Random Number Generator

As the random variables required in Monte-Carlo simulations follow the Normal
distribution, the uniform variables need to be converted to Normal random variables.

Monte-Carlo Simulation-Based Financial Computing. . . 51

Sobol
RNG

Sobol
RNG

Sobol
RNG

Sobol
RNG

Initial number
for each node

+0 +2^mx 2 +2^m x n

Initial Number Initial Number Initial Number Initial Number

{X1+2^m x n , X2+2^m x n, …, X2^m+2^m x n}
{X1+2^m x 2 , X2+2^m x 2, …, X2^m+2^m x 2}

{X1+2^m, X2+2^m, …, X2^m+2^m}
{X1, X2, …, X2^m}

+2^mx 1

Fig. 9 Parallelism of random number generation

In this section, two methods of conversion will be introduced, namely the inverse
cumulative distribution function method (ICDF) and the transformation method.

ICDF

For a random variable X , the cumulative distribution function (CDF) is the function
PX defined by:

PX(x) = Pr(X ≤ x) (24)

where Pr(A) represents the probability of the event A. Two important properties are:
the CDF is non-decreasing, and it is continuous from the right. Particularly, the CDF
and ICDF of Normal distribution are:

F(y) =
1

σ
√

2π

y∫
−∞

e(−(t−1)2/2σ 2)dt (25)

f (x) =
∣∣∣F−1

(x
2
|μ ,σ

)∣∣∣ (26)

Figures 10 and 11 show the CDF and ICDF of the standard Normal distribution (with
mean 0 and variance 1), respectively. As we can see in Fig. 11, if a uniform variable,

52 X. Tian and K. Benkrid

Fig. 10 CDF of standard normal distribution

Fig. 11 ICDF of standard normal distribution

Monte-Carlo Simulation-Based Financial Computing. . . 53

0 0.1 0.2 0.3 0.4 0.5
-16

-14

-12

-10

-8

-6

-4

-2
Lo

ga
rit

hm
ic

 E
rr

or

x

Fig. 12 Logarithmic error of ICDF

which is in the interval of 0 and 1, is the input of the ICDF, the output will follow the
Normal distribution. As there is no closed-form for the ICDF, approximation must
be adopted in the calculation. Piecewise polynomial approximation is used in this
work.

We use a one degree piecewise linear approximation with 80 subsections used
between 0 and 0.5 (since the ICDF is an odd function if shifted to the left by 0.5, we
only need to calculate its values from 0 to 0.5). The coefficients of the function are
pre-computed and stored in a single port RAM. Figure 12 gives the logarithmic error
(The logarithmic error is defined as: LogErr = log10|LinearApproximationResult−
GoldenRe f erenceValue|) between our ICDF hardware core, using 26-bit fixed point
arithmetic, and our golden reference from Matlab’s ICDF function. The worst error
is around 10−2.5.

We use two goodness-of-fit tests to check the normality of the Gaussian noise:
the chi-square (χ2) test and the Kolmogorov–Smirnov (K–S) test.

• Chi-Square test:

The Chi-Square test quantizes the x axis into k bins, and then calculates the actual
number of samples appearing in each bin. Next, we compare this number with the
number of samples which should appear in each bin based on a specific distribution
and get a single number. This number can represent the overall quality metric.
For example, if n is the number of observations, pi is the probability that each

54 X. Tian and K. Benkrid

observation falls into category I, and Yi is the number of observations that actually
do fall into category i. The Chi-Square statistic is given by

χ2 =
k

∑
i=1

(Yi − npi)
2

npi

• K–S test:

The K–S test tries to determine if two datasets differ significantly. It quantifies the
distance between the empirical distribution function of the samples and the cumu-
lative distribution function of the reference distribution. The empirical distribution
function Fn for n independent and identically distributed random variables Xi is
defined as:

Fn(x) =
1
n

n

∑
i=1

IXi≤x

where IXi≤x is the indicator function, equal to 1 if Xi ≤ x and equal to 0 otherwise.
The K–S statistic is then given by:

Dn = sup
x
|Fn(x)−F(x)|

where sup x is the supremum of the set of distances.
Both of the tests will give p-values for the outputs. The general convention is to

reject the null hypothesis—that the samples are normally distributed if the p-value
is less than 0.05. Results show that the p-value of samples from our design is more
than 0.05.

Transformation

A very crude transformation method to construct normally distributed samples is
to add up 12 uniform variates, and subtract 6. This method is the Central Limit
Theorem applied to a sample of size 12. It is a poor approximation and always
slower than other methods. Another way to transform the uniform variables is
the Box–Muller transformation [27]. If u and v are independent standard uniform
variables in (0, 1), a pair of independent Normal variables x and y can be generated
using

x =
√−1lnusin(2πv)

y =
√−1lnucos(2πv) (27)

One problem of Box–Muller transformation is that it cannot be used for converting
the low-discrepancy numbers such as Sobol numbers.

Monte-Carlo Simulation-Based Financial Computing. . . 55

Tausworthe
Uniform Random

Number
Generator

Tausworthe
Uniform Random

Number
Generator

Logarithm &
Square Root

Unit
Sqrt(-2×ln(u0))

MUX

g0 = sin(2πu1)
g1 = cos(2πu1)

Fig. 13 Gaussian noise
generator architecture

The Box–Muller method is conceptually straightforward. Given two independent
realizations (u1 and u2) of a uniform random variable over the interval [0, 1), and a
set of intermediate functions f , g1 and g2 so that:

f (u1) =
√
−2× ln(u1) (28)

g1(u2) = sin(2πu2) (29)

g2(u2) = cos(2πu2) (30)

x1 = f (u1)g1(u2) (31)

x2 = f (u1)g2(u2) (32)

Then providing two samples of a Gaussian distribution N(0, 1), x1 and x2.
Based on this algorithm, the corresponding hardware architecture is given in

Fig. 13.

56 X. Tian and K. Benkrid

0
-9

-8

-7

-6

-5

-4

-3

-2

-1

0.1 0.2 0.3 0.4 0.5
x

Lo
gr

ith
m

ic
 e

rr
or

Error analysis

0.6 0.7 0.8 0.9 1

Fig. 14 Logarithmic error of f (u1) =
√−2× ln(x)

Logarithm and trigonometric functions are computed using the piecewise linear
approximate method [28, 29]. The logarithm errors of both functions are shown in
Figs. 14 and 15. We generated 100,000 samples, and the PDF is shown in Fig. 16.

4.2 Financial Computing Models and Their Implementations
on Maxwell

4.2.1 European Option Pricing

The Monte-Carlo method for European options pricing is based the Black–Scholes
model of option price evolution:

SΔ t = S0

(
1+

((
μ − σ2

2

)
δ t +σε

√
δ t

))
(33)

where SΔ t and S0 are the stock prices at times Δ t and zero, respectively, μ is the
expected rate of return of the stock, σ is the volatility of the stock price, and ε is
random variable with mean 0 and variance 1.

The simulation process can be described as the following algorithm:

Monte-Carlo Simulation-Based Financial Computing. . . 57

0
-16

-14

-12

-10

-8

-6

-4

-2

1 2 3 4
X

5 6 7

Lo
gr

ith
m

ic
 e

rr
or

Error Analysis

Fig. 15 Logarithmic error of g1(x) = sin(2πx)

For any n ≥ 1, the estimator Ĉn of the option price is unbiased, in the sense that
its expectation is the target quantity:

E[Ĉn] =C ≡ E[e−rT (S(T)−K)+]

The estimator is strongly consistent, meaning that as n → ∞,

Ĉn →C with probability1

The algorithm is described by the pseudo-code in Fig. 17.
Note that the simple European option model does not need small time steps to

build the paths. Single big time step can be used for generating the stock price path.
However, as the Monte-Carlo simulation module is the basic part of all the other
option pricing engines, in which small time steps must be used, the implementation
of European option pricing model will use the small time step.

The European option pricing engine comprises an LSFR uniform random gen-
erator, a Box-Muller Gaussian random generator and the Monte-Carlo simulation
core with implements Eq. (33). The architecture can be seen in Fig. 18.

The computing core was captured in Verilog and synthesized using Xilinx ISE
9.2i. We increased the number of computing cores until resources run out. Our user
application processor implements 20 Monte-Carlo cores occupying 36144 slices on

58 X. Tian and K. Benkrid

-5
0

200

400

600

800

1000

1200

-4 -3 -2 -1 0
Value of random number

N
um

be
r

of
 r

an
do

m
 n

um
be

r

1 2 3 4 5

Fig. 16 PDF of the generated random variables

Generate m random samples

2

t+1 t (1 (()))
2

S S t t
σμ δ σε δ= + − +

Ci = e-rT(S(T)- K)+

ˆ
nC = mean(Ci)

for i = 1 to n

for t = 1 to m

Fig. 17 Algorithm for path generation of European option prices

an XC4VFX100-10ff1517 FPGA, which has 42176 slices in all; all 160 DSP48s
units are utilized. We set the clock frequency on Maxwell’s FPGA node to 75 MHz.

We implemented our hardware Monte-Carlo simulation solution for European
option pricing on Maxwell. We also ran an equivalent C++ based software solution
on Maxwell and run it on the 2.8 GHz Xeon processors (each with 1 GB of memory).
The execution time of both FPGA and CPU implementations is shown in Fig. 19.

Monte-Carlo Simulation-Based Financial Computing. . . 59

Wrapper
MC_TOP

MC Core MC Core

P
C

I-
X

Processor

Monte-Carlo
Iteration

Core

Post
Processing

O
ut

pu
t

en
ab

le

MC Core MC Core

}

}

N Cores

MC Core

Box-Muller
Random
Number
Generator

G
aussian
N

oise
Stock
P
rice

O
ut

pu
t

en
ab

le

O
ption
P
rice

Fig. 18 Generic architecture of Monte-Carlo simulation engine4

From Fig. 19, we can see that the computing time decreases linearly as the
number of nodes increases. The reason is that communication time is very limited
during Monte-Carlo simulation: only broadcasting parameters at the beginning of
simulation and gathering results at the end of simulation. As we pipelined the design
and set clock frequency to 75 MHz, our Monte-Carlo computing core finishes one
iteration in 13.3 ns. As the Input/Output and communication overheads are limited,
we estimate the overall computing time to be:

ComputingTime = ClockPeriod× (NumO f Paths×NumO f Days)

−(NumO fCores×NumO f Nodes) (34)

Take the result of a 32 nodes experiment as an example: the clock period is 13.3 ns;
the number of paths is 217×10= 1.31×106; the number of days is 100; the number
of cores per FPGA is 20, and the number of nodes is 32. This gives us

ComputingTime = 13.3× (1.31× 106× 100)− (20× 32)≈ 2.731× 106ns (35)

Overall, the FPGA implementations are 750x faster than the equivalent software
implementations. It is worth mentioning, however, that our software implementation
was not optimized on the Xeon processors.

60 X. Tian and K. Benkrid

0

1

2

3

4

5

6

7

1 4 8 16 32

Number of Processors

L
o

g
ar

it
h

im
ic

 t
im

e

FPGA Software

0

20

40

60

80

R
u

n
n

in
g

 T
im

e

Number of Processors

FPGA(sec) Software(sec)

FPGA(sec) 0.0874 0.0219 0.011 0.0056 0.0028

Software(sec) 65.723 16.52 8.2407 4.1088 2.0538

1 4 8 16 32

Fig. 19 Running time of C++ & FPGA implementation

4.2.2 Asian Option Pricing

In Asian options, the payoff is determined by the average underlying price over
some pre-set period of time. Hence, an Asian option can be calculated as:

CAsianCall = max(0,Savg −K)

CAsianPut = max(0,K − Savg)

Monte-Carlo Simulation-Based Financial Computing. . . 61

Wrapper
MC_TOP

MC Core MC Core

P
C

I-
X

Processor

Box-Muller
Random
Number
Generator

Monte-Carlo
Iteration

Core

Post
Processing

G
aussian
N

oise

O
ption
P
rice

O
ut

pu
t

en
ab

le
O

ut
pu

t
en

ab
le

MC Core MC Core

}

}

N Cores

MC Core

Divider

A
vg .

Stock
P
rice

Stock
P
rice

Fig. 20 Architecture of Asian option simulation engine

The average of S can be obtained in many ways. In the continuous case, this is
calculated through an integral:

Save =
1
T

∫ T

0
S(t)dt

or in the discrete version:

Save =
1
N

N

∑
i=1

S(ti)

There is also a type of Asian options with geometric average:

Save = exp

(
1
T

∫ T

0
ln(S(t))dt

)

From the characteristic of the Asian option, we can see that the Asian option has a
lower volatility than the European option. Hence, it is less risky and cheaper than
the European option. The Asian option is arguably more appropriate than regular
options for meeting some of the needs of corporate treasurers.

In our work, we mainly dealt with the discrete version of the average. From the
hardware point of view, the modification implies adding an accumulator (which is
within the MC core) and divider after the Monte-Carlo simulation core as shown in
Fig. 20.

With the extra divider, the Asian option hardware simulation engine was of
600x faster than the equivalent software implementation. This implementation is

62 X. Tian and K. Benkrid

configured as the same wordlength, clock frequency, and the number of computation
kernels as the European option pricing model.

4.2.3 The GARCH Model

One assumption in the Black–Scholes model that is not always true in practice is the
assumption that volatility is constant. Indeed, practitioners often find it necessary
to change the volatility parameter when using the Black–Scholes model to value
options. In the case where the stock price and volatility are correlated, there is no
simple solution to the model equations and Monte-Carlo-based simulations often
become necessary.

One technique for modeling volatility that has become popular is Generalized
Autoregressive Conditional Heteroskedasticity—GARCH model [30]. The most
commonly used GARCH model is GARCH (1, 1) where the volatility is given by
the following equation:

σ2
i = σ0 +ασ2

i−1 +β σ2
i−1λ 2 (36)

Here α , and β are constants which can be estimated from historical data using
maximum likelihood methods. σ0 is the volatility of the stock price at time 0, σi

and σi−1 are the volatilities at time iΔ t and (i−1)Δ t. λ is a random variable with a
normal (Gaussian) distribution with a mean of zero and a standard deviation of 1.0.
Notice that the random variable in the GARCH model is different from the one used
in the describing the evolution of stock prices. The two random variables represent
two independent stochastic processes.

For options that last less than 1 year, the pricing impact of a stochastic volatility
is fairly small in absolute terms. It becomes progressively larger as the life of the
option increases.

The GARCH model has only one extra module compared to the European pricing
engine implementation, namely a stochastic volatility model implementation. The
architecture is depicted in Fig. 21.

We captured our hardware architecture using Verilog-HDL and synthesized it
using Xilinx ISE 9.2i. We could fit 11 Monte-Carlo cores on one single FPGA
chip. These occupied 39,466 slices on an XCV4FX100-10ff1517 FPGA, which has
42,176 slices overall (the word length is configured as 26 bits). Besides, all 160
DSP48s units were utilized. The peak clock frequency of the core is 53 MHz. We
set the clock frequency on the Maxwell’s FPGA nodes to 50 MHz.

Figure 22 gives the execution time of the GARCH option pricing model on
the Maxwell machine using an increasing number of nodes. This is shown for
our FPGA implementation as well as for an equivalent software implementation
running on the 2.8 GHz Xeon processors. In both cases, the execution time decreases
linearly as the number of nodes increases. This is because inter-communication time
is negligible compared to the computing time. Indeed, the only instances where
communication between the host software and the Monte-Carlo cores (running on

Monte-Carlo Simulation-Based Financial Computing. . . 63

Wrapper
MC_TOP

MC Core MC Core

P
C

I-
X

Processor

Box-Muller
Random
Number
Generator

Monte-Carlo
Iteration

Core

Post
Processing

G
aussian
N

oise

Stock
P
rice

O
ption

P
rice

O
ut

pu
t

en
ab

le
O

ut
pu

t
en

ab
le

MC Core MC Core

}

}

N Cores

MC Core

GARCH
Module

Gaussian Noise

q

w

Fig. 21 Generic architecture of GARCH model simulation engine

FPGA or on the Xeon processors) is needed is when parameters are broadcasted to
the cores at the beginning of the execution, and when results are gathered from the
cores at the end of the simulation. Compared to software, our FPGA implementation
results in a 340x speed-up. It is worth mentioning that this speed-up figure is
independent of the number of nodes (FPGA/CPU) used.

The reason behind the high speed-up figure of the FPGA implementation, despite
the huge difference in clock frequency (50 MHz for the FPGAs compared to
2.8 GHz for the Xeon’s) is due to the high level of process parallelism (11 cores
running in parallel on each FPGA device) as well as the high degree of pipelining
used within each core.

4.2.4 American Option Pricing

As mentioned in Sect. 2, American options are call or put options that can
be exercised at any time up to the expiration date. After generating the paths of
the stock price, using the same approach as the simulation of European options,
we need to go backward to find the best day to exercise the option. There are two
different situations in the decision-making procedure: at the final exercise date, the
optimal exercise strategy for an American option is to exercise the option if it is in
the money; however, prior to the final date, the optimal strategy is to compare the
immediate exercise value with the expected cash flows from continuing, and then
exercise if immediate exercise is more valuable [31]. Thus, we can see that the
strategy to optimally exercise an American option is to identify the conditional

64 X. Tian and K. Benkrid

FPGA(sec) Software(sec)

0

1

2

3

4

5

6

1 4 8 16 32
Number of Processors

L
o

g
ar

it
h

m
ic

 r
u

n
n

in
g

 t
im

e(
M

u
lt

ip
lie

d
 b

y
10

,0
00

)

0

5

10

15

20

25

30

35

40

45

50

R
u

n
n

in
g

 T
im

e
(S

ec
o

n
d

s)

Number of Processors

FPGA(sec) 0.1311 0.0329 0.0165 0.0083 0.0042

Software(sec) 45.1392 11.3257 5.6591 2.8256 1.416

1 2 3 4 5

Fig. 22 Execution time of the GARCH option pricing model

expected value of continuation. We use the cross-sectional information in the
simulated paths to identify the conditional expectation function. This is done by
regressing the subsequent realized cash flows from continuation on a set of basis
functions of the values of the relevant state variables. The fitted value of this
regression is an efficient unbiased estimate of the conditional expectation function
and allows us to accurately estimate the optimal stopping rule for the option.

Here we use a simple example to depict the least-squares regression. A more
detailed description can be found in [31]. Consider an American put option on a
share of non-dividend-paying stock. The put option is exercisable at a strike price of

Monte-Carlo Simulation-Based Financial Computing. . . 65

Table 1 Stock price paths Path t = 0 t = 1 t = 2 t = 3

1 1.00 1.09 1.08 1.34
2 1.00 1.16 1.26 1.54
3 1.00 1.22 1.07 1.03
4 1.00 0.93 0.97 0.91
5 1.00 1.11 1.56 1.52
6 1.00 0.76 0.77 0.90
7 1.00 0.92 0.84 1.01
8 1.00 0.88 1.22 1.34

Table 2 Cash-flow matrix at
time 3

Path t=1 t=2 t=3

1 – – 0
2 – – 0
3 – – 0.07
4 – – 0.18
5 – – 0
6 – – 0.20
7 – – 0.09
8 – – 0

Table 3 Regression at time 2 Path Y X

1 0.00 × 0.94176 1.08
2 – –
3 0.07 × 0.94176 1.07
4 0.18 × 0.94176 0.97
5 – –
6 0.20 × 0.94176 0.77
7 0.09 × 0.94176 0.84
8 – –

1.10 at times 1, 2, and 3, where time 3 is the final expiration date. The riskless rate
is 6%. We use eight simulation paths for the price of the stock, which are shown in
Table 1.

First, considering the situation of not exercising the option before the final
expiration date at time 3, the cash flows realized by the option holder from following
the optimal strategy at time 3 are given in Table 2.

If the put is in the money at time 2, the option holder must then decide whether to
exercise the option immediately or continue the option’s life until the final expiration
date at time 3. From the stock-price matrix, there are five paths for which the option
is the money at time 2. Let X denote the stock prices at time 2 for these five paths
and Y denote the corresponding discounted cash flows received at time 3 if the put
is not exercised at time 2, the regression at time 2 is shown in Table 3.

To estimate the expected cash flow from continuing the option’s life conditional
on the stock price at time 2, we regress Y on a constant, X , and X2. This
specification is one of the simplest possible; more general specifications are given

66 X. Tian and K. Benkrid

Table 4 Optimal early
exercise decision at time 2

Path Exercise Continuation

1 0.02 0.0369
2 – –
3 0.03 0.0461
4 0.13 0.1176
5 – –
6 0.33 0.1520
7 0.26 0.1565
8 – –

Table 5 Cash-flow matrix at
time 2

Path t = 1 t = 2 t = 3

1 – 0 0
2 – 0 0
3 – 0 0.07
4 – 0.13 0
5 – 0 0
6 – 0.33 0
7 – 0.26 0
8 – – 0

Table 6 Regression at
Time 1

Path X Y

1 1.09 0.00 × 0.94176
2 – –
3 – –
4 0.93 0.13 × 0.94176
5 – –
6 0.76 0.33 × 0.94176
7 0.92 0.26 × 0.94176
8 0.88 0.00 × 0.94176

in [31]. Although we Although we only use this specification in the hardware
implementation, a more general implementation can easily be adopted. The resulting
conditional expectation function is E[Y |X] =−1.070+ 2.983X− 1.813X2.

With this conditional expectation function, we now compare the value of
immediate exercise at time 2, given the first column in Table 3, with the value from
continuation, given in the second column in Table 4. This leads to the following
matrix in Table 5, which shows the cash flows received by the option holder
conditional on not exercising prior to time 2.

Proceeding recursively, we next examine whether the option should be exercised
at time 1. Again we choose the paths where the option is in the money. Let X denote
the stock prices at time 1 for these paths and Y denote the corresponding discounted
cash flows received at time 2 if the put is not exercised at time 1. The regression
data at time 1 is shown in Table 6.

The conditional expectation function at time 1 is estimated by again regressing
Y on a constant, X , and X2. Then we use the estimated conditional expectation

Monte-Carlo Simulation-Based Financial Computing. . . 67

Table 7 Optimal early
exercise decision at Time 1

Path Exercise Continuation

1 0.01 0.0139
2 – –
3 – –
4 0.17 0.1092
5 – –
6 0.34 0.2866
7 0.18 0.1175
8 0.22 0.1533

Table 8 Option cash-flow
matrix

Path t=1 t=2 t=3

1 .00 .00 .00
2 .00 .00 .00
3 .00 .00 .07
4 .17 .00 .00
5 .00 .00 .00
6 .34 .00 .00
7 .18 .00 .00
8 .22 .00 .00

generated by the regression to calculate the estimated continuation values, as shown
in Table 7.

After deciding the exercise strategy at times 1, 2, and 3, we can get the final
option cash flow matrix as shown in Table 8. Then, the option can be valued by
discounting each cash flow in the option cash flow matrix back to time zero,
and averaging over all paths. This procedure results in a value of 0.1144 for the
American put.

As the main operations in this step are matrix multiplication and inversion, the
size of the matrix is very important to the overall architecture. If the number of
simulation paths is 4,096, and the number of time steps is 100; the size of matrix X
will be 4,096×3, and Y will be 4,096×16. Figure 23 depicts the overall architecture
of the regression step.

Our FPGA implementation targeted a Xilinx XC4VFX100-10 FPGA chip on an
Alpha Data ADM-XRC-4FX card, which contains 42,176 slices, 160 DSP48s, and
376 BlockRAM units. We captured our hardware architectures in generic Verilog
and synthesized them using Xilinx ISE 9.2i. To achieve the precision requirement
of 10−4, we needed 26 bits fixed point arithmetic for the Monte-Carlo simulation
and 32 bits fixed point arithmetic for the regression part. The resource consumption
breakdown is shown in Table 9. Moreover, 16 off-chip memory banks (4 physical

6Actually, the LSMC algorithm uses only the paths which are in the money. Hence, the number of
row of X should be less than 4096. However, the memory size on FPGA is fixed, so we exclude
the paths which are not in the money when doing the matrix multiplication. So the number of row
of X can still be seemed as 4096.

68 X. Tian and K. Benkrid

(3 × 4096)×(4096 × 3) (3 × 4096)×(4096 × 1)

TX X

(XTX)−1
(XTX)−1XTY

(3 × 3)−1 (3 × 3)×(3 × 1)

If continuation_value < current_value
Update cash flow matrix

Stock price paths
(off-chip RAM)

4096 × 100

Averaging over all
paths

Cash flow
matrix

(4096 × 1)YY = Xb

XTY

Fig. 23 Architecture of linear-squares regression

Table 9 Resource
consumption breakdown

Slices FFs LUTs RAM DSP48s

MC 2,655 2,996 3,656 24 44
Regression 37,667 18,385 66,384 53 116
Overall 40,322 21,381 70,040 77 160

banks are used, each bank has 52 bits word-length and we double the clock
frequency to the memory) were used for storing the stock price paths, with each
memory bank consisting of 512× 100× 26 bits. The peak frequency achieved was
76 MHz, and the FPGA card was clocked at 75 MHz.

To compare the hardware implementation with an equivalent software imple-
mentation, we also wrote a C++ program for our Least-Squares Monte-Carlo
engine and executed it on a 2.8 GHz Xeon processor-based machine with 1Gbyte
memory. We used a fully optimized library, namely Intel Math Kernel Library
(MKL), to generate the Sobol sequence and convert it to Gaussian noise using
the ICDF method (also provided by the MKL). Single precision is used in the
software implementation. The wall clock time of both FPGA and CPU-based
implementations is shown in Table 10.

Monte-Carlo Simulation-Based Financial Computing. . . 69

Table 10 Calculation time
on FPGA and CPU (ms)

FPGA CPU

MC 0.683 16.778
Regression 1.368 24.608
Overall 2.051 41.386

Wrapper

QMC_TOP

QMC
Core

QMC
Core

P
C

I-
X

Host

Quasi-Random
Number
Generator

MonteCarlo
Iteration

Core

Post
Processing

Stock P
rice

O
ut

pu
t

en
ab

le
O

ut
pu

t
en

ab
le

QMC
Core

QMC
Core

}
}

N Cores

QMC
Core

G
aussian
N

oise
O

ption
P
rice

Fig. 24 Generic architecture of Quasi-Monte Carlo simulation engine

From Table 10, we can see that a 25x and 18x speed-up can be achieved in the
Monte-Carlo simulation and regression steps, respectively, for an overall speed-up
of the American option pricing calculation of 20x.

4.2.5 Quasi-Monte Carlo Simulation

The path generation part of the Quasi-Monte Carlo simulation core is the same
as the one in the Monte-Carlo simulation core. However, the principle of the
Quasi-Monte Carlo simulation is mainly based on the random number generation
mechanism. Figure 24 gives the generic architecture of the Quasi-Monte Carlo
simulation engine.

Hence, we plug a different random number generator (in Fig. 25) to the Monte
Carlo simulation core. Since all of the modules in Fig. 24 have been described in
the previous sections, we here only present the implementation results of the Quasi-
Monte Carlo simulation core and the comparison with other implementations.

Our FPGA implementation targeted the XC4VFX100-10 FPGA chips on the
Maxwell machine. We captured our hardware architectures in generic Verilog and
synthesized them using Xilinx ISE 9.2i. We experimented with bit both fixed and
floating point arithmetic as shown in Table 11, where the resources consumed by
each module in a single Quasi-Monte Carlo computing core (excluding the PCI
interface module) are given.

70 X. Tian and K. Benkrid

Sobol random
number
generator

ICDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

Gaussian random numbers
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Fig. 25 Gaussian random number generator

Table 11 Resource consumption breakdown

Fixed point Floating point

Arithmetic 26bits 29bits 32bits Single precision

Module name RNG MC RNG MC RNG MC RNG MC
Slices 944 614 945 675 951 777 951 2,790

1,558 1,620 1,728 3,741
DSP48s 1 8 1 9 1 10 1 13

9 10 11 14
RAM16s 6 0 6 0 6 0 6 0

6 6 6 6
LUTs 1,268 425 1,268 519 1,268 597 1,268 3,037

1,693 1,787 1,865 4,305
FFs 1,375 884 1,375 1087 1,375 1,273 1,375 4,392

2,259 2,462 2,648 5,767
Freq’ (MHz) 211 211 194 180
Precision 10-E4 10-E5 10-E6 10-E6
Max No. of Cores 27 26 24 11

Four RAM16s are used for storing 2,400 direction numbers and one is used for
storing Sobol numbers from previous paths (in the Sobol number unit). We note
that the precision of 32 bits fixed point implementation is the same as the single
precision floating point one. This is largely due to the range of the input data.
Another issue is that since we wanted to optimize the single precision floating
point implementation, we used the most optimized pipeline stage for the floating
point units, which results in a peak clock frequency of 180 MHz. The critical path for
all the four implementation is the multiplier. The costs of addition, multiplication,
and accumulation are 3, 3, and 1, respectively. In addition, the floating point
arithmetic units are generated by Xilinx Core Generator.

Note that as we scaled the parameters of ICDF module, the range of Gaussian
numbers in the 32 bits fixed-point implementation is the same as the single precision
one. Hence we use the 32 bits fixed-point arithmetic for the RNG module in
single precision implementation and converse the numbers to single precision before
inputting to the MC module.

Monte-Carlo Simulation-Based Financial Computing. . . 71

in in+2^p
in+2^p x 2 in + 2^ p x 32

... ...

in

Node 1 Node 2 Node 3
Node

32

Level 1

Level 2

Fig. 26 Parallelism of Sobol sequence

Since we targeted a multi-FPGA platform, we use Message Passing Interface
(MPI) [19] for process intercommunication (this is used for all the implementations
in this chapter). Thirty-two FPGA nodes were used on the Maxwell machine, with
each node loaded with the same bitstream and initial option price parameters, but
with different initial numbers for the Sobol random number generator. Indeed, as
explained above, we separate the Sobol sequence at two levels in order to allow for
parallelism (see Fig. 26). As the initial number for each FPGA node is different, we
calculate the initial number in one run of a recurrence and send it to the relative
node using MPI. In each node, we calculate the initial number for each core using
FPGA resources.

The pipelined design means that there is no need to store the random numbers as
one Sobol number and one Gaussian variable are provided by the random number
generator each cycle. Memory access time is hence reduced, and an option price
estimate is generated every clock cycle in each core after the pipeline fills.

Figure 27 shows the execution time of our Quasi-Monte Carlo simulation engine
on the Maxwell machine with different numbers of FPGA processing nodes and
different arithmetic types, measured by the wall time function in MPI. As can be
clearly seen, the execution time reduces linearly with the number of FPGA nodes
used, which is to be expected since inter-process communication is negligible.

The second Quasi-Monte Carlo simulation engine was targeted at an NVIDIA
8800GTX GPU. This device has a core clock frequency of 575 MHz and a
shader clock frequency of 1,350 MHz. The memory size is 768 MB, with 900 MHz
clock frequency. We installed the newest Compute Unified Device Architecture
(CUDA) 2.1 [32] development environment on a MacPro workstation with a 64-
bit Linux system, and we implemented the exact same algorithm as in the FPGA
implementation on the GPU. In the GPU, parallelism is mainly obtained through
multi-threading. The thread hierarchy is as follows: the threads can be identified
using a one-dimensional, two-dimensional, or three-dimensional index, forming a

72 X. Tian and K. Benkrid

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Number of FPGAs

T
im

e(
m

s)
26 bits 29 bits 32 bits single precision

26 bits 7.87 3.87 1.98 1.03 0.64 0.31

29 bits 9.56 4.66 2.41 1.25 0.78 0.37

32 bits 15.15 7.48 3.81 1.98 1.24 0.59

single precision 25.00 13.12 6.67 3.45 2.17 1.03

1 2 4 8 16 32

Fig. 27 Running time of Quasi-Monte Carlo simulation engine on different number of FPGA
processing nodes

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (0, 1) Block (1, 1) Block (2, 1)

Block(2, 0)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Fig. 28 Grid of thread blocks

one-dimensional, two-dimensional, or three-dimensional thread block, as illustrated
in Fig. 28.

CUDA threads may access data from multiple memory spaces during their
execution. Each thread has a private local memory. Each thread block has a shared
memory visible to all threads of the block and with the same lifetime as the block.
Finally, all threads have access to the same global memory. We used multiple threads
per option to keep the GPU hardware efficiently occupied. We also used multiple
thread blocks per option, in which case we have to get partial sums from each thread
blocks, which in turn means that data transaction from shared memory to global
memory is needed. Hence, we use a second kernel which uses a parallel reduction
operation to compute the sums. A parallel reduction is a tree-based summation of

Monte-Carlo Simulation-Based Financial Computing. . . 73

500

600

700

800

900

1000

32 64 128 256 512

Number of threads per block

N
um

be
r o

f o
pi

on
ts

 p
er

 se
co

nd

64 Blocks 128 Blocks 256 Blocks

Fig. 29 Performance of our Quasi-Monte Carlo GPU implementation using different numbers of
threads per block

values which takes log(n) parallel steps to sum n values. Parallel reduction is an
efficient way to combine values on a data-parallel processor like a GPU; the larger
the number of paths the better as this helps in hiding the latency of reading input
values randomly.

Given a total number of threads per grid, the number of threads per block, or
equivalently the number of blocks, should be chosen to maximize the utilization
of the available computing resources. With a high enough number of blocks, the
number of threads per block should be chosen as a multiple of 64, as the compiler
and thread scheduler schedule the instructions as optimally as possible to avoid
register memory bank conflicts, and the best results are achieved when the number of
threads per block is a multiple of 64. After several experiments of multiple options
pricing on our NVIDIA 8800GTX device, we found that using 128 thread blocks
gives the best performance. Moreover, the performance is best when the number of
threads per block is 128. Figure 29 shows the performance of our Quasi-Monte Carlo
financial option pricing implementation when using different number of blocks and
threads per block on the GPU.

We also wrote a C++ program of our Quasi-Monte Carlo simulation engine
on the Maxwell machine and executed it on the Xeon processors. The most time
consuming module of Quasi-Monte Carlo simulation core is the random number
generator. Hence, we used a fully optimized library, namely Intel Math Kernel
Library (MKL) [33, 34], to generate the Sobol sequence and transfer it to Gaussian
noise using ICDF method (also provided by the MKL).

Figure 30 shows the execution time of our Quasi-Monte Carlo simulation engine
on the Maxwell machine with different numbers of Xeon processors. As in the
case of FPGAs, here also, the execution time scales linearly with the number of
processors.

74 X. Tian and K. Benkrid

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32
Number of CPUs

T
im

e(
se

co
n

d
s)

Fig. 30 Running time of our Quasi-Monte Carlo simulation engine on different number of Xeon
processors

Table 12 Speed-ups of different platforms

FPGA GPU

CPU Fixed-26bits Fixed-29bits Fixed-32bits Single Precision Double Precision

1x 544x 448x 282x 162x 50x

To compare our three different implementation platforms, we ran our Quasi-
Monte Carlo simulation engine to price a single option, using 524,288 simulation
paths, on FPGA, GPU and GPP. This number of path is chosen as the precision can
reach 10−4. Moreover, it is a power of 2, which can benefit from the characteristic
of Sobol numbers. We allot the same number of paths to each Quasi-Monte Carlo
core on FPGA, Xeon CPU, or every thread and threads block on GPU. Although
the optimized numbers of threads and threads blocks come from multiple options
pricing, we still use the same parameters.

Table 12 shows comparative performance results between the FPGA, GPU and
Xeon processor implementations, normalized to the Xeon CPU result. Here, the
FPGA and Xeon implementations are both for a single node experiment, as we only
use a workstation with a single GPU, and not a cluster of GPUs.

We can see significant speed-ups from both GPU and FPGA implementations.
This is due to the high level of parallelism inherent in the Quasi-Monte Carlo
simulation algorithm. Moreover, there is very limited conditional branching in the
program, which is beneficial to both FPGAs and GPUs, especially the latter.

Apart from speed, we should also consider other factors when evaluating
high performance computing implementations e.g. hardware and software cost,
development time, power consumption, maintenance costs, technology maturity.

Monte-Carlo Simulation-Based Financial Computing. . . 75

0.5

168

8
0

20

40

60

80

100

120

140

160

180

Virtex-4 FPGA Intel Xeon CPU NVIDIA 8800GTX GPU

E
n

er
g

y(
Jo

u
le

 p
er

 o
p

ti
o

n
)

Fig. 31 Energy consumption in Joule

In the following, we will address one of these factors in our implementations,
namely: power consumption.

We physically measured the power consumption of our FPGA, CPU and GPU
implementations using a power meter, and deduced the energy consumption based
on the execution times. Figure 31 gives the corresponding energy consumption
results for each implementation. We can clearly see that FPGA offers the most
energy efficient implementation, followed by the GPU, and then the CPU. Here
FPGAs are 336x more energy efficient than CPUs, and 16x more energy efficient
than GPUs.

5 Evaluation of Reconfigurable Hardware in High
Performance Financial Computing

The evaluation of computational solutions in the literature is often focused on
computation speed and accuracy. Nevertheless, when evaluating a high performance
computing platform, several other metrics need to be considered. Those metrics
include: the cost of equipment, development time, and power consumption. In fact,
these metrics can all be valued in terms of only one metric: Money. Hence, to
conclude this work in general, we consider the following aspects:

Equipment expense
Development expense
Energy expense

In this section, we perform a comprehensive comparison of the implementation of
a Quasi-Monte Carlo simulation engine using three different computing platforms:
FPGA, GPU, and GPP.

76 X. Tian and K. Benkrid

Table 13 Experimental parameters and results

FPGA GPU GPP

Equipment cost $10,000 $1,350 $1,000
Development time (days) 60 3 1
Development cost $9600 $480 $160
Execution time 0.00787s 0.0858s 4.291s
Speed-up 545x 50x 1x
Dynamic power consumption 20W 95W 40W
Total power consumption 150W 225W 170W
Energy consumption 1.1805J 19.305J 729.47J
Annual energy cost $197 $296 $223
Number of paths 524,288 524,288 524,288
Paths/second 66,618,551 6,110,583 122,183

5.1 Evaluation of FPGA-Based Monte Carlo Simulation
Engine

In this comparison, we used the following device technologies: Xilinx Virtex 4
VFX100 FPGA, NVIDIA 8800GTX GPU, and Intel Xeon CPU 2.8GHz. Table 13
presents the experimental parameters and results. The equipment cost including
both the expense for the host and the accelerator boards. The development cost
is calculated using the following parameters: eight working hours per day and
$20 per hour payment. The dynamic power consumption is the power measured
at runtime, deducting the idle power. When calculating the energy consumed, we
use the total power consumption. Annual energy costs are based on electricity price
of $0.15 per kWh.

Several figures are plotted below to show the evaluation of the three imple-
mentations. The main metric used here is the number of paths per second, when
normalized using development time, power consumption, and dollar expense. First,
Fig. 32 shows the number of paths per second per development day using different
platforms.

Results show that the GPU implementation gives the best result, followed
by the FPGA implementation, and then the CPU one. Despite FPGA’s high
speed performance, its hardware description programming model is the most time
consuming compared to GPU and CPU programming (which is essentially software
programming), resulting in a lower performance per design effort compared to
GPUs.

Considering power consumption, Fig. 33 presents the number of paths per second
per Watt for each of the three implementations.

As we can see from Fig. 33, the normalized performance per Watt of the FPGA
implementation outperforms the GPU and CPU implementations, respectively.
Moreover, we note that although the power consumption of the GPU implemen-
tation is more than the CPU implementation, the former still beats the latter in terms
of energy efficiency.

Monte-Carlo Simulation-Based Financial Computing. . . 77

1,110,309

2,036,861

122,183

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Virtex-4 FPGA 8800GTX GPU Xeon 2.8GHz CPU

Paths/Sec/Development Day

Fig. 32 Number of Paths/Sec/Development day

444,124

27,158

719
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

Virtex-4 FPGA 8800GTX GPU Xeon 2.8GHz CPU

Paths/Sec/Watt

Fig. 33 Number of Paths/Sec/Watt

Considering the cost, Fig. 34 presents the performance normalized per total cost
(purchase and development cost). As we can see, the normalized performance per
cost of the FPGA and GPU implementations are very close. However, as in the
above two figures, the normalized performance per cost of the CPU implementation
is still much lower than the other two.

78 X. Tian and K. Benkrid

3,399 3,339

105
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Virtex-4 FPGA 8800GTX GPU Xeon 2.8GHz CPU

Paths/Sec/$

Fig. 34 Number of Paths/Sec/$ (purchase and development cost)

Architecture
design
40%

Arithmetic &
Precision
Analysis

10%

Hardware and
firmware

implementation
and testing 30%

Functional
verification

(using
Modelsim)

20%

Development time percentage

Fig. 35 Development time percentage on FPGAs

From the above results, we note that the main advantage of FPGAs resides in
their energy efficiency. However, the development effort is a major drawback which
impedes FPGAs’ economic advantage. To have a deeper understanding of this issue,
Fig. 35 presents a division of the whole FPGA solution’s development time into its
various steps.

From Fig. 35, we can see that the first three steps (namely arithmetic and
precision analysis, architecture design, and verification) take 70% of the whole
development time. This can be reduced in the future with high level design
tools. Moreover, the hardware implementation and testing takes 30% of the whole
development time. This could be reduced through the development of standard
FPGA hardware boards with standard application programming interfaces (APIs).

Monte-Carlo Simulation-Based Financial Computing. . . 79

6 Conclusion

Based on the work presented in this chapter, we can conclude that reconfigurable
technology in the form of FPGAs has significant advantages compared to other
technologies in high performance financial computing as it offers orders of mag-
nitude speed-up compared to general purpose processors. Overall, FPGAs’ main
advantage lies in their high performance per watt, or energy efficiency. However,
FPGAs’ lack of high level programming tools and standard hardware and APIs
is impeding the economic advantage of this technology, especially in comparison
with GPU technology. Higher level programming tools and standard hardware and
API platforms are necessary for further penetration of FPGA technology into high
performance computing.

References

1. J. Dongarra, Trends in high performance computing: a historical overview and examination of
future developments. IEEE Circ. Dev. Mag. 22, 22–27 (2006)

2. P. Marsh, High performance horizons. Comput. Contr. Eng. J. 42–48 (2004)
3. S.A. Zenios, High-performance computing in finance: the last 10 years and the next. Parallel

Comput. 25, 2149–2175 (1999)
4. J.C. Hull, Option, Futures, and Other Derivatives, 4th edn. (Prentice Hall, Upper Saddle River,

2000)
5. G.L. Zhang, et al., Reconfigurable acceleration for Monte Carlo based financial simulation, in

Proceedings. 2005 IEEE International Conference on Field-Programmable Technology, 2005,
pp. 215–222

6. D. B. Thomas, et al., Hardware architectures for Monte-Carlo based financial simulations,
in FPT 2006. IEEE International Conference on Field Programmable Technology, 2006,
pp. 377–380

7. G.W. Morris, M. Aubury, Design space exploration of the european option benchmark using
hyperstreams, in FPL 2007. International Conference on Field Programmable Logic and
Applications, 2007, pp. 5–10

8. Q. Jin, et al., Exploring reconfigurable architectures for binomial-tree pricing models. Lect.
Note Comput. Sci. 245–255 (2008)

9. A.R. Choudhury, et al., Optimizations in financial engineering: The Least-Squares Monte Carlo
method of Longstaff and Schwartz, in IPDPS 2008. IEEE International Symposium on Parallel
and Distributed Processing, 2008, pp. 1–11

10. I.L. Dalal, et al., Low discrepancy sequences for Monte Carlo simulations on reconfigurable
platforms, in International Conference on Application-Specific Systems, Architectures and
Processors, 2008, pp. 108–113

11. N.A. Woods, T. VanCourt, FPGA acceleration of quasi-Monte Carlo in finance, in FPL 2008.
International Conference on Field Programmable Logic and Applications, 2008, pp. 335–340

12. J.H.C. Yeung, et al., Map-reduce as a programming model for custom computing machines,
in FCCM ‘08. 16th International Symposium on Field-Programmable Custom Computing
Machines, 2008, pp. 149–159

13. D.-U. Lee, et al., A hardware Gaussian noise generator using the Box-Muller method and its
error analysis. IEEE Trans. Comput. 55, 659–671 (2006)

14. D.-U. Lee, et al., A hardware Gaussian noise generator using the Wallace method, in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2005, pp. 911–920

80 X. Tian and K. Benkrid

15. D.-U. Lee, et al., A hardware Gaussian noise generator for channel code evaluation, in FCCM
2003. 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2003, pp. 69–78

16. D.-U. Lee, et al., A Gaussian noise generator for hardware-based simulations. IEEE Trans.
Comput. 1523–1534 (2004)

17. R. Baxter, et al., Maxwell - a 64 FPGA Supercomputer, in AHS 2007. Second NASA/ESA
Conference on Adaptive Hardware and Systems, 2007, pp. 287–294

18. R. Baxter, et al., The FPGA high-performance computing alliance parallel toolkit, in AHS 2007.
Second NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, 2007

19. M. Snir, S. Otto, MPI-The Complete Reference. (MIT Press, Cambridge, MA, 1998)
20. SUN. Sun ONE Grid Engine Administration and User’s Guide [Online]. Available: http://www.

sun.com
21. J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd edn. (Springer,

New York, 2003)
22. R.C. Tausworthe, Random numbers generated by linear recurrence modulo two. Math. Com-

put. 19, 201–209 (1965)
23. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8, 3–30 (1998)
24. P. Bratley, et al., Implementation and tests of low-discrepancy sequences. ACM Trans. Model.

Comput. Simulat. 2, 195–213 (1992)
25. P. Jäckel, Monte Carlo Methods in Finance (Wiley, New York, 2002)
26. K. Entacher, et al., Defects in parallel Monte Carlo and quasi-Monte Carlo in tegration using

the leap-frog technique. Int. J. Parallel Emergent Distributed 18, 13–26 (2003)
27. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math.

Stat. 29, 610–611 (1958)
28. O. Mencer, et al., Parameterized function evaluation for FPGAs, in Proceedings of the 11th

International Conference on Field-Programmable Logic and Applications, 2001, pp. 544–554
29. O. Mencer, W. Luk, Parameterized high throughput function evaluation for FPGAs. J. VLSI

Signal Process. 36, 17–25 (2004)
30. J.-C. Duan, The garch option pricing model. Math. Finance 5, 13–32 (1995)
31. F.A. Longstaff, E.S. Schwartz, Valuing American options by simulation: a simple least-squares

approach. Rev. Financ. Stud. 14, 113–147 (2001)
32. Nvidia, NVIDIA CUDA Compute Unified Device Architecture Programming Guide, 2.0 edn.

(NVIDIA Corporation, 2008)
33. Intel. Intel� Math Kernel Library Reference Manual [Online]
34. Intel. Intel� Math Kernel Library Vector Statistical Library Notes [Online]. Available: http://

developer.intel.com/

http://www.sun.com
http://www.sun.com
http://developer.intel.com/
http://developer.intel.com/

Bioinformatics Applications on the FPGA-Based
High-Performance Computer RIVYERA

Lars Wienbrandt

Abstract Sequence alignment is one of the most popular application areas in
bioinformatics. Nowadays, the exponential growth of biological sequence data
becomes a severe problem if processed on standard general purpose PCs. Tackling
this problem with large computing clusters is a widely accepted solution, although
acquaintance and maintenance as well as space and energy requirements introduce
significant costs. However, this chapter shows that this problem can be addressed by
harnessing the high-performance computing platform RIVYERA, based on recon-
figurable hardware (in particular FPGAs). The implementations of three examples
of widely used applications in this area in bioinformatics are described: optimal
sequence alignment with the Needleman–Wunsch and Smith–Waterman algorithm,
protein database search with BLASTp, and short-read sequence alignment with a
BWA-like algorithm. The results show a clear outperformance of standard PCs
and GPU systems as well as energy savings of more than 90% compared to PC
clusters, combined with the space requirements for one RIVYERA of only 3U–4U
in a standard server rack.

1 Introduction

In bioinformatics computer scientists have to deal with the ever-growing amount
of digital biological data stored in large sequence databases. Prominent examples
are NCBI’s Genbank database [22] and the UniprotKB/TrEMBL database [31],
each observing an exponential growth in DNA sequence data and protein sequence
data, respectively. Additionally, high-throughput sequencing data becomes available
with the same growth in speed, strengthening the difficulties of a just-in-time data

L. Wienbrandt (�)
Department of Computer Science, Christian-Albrechts-University of Kiel, Germany
e-mail: lwi@informatik.uni-kiel.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 3, © Springer Science+Business Media, LLC 2013

81

mailto:lwi@informatik.uni-kiel.de

82 L. Wienbrandt

analysis. In fact, for many problems related to bioinformatics a single up-to-date
standard PC already requires an unreasonable amount of processing time, although
CPU technology has grown as well.

To keep up with this rising demand on computational power in bioinformatics,
the focus is set to parallel processing. Many core CPUs already provide some degree
of parallelism, which can be extended almost infinitely using computer clusters.
However, with a linear growth in cluster size, the costs for acquisition, energy, and
maintenance grow linearly as well.

This chapter is focused on the massively parallel utilization of FPGAs to
address this problem. FPGAs provide an ASIC-like performance combined with
an extensive degree of on-die parallelism according to its configuration and low
energy requirements. However, the performance of bioinformatics applications is
highly dependent on communication bandwidth and size of available memory as
well. These problems have been addressed with the design of the RIVYERA
architecture. RIVYERA provides the resources of 128 FPGAs (Xilinx Spartan6-
LX150 in RIVYERA S6-LX150) connected by a high-throughput systolic bus
system, and a significant amount of DRAM (512 MB up to 2.5 GB in RIVYERA S6-
LX150) attached to each FPGA. These are ample resources to address most of the
big problems in bioinformatics.

The RIVYERA architecture is shortly introduced in the next section (Sect. 2). In
the following sections, three major applications are presented and implemented on
the RIVYERA architecture: optimal sequence alignment using the Smith–Waterman
algorithm (Sect. 3.1), database searches with BLAST (Sect. 3.2), and BWA-like
short-read sequence alignment (Sect. 3.3).

2 RIVYERA S3-5000 and RIVYERA S6-LX150
Computing Platforms

The hardware platform RIVYERA was introduced in 2008 [25] and includes a com-
pletely reworked communication and memory infrastructure, compared to its prede-
cessor COPACOBANA, introduced in 2006 for applications in cryptanalysis [12].

For the applications described here (see Sect. 3) two specific types of RIVYERA
are used, the RIVYERA S3-5000 for the Smith–Waterman and BLAST applications
(Sects. 3.1 and 3.2) and the more recent RIVYERA S6-LX150 for the BWA
application (Sect. 3.3).

The RIVYERA architectures are now developed and distributed by SciEngines
GmbH [26]. They have a common basic structure consisting of two elements,
the in-built multiple FPGA-based supercomputer and a standard server grade
mainboard, running a Linux operating system, e.g. equipped with an Intel Core
i7-930 processor with 12 GB of RAM. The FPGA supercomputer is different for
each RIVYERA type. The RIVYERA S3-5000 is equipped with up to 128 user
configurable Xilinx Spartan3-5000 FPGAs, distributed over 16 FPGA cards, each

High-Performance Bioinformatics on RIVYERA 83

Fig. 1 The RIVYERA S6-LX150 system

containing 8 user FPGAs. Each user FPGA is directly attached to a DRAM module
with a capacity of 32 MB. In contrast, the RIVYERA S6-LX150 consists of up
to 128 Xilinx Spartan6-LX150 user FPGAs and attaches 512 MB DDR3-RAM to
each user FPGA per default. However, the available memory can be extended with
a memory extension module providing an additional amount of 2 GB DDR3-RAM
per FPGA.

The high-performance bus system offered by RIVYERA is organized as a
systolic chain, i.e. every FPGA on an FPGA card is connected by fast point-to-point
connections to each neighbor forming a ring. All FPGA cards are connected in the
same manner by an additional communication controller attached to each card. The
PC mainboard in RIVYERA is connected via PCIe to at least one communication
controller on one FPGA card forming a high-speed uplink to the host.

An intelligent routing scheme for this bus system has been implemented in an
API to ensure usability. The API includes the communication interface for software
and hardware to provide a transparent connection for the developer between host and
FPGA or any two FPGAs by an automatic routing of data packets. The API includes
broadcast facilities, methods for configuring the user FPGAs and a communication
interface for the FPGA-attached DRAM.

RIVYERA allows a small packaging. RIVYERA S3-5000 is packed in a standard
rack mountable 3U housing while the recent RIVYERA S6-LX150 is slightly larger,
but still requires only 4U . For more details on the RIVYERA architecture and its
predecessor COPACOBANA, see Chap. 11. A picture of RIVYERA S6-LX150 is
shown in Fig. 1.

84 L. Wienbrandt

3 Bioinformatics on the RIVYERA Architecture

The following sections address implementations of three major bioinformatics
applications regarding sequence analysis. The well-known Needleman–Wunsch [24]
and Smith–Waterman [27] algorithms to generate an optimal sequence alignment
are presented in Sect. 3.1. RIVYERA S3-5000 is able to accelerate these
applications to a speed of more than 3 TCUPS. Protein database searches can be
accelerated significantly as well using the BLASTp implementation for the NCBI-
BLAST [21] framework described in Sect. 3.2. The first bioinformatics application
addressing the recent RIVYERA S6-LX150 architecture directly is the BWA-
like short-read sequence alignment described in Sect. 3.3. This implementation,
completely integrated into the BWA [14] framework, again outperforms common
CPU and GPU implementations.

3.1 Optimal Sequence Alignment with Smith–Waterman
and Needleman–Wunsch

Biological sequence alignment deals with the problem of finding the best way to
align two nucleotide or protein sequences to each other. The more equal nucleotides
or similar amino acids face each other in the alignment the higher is the achieved
score. Additionally, gaps (insertions or deletions, sometimes referred to as indels)
are allowed to be inserted with linear or affine costs.

An alignment is considered optimal if its score is the maximum achievable for the
input sequences according to a previously selected scoring matrix. Figure 2 shows
an example for an optimal local alignment of two short nucleotide sequences using
the NUC44 scoring matrix and an affine gap penalty.

Algorithms generating alignments may be classified as heuristic or non-heuristic.
Heuristic algorithms such as BLAST [1] or BWA [14] may produce a large amount
of results but cannot guarantee to find the optimal alignment. Since they generally
outperform non-heuristic types by far, they are commonly used for database
searches (see Sect. 3.2) or short-read alignment (see Sect. 3.3). However, exactness
is necessary for several applications as well. Especially many heuristic algorithms
require an optimal alignment in their postprocessing.

Algorithms providing an optimal alignment are the Needleman–Wunsch [24] and
the Smith–Waterman [27] algorithms. Both work similarly with the difference that
Needleman–Wunsch finds optimal global alignments while Smith–Waterman finds
optimal local alignments. In this section it is demonstrated how RIVYERA S3-5000
is used for the Smith–Waterman algorithm.

3.1.1 The Needleman–Wunsch and Smith–Waterman Algorithms

The Needleman–Wunsch [24] and Smith–Waterman [27] algorithms are capable to
find the optimal alignments of two sequence to each other. In general, the major goal

High-Performance Bioinformatics on RIVYERA 85

Fig. 2 Optimal local alignment of the two nucleotide sequences ACGCTTTGAATACAC and
GCTATGTACAG using the NUC44 scoring matrix and affine gap penalty

is to find similar occurrences of one (shorter) sequence in another (long) sequence.
Hence, for convenience, one sequence is referred to as query sequence q while the
other one is called subject or database sequence s. Additionally, qi denotes the
symbol at position i in the query sequence q, likewise si for the subject sequence s.

In order to find an optimum out of every possible alignment, an alignment matrix
Hn×m is generated, whereby n and m are the lengths of the query and subject
sequence, respectively. The Smith–Waterman algorithm calculates the matrix cells
according to the following simple scoring function (g denotes a linear gap penalty,
S denotes the scoring matrix, e.g. NUC44):

Hi, j = max

⎧⎪⎪⎨
⎪⎪⎩

Hi−1, j−1 + S(qi,s j) match/mismatch
Hi−1, j + g insertion opening/extension
Hi, j−1 + g deletion opening/extension
0 do not allow negative values

(1)

The Needleman–Wunsch algorithm performs likewise with the only difference
that negative values are allowed in the alignment matrix. Hence, the scoring function
simply misses the comparison with 0 from the maximum condition in (1). For an
affine gap penalty, g becomes dependent on the condition of the gap, if it is either a
gap opening or an extension.

After the calculation of the alignment matrix, a backtracking step is performed
to generate the final alignment. Summarized, the backtracking starts at the lower
right corner Hn,m of the alignment matrix (Needleman–Wunsch) or at a matrix cell
Hi, j with the highest value (Smith–Waterman). The respective cell entries already
state the score of the final alignment. The backtracking follows the path through
the alignment matrix which reflects the chain of matrix cells whose values were
taken for the maximum calculation in (1). For each chosen direction, either up, left,
or up-left, the corresponding character or gap is inserted into the final alignment.
The backtracking stops if either the upper left corner H0,0 (Needleman–Wunsch)
or a cell with Hx,y = 0 (Smith–Waterman) is reached. For a detailed description of
the backtracking step, the original publications [24, 27] are referred to. Figure 3
illustrates the alignment matrix, the backtracking step and the final alignment of the
example in Fig. 2.

86 L. Wienbrandt

Fig. 3 Smith–Waterman alignment matrix and backtracking for the alignment of the sequences
ACGCTTTGAATACAC and GCTATGTACAG (see example in Fig. 2)

3.1.2 Implementation of Smith–Waterman

Time and memory requirements for the calculation of the alignment matrix are
clearly of complexity O(n · m). This implies long runtimes for large datasets if
processed subsequently, e.g. on a standard PC. For fine-grained parallel processing,
possible on e.g. FPGAs, the runtime complexity can be reduced to O(n) if n > m,
i.e. linear to the database sequence.

Considering a regular biologist’s workflow, it is likely that a huge amount of
alignments have to be processed, whereby the user is not interested in the alignment
itself, but primarily in the quality of the alignment. Hence, it is not necessary to save
the alignment matrix since the backtracking step is omitted if the alignment score
is beneath a certain threshold. This reduces the memory requirements to O(m), i.e.
linear to the length of the query sequence, if the database sequence is assumed not
to be stored in memory.

However, if the final alignment is required anyway, valuable runtime and
memory resources can still be saved. This presumes the matrix position of the
alignment score to be saved as well. Then, the final alignment can be created in
a postprocessing step considering only the necessary subsequences to perform the
complete Smith–Waterman algorithm.

The parallelization is realized as follows, considering a query sequence q of
length m. For every nucleotide or amino acid in the query sequence a Smith–
Waterman cell SWcell is implemented on the FPGA. Hence, each cell has to be

High-Performance Bioinformatics on RIVYERA 87

Fig. 4 Smith–Waterman chain structure and example for the calculation of an alignment matrix
on an FPGA

initialized with the corresponding sequence character before an alignment starts. Its
task is to calculate the values in the row of the alignment matrix corresponding to
its assigned character, i.e. a direct implementation of (1), whereby i, the index of
the row, will be fixed for each cell.

The aim is to calculate a matrix value in every SWcell in every clock cycle. Since
for every calculation three already calculated values are required (up, left and up-left
of the current matrix cell), all SWcells are able to compute an anti-diagonal of the
alignment matrix in every clock cycle if all SWcells are connected in a chain. Then,
the three values are accessed in the following way:

• The upper value Hi−1, j is the calculated matrix entry from the previous clock
cycle in the previous row (and therefore “left” neighboring cell).

• The left value Hi, j−1 is the matrix entry from the previous clock cycle in the same
row (and therefore the same cell as well).

• The upper-left value Hi−1, j−1 is the matrix entry from two previous clock cycles
in the previous row (left neighboring cell).

Since the processing is accomplished in anti-diagonals of the alignment matrix,
the required database sequence can be streamed through the chain of SWcells
character by character as well. Besides the calculation of (1) each cell has to store the
current maximum matrix entry for the final Smith–Waterman score of the alignment,
and its position to allow backtracking in a postprocessing step. The maximum is
forwarded through the chain as well such that the final score can be determined
at the end of the alignment from the last SWcell in the chain. Figure 4 shows a
calculation step of the alignment matrix and a part of the chain structure.

3.1.3 Performance Evaluation

According to a particular alignment problem, the presented application can be
implemented in several ways. For a short-read alignment experiment, the Smith–
Waterman algorithm has been implemented with an SWcell chain of length m= 100.
The configuration supports 5 nucleotide symbols (A, C, G, T, and N) and a scoring
matrix of 5 bits per entry.

88 L. Wienbrandt

Table 1 Smith–Waterman performance on RIVYERA S3-5000 for DNA and
protein sequence alignment

Architecture DNA/prot. Speed (GCUPS)

RIVYERA S3-5000 DNA 3,050
CLCbio Xeon X3210 @ 2.13 GHz (8 cores) DNA 45
CLCbio Core2Duo @ 2.17 GHz (2 cores) DNA 13

RIVYERA S3-5000 Protein 1,500
IBM QS20 blade (2x CellBE @ 3.2 GHz) Protein 33
CUDASW++2.0 (GeForce GTX280) Protein 17
Sony PS-3 (1x CellBE @ 3.2 GHz) Protein 12

With this configuration, four chains fit onto a single Spartan3-5000 FPGA of the
RIVYERA S3-5000. This sums up to 512 chains available on the whole RIVYERA,
i.e. 512 queries to be processed concurrently. Hence, the alignment of a test
set of 1 million Illumina 100 bp paired reads against the human genome (hg19,
3.2 Gbp) required only about 29 h. Since Smith–Waterman performance is often
measured in CUPS (cell updates per second), i.e. how many cells of an alignment
matrix are calculated per second, this leads to a speed of 3.05 TCUPS. Out of
numerous available Smith–Waterman implementations, these results were compared
to the speed of a commercial software solution for PCs and clusters provided by
CLCbio [4] in Table 1.

The implementation can easily be adapted to generate protein sequence align-
ments, supporting 24 amino acid symbols and scoring matrix entries of up to 6 bits.
This is sufficient for most available scoring matrices for protein alignments. With an
SWcell chain length of m = 100 again, two chains can still be implemented on one
Spartan3-5000 FPGA, leading to a concurrent processing of 256 queries on a whole
RIVYERA S3-5000 machine. Of course, the performance is expected to be slower
than for nucleotide sequence alignment now, but still 1.5 TCUPS are measured.
Again, for comparison, numerous implementations are available. The RIVYERA
performance was being compared to two other acceleration architectures. One is the
Cell Broadband Engine processor (IBM QS20 blade with 2x CellBE @ 3.2 GHz
and Sony PS-3 with 1x CellBE @ 3.2 GHz) [6], the other is a general purpose GPU
(nVidia GTX280 running CUDASW++2.0) [19]. The results are stated in Table 1
as well.

Summarized, the massively parallel FPGA implementation of the Smith–
Waterman algorithm using the RIVYERA S3-5000 outperforms other actual
architectures by far.

3.2 BLAST Database Search

The Basic Local Alignment Search Tool (BLAST) [1] was originally developed
to speed up biological database searches to find sequence similarities, which is

High-Performance Bioinformatics on RIVYERA 89

primarily based on biological sequence alignment. Currently, NCBI provides one
of the most commonly used versions [21], significantly improved by the two-hit
method and a gapped alignment strategy [2]. BLAST generates alignments for
either DNA (BLASTn) or protein (BLASTp) sequences. Several other variations
like BLASTx, tBLASTn, tBLASTx or PSI-BLAST exist, but all with a similar
core algorithm. This section mainly focuses on BLASTp for protein sequence
alignments.

In contrast to the Needleman–Wunsch [24] or Smith–Waterman [27] algorithm
described in the previous section (see Sect. 3.1), BLAST is heuristic. This leads to
a significant runtime reduction with the drawback of losing alignment quality, since
BLAST does not guarantee to find the optimum result. Several enhancements, such
as the two-hit method and gapped BLAST [2], have further reduced computation
time and improved result quality. However, with today’s exponential growth of
databases, BLAST reaches its limits on standard PC architectures especially for
large query sets.

Recent development addresses alternative architectures, e.g. CUDA-
BLASTp [18] utilizing general purpose GPUs with a speedup of up to 6 on an
nVidia GeForce GTX 280 graphics card compared to a single CPU-thread of an Intel
Core i7-920. Others provide single FPGA-based implementations such as Mahram
and Herbordt [20], Kasap et al. [10] and Mercury BLASTp by Jacob et al. [9].
Two approaches are available for multiple FPGAs using the RIVYERA S3-5000
architecture [32, 33], whereby the latter has been developed to remove several
bottlenecks detected in the dataflow of the former design, and will be described in
the following.

3.2.1 BLAST Algorithm

The BLAST algorithm is organized in several steps, which will be explained shortly
in the following. For details, it is refered to the original publications [1, 2].

In the first step, the query sequence is preprocessed to identify its neighborhood.
The neighborhood contains a list of short sequences of size k (k-mers) which are
similar to k-mers of the query sequence, according to a scoring matrix (such as
BLOSUM62) and a predefined threshold value. For BLASTp, k is fixed to k = 3.
The value k is fixed, but different for either BLASTn (k = 11) or BLASTp (k = 3).
A k-mer is declared similar to a k-mer of the query sequence if the score of a
direct comparison, calculated according to a scoring matrix (such as BLOSUM62),
exceeds a predefined threshold value.

The next step simply locates hits, i.e. exact matches of neighborhood words
found in the database sequences. The hits are tested pairwise in the two-hit method
if both hits of a pair hold the same distance to each other in the query sequence and
in the subject sequence. The pair is then referred to as two-hit. To save runtime and
memory the distance between the hits in a pair is bounded to a certain parameter A.
Overlapping hits are omitted by applying the value k as lower bound. The following

90 L. Wienbrandt

Fig. 5 Example for the ungapped extension of a two-hit in the NCBI BLAST implementation.
The solid rectangles mark the hit pair, the dashed an extension. Arrows indicate the direction and
the attached numbers, the order of the extensions

equation shows the condition for a two-hit whereby s0 and s1 state the location of
two hits in the subject and q0 and q1 their locations in the query, respectively:

k ≤ q1 − q0 = s1 − s0 < A (2)

Each two-hit is further examined by an ungapped extension process. Both hits
of a hit pair are extended forward and backward by calculating a similarity score of
the current part of the subject and query sequence. In detail, the similarity score is
firstly calculated for the hit pair itself and the gap between it. Then, the calculation
of the score is extended residue by residue from the first hit of the pair to the left
and afterward from the second hit to the right (in positional order). The calculation
stops for each direction if the score declines a certain cutoff distance below the so
far reached maximum. This method is referred to as X-drop mechanism. The high-
scoring pair (HSP) of this extension, i.e. the two positions where the maximum
score has been reached for each direction, states the result of this process. Figure 5
shows an example.

The last step in the BLAST algorithm states the gapped extension. To introduce
gapped alignment, HSPs are analyzed by a slightly modified version of the
Needleman–Wunsch algorithm [24]. First, the alignment is bound to the positional
range of the ungapped extension, and second, in contrast to the original Needleman–
Wunsch algorithm, the score of the alignment is stated by the maximum cell value
rather than the value of the lower right corner of the alignment matrix. If a traceback
is required to complete the final alignment (depending on the alignment score), it
starts at the matrix cell with the calculated maximum as well. Runtime is reduced as
well by using the X-drop mechanism again, i.e. omitting the calculation of matrix
cell values where the score declines below a certain cutoff distance from the so far
calculated maximum cell value.

3.2.2 Application Structure and Implementation

The implementation of BLASTp for the RIVYERA architecture is divided into
two parts, the hardware and the software part. For transparency, the software is
completely integrated in the original NCBI BLASTp v2.2.25+, including the user
interface. The main and most compute intensive routines performing the core
algorithm have been ported to the BLASTp pipeline implemented on the 128 Xilinx

High-Performance Bioinformatics on RIVYERA 91

Fig. 6 Structure of two BLASTp hardware pipelines sharing one GappedExtender component

Spartan3-5000 FPGAs of the RIVYERA S3-5000 machine and thus replaced by
a communication interface on the software side. The software is still responsible
for pre- and postprocessing as well as controlling the BLASTp pipelines on the
RIVYERA machine.

A BLASTp pipeline basically consists of four main components, the HitFinder,
the TwoHitFinder, the UngappedExtender, and the GappedExtender, each repre-
senting one pipeline stage according to the processing steps in the BLAST algorithm
(see Sect. 3.2.1). Figure 6 shows an overview of the FPGA implementation with two
BLASTp pipelines.

The preprocessing of the queries includes the generation of the neighborhood
and, if required, the splitting of long query sequences. For this implementation, a
maximum query length of 1024−A is supported directly (see (2) for definition of
A, default A = 40), while longer queries are splitted automatically by the NCBI
software routines. After the initialization and preprocessing phase, the database
sequences are broadcasted to the FPGAs as stream while the BLASTp pipelines
search for suitable alignments.

The HitFinder searches for occurences of k-mers of the subject sequence in the
neighborhood, which is a simple look-up in a hashtable, organized in two separate
tables.

Afterward, testing all possible pairs of hits to hold the condition for a two-hit
(see (2)) results intuitively in a quadratic runtime complexity. With an easy strategy,
basically consisting of a storage array for hit positions of a size corresponding to the
query length, the runtime complexity can be reduced to linear.

First, an array of length l = 1024 is required. This corresponds to the maximum
query length plus the parameter A for the bounds of (2). This array stores at position
p the most recent subject position s0 to the corresponding query position q0. The
position p is calculated from the following equation:

92 L. Wienbrandt

p = (s0 − q0) mod 1024 (3)

Before inserting a new position, the content of the array cell is read. If this cell
contains a valid subject position s1, it holds s0 > s1 and:

s0 − q0 = s1 − q1 (mod 1024) (4)

⇔ s0 − s1 = q0 − q1 (mod 1024) (5)

Assuming s0 − s1 < A, it follows from (5):

s0 − s1 =

{
q0 − q1 if q0 ≥ q1

1024− (q1− q0) if q0 < q1
(6)

The second case (assuming q0 < q1) results in:

A > 1024− (q1− q0) (7)

⇔ q1 − q0 > 1024−A (8)

This stays in contradiction to the bounds of the query length which is l = 1024−A.
Hence, if s0 − s1 < A it directly follows s0 − s1 = q0 − q1, and if (2) holds, i.e. k ≤
s0 − s1, this result is reported as a two-hit and buffered in a FIFO before processed
further by the UngappedExtender component.

This method might be problematic if hits arrived unordered, i.e. if s1 > s0.
However, this possibility can be counted out since the HitFinder provides hits only in
ascending query positions, followed by an ascending order of the subject positions.

All resulting two-hits are buffered in a FIFO before processed further by
the UngappedExtender. The ungapped extension process conforms to the order
indicated in Fig. 5. In every clock cycle the score of a pair of residues from the query
and the subject sequence is calculated using a scoring matrix, e.g. BLOSUM62,
implemented in a dual-ported ROM. The process starts with the right hit of the hit
pair and is directed left. The determined score is summed up continuously to the
total score. The X-drop mechanism is implemented by checking the new calculated
score in every clock cycle. If it drops a predefined cutoff distance below the so
far calculated maximum score, the process stops, and the position of the current
maximum score is stored. After finishing the left direction, the extension continues
directed right from the right hit of the hit pair storing a new maximum position.

Finally, both stored maximum positions from each direction form a HSP, which
is reported to the GappedExtender if its score exceeds another predefined threshold.

The UngappedExtender component contains a feedback path, controlling the
elements stored in the preceding FIFO. According to the current progress, a
pending two-hit may already be included in the running extension process. The
UngappedExtender is able to remove such two-hits in advance to prevent the same
extension with different starting points processed several times.

High-Performance Bioinformatics on RIVYERA 93

Fig. 7 Principle of the
gapped extension of a
high-scoring pair (HSP).
White cells in the middle
indicate the HSP, black cells
the calculated cells in the
Needleman–Wunsch
alignment. Arrows with
attached numbers indicate the
direction and the order of the
extension. The extension uses
the X-drop mechanism to stop

The GappedExtender component basically performs a modified Needleman–
Wunsch alignment with a banded matrix and a HSP at its center. In contrast
to Mercury BLASTp [9], this implementation is kept close to the one in NCBI
BLASTp using the X-drop mechanism to stop the extension process. However, the
width of the matrix band is fixed to ω = 64, but the length of the matrix band stays
variable.

To create the alignment matrix with the HSP in the center it is necessary to do
the calculation in two steps. The alignment starts at the center of the HSP and first,
extends backward, using the reverse sequences for Needleman–Wunsch. Afterward,
a forward directed alignment, again starting from the HSPs center, is performed in
the same way. The original HSP is reported to the host software if the sum of both
alignment scores exceed a predefined report threshold. The structure of this process
is illustrated in Fig. 7.

Similar to the chain of SWcells for the Smith–Waterman algorithm (Fig. 4 in
Sect. 3.1), the subcomponents of the GappedExtender component basically consist
of ω NWcells connected in a chain. Since the calculation is restricted to a banded
matrix now, a pre-initialization of the chain with the query sequence is impossible.
Instead, the part of the query sequence, which is to be analyzed, is inserted from
the one end of the chain, while the corresponding part of the subject sequence is
inserted from the other end, alternating with every clock cycle.

The calculation of the score of a cell Hi, j in the alignment matrix corresponds to
the following equation, similar to (1) in Sect. 3.1. In the implementation an affine
gap penalty is used whereby it is omitted here for simplicity (g denotes a linear gap
penalty, S denotes the scoring matrix, e.g. BLOSUM62):

Hi, j = max

⎧⎨
⎩

Hi−1, j−1 + S(qi,s j) match/mismatch
Hi−1, j + g insertion opening/extension
Hi, j−1 + g deletion opening/extension

(9)

94 L. Wienbrandt

Fig. 8 Structure of the NW cell chain implemented in the GappedExtender component

Since residues are inserted alternating from both ends of the NWcell chain, the
calculated anti-diagonal of width ω “moves” alternating rightward and downward
in each clock cycle. Hence, each NWcell requires access to the scores of both
neighboring cells in the chain, calculated in the previous clock cycle. The structure
of an NWcell chain is depicted in Fig. 8.

The gapped extension step in hardware acts as an additional filter to keep the
number of reports small. If a HSP passes the gapped extension filter, the exact
alignment including the backtracking is generated on the host by the original NCBI
routines. This way, valuable software runtime is saved by filtering nearly every HSP
in advance in hardware, which would be omitted by the gapped extension of the host
software anyway.

Before being fetched by the host software, the reports for each FPGA are col-
lected in the attached DRAM. This way, the number of communication interruptions
for the submission of reports during the core process can be kept small.

3.2.3 Performance Evaluation

Targeting the Xilinx Spartan3-5000 FPGAs of the RIVYERA 3-5000 machine, one
FPGA provides the resources to hold two BLASTp pipelines as described above, but
sharing one GappedExtender (s. overview in Fig. 6). This is easily possible, since
the GappedExtender is the most resource occupying component but utilized the most
infrequently as well. Therefore, the width of the matrix band is set to ω = 64. Hence,
a fully equipped RIVYERA S3-5000 is able to process 256 queries concurrently.

The reference system for the performance evaluation was a PC system equipped
with two Intel Xeon E5520 CPUs, each containing 4 cores (8 threads) running
at 2.26GHz, 48 GB DDR3-RAM, and 64 bit Linux OS. The software is NCBI
BLASTp v2.2.25+ with default parameters, BLOSUM62 scoring matrix and a
varying number of threads (16 and 8, “-num threads” switch). Three different
query sets from SUPERFAMILY database [30] were tested (proteomes of Arabidop-
sis thaliana, Populus trichocarpa, and human (Homo sapiens)), each set randomly
reduced to 2,335, 3,151, and 1,990 sequences, respectively, such that they contain
about one million residues each. The reference database was the first part of the
NCBI RefSeq BLAST database, release 50, containing 2,996,372 sequences (≈1
billion residues).

High-Performance Bioinformatics on RIVYERA 95

Table 2 BLASTp runtimes (in seconds) of three randomly reduced query sets against part one of
the NCBI RefSeq database

RIVYERA (n FPGAs) 2x Xeon E5520 Mercury CUDA

Query set 128 64 32 16 8 16 thr. 8 thr. BLASTp BLASTp

A. thaliana 353 648 1,106 1,934 3,531 8,301 9,995 3,780* 7,780*
P. trichocarpa 482 808 1,323 2,309 4,210 10,226 12,506 5,161* 9,615*
H. sapiens 561 987 1,723 2,817 4,409 9,464 11,602 6,007* 8,026*

The 2x Xeon E5520 reference system runs NCBI BLASTp v. 2.2.25+. The marked (*) runtimes are
estimations calculated from published runtimes extrapolated to the changed database and query set

Fig. 9 BLASTp speedups of RIVYERA S3-5000 with different number of utilized FPGAs vs. 2x
Xeon E5520 (16 threads)

All results are stated in Table 2. It shows that a fully equipped RIVYERA S3-
5000 clearly outperforms the reference with a speedup of up to 23.5, i.e. about 376
against a single CPU thread. Hence, the runtime performance of one single FPGA
conforms to about three CPU threads. Additionally, Fig. 9 illustrates the speedups of
RIVYERA with a different number of utilized FPGAs versus the reference system,
showing an approximately linear increase of speed with an increasing number of
FPGAs.

The stated runtimes of Mercury BLASTp [9] and CUDA-BLASTp v2.0 [18]
have been linearly extrapolated from the best results in the respective publications.
Due to the lack of hardware for Mercury BLASTp and a non-functional CUDA-
BLASTp on an nVidia GeForce GTX480 GPU, no real measurements could be
made. Since the runtime is extremely dependent on the quality of the query, these
results are only to be seen as a rough estimate. However, regarding these estimations,
RIVYERA still outperforms these solutions as well.

Table 3 shows the energy consumption for the query sets measured with a
customary power measurement device. The measured energy consumption of a fully
equipped RIVYERA is only 590 W. Regarding the energy consumption of 290 W

96 L. Wienbrandt

Table 3 BLASTp energy
consumption of three
randomly reduced query sets
against first part of the NCBI
RefSeq database [23]

RIVYERA 2x Xeon E5520
128 FPGAs 16 thr.

Query set (525 W) (290 W)
RIVYERA

2x Xeon

A. thaliana 51.5 Wh 668.7 Wh 7.7%
P. trichocarpa 70.3 Wh 823.8 Wh 8.5%
Homo sapiens 81.8 Wh 762.4 Wh 10.7%

The 2x Xeon E5520 reference system runs NCBI BLASTp
v2.2.25+

by the reference system, up to 92.3% can be saved compared to a PC cluster with
the same performance. Beyond that, the calculation is made without considering a
potentially required cooling system for the cluster.

Regarding quality analysis, a detailed view on a query subset (109 sequences,
28,483 residues) showed 21,918 hits from RIVYERA while NCBI found 22,167
hits. A one-by-one comparison revealed 63 hits (0.29%) were additional results not
found by NCBI, and 312 hits (1.41%) from the NCBI results are not found by the
RIVYERA implementation. Another 24 hits (0.11%) in both sets were differing
only in their alignment positions for the same query and subject sequence. This
indicates that the alignment quality almost equals to the NCBI software. However,
since BLAST is heuristic, small discrepancies in the alignments do not necessarily
imply a difference in quality.

Summarized, due to the ability of an efficient processing of 256 queries at once,
the massive parallelization of BLASTp benefits especially from large query sets.
Regarding a permanent occupation of the machine more than 92% of the required
energy can be saved while keeping almost the same alignment quality as in NCBI
BLASTp.

3.3 Burrows–Wheeler Alignment

The sheer volume of short read data, produced by current high-throughput
sequencing technologies, state more and more challenge for computers to align
them in reasonable time. An optimal alignment using Smith–Waterman is unfeasible
with standard computers resulting from its quadratic complexity. Several heuristic
alignment algorithms emerged to speed up this process significantly. Many of them
are based on hash tables and prefix or suffix tries, e.g. MAQ [15], SOAP [16] and
BFAST [8]. However, the fastest aligners providing the best quality trade-off appear
to be those based on Burrows–Wheeler transformation [3] and FM-indexing [7],
e.g. Bowtie [13], SOAP2 [17] and BWA [14]. Still, their total runtime on
complete read datasets is too slow to conform with a biologists workflow, although
attempts exist to speed up the alignment using GPUs, e.g. CUSHAW [5] and
BarraCUDA [11]. Harnessing the recent RIVYERA S6-LX150 architecture with
2 GB memory extension, ample resources are available to speed up this process.

High-Performance Bioinformatics on RIVYERA 97

Fig. 10 Example for the Burrows–Wheeler transformation of sequence “CATGTATGCC”

3.3.1 BWA Algorithm

The Burrows–Wheeler alignment algorithm (BWA [14]) combines the Burrows–
Wheeler transformation [3] and FM-indexing [7] with a method for inexact search
in the index. It consists of three main steps. The first is the creation of the FM-index
(bwa index), the second regards searching the alignment in the generated index
(bwa aln). The last step generates the final alignments from the found positions
in the SAM format (bwa samse/sampe).

Burrows–Wheeler Transformation

The Burrows–Wheeler transformation [3] of a reference sequence X can be
explained in the following way. Let Σ be the alphabet of characters occurring in
the reference sequence. A character $ /∈ Σ , defined to be lexicographically smaller
than any other character in Σ , is added to the end of the reference sequence as “end-
of-sequence” marker. Now, a table of all rotations of the resulting sequence X$ is
created. This table is sorted lexicographically, while the original position of each
entry is stored in an array, which is called the suffix array S. The Burrows–Wheeler
transformated (BWT) sequence B is now defined as B[i] = $ when S(i) = 0 and
B[i] = X [S(i)− 1] otherwise. This can easily be created by concatenating the last
characters of the rotated sequences in the sorted table. Figure 10 gives an example
of the transformation of the sequence “CATGTATGCC.” For details the original
publication [3] is refered to.

98 L. Wienbrandt

Exact Search and FM-Indexing

Searching a subsequence of the reference means identifying an interval [l,r] of
positions in the sorted list where the entries begin with this subsequence. The
original positions in the reference sequence can be obtained from the suffix array
S in this interval. Exact searching equals to the identification of exactly one interval,
while for an inexact search, there could be many. For example, searching the
sequence “ATG” in the example in Fig. 10 leads to the inteval [1,2] referring to
positions 5 and 1 in the original sequence respectively.

The identification of the intervals is simplified with the help of FM-indexing [7].
Let C(a) be the number of characters in the reference sequence X that are
lexicographically smaller than a. Let Occ(a, i) be the number of occurrences of a in
the substring b0, . . . ,bi of the BWT sequence B. Let W be a substring of X . Now, to
test if aW is a substring of X for any character a, let l and r be recursively defined as

l(aW) = C(a)+Occ(a, l(W)− 1)+ 1 (10)

r(aW) = C(a)+Occ(a,r(W)) (11)

whereby l(∅) = 0 and r(∅) = |X |.
According to Ferragina and Manzini [7], it follows if and only if aW is a substring

of X that l(aW) ≤ r(aW). The number of occurrences of aW in X can then be
determined by the size of the interval |[l(aW),r(aW)]| = r(aW)− l(aW)+ 1. For
an efficient processing, the constants C(a) have to be precalculated as well as at
least parts of the occurrences function Occ(a, i) whereby the latter is generally only
precalculated in parts to save memory. Since a read is processed in reverse order,
this procedure is called backward search.

Inexact Search: Backtracking

The inexact search algorithm of this implementation is based on the original BWA
algorithm. The BWT of the reverse (not complemented) reference sequence and
reverse reads are used to test for an occurrence in the reference X .

To introduce mismatches and gaps, several paths in a prefix trie of the reverse X
have to be analyzed. BWA performs a breadth first search to find a suitable path in
this trie. Against this behavior, the method described here uses recursion to perform
a depth first search always starting with the most promising path, i.e. starting with a
path only including matching characters until the first mismatch is found. Then,
backtracking tests alternative paths until either a succesful path is found or the
number of inserted errors (mismatches or gaps) exceeds a certain threshold. In
the latter case, backtracking leads to a previous point where an alternative path
is possible. This way, the required stack size can be bounded for the required
recursions to O(n), whereby n is the length of a read.

High-Performance Bioinformatics on RIVYERA 99

Fig. 11 BWA pseudo code for inexact search

To reduce the number of tested paths per read, an error threshold T (i) is fixed for
every position in a read. If during the search the number of inserted errors exceeds
this threshold, the recursion stops and another path is tested. The distribution is per
default optimized for Illumina reads, which are more likely to be erroneous at their
ends.

Figure 11 states the pseudo code of the described version for the inexact search.
The score, which is calculated from matches, mismatches, and gaps, is not shown
in the code. As in BWA, different penalties are paid for mismatches, gap openings
and extensions to be more realistic to biological data.

Since in general, there is not enough memory to store a second index in the
available RAM, the original (not reversed) index is loaded for a second run to test
reverse complement reads. This ensures the correct direction for processing the
reads for processing the reads, e.g. according to the error probability of Illumina
reads, which is higher at the read’s end.

100 L. Wienbrandt

3.3.2 Implementation

The implementation of the BWA algorithm is divided into software and hardware
part. While the software implements the interface to the original BWA software
modules (BWA v0.59) and is responsible for preprocessing of reads and postpro-
cessing of the results, the hardware performs the inexact search algorithm. The
implementation is focused on the Spartan6-LX150 FPGAs of the RIVYERA S6-
LX150 with 2 GB memory extension for each FPGA to handle large reference
genomes (up to 4 Gbp) such as the human genome.

The main unit of the hardware implementation states the ReadEntity. It is
responsible for performing the inexact search in the FM-index for a read. For this
purpose, the DD3-RAM memory of the FPGA is initialized with this index. To
implement the recursive behavior of a depth first search, a stack adjusted to the
maximum recursion depth according to the read size is implemented in local FPGA
memory.

The ReadEntity generates memory requests to look up the result of the Occ-
function for calculating the new interval boundaries l and r in the index (s. (10)
and (11)). The memory requests are buffered and sent to the memory controller.
Since the memory contents are in a densely packed format, the memory replies have
to be decoded in several clock cycles to get the final Occ-value. This process is
completely pipelined to avoid blocking memory accesses.

Since the calculation of new interval boundaries is very fast, the total runtime
solely depends on the memory access time. Therefore, it is important to maximize
the load on all memory ports to avoid idle times. Hence, the memory contents are
equally distributed over all memory ports, and all available FPGA resources are used
to generate as many ReadEntity units as possible to maximize an equal distribution
of memory requests.

For the current design the resources of a Spartan6-LX150 FPGA allow the
utilization of 64 parallel ReadEntity units. Additionally, supplemental infrastructure
is required, i.e. a switch to collect all memory requests, some distribution mecha-
nism for the replies, and incoming and outgoing FIFOs for read data and results. An
overview of the complete hardware structure is depicted in Fig. 12.

3.3.3 Performance Evaluation

For performance evaluation the alignments of two read datasets containing 11.3
million read pairs of length 2× 36 bp (NCBI accession number ERR003014) and
14.5 million read pairs of length 2× 76 bp (NCBI acc. no. SRR032215) against the
human genome (hg19, 3.2 Gbp) have been generated. The runtime of the FPGA
implementation has been measured on a fully and several partly equipped configu-
rations of the RIVYERA S6-LX150 machine with memory extension, compared to
the original BWA software v0.59 running on an Intel Xeon W3530 PC at 2.8 GHz
with 24 GB of RAM. All parameters have been set to default (besides “-t” for the
number of threads). The test runs have been repeated with a switched-off gapped

High-Performance Bioinformatics on RIVYERA 101

Fig. 12 Hardware structure of the BWA implementation

Table 4 Runtimes (in seconds) for the BWA alignment step (bwa aln) against the human
genome (hg19, 3.2 Gbp)

RIVYERA S6 (n FPGAs) Intel Xeon W3530

Query set 128 64 32 16 8 8 thr. 4 thr. 1 thr. BarraCUDA

ERR003014 w/o gaps 88 109 155 243 418 1,019 1,481 5,455 346*
ERR003014 105 142 223 385 701 3,305 4,649 16,809 651*
SRR032215 w/o gaps 123 179 292 521 974 2,958 4,031 14,587 981*
SRR032215 202 339 611 1,154 2,247 14,801 19,503 70,976 2,401*

ERR003014 contains 11.3 million read pairs of length 2×36 bp, SRR032215 contains 14.5 million
read pairs of length 2×76 bp. The marked (*) runtimes for BarraCUDA are directly taken from [11]
(alignments against human genome NCBI build 36.54)

alignment (parameter “-o 0”) as well. Since the same read datasets were used
for the GPU-based aligner BarraCUDA [11], the results from the corresponding
publication are included as well. According to the publication, BarraCUDA had
been run on an nVidia Tesla M2090. The results are stated in Table 4. Since
the postprocessing step to generate the final alignments (bwa samse/sampe)
is always performed using the original software, the runtimes only include the
processing time for the preceding alignment step (bwa aln).

The results show that a fully equipped RIVYERA S6-LX150 is able to out-
perform an Intel Xeon W3530 system with 24 GB of RAM and a full utilization
with 8 threads easily by a factor of up to 73, or 351 compared to a single thread.
Even the GPU accelerated variant BarraCUDA on an nVidia Tesla M2090 has
been outperformed by a factor of about 12. Since the power consumption of
RIVYERA S6 is less than three times the power consumption of a single Xeon
system, energy savings of more than 95% can be achieved as well.

102 L. Wienbrandt

4 Summary

The RIVYERA architecture proves its efficiency for solving several big problems
in bioinformatics, with a focus on one of the most frequently used areas in life sci-
ences: biological sequence alignment, as required for the identification of sequence
similarities in proteins, DNA and/or RNA. Implementations for optimal sequence
alignment using the Smith–Waterman algorithm, database search using the common
heuristical tool BLAST, and short-read alignment using a Burrows–Wheeler Aligner
(BWA)-like algorithm were described. For each application RIVYERA outperforms
other architectures by far, while saving a significant amount of energy of more than
90% compared to computer clusters. In further research, RIVYERA is going to
prove its abilities in de novo assembly, phylogenetic tree analysis, and genome wide
association studies (GWAS).

In conclusion, the RIVYERA architecture is capable to improve a biologists
workflow significantly providing the computational power to speed up most com-
mon problems in bioinformatics at low costs due to its low energy and installation
requirements. Due to its flexibility even other application fields, e.g. cryptanalysis
(see Chap. 11 in this book) and stock market analysis [28, 29], can be addressed.

With the recent development of the RIVYERA S6-LX150, providing at least
2.5× more resources than RIVYERA S3-5000 at a roughly twofold increase of
frequency, existing implementations may be easily ported with an expected speedup
factor of about 4.

References

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool.
J. Mol. Biol. 215(3), 403–410 (1990)

2. S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res. 25, 3389–3402 (1997)

3. M. Burrows, D.J. Wheeler, A block-sorting lossless data compression algorithm. Tech. rep.,
Digital Systems Research Center, Palo Alto, CA (1994)

4. CLCbio – High-Speed Smith–Waterman (2012), http://www.clcbio.com/index.php?id=1254.
Accessed March 2012

5. CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows–
Wheeler transform (2011), http://cushaw.sourceforge.net/. Accessed March 2012

6. M.S. Farrar, Optimizing Smith–Waterman for the cell broadband engine (2010), http://sites.
google.com/site/farrarmichael/smith-watermanfortheibmcellbe. Accessed March 2012

7. P. Ferragina, G. Manzini, Opportunistic data structures with applications, in Proceedings of
FOCS2000 (2000), IEEE Computer Society, Washington DC, USA, pp. 390–398

8. N. Homer, B. Merriman, S.F. Nelson, Bfast: an alignment tool for large scale genome
resequencing. PLoS ONE 4(11), 12 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19907642

9. A. Jacob, J. Lancaster, J. Buhler, B. Harris, R.D. Chamberlain, Mercury BLASTp: accelerating
protein sequence alignment. ACM Trans. Reconfigurable Tech. Syst. 1, 9:1–9:44 (2008)

10. S. Kasap, K. Benkrid, Y. Liu, Design and implementation of an FPGA-based core for gapped
BLAST sequence alignment with the two-hit method. Eng. Lett. 16, 443–452 (2008)

http://www.clcbio.com/index.php?id=1254
http://cushaw.sourceforge.net/
http://sites.google.com/site/farrarmichael/smith-watermanfortheibmcellbe
http://sites.google.com/site/farrarmichael/smith-watermanfortheibmcellbe
http://www.ncbi.nlm.nih.gov/pubmed/19907642

High-Performance Bioinformatics on RIVYERA 103

11. P. Klus, S. Lam, D. Lyberg, M. Cheung, G. Pullan, I. McFarlane, G. Yeo, B. Lam, Barracuda
- a fast short read sequence aligner using graphics processing units. BMC Res. Notes 5(1), 27
(2012). doi:10.1186/1756-0500-5-27

12. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, M. Schimmler, How to break DES for e8,980,
in SHARCS2006, Cologne, Germany (2006)

13. B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient alignment of
short dna sequences to the human genome. Genome Biol. 10(3), R25 (2009). doi:10.1186/gb-
2009-10-3-r25, http://genomebiology.com/2009/10/3/R25

14. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics (Oxford, England) 25(14), 1754–1760 (2009).
doi:10.1093/bioinformatics/btp324, http://dx.doi.org/10.1093/bioinformatics/btp324

15. H. Li, J. Ruan, R. Durbin, Mapping short dna sequencing reads and calling variants using
mapping quality scores. Genome Res. 18(11), 1851–1858 (2008). doi:10.1101/gr.078212.108,
http://dx.doi.org/10.1101/gr.078212.108

16. R. Li, Y. Li, K. Kristiansen, J. Wang, SOAP: short oligonucleotide alignment program.
Bioinformatics (Oxford, England) 24(5), 713–714 (2008). doi:10.1093/bioinformatics/btn025,
http://dx.doi.org/10.1093/bioinformatics/btn025

17. R. Li, C. Yu, Y. Li, T.W.W. Lam, S.M.M. Yiu, K. Kristiansen, J. Wang, SOAP2: an improved
ultrafast tool for short read alignment. Bioinformatics (Oxford, England) 25(15), 1966–1967
(2009). doi:10.1093/bioinformatics/btp336, http://dx.doi.org/10.1093/bioinformatics/btp336

18. W. Liu, B. Schmidt, W. Müller-Wittig, CUDA-BLASTP: accelerating BLASTP on CUDA-
enabled graphics hardware. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8, 1678–1684
(2011)

19. Y. Liu, B. Schmidt, D. Maskell, CUDASW++2.0: enhanced Smith–Waterman protein
database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions.
BMC Res. Notes 3(1), 93+ (2010). doi:10.1186/1756-0500-3-93

20. A. Mahram, M.C. Herbordt, Fast and accurate NCBI BLASTp: acceleration with multiphase
FPGA-based prefiltering, in Proceedings of ICS’10 (2010), ACM, New York, USA, pp. 73–28

21. NCBI BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed March 2012
22. NCBI GenBank database, http://www.ncbi.nlm.nih.gov/genbank/. Accessed March 2012
23. NCBI RefSeq database, http://www.ncbi.nlm.nih.gov/RefSeq/. Accessed March 2012
24. S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in

the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)
25. G. Pfeiffer, S. Baumgart, J. Schröder, M. Schimmler, A massively parallel architecture for

bioinformatics, in ICCS2009. Lecture Notes in Computer Science, vol. 5544 (Springer, Berlin,
2009), pp. 994–1003

26. SciEngines GmbH, http://www.sciengines.com. Accessed March 2012
27. T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol.

147, 195–197 (1981)
28. C. Starke, V. Grossmann, L. Wienbrandt, M. Schimmler, An FPGA implementation of an

investment strategy processor, in ICCS2012. Procedia Computer Science, vol. 9 (Elsevier,
2012), pp. 1880–1889

29. C. Starke, V. Grossmann, L. Wienbrandt, S. Koschnicke, J. Carstens, M. Schimmler, Opti-
mizing investment strategies with the reconfigurable hardware platform RIVYERA. Int. J.
Reconfigurable Comput. 2012, 10 (2012). doi:10.1155/2012/646984

30. Superfamily HMM library and genome assignments server, http://supfam.cs.bris.ac.uk/
SUPERFAMILY/. Accessed March 2012

31. UniProt Knowledgebase, http://www.ebi.ac.uk/uniprot/. Accessed March 2012
32. L. Wienbrandt, S. Baumgart, J. Bissel, F. Schatz, M. Schimmler, Massively parallel FPGA-

based implementation of BLASTp with the two-hit method, in ICCS2011. Procedia Computer
Science, vol. 1 (Elsevier, 2011), pp. 1967–1976

33. L. Wienbrandt, D. Siebert, M. Schimmler, Improvement of BLASTp on the FPGA-based high-
performance computer RIVYERA, in ISBRA2012. Lecture Notes in Bioinformatics, vol. 7292
(Springer, Berlin, Heidelberg, 2012), pp. 275–286

http://genomebiology.com/2009/10/3/R25
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/bioinformatics/btp336
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.sciengines.com
http://supfam.cs.bris.ac.uk/SUPERFAMILY/
http://supfam.cs.bris.ac.uk/SUPERFAMILY/
http://www.ebi.ac.uk/uniprot/

FPGA-Accelerated Molecular Dynamics

M.A. Khan, M. Chiu, and M.C. Herbordt

Abstract Molecular dynamics simulation (MD) is one of the most important
applications in computational science and engineering. Despite its widespread
use, there exists a many order-of-magnitude gap between the demand and the
performance currently achieved. Acceleration of MD has therefore received much
attention. In this chapter, we discuss the progress made in accelerating MD using
Field-Programmable Gate Arrays (FPGAs). We first introduce the algorithms and
computational methods used in MD and describe the general issues in accelerating
MD. In the core of this chapter, we show how to design an efficient force
computation pipeline for the range-limited force computation, the most time-
consuming part of MD and the most mature topic in FPGA acceleration of MD.
We discuss computational techniques and simulation quality and present efficient
filtering and mapping schemes. We also discuss overall design, host–accelerator
interaction and other board-level issues. We conclude with future challenges and
the potential of production FPGA-accelerated MD.

1 Introduction to Molecular Dynamics

Molecular dynamics simulations (MD) are based on the application of classical
mechanics models to ensembles of particles and are used to study the behavior of
physical systems at an atomic level of detail [39]. MD simulations act as virtual
experiments and provide a projection of laboratory experiments with potentially
greater detail. MD is one of the most widely used computational tools in biomedical
research and industry and has so far provided many important insights into
understanding the functionality of biological systems (see, e.g., [1, 25, 31]). MD
models have been developed and refined over many years and are validated through

M.A. Khan (�) • M. Chiu • M.C. Herbordt
Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
e-mail: azkhan@bu.edu; mattchiu@bu.edu; herbordt@bu.edu

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 4, © Springer Science+Business Media, LLC 2013

105

mailto:azkhan@bu.edu
mailto:mattchiu@bu.edu
mailto:herbordt@bu.edu

106 M.A. Khan et al.

fitting models to experimental and quantum data. Although classical MD simulation
is inherently an approximation, it is dramatically faster than a direct solution to the
full set of quantum mechanical equations.

But while the use of classical rather than quantum models results in orders-
of-magnitude higher throughput, MD remains extremely time consuming. For
example, the simulation of even a comparatively simple biological entity such as
the STM virus (a million-atom system) for 100 ns would take 70 years if run on
a single CPU core [14]. Fortunately MD scales well for simulations of this size or
greater. The widely used MD packages, e.g., AMBER [6], CHARMM [5], Desmond
[4], GROMACS [21], LAMMPS [37], NAMD [34], can take full advantage of
scalability [27]. But typical MD executions still end up taking month-long runtime,
even on supercomputers [45].

To make matters worse, many interesting biological phenomena occur only on
far longer timescales. For example, protein folding, the process by which a linear
chain of amino acids folds into a three-dimensional functional protein, is estimated
to take at least a microsecond [12]. The exact mechanism of such phenomena
remains beyond the reach of the current computational capabilities [44]. Longer
simulations are also critical to facilitate comparison with physically observable
processes, which (again) tend to be at least in the microsecond range. With stagnant
CPU clock frequency and no remarkable breakthrough in the underlying algorithms
for a decade, MD faces great challenges to meet the ever-increasing demand for
larger and longer simulations.

Hardware acceleration of MD has therefore received much attention. ASIC-based
systems such as Anton [43] and MD-Grape [32] have shown remarkable results, but
their non-recurring cost remains high. GPU-based systems with their low cost and
ease of use also show great potential. But GPUs are power hungry and, perhaps
more significantly, are vulnerable to data communication bottlenecks [16, 48].

FPGAs, on the other hand, have a flexible architecture and are energy efficient.
They bridge the programmability of CPUs and the custom design of ASICs.
Although developing an FPGA-based design takes significantly longer than a
GPU-based system, because it requires both software and hardware development,
the effort should be cost-effective due to the relatively long life-cycle of MD
packages. Moreover, improvements in fabrication process generally translate to
performance increases for FPGA-based systems (mostly in the form of direct
replication of additional computation units). And perhaps most significantly for
emerging systems, FPGAs are fundamentally communication switches and so can
avoid communication bottlenecks and form the basis of accelerator-centric high-
performance computing systems.

This chapter discusses the current state of FPGA acceleration of MD-based
primarily on the work done at Boston University [8, 9, 18]. The remainder of this
section gives an extended introduction to MD. This is necessary because while MD
is nearly trivial to define, there are a number of subtle issues which have a great
impact on acceleration method. In the next section we present the issues universal
to MD acceleration. After that we describe in depth the state-of-the-art in FPGA

FPGA-Accelerated Molecular Dynamics 107

Fig. 1 MD Forces computed by MD include several bonded (covalent, angle, and dihedral) and
nonbonded (van der Waals and Coulomb)

MD acceleration focusing on the range-limited force. Finally, we summarize future
challenges and potential especially in the creation of parallel FPGA-based MD
systems.

1.1 Overview of Molecular Dynamics Simulation

MD is an iterative process that models dynamics of molecules by applying classical
mechanics [39]. The user provides the initial state (position, velocity, etc.), the force
model, other properties of the physical system, and some simulation parameters
such as simulation type and output frequency. Simulation advances by timestep
where each timestep has two phases: force computation and motion update. The
duration of the timesteps is determined by the vibration of particles and typically
corresponds to one or a few femtoseconds (fs) of real time. In typical CPU
implementations, executing a single timestep of a modest 100 K particle simulation
(a protein in water) takes over a second on a single core. This means that the 106–109

timesteps needed to simulate reasonable timescales result in long runtimes.
There are many publicly available and widely used MD packages including

NAMD [34], LAMMPS [37], AMBER [6], GROMACS [21], and Desmond [4].
They support various force fields (e.g., AMBER [38] and CHARMM [30]) and
simulation types. But regardless of the specific package or force field model, force
computation in MD involves computing contributions of van der Waals, electrostatic
(Coulomb), and various bonded terms (see Fig. 1 and (1)).

Ftotal = Fbond +Fangle+Fdihedral +Fhydrogen+FvanderWaals +Felectrostatic. (1)

108 M.A. Khan et al.

van der Waals and electrostatic forces are non-bonded forces, the others bonded.
Non-bonded forces can be further divided into two types: the range-limited force
that consists of the van der Waals and the short-range part of the electrostatic force
and the long-range force that consists of the long-range part of the electrostatic
force.

Since bonded forces affect only a few neighboring atoms, they can be computed
in O(N) time, where N is the total number of particles in the system. Non-bonded
terms in the naive implementation have complexity of O(N2), but several algorithms
and techniques exist to reduce their complexity; these will be described in later
subsections. In practice, the complexity of the range-limited force computation is
reduced to O(N) and that of the long-range force computation to N log(N). Motion
update and other simulation management tasks are also O(N). In a typical MD run
on a single CPU core, most of the time is spent computing non-bonded forces.
For parallel MD, inter-node data communication becomes an increasingly dominant
factor as the number of computing nodes increases, especially for small to medium
sized physical systems. Sample timing profiles for both serial and parallel runs of
MD are presented in Sect. 2.

The Van der Waals (VdW) force is approximated by the Lenard-Jones (LJ)
potential as shown in (2):

−→
F i(LJ) = ∑

i�= j

εab

σ2
ab

{
12

(
σab

|r ji|
)14

− 6

(
σab

|r ji|
)8
}
−→ri j , (2)

where εab and σab are parameters related to particle types and ri j is the relative
distance between particle i and particle j.

A complete evaluation of VdW or LJ force requires evaluation of interactions
between all particle pairs in the system. The computational complexity is therefore
O(N2), where N is the number of particles in the system. A common way to reduce
this complexity is applying a cutoff. Since the LJ force vanishes quickly with the
separation of a particle pair it is usually ignored when two particles are separated
beyond 8–16 Å. To ensure a smooth transition at cutoff, an additional switching
function is often used. Using a cutoff distance alone does not reduce the complexity
of the LJ force computation because all particle pairs must still be checked to
see if they are within the cutoff distance. The complexity is reduced to O(N) by
combining this with techniques like the cell-list and neighbor-list methods, which
will be described in Sect. 1.2.

The electrostatic or Coulomb force works between two charged particles and is
given by (3):

−→
F i(CL) = qi ∑

i�= j

(
q j

|ri j|3
)
−→ri j , (3)

where qi and q j are the particle charges and ri j is the separation distance between
particles i and j.

Unlike the van der Waals force, the Coulomb force does not fall off sufficiently
quickly to immediately allow the general application of a cutoff. The Coulomb force

FPGA-Accelerated Molecular Dynamics 109

Fig. 2 2D Illustration of cell
and neighbor lists. In the
range-limited force, particles
only interact with those in the
cell neighborhood. Neighbor
lists are constructed by
including for each particle
only those particles within the
cutoff radius C (shown for P)

is therefore often split into two components: a range-limited part that goes to zero in
the neighborhood of the LJ cutoff and a long-range part that can be computed using
efficient electrostatic methods, the most popular being based on Ewald Sums [11]
or Multigrid [46]. For example, one can split the original Coulomb force curve into
two parts (with a smoothing function ga(r)):

1
r
=

(
1
r
− ga(r)

)
+ ga(r). (4)

The short-range component can be computed together with the Lennard–Jones force
using particle indexed lookup tables Aab, Bab, and QQab. Then the entire short-range
force to be computed is:

Fshort
ji

rji
= Aabr−14

ji +Babr−8
ji +QQab

(
r−3

ji +
g′a(r)

r

)
. (5)

In addition to the non-bonded forces, bonded interactions (e.g., bond, angle,
and dihedral in Fig. 1) must also be computed every timestep. They have O(N)
complexity and take a relatively small part of the total time. Bonded pairs are
generally excluded from non-bonded force computation, but if for any reason (e.g.,
to avoid a branch instruction in an inner loop) a non-bonded force computation
includes bonded pairs, then those forces must be subtracted accordingly. Because
the long-range force varies less quickly than the other force components, it is often
computed only every 2–4 timesteps.

1.2 Cell Lists and Neighbor Lists

We now present two methods of reducing the naive complexity of O(N2) to O(N).
In the cell-list method [22,40] a simulation box is first partitioned into several cells,
often cubic in shape (see Fig. 2 for a 2D depiction). Each dimension is typically
chosen to be slightly larger than the cutoff distance. This means, for a 3D system,

110 M.A. Khan et al.

that traversing through the particles of the home cell and 26 adjacent cells suffices,
independent of the overall simulation size. If Newton’s third law is used, then only
half of the neighboring cells need to be checked. If the cell dimension is less
than cutoff distance, then more number of cells need to be checked. The cost of
constructing cell lists scales linearly with the number of particles but reduces the
complexity of the force evaluation to O(N).

Using cell lists still results in checking many more particles than necessary. For a
particle in the center of a home cell, we only need to check its surrounding volume
of (4/3) ∗ 3.14 ∗R3

c , where Rc is the cutoff radius. But in the cell-list method we
end up checking a volume of 27∗R3

c, which is roughly 6 times larger than needed.
This can be improved using neighbor lists [49]. In this method, a list of possible
neighboring particles is maintained for each particle and only this list is checked
for force evaluation. A particle is included in the neighbor list of another particle
if the distance between them is less than Rc + Rm, where Rm is a small buffer
margin. Rm is chosen such that the neighbor-list also contains the particles which
are not yet within the cutoff range but might enter the cutoff range before the list is
updated next. In every timestep, the validity of each pair in a neighbor list is checked
before it is actually used in force evaluation. Neighbor lists are usually updated
periodically in a fixed number of timesteps or when displacements of particles
exceed a predetermined value.

Although neighbor lists can be constructed for all particles in O(N) time (using
cell-lists), it is far more costly as many particles must still be checked for each
reference particle. But as long as the neighbor lists are not updated too frequently,
which is the case generally, this method reduces the range-limited force evaluation
time significantly. The savings in runtime comes at the cost of extra storage required
to save the neighbor-list of each particle. For most high-end CPUs, this is not a
major issue.

1.3 Direct Computation vs. Table Interpolation

The most time-consuming part of an MD simulation is typically the evaluation of
range-limited forces. One of the major optimizations is the use of table lookup
in place of direct computation. This avoids expensive square roots and er f c
evaluations. This method not only saves computation time but is also robust in
incorporating small changes such as the incorporation of a switching function.

Typically the square of the inter-particle distance (r2) is used as the index.
The possible range of r2 is divided into several sections or segments and each
section is further divided into intervals or bins as shown in Fig. 3. For an M
order interpolation, each interval needs M + 1 coefficients and each section needs
N ∗ (M + 1) coefficients, where N is the number of bins in the section. Accuracy
increases with both the number of intervals per section and the interpolation order.
Generally the rapidly changing regions are assigned relatively higher number of
bins, and relatively stable regions are assigned fewer bins. Equation (6) shows a
third order interpolation.

FPGA-Accelerated Molecular Dynamics 111

Fig. 3 In MD interpolation, function values are typically computed by Section with each having a
constant number of bins, but varying in size with distance

F(x) = a0 + a1x+ a2x2 + a3x3 (6)

For reference, here we present a sample of table interpolation parameters used in
widely known MD packages and systems.

• NAMD (CPU)—[34] and Source code of NAMD2.7
Order = 2 bins/segment = 64 Index: r2

Segments: 12—segment size increases exponentially, starting from 0.0625
• NAMD (GPU)—[48] and Source code of NAMD2.7

Order = 0 bins/segment = 64 Index: 1/
√

r2

Segments: 12—segment size increases exponentially
• CHARMM—[5]

Order = 2 bins/segment = 10–25 Index: r2

Segments: Uniform segment size of 1 Å2 is used which results in relatively more
precise values near cut-off

• ANTON—[28]
Force Table Order = Says 3 but that may be for energy only. Value for force may
be smaller.
of bins = 256 Index: r2

Segments: Segments are of different widths, but values not available, nor whether
the number of bins is the total or per segment.

• GROMACS—[21] and GROMACS Manual 4.5.3, page 148
Order = 2 bins = 500 (2000) per nm for single (double) precision
Segments: 1 Index: r2

Comment: Allows user-defined tables.

Clearly there are a wide variety of parameter settings. These have been chosen
with regard to cache size (CPU), routing and chip area (Anton), and the availability
of special features (GPU texture memory). These parameters also have an effect on
simulation quality, which we discuss next.

112 M.A. Khan et al.

1.4 Simulation Quality: Numeric Precision and Validation

Although most widely used MD packages use double-precision floating point (DP)
for force evaluation, studies have shown that it is possible to achieve acceptable
quality of simulation using single-precision floating point (SP) or even using fixed
point arithmetic, as long as the exact atomic trajectory is not the main concern
[36, 41, 43]. Since floating point (FP) arithmetic requires more area and has longer
latency, a hardware implementation would always prefer fixed point arithmetic.
Care must be taken, however, to ensure that the quality of the simulation remains
acceptable. Therefore a critical issue in all MD implementations is the trade-off
between precision and simulation quality.

Quality measures can be classified as follows (see, e.g., [13, 33, 43]).

1. Arithmetic error here is the deviation from the ideal (direct) computation done at
high precision (e.g., double-precision). A frequently used measure is the relative
RMS force error, which is defined as follows [42]:

ΔF =

√√√√
(

∑i ∑α∈x,y,z[Fi,α −F∗
i,α]

2

∑i ∑α∈x,y,z[F
∗
i,α]

2

)
. (7)

2. Physical invariants should remain so in simulation. Energy can be monitored
through fluctuation (e.g., in the relative RMS value) and drift. Total fluctuation
of energy can be determined using the following expression (suggested by Shan
et al. [42]):

ΔE =
1
Nt

Nt

∑
i=1

|E0 −Ei

E0
|, (8)

where E0 is the initial value, Ni is the total number of time steps in time t, and
Ei is the total energy at step i. Acceptable numerical accuracy is achieved when
ΔE ≤ 0.003.

2 Basic Issues with Acceleration and Parallelization

2.1 Profile

The maximum speed-up achievable by any hardware accelerator is limited by
Amdahl’s law. It is therefore important to profile the software to identify potential
targets of acceleration. As discussed in Sect. 1.1, a timestep in MD consists of
two parts, force computation and motion integration. The major tasks in force
computation are computing range-limited forces, computing long-range forces, and
computing bonded forces. Table 1 shows the timing profile of a timestep using the
GROMACS MD package on a single CPU core [21]. These results are typical;

FPGA-Accelerated Molecular Dynamics 113

Table 1 Timing profile of an MD run from a GROMACS study [21]

Step Task % execution time

Force computation Range-limited force 60
FFT, Fourier-space computation, IFFT 17
Charge spreading and force interpolation 13
Other forces 5

Motion integration Position and velocity updates 2
Others 3

see, e.g., [43]. As we can see the range-limited force computation dominates and
consumes 60% of the total runtime. The next major task is the long-range force
computation, which can be further divided into two tasks, charge-spreading/force-
interpolation and FFT-based computation. FFT, Fourier-space computation, and
inverse FFT take 17% of the total runtime while charge spreading and force
interpolation take 13% of the total runtime. Computing other forces takes only
5% of the total runtime. Unlike the force computation, motion integration is a
straightforward process and takes only 2% of the total runtime. Other remaining
computations take 3% of the total runtime. In addition to serial runtime, data
communication becomes a limiting factor in parallel and accelerated version. We
discuss this in Sect. 2.3.

2.2 Handling Exclusion

While combining various forces before computing acceleration is a straightforward
process of linear summation, careful consideration is required for bonded pairs,
especially when using hardware accelerators. In particular, covalently bonded pairs
need to be excluded from non-bonded force computation. One way to ensure
this is to check whether two particles are bonded before evaluating their non-
bonded forces. This is expensive because it requires on-the-fly check for bonds.
Another way is to use separate neighbor lists for bonded and non-bonded neighbors.
Both of these methods are problematic for hardware acceleration: one requires
implementing a branch instruction while the other forces the use of neighbor-lists,
which may be impractical for hardware implementation (see Sect. 3.2).

A way that is often the preferred for accelerators is to compute non-bonded forces
for all particle-pairs within the cutoff distance, but later subtract those for bonded
pairs in a separate stage. This method does not need either on-the-fly bond checking
or neighbor-lists. There is a different problem here though. The r14 term of the
LJ force (2) can be very large for bonded particles because they tend to be much
closer than non-bonded pairs. Adding and subtracting such large scale values can
overwhelm real but small force values. Therefore, care needs to be taken so that the
actual force values are not saturated. For example, an inner as well as an outer cutoff
can be applied.

114 M.A. Khan et al.

Fig. 4 Apoa1 benchmark
runtime/timestep using
NAMD showing overhead in
a small-scale parallel
simulation

2.3 Data Transfer and Communication Overhead

Accelerators are typically connected to the host CPU via some shared interface,
e.g., the PCI or PCIe bus. For efficient computation on the accelerator, frequent data
transfers between the main memory of the CPU and accelerator must be avoided.
Input data need to be transferred to the accelerator before the computation starts and
results need to be sent back to the host CPU. Although this is usually done using
DMA, it may still consume a significant amount of time that was not required in
a CPU-only version. It is preferred that the CPU remains engaged in other useful
tasks while data transfer and accelerated computation take place, allowing efficient
overlap of computation and communication, as well as parallel utilization of the
CPU and the accelerator. Our studies show that host-accelerator data transfer takes
around 5–10% of the accelerated runtime for MD (see Sect. 3.2).

In addition to intra-node (host-accelerator) data transfer, inter-node data com-
munication may become a bottleneck, especially for accelerated versions of MD.
MD is a highly parallel application and typically runs on multiple compute nodes.
Parallelism is achieved in MD by first decomposing the simulation space spatially
and assigning one or more of such decomposed sections to a compute node (see, e.g.,
[34]). Particles in different sections then need to compute their pairwise interaction
forces (both non-bonded and bonded) which requires inter-node data communica-
tion between node-pairs. In addition to that, long-range force computation requires
all-to-all communication [50]. Thus, in addition to the serial runtime, inter-node
communication plays an important role in parallel MD. Figure 4 shows an example
of inter-processor communication time as the number of processors increases from
1 to 4. We performed this experiment using Apoa1 benchmark and NAMD2.8 [34]
on a quad-core Intel CPU (2 core2-duo) of 2.0 GHz each. For a CPU-only version
the proportion may be acceptable. For accelerated versions, however, the proportion
increases and becomes a major problem [35].

2.4 Newton’s 3rd Law

Newton’s 3rd law (N3L) allows computing forces between a pair of particles only
once and uses the result to update both particles. This provides opportunities for
certain optimizations. For example, when using the cell-list method, each cell now

FPGA-Accelerated Molecular Dynamics 115

only needs to check half of its neighboring cells. Some ordering needs to be
established to make sure that all required cell-pairs are considered, but this is a
trivial problem.

The issue of whether to use N3L or not becomes more interesting in parallel and
accelerated version of MD. It plays an important role in the amount and pattern of
inter-node data communication for parallel runs, and successive accumulation of
forces in multi-pipelined hardware accelerators (see discussion on accumulation in
Sect. 3.1). For example, assume a parallel version of MD where particles x and y
are assigned to compute nodes X and Y , respectively. If N3L is not used, we need to
send particle data of y from Y to X and particle data of x from X to Y before the force
computation of a timestep can take place. But no further inter-node communication
will be required for that timestep as particle data will be updated locally. In contrast,
if N3L is used, particle data of y need to be sent from Y to X before the computation
and results need to be sent from X to Y . Depending on the available computation
and communication capability, these two may result in different efficiency. Similar,
but more fine-grained, issues exist for hardware accelerators too.

2.5 Partitioning and Routing

Parallel MD requires partitioning of the problem and routing data every timestep.
Although there are various ways of partitioning computations in MD, practically
all widely used MD packages use some variation of spatial decomposition (e.g.,
recursive bisection, neutral territory, half shell, or midpoint [4, 23]). In such a
method, each compute node or process is responsible for updating particles in a
certain region of the simulation space. In other words, it owns the particles in that
region. Particle data such as position and charge need to be routed to the node
that will compute forces for that particle. Depending on the partitioning scheme,
computation may take place on a node that owns at least one of the particles involved
in the force computation, or it may take place on a node that does not own any of
the particles involved in the force computation. Computation results may also need
to be routed back to the owner node. This also depends on several choices such as
the partitioning scheme and the use of N3L.

For an accelerated version of MD, partitioning and routing may cause additional
overhead. Because hardware accelerators typically require a chunk of data to work
on at a time in order to avoid frequent data communication with the host CPU.
This means fine-grained overlapping of computation and communication, which is
possible in a CPU-only version, becomes challenging.

3 FPGA Acceleration Methods

Several papers have been published from CAAD Lab at Boston University describ-
ing a highly efficient FPGA kernel for the range-limited force computation [7–9].
The kernel was integrated into NAMD-lite [19], a serial MD package developed

116 M.A. Khan et al.

at UIUC to provide a simpler way to examine and validate new features before
integrating them into NAMD [34]. The FPGA kernel itself was implemented on an
Altera Stratix-III SE260 FPGA of Gidel ProcStar-III board [15]. The board contains
four such FPGAs and is capable of running at a system speed of up to 300 MHz.
The FPGAs communicate with the host CPU via a PCIe bus interface. Each FPGA
is individually equipped with over 4GB of memory.

The runtime of the kernel was 26× faster over the end-to-end runtime of NAMD,
for Apoa1, a benchmark consisting of 92,224 atoms [10]. The electrostatic force was
computed every cycle using PME and both LJ and short-rage portion of electrostatic
force were computed on the FPGAs. Particle data along with cell-lists and particle
types are sent to the FPGA every timestep, while force data are received from
the FPGA and then integrated on the host. A direct end-to-end comparison with the
software-only version was not done since the host software itself (NAMD-lite) is
not optimized for performance. In the next three subsections we discuss the key
contributions of this work in depth. In the following two subsections we describe
some preliminary work in the FPGA-acceleration of the long-range force and in
mapping MD to multi-FPGA systems.

3.1 Force Pipeline

In Sect. 1.1 we described the general methods in computing the range-limited forces
(see (5)). Here we present their actual implementation emphasizing compatibility
with NAMD.

While the van der Waals term shown in (2) converges quickly, it must still
be modified for effective MD simulations. In particular, a switching function is
implemented to truncate van der Waals force smoothly at the cutoff distance (see
(9)–(11)).

s = (cuto f f 2 − r2)2 ∗ (cuto f f 2 + 2 ∗ r2− 3 ∗ switch dist2)∗ denom (9)

dsr = 12 ∗ (cuto f f 2)∗ (switch dist2 − r2)∗ denom (10)

denom = 1/(cuto f f 2 − switch dist2)3. (11)

Without a switching/smoothing function, the energy may not be conserved as the
force would be truncated abruptly at the cutoff distance. The graph of van der Waals
potential with the switching/smoothing function is illustrated in Fig. 5. The van der
Waals force and energy can be computed directly as shown here:

IF (r2 ≤ switch dist2) UvdW =U, FvdW = F
IF (r2 > switch dist2 && r2 < cuto f f 2) UvdW ∗ s, FvdW = F ∗ s+Uvdw ∗ dsr

IF (r2 ≥ cuto f f 2) UvdW = 0, FvdW = 0.

For the Coulomb term the most flexible method used by NAMD for calculating
the electrostatic force/energy is Particle Mesh Ewald (PME). The following is the
pairwise component:

FPGA-Accelerated Molecular Dynamics 117

Switch
distance CutoffE

ne
rg

y

Distance
0

Fig. 5 Graph shows the van
der Waals potential with
switching/smoothing function
(dashed line)

Es =
1

4πε0

1
2 ∑

n

N

∑
i=1

n

∑
i=0

qiq j

|ri − r j + nL|er f c

(|ri − r j + nL|√
2σ

)
. (12)

To avoid computing these complex equations explicitly, software often employs
table lookup with interpolation (Sect. 1.3). Equation (5) can be rewritten as follows:

Fshort
ji (|r ji|2(a,b))

rji
= AabR14(|r ji|2)+BabR8(|r ji|2)+QQabR3(|r ji|2), (13)

where R14, R8, and R3 are three tables indexed with |r ji|2 (rather than |r ji|, to avoid
the square root operation).

Designing a force computation pipeline on FPGA to accurately perform these
tasks requires careful consideration of several issues. Figure 6 illustrates the major
functional units of the force pipelines. The force function evaluators are the
diamonds marked in red; these are the components which can be implemented with
the various schemes. The other units remain mostly unchanged. The three function
evaluators are for the R14, R8, and R3 components of (13), respectively. In particular,
Vdw Function 1 and Vdw Function 2 are the R14 and R8 terms but also include the
cutoff shown in (9)–(11). Coulomb Function is the R3 term but also includes the
correction shown in (12).

For the actual implementation we use a combination of fixed and floating point.
Floating point has far more dynamic range, while fixed point is much more efficient
and offers somewhat higher precision. Fixed point is especially advantageous for
use as an index (r2) and for accumulation. We therefore perform the following
conversions: float to fixed as data arrive on the FPGA; to float for interpolation;
to fixed for accumulation; and to float for transfer back to the host.

A significant issue is determining the minimum interpolation order, precision,
and number of intervals without sacrificing simulation quality. For this we use
two methods both of which use a modified NAMD-lite to generate the appropriate
data. The first method uses (7) to compute the relative RMS error with respect to
the reference code. The simulation was first run for 1,000 timesteps using direct
computation. Then in the next timestep both direct computation and table lookup

118 M.A. Khan et al.

-14 -8 -3

Fig. 6 Logic for computing
the range-limited force. Red
diamonds indicate respective
table lookups for the two van
der Waals force components
and the Coulombic force

Fig. 7 Right graph shows relative RMS force error versus bin density for interpolation orders 0,
1, and 2. Left graph shows energy for various designs run for 20,000 timesteps. Except for 0-order,
plots are indistinguishable from the reference code

with interpolation were used to find the relative RMS force error for the various
lookup parameters. Only the range-limited forces (switched VdW and short-range
part of PME) were considered. All computations were done in double-precision.
Results are shown in the right half of Fig. 7. We note that 1st and 2nd order

FPGA-Accelerated Molecular Dynamics 119

-2.2270E+05

-2.2265E+05

-2.2260E+05

-2.2255E+05

-2.2250E+05

-2.2245E+05

-2.2240E+05

-2.2235E+05

-2.2230E+05

2000 400

Number of Timesteps (x100)

E
ne

rg
y

(K
ca

l/m
ol

)

600 800

NAMD-Lite

SP_Order1_B256

SP_Order2_B256

1000

Fig. 8 Reference code and two designs run for 100,000 timesteps

interpolation have two orders of magnitude less error than 0th order. We also note
that with 256 bins per section (and 12 sections), 1st and 2nd order are virtually
identical.

The second method was to measure energy fluctuation and drift. Results are
presented for the NAMD benchmark ApoA1. It has 92,224 particles, a bounding box
of 108 Å×108 Å×78 Å, and a cutoff radius of 12 Å. The Coulomb force is evaluated
with PME. A switching function is applied to smooth the LJ force when the intra-
distance of particle pairs is between 10 and 12 Å. Preliminary results are shown in
the left side of Fig. 7. A number of design alternatives were examined, including the
original code and all combinations of the following parameters: bin density (64 and
256 per section or segment), interpolation order (0th, 1st, and 2nd), and single and
double-precision floating point. We note that all of the 0th order simulations are
unacceptable, but that the others are all indistinguishable (in both energy fluctuation
and drift) from the serial reference code running direct computation in double-
precision floating point.

To validate the most promising candidate designs, longer runs were conducted.
An energy plot for 100,000 timesteps is provided in Fig. 8. The graphs depict the
original reference code and two FPGA designs. Both are single precision with
256 bins per interval; one is first order and the other second order. Good energy
conservation is seen in the FPGA-accelerated versions. Only a small divergence of
0.02% was observed compared to the software-only version. The ΔE values, using
(8), for all accelerated versions were found to be much smaller than 0.003.

One of the interesting contributions of this work was with respect to the
utilization of Block RAM (BRAM) architecture of the FPGAs for interpolation.
MD packages typically choose the interval such that the table is small enough to

120 M.A. Khan et al.

fit in L1 cache. This is compensated by the use of higher order of interpolation,
second order being a common choice for force computation [9]. FPGAs, however,
can afford having finer intervals because of the availability of on-chip BRAMs. It
was found that, by doubling the number of bins per section, first order interpolation
can achieve similar simulation quality as the second order interpolation (see Fig. 7).
This saves logic and multipliers and increases the number of force pipelines that can
fit in a single FPGA.

3.2 Filtering and Mapping Scheme

The performance of an FPGA kernel is directly dependent on the efficiency of the
force computation pipelines. The more useful work pipelines do every cycle, the
better the performance is. This in turn requires that the force pipelines be fed, as
much as possible, with particle pairs that are within cutoff distance. Section 1.2
described two efficient methods for finding particle-pairs within cutoff distance.
But for MD accelerators, this requires additional considerations. The cell list
computation is very fast and the data generated are small, so it is generally done
on the host. The results are downloaded to the FPGA every iteration. The neighbor-
list method, on the other hand, is problematic if the lists are computed on the host.
The size of the aggregate neighbor-lists is hundreds of times that of the cell lists,
which makes their transfer to FPGA impractical. As a consequence, neighbor-list
computation, if it is done at all, must be done on the FPGA.

This work first looks at MD with cell lists. For reference and without loss of
generality, we examine the NAMD benchmark NAMD2.6 on ApoA1. It has 92,224
particles, a bounding box of 108 Å× 108 Å× 78 Å, and a cutoff radius of 12 Å. This
roughly yields a simulation space of 9×9×7 cells with an average of 175 particles
per cell with a uniform distribution. On the FPGA, the working set is typically a
single (home) cell and its cell neighborhood for a total of (naively) 27 cells and
about 4,725 particles. Using Newton’s third law (N3L), home cell particles are
only matched with particles of part of the cell neighborhood, and with, on average,
half of the particles in the home cell. For the 14- and 18-cell configurations (see
later discussion on mapping scheme), the number of particles to be examined is
2,450 and 3,150, respectively. Given current FPGA technology, any of these cell
neighborhoods (14, 18, or even 27) easily fits in the on-chip BRAMs.

On the other hand, neighbor-lists for a home cell do not fit on the FPGA.
The aggregate neighbor-lists for 175 home cell particles is over 64,000 particles (one
half of 732 per particle—732 rather than 4,725 because of increased efficiency).

The memory requirements are therefore very different. Cell-lists can be swapped
back and forth between the FPGA and the DDR memory, as needed. Because
of the high level of reuse, this is easily done in the background. In contrast,
neighbor-list particles must be streamed from off-chip as they are needed. This
has worked when there are one or two force pipelines operating at 100 MHz
[26, 41], but is problematic for current and future high-end FPGAs. For example,

FPGA-Accelerated Molecular Dynamics 121

the Stratix-III/Virtex-5 generation of FPGAs can support up to 8 force pipelines
operating at 200 MHz leading to a bandwidth requirement of over 20 GB/s.

The solution proposed in this work is to use neighbor-lists, but to compute
them every iteration, generating them continuously and consuming them almost
immediately. There are three major issues that are addressed in this work, which
we discuss next.

1. How should the filter be computed?
2. What cell neighborhood organization best takes advantage of N3L?
3. How should particle pairs be mapped to filter pipelines?

3.2.1 Filter Pipeline Design and Optimization

For a cell-list-based system where one home cell is processed at a time, with no
filtering or other optimization, forces are computed between all pairs of particles i
and j, where i must be in the home cell but j can be in any of the 27 cells of the cell
neighborhood, including the home cell. Filtering here means the identification of
particle pairs where the mutual short-range force is zero. A perfect filter successfully
removes all such pairs. The efficiency of the filter is the ratio of undesirable particle
pairs that were removed to the original number of undesirable particle pairs. The
extra work due to imperfection is the ratio of undesirable pairs not removed to the
desirable pairs.

Three methods are evaluated, two existing and one new, which trade off filter
efficiency for hardware resources. As described in Sect. 3.1, particle positions are
stored in three Cartesian dimensions, each in 32-bit integer. Filter designs have two
parameters, precision and geometry.

1. Full precision: Precision = full, Geometry = sphere
This filter computes r2 = x2 + y2 + z2 and compares whether r2 < r2

c using full
32-bit precision. Filtering efficiency is nearly 100%. Except for the comparison
operation, this is the same computation that is performed in the force pipeline.

2. Reduced: Precision = reduced, Geometry = sphere
This filter, used by D.E. Shaw [28], also computes r2 = x2 + y2 + z2,r2 < r2

c
but uses fewer bits and so substantially reduces the hardware required. Lower
precision, however, means that the cutoff radius must be increased (rounded up
to the next bit) so filtering efficiency goes down: for 8 bits of precision, it is 99.5
for about 3% extra work.

3. Planar: Precision = reduced, Geometry = planes
A disadvantage of the previous method is its use of multipliers, which are the
critical resource in the force pipeline. This issue can be important because there
are likely to be 6–10 filter pipelines per force pipeline. In this method we avoid
multiplication by thresholding with planes rather than a sphere (see Fig. 9 for the
2D analog). The formulas are as follows:

122 M.A. Khan et al.

Fig. 9 Filtering with planes
rather than a sphere—2D
analogue

Table 2 Comparison of three filtering schemes with respect to quality and resource usage

Filtering Method LUTs/registers Multipliers Filter eff. Extra work

Full precision 341/881 0.43% 12 1.6% 100% 0%
Full prec.—logic

only muls
2577/2696 1.3% 0 0.0% 100% 0%

Reduced precision 131/266 0.13% 3 0.4% 99.5% 3%
Reduced prec.—logic

only muls
303/436 0.21% 0 0.0% 99.5% 3%

Planar 164/279 0.14% 0 0.0% 97.5% 13%
Force pipe 5695/7678 5.0% 70 9.1% NA NA

A force pipeline is shown for reference. Percent utilization is with respect to the Altera Stratix-III
EP3SE260

• |x|< rc, |y|< rc, |z|< rc

• |x|+ |y|<√
2rc, |x|+ |z|<√

2rc, |y|+ |z|<√
2rc

• |x|+ |y|+ |z|<√
3rc

With 8 bits, this method achieves 97.5% efficiency for about 13% extra work.
Table 2 summarizes the cost (LUTs, registers, and multipliers) and quality

(efficiency and extra work) of the three filtering methods. Since multipliers are a
critical resource, we also show the two “sphere” filters implemented entirely with
logic. The cost of a force pipeline (from Sect. 3.1) is shown for scale.

The most important result is the relative cost of the filters to the force pipeline.
Depending on implementation and load balancing method (see later discussion on
mapping scheme), each force pipeline needs between 6 and 9 filters to keep it
running at full utilization. We refer to that set of filters as a filter bank. Table 2 shows
that a full precision filter bank takes from 80 to 170% of the resources of its force
pipeline. The reduced (logic only) and planar filter banks, however, require only a
fraction: between 17 and 40% of the logic of the force pipeline and no multipliers at
all. Since the latter is the critical resource, the conclusion is that the filtering logic
itself (not including interfaces) has a minor effect on the number of force pipelines
that can fit on the FPGA.

FPGA-Accelerated Molecular Dynamics 123

Fig. 10 Shown are two partitioning schemes for using Newton’s 3rd law. In (a), 1–4 plus home are
examined with a full sphere. In (b), 1–5 plus home are examined, but with a hemisphere (shaded
part of circle)

We now compare the reduced and planar filters. The Extra Work column in
Table 2 shows that for a planar filter bank to obtain the same performance as logic-
only-reduced, the overall design must have 13% more throughput. This translates,
e.g., to having 9 force pipelines when using planar rather than 8 for reduced. The
total number of filters remains constant. The choice of filter therefore depends on
the FPGA’s resource mix.

3.2.2 Cell Neighborhood Organization

For efficient access of particle memory and control, and for smooth interaction
between filter and force pipelines, it is preferred to have each force pipeline handle
the interactions of a single reference particle (and its partner particles) at a time. This
preference becomes critical when there are a large number of force pipelines and a
much larger number of filter pipelines. Moreover, it is highly desirable for all of the
neighbor-lists being created at any one time (by the filter banks) to be transferred
to the force pipelines simultaneously. It follows that each reference particle should
have a similar number of partner particles (neighbor-list size).

The problem addressed here is that the standard method of choosing a reference
particle’s partner particles leads to a severe imbalance in neighbor-list sizes. How
this arises can be seen in Fig. 10a, which illustrates the standard method of
optimizing for N3L. So that a force between a particle pair is computed only once,
only a “half shell” of the surrounding cells is examined (in 2D, this is cells 1–4
plus Home). For forces between the reference particle and other particles in Home,
the particle ID is used to break the tie, with, e.g., the force being computed only
when the ID of the reference particle is the higher. In Fig. 10a, particle B has a much
smaller neighbor-list than A, especially if B has a low ID and A a high.

124 M.A. Khan et al.

Distribution of Neighborlist Sizes

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

21
Neighborlist size -- Normalized to Avg.

P
ro

b
ab

ili
ty

Fig. 11 Distribution of neighbor-list sizes for standard partition as derived from Monte Carlo
simulations

In fact neighbor-list sizes vary from 0 to 2L, where L is the average neighbor-
list size. The significance is as follows. Let all force pipelines wait for the last
pipeline to finish before starting work on a new reference particle. Then if that (last)
pipeline’s reference particle has a neighbor-list of size 2L, then the latency will
be double that if all neighbor-lists were size L. This distribution has high variance
(see Fig. 11), meaning that neighbor-list sizes greater than, say, 3

2 L, are likely to
occur. A similar situation also occurs in other MD implementations, with different
architectures calling for different solutions [2, 47].

One way to deal with this load imbalance is to overlap the force pipelines so that
they work independently. While viable, this leads to much more complex control.

An alternative is to change the partitioning scheme. Our new N3L partition is
shown in Fig. 10b. There are three new features. The first is that the cell set has
been augmented from a half shell to a prism. In 2D this increases the cell set from
5 cells to 6; in 3D the increase is from 14 to 18. The second is that, rather than
forming a neighbor-list based on a cutoff sphere, a hemisphere is used instead (the
“half-moons” in Fig. 10b). The third is that there is now no need to compare IDs of
home cell particles.

We now compare the two partitioning schemes. There are two metrics: the effect
on the load imbalance and the extra resources required to prevent it.

1. Effect of load imbalance. We assume that all of the force pipelines begin
computing forces on their reference particles at the same time, and that each
force pipeline waits until the last force pipeline has finished before continuing
to the next reference particle. We call the set of neighbor-lists that are thus
processed simultaneously a cohort. With perfect load balancing, all neighbor-
lists in a cohort would have the same size, the average L. The effect of the

FPGA-Accelerated Molecular Dynamics 125

variation in neighbor-list size is in the number of excess cycles—before a new
cohort of reference particles can begin processing—over the number of cycles
if each neighbor-list were the same size. The performance cost is therefore the
average number of excess cycles per cohort. This in turn is the average size of the
biggest neighbor-list in a cohort minus the average neighbor-list size. It is found
that, for the standard N3L method, the average excess is nearly 50%, while for
the “half-moon” method it is less than 5%.

2. Extra resources. The extra work required to achieve load balance is proportional
to the extra cells in the cell set: 18 versus 14, or an extra 29%. This drops the
fraction of neighbor-list particles in the cell neighborhood from 15.5 to 11.6%,
which in turns increases the number of filters needed to keep the force pipelines
fully utilized (overprovisioned) from 7 to 9. For the reduced and planar filters,
this is not likely to reduce the number of force pipelines.

3.2.3 Mapping Particle Pairs to Filter Pipelines

From the previous sections an efficient design for filtering and mapping particles
follows.

• During execution, the input working set (data held on the FPGA) consists of the
positions of particles in a single home cell and in its 17 neighbors;

• Particles in each cell are mapped to a set of BRAMs, currently one or two per
dimension, depending on the cell size;

• The N3L algorithm specifies 8 filter pipelines per force pipeline; and
• FPGA resources indicate around 6–8 force pipelines.

The problem we address in this subsection is the mapping of particle pairs to filter
pipelines. There are a (perhaps surprisingly) large number of ways to do this; finding
the optimal mapping is in some ways analogous to optimizing loop interchanges
with respect to a cost function. For example, one mapping maps one reference
particle at a time to a bank of filter pipelines and relates each cell with one filter
pipeline. The advantage of this method is that the outputs of this (8-way) filter bank
can then be routed directly to a force pipeline. This mapping, however, leads to a
number of load balancing, queuing, and combining problems.

A preferred mapping is shown in Fig. 12. The key idea is to associate each
filter pipeline with a single reference particle (at a time) rather than a cell. Details
are as follows. By “particle” we mean “position data of that particle during this
iteration.”

• A phase begins with a new and distinct reference particle being associated with
each filter.

• Then, on each cycle, a single particle from the 18-cell neighborhood is broadcast
to all of the filter.

• Each filters output goes to a single set of BRAMs.

126 M.A. Khan et al.

Force
pipeline

Filter

Buffer

8 filter units

Home cell

Neighboring
cells

Home cell
distribution
bus

Neighboring cell
distribution bus

Fig. 12 A preferred mapping
of particle pairs onto filter
pipelines. Each filter is used
to compute all interactions for
a single reference particle for
an entire cell neighborhood

• The output of each filter is exactly the neighbor-list for its associated reference
particle.

• Double buffering enables neighbor-lists to be generated by the filters at the same
time they are drained by the force pipelines.

Advantages of this method include:

• Perfect load balance among the filters;
• Little overhead: Each phase consists of 3,150 cycles before a new set of reference

particles must be loaded;
• Nearly perfect load balancing among the force pipelines: Each operates succes-

sively on a single reference particle and its neighbor-list; and
• Simple queueing and control: Neighbor-list generation is decoupled from force

computation.

This mapping does require larger queues than mappings where the filter outputs
feed more directly into the force pipelines. But since there are BRAMs to spare, this
is not likely to have an impact on performance.

A more substantial concern is the granularity of the processing phases. The
number of phases necessary to process the particles in a single home cell is
�|particles-in-home-cell| / |filters|�. For small cells the loss of efficiency can become
significant. There are several possible solutions.

FPGA-Accelerated Molecular Dynamics 127

• Increase the number of filters and further decouple neighbor-list generation from
consumption. The reasoning is that as long as the force pipelines are busy, some
inefficiency in filtering is tolerable.

• Overlap processing of two home cells. This increases the working set from 18
to 27 cells for a modest increase in number of BRAMs required. One way to
implement this is to add a second distribution bus.

• Another way to overlap processing of two home cells is to split the filters among
them. This halves the phase granularity and so the expected inefficiency without
significantly changing the amount of logic required for the distribution bus.

3.3 Overall Design and Board-Level Issues

In this subsection we describe the overall design (see Fig. 13), especially how data
are transferred between host and accelerator and between off-chip and on-chip
memory. The reference design assumes an implementation of 8 force and 72 filter
pipelines.

1. Host-Accelerator data transfers: At the highest level, processing is built around
the timestep iteration and its two phases: force calculation and motion update.
During each iteration, the host transfers position data to, and acceleration data
from, the coprocessor’s on-board memory (POS SRAM and ACC SRAM,
respectively). With 32-bit precision, 12 bytes are transferred per particle. While
the phases are necessarily serial, the data transfers require only a small fraction
of the processing time. For example, while the short-range force calculation takes
about 55 ms for 100 K particles and increases linearly with particle count through
the memory capacity of the board, the combined data transfers of 2.4 MB take
only 2–3 ms. Moreover, since simulation proceeds by cell set, processing of the
force calculation phase can begin almost immediately as the data begin to arrive.

2. Board-level data transfers: Force calculation is built around the processing of
successive home cells. Position and acceleration data of the particles in the
cell set are loaded from board memory into on-chip caches, POS and ACC,
respectively. When the processing of a home cell has completed, ACC data are
written back. Focus shifts and a neighboring cell becomes the new home cell.
Its cell set is now loaded; in the current scheme this is usually nine cells per
shift. The transfers are double buffered to hide latency. The time to process
a home cell Tproc is generally greater than the time Ttrans to swap cell sets
with off-chip memory. Let a cell contain an average of Ncell particles. Then
Ttrans = 324×Ncell/B (9 cells, 32-bit data, 3 dimensions, 2 reads and 1 write,
and transfer bandwidth of B bytes per cycle). To compute Tproc, assume P
pipelines and perfect efficiency. Then Tproc =N2

cell×2π/3P cycles. This gives the
following bandwidth requirement: B > 155 ∗P/Ncell. For P = 8 and Ncell = 175,
B > 7.1 bytes per cycle. For many current FPGA processor boards B ≥ 24.

128 M.A. Khan et al.

POS Cache

Filter Bank

ACC Cache

POS SRAM

Summation

ACC SRAM

Filter

Buffer

Filter

Buffer

Force Pipeline

Position

0 Acceleration

Fig. 13 Schematic of the HPRC MD system

FPGA-Accelerated Molecular Dynamics 129

Queue 0 Arbiter
Filter

Stall

Mux

Filter

Filter
Force pipeline

Queue 1

Queue 2

Filter
Queue 3

Fig. 14 Concentrator logic
between filters and force
pipeline

Some factors that increase the bandwidth requirement are faster processor
speeds, more pipelines, and lower particle density. A factor that reduces the
bandwidth requirement is better cell reuse.

3. On-chip data transfers: Force computation has three parts, filtering particle pairs,
computing the forces themselves, and combining the accumulated accelerations.
In the design of the on-chip data transfers, the goals are simplicity of control
and minimization of memory and routing resources. Processing of a home cell
proceeds in cohorts of reference particles that are processed simultaneously,
either 8 or 72 at a time (either one per filter bank or one per force pipeline).
This allows a control with a single state machine, minimizes memory contention,
and simplifies accumulation. For this scheme to run at high efficiency, two types
of load-balancing are required: (1) the work done by various filter banks must
be similar and (2) filter banks must generate particle pairs having nontrivial
interactions on nearly every cycle.

4. POS cache to filter pipelines: Cell set positions are stored in 54–108 BRAMS,
i.e., 1–2 BRAMs per dimension per cell. This number depends on the BRAM
size, cell size, and particle density. Reference particles are always from the home
cell, partner particles can come from anywhere in the cell set.

5. Filter pipelines to force pipelines: A concentrator logic is used to feed the output
of multiple filters to a pipeline (Fig. 14). Various strategies were discussed in [8].

6. Force pipelines to ACC cache: To support N3L, two copies are made of each
computed force. One is accumulated with the current reference particle. The
other is stored by index in one of the large BRAMs on the Stratix-III. Figure 15
shows the design of the accumulator.

3.4 Preliminary Work in Long-Range Force Computation

In 2005, Prof. Paul Chow’s group at the University of Toronto made an effort to
accelerate the reciprocal part of SPME on a Xilinx XC2V2000 FPGA [29]. The
computation was performed with fixed-point arithmetic that has various precisions

130 M.A. Khan et al.

Cell-1

Cell-2force
pipeline n

accumulated
partial force

new force (i,j)
mux

i or j

0 1 2 3 4 5 6 7

Force Caches

Cell-18

force cache n

updated force

i

reference
particle
force array Off-chip Force SRAM

Summation

a b

Fig. 15 Mechanism for accumulating per particle forces. (a) shows the logic for a single pipeline
for both the reference and partner particles. (b) shows how forces are accumulated across multiple
pipelines

to improve numerical accuracy. Due to the limited logic resources and slow
speed grade, the performance was sacrificed by some design choices, such as the
sequential executions of the reciprocal force calculation for x, y, and z directions and
slow radix-2 FFT implementation. The performance was projected to be a factor of
3× to 14× over the software implementation running in an Intel 2.4GHz Pentium 4
processor. At Boston University the long-range electrostatic force was implemented
using Multigrid [17] with a factor of 5× to 7× speed-up reported.

3.5 Preliminary Work in Parallel MD

Maxwell is an FPGA-based computing cluster developed by the FHPCA (FPGA
High Performance Computing Alliance) project at EPCC (Edinburgh Parallel
Computing Centre) at the University of Edinburgh [3]. The architecture of Maxwell
comprises 32 blades housed in an IBM Blade Center. Each blade consists of one
Xeon processor and 2 Virtex-4 FX-100 FPGAs. The FPGAs are connected by a fast
communication subsystem which enables the total of 64 FPGAs to be connected
together in an 8×8 torus. Each FPGA also has four 256 MB DDR2 SDRAMs. The
FPGAs are connected with the host via a PCI bus.

In 2011, an FPGA-accelerated version of LAMMPS was reported to be im-
plemented on Maxwell [24, 37]. Only range-limited non-bonded forces (including
potential and virial) were computed on the FPGAs with 4 identical pipelines/FPGA.
A speed-up of up to 14× was reported for the kernel (excluding data communi-
cation) on two or more nodes of the Maxwell machine, although the end-to-end
performance was worse than the software-only version.

This work essentially implemented the inner-loop of a neighbor-list-based force
computation as the FPGA kernel. Every time a particle and its neighbor-list would
be sent to the FPGAs from the host and then corresponding forces would be
computed on the FPGAs. This incurred tremendous amount of data communication
which ultimately resulted in the slowdown of the FPGA-accelerated version.

FPGA-Accelerated Molecular Dynamics 131

They simulated a Rhodopsin protein in solvated lipid bilayer with LJ forces and
PPPM method. The 32 K system was replicated to simulate larger systems. This
work, however, to the best of our knowledge, is the first to integrate an FPGA MD
kernel to a full-parallel MD package.

4 Future Challenges and Opportunities

The future of FPGA-accelerated MD vastly depends on the cooperation and
collaboration among computational biologists, computer architects, and board/EDA
tool vendors. In the face of the high bar set by GPU implementations, researchers
and engineers from all of these three sectors must come together to make this
a success. The bit-level programmability and fast data communication capability,
together with their power efficiency, do make FPGAs seem like the best candidate
for MD accelerator. But to realize the potential, computer architects will have to
work with the computational biologists to understand the characteristics of the
existing MD packages and develop FPGA kernels accordingly. The board and EDA
tool vendors will have to make FPGA devices much easier to deploy. Currently
FPGA kernels are mostly designed and managed by hardware engineers. A CUDA-
like breakthrough here would make FPGAs accessible to a much broader audience.

Below, we discuss some of the specific challenges that need to be addressed in
order to achieve the full potential of FPGAs in accelerating MD. These challenges
provide researchers with great opportunities for inventions and advancements that
are very likely to be applicable to other similar computational problems, e.g.,
N-body simulations.

4.1 Integration into Full-Parallel Production MD Packages

After a decade of research on FPGA-accelerated MD, with many individual pieces
of work here and there, none of the widely used MD packages have an FPGA-
accelerated version. Part of this is because FPGA developers have only focused on
individual sections of the computation. But another significant reason is the lack of
understanding of how these highly optimized MD packages work and what needs to
be done to get the best out of FPGAs, without breaking the structure of the original
packages. Researchers need to take a top-down approach and focus on the need of
the software. Certain optimizations on the CPUs may need to be revisited, because
we may have more efficient solutions on FPGAs, e.g. table-interpolation using
BRAM as described in Sect. 3.1. Also, more effort must be given on overlapping
computation and communication.

132 M.A. Khan et al.

4.2 Use of FPGAs for Inter-Node Communication

While CPU-only MD remains compute-bound for at least a few hundred compute
nodes, that is not the case for accelerated versions. It should be evident from
the GPU experience that communication among compute nodes will become a
bottleneck even for small systems. The need for fast data communication is
especially crucial in evaluating the long-range portion of electrostatic force, which
is often based on the 3D FFT and requires all-to-all communication during a
timestep. Without substantial improvement in such inter-node communication,
FPGA-acceleration will be limited to only a few times of speed-up. This presents
a highly promising area of research where FPGAs can be used directly for
communication between compute nodes. FPGAs are already used in network routers
and seem like a natural fit for this purpose [20].

4.3 Building an Entirely FPGA-Centric MD Engine

As Moore’s law continues, FPGAs are equipped with more functionality than ever. It
is possible to have embedded processors on FPGAs, either soft or hard, which makes
it feasible to create an entirely FPGA-centric MD engine. In such an engine, overall
control and simple software tasks will be done on the embedded processors while
the heavy work like the non-bonded force computations will be implemented on
the remaining logic. Data communication can also be performed using the FPGAs,
completely eliminating general purpose CPUs from the scene. Such a system is
likely to be highly efficient, in terms of both computational performance and energy
consumption.

4.4 Validating Simulation Quality

While MD packages typically use double-precision floating point for most of the
computation, most FPGA work used fixed, semi-floating or a mixture of fixed
and floating point for various stages of MD. Although some of these studies
verified accuracy through various metrics, none of the FPGA-accelerated MD work
presented results of significantly long (e.g., month-long) runs of MD. Thus it is
important to address this issue of accuracy. This may mean revisiting precision and
interpolation order in the force pipelines.

Acknowledgments This work was supported in part by the NIH through award #R01-RR023168-
01A1 and by the MGHPCC.

FPGA-Accelerated Molecular Dynamics 133

References

1. S.A. Adcock, J.A. McCammon, Molecular dynamics: survey of methods for simulating the
activity of proteins. Chem. Rev. 106(5), 1589–1615 (2006)

2. J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations
fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008)

3. R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew,
A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, G. Genest, Maxwell - a 64
FPGA supercomputer, in Second NASA/ESA Conference on Adaptive Hardware and Systems
(AHS) (2007), IEEE Computer Society, Washington, DC, USA, pp. 287–294

4. K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis,
I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K. Salmon, Y. Shan, D.E. Shaw, Scalable
algorithms for molecular dynamics simulations on commodity clusters, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing (SC) (2006), ACM New York, NY, USA, pp.
84:1–84:13

5. B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won,
G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig,
S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov,
E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock,
X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program.
J. Comput. Chem. 30(10, Sp. Iss. SI), 1545–1614 (2009)

6. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev,
C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Com-
put. Chem. 26(16), 1668–1688 (2005)

7. M. Chiu, M.C. Herbordt, Efficient particle-pair filtering for acceleration of molecular dynamics
simulation, in International Conference on Field Programmable Logic and Applications (FPL)
(2009), ACM New York, NY, USA, pp. 345–352

8. M. Chiu, M.C. Herbordt, Molecular dynamics simulations on high-performance reconfigurable
computing systems. ACM Trans. Reconfigurable Tech. Syst. (TRETS) 3(4), 23:1–23:37 (2010)

9. M. Chiu, M.A. Khan, M.C. Herbordt, Efficient calculation of pairwise nonbonded forces, in
The 19th Annual International IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM) (2011), IEEE Computer Society Washington, DC, USA, pp. 73–76

10. S. Chiu, Accelerating molecular dynamics simulations with high-performance reconfigurable
systems, PhD dissertation, Boston University, USA, 2011

11. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N.log (N) method for Ewald sums
in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

12. W.A. Eaton, V. Muñoz, P.A. Thompson, C.K. Chan, J. Hofrichter, Submillisecond kinetics of
protein folding. Curr. Opin. Struct. Biol. 7(1), 10–14 (1997)

13. R.D. Engle, R.D. Skeel, M. Drees, Monitoring energy drift with shadow Hamiltonians. J.
Comput. Phys. 206(2), 432–452 (2005)

14. P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Molecular dynamics
simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437–449 (2006)

15. Gidel, Gidel website (2009), http://www.gidel.com. Accessed 17 April 2012
16. GROMACS, GROMACS installation instructions for GPUs (2012), http://www.gromacs.org/

Downloads/Installation Instructions/GPUs. Accessed 17 April 2012
17. Y. Gu, M.C. Herbordt, FPGA-based multigrid computation for molecular dynamics simula-

tions, in 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM) (2007), pp. 117–126

18. Y. Gu, T. Vancourt, M.C. Herbordt, Explicit design of FPGA-based coprocessors for short-
range force computations in molecular dynamics simulations. Parallel Comput. 34(4–5),
261–277 (2008)

19. D.J. Hardy, NAMD-Lite (2007), http://www.ks.uiuc.edu/Development/MDTools/namdlite/.
University of Illinois at Urbana-Champaign. Accessed 17 April 2012

http://www.gidel.com
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.ks.uiuc.edu/Development/MDTools/namdlite/

134 M.A. Khan et al.

20. M. Herbordt, M. Khan, Communication requirements of fpga-centric molecular dynamics, in
Proceedings of the Symposium on Application Accelerators for High Performance Computing
(2012)

21. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly
efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3),
435–447 (2008)

22. R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma.
J. Comput. Phys. 14(2), 148–158 (1974)

23. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics.
J. Comput. Phys. 151, 283–312 (1999)

24. S. Kasap, K. Benkrid, A high performance implementation for molecular dynamics simulations
on a FPGA supercomputer, in 2011 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS) (2011), IEEE Computer Society Washington, DC, USA, pp. 375–382

25. F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Dynamics of K+ ion conduction through Kv1.2.
Biophys. J. 91(6), 72–76 (2006)

26. V. Kindratenko, D. Pointer, A case study in porting a production scientific supercom-
puting application to a reconfigurable computer, in 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society
Washington, DC, USA, pp. 13–22

27. S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J.C. Phillips, H. Yu, L.V. Kalé, Scalable
molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J. Res. Dev. 52(1–2),
177–188 (2008)

28. R. Larson, J. Salmon, R. Dror, M. Deneroff, C. Young, J. Grossman, Y. Shan, J. Klepeis,
D. Shaw, High-throughput pairwise point interactions in Anton, a specialized machine for
molecular dynamics simulation, in IEEE 14th International Symposium on High Performance
Computer Architecture (HPCA) (2008), IEEE Computer Society Washington, DC, USA, pp.
331–342

29. S. Lee, An FPGA implementation of the Smooth Particle Mesh Ewald reciprocal sum compute
engine, Master’s thesis, The University of Toronto, Canada, 2005

30. A.D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the CHARMM
force field for nucleic acids. Biopolymers 56(4), 257–265 (2000)

31. G. Moraitakis, A.G. Purkiss, J.M. Goodfellow, Simulated dynamics and biological macro-
molecules. Rep. Progr. Phys. 66(3), 383 (2003)

32. T. Narumi, Y. Ohno, N. Futatsugi, N. Okimoto, A. Suenaga, R. Yanai, M. Taiji, A high-speed
special-purpose computer for molecular dynamics simulations: MDGRAPE-3. NIC Workshop,
From Computational Biophysics to Systems Biology, NIC Series, vol. 34 (2006), pp. 29–36

33. L. Nilsson, Efficient table lookup without inverse square roots for calculation of pair wise
atomic interactions in classical simulations. J. Comput. Chem. 30(9), 1490–1498 (2009)

34. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel,
L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16),
1781–1802 (2005)

35. J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel application to GPU-
accelerated clusters, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC)
(2008), IEEE Press Piscataway, NJ, USA, pp. 8:1–8:9

36. L. Phillips, R.S. Sinkovits, E.S. Oran, J.P. Boris, The interaction of shocks and defects in
Lennard-Jones crystals. J. Phys.: Condens. Matter 5(35), 6357–6376 (1993)

37. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117(1), 1–19 (1995)

38. J.W. Ponder, D.A. Case, Force fields for protein simulations. Adv. Protein Chem. 66, 27–85
(2003)

39. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University
Press, London, 2004)

FPGA-Accelerated Molecular Dynamics 135

40. P. Schofield, Computer simulation studies of the liquid state. Comp. Phys. Comm. 5(1), 17–23
(1973)

41. R. Scrofano, M. Gokhale, F. Trouw, V.K. Prasanna, A hardware/software approach to
molecular dynamics on reconfigurable computers, in The 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society
Washington, DC, USA, pp. 23–34

42. Y. Shan, J. Klepeis, M. Eastwood, R. Dror, D. Shaw, Gaussian split Ewald: a fast Ewald mesh
method for molecular simulation. J. Chem. Phys. 122(5), 54101:1–54101:13 (2005)

43. D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young,
B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho,
D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller,
E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose
machine for molecular dynamics simulation, in Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA) (2007), ACM New York, NY, USA, pp. 1–12

44. D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young,
B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho,
D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller,
E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose
machine for molecular dynamics simulation. Comm. ACM 51(7), 91–97 (2008)

45. D.E. Shaw, R.O. Dror, J.K. Salmon, J.P. Grossman, K.M. Mackenzie, J.A. Bank, C. Young,
M.M. Deneroff, B. Batson, K.J. Bowers, E. Chow, M.P. Eastwood, D.J. Ierardi, J.L. Klepeis,
J.S. Kuskin, R.H. Larson, K. Lindorff-Larsen, P. Maragakis, M.A. Moraes, S. Piana, Y. Shan,
B. Towles, Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009),
ACM New York, NY, USA, pp. 39:1–39:11

46. R.D. Skeel, I. Tezcan, D.J. Hardy, Multiple grid methods for classical molecular dynamics.
J. Comput. Chem. 23(6), 673–684 (2002)

47. M. Snir, A note on N-body computations with cutoffs. Theor. Comput. Syst. 37(2), 295–318
(2004)

48. J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Acceler-
ating molecular modeling applications with graphics processors. J. Comput. Chem. 28(16),
2618–2640 (2007)

49. L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

50. C. Young, J.A. Bank, R.O. Dror, J.P. Grossman, J.K. Salmon, D.E. Shaw, A 32x32x32, spatially
distributed 3D FFT in four microseconds on Anton, in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY,
USA, pp. 23:1–23:11

FPGA-Based HPRC for Bioinformatics
Applications

Yoshiki Yamaguchi, Yasunori Osana, Masato Yoshimi,
and Hideharu Amano

Abstract Bioinformatics is one of the most frequently applied fields in FPGAs.
Some applications in this field can be efficiently implemented by systolic arrays,
which are intrinsically suited to FPGA implementations. Others can be expressed as
numerical computations which can parallelize through pipelining, instruction-level
and data-level parallelism. This chapter covers two sample applications encoun-
tered in bioinformatics, namely homology searches and biochemical molecular
simulations, and shows how FPGAs can be effectively harnessed to achieve higher
performances compared to off-the-shelf microprocessor technologies.

1 Introduction

Systems biology is a scientific domain to grasp the essentials of living organisms.
In order to provide a profound insight for the research field, the performance
expansion of analytical devices needs to be considered from the viewpoint of both

Y. Yamaguchi (�)
University of Tsukuba, Tsukuba, Ibaraki, Japan
e-mail: yoshiki@cs.tsukuba.ac.jp

Y. Osana
University of the Ryukyus, Okinawa, Japan
e-mail: osana@eee.u-ryukyu.ac.jp

M. Yoshimi
University of Electro-Communications, Tokyo, Japan
e-mail: yoshimi@is.uec.ac.jp

H. Amano
Keio University, Tokyo, Japan
e-mail: hunga@am.ics.keio.ac.jp

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 5, © Springer Science+Business Media, LLC 2013

137

mailto:yoshiki@cs.tsukuba.ac.jp
mailto:osana@eee.u-ryukyu.ac.jp
mailto:yoshimi@is.uec.ac.jp
mailto:hunga@am.ics.keio.ac.jp

138 Y. Yamaguchi et al.

2001

Moore’s Law

Sequencer

C
o

st
 (

U
S

D
)

/ G
en

o
m

e

First-generation sequencer

Second-generation sequencer

10-11

10-10

10-9

10-8

10-7

10-6

103

104

105

106

107

108

2003 2005 2007 2009 2011

A
ve

ra
g

e
P

ri
ce

 (
U

S
D

)
/ T

ra
n

si
st

o
r

Fig. 1 Cost comparison of DNA sequencers and LSIs [1]

wet (experimental) and dry (computational) biological demands. Figure 1 shows
the growth of DNA sequences in wet laboratories and LSIs in dry laboratories.
The improved performance of DNA sequencers lets the cost reduced to 10−4 of
that of a decade ago [1]. Technological innovations designed to LSIs, which is
called the Moore’s law, cannot follow the growth curve of DNA sequences in the
second generation. It implies that software-level improvement on LSIs is currently
having a hard time to continue computing big biological applications more than
ever. Thus, hardware-level designs including computational hardware algorithm and
architecture must be discussed for the expansion of the systems biology.

There is another problem in the systems biology. Figure 2 shows the Omic Space,
which is one of the famous coordinate-based integration schemes for the systems
biology [2, 3]. The computational system needs to have an analytical capability
across these planes in Fig. 2. The results will provide us further novel biological
insights when the system has multifaceted perspectives. The above factors will make
us enter a new stage, which targets the entire cellular system.

This chapter offers a better solution for the bioinformatics system design.
FPGAs can achieve high performance from highly paralleled and finely grained
computation to numerical and sophisticated simulations. Moreover, the system
with FPGAs proposes highly power-efficient performance compared with GPGPU
and other architectures. Two application fields, homology search and biochemical
reaction simulation are chosen. The following sections will describe the high
potential capacity of FPGA systems.

FPGA-Based HPRC for Bioinformatics Applications 139

A

D

Genome

Transcriptome

Proteome

Metabolome

Phenome

B
1

n

C A n1

CD
BC AB

genemic elements

transcriptional
regulation

B

binding

D
P

BC

BC

D D

Fig. 2 Outline of the Omic
space [2]

2 Homology Search

“The history of the earth is recorded in the layers of its crust;
The history of all organisms is inscribed in the chromosomes.”

H. Kihara (1946)

There are ten million species of organisms on Earth and the diversity of them is
derived from DNA sequences which are blueprints of the lives. If we decipher
the meaning of them, we will achieve not only actual benefits that can accelerate
medicine, pharmacy, agronomy and other fields, but also a theory that could possibly
unite biology and physics. This section will specifically describe hardware-level
acceleration with FPGAs.

2.1 Introduction

DNA sequences are composed of pairs of four nitrogenous nucleotide bases:
thymine (T), cytosine (C), adenine (A), and guanine (G). A gene which is a portion
of a DNA sequence is transcribed into an RNA and then translated to make proteins.
In this process, each set of three nucleotide bases, namely codon, specifies a single
amino acid as shown in the Table 1.

140 Y. Yamaguchi et al.

Table 1 Four nucleotide bases and 20 amino acids

Third base

First base Second base T(U) C A G

T(U) T(U) Phenylalanine Serine Tyrosine Cysteine
C Phenylalanine Serine Tyrosine Cysteine
A Leucine Serine (Stop) (Stop)
G Leucine Serine (Stop) Tryptophan

C T(U) Leucine Proline Histidine Arginine
C Leucine Proline Histidine Arginine
A Leucine Proline Glutamine Arginine
G Leucine Proline Glutamine Arginine

A T(U) Isoleucine Threonine Asparagine Serine
C Isoleucine Threonine Asparagine Serine
A Isoleucine Threonine Lysine Arginine
G Methionine (Start) Threonine Lysine Arginine

G T(U) Valine Alanine Aspartate Glycine
C Valine Alanine Aspartate Glycine
A Valine Alanine Glutamate Glycine
G Valine Alanine Glutamate Glycine

U represents Uracil by which thymine is replaced

Each protein molecule develops a network of protein–protein interaction and
signal transduction pathways which are central to a cell that regulates the cellular
activites (the details are shown in Sect. 3). Thus, as shown in Fig. 2, a sophisticated
network covers the entire life of the Omic Space production.

Here, comparative genomics is situated on the first layer in the Omic Space and
it is the first step to understand the functions and evolutionary processes among
different species. However, since it is not the exact string matching problem, it
requires an approach which can assert the plausibility for some reason. The concept
of gap offers one solution to this problem, “similarity computation”, because it
corresponds to genetic deletion and insertion. That is why we have to consider an
intended sequence, a scoring system, and an effective algorithm before the hardware
implementation.

It is preferable that the algorithm covers any comparisons: DNA–DNA, protein–
protein, and DNA–protein comparisons. As shown in Table 1, DNA–DNA and
protein–protein comparisons require at least 4-by-4 and 20-by-20 score matrices,
respectively. The matrices will be bigger when the algorithm considers ambiguous
character caused by laboratory equipments. The situation in DNA–protein com-
parison, namely translated nucleotide–protein comparison, is different from the
preceding comparisons. The comparison requires not only nucleotide translation
based on Table 1 but also flexible insertion and deletion of gap notions. This section
will discuss about the first two comparisons aimed at a better understanding though
the circuit can treat the last comparisons.

FPGA-Based HPRC for Bioinformatics Applications 141

Secondly, a good scoring system is required to obtain a good alignment called
similarity. For DNA–DNA comparisons, we can apply simple scoring matrices.
But, protein–protein and DNA–protein comparisons have to treat conservative
substitutions where some substitutions are more likely to occur than others because
of the chemical property. The point accepted mutation (PAM) [4], block substitution
matrices (BLOSUM) [5], WAG and WAG∗ matrices [6] are used for calculating the
likelihood scores. The matrices used in applications vary depending on the intended
use and are decided by the users. The design of the hardware should take into
account of this situation. In this section, a matrix is stored in on-chip small memories
and it will be reconfigured on demand.

Finally, basic local alignment search tool (BLAST) [7] is used extensively in
comparative genomics; however, this method includes the risk which sequence
similarity will be overlooked because of heuristic approach [8, 9]. The Needleman–
Wunsch algorithm [10] and the Smith–Waterman algorithm [11] are based on
dynamic programming specialized for comparative genomics. Dynamic program-
ming can consider the best local alignment between a query sequence and database
sequences. And therefore not BLAST but the Needleman–Wunsch and the Smith–
Waterman algorithms are still used in bioinformatics. BLAST is a useful application
and we acknowledge the meaningfulness. But, this section will introduce the
hardware implementation for dynamic programming from the standpoint of under-
standing fundamental approach and widespread use.

2.2 Related Works

In dynamic programming, high-speed parallel approaches are always important.
One reason is that their computational speed is often slow. Another reason is that
the increase of genomic data volume, especially by the appearance of automated
sequencers, has surpassed the growth of computational performance of MPUs. In
recent years, researches in FPGAs [12–17] and other architectures [18–22] have
started to focus on not only nucleotides but also amino-acid sequence comparison.
While many studies have been reported on particular platforms, there is not much
research on analytic treatment for parallelizing the Smith–Waterman algorithm,
with novel systolic designs and experimental comparison of various FPGA and
GPU implementations. Firstly, this section tries to evaluate how efficient FPGA
is in comparative genomics through theoretical comparison of how to implement
the application program. After that, this study aims to establish techniques for
optimizing performance by organizing parallelism effectively and analyzing the
resulting effects.

142 Y. Yamaguchi et al.

2.3 Smith–Waterman Algorithm

This section will define the fundamental nature of the Smith–Waterman algorithm.
In 1982, the following recurrence formula was introduced to the Smith–Waterman
algorithm [23].

si, j = max

⎧⎪⎪⎨
⎪⎪⎩

si−1, j−1 + δ (qi,di)

si, j,↓
si, j,→
0

, (1)

where si, j is the similarity score of a node at the (i, j) position, δ (x,y) is the similarity
score by genetic-character comparison of x and y, qi is the ith character of a query
sequence, d j is the jth character of a database sequence, ↓ denotes a gap insertion
in query sequence direction, and → denotes a gap insertion in database sequence
direction. si, j,↓ and si, j,→ are called affine gap cost functions and they are obtained by

si, j,↓ = max

{
si−1, j,↓+β
si−1, j +α

(2)

si, j,→ = max

{
si, j−1,→+β
si, j−1 +α

(3)

α is the opening-gap-penalty cost and β is the continuous-gap-penalty cost, and
generally α ≤ β ≤ 0. These gap penalties were introduced for genetic character
insertion or deletion. These genetic mutations are usually caused by the error during
DNA replications. Considering that two or more DNA bases may be inserted or
deleted at the same time, it is preferable to give a penalty score more gradually
compared to the constant penalty [23].

Figure 3 illustrates the data movement for parallel processing involving a
processing element called SWPE, Smith–Waterman Processing Element. The affine
gap functions, (2) and (3), are also implemented as recursive functions in an SWPE.

The Smith–Waterman algorithm is known to be computable in parallel along
the oblique line shown in Fig. 3. Thus, the number of SWPEs contributes to
performance increase. In SWPE, it is necessary to store the maximum value used for
judgement of a correlation between query and database sequences. Hence, SWPE
includes circuits of not only (1) but also the maximum function. Additionally, the
Smith–Waterman algorithm has a high degree of data locality. This is the reason
why its acceleration has been tried in ASICs and FPGAs.

FPGA-Based HPRC for Bioinformatics Applications 143

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

V P G L T P P S L G

S
P
G
C
V
P
A
V
P
G

database sequence

qu
er

y
se

qu
en

ce
time

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4

0 0 7 0 0 7 7

0 0 0 13 3 2

0 0 0 3 12

0 4 0 2

0 0 11

0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 4

0 0 7 0 0 7 7 0

0 0 0 13 3 2 5

0 0 0 3 12 2

0 4 0 2 4

0 0 11 1

0 0 1

0 4

0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 4 0

0 0 7 0 0 7 7 0 0

0 0 0 13 3 2 5 7

0 0 0 3 12 2 1

0 4 0 2 4 10

0 0 11 1 1

0 0 1 11

0 4 0

0 0

0

reg

reg

Q
ue

ry
se

qu
en

ce
(i)

S
(i-

1,
j)

ho
riz

on
al

(o
pe

ni
ng

)
ho

riz
on

al
(e

xt
en

de
d)

S
(i,

j)

D
at

ab
as

e
se

qu
en

ce
(j)

score matrix
δ(x,y)

m
ax

(α)

(β)

max

(α) (β)

max3

re
g

ho
riz

on
al

(e
xt

en
de

d)

m
ax

im
um

(i,
j-1

)

m
ax

im
um

(i,
j)

reg

re
g

0

m
ax

4

Processing Element (SWPE)

maximum
function

vertical
(extended)

ve
rt

ic
al

(e
xt

en
de

d)

ve
rt

ic
al

(o
pe

ni
ng

)

Fig. 3 Data movement for the parallel processing in the Smith–Waterman algorithm and SWPE

2.4 Performance Analysis

This section will provide an analytical estimation of the performance of our
proposed design. In contrast to theoretical treatment based on parallelization of
recurrences [24], our discussion focuses on a specific one-dimensional systolic
array which includes: (a) multiple reconfigurable devices; (b) derivation of perfor-
mance between line-based method and lattice-based method; (c) comparison of the
achieved and theoretical peak performance of these methods.

Each SWPE can be regularly connected to form a systolic array. In the following
discussion, we assume that the Smith–Waterman algorithm is implemented on
SWPEs which are arranged as an one-dimensional systolic array as shown in Fig. 3.
Then, the computational clock cycles becomes

fideal(Q,D) = Q+D− 1 (4)

144 Y. Yamaguchi et al.

p

p

p

Q

DFig. 4 Line-based parallel
computation. The search
space is divided into
reed-shaped areas called line
segment

p

p

p

Q

D
p p p

Fig. 5 Lattice-based parallel
computation. The search
space is divided into
rectangular areas called
lattice segment

from QD when the number of SWPE, p, is larger than Q, where Q and D are defined
as the length of a query sequence and a database sequence, respectively. When p is
smaller than Q, it is possible to compute in parallel by dividing the computational
domain to multiple rows as shown in Fig. 4.

In this case, computational clock cycles become

fline(Q,D, p) = flinesegment(p,D) ·Nlinesegment

= (p+D− 1)q (∵ flinesegment(p,D) = p+D− 1), (5)

where q = �Q/p�. This computation can be extended to support multiple reconfig-
urable devices. Assuming that the number of devices is k, the computational time is
obtained by the following expressions:

flinek(Q,D, p,k) =
q(pk+D− 1)

k
(6)

lim
k→q

flinek(Q,D, p,k) = pq+D− 1

≈ Q+D− 1, (7)

where q ≥ k ≥ 1. k should be sufficiently large for higher performance but the
improvement stops when kp > Q.

Figure 5 is another possibility of multiple device acceleration. In this case, the
rectangular area is delimited not by p but cache size on a single device, and the

FPGA-Based HPRC for Bioinformatics Applications 145

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000 100000

pe
rf

or
m

an
ce

 r
at

io
 (

m
ax

 =
 1

)

the number of SWPE processors (p)

Q=1,000
D=1,000
k=1

Ideal performance

line-based

lattice-based

(500, 0.667) (2000, 0.667)

(500, 0.500)

(1000, 1.000)

(2000, 0.500)

Fig. 6 Performance ratio of line-based and lattice-based performance to the theoretical peak
performance: excessive parallelization induces the larger number of idle elements and it causes
performance degradation

computation time is obtained by the following equation:

flattice(Q,D, p) = flatticesegment(p, p) ·Nlatticesegment

= (2p− 1)qd (∵ flatticesegment(p, p) = p+ p− 1), (8)

where d = �D/p�. The computational clock cycles with k devices are obtained by
the following expression:

flatticek (Q,D, p,k) = (2p− 1)

(
qd
k

+ k− 1

)
(9)

lim
k→q

flatticek (Q,D, p,k) = (2p− 1)(q+ d− 1)

≈ 2(Q+D− 1). (10)

Figure 6 shows the ratio of line-based and lattice-based performance to theoretical
peak performance obtained by (4). It can be seen that line-based parallelism is
always better than lattice-based parallelism since the former is closer to the ideal
performance.

From Fig. 6, it can also be seen that the performance efficiency will decrease
when the number of SWPEs and the length of a query sequence do not match. This
result is important because it enables power-performance improvement.

146 Y. Yamaguchi et al.

2.5 Systolic Array Design

This section describes a new design of SWPE for the Smith–Waterman algorithm.
The novel aspect of our design concerns hardware optimization by transforming
numerical expressions in computing the affine gap cost function.

2.5.1 The Overview of an SWPE

Figure 3 describes the basic structure and internal function modules of the SWPE.
A processing element is composed of five modules: one similarity computation
with score matrix, two affine gap cost functions, one maximum detection, and
one maximum score-history function. The score matrix corresponds to δ (qi,di) of
(1) and the circuits which are placed in light-grey boxes show the affine gap cost
functions. The maximum detection function involves selecting a maximum as shown
in (1). The maximum score-history function is an essential function for obtaining
the maximum value of the Smith–Waterman algorithm though it is not shown in
numerical expressions; it can be expressed by one single comparator.

2.5.2 Affine Gap Cost Function (α ≤ β ≤ 0)

When the gene is copied, insertion and deletion of the characters might take place.
Gap cost functions are quantification of the gap inserted or deleted at this time. The
affine gap cost function [23] is well known and is obtained by (2) and (3). In the
numerical equations, α is the cost of opening gap and β is the cost of continuous
gap. In general, α is smaller than β .

When using this function, we must treat at least six values: si−1, j−1, si−1, j, si, j−1,
si−1, j,↓, si, j−1,→, 0 for every SWPE. Therefore, at least five comparators, namely five
branch instructions, are needed for getting the maximum of them in every SWPE.
A single SWPE must require one or two additional comparators since the SWPE
has a maximum value function as shown in Fig. 3. Based on this, the size of a single
SWPE is estimated to be approximately 160 LUTs in this paper which is almost the
same size as the design in [15] which is estimated to be 85 slices, i.e. 170 LUTs,
on XILINX Virtex-II architecture. This section will discuss how to realize a better
circuit for the SWPE.

The original numerical equations should be optimized for the hardware imple-
mentation; they use signed circuits in most operations. A signed comparator is
larger than an unsigned one. In general, α ≤ β ≤ 0. We can take advantage of this
relationship and further reduce the number of LUTs. Here, (1)–(3) are revised to
produce (11)–(13). Each underscored term in (11)–(13) means a signed number.
(β −α) has to be larger than 0 as a precondition to this application.

FPGA-Based HPRC for Bioinformatics Applications 147

Score
matrix

(β-α)

reg

reg

Qu
er
y

se
qu
en
ce
(i
)

Da
ta
ba
se

se
qu
en
ce
(j
)

ve
rt
ic
al

(e
xt
en
de
d)

ve
rt
ic
al

(o
pe
ni
ng
)

vertical
(extended)

vertical
(opening)

max
reg

ma
x(
i–
1,
j)

ma
x(
i,
j)

S(
i,
j)

S(
i–
1,
j)

maximum
value

function

max
(α) reg

(β
-α

)

max
(α)

reg

max

ma
x

m+

m+

Fig. 7 An optimized SWPE
by arranging
Smith–Waterman equations

si, j = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

si−1, j−1 + δ (qi,di)

si, j,↓ = max

{
si, j,↓,α +α
0

si, j,→ = max

{
si, j,→,α +α
0

(11)

si, j,↓,α = max

{
si−1, j,↓+(β −α)

si−1, j
(12)

si, j,→,α = max

{
si, j−1,→+(β −α)

si, j−1
. (13)

In Fig. 7, each SWPE has four 15-bit comparators, one 16-bit comparator, one 16-
bit adder–subtractor, two 15-bit adders, and two 15-bit positive-number discriminant
adders, m+, whose details are illustrated in Fig. 8.

Compared to the previous approach, we can reduce 243 LUTs to 219 LUTs in
case of 4-input LUTs for Virtex-4 FPGAs; and from 239 LUTs to 231 LUTs in case
of 4-input LUTs for Virtex-II Pro and Virtex-II FPGAs. In case of 6-input LUTs for
Virtex-5 FPGAs, the number of logic LUTs decreases even though the total does not
decrease, as shown in Table 2. For these experiments, ISE12.2 (ver.M.63c) is used
for Virtex 4 and 5, and ISE8.2i (ver.I.31) is also used for Virtex II and II pro.

148 Y. Yamaguchi et al.

a[
14
:0
]

b[
5:
0]

a[4:0]
b[4:0]

c[
5] c[4:0]

a[
14
:5
]

a[
14
:5
]

z[
14
:0
]

y[14:0]

y[4:0]

b[5]
(not used)

y[14:5]

m+ unit

Fig. 8 A positive-number
discriminated adder for
SWPE

Table 2 Circuit resource
requirement for a single
SWPE

LUT

FPGA Total Logic Thru Regs

Ideal 152 85
Virtex5 177 138 39
Virtex4 219 191 28
Virtex-II Pro 231 204 27
Virtex-II 231 204 27

Each SWPE includes a single embedded RAM

Here, a thru LUT means a “route-through” LUT in XILINX FPGAs and the
number is counted when the circuits other than LUTs drives registers, carries, and
some circuits because of the composition where a minimum unit contains a LUT
and other circuits. As for the thru LUTs, there is a possibility of it being eliminated
by the synthesis tools, which is confirmed by experiments in Sect. 2.6 for a larger
circuit. Thus, this approach significantly improves the SWPE array performance.

Finally, this approach enables the efficient use of an embedded adder such as
XILINX DSP48E. Three 15-bit adders are packed in one embedded adders because
the proposed approach can reduce a signed bit. It reduces the use of LUTs and
contributes to the high operating frequency. A compact saturation adder which keeps
the maximum value when overflow occurs can also be realized by the use of 16-,
32-, 48-bit signal lines. The efficient use of embedded circuits is an important factor
in the performance gain.

FPGA-Based HPRC for Bioinformatics Applications 149

2.6 Experimental Results

SWPE arrays are also evaluated on current FPGA architectures. They are imple-
mented on ADM-XRC-5T2 with XC5VLX330T produced by Alpha Data. We adopt
Fig. 7 as an SWPE and optimize not only for an individual SWPE but also for a
SWPE systolic array. In this section, billion cell update per second (GCUPS) is used
for the performance measurement and it is obtained by QD/Tcomp × 10−9, where
Tcomp is the computational time.

2.6.1 Performance Evaluation of FPGA

In this section, we evaluate the maximum performance obtained by applying the
proposed techniques to the XILINX XC5VLX330T FPGA in the Alpha Data ADM-
XRC-5T2 system. Our design for XILINX XC5VLX330 has 183,416 LUTs and
86,638 registers; it contains 1,000 SWPE elements and can reach a performance of
up to 129 GCUPS. It is likely to be one of the fastest single-chip implementations of
the Smith–Waterman algorithm. Moreover, since systolic architectures are regular
and scalable, SWPE arrays and the associated optimizations would be applicable to
next-generation FPGA devices as they become available.

In power-performance evaluation [25], the FPGA achieves approximately 16
GCUPS/W when we use two DDR-II Synchronous SRAM banks in the Alpha Data
ADM-XRC-5T2 system. This power-performance is better than that of CPU and
GPUs; CPU, such as Xeon E5420, is less than 0.5 GCUPS/W and GPUs, such as
GTX295, are less than 0.08 GCUPS/W.

2.6.2 CPU and GPUs

There are recent researches on Smith–Waterman algorithm targeting GPUs [18,
20, 21, 26] but the effective performance of them is far inferior to the theoretical
peak performance of the GPUs; for instance, the performance of four parallel
GPUs hardly reaches one single XC4VLX200: approximately 40 GCUPS in our
estimation. Moreover, a single Spartan produced by XILINX or one single Cyclone
by ALTERA is comparable to the performance of a single GPU. Ligowski and
Rudnicki [18] shows the bottleneck is not memory bandwidth and it implies
current GPU architecture is not appropriate for this application when compared
with FPGA architecture. We confirm this observation using NVIDIA GTX480; the
memory bandwidth is not a bottleneck in this latest device. Recent other studies,
[20, 21], also show the discrepancy between theoretical performance of GPU and
real performance of this application. It seems that this application is unsuitable
for GPU even though GPU has shown remarkable progress in accelerating various
algorithms. On the other hand, appropriate CPUs can achieve a decent performance
compared with their theoretical performance [22].

150 Y. Yamaguchi et al.

2.7 Summary of Homology Search

This section provides an analytical treatment of the SWPE systolic approach
to the Smith–Waterman algorithm. The line-based and lattice-based methods for
organizing parallelism are introduced; the effect of parallelism on the performance
of these methods is analysed with respect to peak performance. The insights from
this analysis are used in deriving a novel systolic design, which includes techniques
for reducing affine gap cost functions.

The potential of our approach is demonstrated by the high performance of
the resulting designs. For example, the XC5VLX330T FPGA can accommodate
1,000 SWPE cores operating at 130 MHz, resulting in a performance of up to 129
GCUPS, which is 3 times faster than the fastest quad-GPU processor, GTX295.
Moreover, the FPGA is far more energy efficient than GPUs; XC5VLX330T
achieves approximately 16 GCUPS/W, while the power-performance for CPU is less
than 0.5 GCUPS/W, and for GPUs is less than 0.08 GCUPS/W.

3 Biochemical Kinetic Simulation with a Reconfigurable
Platform

3.1 Introduction

Biochemical kinetic simulation, the so-called simulation of a cellular system, is one
of the major applications in life science. Various biochemical kinetic simulators
were developed since KINSIM [27], which was presented in 1983. Unlike small and
simple targets of the simulators in the early days such as Gepasi [28] and DBsolve
[29], recent simulators like E-Cell [30] and Virtual Cell [31] are targeted to large-
scaled networks such as simple whole cells.

Since biochemical kinetics are basically modeled using ordinary differential
equations (ODEs), the parameter fitting between experiments and simulations is
essential in the modeling process. The parameter fitting is usually a time-consuming
process because of its large number of model parameters. Today, many institutions
and researchers have high-performance systems such as PC/WS clusters to solve
this problem. Even when such systems provide enough performance, for a single
researcher, it is difficult to occupy its full performance all time considering their
high cost. In this chapter, we summarize the research result of the “ReCSiP”
project, an FPGA-based simulation environment which aims to build a cost-effective
alternatives of PC/WS clusters for personal use of biochemical kinetic simulations.
The project started in 2004 in cooperation with life scientists and terminated in
2010.

Since life scientists are neither programmers nor hardware engineers who
can write HDLs, the goal of ReCSiP is to develop an easy-to-use FPGA-based

FPGA-Based HPRC for Bioinformatics Applications 151

simulation environment for them. The front-end language is easy for them to use. We
focus on a standard description form, Systems Biology Markup Language (SBML)
to describe kinetic model in XML form. The hardware solvers are automatically
generated from the description of SBML, and users don’t have to touch its hardware
description at all.

In the first 2 years of the project, we focused on the ODE solvers which
simulate the model with numerical integration method. Although the solvers were
approximately 80 times faster than that of the software run on the corresponding
PCs, there is also a new trend in kinetic simulation using stochastic approach.
So, we also tried to accelerate stochastic simulation. First, the simplest first
reaction method (FRM) based on Gillespie’s algorithm was implemented, and then
more sophisticated next reaction method (NRM) was tried. The ODE solvers are
introduced with a target model and SBML description and the stochastic solvers
based on FRM and NRM are introduced.

3.2 ODE Based Approach

3.2.1 The Target Model and Its Description

Simulation of biochemical pathway kinetics is a numerical process to obtain the
concentration change of the molecular species in time series. Figure 14a shows an
example pathway, which has nine molecular species (S1 to S9) and five reactions
(R1 to R5). The velocity of each reaction is determined by their rate-law function,
corresponding to their reaction mechanism. For example, velocity of a simple
second order reaction is:

v = k[S1][S2], (14)

where [S1], [S2] are concentrations of substrates and k is the rate constant of the
reaction. Rate-law functions are functions of concentrations, which have some
constants (e.g., maximum velocity or rate constants) as their parameter and can be
solved as ODEs. Each different reaction mechanism is expressed by the specific
rate-law functions, as the examples in Table 3. ReCSiP runs simulations by
calculating reaction rates with the modules called “solvers” which consist of several
floating-point arithmetic units.

Here, a “model” to be simulated as an initial-value problem consists of:

• List of molecular species
• List of reactions
• Initial values of concentration for the molecular species
• And parameters of the reactions

And these contexts can be marked up as the standardized XML format, SBML
[32]. ReCSiP framework described in the following sections automatically generates
HDL modules corresponding to the given SBML model.

152 Y. Yamaguchi et al.

Table 3 Examples of rate-law functions defined in SBML level 1

Reaction mechanism Rate-law function

Irreversible simple Michaelis–Menten v =
VmS

Km +S

Uni–Uni reversible simple Michaelis–Menten v =
Vf S/KmS −VrP/KmP

1+S/KmS +P/KmP

Uni–Uni reversible simple Michaelis–Menten with
Haldane adjustment

v =
(Vf /Km1)(S−P/Keq)

1+S/Km1 +P/Km2

Competitive inhibition (irreversible) v =
V S/Km

1+S/Km + I/Ki

Competitive inhibition (reversible) v =
Vf S/KmS −VrP/KmP

1+S/KmS +P/KmP + I/Ki

DIV1

DIV2

ADD1

MULT

ADD2

S

P

K1

K2

V1

D

DIV2’

5 10 15 20 25 30 35 40 45 501
S/K1

P/K1

C

A
B

A+C E

A x V1
B x D

F
G

E+1
F-G

H
I

I/H v

Inputs

Output

P/K2

Fig. 9 An example of solver core: Uni–Uni reversible simple Michaelis–Menten with Haldane
adjustment

3.2.2 The Solver Core Library

As described in the previous subsection, a biochemical kinetic simulation is driven
by solving ODEs. The solver core library includes HDL implementation of basic
rate-law functions was defined in SBML level 1 specification[33]. Each module in
the library consists of some FP arithmetic units and calculates velocity of one or
more reaction mechanisms. Some solvers core can process only specific reaction
models, and others can process some similar reaction models.

Each solver core is an encapsulated, pipelined module to solve the specific rate-
law function, as an example in Fig. 9. The pipeline schedule in the solver core is
statically designed to maximize the effectiveness of pipelining operation.

Solver cores are not only designed manually but can also be generated automat-
ically from equations described in MathML form[34] that can be embedded in an
SBML file.

FPGA-Based HPRC for Bioinformatics Applications 153

A
B

C
E

a
E

b

A

B

C

Ea

Eb

Ea.A

Eb.B

[X] RAM

0

1

2

3

4

5

6

Pathway RAM

0

1

2

3

4

5

6

7

S: A

E: Ea

ES: Ea.A

P: B

S: B

E: Eb

ES: Eb.B

P: C

0

3

5

1

1

4

6

2

R
eactio

n
 P

ath
w

ay

Fig. 10 Pathway description by pathway RAM

3.2.3 Mechanism for Integration and Pathway Mapping

Running a simulation task is not just to calculate velocities of reactions, but to
track concentration changes of molecular species by numerical integration the
velocities. ReCSiP has an external control mechanism around the Solver Core to
enable this. The control mechanism plays two roles in the control mechanism: I/O
stream management of the solver core and numerical integration. A module called
“Integrator” provides these functions in ReCSiP.

The first role is I/O stream management. This is to supply and receive required
datastream. ReCSiP controls solver cores’ input and output by using array of
pointers as shown in Fig. 10. “Pathway RAM” in the figure is the instruction
memory, and others are data memory.

The instruction, each word in Pathway RAM is basically a set of pointers to read
S RAM, k RAM and [X] RAM beside a pointer to write d[X] RAM. By scanning
Pathway RAM serially from address 0, both I/O and memory access of a Solver
Core are handled.

The second role is numerical integration. This operation is also controlled by
Pathway RAM. [X] RAM keeps concentrations of the molecular species, and d[X]
RAM is to accumulate its derivatives in a timestep. Contributions of each reaction
on the concentration change come from the Solver Core are once accumulated in
d[X] RAM, but are not reflected to [X] RAM immediately. This is because there are
some molecular species appeared in two or more reactions like S5, S6, and S7 in the
example pathway in Fig. 14.

When velocities of all reactions are calculated, the derivatives of molecule con-
centrations are integrated on [X] RAM. In the simplest implementation, one iteration
of accumulation in d[X] RAM and integration on [X] RAM ticks one timestep dt in
the simulated pathway as shown in Fig. 11. This simplest implementation is based
on Euler’s method. Methods of higher order can be implemented by adding several
additional memory blocks and more iterations in a timestep [35].

154 Y. Yamaguchi et al.

[X] RAM

S RAM

d[X] RAM

Phase 2: Integration of d[X] onto [X]

Pathway RAM

k RAM

[X] RAM

S RAM

d[X] RAM
Solver
Core

Phase 1: Delivative Accumulation to d[X]

Pathway RAM

k RAM

a

b

Fig. 11 Two-phase of integration mechanism

Since Integrator is isolated from Solver Core, users can choose arbitrary Solver
Core and Integrator to meet their requirement. A module consists of one Integrator
and one Solver Core called “Solver”.

3.2.4 Heterogeneous Model Simulation Framework on ReCSiP

The previous section was about the basic mechanism of biochemical kinetic
simulation for homogeneous model that contains only one reaction mechanism.
Practically speaking, this is not the best method since the mechanism cannot run
simulations containing two or more different reaction mechanisms.

In this section, the framework to enable cooperation of multiple solvers is
presented.

Figure 12 shows the overview of this framework. The target system is described
in SBML, which is generated by modeling tools such as CellDeginer [36]. The
ReCSiP software extracts the list of reactions, molecular species and parameters

FPGA-Based HPRC for Bioinformatics Applications 155

ReCSiP-2 Board

FPGA

S
et

 o
f R

ea
ct

io
ns

R
1

R
2

R
3

R
4

S
1

S
4

S
2

S
2

S
2

S
3

S
5

S
6

S
et

 o
f P

ar
am

et
er

s

T
yp

e
S

ub
st

ra
te

P
ro

du
ct

T
yp

e
C

on
ce

nt
ra

tio
n

S
1

S
2

S
3

S
4

4.
00

e-
3

5.
23

e-
6

1.
91

e-
4

3.
14

e-
8

S
et

 o
f S

ol
ve

rs

F
P

G
A

 C
on

fig
ur

at
io

n

P
re

-D
ef

in
ed

 S
et

 o
f S

ol
ve

rs

F
P

G
A

 C
on

fig
ur

at
io

n

S
B

M
L

T
ar

ge
t P

at
hw

ay

P
la

ce
 &

 S
ch

ed
u

le
(R

eC
S

iP
 S

of
tw

ar
e)

H
D

L
 G

en
er

at
io

n
(R

eC
S

iP
 S

of
tw

ar
e)

S
ol

ve
r

Li
br

ar
y

H
D

L

C
A

D
 T

o
o

ls

F
ig

.1
2

O
ve

rv
ie

w
of

th
e

fr
am

ew
or

k

156 Y. Yamaguchi et al.

<model name="sample_model">
<listOfCompartments>

<compartment name="cell"/>
</listOfCompartments>
<listOfSpecies>

<specie name="S" initialAmount="0.3" compartment="cell"/>
<specie name="P" initialAmount="0" compartment="cell"/>

</listOfSpecies>
<listOfReactions>

<reaction name="Reaction1" reversible="false">
<listOfReactants>

<specieReference specie="S" />
</listOfReactants>
<listOfProducts>

<specieReference specie="P" />
</listOfProducts>
<kineticLaw formula="uui(S,P,km)">

<listOfParameters>
 <parameter name="km" value="0.1" />

</listOfParameters>
</kineticLaw>

</reaction>
</listOfReactions>

</model>

Fig. 13 An example of SBML description

from SBML, then generates the RTL description of the set of solvers for simulation
and its schedule. Figure 13 shows an example of SBML description, the input format
of ReCSiP.

ReCSiP software extracts the list of reactions from SBML input, then generates
RTL description of a set of solvers that can run simulations of the given reaction
pathway. Generated RTL description consists of some solvers and solver-to-solver
communication switches. The set of solver must contain the minimal set of the
solvers which cover the given list of reactions. If some extra space is available
after the minimum set is generated, the solvers which have excessive load will be
duplicated to reduce simulation time.

However, it’s not a good idea to generate optimal circuit for each model, because
CAD tools to perform synthesis, placement and routing are very time consuming.
To minimize CAD runtime, ReCSiP software saves all generated FPGA configura-
tion bitstreams. When a simulation model is given, the saved bitstreams are scanned,
and one of the bitstreams will be used if one that is compatible with the given model
is found. In this case, ReCSiP software doesn’t launch CAD tools to eliminate the
runtime.

Then, the software generates the contents of the memory blocks (Pathway, [X], k
and S RAM) in the solver set that has been generated in the previous step.

FPGA-Based HPRC for Bioinformatics Applications 157

Copy

Copy

[X] RAM[X] RAM

d[X] RAM d[X] RAM

Solver A Solver B

S1 S2 S5 S8

S9

S3 S4

S6 S7S6 S7

S1 S2 S5 S8

S9

Core A Core B

a b

S6 S7

S3 S4

S6 S7S6 S7

Memory Mapping for the Example

S1 S2 S3 S4

R1 R2 R3

S5 S6 S7

R4 R5

S8 S9

An Example of Reaction Pathway

Sm

Sn

Ri

Rj

Molecular Species
(Related to only 1 reaction type)

Molecular Species
(Related to 2 reaction types)

Reaction type A

Reaction type B

Sx Sy

Sz

Molecular Species at "Home"

"Copied" Molecular Species

Fig. 14 An example pathway and its mapping on the solvers

This step is divided into two stages. First, the software determines the place-
ment of reactions and molecular species on the solver set, as shown in Fig. 14.
Each molecular species is assigned to one of the Solvers, where the master data
of their concentration is stored in the [X] RAM. This assigned Solver is “home”
Solver of the molecular species.

After the placement of molecular species is determined, the reactions and
transfers between the solvers are scheduled by the software. Schedule of solving the
reactions is written on Pathway RAMs on each solvers, and the transfer schedule
is written on Code RAM in the communication switch. Scheduling of reactions
and their data transfers is important, since the solver can’t start its operation until
necessary concentration of molecular species is provided. If a molecular species
is required at some other solver(s) than the home, its concentration has to be
copied before used by the solver, as Fig. 14b shows. The figure also shows that
the derivatives calculated from “copied” concentration have to be sent back to the
home solver to perform integration.

3.2.5 Evaluation of ODE Based Approach

The whole system is written in Verilog-HDL and implemented with Xilinx’s ISE-
6.3i. Software benchmark was performed on FreeBSD 5.3-RELEASE environment,
with gcc-3.4.2.

158 Y. Yamaguchi et al.

0 5000 10000 15000 20000 25000 30000

Number of Slices

10656 14616 15048

15984 21924 22720

304332923221312

4

6

8

N
u

m
b

er
 o

f
S

o
lv

er
s

SwitchSolver ControllersSolver Cores

Fig. 15 Size of solvers and the switch (irreversible Michaelis–Menten)

Table 4 Software/hardware throughput on irreversible Michaelis–Menten

Implementation System
Frequency
(MHz)

Throughput
(Mreaction/s)

Software (gcc-O3, FreeBSD 5.3) Pentium4 3,200 5.75
PentiumM 2,000 6.78

This work (XC2VP70-5FF1517) 4 solvers 119 238
6 solvers 111 333
8 solvers 107 428

3.2.6 Area Overhead of the Communication Mechanism

Figure 15 shows the number of slices occupied by solver cores (Irreversible
Michaelis–Menten), integration modules (Euler), and the switch (4/6/8 port). Up
to eight solvers can be implemented on an FPGA, and overall slice utilization is
30,433 in this case while the switch occupies approximately 1,200 slices. The area
of switch is approximately 4 % of the whole design, a quite reasonable size.

3.2.7 Frequency and Throughput

Table 4 shows the result of throughput evaluation; 8 Irreversible Michaelis–Menten
solvers and switch require 91 % of XC2VP70 in the area and achieved over 60-
fold speedup compared to the Pentium M/Pentium 4 microprocessors. Although
solver configuration in this table is homogeneous, heterogeneous configuration is
also possible. In most cases, the FPGA can operate at 100 MHz+ in heterogeneous
configuration, too.

3.3 Summary of ODE Approach

A biochemical kinetic simulator is designed and implemented on ReCSiP. This sim-
ulation framework can handle heterogeneous models, by using a set of customized

FPGA-Based HPRC for Bioinformatics Applications 159

Fig. 16 Cascading model
(D4S: N = 4)

rate-raw function modules called Solver Cores. Modular approach of the framework
also provides flexibility to choose numerical integration method and scalability to
fit larger FPGAs in the future.

To maximize the throughput of pipelined modules, optimized hardware and
optimally scheduled data streams are put together on the FPGA. ReCSiP achieved
over 60-fold speedup compared to latest Intel’s microprocessors.

The custom Solver Cores, FPGA configuration, and input data are automatically
generated by ReCSiP software, from an SBML description. This software signifi-
cantly contributes to the usability of the framework, because users do not have to
know about the FPGA designs.

3.4 Stochastic Biochemical Simulation

3.4.1 Stochastic Simulation Algorithm

Gillespie proposed a stochastic approach to compute chemically reacting
systems[37]. Stochastic simulation algorithm, abbreviated to SSA, calculates “time-
series” of the model which defines a list of reactions consists of chemical species as
shown in Fig. 16.

Figure 16 is the model which is defined N reactions R j and related M chemical
species Si. The combinatorial numbers of Si represent the state of the models. For
example, a collision of reactants S1 and S2 sets off the reaction R1 which produces
the products S3, according to event probability k1.

Since the Gillespie’s FRM and the Direct Method (DM) had been proposed
[37], several improved versions of SSA were presented such as NRM [38] and
optimized direct method (ODM) [39].

3.4.2 First Reaction Method

The idea of SSA is to obtain the state-change of the model through a repetition of
a process to select a next occurring reaction. The chosen reaction of FRM has the
smallest τ j, predicted time of occurrence among all reactions in the model [37].
Predicted time of occurrence for each reaction R j is obtained by (15) per simulation
cycle.

τ j = ln(1/r)/a j. (15)

160 Y. Yamaguchi et al.

Value r is a uniform random number between 0 and 1. a j is called “a propensity”,
which is a multiple of an event probability k j and a combination number of all the
reactants in R j.

3.4.3 Next Reaction Method

NRM reduced the time complexity from O(N) of FRM to O(log(N)) maintaining
the statistical equivalence by introducing two data structure called indexed priority
queue (IPQ) and Dependency Graph (DG) [38]. NRM is applied to representative
software biochemical simulators such as E-Cell3 [40].

The feature of the previous SSAs, that the number of reactions to be modified
their predicted time is much less than the number of reactions defined in the
simulation model, is utilized by Gibson and Bruck. At the first developing of NRM,
the predicted times τ j for each reaction are stored to a type of heap trees called IPQ
for efficient determination of the smallest value τμ , which always located on the
root node. Next innovation of NRM is DG, a list of reactions to be modified the
predicted time by (16) when a reaction occurs.

τ j,new = a j,old/a j,new(τ j,old − τμ)+ τμ . (16)

For instance, DG(R1) in Fig. 16 is given as (17). As the number of reactions listed
in DG is much less than the whole number of reactions in the model, the ascendant
factor determining time complexity becomes maintaining the order of IPQ rather
than the number of reaction to recalculate the predicted time.

DG(R1) = {R2,R3,RN}. (17)

3.4.4 Related Works

Several challenges have been made to design a stohastic biochemical simulator on
FPGA since 2004. Keane et al. and Salwinski et al. both successfully achieved
approximately 20 times speedup compared to microprocessors [41, 42]. However,
both of their works are based on approximated stochastic algorithms, and calculation
steps were also simplified. For example, they convert floating-point into integer
values to perform high speed computation.

3.4.5 The FRM Implementation on an FPGA

We have been implementing and evaluating several SSA on FPGAs since 2004
[43–46]. In 2006, a circuit to compute FRM was designed with two simulation
threads that time-shares one single-precision floating point computational unit
calculating (15) and obtaining the smallest τ j. Pipeline of the computational unit
can receive consecutive input data to achieve high throughput [45]. And without

FPGA-Based HPRC for Bioinformatics Applications 161

Fig. 17 Drop-off of the throughput versus model size

using approximated stochastic algorithm, this implementation achieved more than
80 times speedup compared to execution on Xeon 2.80 GHz by running six threads
in parallel to simulate a model defined 1,000 reactions (N = 1,000).

For more detail, execution programs of FRM and NRM were written in C++,
and their throughput versus model size was evaluated with the cascading model
of Fig. 16. The results are shown in Fig. 17, together with the FPGA execution
result of FRM. According to these results, throughput degradation of the FPGA
implementation of FRM is more prominent than NRM execution on Xeon as the
model size increases. Advantage of the two turns back at a point of N = 425, and
NRM move out ahead by approximately three times at N = 1,000. This implies
that calculation cost of FRM on an FPGA is purely disadvantageous compared with
NRM on microprocessors, considering that NRM is proved to produce equivalent
results with FRM.

3.4.6 Design Concept of NRM on FPGA

The hardware modules of SSA is expected not to perform any approximation or
simplification of the original algorithm, even the computation is executed on FPGA.
Therefore the strategy to design hardware to compute NRM is by high-throughput
computation with multi-thread execution instead of some large floating-point
arithmetic modules such as logarithmic unit which needs long computational cycle.

NRM procedures can be divided into two groups; commonly utilized computing
sequences of NRM such as (15) and (16), and arrays to store variables and
intermediate simulation data which should be prepared for each simulation thread.
The former is called as “Thread Share Units (TSUs)” and the latter is called as
“Thread Private Unit (TPU),” respectively.

162 Y. Yamaguchi et al.

DGTB UPDT TCALPROCREAT TMOD

TPU1 TPU2

Interconnection Network
(T+7 port I/O)

TPUT

Communicate with host-PC,
Set initial values, and Output result

TSUsFig. 18 Connection diagram

The algorithm involves a repetition of value update in a TPU after many
data transfer among TSUs. Thus, low utility rates of TPUs, long floating-point
operations, and ineffective restructure of tree-structured memories may degrade
performance. Consequently, the proposed design connects several TPUs to TSUs
by some interconnection network as shown in Fig. 18.

3.4.7 Implementation

Each module in the NRM circuit was written in Verilog-HDL, and synthesis,
placement, and routing were done by Xilinx’s ISE8.2i. Target device of the design
is Virtex-4 (XC4VLX100-10FF1148), which is currently a middle-range FPGA.
A single-precision floating-point arithmetic unit utilizes an IP core called Xilinx’s
LogiCORE floating-point. 32-bit×1,024 words BlockRAMs on the Virtex-4 were
used as storage for variables in each unit. FIFOs are also implemented with
32-bit×512 words BlockRAMs. The maximum number of biochemical reactions
supported in this implementation is 1,023, which is sufficient for the existing
stochastic models.

3.4.8 Interconnection Network

To provide a capability to flexibly connect various numbers of TPU and TSUs, the
I/O of each module must have a common interface. Figure 19 illustrates a prototype
design and protocols of a common interface for TPUs, TSUs, and routers within the
interconnection network.

Figure 20 shows an example of the router structure when the number of I/O
ports P is 4. The router module has output buffers implemented with P FIFOs, and
output FIFO controllers send packets. A P×P crossbar arbitrates the order to send
packets to the target output buffers, based on the predefined priority of the input.
Data transfer adopts source routing protocol, and forwarding information in header
flit is referred for the routing. Each TPU transfers data packets to each TSU via the
network which consists of these routers.

FPGA-Based HPRC for Bioinformatics Applications 163

I_REQ
I_ACK

DIN

O_REQ
O_ACK

DOUT

CLK

32

32

Header Body

Receive

Send

Fig. 19 Signaling sequence

D
O

U
T

D
IN

R
E

E
M

P

O
_A

C
K

O
_R

E
Q

I_
R

E
Q

I_
A

C
K

D
O

U
T

R
E

E
M

P

Output FIFO
32bits x 512words

O
ut

pu
t F

IF
O

32
bi

ts
 x

 5
12

w
or

ds
O

utput F
IF

O
32bits x 512w

ords

Output FIFO
Controller

O
ut

pu
t F

IF
O

C
on

tr
ol

le
r

O
utput F

IF
O

C
ontroller

O_REQ DOUT

RE

EMP

I_REQ

I_ACK

Output FIFO
Controller

O_REQO_ACKDOUT

EMP
RE

Output FIFO
32bits x 512words

DIN

I_REQ
I_ACK DIN

I_A
C

K I_R
E

Q

O
_R

E
Q

O
_A

C
K

D
IN

WE

WE

W
E

W
E 4 x 4

Crossbar

forwarding information
shifter

O_ACK

Fig. 20 An example of the router structure

3.4.9 Thread Private Unit

A TPU owns a data set about a status of one thread. A TPU has three arrays in
BlockRAMs, as shown in Fig. 21. It also has a packet controller to communicate
with each TSU based on the algorithm of NRM.

As shown in Fig. 21, the sequences of sending packets are the repetition of
reading data from arrays in TPU and sending operations to TSUs. Figure 22 shows
the dependency of each operation. The calculation of a reaction cycle begins from

164 Y. Yamaguchi et al.

Input FIFO
Controller

WE

I_REQ DIN

RE

Packet
Controller

IEST

WE

Output FIFO
Controller

O_REQ DOUT

RE

EMP

EMP

Input FIFO
32bits x 512words

Propensity
Table

Indexed Priority Queue

DIN
DOUTADDR

WE OPERATIONDIN
DOUTADDR

WE

Species
Table

DIN
DOUTADDR

WE

+

Thread Private Unit

Output FIFO
32bits x 512words

I_ACK O_ACK

Fig. 21 Thread private unit (TPU)

START

DGTB
UPDT

TMOD TCAL

END

PROC/B PROC/S

REAT/B REAT/S

OUTPUT

Fig. 22 Dependency per reaction cycle

FPGA-Based HPRC for Bioinformatics Applications 165

Output FIFO Controller

O_REQ O_ACK DOUTI_REQ I_ACK DIN

Input Controller

RERE

anew

τj,oldaold

FSUB

FDIV

τμ
FMUL

FADD
Shift register

WEWE

END

Output Address FIFO
32bits x 512words

Output Data FIFO
32bits x 512words

Fig. 23 An example of a TSU: TMOD

Table 5 Resource utilization and operating frequency of TPU and TSU

TSU

TPU REAT TCAL PRPC UPDT DGTB TMOD

Slices 1,270 226 4,084 1,055 234 219 1,885
BRAMs 10 3 8 4 6 5 2
Mult. 0 0 13 8 0 0 4
Latency – 1 21 11 2 2 27
Freq. [MHz] 113.234 157.324 130.733 123.362 165.696 161.409 127.585

a “START” node in Fig. 22, and the packet controller sends three packets to the
next pointed nodes: DGTB, UPDT, and REAT/S. In the same figure, /S and /B
packets are sent to the same TSU, but the number of their operation is different. The
calculation of a simulation cycle ends when both TCAL and TMOD are completed.

3.4.10 Thread Share Unit

Each TSU calculates its own operation based on the received packet and sends back
the result to the TPU. TMODmodule as a typical example of TSU is shown in Fig. 23.
The flits following the header flit are stored into the output address FIFO, as the
header flit of the packet for return to the TPU. The result of arithmetic is stored into
the output data FIFO. Each TSU is pipelined and can receive packet continuously
and calculate its operation in fixed clock cycles.

Table 5 shows a rough estimation of the area and operating frequency of each
unit. The area of TCAL in TSU is large, because it owns a logarithmic arithmetic unit
that calculates (15). Random numbers required in the same equation are generated
with M-sequence random number generator, and logarithmic values are obtained
with second order interpolation. PRPC and TMOD are calculation units to obtain

166 Y. Yamaguchi et al.

TPU 0 TPU (T-1)

Host PC

FU 1 x 6 Crossbar
forwarding information

shifter

TMODOutput FIFO
Controller

Output FIFO
32bits x 512words

DOUT

DIN

T+2-ports
Router

PROC

UPDT

TCAL

REAT

DGTB

TPU 2TPU 1

Fig. 24 Type AT : star structure

propensity a j and τ j modified with (16), respectively. DGTB are tables for storing
constant values: species IDs of reactants in each reaction, state update vectors, and
a dependency graph.

3.4.11 Evaluation

This section evaluates three types of network structures for NRM circuit implemen-
tation.

Type AT (Star structure): Type AT circuit (Fig. 24) has T TPUs which are
connected to TSUs only by one router with T + 2 ports. A group of TSUs is called
a Functional Unit (FU), and it owns a 1× 6 crossbar and a FIFO for output port.

Type B (Tree structure): This adopts a tree structure with 16 TPUs (Fig. 25).
White round rectangles in Figs. 25 and 26 indicate the router, and numbers represent
its number of ports. Dotted squares denote TPUs, and dark shaded squares represent
FUs or TPUs.

Type C (Fat-Tree structure): In Type AT and B, many packets are concentrated
on the gateway of FU. Therefore, Type C distributes TSUs in a circuit with more
routers compared to the previous types (Fig. 26). Four REATs and four PROCs are
shared by four TPUs. Each TSU accesses these units two times per simulation cycle.
Only one set of TMOD and TCAL are placed in the circuit, because their access rate

FPGA-Based HPRC for Bioinformatics Applications 167

Host-PC

FU
5

5

5

6

0 1

2 3

4 5

6 7

8 9

10 11 15

5
12 13

14

Fig. 25 Type B: cascading
structure

4

4

4

4

6

6

6

PROC

4

4

4

4

6

6

6

PROCREAT

REAT

Host-PC

5

TCAL

5

5

UPDT

6 6

6

6

4

4

4

4

PROC REAT

REAT

PROC

6

6

4

4

4

4
6

DGTB

0

1

2

3

4

5

6

7

9

10

11

12

13

15

14

TMOD

8

Fig. 26 Type C: network
structure

is low in spite of their large area consumption. This topology is a composite structure
of tree networks and can be categorized as a fat tree network.

3.4.12 Area and Operation Frequency Evaluation

Performance of the area and the operating frequency of Type AT was evaluated with
different numbers of TPU for the router and the whole NRM circuit implemented.
The results are shown in Fig. 27. Increase of the area of TPU is proportional to
the numbers of TPU, whereas the interconnection network between TPUs and FU
is larger than other components. This means that the router requires large resources
according to its numbers of port. Similarly, the maximum operating frequency of the
circuit degrades according to number of TPUs. There is a longer delay for arbitration
and transition due to their complex operations. From Fig. 27, in case when T ≥ 4,
critical path of Type AT would be due to the router.

168 Y. Yamaguchi et al.

Fig. 27 Evaluation of type AT

Fig. 28 Evaluations of type A16, B and C

Considering the resources of the target FPGA, 16 TPUs can be configured when
implementing the Type A16. Numbers of TPU of Type B and Type C will also be
fixed to 16 according to this result.

Figure 28 shows the area and the maximum operating frequency of Type A16,
Type B, and Type C. Type B suppresses the area of the interconnection networks by
49% compared to Type A16. Additionally, maximum operation frequency of Type B
is also improved. Three additional modules of REATs and three PROCs were added
in the TPU of Type C, so its area is larger than the other types. Type C exceeds the
area capability of the target FPGA(XC4VLX100), as the area of interconnect is 3.5
times larger than Type A16. Figure 28 shows a maximum capacity of the largest
FPGA device(XC4VLX200: 89,088 slices) in Virtex-4 series.

FPGA-Based HPRC for Bioinformatics Applications 169

4 8 16 32 64 128 256 512 1020

TypeA1 129.034 129.254 129.086 129.351 129.874 131.165 132.852 135.344 135.686

TypeA16 787.412 786.294 785.028 787.311 786.273 786.410 789.543 787.417 789.289

TypeB 786.322 786.224 787.476 787.410 786.693 785.332 787.476 785.874 786.191

TypeC 192.053 191.650 192.125 192.125 192.317 192.000 191.998 192.019 191.888

0

100

200

300

400

500

600

700

800

900

C
lo

ck
 c

yc
le

s
to

 c
al

cu
la

te
re

ac
ti

o
n

 c
yc

le

Model Size

Fig. 29 Clock cycles per simulation cycle

3.4.13 Performance Evaluation

Stochastic biochemical models defined as N/4 sets of Lotka reactions [37] are used
for the performance evaluation. In this section, we evaluated the throughput of each
circuit type by the various model size according to the average clock cycles to
calculate a simulation cycle and its operating frequency.

Average clock cycles to calculate a simulation cycle in Type A1, Type A16, Type
B, and Type C are shown in Fig. 29. As Type A1 has a very simple network structure
which has only a TPU, there is no jam with other TPUs in packet flow. According
to Fig. 29, model size has small effect on the calculation time of a simulation
cycle. TPU has an IPQ, which has a memory of binary tree structure, calculation
time varies due to the number of rebuilding IPQ. Therefore, tree depth elongates
calculation cycles, but it is within 5% of whole clock cycles for a simulation cycle.
However, Type A16 and Type B requires much longer time compared to Type A1,
because six types of TSU are assembled into an FU which has only one I/O port.
Packets are concentrated to the I/O port of the FU, which is a bottleneck to calculate
a simulation cycle.

These performances are compared with a general-purpose processor. The pro-
gram was written in C++, compiled with gcc-3.4.6 (-O3) on Linux 2.6.18, and
executed on Xeon 3.20 GHz with 6.0 GB RAM. Even the program is run on a single
thread, several techniques to increase the computational speed are introduced such
as allocating tree structure on an array and address list of reactions which points the
location on the tree.

Figure 30 shows throughput of RTL simulations with different model sizes
between N = 4 and N = 1,020 of Lotka model. SW shows execution on general-
purpose processor. Its throughput was calculated by a number of simulation cycles
per second, which is approximately the execution time of 106 simulation cycles.

170 Y. Yamaguchi et al.

Fig. 30 Throughput

Fig. 31 Throughput gain

Throughput of FPGA was estimated by operating frequency in Fig. 27 or Fig. 28
divided by a number of clock cycles per simulation cycle in Fig. 29.

As shown in Fig. 30, throughput of SW degrades according to the model size
due to the algorithmic property of NRM, whereas circuit on the FPGA maintains its
throughput.

Figure 31 shows a throughput gain compared with the SW execution on Xeon
3.20 GHz. This indicates the advantage of Type C, which maintains high throughput
even when model size increases. Although the throughput improvement on a chip
is not so remarkable, use of FPGA for stochastic biochemical simulation may be
advantageous for performance per watt, because of operating frequency is much
lower than microprocessor dozens of times.

FPGA-Based HPRC for Bioinformatics Applications 171

3.4.14 Discussion: For More Improvement

These evaluation results indicate several future approaches to improve performance.
First, area of the current router consumes the vast majority of the whole circuit,
for each router has large number of ports, and uses a BlockRAM. The router
architecture can be minimized by using several distributed RAMs instead of using
BlockRAMs. It is also worth considering interconnection networks that consist
of routers with fewer ports. By saving the resource utilization of the Meanwhile,
unnecessary transfer delay between the units may be prevented by utilizing small-
port routers as repeater buffers. Although current throughput gain is 3.6 times higher
than SW execution on Xeon 3.20 GHz at most, further enhancements on resource
utilization of the interconnection network may bring out better performance, so that
higher performance can be obtained even with lower-ranged FPGA chips.

3.5 Summary of Stochastic Approach

This section introduced a framework for designing and implementing a circuit
on the FPGA that accelerates the execution of the NRM, one of the most recent
stochastic biochemical simulation algorithms. By utilizing the on-chip interconnec-
tion network structure of the proposed circuit, calculation units can run multi-thread
process for each independent simulation data of multiple data units. In this work,
various types of network were configured depending on the capacity of target FPGA
devices, and each performance was evaluated. Although the circuit achieved 3.6
times higher throughput on a high-end FPGA compared to that on Xeon 3.20 GHz
at most, the area evaluation results indicated possibilities to improve throughput by
reducing the area ratio of the interconnection network.

4 Conclusion

This chapter introduced three major examples in the field of bioinformatics. In
recent years, various algorithms and methods, whether new or old, have been recon-
sidered since bioinformatics is broadening the field of applications. Furthermore, in
order to ensure the smooth handling of huge biological databases and large-scale
simulations, it is essential to utilize cluster computing technologies as accelerating
them. Over the past 10 years, some studies have been done on FPGA cluster sys-
tems in bioinformatics [47–50]. These research achievements have also developed
some new technical products. For example, DeCypher [51] is a famous parallel
computing system designed to analyze genome databases from the early days
of the FPGA acceleration history. It accelerates BLAST, Hidden Markov Model
(HMM), and the Smith-Waterman algorithm. GeneMatcher2 [52] is another FPGA-
based custom computer for HMM, the Smith-Waterman algorithm, and GeneWise.

172 Y. Yamaguchi et al.

HC-2 system [53] is applied not only in bioinformatics but also in the wide range of
areas and it was the 44th place on the Graph500 list in 2012. Pico Computing [54]
and SciEngines [55] are known as FPGA companies whose products are applied
to dynamic programming algorithms. As stated above, FPGAs have long been
contributed in the acceleration of bioinformatics application systems; however, we
are now facing a new difficulty to build such a complicated heterogeneous cluster.
Here, MaxCompiler [56] proposes one of the solutions. Its proposed system allows
programmers to describe their target applications in a high-level language. The
question now arises: how do we manage a number of bioinformatics applications
as drawn up by Fig. 1 even if we can develop an independent application easily?
Here, we may expand the application reconfigurability into user groups. Each group
is expert in the field of one or a few biological disciplines and it means no one is able
to put the whole picture together. Thus, Novo-G project which is composed of 11
academic groups is one reasonable approach. Novo-G system is a powerful cluster
with 192 FPGAs and all team can use the system. This will be a valid method if there
is a comprehensive framework which aims to integrate the computational results to
one goal, such as system biology.

References

1. T.P. Niedringhaus, D. Milanova, M.B. Kerby, M.P. Snyder, A.E. Barron, Landscape of next-
generation sequencing technologies. Anal. Chem. 83(12), 4327–4341 (2011)

2. T. Toyoda, A. Wada, Omic space: coordinate-based integration and analysis of genomic
phenomic interactions. Bioinformatics 20(11), 1759–1765 (2004)

3. J. Lederberg, A.T. McCray, ’Ome sweet ’omics – a genealogical treasury of words. Scientist
15(7), 8 (2001)

4. M.O. Dayhoff, R.M. Schwartz, B.C. Orcutt, A Model of Evolutionary Change in Proteins, in
Atlas of protein sequence structure, Natl. Biomedical Research, 5(3), 345–352 (1978)

5. S.F. Altschul, Amino acid substitution matrices from an information theoretic perspective.
J. Mol. Biol. 219(3), 555–565 (1991)

6. S. Whelan, N. Goldman, A general empirical model of protein evolution derived from multiple
protein families using a maximum-likelihood approach. J. Mol. Biol. Evol. 18, 691–699 (2001)

7. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic Local Alignment Search
Tool. Mol. Biol. 215(3), 403–410 (1990)

8. W.R. Pearson, Comparison of methods for searching protein sequence databases. Profein Sci.
4(6), 1145–1160 (1995)

9. E.G. Shpaer, M. Robinson, D. Yee, J.D. Candlin, R. Mines, T. Hunkapiller, Sensitivity and
selectivity in protein similarity searches: a comparison of Smith-Waterman in hardware to
BLAST and FASTA. Genomics 38, 179–191 (1996)

10. S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

11. T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195–197 (1981)

12. T.V. Court, M.C. Herbordt, Families of FPGA-based accelerators for approximate string
matching. Microprocess. Microsyst. 31, 135–145 (2007)

13. T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfigurable architectures for bio-sequence database
scanning on fpgas. IEEE Trans. Circ. Syst. II 52(12), 851–855 (2005)

FPGA-Based HPRC for Bioinformatics Applications 173

14. P. Zhang, G. Tan, G.R. Gao, Implementation of the Smith-Waterman algorithm on a re-
configurable supercomputing platform, in Proceedings of the 1st International Workshop
on High-Performance Reconfigurable Computing Technology and Applications: Held in
Conjunction with SC07 (ACM, New York, 2007), pp. 39–48

15. K. Benkrid, Y. Liu, A. Benkrid, A highly parameterised and efficient FPGA-based skeleton
for pairwise biological sequence alignment. IEEE Trans. Very Large Scale Integr. (VLSI Syst.)
17(4), 561–570 (2009)

16. S. Lloyd, Q.O. Snell, Hardware accelerated sequence alignment with traceback. Int. J.
Reconfigurable Comput. Article ID 762362, 1–10 (2009)

17. M.N. Isa, K. Benkrid, T. Clayton, C. Ling, A.T. Erdogan, An FPGA-based parameterised
and scalable optimal solutions for pairwise biological sequence analysis, in Proceedings of
2011 NASA/ESA Conference on Adaptive Hardware and Systems (IEEE, Piscataway, 2011),
pp. 344–351

18. L. Ligowski, W.R. Rudnicki, An efficient implementation of Smith Waterman algorithm on
GPU using CUDA, for massively parallel scanning of sequence databases, in Proceedings
of Eighth International Workshop on High Performance Computational Biology: Held in
Conjunction with 2009 IEEE International Symposium on Parallel & Distributed Processing
(IEEE, 2009), pp. 1–8

19. Y. Liu, D.L. Maskell, B. Schmidt, CUDASW++: optimizing smith-waterman sequence
database searches for CUDA-enabled graphics processing units. BMC Res. Notes 2(1), 73–82
(2009)

20. L. Ligowski, W.R. Rudnicki, GPU-SW Sequence Alignment server, in International Con-
ference on Computational Science 2010 (2010), pp. 1–10, http://gpucomputing.net/?q=node/
3149. Accessed February 2011

21. K. Dohi, K. Benkrid, K.C. Ling, T. Hamada, Y. Shibata, Highly efficient mapping of the
Smith-Waterman algorithm on CUDA-compatible GPUs, in Proceedings of the 21st IEEE
International Conference on Application-Specific Systems Architectures and Processors (IEEE,
2010), pp. 29-36

22. M. Aldinucci, M. Danelutto, M. Meneghin, P. Kilpatrick, M. Torquati, Efficient streaming
applications on multi-core with FastFlow: the biosequence alignment test-bed, in Proceedings
of Parallel Computing: from Multicores and GPU’s to Petascale (IOS Press, Amsterdam,
2009), pp. 273–280

23. O. Gotoh, An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3),
705–708 (1982)

24. A.C. Jacob, J.D. Buhler, R.D. Chamberlain, Design of throughput-optimized arrays from
recurrence abstractions, in Proceedings of the 21st IEEE International Conference on
Application-Specific Systems Architectures and Processors (IEEE, 2010), pp. 133–140

25. Y. Yamaguchi, H. Tsoi, W. Luk, FPGA-based Smith-Waterman algorithm: analysis and novel
design, in Proceedings of the 7th International Conference on Reconfigurable Computing:
Architectures, Tools and Applications (Springer, Berlin, 2011), pp. 181–192

26. S.A. Manavski, G. Valle, CUDA compatible GPU cards as efficient hardware accelerators for
smith-waterman sequence alignment. BMC Bioinformatics 9(suppl 2), S10 (2008)

27. B.A. Barshop et al., Analysis of numerical methods for computer simulation of kinetic
processes: development of kinsim — a flexible, portable system. Anal. Biochem. 130, 134–145
(1983)

28. M. Pedro, Gepasi: a software package for modelling the dynamics, steady states and control of
biochemical and other systems. Comput. Appl. Biosci. 9(5), 563–571 (1993)

29. I. Goryanin et al., Mathematical simulation and analysis of cellular metabolism and regulation.
Bioinformatics 15(9), 749–758 (1999)

30. M. Tomita et al., E-cell: software environment for whole-cell simulation. Bioinformatics 15(1),
72–84 (1999)

31. I.I. Moraru, J.C. Schaff, B.M. Slepchenko, L.M. Loew, The virtual cell: an integrated modeling
environment for experimental and computational cell biology. Ann. N Y Acad. Sci. 971,
595–596 (2002)

http://gpucomputing.net/?q=node/3149
http://gpucomputing.net/?q=node/3149

174 Y. Yamaguchi et al.

32. M. Hucka, A. Finney, B.J. Bornstein, S.M. Keating, B.E. Shapiro, J. Matthews, B.L. Kovitz,
M.J. Schilstra, A. Funahashi, J.C. Doyle, H. Kitano, Evolving a lingua franca and associated
software infrastructure for computational systems biology: the systems biology markup
language (SBML) project. IEE Syst. Biol. 1(1), 41–53 (2004)

33. M. Hucka, A. Finney, H. Sauro, H. Bolouri, in Systems Biology Markup Language (SBML)
Level 1: Structures and Facilities for Basic Model Definitions. Systems Biology Workbench
Development Group, ERATO Kitano Symbiotic Systems Project, version 2nd edn. (California
Institute of Technology, Pasadena, 2003)

34. H. Yamada, Y. Ogawa, T. Ooya, T. Ishimori, Y. Osana, M. Yoshimi, Y. Nishikawa,
A. Funahashi, N. Hiroi, H. Amano, Y. Shibata, K. Oguri, Automatic pipeline construction
focused on similarity of rate law functions for an FPGA-based biochemical simulator. IPSJ
Trans. Syst. LSI Des. Methodol. 3, 244–256 (2010)

35. Y. Osana, M. Yoshimi, Y. Iwaoka, T. Kojima, Y. Nishikawa, A. Funahashi, N. Hiroi,
Y. Shibata, N. Iwanaga, H. Kitano, H. Amano, An FPGA-based biochemical simulator recsip
(to appear/english translation of Osana et al. on trans. IEICE j89-d). Syst. Comput. Jpn.
J89-D(6), 1163–1172 (2007)

36. A. Funahashi, N. Tanimura, M. Morohashi, H. Kitano, Celldesigner: a process diagram editor
for gene-regulatory and biochemical networks. BIOSILICO 1(5), 159–162 (2003)

37. D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

38. M.A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many
species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

39. Y. Cao et al., Efficient formulation of the stochastic simulation algorithm for chemically
reacting systems. J. Chem. Phys. 121(9), 4059–4067 (2004)

40. K. Takahashi et al., A multi-algorithm, multi-timescale method for cell simulation. Bioinfor-
matics 20(4), 538–546 (2004)

41. J.F. Keane, C. Bradley, C. Ebeling, A compiled accelerator for biological cell signaling
simulations, in Proceedings of the 2004 ACM/SIGDA 12th International Symposium on FPGA
(ACM, New York, 2004), pp. 233–241

42. L. Salwinski et al., In silico simulation of biological network dynamics. Nat. Biotechnol. 22(8),
1017–1019 (2004)

43. M. Yoshimi, Y. Osana, T. Fukushima, H. Amano, Stochastic simulation for biochemical
reactions on FPGA, in Proceedings of the 14th IEEE International Conference on FPL
(Springer, Berlin, 2004), pp. 105–114

44. M. Yoshimi, Y. Osana, Y. Iwaoka, A. Funahashi, N. Hiroi, Y. Shibata, N. Iwanaga, H. Kitano,
H. Amano, The design of scalable stochastic biochemical simulator on FPGA, in Proceedings
of the 15th IEEE Field Programmable Technology (IEEE, 2006), pp. 339–340

45. M. Yoshimi, Y. Osana, Y. Iwaoka, Y. Nishikawa, T. Kojima, A. Funahashi, N. Hiroi, Y. Shibata,
N. Iwanaga, H. Kitano, H. Amano, An FPGA implementation of high throughput stochastic
simulator for large-scale biochemical systems, in Proceedings of the 16th IEEE International
Conference on Field Programmable Logic and Applications (IEEE, 2006), pp. 227–232

46. M. Yoshimi, Y. Iwaoka, Y. Nishikawa, T. Kojima, Y. Osana, A. Funahashi, N. Hiroi, Y.
Shibata, N. Iwanaga, H. Yamada, H. Kitano, H. Amano, FPGA implementation of a data-
driven stochastic biochemical simulator with the next reaction method, in Proceedings of the
17th IEEE International Conference on Field Programmable Logic and Applications (IEEE,
2007), pp. 254–259

47. B. Schmidt, H. Schroder, M. Schimmler, Massively parallel solutions for molecular sequence
analysis, in Proceedings of the 1st International Workshop on High Performance Computa-
tional Biology: Held in Conjunction with 2002 IEEE International Symposium on Parallel &
Distributed Processing (IEEE, 2002), pp. 186–193
B. Schmidt, H. Schroder, M. Schimmler, Massively parallel solutions for molecular sequence
analysis, in Proceedings of the 1st International Workshop on High Performance Computa-
tional Biology: held in conjunction with 2002 IEEE International Symposium on Parallel &
Distributed Processing, IEEE, pp. 186–193 (2002)

FPGA-Based HPRC for Bioinformatics Applications 175

48. K. Regester, J.-H. Byun, A. Mukherjee, A. Ravindran, Implementing bioinformatics algorithms
on nallatech-configurable multi-FPGA systems. Xcell J. Second Quarter, 100–103 (2005)

49. S. Masuno, T. Maruyama, Y. Yamaguchi, A. Konagaya, Multidimensional dynamic program-
ming for homology search on distributed systems, in Proceedings of Euro-Par 2006 Parallel
Processing (Springer, Berlin, 2006), pp. 1127–1137

50. A.G. Schmidt, S. Datta, A.A. Mendon, R. Sass, Investigation into scaling I/O bound streaming
applications productively with an all-FPGA cluster. Parallel Comput. 38, 344–364 (2012)

51. T. Mittler, M. Levy, C. Feller, K. Schlauch, Multblast: a web application for multiple blast
searches. Bioinformation 5, 224–226 (2010). http://www.timelogic.com/

52. M.A. Rieffel, T.G. Gill, W.R. White, Bioinformatics Clusters in Action (Paracel, Inc., Pasadena,
2004) 8 pp., http://www.paracel.com/pdfs/clusters-in-action.pdf

53. Convey to deliver FPGA cluster to virginia bioinformatics institute, HPC wire (2011), http://
conveycomputer.com/. Accessed August 2011

54. FPGA cluster accelerates bioinformatics application by 5000X, Dr. Dobb’s Journal (2009),
http://www.picocomputing.com/. Accessed November 2009

55. Rivyera s3-5000 (white paper, v2.1), SciEngines (2012), http://www.sciengines.com/.
Accessed April 2012

56. Maxcompiler (white paper), Maxeler Technologies (2011), http://www.maxeler.com/.
Accessed February 2011

http://www.timelogic.com/
http://www.paracel.com/pdfs/clusters-in-action.pdf
http://conveycomputer.com/
http://conveycomputer.com/
http://www.picocomputing.com/
http://www.sciengines.com/
http://www.maxeler.com/

High-Performance Computing
for Neuroinformatics Using FPGA

Will X.Y. Li, Rosa H.M. Chan, Wei Zhang, Chiwai Yu, Dong Song,
Theodore W. Berger, and Ray C.C. Cheung

Abstract The brain represents information through the ensemble firing of neurons.
These neural processes are difficult to study in vivo because they are highly
non-linear, dynamical and often time-varying. Hardware systems, such as the
FPGA-based platforms, are very efficient in doing such studies given their in-
trinsic parallelism, reconfigurability and real-time processing capability. We have
successfully used the Xilinx Virtex-6 FPGA devices to prototype the general-
ized Laguerre–Volterra model (GLVM), which is a rigorous and well-functioning
mathematical abstraction for the description of neural processes from a system
input/output relationship standpoint. The hardware system first conducts GLVM
parameters estimation using the neural firing data from experiments; then it is able
to predict the neural firing outputs based on the field estimated model coefficients
and the novel model inputs. The hardware system has been prototyped and is proved
very efficient in this study compared to our previous software model running on the
Intel Core i7-2620M CPU (with Turbo Boost to 3.4 GHz). It achieves up to a 2,662
times speedup in doing GLVM parameters estimation and a 699 times speedup in
conducting neural firing outputs prediction. The calculation results are very precise
with the NMSE being successfully controlled at the 10−11 scale compared to the
software approach. This FPGA-based architecture is also significant to the future
cognitive neural prostheses design.

W.X.Y. Li (�) • R.C.C. Cheung
City University of Hong Kong, Hong Kong
e-mail: xyli@ee.cityu.edu.hk; rcheung@cityu.edu.hk

R.H.M. Chan • W. Zhang • C. Yu
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

D. Song • T.W. Berger
Department of Biomedical Engineering, University of Southern California, Los Angeles, USA

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 6, © Springer Science+Business Media, LLC 2013

177

mailto:xyli@ee.cityu.edu.hk
mailto:rcheung@cityu.edu.hk

178 W.X.Y. Li et al.

1 A Brief Introduction to Cognitive Neuroscience
and Cognitive Neural Prosthesis

As an important branch of neuroscience, cognitive neuroscience, which focuses on
the biological substrates underlying cognition, grew rapidly over the last several
decades. The study of cognitive neuroscience is of multidisciplinary nature, for
it requires knowledge of fields such as neurobiology, bioengineering, philosophy,
and computer science. In this chapter, we explore how modern reconfigurable com-
puting facilities can be effectively applied to the study of cognitive neuroscience,
especially, to the research regarding the important brain functions of learning and
memory.

1.1 The Hippocampus: Hub of Brain Network Communication
for Memory

Learning is the process of the acquisition of enduring information, behavior patterns
or skills through study, experience, or being taught. Memory refers to the capability
of the retention of such information or abilities and the retrieval of them while
being stored [1]. Learning and memory appear as two important aspects of animal
cognition and are highly relevant in their biological basis to an important component
of the brain—the hippocampus. It belongs to the limbic system and is responsible
for the formation of long-term declarative or explicit memories, such as the specific
personal experiences or factual information that can be recollected through later
conscious brain activity. The hippocampus itself is comprised of several different
sub-systems which form a closed feedback loop, as shown in Fig. 1. The flow of
information within the hippocampus is largely unidirectional. Bioelectrical signals
propagate through a series of tightly packed layers of nerve cells. Input signals from
the dentate gyrus (DG) first go to the CA3 layer, and then the CA1 layer, after
that the subiculum, finally out of the hippocampus to the entorhinal cortex (EC).
After this process of signal processing, new interpretation of patterns of information

Sch

CA1

CA3
pp

DG

mf

Fig. 1 The double-C shaped
anatomical structure of the
hippocampus. The arrows
show the way of bioelectrical
signal transmission within the
hippocampal system. DG:
dentate gyrus; CA3: Cornu
Ammonis 3; CA1: Cornu
Ammonis 1

High-Performance Computing for Neuroinformatics Using FPGA 179

are directed to other cortical areas for the purpose of long-term storage. Thus,
hippocampus is not the brain region for storage of long-term declarative memories,
but instead, a hub for the transmission and re-encoding of mnemonic information
through it intrinsic biological circuitry.

Clinical practices reveal that the degeneration or malformation of hippocampal
cells results in different kinds of pathological changes, some are highly related to
the formation of long-term memory [2, 3]. The well-known Alzheimer’s disease
and dementia are in close association with the selective loss of hippocampal cells
during their formation. Besides, symptoms such as the epileptic activity are highly
susceptible to be the outcomes of dysfunction of the hippocampal CA3 region;
while stroke is very possibly to be brought about by the preferential damage to
CA1 pyramidal cells. Even the brain trauma is manifested to be of consequence to
the selective loss of the hilar neurons of the hippocampal system. While medication
can serve as a supplementary means for the treatment of these brain lesions, a more
permanent cure may be the application of artificial substitutions to the pathological
areas within the brain. These substitutions can also be termed neural prosthetic
devices or neural prostheses.

1.2 Neural Prosthesis for Restoring Lost Cognitive Function

Neural prostheses are devices that can substitute modality that might have been
damaged as a result of injury or disease. Based on their specific functions, the neural
prosthetic devices fall into two major categories. Devices belonging to the first
category can be adopted for making a compensation for the lost communications
between the central nervous system (CNS) and the exosomatic environment. There
are two subdivisions of such devices, also based on their functionalities. Devices
such as artificial retina or cochlear implant pertain to the first subdivision, which
works for the transduction of physical energy to bioelectrical simulation of sensory
nerve fibers, bypassing the damaged primary sensory cells [4, 5]. Devices such
as artificial limb belong to the second subdivision, which attempt to decode
the bioelectrical signals coming from the CNS and generate functional electrical
stimulation, thus compensating for the loss of motor control [6–13]. The other main
category of the neural prostheses is developed to restore the lost communication
between two individual brain areas, such as two different sub-regions within the
animal hippocampal system. This kind of prostheses presents special challenges
to the designers due to their dual roles in performing both signal decoding and
encoding. By bridging the brain regions by an artificial, silicon-based means, the
once fractured communication can be well reestablished.

We are now endeavoring to develop a hippocampal CA3 cognitive neural
prosthesis. The prosthesis functions to transform the spatial temporal pattern of CA3
input spike trains to the spatial temporal pattern of CA1 output spike trains. The
spike trains refer to a sequence of all-or-none, point process spiking events, with
variations of intervals among individuals of them. Owing to the fact that underlying
molecular mechanisms and synaptic connections are of highly dynamical and

180 W.X.Y. Li et al.

nonlinear nature [14–20], it is necessary for the hippocampal neural prosthesis,
which mimics the short-term to long-term memory re-encoding process, to work in
good adherence to a well-functioning mathematical model that can be constructed
to represent the very complex brain process.

2 Modeling Techniques for Neural Systems

Mathematical model describing the process of the transmission of neural signals
as they flow through neuronal ensembles can facilitate us to better understand the
underlying mechanisms of the brain. However, this attempt is often hindered by the
intrinsic complexity of these neural processes given their high nonlinearity, dynamic
property, and potential variations contributed by internal and/or external factors.
In order to study these nonlinear time-varying dynamics, various computational
models have been proposed. Some of them have been successfully applied to
describe different parts of the neural systems such as the retina [21–23], the auditory
cortex [24], and the motor systems [25]. These computational models largely fall
into two main categories: parametric models and nonparametric models. The former
aims to investigate mechanism of the underlying biophysical and physiological
processes while the latter seeks to find a solution to the problem by quantifying the
functional interactions among the broad-range mechanisms found in the neurons.
Table 1 draws a brief comparison between the parametric models and nonparametric
models from the perspectives of their theoretical foundation and respective features.

2.1 The Parametric Models

The parametric models, which are also often termed mechanistic models, build their
own structures starting from the mathematical equations delineating the molecular
mechanisms of each neuron. A typical example for the mechanistic models is the
Hodgkin and Huxley model, which is derived from experiments using squid giant
axon and adopts a set of nonlinear ordinary differential equations to describe the
initiation and propagation process of the action potentials (APs) [26]. Notable
ongoing projects based on the mechanistic models include the IBM Blue Brain
Project, which aims to reconstruct the brain piece by piece and build a virtual brain
by reverse-engineering the real one down to the molecular level [27]; the elementary
objects of neural systems (EONS), which provides an integrated synaptic platform
for the study of the interactions between elements within the synapse [28]; and
the Brains in Silicon project by Stanford, which is established to investigate how
cognitive behavior arises from the brain’s physiology such as the mechanism
of the ion-channels [29]. Various simulation tools are also developed, such as
NEURON and MCell [30, 31]. However, since the exact function of the neural
circuit for cognition remains unknown, it would be difficult to verify the model’s
accuracy or generate new insights into how particular neural circuit works or what it

High-Performance Computing for Neuroinformatics Using FPGA 181

T
ab

le
1

C
om

pa
ri

so
n

be
tw

ee
n

th
e

pa
ra

m
et

ri
c

an
d

no
np

ar
am

et
ri

c
m

od
el

s

Pa
ra

m
et

ri
c

m
od

el
s

N
on

pa
ra

m
et

ri
c

m
od

el
s

Fo
rm

of
de

sc
ri

pt
io

n
U

ti
li

zi
ng

th
e

di
ff

er
en

ti
al

eq
ua

ti
on

s
to

de
si

gn
sp

ec
ifi

c
m

ec
ha

ni
sm

s
or

co
m

pa
rt

m
en

ts
U

ti
li

zi
ng

V
ol

te
rr

a
ty

pe
fu

nc
ti

on
al

ex
pa

ns
io

ns

Pr
er

eq
ui

si
te

of
ap

pl
ic

at
io

n
A

pr
io

ri
m

od
el

po
st

ul
at

es
;A

dj
us

tm
en

to
f

un
kn

ow
n

pa
ra

m
et

er
s

in
ea

ch
ap

pl
ic

at
io

n
ca

se
B

ro
ad

-b
an

d
st

im
ul

at
io

n
tr

ai
ns

A
dv

an
ta

ge
s

C
ap

ab
le

of
be

in
g

di
re

ct
ly

bi
op

hy
si

ca
ll

y
an

d
ph

ys
io

lo
gi

ca
ll

y
in

te
rp

re
te

d;
So

m
e

ne
ur

on
al

fu
nc

ti
on

s
su

ch
as

sy
na

pt
ic

tr
an

sm
is

si
on

,d
en

dr
it

ic
in

te
gr

at
io

n
ca

n
be

w
el

ld
es

cr
ib

ed
th

er
eb

y

E
xe

m
pt

io
n

of
m

od
el

sp
ec

ifi
ca

ti
on

;P
os

se
ss

in
g

th
e

pr
ed

ic
tiv

e
ca

pa
bi

li
ti

es
fo

r
ar

bi
tr

ar
y

in
pu

ts
;

G
en

er
al

it
y

fo
r

a
w

il
d

ra
ng

e
of

ap
pl

ic
at

io
ns

D
is

ad
va

nt
ag

es
B

ec
om

in
g

un
tr

ac
ka

bl
e

du
ri

ng
sc

al
in

g
up

du
e

to
th

e
in

cr
ea

si
ng

m
od

el
co

m
pl

ex
it

y
w

it
h

m
or

e
in

pu
ts

U
na

bl
e

to
be

di
re

ct
ly

in
te

rp
re

te
d

by
lo

w
-l

ev
el

sy
st

em
m

ec
ha

ni
sm

s
Sc

op
e

of
ap

pl
ic

at
io

n
Pr

im
ar

il
y

in
di

vi
du

al
ne

ur
on

m
od

el
in

g
(c

an
be

sc
al

ed
up

fo
r

ne
ur

al
en

se
m

bl
es

m
od

el
in

g
w

hi
ch

ta
ke

s
m

uc
h

m
or

e
co

m
pu

ta
ti

on
)

In
di

vi
du

al
ne

ur
on

or
ne

ur
al

en
se

m
bl

es
m

od
el

in
g

182 W.X.Y. Li et al.

does while implementing these mechanistic models. Meanwhile, there are actually
too many mechanisms underlying neural systems to be modeled parametrically.
The effects of these mechanisms vary with ion channel densities, distributions
in dendrites, and many other parameters. Given billions of inputs and outputs, a
detailed but incomplete mechanistic model of the nervous system would still require
supercomputing facilities.

2.2 The Nonparametric Models

The nonparametric models are also called data-driven models, which use engi-
neering modeling techniques such as network analysis, information theory, and
statistical methods to investigate or describe the behavior of biological neuron or
neural networks. The data-driven models provide less biological information than
the mechanistic models do, but reduce potential errors in the postulation of model
structures required in the mechanistic modeling approach. Several approaches can
be adopted when using the data-driven models to decode the neural firing signals.
One simple example is the linear decoder, which postulates that the decoded
neural firing rate is the linear combination of the neural activity which has been
recorded. It uses linear least squares to fit the statistical model to data and the
quality of decoding can be evaluated by calculating the root mean square errors
[32]. Another common model estimation method is maximum likelihood, which is
also convenient for assessment of model goodness-of-fit and for construction of the
confidence intervals [33, 34]. Various versions of Kalman filter, which uses a series
of measurements observed over time and produces a statistically optimal estimate,
were also used to estimate model coefficients in a number of motor prosthesis
projects [35]. In the next section, we will focus our discussion on using functional
power series as an efficient way to describe the nonlinear input–output properties of
neural circuits.

2.3 Theoretical Background of Our Model

The modeling algorithm we use in this work belongs to the category of nonparamet-
ric approaches.

Previous studies carried by Volterra [36], Wiener [37], and Marmarelis [38, 39]
and other researchers have demonstrated that for any nonlinear and time-invariant
system with finite memory length, the system output can be represented as a
functional power series of the system input. For the single-input, single-output,
discrete-time case, the input–output relationship can be expressed as:

y(t) = k0 +
M

∑
τ=0

k1(τ)x(t − τ)+
M

∑
τ1=0

M

∑
τ2=0

k2(τ1,τ2)x(t − τ1)x(t − τ2)+ · · · (1)

High-Performance Computing for Neuroinformatics Using FPGA 183

In the above equation, the system dynamics is revealed through the temporal
convolution between system input and the kernel functions k; while the system
nonlinearity is suggested by multiple convolutions between the input and the higher
order kernel functions. Theoretically, if the orders of the kernels employed are high
enough, then arbitrary nonlinearities can be represented. For performing animals
trained to achieve an asymptotic behavior, their brain activity can be viewed as in
nonlinear and time-invariant pattern.

Our model can be extended to time-varying neural systems using similar model
structure. In that case, the system input–output transfer function should be updated
following a learning rule. And this learning rule can be eventually substantiated by
conducting mathematical analysis. Thereby, the system parameters can be optimized
and the changes/variances of the input–output transfer function can be replicated in
neural decoding for generation of the stimuli.

3 Modeling the Brain Activity Using Mathematics

The neural model we use in our work is the generalized Laguerre–Volterra model
(GLVM), which was developed earlier in our group by Song et al. and is a
mathematical model for description of the highly complicated neural processes from
a system input/output relationship standpoint [40–42]. The GLVM belongs to the
category of nonparametric models. It utilizes the real-time Laguerre expansion of
Volterra kernels and the point process filters for online study of the time-varying
neural system using both natural spike inputs and outputs [41] with their values
being recorded by means of the multi-electrode array technology. The GLVM is
inspired by the electrophysiological properties of single spiking neurons and is first
applied to the study of animal hippocampal region where it is proved to be very
efficient by animal experiments [43].

In the GLVM, we propose the integration of (1) generalized Volterra model
(GVM), (2) real-time Laguerre expansion, and (3) steepest descent point process
filter (SDPPF) to track the time-varying neural system using both natural spike
inputs and outputs.

3.1 Configuration of the Generalized Volterra Model

A MIMO system can be decomposed into a series of multiple-input, single-output
(MISO) systems. The MISO models are identical in structure and each module
projects to a separate output as shown in Fig. 2.

Each MISO model has physiologically plausible components which can be
described by the following equations:

w = u(k,x)+ a(h,y)+ ε(σ) (2)

184 W.X.Y. Li et al.

…
 ...

…
 ...

x

x

x

x

y

y

y

y

Biological
Neural
Network

K

h

+
Output spike train

Noise

Threshold

wu
a

Feedback kernel

Feedforward kernels

Input spike trains

x

x

y

y

…
 ...

…
 ...

x y

a

b

c

e
q

Fig. 2 FPGA implementation of a MIMO model for neural population activities. (a): brain
region processes information by transforming input spike trains to output spike trains. (b): this
input–output transformation can be described with a MIMO generalized Laguerre–Volterra model
which can be further decomposed into a series of MISO models; each of them has physiological
components, as shown. (c): the goal of this study is to implement such a MIMO model on FPGA
(Subfigure (c) is only for illustration of concept, not representing the real circumstance of place
and route)

High-Performance Computing for Neuroinformatics Using FPGA 185

and

y =

{
0 where w < θ
1 where w ≥ θ

. (3)

The input and output spike trains are denoted by x and y, respectively. The hidden
variable w represents the “pre-threshold membrane potential” of the output neuron.
It is the summation of the “synaptic potential” u, the output spike-triggered “after-
potential” a, and a Gaussian white noise input ε with standard deviation σ . The
noise term models both the intrinsic noise of the output neuron and contributions
from unobserved inputs. When w crosses the threshold θ , an output spike is
generated and a feedback after-potential a is triggered and then added to w. Consider
the first order Volterra kernel k1 where N is the number of inputs. Then, the “synaptic
potential” u can be expressed as

u(t) = k0 +
N

∑
n=1

(k(n)1 ∗ xn)(t). (4)

k0 is the baseline potential when the inputs are absent. The first order kernels k1 in
(4) describes the linear transformation of input spike trains x into the hidden variable
u, as functions of the time intervals between the present time and the previous spikes.
The feedback variable a can be expressed as

a(t) = (h ∗ y)(t), (5)

where h is the linear feedback kernel. It is modeled by first order Volterra kernel.
The feedback kernels captured spike-triggered processes that influence the firing
behavior of hippocampal and also other cortical neurons [14, 44–48]

3.2 Laguerre Expansion of GVM: Generalized
Laguerre–Volterra Model

The Laguerre expansion of the Volterra kernel (LEV) technique is used to reduce
the number of open parameters to be estimated [41]. Using the LEV technique, both
feedforward kernels k and feedback kernel h are expanded through L orthonormal
Laguerre basis functions [49]. Input and output spike trains x and y are convolved
with jth basis function b j, such that the convolution products v are expressed as

v(n)j = b j ∗ xn and vh
j = b j ∗ y. Synaptic potential u and after potential a can be

rewritten as

u(t) = c0 +
N

∑
n=1

L

∑
j=1

c(n)1 v(n)j (t) (6)

186 W.X.Y. Li et al.

and

a(t) =
L

∑
j=1

chvh
j(t). (7)

The convolved functions v include the temporal dynamics. Another advantage of
the Laguerre expansions is that the convolutions are generated in real time. Let
αn (0 < αn < 1) be the pole of the Laguerre basis functions of the nth input xn.
The Laguerre basis functions can be obtained by inverse Z-transform of transfer
function of the Laguerre filter

b(n)j = Z−1

{ √
1−α2

n

1−αnz−1

(
z−1 −αn

1−αnz−1

) j−1
}
. (8)

A Laguerre basis function of jth order will have j − 1 intercepts with the x-axis.
The decay time of the built-in exponential of the Laguerre basis functions increases
when the value of the Laguerre pole increases. The convolved product v can also be

computed iteratively at each time t [50]. Let V (n)(t) =[v(n)1 (t) · · · v(n)L (t)],

V (n)(t)A1 =V (n)(t − 1)A2 +
√

1−α2
n A3xn(t), (9)

where A1 = I +αnI+; A2 = αnI+ I+; A3 = [1 0 · · · 0]; I is an L×L identity matrix
and I+ is an upper shift matrix.

3.3 Estimation of Parameters

Given the recorded input and output spike trains x and y, u and a can be readily
calculated based on the present values of v and the model coefficients in real time.
The estimated firing probability P(t) is then calculated using the error function:

P(t) = 0.5− 0.5erf

(
θ − u(t)− a(t)√

2σ

)
. (10)

Without the loss of generality, θ and σ can be set to 0 and 1, respectively. The
model parameters to be estimated are the Laguerre coefficients C. Using the steepest
descent point process filtering algorithm (SDPPF), the parameter vector C(t) is
updated iteratively at each time step t:

C(t) =C(t − 1)+R

[(
∂ logP(t)

∂C

)′
(y(t)−P(t))

]
C(t−1)

, (11)

where R is learning rate. During adaptive parameter estimation, the gradient can
also be generated in real time. The derivatives with respect to the Laguerre

High-Performance Computing for Neuroinformatics Using FPGA 187

coefficients are given as the products of v calculated in (9), such as ∂u(t)/∂c0 = 1,

∂u(t)/∂c(n)1 (j) = v(n)j (t) and ∂a(t)/∂ch(j) = vh
j(t). After observation of actual

output spike train and prediction of firing probability in (10), R acts as the learning
rate for the parameter estimations in (11). The estimated Laguerre coefficients C are
used to reconstruct the feedforward and feedback kernels.

3.4 Model Selection

Model selection is a key stage in the study of the highly nonlinear and dynamic
neural process using the GLVM. It is the procedure of efficiently reducing the model
complexity by selecting only a subset of its parameters. We perform model selection
when applying the generalized Laguerre–Volterra algorithm out of the following
three considerations. First, the connections among neurons in a particular brain
region are generally sparse, thus, a model output is usually not affected by all its
inputs. The inputs which effectively contribute to the output under the MISO model
can thereby be sifted out after the selection process. Second, as the number of inputs
increases, the number of coefficients to be estimated increases rapidly. Without
model selection, computation time rises steeply. Third, too many open parameters
bring about the overfitting problem, i.e. the noise is more likely to be fitted than the
signal which largely cripples the predicting ability of the GLVM when applying the
novel data.

The model selection process consists of two stages as shown in Fig. 3. At the first
stage, we conduct model parameters estimation using the training data (in-sample
data) which are pre-recorded neural firing inputs and outputs by the multi-electrode
array. At the second stage, we conduct model outputs prediction using the testing
data (out-of-sample data) which are pre-recorded input spikes—the output spikes
are used as objects of reference while verifying the correctness of the model outputs.
The goodness-of-fit could be assessed by two methods, either of direct evaluation or
quantification of the similarity between the two data sets after a certain smoothing
process [42].

Our hardware architecture can be well applied to the model selection process.
This platform consists of two parts, i.e. software part and hardware part. The soft-
ware part includes the spike sorting module and the selection result analysis (SRA)
module. The hardware part is designed for doing GLVM parameters estimation and
outputs prediction. A neural spiking input recorded by a single electrode is often
contributed by multiple neurons [51] and in principle, each neuron tends to fire the
spiking in its own shape [52]. The spike sorting module is used for determination of
the corresponding neurons to each of the observed spikes, i.e. for the disambiguation
process between unique neurons. The hardware-based processing core performs the
DSP which is consisted of two stages, namely, estimation and prediction which
use the in-sample data and out-of-sample data, respectively. The prediction results
are then sent back to the PC via the data interface. The SRA software compares

188 W.X.Y. Li et al.

H

K

σ

Noise

Threshold

Feedback Kernel

Feedforward Kernels

Input Spike Trains

Output Spike Train

x1

yu w

u w

a

ε

θ

MISO
Model

x2

x3

x4

Estimation Mode

H

K

σ

Noise

Threshold

Feedback Kernel

Feedforward Kernels

Input Spike Trains

Output Spike Train

x1

y

a

ε

θ

MISO
Model

x2

x3

x4

Prediction Mode

?

?

Fig. 3 The model selection process consists of two stages; thus, the system is required to work in
dual modes

the predicted spiking activity with the spike activity and decides if the input(s)
contribute(s) to the output in a previous causally linked inputs/outputs functionality.
In our previous work, the key processing procedures of parameters estimation
and outputs prediction were all conducted by software. However, with the aid of
FPGA-based hardware platform, we can achieve a good speedup in doing such
calculations with an enhancement in data throughput as to be elaborated in the
following sections.

High-Performance Computing for Neuroinformatics Using FPGA 189

4 Using Reconfigurable Hardware to Predict Neural Activity

A major focus of this work is to utilize the hardware-level parallelism and on-chip
resources of modern FPGA devices to model the generalized Laguerre–Volterra
system which plays a vital role in neural spiking activity study, calculate the
important coefficients, and predict neural firing output with desirable calculation
precision.

The computational intensive parts of the hardware model include the convolution
of the N +1 input channel signals with the basis function, the MAC (Multiplication
and Accumulation) operation between the convolution products V and the Laguerre
coefficients vector C, and the updating of firing probability.

4.1 Hardware Architecture

Figure 4 provides an overview of the hardware architecture for doing GLVM
parameters estimation and outputs prediction. The circuit can work in different
modes (estimation/prediction) and can switch between the two important system
functions. In the figure, U1–U7 are important processing units which will be
described in more detail in the following subsections. U1–U7 as a whole forms the
hardware processing core. U1 and U2 are designed for the calculation of the pre-
threshold membrane potential w. U3 and U4 function as the neuron firing probability
P calculation unit and the Laguerre coefficients C updating unit, respectively. U5 is
the component which generates the Gaussian white noise. U6 is the threshold trigger
which conducts neural firing outputs prediction using a threshold function. U7 is the
control unit which generates the control signals guiding the data flow under different
modes of operation and also determining the cycles of execution in accordance with
the number of valid model input(s) and processing elements within each component.
H is the register array that stores the value of the augmented horizontal vector which
is of the size of 1+(N + 1)×L (N is the number of inputs and L is the number of
basis functions).

At the estimation stage, the training data are sent from PC via the data interface
to the Ethernet IP which is embedded in the FGPA. The Ethernet IP then forwards
the data to the hardware processing core. The processing core performs the DSP and
sends back the calculation results of the pre-threshold membrane potential, the firing
probability and the Laguerre coefficients to the PC via the Ethernet IP using the
same data interface. At the prediction stage, the field estimated Laguerre coefficients
appear as a constant vector and are stored in a register array. The testing data are
transmitted to the processing core via the identical data path as at the estimation
stage. After the value of the pre-threshold membrane potential is computed, the
processing core conducts prediction of the model outputs measuring the potential,
the random neuronal noise and the preset firing threshold. The predicted outputs are

190 W.X.Y. Li et al.

H
os

t
D

es
kt

op

E
th

er
ne

t
IP

X

Y
U1 V U2 w

U3U4

U5 U6

PC

U7

FPGA

Fig. 4 Overview of the hardware architecture (U1 is the convolution unit; U2 is the multiplication
and accumulation unit; U3 is the firing probability calculation unit; U4 is the Laguerre coefficients
updating unit; U5 is Gaussian random number generation unit; U6 is the threshold triggering unit;
U7 is the control unit; X and Y are the neural spike inputs (Y is the feedback of neural spike output
into the input port); V is the convolution products; w is the pre-threshold membrane potential; P is
the neural firing probability; C is the Laguerre coefficients)

then relayed back to the PC for further analysis employing the SRA software. They
are also fed back to input ports of the processing core as after-potentials for iterative
calculation.

The hardware architecture can be made very scalable with adoption of different
number of processing elements (PEs) within each component. This can enhance the
generality of our design to be applied to a broader range of FPGA devices on market.
For example, supposing the number of valid inputs is 65 (which is also the maximum
value the current architecture can accommodate), in the vector convolution and
multiplication-and-accumulation components, the number of PEs can be set at 1–65,
and accordingly, the convolution between the neural inputs and elements of the
augmented horizontal vector is divided into different number of successive rounds.
If the employed amount of PEs increases, the count of operational rounds decreases.
We can also see that the fully paralleled architecture (NPE = 65) consumes much less
time in execution than the compact architecture (NPE = 1) at both the estimation
and the prediction stage. However, if the hardware is used for doing GLV model
selection, the compact architecture is more suitable for the following two reasons:

High-Performance Computing for Neuroinformatics Using FPGA 191

Algorithm 1 Pre-threshold membrane potential updating algorithm (number of
inputs N=64; number of basis functions L=3)
1: H(1)=1;
2: for n = 1: N
3: H(1+(n-1)*L:n*L) = Convolve(H(1+(n-1)*L:n*L),
InvA1, A2, A3, x(t,n));
4: end
5: H(2+n*L:1+(n+1)*L)= Convolve(H(2+n*L:1+(n+1)*L),
InvA1, A2,A3, y(t-1));
6: w(t) = H*C

Algorithm 2 Signal convolution algorithm
Convolve (V, InvA1, A2, A3, x)
1: V = V*A2
2: V(1) = V(1)+x*A3
3: V = V*A1

1. In the model selection process, the number of valid inputs to the processing
core appears as a variable. Under the compact architecture, all the neural inputs
are streamed into the processing core in a serial fashion. System timing will
be made much easier in that scenario. We only need to alter the maximum
accessible value of the counters which record the round number of processing.
Additional circuitry for doing, such as inputs multiplexing and dynamic PE
resource allocation is spared.

2. Even for processing of experimental data consisting of 65 inputs, the calculation
efficiency is still satisfactory for current animal research.

4.2 Calculating the Pre-threshold Membrane Potential

The functionality of this unit is to calculate the pre-threshold membrane potential of
the neuronal outputs w in real time. This unit appears as a combination of U1 and
U2 in Fig. 4.

This unit is designed to implement the following algorithms (Algorithms 1 and
Algorithm 2) in neural signal processing. Algorithms in this chapter are generally
presented using the syntax of Matlab.

Pre-threshold membrane potential is calculated using Algorithm 1 at each time
step. C is not a constant in Algorithm 1, it is updated using Algorithm 3 (which will
be explained in Sect. 4.3) in hardware in sync with H. InvA1, A2 and A3 correspond
to matrices A−1

1 , A2 and A3, respectively, in (9). They are used in the real-time
convolution as shown in Algorithm 2. H is the augmented horizontal vector, which
includes all the convolved products. This algorithm is designed to calculate the pre-

192 W.X.Y. Li et al.

from LZD

0

fr
om

 o
th

er
 P

E
s

x

H_1

H_2

H_3

V
ec

to
r

U
pd

at
in

g

MAC

from
input

...

w

Fig. 5 Datapath of convolution and MAC units (PE is the processing element; LZD is the leading
zeros detector component; MAC is the multiplication and accumulation component)

threshold membrane potential using C estimated from the previous time step and
the convolved products, which account for the history of the neuronal inputs x and
output y.

In Algorithm 2, V is a vector containing L elements; InvA1, A2 and A3 are L×L
matrixes; and x is a scalar. This algorithm is designed to convolve each input with L
basis functions as in (9).

U1 and U2 together contain N + 1 leading zeros detector (LZD) components,
N + 1 vector updating (VU) components and one Multiplication and Accumulation
(MAC) component. Figure 5 shows the configuration of a basic processing element
of this part of circuit with the MAC component included. U1 deals with one
sampling frame per processing cycle. Neurons in some parts of the brain, such
as the hippocampus, have low firing frequency; so both X and Y could be sparse.
The LZD component is designed to detect the zero elements in the input vectors.
If zeros are detected, part of or the whole VU circuit is put on hold. Signals will
bypass the VU component and the H registers will be reset directly. This saves
power given that the frequent updating of the VU registers will be prevented. The
VU component is designed to implement Algorithm 2. New values of H can be
acquired after completing the combinational routine of VU. The MAC component
is of tree structure consisting of stages of adders. It is designed to implement the 6th
statement in Algorithm 1. Elements of H and C register arrays are first multiplied.
The 1+(N + 1)×L products are added through stages of adder arrays. The size of

High-Performance Computing for Neuroinformatics Using FPGA 193

Algorithm 3 Calculating the firing probability, its gradient and the coefficients
1: P = f (th, w, σ)
2: dP = g(H, w, th, σ)
3: if P ∼= 0
4: dL = 1/P*dP
5: end
6: C = C+R*(dL′+(ŷ-P))

the adder array shrinks by half from the utmost leaves to the root stage by stage. The
value of w is acquired at the root stage. The number of the PEs in the convolution
units can be adaptive under the compact architectures and the number of adder
stages will change accordingly.

4.3 Calculating the Firing Probability and Laguerre
Coefficients

Firing probability P and Laguerre coefficients C are two other important parameters
in the GLV algorithm. Their values need to be tracked during each round of
calculation. The method for updating P and C are shown in Algorithm 3. In
this algorithm, th, σ and R represent the threshold value, the noise strength
and the learning rate, respectively. ŷ is the instant (current round) value of the
firing output. dP is the gradient of P with respect to the coefficients and dL is
∂ logP(t)/∂C as appeared in (11). f and g are the functions calculating P and its
gradient. The P, C updating algorithm is intrinsically computationally intensive for
it includes function series such as the exponential equation. These often demand
long computing time using digital software based on serial instruction streams.
The parallel processing capability of the FPGA hardware can greatly facilitate this
process with its programmability on the circuit level.

For calculation of the exponential function, there are many methods proposed to
date. Some methods use predetermined values for table look-up [53]; some methods
are based on the CORDIC algorithm [54–58]. According to our observation of data
from animal experiments, the values of the pre-threshold membrane potential in
current recordings are restricted within the range of [−4

√
2,4

√
2]. Based on this,

we adopt direct Taylor series expansion in current implementation for the series can
converge fast under this condition and the number of expansion terms is limited,
hence resource cost is affordable for the FPGA hardware. However, we are also
developing other computation methods to better accommodate any unpredictable
variance in future applications. All these methods are being incorporated to the
hardware IP library which is now under development. The hardware IP library is
part of the higher-level self reconfiguring platform (SRP) [59].

194 W.X.Y. Li et al.

For the calculation of the error function erf(x), we have also developed several
computation methods. These methods have their respective pros and cons and can
be chosen according to the specific application requirements, e.g. the precision level
and the FPGA model availability. Some methods we have developed can be found
in Table 2. The more detailed discussions can be found in Sect. V of [60].

4.4 Predicting the Output Spikes

This part of circuitry is activated during the prediction stage of the GLV system
only. It is based on the summation of the pre-threshold membrane potential and
the Gaussian random white noise, passing the threshold triggering component to
generate the predicted output neural spiking signals. The noise term here is able
to capture the system uncertainty which results from both the intrinsic neuronal
noise and the unobserved inputs (neurons whose spiking activities essentially con-
tribute to the model outputs but are not included into the model). In hardware, this
noise source can be simulated by a Gaussian random number generator (GRNG).
The circuit structure of the GRNG can be found in Fig. 6. In the figure, URNG is
the uniform random number generator component which produces signals whose
strengths are uniformly distributed in the range of [0,1]. It can be implemented by
the bitwise XOR operations between the lower 32 bits of a 43-bit linear feedback
shift register (LFSR) and the lower 32 bits of a 37-bit cellular automata shift register
(CASR). This method was first proposed by Tkacik [61]. The URNG has a cycle
length of 280 − 243 − 237 + 1 with reduced bias to 2−80 and is very efficient to
be implemented in our platform given its high operating frequency, low resource
demand and non-repetition property in generating the random noise sequence during
long animal experimental sessions. Each N uniformly distributed numbers generated
by the URNG are added. According to the Central Limit Theorem, if N approaches
infinity, the series composed by these summation products satisfies the Gaussian
distribution. However, due to restrictions imposed by the execution time, we set N
at 100 in the current design according to the analysis by Jeruchim et al. [62]. We
use FIFO for data caching between different clock domains of the RNG and other
circuit components. The post-processing (PP) unit in Fig. 6 is used to transform
the non-standard Gaussian distribution generated by the RNG to a standard normal
distribution by adjusting its mean and variance according to the value of N. The
control unit is designed for functions such as URNG seed loading, FIFO r/w signal
generation and component enabling. The Gaussian white noise generated after the
post-processing stage is incorporated into the pre-threshold membrane potential and
then passed to the threshold trigger, which produces the spiking outputs using the
threshold function.

High-Performance Computing for Neuroinformatics Using FPGA 195

T
ab

le
2

M
et

ho
ds

fo
r

th
e

ca
lc

ul
at

io
n

of
th

e
er

ro
r

fu
nc

ti
on

D
es

ig
n

m
et

ho
d

D
es

cr
ip

ti
on

C
al

cu
la

ti
on

pr
ec

is
io

n
St

or
ag

e
de

m
an

d
L

og
ic

de
m

an
d

D
ir

ec
tL

U
T

M
ap

pi
ng

th
e

er
ro

r
fu

nc
ti

on
to

lo
ok

-u
p

ta
bl

e
en

tr
ie

s
w

it
h

un
if

or
m

si
ze

of
da

ta
st

ep
in

al
lr

an
ge

of
th

e
fu

nc
ti

on
cu

rv
e

B
es

t
V

er
y

hi
gh

L
ow

In
di

re
ct

L
U

T
M

ap
pi

ng
th

e
er

ro
r

fu
nc

ti
on

to
lo

ok
-u

p
ta

bl
e

en
tr

ie
s

w
it

h
no

nu
ni

fo
rm

si
ze

of
da

ta
st

ep
ac

co
rd

in
g

to
th

e
sl

op
e

of
th

e
cu

rv
e

in
di

ff
er

en
t

re
gi

on
s

G
oo

d
H

ig
h

M
od

er
at

e

C
on

ve
rt

in
g

to
ex

po
ne

nt
ia

l
er

f(
z)

∼ =
√ 1

−
e−

4 π
z2

R
eg

io
n

de
pe

nd
en

t
V

er
y

lo
w

H
ig

h

Po
ly

no
m

ia
le

xp
an

si
on

er
f(

z)
=

2 √ π
∑

∞ n=
0
(−

1)
n
z2n

+
1

n!
(2

n+
1)

G
oo

d
V

er
y

lo
w

V
er

y
hi

gh

196 W.X.Y. Li et al.

URNG S
FIFO fi2fl PP

Ctrl

36 35 34 33 32

42 41 40 39 21 20 19 18 2 1 0

29 28 27 26 25 2 1 0… ... … ...

...…...…

prog_full

to threshold
trigger

Fig. 6 Gaussian random noise generator (URNG is the uniform random number generator which
includes a 43-bit Linear Feedback Shift Register and a 37-bit Cellular Automata Shift Register;
S is the summation unit; fi2fl is the fixed point to floating point conversion unit; PP is the post
processing unit)

4.5 System Scalability

One important feature of our hardware platform is its multifold scalability. The
scalability of the system can be derived largely from two design considerations.
One is module reuse and the other is MISO model extendibility.

When we design the hardware architecture, we want to make it fit into as many
FPGA platforms available on market as possible. In order to do that, we have
proposed both fully paralleled architectures, in which the number of system input
is equal to the number of recording electrodes, and more compact architectures
with the adoption of module reuse. Using these compact architectures, resource
utilization can be reduced. For example, in the MAC units, the number of PEs which
performs the operation of vector convolution can be reduced from 65 (N = 64) to

High-Performance Computing for Neuroinformatics Using FPGA 197

1 or 2n + 1 (n ∈ Z and 1 ≤ n ≤ 5), and the register that carries the value of pre-
threshold membrane potential should then be updated after 65 or 26−n+1 rounds of
convolution. The processing time is prolonged and more clock cycles are demanded.
At the same time, when the system works at the estimation mode, in the Laguerre
coefficients updating unit, the C register array is updated by 66 or 26−n + 2 rounds
of identical arithmetical routines. Due to the reduced parallelism, the new approach
bears the clear defect of lower data throughput. However, it has several distinct
advantages compared to the full parallel architecture such as lower system resource
utilization and power consumption.

Another aspect revealing system scalability is that multi-FPGA extendable
design can be easily implemented with our architecture. This is largely due to
the data independence of the elements in the Y input (the feedback from model
output as shown in Fig. 2) set under our proposed circuit architecture. In the
convolution process, X inputs and Y inputs are data irrelevant. This means that one
set (64 elements) of X can perform convolution operation with different Y elements
concurrently. Parallelism can be greatly enhanced by adding additional FPGAs. A
four FPGA network structure is shown in Fig. 4 of [60]. Input set Y is shifted to
FPGA1-4 at each processing cycle. Neural network parameters which are stored in
BRAMs are read simultaneously by the transceiver core and relayed to the host PC.
By adding n extra FPGA stages, we will increase the data throughput n+ 1 times
compared to the mono FPGA structure. A maximum number of 64 FPGAs (element
number in input set Y is also 64) could work together in a coordinated way.

4.6 Implementation Results: Hardware Versus Software

We use the proposed FPGA-based hardware and the original software platforms
to process approximately 1,000 bins (discretized time units) of neural firing
data (synthetic data). Both the hardware and software run the two stages of the
generalized Laguerre–Volterra algorithm, i.e. estimation and prediction. During
the estimation stage, the values of the three important system parameters: (1) the
pre-threshold membrane potential, (2) the firing probability, and (3) the Laguerre
coefficients are recorded. While at the prediction stage, the values of the membrane
potential and the predicted firing output are recorded.

The calculation results of the three important parameters during the estimation
stage are shown in Fig. 7. The differences between each of the three value sets are
also plotted in Fig. 8.

If we define the NMSE as:

NMSE =
T

∑
t=1

(y(t)− ỹ(t))2/
T

∑
t=1

ỹ(t)2, (12)

198 W.X.Y. Li et al.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

bin

M
em

br
an

e
po

te
nt

ia
l

0 50 100 150 200
0

0.2

0.4

0.6

bin

F
iri

ng
 p

ro
ba

bi
lit

y

0 50 100 150 200
−0.1

0

0.1

0.2

bin

C
oe

ffi
ci

en
ts

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

bin

P
re

di
ct

ed
 s

pi
ke

s

a

b

c

Fig. 7 The implementation results by the FPGA-based hardware platform. (a): result of the pre-
threshold membrane potential; (b): result of the firing probability; (c): result of element of the
Laguerre coefficients; (d): hardware predicted neural spike outputs. The hardware system changes
from the model parameters estimation mode to the firing outputs prediction mode at the 200th bin.
Threshold value is set at −0.600 when doing the firing outputs prediction

then we can calculate the NMSEs for the membrane potentials, the firing probability,
the coefficients and the prediction results during each stage, respectively. The
calculation results are shown in Table 3.

Also, we use both the hardware and software platforms to process a session of
neural firing data, and we calculate the speed-up of the hardware platform versus
the software platform.

For the software part, after the compilation of the C codes using the gcc compiler,
the executable file is successively run for 10 rounds. The configuration of the
software platform we use for running the generalized Laguerre–Volterra algorithm
is shown in Table 4. Both the time consumed for conducting parameters estimation
and model output prediction are recorded as shown in Fig. 9.

High-Performance Computing for Neuroinformatics Using FPGA 199

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20
x 10−6

bin

hw
/s

w
 r

es
ul

ts
di

ffe
re

nc
es

membrane potential
firing probability
Laguerre coefficients

Fig. 8 The hardware and software calculation differences of the three important parameters: (1)
the pre-threshold membrane potential (black line); (2) the firing probability (red line); (3) the
Laguerre coefficients (blue line). In the figure, bin=200 is the time boundary between the estimation
stage and the prediction stage

Table 3 Normalized mean
square error of calculation

Variable name Estimation mode Prediction mode

Membrane potential 1.620×10−12 1.678×10−13

Firing probability 2.584×10−11 –
Laguerre coefficient 1.481×10−11 –
Firing outputs – 0

Table 4 Host PC
configuration

CPU Intel Core i7-2620M (Turbo Boost to 3.40 GHz)

Memory size 8GB
C compiler gcc 3.4.4-999 running on Cygwin 1.7 platform
Interface Gigabit ethernet with jumbo frame enabled

The data throughput of the software platform is calculated by:

Tsw =
D× l

∑l
i=1 ti

(13)

In (13), D represents the number of data frames utilized for the test (in our test,
it is set at 10,000); l indicates the times of iteration and t is the execution time of
each round. Using the data gathered, we can calculate the data throughputs of the
software platform are 500.90 data frames/s (for parameters estimation) and 1430.94
data frames/s (for model output prediction), respectively.

For the hardware part, the calculation speed can be estimated by the equation
below:

Thw =
D

De×Kce
fclk

+
Dp×Kcp

fclk

(14)

200 W.X.Y. Li et al.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Round number

C
al

cu
la

tio
n

tim
e

(s
)

estimation mode
prediction mode

Fig. 9 Time consumption for conducting model parameters estimation and firing output prediction
using software. (Gray bar: time records during the estimation mode; black bar: time records during
the prediction mode)

In (14), D represents the total number of data frames utilized for test (in our test,
it is set at 10,000); De is number of data frames used for parameters estimation
and Dp is the number of data frames used for output prediction. K is cycles needed
to doing one round of calculation. For parameters estimation, Kce = 67; for firing
output prediction, Kcp = 68. In our experiment, the hardware switches from the
mode of estimation to prediction from the 2,000th input data frame. The overall data
throughput for the hardware platform can be calculated as 3.83×104 data frames/s.
For the stage of estimation, the data throughput can be calculated as 3.88× 104

data frames/s (D=De, Dp=0). For the stage of prediction, the data throughput can
be calculated as 3.82× 104 data frames/s (D=Dp, De=0). The hardware to software
speedups are 77.47x and 26.72x, respectively, at the two stages of calculation.

As mentioned previously, the hardware system is very scalable by implementing
different number of processing elements within each design component. For the
fully paralleled architecture, where the number of PEs equals the number of inputs,
the data throughput can reach 1.33×106 data frames/s at the estimation stage and
1.00×106 data frames/s at the prediction stage. The speedups are 2.66×103x and
698.84x, respectively.

High-Performance Computing for Neuroinformatics Using FPGA 201

5 Discussions

In the above sections, we present our work of conducting the neural firing pattern
prediction employing the reconfigurable hardware. The research objective of the
current stage work has been successfully achieved. However, we are still in
the process of upgrading the current hardware platform to better meet the future
application requirements from the neural prosthetic device which will be implanted
into be mammal brain.

5.1 The Ultra-Low Power Design Principle

For an implantable neural prosthesis, power consumption is of critical importance.
The battery life should be ideally as long as possible, for the frequent recharge of
the on-board power source would bring great inconvenience to the patients wearing
such devices, such as sufferings from the medical surgeries. Although technologies
of inductive coupling or energy conversion (electromagnetic to electrical) are
emerging, the more fundamental solutions would lie in the optimization of the
circuitry of the prosthetic device itself. For FPGA designers, one such solution
is by resorting to more advanced, low-power FPGAs such as the newly released
Xilinx Virtex-7 series devices, which adopt the 28 nm and high-K metal gate
process optimized for low power applications, slashing the static power by 50%
compared with their predecessors. However, there is a trade-off among power,
development cost and risk of operational faults here due to the lower operating
voltages introduced. Another solution is by adopting more tailored design modules.
For instance, in our current FPGA architecture for the GLVM, we have extensively
employed the off-the-shelf Intellectual Properties (IPs) like the DSP48E cores
provided by the FPGA vendors. The IPs can perform floating point arithmetic
operations with high precision. They also provided a fast-to-product solution by
means of shortened design time. However, these IPs are more power hungry and
area inefficient compared with more tailored units such as the ones employing the
fixed point representations of model variables. So there is also a trade-off of design
metrics in this aspect. A third solution for saving power can be well directed to
the employment of run-time reconfiguration techniques as we will discuss in more
detail in the next subsection. By reconfiguring FPGA devices on the fly, we can
dynamically shutdown circuit blocks when they are not producing useful data; this,
undoubtedly provides us with a new, intriguing approach for saving power.

5.2 The Dynamical Partial Reconfiguration Technique

The dynamical reconfiguration refers to the modification of the FPGA functions
during its operation time. It is often achieved by altering portions of gate array while

202 W.X.Y. Li et al.

keeping other parts running. In our current research regarding the FPGA prototyping
of the GLVM, we do not delve deep into this scope of research; however, it is
indubitably a very promising technique given the huge advantages introduced such
as reduction in power dissipation, decrease in space of the FPGA chip, avoidance of
hardware obsolescence and more flexibility in implementation.

Two general approaches are often adopted when dynamically reconfiguring
the device, each has applications where desirable. One approach is by external
reconfiguration under which the compiled bitstream is transmitted to the device
by JTAG boundary scan port or serial port. The other approach is by internal
configuration where the internal configuration access port (ICAP) is utilized for
transmission employing an embedded microcontroller or state machine. In our
design, given the hard real-time requirement of the prosthetic application, it is
much preferred that a hardware IP library of existing implementations tailored for
different application scenarios be pre-stored in on-chip memory and be deployed by
the microcontroller to a target module.

There are two scenarios of partial reconfiguration, as shown in Fig. 10. In the
first scenario, a particular module of the design is ineffective and can be “blocked”
during certain period of operating time. In our FPGA implementation of the GLVM,
when the platform works in the mode of firing output prediction, the U5, U6, and
U7 units shown in Fig. 4 are deemed as redundant and the related modules can
be dynamically dropped off. This brings two distinct benefits. The first is reduced
power dissipation and the second is spared chip area which can be utilized for other
system modalities such as hardware redundancy for the fault-tolerance purpose.
In the second scenario, a particular module of the design is substitutable and can
be “replaced” during certain period of operating time. A good illustration would
be the implementation of the error function of in the GLVM as stated above. The
requirements of the prosthetic system may be time variant. For a specific application
requirement, the most optimized method of implementation can be automatically
chosen by the device in run-time with certain preset constraints and the compiled
bitstream can be employed via the ICAP. This will ensure the hardware platform
can always produce the results with desirable precision while keeping good trade-
offs to other criteria such as power consumption. For our hardware system which
is designed for doing neural firing patterns prediction, hard real-time is required.
The reconfiguration time should be strictly limited within a certain range. Given the
natural brain firing rate is very low, this requirement can be guaranteed by current
technology.

5.3 Fault-Tolerance Redundancy Design

For a cognitive neural prosthesis targeting clinical applications, possessing fault-
tolerance property is a fundamental requirement. It would result in disastrous
consequences if the hardware fails in operation or produces erroneous prediction
results. Traditional fault proof paradigms can be well adopted in current design such

High-Performance Computing for Neuroinformatics Using FPGA 203

Hardware
IP

Library

Central
Controlling

Agent

ICAP

Module 1

Module 2

Module 3

FPGA Static Region PR Region

a

Hardware
IP

Library

Central
Controlling

Agent

ICAP

Module 1

Module 2

Module 3

FPGA PR RegionStatic Region

b

Hardware
IP

Library

Central
Controlling

Agent

ICAP

Module 1

Module 2

Module 4

FPGA PR RegionStatic Region

c

Fig. 10 Two scenarios of dynamical partial reconfiguration. (a)→(b): modules can be
blocked/added on during device operation time; (b)→(c): modules can be substituted during device
operation time

204 W.X.Y. Li et al.

as the employment of hardware redundancy by the replication of critical circuitry,
time redundancy by the multi-round execution and information redundancy by
performing data checking.

Another way to implement the cognitive neural prosthesis design is to place the
modalities of model parameters estimation and firing output prediction into two
different chips with only the latter being implanted into the brain area. In that
scenario, the integration and correctness of the transmission of model coefficients is
of critical importance. Information redundancy is needed for the validation purpose
during either wired or wireless transmission process.

6 Conclusions

In this chapter, we described our work of prototyping of the GLVM using the
field-programmable gate array device. Compared with our previous computational
platform employing PC and digital software, the new hardware platform achieves
remarkable speedup in conducting both model parameters estimation and neural
firing output prediction. It will largely facilitate the process of our further research
towards the highly nonlinear and dynamical brain activity.

The work presented here is important to our final research objective—the
cognitive neural prosthesis design. The prosthetic device, if successfully applied
to clinical operations, will greatly avail against diseases with regard to hippocampal
region dysfunction and degeneration such as stroke, seizure, and the Alzheimer’s
disease by bypassing the pathological regions. The field-programmable gate array,
given its convenient hardware level programmability, low cost and capability of
doing fast prototyping, serves as an ideal tool at current stage research of such
biomedical devices. The high-performance computing capability of modern FPGA
devices will boost the progress towards future study of learning and memory and
the implementation of silicon brain.

References

1. D. Purves, E.M. Brannon, R. Cabeza, S.A. Huettel, K.S. LaBar, M.L. Platt, M. Woldorff,
Principles of Cognitive Neuroscience (Sinauer Associates Inc., Sunderland, MA, USA, 2007)

2. B. Milner, Memory and the medial temporal regions of the brain, in Biology of Memory
(Academic, New York, 1970), pp. 29–50

3. L.R. Squire, S.M. Zola, Episodic memory, semantic memory, and amnesia. Hippocampus 8,
205–211 (1998)

4. M.S. Humayun, E. de Juan, J.D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, S. Suzuki,
Pattern electrical simulation of the human retina. Vis. Res. 39, 2569–2576 (1999)

5. G.E. Loeb, Gochelear prosthetics. Annu. Rev. Neurosci. 13, 357–371 (1990)
6. G.E. Loeb, R.A. Peck, W.H. Moore, K. Hood, Biontm system for distributed neural prosthetic

interfaces. Med. Eng. Phys. 23, 9–18 (2001)
7. K.H. Mauritz, H.P. Peckham, Restoration of grasping functions in quadriplegic patients by

functional electrical stimulation (FES). Int. J. Rehabil. Res. 10(4), 57–61 (1987)

High-Performance Computing for Neuroinformatics Using FPGA 205

8. J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces. Nat.
Neurosci. 5, 1085–1088 (2002)

9. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner,
D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a
human with tetraplegia. Nature 442(7099), 164–171 (2006)

10. M.A.L. Nicolelis, Brain-machine interfaces to restore motor function and probe neural circuits.
Nat. Neurosci. 4, 417–422 (2003)

11. K.V. Shenoy, D. Meeker, S.Y. Cao, S.A. Kureshi, B. Pesaran, C.A. Buneo, A.R. Batista,
P.P. Mitra, J.W. Burdick, R.A. Andersen, Neural prosthetic control signals from plan activity.
Neuroreport 14, 591–596 (2003)

12. D.M. Taylor, S.I.H. Tillery, A.B. Schwartz, Information conveyed through brain-control: cursor
versus robot. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 195–199 (2003)

13. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensionalmovement signal by a noninvasive
brain-computer interfacein humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004)

14. T.W. Berger, G. Chauvet, R.J. Sclabassi, A biological based model of functional properties of
the hippocampus. J. Physiol. 7, 1031–1064 (1982)

15. J. Magee, D. Hoffman, C. Colbert, D. Johnston, Electrical and calcium signaling in dendrites
of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998)

16. S.S. Dalal, V.Z. Marmarelis, T.W. Berger, A nonlinear positive feedback model of glutamater-
gic synaptic transmission in dentate gyrus, in Proceedings of the The 4th Joint Symposium on
Neural Computation, vol. 7 (Institute for Neural Computation, San Diego, CA, USA, 1997),
pp. 68–75

17. D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Non-parametric interpretation and validation
of parametric models of short-term plasticity, in Proceedings of Annual International Con-
ference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY,
USA, 2003), pp. 1901–1904

18. Z. Wang, X. Xie, D. Song, T.W. Berger, Probabilistic transformation of temporal information
at individual synapses, in Proceedings of Annual International Conference of the IEEE EMBS
(Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1909–1912

19. G. Gholmieh, S.H. Courellis, D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Characteriza-
tion of short-term plasticity of the dentate gyrus-ca3 system using nonlinear systems analysis,
in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical
and Electronics Engineers, New York, NY, USA, 2003), pp. 1929–1932

20. A. Dimoka, S.H. Courellis, D. Song, V. Marmarelis, T.W. Berger, Identification of lateral
and medial perforant path using single- and dual-input random impulse train stimulation, in
Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and
Electronics Engineers, New York, NY, USA, 2003), pp. 1933–1936

21. M.C. Citron, J.P. Kroeker, G.D. McCann, Nonlinear interactions in ganglion cell receptive
fields. J. Neurophysiol. 46, 1161–1176 (1981)

22. M.C. Citron, R.C. Emerson, W.R. Levick, Nonlinear measurement and classification of
receptive fields in cat retinal ganglion cells. Ann. Biomed. Eng. 16, 65–77 (1988)

23. P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive field responses in the
catfish retina II: one-input white-noise analysis. J. Neurophysiol. 36, 619–633 (1973)

24. D. McAlpine, Creating a sense of auditory space. J. Physiol. 566, 21–28 (2005)
25. L. Paninski, M.R. Fellows, N.G. Hatsopoulos, J.P. Donoghue, Spatiotemporal tuning of motor

neurons for hand position and velocity. J. Neurophysiol. 91, 515–532 (2004)
26. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application

to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)
27. H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)
28. Elementary Objects of the Nervous System. [Online]. Available: http://synapticmodeling.com/

Accessed January 2013
29. Brain in Silicon. [Online]. Available: http://brainsinsilicon.stanford.edu Accessed January

2013
30. NEURON. [Online]. Available: http://www.neuron.yale.edu/neuron/ Accessed January 2013

http://synapticmodeling.com/
http://brainsinsilicon.stanford.edu
http://www.neuron.yale.edu/neuron/

206 W.X.Y. Li et al.

31. Mcell: A Monte Carlo Simulator of Cellular Microphysiology. [Online]. Available: http://www.
mcell.cnl.salk.edu/ Accessed January 2013

32. J.P. Cunningham, V. Gilja, S.I. Ryu, K.V. Shenoy, Methods for estimating neural firing rates,
and their application to brain-machine interfaces. Neural Networks 22(9), 1235–1246 (2009)

33. D.R. Brillinger, Nerve cell spike train data analysis: a progression of technique. J. Am. Stat.
Assoc. 87, 260–271 (1992)

34. E.N. Brown, R. Barbieri, U.T. Eden, L.M. Frank, Likelihood methods for neural data analysis,
in Computational Neuroscience: A Comprehensive Approach, vol. 7 (Chapman & Hall/CRC,
London, UK, 2003), pp. 253–286

35. W. Wu, Y. Gao, E. Bienenstock, J. Donoghue, M. Black, Bayesian population decoding of
motor cortical activity using a Kalman filter. Neural Comput. 18(1), 80–118 (2006)

36. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover,
New York, 1959)

37. N. Wiener, Nonlinear Problems in Random Theory (MIT, New York, 1958)
38. V.Z. Marmarelis, P.Z. Marmarelis, Analysis of Physiological Systems: The White-Noise

Approach (Plenum, New York, 1978)
39. V.Z. Marmarelis, Nonlinear Dynamic Modeling of Physiological Systems (Wiley-IEEE Press,

Hoboken, 2004)
40. D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger, Non-

linear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans. Biomed. Eng. 54, 1053–1066 (2007)

41. R.H.M. Chan, D. Song, T.W. Berger, Tracking temporal evolution of nonlinear dynamics
in hippocampus using time-varying volterra kernels, in Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, vol. 54 (Institute of Electrical and
Electronics Engineers, New York, NY, USA, 2008), pp. 4996–4999

42. D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger,
Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural
Networks 22, 1340–1351 (2009)

43. S.A. Deadwyler, T. Bunn, R.E. Hampson, Hippocampal ensemble activity during spatial
delayed-nonmatch-to-sample performance in rats. J. Neurosci. 16, 354–372 (1996)

44. B.E. Alger, R.A. Nicoll, Pharmacological evidence for two kinds of GABA receptor on rat
hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 125–141 (1982)

45. J. Keat, P. Reinagel, R.C. Reid, M. Meister, Predicting every spike: a model for the responses
of visual neurons. Neuron 30, 803–817 (2001)

46. L. Paninski, J.W. Pillow, E.P. Simoncelli, Maximum likelihoodestimation of a stochastic
integrate-and-fire neural encoding model. Neural Comput. 16, 2533–2561 (2004)

47. D. Song, Z. Wang, T.W. Berger, Contribution of T-type VDCC to TEA-induced long-term
synaptic modification in hippocampal CA1 and dentate gyrus. Hippocampus 12, 689–697
(2002)

48. J.F. Storm, Action potential repolarization and a fast after-hyperpolarizationin rat hippocampal
pyramidal cells. J. Physiol. 385, 733–759 (2002)

49. V.Z. Marmarelis, Identification of nonlinear biological systems using Laguerre expansions of
kernels. Ann. Biomed. Eng. 21, 573–589 (1993)

50. C. Boukis, D.P. Mandic, A.G. Constantinides, L.C. Polymenakos, A novel algorithm for the
adaptation of the pole of Laguerre filters. IEEE Signal Process. Lett. 13, 429–432 (2006)

51. M.D. Linderman, G. Santhanam, C.T. Kemere, V. Gilja, S. O’Driscoll, B.M. Yu, A. Afshar,
S.I. Ryu, K.V. Shenoy, T.H. Meng, Signal processing challenges for neural prostheses. IEEE
Signal Process. Mag. 25, 18–28 (2008)

52. C. Hansang, D. Corina, J.F. Brinkley, G.A. Ojemann, L.G. Shapiro, A new template matching
method using variance estimation for spike sorting, in Proceedings of the 2nd International
IEEE EMBS Conference on Neural Engineering (Institute of Electrical and Electronics
Engineers, New York, NY, USA, 2005), pp. 225–228

53. W.F. Wong, E. Gogo, Fast hardware-based algorithms for elementary function computations
using rectangular multipliers. IEEE Trans. Comp. 43(3), 278–294 (1994)

http://www.mcell.cnl.salk.edu/
http://www.mcell.cnl.salk.edu/

High-Performance Computing for Neuroinformatics Using FPGA 207

54. J.C. Bajard, S. Kla, J.M. Muller, BKM: a new hardware algorithm for complex elementary
functions. IEEE Trans. Comp. 43(8), 955–963 (1994)

55. H. Bui, S. Tahar, Design and synthesis of an IEEE-754 exponential function, in IEEE Canadian
Conference on Electrical and Computer Engineering, vol. 1 (Institute of Electrical and
Electronics Engineers, New York, NY, USA, 1999), pp. 450–455

56. G. Even, P.M. Seidel, A comparison of three rounding algorithms for IEEE floating-point
multiplication. IEEE Trans. Comp. 49(7), 638–650 (2000)

57. M.A. Figueiredo, C. Gloster, Implementation of a probabilistic neural network for multi-
spectral image classification on an FPGA based custom computing machine, in Proceedings of
the 5th Brazilian Symposium on Neural Networks (IEEE Computer Society Press, Washington,
D.C., USA, 1998), pp. 174–179

58. V. Kantabutra, On hardware for computing exponential and trigonometric functions. IEEE
Trans. Comp. 45(3), 328–339 (1996)

59. B. Blodget, P. James-Roxby, E. Keller, S. McMillan, P. Sundararajan, A self-reconfiguring
platform, in Proceedings of the 13th International Conference on Field Programmable Logic
and Applications (FPL’03) (Springer, New York, NY, USA, 2003), pp. 565–574

60. W.X.Y. Li, R.H.M. Chan, W. Zhang, R.C.C. Cheung, D. Song, T.W. Berger, High-performance
and scalable system architecture for the real-time estimation of generalized Laguerre–Volterra
MIMO model from neural population spiking activity. IEEE J. Emerg. Sel. Top. Circ. Syst.
1(4), 489–501 (2011)

61. T.E. Tkacik, A hardware random number generator, in Proceedings of the 4th International
Workshop on Cryptographic Hardware and Embedded Systems (Springer, New York, NY,
USA, 2002), pp. 450–453

62. M.C. Jeruchim, P. Balaban, K.S. Shanmugan, Simulation of Communication Systems:
Modeling, Methodology, and Techniques (Springer, Berlin, 2000). ISBN 978-0-306-46267-2

High-Performance FPGA-Accelerated
Real-Time Search

Wim Vanderbauwhede, Sai. R. Chalamalasetti, and Martin Margala

Abstract This chapter presents our work on accelerating real-time search applica-
tions using FPGAs.

A real-time search (or document classification) application matches terms (words
and groups of words) in a stream of documents against a static list of terms with
associated weights. We discuss a novel FPGA design for the term matching and
relevancy computation part of a high-throughput real-time search application. The
design, implemented on the GiDEL PROCStar-IV board, is capable of processing
streams of documents at a rate of 32 Gterms/s. We present a mathematical analysis
of the throughput of the application, discussing in particular the problem of scaling
the Bloom filter used to reduce the number of required lookups in external memory.
Using the performance and power measurements obtained from our implementation
and a high-performance multithreaded software reference implementation as inputs
for an economic cost model, we show that using our technology can reduce the total
cost of ownership of data centres for processing data-centric workloads with a factor
of 10.

1 Introduction

The focus on real-time search is growing with the increasing adoption and spread of
social networking applications. Real-time search is equally important in other areas
such as analysing emails for spam or search web traffic for particular patterns.

W. Vanderbauwhede (�)
School of Computing Science, University of Glasgow, G12 8QQ Glasgow, UK
e-mail: Wim.Vanderbauwhede@Glasgow.ac.uk

S.R. Chalamalasetti • M. Margala
Department of Electrical and Computer Engineering, University of Massachusetts
Lowell, Lowell, MA, USA
e-mail: sairahul chalamalasetti@student.uml.edu; martin margala@uml.edu

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 7, © Springer Science+Business Media, LLC 2013

209

mailto:Wim.Vanderbauwhede@Glasgow.ac.uk
mailto:sairahul_chalamalasetti@student.uml.edu
mailto:martin_margala@uml.edu

210 W. Vanderbauwhede et al.

Servicing millions of user requests and processing very large volumes of
information requires massive amounts of computational resources. The data centres
that process these requests consume huge amounts of energy for both computing
and cooling [1]. According to a recent study by McKinsey, commissioned by the
Uptime Institute [2], CO2 emissions from data centres are projected to surpass those
of the airline industry 2020. The same report shows that the energy cost associated
with running a data centre is now the dominant cost. Thus the development of
energy efficient solutions is motivated both from an economic perspective and an
environmental perspective. As a result, there are currently many initiatives, both
from academia and industry, to reduce the energy consumption of data centres.
These efforts attempt to address this challenge by focusing on better layouts, more
efficient cooling systems, power reduction in the servers by switching off unused
cores, and more efficient software, e.g. through virtualisation. However, while all
of these solutions contribute to a reduction in power consumption, none of them
constitute a radical departure from current system architectures.

Our aim is to achieve dramatic energy savings through the use of Field
Programmable Gate Arrays. FPGAs are eminently suited for acceleration of Infor-
mation Retrieval tasks: this type of tasks is often inherently parallelisable because
document models generally do not treat documents as a sequence of words, but
rather as a collection of uncorrelated or loosely correlated terms.

In [3, 4] we presented our initial work on applying FPGAs for acceleration
or search algorithms. In this chapter we describe the design, architecture and
performance of our novel document filtering (real-time search) solution.

After introducing the application domain and workload, we present a mathemat-
ical analysis of the throughput of the system. This novel analysis is applicable to a
much wider class of applications than the one discussed in the paper: any algorithm
that performs non-deterministic concurrent accesses to a shared resource can be
analysed using the model we present. In particular, the technology presented in
this paper can also be used for “traditional”, i.e. inverted index-based, web search.
We present an FPGA implementation of our novel architecture on the GiDEL
PROCStar-IV board and a performance comparison with a multicore CPU system.
Finally, we present an analysis of the reduction in total cost of ownership of data
centres that can be achieved by deploying our technology.

2 Real-Time Search Applications

2.1 Choice of Workload

There is a great variety in data-centric workloads and how the data is processed.
Of the various operations that can be performed on data—collect and distribute,
maintain and manage, organise, analyse and classify—in this work we focus on the
last category. There are different classes of operations associated with organisation

High-Performance FPGA-Accelerated Real-Time Search 211

and analysis of data including ad hoc retrieval, classification, clustering, and
filtering. However, fundamentally, all of these tasks require the matching between
information items and information needs; for example, a user query or a pre-
determined profile matched against data content. Representative of these operations,
in this paper, we focus on real-time unstructured search or information filtering
where given a collection of unstructured data sources (e.g., documents), we identify
the match to a pre-determined weighted feature vector profile (e.g., topic signatures,
keywords). With the growing increase in unstructured and semi-structured data, this
class of workloads is likely to be more important in the future. Some example appli-
cations include searching patent repositories for related work comparison, searching
emails and sharepoints for enterprise information management, detecting spam in
incoming emails, monitoring communications for terrorist activity, news story topic
detection and tracking, searching through books, images, and videos for matching
profiles.

2.2 Algorithm Description

Real-time search, in Information Retrieval parlance called “document filtering”,
consists of matching a stream of documents against a fixed set of terms, called the
“profile”. Typically, the profile is large and must therefore be stored in external
memory.

The algorithm implemented on the FPGA can be expressed as follows:

• A document is modelled as a “bag of words”, i.e. a set D of pairs (t, f) where
f � n(t,d) is the term frequency, i.e. number of occurrences of the term t in the
document d; t ∈ N is the term identifier.

• The profile M is a set of pairs p = (t,w) where the term weight w �
log

(
(1−λ)P(t|M)

P(t) +λ
)

.

In this work we are concerned with the computation of the document score, which
indicates how well a document matches the profile.

The document has been converted to the bag-of-words representation in a
separate stage. (This approach is also followed by the Google n-gram project [5].)
Note that a “term” can correspond to a single word, an n-gram, or a fixed sequence
of n words. Inclusion of bigrams and trigrams, removal of stop words and stemming
(reducing words to their root) lead to better search results.1 We perform this stage
on the host processor using the Open Source information retrieval toolkit Lemur [6].
We note that this stage could also be very effectively performed on FPGAs.

1Note that the inclusion of n-grams makes our vocabulary size much larger than expected. For
example, the Oxford Dictionaries FAQ indicates about a quarter of a million distinct English terms,
but the vocabulary size for our collection is 16 million terms.

212 W. Vanderbauwhede et al.

The profile is precomputed offline based on specific user requirements using
the relevance-based language model proposed by Lavrenko and Croft [7] or
alternatively using a Bayesian algorithm.

Simplifying slightly, to determine if a document matches a given profile, we
compute its score: the sum of the products of term frequency and term weight

score(D,M) = ∑
i∈D

fiwi (1)

The weight is typically a high-precision word (64 bits) stored in a lookup table in
the external memory. If the score is above a given threshold, we return the document
identifier and the score by writing it into the external memory.

This function is the basis of most relevancy scoring algorithms, the main
difference being the weighting of terms in profiles. For example, the same function
can be used for Nave Bayes spam filtering, Support Vector Machine classification,
Relevancy Feedback information filtering and even image recognition.

2.3 Target Platform

The target platform for this work is the Novo-G FPGA supercomputer [8] hosted by
the NSF center for high-performance reconfigurable computing (CHREC).2 This
machine consists of 24 compute servers which each hosts a GiDEL PROCStar-IV
board. The board contains four FPGAs with two banks of DDR SDRAM per FPGA
used for the document collection and one for the profile. The data width is 64 bits,
which means that the FPGA can read 128 bits per memory per clock cycle [9]. For
more details on the platform, see Sect. 4.

2.4 Term Scoring Algorithm

To simplify the discussion, we first consider the case where terms are scored
sequentially, and that, as in our original work, we use a Bloom filter to limit the
number of external memory accesses.

For every term in the document, the application needs to look up the correspond-
ing profile term to obtain the term weight. As the profile is stored in the external
SDRAM, this is an expensive operation (typically 20 cycles per access). The
purpose of document filtering is to identify a small amount of relevant documents
from a very large document set. As most documents are not relevant, most of the
lookups will fail (i.e. most terms in most documents will not occur in the profile).

2www.chrec.org.

www.chrec.org

High-Performance FPGA-Accelerated Real-Time Search 213

Therefore, it is important to discard the negatives first. For that purpose we use a
special Bloom filter implemented using the FPGA’s on-chip memory.

2.4.1 Perfect Bloom Filter

A Bloom filter [10] is a datastructure used to determine membership of a set. False
positives are possible, but false negatives are not. With this definition, the design we
use to reject negatives is a Bloom filter. However, in most cases a Bloom filter uses
a number (k) of hash functions to compute several keys for each element in the set
and adds the element to the table (assigns a “1”) if element is in the set. As a result,
hash collisions can lead to false positives.

Our Bloom filter is a special case of this more general implementation: our
hashing function is the identity function key = elt, and we only use a single hash
function (k = 1) so every element in the set corresponds to exactly one entry in the
Bloom filter table. As a result, the size of the Bloom filter is the same as the size
of the set and there are no false positives, hence the name “perfect Bloom filter”.
Furthermore, no elements are added to the set at run time.

The dimensioning of the Bloom filter depends on the available memory on the
FPGA and is discussed in Sect. 4.3.2.

2.4.2 Document Stream Format

The document stream is a list of (document identifier, document term pair set) pairs.
Physically, the FPGA accepts a fixed number n of streams of words with fixed
width w. The document stream must be encoded onto these word streams. As both
elements in the document term pair di = (ti, fi) are unsigned integers, m pairs can be
encoded onto a word if w is larger than or equal to m times the sum of the magnitudes
of the maximum values for t and f :

w ≥ m(�log2 tmax�+ �log2 fmax�) (2)

To mark the start of a document we insert a header word (identified by f = 0)
followed by the document ID.

2.4.3 Profile Lookup Table Implementation

In the current implementation, the lookup table that stores the profile is implemented
in the most straightforward way: as the vocabulary size is 224 and the weight for
each term in the profile can be stored in 64 bits, a profile consisting of the entire
vocabulary could be stored in the 512 MB SDRAM, which is less than the size of
the fixed SDRAM on the PROCStar-IV board. Consequently, there is no need for
hashing, the memory contains zero weights for all terms not present in the profile.

214 W. Vanderbauwhede et al.

Fig. 1 Sequential document
term scoring

2.4.4 Sequential Implementation

The diagram for the sequential implementation of the design is shown in Fig. 1.
Using the lookup table architecture and document stream format as described

above, the actual lookup and scoring system is quite straightforward: the input
stream is scanned for header and footer words. The header word action is to set the
document score to 0; the footer word action is to collect and output the document
score. For every term in the document, first the Bloom filter is used to discard
negatives and then the profile term weight is read from the SDRAM. The score is
computed and accumulated for all terms in the document and finally the score stream
is filtered against a threshold before being output to the host memory. The threshold
is chosen so that only a few tens or hundreds of documents in a million are returned.

If we would simply look up every term in the external memory, the maximum
achievable throughput would be 1/ΔtS, with ΔtS the number of cycles required to
look up the term weight in the external memory and compute the term score. The
use of a Bloom filter greatly improves the throughput as the Bloom filter access
will typically be much faster than the external memory access and subsequent score
computation. If the probability for a term to occur in the profile is PP and the access
time to the Bloom filter is ΔtB, the average access time will become ΔtB +PP ·ΔtS.
In practice PP will be very low as most document terms will not occur in the profile
(because otherwise the profile would match all documents). The more selective the
profile, the fewer the number of document terms that match it.

High-Performance FPGA-Accelerated Real-Time Search 215

2.5 Parallelising Lookups

The scoring process as described above is sequential. However, as in the bag-of-
words representation all terms are independent, there is scope for parallelisation.
In principle, all terms of a document could be scored in parallel, as they are
independent and ordering is of no importance.

2.5.1 Parallel Document Streams

In practice, even without the bottleneck of the external memory access, the amount
of parallelism is limited by the I/O width of the FPGA, in our case 64 bits per
memory bank. A document term can be encoded in 32 bits (a 24-bit term identifier
and an 8-bit term frequency). As it takes at least one clock cycle of the FPGA clock
to read in two new 64-bit words (one per bank), the best case for throughput would
be if four terms per document would be scored in parallel in a single cycle. However,
in practice scoring requires more than one cycle; to account for this, the process can
be further parallelised by demultiplexing the document stream into a number of
parallel streams. If, for example, scoring would take four cycles, then by scoring
four parallel document streams the application could reach the maximal throughput.

2.6 Parallel Bloom Filter Design

Obviously, the above solution would be of no use if there would be only a single,
single-access Bloom filter. The key to parallelisation of the lookup is that, because
the Bloom filter is stored in on-chip memory, accesses to it can be parallelised by
partitioning the Bloom filter into a large number of small banks. The combined
concepts of using parallel streams and a partitioned Bloom filter are illustrated in
Fig. 2. To keep the diagram uncluttered, only the paths of the terms (Bloom filter
addresses) have been shown.

Every stream is multiplexed to all m Bloom filter banks; every bank is accessed
through an n-port arbiter. It is intuitively clear that for large numbers of banks, the
probability of contention approaches zero, and hence the throughput will approach
the I/O limit—or would if none of the lookups would result in an external memory
access and score computation.

3 Throughput Analysis

In this section, we present the mathematical throughput analysis of the Bloom filter-
based document scoring system. The analysis consists of four parts:

216 W. Vanderbauwhede et al.

Fig. 2 Parallelising lookups
using parallel streams and a
multi-bank Bloom filter

• In Sect. 3.1 we derive an expression to enumerate all possible access patterns for
n concurrent accesses to a Bloom filter built of m banks and use it to compute the
probability for each pattern.

• In Sect. 3.2 we compute the average access time for each pattern, given that nH

accesses out of n will result in a lookup in the external memory. We consider
in particular the cases of nH = 0 and nH = 1 and propose an approximation for
higher values of nH.

• In Sect. 3.3 we compute the probability that nH accesses out of n will result in a
lookup in the external memory.

• In Sect. 3.4, combining the results from Sects. 3.2 and 3.3, we compute the
average access time over all nH for a given access pattern; finally, we combine
this with the results from Sect. 3.1 to compute the average access time over all
access patterns.

3.1 Bloom Filter Access Patterns

We need to calculate the probability of contention between c accesses out of n,
for a Bloom filter with m banks. Each bank has an arbiter which sequentialises the

High-Performance FPGA-Accelerated Real-Time Search 217

contending accesses, so c contending accesses to a given bank will take a time c ·ΔtB,
with ΔtB the time required for a single lookup in the Bloom filter. We also account
for a fixed cost of contention ΔtC. We use a combinatorial approach: we count all
possible arrangements of n accesses to m banks. Then we count the arrangements
that result in c concurrent accesses to a bank.

To do so, we need first to compute the integer partitions of n [11] as they
constitute all possible arrangements of n accesses. For the remainder of the paper,
we will refer to “all possible arrangements that result in x” as the weight of x. Each
partition of n will result in a particular average access time over all accesses. If we
know the probability that each partition will occur and its resulting average access
time, we can compute the total average access time.

3.1.1 Integer Partitions

A partition p(n,k) of a positive integer n is a non-increasing sequence of k positive
integers p1, p2, . . . , pk with n as their sum. Each integer pi is called a part. Thus, with
n in our case being the number of access ports to our Bloom filter, each partition is
a possible access pattern for the Bloom filter. For example, if n = 16 and k = 8, the
partition (53221111)means that the first bank in the Bloom filter gets 5 concurrent
accesses, the next 3, and so on. For n ≤ m, k ∈ [1,n]; if n > m, we must restrict k
to k ∈ [1,m] because we can’t have more than m parts in the partition as m is the
number of banks. In other words, k ∈ [1,min(n,m)]. We denote this as p(n,k).

3.1.2 Probability of Each Partition

For each partition, we can compute the probability of it occurring as follows: if there
are n concurrent accesses to the Bloom filter’s m banks, n ≤ m, then each access
pattern can be written as a sequence of numbers. We are not interested in the actual
numbers but in the patterns, e.g. with n = 8 and m = 16, we could have a sequence
(aaa bb cc d), a,b,c,d ∈ 0 . . . m− 1;a �= b �= c �= d which results in a partition
(3221). Consequently, given a partition we need to compute the probability for
the sequence which it represents. The probability for each number occurring is the
same, 1/m. We can compute this probability as a product of three terms. First, we
consider the probabilities for sequences of length n of events with probability αi

where each event occurs xi times. These are given by the multinomial distribution:

n!
k

∏
i=1

αxi
i

xi!
(3)

where 0 < xi ≤ n and n = ∑k
i=1 xi.

In our case, each event has the same probability 1/m and the number of times
each event occurs is the size of each part pi in the partition, so

218 W. Vanderbauwhede et al.

n!
mn

k

∏
i=1

1
pi!

(4)

This gives the probability for a sequence of k groups of pi events, n events in total.
The actual sequence will consist of numbers 1, . . . ,m, so we must consider the

total number of different sequences of numbers that result in a given partition. This
is simply the number of possible combinations of k numbers out of m, Ck

m.
Finally, we must consider the permutations as well, for example, for (211) we

must also consider (121) and (112). This is a combinatorial problem in which the
bins are distinguishable by the number of elements they contain; however, the actual
number of elements is irrelevant, only the fact that the bins are distinguishable. The
derivation is slightly more complicated. We proceed as follows: we transform the
partition into a tuple with as many elements as the number of different integers in
the partition, and the value for each element the number of times this integer occurs
in the partition. For example, (5533211)→ (2212) and (4322111)→ (1123).
We call the new set the frequencies of the partition p, F(p(n,k)). As partitions are
non-increasing sequences, the transformation is quite straightforward:

First we create an ordered set S = {S1, . . . ,Si, . . .} with P =
⋃

Si i.e. S is a set
partition of P. The elements of S are defined recursively as

S1 = {∀ p j ∈ P | p j = p1} (5)

Si = {∀ p j ∈ P\
⋃

k=1,...,i−1

Sk | p j = p1} (6)

i.e. S1 contains all parts of P identical to the first part of P; for S2 we remove all
elements of S1 from P and repeat the process, and we continue recursively until the
remaining set is empty. Finally, we create the (ordered) set of the cardinal numbers
of all elements of S:

F = { fi � #Si,∀Si ∈ S} (7)

We are looking for the permutations with repetition of F(p(n,k)), which is
given by

n′! ∏
∀ fi∈F(p(n,k))

1
fi!

(8)

where n′ = ∑ fi.
Thus the final probability for each partition of n and a given m becomes:

P(p(n,k),m) =
Ck

m

mn ·n! ∏
∀pi∈p(n,k)

1
pi!

·n′! ∏
∀ fi∈F(p(n,k))

1
fi!

(9)

We observe that

High-Performance FPGA-Accelerated Real-Time Search 219

n

∑
k=1

P(p(n,k),m) = 1 (10)

regardless of the value of m.
In the next section we derive an expression for the access time for a given

partition, depending on the number of accesses that will result in an external
memory lookup.

3.2 Average Access Time per Pattern

The time to perform n lookups in the Bloom filter is of course determined by the
number of contending accesses. For c contending accesses, it will take a time cΔtB.
However, not all Bloom filter lookups will result in a subsequent access to the
external memory—in fact most of them will not, this is exactly the reason for having
the Bloom filter. We will call a Bloom filter lookup that results in an access to the
external memory a hit.

3.2.1 Case of No Hits

First, we will consider the case of 0 hits, i.e. the most common case. In this case,
the average access time for a given partition p(n,k) is the average of all the parts in
the partition:

ΔtH,p,0 =
k>1

k
·ΔtC +

n
k

ΔtB (11)

where k>1 is the number of parts pi > 1. For the case of k = n (no contention),
k>1 = 0 so there is no fixed cost of contention ΔtC. Note again that k ≤ min(n,m).

In practice, a small number of Bloom filter lookups will result in a hit, and
consequently there is a chance of having one or more hits for concurrent accesses.

3.2.2 Case of a Single Hit

Consider the case of a single hit (out of n lookups). The question we need to answer
is, how long on average will it take to encounter a hit? Because as soon as we
encounter a hit we can proceed to perform the external memory access, without
having to wait for subsequent hits. This time depends on the particular integer
partition. To visualise the partition, we use a so-called Ferrers diagram [12], in
which every part is arranged vertically as a list of dots. For example, consider the
Ferrers diagram for the partition (841111), i.e. n= 16,k = 6 (Fig. 3). Each row can
be interpreted as the number of concurrent accesses to different banks; each column
represents the number of contending accesses to a particular bank.

220 W. Vanderbauwhede et al.

Fig. 3 Ferrers diagram for
the partition (841111)

Fig. 4 Ferrers diagram for
the conjugate partition
(62221111)

From this graph it is clear that the probability for finding the hit on the first
cycle is 6/16; on the second to fourth cycle 2/16, on the fifth to eighth cycle 1/16.
Consequently, the average time to encounter a hit will in this case be

1 · 6
16

+(2+ 3+ 4) · 2
16

+(5+ 6+ 7+8) · 1
16

To generalise this derivation, we observe first that the transposition of the Ferrers
diagram of an integer partition p yields a new integer partition p′(n,k′) for the same
integer called the conjugate partition. In our example p′ = (62221111) with k′ = 8
(Fig. 4).

We observe that the time it takes to reach a hit in part p′i is ΔtB · i. Using the
conjugate partition p′, we can write the lower bound for average time it takes to
reach a hit in partition p as

ΔtH,p,1 =

(
1− k− k>1

n

)
·ΔtC +ΔtB · 1

n

k′

∑
i=1

i · p′i (12)

The term in ΔtC only occurs when the hit is in a bank with contention, i.e. in a
part greater than 1. There are k−k>1 parts of size 1, so the chance of a hit occurring
in one of them (i.e. a hit on a bank without contention) is k−k>1

n . Thus the probability
for the term in ΔtC is

1− k− k>1

n
(13)

And of course, as the hit results in an external access, the average access time is

ΔtA,p,1 =

(
1− k− k>1

n

)
·ΔtC +ΔtB · 1

n

k′

∑
i=1

i · p′i+
1
n
·ΔtS (14)

For the case of k = n, the equation reduces to

ΔtA,p,1 = ΔtB + 1/n ·ΔtS (15)

High-Performance FPGA-Accelerated Real-Time Search 221

3.2.3 Case of Two or More Hits

If there are two or more hits, the exact derivation would require enumerating all
possible ways of distributing nH hits over a given partition; furthermore, simply
enumerating them is not sufficient: we would have to consider the exact time of
occurrence of each hit to be able to determine if a subsequent hit was encountered
during or after the time to perform an external lookup and compute the score (ΔtS)
from a given hit. It is easy to see that for large nH, this problem is so complex as
to be intractable in practice. However, we can make a simplifying assumption: in
practice, ΔtS will be much larger than the time to perform a Bloom filter lookup.

If that is the case, a good approximation for the total elapsed time is the time
until the first hit is encountered plus nH times the time for external access. This
approximation is exact as long as the time it takes to sequentially perform all
external lookups is longer than the time between the best and worst case Bloom
filter access time for nH hits on a single bank, in other words as long as ΔtS > piΔtB.
The worst case is of course p1 = n but this case has a very low probability: for
example, for n = 16, the average value of all parts is 2.5; even considering only
the parts >1, the average is still <4. For n = 32, the numbers are resp. 3 and 5. In
practice, if ΔtS/ΔtB > 10, the error will be negligible.

Conversely, we could consider the time until the last hit is encountered plus nH

times ΔtS. This approximation provides an upper bound for the access time.
Therefore, we are only interested in these two cases, i.e. the lowest resp. highest

part of the partition with at least one hit. We need to compute the probability that the
lowest (resp. highest) part will contain a hit, and the next but lowest (resp. highest)
one, etc. For simplicity, we leave off ΔtC in the following derivation.

Lower Bound

The number of all possible cases is Np′ =C(n,nH), all possible arrangements of nH

elements in n bins. To compute the weight of a hit in the lowest part p′1, we compute
the complement: all possible arrangements without any hits in p′1. That means that
we remove p′1 from n. Then, using the notation ¬p1for “not a hit in p′1”, we compute

N¬p1 =C(n− p′1,nH) (16)

These are all the possible cases for not having a hit in p′1. Thus, Np1 = Np−N¬p1

is the number of possible arrangements with 1, . . . ,nH hits in p′1.
We now do the same for p2, etc. That gives us all possible cases for not having a

hit in pi:

N¬pi =C

(
n−

i

∑
j=1

p′j,nH

)
(17)

222 W. Vanderbauwhede et al.

Obviously, there must be enough space in the remaining parts to accommodate
nH hits, so i is restricted to values where

n−∑ p′i ≥ nH (18)

We call the highest index for which (18) holds, k∗.
To obtain the weight of a hit in p′i, we must of course subtract the weight of a hit

in p′i−1, because Np −N¬pi would give the weight for having a hit in all parts up to
pi. It is easy to show [by substitution of (16)] that

Npi = N¬pi−1 −N¬pi (19)

Finally, the average time it takes to reach a part in a given p′ with at least one hits
out of nH is

ΔtH,p,nH = ΔtB · 1
Np′

k∗

∑
i=1

i ·Npi (20)

With the above assumption, the average access time for nH hits can then be
approximated as

ΔtA,p,nH =

(
1− k− k>1

n

)
·ΔtC +ΔtB · 1

Np′

k∗

∑
i=1

i ·Npi + nHΔtS (21)

We observe that for nH = 1, (21) indeed reduces to (14) as Np′ = n and Npi = p′i.
For n = k the equation reduces to ΔtB + nHΔtS.

Upper Bound

The upper bound is given by the probability that the highest part is occupied etc., so
the formula is the same as (17) but starting from the highest part pc, i.e.

N¬pc−i =C

(
n−

c

∑
j=c−i+1

p′j,nH

)
(22)

with the corresponding restriction on i that

k∗

∑
i=1

p′i ≥ nH (23)

As we will see in Sect. 3.5, in practice the bounds are usually so close together
that the difference is negligible.

High-Performance FPGA-Accelerated Real-Time Search 223

3.3 Probability of External Memory Access

The chance that a term will occur in the profile depends on the size of the profile
NP and the size of the vocabulary NV :

PP =
NP
NV

(24)

This is actually a simplified view: it assumes that the terms occurring in the
profile and the documents are drawn from the vocabulary in a uniform random way.
In reality, the probability depends on how discriminating the profile is. As the aim
of a search is of course to retrieve only the relevant documents, we can assume that
actual profiles will be more discriminating than the random case. In that case (24)
provides a worst case estimate of contention.

The probability of nH hits, i.e. contention between nH accesses to the external
memory is then

C(n,nH) ·PnH
P · (1−PP)n−nH (25)

That is, there are C(n,nH) arrangements of nH accesses out of n and for each
of them, the probability that it occurs is PnH

P · (1 − PP)n−nH. Furthermore, nH

contending accesses will take a time nHΔtS. Of course, if no external access is made,
the external access time is 0.

3.4 Average Overall Throughput

3.4.1 Average Access Time Over All nH for a Given Pattern

We can now compute the average access time over all nH for a given access pattern
p by combining (21) and (25):

ΔtA,p =
n

∑
nH=0

C(n,nH) ·PnH
P · (1−PP)n−nHΔtA,p,nH (26)

3.4.2 Average Access Time Over All Patterns for Given n and m

Finally, using (9) and (26), we can compute the average access time over all patterns
for given n and m, i.e. the average overall throughput of the application with n
parallel threads and an m-bank Bloom filter.

ΔtA(n,m) = ∑
∀p(n)

P(p(n,k),m) ·ΔtA,p (27)

224 W. Vanderbauwhede et al.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

4 16 64

R
el

. D
iff

. w
rt

 U
pp

er
 B

ou
nd

 (
%

)

Number of banks m

Throughput accuracy for varying n, m and DtB

tS=20,PP=1/1024

n, tB
4, 2
8, 2

16, 2
32, 2
4, 4
8, 4

16, 4
32, 4

Fig. 5 Accuracy of the
approximation for nH ≥ 2

3.5 Analysis

In this section the expression obtained in Sect. 3.4 is used to investigate the
performance of the system and the impact of the values of n, m, ΔtB, ΔtS, and PP on
the throughput.

3.5.1 Accuracy of Approximation

To evaluate the accuracy of the approximations introduced in Sect. 3.2.3, we
compute the relative difference between the “first hit” approximation and the “upper
bound” approximation. From Fig. 5, it can be seen that the difference is less than 1%
of the throughput over all simulated cases. As the upper bound always overestimates
the delay, and the “first hit” approximation will in most cases return the correct
delay, this demonstrates that both approximations are very accurate. An interesting
observation is that for ΔtB = 4 the error is almost the same as for ΔtB = 2, which
illustrates that the condition ΔtS > piΔtB is sufficient but not necessary.

Next, we consider a more radical approximation: we assume that for nH > 1,
PP = 0, in other words we ignore all cases with more than 1 hit.

From Fig. 6 we see that the relative difference between the throughput using this
approximation and the “first hit” is very small, to such an extent that in almost all
cases it is justified to ignore nH > 1. This is a very useful result as this approximation
speeds up the computations considerably.

3.5.2 Maximum Achievable Throughput

The throughput depends on the number of hits in the Bloom filter. Let us consider the
case where the Bloom filter contains no hits at all. This is the maximum throughput

High-Performance FPGA-Accelerated Real-Time Search 225

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 16 64

R
el

. D
iff

. w
rt

 F
irs

t H
it

A
pp

ro
x.

 (
%

)

Number of banks m

Throughput accuracy for single-hit approximation
for varying n, m and tB; tS=20,PP=1/1024

n, tB
4, 2
8, 2

16, 2
32, 2

4, 4
8, 4

16, 4
32, 4

Fig. 6 Accuracy of the
single-hit approximation for
nH ≥ 2

0

2

4

6

8

10

12

14

4 16 64

T
hr

ou
gh

pu
t (

te
rm

s/
cy

cl
e)

Number of banks m

Max. Throughput for varying n and m,
tB=1, tC =3

n
2
4
8

16

Fig. 7 Best case (0 hits)
average access time for a
Bloom filter with m banks
and n access ports,
ΔtB = 0.125, ΔtC = 1.2

the system could achieve, it corresponds to a profile for which no document in the
stream has any matches. We can use (11) and (9) to calculate the best-case average
access time for a Bloom filter with m banks and n access ports:

Δtmin(n,m) =
n

∑
k=1

∑
∀p(n,k)

((
k>1

k
ΔtC +

n
k

ΔtB

)
·P(p(n,k),m)

)
(28)

Note that for m < n, P(p(n,n)) = 0.
The results are shown in Fig. 7. The figure shows that for ΔtB = 0.125,ΔtC =

1.2 (the values for our current implementation), the I/O-limited throughput (8
terms/cycle for the PROCStar-IV board) is achieved with n = 8 and m = 16.

3.5.3 Throughput Including External Access

Figure 8 shows the effect of the external memory access and score computation.
The important observation is that the performance degradation is quite small for

226 W. Vanderbauwhede et al.

 0

2

4

6

8

10

12

14

4 16 64

T
hr

ou
gh

pu
t (

te
rm

s/
cy

cl
e)

Number of banks m

Max. Throughput for varying n and m,

tB=1, tC=3,PP=3.10-5

n
2
4
8

16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4 16 64

T
hr

ou
gh

pu
t (

te
rm

s/
cy

cl
e)

Number of banks m

Max. Throughput for varying n and m,
tB=1, tC=3,PP=0.002

n
2
4
8

16

a

b

Fig. 8 Average access time
for a Bloom filter with m
banks and n access ports,
ΔtS = 20. (a) PP = 3.10−5;
(b) PP = 0.002

low hit rates, and still only around 25 % for a relatively high hit rate of 1/512. This
demonstrates that the assumptions underlying our design are justified.

3.5.4 Impact of Bloom Filter Access Time

A further illustration of the impact of ΔtB is given in Fig. 9, which plots the
throughput as a function of ΔtB on a log/log scale. This figure illustrates clearly how
a reduction in throughput as result of slower Bloom filter access can be compensated
for by increasing the number of access streams. Still, with ΔtB = 4, we would
need 32 parallel streams per input stream, or we would need a very large number
(�128) Bloom filter banks. On the one hand, the upper limit is 512 (the number
of M9K blocks on the Stratix-IV 530 FPGA); on the other hand, the size of the
demultiplexers and arbiters would become prohibitive as it grows as m ·n.

High-Performance FPGA-Accelerated Real-Time Search 227

0.1

1

10

100

 1 10

T
hr

ou
gh

pu
t (

te
rm

s/
cy

cl
e)

Bloom filter access time tB (cycles)

Effect of tB on Throughput
tS=20,PP =1/1024,m=32

n
4
8

16
32

Fig. 9 Impact of Bloom filter
access time on throughput

0

1

2

3

4

5

6

7

8

9

 0.001 0.01

T
hr

ou
gh

pu
t (

te
rm

s/
cy

cl
e)

Hit probability PP

Impact of PP and tS on Throughput
tB=1, tC=3,m=32,n=16

Scoring time
tS (cycles)

5
10
20
50

100

Fig. 10 Impact on
throughput of hit probability
and external memory access
time

3.5.5 Impact of Profile Hit Probability and External Memory Access Time

The final figure (Fig. 10) is probably the most interesting one. It confirms that for
very selective profiles (i.e. profiles resulting in very low hit rates), the effect of long
external memory access times is very small.

4 FPGA Implementation

We implemented our design on the GiDEL PROCStar-IV development board
(Fig. 11). This system provides an extensible high-capacity FPGA platform with
the GiDEL PROC-API library-based developer kit for interfacing with the FPGA.

4.1 Hardware

Each board contains four Altera Stratix-IV 530 FPGAs running at 150 MHz. Each
FPGA supports a five-level memory structure, with three kinds of memory blocks
embedded in the FPGA:

228 W. Vanderbauwhede et al.

• 6,640 MLAB RAM blocks (320 bits each)
• 1,280 M9K RAM blocks (9K bits each)
• 64 M144K blocks (144K bits each)

and two kinds of external DRAM memory:

• One 512 MB DDR2 SDRAM on-board memory (Bank A)
• Two 2 GB SODIMM DDR2 DRAM memories (Bank B and Bank C)

The embedded FPGA memories run at a maximum frequency of 300 MHz, Bank
A, Bank B, and Bank C at 667 MHz. The FPGA-board is connected to the host
platform via a PCI Express bus. The host computer transfers data to the FPGA using
32-bit DMA channels. We studied two different host systems: a system based on
HP BL460 blade servers with quad-core 64-bit Intel Xeon X5570 at 2.93 GHz and
3.5 GB DDR2 DRAM memory, running 32-bit Windows XP, and a second system
based on a dual-core 64-bit Intel Atom board at 1 GHz with 4 GB DDR2 DRAM
memory, running 64-bit Ubuntu GNU/Linux; in this paper, we primarily focus on
the former.

4.2 Development Environment

FPGA-accelerated applications for the PROCStar board are implemented in C++
using the GiDEL PROC-API libraries for interacting with the FPGA. This API
defines a hardware abstraction layer that provides control over each hardware
element in the system—for example, Memory I/O is implemented using the GiDEL
MultiFIFO and MultiPort IPs. To achieve optimal performance, we implemented the
FPGA algorithm in VHDL (as opposed to Mitrion-C as used in our previous work).
We used the Altera Quartus toolchain to create the bitstream for the Stratix-IV.

Fig. 11 Block diagram of FPGA platform and photograph of experimental hardware

High-Performance FPGA-Accelerated Real-Time Search 229

Fig. 12 Overall block diagram of FPGA implementation

4.3 FPGA Implementation Description

Figure 12 presents the overall workflow of our implementation. The input stream
of document term pairs is read from the SDRAM via a FIFO. A Bloom filter is
used to discard negatives (terms that do not appear in the profile) for multiple
terms in parallel. Profile weights are read corresponding to the positives, and the
scores are computed for each term in parallel and accumulated to achieve the final
score described in (1). Below, we describe the key modules for the implementation:
document streaming, profile negative hit filtering, and profile lookup and scoring.

4.3.1 Document Streaming

Using a bag-of-words representation (see Sect. 2.2) for the document, the document
stream is a list of (document id, document term tuple set) pairs. Physically, the IO
width of the FPGA is 64 bits for each SDRAM memory. As the SDRAM is clocked
at 667 MHz, the ProcMultiPort FIFO combines two contiguous 64-bit words into a
single 128-bit word for each memory bank. The document term tuple di = (ti, fi)
can be encoded in 32 bits: 24 bits for the term id (supporting a vocabulary of 16
million terms) and 8 bits for the term frequency, so the algorithm can process eight
terms (256 bits) in parallel. To mark the start and end of a document we insert a
marker word (64 bits) followed by the document id (64 bits).

230 W. Vanderbauwhede et al.

4.3.2 Bloom Filter for Profile Hit Filtering

For every term in the document, the application needs to look up the corresponding
profile term to obtain the term weight. As the profile is stored in the external
SDRAM, this is an expensive operation (typically 20 cycles per access). The
purpose of document filtering is to identify a small amount of relevant documents
from a very large document set. As most documents are not relevant, most of
the lookups will fail (i.e. most terms in most documents will not occur in the
profile). Therefore, it is important to discard the negatives first. For this reason,
we implemented a perfect Bloom filter as discussed in Sect. 2.4.

The internal block RAMs of Altera Stratix-IV FPGA that supports efficient
single-bit access are M9K memory modules (around 1,280 blocks available on
Stratix-IV 530 FPGA). The current generation of the Bloom Filter is limited to
4 Mb; however, in future designs we will move to an 8 Mb Bloom Filter to use all
1,280 M9K blocks [13]. On the other hand, the vocabulary size of our document
collection is 16M terms (based on English documents using unigrams, diagrams,
and trigrams). We therefore used a very simple “hashing function”, key = elt � 2.
Thus we obtain one entry for every four elements, which leads to three false
positives out of four on average. This obviously results in a four times higher
access rate to the external memory than if the Bloom filter would be 16 Mb. As
the number of positives in our application is very low, the effect on performance is
limited. The higher internal bandwidth of the MRAMs leads to very fast rejection of
negatives. Although the MRAM is fast, concurrent lookups lead to contention. To
reduce contention we designed a distributed Bloom filter. The Bloom filter memory
is distributed over a large number of banks (16 in the current design) and a cross-bar
switch connects the document terms streams to the banks. In this way contention
(when multiple tuples access same bank) is significantly reduced.

4.3.3 Profile Lookup and Scoring

Because of the need for lookup, the profile must be implemented as some type of
map (dictionary). A hash function is an obvious approach; however, as the size of
the profile is not known in advance, it is impossible to construct a perfect hash;
imperfect hashes suffer from collisions which deteriorate the performance. When
the key space is very large, the contention probability is high.

Our solution is simply to use the term id as the memory address and to implement
the weight lookup from the profile as a content-addressable data structure from the
on-board SDRAM (Bank A). As the upper limit to the vocabulary size in our case
is 16 million terms, we require 128 MB of memory; the PROCStar-IV provides
512 MB of on-board SDRAM. Note that it is possible to increase the vocabulary
size to exceed the memory capacity, with a very low performance penalty [14].

As explained in Sect. 2.4, the actual lookup and scoring system is quite straight-
forward: the input stream is scanned for header and footer words. The header
word action is to store the subsequent document ID and to set the corresponding

High-Performance FPGA-Accelerated Real-Time Search 231

Fig. 13 Implementing profile lookup and scoring

document score to 0; the footer word action is to collect and output the (document
ID, document score) pair if the score exceeds the threshold. For every two terms in
the document, first the Bloom filter is used to discard negatives and then the weights
corresponding to positives are read from the SDRAM. The score is computed for
each of the terms in parallel and added. The score is accumulated for all terms in
the document and finally the score stream is filtered against a limit before being
output to the host. Figure 13 summarises the implementation of the profile lookup
and scoring.

4.3.4 Discussion

The implementation above leverages the advantages of an FPGA-based design,
in particular the memory architecture of the FPGA: on a general-purpose CPU-
based system it is not possible to create a very fast, very low-contention Bloom
filter to discard negatives. Also, a general-purpose CPU-based system only has a

232 W. Vanderbauwhede et al.

single, shared memory. Consequently, reading the document stream will contend
for memory access with reading the profile terms, and as there is no Bloom filter,
we have to look up each profile term. We could of course implement a Bloom filter
but as it will be stored in main memory as well, there is no benefit: looking up a
bit in the Bloom filter is as costly as looking up the term directly. Furthermore, the
FPGA design allows for lookup and scoring of several terms in parallel.

4.4 FPGA Utilisation Details

Our implementation used only 17,652 of the 424,960 Logic Elements (LEs) or a
4 % utilisation of the logic in the FPGA, and 4,579,824 out of 21,233,664 bits
for a 22 % utilisation of the RAM. Of the 17,652 LEs utilised by whole design
on the FPGA, the actual Document Filtering algorithm only occupied 4,561 LEs,
which is less than 1 % of utilisation, and rest was used by the GiDEL Memory
IPs. The memory utilised for the whole design (4,579,824 bits) was mainly for the
Bloom Filter that is mapped on Embedded Memory blocks (i.e. M9k). The Quartus
PowerPlay Analyzer tool estimates the power consumption of the design to be 6 W.
The largest contribution to the power consumption is from the memory I/O.

5 Evaluation

In this section we discuss our evaluation results. We present our experimental
methodology and the data summarising the performance of our FPGA evaluation
and comparison with non-FPGA-accelerated baselines, and we conclude with the
learnings from our experiments.

5.1 Creating Synthetic Data Sets

To accurately assess the performance of our FPGA implementation, we need to
exercise the system on real-world input data; however, it is hard to get access to
such real-world data: large collections such as patents are not freely available and
governed by licenses that restrict their use. For example, although the researchers
at Glasgow University have access to the TREC Aquaint collection and a large
patent corpus, they are not allowed to share these with a third party. In this paper,
therefore, we use synthetic document collections statistically matched to real-world
collections. Our approach is to leverage summary information about representative
data sets to create corresponding language models for the distribution of terms and
the lengths of documents; we then use these language models to create synthetic
data sets that are statistically identical to the original data sets. In addition to

High-Performance FPGA-Accelerated Real-Time Search 233

Table 1 Summary statistics
from representative real-word
collections that we used as
templates for our synthetic
data sets

Avg. Avg.
Collection # docs doc. len. uniq. terms

Aquaint 1,033,461 437 169
USPTO 1,406,200 1,718 353
EPO 989,507 3,863 705

addressing IP issues, synthetic document collections have the advantages of being
fast to generate and easy to experiment with, and not taking up large amounts of
disk space.

5.1.1 Real-World Document Collections

We analysed the characteristics of several document collections—a newspaper
collection (TREC Aquaint) and two collections of patents from the US patent office
(USPTO) and the European patent office (EPO). These collections provide good
coverage on the impact of different document lengths and sizes of documents on
filtering time. We used the Lemur3 Information Retrieval toolkit to determine the
rank frequency distribution for all the terms in the collection. Table 1 shows the
summary data from the collections we studied as templates.

5.1.2 Term Distribution

It is well known (see, e.g., [15]) that the rank-frequency distribution for natural
language documents is approximately Zipfian:

f (k;s;N) =
1/ks

∑N
n=1 1/ns

where f is frequency of term with rank k in randomly chosen text of natural
language, N is the number of terms in the collection, and s is an empirical constant.
If s > 1, the series becomes a value of a Riemann ζ -function and will therefore
converge. This type of distribution approximates a straight line on a log–log scale.
Consequently, it is easy to match this distribution to real-world data with linear
regression.

Special purpose texts (scientific articles, technical instructions, etc.) follow
variants of this distribution. Montemurro [16] has proposed an extension to Zipf’s
law which better captures the linguistic properties of such collections. His proposal
is based on observation that in general after some pivot point p, the probability of
finding a word of rank r in the text starts to decay much faster than in the beginning.
In other words, in log–log scale the low-frequency part of the distribution has a

3www.lemurproject.org.

www.lemurproject.org

234 W. Vanderbauwhede et al.

steeper slope than the high-frequency part. Consequently the distribution can be
divided into two regions each obeying the power law, but with different slopes:

F(r) =

{
a1r+ b1 r < p

a2r+ b2 otherwise

We determine the coefficients a1,a2,b1,b2 from curve-fitting on the summary
statistics from the real-world data collections. Specifically, we use the sum of
absolute errors as the merit function combined with a binary search to obtain the
pivot. We then use a least-squares linear regression, with χ2 statistics as a measure
of quality (taken from [17]). A final normalisation step is added to ensure that
the piecewise linear approximation is a proper probability density function.

5.1.3 Document Length

Document lengths are sampled from a truncated Gaussian. The hypothesis that
the document lengths in our template collections have a normal distribution was
verified using a χ2 test with 95 % confidence. The sampled values are truncated at
the observed minimum and maximum lengths in the template collection.

Once the models for the distribution of terms and document lengths are de-
termined, we use these models to create synthetic documents of varying lengths.
Within each document, we create terms that follow the fitted rank-frequency
distribution. Finally, we convert the documents into the standard bag-of-words
representation, i.e. a set of unordered (term, frequency) pairs.

5.2 Experimental Parameters

Statistically, the synthetic collection will have the same rank-frequency distribution
for the terms as the original data sets. Consequently, the probability that a term in the
collection matches a term in the profile will be the same in the synthetic collection
and the original collection. The performance of the algorithm on the system now
depends on

• The size of the collection.
• The size of the profile.
• The “hit probability” of the Bloom filter, i.e. the probability that the profile

corresponding to a term has a non-zero weight.

To evaluate these effects, we studied a number of different configurations—with dif-
ferent document sizes, different profile lengths, and different profile constructions.
Specifically, we studied profile sizes of 4K, 16K, and 64K terms, the first two are
of the same order of magnitude as the profile sizes for TREC Aquaint and EPO as
used in our previous work [14] and the third, larger profile was added to investigate

High-Performance FPGA-Accelerated Real-Time Search 235

the impact of the profile size. We studied two different document collections: 128K
documents of 2,048 terms, which is representative for the patent collections, and
512K documents of 512 terms, similar to the Aquaint collection. Note that the total
size of the collection is not important for the performance evaluation: for both the
CPU and FPGA implementation, the time taken to filter a collection is proportional
to its size.

We evaluated four ways of creating profiles. The first way (“Random”) is by
selecting a number of random documents from the collection until the desired profile
size is reached. These documents were then used to construct a relevance model.
The relevance model defined the profiles which each document in the collection
was matched against (as if it were being streamed from the network). The second
type of profiles (“Selected”) was obtained by selecting terms that occur in very
few documents (less than ten in a million). This is most representative of real-
world usage, and we hence focus on these types of profiles in our results. For
our performance evaluation purpose, the main difference between these profiles is
the hit probability, which was 10−5 for the “Random” profiles and 5.10−4 for the
“Selected” profiles. For reference, we also compared the performance against an
“Empty” profile (one that results in no hits).

5.3 FPGA Performance Results

5.3.1 Access Time Measurements

The performance of the FPGA was measured using a cycle counter. The latency
between starting the FPGA and the first term score is 22 cycles. For the subsequent
terms, the delay depends on a number of factors. We considered four different
cases:

• “Best Case”: no contention on the Bloom filter access and no external memory
access

• “Worst Case”: contention on the Bloom filter access and external memory access
for every term

• “Full Bloom Filter Contention”: contention on the Bloom filter access for every
term but no external memory access

• “External Access”: no contention on the Bloom filter access, external memory
access for every term

These cases were obtained by creating documents with contending/not contending
term pairs and by setting all Bloom filter bits to 0 (no external access, which
corresponds to an empty profile) or 1 (which correspond to a profile that would
contain all terms in the vocabulary).

The results are shown in Table 2. As we read eight terms in parallel, the Best
Case (i.e. the case of no contention and no hits) demonstrates that the FPGA
implementation does indeed work at I/O rates, i.e. ΔtB = 1.

236 W. Vanderbauwhede et al.

Table 2 FPGA cycle counts
for different cases

Case #cycles/term

Best case 0.125
Worst case 27
Full Bloom filter

contention
1.2

External access 18

Table 3 Throughput of
document filtering application
(M terms/s) for (a) 256K
documents of 4,096 terms and
(b) 1M documents of 1,024
terms

Profile System1 System2 FPGA board

(a)
Random, 4K 269 416 3,090
Random, 16K 245 324 3,090
Random, 64K 223 379 3,090
Selected, 4K 118 232 3,088
Selected, 16K 107 164 3,088
Selected, 64K 82 136 3,088
Empty, 4K 710 1,564 3,090
Empty, 16K 711 1,664 3,090
Empty, 64K 710 1,338 3,090

(b)
Random, 4K 292 1,118 3,090
Random, 16K 288 1,014 3,090
Random, 64K 253 945 3,090
Selected, 4K 120 309 3,088
Selected, 16K 94 350 3,088
Selected, 64K 72 183 3,088
Empty, 4K 911 2,005 3,090
Empty, 16K 844 1,976 3,090
Empty, 64K 877 1,952 3,090

The most important result in Table 2 is the “Bloom Filter Contention”, which
shows that in our design ΔtC = 1.2. The case of “External Access”, which means
no contention on the Bloom filter and lookup of both terms in the external memory,
shows that ΔtS = 18.

As explained in Sect. 3, the Bloom filter contention depends on the number
of Bloom filter banks (8 parallel terms, 16 banks in the current design). The
probability for external access depends on the actual document collection and
profile, but as the purpose of a document filter is to retrieve a small set of
highly relevant documents, this probability is typically very small (<0.00001), as
demonstrated by the experiments discussed in the next section. Consequently, the
typical performance is determined by the cycle counts for Best Case and Bloom
Filter Contention. At a clock speed of 150 MHz this results in a throughput of 772.5
million terms per second (772 MT/s) per FPGA, as seen in Table 3. The model
presented in Sect. 3 gives 772.54 Mterms/s as the maximum achievable throughput
for a design with m = 16,n =8 with ΔtB = 0.125, ΔtC = 1.2, ΔtS = 18 running at
150 MHz. This proves the validity of the model, as well as showing that the effect
of the external memory access is indeed very small for a realistic profile.

High-Performance FPGA-Accelerated Real-Time Search 237

5.3.2 Comparison with CPU Reference Systems

Table 3 presents performance results for our FPGA implementation for various
workload types. Focusing on a selected profile of 16K terms for 128K documents,
our measured performance (shown in column 4) is 3,090 million terms/second for
the FPGA system (772.5 million terms/second per FPGA). Table 3 also shows the
sensitivity to various other parameters. The performance of the FPGA design is
comparable for different profile sizes and document sizes. However, as expected,
the performance varies based on different hit probabilities for different profiles.

To compare the FPGA performance against a conventional CPU, we carried out
the experiments discussed in Sect. 5.1 on an optimised multi-threaded reference
implementation, written in C++, compiled with g++ with optimisation -O3, and
run on two different platforms: System1 has an Intel Core 2 Duo Mobile E8435,
3.06 GHz and 8 GB RAM, 1,067 MHz bus; System2 has a quad-core Intel Core
i7-2600, 3.4 GHz, with 16 GB RAM, 1,333 MHz bus. A large amount of memory
is required for the datasets. We keep the entire data set in memory because the
memory I/O is much higher than the disk I/O. While an in-memory approach
might not be practical on a CPU-based system, on the FPGA-based system, this
is entirely practical as the PROCStar-IV board has a memory capacity of 32 GB.
For example, the Novo-G FPGA supercomputer, which hosts 24 PROCStar-IV
boards, can support a collection of 768 GB. Note also that the format in which the
documents are stored on the disk is a very efficient bag-of-words representation,
which is much smaller than the actual textual representation of the document.

5.3.3 Throughput

The throughput results are summarised in Table 3. For example, focusing on one
example case, for the selected profile with 64K terms and 1M documents, compared
to the 3,090 million terms/second performance achieved by our design, System2
system achieves 136 million terms/second and System1 system achieves 82 million
terms/second. This translates to a 38× speedup for the FPGA-based design relative
to System1 system and a 23× speedup relative to System2 system.

Additionally, examining the results for various workload configurations, the
FPGA’s performance is relatively constant across different workload inputs apart
from the “Full” profile. This bears out the rationale for our design: because in
general hits are rare, the FPGA works at the speed determined by I/O and Bloom
Filter performance. Unlike the FPGA-based design, the System2 system sees more
variation in performance with profile size (degraded performance with increased
profile size) and document size (degraded performance with larger documents) and
a bigger drop-off in performance between various profile types compared to the
FPGA-based design.

238 W. Vanderbauwhede et al.

Table 4 Power consumption
of document filtering
application (W) for 1M
documents of 1,024 terms,
profile: selected, 64K

#threads System1 System2 FPGA system

0 (idle) 40 67 35
1 67 93 61.5
2 67 107 68
4 67 135 74.5
8 67 141 81

5.3.4 Performance-per-Watt

We also measured the power consumption of our systems using the WattsUp Pro
power meter. The measured power consumption for the maximum number of threads
(Table 4) is 67 W for System1, 141 W for System2. In contrast, the FPGA-based
design consumes 81 W (35 W of which is consumed by the host system). Clearly, the
FPGA-based design achieves improved energy efficiency compared to the baselines.
The FPGA-based design achieves energy-efficiency improvements of 31× and 40×
for the System1 and System2, respectively. Though the FPGA speedup relative to
System1 was higher than that relative to System2, the overall energy-efficiency
improvements are very similar. Our results illustrate the potential improvements in
performance and energy efficiency relative to traditional baseline implementations.

5.3.5 Performance Versus Cost

We use the cost model presented in [18], which computes the equivalent monthly
cost of running a large data center.

The total cost of ownership according to [18] is

Ctot = CSPC +CO

CSPC = CS +CP +CC

where CSPC is the cost for space, power, and cooling (CS,CP,CC) and CO is the
operations cost. We assume that CO is the same for the data centre with and without
FPGA acceleration, and leave this factor out of the equation.

The cost for space, power, and cooling CSPC is calculated as

CSPC = ucS ·nuS +(1+K1+L1 +K2L1) ·ucP ·nuP (29)

with uc the unit costs (i.e. $/sqft/month for space, $/W/month for power/cooling)
and nu the number of units (sqft resp. W). The factors K1, K2, L1 represent power
and cooling burdening and load, as explained in the paper. Typical values are
$1,000/month for space per rack and $0.072/W/month for power.

The cost ITdep for the servers is calculated assuming $100,000 per rack with a
3-year estimated lifetime. The monthly cost for software, licensing and personnel
on a per-rack basis is estimated at $10,000.

High-Performance FPGA-Accelerated Real-Time Search 239

Table 5 Performance versus
cost

Cost breakdown CPU CPU+FPGA

Space 21M$/year
Power & cooling 52M$/year 29M$/year
IT infrastructure 59M$/year 248M$/year
Total 132M$/year 299M$/year
Performance (single system) 136 Mops/s 3,090 Mops/s
Performance/cost 32 Mops/$ 330 Mops/$

To compare the cost of a data center with and without FPGA acceleration, we
used the measures results from the previous section, actual prices for the servers
and some assumptions similar to Shah and Patel’s work:

• The server cost is $2,500 (including the cost of the rack based on 40 servers per
rack, as in Shah and Patel’s work).

• The measured power consumption for the reference system is 141 W, based
on the server used in this work power consumption; the measured power
consumption for the FPGA system is 81 W. We assume 10 % overhead for the
rack.

• We model the cost of the FPGA system at $8,000. This is not based on current
prices for high-end FPGA cards, because these prices tend to be very high
because of the low volume involved. A single 10 MW data centre would require
about 50,000 cards, which is much more than the total amount of high-end FPGA
cards sold today. Instead, we use the cost of an NVIDIA Tesla M2050 as a
reference, this is typically $2,500. We believe this is representative as the Tesla
board contains a GPU made with a similar process and of comparable gate count
as the FPGA, and a similar amount of SDRAM. As the GiDEL PROCStar-IV
board combines four FPGAs, it would be slightly cheaper than four separate
boards. Our baseline costs comparisons hence use $8,000 for the FPGA system,
but we also present results showing the sensitivity to this parameter.

• The license cost for the FPGA tools and the additional cost of developing the
application are one-off cost that do not scale with the number of servers, and are
therefore negligible for a large data center.

• Finally, based on our measurements, the FPGA-accelerated solution provides
an average speed-up of 10× compared to the CPU-only solution. We assume
that this speed-up will be exploited to create smaller data centres with the same
computational power.

We calculate the increase in costs as a result of adding an FPGA card to each
server, and based on these costs we calculate the performance/cost figure using the
performance results from the previous section (averaged over all “Random” and
“Selected” runs from Table 3). The results are shown in Table 5.

As we can see from the table, the main increase in cost is due to our high estimate
for the price of the FPGA cards: the IT infrastructure cost is about 4× higher
because of this. The cost for power and cooling decreases with almost a factor of
2 (from 52M$/year to 29M$/year); space costs are not affected. As the FPGA card

240 W. Vanderbauwhede et al.

Fig. 14 Performance/cost versus FPGA system cost and performance gains

results in a large increase in performance, the final Performance/Cost figures show
that the FPGA-accelerated solution is almost ten times more cost efficient than the
traditional one, for the typical case.

To explore the effect of the FPGA system’s cost and performance, we varied both
parameters as shown in Fig. 14. The graph shows the speedup required for a given
FPGA system cost to achieve a given factor improvement in performance/$. The
most important points are that even in the worst case the FPGA-based systems still
outperform the CPU-only solution, and that the potential for cost reduction is very
great.

6 Discussion

Analytical model. In the above sections we have used a preliminary implementa-
tion of our proposed design to validate the analytical model. The design does indeed
behave in line with the model, for the case of eight parallel terms and a 16-bank
Bloom filter. The performance is 772 M terms/s. This design is not optimal; as is
clear from the model, for 8 parallel terms, a 16-bank implementation does result in a
throughput of 66 % of the I/O rate of 1,200 M terms/s. Using 64 banks would achieve
90 %. Our aim was not so much to achieve optimal performance as to implement
and evaluate our novel design and compare it to the analytical model. We therefore
decided to limit the number of banks to 16 to reduce the complexity of the design,
as the implementation was undertaken as a summer project.

High-Performance FPGA-Accelerated Real-Time Search 241

In terms of the analytical model itself, there is some scope for further refinement,
in particular for the external access: we currently use a single access time for one and
more hits. Just like for the Bloom filter, we can include a fixed cost for concurrent
accesses on the external memory. We also want to refine the model to include the
effect of grouping terms, i.e. the n parallel terms are usually grouped per two or four
depending on the I/O width. This affects the waiting time on contention, as all terms
in a single group need to wait before a new group can be fetched. Currently, the
model assumes all terms are independent. For the case of two terms this assumption
is correct, for more terms there is a slight underestimation of the access time in the
case of contention. The counting problem for this case is complicated as it requires
enumerating all the possible groupings and working out the effect if one or more
accesses per group is in contention.

Improving benefits from FPGA implementation. While our results clearly
illustrate the potential benefits from FPGA-based acceleration, they can potentially
be improved further. The current design uses a 16-bank Bloom filter, which is not
optimal for scoring eight parallel terms. Extending the design to 64 banks would
increase the throughput by almost 40 % (from 772 to 1,053 MT/s). Furthermore, the
current Bloom filter combines four terms per bit. We can double the Bloom filter
size (i.e. 8 Mb), leading to two terms per bit, which will reduce the rate of false
positives accordingly. For the given application of scoring a known collection of
documents, we could also reorder the terms in each document to reduce contention.
Combined, these improvements can potentially result in a throughput very close to
the I/O limit of 1,200 MT/s.

Comparison of FPGA versus other alternatives.

ASIC Bloom Filter: As mentioned earlier, the main performance improvement from
our approach over a general-purpose CPU is that we can use bit-accessible Bloom
filters to discard negatives. If we could create an ASIC for this purpose it could
potentially have an order-of-magnitude better performance. It is important to note
that the FPGA runs at a very low clock speed (150 MHz), which is the main reason
why it is a low power technology. Consequently, the FPGA implementation can
only win by having more parallelism or by having a better memory architecture.
The Bloom filter is just that: a better memory-optimised architecture compared
to the CPU cache. In our particular implementation, we have 8× parallelism (per
FPGA) for accessing the document collection, and 16× for accessing the Bloom
filter. The former is dictated by the IO width and DRAM clock speed; the latter can
still be improved as explained above.

GPGPU Implementation: The same observations as for the CPU also apply to
GPGPUs, with different parameters: the GPU clock speed is usually only about
2× lower than the CPU (instead of 20× for the FPGA). Memory I/O is comparable.
Again, the crucial difference, and the reason why the FPGA can still outperform the
GPU for this application, is in the memory architecture. The GPGPU has a scratch
pad per streaming multiprocessor. However, the size of this memory is typically

242 W. Vanderbauwhede et al.

16 KB, up to 128 KB for high-end GPUs. This is much too small to store a Bloom
filter of the size that we require (4 Mb). So we can’t implement a high-bandwidth
Bloom filter on the GPU local memory to discard negatives. Furthermore, although
the GPU has a large number of data parallel threads inside each multiprocessor, they
contend for the global memory access, so this becomes the bottleneck. That means
that there is little benefit in the large number of parallel cores provided by the GPU
for this application.

Avenues for future work. Considering the wide potential application domain
of information filtering, and the need for power- and cost-effective system ar-
chitectures, our future work will explore a number of different avenues: novel
algorithms, low-power system architectures and high-level FPGA programming. We
see the latter as crucial: the key concerns which hamper the adoption of FPGAs are
the programming complexity and the lack of standardised APIs. The former can
be addressed by the use of high-level languages such as the C-based Impulse-C,
Catapult-C and others [19, 20] or the MORA framework [21], which offers a C++
API for high-level FPGA application programming. To address the latter, it is
important to put forward a standard. OpenCL [22] is the emerging industry standard
for programming of multicore and manycore devices, in particular GPUs. It provides
a flexible API for host–device communication and a C-like language for device
kernel programming. Adding FPGAs to the set of platforms supported by OpenCL
is therefore very attractive.

7 Conclusion

In this chapter we have presented our work on FPGA-based high-performance
real-time Information Filtering applications. Our novel design uses a low-latency
perfect Bloom filter to eliminate unnecessary accesses to external memory. We
have also presented analytical model for the throughput of the application. This
combinatorial model takes into account the access times to the Bloom filter and the
external memory, the access probability and the probability and cost of contention
on the Bloom filter. We show an excellent agreement between the model and the
actual measurements. The approach followed and the intermediate expressions are
applicable to a large class of resource sharing problems.

The analysis of the system performance clearly demonstrates the potential of
the design for delivering high-performance real-time search: we have shown that
the system can in principle achieve the I/O-limited throughput of the design. Our
current, sub-optimal implementation works at 66 % of its I/O rate and this already
results in speed-ups of up to a factor of 20 at 125 MHz compared to a CPU reference
implementation on a 3.4 GHz Intel Core i7 processor. Our analysis indicates how
the system should be dimensioned to achieve I/O-limited operation for different I/O
widths and memory access times.

High-Performance FPGA-Accelerated Real-Time Search 243

Finally, our work demonstrates of the potential of a system consisting of a
high-performance FPGA board with a low-power CPU host for use in large data
centres for processing information filtering or similar tasks: our results show that
this technology can lower the total cost of ownership of such a data centre with an
order of magnitude.

Acknowledgements The authors acknowledge the support from HP, who hosted the FPGA board
and provided funding for a summer internship. In particular, we’d like to thank Mitch Wright for
technical support and Partha Ranganathan for managing the project.

We’d like to acknowledge Anton Frolov who implemented the synthetic document model.
Wim Vanderbauwhede wants to thank Dr Catherine Brys for fruitful discussions on probability

theory and counting problems.

References

1. C.L. Belady, In the data center, power and cooling costs more than the it equipment it supports.
Electronics Cooling 13(1), 24 (2007)

2. J.M. Kaplan, W. Forrest, N. Kindler, Revolutionizing data center efficiency, in Uptime Institute
Symposium (2008)

3. W. Vanderbauwhede, L. Azzopardi, M. Moadeli, in 19th IEEE International Conference on
Field Programmable Logic and Applications (FPL09) (IEEE, New York, 2009), pp. 417–422

4. L. Azzopardi, W. Vanderbauwhede, M. Moadeli, in Proceedings of the 32nd International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR09) (ACM,
New York, 2009), pp. 664–665

5. Google n-gram project (2010), http://ngrams.googlelabs.com/ngrams/info
6. Lemur, The Lemur toolkit for language modeling and information retrieval (2005), http://www.

lemurproject.org/. Accessed 25th April 2012
7. V. Lavrenko, W.B. Croft, Relevance based language models, in Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval
(ACM, New York, 2001), pp. 120–127

8. V. Kindratenko, R. Wilhelmson, R. Brunner, T.J. Martinez, W. Hwu, High-performance
computing with accelerators. Comput. Sci. Eng. 12(4), 12–16 (2010)

9. GiDEL Ltd, PROCStar III, Data Book (2009)
10. B.H. Bloom, Commun. ACM 13(7), 422 (1970). doi:http://doi.acm.org/10.1145/362686.

362692
11. G. Andrews, K. Eriksson, Integer Partitions (Cambridge University Press, Cambridge, 2004)
12. C. Chen, K. Koh, Principles and Techniques in Combinatorics (World Scientific, Singapore,

1992)
13. Stratix iv handbook, http://www.altera.com/literature/hb/stratix-iv/stratix4 handbook.pdf.

Accessed 25th April 2012
14. W. Vanderbauwhede, L. Azzopardi, M. Moadeli, in International Conference on Field Pro-

grammable Logic and Applications, 2009 (FPL 2009) (IEEE, New York, 2009), pp. 417–422
15. R. Losee, J. Am. Soc. Inf. Sci. Technol. 52(12), 1019 (2001)
16. M. Montemurro, Phys. A Stat. Mech. Appl. 300(3–4), 567 (2001)
17. W. Press, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press,

Cambridge, 2007)
18. C. Patel, A. Shah, Hewlett-Packard Laboratories Technical Report (2005)

http://ngrams.googlelabs.com/ngrams/info
http://www.lemurproject.org/
http://www.lemurproject.org/
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdf

244 W. Vanderbauwhede et al.

19. J. Xu, N. Subramanian, A. Alessio, S. Hauck, in 2010 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines (IEEE, New York, 2010),
pp. 171–174

20. B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, A.D. George, Survey of C-based
application mapping tools for reconfigurable computing, in Proceedings of the 8th Interna-
tional Conference on Military and Aerospace Programmable Logic Devices (MAPLD’05)
(NASA, Washington, 2005)

21. W. Vanderbauwhede, M. Margala, S.R. Chalamalasetti, S. Purohit, A C++-embedded domain-
specific Language for programming the MORA soft processor array, in 2010 21st IEEE In-
ternational Conference on Application-specific Systems Architectures and Processors (ASAP)
(IEEE, Washington, 2010), pp. 141–148

22. J. Stone, D. Gohara, G. Shi, Comput. Sci. Eng. 12(3), 66 (2010). doi:10.1109/MCSE.2010.69

High-Performance Data Processing
Over N-ary Trees

Valery Sklyarov and Iouliia Skliarova

Abstract An N-ary tree (N ≥ 2) is a connected graph that does not contain
cycles and has up to N children for any node. It can be used efficiently to
represent data in well-structured hierarchical clusters and to process the data
through the parent–child relationships. Several branches of a tree can be handled
concurrently, the data hierarchy is described explicitly, and recursion can easily
be applied. Thus this model is very appropriate for parallel high-performance
computations in areas such as data processing (e.g. sort and search), priority
queue management, combinatorial searches and so forth. N-ary trees have been
profoundly studied (primarily for N = 2) and are supported by software libraries.
FPGAs have large embedded dual-port memories with programmable data width
for different ports, advanced logic capabilities, and a large potential for parallelism
and these features enable N-ary trees with data operations associated with their
nodes to be represented more compactly and processed more efficiently in FPGAs
than in software. A number of recent research efforts are dedicated to high-
performance computations in electronic circuits and systems without the direct
use of processing elements, which undoubtedly introduce many constraints (e.g.
pre-defined operand sizes, fixed instruction sets, limited concurrency and paral-
lelism). This chapter presents recent advances in this area and is composed of
four basic parts: (1) an overview of N-ary trees, their applications, and potential
varieties; (2) a discussion of common techniques for implementing and processing
N-ary trees in hardware, including their representation in memory, models of
computations and algorithms; (3) a description of hierarchical finite-state machines
(HFSMs) with extended capabilities (with datapath, in particular) that enable
N-ary trees to be processed in hardware and provide support for parallelism,
hierarchy and recursion; (4) examples, practical applications, experiments and

V. Sklyarov (�) • I. Skliarova
Department of Electronics, Telecommunications and Informatics, University
of Aveiro/IEETA/HIPEAC, Aveiro, Portugal
e-mail: skl@ua.pt; iouliia@ua.pt

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 8, © Springer Science+Business Media, LLC 2013

245

mailto:skl@ua.pt
mailto:iouliia@ua.pt

246 V. Sklyarov and I. Skliarova

comparisons of HFSMs. The last part shows that the circuits that have been
implemented are faster than the alternatives, and this conclusion is confirmed by
examples and experiments in several application areas.

1 Introduction

Tree-like structures (TLSs) have a wide variety of applications. They are frequently
used to support search algorithms [33], to sort data [3, 6], to manage priorities
in queues [6], to solve problems in combinatorial optimization [7, 57], to repre-
sent Boolean [2] and elementary [26] functions, to simplify image filtering and
segmentation [28], etc. Processing TLSs in software has been studied profoundly
and is well supported by standard libraries [3]. Advances in microelectronics,
embedded systems and application-specific hardware accelerators allow functions
and data structures currently in software to be mapped to hardware. Although there
is some progress in this area, to our knowledge alternatives to standard software
libraries have not been developed in hardware up to now. Design effort has been
focused mainly on accelerating particular applications, such as data sorting [25],
and Boolean constraints propagation in combinatorial search [7]. Using and taking
advantage of application-specific circuits in general and FPGA-based accelerators
in particular for such purposes has a long tradition. A number of research works
are targeted towards the potential of advanced hardware architectures and recently
developed systems such as graphical processing units (GPUs) and design techniques
such as systems and networks on chip. For example, the system [11] solves sorting
problem over multiple hardware shading units achieving parallelization through
SIMD operations on GPUs. The potential use of FPGAs for data processing has
been studied within projects [12, 14, 24] that implement traditional CPU tasks on
programmable hardware. The advantages of customized hardware as a database co-
processor are explored in several publications (e.g. [25]).

The most requested and most frequently used TLS is a binary tree [2,3,6,33,57].
However, N-ary (N > 2) trees and incomplete trees can be more advantageous for
a number of practical applications. This chapter reviews the features of TLSs and
suggests a novel technique for processing TLSs in hardware. The basic topics that
the chapter covers can be summarized as follows:

• The optimization of algorithms through advanced processing of TLSs and
parallelization.

• The processing of N-ary (N > 2) and incomplete trees.
• A new way of using previously developed methods and models, such as the tree-

walk tables proposed in [7] and combining a TLS with sorting networks.
• A computational model based on HFSMs.
• The implementation of software methods such as recursive calls in hardware not

directly supported by common hardware description languages.
• A demonstration of the effectiveness of the proposed techniques based on

prototyping in FPGA, numerous experiments and comparisons.

High-Performance Data Processing Over N-ary Trees 247

The remainder of this chapter is in six sections. Section 2 describes how trees
can be used to solve different computational problems. Section 3 suggests various
representations for trees in memory. Section 4 discusses computations over trees.
Section 5 is dedicated to synthesizable HFSMs with datapath that is considered to
be the core of computations. Section 6 describes implementations, experiments and
comparisons and discusses the results. The conclusion is given in Sect. 7.

2 Tree-Like Structures and Their Use for Solving
Computational Problems

2.1 Basic Definitions

A tree is a connected graph that does not contain cycles [3, 6, 33]. Figure 1a gives
an example of a binary tree that can be seen as a structure that represents some
operations (e.g. A, B, C, D, E) associated with tree nodes (e.g. a, b, c, d, e) and
relationships between the operations shown by tree edges (e.g. α , β , χ , δ). The tree
with associated operations is called a TLS. Note that in general the considered trees
are N-ary (N ≥ 2).

Operations associated with the nodes can be combinational (executing during one
clock cycle) or sequential (executing during more than one clock cycle). Besides,
such operations can be compositional, i.e. composed of other operations. Thus, we
can associate with a node either a statement in software language or a procedure
(subroutine). Branches of a tree can be processed in parallel (see Fig. 1b).

For many practical problems we need to traverse TLS (to visit each node) or to
search over TLS (to find out a node that satisfies some optimization criteria). For a
binary tree (BT) this (either traversal or search) can be done recursively beginning
with the root node and using the following general sequence of operations:

TREE-WALK SEGMENT (TWS)
if (node of BT exists) then

-- if required execute operations associated with the node
-- recursively execute TWS for one sub-tree (left sub-tree).
-- if such sub-tree does not exist, then skip this step;
-- if required execute operations associated with the node

a A

b B

e E

c C

d D

δ

α β

χ

a

b

e

c

d
Executing
in parallel

a b

Fig. 1 Tree-like structures:
(a) operations; (b) parallel
execution

248 V. Sklyarov and I. Skliarova

7 A

4 B

6 E

9 C

3 D
δ

α β

χ

7 A

4 B

6 E

9 C

3 D
δ

α β

χ

10 F
ε

0111

0100

cnt=1

cnt=1
1001
0011
0110
1010

3

1

2
cnt=4

a b cFig. 2 Sorting (a) and
resorting (b) integers.
Reapplying sorting criteria (c)

-- recursively execute TWS for the other sub-tree (right sub-tree).
-- if such sub-tree does not exist, then skip this step;
-- if required execute operations associated with the node

end if;

Since the target of the chapter is the implementation of computations in hardware
circuits, we will use descriptions (such as the TWS above) in VHDL notation
replacing statements and conditions with comments. Note that recursive calls are
not directly supported in VHDL and they will be realized using HFSMs described in
Sect. 5. We use recursive algorithms because of their clarity and compactness [42].
Alternatively, iterative algorithms can also be implemented relying on the proposed
technique.

2.2 Data Sort (Binary Trees)

Suppose that the nodes of the tree contain three fields: a pointer to the left sub-tree,
a pointer to the right sub-tree, and a value (e.g. an integer or a pointer to a string).
The nodes are maintained so that at any node, the left sub-tree only contains values
that are less than the value at the node, and the right sub-tree contains only values
that are greater. Such binary tree can easily be built and traversed permitting data to
be sorted and resorted applying and reapplying various criteria [3].

Let us consider examples. Figure 2a depicts a tree that was built for the following
sequence of integers: 7, 9, 4, 6, 3 applying criterion “sorting by value”. Operations
A, B, C, D, E compare a newly arriving value and allocate a new child node either
on the left or on the right-hand side of the analyzed node. If a newly arrived value
is equal to the value in the analyzed node, then an associated counter (cnt) is
incremented. Suppose a new integer 10 is arriving. Resorting is executed very fast
because just a new node is allocated on the tree (see Fig. 2b). The result of ascending
sort is produced by traversing the tree from left to right: 3, 4, 6, 7, 9, 10 [3]. Similarly
we can get the result of descending sort traversing the tree from right to left.

Let us now apply a new criterion of sorting, such as that the number of ones
in binary codes of the integers looking at each level of the tree from left to right
(i.e. 7, 4, 9, 3, 6, 10). The new tree is shown in Fig. 2c. Now the binary codes
(7-0111, 4-0100, 9-1001, 3-0011, 6-0110, 10-1010) are considered instead of the
integers. Sorting is implemented by the number of ones and such counting operation
is frequently required for solving combinatorial problems [57].

High-Performance Data Processing Over N-ary Trees 249

Root base
index 0000

0000 Base
index 0100

0011 Base
index 1000

0001 No
match

0010 No
match

00 01 10 11

0100 No
match

0101
clause 1
index 1

0110 No
match

0111 No
match

1011 No
match

00
01

10 11
00 01

10
11

1
st

memory lookup

2ndmemory
lookup

X1

1000
clause 2
index 1

X12

1001
clause 2
index 2

1010
clause 1
index 2X13 X14

Fig. 3 Clause index tree walk from [7]

An important advantage of trees compared to alternative models is an opportunity
of rapid adaptation to potential modifications, such as that considered in Fig. 2.

2.3 Combinatorial Problems (N-Ary Trees)

Many practical applications require combinatorial algorithms [7, 13, 35, 57] to be
executed. Let us consider the satisfiability problem (SAT) and a search tree that was
used in [57]. The root of the tree corresponds to the initial situation in solving the
regarded task. Edges of the tree lead to child nodes representing simplified Boolean
formulae. Every pair of child nodes permits to remove one variable from the formula
assigning it 0 for one child and 1 for another child.

In other applications, such as [7], the tree permits to find out clauses containing
a given variable. Figure 3 demonstrates an example [7]. Clauses in a given Boolean
formula are partitioned into groups that are processed by multiple inference engines
in parallel (one group per engine). Each engine is pipelined and has two stages. The
first stage is called clause index walk, which takes a variable assignment from a
given queue and searches for a clause with the variables using an N-ary tree (N ≥ 2)
(all necessary details can be found in [7]). Suppose the variable index has a width
of M (so, 2M variables can be handled), and every non-leaf tree node has N = 2m

children (i.e. the tree will be M/m deep). Given a non-leaf node, the address of its
leftmost child in the tree-walk table is called the base index [7] of the node. The rest
of the children are ordered sequentially, following the leftmost child. Therefore, to
locate the ith child, the index can be calculated by adding i to the base index. If a
child is not associated with any clause, a no match (−1 in [7] and 0 in our case) tag
is stored in the entry. If for a node, all of its N = 2m children have no match, then
the tree is not expanded and a no match tag is stored in the node itself.

An example from [7] is shown in Fig. 3 for M = 4, m = 2 and N = 2m = 4. There
are two clauses, (X1 ∨X14) and (X12 ∨X13), with variable indexes 0001, 1100, 1101

250 V. Sklyarov and I. Skliarova

7, 3

9, 25, 5

6, 81, 4 10,1

a b

Fig. 4 TLS for priority management: multi-purpose merged binary tree (a); unwinding the merged
tree to separate binary trees (b)

and 1110. Suppose the input variable is 1101. The base index of the root node is
0000 and the first two bits of the input are 11. The table index is the sum of two:
0000+ 11= 0011. Using this table index, the first memory lookup is conducted by
checking the 0011 entry of the table. This entry shows that the next lookup is an
internal sub-tree root with the base index 1000. Following this base index, adding
it to the next two bits of the input 01, we reach the leaf node 1000+ 01 = 1001.
This leaf node stores the variable association information; in this case, the variable
is associated with X13 of the clause two. Note that we process now N-ary trees and
N > 2.

2.4 Priority Management (Merged Binary Trees)

Let us consider a system whose functionality is controlled by a sequential flow of
external instructions. The number of instructions is not known in advance and the
input instruction transfer rate is not the same as the instruction processing speed
in the system. Thus, it is necessary to use input buffering. For some practical
applications the instructions have to be processed non-sequentially. Each instruction
is provided with additional field(s) indicating priority or some other parameters
required for the proper selection of instructions. A priority buffer is a device that
stores an incoming (sequential) flow of instructions (or other data) and allows
outputs to be selectively extracted from the buffer for processing.

Buffers of such type are needed for numerous practical applications [9, 18, 19,
21, 50, 52]. For example, in [21] a priority buffer (PB) stores pulse height analyzer
events. Real-time embedded systems [9] employ priority preemptive scheduling in
which each process is given a particular priority (a small integer) when the system is
designed. At any time, the system executes the highest-priority process. One of the
proposals of [50] is to create a smart agent scanning and selecting data according
to their priority. We believe that priority management might be also very useful for
such applications that are described in [32].

One potential technique for hardware implementation of a PB is proposed in
[44] and it defines the PB as a multi-purpose TLS that is a merged binary tree.
Let us consider the graph in Fig. 4 that permits to find out instructions by their

High-Performance Data Processing Over N-ary Trees 251

priorities. Depending on situation either the first (p1) or the second (p2) priority
criterion (p1, p2) is taken into account. The graph in Fig. 4a is built for the following
sequence of priorities: (7,3), (9,2), (5,5), (6,8), (1,4), (10,1). Solid edges correspond
to binary tree for the first priority criterion and dashed edges—for the second
priority criterion. Thus, the tree in Fig. 4a is a merger of two trees shown in Fig. 4b
for the following two sets of priorities 7, 9, 5, 6, 1, 10 and 3, 2, 5, 8, 4, 1. The TLS
permits to manage priorities easier [44] than other known methods.

2.5 Multi-Level Data Sort (K-Trees)

Suppose we need to sort M-bit data items. Let us apply the method described
in Sect. 2.2 to (M −K) most significant bits and sort the remaining K bits using
another method. In this case up to 2M−K data items will be sorted by a binary
tree and up to 2K data items associated with the nodes of the tree will be sorted
differently applying, for example, sorting networks [6,15] not requiring control flow
of instructions or branches. Besides, sorting networks are parallel in nature and in
many cases they can be implemented by combinational circuits. However, sorting
networks are suitable in hardware for relatively short sequences of data whose length
is known a priori [25]. We suggest combining TLSs with sorting networks (or with
some other blocks for fast processing of the attached to the nodes data items) based
on two potential techniques that are: (1) using K-trees; and (2) tree-walk that is
similar to [7]. Both techniques are explained below on examples.

K-tree is a tree with up to 2K (data) items associated with each node. Suppose
M = 6 and we need to sort the following integers: 49, 7, 58, 48, 5, 51, 50, 59,
54, 57, 55 (arriving sequentially from left to right). Figure 5a depicts the binary
tree for sorting described in Sect. 2.2. Let us replace the integers with their binary
codes and let us sort just data items corresponding to M −K most significant bits.
For K = 2 (M −K) = 4-bit values have to be sorted and they are shown in italic
font: 110001, 000111, 111010, 110000, 000101, 110011, 110010, 111011, 110110,
111001, 110111. Figure 5b presents the resulting binary tree. There are up to 2K = 4
integers associated with each node of the tree. For example, there are four integers
associated with the root 1100. They correspond to codes 110001, 110000, 110011,
110010 in the sequence given above and they are 49, 48, 51, 50 with the less
significant bits 01, 00, 11, 10 respectively. There are four different integers for
M −K = 4 most significant bits: (1) 1100 (12); (2) 0001 (1); (3) 1110 (14); and
(4) 1101 (13) and they are sorted using the tree (see Sect. 2.2). Up to 2K integers
associated with each node of the tree in Fig. 5b are handled using sorting networks,
which will be discussed later in Sect. 4.

The tree-walk technique [7] can be used to provide faster traversal of N-ary trees
(N > 2) instead of binary trees. Let us consider four integers from the example
above: 1100 (12), 0001 (1), 1110 (14), 1101 (13). As you can see, the values 12, 1,
14, 13 are the same as indexes of variables in the example of Sect. 2.3 and in [7]. This
is done to demonstrate common features of different problems that might be solved

252 V. Sklyarov and I. Skliarova

c

7

49

58

485

50

51 59

57

54

55

1100
(12)

0001
(1)

1101
(13)

1110
(14)

49,48,51,50

7,5 58,59,57

54,55

a b

1000 No
match

00 01
11

00 01 10 11

00 01 10 11

2nd
 memory

lookup

1st
 memory lookup

10

0000 Base
index 1000

Root base
index 0000

0001 No
match

0010 No
match

1001:
5, 7

1010 No
match

1011 No
match

0100:
48,49,50,

51

0101:
54,55

0110:
57,58,

59

0111 No
match

0011 Base
index 0100

Fig. 5 TLSs for sorting: binary tree (a), K-tree (b), N-ary tree (c)

over TLS. Suppose, M −K = 4, m = 2. Figure 5c depicts N-ary tree (N = 2m = 4)
for our example. Visually the tree in Fig. 5c is more complicated than the trees in
Fig. 5a, b. However, Fig. 5c permits to represent N-ary trees in memory in a very
compact form and to minimize the number of memory accesses.

2.6 TLS and Address-Based Data Sort

The main idea of the address-based data sort [47] is rather simple. As soon as a
new data item is received, its value V is considered to be an address of memory to
record a flag (1). We assume that memory is zero filled at the beginning. Since data
in memory are placed in the sorted order with some “holes” between the values “1”
(indicating the availability of data), sorting is done by reading data in increasing or
decreasing addresses. This method is obviously simple and effective, but there are
some problems listed below.

First, the size of memory is large. Suppose, we need M-bit data to be sorted and
M = 32. . .64. Thus, the number of one-bit words becomes 232. . .264. Second, if we
sort M-bit data, many often, the number of input data items Q is significantly less
than 2M (Q � 2M) especially for large values of M. Thus, we can expect a huge
number of empty positions in memory space without data (i.e. “holes” with zeros).

High-Performance Data Processing Over N-ary Trees 253

This situation is somehow similar to the SAT problem where we want to consider
a formula with Q clauses and M variables and Q � 2M. Thus, we can apply some
ideas inherited from the SAT such as the tree-walk tables proposed in [7]. Sorting
using N-ary trees (N > 2) that is based on tree-walk tables is described in [47].

3 Representation of Tree-Like Structures in Memory

In hardware implementation TLSs have to be kept in memory. Potential represen-
tations of trees in software (namely array and pointer-based representations) are
discussed in [3]. We briefly describe array-based technique and its implementation
in hardware in Sect. 3.1. Then in Sects. 3.2–3.4 we propose alternative representa-
tions and additions allowing N-ary and K-trees to be stored.

3.1 Array-Based Representation

Figure 6 demonstrates two ways for array-based representation of the tree from
Fig. 1a.

Each tree node in Fig. 6a is placed in one memory word containing a data item
(such as a, b, c, d, e) and two addresses: LA—address of the left sub-tree and RA—
address of the right sub-tree. Since address 0 cannot appear in the fields LA and RA,
this value (i.e. 0) is used to indicate absence of sub-trees. Figure 6b lists LA and RA
in memory words at addresses following the relevant data item.

3.2 Coding Nodes in K-Trees

From Fig. 5b, c we can see that more than one item can be associated with each
node. For example, in Fig. 5b four items 49, 48, 51, 50 are associated with the node
1100 (12). To represent such items we will use positional encoding with 2K bits for

b

a

0 a α=1 β=2
1 b χ=3 δ=4
2 c 0 0
3 d 0 0
4 e 0 0

ad
dr

es
s

no
de

LA R
A

address 0 1 2 3 4 5 6 7 8 9 10 …
node, LA, RA a 3 6 b 9 12 c 0 0 d …….

Fig. 6 Array-based representation of tree-like structures in two possible formats (a) and (b)

254 V. Sklyarov and I. Skliarova

0

00
00

10
00

1

00
01

-1
(0

)

2

00
10

-1
(0

)

3
00

11
01

00

4
01

00
11

11

5
01

01
00

11

6
01

10
01

11

7
01

11
-1

(0
)

8
10

00
-1

(0
)

9
10

01
01

01

10
10

10
-1

(0
)

11
10

11
-1

(0
)

Address10

Address2

Data/{LA,RA}

Fig. 7 Tree-walk table
for Fig. 5c

the relevant K-tree. In such code Biti = 1 if and only if there exists an item associated
with the considered node in which K less significant bits are i2 (i.e. binary code of
i), else Biti = 0. For example, there are two items 7 and 5 associated with the node
0001(1) in Fig. 5b. Binary code of 7 is 000111 and K = 2 less significant bits are
112 = 3. Thus, bit 3 in 2K code is 1. Analogously, bit 1 is equal to 1 and other bits
are equal to 0: 0101 (the bits are numbered beginning with 0 from left to right).

3.3 Tree-Walk Tables

Let us represent in memory an N-ary tree that is (M−K)/m deep and N = 2m. The
method of coding will be explained on an example in Fig. 7 for the tree in Fig. 5c.

We remind that TLS in Fig. 5c was built for the following integers: 49, 7, 58, 48,
5, 51, 50, 59, 54, 57, 55. The first data item is 4910 = 1100012, and we will sort
M−K = 4 most significant bits shown in italic. The first 2m = 4 words of tree-walk
table (with the addresses 0000, 0001, 0010, 0011) have to be used for pointing out
child sub-trees from the root of N-ary tree and N = 2m = 4 (see also Sects. 2.3, 2.5).
Thus, for the first data item (4910 = 1100012) the first free address (0100) can be
used as a base index for the child sub-tree 11. The base index for the child sub-tree
11 is 0011 (i.e. base address of the root +11 [7]). So, at the address 3 (0011) we will
write the value 0100 and at the address 0100+00= 0100 we have to code the value
49, i.e. to write 1 in the Bit1: 0100 (the details of coding were given in Sect. 3.2).
The second data item is 710 = 0001112. Using similar steps we write the first free
address 1000 (the addresses 0100, 0101, 0110, 0111 have already been reserved for
the sub-tree 0011) at the address 0000 (i.e. base address of the root +00 [7]). At
the address 1001 (base address= 1000+ 01) the value 0001 has to be written. The
third data item is 5810 = 1110102. Thus, at the address 0100+ 10= 0110 the value
0010 has to be recorded. The fourth data item is 510 = 0001012. Thus, at the address
1000+01= 1001 the value 0101 has to be written (a new bit need to be changed in
the previous value 0001).

The steps described permit to fill in the tree-walk table in Fig. 7. The size of the
resulting table is 12 words ∗ 4 = 48 bits; the size of arrays for Fig. 5a, b is 154 and
32 bits, respectively.

High-Performance Data Processing Over N-ary Trees 255

Data LA RA

D
at

a
 L

A
 R

A

D
at

a
 L

A
 R

A

Buffer
register

(BR)

T
re

e
m

em
or

y

Fig. 8 Using dual-port
memory

3.4 Dual-Port Memories

An additional optimization can be achieved for binary trees if we use dual-port
memories permitting two words to be accessed simultaneously through LA and RA
of a buffer register (BR) [23]. Thus, we can store in each word data, LA and RA for
the left and for the right nodes (see Fig. 8).

As a result, we are capable to make two tests at the same time, namely check if a
left/right sub-tree exists for an item in the BR and if there is a left/right sub-tree for
any children of the node in BR. This permits to reduce time required for traversal or
search [23].

4 Computations Over Tree-Like Structures

The following three types of computations are discussed:

• Sequential computations.
• The use of accelerators executing computations associated with nodes of K-trees.
• Parallel computations.

4.1 Sequential Computations Over Binary Trees

We base the proposed sequential computations on two general procedures that are:
(1) building a TLS and (2) traversing/search over the TLS.

In case of simple sorting (see Fig. 5a) the tree is built using the following pseudo
code:

-- Receive a new data item i
BUILD TREE SEGMENT (BTS)
if (j is less than the value in the node) then

-- create a new left child or call BTS for the left child
else (j is greater than the value in the node) then

256 V. Sklyarov and I. Skliarova

Call z0 again for
μ node as a root

yes

Beginz0

m sub-tree
exists

no

Output data from
the last root

sub-tree
exists for m

node

yes

no

Output data from
μ node

z1()μμ
yes

no

μ sub-tree
exists

sub-tree
exists form

node

yes

Output data from
μ node

Call z0 again for
μ node as a root

no

End

Replace m with “left”
for this gray fragment

Replace m with “right”
for this gray fragment

(m)z1

Fig. 9 Traversing algorithm

-- create a new right child or call BTS for the right child
else -- increment a counter associated with the node
end if;

The tree is traversed with the aid of TREE-WALK SEGMENT from Sect. 2.1. Using
dual-port memories permits traversal of the tree to be performed faster [23]. There
are two basic fragments in the proposed algorithm z0 (see Fig. 9) designated z1(μ)
and shown in grey. Initially, the BR (see Sect. 3.4) holds the root of the sorting tree.
The top module z1(μ = left) examines left sub-trees. If a left sub-tree (node) exists,
then it is checked again to determine whether the left sub-tree also has either left or
right sub-trees (nodes). This is possible for dual-port memories. If there is no sub-
tree from the left node, then the value of the left node is the leftmost data value and
can be output as the smallest. In the last case the node in the BR holds the second
smallest value and the relevant data value is sent to the output. The right module
z1(μ = right) performs similar operations for right nodes.

If you look at Fig. 9 you can see that the module z1(μ) on the left is exactly the
same as the module z1(μ) on the right. Indeed, just the argument μ is different:
in the first case μ = left and in the second case μ = right. Thus, we can benefit
from potential hierarchy and use the same module z1(μ) (and, consequently, the
same circuit) with different arguments. Acceleration comparing with TREE-WALK

SEGMENT is achieved because two subsequent tree nodes can be verified instead
of one.

In case of search over TLS the tree is built using similar technique.

4.2 Sequential Computations Over N-Ary Trees

One potential way is the design of an application-specific engine, such as that is used
for tree-walk tables in [7]. Let us consider the TLS in Fig. 5c. N-ary tree (N = 4 for
our example) can be built as follows:

High-Performance Data Processing Over N-ary Trees 257

max value 3
value 1
value 2
value 3

0

1

1

1

012=110
102=210
102=310
102=310

counter = 3
111000 or 01 = 1110012=5710
111000 or 10 = 1110102=5810
111000 or 11 = 1110112=5910

Fig. 10 Implementation details based on sorting networks

1. Allocate the root and N empty children.
2. Take data item.
3. if (a leaf is not reached) then

create child or find out and jump to the existing child;
else modify code for the leaf

4. Repeat point 3 for all data items.

Traversing N-ary trees will be considered in Sect. 5.3.

4.3 Processing Incomplete Tree-Like Structures

An example of incomplete TLSs is a K-tree, i.e. a tree with up to 2K (data) items
associated with each node (see Sect. 2.5). The idea of incomplete solutions has
already been used in some problems of combinatorial search [35, 36, 49], where
an initial incomplete solution of a problem was found in software and the produced
intermediate results were further processed in fast hardware accelerators giving the
final solution. Such decomposition was done because faster customized hardware
does not permit to handle data structures above some pre-defined complexity. We
will use incomplete TLSs in a similar manner. At the beginning traversal/search
procedures over TLSs will be executed in such a way that leads to some constrained
intermediate solutions that further can be processed more efficiently using models
and methods that differ from TLSs. This technique will be considered separately for
traversal and search.

Suppose we build a K-tree (see examples in Fig. 5b, c) and we need to traverse
the tree to produce an ordered set of data items. Each node of K-tree holds a set of
items. These sets will be ordered using a better way such as sorting networks [6,15]
or some other application-specific combinational circuits (see, for example, [47]).
One example is given in Fig. 10. Comparators needed for the networks are shown
through the known Knuth notation [15]. Any set of items associated with nodes is
represented by a Boolean vector v. For example, a set holded by the node 0110 in
Fig. 5c is represented by v= 0111 (see Fig. 7). Vector v is used to assign K-bit values
associated with a node to inputs of a pre-defined sorting network. It is done through
the following expression:

for all i within range 0, . . .,2K-1 do if v(i) = 0 then 2K-1 else i

258 V. Sklyarov and I. Skliarova

49 7 58

50 548 59 51

545557

1st

tree
2nd

tree
3rd

tree

Fig. 11 Sorting data based
on P = 3 trees that are built
and processed in parallel

Thus, if v(i) is 0, the relevant input of sorting network is assigned the maximum
value, else the actual value i. The number of values that have to be taken from the
network is determined by a counter indicating the amount of associated values for
each group. The counter is a combinational circuit that takes input v and outputs
the number of ones in v. Figure 10 shows the vector v = 0111 for our example (for
which the counter is equal to 3) and the network that outputs the sorted values 1, 2
and 3. Since M−K bits of the code for the node 0110 in Fig. 5c are 1110, then the
final sorted values are 1110012 = 5710, 1110102 = 5810 and 1110112 = 5910. M−K
bits of the code equal to 1110 are produced when we traverse the tree.

When we use TLSs for search problems we construct the tree incrementally.
As soon as a new node of the tree corresponds to an intermediate solution that is
under pre-defined constraints, the further steps are executed differently activating
an engine for fast processing.

4.4 Parallel Computations

For parallel computations over TLSs we suggest a parallel algorithm (PA), which
permits to construct more than one tree in parallel and executes traversal/search
procedure over multiple trees.

Let us consider data sort over binary trees discussed in Sect. 2.2. The parallel
algorithm permits P trees (P > 1) to be created. The implemented method [22] will
be demonstrated on an example for P = 3. In this case the 1st, the 4th (P+ 1), the
7th (2P+ 1), etc. incoming data items are included in the 1st tree. Consequently,
the 2nd, the 5th (P+ 1)+ 1, the 8th (2P+ 1)+ 1, etc. data items are included in
the 2nd tree, and the 3rd, the 6th (P+ 1)+ 2, the 9th (2P+ 1)+ 2, etc. data items
are included in the 3rd tree. Figure 11 shows P = 3 trees that are built for the same
sequence of input data that was used in Sect. 2.5, i.e.: 49, 7, 58, 48, 5, 51, 50, 59,
54, 57, 55 (arriving sequentially from left to right).

From Figs. 5a and 11 we can see that the maximum depth of each individual tree
in the parallel algorithm is less than the depth of a simple binary tree.

Suppose a set of trees (such as that are shown in Fig. 11) is built and each tree
is stored in the relevant memory. Since P = 3, there are totally P = 3 blocks of
memory. To output the sorted data the following method is proposed:

High-Performance Data Processing Over N-ary Trees 259

1. The trees in P = 3 memories are traversed in parallel and there are also P = 3
dual-port output memories. Data items from the tree p (1 ≤ p ≤ P) are saved
in the output memory p applying the considered above method for sequential
computations and using the first port.

2. This second point is executed in parallel with point 1 above but the second port
of the output memories is used. At the beginning, all the addresses point to the
first cell of the corresponding output memories. When all P addresses contain
data items the smallest one (or the greatest one) is extracted and the address
of the appropriate memory (from which the data item has been extracted) is
incremented.

3. Points 1 and 2 above are repeated until all data items are sorted.

The considered algorithm builds shallower trees and requires smaller number of
steps than for a single tree. Thus, we can reduce time for both the construction of
the TLS and the output of data from the TLS [22].

4.5 Hardware Architecture

Handling TLSs is provided by a processing engine (PE) interacting with memory
that is used to store initial, intermediate and final results.

The memory keeps TLS. PE implements the required functionality by activating
modules that execute operations needed for each node and selects/creates the next
node. Since nodes can be processed recursively (see Sect. 2.1), we need a technique
allowing recursive activation of the modules.

Figure 12a shows the basic functions of modules. After finishing operations
needed for the selected node modules execute either forward or backward steps
for jumping to the next node (see Fig. 12a). A forward step jumps to the next node
or creates a new node (see Fig. 12). A backward step returns back to the parent node
in order to make some changes and to continue forward/backward propagation.

PE is based on HFSM [45] linked with necessary datapath components and
allowing hierarchical and recursive execution of modules. Thus, similar to FSMs
with datapath [5] we can talk about HFSMs with datapath.

5 Hierarchical Finite State Machines

HFSMs with datapath [5, 41, 45] provide support for hierarchy and recursion and
permit the modules described in Sect. 4.5 to be implemented in hardware. PE of
other types [10, 16, 20, 29, 51, 53] reviewed in [39] can also be used.

Hierarchy in an HFSM [41, 45] is supported by a stack memory. There are two
types of HFSMs [45]: HFSMs with explicit modules and HFSMs with implicit
modules. HFSMs with explicit modules includes two stacks (a stack of states—the

260 V. Sklyarov and I. Skliarova

1. Executing operations;
2. Selecting child node

1. Executing operations;
2. Selecting child node

1. Executing operations;
2. Selecting child node

Module
Module

execution

Recursive Module
execution

Recursive Module
execution

Module Module

1. Executing operations;
2. Forward or backward

propagation

Module
P

C C

P – parent; C – child

P

C C

Forward propagation Backward propagationa

b

Fig. 12 Modules of PE and their basic functions

FSM stack and a stack of modules—the M stack) and a combinational circuit (CC)
with datapath, which are responsible for state transitions and operations within any
active module selected by the stack of modules (M stack). An HFSM with implicit
modules includes just one stack that keeps track of returns from the currently active
module. Synthesis of HFSMs with explicit and implicit modules is considered in
detail in [45]. So, we focus here on the use of HFSMs for implementing PE.

5.1 Specification of Modules and Synthesis of Hardware
Circuits

Let us describe the modules’ functionality using hierarchical graph-schemes (HGS)
[41], which are constrained flow-charts (all necessary details can be found in [41,
45]). Figure 9 can be seen as an example of HGS.

Synthesis of HFSM with explicit modules from HGS includes the following
steps:

1. Defining HGSs for modules z0, . . .,zQ−1 and coding the modules z0, . . .,zQ−1 by
codes K(z0), . . .,K(zQ−1), where Q is the number of required modules.

2. Marking the HGS for each module with labels a0, . . .,aH−1 [45] that will be
further considered as HFSM states (H is the maximum number of labels that
are used for any individual HGS).

3. Describing HFSM stacks in hardware description language (we will use VHDL).
4. Customizing VHDL templates [45] for implementing state transitions, output

signals that control memory and functions of datapath.

High-Performance Data Processing Over N-ary Trees 261

Beginz 0

z1(left)

Output data from
the last root

z1(right)

End

Call z0 again for
m node as a root

yes

Begin

m sub-tree
exists

no

sub-tree
exists for m

node

yes

no

Output data from
m node

End

z1(m)

a3

a4

a0

a1

a2

a3

a2

a1

a0

Fig. 13 Specification of modules for synthesis of HFSM

5. Synthesis of hardware circuits from customized VHDL templates.
6. Implementation of the circuits in hardware (we will use FPGAs for prototyping

purposes).

Examples of specification, synthesis and implementation in hardware will be
discussed in subsequent sections for traversing TLSs and search over TLSs.

5.2 HFSM for Traversing Tree-Like Structures (Binary Trees)

In this section we demonstrate all steps needed to design hardware circuits
implementing the algorithm in Fig. 9. At the beginning the algorithm is converted to
hierarchical specification in form of HGS (see Fig. 13).

The first two hierarchical calls z1(left) and z1(right) require argument (either left
or right) for z1. When we call z1(μ) we configure a mux that takes data from left
sub-tree for z1(left) and from right sub-tree for z1(right). These data are supplied for
processing in z1(μ) (see Fig. 13).

Stack memories in HFSM are described by reusable VHDL code given in [45].
The template [45] in point 4 (see Sect. 5.1) can be customized as follows:

process (clk, rst)
--. . .
case M stack (StackPtr)
when z0 =>

push<=‘0’′; pop<=‘0’;
case FSM stack(StackPtr) is
when a0 =>N S<= a1;
when a1 =>N S<= a2; Arg<=left; N M<= z1; push<= ‘1’;

262 V. Sklyarov and I. Skliarova

when a2 =>N S<= a3;
-- outputting data item from the last root

when a3 =>N S<= a4; Arg<=right; N M<= z1; push<= ‘1’;
when a4 =>N S<= a4; pop<=‘1’;
when others=>null;
end case;

when z1 =>
push<=‘0′; pop<=‘0’;
case FSM stack(StackPtr) is
when a0 =>

if(left/right sub-tree does not exist) then N S<= a3;
elsif (sub-tree exists for left/right node) then N S<= a2;
else N S<= a1; end if;

when a1 =>N S<= a3;
-- outputting a data item from left/right node

when a2=>N S<=a3; N M<=z0; push<=‘1’;
when a3=>N S<=a3; pop<=‘1’;
when others=>null;
end case;

when others => null;
end case; --
end process;

Here StackPtr is a stack pointer common to both M stack and FSM stack,
push/pop—signals that increment/decrement the stack pointer, N S—signal for
the next state, N M—signal for the next module, Arg—signal that controls the mux,
selecting data for either left or right sub-trees. Encoding of modules and states is
done in VHDL through specifying the proper types:

type MODULE TYPE is (z0, z1);
signal N M: MODULE TYPE;
type STATE TYPE HFSM is (a0, a1, a2, a3, a4);
signal N S: STATE TYPE HFSM;

VHDL code above is synthesizable. Synthesis and implementation of the circuits
can be done in commercially available CAD systems, such as Xilinx ISE for
implementation on the basis of FPGAs.

5.3 HFSM for Traversing Tree-Like Structures
(N-Ary Trees, N > 2)

Recursive traversal of N-ary trees for N = 2 and N > 2 is very similar. Let us
consider Fig. 5c assuming that sorting has to be done using N-ary tree (N = 4) and
networks described in Sect. 4.3 are not used. To satisfy such requirement the tree in

High-Performance Data Processing Over N-ary Trees 263

5
48

7

1001:
5, 7

1010 No
match

1011 No
match

0100:
48,49,50,

51

0101:
54,55

1011
0110:
57,58,

59

50

49 51

54 55

57 58 59

Fig. 14 Extending the tree in Fig. 5c

Fig. 5c has to be slightly modified in a way shown in Fig. 14 where the nodes 1001,
0100, 0101 and 0110 of the tree in Fig. 5c are extended. Non-shown edges lead to
no match nodes.

Recursive traversal of the updated tree can be done with the aid of the following
C function [47]:

void sort (tree node* node) // state a0
{ static int level = 0;

if (node != 0) {
if (level == depth)

{ if (node->1 != 0) // output data – state a1
if (node->lm != 0) // output data – state a2
if (node->rm != 0) // output data – state a3
if (node->r != 0) // output data – state a4

}
else
{ level++;

if (node->l != 0) sort(node->l); // - state a5
if (node->lm != 0) sort(node->lm); // - state a6
if (node->rm != 0) sort(node->rm); // - state a7
if (node->r != 0) sort(node->r); // - state a8
level--; /∗ - state a9 ∗/}

}
} // state a10

where l, lm, rm, r are pointers to child nodes from left to right that are declared in
the following structure:

struct tree node
{ int value;

struct tree node ∗l, ∗lm, ∗rm, ∗r; };

The number of steps from the root to leaves (the depth of the tree) is fixed. Note that
the function sort is recursive, but iterative technique can also be applied with very
similar results in performance and resource consumption. The complete design flow
includes the following steps [45]:

264 V. Sklyarov and I. Skliarova

• Describing the methods in high-level language (similarly to C code above) and
modeling in software

• Selecting the constraints (such as K) for the given M and representing trees in
memory

• Associating executable statements in C language (such as output data or recursive
calls) with states of HFSM (see comments in the sort function above)

• Optimization of HFSM using the methods [45]
• Customizing VHDL templates [45], i.e. describing transitions between the states,

operations in the states and recursive calls/returns using the methods [41, 45]
• Linking with the previously designed circuits for generating input data and

presenting the results
• Synthesis and implementation of circuits using commercial tools (we used Xilinx

ISE 13.2)
• Uploading the generated bit-stream and testing in FPGA.

All the listed above steps are described in [45]. Optimization technique [45] enables
the number of states to be reduced. Recursive calls/returns are implemented using
stacks as HFSM memory [41].

5.4 HFSM for Search Over Tree-Like Structures

Figure 15 sketches algorithm described in HGS for solving combinatorial problems.
The module z0 is considered to be the top-level recursive specification. The module
z1 contains problem-specific reduction operations that can activate other lower level
modules. Reduction operations permit the initial problem to be simplified. The
module z2 implements problem-specific selection operations. Selection operations
make possible to split the problem into sub-problems and to examine them in turn.

At the beginning z0 is executed for the root of the tree and then it is activated
recursively. It should be noted that some (shown in Fig. 15) operations are not
needed for certain problems. For example, if we consider the SAT problem, then
in the sentence of Fig. 15 “Can we conclude that there is no solution or that the
previous result cannot be improved?” the last part, i.e. “or that the previous result
cannot be improved?”, is not important at all because for the SAT problem any
solution is considered to be the final solution. However, in other problems, such as
Boolean matrix covering we terminate forward propagation steps that might lead to
a solution that is worse than any solution that has already been produced. Note that
the goal of this chapter is not an optimization of algorithms over TLSs. Actually
we would like just to show that different algorithms over TLSs can be described
recursively and can be efficiently implemented using HFSM model.

The HGS in Fig. 15 can be marked with labels (see the labels a0, . . .,a6 in Fig. 15)
and further steps of synthesis and implementation are similar to those described in
Sects. 5.1–5.3.

High-Performance Data Processing Over N-ary Trees 265

Begin

Applying reduction
allowing to

simplify the problem

1

z0 Setting “no result”

Recording the result

End

Yes

No

z1

a0

a1

Is the result
found?

Is this result
the best?

No

Yes

No Applying selectionz2

a5

a4z0 (left branch)

z0 (right branch)

Can we conclude that there is no
solution or that the previous result

cannot be improved?
Yes

a3

a2

a6

Is the result
found?

No

Yes

Fig. 15 Top-level description of combinatorial search problems

6 Experiments and Results

Four types of experiments have been performed. Firstly, we verified all the proposed
methods in software (in C/C++) running on HP EliteBook 2730p (Intel Core 2 Duo
CPU, 1.87 GHz) tablet PC.

Secondly, the synthesis and implementation of the circuits from specification
in VHDL were done in Xilinx ISE 13.2 [55] for FPGAs Spartan3E-1200E-FG320
(NEXYS-2 prototyping board of Digilent [8]) and Virtex-4 FX12 (FX12 prototyping
board of Nu Horizons). The considered above computations (see Sect. 4) for
different TLSs (see Sect. 3) have been implemented and tested using the HFSM
model (see Sect. 5).

Thirdly, sequential computations (see Sect. 4) were implemented in PowerPC
PPC405 processor embedded to FPGA Virtex-4 FX12 available on the prototyping
board FX12. Synthesis and implementations were done using Xilinx ISE and
EDK [55].

266 V. Sklyarov and I. Skliarova

Fourthly, comparison of recursive and alternative iterative computations was
provided for some applications reported in previously published papers [42, 43].

Data for the experiments were formed by the following two ways:

• A random-number generator that produced data items supplied in portions to
actual (FPGA-based) and simulated (PC computer) circuits that have to sort the
previously received portions of data and to resort them for a new portion as fast
as possible.

• Data that are taken from benchmark instances available at [34] and from particu-
lar applications developed by Ph.D. and M.Sc. students [17,23,27,30,31,37,48].

Since there is a very large number of potential applications over TLSs, the
experiments have been chosen just for some groups of such applications, namely:

• For data sort based on binary trees, N-ary trees (N > 2) and K-trees
• For combinatorial problems
• For priority management

6.1 Applicability

The considered above TLSs have been used for solving the following problems:

• Dynamic data sort in stream applications where initial data items arrive to the
circuits that have to sort data and to resort them as soon as new items are received

• Static data sort where available in memory data have to be sorted
• Combinatorial search problems, namely the SAT and matrix covering
• Priority management in applications [27, 48].

For the first two problems input data are either kept in memory common to
traditional computers (see Fig. 16a, where the given integers are shown in binary
and decimal notations), or represented in form of incoming streams (see Fig. 16b),
dynamically generated from different sources, such as distributed sensors in net-
worked embedded systems.

Suppose an FPGA-based hardware implements a sorter that takes input data
either from memory (Fig. 16a) or from streams (Fig. 16b) and outputs the sorted
sequence that can either replace the original (unsorted) data in memory, be saved in
a separate memory, or be transmitted to another device (see Fig. 16).

Physically sorters can be used differently, for example, they can be connected
through a system bus of a general-purpose computer and access computer memory
(that is a source of data) through allocated windows in memory space; or they can
be seen as a standalone accelerator getting external packages of unsorted data and
outputting sorted sequences. In some practical applications data have to be resorted
dynamically as soon as a new data package/item is received [44]. In all cases we
have to make clear what is taken into account when we measure performance and

High-Performance Data Processing Over N-ary Trees 267

11
01

00
 0

1
 (

20
9)

01
01

10
 0

1
 (

89
)

01
11

01
 1

1
 (

11
9)

11
11

00
 0

1
 (

24
0)

11
01

11
 1

1
 (

22
3)

01
01

00
 1

0
 (

82
)

01
11

01
 0

1
 (

11
7)

11
11

11
 1

0
 (

25
4)

11
01

01
 1

1
 (

21
5)

11
01

10
 1

0
 (

21
9)

01
01

00
 0

0
 (

80
)

01
01

11
 0

0
 (

92
)

01
01

11
 1

1
 (

95
)

11
11

11
 0

1
 (

25
3)

11
01

10
 0

0
 (

21
7)

01
11

01
 0

0
 (

11
6)

01
11

01
 1

0
 (

11
8)

B
in

ar
y

 (
de

ci
m

al
)

Address: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a

b

209, 89, 119, 240, …, 116, 118

56, 21, 165, 59, …, 130, 128

Data stream 1

Data stream L

S
ou

rc
e

1
S

ou
rc

e
L

Stream

Engine

Data stream

Result

Sorter

Sorter

Fig. 16 Input/output data and the role of sorter

resources. For example, if a sorter is operated as it is shown in Fig. 16a we eventually
have to measure a time interval beginning from the first access to un-sorted data
in external memory until getting the final recorded sorted sequence. However, if
input data are preliminary copied to FPGA memory and the result is also kept
inside the FPGA, then measurements are similar but since they are done inside the
FPGA, the performance is undoubtedly better due to avoiding multiple input/output
operations. In some methods, such as address-based data sort [47], getting data
can be combined with their processing. Thus, sorting and getting input data can be
executed in parallel. Since it is very difficult or even impossible to take into account
the performance of input/output operations we assume that all data are available
inside FPGA and they are either preliminary copied to built-in FPGA memory (such
as block RAM) or produced by built-in random number generator that is faster than
the evaluated data sorters.

The third type of problems is even more difficult because implementation of
search-specific operations is not a target of this chapter. So, we just compared using
TLS with previously developed applications [27, 36, 38] without showing details.

The last problem requires fast resorting for newly arriving data items [44] and
this necessity was primarily taken into account.

For all the referred above applications we were able to design, implement in
hardware and test HFSM circuits in a single FPGA chip. Thus, we can conclude
that the proposed technique is widely applicable. The emphasis was done on cheap
FPGA circuits that can be used for different embedded systems.

268 V. Sklyarov and I. Skliarova

6.2 Performance

Experiments were done over different types of trees with sequential and parallel
implementations using:

• General-purpose software
• Embedded Power PC (just for data sort)
• Application-specific hardware based on the considered HFSM model when

required

For data sorting we found that the fastest circuits implement different modifications
of address-based technique. Using TLS (N-ary trees, in particular) for such tech-
nique permits the size of data to be increased.

Direct implementation of address-based method [47] permits any set of 18-bit
data to be sorted (up to 218 numbers). The following results obtained in [23, 47]
permit the complexity and performance of the circuit to be evaluated:

• Number of slices (Ns): 326 (3%)
• Number of slice flip-flops (Nf f): 57 (∼ 0%)
• Number of 4 input LUTs (NLUT): 578 (3%)
• Number of BRAMs (NBRAM): 16 (57%)
• Maximum clock frequency (F): 155 MHz

The number of clock cycles Nin needed to fill in BRAM is equal to Q assuming that
each data item can be saved in BRAM during one clock cycle.

The number of clock cycles Nout needed to sort data is equal to 214 [23] (one
clock cycle is used to read 16-bit word from which up to 16 data items can be
extracted during the same clock cycle). 18-bit data are formed through processing
data from parallel RAM blocks.

The first implementation of the method based on tree-walk tables for N-ary
incomplete trees permits any set of 18-bit data to be sorted (up to 218 numbers).
The following results obtained in [23, 47] permit the complexity and performance
of the circuit to be evaluated (HFSM with explicit modules was used): Ns = 562
(6%); Nf f = 131 (1%); NLUT = 1,048 (6%); NBRAM = 18 (64%); F = 76MHz. The
maximum number of clock cycles needed to sort data is 53,556. For different data
sets the actual number of clock cycles varies from 7,000 to 53,556.

As you can see, the last implementation needs more hardware resources and
operates at lower clock frequency. However, tree-walk tables permit data with bigger
value M to be sorted within the same FPGA (the results of experiments are given
below). Besides, direct use of address-based data sort requires resetting all one-bit
fields to zero when repeating the sort with a new set of data (such resetting is not
needed for tree-walk tables).

The second implementation of the method based on tree-walk tables for N-ary
incomplete trees enables us to sort sets of 20-bit data when Q � 2M. The following
results obtained in [23, 47] permit the complexity and performance to be evaluated:
Ns = 586 (6%); Nf f = 130 (1%); NLUT = 1,109 (6%); NBRAM = 28 (100%);

High-Performance Data Processing Over N-ary Trees 269

F = 79MHz. The actual number of clock cycles in different experiments varied
from 8,500 to 86,000.

Note that 20-bit data items cannot be sorted in a single FPGA Spartan3E-1200E-
FG320 if we apply direct address-based technique described (i.e. data cannot be
sorted without using TLS). The maximum number of sorted data (with tree-walk
tables) depends on the distribution of data within the interval from 0 to 220 − 1.
This number is increased if there are many large clusters within the interval that
are almost entirely filled in. For example, if all data are within the 20-bits interval
00------------------ and if N = 4 then there is just one sub-tree (00) from the root and
up to 218 data items can be sorted. If all data are within the two 20-bits intervals
01------------------ and 10------------------ then there are two sub-trees from the root,
etc. Some examples from [23, 47] with 18-bit, 19-bit and 20-bit data produced by
a random number generator that were implemented and tested in FPGA are given
below:

• Q = 100, N18 = 7,000–7,700, N19 = 8,500–8,900, N20 = 9,300–10,000, where
N18, N19 and N20 are numbers of clock cycles for 18-bit, 19-bit and 20-bit data
accordingly

• Q = 300, N18 = 16,000–16,600, N19 = 19,000–20,000, N20 = 22,000–25,000
• Q = 500, N18 = 20,000–24,000, N19 = 27,000–29,000, N20 = 34,000–36,000
• Q= 1,000, N18 = 33,000–36,000, N19 = 44,000–47,000, N20 = 55,000–58,000
• Q= 2,000, N18 = 45,000–47,000, N19 = 68,000–70,000, N20 = 82,000–83,000

Since the random number generator equally distributes data within the intervals
0, . . .,219–1 and 0, . . .,220–1, the examples above give the worst cases for 19-bit
and 20-bit data. There is no worst case for 18-bit data because any set of data can
be sorted.

Two strategies shown in Fig. 16 were evaluated. Data were sorted either based on
their static representation (Fig. 16a) or sorted and resorted dynamically as soon as
new data items are produced by a generator. Let us call the latter case dynamic sort
and it is directly applicable to priority buffers [44] requiring fast reordering of new
data that can arrive at any time. Dynamic sort can also efficiently be implemented
using binary trees (see Sect. 2.2).

We found that the developed circuits are also faster than implementations in
general-purpose software and in embedded to FPGA Power PC (the latter two
cases were tested in HP EliteBook 2730p and PPC405 embedded to FPGA Virtex-4
FX12). Some results of comparison can be found in [46]. It should be noted that
quite complex problems can be processed in relatively simple and cheap FPGAs
of Spartan-3 family. Performance is comparable with known results obtained for
significantly more advanced FPGAs. Often the known methods were either modeled
or just partially tested in available prototyping systems. Frequently, external onboard
memories were used. Thus, the exact comparison in hardware is indeed difficult.
All the considered here circuits were entirely implemented in a single FPGA and
external resources were not used at all.

You can see that there is no data dependency between tree branches. Thus, the
algorithm permits individual sub-trees with any desired level of parallelism to be

270 V. Sklyarov and I. Skliarova

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

number of data items in each portion

ac
ce

le
ra

tio
n

co
m

pa
rin

g
w

ith
fu

ll
re

so
rt

in
g

of
 2

12
 d

at
a

ite
m

s

500

450

400

350

300

250

200

150

100

50

Fig. 17 Experiments with
resorting

processed. We found that parallel processing of binary trees is faster than sequential,
but hardware resources are also increased. Some experiments that were done with
N-ary trees (N > 2) have shown that although parallelization permits the number of
clock cycles to be reduced, the acceleration is less than for the case of binary trees.
Besides, the required hardware resources are increased significantly. On the other
hand, using incomplete TLS gives nearly the same results as for binary trees.

Now let us talk about resorting that is important for priority management [44]
and for which the proposed processing of TLSs is especially beneficial. Figure 17
permits to compare acceleration of resorting for a new portion (that includes from
10 to 120 data items) with resorting of all data items (that is 212). We used just
binary trees. As you can see from Fig. 17 acceleration is significant.

Experiments with combinatorial search problems (namely the SAT and matrix
covering) have shown that using TLS does not permit to increase performance.
This is because the relevant algorithms execute a huge number of search-specific
operations, which mainly affect the execution time. On the other hand, TLSs enable
the algorithm to be described more clearly and to apply more easily methods of
software development, such as hierarchy and recursion. Besides, TLS are very
helpful for time-consuming parts of the respective algorithms, such as Boolean
constraint propagation.

6.3 Resources

Resources have been evaluated for:

• HFSMs with explicit modules
• HFSMs with implicit modules

High-Performance Data Processing Over N-ary Trees 271

Table 1 HFSMs with explicit vs. HFSM with implicit modules

HFSMe (explicit) HFSMi (implicit)

Algorithm Ns F (MHz) NBRAM Ns F (MHz) NBRAM

A1 2,415 100 13 1,175 107 13
A2 4,407 100 27 1,965 103 27
A3 2,609 77 20 1,146 65 20
A4 2,812 75 20 1,312 83 20
A5 3,343 73 20 1,609 83 20

Table 1 presents the maximum attainable clock frequency (F) and FPGA resources
(the number of slices—Ns and the number of block RAMs—NBRAM) needed for
different implementations of HFSMs with explicit (HFSMe) and implicit (HFSMi)
modules for different algorithms over TLS designated A1,. . . ,A5. These algorithms
are more complicated than those considered in the previous subsection and that is
why the relevant HFSMs need more FPGA slices (Ns).

As you can see HFSMi [45] are less resource consuming. Another advantage
of HFSMi is that there is an opportunity to apply known optimization methods
that have been developed for conventional state machines. The HFSM with explicit
modules (HFSMe) [41] is not so well suited for such optimization, mainly because
states in different modules can be assigned the same codes. However, modules
in HFSMi become implicit and cannot be updated and refined such easily as for
HFSMe. Although the HGSs for HFSMe and HFSMi are the same and all features
are supported, modularity, hierarchy and recursion become less clear for HFSMi at
the implementation level. The use of HFSMs is profoundly studied and analyzed in
[40] with numerous experiments in FPGAs of Spartan-3e and Spartan-6 families of
Xilinx and Cyclon-IVe family of Altera. Particularly, it is shown that HFSMs can
be deeper optimized and therefore permit to achieve very good results in processing
TLSs in hardware.

Particular complexities for some implemented circuits are given in Sect. 6.2 and
are summarized in Fig. 18. Please note that for flexibility HFSMe was used. As you
can see, the values of Ns and Nff (the number of slices and flip-flops) are negligible
comparing with available FPGA resources. The main limitation, not allowing to
increase the size of sorted data, is the number of available block RAMs. Indeed,
the maximum size of sorted data (20-bits) for the considered FPGA is set because
all block RAMs have already been used (see Fig. 18). Note that the number of
embedded block RAMs was essentially increased in new generations of FPGAs
(see, for example, [1, 54]). Thus, significantly more complicated problems can be
solved in future on a single FPGA microchip.

6.4 Scalability

The results of experiments have shown that the main restriction that limits the
number of data items is the available embedded block RAMs on the FPGA
micro-chip. The algorithms themselves are easily scalable. This conclusion is done

272 V. Sklyarov and I. Skliarova

0

100

200

300

400

500

600

18-bit 19-bit 20-bit

18

28=max 28=max

Maximum clock frequency

Number of slices

Number of flip-flops

Number of block RAM * 10

Approximately 6%
of FPGA slices

Approximately 1%
of FPGA flip-flops

Fig. 18 FPGA resources needed for data sort based on N-ary trees and HFSMe

after experiments with Spartan-3 FPGA and external memory available on the
prototyping board NEXYS-2. N-ary (N > 2) incomplete trees with the relevant
accelerators for tree nodes that are associated with multiple items give additional
potentialities allowing the number of data items to be increased significantly. We
can also replace the cheap Spartan-3E FPGA with a more advanced FPGA and
supply external memory. The results of preliminary analysis of using Virtex-6 based
ML-605 development system have shown that the number of data items in sorting
algorithms can be increased up to hundreds of millions.

6.5 Recursive Vs. Iterative Algorithms

Comparison of alternative recursive and iterative algorithms permits to conclude the
following:

1. Resources and performance:

– Implementation in hardware of recursive algorithms over TLS with the aid of
HFSM model is comparable with iterative implementations based on similar
model

– Recursive implementations in hardware are better than implementations for
general-purpose software and embedded general purpose processors

2. New features: The proposed technique permits to benefit from the strategy
divide and conquer.

3. Clarity: In our opinion recursive specifications are better understandable than
iterative specifications. Besides, they are more compact.

High-Performance Data Processing Over N-ary Trees 273

4. Reusability: It is important that hierarchical modular specifications directly sup-
port reusability. Indeed, the same module can be reused in different algorithms
and even within the same algorithm, which may lead to reduction in the design
time and even in hardware resources.

5. Applicability: Although emphasis is done on recursive computations (mainly
due to their compactness and clearness), the considered modular and hierarchical
technique is also well applicable to iterative computations.

6.6 Comparison with Known Results

In [25] the complete median operator (that in general requires less time than data
sort) to process 256 MB of data consisting of 4-byte words takes 6.173 s, i.e.
100 ns per word using advanced Virtex-5 FPGA. The best performance achieved in
Sect. 6.2 for low-cost Spartan-3 FPGA permits to sort data taking on average 0.41 ns
per each item (218 data items require 214 clock cycles using 155 MHz frequency in
the simplest case). If we want to increase the size of data with the limited number
of embedded RAM blocks, we construct N-ary trees and performance will be
decreased. However, the trees enable us to resort data very fast. Indeed, in methods
[25] any resorting for a new portion of data requires all data items to be sorted and,
thus, for data from Fig. 17 it takes about 4 ms. For our technique that is based on TLS
with N = 16, K = 4 and for examples in Fig. 17, it takes from 1 to 12 microseconds
for different number of items in portions. Thus, acceleration is significant. If we
use binary trees considered in this chapter, then similar resorting is even faster and
requires from 200 to 2,400 ns. The only problem for the latter case is a very limited
size of data. We found that the considered Spartan-3 FPGA can sort just up to 214

data items over binary trees. Once again the main problem is the limited number
of available block RAMs. Using a more advanced hardware platform would permit
more data to be processed. For example, an ML-605 prototyping board contains
XC6VLX240T FPGA of Virtex-6 family and includes 512 MB DDR3 SODIMM.
If data are stored in this memory, then 10832-bit data items can be sorted using
address-based technique. The major problem will be optimizing memory access,
i.e. the sorting algorithm will have to be adapted to interact with memory as much
as possible in burst mode (for example, access to random individual bits required
for filling in memory in address-based data sort is very expensive and has to be
optimized).

In [56] the maximum speed of sorting is estimated as 180 million records per
second. Thus, resorting of all data in Fig. 17 would require about 23 ms. Once again
the achieved results in Fig. 17 are significantly better. Comparison with [4] (that
provides very useful data for numerous sorting algorithms) also shows advantages
of the proposed technique for stream applications that require fast resorting.

The advantages of TLS for accelerating time-consuming parts of an SAT solver
were clearly demonstrated in [7]. It is shown that FPGA co-processor can achieve
3.7–38.6x speedup on Boolean constraint propagation compared to state-of-the-art

274 V. Sklyarov and I. Skliarova

software SAT solvers. Numerous experiments with combinatorial search algorithms
over TLS and HFSMs were done in [31,37] (using benchmarks [34]) demonstrating
more clear and compact specifications.

7 Conclusion

This chapter suggests common organization and methods of computations over trees
in hardware. The main contributions of the chapter are: (1) study of wide spectrum
of trees; (2) suggesting new common ways to represent and to process trees in
hardware based on the HFSM model; (3) proof of competence of the proposed
technique based on prototyping in FPGA, numerous experiments and comparisons.

Tree-like structures have been successfully used for solving such problems
as data sort, combinatorial search and priority management. Different kinds of
trees have been explored: binary trees, N-ary trees, merged binary trees and K-
trees. Besides, we proposed to combine different methods of processing allowing
performance to be improved. For instance, the chapter shows that tree-like structures
can easily be linked with fast sorting networks; different branches of N-ary trees can
be traversed in parallel; trees can be used with the efficient address-based sorting
method, etc. Tree-like structures are processed in hardware using the proposed
HFSM model augmented with VHDL templates which are easily customizable to
match the respective specification. The suggested templates are fully synthesizable
using any appropriate CAD software.

The experiments were done in general-purpose and embedded software and in
FPGA-based application-specific hardware. The achieved results prove the applica-
bility of the suggested methods of processing and storing trees in hardware circuits
which outperform the respective software implementations. Moreover, the obtained
performance is comparable to known results reported for more advanced FPGA-
based platforms. Our methods are especially beneficial when fast resorting is
required (for example, in priority management).

Two kinds of HFSMs, which provide support for hardware implementation, have
been evaluated. The results of experiments demonstrate that the proposed model
of HFSM with implicit modules is faster and requires less hardware resources com-
pared to HFSMs with explicit modules. Moreover, the model of HFSM with implicit
modules permits the known optimization methods developed for conventional FSMs
to be entirely reused. On the other hand, individual modules in HFSMs with implicit
modules cannot be updated as easily as in HFSM with explicit modules.

Although the results of experiments clearly demonstrate applicability and high
efficiency of the proposed methods, which can easily be implemented in low
cost widely available FPGAs, more advanced hardware platforms are required for
processing significantly larger sets of data. Currently, up to 218 of 20-bits data
can be handled and the main restriction that limits the number of data items
is the available embedded block RAMs on the FPGA microchip. The suggested
models and algorithms themselves are easily scalable. Preliminary analysis of the

High-Performance Data Processing Over N-ary Trees 275

Virtex-6 based ML-605 development system shows that the number of data items
can be increased up to hundreds of millions.

Acknowledgements This work was supported by FEDER through the Operational Program
Competitiveness Factors—COMPETE and by National Funds through FCT—Foundation for Sci-
ence and Technology in the context of project FCOMP-01-0124-FEDER-022682 (FCT reference
PEst-C/EEI/UI0127/2011). We would like to thank Dmitri Mihhailov from Tallinn University of
Technology for numerous experiments that have been done for tree-based data processing.

References

1. Altera product catalog, version 11.0, 2011. Available at: www.altera.com/literature/sg/product-
catalog.pdf

2. R.E. Bryant, Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput.
35(8), 677–691 (1986)

3. F.M. Carrano, Data Abstraction and Problem Solving with C++: Walls and Mirrors (Addison
Wesley, Boston, 2005), 968 pp

4. R.D. Chamberlain, N. Ganesan, Sorting on architecturally diverse computer systems, in Proc.
3rd Int. Workshop on High-Performance Reconf. Comp. Techn. and App. – HPRCTA’09, New
York, USA, 2009, pp. 39–46

5. P.P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version (Willey, Hoboken,
2008), 440 pp

6. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stain, Introduction to Algorithms, 2nd edn. (MIT
Press, Cambridge, 2003), 1180 pp

7. J.D. Davis, Z. Tan, F. Yu, L. Zhang, A practical reconfigurable hardware accelerator for
Boolean satisfiability solvers, in Proc. 45th ACM/IEEE Design Automation Conference –
DAC’2008, Anaheim, California, USA, 2008, pp. 780–785

8. Digilent Products (Digilent Inc., Pullman, 2013), Available at: http://www.digilentinc.com
9. S.A. Edwards, Design languages for embedded systems. Computer Science Technical Report

CUCS-009–03. Columbia University, 2003
10. A. Girault, B. Lee, E.A. Lee, Hierarchical finite state machines with multiple concurrency

models. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 18(6), 742–760 (1999)
11. N.K. Govindaraju, J. Gray, R. Kumar, D. Manocha, GPUTeraSort: High performance graphics

co-processor sorting for large database management, in Proc. 2006 ACM SIGMOD Int’l Conf.
on Management of Data, Chicago, IL, USA, 2006, pp. 325–336

12. D.J. Greaves, S. Singh, Kiwi: Synthesis of FPGA circuits from parallel programs, in Proc.
IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM’08, 2008,
pp. 3–12

13. J. Gu, P.W. Purdom, J. Franco, B.W. Wah, Algorithms for the satisfiability (SAT) problem:
a survey. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 35, 19–151 (1997)

14. S.S. Huang, A. Hormati, D.F. Bacon, R. Rabbah, Liquid metal: object-oriented programming
across the hardware/software boundary, in European Conf. on Object-Oriented Programming,
Paphos, Cyprus, 2008, pp. 76–103

15. D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd edn.
(Addison-Wesley, Reading, 1998), 780 pp

16. S. Lee, S. Yoo, K. Shoi, Reconfigurable SoC design with hierarchical FSM and synchronous
dataflow model, in Proc. 10th Int. Symp. on Hardware/software codesign, Estes Park, USA,
2002, pp. 199–204

17. J. Lima, Processador com Conjunto de Instruções Variável Remotamente. M.Sc. thesis.
University of Aveiro, 2009

www.altera.com/literature/sg/product-catalog.pdf
www.altera.com/literature/sg/product-catalog.pdf
http://www.digilentinc.com

276 V. Sklyarov and I. Skliarova

18. T. Lin, Mobile Ad-hoc Network Routing Protocols: Methodologies and Applications, Ph.D.
thesis, Blacksburg, Virginia, 2004

19. H. Lonn, J. Axelsson, A comparison of fixed-priority and static cyclic scheduling for
distributed automotive control application, in Proc. 11th Euromicro Conference on Real-Time
Systems, York, England, 1999, pp. 142–149

20. T. Maruyama, M. Takagi, T. Hoshino, Hardware implementation techniques for recursive calls
and loops, in Proc. Proc. 9th Int. workshop on Field Programmable Logic and Applications –
FPL’99, Glasgow, UK, 1999, pp. 450–455

21. R.A. Mewaldt, C.M.S. Cohen, W.R. Cook et al., The low-energy telescope (LET) and SEP
central electronics for the STEREO mission. Space Sci. Rev. 136, 285–362 (2008)

22. D. Mihhailov, V. Sklyarov, I. Skliarova, A. Sudnitson, Parallel FPGA-based implementation
of recursive sorting algorithms, in Proc. 2010 Int. Conf. on ReConFigurable Computing and
FPGAs - ReConFig 2010, Cancun, Mexico, 2010, pp. 121–126

23. D. Mihhailov, Hardware Implementation of Recursive Sorting Algorithms Using Tree-like
Structures and HFSM Models, Ph.D. thesis, Tallinn University of Technology, 2012

24. A. Mitra, M.R. Vieira, P. Bakalov, V.J. Tsotras, W. Najjar, Boosting XML Filtering through
a scalable FPGA-based architecture, in Proc. 4th Biennial Conference on Innovative Data
Systems Research - CIDR, Asilomar, CA, USA, 2009

25. R. Mueller, J. Teubner, G. Alonso, Data processing on FPGAs, in Proc. VLDB Endowment,
vol. 2(1), Lyon, France, 2009, pp. 910–921

26. S. Nagayama, T. Sasao, Complexities of graph-based representations for elementary functions.
IEEE Trans. Comput. 58(1), 106–119 (2009)

27. A. Neves, Interacção Remota com Circuitos Implementados em FPGA, M.Sc. thesis, Univer-
sity of Aveiro, 2009

28. N. Ngan, E. Dokladalova, M. Akil, F. Contou-Carrère, Fast and efficient FPGA implementation
of connected operators. J. Syst. Architect. 57, 778–789 (2011)

29. S. Ninos, A. Dollas, Modeling recursion data structures for FPGA-based implementation,
in Proc. Int. Conf. on Field Programmable Logic and Applications - FPL’08, Heidelberg,
Germany, 2008, pp. 11–16

30. R. Oliveira, Análise e comparação de métodos soft-hard em sistemas reconfiguráveis, M.Sc.
thesis, University of Aveiro, 2010

31. B. Pimentel, Synthesis of FPGA-based accelerators implementing recursive algorithms, Ph.D.
thesis, University of Aveiro, 2009

32. S. Rajasekaran, S. Sen, Optimal and practical algorithms for sorting on the PDM. IEEE Trans.
Comput. 57(4), 547–561 (2008)

33. K.H. Rosen, J.G. Michaels, J.L. Gross, D.S. Shier, Handbook of Discrete and Combinatorial
Mathematics (CRC Press, Boca Raton, 2000), 1232 pp

34. H.H. Hoos, SATLIB Benchmark Problems (University of British Columbia, Canada, 2011),
Available at: http://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

35. I. Skliarova, A.B. Ferrari, Reconfigurable hardware SAT solvers: a survey of systems. IEEE
Trans. Comput. 53(11), 1449–1461 (2004)

36. I. Skliarova, A.B. Ferrari, A software/reconfigurable hardware SAT solver. IEEE Trans. VLSI
Syst. 12(4), 408–419 (2004)

37. I. Skliarova, Arquitecturas reconfiguráveis para problemas de optimização combinatória, Ph.D.
thesis, University of Aveiro, 2004

38. I. Skliarova, V. Sklyarov, Design methods for FPGA-based implementation of combinatorial
search algorithms, in Proc Int. Workshop on SoC and MCSoC Design - IWSOC’2006,
Yogyakarta, Indonesia, 2006, pp. 359–368

39. I. Skliarova, V. Sklyarov, Recursion in reconfigurable computing: a survey of implementation
approaches, in Proc. 19th Int. Conf. on Field Programmable Logic and Applications - FPL’09,
Prague, Czech Republic, 2009, pp. 224–229

40. I. Skliarova, V. Sklyarov, A. Sudnitson, Design of FPGA-based Circuits Using Hierarchical
Finite State Machines (TUT Press, Tallinn, Estonia, 2012), 240 pp

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

High-Performance Data Processing Over N-ary Trees 277

41. V. Sklyarov, Hierarchical finite-state machines and their use for digital control. IEEE Trans.
VLSI Syst. 7(2), 222–228 (1999)

42. V. Sklyarov, FPGA-based implementation of recursive algorithms. Microprocessors and
microsystems. Spec. Issue FPGAs Appl. Des. 28(5–6), 197–211 (2004)

43. V. Sklyarov, I. Skliarova, B. Pimentel, FPGA-based implementation and comparison of
recursive and iterative algorithms, in Proc. 15th Int. Conf. on Field Programmable Logic and
Applications - FPL’05, Finland, 2005, pp. 235–240

44. V. Sklyarov, I. Skliarova, Modeling, design, and implementation of a priority buffer for
embedded systems, in Proc. 7th Asian Control Conference – ASCC’2009, Hong Kong, 2009,
pp. 9–14

45. V. Sklyarov, Synthesis of circuits and systems from hierarchical and parallel specifications,
in Proc. 12th Biennial Baltic Electronics Conference, Invited paper, Tallinn, Estonia, 2010,
pp. 37–48

46. V. Sklyarov, I. Skliarova, R. Oliveira, D. Mihhailov, A. Sudnitson, Processing tree-like data
structures in different computing platforms, in Proc. Int. Conf. on Informatics and Computer
Applications - ICICA’ 2011, Dubai, UAE, 2011, pp. 112–116

47. V. Sklyarov, I. Skliarova, D. Mihhailov, A. Sudnitson, Implementation in FPGA of address-
based data sorting, in Proc. 21st Int. Conf. on Field Programmable Logic and Applications -
FPL’2011, Creete, Greece, 2011, pp. 405–410

48. S. Soldado, FPGA Urban Traffic Control Simulation and Evaluation Platform, M.Sc. thesis,
University of Aveiro, 2009

49. J. de Sousa, J.P. Marques-Silva, M. Abramovici, A configware/software approach to SAT
solving, in Proc. 9th IEEE Symposium on Field-Programmable Custom Computing Machines
- FCCM’01, California, USA, 2001, pp. 239–248

50. H.T. Sun, First failure data capture in embedded system, in Proc. IEEE IIT, Chicago, USA,
May 17–20, 2007, pp. 183–187

51. S. Uchitel, J. Kramer, J. Magee, Synthesis of behavorial models from scenarios. IEEE Trans.
Soft. Eng. 29(2), 99–115 (2003)

52. Proceedings of the 2nd UK Embedded Forum, Newcastle, Leicester, Southampton, 2005,
Available at: http://www.staff.ncl.ac.uk/albert.koelmans/books/secondukembforum.pdf, 303
pp

53. J. Whittle, P.K. Jayaraman, Generating hierarchical state machines from use case charts, in
Proc. 14th IEEE Int. Requirements Eng. Conf., Minneapolis, USA, 2006, pp. 16–25

54. Xilinx 7 series FPGAs. Product brief (2011). Available at: www.xilinx.com/publications/prod
mktg/7-Series-Product-Brief.pdf

55. Xilinx Products (Xilinx Inc., San Jose, 2013), Available at http://www.xilinx.com
56. X. Ye, D. Fan, W. Lin, N. Yuan, P. Ienne, GPU-Warpsort: a fast comparison-based sorting

algorithm on GPUs, in IEEE Int. Parallel & Distributed Processing Symposium - IPDPS 2010,
Atlanta, USA, 2010

57. A. Zakrevskij, Y. Pottosin, L. Cheremisinova, Combinatorial Algorithms of Discrete Mathe-
matics (TUT Press, Tallinn, Estonia, 2008), 193 pp

http://www.staff.ncl.ac.uk/albert.koelmans/books/secondukembforum.pdf
www.xilinx.com/publications/prod{_}mktg/7-Series-Product-Brief.pdf
www.xilinx.com/publications/prod{_}mktg/7-Series-Product-Brief.pdf
http://www.xilinx.com

FPGA-Based Systolic Computational-Memory
Array for Scalable Stencil Computations

Kentaro Sano

Abstract Stencil computation is one of the typical kernels of numerical
simulations, which requires acceleration for high-performance computing (HPC).
However, the low operational-intensity of stencil computation makes it difficult to
fully exploit the peak performance of recent multi-core CPUs and accelerators such
as GPUs. Building custom-computing machines using programmable-logic devices,
such as FPGAs, has recently been considered as a way to efficiently accelerate
numerical simulations. Given of the many logic elements and embedded coarse-
grained modules, state-of-the-art FPGAs are nowadays expected to efficiently
perform floating-point operations with sustained performance comparable to or
higher than that given by CPUs and GPUs. This chapter describes a case study of
an FPGA-based custom computing machine (CCM) for high-performance stencil
computations: a systolic computational-memory array (SCM array) implemented
on multiple FPGAs.

1 Introduction

Numerical simulation is now an important and indispensable tool in science and
engineering, which analyzes complex phenomena that are difficult to subject to
experimentation. For a large-scale simulation with sufficient resolution, high-
performance computing (HPC) is required. Stencil computation [4] is one of
the typical kernels of high-performance numerical simulations, which include
computational fluid dynamics (CFD), electromagnetic simulation based on the
finite-difference time-domain (FDTD) method, and iterative solvers of a linear
equation system.

K. Sano (�)
Tohoku University, 6-6-01 Aramaki Aza Aoba, Sendai, Miyagi 980-8579, Japan
e-mail: kentah@caero.mech.tohoku.ac.jp

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 9, © Springer Science+Business Media, LLC 2013

279

mailto:kentah@caero.mech.tohoku.ac.jp

280 K. Sano

Since most of their computing time is occupied by the computing kernels,
acceleration techniques for stencil computation have been required. However, the
low operational-intensity of stencil computation makes it difficult to fully exploit
the peak performance of recent accelerators such as GPUs. Operational intensity
is the number of floating-point operations per data size read from an external
DRAM for cache misses [30]. In general, stencil computation requires relatively
many data accesses per unit operation, and therefore its operational-intensity is low.
Although the recent CPUs and GPUs have been getting higher peak-performance for
arithmetic operations by integrating more cores on a chip, their off-chip bandwidth
has not been sufficiently increased in comparison with the peak-performance. As
a result, stencil computation can enjoy only a fraction of the peak performance
because cores are idle for many cycles where required data are not ready. To make
matters worse, a large-scale parallel system with many CPUs and/or GPUs usually
has the problem of parallel processing overhead, which limits speedup especially
for computations with a low operational-intensity due to inefficient bandwidth and
latency of the interconnection network. These inefficiencies of the processor-level
and system-level execution cause the performance per power of supercomputers to
decline. We need to address this efficiency problem because the performance per
power is also a big issue in high-performance computation.

Custom computing machines (CCMs) constructed with programmable-logic
devices, such as FPGAs, are expected to be another way to efficiently accelerate
stencil computation because of their flexibility in building data-paths and memory
systems dedicated to each individual algorithm. Especially, state-of-the-art FPGAs
have become very attractive for HPC with floating-point operations due to their
advancement with a lot of logic elements and embedded modules, such as DSP
blocks, block RAMs, DDR memory-controllers, PCI-Express interfaces, and high-
speed transceivers/receivers. High-end FPGAs are now capable of performing
floating-point operations with sustained performance comparable to or higher than
that achieved by CPUs and GPUs.

This chapter presents a systolic computational-memory array (SCM array)
[20, 22, 23] to be implemented on multiple FPGAs, which is a programmable
custom-computing machine for high-performance stencil computations. The SCM
array is based on the SCM architecture that combines the systolic array [11, 12]
and the computational memory approach [7, 17, 18, 29] to scale both computing
performance and aggregate memory-bandwidth with the array size. Processing
elements of the array perform 3 × 3 star-stencil computations in parallel with
their local memories. Since this architecture is especially designed to achieve
performance scalability on a multi-FPGA system, two techniques are introduced for
the bandwidth and synchronization problems of inter-FPGA data-transfer: a peak-
bandwidth reduction mechanism (BRM) and a local-and-global stall mechanism
(LGSM).

We describe a target computation, an architecture and a design for the SCM
array to be implemented on a multi-FPGA system. For three benchmark prob-
lems, we evaluate resource consumption, performance and scalability of prototype
implementation with three FPGAs. We also discuss feasibility and performance
for implementation with a 2D array of high-end FPGAs. We show that a single

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 281

state-of-the-art FPGA can achieve a sustained performance higher than 400 GFlop/s
and a multi-FPGA system scales the performance in proportion to the number of
FPGAs.

2 Related Work

So far, various trials have been conducted to design FPGA-based CCMs for stencil
computations in the numerical simulations based on finite difference methods,
which include an initial investigation of an FPGA-based flow solver[10], an
overview of an FPGA-based accelerator for CFD applications[26], a design of
FPGA-based arithmetic pipelines with a memory hierarchy customized for a part
of CFD subroutines[16], and proposals for FPGA-based acceleration of FDTD
method [3, 6, 25]. Most of them rely on pipelining data-flow graphs on an FPGA.
However, their design and discussion lack in scalability of performance and memory
bandwidth which is necessary to achieve HPC. Furthermore, discussion and evalu-
ation of the system scalability, particularly for multiple-FPGA implementation, are
indispensable for HPC with a large-scale system.

Recently, several systems with a lot of tightly coupled FPGAs have been devel-
oped: BEE3, Maxwell, Cube, Novo-G, and SSA. BEE3, the Berkeley Emulation
Engine 3, is designed for faster, larger and higher fidelity computer architecture
research [5]. It is composed of modules with four tightly coupled Virtex-5 FPGAs
connected by ring interconnection. The modules can be further connected to each
other to construct a large FPGA computer. Maxwell is a high-performance computer
developed by the FPGA high performance computing alliance (FHPCA), which
has a total of 64 FPGAs on 32 blade servers [2]. Each blade has an Intel Xeon
CPU and two Xilinx Virtex-4 FPGAs. While the CPUs are connected by an
interconnection network, the FPGAs are also connected directly by their dedicated
2D torus network. The Cube is a massively parallel FPGA cluster consisting of 512
Xilinx Spartan 3 FPGAs on 64 boards [15]. The FPGAs are connected in a chain,
so that they are suited to pipeline and systolic architecture.

The Novo-G is an experimental research testbed built by the NSF CHREC
Center, for various research projects on scalable reconfigurable computing [8].
Novo-G is composed of 24 compute nodes, each of which is a Linux server with
an Intel quad-core Xeon processor and boards of ALTERA Stratix IV FPGAs. Data
transfer can be made between adjacent FPGAs, through a wide and bidirectional
bus. The SSA, the scalable streaming-array, is a linear array of ALTERA Stratix III
FPGAs for scalable stencil computation with a constant memory bandwidth [24].
The FPGAs are connected by a 1D ring network to flow data through a lot of
computing stages on the FPGAs. By deeply pipelining iterative stencil computations
with the stages, the SSA achieves scalable performance according to the size of the
system.

These systems provide not only a peak computing performance scalable to
the system size but also low-latency and wide-bandwidth communication among

282 K. Sano

FPGAs. Particularly the inter-FPGA communication achieved by direct connection
of FPGAs is very attractive and promising for parallel computing with less overhead.
Present typical accelerators, such as GPUs, suffer from the latency and bandwidth
limitation of their connection via host nodes and a system interconnection network.

However, it is also challenging to efficiently use reconfigurable resources with
flexibility of inter-FPGA connection for large-scale custom computing. We have
to find an answer to the question of how we should use multiple FPGAs, or
what architecture and designs are suitable and feasible for scalable and efficient
stencil-computation. This chapter presents the SCM array as an answer to this
question. The SCM array is a programmable custom-computing machine for
high-performance stencil computations. The SCM array is based on the SCM
architecture that combines the systolic array [11,12] and the computational memory
approach [7,17,18,29] to scale both computing performance and aggregate memory-
bandwidth with the array size. The SCM array behaves as a computing memory,
which does not only store data but also perform computations with them. The
processing elements of the array perform 3× 3 star-stencil computations in parallel
with their local memories. To achieve both flexibility and dedication, we give the
SCM array a hardware layer and a software layer to execute programs with various
stencil computation. The hardware layer has a simple instruction-set for only a
minimum of programmability.

Since this architecture is especially designed for scalable computation on a
multi-FPGA system with different clock-domains, two techniques are introduced
for the bandwidth and synchronization problems of inter-FPGA data-transfer: the
peak-bandwidth reduction mechanism (BRM) and the LGSM. To evaluate resource
consumption, performance, and scalability for three benchmark problems, we
demonstrate that the SCM array prototyped with three FPGAs achieves performance
scalable to the number of devices.

The FPGA-based programmable active memory (PAM) [29] is an approach that
is similar to our SCM array in terms of the PAM concept. PAM is a 2D array of
FPGAs with an external local-memory, which behaves as a memory for a host
machine while processing the stored data. Extensibility is also given by allowing
PAM to be connected with I/O modules or other PAMs. On the other hand, our
SCM array and its concept differ in the following ways from PAM. First, PAM
is not specialized for floating-point computation. Second, the constructive unit of
our SCM array is different from that of PAM. The constructive unit of PAM is
PAM itself, which is an FPGA array where custom circuits are configured over
multiple FPGAs. In our SCM array, each FPGA is a basic unit and has the same
hardware design as a module. The array of FPGAs forms a scalable SCM array, and
therefore we can easily extend the system by adding FPGAs, such as is implemented
on “stackable mini-FPGA-boards.”

Although the peak performance cannot be exploited due to the low operational-
intensity of stencil computation, efforts have also been made to optimize the
computation on GPUs [19]. Williams et al. reported the performance of 3D stencil
computation with a GPU [4]. A single NVidia GTX280 GPU achieves 3D stencil
computation of 36 GFlop/s, which is a much higher performance than that of a multi-

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 283

core processor due to the GPU’s high memory bandwidth of 142 GByte/s. However,
the efficiency is not high, being 46% of the double-precision peak performance of
78 GFlop/s. It is important to note here that the performance is measured without
the data-transfer to/from a host PC. The inefficiency results in a low performance
per power, 0.15 GFlop/sW, even though they measured the power consumption of
only the GPU board.

Phillips et al. reported parallel stencil-computation on a GPU cluster [19].
By applying optimization techniques, they achieved 51.2 GFlop/s with a single
NVidia Tesla C1060 similar to GTX280, which corresponds to 66% of the peak
performance. However, in the case where 16 GPUs were utilized, only a ×10.3
speedup was achieved for a 2562 × 512 grid because of the communication/syn-
chronization overhead among GPUs. As a result, the efficiency is reduced to 42%
from 66%. These results show that while each GPU has a high peak-performance, it
is difficult to obtain high sustained-performance for stencil computation, especially
with multiple GPUs. Scalability is significantly limited in a large parallel system
with many accelerators, and most of the entire performance is easily spoiled. We
need a solution for efficiently scaling performance according to the size of the
system.

3 Target Computation and Architecture

3.1 General Form of Stencil Computations

The SCM array targets iterative stencil-computation, which is described by the
pseudo-code of Fig. 1. In scientific simulations, such as CFD, the partial differential
equations (PDE) that govern the physical phenomena to be simulated are often
numerically solved by the finite difference method. The computational kernels for
the method are of stencil computations, which are given by discretizing values de-
fined at grid points and numerically approximating the derivatives. Here we explain
a 2D case for simplicity. Let v(n, i, j) be values defined on a 2D computational grid,
where n, i and j denote a time step, x- and y-positions, respectively. The nested
inner-loops iterate the stencil computation for each grid-point (i, j) over the grid.
At each grid-point, v(n, i, j) is updated from time-step n to (n+ 1) by computing
F() with only the values in the neighboring grid-points. We refer to the region

Fig. 1 Pseudo code
of iterative stencil
computation

284 K. Sano

x-1
i

j

0
0

y-1

Si,j

vi,j

Fig. 2 Simple 3×3 star
stencil

of these neighboring grid-points as a stencil and denote it with S(i, j). Figure 2
illustrates a 2D simple example of a 3×3 star-stencil containing the five local grid-
points. The outer loop of the pseudo code repeats the grid updates for time-marching
computation along successive time-steps.

As reported in [20–22], F() of typical stencil computation is simply a weighted
sum of the neighboring values, which is written as:

vnew
i, j = c0vi, j + c1vi−1, j + c2vi+1, j + c3vi, j−1 + c4vi, j+1 (1)

for a 3 × 3 star-stencil, where c0–c4 are constants. We refer to (1) as a 2D
neighboring accumulation. Similarly, a 3D neighboring accumulation requires
two more terms for a 3 × 3 × 3 star-stencil in 3D. Although wide stencils are
used for higher-order differential schemes, they can be decomposed into 2D or
3D multiple neighboring-accumulations. Therefore we consider that neighboring
accumulation for 3×3 or 3×3×3 star-stencils is a general form of 2D or 3D stencil
computation, respectively, which should be accelerated. The stencil computation
has parallelism, which allows neighboring accumulations of grid-points to be
independently performed. Furthermore, the computation of each grid-point has
locality because the necessary values are localized around the point. We designed
the SCM array to accelerate the neighboring accumulations by exploiting their
parallelism and locality.

3.2 SCM Architecture

The SCM array is based on the SCM architecture [20,22,23], which is a combination
of the programmable systolic array [11,12] and the computational memory approach
[7, 17, 18, 29]. The systolic array is a regular arrangement of many processing
elements (PEs) in an array, where data are processed and synchronously transmitted
between neighbors across the array. Such an array provides scalable performance
according to the array size by pipelining and spatially parallel processing with input
data passing through the array. However, the external memory access can also be a

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 285

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Domain decomposition of a computing grid to sub-grids Array of PEs (2D mesh)

Fig. 3 Grid decomposition into sub-grids and their assignment to a PE array

bottleneck of the performance improvement if the memory bandwidth is insufficient
in comparison with the bandwidth required by the array.

To avoid this limitation of the external memory bandwidth, we adopted the
computational memory approach. This approach is based on the “processing in
memory” concept, where computing logic and memory are arranged very close
to each other [7, 17, 18, 29]. In the SCM architecture, the entire array behaves as
a computing memory, which not only stores data but also performs computations
with them. The memory of the array is formed by the local memories distributed
to the PEs. Since PEs can concurrently access their local memories and perform
computations, the SCM architecture has a computing performance scalable to the
array size without any bottlenecks related to external memories.

The SCM architecture is actually a 2D systolic array of PEs connected by a
mesh network. To exploit the parallelism and locality of stencil computation, we
decompose the entire grid into sub-grids, and assign them to the PEs, as shown
in Fig. 3. Since all the grid data are loaded onto the local memories, the PEs can
perform stencil computations of their assigned sub-grids in parallel, exchanging the
boundary data between adjacent PEs.

4 Design of SCM Array

4.1 2D Array of Processing Elements

Figure 4 shows an overview of the designed SCM array, which is a 2D array
of PEs with local memories. The PEs are connected by a 2D mesh network
via communication FIFOs. Each PE has a floating-point multiply-and-accumulate
(FMAC) unit for the neighboring accumulation with data read from the local
memory or the FIFOs. The result can be written to the memory and/or sent to the
FIFOs of the adjacent PEs. The four communication FIFOs, {S,N,E,W}-FIFOs, hold
the data transferred from the four adjacent PEs until they are read.

Figure 5 shows the data-path of a PE, which is pipelined with the following eight
stages: the instruction sequencing (IS), the memory read (MR), the five execution

286 K. Sano

Seq2

Seq3

Seq4

Seq5

Seq6

Seq9

Seq8

Seq1

Seq7

Control group (CG2)

CG4

CG6

CG8CG1

CG3

CG5

CG7

CG9

PE PE PE PE

PE PE

PE

PE PE PE

PE

PE

Systolic computational-memory array (SCMA)

Local
Memory

Comp
unit

Switch

PE

Sequencer

Communication FIFOs
N

S

W

E

Processing element (PE)

Fig. 4 SCM array of PEs and sequencers for control groups

Instruction
Sequencing:
IS

Memory Read: MR Execute1:
EX1

EX2 EX5 Write
Back: WB

EX3 EX4

Local
Memory

read 1

read2

read
addr1

read
addr2

write
addr

write
data

N-FIFO S-FIFO W-FIFO E-FIFO

M
u
x

M
u
x

32

32

32

write addr

S
eq

u
en

ce
r

in
st

ru
ct

io
n

Communication FIFOs of adjacent PEsCommunication FIFOs

a

b

out

Floating-Point

FMAC: ab

N-FIFO

S-FIFO

M
u
x

E-FIFO

W-FIFO

M
u
x

acc-in

Fig. 5 Pipelined data-path of a PE

stages of the FMAC unit (EX1 to EX5), and the memory write-back (WB) [22].
In the MR stage, two values are selected from the read data of the local memory,
and the data outputted by the communication FIFOs. The selected values are
inputted to the FMAC unit. The FMAC unit can sequentially accumulate an arbitrary
number of the products of inputs, which are IEEE754 single-precision floating-point
numbers. Since the FMAC unit has the forwarding path from the EX5 stage to the
EX2 stage for accumulation, it can sum up the products of inputs fed every three
cycles. This means that three sets of (1) are required to fully utilize the FMAC unit.

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 287

4.2 Sequencers and Instruction Set

As shown in Fig. 4, the SCM array has sequencers, which give programmability to
the array. In scientific simulation with a computational grid, the PEs taking charge
of the inner grid-points regularly perform the same computation while the PEs for
the boundary grid-points have to execute different computations. In order to achieve
such diversity of control, we partition the PEs into several control groups (CGs),
and assign a sequencer to each of them. Figure 4 shows a typical example of CGs
partitioning. Here the array has the nine CGs: CG1, CG2, . . . , CG9, which are given
the PEs of the top, left, bottom, and right sides; the four corners; and the inner grid-
points. The sequencer of each CG reads instructions from its own sequence memory
and sends control signals to all the PEs of the CG based on the instructions. That
is, the PEs of each CG are controlled in single instruction-stream and multiple data-
stream (SIMD) fashion.

Table 1 shows an instruction set of the SCM array. Instructions are classified
into two major groups: control instructions and execution instructions. Each control
instruction supports the nested loop-control, no operation (nop), and halt. Nested-
loops are executed with the lset and bne operations. The lset initiates the next-level
loop by setting the number of iterations and the starting address of the loop body.
After the lset is executed, the loop counter is decremented and the branch to the
starting address is taken if it is not zero when the bne is executed. Each execution
instruction has an opcode to select operation of the FMAC, two operands to specify
the sources of the FMAC inputs, and two operands to specify the destinations of the
FMAC output for the local memory and the communication FIFOs. Please note that
an execution instruction can be merged with a bne instruction.

The code of Fig. 6 is an example of a sequence for three sets of (1) for grid-points
(0,0), (1,0), and (2,0), where all the constants are 0.25. The grid is decomposed into
3×2 sub-grids as shown in Fig. 7. The PE computing the grid points communicates
with the east, west, and north PEs through the E-, W-, and N-FIFOs, respectively.
Because of the three-cycle forwarding of the FMAC unit, we concurrently perform
the three sets of accumulations every three instructions. The lset instruction is used
to repeat the computation for 1,600 times. Note that the branch is actually performed
after the next instruction to the bne is executed. The code written in the assembly
language is assembled and converted to the sequence binary for sequencers.

4.3 Techniques for Multiple-FPGA Implementation

For performance scalability, we design the SCM array to be scalably implemented
over multiple FPGAs, by partitioning the array into sub-arrays. We can build a larger
SCM array with more FPGAs. Figure 8 shows sub-arrays implemented over FPGAs
A, B, and C.

288 K. Sano

T
ab

le
1

In
st

ru
ct

io
n

se
to

f
th

e
SC

M
ar

ra
y

(i
n

an
as

se
m

bl
y

la
ng

ua
ge

of
th

e
SC

M
ar

ra
y)

Ty
pe

op
co

de
ds

t1
,

ds
t2

,
sr

c1
,

sr
c2

D
es

cr
ip

ti
on

C
on

tr
ol

no
p

N
o

op
er

at
io

n
in

st
ru

ct
io

ns
ha

lt
H

al
t

ls
et

IT
E

R
S,

A
D

D
R

L
oo

p-
co

un
te

r i
:=

IT
E

R
S

B
ne

-r
eg

i
:=

A
D

D
R

(f
or

th
e

i-
th

ne
st

ed
lo

op
)

bn
e

B
ra

nc
h

to
B

ne
-r

eg
i

if
L

oo
p-

co
un

te
r i

is
no

te
q.

to
ze

ro
.

E
xe

cu
ti

on
in

st
ru

ct
io

ns
m

ul
p

-,
L

1,
L

2,
E

FI
FO

FM
A

C
ou

t=
M

[L
2]

×
E

-F
IF

O
,

M
[L

1]
:=

FM
A

C
-o

ut
ac

cp
SE

,
L

1,
L

2,
L

3
FM

A
C

-o
ut

=
FM

A
C

-o
ut

+
M

[L
2]

×
M

[L
3]

,
{S

,E
}-F

IF
O

s
:=

FM
A

C
-o

ut
,

M
[L

1]
:=

FM
A

C
-o

ut

M
er

ge
d

ac
cp

bn
e

-,
L

1,
L

2,
L

3
ac

cp
&

bn
e

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 289

QUAD = 0.25 // LABEL definition
lset 1600, LOOP

LOOP: mulp , , v[0;0], QUAD
mulp , , v[1;0], QUAD
mulp , , v[2;0], QUAD
accp , , v[1;0], QUAD
accp , , v[2;0], QUAD
accp , , EFIFO, QUAD
accp , , WFIFO, QUAD
accp , , v[0;0], QUAD
accp , , v[1;0], QUAD
accp , , NFIFO, QUAD
accp , , NFIFO, QUAD
accp , , NFIFO, QUAD
accp SW, vnew[0;0], v[0;1], QUAD
accpbne S, vnew[1;0], v[1;1], QUAD
accp SE, vnew[2;0], v[2;1], QUAD

Fig. 6 Example code of (1) for (0,0), (1,0) and (2,0) on the sub-gird of Fig. 7. QUAD and
“v[0;0]” are labels for local-memory addresses

E-PEW-PE

N-PE

S-PE

NFIFO

SFIFO

EFIFOWFIFO

[-1,0] [2,0] [3,0]

[0,-1] [1,-1] [2,-1]

[0,0] [1,0]

[0,1] [1,1][-1,1] [2,1] [3,1]

[0,2] [1,2] [2,2]

Fig. 7 Assignment of 3×2
sub-grids for Jacobi
computation with PEs

In multi-FPGA implementation, the more devices the system has, the more
difficult it is to uniformly distribute a single clock source to them. To avoid
distributing a single clock to all devices in a large system, we introduce a globally
asynchronous and locally synchronous (GALS) design [13], where each FPGA
is given an independent clock-domain. We transfer data between different clock-
domains without meta-stability by using dual-clock FIFOs (DcFIFOs), which have
different clock sources for input and output. Multiple clock-domains allow us to
easily build an extensible and scalable system with many FPGAs.

4.3.1 Peak-Bandwidth Reduction Mechanism (BRM)

From a programming point of view, we should allow the sub-arrays over mul-
tiple FPGAs to logically operate as a single array. However, multiple-FPGA
implementation presents several problems related to the off-chip bandwidth and

290 K. Sano

PE

B
R

M

B
R

M

BRM

Peak-bandwith reduction mechanism (BRM)

Dual-clock FIFOs

N

S

FPGA A
(clock domain A)

GG 6

Control
Group

1

CG
8

CG
4

75

CG 2 93

B
R

M

B

E

FPGA B
(clock domain B)

CG
4

5

3
B

R
M

M

W

FPGA C
(clock domain C)

CG
8

7

9

Fig. 8 SCM sub-arrays implemented over FPGAs A and B with different clock-domains. The
clock-domains are bridged by the dual-clock FIFOs

synchronization, which are not seen in the case of single-FPGA implementation.
In the SCM array implemented with a single FPGA, the adjacent PEs are directly
connected and therefore the PE can send data to the adjacent PEs every cycle. The
abundant on-chip wiring-resources make such direct connection available among
PEs. On the other hand, the off-chip I/O bandwidth is much limited compared to
the internal wires, and therefore it is more difficult for all the PEs to be directly
connected between different FPGAs.

Fortunately, the data transfer between PEs is less frequent than read/write of the
local memory, and we can utilize this characteristic to solve the off-chip bandwidth
problem [22]. When a PE sends the result of computing (1), the data-transfer
occurs only after the cycles necessary for FMAC unit to accumulate the terms. For
example, the code of Fig. 6 has only the three instructions to send data in the fifteen
instructions of the loop body. In addition, only the border grid-points of a sub-grid
cause data transfer between adjacent PEs. Thus, actual stencil computation requires
much less net-bandwidth than the peak bandwidth for sending data every cycle.
Accordingly, the inter-FPGA bandwidth does not have to be as high as the aggregate
memory-bandwidth of the border PEs in the SCM array.

However we still need a technique to handle the successive data-transfers
conducted every cycle, which locally request the peak bandwidth, even if the inter-
FPGA bandwidth is more than the average data-transfer rate. We designed a module
with a peak-bandwidth reduction mechanism (BRM) to buffer the successive
data-transfer requests, which is fully described in [22]. BRM is based on time-
division multiplexing (TDM) for multi-cycle data-transfer with a buffer FIFO.
For explanation, assume that the inter-FPGA bandwidth has the one n-th of the

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 291

aggregate memory bandwidth of the border PEs. In this case, a set of words sent
by the border PEs at a cycle is buffered by BRM, and takes n cycles to arrive at
the adjacent FPGA. We refer to such BRM as “n : 1 BRM,” which reduces the peak
bandwidth to the one n-th with an n-times longer delay. If BRM has a buffer with
a sufficient size for successive data-transfer, it can average out the net bandwidth.
Thus BRM has a trade-off between the peak-bandwidth reduction and the delay
increase. Therefore, we have to additionally take care of the increased delay in
scheduling instructions to send data and use the received data.

4.3.2 Local-and-Global Stall Mechanism

In addition to the off-chip bandwidth problem, multi-FPGA implementation causes
a synchronization problem of execution and data-transfer among devices because of
the slight but inevitable difference in frequency among different clock domains even
if their sources have the same configuration of frequency. Assume that we have two
clock oscillators for 100 MHz. They can be different from each other, for example,
100.001 and 100.002 MHz. Since different frequencies cause the PEs to execute at
different speeds, we need to synchronize the instructions executed by the PEs to send
and receive data. The inter-PE communication is performed by explicitly executing
instructions for communication, which send data to the adjacent PEs and read data
from the communication FIFOs. If all the PEs are synchronized to a single clock,
we can statically schedule instructions for adequate communication. However, if we
use different clocks, PEs operating at a higher frequency could read an empty FIFO
before the corresponding datum is written to the FIFO, and/or write a datum to a full
FIFO before the FIFO is read by another PE. To avoid these data-transfer problems,
we need some hardware mechanism to suspend the PEs in the case of a read-empty
(RE) or write-full (WF).

We can easily think of the simplest design of the SCM array where all the
sequencers and PEs simultaneously stall just after RE or WF is detected. However,
this design is impractical. Although each sequencer can stall immediately when it
locally detects RE or WF, the stall signal takes more than one cycle to be distributed
from the sequencer to the others and make them stall. This is because the stall-signal
distribution requires at least one OR operation for RE and WF detection, long wires
with large fan-out, and another OR operation to generate the global-stall signal. If
we implement the stall-signal distribution within one cycle, it reduces the operating
frequency.

To solve this problem, we introduce a LGSM to the CGs, which is based on
the very simple concept that sequencers stall immediately when they detect RE or
WF, and the others stall several cycles later. Figure 9 shows an overview of the
LGSM. Sequencer 2 of CG 2 observes w.N and f .S to detect RE and WF, which
are the write signal of N(north)-FIFOs of its own PEs and the almost-full signal
of S(south)-FIFOs of the PEs in the different clock-domain, B, respectively. With
w.N, the sequencer counts the number of remaining data in the N-FIFOs for the
issued read-operation at present. When the sequencer issues a read operation for an

292 K. Sano

Global-stall
distributer

Sequencer 9

l.stallg.stall

Sequencer 2

g.stalll.stall

S-FIFO
almost full

N-FIFO
write

Sequencer 3

g.stalll.stall

from
another
domain

N-, W-FIFO
writeS-FIFO

almost full

W-FIFO
almost full

Clock
domain

A CG 2

CG 6 75Clock
domain

B

3

Clock
domain C

PE 93 PE

N-, E-FIFO
write f.Ww.E f.Sw.Nf.S w.Nw.Wf.S w.Nf.E

Fig. 9 Local-and-global stall mechanism (LGSM) to guarantee data-transfer synchronization in
the GALS design

empty FIFO or a write operation for an almost-full FIFO, the sequencer immediately
becomes the stall state. Then it sends a local-stall (l.stall) signal to the global-stall
distributor (GSD).

The l.stall signal is latched at the output of each sequencer and reaches GSD at
the next cycle. GSD has the inputs of the l.stall signals from all the sequencers.
In GSD, the OR operation with all the l.stall signals generates a global-stall
(g.stall) signal, which is distributed to all the sequencers. If necessary, we can
insert additional latches into the distribution tree of the g.stall signal to prevent
the operating frequency from decreasing. Sequencers in the execution state stall
immediately when they receive the g.stall signal. Note that the sequencers with
delayed stall issue one more instruction than Sequencer 2 because it locally stalls
prior to the global stall. Therefore, Sequencer 2 issues the instruction before the
other sequencers resume execution. This function is provided by a stall-control unit
in each sequencer. The details of LGSM are described in [13].

5 Implementation and Evaluation

5.1 Implementation

With implementation of SCM arrays on multiple-FPGAs, we demonstrate that SCM
arrays have scalability according to the number of FPGAs. We also evaluate the

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 293

Fig. 10 1×3 FPGA-array of 3 DE3 board

overhead caused by LGSM for its frequency degradation and resource consumption
by comparing 3× 3, 4× 4, and 8× 8 SCM arrays with and without LGSM. We use
Terasic DE3 boards [28] to construct the 1× 3 FPGA-array of Fig. 10, while our
final goal is to build a 2D FPGA-array as shown in Fig. 11.

Figure 12 shows the block diagram of the DE3 board. The DE3 board has an
ALTERA Stratix III EP3SL150 FPGA [1] and four HSTC connectors, which can be
used to connect DE3 boards to each other with a single-end or LVDS signaling.
Each HSTC connector has 130 I/O pins including clock lines. Each pair of the
three DE3 boards is connected by the two HSTC connectors for bi-directional data-
transfer. By using 64 pins of the 130 pins at 100 MHz in single-end, each HSTC
connector provides a uni-directional data-transfer of 0.8 GB/s between FPGAs. The
4:1 BRM allows at most 8×8 PEs to send or receive data between FPGAs with this
connection. The Stratix III EP3S150 FPGA has 113,600 ALUTs (adaptive LUTs),
which is equivalent to 142,000 LEs, block RAMs with a total of 6,390 Kbits, and
96 36-bit DSP blocks. The block RAMs consist of 355 M9K blocks and 16 M144K
blocks. The size of each M9K block is 9 Kbits while each M144K has 144 Kbits.

Figure 13 shows a block diagram of a system implemented on each FPGA. We
wrote verilog-HDL codes of 3× 3, 4× 4, and 8× 8 SCM arrays with or without
LGSM. We implement the 4:1 BRMs and the distributors to reduce the peak-
bandwidth requirement to one-fourth for inter-FPGA connection. We use DcFIFOs
to connect the logics in different clock-domains. We also implement ALTERA’s
system on programmable chip (SOPC) with an NIOS II processor for the USB
interface. The host PC can read and write data and commands to the SCM array’s

294 K. Sano

Fig. 11 3×3 FPGA-array of 9 DE3 boards, which is planed to be implemented

Stratix III
FPGA B

D
C

A
B

USB I/F

Host

C

D
C

U

A

A
B

SB I/F

Host

DE3 board 2 Board 3Board 1

Host

DDR2 DRAM DDR2 DRAM

HSTC connector

Fig. 12 Block diagram of DE3 board and a 1×3 FPGA array

memories via USB. We compiled the system by using ALTERA Quartus II compiler
version 9.1 with the options of “area,” “standard fit,” and “incremental-compilation
off.”

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 295

DcFIFO

full

DcFIFO

full

Array
Controller

wr clk

wr clk

SOPC (NIOS II)
for USB I/F

Host PC via USB

Stratix III

EP3S150

FPGA

B
R

M

D
is

tr
ib

u
to

r

D
is

tr
ib

u
to

r

B
R

M

PE PE PE

PE

PE

PE

CG3 CG2 CG9

CG5 SCM array (n x n)

Seq2 Seq3 Seq4 Seq5

Seq6 Seq7 Seq8 Seq9

Seq1 Sequencers for CGs

4
1

Fig. 13 Block diagram of a system including a sub-SCM-array implemented on an FPGA

5.2 Benchmark Computations

PEs perform floating-point operations for (1), and therefore the prototyped system
can actually compute real applications based on the finite difference method. We
program the PEs of the SCM array in the dedicated assembler language [22].
For benchmarks, we use the applications summarized in Fig. 14. The red-black
successive over-relaxation method [9], RB-SOR, is one of the parallelized iterative
solvers for Poisson’s equation or Laplace’s equation. In the RB-SOR method, the
grid points are treated as a checkerboard with red and black points, and each iteration
is split into a red-step and a black-step. The red- and black-steps compute the red
points and the black points, respectively. We solved the heat-conduction problem
on a 2D square plate with RB-SOR. Each PE computes with an 8× 24 sub-grid so
that the 9×3 SCM array on the three FPGAs computes a 72×72 grid for 2.0×106

iterations.
The fractional-method [27], FRAC, is a typical and widely used numerical

method for computing incompressible viscous flows by numerically solving the
Navier–Stokes equations. We simulated the 2D square driven cavity flow with
the FRAC, giving the result shown in Fig. 14. The left, right, and lower walls of
the square cavity are stable, and only the upper surface is moving to the right with a
velocity of u = 1.0. Each PE takes charge of a 5× 15 sub-grid. For the 9× 3 SCM
array on the three FPGAs, we compute 5,000 time-steps with a 45× 45 grid while
the Jacobi computation is performed for 1,000 iterations at each time-step.

296 K. Sano

Red-black SOR (RB-SOR)

Numerical solver of Laplace’s
equation: ∇2φ = 0. The 2D time-
independent heat-conduction is
computed with a 2D grid by using
the red-black SOR method. The
red-black SOR is a parallelized
version of the SOR (Successive
Over-Relaxation) method, which is
computed with a checkerboard-like
grid of red and black points. Compu-
tation of each iteration is divided into
a red step and a black step, which are
independent to each other.

Fractional-step method (FRAC)

Numerical method to compute in-
compressible viscous flow. 2D square
driven cavity flow is computed giv-
ing a time-independent result. The
fractional-step method is composed
of calculating tentative velocities,
solving the Poisson’s equation of
pressure, and calculating the true ve-
locities. We use Jacobi method to
solve the Poisson’s equation of pres-
sure.

FDTD method (FDTD)

Numerical method to solve the
Maxwell’s equations for electromag-
netic problems. The 2D propagation
of electromagnetic waves is com-
puted with a 2D grid. The square-
wave source was placed at the left-
bottom corner of the grid. We use the
Mur’s first-order absorbing boundary
condition for the border of the grid.

N grid-points

M
 g

rid
-p

oi
nt

s

N grid-points

M
 g

rid
-p

oi
nt

s
u = 0, v = 0

u
=

0,
 v

 =
 0

u=
 0

, v
 =

 0

u = uf, v = 0

x

y

N grid-points

M
 g

rid
-p

oi
nt

s

Absorbing boundary condition
x

y

wave source
of Hz

(xs, ys)

Hz
EyEy

Ex

Ex

Fig. 14 Benchmark computations

The FDTD method [31], is a powerful and widely used tool to solve a wide
variety of electro-magnetic problems, which provides a direct time-domain solution
for Maxwell’s Equations discretized by difference schemes on a uniform grid and at
time intervals. Since the FDTD method is very flexible and gives accurate results for
many non-specific problems, it is widely used for solving a wide variety of electro-
magnetic problems. We compute the FDTD method to simulate 2D propagation of
electro-magnetic waves with a square-wave source. At the left-bottom corner, we
put the square-wave source with an amplitude of 1 and a period of 80 time-steps.
On the border, Mur’s first-order absorbing boundary condition is applied. Each PE
takes charge of a 4× 6 sub-grid. For the 9× 3 SCM array on the three FPGAs, we
compute 1.6× 106 time-steps with a 36× 18 grid.

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 297

Table 2 Synthesis results for Stratix III FPGA

Without LGSM With LGSM

Array size 3×3 4×4 8×8 3×3 4×4 8×8

fmax[MHz] 128 123 123 128 125 118
ALUTs SCMA 12,248

(10.8%)
20,984
(18.5%)

78,189
(68.8%)

12,420
(10.9%)

21,179
(18.6%)

78,341
(69.0%)

BRM 881
(0.776%)

1,123
(0.989%)

2,274
(2.00%)

878
(0.773%)

1,128
(0.993%)

2,260
(1.99%)

Others 10,041
(8.84%)

7,743
(6.82%)

6,133
(5.40%)

9,080
(7.99%)

10,784
(9.49%)

6,133
(5.40%)

36-bit DSP
blocks

9 (9.38%) 16
(16.7%)

64
(66.7%)

9 (9.38%) 16
(16.7%)

64
(66.7%)

Total memory
bits

1,842,752
(32.7%)

2,072,128
(36.8%)

3,645,592
(64.7%)

1,842,752
(32.7%)

2,072,128
(36.8%)

3,645,592
(64.7%)

5.3 Synthesis Results

Table 2 shows the synthesis results of SCM arrays with and without LGSM for
3× 3, 4× 4, and 8× 8 PEs. The larger the SCM array, the lower the frequency that
is available. This is because of the longer critical paths in the larger array. However,
the 8× 8 array can still operate at more than 118 MHz, which is sufficiently higher
than 100 MHz. The 8×8 array consumes about 75% of the ALUTs, 67% of the 36-
bit DSP blocks, and 65% of the total memory bits. Based on these data, we estimate
that we can implement up to 100 PEs on this FPGA to form a 10× 10 array, giving
1.5 times higher performance than that of the 8× 8 array.

LGSM slightly decreases the maximum operating frequency, fmax, by only a few
MHz. The difference in frequency of the 8× 8 array between SCM arrays with and
without LGSM is only 5 MHz. This means that LGSM does not have a major impact
on the scalability to the array size. There is almost no performance degradation
caused by introducing LGSM. LGSM slightly increases resource consumption by
0.17% at most for the ALUTs of the SCM array and do not increase the total
memory bits. Note that the ratio of resources increased by LGSM is almost constant
regardless of the array size. This is because the number of sequencers, 9, is
unchanged. These results show that we can use LGSM at very low cost in terms
of resources.

5.4 Performance Results

Although we set 100 MHz to all the clocks of the FPGAs, they can be slightly
different because they are generated by different clock sources. The stall cycles
caused by this difference may considerably increase the total cycles of computation

298 K. Sano

Table 3 Execution and stall cycles, performance and utilizations for 1, 2 and 3 FPGAs

Computation 1 FPGA 2 FPGAs 3 FPGAs

RB-SOR Exec cycles 1,440,003,040 1,440,003,040 1,440,003,040
Stall cycles 0 (0.0%) 11,207 (0.00078%) 11,250 (0.00078%)
GFlop/s 11.4 22.9 (×2.01) 34.4 (×3.02)
Utilization 89.2% 89.5% 89.7%

FRAC Exec cycles 977,382,044 977,382,044 977,382,044
Stall cycles 0 (0.0%) 7,592 (0.00078%) 7,591 (0.00078%)
GFlop/s 11.2 22.4 (×2.01) 33.7 (×3.02)
Utilization 87.2% 87.6% 87.7%

FDTD Exec cycles 950,432,027 950,432,027 950,432,027
Stall cycles 0 (0.0%) 7,220 (0.00076%) 7,212 (0.00076%)
GFlop/s 10.2 20.6 (×2.02) 30.9 (×3.04)
Utilization 79.6% 80.4% 80.6%

and spoil the scalability by using multiple devices. To evaluate the stall cycles of
SCM arrays operating on multiple FPGAs, we implement the 8 × 8 array with
LGSM on each FPGA and execute the benchmark programs of RB-SOR, FRAC,
and FDTD with SCM arrays on a single FPGA, two FPGAs and three FPGAs
connected as a 1D array. For the execution, we gave the constant size of the sub-
grid computed by each PE so that the size of the entire grid is proportional to the
number of FPGAs. Therefore, the SCM arrays on a different number of FPGAs
require the same cycles for computation while larger SCM arrays provide higher
performance with larger grids computed by more PEs.

Table 3 shows the numbers of execution cycles and stall cycles for the SCM
arrays on the single-, double-, and triple-FPGA arrays. Since the SCM array on a
single FPGA operates with a single clock-domain, no stall cycle is observed for all
the benchmark computations on the single-FPGA SCM array. On the other hand, the
double-FPGA and triple-FPGA SCM arrays have stall cycles due to the difference in
frequency among clock domains, which cause a slight increase in the total number
of cycles. However, the ratios of the stall cycles to the total execution cycles are very
small and ignorable and are about 8×10−4%. With these results, we made sure that
the clock frequencies of 100 MHz have small but inevitable differences, and that the
stall mechanism works well to guarantee the data synchronization with slight loss
of performance.

Table 3 also shows the actual floating-point performance for each benchmark
computation in GFlop/s. We used the measured cycles including the execution and
stall cycles to obtain the performance. We calculated the utilization that is defined
as the actual performance divided by the peak performance. The results show that
high utilization of 80–90% is achieved for the benchmark computations executed
on the SCM arrays irrespective of the number of FPGAs. Note that almost the
same utilization is maintained in increasing the number of FPGAs. The utilization
is slightly improving rather than declining because the ratio of border grid-points is
reduced.

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 299

These results show that the SCM array provides complete scalability to the
array size and the number of devices, so that m FPGAs achieve m times higher
performance to compute an m times larger grid. If we implement a 10×10 sub-array
on each FPGA, the three FPGAs are expected to give 53.8 GFlop/s to RB-SOR.
Note that the total bandwidth of the local memories is also completely proportional
to the size of the SCM array. The single-FPGA, double-FPGA, and triple-FPGA
SCM arrays have the internal bandwidth to read and write local memories of 76.8,
153.6, and 230.4 GByte/s at 100 MHz, respectively. If we implement a 10×10 sub-
array on each FPGA instead of a 8× 8 sub-array, they could provide 120, 240, and
360 GByte/s, respectively.

5.5 Feasibility and Performance Estimation
for State-of-the-Art FPGAs

Here we discuss the feasibility of implementation with 2D FPGA arrays and
estimate their peak performance for high-end FPGA series. We consider the
three high-end ALTERA FPGAs: Stratix III EP3SL340 FPGA (65 nm), Stratix IV
EP4SGX530 FPGA (40 nm), and Stratix V 5SGSD8 FPGA [1]. The resources
of these FPGAs are summarized in Table 4. We obtain the total I/O bandwidth
of each FPGA by multiplying the number of transceivers and the bandwidth per
transceiver. We assume that implementation optimization allows PEs to operate at
125 MHz on these FPGAs. Since an FMAC requires one single-precision floating-
point multiplier to be implemented with one 36-bit or 27-bit DSP block, we
assume that the number of PEs available on each FPGA is the same as the number
of 36-bit or 27-bit DSP blocks. Each PE can perform both multiplication and
addition at 125 MHz. Therefore, the peak performance of each FPGA is obtained
by 0.25× (the number of PEs) [GFlop/s].

As shown in Table 4, while Stratix III and IV FPGAs have a moderate peak-
performance, Stratix V FPGA has a peak performance of 491 GFlop/s per chip. This
is due to integration of many DSP blocks on state-of-the-art FPGA. Since an SCM
array performs stencil computation with a utilization of about 85%, the Strativ V
FPGA is expected to achieve a sustained performance of 491×0.85 = 417 GFlop/s
per chip. This performance is higher than the sustained performance of stencil
computation on a single GPU. Furthermore, due to the complete scalability of an
SCM array, we can efficiently scale the performance by using multiple FPGAs. For
example, we can obtain a sustained performance of 41.7 TFlop/s with 100 Stratix
V FPGAs. The cluster of 100 FPGAs can be cheaper than a larger GPU cluster to
provide comparable performance with much less utilization.

For feasibility, we should discuss whether the I/O bandwidth is sufficient to
connect the FPGAs with a 2D mesh network because a 2D FPGA array is suitable
to scale a 2D SCM array. We also assume an N ×N square array of PEs where
N =

√
(the number of PEs) on each FPGA, the required bandwidth for four links

300 K. Sano

Table 4 Estimation of array size and available bandwidth for a 2D array of
high-end FPGAs

Stratix III L
EP3SL340

Stratix IV GX
EP4SGX530

Stratix V
5SGSD8

Technology 64 nm 40 nm 28 nm
Equivalent LEs 337,500 531,200 695,000
Memory [KBytes] 2,034 2,592 6,417
36/27-bit DSPs 144 256 1,963
Transceivers (Gbps/ch) 132 (0.156) 48 (8.5) 48 (1.41)
Total I/O bandwidth [GB/s] 20.6 51 84.6

Assumed PE freq. [MHz] 125 125 125
Estimated # of PEs 144 256 1,963
Peak GFlop/s per FPGA 36 64 491
Required uni-

directional
BW for 4
links [GB/s]

24.0 32 88.6

Reduced BW by n = 2 12.0 16.0 44.3
n : 1 BRM n = 4 6.0 8.0 22.2
[GB/s] n = 8 3.0 4.0 11.1

(Peak GFlop/s) = (# of PEs) × 2 operations × 0.125 GHz)
(Req. unidir BW for 4 links) = 4 × √

(# of PEs) × 4 words × 0.125 GHz

of a 2D mesh network is calculated by 4×N × 4× 0.125 GByte/s. In Table 4, the
required bandwidth for four links is slightly higher than the available I/O bandwidth
for Stratix III and V FPGAs. However, BRM reduces the required bandwidth less
than the I/O bandwidth. Especially, much less bandwidth is required if we use 4:1
BRM. These estimations show that implementation of an SCM array with multiple
FPGAs is feasible and we can build an array of a large number of FPGAs without
inter-FPGA communication bottleneck.

6 Summary

This chapter presents the SCM array for programmable stencil computations. The
target computation of an SCM array is the neighboring accumulation for 3× 3 star-
stencil computations. The SCM array is based on the SCM architecture, which
combines the systolic array and the computational memory approach to scale
both computing performance and aggregate memory-bandwidth in accordance with
the array size. After the structure and behavior of processing elements and their
sequencers are described, we show GALS implementation for multiple FPGAs
with different clock-domains. We also present two techniques, the peak-bandwidth
reduction mechanism (BRM) and the LGSM, which are necessary to solve the
bandwidth and synchronization problems of inter-FPGA data-transfer.

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 301

We implement a prototype SCMA with three Stratix III FPGAs. We demonstrate
that the prototyped SCMAs compute the three benchmark problems: RB-SOR,
FRAC, and FDTD. By implementing 3× 3, 4× 4, and 8× 8 SCMAs, we evaluate
their impact on the synthesis results including operating frequency and resource
consumption. We also evaluate the overhead of LGSM in terms of operating
frequency and resource consumption. We show that the size of the array and LGSM
have a slight influence on the operating frequency, but only frequency degradation is
limited. Thus our design of an SCMA with LGSM is scalable for available resources
on an FPGA.

To evaluate performance scalability for multiple FPGAs, we compare single-
FPGA, double-FPGA, and triple-FPGA SCMA, where each sub-SCMA has an 8×8
array. The number of FPGAs gives complete scalability of sustained performance
maintaining a utilization of 80–90% for each benchmark. As a result, the three
FPGAs operating at 100 MHz achieve 31–34 GFlop/s for single-precision floating-
point computations. We expect that a 10× 10 sub-SCMA can be implemented on
each FPGA to provide 1.5 times higher performance than that of the 8× 8 sub-
SCMA. We ensure the LGSM provides the necessary stalls for the differences in
frequency of the 100 MHz clocks; however, the number of stall cycles is very small,
just 8× 10−4% of the total cycles. This means that sub-SCMAs in different clock-
domains are synchronized by LGSM, but the overhead is ignorable for computing
performance.

A feasibility study of implementation with the high-end FPGA series showed
that the Stratix V FPGA is expected to achieve a peak performance of 419 GFlop/s
and a sustained performance of about 417 GFlop/s. We showed that BRM allows
a large SCM array to be implemented with many FPGAs without a bottleneck in
inter-FPGA communication.

In future work, we will construct a 2D FPGA array and implement a large SCMA
on it for larger 3D computations. We will also develop a compiler for SCM arrays
based on the prototype version of a compiler for a domain-specific language [14].

Acknowledgements This research and development were supported by Grant-in-Aid for Young
Scientists(B) No. 20700040, Grant-in-Aid for Scientific Research (B) No. 23300012, and Grant-in-
Aid for Challenging Exploratory Research No. 23650021 from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1. Altera Corporation (2012), http://www.altera.com/literature/
2. R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A.

McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, G. Genest, Maxwell a 64
FPGA supercomputer, in Proceedings AHS2007 Conference Secound NASA/ESA Conference
on Adaptive Hardware and Systems (2007), pp. 287–294, http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=4291933

3. W. Chen, P. Kosmas, M. Leeser, C. Rappaport, An fpga implementation of the two-dimensional
finite-difference time-domain (FDTD) algorithm, in Proceedings of the 2004 ACM/SIGDA

http://www.altera.com/literature/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4291933
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4291933

302 K. Sano

12th International Symposium on Field Programmable Gate Arrays (FPGA2004) (2004),
pp. 213–222, http://dl.acm.org/citation.cfm?id=968311

4. K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,
K. Yelick, Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures, in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008),
pp. 1–12, http://dl.acm.org/citation.cfm?id=1413375

5. J.D. Davis, C.P. Thacker, C. Chang, BEE3: revitalizing computer architecture research. MSR-
TR-2009-45 (Microsoft Research Redmond, WA, 2009)

6. J.P. Durbano, F.E. Ortiz, J.R. Humphrey, P.F. Curt, D.W. Prather, FPGA-based acceleration
of the 3D finite-difference time-domain method, in Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (2004), pp. 156–163, http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1364626

7. D.G. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, R. Mckenzie, Computational RAM:
implementing processors in memory. Des. Test Comput. 16(1), 32–41 (1999)

8. A. George, H. Lam, G. Stitt, Novo-G: at the forefront of scalable reconfigurable supercomput-
ing. Comput. Sci. Eng. 13(1), 82–86 (2011)

9. L.A. Hageman, D.M. Young, Applied Iterative Methods (Academic, New York, 1981)
10. T. Hauser, A flow solver for a reconfigurable FPGA-based hypercomputer. AIAA Aerosp. Sci.

Meet. Exhib. AIAA-2005-1382 (2005)
11. K.T. Johnson, A. Hurson, B. Shirazi, General-purpose systolic arrays. Computer 26(11), 20–31

(1993)
12. H.T. Kung, Why systolic architecture? Computer 15(1), 37–46 (1982)
13. W. Luzhou, K. Sano, S. Yamamoto, Local-and-global stall mechanism for systolic

computational-memory array on extensible multi-FPGA system, in Proceedings of the Interna-
tional Conference on Field-Programmable Technology (FPT2010) (2010), pp. 102–109, http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5681763

14. W. Luzhow, K. Sano, S. Yamamoto, Domain-specific language and compiler for stencil
computation on FPGA-based systolic computational-memory array, in Proceedings of the
International Symposium on Applied Reconfigurable Computing (ARC2012) Springer, (2012),
pp. 26–39, http://link.springer.com/chapter/10.1007%2F978-3-642-28365-9 3?LI=true

15. O. Mencer, K.H. Tsoi, S. Craimer, T. Todman, W. Luk, M.Y. Wong, P.H.W. Leong, Cube: a
512-FPGA cluster, in Proceedings of the IEEE Southern Programable Logic Conference 2009
(2009), pp. 51–57, http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4914907

16. H. Morishita, Y. Osana, N. Fujita, H. Amano, Exploiting memory hierarchy for a computational
fluid dynamics accelerator on FPGAs, in Proceedings of the International Conference on
Field-Programmable Technology (FPT2008) (2008), pp. 193–200, http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=4762383

17. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
K. Yelick, A case for intelligent RAM: IRAM. IEEE Micro 17(2), 34–44 (1997)

18. D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Gribstad, K. Keeton,
C. Kozyrakis, D. Martin, S. Perissakis, R. Thomas, N. Treuhaft, K. Yelick, Intelligent
RAM(IRAM): the industrial setting, applications, and architectures, in Proceedings of the
International Conference on Computer Design (1997), pp. 2–9, http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=628842

19. E.H. Phillips, M. Fatica, Implementing the himeno benchmark with CUDA on GPU clusters,
in Proceedings of International Symposium on Parallel and Distributed Processing (IPDPS)
(2010), pp. 1–10, http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5470394

20. K. Sano, T. Iizuka, S. Yamamoto, Systolic architecture for computational fluid dynamics on
FPGAs, in Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM) (2007), pp. 107–116, http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=4297248

21. K. Sano, W. Luzhou, Y. Hatsuda, S. Yamamoto, Scalable FPGA-array for high-performance
and power-efficient computation based on difference schemes, in Proceedings of the In-
ternational Workshop on High-Performance Reconfigurable Computing Technology and
Applications (HPRCTA) (2008), http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4745679

http://dl.acm.org/citation.cfm?id=968311
http://dl.acm.org/citation.cfm?id=1413375
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364626
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1364626
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5681763
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5681763
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007%2F978-3-642-28365-9_3?LI=true
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4914907
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4762383
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4762383
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=628842
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=628842
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5470394
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4297248
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4297248
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4745679

FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations 303

22. K. Sano, W. Luzhou, Y. Hatsuda, T. Iizuka, S. Yamamoto, FPGA-array with bandwidth-
reduction mechanism for scalable and power-efficient numerical simulations based on finite
difference methods. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 3(4), Article No. 21
(2010)

23. K. Sano, W. Luzhou, S. Yamamoto, Prototype implementation of array-processor extensible
over multiple FPGAs for scalable stencil computation. ACM SIGARCH Computer Architec-
ture News (HEART special issue), 38(4), 80–86 (2010)

24. K. Sano, Y. Hatsuda, S. Yamamoto, Scalable streaming-array of simple soft-processors for
stencil computations with constant memory-bandwidth, in Proceedings of the 19th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2011),
pp. 234–241, http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5771279

25. R.N. Schneider, L.E. Turner, M.M. Okoniewski, Application of fpga technology to accelerate
the finite-difference time-domain (FDTD) method, in Proceedings of the 2002 ACM/SIGDA
10th International Symposium on Field Programmable Gate Arrays (FPGA2002) (2002),
pp. 97–105, http://dl.acm.org/citation.cfm?id=503063

26. W.D. Smith, A.R. Schnore, Towards an RCC-based accelerator for computational fluid
dynamics applications. J. Supercomput. 30(3), 239–261 (2003)

27. J.C. Strikwerda, Y.S. Lee, The accuracy of the fractional step method. SIAM J. Numer. Anal.
37(1), 37–47 (1999)

28. TERASIC Corp. (2012), Accessed 30th January 2013, http://www.terasic.com.tw
29. J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, P. Boucard, Programmable active

memories: reconfigurable systems come of age. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 4(1), 56–69 (1996)

30. S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance model for
multicore architectures. Comm. ACM 52(4), 65–76 (2009)

31. K.S. Yee, Numerical solution of inital boundary value problems involving maxwell’s equations
in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5771279
http://dl.acm.org/citation.cfm?id=503063
http://www.terasic.com.tw

High Performance Implementation of RTM
Seismic Modeling on FPGAs: Architecture,
Arithmetic and Power Issues

Victor Medeiros, Abner Barros, Abel Silva-Filho, and Manoel E. de Lima

Abstract This work presents a case study in the oil and gas industry, namely
the FPGA implementation of the 2D reverse timing migration (RTM) seismic
modeling algorithm. These devices have been largely used as accelerators in
scientific computing applications that require massive data processing, large parallel
machines, huge memory bandwidth and power. The RTM algorithm enables
you to directly solve the acoustic and elastic waves problems with precision in
complex geological structures, demanding a high computational power. To face
such challenges we suggest strategies such as reduced arithmetic precision, based
on fixed-point numbers, and a highly parallel architecture are suggested. The effects
of such reduced precision for storage/processing data are analyzed in this chapter
through signal-noise ratio (SRN) and universal image quality index (UIQI) metrics.
The results show that SRN higher than 50 dB can be considered acceptable for a
migrated image with 15 bits word size. A special stream-processing architecture
aiming to implement the best possible data reuse for the algorithm is also presented.
It was implemented by an FIFO-based cache in the internal memory of the FPGA.
A temporal pipeline structure has also been developed, allowing that multiple time
steps to be performed at the same time. The main advantage of this approach is
the ability to keep the same memory bandwidth needs of processing just one time
step. The number of time steps processed at the same time is limited by the amount
of FPGA internal memory and logic blocks. The algorithm was implemented on
an Altera Stratix 260E, with 16 processing elements (PEs). The FPGA was 29
times faster than the CPU and only 13% slower than the GPGPU. In terms of
power consumption, the CPU+FPGA was 1.7 times more efficient than the GPGPU
system.

V. Medeiros (�) • A. Barros • A. Silva-Filho • M.E. de Lima
Center for Informatics, UFPE - Brazil
e-mail: vwcm@cin.ufpe.br; acb@cin.ufpe.br; agsf@cin.ufpe.br; mel@cin.ufpe.br

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 10, © Springer Science+Business Media, LLC 2013

305

mailto:vwcm@cin.ufpe.br
mailto:acb@cin.ufpe.br
mailto:agsf@cin.ufpe.br
mailto:mel@cin.ufpe.br

306 V. Medeiros et al.

1 Introduction

Nowadays, accelerators like GPGPU and FPGAs also have emerged as strong
streaming computation candidates [6, 8, 9, 17] to increase performance in a specific
hardware platform. Thus, compute-intensive algorithms applied to scientific com-
puting modeling such as bioinformatics, image processing, geophysics and seismic
applications [8, 12] can be mapped directly into FPGAs [2] or GPGPUs hardware
[4, 17] in order to exploit its massive parallel processing power.

Particularly, these reconfigurable platforms have been widely used in appli-
cations of digital signal processing in fixed-point arithmetic, achieving gains in
performance when compared with general purpose CPUs [2,3] and GPGPUs [4,17].

In fact, to evaluate which platform is optimal for a given application has become
a difficult task. For instance, applications such as seismic imaging in petroleum
industry, the main focus of this work, involve a lot of data collected based on floating
point operations from petroleum fields in order to locate underground oil and gas
reservoirs with basis on an impulsive seismic waves source, geophones and a storage
system. This process is performed through the acquisition of travel time and the
speed of seismic waves which can be reconstructed by applying methods such as
Kirchhoff [20] and reverse time migration (RTM) [5, 16], resulting in data that are
used to verify the disposition of the rocks on the ground.

However, no matter of the method, not only the processing time but also the time
required to transfer huge amounts of data stored in memory for processing phase is
still quite costly. In a sense, optimization strategies that aim to reduce access latency
and search for data in memory, as well as increased bandwidth become necessary.

FPGAs have, therefore, shown excellent potential as hardware accelerators,
allowing to explore issues such as stream processing, considering approaches based
on pipeline, parallelism on data processing, as well as more efficient reuse of data
when compared with other platforms such as GPGPUs. Also, with the FPGAs,
it is possible to customize the formatting of data, enabling data reduction in
precision whenever possible, without jeopardizing the quality of results for certain
problems like the infeasibility in CPUs and GPGPUs. And, in addition to these, there
is the possibility of data compression and further enhancement of the advantages
mentioned previously, especially an increase in bandwidth access to data in system
memory. These devices can also provide an order of magnitude more performance
per joule [17] than other platforms like GPGPUs and massively parallel processors
array (MPPAs), and over 250 times on general purpose CPUs.

This work explores the use of FPGAs to perform the acceleration of the seismic
modeling problem in 2D, the first computational step of the RTM method. Thus, the
contributions of this work are as follows:

(a) Analysis and development of an architecture to accelerate the RTM method of
a 2D seismic modeling for three different platforms: CPU, GPGPU and FPGA.

(b) Hardware implementation on the PROCe III Gidel platform.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 307

(c) Arithmetic issues analysis, especially the effect of using a custom arithmetic
operator.

(d) Evaluation of power consumption in different platforms.

Through the obtained results this study aims to show that the FPGA can be used
not only to accelerate the RTM method, but in many other applications in high
performance computing as well.

For the rest of this chapter, it is organized in the following sections. In the next
two sections, we present an overview of the RTM algorithm and discuss some
recent related work. Section 4 presents the system architecture for the algorithm
implementation based on FPGA, an analysis of the effects of using a customized
arithmetic operator and a power consumption evaluation for some of the platforms
used during the work. Then, in Sect. 5, the results targeting the seismic application
with GPGPU and CPU comparisons are presented. Finally, a few conclusions are
presented in Sect. 6.

2 The RTM Algorithm

Seismic exploration of oil can be divided into three areas: acquisition, processing
and interpretation. The acquisition is responsible for obtaining seismic traces,
through the injection of an excitation source (soil or water) along with the capture by
receivers (geophones or hydrophones). The processing includes various algorithms
such as Kirkchoff and RTM capable of transforming the confusing information
obtained in the sets of seismic traces (seismogram) into something more under-
standable. However, a given implemented algorithm varies significantly according
to the strengths and weaknesses of each architecture. This step essentially comprises
the seismic modeling and migration stages. In the interpretation stage, information
about several geological layers are extracted from a seismic section processed, such
as a fault location and oleifera formation, which are finally analyzed by experts.
The development of this work is directed at the processing step, particularly at the
modeling method.

Some seismic modeling and migration methods have been applied in many
different geological areas. The method of Kirchhoff for common offset depth has
been the most used algorithm in the petroleum industry, due to its low computational
cost relation when compared with other existing methods. However, this method is
not suitable for underground areas that have very complex structures, with lateral
variations in speeds, or high dips of the layers. Furthermore, the RTM method that
allows to solve directly the wave equation acoustic/elastic, produces, in general,
remarkably accurate results. However, this method has a quite high computational
cost while making use of strategies for parallel processing. In order to face such
challenge, this work provides the development of an FPGA-based platform for
exploring the power of parallelism of the RTM algorithm aiming 2D modeling.

308 V. Medeiros et al.

From the perspective of the wave propagation theory, the modeling and migration
processes are subjected to numerical solution of wave equation. The method of
solution by finite difference, used in RTM, for the acoustic wave equation, is
the most widespread approach and allows the division of the problem into space
sub-domains. This aspect contributes to exploit the parallelism of the architecture.
However, it is necessary to ensure constant communication with each simulation
step due to the dependence of the operations between steps, which is an aspect that
reduces the performance in processing.

Thus, the discretized finite difference equation is solved with the RTM algorithm
as follows. Initially, the modeling stage is performed. The forward propagation of
a modeled source wave-field to the receiver is performed for each shot location
through a known gridded velocity model. A wave-field is saved for later application
of the “imaging condition” at each time step. A shot corresponds to a seismic source.
In the field, this source is a real explosion in a given region of interest. In the forward
modeling this seismic source is simulated by a mathematical function. Second, the
received wave-field for each shot (as recorded in the field) is backward propagated
in time through the same velocity model. At each time step the corresponding source
and receiver wave-fields are correlated by applying the imaging condition. Thus, the
final wave-field in the source propagation scheme is correlated with the initial wave-
field in the receiver propagation scheme, and so on backwards through the receiver
propagation. The results are added to form a partial image volume for each shot,
and the image volumes for consecutive shot gathers are spatially added to produce
the final prestack depth image. This work is intended to implement the first step of
the RTM processing responsible for the architecture modeling stage.

3 Related Work

In order to improve the system performance over applications of scientific com-
puting, different parallel platforms have been evaluated for different algorithms.
There has been significant debate on which platform produces the most efficient
solution. However, only through a careful optimization for each platform, with the
engagement of hardware, computer-science and algorithmic scientists, we can come
up with a reasonable assessment of the alternatives available today.

Recently, multicore clusters are usually composed by large memories and
mechanical storage, thus wastefully burning a lot of power. An energy-efficient
solution is to design systems that are more specific for the applications they’re
running. It is possible to customize a system with dedicated accelerators to better
match the requirements of the application, thus resulting in better efficiency.

Solutions based on FPGAs have focused on solving some of the toughest
digital problems of industry. Over the past decade, very large FPGAs have been
implemented in applications such as radar, cryptography, WiMax/Long Term
Evolution (LTE), and software-defined radio (SDR). Factors including cost pressure
and stringent size, weight, and power (SWaP) requirements have created constrained

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 309

environments [13] that require high-performance and high-efficiency architectures.
FPGA-based systems can satisfy these requirements. In this sense, hybrid solutions
such as CPUs coupled to FPGA-based accelerators can be associated with the best
computing configuration available, even when we consider the host CPU power
consumption.

For petroleum industry explorations, research has been intense once seismic data
processing uses very complex floating point mathematical algorithms, indicated by
geophysical specialists to reconstruct the earth subsurface in order to discover where
petroleum can be found. These data are detected by hydrophones and recorded in
large repositories from an initial seismic pulse, generating a geological model of the
earth (imaging method) that can be interpreted by experts to help them to decide
where to build petroleum recovery infrastructure.

Therefore, to evaluate different algorithms for different platforms of intensive
computation has been the target of several industries and research centers. Every
new year, new architectures of intensive computing are proposed in order to
efficiently exploit the parallelism of these applications through strategies such
as increasing the amount of processing units, memory access, I/Os, operating
frequency, as well as other aspects restricted to manufacturing technology. All these
features, associated with the most advanced technology, would not have been so
successful if each designer’s creativity in providing different stream computation
solution for a given problem was not available.

Chuan He et al. [9] propose a reconfigurable platform for seismic data processing
based on FPGA to speed up the pre-stack Kirchhoff time migration (PSTM)
algorithm. The algorithm is expensive for the practical 3D applications because it
is computationally intensive and requires large amount of input data. The kernel
part of the algorithm, which consumes more than 90% of the CPU time, is tuned to
maximize its execution speed in the proposed platform. Simulation results show
that the proposed platform operating at a frequency of 50 MHz can calculate
the Kirchhoff summations in 50 million points per second and up to 15.6 times
faster than a 2.4 GHz P4 workstation considering the particular algorithm. The
experimental environment used in this case was composed of the Xilinx Virtex II
Pro series FPGA chip.

The same algorithm (PSTM) was re-implemented in a GPGPU GeForce8800GT
from NVidia in Shi et al. [14] work in order to improve the efficiency of the CPU
code. Prototypes were evaluated and results showed that they were more than
7.2 times faster than their CPU versions on Intel’s P4 3.0G. In order to make
comparisons with previously cited work, that is based on an FPGA approach, it
is important to mention that there are newer GPGPUs than the 8,800 s.

In [6] Haohuan Fu et al. developed a tool for automatic exploration in order
to customize number representations on FPGAs and provide acceptable precision
for seismic applications. This tuned number format was used to improve the
performance of the FK step in downward continued-based migration and the
acoustic 3D convolution kernel in the RTM approach. This strategy achieved
speedups ranging from 5 to 7 including the transfer time to and from the processors.

310 V. Medeiros et al.

An examination of random number generation (RNG) on four different
architectures (multi-core CPUs, GPGPUs, FPGAs and MPPAs) was made in
Thomas et al. [17] work. Three RNG algorithms (Uniform, Gaussian and
Exponential distribution) were evaluated for each platform. The most appropriated
algorithm for generating each type of number was determined for each platform.
Then the peak generation rate and estimated power efficiency for each device in
GSample/s and MSample/joule was calculated. The results are more conclusive
when efficiency is compared, as the FPGA provides an order of magnitude with
more performance per joule than any other platform, and 250 times more than that
of the CPU.

One of the greatest difficulties in comparing platforms such as CPU-based,
FPGA-based and GPGPU-based ones is that while a naive, unoptimized algorithm
can be implemented and directly compared on each platform, an optimized version
of the same algorithm may vary significantly due to the strengths and weaknesses of
each architecture. Clapp et al. [5] evaluate RTM algorithm for GPGPU and FPGA
accelerators. Their work discusses some algorithmic and optimization decisions
made to implement RTM on each platform. In addition, they show how these choices
are directly tied to the characteristics of the underlying architecture.

This work will explore the use of FPGAs to perform the acceleration of the
problem in 2D seismic modeling, which is the first computational step of the RTM
method. A real implementation showed that the proposed architecture is up to 29
times faster than a CPU and only 13% slower than a Nvidia Tesla GPGPU. We also
analyze the power efficiency of these platforms. In this context the FPGA is 1.7
times more efficient than the GPGPU. We also discuss that a top FPGA platform,
using the same techniques implemented in this work, could have an even better
performance.

4 System Architecture

The RTM algorithm is implemented in an FPGA co-processor based architecture,
on a Gidel PROCe III board [7] connected to a host machine, which supports an
Intel Core 2 Quad powered PC, through a PCIe ×4 bus. The host part is composed
of: the application core; the application driver, an API to access the co-processor
board resources provided by Gidel; and the board device driver. The co-processor
board is composed of: a PCIe bridge core, implemented in an additional FPGA;
the main FPGA that supports all wrap cores provided by Gidel and the stream
processing core that implements the RTM seismic modeling algorithm; and the
board DDR2 memories. These elements are described in details in the following
sections. Figure 1 illustrates the system architecture.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 311

Application
Core

C Library

Device Driver

Application
Driver

Board Driver

Matrices

Parameters

Software Application
(PC Host-Intel Core 2 Quad

6600 2.4 GHZ, 2GB RAM)

PCIe
Bridge

FPGA

Local
Bus

Stream
Processing

Core

Hardware Platform
(FPGA Board - PROCe-III)

PROC
Multiport

FPGA
Memory
(DDR2)

PCIebus

Fig. 1 System architecture overview

4.1 System Overview

The following sections give us an overview of the software and hardware parts of
the whole system.

4.1.1 Software Application

The software application is directed towards supporting the RTM modeling
algorithm execution. The main module of this application is composed of some
basic functions. The first of these functions is meant to organize the data, from
host disk, to the FPGA inside memories. This RTM algorithm database is basically
composed of three matrices: the velocity model matrix (VEL); the current pressure
field matrix (CPF); and the previous pressure field matrix (PPF).

The VEL matrix stores the velocity model, proposed by a geologist and repre-
sents the different wave propagation velocities on the ground layers. For example,
Fig. 2 illustrates the Marmousi velocity model, a 2D synthetic data set which is used
to verify if an algorithm produces correct images. As the implemented algorithm is a
second-order temporal finite difference, two matrices are involved in the processing:
the CPF matrix that stores the pressure field values on the current time step; and
the PPF matrix that stores the pressure field values on the previous time step.
These three matrices are fitted into the FPGA memory blocks in a way to allow
an optimized and efficient data access. This data organization is explained in more
detail in the Sect. 4.2.1.

The second function of the application core is to configure some algorithm
parameters like the size of matrices, seismic pulse data, seismic pulse position, and
the number of time steps.

312 V. Medeiros et al.

Fig. 2 Marmousi velocity model

In the current version, the system only deals with a single data partition because
only one board with one FPGA has been used. A multi-FPGA board version in
a multi-board cluster is under development. In this last approach, a third basic
function to split and allocate the data partition among these co-processor resources
should also be developed. A fourth function to visualize the processed data is also
under way.

PROCWizard

The Gidel PROCWizard IDE has been developed to provide a simple interface
to integrate hardware and software components of a design. PROCWizard works
closely with the Gidel boards and it is able to generate both, hardware and software
codes, in HDL and C++ codes, respectively, and a communication channel through
a PCIe bus. This IDE also automatically integrates all IP cores provided by Gidel for
the design, as the PROCMultiport (see Sect. 4.1.2), provides a device driver, used
by the application core to access the board resources and a debug environment that
allows, in runtime, the visualization of the board memories and CPU registers.

Device Driver Platform

The device driver generated by the PROCWizard IDE allows the access to the board
resources through a C++ class. The user can instantiate it in their applications and
call the class methods that implement the device driver API. The device driver is
also responsible for the hardware initialization (FPGA configuration) and the board
clock frequency setup.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 313

4.1.2 Hardware Platform

The hardware platform includes the communication elements that enable the data
transfer between the host and the FPGA board; the Multiport ip core provided by
Gidel that enables an easy interface for memory access; and the customized stream
processing core that implements the RTM algorithm.

Communication and Memory Structures

The Gidel PROCe III board provides an FPGA meant for the PCIe bridge core.
Thus, all the logic and memory resources in the main FPGA remain available to the
user’s design.

The PCIe bridge, the PROCMultiport and the stream processing core are all
connected through an internal FPGA local bus. This bus allows the data transfer
between the host and the board memory. It also supports data transfer between the
stream processing core and the board memory through the PROCMultiport core.

On this FPGA-board, there are three memory banks available: a 512 MB DDR2
SDRAM; and two DDR2 SODIMMs with up to 8 GB each. All three memories have
a 64-bits interface and are all accessible through the Gidel PROCMultiport core.

PROCMultiport

The PROCMultiport module is also created by the PROCWizard IDE. It acts as
an abstraction layer between the memory modules and the user core, providing an
efficient and simple way to read and write data. This module can provide a virtual
multiple port access to a memory that has only one port. It is possible to define up to
16 ports for each memory module, a specific clock domain and data width for each
port.

The data in each port can be accessed on a sequential or random scheme. In
this work, the sequential access has been adopted because of the special data
organization scheme for the stream processing. In this case, each port is accessed
as an FIFO data structure. Thus, it is not necessary to generate addresses for
the memory. So, the interface becomes quite simple. The sequential access also
improves the system performance by taking advantage of memory data bursts.

When the PROCMultiport is joint with the PCIe bridge core, the DMA channels
and the host device driver also allow DMA data transfers between the host and
FPGA memory releasing the CPU to run other important tasks during the data
transfer.

In this design, six memory ports have been configured. Four of them are reading
ports for the CPF, PPF, and VEL matrices and the seismic pulse vector. The fifth
and sixth ports are writing ports to the subsequent CPF and PPF pressure values.

314 V. Medeiros et al.

PE 1
seismic
pulse
PPF

FIFO
and shift
registers
structure

seismic
pulse
CPF

control
signals

parameters

seismic pulse

velocity model (VEL)

PE 2

PE 3

PE 4

stream processing core

control unit

control signals

Fig. 3 Stream processing core components

These ports are directed to the same memory space of the last processed CPF and
PPF matrices, since this data is not useful in the subsequent time step anymore. This
strategy optimizes memory usage.

Stream Processing Core

The streaming processing core is composed of the processing elements and support
structures to provide data efficiently for them. These processing elements implement
the finite difference equation. This equation has a high degree of parallelism due to
the data independence on each element calculation. This characteristic enables a
great performance improvement through the instantiation of multiple processing
elements in the stream processing core. In this work four processing elements
have been instantiated spatially. That means that four elements can be processed
at the same time, in each clock cycle. Actually, a sixteen processing elements
solution was implemented based on the time domain parallelism exploration. This
approach is explained in detail in Sect. 4.2.2. The number of processing elements
in the architecture is basically limited by the memory bandwidth and the amount of
resources in the FPGA. The internal components of the stream processing core can
be visualized in Fig. 3.

The developed architecture aims to maintain a constant data flow from the
memory to the processing elements and back to memory after the processing.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 315

The data flow starts with the data transfer from the host memory to the FPGA
memory. After that, the data starts to be read from the FPGA board memory to
the PROCMultiport CPF, PPF, and VEL ports. So, these data are read by the stream
processing core and through the above-mentioned supporting structures sent to the
processing elements. After this data processing, they are also sent back to memory
through a port of the PROCMultiport core. The set of elements that provide data for
the processing elements is named data flow architecture.

The processing elements are detailed in Sect. 4.3. The data flow architecture is
detailed in Sect. 4.2.

4.2 Data Flow Architecture Implementation

As mentioned previously the internal structure of the processing core is composed
of the PEs that implement the finite difference equation, and data structures that
provide data for these processing elements. These data flow structures includes:
the FIFO and shift registers structure responsible for the data flow and data reuse
implementation; the seismic pulse CPF and seismic pulse PPF modules responsible
for inserting the seismic pulse; and the control unit, as can be visualized in Fig. 3. In
this section all of these elements are detailed. This section also explains the memory
organization and temporal pipeline strategies to improve the system performance.

4.2.1 Memory Organization

In order to improve performance, the data from the seismic pulse vector and the
matrices CPF, PPF, and VEL are especially organized in the FPGA memory to
reduce their access latency. The main idea is to organize the data in a way to support
a sequential access, allowing the memory controller to work in burst mode and,
consequently, decrease memory latency. The data organization has also an essential
role in the data reuse as it is explained in Sect. 4.2.3.

The VEL is developed by a geologist and represents the different wave propa-
gation velocities on the subsurface layers. As the model is a second-order temporal
finite difference algorithm, the CPF matrix stores the pressure field values on the
current time step and the PPF matrix stores the pressure field values on the previous
time step.

These three matrices are then stored into the three DDR2 memory banks
connected to the FPGA. Figure 4 shows the data distribution inside the FPGA
memories. The first memory bank stores the seismic pulse vector and then the VEL
matrix. The second stores the CPF matrix and the third one stores the PPF matrix.

The seismic pulse vector is a representation of an excitation source applied to
the seismic model and is disposed sequentially. The matrices are divided into slices
and each one corresponds to four columns in the original matrix. That means that
the first slice has all the lines of the first four matrix columns. One can consider

316 V. Medeiros et al.

element 1
element 2

...
element n

seismic pulse vector

slice 1
slice 2

...
slice N

element 1
element 2

...
element N

seismic
pulse
vector

VEL
matrix

memory organization

slice 1 slice 2 ... slice N

slice 1
slice 2

...
slice N

CPF
matrix

memory organization

slice 1 slice 2 ... slice N

memory bank 1

memory bank 2

velocity model matrix (VEL)

slice 1
slice 2

...
slice N

PPF
matrix

slice 1 slice 2 ... slice N

memory organization

memory bank 3

Fig. 4 Memory data organization

that the memory is a sequence of 128-bits wide words, as the PROCMultiport
provides a 128-bits wide interface for the CPF, PPF and VEL ports. Each word read
corresponds to four single precision floating points (32-bits wide) that represent one
slice row.

All the three matrices have the same size and the seismic pulse vector has the size
that equals the number of time steps that are being processed. The next pressure field

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 317

t
(NPF)

t
(NPF)

t - 2
(PPF)

t - 1
(CPF)

t - 2
(PPF)

t - 1
(CPF)

Fig. 5 Normal process (one
only time step at once)

matrix (NPF) is written as the CPF matrix for the next four time steps processing.
The CPF matrix is written as the next PPF matrix. These writings are made in
the original memory space as the current data is not necessary in the next four
subsequent time steps due to the four temporal pipeline depth stages. The temporal
pipeline is explained in detail in Sect. 4.2.2.

4.2.2 Temporal Pipeline

In the presented architecture each PE demands one point to be fetched from
the memory to produce one result point (when the pipeline is full). This fact
demonstrates how the optimized data path of the architecture is, concerning data
reuse. But at the same time it shows that the quantity of PEs is bounded mainly
by the memory bandwidth. This happens because all PEs are at the same time
step. Nevertheless it is possible to process more than one step concurrently (the
time domain parallelism) to improve performance without demanding more memory
bandwidth.

Figure 5 shows the general scheme of the process step to produce one time step at
once. The matrices PPF at time −2 and CPF at time −1 are used to generate matrix
NPF at time 0. After that, the CPF matrix becomes the new PPF and NPF becomes
CPF. As one can see, two matrices are read from the memory in order to compute
one result matrix. The disadvantage of this method is the need of two matrices to
be written into memory instead of one. But, due to the increase in the number of
temporal pipeline stages, this overload per time step is significantly decreased.

Otherwise, in Fig. 6a, as soon as the first elements of the matrix at time 0
are computed they are carried out to the next step to proceed the computation of
the matrix at time 1. Then, two time steps are processed at once with the same
bandwidth used to produce one only matrix. In the new iteration the PPF matrix
is the matrix at time 0. In addition, in Fig. 6b, the number of temporal pipeline
stages is increased to three. As expected only two matrices are read from memory
and others two are written into memory. As can be seen the matrix at time 0 never
reaches external memory of the FPGA.

318 V. Medeiros et al.

t
t - 2

(PPF)
t - 1

(CPF)
t + 1

(NPF)

intermediate time step

t
t - 2

(PPF)
t - 1

(CPF) t + 1
t + 2

(NPF)

intermediate time steps

t
t - 2

(PPF)
t - 1

(CPF)
t + 1

(NPF)

intermediate time step

t
t - 2

(PPF)
t - 1

(CPF) t + 1
t + 2

(NPF)

intermediate time steps

a

b

Fig. 6 Multiple time steps processing. (a) Two time steps at once (b) three time steps at once

The multiple time steps approach is only possible because of the temporal data
reuse. By this strategy, all the modules used in one time step are replicated internally
and the output of each step feeds the input of the next one.

The current FPGA implementation has a four stage temporal pipeline. That
means that this architecture processes four time steps at the same time as soon as the
pipeline is full. In other words, this solution has a total of 16 PEs, each four process a
different time step. The maximum number of PEs with this approach is now bounded
by the logic density of the FPGA. As soon as a larger FPGA device is available, more
time steps can be added to increase the performance. In such scenario, doubling the
time steps would double the performance of this implementation.

4.2.3 Data Flow Architecture Components

FIFOs and Shift Register Structure

The FIFOs and shift register structure have two basic functions in the system. The
first is to provide data correctly and in an efficient way for the processing elements.
The second is to implement data reuse. The main idea is to process four adjacent
elements (a slice row) at the same time. Each of them in a specific PE. Using this
strategy, the stencil becomes something like what is pictured in Fig. 8. A register
structure that implements this four processing element stencil is created.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 319

VELi,j

Ai,j

Bi,j-2 Bi,j-1 Bi,j Bi,j+1 Bi,j+2

Bi-1,j

Bi-2,j

Bi+2,j

Bi+1,j

Ci,j

Processing
Element

(PE)

Bi,j-2

Bi,j-1

Bi-2,j

Bi-1,j

Bi,j

Bi+1,j

Bi+2,j

Bi,j+1

Bi,j+2

Ai,j

VELi,j

valid
input data

Ci,j

valid
output data

Fig. 7 Wave propagation equation, stencil and PE interface

The great advantage here is the reuse of some data as adjacent elements are being
processed at the same time. This is possible to be observed in the PE interface in
Fig. 7, and in the outputs of the FIFO and shift register structure in Fig. 8.

Each PE has nine inputs from the CPF matrix. Thus, for the four processing
elements, in principle, 36 pieces of output data from the FIFOs and shift registers’
structure to the processing elements should be generated. However, as some data
are common to the adjacent processing elements, only 24 pieces of output data are
needed.

Moreover, the FIFOs structure has the capacity of storing an entirely data slice,
enabling this slice to be used in two processing slices. At the same time that data
is used on the right side of the shift registers they are inserted into the FIFOs and
are used in the next processing slice. For this approach to work properly, an FIFO
initialization at the beginning of data processing is necessary.

In the initialization process, all FIFOs in Fig. 8 must be filled. Each FIFO has
a size equal to the number of rows in the matrix, in other words, stores a whole
matrix column. At the beginning of the process, the FIFOs 0, 1, 2, and 3 will store
the first four columns of our matrix, the first slice. When the initialization process
is finalized, the normal processing flow starts. Then the subsequent slice starts to

320 V. Medeiros et al.

out_31[31:0]

out_32[31:0]

out_33[31:0]

out_34[31:0]

out_40[31:0]

out_41[31:0]

out_42[31:0]

out_43[31:0]

out_44[31:0]

out_50[31:0]

out_51[31:0]

out_52[31:0]

out_53[31:0]

out_54[31:0]

out_62[31:0]

out_72[31:0]

out_02[31:0]

out_12[31:0]

out_20[31:0]

out_21[31:0]

out_22[31:0]

out_23[31:0]

out_24[31:0]

out_30[31:0]

out
1,2

out
3,4

out
4,4

out
0,2

out
2,2

out
2,4

out
2,0

out
2,1

out
3,2

out
3,3

out
3,0

out
3,1

out
4,2

out
4,3

out
4,0

out
4,1

out
5,2

out
5,3

out
5,4

out
5,0

out
5,1

out
6,2

out
7,2

F
IF

O
 0

F
IF

O
 1

F
IF

O
 2

F
IF

O
 3

out
2,3

PE 1 PE 2 PE 3 PE 4

rst

init

step

param_
num_lines[15:0]

in_2[31:0]

in_3[31:0]

in_4[31:0]

in_5[31:0]

clk

in
6

in
7

in
4

in
5

Fig. 8 FIFO and shift registers component architecture

be read. At the beginning of each slice it is necessary to run four data flow steps
without processing, in order to align the data correctly in the respective registers in
the control structure.

A data flow step consists in taking a slice row, four single precision floating point
elements, from the CPF matrix port in the PROCMultiport core. These values are
illustrated in Fig. 8 by the in 4, in 5, in 6, and in 7 inputs. Then, these elements
are enqueued in FIFOs 0, 1, 2, and 3, respectively. At the same time, all FIFOs are
dequeued and their outputs shifted into their respective shift registers located above
them. The inputs in 4, in 5, in 6, and in 7 are also shifted into the four last shift
registers. All the elements in the shift registers structures are then shifted up. All
these steps happen in each clock cycle of the normal processing state. This strategy

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 321

ensures that data taken from the memory will be used until it is no more necessary
for processing. It also ensures that this architecture implements a 100% data reuse.
The 100% data reuse maintains the data generation equal to consumption keeping
the data stream without halt.

Seismic Pulse CPF and Seismic Pulse PPF

The seismic pulse vector is used to simulate a real explosion that occurs in the
field survey. This simulated energy source allows the correct ground modeling. The
seismic pulse vector is generated by the application (in software) and its size equals
the number of time steps, which means that there is a seismic pulse value for each
time step. The application also provides parameters that define the seismic pulse
insertion position.

The seismic pulse CPF and seismic pulse PPF components are responsible for
reading the seismic pulse vector values, from the memory and provide them for the
processing elements. At each time step, one value from the seismic pulse vector
must be read and added to one element in the CPF matrix, at one specific position,
defined by the parameters of the application.

The control unit signalizes the correct moment to add these values to the seismic
pulse CPF component. Inside it, there is one single precision floating point adder
and some multiplexers that, controlled by the control unit signals, generates the
correct data flow to the FIFO and shift registers structure and then to the processing
elements.

At each time step, when the seismic pulse CPF generates one seismic pulse value
at the specified matrix position, this value is stored by the seismic pulse PPF in an
internal register. This stored value will be used as the element in the same previously
defined seismic pulse position in the PPF matrix in the next time step.

Control Unit

The control unit component is responsible for controlling all the data flow inside the
core. This component has been built in such a way that the algorithm parameters
can be configured by the software application. The main algorithm parameters
are the number of rows and columns, the number of time steps and the row and
the column where the seismic pulse must be inserted. The control unit stores all
these parameters in internal registers.

All the component behavior is defined by some parallel finite-state machines
(FSM). The main function of the first FSM is to start the reading of the software
application parameters and the input matrices CPF, PPF, and VEL through the
PROCMultiport core.

The second FSM in the core is responsible for writing the outputs from the
processing elements back to the memory through the PROCMultiport core. It works

322 V. Medeiros et al.

reading the valid output flag in the PE interface when it becomes active, meaning
that the output from all the processing elements can be written back in the memory
through the PROCMultiport.

The third and fourth FSMs are related to the seismic pulse data insertion. One
machine inserts the seismic pulse value in the CPF matrix and the other in the PPF
matrix, based on the seismic pulse position, defined by the software parameters.

4.3 Arithmetic Issues

Historically, seismic data processing has been performed using floating-point
arithmetic standard, following the pattern IEEE 754/854. This pattern has the
advantage of virtually increasing the power of representation of real numbers in
computer systems. However, due to the high area cost of floating point IP cores
and due to high cost of hardware implementation, in this project we choose to
work with customized number representation, using fixed point standard, which
allows us to obtain significant improvements in performance, power consumption,
and data throughput. However, all change in numerical representation that involves
substituting floating point by fixed point, results in reduction of precision. In seismic
data processing, the effects of reducing precision may be verified by the reduction
in signal-to-noise ratio (SNR) and the degree of similarity, between these images
and those generated by standard floating point representation [1, 6].

In order to simplify the process of choosing the configuration of fixed point to be
adopted, a fully parameterizable model for processing elements was implemented.
This model allows an easy exploration of the effects in changing the number
representation, from floating point to fixed point, on the data processed by the PE,
as well as the effects of reducing the precision on fixed point configuration. In the
IEEE 754 floating point single precision, the word has 32 bits. The idea of the model
is to explore words with fewer than 32 bits in order to improve the data throughput
in memory. The idea is to represent with fewer bits than the IEEE single precision
standard, composed of 32 bits. This may improve data memory throughput, reduce
PE implementation cost and logic area into FPGAs. The processing element model
was described using the high-level hardware description language, SystemVerilog.
The PE equation described in Fig. 9 below has been divided into a set of functions
in order to facilitate the development of the model. Each one of the model functions
was transformed into a PE internal module.

As the PE model is completely parametrized, all fixed point configurations
of fixed point format used in the input and output arguments in each function
are defined automatically in accordance with the setting of three parameters:
NUMBITS, indicating the size of the binary word used to store the data value in
the pressure field in fixed point format; NUMBITS PINT, indicating the number of
bits of the integer part of the adopted format; and NUMBITS PFRAC, indicating
the number of bits of the fractional part. All other model parameters are adjusted as
a function of these three main parameters. These parameters are adjusted to ensure

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 323

FPGA board

memory

multiport

stream processing core

PE 2 PE 3 PE 4

data
128 bits

data
128 bits

control

32 bits 32 bits 32 bits 32 bits

PCIe
PE 1

Fig. 9 Processing element on system overview

that the range and precision of generated values in each internal operation do not
exceed the capacity of the fixed point used, ensuring an acceptable precision but
without using registers larger than necessary. Figure 10 illustrates one part of the
model parameters reported in the signature of some shown functions.

Figure 11 presents the main part of PE of RTM algorithm, described in
SystemVerilog. The functions called in this algorithm perform the operations of
the equation shown in Fig. 9.

The parameter NUMBITS PINT defines the range of values that may be stored
and processed in the pressure field. As this range may vary from model to model,
it is important to prevent that higher values, which may occur in the pressure field,
do not saturate, causing information loss and degradation of the final result of all
process.

Once the range of values is adjusted, they will never be changed. The next step is
to define the number of bits of the fractional part of the fixed point representation.
The fractional part determines the precision of the PE and directly influences the
quality of the results.

The main objective of this PE model is to allow exploring the effects of precision
reduction, looking for the smaller fixed point configuration that may be used. Each
bit reduced in the data width represents improvements in hardware resources, data
access throughput, and power consumption reduction.

After the definition of the fixed point precision, the last part of the process
consists in verifying the results quality. This is performed by measuring the quality
of the images generated by the system. These are extremely important, because a
misinterpretation caused by a low quality image of then may result in losses of
millions of dollars. Thus, it is essential that the data quality obtained through this
methodology can be evaluated within reliable technical criteria.

324 V. Medeiros et al.

Fig. 10 Model parameters and functions signatures

As was stated before, the change in the number format will introduce some of
imprecision in the results because of the arithmetic operations and data precision
representation.

From the viewpoint of the observer, these inaccuracies may represent changes
from light, unnoticeable, to most severe, that can make the resultant images
unusable. In order to measure these changes two different metrics have been used:
the SNR, which explicitly measures the percentage of error introduced in the results;
and the proposed by Zhou Wang in [18] universal image quality index (UIQI), which
measures how this changes affects the human perception of results quality. The UIQI
seeks to measure different aspects that may be relevant to human observer, such as
contrast, brightness, and strange artifacts introduced in the image. The two metrics
use (1) and (2), respectively.

In these equation x = original data set, processed and stored in float point; y = data
set processed and/or stored in fixed point; Vrms (x) = energy of the original signal,
Vrms (xy) = energy of the noise introduced, and σxσy = respectively, the variance
of the original signal and the variance of the less precise signal; σxy = covariance
matrix between the original signal and the less accurate signal.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 325

Fig. 11 Processing core

UIQI =
4σxyxy

(σ2
x +σ2

y)[(x)2 +(y)2]
(1)

SNR = 20 ∗ log

(
Vrms(x)

Vrms(x− y)

)
(2)

Both techniques were used to verify the results obtained in several system
configurations. The graphs in the Figs. 12 and 13 illustrate the obtained results.

As may be verified by graphics in Fig. 12, in the first 6 configurations, between
10- and 15-bit precision, a significant improvement in SNR was obtained as the
result for each bit precision was added. However, after this, all the measurements are
stable and show no noticeable improvements when compared with 15-bit precision
configuration to the configuration with 15-bit precision.

Analyzing the graph of Fig. 13, it is possible to verify that just as the SNR, the
degree of similarity has a rapid growth between the configurations with 10 and 15
bits of precision. From this point, this improvement gets smaller for each added bit,
approximately 0.0056 per bit.

To verify this strange behavior presented in the results, one experiment was
conducted aiming to measure explicitly the error level introduced by changing
the number representation from floating point to fixed point. One new PE was
implemented, this time using C++, which processes using standard floating point,
but that convert the results obtained to fixed point format. The results of this
experiment are shown in Fig. 14.

326 V. Medeiros et al.

10

34

36

38

40

42

44

46

48

50

11 12 13 14 15 16 17
Bits

SNR (dB)

18 19 20 21 22 23

Fig. 12 Results obtained with the SNR metric

10

0.51

0.529

0.548

0.567

0.586

0.605

0.624

0.643

0.661

0.68

11 13 14 16 17 18
Bits

UIQI

20 21 23 24

Fig. 13 Results obtained with the UIQI metric

As may be verified by graphics in Fig. 12, in the first 6 configurations, between
10- and 15-bit precision, a significant improvement in SNR was obtained as the
result for each bit precision was added. However, after this, all the measurements are
stable and show no noticeable improvements when compared with 15-bit precision
configuration.

Another important result in this experiment was that the metric UIQI did not
show significant improvement from the configuration with 15-bit precision. This
result, although requiring expertise in seismic data processing, points that this is the
lowest precision required for representing seismograms.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 327

Fig. 14 Results obtained with the processing using floating point and the storage using fixed point

5 Results

This section presents performance and power results. It also discusses some
image quality issues related to the use of floating point and fixed point number
representations.

5.1 Performance Results

In order to evaluate the performance of the developed system, we implemented the
same RTM modeling algorithm in a set of configurations such as: simple code
without any special configuration (sequential C code); multi-threaded code (12
threads); OpenCL code; SIMD intrinsics (both SSE and AltiVec); threads and SIMD
combined; and the HDL version for the FPGA. These configurations ran in the
following platforms: CPU Intel Xeon E5405; CPU AMD Athlon 64 X2 6000+;
CPU IBM PPC970MP; GPGPU Nvidia Tesla C1060; and FPGA Altera Stratix III
260E. Such platforms and configurations are summarized in Table 1.

In our experiments, subsets from the Marmoursi velocity model were used. The
most important parameters on the algorithm execution are the size of matrices and
the number of time steps that will be processed.

Originally, the Marmousi velocity model has 751 rows and 2,301 columns. As the
number of necessary time steps is only a function of the model number of lines (the
model depth), it was also fixed and equalized to 14,960. The number of rows was
fixed in 748 and the number of columns were changed in the following sequence:
600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000, 2,200, and 2,300.

The average performance of the CPU, GPGPU, and FPGA is presented in Fig. 15
and in Table 1. The Nvidia Tesla C1060 implementation, using OpenCL, had the

328 V. Medeiros et al.

Table 1 Platforms and configurations used in experiments and their performance results

Average performance
Configuration Platform (Gsample/s) Speed-up

Sequential C code Intel Xeon 0.065 1
AMD Athlon X2 0.0719 1.108
IBM PPC 5 0.095 1.458

Multi-thread Intel Xeon 0.150 2.313
(12 threads) AMD Athlon X2 0.074 1.153

IBM PPC 5 0.226 3.479
SIMD Intel Xeon 0.109 1.676

(SSE and AltiVec) AMD Athlon X2 0.128 1.974
IBM PPC 5 0.233 3.582

Multi-thread and Intel Xeon 0.174 2.686
SIMD combined AMD Athlon X2 0.143 2.211

IBM PPC 5 0.674 10.381
OpenCL AMD Athlon X2 0.102 1.568

Nvidia Tesla C1060 2.143 33.001
HDL code Altera Stratix III 1.878 28.912

Fig. 15 CPU, GPGPU, and FPGA performance comparison

best results in our experiments. Table 1 also presents the speeding-up of all solutions
related to the slowest one, which is the sequential C code running on the Intel Xeon
E5405.

A Stratix III FPGA implementation is 29 times faster than the slowest CPU so-
lution and the GPGPU solution (Nvidia Tesla C1060) is only 14% times faster than
the FPGA one. The FPGA and the GPGPU presents almost the same performance
however, the FPGA runs on an around ten times slower frequency than the GPGPU.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 329

That is possible due to FPGA’s intrinsic parallelism and pipeline structures. FPGAs
can perform processing on streams, in which various data are processed by various
operations in different stages of different pipelines (multiple data and multiple
instructions), unlike GPGPUs which, in processing streams, multiple identical
threads work on different data (single instruction and multiple data). The FPGA
platform also has ten times slower memory bandwidth than the GPGPU [7, 11].

Through these results it is possible to conclude that a more powerful FPGA
platform that provides better memory bandwidth and more available logic can beat
the GPGPU performance by improving the time and space domain parallelism when
both apply the same techniques mentioned previously.

Another FPGA advantage is obtained when energy efficiency is considered. In
Sect. 5.3 a power analysis is made.

5.2 Arithmetic Analysis

The results obtained in this project confirm the feasibility of using standard
numerical representation of lower precision in the storage and operation of seismic
data.

When comparing the images obtained by using fixed point, Fig. 16b–f, with
the reference image obtained by using floating point (Fig. 16a), is not noticeable
that only the seismogram images with 12 and 10 bits of precision have substantial
differences. The image with 15 bits of precision shows subtle differences that require
further evaluation. The images produced with 19 and 23 bits of precision can be
regarded as identical to the reference image.

The synthesis results listed in Table 2 shows that the strategy of adopting fixed
point format allowed the obtainability of both a reduction in the hardware area and
an increase in the PE operating frequency in all configurations.

Specifically about the hardware area improvement, the results indicated that the
area improvement would be of more than three times as much. However, in this
project, constraints in memory throughput of the used platform, restricted it to 50%.

The results demonstrate the benefits and risks that evolved changing the stan-
dard floating point representation to fixed point in applications of seismic data
processing.

The metrics used were effective to verify the quality of the results, confirming
the validity of the methodology used.

The synthesis results pointed to the possibility of gains by approximately three
times as much in the number of processing elements and more than 27% in the
system operating frequency, with good final results quality when a configuration of
fixed point with 21 bits of precision was adopted.

330 V. Medeiros et al.

Fig. 16 Seismogram images for different precisions. (a) Standard single precision floating point;
(b) fixed point 23-bits precision; (c) fixed point 19-bits precision; (d) fixed point 15-bits precision;
(e) fixed point 12-bits precision; (f) fixed point 10-bits precision

5.3 Power Analysis

Recently [19], new metrics for evaluating efficiency in applications that consider
energy as a crucial factor have been proposed. The GFLOP/Joule metric indicating
the compute density per Joule considers that the higher this ratio, the better the
efficiency of the proposed solution. Therefore, approaches can be evaluated based
on a metric that takes into account the performance of the application including the
expenditure of energy.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 331

Table 2 Synthesis results for some PE configurations targeting the FPGA

PE number representation ALUTS Registers
Frequency
(MHz)

Floating point 6,491 (3%) 6491 (2%) 178
Fixed-point (32 bits) 1,888 (<1%) 1,888 (<1%) 226
Fixed-point (25 bits) 1,464 (<1%) 1,435 (<1%) 226
Fixed-point (21 bits) 1,393 (<1%) 1,224 (<1%) 227

Table 3 Summary of the characteristics of the platforms compared

Technology Platform Frequency Power (W)

CPU Athon 64×2 6,000 3.0 GHz 125
GPGPU Tesla T10 c1060 1.3 GHz 160
FPGA Stratix III 260e 125 MHz 18

Gidel ProcStar III

Table 4 Comparison of performance and efficiency of platforms

Technology
Processing
time (s)

Performance
(Gsample/s)

Efficiency
(MSample/J)

CPU 354.980 0.072 0.6
CPU+GPGPU 11.923 2.143 7.5
CPU+FPGA 13.610 1.878 12.8

In this section, a comparison between platforms CPU, GPU, and FPGA is made
the aspect of performance (GSample/s), as well as with respect to efficiency in
energy consumption (MSample/Joule). For this purpose, we consider the algorithm
RTM was considered for the processing of 14,960 time steps of the Marmousi model
with 748 rows and 2,300 columns. And in order to make fair comparisons, the
full system: CPU, CPU+GPGPU, and CPU+FPGA, was considered, once it is not
possible to use the FPGA or the GPGPU on their own.

Table 3 shows the characteristics of each platform through its description,
operation frequency operation (GHz) and average power (Watts), indicated in each
column.

For the calculation of the efficiency of these platforms, the average power
consumption of each device is obtained in [10, 11], and [15]. The performance
results are shown in Table 4.

The results presented allow the conclusion that the CPU+FPGA has a superior
performance in both architectures. When compared to the CPU, the CPU+FPGA
has achieved more than 26 times better level of performance. When compared to
the CPU+GPGPU, the performance came to be about 14% lower. The results are
more striking when comparing the efficiency in terms of MSample/Joule. The total
amount of work is the same for all platforms, i.e. 25.6 GSamples. Considering
MSample/Joule metric to evaluate the results, the figures in Joules for each platform
CPU, CPU+GPGPU, and CPU+FPGA are, respectively, 125*355, 285*12, and
143*14 J. In MSamples per Joules these figures are 0.6, 7.5, and 12.8 for CPU,

332 V. Medeiros et al.

CPU+GPGPU and CPU+FPGA, respectively, as shown in last column in the
previous table. In this case, the figure of the CPU+FPGA was more than 21 times
higher than the one of the CPU. Compared to the CPU+GPGPU, CPU+FPGA
efficiency was about 1.7 times better. This high efficiency is mainly due to low
operating frequency when compared to other FPGA architectures and its built-in
feature that allows the exploitation of parallelism.

6 Conclusions

In this work, an FPGA implementation of the modeling part of the RTM seismic
algorithm was presented. A GPGPU and a CPU version of the same algorithm
to evaluate the FPGA performance also was developed. It was observed that the
FPGA is faster than the CPU but slower than the GPGPU. However, the FPGA
has around ten times less memory bandwidth than the GPGPU and runs on an
around ten times slower frequency that enables a lower power consumption. Despite
the fact that the implementation of the spatial domain parallelism on a GPGPU is
straightforward when using OpenCL, optimizations like the time domain parallelism
and change in the floating point precision are too costly or impossible to implement.
Thus, an FPGA implementation offers much more potential for more sophisticated
optimizations.

Results for the FPGA approach are, on average, only 13% slower than our
best GPGPU implementation. Considering the memory bandwidth limitations on
the Gidel board, the FPGA can be regarded as a very promising solution. A
more powerful FPGA platform that provides better memory bandwidth and more
available logic can beat the GPGPU performance by improving the time and space
domains parallelism.

Our research team is already exploring other optimization possibilities like data
compression techniques and different numerical representations usage in order to
further improve the application performance without jeopardizing the quality of re-
sults. Through these optimizations it is possible to free more logic elements enabling
to explore a deeper temporal pipeline and consequently improve performance. Some
experimental results show that using low precision numerical representation may
significantly increase the performance without affecting considerably the resultant
images. These studies were associated with impact evaluation in the quality of
the results of the generated final image through SNR and UIQI metrics. Results
indicated a speedup increase of 6.75% when compared to a software approach. This
is a great advantage of the FPGA over other architectures like CPUs and GPGPUs
that do not feature this flexibility in customizing the floating point precision.

Analysis in terms of MSample/Joule also was performed considering CPU,
CPU+GPGPU, and CPU+FPGA technologies, and results indicated CPU+FPGA as
an energy efficient approach, being approximately 1.7 times better when compared
with CPU+GPGPU running the same algorithm.

High Performance Implementation of RTM Seismic Modeling on FPGAs. . . 333

Acknowledgments The authors would like to thank the Petrobras Research Center (CENPES)
for technical support in seismic concepts, FINEP/CNPq, RPCMod network coordination and
FACEPE. Additionally, the authors gratefully acknowledge to continuous support by Gidel,
including the availability of prototype boards for performance measurements.

References

1. A. Barros, B. Dutra, V. Brito, M. Lima, A. Silva-Filho, R. Gandra, R. Braganca, Performance
evaluation model based on precision reduction and FPGAs applied to seismic modeling, in
Simpasio em Sistemas Computacionais (WSCAD-SSC), 2011 (Vitória, Brazil, 2011), p. 2.
doi:10.1109/WSCAD-SSC.2011.24

2. S. Brown, Performance comparison of finite-difference modeling on cell, FPGA, and
multicore computers. SEG Tech. Program Expanded Abstr. 26(1), 2110–2114 (2007).
doi:10.1190/1.2792905, http://link.aip.org/link/?SGA/26/2110/1

3. C. Chang, J. Wawrzynek, R. Brodersen, Bee2: a high-end reconfigurable computing system.
IEEE Des. Test Comput. 22(2), 114–125 (2005). doi:10.1109/MDT.2005.30

4. S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, Application specific processors, 2008. SASP
2008. Symposium on Accelerating Compute-Intensive Applications with GPUs and FPGAs,
pp. 101–107, June 2008. doi:10.1109/SASP.2008.4570793

5. R.G. Clapp, H. Fu, O. Lindtjorn, Selecting the right hardware for reverse time migration. Lead.
Edge 29(1), 48–58 (2010). doi:10.1190/1.3284053, http://tle.geoscienceworld.org/cgi/content/
abstract/29/1/48

6. H. Fu, W. Osborne, R.G. Clapp, O. Mencer, W. Luk, Accelerating seismic computations using
customized number representations on FPGAs. EURASIP J. Embed. Syst. 2009, 1–13 (2009).
doi:http://dx.doi.org/10.1155/2009/382983

7. Gidel: PROCe III board specifications (2012), http://www.gidel.com/PROCe%20III.htm.
Accessed 29th January 2013

8. C. He, M. Lu, C. Sun, Accelerating seismic migration using FPGA-based coprocessor
platform, in FCCM ’04: Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (IEEE Computer Society, Washington, 2004),
pp. 207–216

9. C. He, G. Qin, M. Lu, W. Zhao, Optimized high-order finite difference wave equations
modeling on reconfigurable computing platform. Microprocess. Microsyst. 31(2), 103–115
(2007). doi:http://dx.doi.org/10.1016/j.micpro.2006.02.010

10. N. Kirsch, AMD Athlon 64 X2 6000+ Processor Review (2012), http://www.legitreviews.com/
article/463/2/. Accessed 29th January 2013

11. Nvidia: Tesla C1060 specifications (2012), http://www.nvidia.com.br/docs/IO/56050/Tesla
C1060 boardSpec v03.pdf. Accessed 29th January 2013

12. C. Petrie, C. Cump, M. Devlin, K. Regester, High performance embedded computing using
field programmable gate arrays, in Proceedings of the 8th Annual Workshop on High-
Performance Embedded Computing (MIT Lincoln Laboratory, Lexington, United States,
2004), pp. 124–150

13. T. Scofield, J. Delmerico, V. Chaudhary, G. Valente, Xtremedata dbx: an FPGA-based data
warehouse appliance. Comput. Sci. Eng. 12(4), 66–73 (2010). doi:10.1109/MCSE.2010.93

14. X. Shi, X. Wang, C. Zhao, H. Yang, Practical pre-stack kirchhoff time migration of seismic
processing on general purpose gpu, in CSIE ’09: Proceedings of the 2009 WRI World Congress
on Computer Science and Information Engineering (IEEE Computer Society, Washington,
2009), pp. 461–465. doi:http://dx.doi.org/10.1109/CSIE.2009.78

15. G. Stitt, FPGA-based Scientific Computing: A Bright Future? (2012), http://cas.ee.ic.ac.uk/
people/gac1/DATE2011/Stitt.pdf. Accessed 29th January 2013

http://link.aip.org/link/?SGA/26/2110/1
http://tle.geoscienceworld.org/cgi/content/abstract/29/1/48
http://tle.geoscienceworld.org/cgi/content/abstract/29/1/48
http://dx.doi.org/10.1155/2009/382983
http://www.gidel.com/PROCe%20III.htm
http://dx.doi.org/10.1016/j.micpro.2006.02.010
http://www.legitreviews.com/article/463/2/
http://www.legitreviews.com/article/463/2/
http://www.nvidia.com.br/docs/IO/56050/Tesla_C1060_boardSpec_v03.pdf
http://www.nvidia.com.br/docs/IO/56050/Tesla_C1060_boardSpec_v03.pdf
http://dx.doi.org/10.1109/CSIE.2009.78
http://cas.ee.ic.ac.uk/people/gac1/DATE2011/Stitt.pdf
http://cas.ee.ic.ac.uk/people/gac1/DATE2011/Stitt.pdf

334 V. Medeiros et al.

16. W.W. Symes, Reverse time migration with optimal checkpointing. Geophysics 72(5),
SM213–SM221 (2007). doi:10.1190/1.2742686, http://link.aip.org/link/?GPY/72/SM213/1

17. D.B. Thomas, L. Howes, W. Luk, A comparison of CPUs, GPUs, FPGAs, and massively
parallel processor arrays for random number generation, in FPGA ’09: Proceeding of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (ACM, New York,
2009), pp. 63–72. doi:http://doi.acm.org/10.1145/1508128.1508139

18. Z. Wang, A. Bovik, A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84
(2002). doi:10.1109/97.995823

19. J. Williams, C. Massie, A.D. George, J. Richardson, K. Gosrani, H. Lam, Characterization
of fixed and reconfigurable multi-core devices for application acceleration. ACM Trans.
Reconfigurable Technol. Syst. 3(4), 19:1–19:29 (2010). doi:10.1145/1862648.1862649, http://
doi.acm.org/10.1145/1862648.1862649

20. Ö. Yilmaz, in Seismic Data Analysis. Society of Exploration Geophysicists (Tulsa, OK, 2001).
doi:DOI:10.1190/1.9781560801580, http://link.aip.org/link/doi/10.1190/1.9781560801580

http://link.aip.org/link/?GPY/72/SM213/1
http://doi.acm.org/10.1145/1508128.1508139
http://doi.acm.org/10.1145/1862648.1862649
http://doi.acm.org/10.1145/1862648.1862649
http://link.aip.org/link/doi/10.1190/1.9781560801580

High-Performance Cryptanalysis on RIVYERA
and COPACOBANA Computing Systems

Tim Güneysu, Timo Kasper, Martin Novotný, Christof Paar,
Lars Wienbrandt, and Ralf Zimmermann

Abstract Special-purpose computing platforms based on reconfigurable hardware
have shown to typically exhibit a much better performance-cost ratio than off-
the-shelf computers populated with general-purpose processors. In this chapter we
introduce two different FPGA-based cluster architectures, called COPACOBANA
and RIVYERA. These high-performance computing clusters are populated with up
to 256 Xilinx Spartan or Virtex FPGAs per system and can be interconnected to form
an even larger system with 2,560 FPGA per rack. In this chapter, we present a wide
range of applications from the fields of cryptanalysis that have been successfully
implemented on both architectures.

1 The Evolution: COPACOBANA and RIVYERA

Massively parallel special-purpose hardware systems are often the best choice to
tackle computationally complex algorithms and applications. However, for many
such applications the cost-performance ratio is a crucial criterion. In other words,
an optimally designed hardware platform for a specific application does not provide
any features or peripherals that are not required, usually at the cost of limited
flexibility and reusability of the system for any other applications. In this chapter,

T. Güneysu (�) • T. Kasper • C. Paar • R. Zimmermann
Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
e-mail: tim.gueneysu@rub.de; timo.kasper@rub.de; christof.paar@rub.de;
ralf.zimmermann@rub.de

M. Novotný
Faculty of Information Technology, Czech Technical University in Prague, Czech Republic
e-mail: martin.novotny@fit.cvut.cz

L. Wienbrandt
Department of Computer Science, Christian-Albrechts-University of Kiel, Germany
e-mail: lwi@informatik.uni-kiel.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 11, © Springer Science+Business Media, LLC 2013

335

mailto:tim.gueneysu@rub.de
mailto:timo.kasper@rub.de
mailto:christof.paar@rub.de
mailto:ralf.zimmermann@rub.de
mailto:martin.novotny@fit.cvut.cz
mailto:lwi@informatik.uni-kiel.de

336 T. Güneysu et al.

we present two hardware architectures that aim to combine both goals—to provide
an optimal cost-performance ratio for a wide range of applications from the field of
cryptanalysis.

1.1 The COPABOBANA Computing System

The Cost-Optimized Parallel Code Breaker (COPACOBANA) was designed to
provide a significant amount of computing resources to applications with only a
minor demand on memory and communications. The majority of other FPGA-based
computing clusters or supercomputers, however, focus on data-oriented applications
requiring large amounts of memory and widely dimensioned bandwidth. Examples
for such universal supercomputing systems are Cray’s XD1 system [30] as well
as the SGI RASC technology [31] that also include reconfigurable devices in
their design. Unfortunately, such platforms are inappropriate for most tasks in
cryptanalysis due to their high costs and the related non-optimal cost-performance
ratio. Here, to the best of our knowledge, COPACOBANA is the only low-cost
alternative to commercial supercomputers offering no nameable amount of memory
but a significant amount of computing resources for less than e 10,000 hardware
production costs [40].

The hardware architecture of COPACOBANA was developed according to the
following design criteria [39]: First, we assume that computationally costly opera-
tions can be parallelized. Second, all concurrent instances have only a very limited
requirements to communicate with each other. Third, the demand for data transfers
between host and nodes is low due to the fact that computations heavily dominate
communication requirements. Ideally, (low-speed) communication between the
hardware and a host computer is only required for initialization and the transfer of
results. Hence, a single conventional (low-cost) PC should be sufficient to transfer
required data packets to and from the hardware, e.g., connected by a standardized
interface. Fourth, all presented algorithms and their corresponding hardware nodes
demand very little local memory which can be provided by the on-chip block RAM
modules of an FPGA.

Since our initial goal was to satisfy an application’s demand for plenty of comput-
ing power, we installed a total of 120 FPGA devices on the COPACOBANA cluster.1

Building a system of comparable dimension with commercially available FPGA
boards is certainly feasible but rather expensive. By stripping down functionality
to the bare minimum and producing the hardware ourselves, we are able to achieve
with COPACOBANA an optimal cost-performance for the set of applications shown
in Sect. 2.

1This number was determined by the size of the FPGA modules (DIMM form factor) and the
maximum bus length.

Cryptanalysis on COPACOBANA and RIVYERA 337

DIMM Module 2

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

XC3S1000

backplane

data
addressbus

64
16

DIMM Module 1

DIMM Module 20

G
igabit

Ethernet

Contro
ller

FPGA

(XCV4FX12)

contro
ller

card
host

Fig. 1 Schematic architecture of COPACOBANA

For a modular and maintainable architecture, we designed small FPGA modules
which can be dynamically plugged into a backplane. Each of these modules in
DIMM form factor hosts 6 low-cost Xilinx Spartan3-XC3S1000 FPGAs which
are directly connected to a common 64-bit data bus on board. The data bus of the
module is interfaced to the global data bus on a backplane. While disconnected from
the global bus, the FPGAs on the same module can communicate via the local 64-
bit data bus. Additionally, control signals are run over a separate 16-bit address bus.
Figure 1 gives an overview of the architecture of COPACOBANA. For simplicity, a
single master bus was selected to avoid interrupt handling or bus arbitration. Hence,
if the communication scheduling of an application is unknown in advance, the bus
master need to poll the FPGAs.

The top level entity of COPACOBANA is a host-PC which is used to initialize
and control the FPGAs, as well as for the accumulation of results. Programming
can be done simultaneously for all or a specific subset of FPGAs. Data transfer
between FPGAs and a host-PC is accomplished by a dedicated control interface.
The controller has also been designed as a slot-in module so that COPACOBANA
can be connected to a computer either via a USB or Ethernet controller card. A sim-
ple API software library on the host-PC provides low-level functions that allow for
addressing individual FPGAs, storing and reading FPGA-specific application data.
With this approach, we can easily attach more than one COPACOBANA device to
a single host-PC.

For some applications in the field of cryptanalysis, arithmetic intensive oper-
ations need to be performed using Digital Signal Processors (DSP) blocks that
have become available with many latest FPGA devices (cf. Sect. 2.4). In 2007,
we therefore designed new slot-in modules for use with COPACOBANA that host
8 Xilinx Virtex-4 XC4VSX35 FPGAs, each providing 192 DSP slices. Due to
the larger size of the FPGAs (FF668 package with dimension of 27 × 27 mm)
we enlarged the modules what includes also modifications of the corresponding

338 T. Güneysu et al.

connectors on the backplane. For more efficient heat dissipation at high clock
frequencies up to 400 MHz, an actively ventilated heat sink is attached to each
FPGA. With a more powerful power supply providing 1.5 kW at 12 V, we are able
to run a total of 128 Virtex4-SX35 FPGAs distributed over 16 plug-in modules in
the COPACOBANA V4.

1.2 The RIVYERA Computing System

COPACOBANA was tailored to provide pure computational power for (simple)
cryptanalytical applications but was known to be very limited on communication
facilities and on-system memory. Hence, to support advanced cryptanalytic pro-
cesses and even other application domains (e.g., bioinformatics), we finally decided
to come up with an enhanced and more powerful architecture. For a wide range
of advanced applications beyond simple exhaustive key search attacks, it turned
out that requirements for on-system memory and fast communication systems
are crucial. This insight led to a major redesign of the original COPACOBANA
architecture. The hardware platform RIVYERA was introduced in 2008 [51]
and includes a completely reworked communication and memory infrastructure.
The RIVYERA platform is developed and distributed by SciEngines GmbH [55]
and consists of two elements. First, a cluster of FPGAs spread over multiple plug-in
cards and, second, a standard server-grade mainboard, running a Linux operating
system on an Intel Core i7-930 processor with 12 GB of RAM. The FPGA cluster
is equipped with up to 128 user configurable Xilinx Spartan3-5000 or Spartan6-
LX150 FPGAs respectively, distributed over 16 plug-in cards, each containing 8
user FPGAs. Additionally, a DRAM module with a capacity of 32 MB is attached
to each user FPGA in the RIVYERA S3-5000. RIVYERA S6-LX150 provides
512 MB DRAM per default to each user FPGA, but can be extended with a memory
extension module providing an additional amount of 2 GB DRAM per FPGA.

RIVYERA offers a high-performance bus system. The interconnection between
all FPGAs is organized as a one-dimensional array or systolic chain. The general
idea of a systolic chain is to provide fast point-to-point connections between every
two neighbors. On the one hand, a systolic-like system typically results in shorter
wires achieving higher frequencies and therefore higher data throughput. On the
other hand, a typical problem becomes the latency of large chains and its usability.
However, the latency has been reduced significantly by adding shortcuts, i.e., each
FPGA on an FPGA card is connected with two neighbors forming a ring including
a communication controller. Additionally, the FPGA card slots are connected in a
ring as well via the communication controllers on each FPGA card.

To link the host software to the FPGA application, at least one communication
interface of the FPGA cards is connected via PCIe to the host mainboard. Further-
more, communication bandwidth can be increased by adding more communication

Cryptanalysis on COPACOBANA and RIVYERA 339

RIVYERA Platform

Integrated Host PC
FPGA Computer

Hard Drive

CPU &
RAM

PCle Interface
PCle
Bridge

Network

FPGA modules

Slot 16

Slot 3

Slot 2

Slot 1

Fig. 2 Schematic architecture of RIVYERA

controllers to the host, connected to other available FPGA cards. Even an uplink to
other RIVYERA machines can be established, allowing even more computational
resources for particular applications. An overview of the architectural concept is
illustrated in Fig. 2.

The provided API, as already mentioned, supports the development of software
and hardware design. In particular, the API provides the communication interface
for software and hardware, making any potential host-FPGA or FPGA–FPGA
connection transparent to the developer by an automatic routing of data packets.
The API includes broadcast facilities, methods for configuring the user FPGAs and
a communication interface for the FPGA-attached DRAM.

A picture of the RIVYERA S3-5000 is shown in Fig. 3. Due to its small form
factor, RIVYERA can be installed in 3U of a standard rack and powered by only
two redundant 650 W supplies.

Besides cryptanalytic applications, algorithms from bioinformatics were im-
plemented on RIVYERA, e.g., the Smith–Waterman alignment [54, 61], BLAST
database search [62, 63] and short-read alignment with BWA. Descriptions of these
applications can be found in Chap. 3. Research is also in progress on Genome-Wide
Association Studies (GWAS) and de-novo assembly.

Another recently explored field of applications is the accelerated stock market
analysis methods based on FPGA-based optimizations of investment strategies.
This can lead up to speedups of more than 17,000 compared to a standard PC
platform [58, 59].

340 T. Güneysu et al.

Fig. 3 View on RIVYERA S3-5000 computing system

2 Cryptanalysis on COPACOBANA and RIVYERA

The security of symmetric and asymmetric ciphers is usually determined by the size
of their security parameters, in particular the key-length. Hence, when designing
a cryptosystem, these parameters need to be chosen according to the assumed
computational capabilities of an attacker. Depending on the chosen security margin,
many cryptosystems are potentially vulnerable to attacks when the attacker’s
computational power increases unexpectedly. In real life, the limiting factor of an
attacker is often the financial resources. Thus, it is quite crucial from a cryptographic
point of view to not only investigate the complexity of an attack but also to study
possibilities to lower the cost-performance ratio of attack hardware. For instance, a
cost-performance improvement of an attack machine by a factor of 1,000 effectively
reduces the key lengths of a symmetric cipher by roughly 10 bit (since 1,000≈ 210).
In this section we discuss cryptanalytical implementations on COPACOBANA and
RIVYERA which can offer, depending on the application, a cost-performance that
is several orders of magnitude better than that of current PCs.

2.1 Exhaustive Key-Search Attacks

Brute-force attacks aim at extracting secret keys by means of exhaustive key-search:
Given a pair of plain- and ciphertext, all possible keys are tested until the correct
one, i.e., generating the correct ciphertext for the given plaintext or vice versa, is
identified. The attacks usually rely on optimized implementations of the investigated
cryptographic primitives but do not involve any special cryptanalytic methods.
The performance of an exhaustive key-search for a given cipher—even when

Cryptanalysis on COPACOBANA and RIVYERA 341

not revealing the secret key in a practical time—is an important estimator for
thereal-world security of cryptographic primitives. In the following we illustrate
practical implementations of brute-force attacks targeting DES, Hitag2, KeeLoq,
electronic passports and PRESENT on COPACOBANA.

2.1.1 Brute-Force Attack on DES

The data encryption standard (DES) with a 56-bit key size was chosen as the
first commercial cryptographic standard by NIST in 1977 [47]. This blockcipher
remained the standard for symmetric cryptography for more than 20 years and is
still (in 2012) employed in quite a few (recent) products. In the time of specification,
a key size of 56 bits was considered to be a good choice considering the huge
development costs for computing power in the late 1970s, that made a search over all
the possible 256 keys appear impractical. There have been a lot of feasibility studies
on the possible use of parallel hardware and distributed computing for breaking
DES. The first estimates were proposed by Diffie and Hellman in 1977 [13] for a
brute-force machine that could find the key within a day at a cost of US$ 20 million.
In 1998, the electronic frontier foundation (EFF) built a DES hardware cracker
called Deep Crack which found the key of DES Challenge II-2 in 56 h [17]. Their
DES cracker consisted of 1,536 custom designed ASIC chips at a cost of material
of around US$ 250,000 and could search 88 billion keys per second. In 2006 we
reimplemented the DES cracking application on the COPACOBANA computing
system. Four fully pipelined DES cores can be placed on each of the 120 Spartan-3
XC3S1000 FPGAs that are capable to test one key per cycle. Each core can test
242 keys in 240 × 7.35 ns per FPGA, which is approximately 135 min. The entire
machine can instantiate 4× 120 = 480 cores on all FPGAs testing 480 keys every
7.35 ns at 136 MHz, i.e., 65.28 billion keys per second. To find the correct key,
COPACOBANA has to search through an average of 255 different keys. Thus, it can
find the right key in approximately T = 6.4 days on average. Of course, more than
one COPACOBANA can be attached to a single host and the key space shared, so
that the search time is reduced to T

n , where n denotes the number of machines.
We like to briefly compare our solution to a software-based approach to

undermine the power of dedicated (FPGA) hardware for this application. With an
expense of e 10,000 required for the material of a COPACOBANA system, we can
afford around 50 low-cost PCs (Celeron@3 GHz including necessary peripherals)
for e 200 each in equal measure. A standard software implementation of DES can
compute roughly five million DES encryptions per second on such a PC. Hence,
with the fixed investment of e 10,000, we here yield a throughput of 250 million
DES keys per second with the PC cluster. Compared to the 65.28 billion DES keys
searched by a single COPACOBANA per second, we can outperform the PC cluster
in this case by a factor of more than 260. Regarding the power consideration, we
measured a fully equipped COPACOBANA running a DES key search to consume
less than 600 W. Related to this, we assume a single Pentium4-based computer to

342 T. Güneysu et al.

Fig. 4 Internal structure of Hitag2 initialization and encryption, adopted from [9]

require 150 W on average. Hence, comparing the power consumption of the entire
key search on a COPACOBANA and the PC cluster, a worst-case key search on
COPACOBANA will take 184 kWh whereas the PC cluster consumes the immense
amount of approximately 1.5 GWh during runtime.

2.1.2 Brute-Force Attack on Hitag2

Hitag2 is a stream cipher primarily used in radio frequency identification (RFID)
applications, such as car immobilizers. It has been developed and introduced in late
1990s by Philips Semiconductors (currently NXP). Hitag2 is reported to be used
in models produced by many leading car manufacturers. It is not clear whether the
Hitag2 is still used in newly produced cars, however, due to its relatively recent
introduction it is sure that many cars with Hitag2 are still in daily use.

The internal structure of Hitag2 is (see Fig. 4) very similar to its predecessor,
i.e., the Crypto1 cipher [10, 64] used in Mifare-Classic cards. Hitag2 uses a 48-bit
key and its internal state also has the corresponding length of 48 bits. Due to
the relatively short key-length of the cipher, brute-force attacks on Hitag2 are
feasible and practical, as described below. However, due to its internal structure and
operation, Hitag2 is also vulnerable to algebraic attacks: the authors of [11] are able
to extract the secret 48-bit key within 45 h, on the basis of four sniffed transactions,
by running MiniSat 2.0 on a PC.

Figure 5 depicts the protocol between the reader (RW device) embedded in the
car, and the transponder (tag) embedded in the immobilizer. The transponder and
the reader share a common 48-bit secret key. To prevent replay attacks, a unique
initialization vector (IV) is generated for every transaction between the reader and

Cryptanalysis on COPACOBANA and RIVYERA 343

Fig. 5 Hitag2 protocol in
Crypto mode

the transponder. The secret key, the initialization vector, and the serial number of
the tag are used for the initialization of a cipher. After initialization, the Hitag2
cipher produces a keystream. The first 32 bits of the keystream are used as an
authenticator and the remaining bits are used for encryption like in any standard
stream cipher.

For a brute-force attack the serial number, the initialization vector, and the
authenticator have to be sniffed from one transaction. From this data, 32 bits of
keystream can be recovered, while the secret key has 48 bits. Hence, at least two
transactions between tag and reader have to be monitored as a prerequisite for a
successful recovery of the key. A corresponding brute-force attack on Hitag2 has
been efficiently implemented on COPACOBANA [60]. To parallelize the attack, the
search space is divided into 512 subspaces and distributed to the FPGAs by the host
computer. If the search in a particular subspace finishes without success, another
subspace is assigned to the FPGA. Each FPGA internally generates all 239 keys of an
assigned subspace. The block-level structure of the Hitag2 breaker as implemented
in each FPGA is illustrated in Fig. 6. The breaker consists of the control module and
256 Hitag2 executional cores, denoted as H2 Core. Therefore, each FPGA verifies
256 keys concurrently against the data obtained from the first transaction. If any
H2 Core produces a correct authenticator, the found key candidate is passed to the
H2 Core—final stage (see bottom of Fig. 6) for verification against data from second
transaction between the transponder and the reader.

The brute-force attack outperforms all previous implementations by several or-
ders of magnitude. Just two monitored communications between a Hitag2 transpon-
der and a reader, instead of four sniffed transactions required in other published
attacks, are sufficient to reveal the secret key: each FPGA of COPACOBANA
verifies 378 million keys per second, therefore, one fully equipped COPACOBANA
with 120 FPGAs is able to determine the correct key in less than 2 h (103.5 min) in
the worst case. The proposed design is almost linearly scalable, which allows further
reduction of the attack time by employing more COPACOBANA machines. The at-
tack is also energy efficient. Considering COPACOBANA to have a consumption of
less than four standard PCs, the attack needs the same amount of energy as one PC
running for less than 8 h, while the algebraic attack reported in [11] needs one PC
running for 45 h.

344 T. Güneysu et al.

n+1

2

data
data2

cntrl
2

DCM

Control module

H2 Core-final

H2 Core #n

H2 Core #1

m_1

m_n

match

match

clk

match

clk

clk

clk

m_f

clk_outclk_in

data
data2

control

data
data2

control

data
data2

control

1

FPGA

1

slot

cs

rd/wr

adr
data

64

adr
data

bus_clk

1

rd/wr

cs

slot

Fig. 6 Block-level structure of the Hitag2 breaker in one FPGA

Synchronization Counter Discrimination Value Func

KEELOQ
encryption

Hopping Code

Device
Key

32

32

64

Fig. 7 Generating a hopping
code with KEELOQ

2.1.3 Brute-Force Attack on KeeLoq

Many real-world car door systems and garage openers are based on the KEELOQ

cipher. These electronic systems consist of remote controls, which replace tradi-
tional keys, and receivers which control the door. On having its button pressed
a remote sends a so-called hopping code to the receiver to open or close the
door. A hopping code is generated by a KEELOQ encryption with a device key,
incorporating a 16-bit counter value, a 12-bit discrimination value, and a 4-bit
function value, as shown in Fig. 7. While the counter is incremented in the remote
each time a new hopping code is generated, the discrimination and function values
remain constant.

Cryptanalysis on COPACOBANA and RIVYERA 345

Device Key
Generator

KEELOQ
decryption

KEELOQ
decryption

Hopping Code #1 Hopping Code #2

Counter1 Discrim1 F1 Counter2 Discrim1 F2

Discrim1F1 == Discrim2F2 ?(Counter2 –Counter1) < 7 ?

KEY CANDIDATE

Fig. 8 KEELOQ breaker

To obtain the unique device key of a remote control on the side of the receiver,
the serial number of the remote is typically decrypted by means of KeeLoq using
a manufacturer key. Alternatively, for the key derivation a randomly generated
seed value may by combined with the serial number in three different scenarios.
Altogether we get four different possible inputs for the generation of device keys:

1. 64 bits of the serial number (N), 0xNNNNNNNNNNNNNNNN
2. 28 bits of the serial number (N) combined with 32 bits of the random seed (S)

according to 0x0NNNNNNNSSSSSSSS
3. 12 bits of the serial number combined with 48 bits of the seed according to

0x0NNNSSSSSSSSSSSS, or
4. 60 bits of the seed following the pattern 0x0SSSSSSSSSSSSSSS

Since the KEELOQ cipher has been extensively studied [6, 16, 32], several
different types of attacks have been proposed. The attack described in [16] reveals
the manufacturer key by means of power analysis. In the following, breaking the
system is straightforward for those commercial products deriving the device keys
according to Scenario 1: the secret device key of the remote control can be instantly
derived after monitoring its serial number. However, the attacks are not applicable
if a seed is used, even when the manufacturer key is known. The goal of our
implementation [49] is hence to find the correct device key for the respective
Scenarios 2–4, in which a random seed is incorporated. For the key-search we need
to intercept two hopping codes of the same remote control, generated with the same
device key that have a small difference between their counter values.

We implemented a brute-force attack of KEELOQ on COPACOBANA. The
diagram of the circuit implemented in each FPGA is shown in Fig. 8. A candidate
for the device key is found by means of exhaustive key-search, if the decryp-
tions of two intercepted hopping codes reveal identical discrimination values and

346 T. Güneysu et al.

Table 1 Worst case times for the brute-force attack on KEELOQ

SEED length 1 FPGA 1 COPACOBANA 100 COPACOBANAs
(bits) (<80 $) (<10,000 $) (<1,000,000 $)

32 39 s 0.33 s 3.3 ms
48 29.6 days 5.9 h 213 s
60 332 years 1,011 days 10.1 days

moderately increased counter values. In our optimized implementation we unrolled
both decryption units into a pipelined structure. The maximum achievable clock
frequency is 110 MHz, i.e., each FPGA can test up to 110 million keys per second.
Worst-case times for all possible seed lengths, and 1 FPGA, 1 COPACOBANA and
100 COPACOBANAs, respectively, are summarized in Table 1.

We conclude that using a 32-bit seed provides no security, since a key can
be found in real time. While a seed with 48 bits can be broken in less than 6 h
by one COPACOBANA, employing a 60-bit seed can provide reasonable security
despite the flawed cipher and the usage of a manufacturer key.

2.1.4 Brute-Force Attack on Electronic Passports

The ePass (electronic passport) is deployed in many countries all over the world.
A contactless chip embedded in the passport, compliant to the ISO 14443 [33]
standard, holds private data of the holder that is secured by cryptographic primitives.
The security of the first generation of passports is questionable, as detailed in this
section: our key-search attacks, as presented in more detail in [43], tackle the basic
access control (BAC) security mechanism in the first generation of passports issued
in Germany since November 2005. Our implementation on COPACOBANA is also
applicable to passports of various other countries. After publicizing our findings a
new version of the German ePass was released in November 2007 with an improved
variant of the here attacked key derivation scheme.

The security and privacy threats of the ePass have been widely discussed (e.g.,
[28, 34, 35, 45]) and have provoked public debates. A recent attack [8] implies that
tracking the movements of a particular passport—without breaking the passport’s
cryptographic keys—is feasible from a maximal range of some centimeters. In
contrast, the brute-force attacks presented in this section reveal the secret encryption
keys (and enable tracking of individuals) from a distance of several meters, by means
of eavesdropping.

The cryptographic keys kENC and kMAC for the encryption and generation of a
Message Authentication Code (MAC), respectively, are derived from a machine
readable zone (MRZ) that is printed on the paper document. Then, a mutual three-
pass authentication according to the BAC protocol [29] is executed via the wireless
interface. With our key-search implementation, the MRZ—and thus the secret
keys—can be recovered from a distance.

Cryptanalysis on COPACOBANA and RIVYERA 347

In a typical attack scenario a suitable receiver and an antenna have to be mounted
nearby an e-passport inspection system to monitor the bits transmitted via the air
channel. An attacker then has two options for gaining the plain- and ciphertext
needed for the exhaustive key search: The first option targets kENC. The plaintext
for this case is a random number RNDEpass transmitted by the passport at the
beginning of the BAC. The corresponding ciphertext ENCkENC

(
RNDEpass

)
is sent

some steps later during the BAC. The encryption function ENCkENC (·) is Triple-
DES in CBC mode, with the initialization vector being publicly known [29]. Our
implementation decrypts the most significant 8 bytes of the ciphertext with varying
keys and compares the results with the plaintext RNDEpass—in case of a match,
the passport’s MRZ and thereby kENC is found. The data signal of the reader is
much stronger than that transmitted by the passport [20]. For our second approach,
monitoring the signal of the reader is sufficient, hence greater eavesdropping ranges
can be achieved. This time, kMAC, is targeted by intercepting a message of the reader
and its respective MAC.

The keys kMAC and kENC are derived from the MRZ according to

k = msb16 (SHA-1(msb16 (SHA-1(MRZ))‖C)) .

Since two subsequent rounds of SHA-1 [46] have to be executed, each FPGA is
provided with two pipelined SHA-1 units. The first option for the attack requires a
Triple-DES to be executed after hashing the key. This is achieved by implementing
one DES round and executing it for 48 times (16 times for each single DES), instead
of a fully parallel DES. Despite this slow approach for the DES, 80 − 48 = 32
clock cycles of idle time remain until the next output of the SHA-1 is determined.
For the second proposed attack targeting the MAC, four more DES rounds have to
be executed in addition to the Triple-DES. The corresponding 7× 16 = 112 clock
cycles when implementing one DES engine would imply 112−80= 32 clock cycles
of idle time each time a new hash value is delivered. Thus, a second DES engine
is placed on each FPGA, after some optimizations of the control logic. Finally, the
post-processing after the SHA-1 takes 56 clock cycles and is thus again 80−56= 24
clock cycles faster than the SHA-1.

Since 120 FPGAs are available on COPACOBANA, the key space is split into
120 appropriate subspaces: each FPGA contains a fixed portion of the MRZ, while
an MRZ generator produces all remaining combinations of the MRZ and supplies
them to four engines on each FPGA that process the plaintext in parallel, as sketched
above. The delivered ciphertexts are compared to the correct one and, in case of
a match, the sought-after MRZ is returned to the data bus. The MRZ generator is
crucial for the run-time of the attack, as it minimizes the communication via the data
buses. It further enables to adapt the key search to different scenarios: the entropy of
the MRZ can be considerably reduced [43, 53] with an increasing knowledge about
the passport holder and the issuing system of the e-Pass.

Due to the memory limitations of COPACOBANA the SHA-1 is the slowest part
of our implementation, requiring 80 clock cycles. Its critical path also sets the upper
limit for the clock frequency, i.e., fclk = 40 MHz. The 120 FPGAs run in parallel

348 T. Güneysu et al.

plaintext

sBoxLayer

pLayer

key register

update

sBoxLayer

pLayer
update

ciphertext

Fig. 9 Structure of
PRESENT

and each possess four encryption engines, hence 4× 120 = 480 key candidates are
tested every 2 μs, resulting in a throughput of 227.84 ≈ 240 million keys per second.
In a typical attack scenario, only 233 keys need to be tested on average (see [43]
for details about the entropy)—COPACOBANA reveals the correct secret in

232

227.84 ≈ 18 s.

2.1.5 Brute-Force Attack on PRESENT

PRESENT [7] is a symmetric block cipher with a block size of 64 bits and a key
length of 80 (or 128) bits. PRESENT was designed as a replacement for lightweight
ciphers such as Crypto1, KeeLoq, or Hitag2, which can all be broken either by
means of brute-force, algebraic attacks or side-channel analysis [11, 16, 32, 38, 60].

The cipher is illustrated in Fig. 9. It is based on a substitution-permutation
network which consists of 31 rounds. Each round consists of three parts: a byte-
wise XOR of the input data and the round key (addRoundKey), a nonlinear S-box
modification (sBoxLayer), and finally a permutation (pLayer). The round keys are
computed by using the same S-box.

All 16 S-boxes in the substitution layer are identical, which allows down-scaling
the chip area at the cost of an increased number of clock cycles. As a result, circuits
implementing PRESENT may occupy a significantly smaller chip area compared
to other ciphers, e.g., DES, which makes PRESENT an ideal solution for large-
scale applications, such as tickets for public transport, RFID tags identifying goods
in shops, car immobilizers, or door openers. On the other hand, PRESENT can
be implemented as a pipelined circuit with a high throughput (and a large area),
hence trading area for speed is possible in a very wide range. Performing a brute-
force attack against a cipher with an 80-(or 128-bit) key is evidently infeasible with

Cryptanalysis on COPACOBANA and RIVYERA 349

common resources. However, our implementation aims at evaluating the resources
that are practically required to break PRESENT with such an attack.

For our implementation we opted for the “weaker” 80-bit variant of PRESENT,
which has an architecture similar to that of DES. Both ciphers work on 64-bit
blocks, but PRESENT requires twice as many rounds compared to DES. Thus,
just two pipelined cores fit into one FPGA, implying a throughput of one key per
clock cycle. The maximum achieved frequency is 100 MHz, i.e., one FPGA verifies
200 million keys per second and the whole COPACOBANA with 120 FPGAs
verifies 24 billion keys per second. Searching the whole key space of 280 keys
takes 280

24·109·86,400·365.25
≈ 1.596 · 106 years with one COPACOBANA. A brute-

force attack on an 80-bit PRESENT hence takes almost 800,000 years on average,
which makes PRESENT a good solution for lightweight cryptography, unless other
cryptanalytical attacks were found.

2.2 Guess-and-Determine Attack on A5/1

In contrast to block ciphers, where the key used for an encryption is directly targeted,
cryptanalysis of stream ciphers often focuses on recovering the internal state of the
cipher [5, 24], i.e., the content of internal registers at a certain time of execution.
The internal state is derived on the basis of a known keystream—once it is revealed
the cipher may be run forward to decrypt the remainder of the ciphertext. In some
cases the cipher may be also run backwards to obtain a previous state of the secret
key, e.g., in case of Crypto1 or A5/1.

A5/1 is a synchronous stream cipher used for voice encryption in the GSM
mobile communication system. The communication between the mobile phone and
the base transceiver station (BTS) is divided into frames with a length of 114 bits.
For each frame, a new keystream is produced. All frames of one phone call share
the same 64-bit session key K. The 22-bit initialization vector IV is unique for each
frame of the phone call; however, it is equal to the 22-bit frame number FN which
is publicly known.

The A5/1 cipher consists of three linear feedback shift registers (LFSRs) R1,
R2, and R3 with lengths of 19, 22, and 23 bits, as depicted in Fig. 10. The most
significant bits of all three registers are added modulo 2 to produce one bit of a
keystream per clock cycle. The registers are clocked irregularly, while the bits R1[8],
R2[10] and R3[10] are used as clocking bits: in each clock cycle, the majority of all
three clocking bits is calculated. The register Ri is clocked only if its associated
clocking bit is equal to the majority of all three clocking bits, thus either two or
three registers are clocked per clock cycle.

The security of A5/1 has been extensively analyzed. Pioneering work in this field
was done by Anderson [1], Golic [24], and Babbage [3]. Anderson’s basic idea was
to guess the complete content of the registers R1 and R2 and bits R3[10] . . .R3[0] of
register R3. In this way the clocking of all three registers is determined; the upper

350 T. Güneysu et al.

19

0123456791011121415

01234567891112131415161718

19 0123456891112131415161718

13161718

2021

22 2021 7

8

10

10

Output
Keystream

Majority of
R1[8], R2[10], R3[10]

clk

XOR

XOR

XOR

XNORen

en XNOR

XNOR

clk

clk

en

XOR

Fig. 10 A5/1 cipher

bits R3[22] . . .R3[11] can be derived from known keystream bits and guessed bits
can be verified against the remainder of the keystream. As the internal state has 64
bits, at least 64 bits of keystream need to be known in advance. In the worst-case,
each of the 252 derived state candidates need to be verified.

The hardware-assisted attack by Keller and Seitz [36] is based on Anderson’s
idea. However, they propose a method to exclude a significant fraction of possible
candidates at a very early stage of the verification process. Similar to Anderson, they
guess shorter registers R1 and R2 and they determine upper bits of R3 from know
keystream. In contrast to Anderson, the lower bits of R3 are successively guessed
and, as they serve as clocking bits, wrong guesses are eliminated by recognizing
contradictions in clocking. Unfortunately, the approach given in [36] does not only
immediately discard wrong candidates but also a priori restricts the search for
candidates to a certain subspace, which reduces the success probability of their
attack to only 18 %.

We have improved the attack of Keller and Seitz eliminating the drawback of
their attack and thus increasing the success probability to 100 %. The attack [23]
was implemented on COPACOBANA. In our attack around 250 guesses need to be
checked for consistency, as shown in Table 2. The verification of each guess takes
17 2

3 clock cycles on average. One FPGA can host up to 36 guessing engines.
The guessing engine is passing through a binary decision tree. By storing

intermediate states at some level of the decision tree we reduce the time complexity
of the attack to 10.08 clock cycles per guess on average. Implementation results
for standard and optimized guessing engines are summarized in Table 3. This table
also demonstrates that “less is sometimes more”: implementing only 32 standard
engines instead of 36 enables to increase the maximum clock frequency, which
in turn reduces the time of the attack. Nevertheless, we obtained the best results

Cryptanalysis on COPACOBANA and RIVYERA 351

Table 2 Complexity of attacks on A5/1—number of guesses that need to be
checked for consistency

Attack Complexity

Plain brute-force attack 264

Plain guess-and-determine attack (Anderson) 241 ·211 = 252

Attack by Keller–Seitz (success rate 18 %) 241 · (2− 1
2)

11 ≈ 247.43

Smart guess-and-determine attack (our attack) 241 · (2− 1
4)

11 ≈ 249.88

Table 3 Implementation results for standard and optimized A5/1 guessing engines

Guessing engines Clock cycles fmax ftest Worst-case time

per FPGA per guess Slices [MHz] [MHz] Estimated Measured

36 standard 17.67 6,953 (91 %) 81.85 72.00 16.31 h –
32 standard 17.67 6,614 (86 %) 102.42 92.00 14.36 h 13.58 h
23 optimized 10.08 7,494 (98 %) 104.65 92.00 11.40 h 11.78 h

f

E R

f

E R

f

E R
k2 k3 ktSP EP

P P P

Fig. 11 Chain generation according to Hellman’s TMTO

for 23 optimized engines per one FPGA. The worst-case time of our guess-and-
determine attack on A5/1 is below 12 h with one COPACOBANA, i.e., it takes less
than 6 h on average.

2.3 Time-Memory Trade-Off Attacks

In cryptanalysis, a time-memory trade-off (TMTO) aims to find a compromise
between two well-known extreme approaches, i.e., performing exhaustive searches
(c.f. Sect. 2.1) and precomputing extremely large tables, in order to efficiently
compute cryptographic schemes. A TMTO method introduced by Hellman in
1980 [27] offers a way to reasonably reduce the actual search complexity, while
keeping the amount of precomputed data reasonably low.

A TMTO attack is divided into two phases: the precomputation phase and the
online phase.

In the precomputation phase a large amount of calculations is performed.
The time complexity of this phase is comparable to that of a brute-force attack,
however, in case of TMTO the calculations are executed only once and their results
stored. The calculations are organized in chains, as shown in Fig. 11. The entry

352 T. Güneysu et al.

of the chain is denoted as a starting point SP and the final result is denoted as
an end point EP. In the ith step of the computations, the encryption function E
encrypts a plaintext P with key ki, producing the ciphertext Ci = Eki(P). Ci is
then modified by means of a re-randomization function R producing the key for
the next step, ki+1 = R(Ci). The combination of the encryption function E and the
re-randomization function R is called the step function f . The chain is terminated
after t steps and a new chain is generated from another starting point. For each chain
only the pair (SP, EP) is stored in a table, which significantly reduces the memory
requirements compared to a full precomputation table. The pairs are sorted by the
end points.

Hellman calculated that (due to the birthday paradox) the chains of one table
cover only N

2
3 distinct keys (where N is the number of all possible keys). To cope

with this problem he suggested to generate multiple tables, each associated with a
different re-randomization function. If we denote t to be the length of the chain, m
the number of chains in one table and r the number of tables, then the selection of the
parameters is typically t ≈ m ≈ r ≈ N

1
3 . The particular selection of the parameters

influences the precomputation time, memory requirements, online time, as well as
the success probability.

In the online phase the attacker performs calculations similar to those ones
from the precomputation phase, however, the number of online calculations is
significantly smaller. The results of these calculations are compared to end points
stored in the table: in case of a match the key may be retrieved by reconstructing
the appropriate chain from its start point. In practice, the time required to complete
the online phase of Hellman’s TMTO is dominated by the high number of table
accesses. Random accesses to the storage, e.g., a harddisk, can be several orders
of magnitude slower than all necessary calculations. Employing the so-called
distinguished points (DPs), as recommended by Rivest [12] in 1982, significantly
reduces the amount of required table accesses. A DP is a point with the property
that it can be easily verified, e.g., a point with the ten most significant bits set
to zero. Following the DP method, chains do not have a uniform length, as they
are generated until a DP is produced. Another variant of TMTO method, called
rainbow tables [50], was proposed by Oechslin in 2003. He suggested not to use the
same re-randomization function R when generating a chain for a single table but a
(fixed) sequence R1,R2,R3, . . . ,Rt−1,Rt of different re-randomization functions. As
the effect of birthday paradox problem is suppressed by this strategy, more chains
can be generated in one table and the number of tables may be significantly lower.
In practice, the number of chains generated in one table is m ≈ N

2
3 , i.e., there is

only one table (r = 1) or the number of tables is in order of units. The length of
one chain is typically again t ≈ N

1
3 . The number of table accesses is comparable

to the distinguished-points method while performing twice as fast in the online
phase. Currently, rainbow tables are considered to be the best TMTO method for
single data.

Cryptanalysis on COPACOBANA and RIVYERA 353

Table 4 Expected runtimes and memory requirements for TMTO on DES

Method SR DU PT (COPA) OT

Hellman 0.80 1,897 GB 24 days 240.2 TA + 240.2 C
Distinguished points 0.80 1,690 GB 95 days 221 TA + 239.7 C
Rainbow tables 0.80 1,820 GB 23 days 221.8 TA + 240.3 C

2.3.1 TMTO Attacks on DES and PRESENT

The performance results of our DES breaker (see Sect. 2.1.1) serve as the basis
for the following initial extrapolation of the complexity of various TMTO methods
applied to DES. Table 4 presents our worst-case estimations concerning the
success rate (SR), disk usage (DU), and the duration of the precomputation phase
(PT) on COPACOBANA, as well as the number of table accesses (TA) and
calculations (C) during the online phase (OT). Note that these figures are based
on estimations given in [27, 50, 57] that are applied to our implementations on
COPACOBANA.

Based on the results presented in Table 4 we have chosen the rainbow tables
method for implementing a TMTO attack on DES. For this implementation, we have
developed another DES core which operates with 16 pipeline stages [25]. Using four
parallel DES units with 16 stages each, we can run 64 chain computations in parallel
per FPGA. Figure 12 illustrates our architectures for generating rainbow tables in
further detail.

On the given Spartan-3 devices, our entire implementation including I/O and
control logic consumes 7,571 out of 7,680 (98 %) available slices of each FPGA and
runs at a maximum clock frequency of 96 MHz. A single COPACOBANA is then
able to compute more than 46 billion iterations of the step function f per second.
The actual duration of the precomputation phase for generating the rainbow tables
lasts slightly less than 32 days. Then, the calculations in the online phase may be
accomplished in just around 30 s. The limiting factor of the attack is the number of
221.8 table accesses.

For mounting a further TMTO attack targeting PRESENT we also have selected
the rainbow tables method. We have chosen the “weaker” variant of PRESENT
working with an 80-bit key. The precomputation engine is similar to that one build
for DES, however, one FPGA contains two TMTO units having 32 pipeline stages
each in this case. Again, we can run 64 chain computations in parallel per FPGA
and the maximum clock frequency is 100 MHz. If we set the chain length to t =
227 steps and calculate just one rainbow table containing m = 253 chains, then the
precomputation of the table would take the same time as the brute-force attack, i.e.,
PT ≈ 1.6 · 106 years and all pairs of start points and end points (SP, EP) would
occupy roughly DU = 128 PB of disk space.

The online phase of the attack can then be accomplished in less than nine days
with one COPACOBANA, which looks promising; however, there are two limiting
factors: first, the resources necessary for the precomputation phase are too high.

354 T. Güneysu et al.

CONTROLLER

DES core
16 pipeline stages

XOR

re-randomization
function

chain length
check

chain
memory

Plaintext

Startpoint

Re-randomization
& Table number

I/O bus

TMTO
element

TMTO
element

TMTO
element

TMTO
element

Fig. 12 Implementation for
generating DES rainbow
tables

Second, even if we neglect the precomputation phase (we suppose that we are given
the table from a very powerful third party), then nine days with one COPACOBANA
can still be regarded as too expensive, with respect to the application area of the
cipher, such as tickets for public transport and RFID tags.

2.3.2 Time-Memory-Data Trade-Off Attack on A5/1

As stated above, in case of stream ciphers we aim at finding the n-bit internal state
that generated corresponding w consecutive bits of known keystream. For an attack
on a stream cipher often w > n holds, e.g., in case of the A5/1 one frame has w =
114 bits, while the internal state has n = 64 bits only. In this situation it is possible
to derive D = w− n+ 1 set of data points from the stream bits (b1, . . . ,bw), namely
y1 = (b1,b2, . . . ,bn), y2 = (b2,b3, . . . ,bn+1) and so on. For breaking the cipher it is
sufficient to find the internal state for any of the D data sets y1, . . . ,yD [3, 24], i.e.,
we have D times more chances for mounting a successful attack.

The common approach to exploit the existence of multiple data sets in case of
time-memory-data trade-off (TMDTO) is to reduce the coverage of the tables by a

Cryptanalysis on COPACOBANA and RIVYERA 355

factor of D. When applied to the original Hellman method [5] or to the distinguished
point method, one simply generates D times less tables. As a result, both the
precomputation time and the memory requirements are reduced by a factor of D,
while the online complexity remains unchanged.

Unfortunately, rainbow tables cannot gain from multiple data, as shown in [4].
In the same paper a new variant of the rainbow method, called thin-rainbow method,
was sketched providing a better TMDTO. In this variant one does not use a different
re-randomization function in each step of the chain computation but applies a
sequence of S different re-randomization functions �-times periodically in order to
generate a chain of length �S+ 1. More precisely, the corresponding step-functions
f1, . . . , fS are applied in the following order:

f1 f2 . . . fS f1 f2 . . . fS . . . f1 f2 . . . fS

To reduce the number of disk accesses in the online phase one can combine the
thin-rainbow scheme with the distinguished point method. This is done by looking
for a distinguished point after each application of the fS-function. During the
precomputation we only keep a chain if it exhibits its first DP after �min ≤ � ≤ �max

applications of fS, for certain parameters �min and �max, and if this DP is furthermore
different from the end points of the chains that are already stored.

For our implementation of a TMDTO attack on A5/1 [25] we have selected the
sketched thin-Rainbow DP method. In the case of multiple data set this approach
allows for a simple and efficient hardware implementation, while exhibiting a
low number of disk accesses during the online phase and an efficient trade-off
curve. The TMDTO engine used for precomputation phase is depicted in Fig. 13.
A modified engine has been designed for the online phase [48]. Calculations are
executed in 234 TMTO elements which are connected in series. Each TMTO
element is calculating one chain. The result after each rainbow sequence f1 f2 . . . fS

is checked for the DP-criterion by means of a DP checker.
An A5/1 TMDTO engine runs at a maximum frequency of 156 MHz. Computing

a step-function fi takes 64 clock cycles. Since one FPGA contains 234 TMTO ele-
ments (each consisting of two A5/1 cores), the whole COPACOBANA can perform
approximately 236 step-functions per second. Selecting the TMDTO parameters
requires special attention, since this highly influences the precomputation time (PT),
the disk usage (DU), as well as the time needed in the online phase for the chain
computations (OT), the number of table accesses (TA), and the success rate (SR).
Table 5 summarizes the results for different sets of parameter choices under the
assumption that D = 64. Furthermore, we assume that COPACOBANA is used both
for the precomputation and during the online phase. Thus it is worth to trade a higher
online complexity, e.g., for a lower demand of disk space (compare with rows 4 and
5). For our implementation, we have selected the set of parameters presented in the
third row, since it produces a reasonable precomputation time and a reasonable size
of the tables, as well as a relatively small number of table accesses. The success rate
of 63% may seem to be small, but it increases significantly if more data samples
are available: for instance, if four frames of known keystream are available, then
D = 4 ·51 = 204 and thus the success rate increases to 96%.

356 T. Güneysu et al.

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2

load/run_1

re-randomization function

TMTO
element

TMTO
element

TMTO
element

point register

start point generator

CONTROLLER

re-randomization
function

generator

chain memory
(start point,
birthdate)

FIFO

DP
checker

timer

C
O

N
T

R
O

L
&

 E
V

A
LU

A
T

IO
N

E
X

E
C

U
T

IO
N

Fig. 13 Diagram of an A5/1 TMDTO engine implemented in one FPGA

2.4 Factoring Large Numbers with Elliptic Curves

The factorization of a large composite integer n is a well-known mathematical
problem which has attracted special attention since the invention of public-key
cryptography. RSA is known as the most popular asymmetric cryptosystem and
was originally developed by Ronald Rivest, Adi Shamir, and Leonard Adleman in
1977 [52]. Since the security of RSA relies on the attacker’s inability to factor large
numbers, the development of a fast factorization method could enable a key recovery
from RSA messages and signatures. Recently, the best known method for factoring
large RSA integers is the General Number-Field Sieve (GNFS). An important step

Cryptanalysis on COPACOBANA and RIVYERA 357

Table 5 A5/1 TMDTO: expected runtimes and memory requirements

m S d Il PT [days] M [TB] T [s] TA Ptotal

1 241 215 5 [23,26] 337.5 7.49 70.5 221 0.86
2 239 215 5 [23,27] 95.4 3.25 92.0 221 0.67
3 240 214 5 [24,27] 95.4 4.85 27.6 220 0.63
4 240 214 5 [23,26] 84.4 7.04 17.7 220 0.60
5 239 215 5 [23,26] 84.4 3.48 70.5 221 0.60
6 240 214 5 [24,26] 84.4 5.06 21.5 220 0.55
7 237 215 6 [24,28] 47.7 0.79 186.3 221 0.42
8 236 216 6 [24,28] 47.7 0.39 745.3 222 0.42

in the GNFS algorithm is the factorization of mid-sized numbers for smoothness
testing. For this purpose, the elliptic curve method (ECM) has been proposed
by Lenstra [42]. The ECM algorithm proved to be suitable for parallel hardware
architectures in [22, 44, 56], particularly on FPGAs.

The ECM algorithm performs a very high number of operations on a very small
set of input data and is not demanding in terms of high communication bandwidth.
Furthermore, the implementation of the first stage of ECM requires only little
memory since it is based on point multiplication on an elliptic curve. The operands
required for supporting GNFS are well beyond the width of current computer buses,
arithmetic units, and registers, so that special-purpose hardware can provide a much
better solution.

In [44], de Meulenaer et al. show that the utilization of DSP slices in Virtex-4
FPGAs for implementing a Montgomery multiplication can significantly improve
the ECM performance. In that work, the authors used a fully parallel multiplier
implementation, which provides the best known performance figures for ECM phase
1 so far. However they did not provide details how to realize ECM phase 2.

To accelerate integer arithmetic using a similar strategy, we employed the new
slot-in module for use with the second release of COPACOBANA. These slot-in
modules host 8 Xilinx Virtex-4 XC4VSX35 FPGAs, each providing 192 DSP slices.
Based on the DSP cores in the Virtex-4, we created a multi-core ECM design per
FPGA (in contrast to [44], which uses a single core only).

Figure 14 describes the layout of our ECM System, which contains multiple
engines, a data scheduler and a buffered system bus. As the right side of the figure
shows, one ECM engine contains two different clock regions. The faster clock
region is reserved for the elliptic curve processor, which uses DSP cores to compute
point operations (addition and doubling) on the curve and contains instructions to
compute phase 1 and phase 2 of the algorithm. The slower clock region is used
by the control unit to execute the complete algorithm. Please note that only point
operations on the elliptic curve are performed on FPGAs. This means that the setup
of the Montgomery curve needs to be done on the host-PC and then transferred to
the FPGAs.

In addition to the comparison shown in Table 6, our implementation adjusts
to a block size parameter to natively support different integer target sizes. As an

358 T. Güneysu et al.

ECM Engine

ECM Engine

ECM Engine

ECM Engine

ECM Engine

Elliptic Curve
ProcessorSynch

RAM

Control
Unit

MADDSUB MMUL1 MMUL2

MMUL2
Input

MMUL1
Input

Instruction ROM

W
or

ks
pa

ce
M

em
or

y

MulMod
Input

D
ate R

equest

S
yn

ch
 R

A
M

ct
rl

U
ni

t

ctrl

ctrl

ECC System
100 MHz 200 MHz

Fig. 14 FPGA-layout of our ECM system, composed of multiple ECM engines, as well as the
structure of the engine and its elliptic curve processor

Table 6 Comparing our results using b = 13 (L = 202 bit) with Gaj et al. for
Virtex-4 FPGAs

Aspect Gaj et al. [22] This work Factor

FPGA device V4LX200-11 V4SX35-10
Supported bits 198 202 1.02
Max. ECM cores 24 24 1.00
Max. frequency 104 MHz 200 MHz 1.92
Cycles for addition 41 29 0.71
Cycles for multiplication 216 201 0.93
Cycles for phase 1 1,666,500 1,473,596 0.88
Time for phase 1 16 ms 7.37 ms 0.46
(# Phase 1)/s 1,448 3,240 2.24
(# Phase 1+2)/s 696 1,560 2.24

example, with a block size b= 10, the design factors integers up to 151 bit in 4.73 ms
(phase 1) and 5.12 ms (phase 2). This corresponds to 5,064 computations per second
for the first phase and 2,424 computations per second for phase 1 and 2.

A main issue of the ECM is memory. Although phase 1 has only very moderate
memory constraints, phase 2 involves a significant amount of precomputations, as
well as storage for prime numbers. Since memory on FPGA devices is rather limited
(192 × 18 kbit BRAM elements per device), a fast accessible, external memory
could help to improve the impact of phase 2 by storing even larger tables than
presented above.

Cryptanalysis on COPACOBANA and RIVYERA 359

NFSR LFSR

19

7 7

6

2

Fig. 15 Overview of the
Grain-128 initialization based
on the presentation in [26]

2.5 Cryptanalysis Using Cube Attacks

In order to analyze a cryptographic scheme, we can split the output into its separated
output bits and describe each by a multivariate polynomial over the Galois field
GF(2) on secret variables, e.g., the key bits, and public variables, e.g., bits of the
plaintext or initialization vector. Even though the full expression is much too large
to write down, evaluate, and benefit from, we can still draw conclusions by running
the target algorithm as a black box with some restrictions to the assigned input data
by the cryptanalyst.

In the specific case we discuss here, we will use Cube Testers [2], a type
of distinguishers [18, 19, 21, 37], which are related to higher-order differential
attacks [41]. We implement such Cube Testers on RIVYERA with its Spartan-3
5000 FPGAs to evaluate an algebraic attack called Dynamic Cube Attack [14, 15].
This attack can—in theory—be used for a key-recovery, but due to the high
complexity the choice of its parameters and the verification needs to be verified
by experiments: a full computation is not possible with the current technology.

The exemplary target of our implementation is the stream cipher Grain-128.
Figure 15 shows its construction: Basically, this cipher consists of two 128-bit
feedback shift registers—one linear (LFSR) and one nonlinear (NFSR)—with the
primitive polynomials of degree 128, defined as f (x) = 1+ x32 + x47 + x58 + x90 +
x121+x128 and g(x) = 1+x32+x37+x72+x102+x128+x44x60 +x61x125+x63x67 +
x69x101 + x80x88 + x110x111 + x115x117.

In addition, a nonlinear function h(x) depending on the state of both registers
generates the output bit sequence. The cipher uses a 96-bit initialization vector
(IV) and a 128-bit secret key to initialize the keystream. During initialization,
the output is fed back into the shift registers and clocked 256 times. As this
construction effectively uses only bit-level logic the cipher fits very well into
hardware (considering area and speed), but will be considerably slower when
implemented on a standard CPU (even though techniques like bit-slicing can be
used to increase the speed of the software implementation).

As we start out by evaluating an attack on the Grain-128 of theoretical nature, our
first goal is to find the best suitable parameters and to verify the overall effectiveness
based on these. One parameter with a high impact on the complexity is the cube

360 T. Güneysu et al.

Worker Worker

Worker Worker

FPGA
number

FPGA number

IV generator

Partial
cubesum
(FPGA)

worksum
control

Grain-128

Grain-128

Grain-128

Partial cube sum

d-11d-11

d-11d

7

Cube
Attack
System

Fig. 16 Overview of the cube attack system on the Xilinx Spartan-3 5000 FPGA including the
structure of the worker components

dimension d: We need to compute the first bit after the initialization of the Grain-
128 cipher 2d times for each key for which we evaluate the parameter set and the
success probability of the attack.

The previous attack (with more restrictions) used d = 46 and was evaluated
by a software cluster. To remove the restrictions and design the new attack, it
was necessary to raise the dimension to d = 50. As a consequence, the number
of Grain-128 initializations increased from 246 to 250, where each initialization
needs (depending on the implementation) at most 28 computations. To evaluate the
parameters and estimate the effectiveness of the attack, 27 to 210 random keys should
be tested. While this is not feasible with the software cluster anymore, we can try to
use the FPGA cluster RIVYERA to test and evaluate random keys.

Figure 16 shows the layout of the FPGA implementation. Each FPGA works
on a subset of the Cube and computes 2d−11 Grain initializations (we use 128
FPGAs and 16 Workers per FPGA). To relax the routing, every Worker keeps its
own IV generator close to the three Grain instances necessary to process the internal
pipeline. The result is first updated per Worker and summarized per FPGA to keep
the communication and post-processing on the host PC at a minimum.

Table 7 shows the results of our FPGA implementation. We implemented the
evaluation process of the online phase for the RIVYERA cluster using 128 FPGAs.
In order to evaluate multiple parameter sets and evolve the attack, we created a
flexible design and started with the small cube dimensions of 46 up to a dimension
of 50. While with the smallest dimension, computing all 246 initializations takes less
than 18 min, computing 250 initializations takes about 4 h on the full cluster.

The row Configurations Built already indicates that the problem is more complex
than a simple brute-force attack: as several parameters of the attack, i.e., the
polynomials are chosen specifically for each key and the dynamic cube attack
requires a lot of flexibility on the FPGA, implementing a generic design, e.g.,
for all possible polynomials over a 96-bit vector, would result in huge multiplexer
cascades, leading to an impossible scenario.

Cryptanalysis on COPACOBANA and RIVYERA 361

Table 7 Results of the bitstream generation process for cubes of dimension 46, 47, and 50

Cube dimension d 46 47 50

Clock frequency (MHz) 100 110 120 120 110 120
Configurations built 1 7 8 6 60 93
Percentage 6.25 43.75 50 100 39.2 60.8
Online phase duration 17.2 min 15.6 min 14.3 min 28.6 min 4 h 10 min 3 h 49 min

The duration is the time required for the RIVYERA cluster to complete the online phase,
computing 2d Grain initializations. The Percentage row gives the percentage of configurations built
with the given clock frequency out of the total number of configurations built with cubes of the
same dimension. This indicates the impact of the key-dependent parameters, i.e., the polynomials,
on the complete design

Read parameters

Choose random key and
generate VHDL constants

Generate FPGA bitstream

Queue bitstream
for RIVYERA

Wait for next bitstream

Program RIVYERA and
wait for results

Store results

T
ry different strategies

Fig. 17 Cube attack implementation on the RIVYERA FPGA cluster utilizing the cores of the
i7 host CPU to generate VHDL code and place and route key-dependent designs while the 128
FPGAs compute the result in parallel to estimate the effectiveness of the attack parameters and the
feasibility of the attack

To circumvent this problem, we created a hardware–software solution. Figure 17
shows how we can utilize this co-design using the integrated i7 CPU of the
RIVYERA and its FPGAs: the software handles the generation of key-specific
FPGA bitstreams, while the FPGAs work on the bruteforce-like attack on these
previously created configurations. At the start of each iteration, we begin with

362 T. Güneysu et al.

generic code. The software part chooses a random key for each CPU core to evaluate
the current parameters. Afterwards, it derives the key-dependent polynomials and
creates the dependent VHDL code. This allows us to reduce the complexity of the
hardware requirements to achieve a valid, usable configuration.

But the automatic generation of key-dependent FPGA configurations has its
price: it is not possible to fully optimize the hardware implementation, as the
parameters modified by the (randomly chosen) key have a major impact on the
design. This is the reason for the difference in the achieved clock frequencies in
Table 7. Whenever the verification of the design constraints fail, a different strategy
re-implements the design and continuously decreases the target frequency.

To conclude this section, with this setup it is possible to obtain an estimation of
the complexity and feasibility of the dynamic cube attack and tweak its attack pa-
rameters. Without the reconfigurable nature of FPGAs, a hardware implementation
seems impossible due to the flexible structure of the attack.

3 Summary

In this chapter, we introduced the hardware architectures of the special-purpose
computing clusters COPACOBANA and RIVYERA. We then detailed on a variety
of applications that have been realized on the devices.

In the field of cryptography, our implementations are able to break several
widespread cryptographic primitives and enable to extrapolate attacks on highly
secure ciphers with realistic security parameters in terms of financial cost and
attack time. Thus, our implementations are essential to (re)assess the security level
of different real-world applications of cryptography. We presented several brute-
force attacks targeting symmetric cryptography, including the widespread DES,
KeeLoq, Hitag2, and PRESENT ciphers, and illustrated how secret keys can be
extracted from electronic passports that employ the SHA-1 hash algorithm and the
Triple-DES cipher. Furthermore, TMTO techniques were introduced and practically
applied to attack DES and PRESENT. An efficient guess-and-determine attack
and a TMDTO attack on the A5/1 algorithm used for GSM voice encryption
illustrate, how the security of the popular cipher can be efficiently tackled with
different approaches. For cryptanalysing asymmetric cryptosystems, such as RSA,
we developed further efficient implementations. They are in particular relevant for
estimating the longevity of the used key lengths. In this context we presented an
implementation for the factorization of large integers based on the ECM. Finally,
an evaluation of a key-recovery attack using cube testers targeting the stream cipher
GRAIN-128 is illustrated.

In conclusion, the hardware architectures and implementations introduced in this
chapter cover a broad range of applications in cryptanalysis.It turned out that more
complex applications such as TMDTO and biological sequence alignment cannot be
run on the plain COPACOBANA system due to its limitations with respect to data
throughput and reconfiguration performance. Nevertheless, with the evolution to the

Cryptanalysis on COPACOBANA and RIVYERA 363

RIVYERA cluster, hardware–software co-designs can simplify the requirements of
very complex tasks such as the verification of a complex algebraic attack, when
using the full reconfigurable potential of the device. For other attacks (e.g., the
exhaustive key search on DES) the cost-performance ratio of the COPACOBANA
platform can be considered optimal. With the recent development of the RIVY-
ERA S6-LX150, providing at least 2.5× more resources than RIVYERA S3-5000
at a roughly twofold increase of frequency, existing implementations may be easily
ported with an expected speedup of roughly a factor 4 and 16, respectively. For the
same reasons, applications originally addressing COPACOBANA expect a speedup
of more than 12 to 16 on this latest machine.

References

1. R. Anderson, A5 (was: Hacking digital phones) (17 June 1994), http://yarchive.net/phone/
gsmcipher.html, Sci.crypt

2. J.P. Aumasson, I. Dinur, W. Meier, A. Shamir, Cube testers and key recovery attacks on
reduced-round md6 and trivium, in Fast Software Encryption, ed. by O. Dunkelman (2009),
pp. 1–22

3. S. Babbage, A space/time tradeoff in exhaustive search attacks on stream ciphers, in European
Convention on Security and Detection, vol. 408 (IEEE Conference Publication, Los Alamitos,
1995)

4. E. Barkan, E. Biham, A. Shamir, Rigorous bounds on cryptanalytic time/memory tradeoffs, in
Proceedings of CRYPTO’06. Lecture Notes in Computer Science, vol. 4117 (Springer, Berlin
Heidelberg, 2006), pp. 1–21

5. A. Biryukov, A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in
Proceedings of the 6th International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology (2000), pp. 1–13

6. A. Bogdanov, Attacks on the KeeLoq block cipher and authentication systems, in 3rd
Conference on RFID Security 2007 (RFIDSec 2007) (2007). http://rfidsec07.etsit.uma.es/
slides/papers/paper-22.pdf.

7. A. Bogdanov, G. Leander, L.R. Knudsen, C. Paar, A. Poschmann, M.J. Robshaw, Y. Seurin,
C. Vikkelsoe, PRESENT - An ultra-lightweight block cipher, in Proceedings of CHES
2007. Lecture Notes in Computer Science, vol. 4727 (Springer, Berlin Heidelberg, 2007),
pp. 450–466

8. T. Chothia, V. Smirnov, A traceability attack against e-passports, in Financial Cryptography
and Data Security. Lecture Notes in Computer Science, vol. 6052 (Springer, Berlin Heidelberg,
2010), pp. 20–34

9. N.T. Courtois, S. O’Neil, HITAG 2 Stream Cipher – C Implementation and Graphical
Description (2006–2007). http://cryptolib.com/ciphers/hitag2/

10. N.T. Courtois, K. Nohl, S. O’Neil, Algebraic Attacks on the Crypto-1 Stream Cipher in MiFare
Classic and Oyster Cards (2008). Cryptology ePrint Archive, Report 2008/166, http://eprint.
iacr.org/2008/166

11. N.T. Courtois, S. O’Neil, J.J. Quisquater, Practical algebraic attacks on the Hitag2 stream
cipher, in ISC ’09: Proceedings of the 12th International Conference on Information Security.
Lecture Notes in Computer Science, vol. 5735 (Springer, New York, 2009), pp. 167–176

12. D. Denning, Cryptography and Data Security (Addison-Wesley, Reading, 1982)
13. W. Diffie, M.E. Hellman, Exhaustive cryptanalysis of the NBS data encryption standard.

Computer 10(6), 74–84 (1977)

http://yarchive.net/phone/gsmcipher.html
http://yarchive.net/phone/gsmcipher.html
http://rfidsec07.etsit.uma.es/slides/papers/paper-22.pdf.
http://rfidsec07.etsit.uma.es/slides/papers/paper-22.pdf.
http://cryptolib.com/ciphers/hitag2/
http://eprint.iacr.org/2008/166
http://eprint.iacr.org/2008/166

364 T. Güneysu et al.

14. I. Dinur, A. Shamir, Breaking Grain-128 with dynamic cube attacks, in Fast Software
Encryption, ed. by A. Joux. Lecture Notes in Computer Science, vol. 6733 (Springer,
New York, 2011), pp. 167–187

15. I. Dinur, T. Güneysu, C. Paar, A. Shamir, R. Zimmermann, An experimentally verified attack
on full Grain-128 using dedicated reconfigurable hardware, in ASIACRYPT, ed. by D.H. Lee,
X. Wang. Lecture Notes in Computer Science, vol. 7073 (Springer, Berlin Heidelberg, 2011),
pp. 327–343

16. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, M.T.M. Shalmani, On the
power of power analysis in the real world: a complete break of the KeeLoq code hopping
scheme, in Advances in Cryptology - CRYPTO 2008 (2008), pp. 203–220

17. Electronic Frontier Foundation, Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design (O’Reilly & Associates Inc., Springer, Berlin Heidelberg, 1998)

18. H. Englund, T. Johansson, M.S. Turan, A framework for chosen iv statistical analysis of
stream ciphers, in INDOCRYPT, ed. by K. Srinathan, C.P. Rangan, M. Yung. Lecture Notes
in Computer Science, vol. 4859 (Springer, Berlin Heidelberg, 2007), pp. 268–281

19. E. Filiol, A new statistical testing for symmetric ciphers and hash functions, in ICICS, ed. by
R.H. Deng, S. Qing, F. Bao, J. Zhou. Lecture Notes in Computer Science, vol. 2513 (Springer,
Berlin Heidelberg, 2002), pp. 342–353

20. K. Finkenzeller, RFID-Handbook (Wiley, New York, 2003)
21. S. Fischer, S. Khazaei, W. Meier, Chosen iv statistical analysis for key recovery attacks on

stream ciphers, in AFRICACRYPT, ed. by S. Vaudenay. Lecture Notes in Computer Science,
vol. 5023 (Springer, Berlin Heidelberg, 2008), pp. 236–245

22. K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin, R. Bachimanchi,
Implementing the elliptic curve method of factoring in reconfigurable hardware, in Proceedings
of CHES’06. Lecture Notes in Computer Science, vol. 4249 (Springer, Berlin Heidelberg,
2006), pp. 119–133

23. T. Gendrullis, M. Novotný, A. Rupp, A real-world attack breaking A5/1 within hours, in
Proceedings of the 10th Workshop on Cryptographic Hardware and Embedded Systems (CHES
2008) (Springer, New York, 2008), pp. 266–282

24. J. Golic, Cryptanalysis of alleged A5 stream cipher. in Proceedings of Eurocrypt’97. Lecture
Notes in Computer Science, vol. 1233 (Springer, Berlin Heidelberg, 1997), pp. 239–255

25. T. Güneysu, T. Kasper, M. Novotný, C. Paar, A. Rupp, Cryptanalysis with COPACOBANA.
IEEE Trans. Comput. 57(11), 1498–1513 (2008)

26. M. Hell, T. Johansson, A. Maximov, W. Meier, A stream cipher proposal: Grain-128, in 2006
IEEE International Symposium on Information Theory (IEEE, New York, 2006), pp. 1614–
1618. doi:10.1109/ISIT.2006.261549

27. M.E. Hellman, A cryptanalytic time-memory trade-off, in IEEE Transactions on Information
Theory, vol. 26 (IEEE, New York, 1980), pp. 401–406

28. J.H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, R.W. Schreur, Crossing borders: security
and privacy issues of the European e-passport, in Proceedings of IWSEC’06. Lecture Notes in
Computer Science, vol. 4266 (Springer, Berlin Heidelberg, 2006), pp. 152–167

29. ICAO: Machine Readable Travel Documents, PKI for Machine Readable Travel Documents
offering ICC Read-Only Access, Technical Report (2004). http://www.mrtd.icao.int

30. Inc., C.: Cray XD1 Supercomputer (2008), Available at http://www.cray.com/downloads/
FPGADatasheet.pdf. Accessed April 2012

31. S.G. Incorporated, SGI RASC Technology (2008). http://www.sgi.com/products/rasc/.
Accessed April 2012

32. S. Indesteege, N. Keller, O. Dunkelman, E. Biham, B. Preneel, A practical attack on KeeLoq,
in Proceedings of the Theory and Applications of Cryptographic Techniques 27th Annual
International Conference on Advances in Cryptology, EUROCRYPT’08 (Springer, Berlin
Heidelberg, 2008), pp. 1–18. http://portal.acm.org/citation.cfm?id=1788414.1788415

33. ISO/IEC 14443: Identification Cards - Contactless Integrated Circuit(s) Cards - Proximity
Cards - Part 1–4 (2001), www.iso.ch

http://www.mrtd.icao.int
http://www.cray.com/downloads/FPGADatasheet.pdf
http://www.cray.com/downloads/FPGADatasheet.pdf
http://www.sgi.com/products/rasc/
http://portal.acm.org/citation.cfm?id=1788414.1788415
www.iso.ch

Cryptanalysis on COPACOBANA and RIVYERA 365

34. A. Juels, D. Molnar, D. Wagner, Security and privacy issues in E-passports, in Proceedings of
SecureComm’05 (IEEE Computer Society, Los Alamitos, 2005), pp. 74–88

35. G. Kc, P. Karger, Security and Privacy Issues in Machine Readable Travel Documents
(MRTDs). (IBM T.J. Watson Research Labs, 2005)

36. J. Keller, B. Seitz, A Hardware-Based Attack on the A5/1 Stream Cipher (2001), URL http://
pv.fernuni-hagen.de/docs/apc2001-final.pdf. Accessed April 2012

37. S. Khazaei, W. Meier, New directions in cryptanalysis of self-synchronizing stream ciphers, in
INDOCRYPT, ed. by D.R. Chowdhury, V. Rijmen, A. Das. Lecture Notes in Computer Science,
vol. 5365 (Springer, Berlin Heidelberg, 2008), pp. 15–26

38. G. de Koning Gans, J.H. Hoepman, F. Garcia, A practical attack on the MIFARE classic, in
Smart Card Research and Advanced Applications, ed. by G. Grimaud, F.X. Standaert. Lecture
Notes in Computer Science, vol. 5189 (Radboud University Nijmegen Institute for Computing
and Information Sciences/Springer, The Netherlands/Berlin Heidelberg, 2008), pp. 267–282

39. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, M. Schimmler, Breaking ciphers with COPACOBANA
- A cost-optimized parallel code breaker, in Proceedings of the Workshop on Cryptograpic
Hardware and Embedded Systems (CHES 2006), ed. by L. Goubin, M. Matsui. Lecture Notes
in Computer Science, vol. 4249 (Springer, Berlin Heidelberg, 2006), pp. 101–118

40. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, M. Schimmler, How to break DES for e8,980,
in SHARCS2006 (Cologne, Germany, 2006)

41. X. Lai, Higher order derivatives and differential cryptanalysis, in Symposium on Communi-
cation, Coding and Cryptography, in honor of James L. Massey on the occasion of his 60th
birthday (1994), pp. 227–233

42. H. Lenstra, Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)
43. Y. Liu, T. Kasper, K. Lemke-Rust, C. Paar, E-passport: cracking basic access control keys, in

On the Move (OTM) 2007. Lecture Notes in Computer Science, vol. 4804 (Springer, Berlin
Heidelberg, 2007), pp. 1531–1547

44. G. de Meulenaer, F. Gosset, M.M. de Dormale, J.J. Quisqater, Integer factorization based on
elliptic curve method: towards better exploitation of reconfigurable hardware, in Proceedings
of FCCM’07 (IEEE Computer Society, Los Alamitos, 2007), pp. 197–206

45. J. Monnerat, S. Vaudenay, M. Vuagnoux, About Machine-Readable Travel Documents, in
Proceedings of RFIDSec’07 (2007), pp. 15–28

46. National Institute of Standards and Technology: FIPS 180-3 Secure Hash Standard (Draft),
http://www.csrc.nist.gov/publications/PubsFIPS.html. Accessed April 2012

47. NIST FIPS PUB 46-3, Data encryption standard, in Federal Information Processing Standards
(National Bureau of Standards, 1977)

48. M. Novotný, Time-Area Efficient HW Architectures for Cryptography and Cryptanalysis, 1st
edn. (Europäischer Universitätsverlag, Bochum, 2010)

49. M. Novotný, T. Kasper, Cryptanalysis of KeeLoq with COPACOBANA, in Workshop on
Special Purpose Hardware for Attacking Cryptographic Systems (SHARCS 2009) (2009),
pp. 159–164

50. P. Oechslin, Making a faster cryptanalytic time-memory trade-off, in Proceedings of
CRYPTO’03. Lecture Notes in Computer Science, vol. 2729 (Springer, New York, 2003),
pp. 617–630

51. G. Pfeiffer, S. Baumgart, J. Schrder, M. Schimmler, A massively parallel architecture for
bioinformatics, in ICCS2009. Lecture Notes in Computer Science, vol. 5544 (Springer, Berlin
Heidelberg, 2009), pp. 994–1003

52. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems. Comm. ACM 21(2), 120–126 (1978)

53. H. Robroch, ePassport Privacy Attack, Presentation at Cards Asia Singapore, http://www.
riscure.com. Accessed 26 April 2006

54. M. Schimmler, L. Wienbrandt, T. Gneysu, J. Bissel, COPACOBANA: a massively parallel
FPGA-based computer architecture, in Bioinformatics – High Performance Parallel Computer
Architectures, ed. by B. Schmidt (CRC Press, Boca Raton, 2010), pp. 223–262

55. SciEngines GmbH, http://www.sciengines.com. Accessed April 2012

http://pv.fernuni-hagen.de/docs/apc2001-final.pdf
http://pv.fernuni-hagen.de/docs/apc2001-final.pdf
http://www.csrc.nist.gov/publications/PubsFIPS.html
http://www.riscure.com
http://www.riscure.com
http://www.sciengines.com

366 T. Güneysu et al.

56. M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Drutarovský, V. Fischer,
C. Paar, Hardware factorization based on elliptic curve method, in Proceedings of FCCM’05
(IEEE Computer Society, Los Alamitos, 2005), pp. 107–116

57. F. Standaert, G. Rouvroy, J. Quisquater, J. Legat, A time-memory tradeoff using distinguished
points: new analysis & FPGA results, in Proceedings of CHES’02. Lecture Notes in Computer
Science, vol. 2523 (Springer, Berlin Heidelberg, 2002), pp. 596–611

58. C. Starke, V. Grossmann, L. Wienbrandt, M. Schimmler, An FPGA implementation of an
investment strategy processor, in ICCS2012. Procedia Computer Science, Elsevier, vol. 9
(2012), pp. 1880–1889

59. C. Starke, V. Grossmann, L. Wienbrandt, S. Koschnicke, J. Carstens, M. Schimmler, Opti-
mizing investment strategies with the reconfigurable hardware platform RIVYERA. Int. J.
Reconfigurable Comput. 2012, 10 (2012). doi:10.1155/2012/646984

60. P. Štembera, M. Novotný, Breaking Hitag2 with reconfigurable hardware, in Proceedings of
the 14th Euromicro Conference on Digital System Design (IEEE Computer Society Press, Los
Alamitos, 2011), pp. 558–563

61. L. Wienbrandt, S. Baumgart, J. Bissel, C.M.Y. Yeo, M. Schimmler, Using the reconfigurable
massively parallel architecture COPACOBANA 5000 for applications in bioinformatics, in
ICCS2010. Procedia Computer Science, Elsevier, vol. 1 (2010), pp. 1027–1034

62. L. Wienbrandt, S. Baumgart, J. Bissel, F. Schatz, M. Schimmler, Massively parallel FPGA-
based implementation of BLASTp with the two-hit method, in ICCS2011. Procedia Computer
Science, Elsevier, vol. 1 (2011), pp. 1967–1976

63. L. Wienbrandt, D. Siebert, M. Schimmler, Improvement of BLASTp on the FPGA-based high-
performance computer RIVYERA, in ISBRA2012. Lecture Notes in Bioinformatics, vol. 7292,
(Springer, Berlin Heidelberg, 2012), pp. 275–286

64. I. Wiener, Crypto1 specification, reference implementation and test vectors (2007–2008),
http://cryptolib.com/ciphers/crypto1/. Accessed April 2012

http://cryptolib.com/ciphers/crypto1/

FPGA-Based HPRC Systems for Scientific
Applications

Tsuyoshi Hamada and Yuichiro Shibata

Abstract Modern FPGAs are promising candidates for energy-efficient and
high-performance computing platforms also in the field of floating point scientific
applications. In this chapter, we show two case studies of applying FPGA-
based systems for this application domain. First, implementation of ocean model
simulation is discussed, especially focusing on how use of a high-level design
tool and data transfer optimization techniques affect the execution performance.
Then, FPGA implementation of astrophysical N-body simulation is presented and
compared to ASIC, GPUs and general purpose processors (GPPs) using a variety of
criteria. In this comparative study, the advantages of FPGAs in terms of performance
per Watt are emphasized.

1 Introduction

The flexibility of FPGAs with which custom arithmetic datapaths can be built and
tailored to the needs of each application has been recognized to offer promising
prospects also in scientific applications [1]. While there are endless varieties of
scientific applications, in this chapter, we focus on floating point performance
of reconfigurable computing systems which is also emphasized in the field of
supercomputing [2].

In an early stage of reconfigurable computing machines, executing a floating
point arithmetic operation on FPGAs itself was somewhat challenging [3, 4]. Most
successful experiences of the first generation of FPGA-based custom computing
machines were made in application domains of integer or bit-level arithmetic,

T. Hamada (�) • Y. Shibata
Nagasaki University, Japan
e-mail: hamada@nacc.nagasaki-u.ac.jp; shibata@cis.nagasaki-u.ac.jp

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 12, © Springer Science+Business Media, LLC 2013

367

mailto:hamada@nacc.nagasaki-u.ac.jp
mailto:shibata@cis.nagasaki-u.ac.jp

368 T. Hamada and Y. Shibata

such as pattern matching [5]. However, rapid and continuous progress of FPGA
technologies has removed this restriction mainly in two ways. First, the advance in
transistor integration density simply made FPGAs larger and faster. Second, modern
FPGA architectures started providing hardware macros which can be utilized as
efficient building blocks for floating point arithmetic logic. As of 2012, high-end
FPGAs are able to execute fully pipelined IEEE 754 double precision floating point
arithmetic operators with a frequency of around 400 MHz [6].

As a naive comparison in terms of the frequency shows, performance of a
floating point arithmetic unit configured on an FPGA is rather suppressed compared
to those of general purpose processors (GPPs) or GPUs. At the same time,
however, FPGAs offer unique architectural features that can lead to efficient high-
performance reconfigurable computing (HPRC) systems. Especially, the following
two advantageous features of FPGAs are important.

First, very deeply pipelined custom datapaths with multiple arithmetic units are
able to be configured with FPGAs for each individual application program. Such
datapaths are infeasible on any other platforms where general versatility needs to
be provided. By making the best use of the application-specific deeply pipelined
datapaths, HPRC systems enable high throughput execution of applications with
a relatively low clock frequency, achieving a good performance per Watt value
especially when rich thread level parallelism is found.

The second advantage of FPGAs is customizability in an arithmetic unit level.
Rather than standard single or double precision floating point arithmetic, any degree
of precision is available by designing custom arithmetic units with arbitrary bits
of significant and exponent. When a dynamic range or accuracy required for a
given arithmetic operation is known to be limited than the standard ones, it can be
optimized to be smaller and faster. Even when an application needs a higher degree
of precision than the standard arithmetic, FPGA-based custom arithmetic units
are often more efficient than other computing platforms where multiple standard
arithmetic must be sequentially combined.

Therefore, in order to bring out the full potential of the aforementioned ad-
vantages of FPGAs and to achieve energy-efficient high-performance computing,
application developers need to make a number of right implementation decisions
at many levels from arithmetic to algorithms. While a variety of software envi-
ronments for HPRC systems have been implemented to improve the productivity
of application development [7, 8], performance of HPRC systems still seems to
strongly depend on programming skills with intimate understanding of architectural
issues [9].

In this chapter, we demonstrate two case studies of the two use of HPRC systems
in the floating point scientific computing application domain. In the first example,
we discuss how the execution performance is affected by implementation and
optimization techniques with a high-level design tool, especially focusing on DMA
transfer in ocean model simulation. Next, we present detailed comparative study in
N-body simulation among FPGAs, ASIC, GPUs and GPPs, revealing that FPGAs
are competitive in terms of performance per Watt figures.

FPGA-Based HPRC Systems for Scientific Applications 369

2 Ocean Model Simulation: Optimization of DMA Transfer

Coming into the 2000s, many commercial high-end reconfigurable systems
equipped with a GPP as well as FPGAs became available. As a case study, this
section presents the implementation of ocean model simulation kernels with a
high-level software design environment on an SRC-6 reconfigurable computer [10],
especially focusing on an optimization method of DMA transfer which often
becomes a performance bottleneck.

2.1 Computing Framework

Figure 1 shows the structure of our target framework, the SRC-6 computer. It
consists of Xeon 2.8 GHz microprocessors and reconfigurable processors called
MAP, which are connected each other with a crossbar switching fabric called
Hi-Bar Switch. The MAP is composed of three Xilinx Virtex II XC2V6000
FPGAs; programmers can use two of them (FPGA1 and FPGA2) to configure their
application circuits while the other one is dedicated to a system controller. The MAP
also has six banks of 4-MB On-Board Memory (OBM), where data processed by the

Fig. 1 Structure of the SRC-6 and its reconfigurable processor (MAP). The MAP consists of three
FPGAs, but one of them is dedicated for a system controller. A total of six banks of on-board
memory (OBM) are shared by the controller and the two user FPGAs. In this case study, a system
consisting of a single host processor and single MAP module was utilized

370 T. Hamada and Y. Shibata

Fig. 2 Single streaming DMA. The two sections work in parallel in individual control on the
FPGA. Thus, DMA transfer in Sect. 1 and data access in Sect. 2 can be efficiently overlapped

FPGAs are stored. The FPGAs can access multiple OBM banks at the same time,
since they are connected via individual interactive ports. This means proper data
allocation is important to prevent access conflicts on the OBM banks. Arbitration of
access to the OBM can be explicitly controlled by programmers. The OBM banks
are also shared by a DMA controller and are used to exchange data among the
FPGAs and the host memory. The two FPGAs also have another interconnection
which can be used for direct exchange of data.

The SRC-6 has a unique compiler which generates a relocatable object file from
C and FORTRAN source files. The compiler translates the loops specified by users
into hardware circuits to be configured on FPGAs. The compiler automatically
analyzes structure of the loops and generates hardware that processes the repetition
in a pipelined manner.

DMA transfer between FPGAs and the host memory is a key to efficient
execution of applications on this type of architecture. SRC-6 supports two styles
of DMA transfer: regular DMA and streaming DMA. In the regular DMA, the
FPGAs have to wait for the completion of the transfer before starting the operation.
With the streaming DMA, on the other hand, the transfer and the operation can be
parallelized. In addition, SRC-6 provides two modes of the streaming DMA; single
streaming DMA and dual streaming DMA.

Figure 2 shows the concept of the inbound single streaming DMA. In the
programming environment for SRC-6, a pair of system functions are available for
streaming DMA; stream dma cpu and get stream. These functions create
separated sections, which are operated in parallel with independent control on the
FPGA. In the first section, a series of data are continuously transferred from the
host memory to a specified OBM bank. In the second section, the transferred data
is individually fetched and processed typically in a loop. That is, the OBM bank is
used as a buffer that absorbs a speed gap between the DMA transfer and the FPGA
operation.

In the dual streaming DMA transfer, two banks of the OBM are used as different
buffers as shown in Fig. 3. A contiguous series of data on the host memory are
alternately transferred to the specified two OBM banks, so that the FPGA can fetch

FPGA-Based HPRC Systems for Scientific Applications 371

Fig. 3 Dual streaming DMA. Two banks of OBM are used for buffering transferred data, doubling
the access bandwidth in Sect. 2

two elements of the transferred data at the same time. This automatically interleaved
transfer facility effectively enables the FPGA to extract more data parallelism in
applications.

2.2 DMA Optimization Strategies

Figure 4 conceptually shows how execution time of a kernel function implemented
on an FPGA is changed by DMA transfer methods. The X axis of the figure indicates
the elapsed time. Here, we assume the function needs N inbound data strings and
one outbound data string to be transferred. For the sake of simplicity, we will only
focus on a DMA method for the inbound data transfer in the following discussion.

The most basic and simplest strategy is to utilize only the regular DMA as
shown in Fig. 4a. The execution of the operation on the FPGA starts after N strings
of inbound data are transferred. Then, the outbound data are transferred after the
execution is completed. By using the single streaming DMA for the last inbound
data string, the total time can be reduced as shown in Fig. 4b. Since the time required
to transfer the last data string is overlapped with the FPGA execution, the FPGA
can start execution after (N − 1) data strings are transferred. In a precise sense, the
streaming DMA and FPGA execution are not able to start at the same time. This is
because the FPGA needs at least the first element of the last string to kick off the
operation, but this time difference is almost negligible [11]. Note that the SRC-6
DMA controller does not allow to initiate multiple DMA transfers at the same time,
since only one channel is provided between the host processor and the FPGA. That
is, a streaming DMA transfer cannot be overlapped with any other DMA transfers.

Use of the dual streaming DMA further improves the FPGA execution time as
shown in Fig. 4c. Since the DMA controller interleaves the last data string between
two OBM banks, the FPGA can boost the operation by simultaneously fetching two
data elements. The time the FPGA must wait before launching the operation remains
to be the transfer time for (N−1) data strings. This method is obviously effective in
terms of the performance, but the circuit size on the FPGA is needed to be increased
so as to extract data parallelism. As a result, this method is often difficult to adopt
especially for functions that require a relatively large amount of hardware.

372 T. Hamada and Y. Shibata

a

b

c

d

Fig. 4 DMA optimization strategies for N input data strings and single output data string. (a) No
optimization is made. (b) The single streaming DMA is applied, but multiple DMA transfers can
not be overlapped due to channel limitations. (c) The dual streaming DMA can increase the degree
of parallelism of the FPGA execution, but often this is difficult due to limited FPGA resources. (d)
The twisted streaming DMA transfers two individual data strings in the dual streaming manner.
The host processor needs to reorder the data strings in advance

FPGA-Based HPRC Systems for Scientific Applications 373

Fig. 5 Computational flow of the barotropic operator function used in the parallel ocean program
(POP), which is a kind of a nine-point stencil operation

Our proposed method shown in Fig. 4d is able to reduce the DMA transfer time
even under a sever FPGA resource constraint [12]. The basic idea is to transfer
two individual data string to two OBM banks, respectively, using dual streaming
DMA instead of interleaving a single data string into the two banks. Thus, the circuit
required for the FPGA operation is almost the same as that for Fig. 4b. Moreover, the
FPGA can start the operation after (N −2) data strings are transferred, since the last
two inbound strings are transferred overlapped with the FPGA operation. However,
unlike ordinary dual streaming DMA, the two data strings must be interleaved on
the main memory before the transfer. Therefore, the host processor has to reorder
the two strings in advance and this could be a considerable overhead especially
when the string size is large. We call this method twisted streaming DMA in the
followings.

Here, we explain the methods, taking the barotropic operator function in an ocean
circulation model called the parallel ocean program (POP) as an example [12]. The
arithmetic flow of the function is shown in Fig. 5. This function requires a total
of five inbound arrays (A0, AN, AE , ANE , and X) and one outbound array (AX).
Our previous work has revealed that the function requires more than 60% of the
FPGA slices and thus use of simple interleaved streaming DMA is infeasible due
to the resource constraint. One optimization strategy for inbound DMA transfer
is to use the single streaming DMA for the array A0. Since the array A0 is not
reused, any registers to store the streamed values are not required. As mentioned
above, streaming DMA cannot transfer multiple data strings concurrently, the other
arrays have to be transferred by the regular DMA. The other strategy is to use the
twisted streaming DMA for the arrays A0 and AE . Before transferring them, the
host processor needs to reorder the two arrays alternatively on the main memory to
form a double sized single array. Then the double sized array is transferred with the
dual streaming DMA, pulling the arrays A0 and AE apart again on individual two
OBM banks. Since use of streaming DMA hardly affect the FPGA operation time,

374 T. Hamada and Y. Shibata

an essential trade-off will arise between the following two strategies; (1) use of the
regular DMA and the single streaming DMA and (2) use of the twisted streaming
DMA with reordering process on the host processor.

2.3 Evaluation

First, we analyzed the trade-off point where the proposed DMA optimization
method becomes useful. Then, the effects of the method were empirically evaluated
through implementation of two kernel functions used in the POP.

2.3.1 Trade-Off Analysis

As previously indicated, our preliminary evaluation results had revealed that the
streaming DMA effectively made the data transfer overlapped with the FPGA
operations in practical applications. Hence, we compared the regular DMA transfer
time for one data string with the reordering time of two data strings, changing the
data string size in order to analyze the trade-off point of the twisted streaming DMA
method.

Figure 6 plots the execution time of the regular DMA and the reordering process
on SRC-6. The time required for the regular DMA was almost proportional to the
amount of data transferred. On the other hand, rapid increase in the reordering time
appeared when the string size exceeded around 60 KB. As a result, the streaming
DMA with reordering was shown to be superior to the regular DMA when the string
size was smaller than 150 KB. In many scientific applications including POP, users
can choose desired computation granularity of function calls, that is, how much
data is processed by a single call of the kernel function. Choosing the string size
of 150 KB or smaller is expected to bring about a positive effect with the twisted
streaming DMA on SRC-6.

2.3.2 Performance Impact on Kernel Functions

Next, the proposed DMA transfer optimization technique was applied for two kernel
functions in the POP; the grad function which calculates the gradient of an energy
field at each simulation time step, and the barotropic operator function which
calculates a coefficient matrix for a barotropic equation. The kernel functions were
described in Fortran and compiled into FPGA configurations with the SRC compiler.
We also implemented a code translator which finds optimized data allocation for
the OBM banks using an integer programming approach, extending the method
proposed in [13]. This translator automatically generates additional code required
for the optimized DMA transfer, alleviating the productivity costs of applying the
optimization technique.

FPGA-Based HPRC Systems for Scientific Applications 375

Fig. 6 Measured times for DMA transfer and reordering. The reordering process was compiled
with Intel Fortran Compiler 8.1 and executed on the 2.8 GHz Xeon processor, which is the host
processor in the SRC-6 system

Figures 7 and 8 summarize the results of performance evaluation of the generated
code for the grad function and the barotropic operator function, respectively. In order
to highlight how the optimization technique improved the execution performance,
the evaluation results when the DMA optimization was partially or completely
disabled are also shown. For the grad function, full use of the twisted DMA
streaming achieved 1.46 times speedup compared to the software execution on
the Xeon processor. The data reordering process on the host processor accounted
only for approximately 2% in the total execution time. The barotropic operator
function required more FPGA resources and was implemented using the two FPGAs
provided in the MAP module. Again, the proposed optimization technique showed
good results; 1.37 times speedup compared to the software execution. For this
function, the optimized code was 16% faster even than the implementation in which
the twisted streaming DMA was applied only for the inbound transfers, suggesting
the importance of this kind of optimization process on HPRC systems.

Our first case study described in this section highlighted the current situation
of a high-level design environment for commercial HPRC systems as well as the
challenges. The SRC compiler we used can take FORTRAN source files in their

376 T. Hamada and Y. Shibata

Fig. 7 Performance comparison of the grad function. “Xeon,” “Normal,” “Single,” and “Op-
timized” corresponds to software execution on the host processor, execution without DMA
optimization, execution with the single streaming DMA, and execution fully optimized with the
twisted streaming DMA, respectively

almost original form and generate pipelined hardware to be mapped on FPGAs. This
effectively improves productivity of applications for HPRC systems compared to
conventional register transfer level (RTL) design methodology. However, the naive
implementation with original source code for software is not enough to harness the
full potential of HPRC systems especially in terms of DMA transfer and memory
bank usage. The experiments with our code translator suggest the possibility that
the unproductive optimization process can be automated to some extent and offers
one future direction of high-level design environments for HPRC systems.

3 N-Body Simulation: A Comparative Study

Our next case study is gravitational force calculation for N-body simulations in the
context of Astrophysics. First, we describe how the algorithm can be efficiently
implemented on GPPs, GPUs and FPGAs, and then these implementations are
compared in terms of a number of criteria including speed performance, power
efficiency, and cost of development.

FPGA-Based HPRC Systems for Scientific Applications 377

Fig. 8 Performance comparison of the barotropic operator function. While only inbound transfers
were optimized in “Single” and “Twisted,” both inbound and outbound transfers were fully
optimized with the twisted streaming DMA in “Optimized”

3.1 HPRC Solutions to Astrophysical N-Body Simulation

N-body simulation technique is one of the most powerful tools to address a wide
range of scientific and engineering applications including the problem of inves-
tigating the formation and evolution of astronomical systems [14, 15], molecular
dynamics simulations [16–19], fluid mechanics[20–24], acoustics and electro-
magnetic simulations [25]. The main part of N-body simulations consists of the
calculation of interaction forces between all bodies or particles in a given system. In
the case of astrophysical simulations, planets are modeled as particles for instance.
Interactions between the particles are numerically evaluated and then the particles
are advanced according to Newton’s equation of motion. Since the gravity is a
long-range interaction, the computational complexity of this calculation for each
time step is O(N2), where N is the number of particles in the system. Although
some approximation algorithms such as the Barnes–Hut tree-code [26] have been
proposed to reduce this complexity to O(N logN) at the cost of a large scaling
coefficient, the size of the N-body simulation (i.e. N) has been always limited by the
available computational resources. Thus, ever more high performance and efficient
computing platforms for N-body simulations are desired to meet the increasing need
for larger system simulations [19, 27–35].

378 T. Hamada and Y. Shibata

A wide spectrum of approaches to offering computational platforms to N-body
simulations have been examined so far, varying from dedicated ASIC-based plat-
forms [14,15] to off-the-shelf programmable platforms [31]. In the Grape (“GRAv-
ity piPE”) project [14, 15] for instance, ASIC-based supercomputing solutions for
gravitational force calculations were implemented, where calculations of pairwise
gravitational force interactions were executed on a dedicated ASIC chip in a fully
pipelined manner. The total number of floating point operations for each pairwise
gravitational force interaction is 20, which are pipelined in hardware. Moreover,
the system exploited instruction-level parallelism as well as data-level parallelism,
considering that each particle interacts with all other particles. In addition, data
cashing techniques were utilized to reduce the required memory bandwidth.

ASIC solutions, however, face two major limitations: lack of flexibility which
does not allow us to execute new algorithms and the rapidly increasing costs of
building new ASIC chips with state-of-the-art fabrication technologies, especially
for relatively moderate volumes. Less expensive and programmable solutions such
as off-the-shelf GPPs are attractive. However, their higher power and area consump-
tion as well as lower performance, compared to dedicated hardware solutions, are
possible disadvantages.

In order to address some of the aforementioned disadvantages of both ASICs and
GPPs, novel computing solutions based on new emerging technologies have been
proposed for N-body simulations [30, 32, 36]. Among these, we focus on FPGA-
based HPRC solutions [31, 37, 38] and Graphics Processing Unit (GPU)-based
platforms [39–41]. In the following, we present comparative implementation of
gravitational force calculations on FPGAs, GPUs, ASICs, and GPPs, and compare
the implementation results, revealing the advantages and disadvantages of these
computing platforms in the context of N-body simulations.

3.2 Design Overview

As mentioned above, the basic operation in N-body simulations is calculation of
the interaction forces between pairs of particles in a given system. The position,
velocity, and acceleration of each particle in the next time-step are dictated by the
accumulation of the forces acting on the particle by all other particles in the system.
In a general way, the accumulated force in N-body simulations is described as:

f i = ∑
j

G(ri,r j), (1)

where G is a user-defined function. In the case of gravitational forces, this function
is given by:

Gi =
m jri j

(r2
i j + ε2)3/2

, (2)

FPGA-Based HPRC Systems for Scientific Applications 379

Fig. 9 Basic structure of a hardware-accelerated N-body simulation system

Fig. 10 Basic structure of the hardware accelerator

where ri and mi are the position and mass of particle i. ri j = r j − ri, and ε is a
softening parameter. Thus, the accumulated gravitational force is expressed as:

f i = mi ∑
j

m jri j

(r2
i j + ε2)3/2

. (3)

Another benefit of HPRC solutions is that we can utilize any function G
through FPGA reconfiguration unlike the ASIC approaches, hence resulting in a
more generic implementation. FPGAs also allow us to use and experiment various
arithmetic types and precision levels on the same hardware platform.

As illustrated in Fig. 9, a basic structure of a hardware accelerated N-body
simulation system consists of a host computer and an acceleration coprocessor
for force calculation. While the interaction pipelines are implemented on the
coprocessor which could consist of a number of FPGA chips, all other calculations
such as updates of particle position and velocity are performed on the host computer.
Communication between the acceleration coprocessor and the host computer is
managed by an interface unit. A particle memory, which is locally accessed by the
coprocessor, is also provided to cache information of all the particles involved in a
particular round of interaction force calculation with respect to a particular particle
i. The information stored in the particle memory includes particle position, velocity,
and mass in the case of gravitational force calculation. A block architecture of a
hardware accelerator instance, e.g., implemented on a single FPGA chip is shown
in Fig. 10.

380 T. Hamada and Y. Shibata

Fig. 11 Block diagram of the pipeline for gravitational force

Table 1 Evaluated accuracy models

Model Position Internal (exponent, mantissa) Accumulation

G3 20 bit fixed 14(7,5) bit log 56 bit fixed
G5 32 bit fixed 17(7,8) bit log 64 bit fixed
G5+ 32 bit fixed 20(7,11) bit log 64 bit fixed

G3 and G5 refer to the accuracy used in the ASIC-based GRAPE-3 and GRAPE-5
systems, respectively, while G5+ refers to a more accurate version of G5

Figure 11 depicts an architecture of a fully pipelined hardware for gravitational
force calculation [28, 31, 42]. In this design, various data formats are utilized to re-
duce the required hardware resource while maintaining the accuracy of calculation;
the position data for both particle i and particle j are handled in fixed-point format,
while m j is dealt in logarithmic format. The position vectors ri and r j are expressed
in their three Cartesian components xi, yi, zi, respectively. After subtraction, x j − xi,
the results are converted to logarithmic format, and all subsequent calculations are
also performed in logarithmic format.

3.3 FPGA Implementation Results

The fully pipelined hardware for the force calculation depicted in Fig. 11 has
been implemented on three different FPGA platforms: the Virtex2Pro-based for
Bioler-3 system [33–35, 43], the Virtex-Pro-based Cray XD1 system[43, 44], and
the Spartan3-based PROGRAPE-3 system. The hardware architectures of the three
platforms are illustrated in Figs. 12, 13, and 14, respectively. For comparison, we
also implemented the force calculation pipeline with three different accuracy levels
as shown in Table 1.

Table 2 summarizes the implementation results of these pipeline variations with
different numbers of pipeline stages on two FPGA chips: Virtex2Pro-5 (XC2VP70-
5) and Spartan3-5 (XC3S5000-5). As shown in the results, increase in the number

FPGA-Based HPRC Systems for Scientific Applications 381

Fig. 12 Bioler-3 hardware architecture

Fig. 13 Cray XD1 hardware architecture

382 T. Hamada and Y. Shibata

Fig. 14 PROGRAPE-4 hardware architecture

Table 2 Performance of the generated pipeline (model G5)

Virtex2Pro (-5) Spartan3 (-5)

Size Size

Stage LUTs FFs fmax (MHz) Stage LUTs FFs fmax(MHz)

10 3,338 940 47.1 10 3,366 940 33.1
12 3,402 1,089 57.1 12 3,411 1,089 51.6
13 3,276 1,225 78.4 13 3,302 1,243 67.4
15 3,297 1,360 78.8 14 2,889 1,207 60.0
16 2,878 1,324 81.3 16 2,886 1,321 80.2
17 2,883 1,351 89.7 18 2,888 1,428 79.4
18 2,889 1,477 85.0 19 2,889 1,554 77.5
19 2,871 1,564 88.8 20 2,889 1,572 70.7
21 2,860 1,659 108.4 21 2,861 1,659 73.3
22 2,754 1,747 107.0 22 2,754 1,747 90.8
23 2,860 1,826 110.3 24 3,021 1,875 86.6
24 3,015 1,875 110.7 25 3,033 1,950 92.0

Table 3 Performance of generated pipelines (Virtex2Pro)

fmax Size Memory Multiplier
Model (MHz) (LUT) (bit) (18×18 MULT) Stage

G5 150.5 2,690 108k 3 42
G3 154.6 2,020 108k 0 37
G5+ 150.5 3,097 432k 3 42

of pipeline stages in FPGAs comes at little logic (LUT) overheads but the expense
of increased usage of flip-flops. However, this does not impose any extra slice costs
if the slice LUTs are used for combinational circuits, since FPGAs are rich in flip-
flops. This is a stark contrast to ASICs where flip-flops are very costly (Table 3).
For comparison, Fig. 3 shows the performance for the pipeline with three different
accuracy levels.

FPGA-Based HPRC Systems for Scientific Applications 383

3.4 Discussion on Comparison Results

We compare our FPGA implementations of the gravitational force pipeline in
the G5 accuracy with alternative technologies: ASIC, GPU, and GPP platforms.
Table 4 summarizes the comparison results in terms of speed performance, power
consumption, performance in Gflops per chip, performance in Gflops per Watt. In
addition, other information such as chip technology and year of development is also
presented.

Here, an O(N2) of leap-flog scheme is used for time integration, since the ratio
of computation time for the access to the host or off chip becomes less than 1%
with this scheme. With other schemes such as the hierarchical tree algorithm or
individual time-step scheme, the results of the performance measurement could
strongly depend on the performance of host computer and communication speed or
memory bandwidth, and thus the performance analysis would become more difficult
to discuss.

The power consumption listed in Table 4 is a difference between measured power
values in idle and computing conditions. After measuring the power of a system
in the idle condition, we measure the power again in computing. Then, the power
consumption is obtained by subtracting these values.

Comparing the different computing platforms based on various CMOS tech-
nologies ranging from 500 to 45 nm in a completely fair manner is quite difficult.
However, considering the spiraling cost of state-of-the-art ASIC fabrication, it
seems to be difficult to justify the ASIC solutions for these types of applications
as previously described. Among the programmable and reconfigurable solutions,
we first note that the GPU implementations achieve the highest performance in
terms of Gflops; the G92 GPU is 11 times faster than the Spartan3-based FPGA
implementation. In addition, the Q6600 Core2Quad implementation called the
Phantom-GRAPE,1 which is highly optimized with SSE instructions, is slightly
faster than the Spartan3 implementation. Taking into account the difference in
chip technologies used (90 nm vs. 65 nm), we can anticipate state-of-the-art FPGA
solutions to outperform GPPs, although not by much. In addition, the relatively
higher purchases cost of FPGAs and their low level programming model such as
VHDL that we used for our implementations are obvious drawbacks of FPGAs to
GPPs. However, if we focus on the performance per Watt figure, the Core2Quad
Q6600 implementation is 34 times less than the Spartan3 FPGA implementation.
Moreover, the G92 GPU implementation is also 15 times less than the Spartan3
implementation in this criterion. This suggests that FPGA-based HPRC could be a
viable approach for very high performance and large-scale N-body simulations, on
an energy cost basis.

1http://progrape.jp/phantom/.

http://progrape.jp/phantom/

384 T. Hamada and Y. Shibata

T
ab

le
4

Im
pl

em
en

ta
ti

on
re

su
lt

s
(G

R
A

PE
-5

an
d

G
5

m
od

el
)

G
R

A
PE

-5
B

io
le

r-
3

C
ra

y
X

D
1

PR
O

G
R

A
PE

-4
A

SU
S

E
N

88
00

G
T

X
M

SI
N

98
00

G
T

X
+

C
or

e2
Q

ua
d

Q
66

00
A

to
m

23
0

D
ev

ic
e

C
hi

p
A

SI
C

F
P

G
A

F
P

G
A

F
P

G
A

G
PU

G
PU

C
PU

C
PU

30
0k

ga
te

s
X

C
2V

P7
0-

5
X

C
2V

P5
0-

7
X

C
3S

50
00

-5
G

80
G

92
SS

E
SS

E
D

ev
el

op
m

en
tY

ea
r

19
97

20
04

20
04

20
06

20
07

20
08

20
07

20
08

C
hi

p
te

ch
no

lo
gy

50
0

nm
13

0
nm

13
0

nm
90

nm
90

nm
65

nm
65

nm
45

nm
C

hi
ps

/b
oa

rd
8

4
1

4
1

1
1

1
Pi

pe
li

ne
s/

ch
ip

2
16

10
16

N
/A

N
/A

N
/A

N
/A

Fr
eq

ue
nc

y
(M

H
z)

80
13

3.
3

12
0

10
0

13
50

18
90

24
00

16
00

G
flo

ps
/c

hi
p

24
.3

81
45

.6
60

.8
47

0.
8

68
7.

1
70

.3
6.

35
G

flo
ps

/b
oa

rd
48

.6
32

4.
2

45
.6

24
3.

2
47

0.
8

68
7.

1
70

.3
6.

35
ra

ti
o

of
pe

rf
or

m
an

ce
1.

0
6.

7
0.

9
5.

0
9.

7
14

.1
1.

45
0.

13
(a

ga
in

st
G

R
A

PE
-5

)
C

os
t(

$)
pe

r
bo

ar
d

N
/A

15
00

0
N

/A
24

00
79

0
26

8
20

0
74

M
flo

ps
pe

r
C

os
t

N
/A

21
.6

N
/A

10
1

59
6

26
63

35
2

85
.8

Po
w

er
C

on
su

m
pt

io
n

pe
r

bo
ar

d
(w

it
ho

ut
ho

st
)

80
W

30
W

N
/A

5
W

14
8

W
12

2
W

49
W

3.
1

W

Po
w

er
C

on
su

m
pt

io
n

pe
r

ch
ip

8
W

7.
5

W
N

/A
1.

3
W

14
8

W
12

2
W

49
W

3.
1

W

G
flo

ps
/W

at
t

0.
61

11
N

/A
49

3.
2

5.
6

1.
43

2.
05

B
es

tp
er

fo
rm

an
ce

in
G

flo
ps

/W
at

ti
nd

ic
at

ed
in

bo
ld

.

FPGA-Based HPRC Systems for Scientific Applications 385

3.5 Impact on the Performance per Watt

The use of parallel computing technologies in the form of FPGAs and SIMD
architectures can offer very large speed-ups for N-body simulations, since this
application is characterized by a high degree of data and instruction parallelism
as well as data locality. However, these acceleration technologies vary in their
cost, programming abstraction level, and power consumption. Aiming at exploring
these trade-offs, we compared various implementation platforms in the context of
gravitational force calculations in N-body simulations. The results showed that
GPU platforms achieve the highest performance and thus are very competitive in
performance and performance per cost figures. In addition, lower cost of GPUs
and their higher programming abstraction level are also advantageous. However,
the performance per Watt figure favored FPGAs with a factor of 15 to 1 and
34 to 1 compared to GPUs and GPPs, respectively. This suggests large-scale
high performance simulations, where power consumption is a bottleneck, are
expected to be a niche but promising market for FPGAs. On the other hand, GPUs
could well be clocked down to reduce their energy consumption, at a relatively
lower performance penalty. Our future work includes such experiments as well as
extending our hardware pipelines to molecular dynamics simulations where more
complex calculations with high accuracy levels are required.

References

1. T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, D. Buell, The promise of
high-performance reconfigurable computing. IEEE Comput. 41(2), 69–76 (2008)

2. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 5th edn.
(Morgan Kaufmann, Waltham, 2012)

3. N. Shirazi, A. Walters, P. Athanas, Quantitative analysis of floating point arithmetic on FPGA-
based custom computing machines, in Proceedings of IEEE Symposium on FPGAs for Custom
Computing Machines (IEEE, Piscataway, NJ, 1995), pp. 155–162

4. T.A. Cook, L. Louca, W.H. Johnson, Implementation of IEEE single precision floating point
addition and multiplication on FPGAs, in Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines (IEEE, Piscataway, NJ, 1996), pp. 107–116

5. J. Arnold, D. Buell, E. Davis, SPLASH2, in Proceedings of ACM Symposium on Parallel
Algorithms and Architectures (ACM, New York, NY, 1992), pp. 316–322

6. Xilinx, Inc., LogiCORE IP Floating-Point Operator v6.0. DS816, Product Specification (2011)
7. T. Hamada, N. Nakasato, PGR: a software package for reconfigurable super-computing, in Pro-

ceedings of International Conference on Field Programmable Logic and Applications (IEEE,
Piscataway, NJ, 2005), pp. 366–373

8. H. Yamada, Y. Ogawa, T. Ooya, T. Ishimori, Y. Osana, M. Yoshimi, Y. Nishikawa, A.
Funahashi, N. Hiroi, H. Amano, Y. Shibata, K. Oguri, Automatic pipeline construction focused
on similarity of rate law functions for an FPGA-based biochemical simulator. IPSJ Trans. Syst.
LSI Des. Methodol. 3, 244–256 (2010)

9. O. Mencer, ASC: a stream compiler for computing with FPGAs. IEEE Trans. Comput. Aided
Des. Integrated Circ. Syst. 25(9), 1603–1617 (2006)

10. SRC Computers, Inc., MAPstation (2005), http://www.srccomp.com/. Accessed 31 Mar 2013

http://www.srccomp.com/

386 T. Hamada and Y. Shibata

11. S. Shida, Y. Shibata, K. Oguri, D.A. Buell, Implementation of a barotropic operator for ocean
model simulation using a reconfigurable machine, in Proceedings of International Conference
on Field Programmable Logic and Applications (IEEE, Piscataway, NJ, 2007), pp. 589–592

12. S. Shida, Y. Shibata, K. Oguri, D.A. Buell, An optimization method of DMA transfer for a
general purpose reconfigurable machine, in Proceedings of International Conference on Field
Programmable Logic and Applications (IEEE, Piscataway, NJ, 2008), pp. 647–650

13. M. Weinhardt, W. Luk, Memory access optimization for reconfigurable systems. IEE Proc.
Comput. Digit. Tech. 148, 105–112 (2001)

14. D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, M. Umemura, A special-purpose
computer for gravitational many-body problems. Nature 345, 33–35 (1990)

15. J. Makino, M. Taiji, Scientific Simulations with Special-Purpose Computers — The GRAPE
Systems (Wiley, New York, 1998)

16. T. Fukushige, M. Taiji, J. Makino, T. Ebisuzaki, D. Sugimoto, A highly parallelized special-
purpose computer for many-body simulations with an arbitrary central force: Md-grape.
Astrophys. J. 468, 51 (1996)

17. R. Susukita, T. Ebisuzaki, B.G. Elmegreen, H. Furusawa, K. Kato, A. Kawai, Y. Kobayashi,
T. Koishi, G.D. McNiven, T. Narumi, K. Yasuoka, Hardware accelerator for molecular
dynamics: MDGRAPE-2. Comput. Phys. Comm. 155, 115–131 (2003)

18. T. Narumi, R. Susukita, T. Ebisuzaki, G.D. McNiven, B.G. Elmegreen, Molecular dynamics
machine: special-purpose computer for molecular dynamics simulations. Mol. Simul. 21, 401–
415 (1999)

19. M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, A. Konagaya, Protein
explorer: a petaflops special-purpose computer system for molecular dynamics simulations, in
Supercomputing, 2003 ACM/IEEE Conference (IEEE, Piscataway, NJ, 2003), pp. 15–15

20. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics-theory and application to
non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

21. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574
(1992)

22. M. Steinmetz, GRAPESPH: cosmological smoothed particle hydrodynamics simulations with
the special-purpose hardware GRAPE. Mon. Not. R. Astron. Soc. 278, 1005–1017 (1996)

23. R. Klessen, GRAPESPH with fully periodic boundary conditions: fragmentation of molecular
clouds. Mon. Not. R. Astron. Soc. 292(1), 11–18 (1997)

24. G.R. Liu, M.B. Liu, Smoothed Paricle Hydrodynamics — A Meshfree Particle Method (World
Scientific, Tuck Link, 2003)

25. C.A. Brebbia, The Boundary Element Method for Engineers (Pentech Press, London, 1978)
26. J. Barnes, P. Hut, A hierarchical O(NlogN) force-calculation algorithm. Nature 324, 446–449

(1986)
27. S.K. Okumura, J. Makino, T. Ebisuzaki, T. Fukushige, T. Ito, D. Sugimoto, E. Hashimoto,

K. Tomida, N. Miyakawa, Highly parallelized special-purpose computer, GRAPE-3. Publ.
Astron. Soc. Jpn. 45, 329–338 (1993)

28. A. Kawai, T. Fukushige, J. Makino, $7.0/Mflops astrophysical N-body simulation with
treecode on GRAPE-5, in Supercomputing, ACM/IEEE 1999 Conference (IEEE, Piscataway,
NJ, 1999), pp. 67–67

29. M.S. Warren, J.K. Salmon, D.J. Becker, M.P. Goda, T. Sterling, A 55 TFLOPS simulation of
amyloid-forming peptides from Yeast Prion Sup35 with the special-purpose computer system
MDGRAPE-3, in Proceedings of Supercomputing 97, in CD-ROM (IEEE, Los Alamitos, 1997)

30. T. Hamada, T. Fukushige, A. Kawai, J. Makino, Progrape-1: a programmable special-
purpose computer for many-body simulations, in Numerical Astrophysics (Springer, 1999),
pp. 427–428

31. T. Hamada, T. Fukushige, A. Kawai, J. Makino, PROGRAPE-1: a programmable, multi-
purpose computer for many-body simulations. Publ. Astron. Soc. Jpn. 52, 943–954 (2000)

32. G. Lienhart, A. Kugel, R. Manner, Using floating-point arithmetic on FPGAs to accelerate
scientific N-body simulations, in Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002 (IEEE, 2002), pp. 182–191

FPGA-Based HPRC Systems for Scientific Applications 387

33. N. Nakasato, T. Hamada, Astrophysical hydrodynamics simulations on a reconfigurable sys-
tem, in 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2005. FCCM 2005 (IEEE, Piscataway, NJ, 2005), pp. 279–280

34. T. Hamada, N. Nakasato, Massively parallel processors generator for reconfigurable system, in
13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2005.
FCCM 2005 (IEEE, Piscataway, NJ, 2005), pp. 329–330

35. T. Hamada, N. Nakasato, T. Ebisuzaki, A 236 Gflops astrophysical simulation on a reconfig-
urable super-computer, in SuperComputing 2005, Seattle, 2005

36. T. Hamada, T. Fukushige, A. Kawai, J. Makino, Progrape-1: a programmable special-purpose
computer for many-body simulations, in Numerical Astrophysics (Springer, New York, 1999),
pp. 427–428

37. T.A. Cook, H.-R. Kim, L. Louca, Hardware acceleration of n-body simulations for galactic
dynamics, in Photonics East’95 (International Society for Optics and Photonics, 1995),
pp. 115–126

38. K.H. Tsoi, C.H. Ho, H.C. Yeung, P.H.W. Leong, An arithmetic library and its application to the
N-body problem, in 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2004. FCCM 2004 (IEEE, 2004), pp. 68–78

39. L. Nyland, M. Harris, J. Prins, N-body simulations on a GPU, in Proceedings of the ACM
Workshop on General-Purpose Computation on Graphics Processors (2004), p. 60

40. M. Harris, GPGPU: general-purpose computation on GPUs, in SIGGRAPH 2005 GPGPU
COURSE (2005), http://www.gpgpu.org/s2005/

41. T. Hamada, T. Iitaka, The chamomile scheme: an optimized algorithm for n-body simulations
on programmable graphics processing units. arXiv preprint astro-ph/0703100, 1–26 (2007)

42. T. Ito, J. Makino, T. Fukushige, T. Ebisuzaki, S.K. Okumura, D. Sugimoto, A special-purpose
computer for N-body simulations: GRAPE-2A. Publ. Astron. Soc. Jpn. 45, 339–347 (1993)

43. T. Hamada, N. Nakasato, PGR: a software package for reconfigurable super-computing,
in International Conference on Field Programmable Logic and Applications, 2005 (IEEE,
Piscataway, NJ, 2005), pp. 366–373

44. L. Zhuo, V.K. Prasanna, High performance linear algebra operations on reconfigurable systems,
in Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference (IEEE, 2005),
pp. 2–2

http://www.gpgpu.org/s2005/

Accelerating the SPICE Circuit Simulator
Using an FPGA: A Case Study

Nachiket Kapre and André DeHon

Abstract Spatial processing of sparse, irregular, double-precision floating-point
computation using a single FPGA enables up to an order of magnitude speedup
and energy-savings over a conventional microprocessor for the simulation program
with integrated circuit emphasis (SPICE) circuit simulator. We develop a parallel,
FPGA-based, heterogeneous architecture customized for accelerating the SPICE
simulator to deliver this speedup. To properly parallelize the complete simulator,
we decompose SPICE into its three constituent phases—Model Evaluation, Sparse
Matrix-Solve, and Iteration Control—and customize a spatial architecture for each
phase independently. Our heterogeneous FPGA organization mixes very large
instruction word (VLIW), Dataflow and Streaming architectures into a cohesive,
unified design. We program this parallel architecture with a high-level, domain-
specific framework that identifies, exposes and exploits parallelism available in
the SPICE circuit simulator using streaming (SCORE framework), data-parallel
(Verilog-AMS models) and dataflow (KLU matrix solver) patterns. Our FPGA
architecture is able to outperform conventional processors due to a combination of
factors including high utilization of statically-scheduled resources, low-overhead
dataflow scheduling of fine-grained tasks, and streaming, overlapped processing
of the control algorithms. We expect approaches based on exploiting spatial
parallelism to become important as frequency scaling continues to slow down and
modern processing architectures turn to parallelism (e.g. multi-core, GPUs) due to
constraints of power consumption.

N. Kapre (�)
Nanyang Technological University, 50 Nanyang Avenue, Singapore
e-mail: nachiket@ieee.org

A. DeHon
University of Pennsylvania, Philadelphia, PA 19104, USA
e-mail: andre@acm.org

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 13, © Springer Science+Business Media, LLC 2013

389

mailto:nachiket@ieee.org
mailto:andre@acm.org

390 N. Kapre and A. DeHon

1 Introduction

SPICE (Simulation Program with Integrated Circuit Emphasis) is an analog circuit
simulator used extensively to simulate and verify operation of silicon circuits. It
models the analog behavior of semiconductor circuits using a compute-intensive,
nonlinear, differential equation solver. This can take days or weeks of runtime on
real-world circuits. SPICE is notoriously difficult to parallelize due to its irregular
compute structure and a sloppy sequential description [34]. It has been observed
that less than 7% of the floating-point operations in SPICE are automatically
vectorizable [15].

Spatial parallelism provides a suitable model for constructing accelerators for
challenging problems like SPICE. It offers a natural way to express the hetero-
geneous computational structure in SPICE and exposes the inherent parallelism
available in the problem. Furthermore, modern FPGAs can be configured to
efficiently support spatial parallelism with multiple floating-point operators coupled
to hundreds of distributed, on-chip memories and interconnected by a flexible
routing network. In Table 2, we observe that modern FPGAs can match and even
surpass the peak floating-point capacity of modern multi-core processors while
dissipating far less power. Spatial parallelism allows us to configure the FPGA to
deliver a higher fraction of this floating-point peak through a combination of careful
static scheduling and low-overhead distributed processing.

As shown in Table 1, a SPICE simulation accepts a netlist description of the
circuit to be simulated along with input stimulus. The simulator then returns the
response of the circuit in the form of output analog waveforms as shown in Fig. 1.
The simulation algorithm discretizes circuit response and repeatedly solves circuit
equations at each discrete step to generate output waveforms. We also show an
abstract internal representation of the simulation algorithm in Fig. 2. This iterative
simulation consists of two key computationally intensive phases per iteration: Model
Evaluation (2© in Fig. 2) followed by Matrix Solve (3© in Fig. 2). This organization
allows the nonlinear, differential equation solver to be simplified to a system of
linear equations Ax = b which is handled in the Matrix Solve phase. The nonlinear,
time-varying circuit elements are linearized using a Newton–Raphson loop and
discretized using Trapezoidal integration in the Model-Evaluation phase. These two
loops are managed in the third phase of SPICE which is the Iteration Controller (1©
in Fig. 2). A well-balanced, scalable, parallel architecture must accelerate all three
phases of SPICE.

Table 1 Example SPICE
netlist

* R-C-D Circuit Topology
V1 1 0 PWL(0 1 1e-11 2 2e-11 3)
R1 1 2 1
D1 2 0 DNOM
C1 2 0 10e-11
.MODEL DNOM D (IS=1E-15 Vj=0.02 cjo=1e-9)

* SPICE Analysis options
.TRAN 1e-12 3e-9
.PLOT TRAN v(2)
.END

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 391

Table 2 Raw floating-point throughput and power (double-precision)

Chip
Tech.
(nm)

Clock
(GHz)

Peak GFLOPS
(Double)

Power
(Watts)

Intel Core i7 965 45 3.2 25 130
Xilinx Virtex-6 LX760 40 0.2 26 20–30

0.8

1

a

b

0 1.5e-09 3e-09
V

ol
ta

ge
 (

V
)

Time (s)

V(2)

Fig. 1 Example of a SPICE simulation. (a) Input circuit; (b) output waveform

Fig. 2 Flowchart of a SPICE simulator

This chapter reviews our previous research [19–22] that systematically solves
different subproblems emerging from the complete SPICE acceleration challenge.

392 N. Kapre and A. DeHon

We now list the key themes of this chapter:

• We accelerate the Model-Evaluation phase of SPICE using a custom VLIW
organization overlayed on top of the FPGA [19]. We show scalability of our
approach across different Verilog-AMS models [21]. This idea will be broadly
applicable to other irregular, data-parallel problems that underutilize multi-core
CPUs or GPUs.

• We implement the Sparse Matrix-Solve phase of SPICE on an FPGA [20] using
a Token Dataflow architecture customized for Matrix-Solve. Token Dataflow
designs are suitable for large-scale parallel computations that are either chal-
lenging for static scheduling or structurally resolved at runtime.

• We design a hybrid, VLIW architecture for implementing the apparently
sequential fraction of the SPICE simulator, the Iteration Controller phase, on the
FPGA [22]. We believe this solution is particularly important to avoid Amdahl’s
Law bottleneck once we have accelerated the compute-intensive portion of the
application but still desire additional speedup and scalability.

• We integrate the different phases of SPICE together and outline a programming
methodology and execution flow to use the accelerator for different simulations.
Our approach highlights the benefits of avoiding an expensive per-circuit-
instance compilation flow while still delivering the benefits of spatial parallelism

The rest of this chapter is organized as follows. We explain the underlying com-
putational characteristics of SPICE and briefly explain FPGA-based implementation
of computation in Sect. 2. Next, we discuss suitable FPGA compute organizations
for implementing the three SPICE phases in Sects. 3, 4 and 5 respectively. In Sect. 6
we provide details about the composed FPGA compilation framework and quantify
the performance and energy of complete SPICE accelerator. Finally we wrap up
with some key insights and lessons in Sect. 8.

2 Background

2.1 Summary of SPICE Algorithms

SPICE simulates the dynamic analog behavior of a circuit described by nonlinear
differential equations. SPICE solves the nonlinear differential circuit equations by
computing small-signal linear operating-point approximations for the nonlinear and
time-varying elements until termination (1© in Fig. 2). We show an example R-C-D
circuit topology and a corresponding transient simulation in Table 1. The linearized
system of equations is represented as a solution of Ax = b handled in the Matrix-
Solve phase (3© in Fig. 2), where A is the matrix of circuit conductances, b is the
vector of known currents and voltage quantities and x is the vector of unknown
voltages and branch currents. The simulator calculates entries in A and b from the
device model equations that describe device transconductance (e.g. Ohm’s law for
resistors, transistor I-V characteristics) in the Model-Evaluation phase (2© in Fig. 2).

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 393

R
un

tim
e/

Ite
ra

tio
n

(s
)

Circuit Size

a

b

N0.7

N1.2

sequential CPU parallel FPGA

105

105

106 107 109108

104

10-4

104

103

10-3

103

102

10-2

102

101

10-1

100

80486

Pentium

Pentium
 2

Pentium
 3

Pentium
 4

Xeon 5160

Core i7

F
LO

P
S

Transistors

N0.96

Fig. 3 Scaling trends for
FLOPS and runtime
(spice3f5). (a) Sequential
runtime scaling of SPICE
simulator. (b) Peak FLOPS
scaling of Intel CPUs

2.2 SPICE Performance Analysis

Since the SPICE simulation is an iterative algorithm, we can understand key
characteristics of the complete simulation by analyzing a single iteration. In Fig. 3a,
we show performance scaling trends for a single iteration of the SPICE solver for
two scenarios. First we show data for sequential implementation of the open-source
spice3f5 package on an Intel Core i7 965 across a range of benchmark circuits
shown later in Appendix. We also show data for our parallel FPGA implementation
across the same benchmarks. We observe that sequential runtime for one iteration
scales as O(N1.2) as we increase circuit size, N, while parallel runtime scales faster
as O(N0.7). These trends have been previously reported in [34]. Our experiments
re-examine this claim on modern circuits and modern architectures and observe
that they still continue to hold true. In Fig. 3b, we show the peak floating-point
scaling trends of Intel CPUs obtained from Intel datasheets to contrast against
SPICE runtime trends. We observe that the sequential CPU peak (FLOPS) have
barely scaled as O(N) while SPICE runtime has scaled super-linearly as O(N1.2).
While Moore’s Law continues to deliver increasing circuit sizes (for both circuit

394 N. Kapre and A. DeHon

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

 o
f T

ot
al

 R
un

tim
e

Circuit Size

55%

38%

7%

modeleval
matsolve

ctrl

105104103102

Fig. 4 Sequential runtime
distribution of SPICE
simulator

simulation and CPU processing), the CPU floating-point peaks have been unable to
keep up with the super-linear scaling rate of simulation times. This means there is a
widening performance gap between CPU peak and SPICE runtime. In contrast, the
FPGA processing capabilities shown in Table 2 can be organized entirely in parallel
thereby allowing performance to scale as the critical latency of the computation
O(N0.7) as shown in Fig. 3a.

To further understand SPICE performance trends, we break down the contri-
bution to total SPICE runtime between the different phases in Fig. 4. We observe
that Model-Evaluation and Sparse Matrix-Solve phases account for over 90% of
total SPICE runtime across the entire benchmark set. For circuits dominated by
nonlinear devices, Model-Evaluation phase accounts for as much as 90% (55%
average) of total runtime since the runtime of this phase scales linearly with
the number of nonlinear devices in the circuit. Simulations of circuits with a
large number of resistors and capacitors (i.e. linear elements) generate large
matrices and consequently the Sparse Matrix-Solve phase accounts for as much
as 70% of runtime (38% average). This phase empirically scales as O(N1.2) which
explains the super-linear scaling of overall SPICE runtime. Finally, the Iteration
Controller phase of SPICE comprises a small but nontrivial fraction (≈7%) of
total runtime. While this represents a small fraction of total runtime, once we
accelerate Model-Evaluation and Sparse Matrix-Solve phases, it can become an
Amdahl’s Law bottleneck limiting overall application speedup. Thus, our parallel
FPGA architecture must parallelize all three phases of SPICE.

2.3 SPICE Model-Evaluation

In the Model-Evaluation phase, the simulator computes conductances and currents
through different elements of the circuit and updates corresponding entries in the
matrix with those values. For resistors this needs to be done only once at the start of
the simulation. For nonlinear elements, the simulator must search for an operating-
point using Newton–Raphson iterations that requires repeated evaluation of the

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 395

O
pe

ra
tio

ns

La
te

nc
y

Non-Linear Circuit Elements

N1

N0

work latency

105104103102101

105

104

103

102

101

108

107

106

105

104

Fig. 5 Work-vs-latency of
model-evaluation phase

model equations and a linear solve multiple times per time-step as shown by the
innermost loop in step 1© of Fig. 2. For time-varying components, the simulator
must recalculate their contributions at each timestep based on voltages at several
previous timesteps in the outer loop in step 1© of Fig. 2.

In Fig. 5, we plot the number of floating-point operations and the latency of evalu-
ation (floating-point operations along critical path from input to output) as a function
of the number of nonlinear elements in the circuit. Since each device contributes a
fixed number of floating-point operations per instance, we see a linear growth in the
number of operations. However, the latency of evaluation stays constant since each
evaluation is completely independent and can be processed simultaneously. This
highly data-parallel computation is suitable for implementation on FPGAs, GPUs,
as well as multi-cores.

2.4 SPICE Matrix Solve (Ax = b)

Modern SPICE simulators use modified nodal analysis (MNA) [5] to assemble
circuit equations into the matrix A. This generates highly sparse, asymmetric
matrices which are processed using sparse, direct LU factorization techniques to
deliver robust simulation results. Our approach uses the state-of-the-art KLU matrix
solver [35] optimized for SPICE circuit simulation and avoids per-iteration changes
to the matrix structures. The static nonzero pattern enables reuse of the matrix
factorization graph across all SPICE iterations and allows us to perform a one-time
distribution of computation across a parallel architecture. The solver reorders the
matrix A to minimize fillin using block triangular factorization (BTF) and column
approximate minimum degree (COLAMD) techniques. It then uses the left-looking
Gilbert–Peierls [13] algorithm to compute the LU factors of the matrix column-by-
column such that A = LU . Finally, it calculates the unknown x using Front-Solve
Ly = b and Back-Solve Ux = y operations.

396 N. Kapre and A. DeHon

O
pe

ra
tio

ns

La
te

nc
y

Circuit Size

N1.4

N0.7

work latency

105 106104103102101

105

104

103

102

106

105

104

103

107

106

Fig. 6 Work-vs-latency of
sparse matrix-solve phase

In Fig. 6, we plot the number of floating-point operations in the factorization and
latency of evaluation as a function of the size of the circuit. We observe that the num-
ber of floating-point operations in the Matrix-Solve computation scale as O(N1.4)
while the latency of the critical path through the compute graph scales as O(N0.7).
This suggests a parallel potential of O(N0.7) which can be realized by distributing
the dataflow graph across ideal parallel hardware (e.g. no communication delays,
perfect distribution, unlimited internal processing bandwidth).

2.5 SPICE Iteration Controller

The SPICE iteration controller shown in Fig. 2 is responsible for two kinds of
iterative loops: (1) inner loop: Newton–Raphson linearization iterations for non-
linear devices and (2) outer loop: adaptive time-stepping for time-varying devices.
The Newton–Raphson algorithm is responsible for computing the linear operating-
point for the nonlinear devices like diodes and transistors. Additionally, an adap-
tive time-stepping algorithm based on truncation error calculation (Trapezoidal
approximation, Gear approximation) is used for handling the time-varying devices
like capacitors and inductors. The controller implements customized convergence
conditions and local truncation error estimations that determine how the transient
analysis state machines are advanced at runtime in a data-dependent manner.
The state-machine and breakpoint-processing logic are highly data-dependent and
determine the total number of SPICE iterations required for the complete simulation.

As we saw earlier in Fig. 4, the Iteration Control phase only accounts for ≈7% of
total sequential runtime. However, our parallel SPICE implementation takes care
to efficiently implement this portion to avoid an Amdahl’s Law bottleneck. We
show the danger of ignoring this phase for parallelization in Fig. 7 which shows the
runtime breakdown for the r4k netlist in different implementation scenarios. We
observe that we can get a speedup of ≈6× when parallelizing the Model-Evaluation

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 397

0

5

10

15

20

25

30

35

40

Fully
Sequential

CPU
IterCtrl

Microblaze
IterCtrl

VLIW
IterCtrl

R
un

tim
e/

Ite
ra

tio
n

(m
ill

is
ec

on
ds

)

Iteration Control
Model-Evaluation

Matrix-Solve

Fig. 7 Parallel potential for
iteration control (r4k netlist)

and Sparse Matrix-Solve phase of SPICE (parallel FPGA runtimes obtained from
Sect. 7). If we parallelize the Iteration Control phase, we can improve overall
speedup to ≈9×. The Iteration Control phase of SPICE is dominated by data-
parallel operations in convergence detection and truncation error-estimation which
can be described effectively in a streaming fashion. The loop management logic for
the Newton–Raphson and Timestepping iterations is control-intensive and highly
irregular. We can capture both these computational structures effectively using a
streaming framework.

2.6 Promise of FPGAs

We briefly review the FPGA architecture and highlight some key characteristics of
an FPGA that make it well suited to accelerate SPICE. A Field-Programmable Gate
Array (FPGA) is a massively parallel architecture that implements computation
using hundreds of thousands of tiny programmable computing elements called
k-LUTs (k-input lookup tables that can implement any boolean function of k
inputs, typically k = 4–6) connected to each other using a programmable bit-
level communication fabric. An FPGA allows us to configure the computation
in space rather than time and evaluate multiple operations concurrently in a
fine-grained fashion. In Fig. 8, we show a simple calculation and its conceptual
implementation on a CPU and an FPGA. For a CPU implementation, we process the
instructions stored in an instruction memory temporally on an ALU while storing the
intermediate results (i.e. variables) in a data memory. Thus, a single evaluation of
the graph takes several CPU cycles. On an FPGA, we can implement the operations
as pipelined spatial circuits while implementing the dependencies between the
operations physically using pipelined wires instead of variables stored in memory
to get high performance. This allows the FPGA mapping to start a new evaluation in
each cycle delivering higher throughput than the CPU. Modern FPGAs also include

398 N. Kapre and A. DeHon

Fig. 8 Implementing computation

hundreds of embedded memories distributed across the fabric that deliver 10–100×
higher on-chip bandwidth compared to a processor [10]. The spatial FPGA fabric
can be configured to implement hundreds of specialized datapaths connected to
high-bandwidth on-chip memories thereby providing a higher overall throughput
compared to modern multi-core processors. This potential provides a foundation for
customizing a specialized SPICE accelerator using the FPGA fabric.

2.7 Historical Review

We now review the various studies and research projects in the past three-and-a-
half decades that have attempted to build parallel SPICE systems. Some of these
studies accelerate SPICE by devoting expensive hardware resources to squeeze
additional performance while others reorganize the computation to use lower-
precision evaluation that is easier to parallelize. Our approach expands on certain
ideas from the past while delivering a cheaper, SPICE-accurate accelerator.

We can refine the classification of parallel SPICE approaches by considering
underlying trends and characteristics of the different systems as follows:

1. Compute Organization: We see parallel SPICE solvers using a range of differ-
ent compute organizations including conventional multi-processing, multi-core,
VLIW, SIMD, and Vector.

2. Precision: Under certain conditions, SPICE simulations can efficiently model
circuits at lower precisions.

3. Compiled Code: In many cases, it is possible to generate efficient instance-
specific simulations by specializing the simulator for a particular circuit.

4. Numerical Algorithms: Different classes of circuits perform better with a suitable
choice of a matrix factorization algorithm. Our FPGA design may benefit from
new ideas for factoring the circuit matrix.

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 399

One of the early parallel SPICE designs Awsim-3 [27, 28] uses a compiled code
approach and a special-purpose system with lower-precision, table-lookup Model-
Evaluation (Compiled Code, Precision) to provide a speedup of 560× over a
Sun 3/60. However, a bulk of these speedups are due to dedicated hardware
floating-point unit since the Sun 3/60 implements floating-point in software (tens of
cycles/operation). Additionally, table-lookup approximations result in a simulation
with accuracy trade-offs. A message-passing, parallel SPICE implementation [16]
on an expensive, 40-node SGI Origin 2000 supercomputer (MIPS R10K processors)
was able to speed up SPICE for certain specialized benchmarks by 24× (Compute
Organization). More recently, in [25], a multi-threaded version of SPICE is
developed using PThreads. It achieves a speedup of 5× using 8 SMP (Symmetric
Multi-Processors) on a small benchmark set which is amenable to parallel matrix
factorization (Compute Organization). GPUs have been used to speed up the data-
parallel Model-Evaluation phase of SPICE by 50×[1] (double-precision on ATI
GPU) or 32×[14] (lower-accuracy, single-precision on NVIDIA GPU) but can only
accelerate the SPICE simulator in tandem with the CPU by 3× for the 2-chip GPU-
CPU processing system (Compute Organization). Recent approaches [37] have used
coarse-grained domain-decomposition techniques to parallelize SPICE by 31×–
870×(mean 119×) across a 32 processor grid at SPICE-level accuracy (Numerical
Algorithms).

FPGAs have traditionally enjoyed limited use for accelerating SPICE due to
limited logic capacity of older FPGA families and lack of tools and methodology
for attacking a problem of this magnitude. A compiled code, partial evaluation
approach for timing simulation (lower precision than SPICE) using FPGAs was
demonstrated in [42] where the processing architecture was customized for each
SPICE circuit using fixed-point computation (Compiled Code, Precision). Our
FPGA-based approach accelerates the SPICE computation while retaining the
accuracy of spice3f5 and developing an economical single-FPGA system for
accelerating SPICE. We reuse the idea of compiled-code methodology pioneered
by many previous approaches. We can compose our technique with KLU-based
domain-decomposition approaches [37] to scale to even large problems and system
sizes e.g. multi-FPGA systems. Additionally, we can integrate lower-precision
techniques (e.g. table lookup) into our mapping flow to get cumulative benefits.

3 Model Evaluation

In this section, we show how to compile the nonlinear differential equations
describing SPICE device models using a high-level, domain-specific framework
based on Verilog-AMS. This approach is broadly applicable to other HPC workloads
with a dataflow compute kernel e.g. mathematical expressions which can be
evaluated in parallel in dataflow fashion. We sketch a hypothetical fully spatial
design that distributes the complete Model-Evaluation computation across the chip
as a configured circuit to achieve the highest throughput. We then develop a

400 N. Kapre and A. DeHon

Table 3 Diode Verilog-AMS equations (left), dataflow graph (right)

module diode (a, c);
{

parameter real is=10f;
parameter real vj=0.3;

inout a,c;
electrical a,c;
branch (a, c) ac;

I (ac) <+ is*(exp (V (ac)/vj) - 1);
}

is

I

V vj

−

ex1

/

*

realistic spatial organizations that can be realized on a single FPGA using statically
scheduled time-multiplexing of FPGA resources. This allows us to use less area
than the fully spatial design while still achieving high performance. Our automated
compilation and tuning approach can scale the implementation to larger system sizes
when they become available.

3.1 Structure

As discussed earlier, the Model-Evaluation phase has high data parallelism con-
sisting of thousands of independent device evaluations each requiring hundreds of
floating-point operations. Additionally, we make other structural observations that
will help simplify and enhance our FPGA mapping. We note that there is a limited
diversity in the number of nonlinear device types in a simulation (e.g. typically
only diode and transistorsmodels). There is high pipeline parallelism within
each device evaluation as operations can be represented as an acyclic feed-forward
dataflow graph (DAG) with nodes representing operations and edges representing
dependencies between the operations. These DAGs are static graphs that are known
entirely in advance and do not change during the simulation enabling efficient
offline scheduling of instructions. Individual device instances are predominantly
characterized by constant parameters (e.g. Vth, Temperature, Tox) that are determined
by the CMOS process leaving only a handful of parameters that vary from device to
device (e.g. W, L of device). This specialization potential in the form of constant-
folding, identity simplification and other compiler optimizations can eliminate
70–80% of repeated, unnecessary work.

We compile the device equations from a high-level domain-specific language
called Verilog-AMS [26] which is more amenable to parallelization and optimiza-
tion than existing C description in spice3f5. We show a simple code example for
the diode in Table 3. In contrast to Verilog-AMS, the spice3f5 C descriptions
make extensive use of pointers into shared data-structures that are harder to analyze

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 401

Table 4 Device model instruction counts

Instruction distribution (optimized)

Model Add Mult. Divide Sqrt. Exp. Log. Rest

bjt 22 30 17 0 2 0 8
diode 7 5 4 0 1 2 9
jfet 13 31 2 0 2 0 8
mos1 24 36 7 1 0 0 21
vbic 36 43 18 1 10 4 9
mos3 46 82 20 4 3 0 38
hbt 112 57 51 0 23 18 60
bsim4 222 286 85 16 24 9 137
bsim3 281 629 120 9 8 1 117
mextram 675 1,626 397 22 52 37 238
psp 1,345 2,319 247 30 19 10 263

(Rest includes mux, bool and integer operations)

and do not provide a clean way to separate variables from constants. The Verilog-
AMS compilation also allows us to capture the device equations in an intermediate
form suitable for performance optimizations and parallel mapping to several target
architectures. We use open-source Verilog-AMS nonlinear models from Simucad
ranging from the small, simple diode model to the large, complex bsim3, psp
models.

Our Verilog-AMS compiler generates a generic feed-forward dataflow graph (see
diode example in Table 3 of the computation that is processed by the backend tools).
The compiler currently performs simple dead-code elimination, mux-conversion,
constant-folding, identity simplification and common-subexpression elimination
optimizations. We tabulate the optimized instruction counts for the different device
models in Table 4.

3.2 Fully Spatial Architecture

A spatial circuit implementation of computation is a straightforward embodiment of
a dataflow graph on an FPGA. Such a circuit contains physical operators for every
instruction in the dataflow graph and uses physical wires to implement dependencies
between the instructions. These operators can evaluate in parallel and communicate
results directly using the programmable FPGA interconnect. Furthermore, if the
computation is data parallel, we can exploit pipeline parallelism by adding a suitable
number of registers along the wires to balance dataflow. This will then permit us
to start a new evaluation of the dataflow graph in each cycle and deliver results
of the computation after the pipeline latency of the graph. This pipelined, spatial
circuit implementation of data-parallel computation will deliver the highest possible
performance for our Model-Evaluation computation. In contrast, a conventional
von-Neumann architecture (e.g. Intel CPUs) will implement this computation by

402 N. Kapre and A. DeHon

Table 5 Estimated speedup
(vs. Intel Core i7 965) and
FPGA costs (Virtex6 LX760)
of multi-FPGA designs

Device models
Total
speedup

FPGAs
required

Speedup
per FPGA

bjt 14 1 14
diode 34 1 34
jfet 17 1 17
mos1 14 1 14
vbic 17 1 17
mos3 12 1 12
hbt 62 3 20
mextram 204 18 11
bsim3 47 6 8
bsim4 69 4 17
psp 155 21 7

fetching a binary representation of computation stored in memory. The binary
implicitly encodes the dataflow structure using a sequence of instructions that
communicate results using registers (i.e. memory). The dataflow parallelism hidden
in this implicit encoding must be rediscovered by the von-Neumann architecture in
hardware, often limiting the amount of parallelism that can be exploited from the
dataflow graph.

Ideal Mapping We can imagine implementing the data-parallel operations in
Model-Evaluation as a pipelined dataflow circuit on the FPGA. If cost is not a
concern, this approach provides up to two orders of magnitude speedup over an
implementation using Intel Core i7 965 microprocessor when using a Xilinx Virtex-
6 LX760 FPGA (see Table 5). We compute a lower-bound on the number of FPGAs
required to implement the dataflow graph based on total operator area (ignoring
FPGA external IO limitations and pipelining area costs). This model provides a
lower-bound on cost and an upper-bound on the speedup possible with the spatial
approach. For the designs that fit in a single FPGA, this model only needs to be
refined with pipelining costs and can avoid the complexities of the multi-FPGA
distribution. A single-FPGA, fully spatial implementation of all devices will be
eventually possible with the increasing FPGA densities made possible by Moore’s
Law. From Table 5, the bsim3 model currently requires only 6 Virtex-6 LX 760
FPGAs to fit. This means an FPGA that is 4× denser will fit the complete device
evaluation graph. This FPGA will become possible two technology nodes into the
future at 22 nm (Virtex-6 is manufactured at the 40 nm technology node).

3.3 Custom VLIW Architecture

In the previous section, we saw how fully spatial implementations (circuit-style
implementation of dataflow graphs) are too large to fit on current FPGAs. Hence,
computation must be time-shared over limited FPGA resources. These graphs

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 403

Fig. 9 Custom VLIW organization

contain a diverse set of floating-point operators such as adds, multiplies, divides,
square-roots, exponentials, and logarithms. We map these graphs to custom VLIW
processing tiles with spatial implementation of the floating-point operators.

Pipelined, spatial FPGA implementations of elementary functions like exp and
log operate at a high throughput of one evaluation/cycle (250 MHz) while the pro-
cessor implementations require 100s of instructions (10–20 cycles at 3 GHz) [17].
Additionally, we support these spatial operators by coupling them to local, dis-
tributed, high-bandwidth memories, as shown in Fig. 9, which is not possible with
fixed-function CPUs or GPUs. We statically schedule these resources offline in
VLIW [12] fashion and perform loop-unrolling, tiling and software pipelining
optimizations to improve performance.

Each tile in the time-shared architecture consists of a heterogeneous set of
floating-point operators coupled to local, high-bandwidth memories and intercon-
nected to other operators through a communication network. We use a time-
multiplexed fat tree [23] to connect these operators which allows us to tune
the interconnect bandwidth to match communication requirements between the
operators. A time-multiplexed switch in this architecture consists of a multiplexer
for each IO port with a small context memory for storing the routing instruction
i.e. select bits for the multiplexers. Thus, a VLIW instruction for the complete
tile is a combination of read/write addresses for local on-chip memories, address
control bits, datapath multiplexer controls and switch route decisions for each
statically scheduled cycle of operation. We develop a Verilog-AMS compiler for the
nonlinear device models that is capable of recognizing a suitable subset of the lan-
guage specification while performing useful optimizations such as constant-folding,

404 N. Kapre and A. DeHon

Table 6 Parallel software environments

Arch. Compiler Libraries Timing

Intel CPUs gcc-4.4.3(-O3) OpenMP 3.0 [7] PAPI 4.0.0 [33]
Xilinx FPGA Synplify Pro 9.6.1, Coregen [43] –

Xilinx ISE 10.1 Flopoco [8] –

if-mux conversion, and dead-code elimination. Our VLIW scheduling framework
first chooses an operator mix per tile proportional to the frequency of occurrence of
floating-point operations in the graph generated by the Verilog-AMS compiler. For
example, a bsim3VLIW tile contains 1 add, 3 multiplies and 1 each of divide, sqrt,
log and exp operators while a bsim4 tile contains 2 adds, 2 multiplies and 1 each of
divide, sqrt, log and exp. We then partition the floating-point operations across the
heterogeneous set of operators using MLPart [3]. Finally, we assign each operation
to a specific cycle on the datapath and perform a static route on the time-multiplexed
network using a greedy LPT (longest processing time first) scheduler to generate the
VLIW instruction context. For a nonlinear device model, we configure the FPGA
with multiple tiles in SIMD-like (Single Instruction Multiple Data) manner where
each VLIW instruction is SIMD broadcast to all tiles.

3.4 Experimental Setup

In our experimental flow, we compare the performance of the Intel Core i7 965
quad-core CPU with a Xilinx V6 LX760 FPGA. We measure runtime averaged
across thousands of device evaluations. We map the data-parallel model equations
to the CPU and FPGA with the help of software frameworks listed in Table 6. To
target these architectures we use a combination of automated code-generation and
auto-tuning to generate optimized implementations across these different systems.
Our code-generator writes out multiple configurations of parallel code for the
CPU and the FPGA-VLIW architecture based on architecture-specific templates.
For the CPU, we perform loop-unrolling and generate vector instructions for
certain operations to optimize performance. For the FPGA, we can choose the
number of datapaths (PEs) and the richness of the BFT interconnect between these
datapaths (PEs) to tune performance. Our auto-tuner exhaustively explores several
implementation parameters e.g. loop unroll factor for the different architectures
as shown in Table 7. We also show the range of possible values taken by these
parameters as well as the increment step for the exploration. Such an exhaustive
exploration is possible in our case since the Model Evaluation graphs are completely
known in advance and the design space is small. This framework is also capable of
targeting GPUs and other multi-core devices [21].

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 405

Table 7 Auto-tuning parameters

Architecture Parameter Range Increment

Intel Loop-unroll factor 1–5 +1
Threads 1–8 +1
MKL vector True/false

FPGA Loop-unroll factor 1–15 +1
Operators per PE 8–64 ×2
BFT rent parameter 0.0–1.0 +0.1

5 x

10 x

15 x

20 x

25 x

bjt

diode

jfet

m
os1

vbic

m
os3

hbt

bsim
4

bsim
3

m
extram

psp

S
pe

ed
up

6.5x mean

Fig. 10 Speedups for
model-evaluation

3.5 Results

In Fig. 10, we compare the performance achieved by Model-Evaluation implemen-
tations between a quad-core Intel Core i7 965 (loop-unrolled and multi-threaded)
and a Xilinx Virtex-6 LX760 FPGA (loop-unrolled, tiled and statically scheduled).
We observe speedups between 1.4×–23× (geomean 6.5×) across our nonlinear
device model benchmarks. We deliver these speedups due to higher utilization of
statically-scheduled floating-point resources (up to 70%), explicit routing of graph
dependencies over physical interconnect and spatial implementation of elementary
floating-point functions. The FPGA is able to achieve higher speedups for smaller,
simpler nonlinear devices e.g. diode, bjt since they require smaller interconnect
switch programming context and a lower memory footprint to store the intermediate
values in the evaluation.

3.6 Future Work

We now identify additional opportunities for improving the performance of the
parallel FPGA design of the Model-Evaluation phase.

406 N. Kapre and A. DeHon

1. Double-precision floating-point operators consume a large amount of area on
FPGAs. Custom floating-point or fixed-point operators that operate at just
enough precision might provide an opportunity for improving the compute
density on FPGAs. We can redesign the Model-Evaluation datapaths with lower
precision by adapting existing techniques [29] to obtain additional speedup. We
demonstrate some preliminary results using this technique for small devices [30].

2. Additionally, we can improve the performance of the Model-Evaluation phase
with extra loop-unrolling and the use of off-chip memory capacity.

4 Sparse Matrix Solve

In Sect. 2, we identified the Matrix-Solve phase of the SPICE circuit simulator as
the most challenging phase for parallelization. Large-scale, sparse matrix factor-
ization is also a commonly-used HPC kernel. The computation is characterized
by sparse, irregular operations that are too fine-grained to be effectively exploited
on conventional architectures (e.g. multi-cores). In this section, we show how to
parallelize Sparse Matrix Solve using a combination of the KLU algorithm (better
software) and an efficient dataflow FPGA architecture (better hardware). We start
by introducing the KLU algorithm that extracts the exact compute graph of matrix
factorization and then describing a dataflow architecture for efficiently mapping the
compute graph to an FPGA.

4.1 Structure

The SPICE simulator spice3f5 assembles the sparse circuit left-hand side (LHS)
matrix and the right-hand side (RHS) vectors in Ax = b using the MNA approach.
Since circuit elements tend to be connected to only a few other elements, the MNA
circuit matrix is highly sparse (except high-fanout nets like power lines, etc). The
underlying nonzero structure of the matrix is defined by the topology of the circuit
and consequently remains unchanged throughout the duration of the simulation. As
discussed earlier, the KLU matrix solver performs a one-time partial pivoting at
the start of the simulation to deliver a static compute graph that can be efficiently
distributed and evaluated in parallel. This static pattern is reused across all SPICE
iterations and enables us to generate a specialized static dataflow architecture that
processes the graph in parallel. The KLU Gilbert–Peierls algorithm has irregular,
fine-grained task parallelism during LU factorization. We will now look at the
pseudocode for the computation to understand the nature of parallelism available
in the algorithm.

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 407

(Sparse L-Solve)(Gilbert-Peierls)

1%-------------------------------
2% input: sparse matrix A
3% output: factored L and U
4%-------------------------------
5L=I; % I=identity matrix
6for k=1:N
7b $=$ A(:,k); % kth column of A
8x $=$ L \ b; % \ is Lx=b solve
9U(1:k) $=$ x(1:k);
10L(k+1:N) $=$ x(k+1:N) / U(k,k);
11end;

Listing .1 Gilbert-Peierls Algorithm (A=LU)

1%-------------------------------
2% input: matrix L (1:k-1)
3% output: kth column of L
4%-------------------------------
5x=b;
6% symbolic analysis predicts non-zeros
7for i = 1:k-1 where x(i)$!$=0
8for j = i+1:N where L(j,i)$!$=0
9x(j) $=$ x(j) - L(j,i)*x(i);
10end;
11end;
12% returns x as result

Listing .2 Sparse L-Solve (Lx=b,x=unknown)

In Listing .1, we illustrate the key steps of the factorization algorithm. It is
the Gilbert–Peierls [13] left-looking algorithm that factors the matrix column-by-
column from left to right (shown in the figure accompanying Listing .1 by the
sliding column k). For each column k, we must perform a sparse lower-triangular
matrix solve shown in Listing .2. The algorithm exploits knowledge of nonzero
positions of the factors when performing this sparse lower-triangular solve (the

408 N. Kapre and A. DeHon

Table 8 Sparse circuit matrix (left) and dataflow graph for LU factorization (right)

-

-

4,4

2,4

*

1,1

/

*

3,1

2,2

/

3,2
1,4

*

-

3,4

/

4,3 3,3

x(i) �= 0 checks in Listing .2). This feature of the algorithm reduces runtime by only
processing nonzeros and is made possible by the early symbolic analysis phase. It
stores the result of this lower-triangular solve step in x (Line 8 of Listing .1). The
kth column of the L and U factors is computed from x after a normalization step on
the elements of Lk. Once all columns have been processed, L and U factors for that
iteration are ready. From the pseudo-code in Listings .1 and .2 it may appear that
the matrix solve computation is inherently sequential. However, we can visualize
this computation as a dataflow graph by unrolling the loops from code listings. We
show the dataflow graph corresponding to a small example matrix in Table 8. From
the dataflow graph, we observe that there are two forms of parallel structure in the
Matrix-Solve factorization computation that we can exploit in our parallel design:
(1) factorization of independent columns organized into parallel subtrees and (2)
fine-grained dataflow parallelism within the column. We now describe our parallel
architecture capable of exploiting this parallelism.

4.2 Token-Dataflow Architecture

The Sparse Matrix-Solve computation can be represented as a sparse, irregular
dataflow graph that is fixed at the beginning of the simulation. We recognize
that static online scheduling of this parallel structure may be infeasible due to
the prohibitively large size of these sparse matrix factorization graphs (millions
of nodes and edges, where nodes are floating-point operations and edges are
dependencies). Hence, we organize our architecture as a dynamically scheduled
Token Dataflow [36] machine. This organization is capable of exploiting parallelism
across a sparse, irregular graph with fully decentralized, distributed control. We
automatically generate the dataflow graphs for LU factorization as well as Fron-
t/Back solve steps from symbolic analysis and evaluation of the sparse factorization

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 409

Fig. 11 Custom dataflow organization

in the KLU solver as shown in Fig. 18. Our parallel FPGA architecture, shown
in Fig. 11, consists of multiple interconnected Processing Elements (PEs) each
holding hundreds to thousands of graph nodes. We partition our graph across the
PEs thereby assigning several nodes to each PE in our parallel architecture. We
place nodes on the PEs using MLPart [3] to exploit locality. Each PE can fire
a node dynamically based on a fine-grained dataflow triggering rule. This allows
parallel evaluation of multiple graph nodes which have received all their inputs
as computation proceeds down the graph. The Dataflow Trigger in the PE keeps
track of ready nodes and issues operations when the nodes have received all inputs.
Tokens of data representing dataflow dependencies are routed between the PEs over
a packet-switched network. Each switch in the network is assembled using simple
split and merge blocks as described in [23]. The switches implement dimension-
ordered routing (DOR [11]) on a Bidirectional Mesh topology. The Send Logic in
the PE injects messages into the network for nodes that have already been processed.
For very large graphs, we partition the graph and perform static prefetch of the
subgraphs from external DRAM. This is possible since the graph is completely feed
forward. We show the performance possible with this architecture in Sect. 7.

4.3 Experimental Framework

In our Matrix-Solve experimental flow, we compare the performance of the
optimized CPU implementation with the FPGA dataflow architecture. We first use
spice3f5 simulator with its Sparse 1.3 [24] solver to obtain a reference functional

410 N. Kapre and A. DeHon

0 x

1 x

10 x

s27
m

ux8
ringosc
s298
s344
s349
dac
s444
s386
s510
s526
10stages
s641
s713
s820
s832
s953
s1196
s1238
s1423
20stages
s1494
30stages
40stages
50stages
r4k

S
pe

ed
up

3.2x mean

Fig. 12 Speedups for matrix-solve (vs. Core i7 965)

implementation for comparison. We then replace Sparse 1.3 with the new KLU
solver to measure optimized sequential performance. This forms our optimized CPU
baseline for performance comparison. For the FPGA mapping, we perform a cycle-
accurate simulation of the Token dataflow architecture. For large graphs that do
not fit in the onchip memories, we account for graph loading times over a DDR3
memory interface. We report cycle counts from the simulation to compute speedups.
We use a rich and diverse set of benchmark circuit-simulation matrices detailed later
in Appendix.

4.4 Evaluation

When we integrate the KLU matrix solver in spice3f5 instead of the default
Sparse 1.3 solver, we are able to speed up the software implementation by
≈35% across our benchmark circuits. We achieve higher improvements for larger
benchmarks since the symbolic analysis overheads can be amortized easily for
large matrices. We use this as our software baseline for comparing with the FPGA
implementation. In Fig. 12, we compare the performance of our FPGA architecture
implemented on a Virtex-6 LX760 with an Intel Core i7 965. We observe speedups
of 0.6–6.5× (geomean 3.2×) for the 25-PE FPGA mapping that devotes all FPGA
resources for Matrix-Solve acceleration over a range of benchmark matrices. For
the complete SPICE system, we can only fit a 9-PE system for Matrix-Solve as
discussed in Sect. 6. Our FPGA implementation allows efficient processing of the
fine-grained factorization operations which can be synchronized at the granularity
of individual floating-point operations. To better understand the speedups we plot
the distribution of parallel runtime across the different steps of the Matrix-Solve
implementation in Fig. 13. We observe that performance is dominated by the cost of
loading the large dataflow graph from offchip memory. We may be able to reduce
this overhead with better DRAM memory interfaces and higher on-chip capacity.

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 411

0

25

50

75

100

s27
m

ux8
ringosc
s208
s298
s344
s349
s382
dac
s444
s386
s510
s526
10stages
s641
s713
s820
s832
s953
s1196
s1238
s1423
s1488
s1494
20stages
30stages
40stages
50stages
r4k

R
un

tim
e

D
is

tr
ib

ut
io

n
(%

) LU Factorization
Front-Solve

Back-Solve
Memory Load

Fig. 13 Parallel runtime distribution for matrix-solve

4.5 Future Work

We now identify some ideas for achieved higher performance for the parallel Matrix
Solve design.

1. We need to explore newer domain decomposition [37] and associative
reformulation [18] strategies for improved scalability of the bottleneck Sparse
Matrix-Solve phase of SPICE. With domain-decomposition, we can break up
the large matrix into multiple submatrices that can be solved independently and
possibly even distributed across multiple FPGAs.

2. Sparse matrix solve operations on large matrices can generate large dataflow
graphs with millions of nodes and edges. These large graphs are challenging to
distribute across multiple PEs. We can accelerate the placement algorithm itself
using parallelism to minimize the one-time setup cost of the parallel simulation.

3. Apart from these approaches, it may be useful to consider completely dif-
ferent algorithms (iterative matrix-free fixed-point simulation [6] or constant-
Jacobian [47]) for SPICE simulations that completely eliminate the need for
performing per-iteration matrix factorization.

5 Iteration Control

In Sects. 3 and 4, we discussed the two computationally intensive phases of the
SPICE simulator. In this section, we explain how to implement the sequential,
control-intensive SPICE state-machines. We caution against mapping this sequential
Iteration Control computation to a lightweight embedded microcontroller (e.g. Xil-
inx Microblaze, Altera NIOS) as it creates a performance bottleneck and decreases
overall speedups. This is broadly true for any parallel application (including
HPC problems), with a minimal degree of sequential control that could become
a performance bottleneck. We discuss a streaming approach that will permit a
high-level expression of the Iteration Control computation using the SCORE [4]

412 N. Kapre and A. DeHon

framework. Our FPGA organization uses a combination of static and dynamic
scheduling to deliver balanced speedups for the integrated design.

5.1 SCORE Framework

We express the SPICE Iteration Control algorithms in a stream-based framework
called SCORE [4] (Stream Computation Organized for Reconfigurable Execution).
The SCORE programming model allows us to capture the SPICE iteration control
algorithm at a high-level of abstraction and permits exploration of different imple-
mentation configurations for the parallel SPICE solver. The streaming abstraction
naturally matches the processing structure of the control algorithms and the overall
composition of the solver. However, the SCORE compute model was originally
designed for rapidly reconfigurable, time-multiplexed FPGAs. Modern FPGAs
offer poor dynamic reconfiguration support and are unsuitable for the coarse-
grained, dynamically reconfigurable implementation of SCORE. Consequently,
we develop a new implementation model for SCORE based on resource-sharing
and static scheduling. We adapt the backend flow from our Model-Evaluation
infrastructure described in Sect. 3 to support dataflow graphs generated from the
SCORE description of the Iteration Control computation.

SCORE allows description of streaming applications using dynamic dataflow. A
SCORE program consists of a graph of operators (compute) and segments (memory)
linked to each other via streams (interconnect). Computation within an operator
is described as a finite-state machine (FSM). The operations within a state can be
described as a dataflow graph, while the state machine transitions are captured using
a state transition graph. This suits the control-intensive nature of the SPICE iteration
control algorithm.

We show the high-level SCORE representation of the SPICE Iteration Controller
in Fig. 14. We describe the control algorithms as SCORE operators and state-
machines interconnected by streams. The stream connection allows pipelined,
parallel evaluation of the different operators when possible. The white nodes in
Fig. 14 represent the state-machine and breakpoint logic. For calculating conver-
gence and local truncation error (LTE), we stream voltages, currents and charges
through the operation graph for the respective equations. The gray nodes are the
data-parallel stateless nodes that calculate LTE and compute convergence as a
function of voltage x, current b and charge Q vectors. We represent the Model-
Evaluation and Sparse Matrix-Solve phases of SPICE as black boxes. Internally
these are implemented differently using FPGA organizations described earlier.

In Table 9 we show the number of floating-point instructions and their types in
the different SCORE operators. These statistics are obtained from the optimized
operation graphs generated by tdfc, the SCORE compiler. As expected, we
observe that the If-Mux, Comparison, and Boolean instructions constitute the bulk

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 413

converged

A,b

x,b

�

��

�

δnew

success

buffer

order

δold

mode breakpoint break

time
spicestmc

nistmc

accept

converge

modeleval LTE

breakpoint

matrixsolve

x

Q

Fig. 14 High-level SCORE operator graph for spice3f5

Table 9 SCORE compiler optimized instruction counts for iteration control

Operator Add Mult. Divide Sqrt. If-Mux Cmp. Bool Rest Total

converge 7 1 0 0 6 5 1 0 20
LTE 16 8 9 1 21 20 0 0 75
breakpoint 95 2 1 0 110 76 35 11 330
nistmc 2 0 0 0 8 7 5 2 24
spicestmc 29 15 6 0 79 42 24 17 212
Total 149 26 16 1 224 150 65 32 513

Column Rest includes floor, ceiling, and other special functions

Table 10 SCORE operator activation frequency for a simple
resistor–capacitor-diode circuit

Operator Total activations/iteration Percent of total

converge 1,088,465 64.394

LTE 601,076 35.560

accept 299 0.017

breakpoint 48 0.002

nistmc 152 0.009

spicestmc 262 0.015

of the control-intensive computation in this phase of SPICE. We also note that we
need only one SQRT floating-point operation and no other expensive elementary
floating-point functions. In Table 10, we show the dynamic activation counts for the
different SCORE operators in the Iteration Control phase of SPICE. An activation
is when a state within that SCORE operator gets fired. We observe that the LTE and
Convergence calculation dominate the dynamic activation counts.

414 N. Kapre and A. DeHon

C
us

to
m

 V
L

IW
 I

ns
tr

uc
ti
on

Fig. 15 Hybrid VLIW organization for iteration control

5.2 Hybrid VLIW Architecture for Iteration Control

Traditionally, FPGA designs offload the sequential control portion of a spatial de-
sign either to host CPUs or embedded Microblaze [45] controllers. Such techniques
are unsuitable for stand-alone accelerator systems (no host CPU) or double-
precision floating-point computation (poor support on Microblaze). Hence, we
consider spatial designs that can implement this computation in the FPGA fabric
directly. As discussed earlier, we observe that the computation is a combination
of (1) data-parallel convergence detection and truncation error calculation and (2)
sparsely activated, control-intensive SPICE analysis state-machine logic. We ex-
press this parallel structure using the streaming SCORE [4] framework and compile
this parallelism to a hybrid VLIW architecture. The underlying FPGA architecture
is organized as tiles (one tile is shown in Fig. 15) interconnected through streams.
Each tile is a collection of floating-point operators (limited to add, multiply, divide
and square-root) that are internally connected with a time-multiplexed network.
Each operator is managed by a hybrid controller that dynamically selects between
statically-scheduled configurations. The spatial mapping flow combines loop-
unrolled, software-pipelined scheduling for data-parallel components like truncation
error calculation and convergence detection logic along with dataflow scheduling
for sparsely activated state-machine logic. The hybrid VLIW architecture is mostly
similar to the Model-Evaluation design and we reuse its backend scheduling
framework. The difference in this architecture is the support for limited dynamic
processing. The data-parallel convergence detection, truncation error estimation
operations, and sparsely activated individual state computations in the SPICE

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 415

1.0 x

2.0 x

4.0 x

s27
m

ux8
ringosc
s208
s298
s344
s349
s382
dac
s444
s386
s510
s526n
s526
10stages
s641
s713
s953
s820
s832
s1196
s1238
s1423
20stages
s1494
30stages
40stages
50stages
r4k

S
pe

ed
up

1.8x mean

Fig. 16 Speedups for iteration-control (vs. Core i7 965)

analysis state-machines are statically scheduled in VLIW fashion to exploit dataflow
parallelism. In contrast, the loop control state machine transition operations are
evaluated dynamically using spatial implementation of state transition making this
a hybrid VLIW design that combines static and dynamic scheduling.

5.3 Experimental Framework

We compare the performance of different partitioning strategies for implementing
the Iteration Controller. We evaluate (1) CPU-FPGA (PCIe), (2) Microblaze-FPGA
logic, and (3) our proposed hybrid VLIW-FPGA logic partitionings. For the CPU
backend, we generate multi-threaded C++ code from the SCORE compiler [4, 9].
This also allows us to perform a functional software verification with spice3f5.
We use PAPI to measure the CPU runtime of the Iteration Control phase. For the
Microblaze backend, we develop a SCORE runtime customized for the Microblaze
soft processor that enables stream operations. This is done through automated code-
generation in a flavor of C suitable for use with an embedded operating system
running on the Microblaze (Xilkernel [46]). We use a hardware counter to measure
the Microblaze clock cycles. For the FPGA-VLIW mapping, we develop a code-
generation backend for SCORE that uses the scheduler developed for the Model-
Evaluation phase described previously in Sect. 3. We report cycle counts from the
FPGA-VLIW scheduler.

5.4 Results

In Fig. 16, we show a 1.8× speedup for the Iteration Control phase of SPICE
when comparing a spatial implementation with a host CPU-offload implementation.
This suggests that a stand-alone FPGA accelerator execution can deliver better
performance. We consider the impact of parallelizing the Iteration Control phase on

416 N. Kapre and A. DeHon

0.1

1

10

s27
m

ux8
ringosc
s298
s344
s349
s382
dac
s444
s386
s510
s526
10stages
s641
s713
s953
s820
s832
s1196
s1238
s1423
20stages
s1494
30stages
40stages
50stages
r4k

S
pe

ed
up

2.8x mean
1.9x mean

1.6x mean

HybridVLIW Microblaze Sequential

Fig. 17 Speedup for the overall SPICE simulator for different iteration control implementations

the overall speedups of the FPGA accelerator. In Fig. 17, we show the overall SPICE
speedups under three implementation scenarios (1) offload to sequential host CPU
over PCI (2) offload to Microblaze soft-processor, and (3) spatial implementation
over hybrid VLIW design. We observe that the spatial implementation can deliver
modest improvements of 2.8×(geomean) over the sequential CPU implementation.
We can show this benefit by localizing all communication within the FPGA system
and exploiting data parallelism in the convergence detection and truncation error
calculation steps. However the amount of overall improvement is not very high
since the Iteration Control phase accounts for merely ≈7% of sequential SPICE
runtime. Other FPGA studies [38] prefer to implement such sequential fraction of
the application on embedded soft-processors like the Xilinx Microblaze. We see the
limits of using the Microblaze (1.6× geomean speedup) to implement this sequential
computation as it can be worse than even offloading the processing to the host
CPU over PCI (1.9× geomean speedup). The Microblaze soft-processor offers poor
double-precision floating-point support and schedules computation sequentially
over the ALU thereby limiting potential performance. In contrast, the spatial
VLIW design exploits the available data parallelism and implements the state-
machine processing with lightweight decision-making hardware thus delivering
better performance.

5.5 Future Work

We now sketch a few ideas for improving the performance of the Iteration controller
FPGA design.

1. We can overlap the Model-Evaluation phase with the Sparse Matrix-Solve phase
of SPICE. The overlap scheduler needs to statically compute a suitable ordering
of the device evaluation in Model-Evaluation to match the dataflow ordering in
Matrix-Solve.

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 417

2. Both Xilinx and Altera have announced FPGA platforms that are closely coupled
with fast sequential cores e.g. Xilinx-ARM Zynq platform and the Altera-
Intel Atom platform. We need to reexamine the hardware–software partitioning
problem for these platforms to determine if our hybrid VLIW architecture
continues to offer better scalability.

6 FPGA Implementation Methodology

We now explain the complete methodology and framework for mapping and running
SPICE simulations on an FPGA. As shown in Fig. 18, at a high-level, the SPICE user
provides a SPICE netlist for simulation acceleration. Our automated FPGA mapping
flow first selects a logic bitstream (marked a© in Fig. 18) based on the type of the
nonlinear device model being used e.g. bsim3 or bsim4 and the kind of SPICE
analysis requested (e.g. DC and Transient analysis). We pre-compile a handful of

D
R

A
M

F
P
G

A

Fig. 18 High-level FPGA SPICE usage flow

418 N. Kapre and A. DeHon

Fig. 19 FPGA SPICE mapping toolflow

FPGA logic bitstreams for the different nonlinear models and simply choose the
right bitstream without invoking the expensive FPGA CAD flow at runtime. We pick
an appropriate mix of nonlinear device configurations as demanded by the circuit
with constant-folding of common model parameters (e.g. parameters specific to the
CMOS process like Tox, Vth0) to optimize this configuration. We then exploit the
circuit structure to build the sparse matrix and extract the dataflow graph through
a one-time static analysis (marked b© in Fig. 18). We then assemble the device-
specific constants (e.g. W, L of the transistors) and the sparse dataflow graph into
a memory image for the DRAM (marked c© in Fig. 18). Finally, we configure
the FPGA and run the FPGA simulation without any CPU intervention during
the simulation. We can read back the simulation results from the FPGA for post-
processing and analysis. At present, we are required to fit all phases of SPICE on the
FPGA because dynamic reconfiguration is too slow to be useful for our benchmark
circuits (reconfiguration itself takes 1–2 ms compared to a few milliseconds of
FPGA SPICE iteration time). We show the complete FPGA mapping flow in greater
detail in Fig. 19 and cross-label the key steps from Fig. 18. The mapping flow is
organized into different paths customized for the specific SPICE phase.

In Fig. 20 we show how the different portions of the FPGA fabric co-operate to
execute a SPICE simulation. In Step (1©), we configure the FPGA with a suitable
logic bitstream and download the memory image onto the DRAM to set up the
simulation. In Step (2©) we stream the device parameters through the Model-
Evaluation VLIW circuit to process each device and generate the current (RHS x)
and conductance (matrix A) contributions while also checking for convergence in
the Iteration-Control. These contributions are inputs to the Matrix-Solve phase in
Step (3©). Next, in Step (4©), the dataflow graphs are streamed through the token
dataflow architecture from the off-chip memory to solve for unknown (vector x)
along with a convergence check in the Iteration Control. The voltage vector (x) is

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 419

Fig. 20 FPGA SPICE execution flow

input for the next iteration of Model-Evaluation as shown in Step (5©). The Iteration
Controller runs the analysis state-machines that advance or terminate the simulation
as appropriate.

6.1 Offline Logic Configuration

We generate the logic for implementing the VLIW, Dataflow and Streaming
architectures by choosing an appropriate balance of area and memory resources
through an area-time trade-off analysis. In Fig. 21, we show Area-Time trade-offs
for the different phases of SPICE and pick a feasible configuration by rapidly
evaluating all possible configurations in the small space of possible configurations.
We mark the feasible configurations in Fig. 21 and show exact resource utilization
of these feasible points in Table 11. For the composite design, we are restricted
to an 8-tile VLIW engine for Model-Evaluation, a 6-tile VLIW engine for Iteration
Control and a 3×3 tile architecture for Matrix-Solve. The FPGA logic configuration
includes the VLIW programming for the PEs and switches of the Model-Evaluation
and Iteration Control blocks.

420 N. Kapre and A. DeHon

0

0.2

0.4

0.6

0.8

1

1.2

105104103

T
im

e
(N

or
m

al
iz

ed
)

Area (Slices)

V
irtex-6

Iteration Control
Model-Evaluation

Sparse Matrix-Solve

Fig. 21 FPGA SPICE
area-time trade-offs

Table 11 FPGA resource distribution for complete SPICE solver (Virtex-6 LX760, bsim4 model)

Area Memory DSPs

SPICE phase Slices % BRAMs % 48E1 %

Model-evaluation 62,512 53 448 62 176 20
Sparse matrix-solve 27,090 23 180 25 99 11
Iteration control 17,848 15 32 5 77 9

Total 107,450 91 660 92 352 40

6.2 Runtime Memory Configuration

For each circuit, we must program memory resources to store the circuit-specific
variables and data structures relevant for the simulation. This is primarily necessary
to support the circuit-specific matrix factorization graph required for the Sparse
Matrix Solve phase. For the nonlinear devices and independent sources, we store
the device-specific constant parameters from the circuit netlist in FPGA on-chip
memory or off-chip DRAM memory if necessary. We load a few simulation control
parameters (e.g. abstol, reltol, final time) to help the Iteration Control
phase declare convergence and termination of the simulation. We also need to
generate a static dataflow graph for the Matrix-Solve phase at the start of the
simulation through symbolic analysis. We distribute the sparse dataflow graph
across the Matrix-Solve processing elements (shown by the “Graph Placement”
block in Fig. 19) and store the graph in off-chip DRAM memory when it does not fit
on-chip capacity. We compute a static ordering of loads from the off-chip memory to
appropriately stream the graph structure on-chip. Once we have the dataflow graphs,
we assign nodes to PEs of our parallel architecture using placement for locality with
MLPart [3].

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 421

Table 12 Area and latency model for SPICE hardware (Virtex-6 LX760), multiply
block uses 11 DSP48 units

Block
Area
(slices)

Latency
(clocks)

Speed
(MHz) Ref.

Double-precision floating-point operators
Add 334 8 344 [43]
Multiply 131 10 294 [43]
Divide 1,606 57 277 [43]
Square root 822 57 282 [43, 44]
Exponential 1,022 30 200 [8]
Logarithm 1,561 30 200 [8]

Network elements
TM BFT T-Switch 48 2 300 [23, 31]
TM BFT Pi-Switch 64 2 300 [23, 31]
PS Mesh Switch 642 4 312 –
Switch-Switch 32 2 300 –

Processing elements and miscellaneous
VLIW Tile Ctrl. 82 – 300 –
Dataflow PE Ctrl. 297 – 270 –
Microblaze Ctrl. 1,504 – 100 –
DDR2 Ctrl. 1,892 – 250 [32]

6.3 Hardware Library and Cost Model

We tabulate the resource requirements and performance characteristics of the
compositional hardware elements in Table 12. We use spatial implementations of
individual floating-point add, multiply, divide, and square-root operators from the
Xilinx Floating-Point library in CoreGen [44]. For the exponential and logarithm
operators we use FPLibrary from Arénaire [8] group. For the Model-Evaluation
and Iteration Control architectures, we interconnect the operators using a time-
multiplexed butterfly-fat-tree (BFT) network that routes 64-bit doubles (or 32-bit
floats when considering Single-Precision implementation) using time-multiplexed
switches. For the Matrix-Solve architecture, we interconnect the floating-point
operators using a bidirectional mesh packet-switched network that routes 84-bit,
1-flit packets (64-bit double and 20-bit node address) using DOR. We use a
hardware generation framework to automatically generate structural VHDL code
for the system based on selected implementation parameters such as system size,
network topology, and network bandwidth. The software infrastructure to support
time-multiplexed scheduling and packet-switched simulation is extended to provide
this hardware generation functionality. We store the static schedules as read-only
constants in local on-chip distributed memories.

422 N. Kapre and A. DeHon

Cycles = max(Tmodeleval +Tmatsolve ,Titerctrl(dp))+Titerctrl(stmc)

Tmodeleval = VLIW Model-Evaluation cycles

Tmatsolve = Dataflow Matrix-Solve cycles

Titerctrl(dp)= Data-Parallel Iteration-Control cycles

Titerctrl(stmc)= State-Machine Iteration-Control cycles

Fig. 22 Measuring FPGA
cycle count

6.4 FPGA Cycle Measurement

We express the total number of cycles required by our FPGA implementation as
shown in Fig. 22. This model assumes we must fit all three phases of the SPICE
iteration on the FPGA simultaneously. The model also assumes an overlapping
of a part of the Iteration Control phase with the other two phases of SPICE. In
our model, we only consider the execution times of SPICE iteration and exclude
the initial simulation setup time (e.g. circuit parsing, matrix construction, matrix
static analysis). This setup cost is small (usually proportional to 1–2 SPICE
iteration times [20]) and is common to both sequential CPU and parallel FPGA
implementations. This cost is easily amortized over sufficiently large number of
iterations where the FPGA-SPICE accelerator is expected to be used.

We report cycle counts from the time-multiplexed schedule (Model-Evaluation
and Iteration Controller) and a cycle-accurate simulation (Matrix-Solve). We esti-
mate memory load time for large matrices using streaming loads over the external
DDR2-500 MHz memory interface using lowerbound bandwidth calculations. For
our speedup calculation, we consider graph loading times as well as vector and
device constant loading times from external memory.

7 Evaluation

We report the achieved performance and energy requirements of our parallel
SPICE implementation. In Fig. 23a, we compare SPICE runtime on an Intel Core
i7 965 with a Virtex-6 LX760 FPGA across benchmark circuits of increasing
sizes. We observe a geomean speedup of 2.8× across our benchmark set with
a peak speedup of 11× for the largest benchmark. We also show the ratio of
energy consumption between the two architectures in Fig. 23b. We estimate power
consumption of the FPGA using the Xilinx XPower tool assuming 20% activity
on the flip-flops, on-chip memory ports and external IO ports. When using this
model, the FPGA consumes up to 40.9×(geomean 8.9×) lower energy than the
microprocessor implementation. To the first order, observed speedup and energy
benefits are proportional to the size of the benchmark. Larger benchmarks admit
greater parallelism across multiple independent devices for the Model-Evaluation
phase. Regular circuits with low fanout and high locality also generate good
parallelism for the Sparse Matrix-Solve phase. Thus, the variations in acceleration

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 423

1

3

5

7

9

11

13a

b

s27
m

ux8
ringosc
s298
s344
s349
s382
dac
s444
s386
s510
s526
10stages
s641
s713
s953
s820
s832
s1196
s1238
s1423
20stages
s1494
30stages
40stages
50stages
r4k

S
pe

ed
up

2.8x mean

0

10

20

30

40

50

s27
m

ux8
ringosc
s298
s344
s349
s382
dac
s444
s386
s510
s526
10stages
s641
s713
s953
s820
s832
s1196
s1238
s1423
20stages
s1494
30stages
40stages
50stages
r4k

E
ne

rg
y

S
av

in
gs

8.9x mean

Fig. 23 Comparing Xilinx Virtex-6 LX760 FPGA (40 nm) and Intel Core i7 965 (45 nm)
implementations. (a) Total per-chip speedup; (b) energy ratio

can be explained in terms of the size and differences in circuit structure across our
benchmark set. We expect this accelerator to be particularly useful for speeding up
SPICE simulations of large circuits (millions to billions of transistors) where the
sequential implementations can take days or weeks or runtime. Our performance
scaling trends in Fig. 23a do suggest a favorable increase in speedup with increasing
circuit size.

8 Conclusions

We show how to use FPGAs to accelerate the SPICE circuit simulator up to an
order of magnitude while also delivering an order of magnitude energy reduction
when comparing a Xilinx Virtex-6 LX760 with an Intel Core i7 965. We were able
to deliver these speedups by exposing available parallelism in all phases of SPICE
using a high-level, domain-specific framework and customizing FPGA hardware to
match the nature of parallelism in each phase. We were able to compose the overall

424 N. Kapre and A. DeHon

Table 13 Circuit simulation benchmark matrices

Bmarks. Matrix size Sparsity (%) Total ops. Fanout Fanin
Latency
(cycles)

Simucad [39]
mux8 42 15.0793 626 8 20 1.9K
ringosc 104 6.4903 1.6K 4 92 3.7K
dac 654 1.5849 23.6K 10 1,136 7.7K

Clocktrees [40]
r4k1 39,948 0.0131 515.5K 6 29,910 127.8K

Wave-pipelined Interconnect [41]
10stages 3,920 0.1753 72.7K 8 2,384 18.6K
20stages 11,225 0.0618 219.2K 9 9,442 46.2K
30stages 16,815 0.0410 306.0K 11 4,688 88.6K
40stages 22,405 0.0307 395.7K 9 600 134.2K
50stages 27,995 0.0245 493.9K 10 484 169.7K

ISCAS89 Netlists [2]
s27 189 3.4405 2.1K 6 50 3.6K
s208 1,296 0.5277 19.7K 11 1,414 11.3K
s298 1,801 0.4026 32.6K 13 1,938 13.1K
s344 1,992 0.3522 32.3K 12 2,178 14.7K
s349 2,017 0.3512 33.9K 14 2,218 14.7K
s382 2,219 0.3184 37.2K 16 2,358 16.1K
s444 2,409 0.2952 41.4K 16 2,526 16.6K
s386 2,487 0.2927 46.4K 20 2,626 15.7K
s510 2,621 0.3124 105.3K 54 2,722 21.4K
s526n 3,154 0.2362 66.1K 25 3,280 21.9K
s526 3,159 0.2376 68.1K 26 3,294 20.7K
s641 3,740 0.2000 100.2K 39 4,066 26.5K
s713 4,040 0.1890 126.4K 47 4,380 30.3K
s820 4,625 0.1655 103.2K 29 4,766 26.1K
s832 4,715 0.1629 105.7K 29 4,846 26.6K
s953 4,872 0.1876 353.9K 85 5,212 37.9K
s1196 6,604 0.1399 475.3K 83 7,146 46.4K
s1238 6,899 0.1325 457.9K 78 7,454 46.6K
s1423 9,304 0.0820 296.0K 64 10,384 64.5K
s1488 9,849 0.0827 354.7K 49 10,606 54.8K
s1494 9,919 0.0817 352.4K 50 10,646 54.6K

heterogeneous design that mixes VLIW, Dataflow and Streaming organizations
into a unified implementation with the assistance of suitable SCORE composition
framework. The tools and techniques we develop for mapping SPICE to FPGAs are
general and applicable to a broader range of designs. We believe the ideas explored
in this research are relevant across an important class of problems where compu-
tation is characterized by static, data-parallel processing and where the algorithm

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 425

operates on sparse, irregular data structures. Such high-level approaches based on
exploiting spatial parallelism will become important for improving performance and
energy-efficiency of general-purpose computation.

Appendix

We show the matrix characteristics of the circuit benchmarks used in our exper-
iments in Table 13. We use RAM netlists (Simucad [39]), clocktrees (University
of Michigan [40]), wave-pipelined circuits (UBC [41]) and the ISCAS 1989
benchmark set (IBM [2]).

References

1. A.M. Bayoumi, Y.Y. Hanafy, Massive parallelization of SPICE device model evaluation
on GPU-based SIMD architectures, in Proceedings of the 1st International Forum on
Next-Generation Multicore/Manycore Technologies, Cairo, Egypt (ACM, New York, 2008),
pp. 1–5

2. F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of sequential benchmark circuits.
IEEE Int. Symp. Circ. Syst. 3, 1929–1934 (1989)

3. A. Caldwell, A. Kahng, I. Markov, Improved algorithms for hypergraph bipartitioning, in
Proceedings of the 2000 Asia and South Pacific Design Automation Conference (2000),
pp. 661–666

4. E. Caspi, Design Automation for Streaming Systems. Ph.D., University of California, Berkeley,
2005

5. Chung-Wen Ho, A. Ruehli, P. Brennan, The modified nodal approach to network analysis.
IEEE Trans. Circ. Syst. 22(6), 504–509 (1975)

6. B. Conn, XPICE Circuit Simulation Software. (unpublished) (2008)
7. L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming.

IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)
8. F. de Dinechin, J. Detrey, O. Cret, R. Tudoran, When FPGAs are better at floating-point

than microprocessors, in Proceedings of the International ACM/SIGDA Symposium on Field-
Programmable Gate Arrays (ACM, New York, NY, USA, 2008), p. 260

9. A. Dehon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,
J. Wawrzynek, Stream computations organized for reconfigurable execution. Microprocess.
Microsyst. 30(6), 334–354 (2006)

10. M. DeLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T.E. Uribe, T.F.J. Knight,
A. DeHon, GraphStep: a system architecture for sparse-graph algorithms, in IEEE Symposium
on Field-Programmable Custom Computing Machines (IEEE, Piscataway, NJ, USA, 2006),
pp. 143–151

11. J. Duato, S. Yalamanchili, N. Lionel, Interconnection Networks: An Engineering Approach
(Morgan Kaufmann, Los Altos, 2002)

12. J.A. Fisher, The VLIW machine: a multiprocessor for compiling scientific code. IEEE Comput.
17(7), 45–53 (1984)

13. J. Gilbert, T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations.
SIAM J. Sci. Stat. Comput. 9(5), 862–874 (1988)

426 N. Kapre and A. DeHon

14. K. Gulati, J.F. Croix, S.P. Khatri, R. Shastry, Fast circuit simulation on graphics processing
units, in Proceedings of the Asia and South Pacific Design Automation Conference (IEEE,
Piscataway, NJ, USA, 2009), pp. 403–408

15. J. Hennesey, D. Patterson, Computer Architecture A Quantitative Approach, 2nd edn. (Morgan
Kauffman, Los Altos, 1996)

16. S. Hutchinson, E. Keiter, R. Hoekstra, H. Watts, A. Waters, R. Schells, S. Wix, The Xyce
parallel electronic simulator - An overview, in IEEE International Symposium on Circuits and
Systems (IEEE, Piscataway, NJ, USA, 2000)

17. Intel, Intel Math Kernel Library 10.2.5.035 (Intel, USA, 2005)
18. N. Kapre, A. DeHon, Optimistic parallelization of floating-point accumulation, in IEEE

Symposium on Computer Arithmetic (IEEE Computer Society, Washington DC, USA, 2007),
pp. 205–216

19. N. Kapre, A. DeHon, Accelerating SPICE model-evaluation using FPGAs, in IEEE Symposium
on Field Programmable Custom Computing Machines (IEEE, New York, 2009), pp. 37–44

20. N. Kapre, A. DeHon, Parallelizing sparse matrix solve for SPICE circuit simulation using
FPGAs, in International Conference on Field-Programmable Technology (IEEE, Piscataway,
NJ, USA, 2009), pp. 190–198

21. N. Kapre, A. DeHon, Performance comparison of single-precision SPICE model-evaluation
on FPGA, GPU, Cell, and multi-core processors, in International Conference on Field
Programmable Logic and Applications (IEEE, Piscataway, NJ, USA, 2009), pp. 65–72

22. N. Kapre, A. DeHon, VLIW-SCORE: beyond C for sequential control of SPICE FPGA accel-
eration, in International Conference on Field-Programmable Technology (IEEE, Piscataway,
NJ, USA, 2011)

23. N. Kapre, N. Mehta, M. DeLorimier, R. Rubin, H. Barnor, M. Wilson, M. Wrighton, A. DeHon,
Packet switched vs. time multiplexed FPGA overlay networks, in IEEE Symposium on Field-
Programmable Custom Computing Machines (IEEE, Piscataway, NJ, USA, 2006), pp. 205–216

24. K.S. Kundert, A. Sangiovanni-Vincentelli, Sparse User’s Guide: A Sparse Linear Equation
Solver (1988)

25. P. Lee, S. Ito, T. Hashimoto, J. Sato, T. Touma, G. Yokomizo, A parallel and accelerated circuit
simulator with precise accuracy, in Proceedings of the 2002 Asia and South Pacific Design
Automation Conference (IEEE, Piscataway, NJ, USA, 2002), pp. 213–218

26. L. Lemaitre, G. Coram, C. McAndrew, K. Kundert, M. Inc, S. Geneva, Extensions to Verilog-
A to support compact device modeling, in Proceedings of the Behavioral Modeling and
Simulation Conference (IEEE, Piscataway, NJ, USA, 2003), pp. 7–8

27. D. Lewis, A programmable hardware accelerator for compiled electrical simulation, in
Proceedings of the 25th ACM/IEEE Design Automation Conference (IEEE, Piscataway, NJ,
USA, 1988), pp. 172–177

28. D. Lewis, A compiled-code hardware accelerator for circuit simulation, in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (IEEE, Piscataway, NJ, USA,
1992), pp. 555–565

29. M. Linderman, M. Ho, D. Dill, T. Meng, G. Nolan, Towards program optimization through
automated analysis of numerical precision, in Proceedings of the IEEE/ ACM International
Symposium on Code Generation and Optimization (ACM, New York, 2010), pp. 230–237

30. H. Martorel, N. Kapre, FX-SCORE: a framework for fixed-point compilation of SPICE device
models using Gappa ++, in IEEE Symposium on Field Programmable Custom Computing
Machines (IEEE, Piscataway, NJ, USA, 2012)

31. N. Mehta, Time-Multiplexed FPGA Overlay Networks On Chip. Master’s thesis, California
Institute of Technology, 2006

32. Microsoft Research, DDR2 DRAM Controller for BEE3 (Microsoft Research, USA, 2008)
33. P. Mucci, S. Browne, C. Deane, G. Ho, PAPI: a portable interface to hardware performance

counters, in Proceedings of the Department of Defense High Performance Computing Mod-
ernization Program Users Group Conference (IEEE Computer Society, Washington DC, USA,
1999), pp. 7–10

Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study 427

34. L.W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits. Ph.D. thesis,
University of California Berkeley, 1975

35. E. Natarajan, KLU A High Performance Sparse Linear Solver for Circuit Simulation Problems.
Master’s thesis, University of Florida Gainesville, 2005

36. G. Papadopoulos, D. Culler, Monsoon: an explicit token-store architecture. Proc. Annu. Int.
Symp. Comput. Archit. 18(3a), 82–91 (1990)

37. H. Peng, C.K. Cheng, Parallel transistor level circuit simulation using domain decomposition
methods, in Proceedings of the Asia and South Pacific Design Automation Conference (IEEE,
Piscataway, 2009), pp. 397–402

38. A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sundararajan, R. Wittig,
Performance and power of cache-based reconfigurable computing, in Proceedings of the
International Symposium on Computer Architecture, vol. 37 (ACM, New York, 2009), p. 395

39. Simucad/Silvaco, BSIM3, BSIM4 and PSP benchmarks from Simucad (Simucad (now Sil-
vaco), USA, 2007)

40. C. Sze, P. Restle, G. Nam, C. Alpert, ISPD2009 clock network synthesis contest, in Proceed-
ings of the 2009 International Symposium on Physical design (ACM, New York, 2009), p. 149

41. P. Teehan, G. Lemieux, M. Greenstreet, Towards reliable 5Gbps wave-pipelined and 3Gbps
surfing interconnect in 65nm FPGAs, in Proceeding of the ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (ACM, New York, 2009), pp. 43–52

42. Q. Wang, D.M. Lewis, Automated field-programmable compute accelerator design using
partial evaluation, in Proceedings of the 5th Annual IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, 1997, pp. 145–154

43. Xilinx, Xilinx CoreGen Reference Guide, 2100 Logic Drive, SanJose, CA, 95124, USA (2000).
www.xilinx.com

44. Xilinx, Floating-Point Operator v5.0, 2100 Logic Drive, SanJose, CA, 95124, USA (2009).
www.xilinx.com

45. Xilinx, MicroBlaze Processor Reference Guide, 2100 Logic Drive, SanJose, CA, 95124, USA
(2010). www.xilinx.com

46. Xilinx, OS and Libraries Document Collection. Technical report, 2100 Logic Drive San Jose,
CA 95124, USA (2010). www.xilinx.com

47. X. Ye, W. Dong, P. Li, S. Nassif, MAPS: multi-algorithm parallel circuit simulation, in
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (IEEE,
Piscataway, NJ, USA, 2008), pp. 73–78

www.xilinx.com
www.xilinx.com
www.xilinx.com
www.xilinx.com

Part II
Architectures

The second part of the book is concerned with architectural developments in High-
Performance Reconfigurable Computing. It starts with a contribution from Klauer
of the Helmut Schmidt University, Germany, on Convey computing – one of the
most ambitious and pragmatic commercial attempts to bring the power of FPGAs
into mainstream computing. This is followed by a contribution from Castillo et al.
from Spain which presents an academic effort to build a low cost high performance
reconfigurable computer, called SMILE. Next, Baity-Jesi et al. from Spain and Italy
present a domain-specific FPGA-based supercomputer used for statistical physics,
called Janus.

The following three chapters deal with networking and communications issues in
FPGA-based parallel systems. First, Nüssle et al. from the University of Heidelberg,
Germany, present an FPGA-based low-latency interconnection network called
EXTOLL. Then, Baier et al. from Germany and the USA present an FPGA-based
high-speed torus interconnect and its implementation for two parallel machines,
namely QPACE and AuroraScience. After that, Fröning et al. from the University
of Heidelberg, Germany, and Universitat Politècnica de València, Spain, present
an FPGA-based cluster memory architecture which allows for dynamic resource
provisioning.

This part ends with a contribution from Minoru Watanabe of Shizuoka Uni-
versity, Japan, which presents a radically novel high performance reconfigurable
computing paradigm based on high-speed optical dynamic reconfiguration.

The Convey Hybrid-Core Architecture

Bernd Klauer

Abstract Hybrid Computing is a term that has originally been used for
computations performed on analog/digital hardware and was popular until the
late 1970s. Complex computations done under realtime conditions, such as signal
processing, were left in the analog domain as the conversion times of A/D
converters, sampling rates, and clock speeds of processors were significantly too
low to solve complex equations in reasonable times. Today, processor layouts still
contain analog components in the I/O areas as amplifiers, sensors or A/D converters.
In the area of logical or arithmetical computations they became absolutely irrelevant.

The renaissance that the term Hybrid Computing has experienced in recent
years comes from a combination of hardwired multicore microprocessors and
configurable integrated circuits (FPGAs1). This chapter focusses on Hybrid Com-
puting and Hybrid Core Computing which is a special form of Hybrid Computing
introduced by Convey Computer Corporation.2

1 Hybrid Computing

Two main features have driven the computer performance and development in
the past:

• Clock speed and
• Parallelism

1Field Programmable Gate Arrays.
2Convey Computer Corporation, 1302 East Collins Boulevard, Richardson, TX 75081, www.
conveycomputer.com.

B. Klauer (�)
Helmut Schmidt University, University of the Federal Armed Forces of Germany,
Holstenhofweg 85, 22043 Hamburg, Germany
e-mail: bernd.klauer@hsu-hh.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 14, © Springer Science+Business Media, LLC 2013

431

www.conveycomputer.com
www.conveycomputer.com
mailto:bernd.klauer@hsu-hh.de

432 B. Klauer

Clock speed was the main performance parameter until ∼2000. Since then, the
core-based parallelism has taken the lead performance parameter role. As Gordon
Moore’s law [26] is still applicable to predict the development of the density of
transistors in future integrated circuits, theoretically processors with hundreds of
cores may appear within the next 10 years.

Question 1. Can future microprocessors hundreds of cores really perform effi-
ciently?

The first counter argument against large core counts is Amdahl’s law [1, 16, 28].
Amdahl’s law shows that each parallel algorithm has its maximum of processing
elements that can efficiently speed up the algorithm. This observation can directly
be translated into the fact that total applications that can efficiently take profit from
a many core architecture decrease with growing core counts.

Only few applications can take advantage from large processor totals [20].
The second counter argument is that many core architectures are facing a lot of
architectural problems by increasing core totals, such as bottlenecks in memory and
I/O. Those simple observations lead to the prediction that core-based parallelism
will face its borders, as clock speeds have in the last 10 years (2000 . . .2010).

Question 2. How can the fact, that transistor totals will still increase in the near
future, be utilised efficiently?

The integration of configurable components in computers and even into CPU
architectures will be a key issue in the future competitions of performance. This can
be derived from the following facts:

• Off-the-shelf computer architectures, even parallel, multi, and many-core ar-
chitectures and dedicated graphics cores, need algorithms to be optimized
and parallelized to perform efficiently on a parallel architecture. This leads
to the fact that algorithms are partly modified to suit their environment. The
hybrid computing approach works vice versa: Hybrid computing focuses on the
optimization of hardware to optimally support algorithms. So the performance is
gained from algorithms running on optimized hardware or algorithms that have
directly been mapped into the hardware rather than algorithms optimized for a
hardware architecture.

• As configurability also means reconfigurability the hardware features can be
changed between different applications.

• Hybrid computing also means that there is a hardwired section that runs a
standard operating system to provide a convenient user interface and to provide
all standard interfaces from a desktop computer.

• The hardwired section can also be used as a development platform for config-
urations and programs—and also for applications that do not need support by
configurability.

During the last decades we observed that initially computer performance was
driven by clock speeds. Facing several physical walls, the enabling factor for
performance moved from clock speed to parallelism. Taking a look at Amdahl’s law

The Convey Hybrid-Core Architecture 433

Fig. 1 Gordon Moore’s law and its derivatives; T: Transistor total

and the opportunities to parallelize algorithms, we can expect that also parallelism
will soon be limited for nonscientific computations.

Thus, computer performance will probably need to seek another driving factor.
It is our prediction here that configurability can probably take over the role as
enabling factor for computer performance as shown in Fig. 1. Another view on our
prediction that future will be hybrid is given in [11, 12].

The reason for this assumption is the fact that a lot of potential parallelism
cannot be exploited on hardwired parallel computers. The parallelism of algorithms
is indicated by their dataflow graph. To parallelize an algorithm on a hardwired
architecture means to map the dataflow graph as well as possible on the given
topology of the parallel computer. Typical topologies were vectors, fields, cubes,
and hypercubes. All those structures were regular structures suitable to accelerate
algorithms like matrix computations perfectly. This leads us to our first observation
that—besides some rectangular computation schemes—the dataflow graphs of typ-
ical algorithms are usually not as regular as the topology of the parallel computers.
The second observation is that the granularity of parallelizable computations is
usually not optimal to be mapped on hardwired parallel hardware. For example:
Solve the following computation on parallel hardware: abcd − 42 − wxyz. We
consider the dataflow graph as shown in Fig. 2.

The dataflow graph shows that the multiplications in the first row can perfectly
be parallelized as well as the multiplications in the second row. The last two
subtractions need to be computed sequentially. Applicable solutions with legacy
hardwired architectures would be a VLIW programm with four instructions or a
sequential program with eight instructions parallelized by a superscalar issue logic
resulting in approximately the same dataflow-based parallelization. A multicore
approach to improve performance by exploiting the parallelism of our example
would not really be promising.

434 B. Klauer

Fig. 2 Dataflow graph of the
computation: abcd −42−wxyz

Fig. 3 Class 1. The FPGA is
embedded in a legacy CPU
environment as a configurable
component with some kind of
interface to open the FPGA
for applications

The same problem solved on a machine with configurable capabilities would
result in a digital circuit directly derived from the dataflow graph. Different
approaches to connect standard processors to configurable logic (see Sect. 3) can
then be used to provide the circuit in the configurable part of the computer with
recent values and to collect the results.

2 Classification

We distinguish here three types of hybrid (configurable/hardwired) architectures.

1. Standard Processors which are tightly coupled with configurable circuits, as
in Fig. 3

2. FPGAs with embedded hardwired processor kernels, as in Fig. 4
3. FPGAs with embedded processors configured on the FPGA. This class is also

shown with Fig. 4. The difference is that the processors are not hardwired but
subject to configuration.

We allow the last class in the sense that the processor core is part of the configurable
space—but it will not be reconfigured or changed. It is used in the sense of the
architecture listed above.

All three classes can host different types of hardware support. The next figures
are showing different examples how configurability can be used in a hybrid
environment (Figs. 5–8).

The Convey Hybrid-Core Architecture 435

Fig. 4 This figure stands for
class 2 and three hybrid
architectures. Type one uses
hardwired CPUs, type 2 uses
soft cores configured on the
FPGA

Fig. 5 This example shows
two hardwired CPUs
extended by two additional
CPUs on the FPGA. The
extensions can be of the same
type as the hardwired CPUs
as well as CPUs with a
specific instruction set

Fig. 6 This example extends
the hardwired CPUs by a grid
of CPUs on the FPGA. Such
extensions have a simple but
massively parallel executable
instruction set

Fig. 7 This example is
similar to Fig. 6 with a
crossbar to support high
communication bandwidth
between the simple CPU
modules

3 Related Work

The idea of hybrid computing in the sense of mixed hardwired and configurable
hardware is not new. The first ideas have been published in the early 1960s [10]
when (hardwired) integrated circuits were manufactured with some ten transistors.

436 B. Klauer

Fig. 8 This example shows a
complete heterogeneous
assembly of components
working together to support a
specific problem

Silicon circuits were supposed to be structures that were engraved into a stone-like
substrate. In those days the idea of having electronic circuits with an electrically
alterable structure and functionality was considered to be lunatic. In the late 1970s
a new technology came up with the programmable logic devices (PLDs) such as
programmable read only memories (PROMs), programmable array logic (PAL) or
programmable logic arrays (PLAs) [19]. The PLDs were the first configurable logic
circuits. The idea behind the PLDs was to store all results of a Boolean function
(BF) in a memory (PROM). The literals of the BF were fed into the address signals.
The memory then answered with the result of the BF.

Alternatively universal circuits to compute full disjunctive normal forms were
used. They provided a plane with AND gates, a plane with OR gates and a
switching network to feed the AND plane with the input literals and the OR plane
with the outputs from the AND plane. The outputs of the AND plane were the
results of the BF. The first PLDs could be used to compute only one BF. The first
PLDs providing more than one configurable logic block (CLB) raised the need
for interconnection schemes. The first commercially available FPGA, providing
64 CLBs and a configurable interconnection structure to connect the CLBs among
themselves and to the I/O pins of the circuit was the XC2064 introduced by Xilinx
in 1985.

The different classes of hybrid computers as mentioned in Sect. 2 have been
implemented by connecting hardwired processors with FPGA technology or by
embedding microprocessors into FPGAs. Before focusing on the Convey HC hybrid
core computer in the next section we give a short overview on other architectures
available in the area of hybrid computing. Surveys of recent architectures for
(re)configurable computing are given in [7, 25, 30]. A nice overview on compiling
techniques is given in [5].

Intel Stellarton

Intel Stellarton stand for an Intel Atom processor combined with an Altera FPGA
in a single package. This arrangement allows the design of hardware optimized
embedded systems on a low cost basis as glue logic or interface components
can individually be designed into the component—without a specific full custom
design [22].

The Convey Hybrid-Core Architecture 437

Cray XD1

The XD1 consists of AMD Opteron 64-bit CPUs together with Xilinx Vertex-II Pro
FPGAs. The FPGAs can be used to accelerate applications. A chassis with 12 CPUs
can be used as building block for supercomputers: Up to 12 chassis can be combined
in a rack. Racks can be combined to multirack systems [8, 32].

Axel Cluster

An Axel Cluster consists of so-called heterogeneous computing nodes (HCN)
interconnected by fast standard network technologies (GB Ethernet or Infiniband).
Each HCN consists of an x86 CPU, a GPU (up to 240 cores) and an FPGA on a
PCIe bus [31].

Xilinx Zynq

With the Zync architecture Xilinx provides a variety of ARM Cortex-based designs
combining hardwired processors and interface circuits with memory and config-
urable logic [34].

Garp

The Garp architecture [18] consists of a reconfigurable datapath attached as
coprocessor to a MIPS processor. The data cache contains data for the MIPS
processor as well as configuration parts for the FPGA section. In [3] it is shown
how C compiling techniques can be applied to derive efficient configurations for the
Garp architecture.

COPACOBANA

The Cost-Optimized Parallel Code Breaker COPACOBANA [24] consists of a
backplane with sockets for FPGA modules. Six Xilinx Spartan-3 FPGAs fit into one
FPGA module. The backplane provides power supply and communication signals
and an FPGA based interface logic to connect the whole system to a PC-based
host by USB. Although the architecture is published as special purpose configurable
system for code breaking it is (as indicated by its name) a low cost solution for an
FPGA-based computing system.

438 B. Klauer

Novo-G

The Novo-G architecture [13, 14] is based on PCIe x8 boards. Each board has four
Stratix-III E260 FPGAs. The FPGAs have high bandwidth interconnects and each
FPGA is directly connected to two 2 GB DDR2 RAM modules. A Novo-G cluster
consists of a network of PCIe backplanes with the FPGA modules.

The Berkeley Emulation Engine 2

The Berkeley Emulation Engine 2 (BEE2) [6] is an architecture with a hierarchical
assembly of Xilinx Virtex II FPGAs. Each compute Module has five FPGAs with
next neighbour connections. Each FPGA has a private RAM. Each module is
connected to its adjacent modules and each module has a 10-GB network connection
for non-adjacent communications and a 100-MB network connection to interface the
modules with external I/O or memory.

Chimera

The Chimera architecture is a triple hybrid architecture as it encorporates not only a
common multicore architecture and FPGAs but also a GPU cluster. The hardwired
CPU, the GPU cluster and the FPGA cluster are interconnected by a high-speed
backplane [21].

HDL Descriptions of Optimizable Processors for FPGAs

As shown in Sect. 2 hybrid computing can be performed by the configuration
of processors on FPGAs. Such processors can be optimized due to application-
based information such as a dataflow analysis or known types of parallelism.
Coarse grain parallelism can be exploited by placing multiple CPUs on the FPGA.
The total CPUs as well as their internal structure are subject to reconfiguration if
the application changes [4, 15]. An architecture with self-optimizing properties is
shown in [27]. Niyonkuru and Zeidler [27] describe a superscalar processor with an
ARM instruction set. A configuration manager (an additional finite state machine)
evaluates the load of the arithmetical and logical pipelines. As soon as it detects a
need for special functional units it reconfigures the datapath of the ARM-compatible
processor accordingly. In case of good reconfigurations the issue logic can issue
more instructions concurrently to suitable functional units. This is a heuristical
approach with good results in case of strong locality or in case of long sequences of

The Convey Hybrid-Core Architecture 439

identical instructions. In [17] this approach is enhanced in two ways. With the first
enhancement the configuration manager is removed. Therefore the ARM instruction
set is extended by operations to control the self-reconfiguration of parts of the ALU.
A C-compiler (SUIF [33]) then performs dataflow and instruction flow analysis to
decide the best performing configurations and the places in the instruction sequences
where reconfiguration should occur.

4 The Convey HC-1 Hybrid Core Computer

4.1 Convey Computer Corporation

Convey Computer Corporation is a venture capital-based firm founded in 2006
by Steve Wallach, Bruce Toal, and Tony Brewer. The company designs and
markets high performance servers based on a novel hybrid-core architecture that
combines one or more x86 processors with reconfigurable hardware implementing
application-specific instructions. The company’s first product (the HC-1) was
announced in 2008, and a later generation with higher density FPGAs (the HC-1ex)
was announced in 2010.

4.2 The Convey HC-1 Architecture

The Convey HC family incorporates an Intel hardwired x86-64 processor and Xilinx
FPGAs for reconfigurable hardware. The reconfigurable hardware is implemented
as a coprocessor which shares physical memory and virtual addressing with the
Xeon host processor. Figure 9 shows its building blocks.

The hardwired host processor components include a Xeon multicore processor,
an Intel 5400 series memory controller hub, and Intel-based I/O system. The
host processor executes the operating system, executes the sequential parts of
applications, and initiates and controls execution of application-specific instructions
implemented in the reconfigurable logic of the coprocessor. The FPGA logic designs
that implement these instructions are referred to as personalities and are loaded
dynamically by the operating system as needed by applications. Each personality
has a unique ID and defines a particular set of semantics that can range from a
single instruction that implements a specific function to an entire instruction set
architecture that can be programmed like a conventional processor. Coprocessor
instructions are embedded in a programs text region and executed by a transfer
of control from a thread executing on an x86 referred to as a dispatch. Host x86
instructions and coprocessor instructions execute in the same process address space
and have the same view of memory.

440 B. Klauer

Fig. 9 The convey HC-1 hybrid core computer

Fig. 10 The Application
Engine Hub (AEH) consists
of multiple FPGAs that
collectively implement the
interface to the host system,
route memory requests
between the coprocessor and
host, fetch and decode
coprocessor instructions, and
execute coprocessor scalar
instructions. These functions
are required for all
personalities and are therefore
not reconfigurable by users

4.2.1 Coprocessor Functional Components

The HC-1 coprocessor (see Fig. 9) has three main building blocks, the Application
Engine Hub (Fig. 10), the Application Engines, and the Memory Controllers.

Application Engines (AEs) execute application-specific instructions. There are
four of them in the HC-1 and HC-1ex, and they are loaded dynamically by the OS
with the configuration files that implement a personality.

Memory Controllers (MCs) are connected to the AEs and to the AEH by
point-to-point links. There are eight memory controllers in the HC-1 and HC-1ex,
each of which controls two DDR2 memory channels. Memory requests from the
AEs consist of virtual addresses which are translated to physical addresses via

The Convey Hybrid-Core Architecture 441

Translation Lookaside Buffers in the MC. The native unit of transfer for the memory
system is a 64-bit word, and the memory channels support a Convey-designed
DIMM type that divides the channel into 8 subchannels, each of which can transfer a
word from a different address. This maximizes bandwidth for random and non-unit
stride memory accesses. Like the AEH, the MCs implement a fixed set of functions
that are common to all personalities and are not reloadable by the user. Moreover,
data stored in the coprocessor memory is not affected by reloads of the AEs. This
allows the OS to swap personalities without having to reload coprocessor memory.

4.2.2 Coprocessor Execution

Upon receipt of a dispatch, the AEH begins fetching and executing coprocessor
instructions. Scalar instructions from the base instruction set are executed by
the scalar engine in the AEH, while AE instructions are sent to all four AEs.
Scalar instructions are defined by the coprocessor architecture and are part of the
coprocessor infrastructure, but the semantics of AE instructions depends on the
current personality. Both scalar instructions and AE instructions operate on virtual
addresses and are constrained by the same memory protection mechanisms as x86
instructions. Memory requests containing virtual addresses are sent to the MCs,
where they are translated to physical addresses. If the requests are to physical
addresses in coprocessor memory, they are scheduled on the appropriate DIMM
channel. A snoop filter containing tags for all coprocessor memory locations that are
encached by the host processor ensures coherency with the host while minimizing
snoop traffic. References to physical addresses in host memory are routed through
the AEH to the host interface. A cache containing recently accessed host data
reduces the latency for accesses to host data.

4.3 Application Development

The Convey architecture supports a heterogeneous model in which part of an
application executes on the x86 cores in the host processor and part executes on
the coprocessor. The design is intended to preserve the model of a multithreaded
Linux process, without constraining the architecture of the algorithm implemented
on the coprocessor. A variety of programming tools from Convey and from other
vendors can be used to develop both the host-based portion of applications and
the personalities that execute on the coprocessor. An overview on the design flow
is given in Fig. 11. The HDL sources for the personality, typically VHDL or
Verilog are compiled into configuration strings by an HDL compiler, e.g. Xilinx,
Cadence, Mentor, and Synopsys. The configuration strings, see 12 are loaded into
the application engines as personality. Their function can be envoked by coprocessor
instructions executed in the AE hub (see Fig. 9).

442 B. Klauer

Fig. 11 The design flow for the convey hybrid core computers

Software runs through a standard software development flow with standard
compilers. A library that comes with the PDK provides convenient interfacing to
the AE hub and the login provided by the HDL description and is linked with the
application objects.

4.3.1 Programming Model

The Convey model of execution assumes that execution by the coprocessor occurs
on behalf of threads executing on the host and in the same process address space as
those threads. A thread may invoke execution on the coprocessor via a “dispatch.”
A dispatch contains contains an address of coprocessor code to begin execution and
parameters to be passed to the coprocessor routine and behaves like an asynchronous
procedure call, except the routine being called contains coprocessor instructions
instead of x86 instructions. Dispatches are handled one at a time by the coprocessor;
multiple dispatches from different threads are queued and handled one by one.

The Convey Hybrid-Core Architecture 443

Fig. 12 A typical directory with personalities

A coprocessor supports multiple instruction sets, but only one may be loaded at
a time. The coprocess compares the instruction set required for each dispatch to the
personality currently loaded—if they are different the required personality is loaded
automatically by the OS.

Coprocessor instructions are divided into two types, scalar instructions and AE
instructions. The scalar instruction set is implemented in the scalar engine and
is architecturally defined to be common to all personalities. AE instructions are
executed by the AEs; their function is defined by the currently loaded personality.
AE instructions can range in functionality from simple scalar or SIMD instructions,
or may initiate or control execution of a complex state machine that is free running
and executes independently of the scalar engine.

There are few restrictions on the semantics of AE instructions, but they are
constrained to operate on virtual addresses within the process address space of
the controlling process. Since virtual to physical translation is implemented in the
coprocessor infrastructure, AEs operate on virtual addresses and can operate on the
same datastructures as the host threads, using the same pointers.

The coprocessor implements traps and exceptions that are passed to the operating
system as if they were generated by a processor. The coprocessor can therefore gen-
erate floating point exceptions, address violations, page faults, and other exceptions
just as a processor would. The coprocessor supports a context save mechanism that
allows gdb to set breakpoints on coprocessor instructions and examine coprocessor
state.

4.3.2 Creating and Using Personalities

Personalities in the Convey architecture are hardware designs that can be dynami-
cally loaded on the Convey coprocessor and accessed via the dispatch mechanism
described above. Physically they consist of the configuration files that are loaded
into the AE FPGAs along with some additional information required by the Convey
system software. Each personality is tagged by a 64-bit ID and stored in a common
system directory so it can be loaded as needed by the OS. Figure 12 shows such a

444 B. Klauer

directory listing. Convey and other vendors sell prebuilt personalities that accelerate
popular applications. These personalities may be installed and used without any
hardware design.

Convey also licenses a Personality Development Kit that provides tools for users
to create personalities based on their own logic designs. This kit includes interfaces
to the Convey infrastructure components such as the memory system and scalar
engine, along with useful components such as a memory crossbar. The system is
open, and is supported by a variety of high level synthesis tools.

4.3.3 Application Programming

Convey systems run a variant of the Linux operating system, and application
development is similar to other Linux systems. Programs may be compiled with
the GNU compilers or with an enhanced version of the Open64 compiler suite from
Convey. At the lowest level, personalities may be accessed via a procedure call-
like mechanism from either gcc or the Convey compilers. This mechanism is most
commonly used for personality designs that have just one or two instructions that
perform very complex tasks. Threads running on the x86 set up data structures in
memory, migrate or copy them to coprocessor memory, then call the coprocessor
routine, passing pointers to the input data. The coprocessor routine runs until it has
completely processed the data, then either waits on a semaphore in memory for
more data, or returns control to the invoking host thread (possibly allowing another
dispatch to be processed).

The Convey enhanced Open64 compilers provide additional ways to invoke
personalities. Interfaces to coprocessor instructions can be coded as user-written
intrinsics, allowing them to be called from optimized code. The compilers also
support automatic vectorization and code generation for the Convey extended vector
instruction set. This allows customized, complex SIMD instructions to be called
from with vector loops, taking advantage of the compiler’s dependence analysis and
vectorization to manage the distribution of work across multiple function pipes on
the AEs.

4.4 Operating System

The Operating System has not been taken under consideration with a focus on
configurability. The Convey approach is a runtime library providing functions to
load configuration strings into the application engines of the configurable part of
the machine. The operating system aspects of configuration are subject to current
research. The following services need to be migrated into the OS:

• From the viewpoint of an operating system the configuration space of the FPGAs
is a resource to be managed similar to memory. OS functionality for the allocation

The Convey Hybrid-Core Architecture 445

of config space as well as loading and unloading of configurations needs to be
integrated into common operating systems. As different applications may profit
from the config space concurrently the reconfigurations need to be done without
conflicting running applications.

• As whole processors may be configured into FPGAs it will be possible to
revolutionize virtualization. Current virtual machines take profit from emulation
with more or less hardware support. Taking into account that FPGAs can host
whole processors, virtualization procedures by emulation can be replaced by
configuration—leading back to real processors to be provided as configuration
as soon as they are requested.

5 Applications and Performance

The personalities that accelerate key algorithms rely on parallelism rather than
a high clock rate to achieve performance. High performance personality designs
typically through the use pipelining and replication of functional units.

The reconfigurability of the HC-1 coprocessor allows implementation of in-
structions that are much more complex than the instructions typically found in a
hardwired CPU. Coprocessor instructions are often highly pipelined state machines
(referred to as function pipes) that implement the same function as dozens or
hundreds of x86 instructions, yet are still capable of producing a result each clock
cycle. This allows an application-specific design that operates at a relatively slow
clock rate to deliver higher performance than a conventional processor executing
simpler instructions at a much higher clock rate. The memory system of the
coprocessor is also highly parallel and capable of delivering many operands to
the AEs and/or storing results on each cycle. To fully saturate the memory system
the function pipes are typically replicated to match the available bandwidth. The
function pipes do not necessarily operate in lock step and may generate irregular
patterns of access. The HC-1 memory system is designed to sustain high bandwidth
for random or non-sequential memory access. Figure 13 illustrates this with a
relatively simple gather operation.

Table2[i] = Table1[Index[i]];

The above operation generates three streams of memory requests:

• One sequential load,
• One random load,
• And one sequential store.

On a cache-based system the random load produces a very low effective
bandwidth if Table1 is larger than the cache, as the system must transfer an entire
cache line to deliver one operand. The HC-1 with its cacheless design delivers a
much higher effective bandwidth.

446 B. Klauer

Fig. 13 Memory bandwidth

The combination of high functional parallelism and efficient support of random
memory accesses is particularly well suited to algorithms which match queries
against a large reference, such as those used in genome assembly and alignment.
An example of an algorithm that is particularly well suited to acceleration is the
Smith–Waterman algorithm [29], which used to compare strings that may have
substitutions, insertions, or deletions against a reference database.

Convey’s SWSearch Smith–Waterman alignment tool is a protein or nucleotide
sequence search program that relies on a hardware personality to perform large
numbers of local alignments in parallel. Figure 14 gives an impression of the
hardware supported Smith–Waterman implementation. Each of the AEs is divided
into a number of tiles that can operate independently to compare different query
strings or be combined to process larger strings. On the Convey HC-1ex with Virtex-
6 LX760 FPGAS, up to 1,280 characters can be processed on each FPGA on each
150 MHz cycle.

The SWSearch tool preloads the reference database into coprocessor memory
for fast access. It then reads query sequences from a query file and assigns them
to tiles or sets of tiles according to their length. The tiles then begin loading the
references and scoring them. Query sequences too large to be processed by the
largest grouping of tiles are aligned using a software implementation of the Smith–
Waterman algorithm on the host processors.

A performance test which compared 1,000 randomly chosen proteins against the
entire non-redundant (nr) protein database is shown in Fig. 15. The hardware imple-
mentation on an HC-1ex to be 13.2 times faster than an SSE2-based implementation
(ssearch) running on a fast (2.93 GHz) 12 core x86 system. The newer HC-2ex was
14.5 times faster. This performance is a function of the very large number of cell
updates (5,120) that can be performed on each cycle by the hardware.

The Convey Hybrid-Core Architecture 447

Fig. 14 Convey Smith–Waterman implementation

5.1 Programming Effort

In the time when clock speeds were the driving factor in computer perfor-
mance programming was relatively easy as concurrent programming techniques
did not need to be considered. There was nearly no impact from clock speed
to programming. Some impacts could be observed in realtime programming by
decreasing clock cycle times.

With the upcoming age of parallelism (see Fig. 1) programming was massively
affected as algorithms now had to be parallelized. This was a tremendous challenge
for programmers as they now needed parallel programming skills as good and
efficient automatic parallelization methods are still a matter of research.

448 B. Klauer

Fig. 15 A relative performance comparison

The programming effort for hybrid computers as the Convey HC machines are
can be derived from Fig. 16. It corresponds to Fig. 11. The design flow separates
after the programm analysis into a hardware and a software path. The partitioning
stage contains the parallelization analysis and decisions which parts of the par-
allelized algorithms need special parallel hardware support. Parallel and special
mean in this case parallel hardware that is not provided by standard multicore
architectures. This partitioning requires hardware and software design skills. As
there are very few excellent designers with expertise in both areas, hardware and
software design, good design decisions here require both experts. This doubles
approximately the size of design teams. The pure forward design time remains the
same as far as testing is not considered and if codesign engineering techniques can
be applied [9]. Testing is much more complex as in homogeneous design projects
as hardware and software are together the source of errors. Things might work
separately but not together. Codesign friendly architectures and test methods still
need to be developed [23].

Besides the general propositions above the design complexity of applications for
the Convey HC architectures depends strongly on the applications themselves and
on the question if a personality needs to be developed or if already designed and
tested personalities can be used. In the first case the complete design flow needs to
be done by a development team. In the second case the hardware components come
with a library that needs to be linked with an application. In this case the whole
design process is easy and similar to just software development.

The Convey Hybrid-Core Architecture 449

Fig. 16 A design flow for hybrid computing

Hardware and software development in general are well supported as the Convey
HC machines come as Intel Linux machines. Design tools and compilers can run
on the multicore Linux part of the machines. Synthesis results can then easily be
loaded into the FPGA coprocessor. Convey also provides predesigned interfaces to
the hardware structures like I/O and (cache coherent) memory interfaces. Also the
hardware/software interface is easy to use by the coprocessor concept.

6 Conclusion

As we learn from Fig. 1 hybrid architectures are at least one—probably the only
way to exploit performance from the fact that Gordon Moores law is still effective.
In Sect. 3 we have observed that academia as well as industrie developed first
architectures containing reconfigurable components. Configurable Hardware allows
for optimized hardware supporting algorithms instead of declining algorithms to
perform on hardwired concurrent computers. We also learned that performance can
be derived from the convergence of hardware and software in the term configware.
This benefit needs to be paid with a significantly increased design effort as far
as there is no new generation of codesign tools incorporating the development of
hardware, software and configware [2].

450 B. Klauer

Acknowledgements I express my sincere thanks to Convey computer corp. for their support
of this contribution, especially to Kirby Collins from Convey for providing Convey original
documents and to Ian Gregor from Griffith University for proof reading.

References

1. G.M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, in Proceedings of the April 18–20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring) (ACM, New York, 1967), pp. 483–485. doi:10.1145/1465482.1465560,
http://doi.acm.org/10.1145/1465482.1465560

2. D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz, E. Komp, P.
Ashenden, Programming models for hybrid fpga-cpu computational components: a missing
link. IEEE Micro 24(4), 42–53 (2004). doi:10.1109/MM.2004.36, http://dx.doi.org/10.1109/
MM.2004.36

3. T.J. Callahan, J.R. Hauser, J. Wawrzynek, The Garp architecture and C compiler. Computer
33(4), 62–69 (2000). doi:http://dx.doi.org/10.1109/2.839323, http://portal.acm.org/citation.
cfm?id=621455&dl=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222#

4. F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, R. Guerrieri, A VLIW processor
with reconfigurable instruction set for embedded applications, in 2003 IEEE Interna-
tional Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC (IEEE,
New York, 2003), pp. 250–491. doi:10.1109/ISSCC.2003.1234288, http://dx.doi.org/10.1109/
ISSCC.2003.1234288

5. J.M.P. Cardoso, P.C. Diniz, M. Weinhardt, Compiling for reconfigurable computing: a survey.
ACM Comput. Surv. 42(4), 1–65 (2010)

6. C. Chang, J. Wawrzynek, R.W. Brodersen, Bee2: A high-end reconfigurable computing system.
IEEE Des. Test Comput. 22(2), 114–125 (2005), http://doi.ieeecomputersociety.org/10.1109/
MDT.2005.30

7. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software.
ACM Comput. Surv. 34(2), 171–210 (2002), http://doi.acm.org/10.1145/508352.508353 [An
excellent survey paper on reconfigurable computing]

8. Cray Inc., 411 First Avenue S., Suite 600, Seattle, WA 98104-2860 USA: Cray XD1 Datasheet,
http://www.hpc.unm.edu/∼tlthomas/buildout/Cray XD1 Datasheet.pdf

9. G. de Micheli, R.K. Gupta, Hardware/software co-design. IEEE Micro 85, 349–365 (1997)
10. G. Estrin, Organization of computer systems: the fixed plus variable structure com-

puter, in Papers Presented at the May 3–5, 1960, Western Joint IRE-AIEE-ACM Com-
puter Conference, IRE-AIEE-ACM ’60 (Western) (ACM, New York, 1960), pp. 33–40.
doi:10.1145/1460361.1460365, http://doi.acm.org/10.1145/1460361.1460365

11. F. Feinbube, Joint forces: the era of hybrid computer environments, in HPI Symposium @ SAP
(SAP, Walldorf, 2011)

12. F. Feinbube, The future is hybrid – Developer support for accelerator-based technologies, in
HPI-UCT Workshop, Capetown, 2011

13. A. George, H. Lam, G. Stitt, Novo-g: at the forefront of scalable reconfigurable supercomput-
ing. Comput. Sci. Eng. 13, 82–86 (2011). http://doi.ieeecomputersociety.org/10.1109/MCSE.
2011.11

14. A.D. George, H. Lam, A. Lawande, C. Pascoe, G. Stitt, Novo-g: a view at the hpc crossroads
for scientific computing, in Proceedings of the 2010 International Conference on Engineering
of Reconfigurable Systems & Algorithms, ERSA 2010, 12–15 July 2010, ed. by T.P. Plaks, D.
Andrews, R.F. DeMara, H. Lam, J. Lee, C. Plessl, G. Stitt (CSREA Press, Las Vegas, 2010),
pp. 21–30

15. J. Gray, Designing a simple fpga-optimized risc cpu and system-on-a-chip [Online] Available:
http://www.dte.eis.uva.es/Docencia/PDF/soc-gr0040-001201.pdf (2000)

http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/MM.2004.36
http://dx.doi.org/10.1109/MM.2004.36
http://portal.acm.org/citation.cfm?id=621455&dl=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222#
http://portal.acm.org/citation.cfm?id=621455&dl=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222#
http://dx.doi.org/10.1109/ISSCC.2003.1234288
http://dx.doi.org/10.1109/ISSCC.2003.1234288
http://doi.ieeecomputersociety.org/10.1109/MDT.2005.30
http://doi.ieeecomputersociety.org/10.1109/MDT.2005.30
http://doi.acm.org/10.1145/508352.508353
http://www.hpc.unm.edu/~tlthomas/buildout/Cray_XD1_Datasheet.pdf
http://doi.acm.org/10.1145/1460361.1460365
http://doi.ieeecomputersociety.org/10.1109/MCSE.2011.11
http://doi.ieeecomputersociety.org/10.1109/MCSE.2011.11
http://www.dte.eis.uva.es/Docencia/PDF/soc-gr0040-001201.pdf

The Convey Hybrid-Core Architecture 451

16. J.L. Gustafson, Reevaluating Amdahl’s law. Comm. ACM 31, 532–533 (1988)
17. D. Hallmannseder, B. Klauer, Compiler Unterstützung für die dynamische Rekonfiguration

eines Mikroprozessors (Compiler support for the dynamic reconfiguration of a microproces-
sor), in 1. Workshop Innovative Rechnertechnologien, Nanotechnologien für die IT (Helmut
Schmidt Universität, Universität der Bundeswehr Hamburg, Hamburg, 2009), pp. 40–46

18. J.R. Hauser, J. Wawrzynek, Garp: a mips processor with a reconfigurable coprocessor, in
Proceedings of the 5th Annual IEEE Symposium on Field–Programmable Custom Computing
Machines (1997), pp. 12–21

19. Hayden Publishing, Monolithic memories announces: A revolution in logic design. Electron.
Des. 26(6), 148B–148C (1978)

20. M.D. Hill, M.R. Marty, Amdahl’s law in the multicore era. Computer 41(7), 33–38 (2008)
21. R. Inta, D.J. Bowman, S.M. Scott, The “chimera”: an off-the-shelf cpu/gpgpu/fpga hybrid

computing platform. Int. J. Reconfig. Comput. 2012, 2:2 (2012). doi:10.1155/2012/241439,
http://dx.doi.org/10.1155/2012/241439

22. Intel/Altera Atom Processor E6x6C Series, Santa Clara and San Jose, http://www.altera.com/
devices/processor/intel/e6xx/proc-e6x5c.html

23. O. Khan, S. Kundu, Hardware/software codesign architecture for online testing in chip
multiprocessors. IEEE Trans. Dependable Secure Comput. 8, 714–727 (2011). http://doi.
ieeecomputersociety.org/10.1109/TDSC.2011.19

24. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, M. Schimmler, Breaking ciphers with copacobana – A
cost-optimized parallel code breaker, in Workshop on Cryptographic Hardware and Embedded
Systems – CHES 2006, Yokohama (Springer, Heidelberg, 2006), pp. 101–118

25. I. Kuon, R. Tessier, J. Rose, Fpga architecture: survey and challenges. Found. Trends Electron.
Des. Automa. 2(2), 135–253 (2007). http:/dx.doi.org/10.1561/1000000005 [Modern survey of
FPGA Architecture]

26. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117
(1965)

27. A. Niyonkuru, H.C. Zeidler, Designing a runtime reconfigurable processor for general purpose
applications, in IPDPS, Santa Fe, 2004

28. R.R. Schaller, Moore’s law: past, present, and future. IEEE Spectr. 34(6), 52–59 (1997).
doi:10.1109/6.591665, http://dx.doi.org/10.1109/6.591665

29. T.F. Smith, M.S. Waterman, The identification of common molecular subsequences. Mol. Biol.
147, 195–197 (1981)

30. T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, P. Cheung, Reconfigurable com-
puting: Architectures and design methods. IEE Proc. Comput. Digit. Tech. 152(2), 193–207
(2005). http://dx.doi.org/10.1049/ip-cdt:20045086 [A recent survey paper on reconfigurable
computing platforms and design with a wealth of references]

31. K.H. Tsoi, W. Luk, Axel: a heterogeneous cluster with fpgas and gpus, in FPGA, ed. by P.Y.K.
Cheung, J. Wawrzynek (ACM, New York, 2010), pp. 115–124. http://doi.acm.org/10.1145/
1723112.1723134

32. C. Ulmer, R. Hilles, D. Thompson, Reconfigurable computing aspects of the cray xd1, in
Proceedings of the CUG 2005 (2005). http://www.craigulmer.com/portfolio/unlocked/050516
cug rc aspects of xd1.pdf

33. R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao, C. Tseng, M.
Hall, M. Lam, J. Hennessy, The suif compiler system: a parallelizing and optimizing research
compiler. Technical Report, Stanford University, Stanford, CA, 1994

34. Xilinx Zynq Product Brief, San Jose, http://www.xilinx.com/support/documentation/zynq-
7000.htm

http://dx.doi.org/10.1155/2012/241439
http://www.altera.com/devices/processor/intel/e6xx/proc-e6x5c.html
http://www.altera.com/devices/processor/intel/e6xx/proc-e6x5c.html
http://doi.ieeecomputersociety.org/10.1109/TDSC.2011.19
http://doi.ieeecomputersociety.org/10.1109/TDSC.2011.19
http:/dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1049/ip-cdt:20045086
http://doi.acm.org/10.1145/1723112.1723134
http://doi.acm.org/10.1145/1723112.1723134
http://www.craigulmer.com/portfolio/unlocked/050516_cug_rc_aspects_of_xd1.pdf
http://www.craigulmer.com/portfolio/unlocked/050516_cug_rc_aspects_of_xd1.pdf
http://www.xilinx.com/support/documentation/zynq-7000.htm
http://www.xilinx.com/support/documentation/zynq-7000.htm

Low Cost High Performance Reconfigurable
Computing

Javier Castillo, Jose Luis Bosque, Cesar Pedraza, Emilio Castillo,
Pablo Huerta, and Jose Ignacio Martinez

Abstract High Performance Reconfigurable Computing (HPRC) has emerged as
an alternative way to accelerate applications using FPGAs. Although these HPRC
systems have a performance comparable to standard supercomputers and at a much
lower cost, HPRC systems are still not affordable for many institutions. We present a
low-cost HPRC system built on standard FPGA boards with an architecture that can
execute many scientific applications faster than in Graphical Processor Units and
traditional supercomputers. The system is made up of 32 low-cost FPGA boards and
a custom-made high-speed network interface using RocketIO interfaces. We have
designed a SystemC methodology and CAD framework that allow the designer to
simulate any MPI scientific application before generating the final implementation
files. The software runs on the PowerPC processor embedded in the FPGA on a
light ad-hoc implementation of MPI, and the hardware is automatically translated
from SystemC to Verilog, and connected to the PowerPC. This makes the SMILE
HPRC system fully compatible with any existing MPI application. The proof of
the concept of the SMILE HPRC has been exhaustively tested with two complex
and demanding applications: the Monte Carlo financial simulation and the Boolean
Synthesis using Genetic Algorithms. The results show a remarkable performance,
reasonable costs, small power consumption, no need of cooling systems, small
physical space requirements, system scalability and software portability.

J. Castillo (�) • P. Huerta • J.I. Martinez
Universidad Rey Juan Carlos, Madrid, Spain
e-mail: javier.castillo@urjc.es; pablo.huerta@urjc.es; joseignacio.martinez@urjc.es

J.L. Bosque • E. Castillo
Universidad de Cantabria, Santander, Spain
e-mail: joseluis.bosque@unican.es; emilio.castillo@unican.es

C. Pedraza
Universidad Santo Tomas, Bogota, Colombia
e-mail: cesar.pedraza@urjc.es

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 15, © Springer Science+Business Media, LLC 2013

453

mailto:javier.castillo@urjc.es; pablo.huerta@urjc.es; joseignacio.martinez@urjc.es
mailto:joseluis.bosque@unican.es; emilio.castillo@unican.es
mailto:cesar.pedraza@urjc.es

454 J. Castillo et al.

1 Introduction

The use of hardware accelerators to speed computationally intensive applications up
has become a major trend in the supercomputing field. As the size of supercomputers
increases, different problems arise regarding communication bottlenecks and other
common problems such as power consumption, cooling or the physical space
needed to install a machine of these characteristics.

Due to these problems, researchers have been proposing architectures based on
different types of accelerators for many years. In this context, the arrival of two
key technologies: Reconfigurable logic (RC) and graphical processor units (GPU)
has been of an enormous importance. In both cases the concept behind is basically
the same: finding the best suitable implementation of the algorithm for the specific
characteristics of the target architecture. In the context of RC, the target is an FPGA
device mainly full of programmable logic resources, whilst for the GPUs the device
is made up of a large number of execution cores. These two alternatives are not
mutually exclusive: there are hybrid machines that use both technologies in order to
make the most of their intrinsic characteristics[1].

In this context, the use of RC and FPGAs has created a new field of research,
named high-performance reconfigurable computing (HPRC). HPRC systems are
usually classified into two main groups [2]: uniform node non-uniform systems
(UNNSs) where the nodes are made up of FPGAs or microprocessors connected
through a high-speed network and non-uniform node uniform systems (NNUSs)
where only one type of node is used, each one containing a microprocessor with
an FPGA tightly coupled. The well-known Cray XD1[3] supercomputer belongs to
this category.

The SMILE project (Scientific Parallel Multiprocessing based on Low-Cost
Reconfigurable Hardware) presents a new HPRC architecture and a development
methodology using commercial off-the-shelf (COTS) FPGA boards[4]. The SMILE
architecture is an NNUS architecture where all the nodes are equal, containing a
built-in PowerPC processor and the FPGA logic tightly coupled through the system
bus. The main features of the SMILE architecture are the following:

• High performance: The architecture, where parts of the applications are accel-
erated using custom hardware, has a performance similar to standard general-
purpose microprocessor clusters and to GPU-accelerated systems.

• Low-power consumption: Each SMILE node consumes only 5 W, according to
our lab measurements, which is an order of magnitude smaller than the power
consumption of a personal computer. This is a really important advantage for
building a supercomputer because the SMILE architecture does not need any
cooling system.

• Scalability: For most applications adding more nodes to a SMILE cluster is
just as easy as connecting new FPGA boards to the high-speed interconnection
network.

• Portability of the parallel applications: the system runs an MPI library
implementation, therefore any parallel application already programmed can

Low Cost High Performance Reconfigurable Computing 455

be ported to the new environments. The only additional effort required is the
development of the custom hardware to speed the application up, keeping all the
communication scheme unchanged.

• Low-cost: By using low-cost commercial FPGA boards the nodes of the system
have a reasonable price.

• Low-space utilization: The FPGA boards can be placed in a stacked configuration
that takes up a very small physical space.

The main contributions of the SMILE project are the design and implementation
of a new HPRC architecture based on low-cost FPGA boards. A full SystemC-
based methodology was developed to help porting any MPI Application to the
SMILE system, as well as a complete CAD framework to use this methodology.
This framework enables the simulation and debugging of the whole system before
generating and downloading the final implementation to the HPRC system. Two
different applications were developed and tested using the methodology: a Monte
Carlo financial simulation and a combinational circuit synthesis using Genetic
Algorithms. The whole framework, methodology and HPRC SMILE system have
been fully tested through an exhaustive experimental evaluation, as well as his
results compared to two other high-performance architectures: GPUs and cluster.
The today’s GPUs importance, as mentioned in the second paragraph of this section,
can be appreciated in the TOP500 [5] where a total of 28 systems on the list use
GPU technology. The two Chinese systems, Tianhe in the top one and Nebulae in
the third position, and the new Japanese Tsubame 2.0 system as number 4 [6] are all
using NVIDIA GPUs to accelerate the computations. In all the cases the GPUs are
coupled to the processor through an extension bus (PCI-e, HyperTransport, etc).

Section 2 continues with a review of similar research work in the literature. In
Sect. 3 the SMILE HPRC architecture is described in detail. Section 4 presents
the methodology developed to create any SMILE application using our SystemC
framework. In Sect. 5 the two case studies (benchmarks) are described based on
the three different architectures. Section 6 presents the results of both benchmarks
running on the SMILE HPRC system, GPUs and the ALTAMIRA cluster. Finally,
we extract some conclusions and suggest future work.

2 Background

In the HPRC field, different vendors have started to offer machines that include both
FPGAs and high-end processors, introducing the concept of HPRCs [7, 8]. These
machines combine the hardware customization of the FPGAs and the flexibility of
the software running on a general-purpose processor, providing new ways to explore
the design space to obtain the best performance.

One of the main HPC vendors, Silicon Graphics International (SGI), provides
SGI Reconfigurable Application Specific Computing (SGI-RASC) [9], a technology
that can be used with the Altix line of HPC servers. The RC100 model [10] includes

456 J. Castillo et al.

2 Virtex-4 LX200 FPGAs and two NUMAlink interfaces with 12.8 GB/s bandwidth.
Another vendor, SRC Computers, offers the H MAP and I MAP reconfigurable
processors used in the SRC-7 family of products [11].

Another well-known HPC vendor, Cray Inc., developed the XD1 system as a
distributed memory HPC system [3]. The Cray XD1 entry-level supercomputer
range uses AMD Opteron 64-bit CPUs and incorporates Xilinx Virtex-II Pro FPGAs
for application-specific implementations.

The research and academic community also had several proposals for HPRC
systems. Splash 2 was an attached processor system using Xilinx XC4010 FPGAs
as its processing elements, developed in the Supercomputing Research Center [12].
Another system that uses FPGAs in a cluster of independent operating systems was
developed in the project called Sepia [13], which used the DEC PCI Pamette FPGA
board for building a low-cost cluster for image processing applications.

The reconfigurable computing cluster (RCC) project worked on the feasibility of
using FPGAs to build cost-effective petascale cluster computers, building a cluster
of 64 Xilinx ML-410 Development boards with a Virtex-4 FPGA [14]. Yoshimi
et al. [15] designed a 512 FPGA cube made up of eight 64-FPGA boards mainly to
be used for physics, financial simulation and massively parallel cryptographic key
cracking.

Cathey et al. [16] present a reconfigurable data flow processing architecture that
explicitly targets at the same time both fine- and course-grained parallelism. This
architecture is based on multiple FPGAs organized in a scalable direct network.

One of the most relevant projects on HPRC is the Research Accelerator for
Multiple Processors (RAMP) [17]. In this project there are several universities
researching on the next generation tools for computer architecture and computer
science. RAMP seeks to take advantage of the high degree of parallelism and density
of the FPGAs to emulate new highly parallel computer systems. The project uses
a custom platform named Berkeley Emulation Engine 2 (BEE2). BEE2 provides a
large amount of FPGA resources, DRAM memory, and high bandwidth I/O channels
on one single board. One of the main milestones of the project is to build a proof of
concept HPRC named the RAMP Blue cluster.

Although the capacity of current FPGAs has grown enormously in recent years,
sometimes the number of functions to be executed in hardware exceeds the FPGA
resources limit. To tackle this issue El-Gahzawi et al. [2] propose a technique
called Virtualization, i.e. using partial run-time reconfiguration to switch between
the different hardware functions programmed in the FPGA, multiplexing the FPGA
resources over time.

The main benefit of the HPRC systems: the design of new hardware functions for
every application to take full advantage of the FPGA logic and the characteristics of
each application is, at the same time, the main drawback when the standard scientific
community, with no experience in hardware design tries to use HPRC systems.
To facilitate the hardware design the EDA vendors are constantly making efforts to
help with high-level synthesis tools based on C-like languages. For example, Mitrion
C and Handel-C tools work for the SGI RASC, and Impulse C for the Cray XD1.

Low Cost High Performance Reconfigurable Computing 457

Another important trend is the use of hybrid machines combining GPU+FPGA.
This provides a designer different targets for the different application tasks so
that the designer can find the most appropriate resource for every task in terms
of performance or any other considerations like timing, usage, etc. Tsoi and Luk
[1] presents a heterogeneous machine using nodes made up of a mix of different
accelerators, as well as a map-reduction framework to map these tasks into the
different resources. Showerman et al. [18] describes another hybrid system of
Virtex-4 FPGAs and Nvidia Quadro GPUs tested in weather forecast, molecular
dynamics and cosmology applications, with up to a 48x speedup in some tests.

3 SMILE Architecture

The SMILE project is built as a custom distributed-memory parallel computing
machine with low-cost FPGA boards. The programming model is based on the
execution of concurrent processes with message-passing communication and syn-
chronization. The communication uses an MPI standard library that provides the
portability of applications to different platforms. The concurrent processes are
divided into a software part, running on the PowerPC processor of each FPGA, and
a custom hardware accelerator designed for the application using the methodology
presented in Sect. 4.

The SMILE cluster is made up of up to 32 FPGA nodes and a host computer
monitoring the cluster operations and sharing the storage space (hard disks).
Currently, each node is a Diligent XUPV2P Board, selected for the low price,
low power consumption and high performance. Although all the infrastructure
can be migrated to more advanced FPGA families (plug and play), Virtex2P is
still use due to the board price. With a moderate cost of $499 per node it is
possible to compete with supercomputers in some applications, as can be seen in
Sect. 6. The power consumption of the SMILE cluster is not only several orders
of magnitude smaller than the power consumption of a traditional supercomputer,
but also means no cooling system needed for the SMILE cluster. The physical size
needed to accommodate the SMILE cluster is also several orders of magnitude
smaller than the space needed for a conventional supercomputer (table size vs. room
size).

The board includes a Xilinx V2P30 FPGA with two PowerPC 405 microproces-
sors and 8 Multi-Gigabit transceivers that are used for high-speed communications
between the boards. The dedicated hardware implemented in the FPGA logic is
connected to the PowerPC processor through the on-chip peripheral bus (OPB).
The board also contains the peripherals needed to develop complex applications
such as DDR-SRAM controllers, System ACE controllers (for compact flash
memories) and RS232 interfaces.

With all these elements it is possible to run a full version of the Linux kernel in
the PowerPC microprocessor, using all the programs and libraries available for this
operating system.

458 J. Castillo et al.

The main tool for the SMILE Cluster is an ad-hoc MPI implementation that
provides the management of the cluster communication using a standard API.
For the initial versions of the SMILE cluster we used a standard MPI implemen-
tation, more precisely LAM/MPI, freely available on the web. But the overhead
introduced by this MPI version was unacceptable: more than 46 s only for executing
the processes in all the nodes. This overhead forced the development of our own MPI
implementation called SMPI: a lightweight implementation of the MPI standard.
The SMPI library offers the possibility of sending data between nodes through the
Ethernet connection or through the Rocket IOs of the board. The library implements
just a subset of the MPI standard targeting the best performance with the minimum
overhead possible.

The MPI Init function opens all the sockets needed to communicate the
processes, and once the Send and Receive functions are open they act as simple
collective communication links between nodes. The data can also be sent through
the RocketIO interfaces of the boards because they are now integrated in the system
as any other standard Ethernet device of the Linux kernel (use of standard TCP
sockets, etc.).

3.1 Network

The network system is a critical issue in parallel architectures. The Ethernet network
interface provided by Xilinx is not fast enough to support cluster communications,
so this network interface is used only for management tasks. To avoid the com-
munication bottleneck introduced by this low-speed network, a high-performance
network has been designed using the three-bidirectional SATA channels included
on the board. This network works at 1.5 Gbps offering a performance similar to
current parallel system networks.

The management of the RocketIO transceivers has being simplified by the use of
the Aurora core provided by Xilinx. This communication channel can now be used
in the SMILE Cluster thanks to the new ad-hoc interface developed by our team
for the Aurora Core and the Linux operating system. This interface, called SMILE
Communication Element (SCE), has two main goals: appears as a conventional
network resource in Linux (a call to the SMPI library) and provides the network
routing channels between the boards.

The SCE has three different parts (Fig. 1). Since the board has three connectors,
the SCE includes: one Aurora core for each connector to manage the data exchange
in that link, the Send and Receive FIFOs to store the packets and deal with
congestion problems, and some ad-hoc logic to implement the routing algorithm.

The network topology is defined in terms of groups of four nodes named SMILE
Block Elements (SBE). Every node in the SBE is connected to its SBE neighbors
with a bidirectional channel. To allow the routing between nodes into different SBEs

Low Cost High Performance Reconfigurable Computing 459

Fig. 1 SMILE communication element

every top node of each SBE is connected to the top nodes of the other SBEs in a ring
topology. With this configuration, the SMILE cluster of 32 nodes has a diameter of
10 steps.

The routing algorithm uses a Reservation packet that finds the path between
the nodes. Once the path is found, the SCEs of the nodes in the path are marked
and reserved, appearing as a shortcut for the following packets. When the frame
transmission ends the SCEs are released and free to be used in other request. If a
congestion problem appears, two transmissions on the same link, the packets are
stored in the SCE FIFOs until the path is free again.

A simple routing algorithm has been designed to find the best path in the SMILE
cluster. If the packet destination is in the working node, the SCE delivers the packet
to the PowerPC processor in the working node. If not, the packet needs to be routed.
In this case the SCE selects which one of the other two interfaces in the board is
going to be used. When the destination is in the same SBE, the address can be
lower than the working node (the package is sent to the previous node) or higher
(the package is sent to the next node). When the destination is in a different SBE,
the data goes up to the next node in its SBE and is sent to the SBE destination. Once
in the correct SBE destination, the packet goes down the SBE nodes to its final
node destination. All the information needed by the routing algorithm (working
node address, neighbors, SBE neighbor, etc.) is included in the SCE by the Linux
driver during the system start-up.

460 J. Castillo et al.

4 SMILE SystemC Model

Any MPI application running on a distributed memory parallel machine using
a message-passing interface library is suitable to be ported to SMILE. These
applications are made up of a set of processes running in parallel in processing
nodes and a well-defined communication and synchronization scheme based on
the standard functions provided by the MPI library. These applications can run on
SMILE with no modifications at all, just compiling the application for the PowerPC
processor. However, if we want to make the most of the SMILE architecture
a HW/SW co-design methodology should be used. Therefore, the original MPI
application is refined following a set of steps to reach a final implementation made
up of the original processes running on the FPGA boards, each one accelerated by
a custom hardware accelerator.

The idea is to start with a high-level model of the system and refine the model
down to the final implementation. In the SMILE application context, the entry point
is a parallel application using an MPI library that needs to be accelerated by custom
hardware. The steps involved in obtaining the final system implementation are:

• Profiling. The first step is to profile the application, finding the time-consuming
parts that are appropriate to be implemented into hardware (GNU profiling tools).

• Development of the SystemC model. A SMILE application SystemC model is an
MPI application that runs as a SystemC thread. Under this approach, it is possible
to run a set of SystemC models in parallel that communicate data through the MPI
primitives. This model is fully equivalent to the original application.

• Design of the hardware high-level model. This hardware high-level model is a
functional implementation of the final hardware used to speed the application up
and is later added to the SystemC system model. The connection between the
software and the hardware models is done through untimed sc fifo channels, as
shown in Fig. 2.

Fig. 2 SystemC untimed model

Low Cost High Performance Reconfigurable Computing 461

Fig. 3 SystemC model ready to synthesis

• Refinement of the hardware high-level model. There are two different options:
using a high-level synthesis tool such as Impulse C or Autopilot to synthesize, or
designing an ad-hoc RT-level model and follow a traditional RT-level synthesis
methodology. In any case, this step produces a final hardware version ready to be
implemented and simulated in the framework.

• Redesign of the communication link between software and hardware. A SystemC
model of the Intellectual Property Interface (IPIF) provided by Xilinx is con-
nected to the RT model. The IPIF is a hardware block that communicates
the PowerPC processor with the IP-Cores implemented in the FPGA through
the OPB and PLB bus. It supports different configurations such as DMA and
interrupt-driven or register-based communications. The SystemC IPIF models
all these configurations and enables the connection of the RT model to the MPI
application.

• Replacement of the functions used by the MPI Application to communicate with
the hardware model with the Xilinx functions provided to communicate with the
IP-Core through the IPIF (Fig. 3)

These are the steps to follow in order to test the final SMILE system:

1. The MPI Application is compiled for the platform using the Xilinx IPIF libraries.
2. The hardware is synthesized using the appropriate CAD tool. We translate the

hardware modules to Verilog using a custom tool, developed by the authors and
called sc2v [19].

3. The hardware netlist is connected to the physical IPIF interface in the EDK
environment.

4. The system is then synthesized and the bitstream, ready to program the FPGAs,
is generated and downloaded.

462 J. Castillo et al.

5 Benchmarks

Two applications have been developed as a benchmark for the SMILE HPRC
system: a Monte Carlo simulation for financial problems (called the European
Pricing option problem) and the optimization of Boolean circuit synthesis for
many variables. Both problems have been tested in a High-Performance Cluster,
a GPU and the SMILE HPRC using the developed SystemC environment. For the
parallelization of the benchmarks, we followed the four-step methodology of Ian
Foster [20], which encourages the development of scalable parallel algorithms.
The methodology provides the best portability of the applications; therefore, the
processes and communication schemes are identical for both the SMILE HPRC
and for the cluster. The portability of the applications is thus assured at the design
level. However, it is worth mentioning that each specific implementation has been
optimized to obtain the maximum performance for the corresponding architecture,
so that we can make a fair comparison between the different architectures.

5.1 Monte Carlo Financial Simulation

The Monte Carlo simulation is widely used in many problems. Its main drawback
is that is very demanding from a computational point of view, with a relatively slow
convergence rate. As a result, lots of effort have been made to accelerate the Monte
Carlo simulation [21–25].

The Monte Carlo simulation is used to solve the European Pricing Option
problem, as described in this subsection. In financial terms an option is an
agreement: a buyer buys the right, but not the obligation, to buy or sell a value, at a
certain price. Scholes proposed a differential equation that is able to calculate a good
approximation to the option value based on several assumptions [26]. The Black–
Scholes model assumes a perfect market hypothesis where financial markets are
efficient and prices on traded assets already reflect all the known information.
With this hypothesis, the security price changes mathematically with the Markov
processes and the value of the asset can be represented as a Brownian motion.
Solving this equation, it is obtained:

ST = S0 · e(r−0.5μ2)T+(μ
√

T N(0,1)) (1)

where r is the rate we can expect in a riskless market. ST is the price of the
option depending on the random variations of the market modeled by the normal
distribution. It is possible to calculate the expectation of Vcall(S,T) by generating a
large number of N(0,1) samples and computing the average estimated profit.

Vmean =
1
N

N

∑
i=1

Vi(S,T) (2)

Low Cost High Performance Reconfigurable Computing 463

If the return value of the money in a riskless investment is subtracted from the
expected profit, we obtain the current value of the option. From this equation, the
evaluation of the expected profit is just a question of generating a large number of
Gaussian random samples and evaluating the expected profit for each one.

5.1.1 Hardware Implementation on SMILE

The hardware implementation on SMILE follows the SystemC methodology
presented in Sect. 4 and the SMILE application runs in a set of nodes with a
hardware coprocessor attached to the PowerPC in the FPGA. The development
steps begin with the profiling of the MPI application. From this profiling we
found out that the biggest time consuming part of the algorithm is the path
calculation, therefore a custom hardware coprocessor has to be implemented for
this computation. The system operation can be described as follows:

• The application running on the SMILE host sends the simulation parameters and
the iteration number to the nodes.

• Each node receives the data and sends the parameters to the coprocessor through
the system bus.

• The coprocessor calculates the expected profit and the confidence value for the
indicated number of paths.

• The expected profit and confidence is sent back to the host where the final values
are calculated and displayed.

Following the SystemC methodology, we first develop a SystemC untimed model
of the coprocessor. Once the simulation is working properly we write a SystemC
RT model of the coprocessor, changing the communication channels from the
untimed models to the modeled IPIF interface. In this benchmark, the SystemC
RT Monte Carlo coprocessor uses several external IP-Cores: a VHDL exponentiator,
a Mersenne Twister random number generator and some floating point adders and
multipliers. Therefore, we design all the SystemC models of the IP-Cores, so
that they can be replaced later in the netlist for the Place&Route process. When
the SystemC RT simulation of the whole system is running properly, the core is
translated into Verilog using the sc2v tool and then synthesized, placed and routed.

The inputs of the coprocessor are: the parameters of the simulation, the output
of the Gaussian random number generator, and the expected profit and confidence
values from the previous iterations. The generation of normally distributed random
samples can be divided into two steps: the generation of uniform-distributed samples
and their conversion to Gaussian-distributed samples. This conversion is usually
carried out by the Box–Muller equations that generate the Gaussian samples from
two uniform samples. Our approach implements a new algorithm that represents
the equations in the polar coordinate system instead of the Cartesian system. This
representation dramatically reduces the number of operations because it is no longer
necessary to implement the sin and cos functions. The general structure of the
Gaussian random number generator is shown in Fig. 4. It is important to notice that

464 J. Castillo et al.

0

500

1000

1500

2000

2500

3000

3500

−4 −3 −2 −1 0 1 2 3 4

Fig. 4 Gaussian random number generator

m T

mT

GRNG

CONTROL UNIT

PLB Bus

3

3 3

3

3

s

x 0

1 2 3

3

3

ex

cmp double
su

m
_r

eg

su
m

_r
eg

2

+

+

+

-

Fig. 5 Pipelined datapath

in order to have the function tabulated and reduce the area of the generator, a fixed-
point representation with one sign bit, 23 decimal part bits and 8 integer part bits
has been used.

The inputs to the Box–Muller conversion module are two samples of a uniform
distribution in the range [0,1) generated by two Mersenne–Twister random number
generators. The result goes into the tabulated function that produces two samples
per cycle.

Figure 5 shows a pipelined version of the datapath (each element shows its
number of cycles). The number of cycles in each stage is limited by the latency of the
non-pipelined exponentiation that takes 3 cycles for each calculation. The process
is divided into two parts: the first calculates the expected profit and compares the
expected profit with zero to check if the option is valid. This part of the algorithm
is in single precision IEEE754 floating-point arithmetic. Afterwards, the expected

Low Cost High Performance Reconfigurable Computing 465

profit of the whole operation and the confidence value are computed in double
precision arithmetic. This implies a conversion step from single to double precision.
At the end of the process, sum reg and sum reg2 contain the expected profit and the
confidence value. The coprocessor’s control unit, connected to the PowerPC system
bus, controls the number of iterations of the coprocessor.

5.1.2 GPU Architecture and Programming Model

For this subsection, we used the Monte Carlo pricing option calculation program
provided by NVIDIA inside the NVIDIA CUDA SDK 2.0 in order to compare
SMILE HPRC with the optimized version of the GPU algorithm. The process is
the same as described in Sect. 5.1.1.

The goal of this implementation is to generate a large number of threads to keep
the GPU efficiently busy. The number of options is typically in the hundreds range,
but the number of paths per option is in the millions. Therefore, the most appropriate
distribution is to use multiple blocks per option to hide the latency of reading the
random input values.

Finally, a data distribution is done splitting a bi-dimensional grid into blocks,
in terms of the number of options and the number of paths per option. With this
approach, each thread computes and sums the payoff for multiple simulation paths
of different options.

5.1.3 Parallel Implementation

The best way to carry out the parallelization of the Monte Carlo algorithm is
the domain decomposition, because of the independence of the data and the high
degree of data parallelism. In this context, we consider a bi-dimensional problem
where options are the first dimension and paths for each of the options the second.
Given that there are no data dependences, each task will generate a set of pseudo-
random numbers (the paths) and compute a subset of the pay-off values for some
of the options. This approach has several advantages: selecting the most suitable
parallelism degree and balancing the computation and communication times to
optimize the performance. Additionally, each random number in the sequence is
used for all the options, therefore increasing the locality and reducing the memory
requirements.

In this context, all the tasks need the Mersenne–Twister parameters to generate
the sequence of pseudo-random numbers; therefore, a general broadcast is com-
pulsory. Once each task has obtained the pay-off value, the average of all of these
paths should be calculated. Hence, a reduced parallel operation can be used on a
tree communication pattern. Each option has to be reduced but all of them can
be done in parallel. Finally, a node has to gather the results of all the options,
therefore, a gather operation of the nodes with the final results is needed. However,
this approach can increase the communication overhead because of the reductions.

466 J. Castillo et al.

To minimize the impact of the communication overhead in the performance, a single
node is in charge of collecting all the partial results and computing the average for
each option.

Taking all these considerations in mind, there are two different kinds of
processes: a master process that is in charge of broadcasting the Mersenne–Twister
parameters to the rest of the processes and gathering the partial results, and a set
of slave processes that calculate the values of the pay-off function. The master
process will be assigned to the front-end of the cluster and the slave processes will
be allocated in the computational nodes.

5.2 Boolean Synthesis with SMILE

The Boolean Synthesis is a design flow process that optimizes and reduces the
number of logic gates of a circuit in order to minimize costs, chip area, and
increase performance. The use of Evolutionary Algorithms (EA) is a new trend
to find original solutions to the problem. In EA, hardware is represented with
a chromosome and managed with the Darwinian concept of Natural Selection
[27]. The chromosomes mutate and cross with others to create a new population
of individuals. As in Nature, when a population of individuals is generated, a
fitness function determines which are suitable for accomplishing the target function
requirements, and then a selection process excludes some members while the
rest mutate and cross again, creating a new population. This process is repeated
until a set of individuals that accomplishes the requirements and restrictions of
the target function is obtained. For any combinational system problem the fitness
functions evaluate the truth table to see if the individual solves the problem and
other optimization parameters like number of gates or number of logic levels. It is
important to notice that for hardware synthesis it is necessary to use a variation
of the simple genetic algorithm (SGA) known as genetic programming (GP) [27]
that is able to modify the chromosome length and create new mutating and crossing
operators.

Chromosome Representation

The representation in GP is the way a logic circuit is coded using a bit array in
order to be managed in the evolution process [28]. This representation must be able
to manage all the different solutions of the problem and, moreover, the crossing
and muting operators should not generate invalid individuals, and must cover all
the solution space so the search is really random. There are different ways of
representing combinational hardware for a genetic algorithm [27, 29, 30]. The 2-
D tree representation is appropriate for implementing parallel systems because it
enables the chromosomes to be split to balance the computational load [31]. Figure 6
shows the selected cell-based structure representation. Each cell has 3 functions f

Low Cost High Performance Reconfigurable Computing 467

Fig. 6 Cell structure and its representation inside the chromosome

and 4 input variables v coded in binary. This representation allows more cells to be
added to represent larger circuits (if a more complex solution is necessary) and is
suitable to directly translate each cell to the FPGA-LUT architecture.

Fitness Function

Equation (3) shows the fitness function of our GA, the responsible for quantifying
the way a chromosome or individual fulfills the requirements. Constants ω1, ω2, and
ω3 are used to establish the weights of each of the parameters that will determine the
fitness function. The double-summation term calculates the number of coincidences
of the individual X for all the possible combinations at the output with the target
function Y. The P(X) function calculates the number of logic gates of a chromosome
taking into account some of the introns or segments of the genotype string that will
not have any associated function and that do not contribute to the result of the logic
circuit represented. The function L(X) determines the number of levels of the circuit,
or in other words, the number of gates in the critical path. The constant m refers to
the number of outputs in the circuit and n the number of possible input combinations
in the circuit.

[H]fitness = ω1.[
m

∑
j=1

n

∑
i=1

Y(j, i)−X(j, i)]+ω2.P(x)+ω3.L(x) (3)

Genetic Operators

The selection operator is responsible for the identification of the best individuals in
the population, taking into account the exploitation and the exploration [31]. The
former allows the individuals with better fitness to survive and reproduce more
often, and the latter searches in more areas, i.e., finding better results. On the
other hand, the mutation operator modifies the chromosome randomly in order to
increase the search space. It changes: (1) an operator or variable and (2) a segment
in the chromosome. Both are executed randomly and with a certain probability.
A variable mutating probability during the execution of the algorithm (evolvable
mutation) [32] is more effective for Evolvable Systems. Finally, the crossing
operator combines two selected individuals to obtain two additional individuals to
add to the population. A crossing system with one or two randomly selected crossing
points has been implemented because it is more efficient for Evolvable Systems [30].

468 J. Castillo et al.

PowerPC
Processor

FC1P
LB

FC1

FC1

FC1

DDR
RAM

Ethernet

DMA
Controller

Registers
Controller

Registers

Mersenne
Twister

Chromosome Objective
function

LUT
ROM

Miniterms
Calculation

Fitness
Calculation

Gates
Calculation

Critical Path
Calculation

Local
Memory

System Interface Fitness Calculation

Fig. 7 FCU block diagram

5.2.1 Hardware Implementation on SMILE

Once again we use the SystemC proposed methodology to generate a SMILE HPRC
working system. The profiling of the algorithm determined that the biggest time
consuming part of the algorithm is the fitness function calculation and the new
individual generation (25 and 35% of the execution time, respectively). Therefore,
these two have been specifically accelerated with a coprocessor connected to the
PowerPC processor.

The fitness calculation unit (FCU) calculates the three parameters using the
objective function, the chromosome and the number of variables as inputs. This
coprocessor is connected to the PowerPC 405 processor through the PLB bus using
a custom interface. The interface allows register-based and DMA communication
to transfer the objective function and the chromosome efficiently. Figure 7 shows
the FCUs structure. Once the chromosome has been read from the DDR memory
by the memory controller, all the basic cells are converted into their equivalent in
Look-Up Table (LUT) through an ROM-based translation. The next block computes
the midterm value (number of hits of that individual) using the information from the
objective function and a counter as inputs. After computing the number of gates
and the logic levels, the fitness calculation block computes the final fitness value
that will be sent back to the PowerPC processor. Finally, in order to accelerate the
new generation of individuals, crossing and mutation, a Mersenne–Twister-based
pseudo random number generator was inserted between the registers of the PLB
interface. To further accelerate the fitness evaluation process, 4 coprocessors were
implemented in each FPGA of the cluster; therefore, 4 individuals can be evaluated
at the same time in each node. All the components were modeled in SystemC and
then translated to Verilog, in order to get to the final SMILE implementation.

Low Cost High Performance Reconfigurable Computing 469

h0 h1 h2 hN h0 h1 h2 hN

Shared memory
Block0
Island0

Block1
Island1

Best individuals
island0

Shared memory

Global memory

Best M Best M

Micropopulation

Best individuals
island1

Fig. 8 Block diagram of the CUDA implementation

5.2.2 GPU Architecture and Programming Model

Random Number Generation

During the GP execution, a great amount of random numbers are required to
generate an initial population and to mutate and cross individuals. Generating these
numbers in the CPU and moving them into the GPU is not feasible because it
takes a long time. For this reason, a Mersenne–twister algorithm is executed on the
GPU before the kernel −GP to generate a buffer of random numbers in the global
memory.

Kernel Structure

Figure 8 shows the way the GP has been implemented in the graphics device.
A kernel is executed in a thread and is able to generate a μ-population, and perform
the select, mutation and crossing operations the number of generations required
(Fig. 9). After P generations, M individuals are transferred to the global memory
and then to the host device (CPU system). The number P is known as the frequency
of migration and the number M is called the migration factor.

It is important to highlight that each thread can cooperate with other threads
inside the same block, through the shared memory, sharing the best individuals and
improving the efficiency of the GP.

470 J. Castillo et al.

Generate micropopulation

Calculate fitness

Selection

Crossing

Mutation

gen=p? gen=p?

gen=max? gen=max?

N

Y
Migrate best

Y

N

Thread h0 Thread h0

island 0

Generate micropopulation

Calculate fitness

Selection

Crossing

Mutation

N

Y
Migrate best

Y

N

Global memory

Shared memory

Fig. 9 Thread execution model

5.2.3 Parallel Implementation

As Natural Evolution works with a whole population and not with a single individual
(except for selection and reproduction), some operations can be done separately,
meaning that almost all operations in a GP are implicitly parallel. Using the
island approach, the population is divided into subpopulations that evolve in each
processor of the cluster or parallel architecture. When the system starts, each
processor creates its subpopulation and starts the evolution process, made up of
fitness evaluation, selection, crossing, mutation, and reproduction. These processes
are asynchronous because each node starts and ends independently. Once the system
reaches a number of generations, a percentage of the individuals are selected to
be transferred from one processor to another. A master processor is in charge of
collecting the in-transfer individuals and moving them to the rest of the nodes
(slaves), increasing the probability of convergence of the algorithm. The ratio of
data exchange (the number of the best individuals to be exchanged increases the
probability of finding a better solution) and the migration frequency are important
parameters in improving the performance of the algorithm.

Low Cost High Performance Reconfigurable Computing 471

6 Evaluation

This section presents a set of empirical experiments to evaluate the SMILE HPRC
system and compares the results with the GPU and conventional cluster approaches.
Again, the main goals are validating the viability of the SMILE HPRC architecture
to efficiently solve high-performance computing applications and to verify the
performance and scalability of the SMILE HPRC system.

As mentioned in Sect. 5, it is worth mentioning that each specific implementation
has been optimized to obtain the maximum performance for the corresponding ar-
chitecture, so that we can make a fair comparison between the different approaches.

Three different systems have been used for the experiments to compare the
difference architectures and implementations.

1. The graphics processing unit, GPU, is an NVIDIA GeForce 330M with up to 96
1436 MHz stream processors, connected to the PC host by a PCI Express Bus.
It has 1 GB of GDDR3 memory at a 2-GHz clock rate.

2. The cluster set-up, ALTAMIRA, is made up of 18 eServer BladeCenters,
with 256 JS20 nodes (512 processors) linked together using a 1-Gbps Myrinet
network.

3. The SMILE configuration is made up of up to 32 FPGA nodes, with the
architecture described in Sect. 3.

6.1 Experimental Results for Monte Carlo Simulation

Figure 10 shows the speed-up of the GPUs vs. SMILE HPRC whilst Fig. 11 shows
the speed-up of SMILE HPRC vs. the ALTAMIRA cluster, in number of paths per
option and for different number of options. In the GPU-CUDA combination, the
number of threads is 4,096, and the number of nodes of SMILE and ALTAMIRA is
32 nodes (the largest configuration available in SMILE at that time).

The excellent performance of the GPU compared with the SMILE HPRC has to
be highlighted. However, as can be seen in Fig. 10, the speed-up decreases with the
workload growth, either due to the number of options or due to the number of paths
per option. This can be explained by the limitations of the GPU memory. Managing
a large amount of data increases the number of global memory accesses, which
forces a much higher latency, heavily decreasing the response time. This leads to a
serious problem of scalability. Figure 10 only shows values up to 50 million paths
because, above this value, there is a memory overflow and the GPU stops working.

As a result, the GPU not only has a better performance than the SMILE HPRC,
but it also has serious scalability problems because of the data size, even getting to
a state of system crash.

472 J. Castillo et al.

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0 20 40 60 80 100

S
pe

ed
up

Number of paths per option (millions)

Speedup SMILE vs ALTAMIRA

100 options
125 options
150 options
175 options
200 options

Fig. 10 Speed-up of GPU vs. SMILE

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100

S
pe

ed
up

Number of paths per option (millions)

Speedup SMILE vs ALTAMIRA

100 options
125 options
150 options
175 options
200 options

Fig. 11 Speed-up of SMILE vs. Altamira

On the other hand, from Fig. 11, it should be pointed out that there is an excellent
performance improvement in SMILE HPRC compared to the ALTAMIRA cluster
for the same number of nodes (32 nodes). Additionally, both architectures lack of

Low Cost High Performance Reconfigurable Computing 473

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

R
es

po
ns

e
T

im
e

Number of Nodes

SMILE - MPI+VHDL

100 Options

125 Options

150 Options

175 Options

200 Options

Fig. 12 Elapsed time for different number of nodes (s)

the GPU scalability problems already seen. It is worth mentioning that the speed-up
of the SMILE HPRC vs. the ALTAMIRA cluster grows with the workload.

This also means that the SMILE architecture is even more scalable than the
ALTAMIRA cluster for this size problem. With these settings, SMILE HPRC is
about 5 times faster than the ALTAMIRA cluster. Another key to understanding
the results is that even though the ALTAMIRA cluster has CPU nodes running at
2.2 GHz compared with the 100 MHz of the hardware accelerator in the SMILE
HPRC, the hardware is able to generate a valid result each clock cycle. In compar-
ison the ALTAMIRA’s CPUs spent millions of cycles running the code needed to
generate random numbers and generate a result.

Finally, Fig. 12 shows the elapsed time of the SMILE HPRC for different number
of nodes. The elapsed time decreases quickly as the number of nodes increases. This
behavior is explained because the communication time is practically negligible for
this application. Hence the SMILE HPRC presents excellent scalability features.
The same behavior is observed for the ALTAMIRA cluster.

6.2 Experimental Results of Boolean Synthesis

The experimental results obtained with the implementations of the Boolean
synthesis problem described in Sect. 5.2 are presented in this section. In these
experiments the number of nodes in the SMILE HPRC and the ALTAMIRA cluster
goes from 2 to 16, 16 being the largest configuration of the SMILE architecture,
and the population size goes from 512 to 2,048 individuals.

Figures 13–15 show the response time for all the architectures in terms of the
number of nodes (SMILE and ALTAMIRA) and the number of threads (GPU).

474 J. Castillo et al.

2
0

200

400

600

800

1000

1200

4 variables
8 variables

12 variables1400

1600

4 6 8 10
Nodes

Response time with 2048 individuals

R
es

po
ns

e
tim

e
[s

]

12 14 16

Fig. 13 Altamira response time with 2,048 individuals with different number of variables and 16
nodes

In general, there is a significant decrease in the response times with the increase of
nodes (threads) for all the architectures. In the GPU, the response time gets stable
at about 200 threads.

The first key aspect that should be noted is the strong impact of the number
of variables in the response time in both the ALTAMIRA cluster and the GPU.
The increase in the response time when the number of variable goes from 8 to
12 is quite remarkable. However, in the SMILE HPRC this effect is really small
or virtually disappears. This can be explained because the number of variables
produces an exponential growth in the search space of the genetic algorithm and
leads to a great increase in the amount of computation needed to simulate the circuit
in the ALTAMIRA cluster and in the GPU. However, in SMILE the circuit is directly
tested in hardware and also takes far less time. Thus, the impact on the response time
is much smaller.

Talking about scalability, all the three architectures present good features.
The GPU does not have the limitations observed in the Monte Carlo Simulation
because the size of the data used in the Boolean synthesis is much smaller. This
concludes that the GPU architecture is very sensitive to the memory requirements
of the application. This situation is also the case when using a single FPGA, but not
when using a cluster. If the memory requirements grow, we only need to increase
the number of nodes in the cluster to ensure the system scalability.

Finally, Fig. 16 and Table 1 show the speed-up of the SMILE HPRC architecture
vs. the ALTAMIRA cluster and GPU, respectively. In both cases, there is an
excellent improvement in the performance offered by the SMILE HPRC when

Low Cost High Performance Reconfigurable Computing 475

2

4 variables
8 variables

12 variables

4 6 8 10

Nodes

Response time with 2048 individuals

12 14 16
0

2

4

6

8

10

12
R

es
po

ns
e

tim
e

[s
]

Fig. 14 Altamira response time with 2,048 individuals with different number of variables

50
100

150
200

250 0
5

10
15

20
25

30

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Response time with 2048 individuals

12 variables

Threads

Blocks (islands)

rt [s]

Fig. 15 Response time for the GP on GPU from 32 up to 256 threads

compared to the other two alternatives. Table 1 shows that the speed-up increases
when 256 threads are launched instead of 32, no matter the number of islands or
CUDA blocks. The reason is because the utilization of the processing elements

476 J. Castillo et al.

2
0

50

100

150

200

250

300

350

400

450

500
4 variables
8 variables

12 variables

4 6 8 10

Nodes

Speedup SMILE vs Altamira with 2048 individuals

S
pe

ed
up

12 14 16

Fig. 16 Speed-up of SMILE vs. ALTAMIRA

Table 1 Speed-up of SMILE
vs. NVIDIA 450GTS with 12
variables

32 threads 256 threads

NVIDIA 450GTS 2 islands 41.6 250
NVIDIA 450GTS 32 islands 41.6 250.6

inside the GPU (192) grows with the number of threads. The maximum speed-up
for 12 variables goes from 41 to 250 for the GPU, and from 150 to 450 for the
ALTAMIRA cluster.

In the figures, the speed-up increases dramatically with the number of variables,
due to the exponential growth in the search space of the genetic algorithm, explained
before. Likewise, the speed-up increases, although moderately, with the number of
processors. This confirms the excellent scalability properties of the SMILE HPRC.

7 Conclusions

In this chapter the SMILE HPRC, a new HPRC architecture based on a cluster of
FPGA boards has been proposed and fully described. The nodes are interconnected
through a specific design network with a bandwidth in the Gigabit/s range. The most

Low Cost High Performance Reconfigurable Computing 477

significant features of the SMILE HPRC are the reasonable costs, the small power
consumption, the no need of cooling systems, the small physical space requirements,
the high performance offered for specific applications, the system scalability and the
software portability. The architecture can execute any MPI parallel application, and
also take advantage of the FPGA adaptability, re-configurability and performance.
Moreover, a new SystemC methodology has been developed to facilitate the
development and debugging of applications for the SMILE HPRC architecture. This
methodology and its associated CAD framework enable the simulation of the full
system architecture at system level (the parallel program and the communication
patterns) as well as at node level (custom hardware developed for an application).

An empirical evaluation has determined both the performance and the scalability
of the SMILE HPRC architecture. As benchmarks for these experiments, two
well-known applications, the Monte Carlo simulation for financial problems and
the Boolean synthesis of digital circuits, have been used and fully detailed.
The experiments compared the three different architectures: a GPU programmed
with CUDA, a high-performance cluster with a parallel MPI application and the
SMILE HPRC with hardware ad-hoc implementations. The experimental results
highlight the excellent behavior of the SMILE HPRC in performance and scalability
for both applications. For the Boolean Synthesis problem, the SMILE HPRC
delivers an outstanding performance compared to the ALTAMIRA cluster and the
GPU. However, in the case of Monte Carlo simulation, the GPU overcomes the
SMILE HPRC with the current configuration. In terms of scalability, the properties
of the SMILE HPRC are much better than the rest of the architectures for all the
experiments. Another important fact is the portability that enables any parallel
application developed with MPI to be implemented in the SMILE HPRC by
replacing the slow software functions by faster custom hardware.

We want to add a discussion about the scalability of SMILE in terms of memory
and communications. One of the biggest advantages of SMILE is the distributed
memory architecture. Each node can upgrade its memory being able to process
more data. The direct connection of the memory with the FPGA its one of the
key aspects of SMILE, when more data is needed to process, SMILE gets bigger
speedups against GPUs and CPUs.

On the other hand communication is one of the weak points of SMILE as in
any parallel architecture. SMILE is suitable for algorithms with low data transfers
between nodes and large sets of data to process in the FPGA. The presented
examples follow that schema. With other algorithms it is still possible to get big
speedups, but depends enormously of the communications patterns. In some cases
could be possible to rearrange the high-speed board connections to optimize its
behavior for a given application.

As future work, we propose to extend the system to support any available board
in the market through the SystemC framework and continue our research in order
to add new applications that can take full advantage of the proposed SMILE HPRC
architecture.

478 J. Castillo et al.

References

1. K.H. Tsoi, W. Luk, Axel: a heterogeneous cluster with fpgas and gpus, in FPGA ’10:
Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (ACM, New York, 2010), pp. 115–124

2. T.A. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V.V. Kindratenko, D.A. Buell, The promise
of high-performance reconfigurable computing. IEEE Comput. 41(2), 69–76 (2008)

3. C. Inc., The supercomputing company cray xd1 supercomputer. IEEE Computer, http://www.
hpc.unm.edu/∼tlthomas/buildout/Cray XD1 Datasheet.pdf. Accessed 27 Mar 2013

4. K. Morris, Cots supercomputing (2007), http://www.fpgajournal.com/articles 2007/20070710
cots.htm/

5. TOP500, Top500 list June (2010), http://www.top500.org/list/2010/06/. Accessed 27 Mar 2013
6. S. Matsuoka, The tsubame cluster experience a year later, and onto petascale tsubame 2.0, in

Proceedings of the 14th European PVM/MPI User’s Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface (Springer, Berlin, 2007), pp. 8–9

7. D.A. Buell, T.A. El-Ghazawi, K. Gaj, V.V. Kindratenko, Guest editors’ introduction; High-
performance reconfigurable computing. IEEE Comput. 40(3), 23–27 (2007)

8. M.B. Gokhale, P.S. Graham, Reconfigurable Computing Reconfigurable Computing, Acceler-
ating Computation with Field-Programmable Gate Arrays (Springer, Dordrecht, 2005)

9. Renwick Ron: SGI’s Approach to Multi-paradigm Computing (2007), http://www.arsc.edu/
files/arsc/news/archive/fpga/Tue-1330-Renwick.pdf. Accessed 27 Mar 2013

10. SGI: Sgi RASC RC100 blade (2006), http://www.sgi.com/pdfs/3939.pdf. Accessed 27 Mar
2013

11. S. Comp., Src-7: reconfigurable general purpose computing system, Tech. Rep., SRC Comput-
ers Inc (2007), http://www.srccomp.com/techpubs/docs/SRC MAP 69226-JA.pdf. Accessed
27 Mar 2013

12. J.M. Arnold, D.A. Buell, E.G. Davis, Splash 2, in SPAA ’92: Proceedings of the Fourth
Annual ACM Symposium on Parallel Algorithms and Architectures (ACM, New York, 1992),
pp. 316–322

13. L. Moll, M. Shand, A. Heirich, Sepia, Scalable 3d compositing using pci pamette, in FCCM
’99: Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (IEEE Computer Society, Washington, DC, 1999), p. 146

14. R. Sass, W.V. Kritikos, A.G. Schmidt, S. Beeravolu, P. Beeraka, Reconfigurable computing
cluster (rcc) project: investigating the feasibility of fpga-based petascale computing, in FCCM
’07: Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (IEEE Computer Society, Washington, DC, 2007), pp. 127–140

15. M. Yoshimi, Y. Nishikawa, M. Miki, T. Hiroyasu, H. Amano, O. Mencer, A performance
evaluation of cube: one-dimensional 512 fpga cluster, in ARC. Lecture Notes in Computer
Science, vol. 5992 (Springer, Berlin, 2010), pp. 372–381

16. C.L. Cathey, J.D. Bakos, D.A. Buell, A reconfigurable distributed computing fabric ex-
ploiting multilevel parallelism, in Proceedings of the 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’06) (IEEE Computer Society,
Washington, DC, 2006), pp. 121–130

17. J. Wawrzynek, M. Oskin, C. Kozyrakis, D. Chiou, D.A. Patterson, S.-L. Lu, J.C. Hoe, K.
Asanovic, Tech. Rep. UCB/EECS-2006-158, EECS Department, University of California,
Berkeley (November 2006), http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
158.html

18. M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pennington, W. Hwu,
Qp: a heterogeneous multi-accelerator cluster, in Proceedings of the 10th LCI International
Conference on High-performance Clustered Computing (Linux Cluster Institute, 2009)

19. J. Castillo, P. Huerta: sc2v, Systemc to Verilog translator (2004), http://opencores.org/project,
sc2v(2004). Accessed 27 Mar 2013

http://www.hpc.unm.edu/~tlthomas/buildout/Cray_XD1_Datasheet.pdf
http://www.hpc.unm.edu/~tlthomas/buildout/Cray_XD1_Datasheet.pdf
http://www.fpgajournal.com/articles_2007/20070710_cots.htm/
http://www.fpgajournal.com/articles_2007/20070710_cots.htm/
http://www.top500.org/list/2010/06/
http://www.arsc.edu/files/arsc/news/archive/fpga/Tue-1330-Renwick.pdf
http://www.arsc.edu/files/arsc/news/archive/fpga/Tue-1330-Renwick.pdf
http://www.sgi.com/pdfs/3939.pdf
http://www.srccomp.com/techpubs/docs/SRC_MAP_69226-JA.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.html
http://opencores.org/project,sc2v (2004)
http://opencores.org/project,sc2v (2004)

Low Cost High Performance Reconfigurable Computing 479

20. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering (Addison-Wesley Longman Publishing Co. Inc., Boston, 1995)

21. J.S. Kim, S.J. Byun, A parallel Monte Carlo simulation on cluster systems for financial
derivatives pricing, in Congress on Evolutionary Computation (IEEE, Edinburgh, 2005),
pp. 1040–1044

22. G. Morris, M. Aubury, Design space exploration of the European option benchmark using
hyperstreams, in International Conference on Field Programmable Logic and Applications,
FPL 2007, Amsterdam, 2007, pp. 5–10

23. D.B. Thomas, J.A. Bower, W. Luk, Hardware architectures for Monte-Carlo based financial
simulations, in IEEE International Conference on Field Programmable Technology, FPT 2006,
Bangkok, 2006, pp. 377–380

24. G. Zhang, P. Leong, C. Ho, K. Tsoi, C. Cheung, D.-U. Lee, R. Cheung, W. Luk, Reconfigurable
acceleration for Monte Carlo based financial simulation, in Proceedings of IEEE International
Conference on Field-Programmable Technology, Singapore, 2005, pp. 215–222

25. V. Agarwal, L.-K. Liu, D.A. Bader, Financial modeling on the cell broadband engine, in 2008
IEEE International Symposium on PDPS, Miami, FL, 2008, pp. 1–12

26. F. Black, M.S. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654 (1973)

27. J. Koza, F. Bennett, D. Andre, M. Keane, Genetic programming iii: Darwinian invention and
problem solving. Evol. Comput. 7, 451–453 (1999)

28. F. Rothlauf, Representations for Genetic and Evolutionay Algorithms (Springer, Heidelberg,
2006)

29. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. deGaris, Evolving hardware with genetic learning:
a first step towards building a Darwin machine, in Proceedings of the Second International
Conference on from Animals to Animats, (MIT Press, Cambridge, MA, USA, 1993), pp. 417–
424

30. J. Miller, P. Thomson, Aspects of digital evolution: Evolvability and architecture, in Proceed-
ings of International Conference Parallel Problem Solving from Nature—PPSN V, 927–936
(Springer, 1998)

31. Q. Yu, C. Chen, C. Pan, Parallel genetic algorithms on programmable graphics hardware. Lect.
Notes Comput. Sci. 3612, 1051–1059 (2006)

32. R. Krohling, Y. Zhou, A. Tyrrell, Evolving fpga-based robot controllers using an evolutionary
algorithm, in Proceedings of I International Conference on Artificial Immune Systems,
Canterbury, 2002, pp. 41–46

An FPGA-Based Supercomputer for Statistical
Physics: The Weird Case of Janus

M. Baity-Jesi, R.A. Baños, A. Cruz, L.A. Fernandez, J.M. Gil-Narvion,
A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano, F. Mantovani,
E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A. Mũnoz Sudupe,
D. Navarro, G. Parisi, M. Pivanti, S. Perez-Gaviro, F. Ricci-Tersenghi,
J.J. Ruiz-Lorenzo, S.F. Schifano, B. Seoane, A. Tarancon, P. Tellez,
R. Tripiccione, and D. Yllanes

M. Baity-Jesi (�) • L.A. Fernandez • V. Martin-Mayor • B. Seoane
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: marcobaityjesi@fis.ucm.es; laf@lattice.fis.ucm.es; victor@lattice.fis.ucm.es;
seoane@lattice.fis.ucm.es

R.A. Baños • A. Cruz • J. Monforte-Garcia • A. Tarancon
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: raquel.alvarez@unizar.es; andres@unizar.es; jmonforte@bifi.es; tarancon@unizar.es

J.M. Gil-Narvion • S. Perez-Gaviro • M. Guidetti
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: jmgil@bifi.es; mguidetti@bifi.es; spgaviro@unizar.es

A. Gordillo-Guerrero
Departamento de Ingenierı́a Eléctrica, Electrónica y Automática, Universidad
de Extremadura, 10071 Cáceres, Spain

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: anto@unex.es

D. Iñiguez
Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: david.iniguez@bifi.es

A. Maiorano • D. Yllanes
Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: andrea.maiorano@roma1.infn.it; yllanesd@roma1.infn.it

F. Mantovani
Dipartimento di Fisica, Università di Ferrara and INFN – Sezione di Ferrara, Ferrara, Italy
e-mail: filimanto@fe.infn.it

E. Marinari
Dipartimento di Fisica, IPCF-CNR and INFN, La Sapienza Università di Roma,
00185 Roma, Italy
e-mail: enzo.marinari@uniroma1.it

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 16, © Springer Science+Business Media, LLC 2013

481

mailto:marcobaityjesi@fis.ucm.es
mailto:laf@lattice.fis.ucm.es
mailto:victor@lattice.fis.ucm.es
mailto:seoane@lattice.fis.ucm.es
mailto:raquel.alvarez@unizar.es
mailto:andres@unizar.es
mailto:jmonforte@bifi.es
mailto:tarancon@unizar.es
mailto:jmgil@bifi.es
mailto:mguidetti@bifi.es
mailto:spgaviro@unizar.es
mailto:anto@unex.es
mailto:david.iniguez@bifi.es
mailto:andrea.maiorano@roma1.infn.it
mailto:yllanesd@roma1.infn.it
mailto:filimanto@fe.infn.it
mailto:enzo.marinari@uniroma1.it

482 M. Baity-Jesi et al.

Abstract In this chapter we describe the Janus supercomputer, a massively parallel
FPGA-based system optimized for the simulation of spin-glasses, theoretical mod-
els that describe the behavior of glassy materials.

The custom architecture of Janus has been developed to meet the computational
requirements of these models. Spin-glass simulations are performed using Monte
Carlo methods that lead to algorithms characterized by (1) intrinsic parallelism
allowing us to implement many Monte Carlo update engines within a single FPGA;
(2) rather small data base (2 MByte) that can be stored on-chip, significantly
boosting bandwidth and reducing latency. (3) need to generate a large number of
good-quality long (≥32 bit) random numbers; (4) mostly integer arithmetic and
bitwise logic operations.

Careful tailoring of the architecture to the specific features of these algorithms
has allowed us to embed up to 1024 special purpose cores within just one FPGA, so
that simulations of systems that would take centuries on conventional architectures
can be performed in just a few months.

A. Muñoz Sudupe
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain
e-mail: sudupe@fis.ucm.es

D. Navarro
Departamento de Ingenierı́a, Electrónica y Comunicaciones and Instituto de Investigación en
Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
e-mail: denis@unizar.es

G. Parisi • F. Ricci-Tersenghi
Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN, La Sapienza
Università di Roma, 00185 Rome, Italy
e-mail: giorgio.parisi@roma1.infn.it; federico.ricci@roma1.infn.it

M. Pivanti
Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy
e-mail: pivanti@fe.infn.it

J.J. Ruiz-Lorenzo
Departamento de Fı́sica, Universidad de Extremadura, 06071 Badajoz, Spain

Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain
e-mail: ruiz@unex.es

S.F. Schifano
Dipartimento di Matematica e Informatica, Università di Ferrara
and INFN – Sezione di Ferrara, Ferrara, Italy
e-mail: schifano@fe.infn.it

P. Tellez
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: ptellez@unizar.es

R. Tripiccione
Dipartimento di Fisica and CMCS, Università di Ferrara and INFN – Sezione
di Ferrara, Ferrara, Italy
e-mail: tripiccione@fe.infn.it

mailto:sudupe@fis.ucm.es
mailto:denis@unizar.es
mailto:giorgio.parisi@roma1.infn.it
mailto:federico.ricci@roma1.infn.it
mailto:pivanti@fe.infn.it
mailto:ruiz@unex.es
mailto:schifano@fe.infn.it
mailto:ptellez@unizar.es
mailto:tripiccione@fe.infn.it

Janus: An FPGA-based Supercomputer 483

1 Overview

This chapter describes Janus, an application-driven parallel and reconfigurable
computer system, strongly tailored to the computing requirements of spin glass
simulations.

A major challenge in condensed-matter physics is the understanding of glassy
behavior (see, for instance [1]). Glasses are materials that do not reach thermal
equilibrium in human lifetimes; they are conceptually important in physics and
they have a strong industrial relevance (aviation, pharmaceuticals, automotive, etc.).
Important material properties, such as the compliance modulus or the specific heat,
significantly depend on time even if the material is kept for months (or years) at
constant experimental conditions [2]. This sluggish dynamics, a major problem for
the experimental and theoretical investigation of glassy behavior, places numerical
simulations at the center of the stage.

Spin glasses are the prototypical glassy systems most widely studied theoret-
ically [3, 4]. Simulating spin glasses is a computing grand challenge, as their
deceivingly simple dynamical equations are at the basis of complex dynamics,
whose numerical study requires large computing resources. In a typical spin-glass
model, the dynamical variables, one calls them spins, are discrete and sit at the nodes
of discrete D-dimensional lattices. In order to make contact with experiments, we
need to follow the evolution of a large enough lattice, say a 3D system with 803

sites, for time periods of the order of 1 s. One Monte Carlo step (MCS)—the update
of all the 803 spins in the lattice—roughly corresponds to 10−12 s, so we need some
1012 such steps, that is ∼ 1018 spin-updates. One typically wants to collect statistics
on several (∼ 102) copies of the system, adding up to ∼ 1020 Monte Carlo spin
updates. Therefore, performing this simulation program in an acceptable time frame
(say, less than 1 year) requires a computer system able to update on average one spin
per picosecond or less.

This analysis shows that accurate simulations of spin glasses have been a major
computational challenge; the problem has been attacked in different ways, and
the development of application-specific computers has been one of the options
considered over the years. This chapter describes the Janus project, which has led
to the development of the Janus reconfigurable computer, optimized for spin-glass
simulations. Janus has played a major role in making the simulations described
above possible on a reasonable time scale (order of months); it has provided the
Janus collaboration with a major competitive advantage, which has resulted in
ground-breaking work in the field of spin glasses as will be described later.

There are several reasons that make traditional computer architectures a poor so-
lution for spin-glass simulations and at the same time suggests that a reconfigurable
approach may pay very large dividends:

• The dynamical variables describing these systems only take a small number
of discrete values (just two in the simplest case); sequences of bitwise logical
operations are appropriate to compute most (not all) quantities involved in the
simulation;

484 M. Baity-Jesi et al.

• A large amount of parallelism is easily identified; a large number of lattice
locations can be processed independently, so they can be handled in parallel.

• The structure of the critical computational kernels is extremely regular, based on
ordered loops that perform the same sequence of operations on data values stored
at regularly stridden memory locations; the control structure of the program
can therefore be easily cast in the form of simple state-machines. The control
sequence is the same for all lattice locations, so a single instruction multiple data
(SIMD) approach is appropriate and the control structure can be shared by many
computational threads.

These points suggest an ideal architecture for a spin-glass engine, based on a
very large number of computational cores; cores are extremely slim processors,
able to perform only the required mix of logical manipulations and a limited set
of arithmetic operations; many cores work concurrently, running the same thread
under just one control structure; they process data fetched from memory by just one
memory control engine. Seen from a different point of view, one may think of a
streaming processor, working on a steady flow of data extracted from and flowing
back to memory. As discussed in detail later on, the logical complexity of one such
computational core is in the order of just a few thousand logical gates, so one
can assemble them by the thousands in just one integrated circuit. This promises
significant benefits, provided that the huge amount of data needed to keep all these
processors busy can be supplied by the memory system; this is a serious problem
that can be handled in this case as the size of the simulation database is small enough
to be accommodated on chip.

The requirements described above are slightly at variance with traditional
architectures. On the one hand standard CPUs offer features not really exploited by
our regular programming paradigm (out of order execution, branch prediction, cache
hierarchy); on the other hand they are very limited in the extraction of the available
parallelism. Indeed, at the time the Janus project started (early 2006), state-of-the-art
simulation programs running on state-of-the-art computer architectures were only
able to exploit a tiny fraction of the available parallelism and had an average update
time of one spin every ∼1 ns, meaning that the simulation campaign outlined above
would proceed for centuries.

Curiously enough, the time frame that has seen the development of the Janus
project coincides with that in which computer architectures have strongly evolved
towards wider and more explicit parallelization: many-core processors with O(10)
cores are now widely available and graphics processing units (GPUs) now have
hundreds of what can be regarded as “slim” cores. Today, one might see an ideal
spin-glass simulation engine as an application-specific GPU, in which (1) data paths
are carefully tailored to the specific mix of required logical (as opposed to arithmetic
and/or floating-point) operations; (2) the control structure is shared by a much larger
number of cores than typical in state-of-the-art GPUs; (3) data allocation goes to on-
chip memory structures, and (4) the memory controller is optimized for the access
patterns typical of the algorithm.

Janus: An FPGA-based Supercomputer 485

Architectures available in 2011–2012 have indeed improved performance for
spin glass simulations by about one order of magnitude with respect to what was
available when the Janus project started (slightly better than one would predict
according to Moore’s law, see later for a detailed analysis), but standard commercial
computers are even today not a satisfactory option for large-scale spin-glass studies.

We already remarked that, over the years, this state of affairs has motivated
the development of several generations of application-driven, spin-glass-optimized
systems; this approach has been often taken by computational physicists in several
areas, such as Lattice QCD [5–7] or the simulation of gravitationally coupled
systems [8]; early attempts for spin systems were performed more than 20 years
ago [9], and—more recently—an approach based on reconfigurable computing was
pioneered [10].

The Janus1 project has continued along this line, developing a large reconfig-
urable system, based on field programmable gate-arrays (FPGAs). FPGAs are slow
with respect to standard processors. This is more than offset by large speedup
factors, allowed by architectural flexibility. A more radically application-driven
approach would be to consider an application-specific integrated circuit (ASIC), a
custom-built integrated circuit, promising still larger performance gains, at the price
of much larger development time and cost, and much less flexibility in the design.

The remainder of this chapter is organized as follows: in Sect. 2 we describe
the physics systems that we want to simulate, elaborating on their relevance
both in physics and engineering; Sect. 3 provides details on the Monte Carlo
simulation approach used in our work; Sect. 4 describes the Janus architecture
and its implementation, after which Sect. 5 gives a concrete example. Section 6
summarizes the main physics results obtained after more than 3 years of continuous
operation of the machine. Section 7 assesses the performance of Janus on our spin-
glass simulations, using several metrics, and compares with more standard solutions.
We consider both those technologies that were available when Janus was developed
and commissioned and those that have been developed since the beginning of the
project (≈2006). We also briefly discuss the performance improvements that may
be expected if one re-engineers Janus on the basis of the technology available today.
Our conclusions and outlook are in Sect. 8.

2 Spin Glasses

What makes a spin glass (SG) such a complex physical system is frustration and
randomness (see Fig. 1). One typical example is a metal in which we replace some
of its metallic atoms with magnetic ones. Qualitatively, its dynamical behavior is as
follows: the dynamical variables, the spins, represent atomic magnetic moments,
interacting via electrons in the conduction band of the metal and inducing an

1From the name of the ancient Roman god of doors and gates.

486 M. Baity-Jesi et al.

Fig. 1 Four neighboring points of a regular Ising spin lattice (for clarity we show a 2D system).
Spins (σi =±1) sit at the edges of the lattice; each link joining two edges has a coupling constant
Ji j =±1. If Ji j > 0 a link is satisfied if σi = σ j , while Ji j < 0 requires that σi �= σ j . One can easily
check that, for the Ji j values in the picture, no assignment of the σis exists that satisfies all links
(in general, this happens if an odd number of Ji j along the circuit has the same sign). This is called
frustration

effective interaction which changes in sign (the RKKY interaction) depending on
the spatial location. In some materials, it is easy for the magnetic moments to lie
in only one direction (and not in the original three-dimensional space) so we can
consider that they only take values belonging to a finite set. Finally we can assume
that spins sit at the nodes of a crystal lattice.2

At some sites (i and j) in the lattice, neighbor spins (σi and σ j) may lower their
energy if they have the same value: their coupling constant Ji j, a number assigned
to the lattice link between i and j, is positive. However elsewhere in the lattice, with
roughly the same probability, two neighboring spins may prefer to have different
values (in this case, Ji j < 0). A lattice link is satisfied if the two corresponding spins
are in the energetically favored configuration. In spin glasses, positive and negative
coupling constants occur with the same frequency, as the spatial distribution of
positive or negative Ji j is random; this causes frustration. Frustration means that
it is impossible to find an assignment for the σi that satisfies all links (the concept is
sketched in Fig. 1 and explained in the caption).

Models that describe this behavior are defined in terms of the following energy
function:

H =− ∑
〈i, j〉

Ji jδ (σi,σ j); (1)

σi is the spin at lattice site i; it takes discrete values belonging to a finite set of
q elements, δ is the Kronecker delta function and Ji j are the coupling constants
between the two spins; angle brackets mean that the sum is restricted to pairs of
nearest neighbors in the lattice

2A typical example of an Ising spin glass is Fe0.5Mn0.5TiO3.

Janus: An FPGA-based Supercomputer 487

Models described by (1) are usually referred to as Potts spin glasses. One
typically considers values of q ranging from just two to eight or ten. The simplest
case (q = 2) has been especially considered since it was first proposed more than
30 years ago; it is known as the Edwards–Anderson spin glass [11]. One usually
writes its energy function in a slightly different form:

H=−∑
〈i j〉

σiJi jσ j; (2)

Here, the symbols have the same meaning as in (1) but in this case σ =±1; Eq. (2)
goes over to (1)—apart from a constant term that does not affect the dynamics—if
one appropriately rescales the values of the Ji j.

The coupling constants Ji j are fixed and chosen randomly to be ±1 with 50%
probability. A given assignment of the {Ji j} is called a sample. Some of the physical
properties (such as internal energy density, magnetic susceptibility, etc.) do not
depend on the particular choice for {Ji j} in the limit of large lattices (self-averaging
property). However, in the relatively small systems that one is able to simulate, it is
useful to average results over several samples.

Frustration makes it hard to answer even the simplest questions about the model.
For instance, finding the spin configuration that minimizes the energy for a given set
of {Ji j} is an NP-hard problem [12]. In fact, our theoretical understanding of spin-
glass behavior is still largely restricted to the limit of high spatial dimensions, where
a rich picture emerges, with a wealth of surprising connections to very different
fields [13].

In three dimensions, we know experimentally [14] and from simulations [15] that
a spin-glass reaches an ordered phase below a critical temperature Tc. In the cold
phase (T < Tc) spins freeze in some disordered pattern, related to the configuration
of minimal free energy. For temperatures (not necessarily much) smaller than Tc

spin dynamics becomes exceedingly slow. In a typical experiment one quickly cools
a spin glass below Tc, then waits to observe the system evolution. As time goes on,
the size of the domains where the spins coherently order in the (unknown to us)
spin-glass pattern, grows.

Domain growth is sluggish, however: in typical spin-glass materials after 8 h
at low temperature (T = 0.73Tc), the domain size is only around 40 lattice
spacings [16]. The smallness of the spin-glass ordered domains precludes the
experimental study of equilibrium properties, as equilibration would require a
domain size of the order of �108 lattice spacings. However, an opportunity window
opens for numerical simulations. In fact, in order to understand experimental
systems we only need to simulate lattices sufficiently larger than the typical domain.
This crucial requirement has been met for the first time in the simulations made
possible by Janus.

488 M. Baity-Jesi et al.

3 Monte Carlo Simulations of Spin Glasses

Spin glasses have been heavily studied numerically with Monte Carlo techniques
and the Janus architecture has been designed with the main goal of exploiting every
performance handle available in this computational area. In this section we provide a
simple overview of the relevant algorithms, focusing on those features that will have
to be carefully optimized on our reconfigurable hardware. For simplicity, we only
treat the Edwards–Anderson model of Eq. (2), defined on a 3D lattice of linear size
L; the Monte Carlo algorithms that apply to more general Potts model are similar
and—most important in this context—they have essentially the same computational
and architectural requirements.

We focus on the Heat-Bath (HB) algorithm ([17]) that ensures that system
configurations C are sampled according to the Boltzmann probability distribution

P(C) ∝ exp

(
−H

T

)
, (3)

describing the equilibrium distribution of configurations of a system at constant
temperature T = β−1. This is one well-known Monte Carlo method; see, e.g., [18]
for a review of other approaches;

Let us focus on a spin at site k of a 3D lattice; its energy is

E(σk) =−σk ∑
m(k)

Jkmσm = −σkφk , (4)

where the sum runs over the six nearest neighbors, m(k), of site k; φk is usually
referred to as the local field at site k. In the HB algorithm, one assumes that at any
time any spin is in thermal equilibrium with its surrounding environment, meaning
that the probability for a spin to take the value +1 or −1 depends only on its nearest
neighbors. Following (3), the probability for the spin to be +1 is

P(σk =+1) =
e−E(σk=+1)/T

e−E(σk=+1)/T + e−E(σk=−1)/T
=

eφk/T

eφk/T + e−φk/T
, (5)

The algorithm then is an iteration of just two steps:

1. Pick one site k at random and compute the local field φk (4).
2. Assign to σk the value +1 with probability P(σk = +1) as in (5). This can be

done by generating a random number r, uniformly distributed in [0,1], and setting
σk = 1 if r < P(σk = 1), and σk =−1 otherwise.

A full MCS is the iteration of the above scheme for L3 times. By iterating many
MCS, the system evolves towards statistical equilibrium. Figure 2 shows a snapshot
of a large spin-glass lattice at a later stage of the Monte Carlo evolution for a

Janus: An FPGA-based Supercomputer 489

Fig. 2 Domain growth for an
Edwards–Anderson spin glass
of size L = 80 at T = 0.73Tc,
after 236 Monte Carlo steps,
corresponding to a time scale
of ≈ 0.1 s

temperature lower than the critical one, showing the build up of an ordered domain
structure.

A further critically important tool for Monte Carlo simulations is Parallel
Tempering (PT) [19]. Dealing with frustration (as defined above) means handling
rough free-energy landscapes and facing problems such as the stall of the system
in a metastable state. PT helps to overcome these problems by simulating many
copies of the system in parallel (hence the name) at different (inverse) temperatures
βi and allowing copies, whose β (energy) difference is Δβ (ΔE), to exchange
their temperatures with probability equal to min{1,exp(Δβ ΔE)}. Following PT
dynamics, configurations wander from the physically interesting low temperatures,
where relaxation times can be long, to higher temperatures, where equilibration is
fast and barriers are quickly traversed; they explore the complex energy landscape
more efficiently, with correct statistical weights. For an introduction to PT, see, for
instance, [20].

We now sketch the steps needed to implement a Monte Carlo simulation on
a computer. First, one maps physical spin variables onto bits by the following
transformation, σk → Sk = (1−σk)/2, allowing to turn most (not all) steps of the
algorithm into logic (as opposed to arithmetic) operations. The following points are
relevant:

1. The kernel of the program is the computation of the local field φk, involving just
a few logic operations on discrete variable data.

2. The local field φk takes only the 7 even integer values in the range [−6,6], so
probabilities P(σk =+1) = f (φk) can be stored in a look-up table.

3. High-quality random numbers are necessary to avoid spurious spatial correla-
tions between lattice sites, as well as temporal correlations in the sequence of
spin configurations.

490 M. Baity-Jesi et al.

4. Under ergodicity and reversibility assumptions, the simulation retains the desired
properties even if each Monte Carlo step visits each lattice site exactly once, in
any deterministic order.

5. Several sets of couplings {Jkm} (i.e., different samples) are needed. An inde-
pendent simulation has to be performed for every sample, in order to generate
properly averaged results.

6. One usually studies the properties of a spin-glass system by comparing the so-
called overlaps of two or more statistically independent simulations of the same
sample, starting from uncorrelated initial spin configurations (copies of a sample
are usually referred to as replicas).

The last three points above identify the parallelism available in the computation;
farming easily takes advantage for 5 and 6, while for 4 we need a more accurate
analysis. In fact, if we label all sites of the lattice as black or white in a checkerboard
scheme, all black sites have their neighbors in the white site set, and vice versa: in
principle, we can perform the steps of the algorithm on all white or black sites in
parallel.

We will see in the following that the Janus architecture allows us to exploit to a
very large degree the parallelism of point 4 above. If one tries the same approach
with a standard processor, mapping independent spins of one sample to the bits of
one machine word and applying bitwise logical operations, one quickly meets a
bottleneck in the number of required random numbers (this approach is known in
the trade as synchronous multi-spin coding, SMSC). An alternate approach (known
as asynchronous multi-spin coding, AMSC) maps the same spin of independent
samples to the bits of the machine word and uses the same random number to decide
on the evolution of all these spins (this introduces a tolerable amount of correlation).
This strategy does increase overall throughput but does not decrease the time needed
to perform a given number of MCS, which is a critical parameter.

4 Janus: The Architecture

This section describes the Janus architecture, starting from its overall organization,
and then going into the details of its hardware structure, of its reconfigurable
components, and of its supporting software environment. The idea to develop Janus
was born in the early years of this century. After some preliminary analysis helped
estimate the level of performance that one could expect, preliminary work really
started in late 2005. Early prototypes were available in late 2006, and a large-scale
machine was commissioned before the end of 2007. After acceptance tests were
completed, Janus become operational for physics in spring 2008. Since then, it has
continuously been up and running, and it still provides computer power for Monte
Carlo simulations.

Janus: An FPGA-based Supercomputer 491

4.1 Global Structure

The Janus supercomputer is a modular system composed of several Janus modules.
Each module houses 17 FPGA-based subsystems: 16 so-called scientific processors
(SPs) and one input/output processor (IOP). Janus modules are driven by a PC
(Janus host). For our application, the Janus module is the system partition that
exploits the parallelism available in the simulation of one spin glass sample. Several
modules are then used to farm out the simulation of many spin glass samples that
evolve independently.

We generically refer to SPs and the IOP as nodes. The 16 SPs are connected by
a 2D nearest-neighbor toroidal communication network, so an application can be
mapped onto the whole set of SPs (or on a subset thereof). A further point-to-point
network links the IOP to each SP; it is used for initialization and control of the SPs
and for data transfer.

The Janus host PC plays a key role of master device: a set of purpose-made C
libraries are written using low levels of Linux operating system in order to access the
raw Gigabit Ethernet level (excluding protocols and other unhelpful layers adding
latencies to communications). Moreover two software environments are available:
an interactive shell written in Perl mostly used for testing and debugging or short
preliminary runs and a set of C libraries strongly oriented to the physics user, making
it relatively easy to set up simulation programs for Janus.

The FPGA panorama was various and the choice of a device for Janus was driven
by the simple idea that the only important feature is the availability of memory and
logic elements in order to store lattices as large as possible and to house the highest
number of update engines. Large on-chip memory size and many logic elements are
obviously conflicting requirements; each FPGA family offered different trade-offs
at the time of the development phase of Janus.

Our preliminary prototype was developed in 2005 using a PCI development kit
housing an Altera Stratix S60 FPGA providing∼57,000 logic elements and ∼5 MB
of embedded memory. The first two Janus prototype boards developed in 2006 had
Xilinx Virtex-4 LX160 FPGAs while the final implementation of the system was
based on Xilinx Virtex-4 LX200 FPGAs.

The choice between Altera or Xilinx FPGAs has not been fully trivial. While
both families had approximately the same amount of logic elements,3 the amount of
on-chip memory was different: Altera Stratix-II FPGAs offered ∼8 Mb organized
in three degrees of granularity allowing us to efficiently exploit only ∼ 50% of it.
Conversely Xilinx Virtex-4 LX200 FPGAs provided∼6 Mb of embedded memories
made up of relatively small blocks that we could use very efficiently for our design.

The main clock for Janus is 62.5 MHz; we set a rather conservative clock
frequency, trying to minimize time-closure problems when mapping the reconfig-

3We consider the largest devices of both FPGA families available when we had to make a final
decision: Altera Stratix-II 180 and Xilinx Virtex-4 LX200.

492 M. Baity-Jesi et al.

Fig. 3 (a) Topology of a Janus board: each SP communicates with its nearest neighbors in the
plane of the board. (b) Janus board housed in a Janus module

urable portion of an application onto the FPGAs. Selected parts of the system use
faster clocks: for instance the Gigabit-ethernet interface within the IOP has a 125-
MHz clock (called I/O-clock), as needed by Gigabit protocol constraints. Perfect
bandwidth balance is achieved: the Gigabit protocol transfers 1 byte per I/O-clock
cycle (i.e., 8 bits every 8 ns) and a so-called stream router forwards data to the
Janus world with a rate of 2 bytes per system-clock cycle (i.e., 16 bits every 16 ns).
Furthermore link connecting the IOP with the SPs is 8 bit wide and runs a double
data rate protocol so the bandwidth continues to be balanced.

The 17 FPGA-based nodes are housed on small daughter-cards plugged into a
mother-board (see Fig. 3a for a sketchy block diagram and Fig. 3b for a picture
of one Janus module). We used daughter-cards for all nodes to make hardware
maintenance easier and also to allow an easier technology upgrade. The first large
Janus system, deployed in December 2007 at Zaragoza, has 16 modules and 8 Janus
host PCs assembled together in a standard 19" rack. More details on the Janus
architecture and its implementation are given in [21–24].

4.2 Programming Paradigm

The programming framework developed for Janus is intended to meet the require-
ments of the prevailing operating modes of Janus, i.e., supporting (re)configuration
of SPs, initialization of memories and data structures within the FPGA, monitoring
the system during runs, interfacing to memory;

Applications running on Janus can be thought of as split into two sub-
applications, one, called software application SA, written, for example, in C,

Janus: An FPGA-based Supercomputer 493

Fig. 4 Framework of an application running on the Janus system

and running on the Janus host. The other, called firmware application FA, written,
for example, in VHDL, runs on the SP nodes of a Janus board. As shown in
Fig. 4, the two entities, SA and FA are connected together by a communication
infrastructure CI, which is a logical block including physically the IOP and which
allows to exchange data and to perform synchronization operations, directly and in
a transparent way.

The CI abstracts the low-level communication between SA and FA applications,
implemented in hardware by the IOP and its interfaces. It includes, a C
communication library linked by the SA, a communication firmware running on
the IOP processor, interfacing both the host PC and the SP processor and a VHDL
library linked by the FA.

Firmware running on the IOP communicates with the host PC via a dual Gigabit
channel, using the standard RAW-Ethernet communication protocol. To guarantee
reliability of the communication in the direction IOP to Janus host, we adopt the
Go-back-N protocol [25] allowing us to reach approximately the 90% of the full
Gigabit bandwidth, when transferring messages of the order of 1MB, and using the
maximum data payload per frame, 1,500 bytes. This is enough and safe in a context
of spin-glass simulations.

Communications from IOP to host PC do not adopt any communication protocol
since the IOP interface, barring hardware errors, ensures that no packets are lost.
Incoming frames are protected by standard Ethernet CRC code, and errors are
flagged by the IOP processor.

Data coming from the SA application packed as burst of frames are routed to one
of the devices supported by the IOP firmware. These devices can be internal to the
IOP (e.g., memory interface, internal control registers) or external (e.g., SPs).

Developers of Janus-based applications have to provide their SA and FA relaying
on the CI communication infrastructure to make the two applications collaborative.
A typical SA configures the SPs with the appropriate firmware, using functions
provided by the communication library, loads input data to the FA, starts and checks
the status of the SP logic and waits for incoming results.

494 M. Baity-Jesi et al.

4.3 IOP Structure and Functions

The guidelines for the architectural structure of the IOP come from the original
idea of the project that each Janus core is a “large” co-processor of a standard
PC running Linux, connected to the host with standard networking interfaces. Spin
glass simulations are characterized by long runs with limited interaction with the
Janus-host so that each system is loosely coupled with its host. This is different
from similar systems in which the FPGA is tightly coupled to a traditional PC
and its memory, like in the Maxwell machine [26] or more recently on Maxeler
computers [27].

Each simulation starts with the upload of an FA configuring the FPGA of the SPs,
followed by the initialization of all the FA data structures (i.e., upload via Gigabit
of lattice data, random numbers seeds, and other physical parameters). After this
step has completed, the SA starts the simulation and polls the status of each Janus
module. The SA detects the end of the FA task and initiates the download of the
results (e.g., the final physical configurations) and in some cases runs data analysis.
All these operations involve the CI and in particular the firmware of IOP under the
control of the Janus-host.

In some cases (e.g., when running the parallel tempering) the SA requires data
exchange across different SPs during the run: in this case the IOP performs the
additional task of gathering data from all SPs, performing a small set of operations
on them and re-scattering data to SPs.

From this simplified operation scheme it is clear that the IOP plays a key role
between the Janus operating system (JOS) running on the Janus-host and the FA
running on each SP.

The IOP, like the SPs, is based on a Virtex 4 XC4LX200 FPGA but, unlike the
SPs, has 8 MB static memory, a PROM programming device for FPGA boot and
some I/O interfaces: a dual Gigabit channel, a USB channel and a slow serial link
for debug.

The current IOP firmware is not a general purpose programmable processor: its
role is to allow data streaming from the Janus-host to the appropriate destination
(and back), under complete control of the JOS.

As shown in Fig. 5, the IOP structure is naturally split into two functional areas
called IOlink and MultiDev blocks.

The IOlink block handles the I/O interfaces between IOP and the Janus-host
(Gigabit channels, serial and USB ports). It supports the lower layers of the Gigabit
Ethernet protocol and performs CRC checks to ensure data integrity.

The MultiDev block contains a logic device associated with each hardware
sub-system that may be reached for control and/or data transfer: a memory interface
for the staging memory, a programming interface to configure the SPs, an SP
interface to handle communication with the SPs (after they are configured), and
several service/debug interfaces are present. Each interface receives a data stream,
strips header words and forwards the stream to the target hardware component
(memory, SPs, etc.) as encoded in the header.

Janus: An FPGA-based Supercomputer 495

Fig. 5 Block diagram of the IOP architecture

In order to route the input stream coming from IOlink we implemented a module
called Stream Router that scans the data stream and recognizes the masks associated
with each device within the MultiDev.

The current IOP implementation uses∼4% of the total logic resources and ∼18%
of the total memory resources of the FPGA; this means that from the point of view
of the Janus developers a future expansion of the IOP functionalities is possible and
easy to implement simply adding devices to the MultiDev entity. For instance, one
might add floating point units in order to perform floating point arithmetic directly
“on module” or include a MicroBlazeTM microprocessor opening the possibility to
use the Janus core as a standalone computer.

From the point of view of the Janus user, the IOP, together with a software layer
running on the host PC, is meant to be part of the CI and therefore a stable structure
in the Janus system. What is not fixed, on the other hand, are the functionalities
implemented on the SPs that can perform in principle arbitrary algorithms (of course
taking into account the hardware design/limitations).

In the following sections we will describe the details of the software layer
interfacing the SA of a user to the IOP and SPs and later an example of just one
specific SP firmware used for spin-glass simulations along the lines described in
previous sections.

4.4 Software Layer

As part of the CI we developed a software environment running on each Janus host
able to cope with any SP-based FA, as long as the latter adheres to a model in
which Janus is a memory-based coprocessing engine of the host computer; user
programs can therefore use load/store instructions to move their data onto the FA
storage devices (e.g., FPGA embedded memories) and activate, stop, and control
Janus processes mapped in the FA.

496 M. Baity-Jesi et al.

This model is supported by a host-resident run-time environment that we call
JOS. It runs on any Linux-based PC and builds on a low-level C library, based
on standard Unix raw network sockets. It implements the protocol needed to
communicate with the IOP firmware on the Gbit Ethernet link.

For the application user, JOS consists of:

• A multi-user environment for Janus resource abstraction and concurrent jobs
management (josd);

• A set of libraries with primitives in order to interact with the CI level (e.g., IOP
devices), written both in Perl and C (JOSlib);

• A set of FA modules for scientific applications and the corresponding C libraries
needed to control them via the josd environment (jlib).

josd is a background job running on the Janus host, providing hardware abstraction
and a stable interface to user applications. It hides all details of the underlying
structure of Janus, mapping it to the user as a simple grid of SPs. It interfaces
via Unix socket APIs, so high-level applications may be written in virtually any
programming language. Whenever a new FA module is developed, new primitives
controlling that module are added to JOSlib. User programs, written in high-level
languages, use these primitives in order to schedule and control Janus-enabled runs.
For debugging and test, an interactive shell (JOSH), written in Perl and also based
on JOSlib, offers complete (and potentially dangerous) access to all Janus resources
for expert users. It provides direct access to the CI, allowing to communicate with
the IOP and drive all its internal devices.

5 SP Firmware: An Application Example

SPs are fully configurable devices, so they can be tailored to perform any com-
putational task compatible with the available resources and complying with the
communication and control protocols of the CI. In this section we discuss one
example, taken from a set of several applications that we developed for spin glass
simulations.

Tailoring our FAs for Janus has been a lengthy and complex procedure, justified
by the foreseen long lifetime of each application and by an expectation of huge per-
formance gains. Obviously, a high-level programming framework that would (more
or less) automatically split an application between standard and reconfigurable
processors and generate the corresponding codes would be welcome. Unfortunately
the tools available at the time of the development of the machine do not deliver the
needed level of optimization and for Janus this work was done manually using a
hardware description language (VHDL).

Our implementation of model and algorithm tries to exploit all internal resources
in the FPGA in a consistent way (see [21] for a detailed description). Our VHDL
code is parametric in several key variables, such as the lattice size and the number of
parallel updates. In the following description we consider, for definiteness, a lattice
of 803 sites corresponding to the typical simulation described in the introduction.

Janus: An FPGA-based Supercomputer 497

Fig. 6 (a) Checkerboard model used for updating spins in parallel. (b) Logic diagram of the spin
update process performed in each SP

As described in Sect. 3 these algorithms do not allow us to update at the same
time spins sitting next to each others in the lattice. On the other hand we can organize
the spin update process in two steps such that we process in parallel up to half
of the spins at each step. We can in other words split our 3D lattice of spins in a
checkerboard scheme and update first all the white spins and then all the black ones
(see Fig. 6a).

Virtex 4 LX200 FPGAs come with many small embedded RAM blocks; they
can be combined and stacked to naturally reproduce a 3D array of bits representing
the 3D spin lattice and making it possible to access data with almost zero latency.
We used this memory structure to store the lattice variables, carefully reordered and
split in black and white sets. A similar storage strategy applies to the read-only
couplings. After initialization, the machinery fetches all neighbor spins of a portion
of a plane of spins and feeds them to the update engines.

The flexibility given by the use of FPGAs allows us to implement a number
of update engines matching the number of spins processed in parallel. Each
update engine returns the processed (updated) spins to be stored at the same given
address. For the Edwards–Anderson spin glass, we update from 800 to 1024 spins
simultaneously; the update logic is made up of a matching number of identical
update engines. Each engine receives the 6 nearest-neighbor spins, 6 couplings and
one 32-bit random number; it then computes the local field, which is an address to
a probability look-up table; the random number is then compared to the extracted
probability value and the updated spin is obtained (see Fig. 6b).

Look-up tables are small 32-bit wide memories instantiated as distributed
RAM. There is one such table for each update cell. Random number generators
are implemented as 32-bit Parisi–Rapuano generators [28], requiring one sum and
one bitwise XOR operation for each number. To sustain the update rate we need one
fresh random value for each update engine; our basic random number engine has 62

498 M. Baity-Jesi et al.

registers of 32 bits for the seeds and produces 80 random numbers per clock cycle
by combinatorial cascades; 8–13 of these random number generators are instantiated
in the FA.

The number of 800 · · ·1024 updates per clock cycle is a good trade-off between
the constraints of allowed RAM-block configurations and available logic resources
for the update machinery. Total resource occupation for the design is 75–80% of the
RAM blocks (the total available RAM is �672 KB for each FPGA) and 85–94% of
the logic resources. The system runs at a conservative clock frequency of 62.5 MHz.
At this frequency, the power consumption for each SP is �35 W.

Further optimization techniques are used to improve performances and reduce
resource usage: for example, we can simulate at the same time two replicas of the
lattice (sharing the random numbers) to increase the statistic, at a small additional
cost in terms of memory consumption. Details on this and other tricks are available
elsewhere [21].

6 An Overview of Physics Results

In almost 4 years of continuous operation, Janus has provided the Janus collabora-
tion with a major competitive advantage, allowing us to consider lattice sizes and
simulation time scales that other researchers could only dream of. This has resulted
in ground-breaking work in the field of spin-glasses; major work has been done on
the Potts glass model (for several values of q) and on the Edwards–Anderson model
with Ising spins described in Sect. 2. We refer the reader to the original papers for a
full account; here we provide only a very short and sketchy panorama of our main
results.

As for all problems that are not really understood, spin glasses should be studied
with a large variety of tools. Indeed, we do not know where the essential clue will
come from, so being able to perform different types of simulations efficiently is very
important. FPGA reconfigurability is a major asset in this context.

From the experimental point of view, a major limitation is imposed by the slow
dynamics, which makes it impossible to study the equilibrium phase diagram.
In order to reproduce and understand experimental results, it is very important
to perform simulations that match experimental conditions. Experimentalists work
with very large samples (containing some N ∼ 1023 spins) and follow the dynamical
evolution for time scales that span several orders of magnitude. They focus their
attention on self-averaging quantities. These magnitudes are such that, for large
enough samples, they take the same value irrespective of the particular configuration
of the couplings (technically, their sample variance scales as an inverse power
of the number of spins, N). Examples of self-averaging quantities include the
internal energy, the magnetic susceptibility (i.e., the derivative of the magnetization
density with respect to the applied field), or some correlation functions. Self-
averaging is a most important property: it makes it possible to compare data
from different experimental teams, working with different spin-glass samples of
nominally identical chemical composition.

Janus: An FPGA-based Supercomputer 499

Hence, if our dynamic simulations are to imitate experiments, we need to
follow the dynamics of a single system for a time scale spanning several orders
of magnitude. The simulated system should be as large as possible, in order to
minimize the artifacts introduced by the finite size of the simulated samples.
The only good news come from the self-averaging nature of the quantities that one
studies: if the simulated systems are large enough, one may average the obtained
results over a moderate number of samples (most of the time experimentalists work
with just one or two samples!).

The reader may rightly question about how large is “large enough”. The point
is that, as time proceeds, glassy domains grow in the system, whose size defines a
time-dependent “coherence length” ξ (tw). As long as ξ (tw) is much smaller than
the lattice size, the system behaves as if its size were infinite and reproduces the
experimental evolution. However, when the coherence length begins to approach
the lattice size, spurious finite-size effects appear. These systematic errors scale
as exp(−L/ξ (tw)); one should make sure that (relative) statistical errors are much
larger than this value. So, the precise meaning of “large enough” depends on time,
temperature and accuracy. As a rule of thumb, one is on the safe side if the lattice
size is at least seven or eight times larger than ξ (tw) [29]. Since the coherence length
grows with the simulation time, a given lattice size may well be large enough for
105 MCSs but not for 1010 MCSs. Janus has proven an excellent compromise in
this respect. It has allowed us to follow the dynamics for some 1011 MCSs, on
hundreds of samples containing N = 803 ∼ 5× 105 spins. Since a single lattice
sweep corresponds roughly to a picosecond (i.e., 10−12 s), this means that we have
covered the range from the microscopic time scale to one tenth of a second, which is
already long enough to understand what happens in the experimental regime [29,30]

On the other hand, theoretical physicists prefer a different approach. They like to
think about a complex phase space, with many local minima, where the system may
get trapped for quite a long time. The natural framework for this way of thinking
is equilibrium thermodynamics. Hence, we need to reach thermal equilibrium,
meaning that the coherence length is as large as the system size. Under these
conditions, almost no magnitude is self-averaging. One needs to describe the physics
in terms of probability distributions with the disorder. In practice, one needs to reach
thermal equilibrium on several thousands of samples, obtain thermal mean values
over each of them, and afterwards study the disorder distributions (i.e., quantify how
much the same quantity can vary, if computed over different samples). An added
difficulty is that thermal equilibrium is terribly difficult to reach. Even worse, the
larger the system, the harder the equilibration. And, of course, the larger the system,
the more significant the reached results.

Fortunately, when one wants to reach equilibrium, it is no longer important
that the computational dynamics resemble, in any way, the physical dynamics.
The only important mathematical property is balance (see, e.g., [17]). This allows
an enormous flexibility in the choice of the dynamic rules. In particular, the already
discussed parallel tempering dynamics outperforms by orders of magnitude the
simple heat-bath algorithm used in the non-equilibrium simulations. Even then, one

500 M. Baity-Jesi et al.

may need as many as 1011 parallel tempering steps (each parallel tempering step is
followed by 10 heat-bath full lattice sweeps) in order to reach thermal equilibrium
in some samples containing only N = 323 spins [31].

In our simulations with Janus, we reached equilibrium on thousands of relatively
small samples (ranging from N = 163 to N = 323, smaller systems were simulated
on PCs). This simulation campaign was extremely long: all in all Janus performed
1021 spin updates. In the case of the worst samples we estimated that the necessary
wall clock time was well over 6 months. For these samples we have accelerated the
simulation by increasing the level of parallelism, by running the PT temperature-
assignment procedure on the IOP. This has allowed us to distribute the set
of temperatures along several FPGAs on a the same module, speeding up the
simulation accordingly. These simulations have opened a new window into the
nature of the equilibrium spin-glass phase [31–33]

Finally, we combined the results of both the non-equilibrium and the equilibrium
simulation to clarify, in a quantitative way, the relation between the dynamical
evolution and the equilibrium spin-glass phase. We did this by means of a finite-
time scaling formalism, with interesting implications for experimental work [34].

Regarding the Potts glass, we studied its phase transition for q = 4,5,6,
simulating lattices of up to N = 163 [35,36]. We found that, in contrast to the mean-
field prediction, this transition remained of the second order for all the considered
values of q and that ferromagnetic effects were not relevant.

A further example of the benefits of the FPGA reconfigurability is the possibility
of simulating the spin glass under an applied magnetic field. In fact, the fate of
the spin-glass phase when an external field is switched on is one of the major
open questions in the field. Janus is rather efficient in this context, both for the
simpler dynamic simulations, or for the equilibrium simulations that need parallel
tempering. Our recent results on this problem have been reported in [37].

7 Janus Performance

In this section we analyze both computing and energy performances of the Janus
system for some of the applications described in Sect. 6, and compare with that
of systems based on commodity CPUs and GPUs, available both when Janus was
developed as well as today. The tables in this section originally appeared in [38] and
are reproduced with kind permission of The European Physical Journal (EPJ).

Let us first estimate the effective computing power delivered by a full Janus
system, configured to run an Edwards–Anderson simulation. SPs run at clock
frequency of 62.5 MHz, and at each clock cycle conservatively update 800 spins.
An equivalent C program running on a commodity CPU architecture could require
to perform at least the following mathematical operations for each spin-update:

• 1 32-bit integer sum
• 2 32-bit xor

Janus: An FPGA-based Supercomputer 501

Table 1 Speed-up factors of one Janus SP with respect to state-of-the-
art CPUs available at the time the project was started

Model Algorithm Intel Core 2 Duo Intel i7

3D Ising EA Metropolis 45× 10×
3D Ising EA Heat bath 60× –
q = 4 3D glassy Potts Metropolis 1250× –

Table 2 Energy comparison
between Janus and
commodity PCs

Janus AMSC SMSC

Processor 1 SP 1 CPU 1 CPU
Statistic 1 (16) 1 (128) 1 (4)
Wall-clock time 50 days 770 years 25 years
Energy 2,7 GJ 2,3 TJ 78,8 GJ

Processor 256 SPs 2 CPUs 256 (64) CPUs
Statistic 256 256 256
Wall-clock time 50 days 770 years 25 years
Energy 43 GJ 4,6 TJ 20 (5) TJ

The upper part of the table compares the performance of 1 SP
versus a PC. The lower part compares the required time and
energy to run the simulation on 256 lattice replicas

• 6 3-bit integer sum
• 6 3-bit xor
• 1 32-bit integer comparison

In the above count we have neglected operations to load data and instructions,
and to compute memory address, which are obviously necessary during the run.
Counting the 6 short xor and sum operations as one single 32-bit integer operation
each, we end up with 6 equivalent operations for each spin update. This translates
into a required processing power of 6× 800× 62.5× 106 operations per second,
corresponding to a sustained performance of 300.0 Giga-ops for a single SP, and
76.8 Tera-ops for a full Janus system running 256 SPs.

At the time the Janus project started, early 2006, state-of-the-art commodity
systems where based on dual-core CPUs. Prior to actually building the system we
made an extensive analysis of the performance gain that we could expect from the
new machine (see, for instance, [21]). Table 1 contains a short summary of that
analysis, listing the relative speed-up for the Ising and the Potts models of one Janus
SP with respect to standard processors available in 2006–2007.

Let us now make a comparison of energy efficiency between Janus and com-
modity computing systems based on PCs at the same point in time as above. Let
us consider the case of a simulation campaign of an EA model on a lattice size of
643 for 1012 MCSs and 256 samples. In comparison, we consider both AMSC and
SMCS strategies and estimate the power consumption of one PC at �100 W. Table 2
shows the comparison performance of the PC cluster versus the Janus system in
terms of energy dissipated and wall-clock time needed to perform the simulation.

502 M. Baity-Jesi et al.

Since the deployment of Janus, in spring 2008, significant improvements have
been made in the architecture and performance of commodity architectures, and in
spite of that, Janus is still a very performing machine.

We have extensively compared [39, 40] Janus with several multi-core systems
based on the IBM Cell Broadband Engine, the multi-core Nehalem Intel CPU, and
the NVIDIA Tesla C1060 GP-GPU. We have made this exercise for the Ising model
(as opposed to the Potts model) as in the former case the relative speed-up is much
smaller, so we may expect traditional processors to catch up earlier. We consider
these results as state-of-the-art comparisons, assuming that within a factor 2 they
are still valid for even more recent multi-core architectures, like the Fermi GPUs.
This assumption is indeed verified by an explicit test made on the very recent 8-core
Intel Sandy Bridge processor.

As discussed in previous sections, for traditional processor architectures we
analyzed both SMSC and AMSC strategies and also considered mixes of the
two tricks (e.g., simulating at the same time k spins belonging to k′ independent
samples), trying to find the best option from the point of view of performance.

A key advantage of Janus is indeed that there is no need to look for these
compromises: an SP on Janus is simply an extreme case of SMSC parallelization: if
many samples are needed on physics ground, more SPs are used. Equally important,
if different samples need different numbers of Monte Carlo sweeps (e.g., to reach
thermalization), the length of each simulation can be individually tailored without
wasting computing resources on other samples, as would necessarily be the case in
an AMSC approach.

Performance results for Janus are simply stated: one SP updates ≈1,000 spins
at each clock cycle (of period 16 ns), so the spin-update time is 16 ps/spin for any
lattice size that fits available memory. In the cases of L = 96 and L = 128 there is
not enough memory in the FPGA to store the lattice and we do not represent the
performance in the tables. For standard processors, we collect our main results for
the 3D Ising spin-glass in Tables 3 and 4 for SMSC and AMSC, respectively.

We see that performance (weakly) depends also on the size of the simulated
lattice: this is an effect of memory allocation issues and of cache performance. All
in all, recent many-core processors perform today much better than 5 years ago: the
performance advantage of Janus has declined by a factor of approximately 10 for
SMSC: today one Janus SP outperforms very latest generation processors by just a
factor 5×·· ·10×. It is interesting to remark that GP-GPUs are not the most efficient
engine for the Monte Carlo simulation of the Ising model: this is so, because GP-
GPU strongly focus on floating-point performance which is not at all relevant to this
specific problem. There is one point where Janus starts to show performance limits,
it is associated with the largest system size that the machine is able to simulate: no
significant limit applies here for traditional processor.

All in all, for the specific applications we have presented in this chapter,
Janus—after 4 years of operation—still has an edge of approximately one order of
magnitude, which directly translates on the wall-clock time of a given simulation
campaign.

Janus: An FPGA-based Supercomputer 503

Table 3 SMSC update time (in ns) for a 3D Ising spin-glass (binary) model of lattice size L, for
Janus and for several state-of-the-art processor architectures

3D Ising spin-glass model, SMSC (ns/spin)

L Janus SP I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)

16 0.016 0.98 0.83 1.17 – –
32 0.016 0.26 0.40 0.26 1.24 0.37
48 0.016 0.34 0.48 0.25 1.10 0.23
64 0.016 0.20 0.29 0.15 0.72 0.12
80 0.016 0.34 0.82 1.03 0.88 0.17
96 – 0.20 0.42 0.41 0.86 0.09
128 – 0.20 0.24 0.12 0.64 0.09

I-NH (8-Cores) a dual-socket quad-core Intel Nehalem board, CBE (16-SPE) a dual-socket IBM
Cell board, and I-SB a dual-socket eight-core Intel Sandy Bridge board

Table 4 AMSC update time for the 3D Ising spin-glass (binary) model, for the same systems as
in the previous table

3D Ising spin-glass model, AMSC (ns/spin)

L Janus I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)

16 0.001 (16) 0.031 (32) 0.052 (16) 0.073 (16) – –
32 0.001 (16) 0.032 (8) 0.050 (8) 0.032 (8) 0.31 (4) 0.048 (8)
48 0.001 (16) 0.021 (16) 0.030 (8) 0.016 (16) 0.27 (4) 0.015 (16)
64 0.001 (16) 0.025 (8) 0.072 (4) 0.037 (4) 0.18 (4) 0.015 (8)
80 0.001 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4) 0.011 (16)
96 – 0.025 (8) 0.052 (8) 0.051 (8) 0.21 (4) 0.012 (8)
128 – 0.025 (8) 0.120 (2) 0.060 (2) 0.16 (4) 0.011 (8)

For Janus, we consider one core with 16 SPs. The number of systems simulated in parallel in the
multi-spin approach is shown in parentheses

8 Conclusions

This chapter has described in detail the Janus computer architecture and how
we have configured the FPGA hardware to simulate spin-glass models on this
architecture. We have also briefly reviewed the main physics results that we have
obtained in approximately 4 years operating with this machine.

From the point of view of performance, Janus still has an edge on computing
systems based on state-of-the-art processors, in spite of the huge architectural
developments since the project was started. It is certainly possible to reach very
high performances in terms of spin flips per second using multi-spin coding on
CPUs or GP-GPUs (or simply by spending money on more computers), thus
concurrently updating many samples and achieving very large statistics. In the
Janus collaboration, we have instead concentrated on a different performance goal:
minimizing the wall-clock for a very long simulation, by concentrating the updating
power in a single sample. This has allowed us to bridge the gap between simulations

504 M. Baity-Jesi et al.

and experiments for the non-equilibrium spin-glass dynamics or to thermalize large
systems at low temperatures, thus gaining access to brand new physics. In particular,
one single SP of Janus is able to simulate (two replicas of) an L = 80 three-
dimensional lattice for 1011 MCS in about 25 days.

Janus provides one of the few examples of the development of a successful
large scale computing application fully running on a reconfigurable computing
infrastructure. This success comes at the price of a large investment in mapping
and optimizing the application programs onto the reconfigurable hardware. This has
been possible in this case as the Janus group has a full understanding of all facets of
the algorithms and every performance gain immediately brings very large dividends
in terms of a broader physics program. Most potential FPGA-based applications do
not have equally favorable boundary conditions, so automatic mapping tools would
be most welcome; however, further progress is needed in this area in order to support
a widespread use of configurable FPGA-based computing.

Focusing again on the spin glass arena, there is still room for substantial
progress. Nowadays, the theoretical analysis of temperature-cycling experiments is
still in its infancy. Janus has made possible an in-depth investigation of isothermal
aging (i.e., experiments where the working temperature is kept constant). However,
isothermal aging reflects only a minor part of the experimental work, where different
temperature variation protocols are used as a rich probe of the spin-glass phase.

Janus is not able to support these analyses, as its performance is not enough in
this case, and also because memory limits would quickly become a major problem,
as the coherence length grows very fast close to the critical temperature. If one wants
to work in this direction a new generation Janus system should be developed; this
can be done by leveraging on technology progress of FPGAs in the last 5 years and
introducing a few limited architectural changes in the memory structure of the SPs
and in the interconnection harness with the host system.

If this system is developed, we should be able to reach the same time scales
of 1011 lattice sweeps, which is roughly equivalent to a tenth of a second, on
systems containing some 5 × 107 spins. In other words, we should be able to
simulate systems with lattice size up to L = 400, large enough to accommodate
a coherence length of up to 50 lattice spacings. After 40 years of investigations,
a direct comparison between experiments and the Edwards–Anderson model will
finally be possible.

Acknowledgements We wish to thank several past members of the Janus Collaboration, F.
Belletti, M. Cotallo, G. Poli, D. Sciretti and J.L. Velasco, for their important contributions
to the project. Over the years, the Janus project has been supported by the EU (FEDER
funds, No. UNZA05-33-003, MEC-DGA, Spain), by the MICINN (Spain) (contracts FIS2006-
08533, FIS2009-12648, FIS2007-60977, FIS2010-16587, FPA2004-02602, TEC2010-19207), by
CAM(Spain), by the Junta de Extremadura (GR10158), by UCM-Banco Santander (GR32/10-
A/910383), by the Universidad de Extremadura (ACCVII-08), and by the Microsoft Prize 2007.
We thank ETHlab for their technical help. E.M. was supported by the DREAM SEED project
and by the Computational Platform of IIT (Italy); M.B.-J. and B.S. were supported by the FPU
program (Ministerio de Educacion, Spain); R.A.B. and J.M.-G. were supported by the FPI program
(Diputacion de Aragon, Spain); finally J.M.G.-N. was supported by the FPI program (Ministerio
de Ciencia e Innovacion, Spain).

Janus: An FPGA-based Supercomputer 505

References

1. See, for instance: C.A. Angell, Science 267, 1924 (1995); P.G. Debenedetti, Metastable Liquids
(Princeton University Press, Princeton, 1997); P.G. Debenedetti, F.H. Stillinger, Nature 410,
259 (2001)

2. L.C.E. Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier,
Houston, 1978)

3. J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993)
4. A.P. Young (ed.), Spin Glasses and Random Fields (World Scientific, Singapore, 1998)
5. P.A. Boyle et al., IBM J. Res. Dev. 49, 351–365 (2005)
6. F. Belletti et al., Comput. Sci. Eng. 8, 18–29 (2006)
7. G. Goldrian et al., Comput. Sci. Eng. 10, 46–54 (2008); H. Baier et al., Comput. Sci. Res. Dev.

25, 149–154 (2010)
8. J. Makino et al., A 1.349 Tflops simulation of black holes in a galactic center on GRAPE-6, in

Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, Article n. 43 (2000)
9. A.D. Ogielski, D.A. Huse, Phys. Rev. Lett. 56, 1298–1301 (1986)

10. J. Pech et al., Comput. Phys. Comm. 106, 10–20 (1997); A. Cruz et al., Comput. Phys. Comm.
133, 165–176 (2001)

11. S.F. Edwards, P.W. Anderson, J. Phys. F Met. Phys. 5, 965–974 (1975); S.F. Edwards, P.W.
Anderson, J. Phys. F Met. Phys. 6, 1927–1937 (1976)

12. J. Barahona, J. Phys. Math. Gen. 15, 3241–3253 (1982)
13. M. Mézard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singa-

pore, 1987)
14. K. Gunnarsson et al., Phys. Rev. B 43, 8199–8203 (1991) See also P. Norblad, P. Svendlidh,

Experiments on Spin-Glasses in [[4]]
15. H.G. Ballesteros et al., Phys. Rev. B 62, 14237–14245 (2000)
16. F. Bert et al., Phys. Rev. Lett. 92, 167203 (2004)
17. See for instance D.J. Amit, V. Martin-Mayor, Field Theory, the Renormalization Group and

Critical Phenomena, 3rd edn. (World Scientific, Singapore, 2005)
18. M.E.J. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University

Press, New York, 1999)
19. H. Hukushima, K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996); E. Marinari, in Advances in

Computer Simulation, ed. by J. Kerstéz, I. Kondor (Springer, Berlin, 1998)
20. H.G. Katzgraber, Introduction to Monte Carlo Methods. Lecture at Modern Computation

Science (BIS, Oldenburg, 2009)
21. F. Belletti et al., Comput. Phys. Comm. 178, 208–216 (2008)
22. F. Belletti et al., IANUS: scientific computing on an FPGA-based architecture, in Proceedings

of ParCo2007, Parallel Computing: Architectures, Algorithms and Applications. NIC Series,
vol. 38 (2007), pp. 553–560

23. F. Belletti et al., Comput. Sci. Eng. 8, 41–49 (2006)
24. F. Belletti et al., Comput. Sci. Eng. 11, 48–58 (2009)
25. S. Sumimoto et al., The design and evaluation of high performance communication using

a Gigabit Ethernet, in Proceedings of the 13th International Conference on Supercomputing
(1999), pp. 260–267

26. R. Baxter et al., Maxwell – a 64 FPGA supercomputer, in Second NASA/ESA Conference on
Adaptive Hardware and Systems (2007), pp. 287–294

27. M. Flynn et al., Finding speedup in parallel processors, in International Symposium on Parallel
and Distributed Computing ISPDC ’08 (2008), pp. 3–7

28. V. Parisi, cited in G. Parisi and F. Rapuano, Phys. Lett. B 157, 301–302 (1985)
29. F. Belletti et al., Phys. Rev. Lett. 101, 157201 (2008)
30. F. Belletti et al., J. Stat. Phys. 135, 1121–1158 (2009)
31. R. Alvarez Baños et al., J. Stat. Mech. P06026 (2010)
32. R.A. Baños et al., Phys. Rev. B 84, 174209 (2011)

506 M. Baity-Jesi et al.

33. A. Billoire et al., J. Stat. Mech. P10019 (2011)
34. R. Alvarez Baños et al., Phys. Rev. Lett. 105, 177202 (2010)
35. A. Cruz et al., Phys. Rev. B 79, 184408 (2009)
36. R. Alvarez Baños et al., J. Stat. Mech. P05002 (2010)
37. R.A. Baños et al., Proc. Natl. Acad. Sci. USA 109, 6452–6456 (2012)
38. M. Baity-Jesi et al. (Janus Collaboration), Eur. Phys. J. Spec. Top. 210, 33–51 (2012)
39. M. Guidetti et al., Spin Glass Monte Carlo simulations on the cell broadband engine, in

Proceedings of PPAM09. Lecture Notes on Computer Science (LNCS), vol. 6067 (Springer,
Heidelberg, 2010), pp. 467–476

40. M. Guidetti et al., Monte Carlo Simulations of Spin Systems on Multi-Core Processors, ed. by
K. Jonasson. Lecture Notes on Computer Science (LNCS), vol. 7133 (Springer, Heidelberg,
2010), pp. 220–230

Accelerate Communication, not Computation!

Mondrian Nüssle, Holger Fröning, Sven Kapferer, and Ulrich Brüning

Abstract Computer systems are showing a continuously increasing degree of
parallelism in all areas. Stagnating single thread performance as well as power
constraints prevent a reversal of this trend. On the contrary, current projections show
that the trend towards parallelism will accelerate. In cluster computing scalability
and therefore the degree of parallelism are limited by the network interconnect and
its characteristics like latency, message rate, overlap and bandwidth. While most
interconnection networks focus on improving bandwidth, there are many applica-
tions that are very sensitive to latency, message rate and overlap, too. We present an
interconnection network called EXTOLL, which is specifically designed to improve
characteristics like latency, message rate and overlap, rather than focusing solely
on improving bandwidth. Key techniques to achieve this are designing EXTOLL
as an integral part of the HPC system, providing dedicated support for multi-core
environments and designing and optimizing EXTOLL from scratch for the needs
of high performance computing. The most important parts of EXTOLL are the
network interface and the network switch, which is a crucial resource when scaling
the network. EXTOLL’s network interface provides dedicated support for small
messages for eager communication, and for bulk transfers in the form of rendezvous
communication. While support for small messages is optimized mainly for high
message rates and low latencies, for bulk transfers the possible amount of overlap
between communication and computation is optimized. EXTOLL is completely
based on FPGA technology, both for the network interface and the switching. In this
work we present a case for accelerated communication, where FPGAs are not used
to speed up computational processes, rather we employ FPGAs to speed up com-
munication. We will show that in spite of the inferior performance characteristics of
FPGAs compared to ASIC solutions, we can dramatically accelerate communication
tasks and thus reduce the overall execution time.

M. Nüssle (�) • H. Fröning • S. Kapferer • U. Brüning
University of Heidelberg, Germany
e-mail: nuessle@uni-hd.de; holger.froening@ziti.uni-heidelberg.de;
sven.kapferer@ziti.uni-heidelberg.de; ulrich.bruening@ziti.uni-heidelberg.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 17, © Springer Science+Business Media, LLC 2013

507

mailto:nuessle@uni-hd.de
mailto:holger.froening@ziti.uni-heidelberg.de
mailto:sven.kapferer@ziti.uni-heidelberg.de
mailto:ulrich.bruening@ziti.uni-heidelberg.de

508 M. Nüssle et al.

1 Introduction

The need for more powerful high performance computing (HPC) systems continues,
and the TOP500 list [1] reveals that most popular installations are clusters, certainly
due to their excellent price/performance ratio. Such clusters rely on commodity parts
for computing, memory and enclosure, but significant performance improvements
can be achieved by replacing commodity Ethernet with specialized interconnection
networks like Infiniband [2]. The main reasons for these performance improvements
are features that cannot be found in commodity Ethernet, including user-level com-
munication, reliable transmission, off-loading of communication tasks and higher
peak bandwidth. These features result in improved performance characteristics like
higher sustained bandwidth, lower start-up latency and increased message rate, just
to name the most important ones. Besides this, network switching characteristics
like congestion management are also improved in these specialized interconnects,
while commodity Ethernet still relies on packet dropping in the case of exhausted
resources.

Besides clusters, massively parallel processors (MPPs) can also be found in the
TOP500 list; however, they are almost completely based on specialized components
with a dramatically higher price tag. Their interconnects typically include all
features that can be found in the specialized networks for the cluster market, but
many details are even further improved. The most prominent examples for such
MPP interconnects include Cray SeaStar [3], Cray Gemini [4], Fujitsu TOFU [5]
and IBM BlueGene [6]. In particular, they put special attention on scalability
by using appropriate routing and switching mechanisms, certain topologies and
congestion management techniques.

The goal of EXTOLL is to fill the gap between clusters and MPPs, allowing to
rely on cost-effective commodity parts for almost all components, but providing
a specialized and optimized interconnection network for HPC demands. In this
work we will show that such an approach is feasible. As a research project we rely
on FPGA technologies, which allows us to assess our interconnect performance
under real-world workloads and to adapt the complete architecture to HPC needs.
In spite of the inferior performance characteristics of FPGAs in comparison with
ASICs, we can show multiple cases where our architecture outperforms state-
of-the-art commercial interconnects, validating the architectural design choices
made and constructing a case for accelerated communication instead of accelerated
computation.

1.1 Vast Increase in Parallelism

The high performance computing landscape is currently driven by the concurrency
galore, which tells the reader nothing else but that many small things are way better
than few huge ones. Power constraints, limited ILP and bounded signal reach result
in stagnating single thread performance, so performance improvements are most

Accelerate Communication, not Computation! 509

Fig. 1 Number of computational units per system in the TOP500 list over the recent years

easily accomplished by replicating computational units. Also, these facts prevent a
reversal of this trend. Recent supercomputers embrace already more than 700,000
cores [1], and the average core count in the TOP500 list grows with a CAGR of more
than 50% over the recent 5 years (see Fig. 1). Projections show that this trend will
continue in the future. For instance, [7] anticipates that a supercomputer exceeding
a performance of 1 EXAFLOP (1018 floating point operations per second) will be
empowered by about 166M cores. Even today, the interconnection network has to
interconnect much more end points than before; additionally the network interface
now finds itself between an increasing number of local CPU cores and a vast amount
of communication partners. If a network (interface) does not address this issue,
communication performance will dramatically suffer.

Another effect of the massive parallelization is an increase of the number of
potential communication partners. Although typical problem sizes are continuously
increasing, the sheer amount of communication end points results in a shift towards
smaller message sizes. In the past, high performance interconnection networks
have been almost solely optimized for bandwidth [8], while other characteristics
like latency or message rate have not improved significantly. Also, an increase in
the number of communication partners typically results in more synchronization
overhead, and synchronization primitives typically rely on small messages. With
this shift towards higher message counts with smaller payloads, attention must be
paid on the performance of small transfers.

1.2 Messaging Characteristics

The most important characteristics for interconnection networks have been peak
bandwidth and start-up latency, but the irreversible trend towards higher degrees

510 M. Nüssle et al.

of parallelism puts another characteristic into the focus: the message rate. Peak
bandwidth describes how much data can be transferred between two endpoints
per time unit, and the start-up latency determines the time spent for transferring
a minimum-sized packet between two endpoints. Certainly, the peak bandwidth
is of high importance for many applications, but many others are not or only
marginally benefitting from higher bandwidths. The start-up latency is typically only
important for round-trip communication patterns. This pull type communication
is typically avoided because many HPC applications behave deterministically
and such dependencies can already be solved at compile time. Thus, push type
communication is of much more importance, but for small messages the peak
bandwidth does not describe this communication pattern appropriately. Instead, the
message rate can be used to describe performance of small messages exchanged in
push style communication. Message rate is reported in messages per second, and
peak is typically achieved with minimum-sized payloads. Obviously the message
rate together with the payload size directly translates into bandwidth, but for such
small transfers bandwidth is not important, rather how many messages can be sent
out per time unit.

Another important characteristic is overlap, which defines to which extent com-
putation and communication can be performed simultaneously. Related metrics are
overhead, defined as “length of time that a processor is engaged in the transmission
or reception of each message; during this time, the processor cannot perform other
operations” [9], and reported in time units. From the overhead the application
availability can be derived, which defines the fraction of total transfer time that
the application is free to perform non-MPI related work. Obviously it is desirable to
maximize application availability, but this is only feasible if the network interface
off-loads all communication tasks from the CPU cores and acts as unobtrusively as
possible and adds only minimal overhead to the communication.

1.3 The EXTOLL Approach

EXTOLL has been designed from scratch as an interconnection network for HPC
demands. Key ideas of the EXTOLL architecture are:

(1) A tight integration into the host system
(2) Inherent support for multi-core environments
(3) A new ratio between on- and off-loading

As a research project, the technology is based on FPGAs due to their reconfig-
urability and low non-recurrent expenses (NRE). Compared to ASICs, FPGAs are
obviously inferior in terms of frequency, data path widths and logic complexity.
For this application, this translates in a bandwidth gap of about 50% (FPGA
bandwidth/ASIC bandwidth) in comparison with state-of-the-art interconnects. In
spite of this, our innovative architecture yields improvements in message rate,
overlap and latency that can dramatically speed up applications.

Accelerate Communication, not Computation! 511

The remainder is organized as follows: In the next section the networking
demands of HPC applications are introduced and analyzed using several benchmark
and codes. After that the EXTOLL architecture and the implementation of this
architecture on an FPGA is described. In the following section the software-stack
of EXTOLL is described. Finally, we give a performance evaluation of the FPGA
EXTOLL system again using several micro-benchmarks and application codes. The
chapter closes with a short overview of related work and a conclusion.

2 Application Demands

A typical HPC application shares many properties with standard programs, includ-
ing the need for safety and security. However, as contemporary HPC systems rely on
the concurrency galore to scale performance up to ultimate levels, HPC applications
have to spend a large fraction of their execution time for communication and
synchronization.

General computer programs, like web servers and database management systems,
often employ a very dynamic task model and allow spawning and terminating
threads during run time. Their communication patterns are completely irregular
and can change significantly during execution. Often, their concurrency relies
on request-level parallelism, which is barely predictable. Such solutions may
be appropriate for execution with invariant communication costs, the absence
of locality effects or an unpredictable concurrency. Furthermore, many other
computer programs are still employed in a sequential way and make no use of
concurrency at all.

Completely opposed to this, HPC applications have to make use of the vast
amount of parallel resources, which can only be leveraged if the HPC application
itself exploits as much concurrency as possible. Strong scaling problems are not
subject to scalability constraints by definition, and for weak scaling problems the
problem size can typically be increased to ensure their scalability. This huge degree
of concurrency is only manageable with simplified task models. So most HPC
applications are relying on the single-program-multiple-data (SPMD) paradigm,
which enforces that one single program is executed on all resources, and only
by assigning process IDs to each instance different behavior can be implemented.
Another—even stricter—task model is the bulk synchronous programming (BSP)
model, which relies on three phases for computation, communication and barrier
synchronization. The static task model also leads to deterministic communication
patterns, as the work flow is determined during compile time. This ab-initio
knowledge of communication channels helps not only to perform optimizations by
overlapping computation and communication but also to pre-post receives, so that
unexpected communication by the uncoupled work flows is avoided.

512 M. Nüssle et al.

Table 1 MPI Time for various applications

Benchmark MPI Time (%) Processes Source

NPB-EP 0 64 [10]
NPB-MG 9 64 [10]
NPB-BT 10 64 [10]
NAMD 24 64 [10]
HPL 25 64 [10]
NPB-CG 34 64 [10]
NPB-FT 37 64 [10]
NPB-IS 47 64 [10]
WRF 45 64 Own experiments
HPCC MPIFFT 77 64 Own experiments
HPCC RandomAccess 89 64 Own experiments

2.1 Fraction of Communication Time

This extensive use of parallelism together with the execution on partitioned
resources with no possibility of data sharing results in huge communication and
synchronization overhead. Obviously the time spent in MPI calls is depending on
the application, but it is obvious that more parallelism leads to more partitioning.
Then, for a fixed problem size more data has to be moved around, so that finally the
fraction of time spent for MPI calls is increasing. For an increased problem size this
fraction of time is even increasing more. This fraction of time is called MPI time
and typically reported in per-cent of the overall execution time. Table 1 gives a brief
overview of a variety of benchmarks and their MPI time. Sources of this data are
[10] and own experiments (WRF, MPIFFT, RandomAccess). Note that both NAMD
and WRF are not only benchmarks but also used in production. Thus, they provide
the most insights, and also show that MPI time can vary significantly for different
applications.

Note that the MPI time is dependent on the number of processes participating
in the execution of the application. The more processes are involved, the more
communication is required and thus more time has to be spent in MPI layers. The
following Fig. 2 shows the dependency of the MPI time on the process count.

Also note that the MPI time is highly dependent on the used interconnection
networks, respectively, software stack. Depending on the capabilities of the network
interface, tasks can be off-loaded from the CPUs to the network hardware, reducing
the time fraction spent for MPI calls. Obviously the amount of work is the same as
before, but now overlap between computation and communication can be leveraged.
Thus, above numbers may greatly vary for different platforms. Also, it is desirable
to provide as much overlap potential as possible.

MPI time highly depends on how much communication tasks can be off-loaded
to the network interface, or in other terms how much overlap between computation
and communication can be achieved. As stated in the introduction, overhead [9] is
limiting this overlap between computation and communication, and the application

Accelerate Communication, not Computation! 513

Fig. 2 MPI Time over process count for three selected applications

Fig. 3 Application availability and overhead for commodity Gigabit Ethernet

availability indicates how much overlap is possible. In [11] an approach to measure
application availability is introduced. Figure 3 shows application availability and
overhead for a standard Gigabit Ethernet network.

Because the OS is responsible to handle all communication over Gigabit
Ethernet, a system call is required and dramatically increases the time required for
this communication call. As a direct result, on multi-core architecture the resulting
application availability might be high, because both tasks (calling process and

514 M. Nüssle et al.

Fig. 4 Message size distribution for RandomAccess

handling process) can execute concurrently. For large messages, which are much
more suitable for overlap because of the larger absolute communication times, the
application availability drops close to zero. This is a typical behavior for a network
with no support for off-loading of communication tasks.

2.2 Message Size Distribution

While the MPI time of an application describes the computation/communication
ratio, for an optimization it is important to know more details of the communication
patterns. As for EXTOLL special attention is put on fine grain communication, we
will analyze the message size distribution for a couple of example applications.
Other important characteristics of communication patterns are total amount of data
moved around, use of collective communication, locality (nearest neighbor, uniform
traffic, etc), but this exceeds the scope of this work.

In order to collect message distribution data, we have instrumented our OpenMPI
implementation for EXTOLL. Thus, we are able to track message sizes at network
level, not at application level. This is important because the MPI layer in between
may translate large transfers and collective operations into multiple messages. With
this methodology we are able to record the actual transfers on the network. Message
sizes are collected in buckets, and message size distribution is reported using
cumulative distribution functions (CDF). Figures 4, 5 and 6 show the message size
distribution for RandomAccess, MPIFFT and WRF.

Accelerate Communication, not Computation! 515

Fig. 5 Message size distribution for MPIFFT

Fig. 6 Message size distribution for WRF

516 M. Nüssle et al.

These three applications have completely different characteristics. With an
increasing process count, RandomAccess is making almost solely use of small
messages, i.e. 95% of all messages are below 512 bytes. RandomAccess is well
known as a benchmark which puts a very high load on the network, and this effect
is even emphasized by the use of many small messages. Opposed to this, with an
increasing process count MPIFFT is only relying on bulk data transfers, with only
15% of all messages below 512 kb. Almost all messages have a payload of 1 mb
or more. WRF—as the only production application of these three benchmarks—is
making use of many intermediate message sizes (83% below 64 kb), but also on
many small ones (29% below 512 bytes).

2.3 Key Requirements of HPC Applications

The performance of HPC applications depends on a successful data domain
partitioning. Because of data dependencies typically present, this partitioning results
in a need for communication; and depending on the problem size, plenty of data has
to be moved around. Obviously, high bandwidths are required to reduce the gap
between local and remote communication. This is already addressed by commercial
solutions, respectively, the available bandwidth is primarily limited by costs: it is
easy to increase data path widths to achieve higher throughput, although various
practical issues introduce problems. However, opposed to latency and message rate,
peak bandwidth is much easier to improve.

What the previous explanations and experiments show is that beside optimiza-
tions for peak bandwidth much more attention has to be paid on minimizing the
overhead associated with communication. Only then the amount of overlap between
computation and communication can be maximized, reducing the effective costs
of communication also known as MPI time. Furthermore, many HPC applications
make a high use of small messages, and this fine grain communication has to be
supported accordingly by the network. Key characteristics here are message rate
and latency. Otherwise, the significant fraction of small messages—although much
smaller in total volume transferred—will turn into a bottleneck. With EXTOLL, we
try to address both issues: maximizing both application availability and performance
of fine grain communication.

3 A Networking Solution Optimized for HPC

The EXTOLL hardware architecture is designed to provide solutions to several
issues of HPC interconnection networks. In particular, EXTOLL follows these key
ideas:

• Native support for multi-core environments
• Single chip solution, integrating both network interface and switching resources

Accelerate Communication, not Computation! 517

Fig. 7 Top-level architecture of EXTOLL

• Complete hardware-level virtualization, supporting thousands of processes or
threads per node

• Very low state overhead, with optimized context sizes resulting in a minimal
memory footprint

Figure 7 shows a top-level block diagram of the EXTOLL architecture, integrating
the host interface, network interface, and switching. The host interface contains the
HyperTransport (HT) Core [12], which directly connects without any intermediate
bridges or protocol conversion to one of the node CPUs. The usage of add-in cards is
maintained by leveraging the HTX connector, which is the counterpart of the PCIe
connector for HT systems. The HTAX on-chip network [13] multiplexes accesses in
a non-blocking manner from and to this host interface from multiple units located
in the NIC block. This on-chip network protocol is directly derived from HT to
minimize protocol conversion overhead. It adds a number of features to overcome
some limitations like the limited amount of source tags and improves the addressing
scheme. The second large block implements the different modules needed for
message handling, thus being responsible for message injection into the network and
message reception from the network. We will provide more information on message
handling later in this section. The last block implements a complete network switch.
It includes a crossbar-based switch, six ports towards the network side and three
ports towards the message handling modules on the host side. Specifically, there is
one network port for VELO and two network ports for RMA, which handle requests,
responses, and completions of Put/Get requests in a distributed fashion.

518 M. Nüssle et al.

3.1 Switching

The EXTOLL prototype can run any direct topology with a maximum node degree
of six. The routing hardware is not limited to a certain strategy, like dimension order
routing, nor to a specific topology. For instance, in the case of smaller networks
different topologies from fully interconnected to hypercube and tori are available.
Larger configuration will most probably use a 3D torus configuration, though, based
on the available number of links.

The integrated switch implements a variant of Virtual Output Queuing (VOQ) on
the switch level to reduce Head-of-line (HOL) blocking and employs cut-through
switching which enables very low switching latencies. The prototype implements
several virtual channels for deadlock avoidance. The switch also supports in-order
delivery of packets, which can be leveraged by software components like MPI to
simplify protocol design. Furthermore, the architecture allows for the addition of
different traffic classes to isolate different traffic streams from each other and to
avoid protocol deadlocks. For example, Inter Process Communication (IPC) traffic
can be divided from I/O traffic and both could be isolated from system management
messages. The whole network acts as a reliable, lossless fabric. Credit-based flow-
control is used within the network to keep buffers from overflowing and packets
from being dropped. The links employ link-level retransmission and keep the
order when retransmitting (replay protocol). On-chip resources are secured by ECC
logic. These properties enable a highly efficient, low complexity software layer, in
particular with regard to in-order packet delivery and reliable transmission.

3.2 Communication Engines

The two major communication units are the virtualized engine for low overhead
(VELO), supporting programmed I/O (PIO) for small transfers, and the remote
memory access (RMA) unit that uses DMA to handle large messages. The two
supporting units are the address translation unit (ATU) and the control & status
register file.

3.2.1 VELO: Support for Small Data Transfers

As the network is designed particularly for ultra-low latencies and high message
rates, EXTOLL includes a special hardware unit named VELO that provides
optimized transmission for small messages. It offers a highly efficient hardware
and software interface to minimize the overhead for sending and receiving such
messages. Both optimizations affect the start-up latency as well as the small message

Accelerate Communication, not Computation! 519

rate of the complete system. Using VELO, messages are injected into the network
using PIO to reduce the injection latency as much as possible. Details of this scheme,
as well as for the general architecture of VELO can also be found in [14]. Here, we
concentrate on the features that enable very high small message performance from
a system point of view.

Actually, the host-interface must be traversed exactly once, which is crucial to
reduce latency as much as possible. For VELO, a single write operation into the
memory-mapped I/O (MMIO) space is sufficient to send a message. For additional
optimization, some of the message header information is encoded in the address
to access VELO. This implementation saves space in the data section of the I/O
transaction. The main task of the sending side of VELO is to convert the information
from the host-interface into an EXTOLL network packet and to inject it into the
network using its associated network port.

The VELO hardware unit is a completely pipelined structure controlled by
a number of finite state machines. So no (relatively) slow microcode or even
embedded processing resource is involved in sending or receiving data. Another
fact that has important consequences on performance is the amount and the location
of context or state information for the hardware. VELO is stateless in the sense that
each transaction is performed as a whole and no state must be saved for one message
to proceed. As a corollary, there is no context information stored in main memory
and no caching of such information is necessary. Thus, VELO is able to provide
high performance independent of the actual access pattern by different processes, a
very important fact in today’s multi- or many-core systems. Since the hardware is
implemented in such an efficient way, it supports both very low start-up latencies
and high message rates. Since the software interface is very lean, the CPU is able to
issue messages both with low latency and at a very high rate.

On the receive side, messages are written directly to main memory using a single
ring-buffer per receiving process. Each process allocates its own receive buffer, and
any source can store messages to this ring-buffer. User-level processes waiting for
messages can poll certain memory locations within this ring buffer for new arrivals.
This can be done in a coherent way, so polling is done on cache copies. Updates in
the ring buffers invalidate the outdated copies, enforcing the subsequent access to
fetch the most recent value from main memory.

For the VELO transport, the order is maintained by utilizing the hardware’s
underlying flow-control principles, i.e. EXTOLL’s flow-control in the network and
HyperTransport’s flow-control for the host side. In extreme cases, this can lead to
stalling CPU cores due to missing credits, which are needed to inject messages. To
solve this problem a programmable watchdog is provided which prevents system
crashes in such a case. On the software side, the problem can be avoided by using a
higher-level flow-control. The actual hardware implementation has been improved
from the implementation described in [14]. The two most important aspects are that
the data path has been widened to 32 bit, and that the clock rate was increased to
156 MHz. Both modifications increase the bandwidth of VELO considerably.

520 M. Nüssle et al.

3.2.2 RMA: Support for Bulk Data Transfers

Larger transfers are efficiently supported using the RMA unit. The RMA unit offers
Put/Get-based primitives. There is a hardware-based address translation unit (ATU),
which is used in conjunction with RMA to enable secure memory access from user-
space. Registration and deregistration of pages is very fast and only limited by the
time for a system call and the lookup of the virtual to physical translation by the
kernel itself [15, 16].

RMA supports a very good CPU off-loading mechanism for large messages.
RMA command descriptors are posted to the hardware using PIO, very similar
to VELO. Data transmission, however, is executed by integrated DMA engines to
read/write payload data from/to main memory.

An interesting feature that has been used for the MPI implementation is the
notification framework. RMA operations can trigger a notification at three different
points in their lifetime. In each point, a different type of notification is triggered.
A notification can be triggered each time a request has left the sending unit, when
a response leaves the responding unit and when an operation is finally terminated
at the completing unit. Notifications for responses are of course only available to
get-style operations since put operations do not generate responses. Each process
has exactly one notification queue, in which the hardware stores all incoming
notifications for this process regardless of their type. The software process can
then check for new notifications in the same manner as it can check for new
VELO messages. An individual notification is a 128-bit data structure that encodes
information such as the remote process, involved address, operation and type of
notification. Details about RMA and a discussion of the RMA engine for MPI-2 use
can be found in [16].

4 FPGA-Based Implementation

EXTOLL’s overarching goal is to minimize communication overhead, which in
more detail translates to low latency and high message rate. In order to achieve this
using FPGAs, which are limited in terms of size and clock speed, designers have to
face several challenges. In the following sections we will provide an in-depth report
of the FPGA-related optimizations.

4.1 FPGA Features for HPC Networking

In Fig. 7, the top-level block diagram of EXTOLL has been shown with its three
architectural blocks Host Interface, NIC, and network.

Accelerate Communication, not Computation! 521

Nowadays, the most common host interface is PCI Express (PCIe). Therefore,
almost every FPGA includes a hard IP macro that offers PCIe connectivity in
varying speeds to the user. However, PCI Express lacks the one feature that was
one of the design goals for EXTOLL: minimum latency. However, AMD processors
offer the use of HyperTransport [17] for direct CPU-device communication. Since
the specification is openly available from the HyperTransport Consortium, support
for HT can be easily added to the FPGA [12]. The main concern for this
implementation was the intent to keep the footprint as small as possible because
the IP uses valuable device resources and is not included in the FPGA as hard IP.

FPGA vendors offer their devices in many different configurations and sizes,
each tailored and suitable for different market areas. Besides the usual distinction
between low-cost devices usually targeted at the high volume embedded market
and upper-end devices with the highest possible performance, these devices are also
available in more than one configuration intended for different applications. These
subfamilies differ in integrated IP blocks, number of available logic blocks and high
speed connectivity. The most important feature for an HPC network device is the
number and the speed of the embedded serializer blocks. These integrated MGTs
(multi gigabit transceivers) allow data rates of up to 6.5 GB/s [19] over a differential
pair, therefore eliminating the need of many parallel I/Os to transfer large amounts
of data between chips. Since the number of I/O pins of an FPGA is limited the use
of MGTs allows for the integration of many high speed links in a single FPGA.
Because of the large amount of such MGTs a Xilinx Virtex-4 based [20] board with
an XC4VFX100 device is used for EXTOLL.

4.2 Optimizations and Floor Planning

In general, designing for an FPGA is a straightforward process. After developing
the RTL code and verifying it in simulations, the HDL files are loaded in the
implementation tool (e.g. ISE for Xilinx FPGAs). Pin locations according to the
board layout must be added to the design and timing constraints are set up. Wizards
and graphical frontend tools help with both IP integration and I/O planning.

As designs get bigger and bigger, more and more issues come up in the
implementation phase:

– Timing closure becomes increasingly difficult
– Increased routing density leads to congestion in certain areas of the FPGA
– Lack of specific device resources like logic slices
– Tool problems like long runtimes

Fortunately, there are several ways to decrease these problems that will be laid out in
the following paragraphs. These are solutions that were employed during the design
of the EXTOLL interconnect to fit all the required logic inside the FPGA and get
timing closure.

522 M. Nüssle et al.

Table 2 32 Bit counter
implementation results Resource

DSP
implementation

Fabric
implementation

FF 1 65
LUT 1 96
Slice 1 75
DSP48 1 0
Target speed 244 MHz 216 MHz

The design goals for EXTOLL were very tough to reach on the targeted Virtex-4
FPGA with an estimated resource utilization of close to 100%. The HyperTransport
core must run at 200 MHz internally to be able to process the unidirectional
bandwidth of 1.6 GB/s provided through a 16 bit wide HT400 interface. The rest
of the logic must run at least at 156 MHz. This is the lowest frequency for the
MGT reference clock [19] which is also used to clock the core. Basic principles
of good hardware design were already adhered: The logic was heavily pipelined
and it was made sure that the pipeline stages did not consist of too many levels
of logic. Synthesis results showed that the logic itself was capable of reaching the
desired target frequencies; however, after the design was routed timing was not met,
even with all optimization switches in the tool set to maximum effort which caused
runtimes of several hours for the whole flow. Since the logic was already optimized,
other ways to improve the overall design had to be identified.

By analyzing the reports from the implementation tool it was determined that
counters were using up a significant number of resources inside the design. The
solution to that problem was to implement the counters in DSP slices. The selected
device has 160 available DSP slices that are unused because the network data going
through the chip is not processed in a computational intensive way.

A single DSP slice described in detail in [18] offers adders, multipliers and logic
shift functions and is highly configurable. The adder inside the slice can be used
to build a counter which is exactly the function that was previously performed by
logic in the fabric. The following Table 2 shows the difference in resource utilization
between the two counter implementations.

Although the savings per counter are moderate the overall numbers increase
significantly if you keep in mind that the design instantiates not one but dozens
of these counters. Since this implementation remaps logic to resources that would
otherwise not be utilized it comes for free and as seen in Table 2 without a penalty
in performance.

4.2.1 SRL FIFO

The design does not utilize the FIFO IP provided by Xilinx. Although these FIFOs
can be operated in an FWFT (First Word Fall Through) configuration they come
with a penalty of an additional clock cycle because of the RAM that is used
internally. In order to improve the latency of data passing through a new FIFO was

Accelerate Communication, not Computation! 523

Fig. 8 SRL shift register [21]

developed which possesses a bypass feature. This data bypass is implemented by
combining a RAM-based FIFO implementation which constitutes the main storage
of the overall FIFO with a register-based FIFO behind the RAM in order to hide
the access time of the RAM block. In the case of an empty FIFO the RAM-based
FIFO is completely bypassed for the first operation that shifts in data to remove
the additional cycle the data would need to appear at the read port of the RAM.
Depending on the data width and the number of FIFOs in the overall design this
feature can take up lots of registers and therefore valuable resources.

One solution to this dilemma of performance vs. resource allocation is imple-
menting this register based FIFO in shift registers. CLBs (configurable logic blocks)
in the Virtex-4 contain SRL primitives like the one shown in Fig. 8. One shift register
can also be seen as a register array with 16 entries. By utilizing many SRL instances
in parallel an SRL FIFO with 16 entries and variable data width can be constructed.
Because every location inside the shift register can be tapped without an access
penalty it behaves like a register-based FIFO and can therefore be used to implement
the FIFO with bypass feature.

4.2.2 Floorplanning

Designers possess intimate knowledge of their design; they have an idea of the
dataflow through the chip and the connectivity between the modules in it, whereas
the implementation tool must extract this information by analyzing the design
during the tool flow. This is, for once, a time-consuming task in large designs and
the algorithms usually do not find an optimal solution. Even after analyzing the
relationship of the modules with each other the placer has a huge decision space to
decide where single design elements should be placed, especially in a large FPGA.

524 M. Nüssle et al.

Fig. 9 EXTOLL floorplan

This means that implementation is both a time-consuming process and it is entirely
possible that the tool will produce inferior results that might not meet the desired
timing requirements.

Therefore, it becomes necessary for projects that push feasibility like the
EXTOLL network to guide the tool with a detailed floorplan. The bounding boxes
in that floorplan restrict both the placement of modules to a specific area as well
as the number of available resources. Giving the tool too much freedom in placing
logic turned out to be counterproductive in terms of timing closure. Adjusting size
and location of the bounding boxes is usually an iterative process that will require
several tool runs to find the best solution. However, as soon as a good floorplan is
developed changes in other areas of the design will not have an effect on the timing
of the planned modules.

Figure 9 shows the final floorplan of the EXTOLL device. The logic for external
communication, the link ports together with the network crossbar (red area) and the
host interface (green area), respectively, are constrained to be near the dedicated I/O
circuitry used for this purpose. A part of the NIC logic (blue area) was also timing
critical and received an additional bounding box in the upper part of the device.

4.3 Implementation Results

By employing HDL optimizations mentioned in the section before which were able
to decrease the resource utilization to a more manageable 85% and supporting the
tool flow by floorplanning critical section of the design timing was met successfully
on the targeted XC4VFX100 device even with a high resource utilization as seen in
Table 3. The key points for achieving these results were to take advantage of all the

Accelerate Communication, not Computation! 525

Table 3 FX100 logic
utilization [22]

Resource Total usage Utilization (%)

Slices 35,985 85
FlipFlops 28,442 33
LUTs 63,382 75
BRAMs 140 37

Fig. 10 FX100 utilization map

provided logic blocks like DSP slices and SRL16 blocks that allowed moving logic
to previously unused design elements and thus freeing up space for the rest of the
design.

The placement map of the final design (Fig. 10) shows that the implementation
tool adhered to the guidelines given by the designer and was able to place the
modules constrained in the floorplan into the designated area.

All these optimizations allowed for the realization of an interconnection network
for High Performance Computing with an FPGA. In Sect. 6 we will show that
the resulting performance that was achieved is in many ways competitive to a
commercial ASIC implementation.

5 Software Architecture

To make EXTOLL usable for parallel applications, a number of software compo-
nents had to be developed. Here we will present an overview of the necessary
software. The software components to enable MPI applications to use EXTOLL
can be divided into three main parts. First, there are operating system kernel level
drivers. The second part is formed by low-level application programming interface
(API) libraries. Finally, an adaption of a widely used MPI distribution was used to

526 M. Nüssle et al.

Fig. 11 EXTOLL software stack

enable MPI operations to be mapped to the EXTOLL hardware. Adaptions to other
networking APIs are of course also possible (Fig. 11).

Somewhat unrelated to the direct application usage of EXTOLL is the implemen-
tation of management and administrative software components. These are important
for the administrator of an EXTOLL network as well as in part for developers and
will be presented last in this section.

5.1 Kernel Driver

As EXTOLL employs kernel-bypass techniques—also known as user-level
communication—the kernel level drivers are mainly used to manage the hardware
and allocate resources to application processes. Currently the EXTOLL software
stack supports modern Linux kernels. The whole driver infrastructure is divided
into a number of kernel modules each implementing a specific function.

Accelerate Communication, not Computation! 527

First, there is the EXTOLL base driver which claims the EXTOLL hardware,
remaps necessary I/O memory into kernel space and also contains the interrupt
handler logic. The second module is the EXTOLL register file driver. The register
file driver consists entirely of code generated from the XML description of the
hardware’s control and status register file. It offers an interface to the registers to
other kernel level modules as well as a Linux sysfs interface for user-space software
to interact with the registerfile (see also below).

Then, there is one module for each of the major functional units for communica-
tion of EXTOLL. Notably there is one module for VELO and one module for RMA.
Both modules are similar in their workings, as they provide user-space with the
ability to map one of the contexts of the EXTOLL hardware called Virtual Process
ID (VPID).

5.2 Low-Level API Libraries

There are two low-level API libraries, which manage user-space communication
using one of the two main communication units of EXTOLL each: libvelo for the
VELO functional unit and librma for the RMA functional unit.

Libvelo in essence offers two-sided communications using send() and receive()
function calls. Message are sent directly using PIO and then received into a main
memory ring-buffer by hardware where they are then retrieved using the receive
calls in libvelo. The whole implementation is optimized to support very low latency
and high message rates (see also Sect. 6).

Librma offers complete control over the RMA communication engine of
EXTOLL. There are functions to register and unregister memory for use by RMA
operations. These functions perform a system call and the RMA kernel driver then
pins the respective pages and updates the EXTOLL ATU translation tables. To
actually perform communication a number of functions are made available which
post different flavors of put and get operations to the hardware. The hardware then
autonomously proceeds with the execution of these operations. As RMA supports
the notion of notifications, these are also supported by a group of functions. Each
RMA operation can trigger a notification on each endpoint involved with the
operation. This feature can then be used to implement higher level protocols and
the necessary synchronization.

5.3 MPI Integration

For MPI support, components for the popular open-source OpenMPI [23] project
have been developed. OpenMPI is a highly modular, component-oriented imple-
mentation of the MPI specification. Several possibilities exist to support point-to-
point operations in MPI. This can either be accomplished via the Byte Transfer

528 M. Nüssle et al.

Layer (BTL) where low-level functions to transport unstructured data from point to
point have to be implemented. Another option is to implement the Matching Trans-
fer Layer (MTL). Here, non-blocking functions for send and receive operations,
which also implement the MPI matching semantics, have to be implemented. Most
networks (or transports as they are often called in this context) are supported by
OpenMPI using BTL. For EXTOLL we chose to implement MTL, which enabled
us complete control over the used low-level protocols.

For small messages up to a configurable threshold, MPI messages are sent using
an eager protocol via VELO. Messages that are longer than one maximum size
VELO message are fragmented into multiple VELO messages and reassembled at
the receiving side. When a new VELO message is detected, the header information
of the message is used to perform the MPI matching operation. If a matching receive
has been posted, the receive operation can be completed and the data is copied from
the VELO receive queue to the user-specified receive buffer. If no matching receive
has been posted, the message becomes an unexpected message and is buffered until
a matching receive is posted.

MPI messages longer than the specified threshold are sent using a rendezvous
protocol. Here a VELO message carrying the request, i.e. the meta information of
the transfer, is sent to the receiver. Again, the VELO message is matched. Once
a matching receive has been found, the actual data is transferred using RMA Get
operations. Thus, a zero-copy data transfer is implemented for large messages.

A third technique can be employed if the sender and receiver reside on the same
physical node of the network. In this case, instead of using VELO and RMA,
the data can also be transferred using shared-memory queues. For large intra-
node messages, LiMIC [24] is to be employed to reduce the number of necessary
memcpy() operations. Using this shared memory transport, significant network load
can be removed if running on modern multicore nodes, where many MPI processes
typically run on the same node.

To support MPI 2.0 one-sided communications, a prototype of an one-sided com-
ponent (OSC) for OpenMPI was also implemented, showing the potential of high-
overlap for one-sided MPI operations when run over the EXTOLL network [16].

In the future, a specialized implementation of the COLL (MPI collectives)
component for EXTOLL is planned. The default COLL components implement
the MPI collective routines on top of the point-to-point transport. Special hardware
features as well as topology-aware optimizations can be leveraged with a specialized
COLL component.

5.4 Other Communication Interfaces

EXTOLL with its rich feature set offers also the opportunity to implement interfac-
ing to other common communication libraries besides MPI. One such interface is
GasNET [25] which is used for example at the base of the Berkley Universal Parallel
C (UPC) runtime. A GasNET prototype implementation for EXTOLL has already

Accelerate Communication, not Computation! 529

Fig. 12 MEXS GUI showing a 64 node 3-D torus network

been written and shows very promising results. Very similar possibilities exist with
most wide-spread or well-known software interfaces for communication in HPC.

5.5 Managing an EXTOLL Network

To manage an EXTOLL network, two interfaces/software packages have been
designed. First, there is the possibility to access all control and status registers using
the Linux sysfs [26]. Using this feature it is easy to write script code which performs
specific management or setup operations.

The second package is more complex and is called MEXS. It consists of a back-
end process and a front-end GUI process for the administrator. The back-end process
must run on one of the nodes of the EXTOLL network and directly interacts with
the networking hardware. MEXS provides functions such as automatic topology
enumeration, routing calculation, and distribution of routing information to all nodes
of the network. The GUI allows the administrator to monitor the whole network with
the aid of a graphical 3-D presentation of the network (see Fig. 12).

6 Evaluation

We developed a custom add-in card [20] combining an FPGA with an HTX
connector as host interface and six serial links towards the network side for the
implementation of the EXTOLL architecture Fig. 13. We use standard optical

530 M. Nüssle et al.

Fig. 13 FPGA-based add-card including network interface and switch

transceivers and fibers to connect these add-in cards using a direct topology, so no
additional switching units are required. This allows us to focus on a single FPGA
development.

For the following experiments, we have setup an 8 node cluster with these custom
add-in cards. A 3D torus is setup for experimentation. Each node includes two AMD
Opteron 2380 processors, each one with 4 cores running at 2.5 GHz, and 8 GB of
DDR2-800 main memory. Linux version 2.6.31.6 is installed on these machines.

6.1 Limitations

In comparison with ASICs, FPGAs are suffering from lower frequencies, smaller
data path widths and often less flexibility due to integrated hard IP blocks. In
particular, we are observing the following limitations:

• The host interface is running at HT400, limiting the peak bandwidth to 1.6 GB/s
per direction. This bandwidth limitation is even enforced by the link speed of
6.24 GB/s peak, which translates into 624 MB/s peak due to the used 8b/10b
encoding.

• The used serializers significantly increase hop latency, resulting in an overall
latency of 300 ns per hop.

However, we will see that despite these severe limitations our design shows
very good performance results. For several benchmarks we can achieve equal or

Accelerate Communication, not Computation! 531

better performance than recent, commercial ASIC solutions. This in particular
demonstrates the architectural advantages of our approach and the possibilities of
an FPGA-based networking implementation [27].

6.2 Micro-Benchmarks

Here, we will present a couple of micro-benchmarks to characterize the basic
properties of EXTOLL, namely bandwidth, latency, message, and overlap. These
characteristics are helpful as they indicate which performance can be expected for a
given application, depending on this application’s communication patterns.

6.2.1 Latency and Bandwidth

Start-up latency (half round-trip) and peak bandwidth are the most often cited
network characteristics. The latency reports the time required between issuing the
send operation on one node, and completing the corresponding receive call on a
different node. The bandwidth reports how much data can be moved between two
different nodes per time unit. Historically, latency has been improving much less
than bandwidth [8], and this trend is expected to continue in the future. In both
cases, latency and bandwidth, there is a huge disparity to in-system performance,
i.e. memory access latency and memory bandwidth.

The Intel MPI Benchmarks (IMB) [28] are one of the state-of-the-art tests for
basic characteristics like start-up latency and peak bandwidth. While this suite
evaluates every important MPI communication function, for the sake of brevity
we use only two selected tests here, which are the PingPong test for latency
measurement and the SendRecv test for peak bandwidth analysis. We vary the
number of hops for the PingPong test, and the number of communication pairs for
the SendRecv test, in order to provide more insights.

The results from the Pingpong test are shown in Fig. 14, reporting half round-trip
latency over a varying number of hops. Note the logarithmic scale of the x-axis. For
up to 32 bytes payload the latency is constant around 1.5μs, as for these cases we
can keep payload and header in a single HyperTransport packet. For 64 bytes and
more, we have to use two or more packets, which results in an appropriate latency
increase. The three measurements over different hop counts show that independent
of the message size each hop adds about 300ns to the overall latency.

A Send–Receive communication pattern is assessed in Fig. 15. Here, a varying
number of process pairs are communicating using the SendRecv MPI-function call,
and the resulting bandwidth (bi-directional) is reported. For SendRecv, we achieve
a peak bandwidth of more than 800 MB/s for a single process pair. For more process
pairs, the achievable bandwidth per pair scales as expected, indicating that the
network interface overhead due to an increasing number of end points is marginal:
for 8 pairs we achieve 99.95 MB/s per pair, which in summary almost matches the
bandwidth for a single pair of 837 MB/s.

532 M. Nüssle et al.

Fig. 14 Half round-trip latency over message size

Fig. 15 Sustained bandwidth for a varying number of process pairs

Accelerate Communication, not Computation! 533

Fig. 16 Message rate for different message sizes

6.3 Message Rate

The message rate is defined as the number of messages that can be injected into
a network from a host per second. Thus, it describes the achievable bandwidth
for small message sizes. Latency is of paramount importance for round-trip com-
munication patterns; however, for unidirectional transfers its impact is negligible.
For such push-style communication patterns, the message rate is much more
significant. Taking into account that the increasing degree of parallelism in modern
computing systems also leads to an increased number of communication partners,
communication pattern characteristics will shift to higher message counts with
smaller payloads. Thus, the peak bandwidth is not the only metric that is crucial
for the overall performance; instead, an increasing amount of attention must be paid
to the performance of smaller messages.

The message rate for EXTOLL is reported in Fig. 16 over different message sizes.
Again, note the logarithmic scale of the x-axis. To put the rather unfamiliar message
rate into context, we also include results for a 10 GB Ethernet (10GE) adapter
(Intel 82598EB), employed in the same system. As one can see, EXTOLL reaches
9.88 million messages per second, while 10GE saturates at 0.62 million messages
per second.

Peak message rate is typically not reached with a single process pair, as the MPI
overhead requires significant CPU time to send or receive a message. To mask out
this CPU overhead, multiple process pairs can be used until the network limits the

534 M. Nüssle et al.

Fig. 17 Peak message rate over a varying number of process pairs

message rate. For the case in Fig. 16, EXTOLL requires 7 or 8 process pairs to reach
peak performance, indicating that network-side limitations are only visible for very
high loads. For 10GE, the number of process pairs varies in between 2 and 7. For an
improved understanding, Fig. 17 reports the maximum message rate for a varying
number of process pairs.

6.4 Overhead and Application Availability

Latency, bandwidth, and message rate describe the performance of the commu-
nication subsystem. However, many HPC applications leverage overlap between
communication and computation to minimize their runtime, i.e. while the commu-
nication subsystem is busy transferring data, processors can resume computational
tasks that have no dependencies on outstanding communication tasks.

Overhead, respectively, application availability characterizes how much time is
left during communication for computation. According to [9], “overhead is defined
as the length of time that a processor is engaged in the transmission or reception of
each message; during this time, the processor cannot perform other operations.”
Application availability [11] is defined to be the fraction of total transfer time
that the application is free to perform work not related to communication. Thus,
application availability can be derived as follows:

Accelerate Communication, not Computation! 535

Fig. 18 Application availability for send and receive calls

application availability[%] = 1− over head[μ sec]
transfer time[μ sec]

(1)

Equation (1): Application availability.

We have used the Sandia MPI Benchmarks (SMB) to determine overhead and the
associated application availability for our EXTOLL network. The following Fig. 18
reports in percent how much time is left for non-communication related work.

As one can see, Isend() over EXTOLL results in minimal overhead, as communi-
cational work is minimized. On the receive side several tasks have to be performed,
like tag matching and copy operations, so that application availability degrades
with an increasing message size. While this is quite typical behavior for MPI-based
communication, it is worth noting that up to payloads of 1kB more than 70% of the
communication time is potentially left for overlapping with computational tasks.

6.5 Complex Benchmarks

The information gathered and presented in the previous section gives a detailed
insight into the basic performance characteristics of EXTOLL and therefore in
the viability of our architecture. Here, we would like to complete this section by
presenting how this performance translates also to the application level. Instead
of using the obvious benchmarks like High Performance LinPack (HPL) or NAS

536 M. Nüssle et al.

Fig. 19 Performance results for HPCC RandomAccess

Parallel Benchmark (NPB), which provide little insight for modern workloads and
are optimized to avoid fine grain communication, we have selected benchmarks
which in our opinion are more important and benefit a lot from dedicated support for
small messages. Here, these benchmarks are used to assess EXTOLL’s application-
level performance:

1. HPCC RandomAccess (RA)
2. Weather Research and Forecast (WRF)

6.5.1 HPCC RandomAccess

The RandomAccess benchmark [29] updates a set of memory locations in a
randomized fashion and reports the number of updates per second as Giga Updates
Per Second (GUPS). It is classified as a benchmark with low locality, both spatial
and temporal, and puts the highest pressure on the network with regard to small
messages. As can be seen in Sect. 3, this benchmark heavily relies on small transfers;
in particular for the highest process count, more than 80% of the transfers have a
payload between 256 and 512 bytes.

Figure 19 highlights both performance and scalability. Results are presented for
executions using EXTOLL and Gigabit Ethernet as a reference. Also included is the
theoretical linear speedup, relative to the performance of 1 process over EXTOLL.

The performance difference between EXTOLL and Gigabit Ethernet is huge,
and EXTOLL achieves a speedup close to the theoretical one. Furthermore, while

Accelerate Communication, not Computation! 537

Fig. 20 Performance results for weather research forecast

Gigabit Ethernet degrades in terms of performance already for more than 32
processes, EXTOLL’s performance peak is far outside this graph.

6.5.2 Weather Research and Forecast

The Weather Research and Forecasting Model (WRF) [30] is a real-world ap-
plication rather than a benchmark. It serves for both operational forecasting and
atmospheric research. As data input sets are publically available, it can easily be
used for benchmarking purposes. We are using version 3.3 for our experiments
together with the “CONUS 12 km” data set. Section 3 has unveiled that this
benchmark is making use of a broad range of message sizes, although the really large
ones (i.e., larger than 512 kB) are not frequently used. This real-world application
highlights the importance of dedicated support for small data transfers particularly.
The message histogram shows that packet sizes between 128 and 512 bytes (in total
approx. 27%) are frequently used, in addition to the packet sizes between 8 and
128 kB (in total approx. 62%). Bulk transfers, however, are almost absent.

Figure 20 shows the performance when executing WRF, results are reported in
GFLOP/s. While for 4 processes the performance approximately matches, Gigabit
Ethernet is not able to scale performance with process count. Instead, it saturates
around 8 GFLOP/s. EXTOLL, however, nicely keeps the pace of an increasing
process count. Also shown is the theoretical linear speedup based on EXTOLL’s
performance for 4 processes. Again, no saturation for EXTOLL is visible, instead
it can be expected that adding more computing cores will result in a continuing
performance scaling.

538 M. Nüssle et al.

7 Related Work

Over the course of the last decades many different networks in the space of High-
Performance Computing have emerged. In the context here, we can distinguish
between purely HPC networks, most often implemented using ASIC technology,
and HPC networking solution that have also employed FPGA technology. In
the following section we will briefly introduce a number of solutions from both
categories.

In the last few decades, many network architectures for HPC have been devel-
oped. For example, Myrinet [31] implements a wormhole switched network using
a PCI adapter board and a central switch. Many of the protocol work is offloaded
from the host CPU to the on-chip RISC processor of the NIC. Another example was
Quadrics [32], which supported also very sophisticated remote memory accesses.

Today, Infiniband networks are very common in HPC, and here mainly the
adapters and switches from Mellanox. Infiniband currently reaches up to 56 GB/s
link bandwidth and back-to-back low-level latencies of under a microsecond are
reported, while MPI level latency measurements show still excellent values of
around 1.5μs.

Even more focused on HPC are the integrated networking solutions from Cray
with their SeaStar [3] and Gemini [4] networking chips as well as the TOFU
[5, 33] network from Fujitsu which is used within the K-Computer. All three
networks are based on direct-topologies, on torus topologies to be more precise.
Seastar, the SeaStar+ variant and Gemini are based on 3D topologies, while the
TOFU network employs a more complicated 6-D topology. The Cray networks are
directly connected to Opteron CPUs using HyperTransport interfaces, very similar
to EXTOLL. In [4] some performance numbers of the 90 nm Gemini ASIC are
reported. The chip runs with a core frequency of 650 MHz and the router operates
at 800 MHz, both significantly faster than what is currently feasible in an FPGA.
The TOFU network is also fabricated in 65 nm but runs with a more conservative
clock rate of 312.5 MHz. TOFU is directly attached to the I/O interface of SPARC64
CPUs used for the K-Computer.

Besides pure HPC networks, there have been a number of FPGA-based network
architectures in the past, many of them in the field of HPC. Two examples are an
SCI implementation using FPGAs [34] and the Clint network [35]. In more recent
times, a prototype for the DIMMnet-2 network interface controller has been built
using a Virtex II Pro 70 FPGA device [36]. The prototype implements only a part of
the functionality of the complete DIMMnet-2 design. The maximum packet size is
limited for example, but the design runs with nearly 100 MHz and uses 42% of the
FPGA device. On the network side, the controller interfaces to an Infiniband fabric.
In an evaluation, the NIC showed an excellent latency of about 1μs, but with an on-
chip direct loopback, i.e. without the latency from the actual link and physical layer
and without the latency of a switch. In contrast, the 1.16μs of latency for EXTOLL
does include all these latencies, an internal loopback using the EXTOLL switch
(thus still including one level of switching) accounts for approximately 800 ns.

Accelerate Communication, not Computation! 539

In [37] an NIC is described that is able to perform RDMA write operations only.
Again it was implemented on a Virtex II device with clock rates of 100 MHz for
the core and 78 MHz for the links. The JNIC project [38] implemented a Gigabit-
Ethernet NIC on an Altera Stratix EP1S80 FPGA. The specialty here was that
the FPGA was directly attached to the Front-Side bus of an Intel Xeon CPU.
As the NIC resides in the cache coherent domain it is possible to transfer data
using cache accesses which significantly lowers latency and increases bandwidth.
While this approach would allow developing a whole new set of architectures and
techniques, in [38] the focus is clearly on the software side instead of exploring new
hardware ideas.

The QPACE [39] system also employed FPGAs. Here the nearest-neighbor net-
work was implemented using a Virtex IV device. The processors of the system were
IBM Cell chips which were directly connected to the FPGAs for high-performance
communication. The specialties of the application—Quantum Chromodynamics—
defined the communication features implemented in the system.

In fields related to classical HPC, FPGA-based communication acceleration is
also used. An example is presented in [40], where an FPGA is used to accelerate
the communication in a high-frequency tranding scenario. Actually, several of the
underlying IP is shared with the EXTOLL project.

8 Conclusion and Outlook

The need to rely on parallelization to improve performance of parallel computers
leads to the problem that the interconnection network becomes the bottleneck.
We have presented the EXTOLL interconnection network, which is specifically
designed to help alleviating these problems. An analysis of the demand of HPC
applications leads to the unique system architecture of EXTOLL.

FGPA technology enables architectures like EXTOLL to be implemented and
tested in real systems without the need to tape out an ASIC. Together with the
corresponding software architecture, a complete system can be assembled and
evaluated. Furthermore, FPGA technology has helped to continuously improve the
architecture as well as branch special versions for different research purposes.

The performance reached by EXTOLL—evaluated here on the micro-benchmark
level as well as on selected applications—shows that the acceleration of com-
munication is possible with an architecture like EXTOLL. The latency of about
1.5μs MPI latency and nearly 10 million messages per second is very impressive,
especially when compared to commercial ASIC solutions, which generally do not
offer such a performance, although they employ higher clock frequencies and
ASIC technology. This acceleration of the network also translates into accelerated
execution of the parallel application, as shown by the evaluation of WRF. It is thus
worthwhile to accelerate communication, especially since the future will bring ever
higher parallelism to HPC.

540 M. Nüssle et al.

The EXTOLL architecture is continuously improved. While the version de-
scribed here was implemented on a Xilinx Virtex 4, a second release is being
architected to work on Virtex 6 FPGAs. This release will feature an internal clock-
rate of 200 MHz and a data-path width of 64 bit. Both measures are possible because
of the larger and somewhat faster FPGA and lead to an MPI latency of less than
1.2μs and an impressing message rate of well over 20 million MPI packets per
second. Additionally, new architectural features will improve support for collective
operations, scalability and introduce support for direct accelerator to accelerator
communication (GPGPU).

References

1. TOP500 list: http://www.top500.org
2. Infiniband Trade Association; InfiniBand Architecture Specification Volume 1; Release 1.2.1,

2007
3. R. Brightwell, K.T. Pedretti, K.D. Underwood, H. Trammell, SeaStar interconnect: Balanced

bandwidth for scalable performance. IEEE Micro 41–57 (2006)
4. R. Alverson, D. Roweth, L. Kaplan, The gemini system interconnect high performance

interconnects (HOTI), in 2010 IEEE 18th Annual Symposium on, 2010, pp. 83–87
5. Y. Ajima, S. Sumimoto, T. Shimizu, Tofu: A 6D mesh/torus interconnect for exascale

computers. Computer 36–40 (2009). IEEE Computer Society
6. The BlueGene/L Team An overview of the BlueGene/L supercomputer, in Proceedings 2002

ACM/IEEE Conf. Supercomputing (SC 02), IEEE CS Press, 2002
7. P. Kogge et al., (eds.), ExaScale Computing Study: Technology Challenges in Achieving Ex-

ascale Systems. US Department of Energy, Office of Science, Advanced Scientific computing
Reasrach, Waschington, DC, (2008). available at http://www.er.doe.gov/ascr

8. D.A. Patterson, Latency lags bandwith. Comm. ACM 47(10), 71–75 (2004)
9. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,

T. von Eicken, LogP: towards a realistic model of parallel computation, in Fourth ACM
SIGPLAN symposium on Principles and Practice of Parallel Programming, 1993, pp. 262–
273

10. S. Sur, M.J. Koop, D.K. Panda, High-performance and scalable MPI over InfiniBand with
reduced memory usage: an in-depth performance analysis, in Proceedings of the 2006
ACM/IEEE conference on Supercomputing (SC ‘06), 2006

11. W. Lawry, C. Wilson, A. Maccabe, R. Brightwell, COMB: a portable benchmark suite for
assessing MPI overlap, in Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER 2002), 2002, p. 472

12. D. Slogsnat, A. Giese, M. Nüssle, U. Brüning, An open-source HyperTransport core, in ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 1(3), 2008, p. 1–21

13. H. Litz, H. Fröning, U. Brüning, HTAX: a novel framework for flexible and high performance
networks-on-chip, in Fourth Workshop on Interconnection Network Architectures: On-Chip,
Multi-Chip (INA-OCMC), in conjunction with HiPEAC, 2010

14. H. Litz, H. Fröning, M. Nüssle, U. Brüning, VELO: a novel communication engine for ultra-
low latency message transfers, in 37th International Conference on Parallel Processing (ICPP-
08), 2008

15. M. Nüssle, Acceleration of the Hardware-Software Interface of a Communication Device for
Parallel Systems. Ph.D. thesis, University of Mannheim, 2009

http://www.top500.org
http://www.er.doe.gov/ascr

Accelerate Communication, not Computation! 541

16. M. Nüssle, M. Scherer, U. Brüning, A resource optimized remote-memory-access architecture
for low-latency communication, in 38th International Conference on Parallel Processing
(ICPP-2009), 2009

17. Hypertransport Technology Consortium, Hypertransport I/O Link Specification Revision
2.00b, 2005. Document #HTC20031217–0036–0009

18. Xilinx Inc, XtremeDSP for Virtex-4 FPGAs User Guide, UG073 (v2.7), 2008
19. Xilinx Inc, Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide, UG076 (v4.1), 2008
20. H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning, The HTX-board: a rapid prototyping

station, in 3rd annual FPGAworld Conference, 2006
21. Xilinx Inc, Virtex-4 FPGA User Guide, UG070 (v2.6), 2008
22. M. Nüssle, B. Geib, H. Fröning, U. Brüning, An FPGA-based custom high performance

interconnection network, in 2009 International Conference on ReConFigurable Computing
and FPGAs, 2009

23. E. Gabriel, G.E. Fagg, G. Bosilca, et al., Open MPI: goals, concept, and design of a next
generation MPI implementation, in Proceedings of the 11th European PVM/MPI Users’ Group
Meeting (Euro- PVM/MPI04, 2004

24. H.W. Jin, S. Sur, L. Chai, D.K. Panda, LiMIC: support for high-performance MPI intra-node
communication on Linux cluster, in 34th International Conference on Parallel Processing
(ICPP-05), 2005

25. K. Yelick, D. Bonachea, W.Y. Chen, P. Colella, K. Datta, J. Duell, et al., Productivity and
performance using partitioned global address space languages, in International Conference on
Symbolic and Algebraic Computation, 2007

26. P. Mochel, The sysfs filesystem, in Proceedings of the Annual Linux Symposium, 2005
27. H. Fröning, M. Nüssle, H. Litz, U. Brüning, A case for FPGA based accelerated communica-

tion, in 9th International Conference on Networks (ICN 2010), 2010
28. Intel GmbH, Intel R© MPI Benchmarks Users Guide and Methodology Description, 2006
29. V. Aggarwal, Y. Sabharwal, R. Garg, P. Heidelberger, HPCC RandomAccess benchmark for

next generation supercomputers, in Proceedings of the 2009 IEEE International Symposium
on Parallel&Distributed Processing (IPDPS), IEEE Computer Society, 2009

30. J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, W. Wang, The
weather research and forecast model: software architecture and performance, in Proceedings
of the 11th ECMWF Workshop on the Use of High Performance Computing In Meteorology,
2004

31. N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, S. Wen-King,
Myrinet: a gigabit-per-second local area network. IEEE Micro 15(1), 29–36 (1995)

32. F. Petrini, et al., The quadrics network: high-performance clustering technology. IEEE Micro
22(1), 46–57 (2002)

33. Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, T. Shimizu, The tofu interconnect. High
performance interconnects (HOTI), in 2011 IEEE 19th Annual Symposium, 2011

34. M. Trams, W. Rehm, SCI transaction management in our FPGA-based PCI-SCI bridge, in
Proceedings of SCI Europe, 2001

35. N. Fugier, M. Herbert, E. Lemoine, B. Tourancheau, MPI for the Clint Gb/s Interconnect.
Recent Advances in Parallel Virtual Machine and Message Passing Interface, Vol. 2840/2003,
Lecture Notes in Computer Science (Springer, Heidelberg, 2003)

36. N. Tanabe, A. Kitamura, et al., Preliminary evaluations of a FPGA based-prototype of
DIMMnet-2 network interface, in IEEE International Workshop on Innovative Architecture
for Future Generation High-Performance Processors and Systems, 2005

37. M. Marazakis, K. Xinidis, V. Papaefstathiou, A. Bilas, Efficient remote block-level I/O over an
RDMA-capable NIC, in Proceedings of the ACM International Conference on Supercomputing
(ICS), 2006

542 M. Nüssle et al.

38. M. Schlansker, N. Chitlur, et al., High-performance ethernet-based communications for future
multi-core processors, in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing
(SC ‘07), 2007

39. H. Baier, et al., QPACE - a QCD parallel computer based on Cell processors, in Proceedings
Science (LAT2009), 2009

40. C. Leber, B. Geib, H. Litz, High frequency trading acceleration using FPGAs, in 21st
International Conference on Field Programmable Logic and Applications (FPL 2011), 2011

High-Speed Torus Interconnect Using FPGAs

H. Baier, S. Heybrock, B. Krill, F. Mantovani, T. Maurer, N. Meyer,
I. Ouda, M. Pivanti, D. Pleiter, S.F. Schifano, and H. Simma

Abstract In this chapter we describe the architecture of a torus interconnect and
its implementation on FPGAs, which so far has been used in two different HPC
systems. The network design is optimized for applications which benefit from a
tightly coupled network and allows to exchange relatively small messages between
nearest neighbours at a high rate. Examples for such applications are lattice quantum
chromodynamics (LQCD) simulations and fluid dynamics applications using the
Lattice Boltzmann method (LBM). We describe the details of the implementation
of our torus network architecture for two massively parallel machines, QCD Parallel

H. Baier • B. Krill • T. Maurer
IBM Deutschland Research & Development GmbH, 71032 Böblingen, Germany
e-mail: hbaier@us.ibm.com; krill@de.ibm.com; tmaurer@de.ibm.com

S. Heybrock • F. Mantovani • N. Meyer
Department of Physics, University of Regensburg, 93040 Regensburg, Germany
e-mail: simon.heybrock@ur.de; filippo.mantovani@ur.de; nils.meyer@ur.de

I. Ouda
IBM Rochester, 3605 HWY 52 N, Rochester, MN 55901-1407, USA
e-mail: ouda@us.ibm.com

M. Pivanti • S.F. Schifano
University and INFN of Ferrara, 44100 Ferrara, Italy
e-mail: marcello.pivanti@fe.infn.it; schifano@fe.infn.it

D. Pleiter (�)
Forschungszentrum Jülich, 52425 Jülich, Germany

Department of Physics, University of Regensburg, 93040 Regensburg, Germany
e-mail: d.pleiter@fz-juelich.de

H. Simma
Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen, Germany
e-mail: huber.simma@desy.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 18, © Springer Science+Business Media, LLC 2013

543

mailto:hbaier@us.ibm.com
mailto:krill@de.ibm.com
mailto:tmaurer@de.ibm.com
mailto:simon.heybrock@ur.de
mailto:filippo.mantovani@ur.de
mailto:nils.meyer@ur.de
mailto:ouda@us.ibm.com
mailto:marcello.pivanti@fe.infn.it
mailto:schifano@fe.infn.it
mailto:d.pleiter@fz-juelich.de
mailto:huber.simma@desy.de

544 H. Baier et al.

Computing on Cell (QPACE) and AuroraScience, and present details on the FPGA
resource usage. Furthermore, we discuss optimizations which were necessary to
fit the design. Finally, we provide an outlook on possible implementation changes
when using more recent generations of FPGAs.

1 Introduction

In the past, several projects have developed custom-designed processors optimized
for applications from lattice quantum chromodynamics (LQCD). This physics
research area investigates the theory of strong interactions, one of the four fun-
damental forces in nature, by means of numerical simulations. Recent examples of
such projects are apeNEXT [1] and QCDOC [2]. These architectures are based on
system-on-chip (SoC) designs with a network integrated on chip. However, using
modern technologies the development costs of custom processors became too high
for an academic project.

The significant increase in floating-point performance in commodity processors
and with FPGAs becoming capable of processing large amounts of data opened the
path to a different approach to design scalable, application optimized architectures.
Using FPGAs to implement a network processor (NWP) which is tightly coupled to
a commodity processor, a high performance, custom interconnect can be designed
and implemented at a competitive price–performance ratio.

This strategy has been successfully applied in the design of two HPC architec-
tures, QCD parallel computing on cell (QPACE) [3, 4], a supercomputer based on
the IBM PowerXCell 8i processor, and AuroraScience [5], a cluster based on Intel
Nehalem/Westmere processors. In QPACE a Xilinx Virtex5 FPGA has been directly
attached to the processor via a FlexIO interface. In the AuroraScience machine more
recent Altera Stratix IV FPGAs have been used which are connected to the south-
bridge via PCIe. In case of QPACE the interface to the processor turned out to be
particularly challenging, mainly because no hard-IP block could be used.

We expect this strategy to be also viable in the near future. During several
generations of FPGAs major vendors like Altera or Xilinx have significantly
enhanced the capabilities of these devices to receive, process and transmit data.
These vendors increased, e.g., both the number and the performance of high-speed
transceivers for a given class of FPGAs significantly.

In the next section we will explain in detail the architecture of our torus network.
In Sects. 3 and 4 we will discuss details of how this network architecture has been
implemented using FPGAs for QPACE and AuroraScience. This is followed by a
presentation of performance results in Sect. 5. Before presenting our summary and
conclusions in Sect. 7 we give an outlook on options for future implementations in
Sect. 6.

High-speed Torus Interconnect Using FPGAs 545

2 Torus Network Architecture

2.1 System and Network Processor Architecture

The torus network interconnects computing nodes in a 3-dimensional torus
topology. The communication data paths are illustrated in Fig. 1. Each node
consists of one or more commodity multi-core CPUs with all necessary peripheral
components, like chipset, (local) memory, etc. In addition, the node card hosts an
FPGA, which is connected to the CPU (e.g., via a south-bridge) as an IO device
and implements the NWP. The main logic blocks of the NWP, as shown in Fig. 2,
are the IO interface to handle data transfers from CPU to NWP and vice versa,
and 6 link modules which control the data transmission over the 6 physical links.
These interconnect each NWP with the NWPs of the 6 nearest-neighbour nodes on
the torus. The physical links are either directly attached to the fast IO pins of the
FPGA or through an external PHY component. Each link module has injection and
reception buffers, together with the control logic to implement the torus network
link protocol and the interface with the physical link.

Fig. 1 Main data paths of the torus network. On each node the CPUs are tightly connected to a
NWP, which in turn is connected by 6 physical link to the NWPs of the nearest-neighbour nodes
in each of the 6 directions

250 MHz 2.5 GHz

32 bit

x−

x+

PHY

z−

PHY

PHY

Link_X+

Link_X−

Link_Z−

FPGA

IO
 b

us IO Interface

Other Logic

1 GByte/s1 GByte/s
4 x 1 bit

Fig. 2 Block diagram of the network processor

546 H. Baier et al.

2.2 Communication Model

Data transfer between two nodes proceeds according to a two-sided communication
model, i.e., explicit operations of both CPUs, sender and receiver, are required to
control the data transmission of a message. These operations can be implemented in
a blocking or non-blocking way.

Applications access the torus network by (1) moving data into the injection buffer
of the NWP of the sending node and (2) enabling data to be moved out of the
reception buffer of the NWP of the receiving node. Tracing a CPU-to-CPU data
transfer over the torus network the following three transactions occur:

T1: The send operation simply moves the data items of a message into the
injection buffer for one of the 6 link modules in the NWP of the sending node.
Depending on the architecture and IO interface of the CPU, this operation can be
implemented according to different schemes (see below).

T2: As soon as an injection buffer holds data, the NWP breaks it into fixed-
size packets and transfers them in a strictly ordered and reliable way over the
corresponding link. Reliability implies that cases of data corruption or potential
data losses, e.g., due to full reception buffers, are automatically managed at
hardware level.

T3: The receive operation on the destination CPU is initiated by passing a credit to
its NWP. The credit provides all necessary control information to the receiving
NWP to move the received data packets to the destination memory location and
to notify the processor when the last packet of a message has been delivered.

To allow for a tight interconnection of processors with a multi-core architecture,
the torus network also supports the concept of virtual channels to multiplex multiple
data streams over the same physical link. A virtual channel is identified by a tag
which is transferred over the link together with each data packet. This is needed to
support independent message streams between different pairs of sender and receiver
threads (or cores) over the same link. The virtual channels can also be used as a tag
to distinguish independent messages between the same pair of sender and receiver
threads. Currently the torus network design supports 8 virtual channels per link, but
this number can be increased, e.g., to support CPUs with more cores, at the expense
of additional resource usage on the FPGA and higher protocol overhead.

The simple communication model of the torus network requires that each send
operation has a corresponding receive operation and message sizes must be a
multiple of 128 Bytes (which is the fixed packet size of the torus network links).
Moreover, send operations which refer to the same link and virtual channel must be
issued in the same order as the corresponding receive operations.

2.3 IO Interface

The IO interface of the NWP handles the IO transactions between CPU and NWP
and depends on the IO architecture of the CPU. Moreover, for the send operation

High-speed Torus Interconnect Using FPGAs 547

MEMORY READ
COMMAND

DATA
NOTIFY

DATA
CREDIT

NOTIFY

NWP CPUCPU NWP

Nget Nput

DATA

T
im

e

CPU NWP

Pput

Fig. 3 Schematic view of different schemes for moving data from the CPU to the injection buffers
of the NWP and from reception buffers to the CPU

(transaction T1) we have implemented different schemes according to which data is
moved from the CPU to the NWP.

In the simplest scheme, which we call Pput in the following (see Fig. 3), the
CPU initiates the data transfer of the message to the NWP. It is then convenient
to map the injection buffers of the different links and virtual channels directly into
disjoint areas of the address space of the CPU. Then, a single IO transaction can be
sufficient to move to the NWP both the data and all control information (which can
be implicitly encoded into the addresses).

If the CPU has a controller for direct memory access (DMA), as in the case of
the IBM PowerXCell 8i processor, the transfer can be done by DMA and does not
occupy the CPU. In this way, the send operation is non-blocking. It is completed
when all data items of the message have been transferred to the NWP. This might
be tested (e.g., before an application re-uses the memory locations from where the
sent data originated) by querying the status of the DMA engine.

However, if the CPU remains occupied for the entire data transfer, which is the
case on x86 CPU architectures when the transfer is done by Programmed IO (PIO),
then the send operation is always blocking. Therefore, we extended the IO interface
of the NWP to support also a second scheme, called Nget in the following. In this
case, the CPU only passes the required control information to the NWP. Then the
data transfer is controlled by a DMA engine on the NWP, and finally the NWP has
to notify the CPU that the data transfer is completed.

Compared to implementing the send operation (T1) through an Nget scheme,
a Pput scheme can be more efficient, in particular for short messages, because it
requires fewer IO transactions and hence may have a lower latency. However, in the
Nget scheme it can be simpler to handle back-pressure, which arises when injection
buffers are full, while this may require extra transactions in the Pput scheme.

Also for moving data from the reception buffer to the processor (T3) we can
choose whether NWP or processor control the operation. We call these schemes
Nput and Pget, respectively (see Fig. 3). We have only implemented the case

548 H. Baier et al.

Rx

M
at

ch
250 MHz

data

Config/Status/Debug Registers

register
access

attributes

data
CRC

txBuffer

attributes

clock

clock

250 MHz

txFifo

rxFifo VC7

rxFifo VC0

fr
om

 P
H

Y
to

 P
H

Y

128

data

128

32

data

32

to
 IO

 In
te

rf
ac

e
fr

om
 IO

 In
te

rf
ac

e

Fig. 4 Block diagram of the link module

Nput where the NWP comprises DMA engines for moving the data to the final
memory location. A notification mechanism is required to inform the processor
when this final transaction has completed. We have not implemented the Pget
scheme, because it would imply larger latencies and does not provide any obvious
advantages for the considered processor architectures.

2.4 Link Modules

The link modules, one for each of the six directions of the 3-dimensional torus,
control the transfer of data packets over the physical links of the torus network
[6]. In the torus network implementations for both, QPACE and AuroraScience,
the physical links use an external transceiver PHY (PMC Sierra PM8358a). The
corresponding link module is connected to the 10 Gigabit Media Independent
Interface (XGMII) port of the PHY through a 32-bit bus. High-speed serial links
interconnect the 10 Gigabit Attachment Unit Interface (XAUI) ports of PHYs on
neighbouring nodes. These links are routed over backplane and/or cable.

The link module implements a light-weight and robust custom protocol to
guarantee data integrity and strict ordering of the packets by making use of the
control symbols from 8B/10B coding by the PHY. Each torus network link can
simultaneously send and receive data.

The architecture of a link module is shown in Fig. 4 and consists of two basically
independent parts for sending and receiving. The data to be sent is stored together
with all relevant control information, like address offset and virtual channel index,
in the injection buffer (txFifo), which is handled with First-In-First-Out policy. As
soon as it holds at least 128 Bytes of data, the transmission logic starts to pop data

High-speed Torus Interconnect Using FPGAs 549

from txFifo and generates a packet composed of a 32-bit header, 128 Bytes of data
payload (32×32 bit), and a 32-bit CRC. The header comprises a 11-bit wide address
offset and a 3-bit wide field encoding the virtual channel. The packet is then passed
to the external PHY for transmission over the physical link.

On the other side, the RX logic decodes the data packets received from the
external PHY, re-computes the CRC and compares it with the CRC of the packet.
If they match, the packet is pushed into the reception buffer associated with each
virtual channel, and a positive feedback (ACK) is sent back over the link to the
link module of the sender. If the reception buffer has no space for further packets
(back-pressure) and in the rare cases, when the CRC does not match or other errors
occur in receiving the packet, a negative feedback (NACK) is sent back. All further
data packets from the PHY are discarded until a RESTART command is received
(indicating that the sending link module has started to resend the packets).

The link module temporarily stores each packet, which has been sent, into an
internal buffer (txBuffer) until a feedback for that packet is received from the peer-
link. If the feedback is positive the corresponding packet is dropped, otherwise the
link module recursively enters in resend mode, sends a RESTART to the peer, and
then begins to re-send all packets from txBuffer until a positive feedback has been
received for all of them and further data from the injection buffer can be handled.

The reception buffer is logically organized as separate FIFOs (rxFifo) for each
virtual channel. While the received packets are stored in an addressable memory,
credits are kept in a separate FIFO for each virtual channel. The destination
processor defines the order of the receive operations when it writes the credits. As
soon as a credit at the output of the credit FIFO matches a 128-Byte data packet
stored in the reception buffer, the receiver logic signals to the processor interface
that data is ready and provides the memory address where to store it. The processor
interface then transfers the data from the reception buffer into the memory of the
CPU. Multiple matches of credits and packets are arbitrated using an arbiter which
shifts priorities in a round-robin fashion. The requesting link that has the highest
priority will receive a grant to access the link to the processor.

The final destination address of a packet on the receiving node is determined by
a local address provided by the receiving processor (encoded in the credit) plus a
remote offset. The latter is defined by the sender and included in the packet header.

The status of both the transmitter and receiver part of the link can be monitored
via a number of registers. For instance, the following events are counted:

• Checksum mismatch detected by receiver.
• Packet could not be written into the reception buffer (back-pressure).
• Transmit or receive interface of PHY asserts error signal.
• Error symbol inserted by PHY.
• Corrupted feedback commands.

To correct and detect corrupted RESTART or feedback commands, they are
transmitted in a redundant way over at least 3 serial lanes. Moreover, the feedback
commands (ACK, NACK) carry an 8-bit counter value which allows to detect any
loss of a feedback. Since no recovery mechanism for such a rare error event has
been implemented the latter error is fatal and triggers abortion of the job execution.

550 H. Baier et al.

3 Network Implementation for QPACE

3.1 Architecture Overview

QPACE [3, 4] is an application optimized architecture that has been developed by
an academic–industrial collaboration. It is based on the IBM PowerXCell 8i multi-
core processor which at the time of introduction 2008 provided an exceptionally
high peak compute performance of 100 GFlop/s (double precision). Unlike in other
architectures based on the PowerXcell 8i (e.g., IBM Roadrunner [7]) the processor
is directly connected to the network interface, i.e., the Network Processor (NWP).
For QPACE the NWP has been implemented on a Xilinx Virtex5 LX110T with the
largest available package option.

The PowerXCell 8i processor is an implementation of the Cell Broadband Engine
Architecture [8]. A first implementation has been developed by Sony, Toshiba and
IBM with the first major commercial application being Sony’s PlayStation 3. The
PowerXCell 8i is an enhanced version of that processor with support for high-
performance double precision operations, IEEE-compliant rounding, and a DDR2
memory interface. It comprises multiple cores including the power processing
element (PPE), which is a standard PowerPC core that can, e.g., be used for running
the operating system Linux. From there threads can be started on the 8 synergistic
processing elements (SPE). Each SPE comprises a memory flow controller (MFC)
and a synergistic processing unit (SPU). The latter has no cache, but provides a
private memory, the so-called local store (LS), which has a capacity of 256 kByte
and can be directly accessed by the SPU through load and store operations.

The basic building block of the QPACE architecture is the node card. The main
components mounted on the node card are the PowerXCell 8i processor, 4 GByte of
DDR2 memory, the FPGA and 6 10-GbE PHYs (PMC Sierra PM8358a). 32 node
cards are connected to a backplane. Up to 8 backplanes can be mounted in one rack,
i.e., the maximum number of node cards per rack is 256.

The node cards mounted on a single backplane can be partitioned in different
ways. The largest partition is of size (x,y,z) = (1,4,8). Using the cable connections
between different backplanes larger partitions can be obtained, e.g., for an installa-
tion with n racks the maximum partition size is (2n,16,8).

3.2 QPACE Network Processor and Network Topology

The FPGA implements an IO fabric comprising the following ports:

• Two 8-bit wide (full-duplex) bi-directional high-speed links connecting the NWP
to the PowerXCell 8i processor with a bandwidth of up to 5 GByte/s per direction
(on QPACE the link is operated at a data rate of 4 GBytes/s).

High-speed Torus Interconnect Using FPGAs 551

• Six (full-duplex) bi-directional links to the 10-Gigabit Medium Independent
Interfaces (XGMII) of the torus network PHYs. Per link and clock cycle 32 bits
can be sent and received at a clock speed of 250 MHz.

• One common reduced gigabit medium independent interface (RGMII) connect-
ing the NWP to an external Ethernet 1000BASE-T physical transceiver. Running
at 250 MHz per direction 4 bits per cycle can be communicated.

• A 4-bit interface (2 differential lines per direction) interface to a global signal
tree network.

• Lines connected to the 2 universal asynchronous receiver transmitters (UART)
which are interfaces to the serial links.

In Fig. 5 we give an overview of the QPACE NWP (for more details, see [9]).
The top area shows the interface towards the processor. For the IO interface of the
PowerXCell 8i processor Rambus FlexIO technology has been used. At the physical
layer the NWP–processor link connects Rambus FlexIO to Xilinx RocketIO GTP
(giga transceiver peripheral) transceivers. The feasibility of bringing up such a link
had before been demonstrated on a test platform [10]. Inside the QPACE NWP
multiple interfaces have been defined which separate the interface to the processor
from the remaining design. The torus and Ethernet network links are connected
to the two high-speed interfaces. Transactions via the master interface and slave
interface are controlled by the processor and NWP, respectively. A third interface
allows to attach slower ports, like the UART ports, via a simple, shared device
control register (DCR) bus (left part of Fig. 5). This bus is also used to access the
configuration and status registers of the network interfaces.

To inject packets into the network any of the MFCs initiates a DMA put operation
to write the payload into the injection buffer (txFifo) of one of the torus network
links. All protocol information, like address offset or virtual channel index, is
encoded in the 42-bit DMA destination address.

To receive data the processor has to provide credits to the NWP using a DCR
write operation. When the RX logics detects a packet in the reception buffer and
a matching credit the data is written using a DMA put operation via the NWP–
processor link into any of the Local Stores or the main memory. Once a credit has
been consumed the processor is notified by updating a corresponding notification
word, which before has been allocated in one of the Local Stores or the main
memory, via yet another DMA put operation.

Using the torus network links requires a Linux driver running on the PPE.
It implements routines to configure, control and reset the external PHYs and the
link logics implemented in the NWP. The driver furthermore takes care of mapping
the addresses of the FPGA devices into the address space of the process. In case
the main memory is the final destination of data received via the torus network, the

552 H. Baier et al.

Fig. 5 Overview of the internal architecture of the QPACE network processor. The blue boxes
refer to entities implemented by IBM, the others have been implemented by the academic partners

driver has to pin the memory page allocated by the user.1 Using pinned memory
pages eliminates the need of letting the kernel allocate memory buffers.

A user space library implements various functions to initialize the network to
manage memory and buffers as well as to initiate and control communication
operations. Functions needed for data communication have been implemented both
on the PPE and SPE.

Within a project where the High-Performance Linpack was ported to QPACE,
an OpenMPI Byte Transfer Layer module using the torus network had been
implemented [11]. However, for this project a slightly modified version of the
network processor design employing the Nget scheme has been used.

To synchronize the nodes both the torus network and the global signal tree
network can be used. The latter is a simple network consisting of 2 signals per
link and direction. The compute nodes are the leafs of the tree network. Root and
branch nodes are implemented on other hardware components in the system. For
more details and performance results, see [12].

1On QPACE the space where data can be received is limited to a single page. In case huge pages
of size 16 MByte are used, only 8 MByte can be addressed from the FPGA.

High-speed Torus Interconnect Using FPGAs 553

3.3 FPGA Implementation Details

The main performance parameters for an FPGA being used as an IO fabric including
a high performance network are bandwidth and latency. While the latter is mainly
limited by functional requirements and clock speed the former is mainly constrained
by clock speed and bus width. Additionally, sufficient memory capacity has to be
provided to stage data before injecting it into the network or forwarding received
data to the processor.

In the interface towards the processor a relatively small number of buffers are
needed with a maximum buffer size of 2 kBytes. These have been implemented
using distributed RAM. For the torus network the situation is different as a
significantly larger amount of memory is needed for each of the links. Here 18-
and 36-kBit block RAMs have been instantiated. For instance, the txFifo has been
implemented using 36-kBit RAMs which have been configured such that the in-
and output ports have a width of 72 bit. Placing 4 of these memory units in parallel
allows us to store a 128 bit word of payload plus control information in each clock
cycle. By cascading 2 memory units we obtained a FIFO consisting of 32 block
RAMs with a total capacity of 32 plus 4 kBytes for data plus control information,
respectively.

Most of the user logics is clocked at 200–250 MHz, except for small entities
attached to the high-speed transceivers. The design comprises a relatively large
number of clock domains including 5 major clock domains which are managed
by PLLs. In total there are 21 clock networks, where most of them are managed
using Xilinx digital clock managers (DCM). For placement and synthesis of the
design it had been mandatory to keep the number of global clock domains as small
as possible.

For the QPACE design there had been little options to use hard-IP blocks. Only
an Ethernet media access controller (MAC) block could be used for implementing
the Gigabit Ethernet interface.

In Table 1 we give an overview of the resources used in the final version of
the design. At least 48% of the key resources provided by the Virtex5 LX110T
have been used, in a number of cases the resource usage is (almost) 100%. The
latter in particular applies to the RocketIO transceivers and general purpose pins. All
available high-speed transceivers have been used to implement the NWP–processor
link with a bandwidth that roughly balances the aggregate bandwidth of the torus
network links. Most of the general purpose pins were required to attach the 10-GbE
PHYs with about 80 pins per PHY.

In terms of flip-flops and lookup tables (LUT) about half of the used resources are
consumed by the interface to the processor while each torus network link accounts
for about 6% and the Ethernet interface for about 2–4%.

554 H. Baier et al.

Table 1 Fraction of
resources available in a
Xilinx Virtex5 LX110T
which are consumed by the
QPACE NWP design

Resource Usage (%) Total available

GTP transceivers 100 16
User IO pins 96 680
Occupied slices 95 17,280
PLLs 83 6
LUT–flip-flop pairs 76 69,120
DCMs 58 12
Flip-flops 58 69,120
LUTs 54 37,929
Block RAM 48 148

4 Network Processor with PCIe-Based IO for AuroraScience

The AuroraScience [5] machine is a parallel system using the Aurora hardware built
by Eurotech [13]. It is composed of node cards, backplanes and cable connections
which are organized in a similar way as in QPACE. The computing nodes are
based on the recent generations of commodity multi-core processors developed by
Intel: the first AuroraScience boards had Nehalem processors, while more recent
versions use Westmere, and Eurotech is currently implementing boards with the
latest Sandybridge CPUs.

In the following, we describe the implementation of the NWP on the boards
based on Nehalem processors. These boards host two CPU sockets with four-cores,
12 GByte of RAM, an X5520 south-bridge (code-name Tylersburg) and an FPGA.
On the AuroraScience nodes the FPGA is an Altera Stratix IV GX-230 and it is
connected to the south-bridge by two PCIe x8 Gen2 interfaces. Using one of them
provides a peak raw bandwidth of 4 GByte/s, which corresponds to an effective
bandwidth of 3.2 GByte/s if we take into account the overhead of the PCIe protocol,
as we discuss later.

Apart from porting the VHDL firmware for the link modules (as developed for
QPACE) to the Altera FPGA, the NWP of the AuroraScience system required the
development of a specific IO interface to handle the transactions between CPU
and NWP via the PCIe bus. Moreover, on x86 CPU architectures the processor
cannot explicitly instruct the memory-controller to transfer data from memory to IO
devices, and for this generation of processors no DMA engines could be used. Thus
for moving data from CPU to the NWP device, having the CPU as the initiator must
be implemented by using the PIO method. PIO requires that software running on
the CPU uses instructions that access IO address space to perform data transfers to
or from an IO device. This keeps the CPU busy until all data is transferred to the
NWP. Therefore, to allow non-blocking send operations, we have also implemented
support for the Nget scheme.

High-speed Torus Interconnect Using FPGAs 555

Table 2 Resource usage of the NWP for AuroraScience, including
the IO interface for PCIe with reorder buffers, on an Altera Stratix IV
GX230

Resource Usage (%) Total available

PLL 88 8
IO pins 69 612
PCIe hard-IP block 50 2
GXB transceiver 33 24
Memory bits 17 14,625,792
Logic registers 14 182,400
Combinational ALUTs 9 182,400
Memory ALUTs 1 91,200

The second column shows the used fraction of resources.
The total available resources of the device are reported in the last
column

All necessary IO operations between CPU and NWP can be readily imple-
mented through corresponding PCIe transactions. For instance, the basic operations
performed by the CPU to implement the Pput scheme, or to read and write
configuration and status registers on the NWP correspond to memory read or write
PCIe transactions initiated by the CPU. On the other hand, data transfers for send
operations according to the Nget scheme and for receive operations correspond to
appropriate PCIe transactions initiated by the NWP.

In Table 2 we summarize the FPGA resources used on the Altera Stratix IV
GX-230 for the entire NWP firmware of AuroraScience running at a frequency of
250 MHz. The NWP includes 6 link modules and the IO interface with support for
the Nget operation and reorder-buffers. It uses about 18% of the logic available
on the FPGA, and 2.5 Mbit of memory corresponding to ≈17% of the embedded
memory on the FPGA.

4.1 IO Interface

The IO interface of the NWP consists of three major blocks, see Fig. 6. The PCIe
IP is a hardware macro embedded in the Stratix IV FPGA implementing the PCIe
protocol stack (transaction, data and parts of the physical layer). The PCIe inbound
controller (PIC) and PCIe outbound controller (POC) blocks are attached to the
Avalon interface, a proprietary interface to the PCIe hard-IP block. They handle
incoming (down-stream) transaction layer packets (TLP) and generate outgoing
(up-stream) TLPs. The other blocks are needed to support specific IO schemes for
sending the data.

556 H. Baier et al.

PIC

POC

P
C

Ie
 IP

TXN

TXP

Li
nk

 M
od

ul
es

IO Interface

P
C

Ie
 (

x8
 G

en
2)

Fig. 6 Block diagram of the
IO interface for PCIe

As mentioned above, the Pput scheme for x86 architectures is implemented by
PIO method, i.e., the CPU performs store operations to the memory addresses to
which the injection buffers have been mapped. The memory controller and south-
bridge translate store operations to memory-write PCIe transactions with a small
payload of only 16 Bytes (the size of an SSE register). To improve performance
write-combining can be enabled by using non-temporal processor instructions. In
this case stored data is then written into small temporary write combining buffers
(WCB) of the CPU. When a WCB is full, it is flushed to the IO bus by a single burst
transfer with a payload of 64 Bytes (the size of a cache-line). Since the WCB may
be flushed also for other reasons, like thread de-scheduling, message fragments can
arrive at the NWP in an interleaved order. Therefore, the NWP implements in the
TXP block a reorder logic which restores the correct order of data items before they
are moved into the injection-buffer of the link module.

During the system boot phase, the processor interface of the NWP requests the
CPU to assign a large memory region in the IO address space. All injection buffers
are mapped through Base Address Register BAR0 into this contiguous memory
region. The region of each injection buffer is divided into eight parts corresponding
to the eight virtual channels of one link. Data arrives at the NWP together with a
PCIe header which includes the destination address. This is then used to decode the
injection buffer and the virtual channel index.

To handle the Pput scheme back-pressure, which arises when the injection
buffers are full, the NWP writes to a reserved address of the CPU memory (regularly
or upon request) the number of packet-items pulled out from each injection buffer.
Applications may then determine the space in each injection buffer by subtracting
this value from the number of packet-items already written into the buffer.

In order to support non-blocking send operations and to exploit DMA mode,
we have implemented extensions of the NWP to support the Nget scheme. In
this scheme, the CPU first passes the required control information to the NWP,
in particular the memory address of data to be transferred, the size and a logical
tag. They are written into an appropriate control register in the TXN block, which
implements the necessary control logic and a DMA engine. Then TXN issues the
adequate memory read operations through the POC module. After their completion,
the NWP notifies the CPU, e.g., by writing to a predefined memory address for

High-speed Torus Interconnect Using FPGAs 557

the given logical tag. Once the application has detected the data change at this
particular memory address it can re-use the memory locations from where the sent
data originated.

4.2 Software Layers

To provide convenient and efficient access to the TNW from multi-threaded
applications, we have developed a Linux driver and a basic communication library.

For the efficient support of the Pput scheme, the driver marks the address space
of the injection buffers (allocated at boot time by the NWP) as write-combining.
Moreover it allows to map it into user address space of the application processes
through standard mmap function. Applications can thus directly access the injection
buffers, saving overheads due to frequent context switches between user- and kernel-
mode. Write operations within this memory range are translated by the memory-
controller and the south-bridge into an IO write operation consisting of payload
data and a header. The header includes the memory address accessed by the thread
which is used by the NWP’s processor interface to decode the virtual channel tag
and the injection FIFO where payload data-item has to be pushed.

To support Nget operations the driver allocates buffers from which the network-
processor reads the messages to be sent. These buffers are allocated on contiguous
physical memory pages and are marked as un-swappable. For receiving data and
notifications from the NWP, the driver allocates additional contiguous memory
areas for each virtual channel. Control and status registers of the NWP are mapped
on separate addresses through a separate base address register (BAR) and are
accessible directly from user-space.

The communication library provides API functions to send and receive messages
across the network, and to configure, control and monitor the behaviour of the NWP.
The most relevant communication functions are:

• tnwSend is used to send messages over a selected virtual channel. The imple-
mentation depends on the scheme used to move data between CPU and network
processor. If a Pput scheme is adopted it is implemented as a loop on the length
of message. At each iteration data items are read from application buffers and
written to the appropriate memory address which corresponds to a particular
link and virtual channel. If a Nget scheme is used, the function first copies
data from user-buffer to the DMA buffers and then triggers a DMA transfer
on the NWP device. A further implementation enables zero-copy transfers by
allocating contiguous physical memory regions which can be directly access by
the application.

• tnwCredit is used to provide a credit to the network processor. This information
is used by the NWP device to move data packets from the reception buffer to the
DMA buffer allocated by the kernel.

558 H. Baier et al.

• tnwPoll polls a specific memory address waiting for the notification which
indicates that all data corresponding to a previously issued credit is now available.
If DMA buffers are not mapped to user space, the driver has to copy the data to
user space.

5 Performance Results

Before discussing the performance of the overall torus network in QPACE and
AuroraScience, we first consider only the link performance, i.e., the datapath be-
tween two link modules of the network processors. The link module is implemented
as a highly pipelined design which runs on the FPGAs, as used in QPACE and
AuroraScience, at a frequency of 250 MHz, corresponding to the clock of the
parallel (XMGII) ports of the PHY.

The physical link between the PHYs has a raw bandwidth of 2.5 Gbit/s. Taking
into account the overhead from 8B/10B coding and from the custom protocol, we
have a theoretical bandwidth of 0.941 GByte/s (128 Bytes every 34 clock cycles) if
data is transferred only in one direction of a link. When data is sent and received
simultaneously over the same link, the theoretical bandwidth is slightly reduced to
0.914 GByte/s per direction (128 Bytes every 35 clock cycles) because data packets
and feedback commands from the opposite data streams have to share the same
physical link.

From the benchmarks of the CPU-to-CPU transfer rate (see below) we find that
this theoretical link bandwidth can be sustained in practice, provided that data is
moved sufficiently fast from the CPU into the injection buffer on the NWP (and out
of the reception buffer to the CPU).

An important property of the network design is also the latency of the links. We
have measured the time starting from the instant when a 128-Byte packet arrives at
the injection buffer txFifo until the DMA engine of the receiver NWP can start to
move the packet to the processor. We find about 0.5μs and a more detailed analysis
of the breakup of this time is shown in Fig. 7. A large fraction of this latency is due
to the logic in the PHYs (where data encoding and decoding is performed). A major
delay also arises in the receiving link module. There, all 32 data items of a packet
have to be received from the PHY before the CRC can be verified and the entire
packet becomes ready for extraction from the reception buffer (if a corresponding
credit is available).

5.1 Network Performance on QPACE

Let us first consider in QPACE the IO link between the IBM PowerXCell 8i
processor and the FPGA. For a fine-grained analysis of the performance of this link
we added a FIFO which on request captured control information for all packets

High-speed Torus Interconnect Using FPGAs 559

4 cycles

~ 40 cycles

Link Module

TX logic

txFifo rxBuffer

RX logic3 cycles

7 cycles

PHY PHY

58 − 62 cycles

0.5 − 3 m cable

Fig. 7 Breakup of the time to transfer a single packet (128 Bytes) through two link modules and
the physical link. One clock cycle corresponds to 4 ns

that are written by the processor via the inbound interface to any of the torus
network links plus a time stamp. The flow control of this IO interface is also based
on credits (not to be confused with the credits sent from the CPU to the NWP
to initiate a receive operation). In Fig. 8 we show the bandwidth as a function of
the number of credits provided to the processor. For a small number of credits the
bandwidth depends linearly on the number of credits. At some point the bandwidth
saturates because all available tags on this link are in use. However, if the data
packets are not processed using a sufficiently high clock rate, mis-speculation may
occur resulting in a very high performance penalty. Using a fast clock the observed
bandwidth depends on whether a packet combining feature is enabled. If this feature
is enabled two consecutive packets of length 128 Bytes may be combined into a
single packet of length 256 Bytes. In this case tags are freed earlier and thus a
larger bandwidth is observed. The effect of this optimization can be clearly observed
from the bandwidth measurements with this feature being disabled. If the feature is
enabled but the number of concurrent DMA operations NDMA > 1 then combining
of packets will often fail and therefore result in a reduced bandwidth. Figure 8 shows
that an effective bandwidth of up to 2.8 GByte/s can be reached which is 70% of the
nominal peak bandwidth.

To measure the performance of the QPACE torus network we implemented the
following micro-benchmarks:

• A ping-pong type of test to estimate the latency. Here a SPU on node A sends a
message of size 128 Bytes (i.e., 1 packet) from its Local Store to node B. Once

560 H. Baier et al.

0 5 10 15 20 25 30
Number of credits

0

0.5

1

1.5

2

2.5

3

G
B

yt
e/

s NDMA=1, slow clock

NDMA=1, fast clock

NDMA=6, fast clock

NDMA=1, fast clock, no combine

NDMA=6, fast clock, no combine

Fig. 8 QPACE processor to NWP bandwidth as a function of the number of (data) credits provided
by the NWP to the processor

the data has arrived in the destination LS of node B this node returns the packet
back to A. We estimate the latency by measuring the round-trip time on node A
and divide this number by 2.

• An exchange type of test to measure the bandwidth. For this benchmark we select
n = 1,2,4 pairs of SPUs where each pair is distributed over node A and B and
connected by the same physical link. Each pair exchanges data, i.e., the SPU on
node A sends a message to the corresponding SPU on node B and vice versa.

With the first setup we measured the overall latency (including software over-
head) for an LS-to-LS communication to be about 3μs. It is largely dominated by
the time needed to move data from the CPU to the NWP and vice versa.

To understand how well a single torus network link can be saturated, we used the
second micro-benchmark where each core of one pair sends and receives to/from the
other core. The measured bandwidth is shown in Fig. 9 as a function of the message
length. For n = 4 pairs of communicating cores we are able to reach the theoretical
link bandwidth of 914 MByte/s already for a message length of 2048 Byte.

From these performance results it is clear that the available bandwidth on
the NWP–processor link is not sufficient to saturate the bandwidth of all six
torus network links. However, this would be a limitation of the design only if
the application is able to start communicating with all six neighbouring nodes
concurrently.

We may compare these performance results for QPACE with those for other
architectures where the PowerXCell 8i processor is used, e.g., the IBM Roadrunner
architecture. Here the nodes comprise of 2 QS22 blades with 2 PowerXCell 8i

High-speed Torus Interconnect Using FPGAs 561

100 1000
message size [Bytes]

0

0.5

1

ba
nd

w
id

ht
 [
G

B
yt

e/
s]

n=1
n=2
n=4

Fig. 9 Bandwidth measured on a single QPACE torus network link as a function of the message
size, where n is the number of messages which are in flight concurrently. The dashed horizontal
line indicates the theoretical maximum bandwidth

processors each plus 1 Opteron blade. Cell processors of different nodes can only
communicate via the Opteron processors which leads to a large latency of 8μs [14].
Using the OpenFabrics ib rdma bw benchmark a bandwidth of up to 2.4 GByte/s
has been achieved for two QS22 blades interconnected by DDR Infiniband [15].

The performance of a network can be significantly reduced if error rates are
high. To estimate the error rate we monitored the error counters of all receivers
of a QPACE machine partition consisting of 256 nodes, i.e., 1,536 receivers in total,
running a job for 24 h. We repeated this analysis for two different partitions. During
both runs a total of 39 (non-fatal) errors had been detected by the receivers (that had
been automatically corrected by the network). This corresponds to 1.5 ·10−7 errors
per link, direction and second on average.2

5.2 Network Performance on AuroraScience

We now discuss the performance of the PCIe-based IO interface used in Aurora-
Science (for more details, see [16]). In this case, we have a PCIe x8 Gen2 link
between CPU and NWP with a nominal bandwidth of 4 GByte/s.

2Since we do not monitor the number of packets and because a single error cannot be interpreted
as a single bit error, we cannot provide an estimate of the bit or packet error rate.

562 H. Baier et al.

Table 3 Effective bandwidth
measured with different
implementations of the Pput
scheme

Version Bandwidth (GByte/s) Efficiency (%)

No WC 0.133 4.9
WC 0.516 19.4
WC+ROB 2.667 100.0

The last column refers to the maximum usable bandwidth for
the Pput scheme, i.e., the maximum theoretical throughput
when taking into account overheads of the corresponding PCIe
transactions

Fig. 10 Timing of the Pput implementation without write-combining. Data arrives at the NWP
in portions of 16 Bytes every 120 ns

Let us first consider the Pput scheme for sending data to the network. In this
case, a send operation of the processor translates into a sequence of memory write
PCI transactions, each with a maximum payload of 64 Bytes. Taking into account
the overhead of 16 Bytes for the header and 16 Bytes for padding between the end
of a transaction and the start of the next, the maximum usable bandwidth reduces
to 2.67 GByte/s. We implemented different versions of the Pput scheme to analyse
whether and how this maximum usable bandwidth can be reached. The results are
summarized in Table 3.

In the first naive version, denoted by No WC, the use of the WCB on the CPU
is not enabled. Data is moved to the NWP buffers by issuing individual write
operations of 16 Bytes. A timing analysis of the arrival of these write operations
at the IO interface of the NWP is shown in Fig. 10. We see that the time separation
is at least 120 ns, resulting in a low effective bandwidth of only 0.133 GByte/s.

In the second version, denoted by WC, the use of the WCB is enabled and
the effective bandwidth increases to 0.516 GByte/s, i.e., approximately 20% of
the usable bandwidth. In this case, the main performance limitation is due to
the memory barriers (sfence instructions) that are needed to enforce the correct
ordering of data items.

In the third version, denoted by WC+ROB, write combining is enabled on
the CPU and we use the reorder-buffer implemented on the NWP. In this setup,
the write transactions can be issued in any convenient order, see Fig. 11, and the
effective throughput on the PCIe link saturates at the theoretical maximum of
2.67 GByte/s.

We now consider the Nget scheme to move data from the CPU to the NWP
for the send operation (and analogous considerations also apply to the Nput
scheme which is used to receive data). In this case, the maximum payload of the
corresponding PCIe transactions depends on the capabilities of the south-bridge.

High-speed Torus Interconnect Using FPGAs 563

Fig. 11 Timing of the Pput implementation with write-combining and reorder buffer. In most
cases the CPU issues data transfers with the maximum size of 64 Bytes, resulting in a full utilization
of the PCIe bus. The reorder buffer guarantees the correct order of the individual 16-Byte data items
within each 128-Byte packet before it is passed to the injection buffer of the link modules

Fig. 12 Timing of the Nget and Nput schemes. The left part, between time 0 and 921, shows a
data transfer from CPU memory to the NWP device (Nget). The right part, starting at time 1130,
shows data transfer from NWP to CPU memory (Nput)

For the X5520 chip used on the AuroraScience boards, the maximum payload is
128 Bytes. Taking into account the overheads of the PCIe protocol (header and
padding), this yields a maximum usable bandwidth of 3.2 GByte/s.

With our current implementation of the Nget scheme we reach about 3 GByte/s,
which is 94% of the maximum usable bandwidth or 80% of the nominal bandwidth.
Here, the main performance limitation arises from the overhead to manage the
operation. A detailed analysis of the time required to move data from the CPU
memory to the injection buffer of the NWP is shown in Fig. 12:

• At time 0 (corresponding to the bold black bar) the Nget command issued by the
CPU is received by the NWP device.

• At time 0+ 60ns the NWP issues the corresponding memory read request.
• At time 0+ 584ns the data from the main memory arrives at the NWP.
• At time 0+ 948ns the notify is sent back to the CPU.

From this timing we see that it takes approximately 500 ns from the instant when
the NWP issues a memory-read request until the requested data from the memory
of the CPU starts to enter in the NWP device. This time includes twice the delay of
the PCIe core on the FPGA and the latency of the memory access. Thus, we obtain
250 ns as a rough estimate of the startup latency for transferring any data between
the CPU and the NWP device or vice versa.

To determine the overall CPU-to-CPU latency which can be achieved by
application programs (including software overhead), we performed a ping-pong

564 H. Baier et al.

1

10

100 1000 10000

m
ic

ro
-s

ec

Bytes

Ping-pong Half Transmission Time

TNW PPUT w/ROB
TNW NGET

IB 4X SDR
IB 4X QDR

Fig. 13 Half of the ping-pong time measured with an application program as a function of the
message size. Results are shown for using the Pput (with write-combining and reorder buffer) or
the Nget scheme for the send operations. Additionally we show results using the SDR and QDR
Infiniband network

benchmark. Figure 13 shows half of the measured ping-pong time for different
message sizes and with the send operation implemented according to both schemes,
Pput and Nget. The measured time is well described by the following linear
functions of the message size L (in units of kByte):

TPput(L) = (1.53+ 1.08 ·L)μs ,
TNget(L) = (2.06+ 1.17 ·L)μs .

From the fitted parameters we estimate the overall latency of a single communica-
tion to be approximately 1.5μs for the Pput scheme, and about 2.1μs for the Nget
scheme.

On AuroraScience also an Infiniband network is available which allows us to
perform a direct comparison with the FPGA-based torus network. In Fig. 13 we
also show the latency for the ping-pong benchmark using the Infiniband network.
Note that now two nodes are connected via a switch. The measured time for SDR
and QDR Infiniband can again be parametrized by a linear ansatz

TSDR(L) = (3.75+ 1.13 ·L)μs ,
TQDR(L) = (3.58+ 0.39 ·L)μs .

The latency for SDR and QDR Infiniband is about 3.8 and 3.6μs, respectively, i.e.,
about two times larger than for the torus network. In this setup with 2 nodes, the

High-speed Torus Interconnect Using FPGAs 565

bi-section bandwidth for the SDR Infiniband and the torus network are similar and
significantly larger for QDR Infiniband. For a larger number of nodes the bi-section
bandwidth will, however, be larger in case of the torus network due to the larger
number of links connecting the two parts of the network.

6 Outlook on Future Implementations

With FPGA technologies progressing and more powerful FPGAs becoming avail-
able, the design of the torus network presented here may be extended and improved
in various aspects.

Both for QPACE and AuroraScience external PHYs have been used to implement
the physical layer of the network links. During recent years the number of high-
speed transceivers on a single FPGA increased significantly and their performance
characteristics improved. For instance, Xilinx Virtex4 FPGAs comprised of up to 24
high-speed transceivers with a maximum signaling rate of 6.5 Gbit/s. A few years
later, Xilinx announced Virtex7 FPGAs with up to 96 transceivers with a maximum
signaling rate of 13.1 Gbit/s. This makes it feasible to also implement the physical
layer on the FPGAs without the need for external PHYs or external signal re-drivers.

Other improvements concern the functional design of the network. In the current
implementations the processor has to write control information to the NWP for
each communication. Performing these control operations in frequently repeated
communication sequences could be avoided by providing hardware support for per-
sistent communication patterns. Various applications where certain communication
patterns are repeated many times could potentially benefit from such a hardware
feature. Persistent communication patterns could be supported in our design, e.g.,
by a modification of the credit FIFO. This would extend the usual First-In-First-
Out policy and allow reuse of previous credits by implementing programmable
read and write pointers to the RAM which hold the credits. These pointers circle
continuously through the RAM addresses (possibly only within a specified range)
and can be (re-) set individually to a specific start position. This allows to jump
back and reuse previously read credits which have not yet been overwritten by new
credits.

Another enhancement concerns support of additional deterministic routing fea-
tures, e.g., for next-to-nearest node communications. The main challenge for such
extensions is the risk of introducing deadlocks. Deadlocks can be avoided by making
sure that escape paths exists through which packets can be moved towards the final
destination where they leave the network. For our torus network architecture it
would require an extension of the packet header to encode routing information.
Furthermore, forward buffers have to be implemented where received packets are
stored that have not reached their final destination. Special care is needed to ensure
that these forward buffers do not become full as this would block the link and thus
prevent packets to reach the reception buffer. This could be achieved by introducing
a flow control mechanism, which would mean a rather significant change of our

566 H. Baier et al.

design. Alternatively, by imposing suitable programming rules the responsibility
for keeping the number of packets in flight in any part of the network sufficiently
small could be delegated to the application programmer or communication library
developer.

7 Summary and Conclusions

In this chapter we have described how FPGAs can be used to implement a network
architecture that is optimized for nearest neighbour communications between
processors which are interconnected as a 3-dimensional torus. The design has been
implemented for two different HPC systems on which it has been extensively used to
run scientific applications efficiently on hundreds of processors.

For the FPGA–FPGA interconnect a custom network protocol had been devel-
oped which minimizes the overhead. We have demonstrated that it is feasible to
reach the theoretical maximum bandwidth in realistic use cases. The network design
is robust and on the deployed large systems we observed very low error rates.
Correction of data errors is handled at hardware level by resending data between
the link modules and does not have a relevant impact on the performance.

Both for QPACE and AuroraScience the implementation and efficient use of the
data path between CPU and NWP is more challenging. For QPACE the latency on
this link turned out to be relatively high. The maximum measured bandwidth is 70
and 80% of the nominal peak on QPACE and AuroraScience, respectively.

Using FPGAs for implementing such a high-speed network has several advan-
tages. The design remains flexible and the functionality can be adjusted or extended
as application requirements evolve. Since costs of ASIC development have become
too high for many academic research projects, the use of FPGAs is often the only
option unless commodity solutions are an alternative (in terms of both functional
and performance requirements and costs). Even if a custom ASIC would be an
alternative, the option to fix design errors at late stages of the challenging design
and implementation of parallel computer architectures reduces risks and allows to
go for a much more aggressive development schedule. Finally, we would like to
point out that FPGAs give room for optimizing the interface to the processor which
can be interesting for special computing devices, like GPUs and future processor
architectures with a large number of cores.

Among the disadvantages, the cost compared to today’s commodity network
solutions is the critical issue. FPGAs capable of processing very high data rates
are typically more expensive than commodity network devices. In case of a torus
network this may partially be compensated by avoiding the need of switches.
Furthermore, power consumption of a single FPGA tends to be higher compared
to, e.g., a commodity Infiniband HCA plus switch port.

The advantages of implementing the communication network with FPGAs and
the advances of FPGA technologies towards increased data processing capabilities

High-speed Torus Interconnect Using FPGAs 567

let us expect that in the near future FPGA-based networks continue to be an
interesting option, in terms of both performance and costs.

Acknowledgements We thank all members of the QPACE and AuroraScience teams for their
hard and creative work that laid the groundwork for the studies reported on in this paper. In
particular, we are grateful to A. Cotta Ramusino, M. Drochner, D. Hierl, A. Nobile, H. Schick,
T. Streuer, K.-H. Sulanke, R. Tripiccione, and T. Wettig for their helpful contributions during the
design and test phase. The QPACE project was funded by the Deutsche Forschungsgemeinschaft
(DFG) in the framework of SFB/TR-55 and by IBM. We furthermore thank the following
companies who contributed significantly to the project in financial and/or technical terms: Axe
Motors (Italy), Eurotech (Italy), IBM, Knürr (Germany), Xilinx (USA), and Zollner (Germany).
This work was supported in part by the European Union (grants 238353/ITN STRONGnet and
227431/HadronPhysics2). The AuroraScience project was funded by Istituto Nazionale di Fisica
Nucleare (INFN) and by Fondazione Bruno Kessler (Trento, Italy).

References

1. F. Belletti et al., Computing for LQCD: apeNEXT. Comput. Sci. Eng. 8(1), 18–29 (2006)
2. P.A. Boyle et al., Overview of the QCDSP and QCDOC computers. IBM J. Res. Dev. 49(2),

351–365 (2005)
3. G. Goldrian et al., QPACE: quantum chromodynamics parallel computing on the cell broad-

band engine. Comput. Sci. Eng. 10(6), 46–54 (2008)
4. H. Baier et al., QPACE: a QCD parallel computer based on cell processors. PoSLAT 2009, 001

(2009) [arXiv:0911.2174 [hep-lat]]
5. L. Scorzato, AuroraScience. PoSLAT 2010, 039 (2010)
6. M. Pivanti, S.F. Schifano, H. Simma, An FPGA-based torus communication network. PoSLAT

2010, 038 (2010) [arXiv:1102.2346 [hep-lat]]
7. D. Grice et al., Breaking the petaflops barrier. IBM J. Res. Dev. 53(5), 1:1–1:16 (2009)
8. IBM, Cell Broadband Engine Architecture (2005), Version 1.0, 8 Aug 2005
9. T. Maurer, The QPACE supercomputer, renormalization of dynamical CI fermions, axial

charges of excited nucleons, Ph.D. thesis, 2011, http://epub.uni-regensburg.de/21668/. Cited
Jan 2012

10. I. Ouda, K. Schleupen, Application note: FPGA to IBM power processor interface setup, IBM
Research Report, RC24596 (W0807-021), 2 July 2008

11. H. Boettiger, B. Krill, S. Rinke, QPACE: energy-efficient high performance computing, in
International Conference on Architecture of Computing Systems (ARCS), (VDE Verlag, Han-
nover (Germany), 2010), http://www.vde-verlag.de/books/453222/arcs-10-23th-international-
conference-on-architecture-of-computing-systens-2010.html

12. S. Solbrig, Synchronization and error reporting on QPACE (2012), http://www.physik.uni-
regensburg.de/strongnet/documents/STRONGnet2010/solbrig.pdf. Cited May 2012

13. http://www.eurotech.com/aurora. Cited Mar 2012
14. K.J. Barker et al., Entering the Petaflop Era: the architecture and performance of roadrunner,

in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, (IEEE Press, Austin
(Texas, USA), 2008), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5217926&
isnumber=5213127

15. J.-S. Vogt, R. Land, H. Boettiger, Z. Krnjajic, H. Baier, IBM BladeCenter QS22: design,
performance, and utilization in hybrid computing systems. IBM J. Res. Dev. 53(5), 3:1–3:14
(2009)

16. M. Pivanti, A scalable parallel architecture with fpga-based network processor for scientific
computing, Ph.D. thesis, 2011

http://epub.uni-regensburg.de/21668/
http://www.vde-verlag.de/books/453222/arcs-10-23th-international-conference-on-architecture-of-computing-systens-2010.html
http://www.vde-verlag.de/books/453222/arcs-10-23th-international-conference-on-architecture-of-computing-systens-2010.html
http://www.physik.uni-regensburg.de/strongnet/documents/STRONGnet2010/solbrig.pdf
http://www.physik.uni-regensburg.de/strongnet/documents/STRONGnet2010/solbrig.pdf
http://www.eurotech.com/aurora
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5217926&isnumber=5213127
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5217926&isnumber=5213127

MEMSCALE: Re-architecting Memory
Resources for Clusters

Holger Fröning, Federico Silla, and Hector Montaner

Abstract Using the widespread and cost-effective cluster computing approach,
large amounts of different resources can be aggregated in order to solve compute-
intensive problems. However, as clusters do not permit any resource sharing because
of their shared-nothing approach, resource partitioning is static. While this is
typically not a big problem for computing resources as CPUs, the impact of a static
partitioning of memory resources is dramatical. As memory resource shortage leads
to demand paging with a huge negative impact on performance, this situation is
avoided by overprovisioning of resources. However, due to this provisioning for the
worst case, for the average case many memory resources are free but not accessible
due to the static partitioning. On the other hand, as shared use of memory resources
among different nodes in a cluster is not possible, communication tasks are solved
by data replication.

MEMSCALE is a new cluster memory architecture that is enabled by a direct
low-latency path to remote memory resources. Using MEMSCALE, the static
partitioning can be overcome and a dynamic provisioning of resources becomes
feasible. Two typical use cases do exist: first, data-intensive applications might
benefit from more memory resources, but often not from more computing resources.
Such applications can benefit from MEMSCALE by allowing them to borrow
memory from remote nodes, rendering the need for overprovisioning obsolete.
Therefore, each node can be provisioned for the average case, with significant
cost and power savings. The second use case allows applications to rely on shared
memory resources for communication and synchronization purposes, avoiding
the need for data partitioning and movement. In essence, the shared-memory
programming paradigm well known from multi-core computers is expanded to

H. Fröning (�)
University of Heidelberg, Germany
e-mail: froening@uni-hd.de

F. Silla • H. Montaner
Universitat Politècnica de València, Spain
e-mail: fsilla@disca.upv.es; hmontaner@gap.upv.es

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 19, © Springer Science+Business Media, LLC 2013

569

mailto:froening@uni-hd.de
mailto:fsilla@disca.upv.es
mailto:hmontaner@gap.upv.es

570 H. Fröning et al.

clusters. However, as global continuous coherency is a serious concern when scaling
shared-memory systems, we revert to a highly relaxed consistency model, which
guarantees consistency only for synchronization intrinsics like barriers and locks.

MEMSCALE is implemented using FPGAs in a real cluster prototype. Here, we
will use in-memory databases as example workload to demonstrate MEMSCALE’s
impact for such data-intensive applications.

1 Introduction

Current clusters are based on cost-effective commodity parts and present a huge
amount of aggregated computing and memory resources. However, resource parti-
tioning in these clusters is statically performed on a per-node basis and, therefore, no
shared use of resources is possible, thus lacking the flexibility required by many uses
and hindering the effective deployment of some applications, such as data-intensive
ones. However, these applications would dramatically benefit if they could rely on
much larger resources, like the overall memory available distributed at cluster level,
or, more general, if resources could be dynamically aggregated or disaggregated.

Because of the static resource partitioning, in the event of exhausted memory
resources, demand-paging is currently the only viable solution, which comes with
dramatic costs, as can be seen in Fig. 1. In this experiment, the available memory
is 4GB, with about 500MB associated with the OS kernel. It can be seen that as
soon as memory resources are exhausted, performance dramatically drops because
of swapping.

In order to reduce the cost of swapping, other second-level storage technologies
could be used, like FLASH-based memory. Nevertheless, although they certainly
can overcome the capacity limitations of DRAM, they are suffering from a huge
performance gap compared to it, as shown in Fig. 2, which provides an overview of
the most often used storage technologies and shows the performance gap among
them. Notice the logarithmic scale of the vertical axis; it can be seen that even
the most-recent FLASH technologies are suffering from a 500 to 1,000 fold
performance disparity.

As can be seen, the only option to avoid the huge performance degradation of
demand paging is by avoiding it. This leaves no other option but to provision each
node in a cluster for the worst case, increasing the amount of memory attached to
each cluster node. However, for the average case, this overprovisioning increases
overall costs and energy consumption. These costs are further aggravated by an
important trend regarding the amount of memory available per core, in particular
since the beginning of the multi-core era. Figure 3 shows, for 4-socket servers,
the amount of on-board RAM available per core. It can be seen that the memory
capacity is not able to keep the pace of the core count increase, even temporally
degrading significantly.

In order to provide large amounts of fast memory resources to applications, new
technologies are continuously being developed and evaluated for their applicability

MEMSCALE: Re-architecting Memory Resources for Clusters 571

Fig. 1 Performance degradation of memory accesses depending on the memory footprint in
relation to the physical memory available

Fig. 2 Performance disparity of different storage technologies

572

Fig. 3 Memory-to-core ratio for 4-socket servers

to replace DRAM as the fastest storage technology available nowadays. Examples
include Phase Change Memories, magneto-resistive random-access memory like
spin-transfer torque or the memristor. However, all of them have in common a high
uncertainty about their success, as all they currently face significant limitations.
Another approach to extend the capacity of the DRAM technology is 3D stacking,
but this technology is currently under development too. Considering all these
facts, it is obvious that in the near- to mid-term time frame no suitable DRAM
replacement is showing up. Therefore, possibilities to efficiently overcome the
memory overprovisioning are not in sight.

As a result of the above, there is a huge need for memory extension techniques
based on fast DRAM technology that avoid static partitioning of resources through
dynamic sharing of scarce resources. This could be used to overcome the current
over-provisioning of resources.

In order to provide the required flexibility in terms of dynamic provisioning, there
exist some commercial solutions like SGI Altix UV, Numascale, or ScaleMP that
aggregate all the computing and memory resources in a cluster into a single coherent
system image, thus creating a single and larger computer from the individual nodes
of the cluster. However, hardware solutions like the Altix UV or Numascale are not
able to scale to the large system sizes required nowadays because of the overhead
of cluster-wide coherence schemes. On the other hand, software solutions like
ScaleMP rely on a page migration mechanism which, in addition to a high amount
of page transfers over the network, requires OS intervention to trigger locally
unavailable pages and to maintain coherency. This results in large overheads for
fine-grain accesses, as many shared pages and a large amount of synchronization
heavily degrade the performance of this software solution. Moreover, both hard-
and software approaches share the fact that they are very expensive, which prevents

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 573

a broad use. Additionally, many applications exist which would rather benefit from
more memory resources, but not from additional computing power.

Here we present MEMSCALE, a new shared-memory architecture for clusters
that overcomes scalability constraints previously associated with such systems.
MEMSCALE allows an application to use remote memory resources independently
from remote processing units, thus providing decoupling of resources. In this way,
the amount of memory available to a process running in a single node can be
increased with the memory from other nodes in the cluster, without having to
assign the remote computing units and their associated caches to this process. As
in this case no remote caches are involved, there is no need to extend the coherence
domain of this process and therefore the scalability problem of cache coherence is
avoided. Beside the exclusive use of global memory resources we also support a
shared use model by allowing more than one process to use global memory regions.
As this use case involves remote caches, coherence domains have to be extended.
In order to maintain scalability, we propose a new consistency model. It reverts from
continuous coherency to partial coherency, only guaranteeing consistency at certain
synchronization points. Synchronization intrinsics like barriers and locks are used
as safety net for this relaxed consistency model.

MEMSCALE has been implemented using FPGA technologies, being deployed
into a real prototype cluster. This real system serves as a test bed to characterize
applications running on MEMSCALE. It not only allows performing a large number
of experiments—compared to long-running simulations—but we can also validate
the functionality, the performance potential, and the scalability of our approach.

2 Related Work

The problem of insufficient main memory is managed with different approaches,
classified into two main categories: exclusive and shared memory. In the first case,
an application executed in a single node is granted with exclusive use of memory
remotely allocated. In the second case, the memory resources used to extend the
address space of an application can be shared among several nodes. In this second
case, it is typical that a group of previously independent nodes act like a single
shared-memory machine.

2.1 Exclusive Memory

The most traditional approach to extend main memory resources is based on the
use of virtual memory and memory page exchanging between main memory and
a secondary storage that acts as an additional level in the memory hierarchy. As
traditional hard disk is slow due to its mechanical components, during recent years
the FLASH memory technology has become popular as a low-latency persistent

574

storage mechanism. Two major companies shipping this product are Fusion-IO and
Virident. Fusion-IO last development, ioDrive2 Duo, has a maximum capacity of
2.4TB and 68us read access latency. Regarding Virident, they offer up to 1.4TB
with 62us read latency. These high latencies compared to DRAM memory are due
to a slower technology but especially to the software overhead required to exchange
memory pages.

In the case of using foreign memory, almost every proposal is software-based too.
For example, [1–4] leverage idle memory in a peer node in the cluster by exchanging
memory pages from local main memory to main memory installed in a peer node.
As in the previous case, the extra memory is configured as an additional level apart
from regular main memory. This means that processors have no direct access to this
memory and, thus, access latency is noticeably high as pages have to be moved by
the corresponding software handler every time the requested virtual address is not
present in local memory.

An exception to all these software-based approaches can be found in [5], which
is focused on a dedicated memory server that makes up for the insufficient main
memory at nodes. It consists of a hardware technique for accessing memory in the
memory server in a similar way as we do in MEMSCALE. However, they only
introduce this technique as an unexplored possibility and end up focusing the study
on a software-based alternative, similar to most of the proposed approaches.

Notice, however, that the idea of a dedicated RAM-memory server is not
popular nowadays neither in the commercial scene. Therefore, we can find very
few solutions. For example, based on FLASH technology, Violin Memories offers
a flash-memory rack system connected to the nodes through Fiber Channel. For the
new 6000 series, a 22TB memory server presents a read access latency of 140us.

2.2 Shared Memory

In this section we present those solutions that increase the amount of available
memory by aggregating the resources in a cluster through the use of a shared-
memory approach, thus providing a single shared-memory system. The final result
can be achieved by software or by hardware.

2.2.1 Software-Based Approaches

There are several academic proposals and commercial solutions for software
distributed shared-memory (DSM) systems. We can include in the first group the
virtual shared-memory multiprocessor described in [6]. This system is based on a
hypervisor that manages the resources from several nodes in order to create a single
virtual machine from them where a single operating system is executed.

On the commercial side, ScaleMP offers the currently most popular implemen-
tation of software DSM. This system is based on a virtualizing software layer, as

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 575

in the previous case. The hypervisor is responsible for granting memory accesses
by moving pages to the node that requests the corresponding virtual address. This
solution, based on Infiniband, achieves a remote memory latency of 25us.

These software techniques present the advantage over hardware-based alterna-
tives that they are easier to install, present shorter time to market, and are typically
cheaper. However, despite their cheaper nature, the last version of ScaleMP has an
average cost of 800$ per socket in the system. Moreover, in addition to the higher
latency due to software managing of remote operations, these approaches usually
suffer from congestion when the number of concurrent threads accessing the same
memory increases.

Some software DSMs are based on the use of a network feature called Remote
Direct Memory Access (RDMA), which requires the appropriate hardware support
to provide direct access to the memory installed in a different node. The first open
implementation was VIA [7], which set the bases for the RDMA capabilities in
InfiniBand. The advantage of this technique is that applications can bypass the
operating system and therefore a read or write operation can be done without
the intervention of the local or remote operating systems or applications. Notice,
however, that even when using this feature processors still do not have direct access
to remote memory because the network card does not act as a transparent bridge
between processors and remote memory as in the case of MEMSCALE. On the
contrary, each data movement has to be programmed, as in the case for traditional
DMA operations.

2.2.2 Hardware-Based Approaches

As we have seen, the use of software handlers managing page faults adds latency
to remote memory operations. In order to avoid this overhead, the address space of
processors can be extended to include remote memory, thus making processors able
of directly addressing remote memory and, therefore, no help from software layers
is required. To do so, new hardware components have to be developed.

The idea of a hardware-based DSM is not new. The DASH prototype [8] is based
on a set of nodes connected by a low-latency network. To extend the addressing
capabilities of the processors and to maintain coherence in the inter-node space, each
node is equipped with a hardware device called directory controller. As the name
suggests, the coherency among nodes is maintained with a directory based on a
bit-vector structure. According to the authors, this system scaled up to 64 processors.

The SGI Origin 2000 DSM system [9] by Silicon Graphics is another illustrative
example also based on cluster architecture. The difference with DASH is that a
similar directory protocol maintains coherence also in the intra-node space. Again,
each node is augmented with a hardware device, the Hub chip, in charge of
managing remote accesses and the corresponding coherency actions. The maximum
theoretical size of this system is 1,024 nodes and 1TB of main memory, although its
maximum implementation size has not exceeded 256 processors.

576

Another directory-based DSM is the FLASH prototype [10]. This system is
an evolution of the DASH design. One of its new features is a programmable
protocol processor. In this way, this machine has been tested with several coherency
protocols, from the previous bit-vector directory to the Scalable Coherent Interface
protocol. Scalable Coherent Interface (SCI) [11] is an interconnection proposal for
shared-memory multiprocessing, standardized in 1992. It was focused on providing
a scalable, low-latency, high bandwidth interconnection with full support for cache
coherence. The coherence protocol is based on a directory made up of a set of
double linked lists, stored across the cache memories that contain copies of a given
memory block. In this way, the size of the directory is always proportional to the
size of the memory. However, the time required for traversing the lists increases
with system size (number of cache memories) and, thus, the latency of memory
operations.

Numascale is a company that provides hardware-based DSMs. This is accom-
plished with the NumaChip functionality, which implements the SCI protocol
in order to extend the coherence domain of isolated nodes to the entire cluster.
Numascale leverages commodity hardware to configure a supercomputer with
the same memory and computing power as mainframe computers at a lower
cost. This is achieved by attaching an add-on card that includes the NumaChip.
Actually, nowadays most supercomputers are built from mid-range x86 nodes by
using proprietary aggregation technologies. This is also the case of the Bullx
Supernode system, which offers a node configuration of four sockets and 1TB of
main memory that can be combined with other three to build a supercomputer
with 128 cores and 4TB of memory. Another example is the SGI Altix UV
supercomputer [12].

The SGI Altix UV is the fifth generation of SGI’s scalable global shared-memory
architecture, which scales up to 2,560 cores and up to 16 TB of memory. This system
is built using the SGI NUMAlink interconnect that provides the high-bandwidth and
low-latency required by these global shared-memory systems. This technology is
the evolution of the SGI Origin 2000. In this case, the UV-HUB chip is connected
to Intel processors through the Quick Path Interconnect links to extend the local
coherency domain to the larger cache-coherent NUMAlink environment. In this
system, remote memory access latency is 1us.

MEMSCALE fills the gap in the presented categorization: hardware-based
exclusive use of remote memory. On the one hand, we achieve much lower latency
than those techniques based on page swapping. On the other hand, we achieve
higher scalability than both software and hardware DSMs, as we do not maintain
the coherence protocol in the inter-node space. Moreover, with the appropriate soft-
ware layer, MEMSCALE also provides coherence across the entire system. We will
later show the benefits of using a software approach for maintaining coherence
only when strictly required instead of providing a continuous coherent view of the
system.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 577

3 The Memscale Architecture

Although typical x86 server deployments include 64 or 128GB of RAM per
motherboard, today’s CPUs can support physical addresses with up to 48 bits,
which translates into up to 256TB of addressable memory. However, the largest
configurations in the market use only a tiny fraction of this, providing up to 2TB.
This opens up the opportunity to use the unused huge fraction of the address space
to extend the available memory resources by addressing remote memory locations.
This is exactly what MEMSCALE does. The main purpose of the MEMSCALE
architecture is to provide additional memory resources to processes requiring it by
logically assigning them memory that is physically attached to other computers
in the cluster. In this way, MEMSCALE allows to extend the address space of
a processor in a given node with the memory of other nodes, thus providing the
processor with a global address space across the cluster.

MEMSCALE allows two different use models of the memory borrowed from
remote nodes. In the first one, known as exclusive memory, the memory resources
gathered across the cluster by a process are exclusively used by it, thus not sharing
them with other processes. Notice that in this configuration, a process is confined
to the processors and caches located in the node where it is being executed. In the
second possible use, known as shared memory, the memory resources borrowed
from other nodes can be shared among the threads of an application that spans to
several nodes in the cluster. Therefore, in this use model the global address space
created can be shared among the processors involved in the execution of a given
task.

In the rest of this section we present the key components of our system. To do
so, and in order to make the explanation simpler, we will focus first on the exclusive
global address space use model. We will later introduce the shared global address
space, which builds upon the previous one.

3.1 Overview

MEMSCALE partitions the cluster into memory regions. A memory region is made
up of one or more logical portions of main memory that could be located at different
nodes of the cluster, and that conform altogether a single coherence domain. A
process can freely use the entire memory in the region it belongs to but it has no
access to the memory in other regions in the cluster. Similarly, a processor can
address any location of its memory region, but cannot address memory locations
outside it. Figure 4 shows five nodes of a cluster and five memory regions. Region
number 1 is confined to node A and represents the default configuration for a node,
that is, processes in that node can access the entire node’s memory. On the other
hand, region number 4 has been extended to the neighbors of node D, so processes
in this node now have direct access to part of the memory located in nodes C and E.

578

Fig. 4 An example of memory sharing among the nodes of a MEMSCALE cluster

To achieve this, regions 3 and 5 occupy only a portion of the main memory in nodes
C and E, respectively. Finally, region 2 has been extended to its neighbor node C,
where three memory regions coexist.

In the exclusive use model, MEMSCALE partitions the overall memory
resources into as many memory regions as nodes exist in the cluster because
all the processors in a given node will always be glued into the same memory region
and will additionally be independent from processors in other nodes. In this way,
there is one independent operating system at each node. Thus, MEMSCALE does
not provide a single system image as the SGI Altix UV or Numascale approaches
do, but a collection of independent systems that can borrow and lend memory from
each other.

It is important to emphasize that as memory regions are independent coherence
domains, all caches in a node will only cache data from one (the same) memory
region. This allows a very good scalability of our system, as the size of a memory
region has no impact on the performance of the coherence protocol because the
number of caches sharing data in that region is limited to the caches in one
node. Moreover, because of the independency of the coherence domains, no global
coherence protocol across the cluster is required. As can be seen, our system
decouples memory from processors, and therefore there is no coherence overhead
when aggregating huge amounts of memory.

Nevertheless, this exclusive memory model implies one restriction: the threads
of a parallel application have to be executed in one single node, although they
may have access to all the memory in the cluster. However, this limitation is not
as restrictive as it may seem as in today’s mainstream computers it is possible to
include up to 8 sockets with up to 10 cores per socket. Therefore, 80 threads is a
pretty good level of parallelism. Many applications have even lower parallelization
possibilities.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 579

Fig. 5 Global address space
layout

3.2 System Architecture

MEMSCALE has been designed with the requirement that applications should not
be aware about the fact that the address space they are using is actually achieved
by putting together memory from several nodes. In this way, the underlying remote
memory system should be completely transparent to them. Moreover, our system
does not rely on any kind of run-time or communication library. On the contrary, its
core is a small piece of hardware, which allows for a very low remote access time.
Thus, accessing remote memory completely relies on hardware and is therefore
free of any software overhead. In MEMSCALE, a regular load or store assembler
instruction executed by an application will trigger the hardware mechanism to
access data from remote memory.

The use of remote memory by a given processor requires that the remote nodes
lend part of their memory. Figure 5 shows an example of how the global address
space on the right of the figure is built from the memory of all the nodes of a cluster.
As shown in the figure, each node’s address space is split up into private, shared, and
global regions. The private one can be solely used locally, i.e. no remote access to
it from other nodes is possible. Typical uses for this memory are to host the OS and
similar local processes. The shared-memory region is exported and can be accessed
remotely. The aggregation of these shared-memory regions from each of the nodes
builds up the global address space, representing the memory resources available
within it. The last address region of each node, the global one, allows accessing the
global address space. Thus, a source node will issue a load or store operation to an
address within its global address region in order to access remote memory locations.
As it will be explained later, this (global) memory address encodes a node identifier
and a target address within the shared region of the target node.

In order to understand how a processor can determine whether the addresses
memory is local or remote (that is, the basic MEMSCALE architecture), it is
important to explain that in current mainstream systems, leveraging either Intel or
AMD processors, each socket is attached to part of the physical memory by means
of its own memory controller, as shown in Fig. 6a. Therefore, as there are several
memory controllers in the system to access memory, processors require to know
where to forward a given memory request. This is achieved by including at each

580

Fig. 6 Memory distribution in a single node and in MEMSCALE. (a) Four socket original
configuration. (b) RMC interconnection

processor a set of base and address registers (BAR) configured at initialization time
that reflect the system physical memory distribution. In this way, for each memory
operation, the processor compares the requested address with those registers and
then forwards the memory request to the corresponding memory controller. For-
warding the memory operation leverages a small network that connects the sockets
within the motherboard. This network currently uses either the HyperTransport or
the QPI (Quick Path Interconnect) protocols.

This on-board memory distribution and access scheme is the basis upon which
we have designed the MEMSCALE technology. We have created a new hardware
component, referred to as Remote Memory Controller (RMC), which will be
presented to the processors as a new memory controller, as shown in Fig. 6b.
However, the RMC will have no memory bank directly connected to it but will
rely on the memory banks installed in other nodes in the cluster. In order to enable
the RMC functionality, the BAR registers must be reconfigured so that some of the
memory accesses are forwarded to the RMC, which will convert those accesses into
remote accesses.

The RMC allows accessing remote memory resources across the cluster. Figure 7
shows the shared-memory map seen by each of the nodes in a 16-node example
cluster, where four-socket nodes equipped with 16GB of main memory are assumed.
Yellow areas labeled as socket x represent the 4GB of memory attached to each
socket. Yellow areas are the traditional configuration of nodes. However, the
addressing capabilities of this cluster have been extended with the global address
space created across it. The green area represents the global memory region
previously depicted in Fig. 5, made up of the aggregation of the individual main
memories of each node. In this example, this global memory area is set between
addresses 0x000400000000 and 0x0043ffffffff, providing 256GB. The
RMC is configured to be responsible for this address range. Thus, any memory
request related to an address inside that range will be automatically forwarded to the
RMC. When the RMC receives a memory request, it needs to obtain the identifier
of the target node and the target address to be used inside that remote node. That
information is embedded into the requested memory address. The exact procedure
to get that information will be described later in the Implementation section.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 581

Fig. 7 Example of the memory map of a node in a 16-node MEMSCALE cluster

A very interesting feature of this addressing mechanism is that accessing remote
memory does not rely on translation tables. Thus, as no information is stored at
the RMCs, the system can scale without limitation. The same applies to the set of
base and address registers in the processors: they do not store information about
other nodes. Actually, processors are only aware of the local memory distribution
described in the left sketch of Fig. 7. Therefore, the number of required registers
per node does not depend neither on the number of nodes in the cluster nor on the
amount of shared memory.

3.3 Remote Memory Allocation

As with local memory, before using remote memory it has to be reserved. Reserving
remote memory is entirely done by software. Although a software approach could
reduce performance, notice that the higher latency of a software scheme is not
critical because it can be hidden by pre-reserving remote memory. On the contrary,
it allows making the RMC design independent from the exact version of the OS
kernel used.

Figure 8 shows the diagram of the remote memory allocation process, which is
triggered by an application demanding more memory. Typically, applications rely
on a library to manage memory allocations, and these libraries end up calling the
mmap system call to ask the OS kernel for more memory.

We have modified the mmap function in order to allocate remote memory. To
perform such allocation, the mmap function relies on a user-space application, which
will be referred to as the client. The communication between these two entities is

582

Fig. 8 Diagram of the process of allocating remote memory

based on a socket that facilitates the exchange of information inside a node between
kernel and user spaces. The client process receives the desired size of memory
and determines which node should be asked for that memory. This decision can
follow several policies, like splitting the memory among the nodes in the cluster,
or concentrate the allocation in one single node (as in the example in Fig. 8). The
decision can also be based on how much available memory exists at the target nodes.
This information can be periodically exchanged among nodes in user space.

After selecting the target node, in this case Node B, the client sends a message
through the general purpose network present in the cluster to the server application
in the remote node (notice that every node executes a client and a server). The server
application receives the size of the memory to be allocated and this value is passed to
the kernel through a dedicated new system call implemented for this purpose. This
system call allocates as much contiguous physical memory as possible. Typically,
the system will not be able to allocate contiguous chunks of more than 4MB due
to the fragmentation of the memory. Therefore, for larger amounts of memory it
would be necessary to allocate several chunks of physical memory. This memory is
marked as no swappable because node A needs persistent valid physical addresses.
After that, the system call returns the list of physical chunks (physical address and
size of the chunk) to the server.

The server then modifies the physical addresses by inserting the identifier of
its node (Node B in this case) in the physical address of each segment and
sends back that information to the client. After that, the client receives the list of
physical segments and adds the start address of the global memory region. The
list is passed back, through the socket, to the mmap function that was waiting
for a response. Then, the different segments are tailored together and mapped into
a contiguous portion of virtual memory. Additionally, the appropriate translation
between physical and virtual memory pages is also written into the Translation

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 583

Look-aside Buffer (TLB) in order to avoid later communication overheads. Finally,
the virtual address of this memory is returned to the application and the remote
memory allocation process is completed.

3.4 Shared-Memory Across the Cluster

Up to this point, we have seen how a process running in one node is able to use
memory from any node within the entire cluster. However, it is possible to go one
step further and introduce an evolved system where not only memory is aggregated
but also processors are, converting the entire cluster into a powerful distributed
shared-memory system featuring a single global address space that can be used by
all the nodes. This evolved system corresponds to the shared-memory use model
mentioned at the beginning of this section. In this use model a shared-memory
parallel application can span to several nodes of the cluster and its threads can
share memory locations in the same way as any regular shared-memory parallel
application can do within the realm of a single multicore computer.

The starting point for this shared-memory use model is the system presented
above. The same RMC functionality presented for the exclusive use model will
be used in the shared-memory one. Regarding the remote memory allocation
mechanism, it needs to be enriched in order to allow for threads, or processes,
running in different nodes to address the same memory locations, so that shared
variables can be accessed from different nodes.

However, the most interesting issue related to the shared-memory model of
MEMSCALE is that it preserves the feature of having an independent operating
system at each cluster node. Remember that this is the characteristic which allows
for the very good scalability properties of MEMSCALE. Therefore, although this
use model effectively provides real shared memory across the cluster, it has to deal
with the intrinsic MEMSCALE nature of not providing coherence across the cluster.

At this point the question is: how would the lack of coherence affect the
application programmer’s vision of the underlying system? To answer this question,
we should take into account that the usual way to program shared-memory
applications is by leveraging what is commonly known as a safety net, which
basically provides synchronization primitives that avoid race conditions among
threads. These synchronization primitives are barriers and locks explicitly inserted
within regular parallel code, or implicitly in OpenMP programs. These primitives
are programmed by system developers according to the underlying hardware
and provide the programmer with an abstraction so that she/he can focus on
the application itself. Additionally, it makes no sense that parallel application
programmers build their own safety net. Instead, the compiler and synchronization
library developers provide the proper implementation for a particular system.

On the other hand, actual requirements from the application programmer’s side
often do not demand for a continuous maintenance of a system-wide coherent
state but it would be enough to provide consistency at synchronization points only.

584

Fig. 9 Task model

Therefore, if safety nets are used by shared-memory application programmers, the
lack of coherence will not affect the programmer’s vision of the underlying system
as long as the safety net is properly tuned to the particular hardware implementation
and provides the expected primitives.

In order to provide the safety net that matches the MEMSCALE characteristics,
we should take into account that the basic idea in MEMSCALE is enabling efficient
distributed shared-memory by avoiding the global coherence across the cluster.
Thus, we can base the development of the safety net on the observation that
tasks only need the most-recent values of shared data at synchronization points.
Therefore, if coherence is guaranteed at such synchronization points by the safety
net, then a continuous global coherence is no longer necessary. In other words,
providing coherence without synchronization is not required, except for the case
that multiple tasks share different elements in a cache line (false sharing), which
should be avoided, for instance, by compilers ensuring that different elements within
a cache line are not shared between different tasks.

Figure 9 shows a typical execution of a parallel application. Its threads execute
uncoupled during computation phases and are also not coupled during commu-
nication, which is done in the form of reads and writes to memory. Only at
synchronization points, which can be barriers and locks, they cooperate in a coupled
fashion. As can be seen, task execution is separated into compute, communication
and synchronization phases. These three phases form a so-called interval, which
starts after synchronization and includes all computation and communication until
synchronization is required again.

With this task model in mind, we can focus now on how to provide the required
safety net in this scenario. Let’s introduce the concept of On-Demand Consistency,
which during nonsynchronized operation delays the visibility of writes and allows
noncoherent responses for reads, but ensures that at synchronization points both
writes are globally visible and reads provide coherent responses. Thus, we are
relaxing both coherence and consistency and therefore simplifying the complete
system. Notice, however, that in order to ensure coherence and consistency at

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 585

synchronization points, either an update—or invalidate—policy for cache copies
is required. As update-based policies are not used in current commodity processors,
in MEMSCALE we leverage invalidations. However, our approach for On-Demand
Consistency is not dependent on invalidations; it would also perfectly work with
updates.

As mentioned above, the safety net will identify and invalidate the cache line
copies used during the last interval. This could be either done by the compiler, which
inserts appropriate assembler instructions in the instruction stream, or by the RMC,
which dynamically keeps track of copies and invalidates them upon request by the
safety net, or by flushing complete caches. In any case, invalidations must take place
just before the synchronization point, ensuring that dirty cache lines are written back
before any other task might access the associated addresses.

4 Implementation Using FPGAs

The key behind MEMSCALE is to spawn up global address spaces over physically
distributed memory and doing so by providing a direct low-latency hardware path
to remote memory locations, and by ensuring both global consistency and scalable
coherence by reverting from continuous coherenc to a partial one, with guarantees
about visibility and consistency only for synchronization intrinsics like barriers and
locks.

The use of this relaxed consistency model allows us to reduce the hardware
complexity and to focus on minimizing the access costs to remote memory
locations. A minimal latency is of upmost importance because any remote access
will suffer from a latency disparity compared to local memory. Several facts in the
designed hardware contribute to this minimized latency:

1. State-less architecture: no side effects or state-depending actions are required
when performing remote memory accesses in a global address space without
continuous coherence. Similarly, no process-specific information is necessary,
like it is the case for message passing applications. By implementing a state-
less design we avoid any time-consuming table lookups or similar techniques
required for state-dependent processing. As it will be shown later, only on the
target side the Source Tag translation mechanism relies on a table lookup, but
without loss of generality this table can be limited in size to facilitate single-
cycle access times.

2. Efficient integration into the host system domain: we are using HyperTransport
(HT) to directly connect to the host CPUs, without any intermediate bridging
or protocol conversion. HT is designed as CPU interconnect and optimized for
transactions of cache-line size.

3. Interconnection network among the cluster nodes optimized for low latency:
we are relying on the low latency features of the EXTOLL network when
forwarding memory accesses through the cluster. In addition to the low-latency

586

characteristics, EXTOLL provides some mandatory functionality to support
global address spaces:

• In-order packet delivery: unlike other cluster interconnects, EXTOLL main-
tains packet ordering. This is important to guarantee that no load can bypass a
store and vice versa. While some consistency models allow relaxing some
combinations, we have chosen to maintain all of them and not to restrict
MEMSCALE to a certain subset of consistency models.

• Reliability: EXTOLL guarantees packet delivery by link-level retransmission
protocols. Otherwise, an outstanding request might be dropped, leading to
stalling CPU cores which expect responses in finite times. Furthermore, it is
not feasible to store all outgoing memory operations for potential replay upon
packet loss. The resulting memory structures would be too large to maintain
the low latency characteristics.

• Virtual Channels: separate virtual channels are required to avoid protocol
deadlocks by decoupling requests from responses. Otherwise, two nodes with
mutual accesses could deadlock each other, as their responses are potentially
blocked by requests waiting for previous requests to complete.

Notice that both the interface to the local CPUs and the interconnection network can
be chosen quite arbitrarily: it is possible to substitute the HT-Core with a PCIe core,
and to replace the EXTOLL network with another one. However, the network has
to provide both in-order delivery and reliable transmission, in order to maintain the
semantics of global memory accesses.

4.1 Global Architecture

The global architecture of the RMC is shown in Fig. 10. The green units provide
connectivity towards the host domain, and the red units on the right to the network
domain. In between, the shared memory engine (SME), shown as part of the network
interface in blue, directly translates HT packets to EXTOLL network packets and
vice versa without any software involvement and minimal conversion overhead.
Additionally, it determines target nodes based on the used address and avoids Source
Tag collisions in the target domain by re-mapping them to unique values. The SME
connects over a custom On-Chip Network (NoC) to the HT Core, which connects
directly to one of the host’s CPUs. On the network side, it connects over the network
port to the switch, whose six links allow setting up direct topologies like meshes and
tori, making centralized switching units not required.

An example network configuration is shown in Fig. 11. In this 3× 3 2D mesh
topology, a source node (Src) is sending a load request to the destination node (Dst),
which is hosting the addressed memory region. The path of the request is shown
using solid arrows, while the path of the response is shown using dashed arrows.
Notice that Dimension Order Routing (DOR) is employed in this example in order
to avoid network deadlocks, both for requests and responses.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 587

Fig. 10 Shared memory engine as bridging unit between host and network domain

Fig. 11 Example topology,
including the path for a
remote load request and
corresponding response

Finally, note the CPU to the left of Fig. 10. Typical installations employ AMD
Opteron CPUs, which integrate computing cores and memory controller in a single
die. Thus, CPU modules act both as initiator and completer of memory requests:
on the source host side, these cores send out memory accesses to local and remote
locations, with the latter being forwarded to the RMC. The HT core forwards them
over the NoC to the SME, which translates them into EXTOLL packets which are
transferred to the target host. Here, incoming packets are translated back into HT
packets, which target a memory controller within one of the remote host’s CPU.
Then, write requests are completed, or for read requests appropriate responses are
generated and sent back to the source host where they complete the appropriate
request.

588

Fig. 12 The three different address spaces: origin, global, and target

4.2 Implementation

The major task of the shared-memory communication engine is to forward HT
transactions like nonposted reads and posted writes from the origin node to the
target node. Nonposted reads are carried out as split phase transactions, where the
read request is answered by an independent packet-based response. The response
carries a tag which enables the source SME to match the received response to the
corresponding sent request. Posted writes are carried out by simply writing data to a
specific address. Several sub-tasks can be identified based on this, which are target
node determination, address translation, and source tag management.

4.2.1 Target Node Determination and Address Translation

Before describing these sub-tasks in more detail, examining the different address
spaces involved is helpful for an improved understanding. In addition to the global
address space which was explained in detail in Sect. 3, source- and destination-
local address spaces are required for the sub-tasks. Figure 12 shows all three address
spaces and how addresses are translated between them.

Three different address spaces exist in this architecture: one global address space
and two local address spaces, one for the origin and one for the target side. As
a remote memory access is traversing all three address spaces, address translation

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 589

must take place. To avoid unnecessary latencies for this task the translation scheme
should be kept simple but efficient.

Considering Fig. 12, the global address (gAddr) can be determined by subtracting
the origin start address of the global partition (oStartAddr) from the origin address
(oAddr):

gAddr = oAddr− oStartAddr (1)

This global address is also used to determine the target node identifier. A bit mask
is applied to the address, and a centrifuge operation compacts the masked bits to a
value which represents the target node identification (tNodeID):

tNodeID = (gAddr&mask)>> shift count1 (2)

The operation is very similar to the one described by S. Scott in [13] and adds
only minimal latency. Other approaches like table look-ups are also possible, but in
favor of less latency a calculation is preferred here. The inverted mask applied to
the global address together with the start address of the target local shared partition
(tStartAddr) is used to calculate the target address (tAddr), which is the address
actually sent to the target node:

tAddr = (gAddr& ∼ mask)+ tStartAddr (3)

This address translation scheme allows determining the appropriate address to
access data on the target node by converting the origin local address to a global
address and then to a target address. This calculation is completely implemented
on the origin side, i.e. the network packet already contains the target address. The
translation only takes place for requests. Responses do not contain an address; they
are assigned to their corresponding requests by using source tags.

4.2.2 Source Tag Management

Source tags allow sending back a response to the appropriate source of the request.
They are used by the origin CPU in the local node when sending a packet to the
RMC, which copies it unmodified into the EXTOLL packet sent to the target node.
There, the remote RMC will forward the packet to the right memory controller,
which will use the source tag for returning back the response to the RMC in that
node. However, as several source nodes can send requests to the same target node, a
source tag management at the target RMC is required. In other words, as the existing
uniqueness of source tags is limited to each of the individual source domains, if
source tags from multiple source domains are mixed in the target node, then the
identification is lost.

1This is a simplified calculation for a contiguous mask. Furthermore, the value of shift count is
dependent on the actual value of the mask.

590

Because unique source tags are essential for response matching, a source tag
translation takes place in the target RMC. Each transaction gets a new source tag
assigned, which is unique within the domain of the target node. Additionally, as
response matching is handled internally within each target node, there is no need to
make source tags unique over multiple target nodes.

The handling of incoming nonposted requests consists of the following steps:

1. Determine free source tag
2. Store origin source tag and origin node identifier in a table indexed by new source

tag
3. Send out local nonposted request to access the memory location
4. Upon arrival of response, look-up in table using target source tag to determine

origin source tag and origin node
5. Send network packet to origin node, containing nonposted response and origin

source tag

For posted requests no source tag translation is necessary because no response is
required in this case. Unlike the address translation, the source tag management is
implemented completely on the target side. Thus, a packet traversing the network
always contains the origin source tag.

4.2.3 Egress and Ingress Modules

From a functional perspective, the SME communication engine can be divided
into three parts: Requester, Responder, and Completer. All three units are used for
nonposted transactions, while for posted ones only Requester and Completer are
required. To simplify the implementation—in particular the number of ports for the
NoC, the communication engine is divided into two parts, which are the Egress and
Ingress modules. The first acts as Requester and Responder (sending out packets),
while the latter acts as Responder and Completer (handling incoming packets).

The Egress module is shown in the upper part of Fig. 13, consisting of a
Requester and a Responder module. When acting as a Requester, HT transactions
from the local processor to be forwarded to the remote node, are coming in from the
left. The address contained in the transaction is translated and the target identifier
extracted from the global address, according to the formulas (1), (2), and (3)
explained in Sect. 4.2.1, which correspond, respectively, to the three boxes in the
Requester module. After the address translation, a network packet containing the
transaction is sent out. In the second use case—acting as a Responder for nonposted
transactions—the local HT response generated in the remote node is matched
against the source tag table (Matching Store) as explained in Sect. 4.2.2: using the
origin source tag and origin node id from this table a network packet is generated
and sent out to the origin node.

The Ingress module is shown in the lower part of Fig. 13; it acts either as a
Responder or as Completer. In both cases it receives incoming transactions from
the network. In the case of a nonposted transaction it acts as a Responder, i.e. it

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 591

Fig. 13 Internal modules of the SME together with interfaces to host and network

assigns a free target source tag to the transaction, and stores origin source tag and
origin node identifier in the appropriate entry of the matching store, as discussed
in Sect. 4.2.2. Because the NoC supports 1,024 source tags, the matching store also
has 1,024 entries. The transaction with the new (locally unique) source tag is then
forwarded over the NoC to the host system. In the case of a posted transaction the
Ingress module acts as a Completer (lower part of the figure) and directly forwards
the transaction without any source tag translation.

4.2.4 Resource Utilization

The complete RMC design as shown in Fig. 10 has been implemented on a Xilinx
Virtex-4 FX100-11. The HT Core is running at 200MHz with a data path width of
64 bits, while the rest of the logic is running at 156MHz with a data path width of
32 bits. Careful pipelining as well as floor planning was necessary to reach timing
closure. Table 1 summarizes the FPGA resource utilization.

592

Table 1 Resource utilization Resource Used Utilization (%)

Occupied Slices 32,696 of 42,176 77
Slice Registers 27,733 of 84,352 32
4 input LUTs 57,057 of 84,352 67
RAM blocks 141 of 376 37

5 Performance Evaluation

After describing our approach to implement global address spaces by leveraging
FPGAs in combination with commodity hardware, let us analyze the performance of
the proposed system. For doing so, we first characterize the latency and bandwidth
of the remote accesses and later we show how these numbers affect the behavior of
applications.

5.1 Basic Performance Characteristics

The most important characteristics are latency and bandwidth, which are summa-
rized in the Table 2.

As one can see, obviously there is still a disparity between the local and the
remote memory access latency (about 90 ns vs. 1,890 ns). However, no other storage
technology is able to achieve that low access latency while overcoming main
memory capacity limitations. Thus, the remote access latency is still about 25 times
faster than a read access to an SSD, and more than 4,000 times faster than spinning
disks.

Figure 14 shows the clock cycle distribution for a remote load, based on
measurements and simulations. Starting with the latency of a remote load measured
using CPU performance counters, several fractions can be identified: the latency
fraction originating to FPGA modules is derived from simulations, and using
performance counters the latency fraction of the target CPU can be determined.
Finally, the remaining latency fraction is associated with the origin CPU.

The previous results have been gathered for an RMC isolated from any appli-
cation. In the context of an application, Fig. 15 shows the latency and bandwidth
numbers obtained from analytical experiments based on the execution of multiple
consecutive 8-byte read operations to remote memory.

To study the scalability of our system in terms of cluster size, we have included
results for different distances between the node that executes the benchmark and the
node that hosts the memory. Case labeled 0 hops stands for the loopback mode, that
is, the target memory controller is in the local node. In this scenario, read requests
indirectly arrive to a local memory controller by traversing the RMC.

Figure 15 also gathers different tests to study the potential of our system and
predict the performance trend when improving its implementation. These tests

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 593

Table 2 Basic performance characteristics

Metric Value Comment

Load latency 1.89 usec for a 64-bit load
instruction

Memory host is one
hop away. Latency
increases about
300 ns per direction
for each additional
hop

Store throughput 300.00 MB/s for 64 byte
transactions, using
write-combining

Current CPU
implementations
only allow
write-through
caching policies,
thus no caching
effects are visible
for this metric

Fig. 14 Latency break-down for a remote load

consist of changing the speed of the HyperTransport interface implemented in the
RMC. In this way, we can use a 400MHz interface or we can slow down the FPGA
so that it uses a 200MHz interface. In both cases, the core logic of the FPGA is
running at 156MHz.

Due to the sequential nature of read accesses, those experiments with caches
enabled benefit from locality. In these scenarios, a single read operation retrieves
64 bytes and, thus, the subsequent seven read operations hit the cache achieving a
lower average latency.

594

Fig. 15 Analysis on latency and bandwidth scalability

Attending to raw latency to remote memory, the best measurement for the case
of 0 hops is slightly higher than 1.3us, showing the effect of the prototype nature
of the RMC. An implementation as much optimized as regular memory controllers
inside processors would decrease this latency closer to the regular access time to
local memory (100ns), thus noticeably improving performance.

Regarding the number of hops, we can conclude that remote load latency
increases as the distance between a node and its remote memory increases, as
expected. The following equation summarizes this behavior.

latencytotal = hops• latencyhop + latencyloopback (4)

where hops is the number of nodes between the local node and its remote memory,
latencyhop is the latency added at each hop (it comprises the propagation time
through the fiber optic link and also the routing time at the intermediate FPGAs),
and latencyloopback is a constant time independent of the distance. For example, in the
case of HT400 cachable, this constant time is 1.3us and latencyhop is equal to 600ns.
As we can see, distance plays an important role in this system. This is especially true

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 595

Fig. 16 Latency prediction for remote read operations

when a memory region has been expanded to a large number of nodes. Later in this
section we analyze how latency depends on the topology of the network that, in turn,
determines the average number of hops.

Attending to bandwidth, for the scenario with only one hop we achieve 32MB/s.
Read bandwidth is noticeably increased when caches are enabled due to the higher
maximum payload of packets (64 bytes). However, this maximum bandwidth is way
lower than other commercial alternatives like InfiniBand or Ethernet. This is because
we have focused on latency rather than bandwidth, as shared-memory applications
tend to use memory in fine-grained patterns. This limitation shows the difference
between our proposal and other interconnection technologies: while InfiniBand or
Ethernet is focused on moving data between local and remote memory, our system
is focused on moving data between processors and remote memory. The problem is
that mainstream processors are designed to face local memory latency. For example,
AMD Opteron processors can handle eight outstanding memory requests. Although
this number is enough for hiding local memory latency, it is not sufficient to hide
remote memory latency. Additionally, due to the current configuration of the RMC,
it is located in the IO space where only one outstanding request is allowed. Thus, a
new memory request is issued only after the reception of the response to the previous
request. For the 1 hop scenario, latency is 1.9us what allows a maximum theoretical
bandwidth of 32.12MB/s (with posted write operations, the RMC allows 284MB/s
bandwidth).

A second observation according to Fig. 15 is that latency is reduced only 20%
when the HT interface frequency is increased from HT200 to HT400. This is due to
the fact that the HT interface only constitutes a part of the FPGA, and the RMC core
functionality keeps its frequency constant as we said. Figure 16 shows the predicted
latency trend when the RMC implementation is improved.

596

Fig. 17 Load performance for multiple concurrent flows

On the other hand, as current computing systems are inherently parallel and
employing an increasing number of computing cores, another important character-
istic is the behavior under an increased load due to multiple requesting processes
or threads. In this experiment, a multi-threaded application is concurrently issuing
load instructions targeting remote memory. Figure 17 shows the load performance
for this case.

In this experiment, 512K accesses are evenly divided among a varying number
of threads. For each access, a thread issues a load to remote memory. Shown in
this figure are the total execution time and the resulting accumulated bandwidth.
One can see that performance scales linearly up to 4 concurrent flows. Afterwards,
performance saturates and it seems that some system component is preventing a
further exploitation of the increased concurrency. Our simulations have shown that
the SME is not the source of this behavior. However, the SME is accessible from the
CPUs over MMIO space, while memory resides in DRAM space. CPU limits access
to MMIO in many regards, including the number of outstanding transactions. We
have observed a similar behavior on different CPU generations (including Opteron
41KX HE and Opteron 8354).

Also for this experiment, scattering the load flows to different memory hosts
has no impact on performance. On the other hand, if we let multiple clients send
several concurrent load flows to one single memory host, performance does not
suffer from this increased work load. This rules also the memory controller out as
bottleneck for this behavior, indicating that the System Request Queue of the CPU
is the bottleneck.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 597

Fig. 18 Example of a global memory pool created from four nodes and accessed from one single
node

5.2 Exclusive Memory Performance

After reviewing raw latency to remote memory, let us evaluate how this charac-
teristic affects the behavior of applications. As the objective of our proposal is to
allow the use of large amounts of main memory, in the following experiments we
focus on the memory-hungry application par excellence: databases2. In recent years,
main memory has gained importance in databases, not only for caching purposes.
Most of the major vendors have developed in-memory solutions for their database
servers, like IBM SolidDB or Oracle TimesTen. This shift from secondary storage
to main memory allows low latency and high productivity. Moreover, this change
is motivated by emerging new uses of information, like social networks, global
searchers, and e-mail. This new breed of applications produces an access pattern
to data based on a high number of concurrent short queries. This results in a random
access to the entire data set. This pattern with no locality shows up the limitations
of secondary storage while it perfectly suits the intrinsic characteristics of RAM
memory.

This trend towards in-memory databases can greatly benefit from a proposal like
ours. To analyze the benefits of a virtually unlimited main memory, we have setup
an experiment in our prototype cluster. In this case we chose MySQL server because
of its popularity and its open source nature. In a first approach, the configuration of
the cluster will be similar to the example depicted in Fig. 18.

In our cluster, each node has 16 GB of main memory. Half of this memory is used
to create a global memory pool that, with 16 nodes, sums up 128 GB. The other 8
GBs at each node are left for private usage. As described in Fig. 18, only one node

2 For a broader coverage of data-intensive applications and other use cases of global address spaces,
we’d like to refer to our MEMSCALE-related publications [14–21].

598

Fig. 19 Comparative analysis of query execution time

will access this memory pool, that is, only one database server is executed and, thus,
queries are served from the processors in that single node.

In the following experiment we compare our remote memory approach with
local memory and two secondary storage alternatives. For remote memory and local
memory we leverage the memory storage engine present in MySQL. To study the
lower bound case where the entire database can be loaded into local memory, we
use a machine with 128GB main memory. For the other two scenarios we use the
MyISAM storage engine. In these two cases the machine is configured with 8GBs
of main memory and a Seagate Barracuda SATA 3Gb/s, 32MB cache, 7200RPM
and average latency of 4.16ms for the HDD scenario, and two Kingston SNV425-
S2 64GB drives configured in RAID 0, each of them with a sequential speed of
200MB/s at reading for the SSD scenario. Regarding workload, we have designed a
set of short read-only queries executed against a 100GB database. Figure 19 shows
the results.

In this figure we see the average execution time of queries (notice the logarithmic
scale of the axis). The first conclusion is that SSD is 28 times faster than HDD,
because SSD technology has better random access latency. However, local main
memory is 65 times faster than SSD not only due to the fact that RAM memory
presents better latency and higher bandwidth, but also because there is no need for
accessing secondary storage, so the operating system is not involved in terms of I/O
handlers. However, the amount of memory present in a single node has limitations,
either economic or technical, and this is the rationale for using our remote memory
system for large databases. Regarding the scenario where remote memory is one hop
away from processors, we see that our proposal performs ten times better than the
SSD configuration, and only seven times worse than the lower bound local memory
scenario, with the current FPGA implementation.

Figure 20 shows the throughput of the different scenarios in terms of queries
per second. Because main memory is proportionally designed to allow concurrent
access to the cores in the motherboard, 16 in our prototype, the local memory
scenario scales up to this number. Regarding remote memory scenarios, we see a

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 599

Fig. 20 Maximum throughput in various scenarios

Fig. 21 Relation between remote memory latency and query execution time

similar behavior: they scale up to four concurrent query flows. This is due to a
bottleneck in the system that results in congestion with such a number of flows.
Thus, an improved implementation would increase latency as well as throughput.
Finally, the HDD and SSD scenarios do not scale with more than one query flow
because these IO devices act as severe bottlenecks.

To study the scalability of our proposal in large clusters, we have conducted
an experiment that analyzes raw latency and query execution time depending on
the distance to memory. Results are shown in Fig. 21. From these numbers we can
extrapolate the execution time of queries for large systems with different topologies.
Results of this study are shown in Fig. 22. For example, with 216 nodes in a 3D torus
(6× 6× 6), execution time is only 27% higher than two nodes.

600

Fig. 22 Predicted query execution time for various topologies

Fig. 23 Example of a global memory pool created from four nodes and accessed from all of them

5.3 Shared-Memory Performance

Up to this point data in the global memory pool has been accessed exclusively by
one single node. In this section queries are executed in every processor in the cluster,
as exemplified in Fig. 23. With this configuration we increase the number of entry
points to the database and, thus, the throughput of the server. To avoid problems
with the lack of coherence we follow an eventual consistency model, where write
operations are buffered and later executed in a cache-disabled period, as illustrated
in Fig. 24. However, in these experiments we focus on read-only queries as their
completion determines the progress of the client.

Figure 25 shows the throughput of the 16-node cluster in this shared-memory
configuration. We see that performance scales up to around 70 concurrent query
flows. This is in line with the four flows limitation seen for a single node. In this
way, we can progressively add nodes to the cluster to match any throughput and
memory need in a horizontal scale fashion.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 601

Fig. 24 Functioning of the database under eventual consistency

Fig. 25 Results for the cachable multi-node server configuration

Fig. 26 Results for MySQL cluster

These numbers are compared against MySQL Cluster. MySQL Cluster is a
special implementation of the MySQL server intended for clusters. In this way, one
instance of MySQL Cluster is executed at each node (16 in this experiment). Data
is distributed and stored in main memory, and the different instances collaborate
through the cluster interconnection (Gigabit Ethernet). Figure 26 shows the results
for this scenario.

The average query latency when only one thread is accessing the MySQL Cluster
database is 18ms, slightly higher than SSD. The reason why this RAM-based server
has such a high latency is explained in its reference manual: all the records accessed
by a transaction should be held in and serviced by the same node, as explained

602

in [22]. But when queries access disperse data in such a way that even a good
distribution of data among nodes will not help on locality, MySQL Cluster suffers
from the software latency of accessing remote memory. Moreover, we can see that
it only scales up to 30 query flows due to congestion problems.

Although a faster network and an optimized configuration would improve
performance for MySQL Cluster, it cannot compete with MEMSCALE in this kind
of workload.

6 Conclusions

Today, power consumption in clusters is a serious concern and, due to the currently
required overprovisioning, many resources in clusters are often unused. Further-
more, memory as a resource is very scarce and an increasing amount of applications
is no longer computationally or memory-bandwidth bound. Instead, they are limited
by memory capacity. Moreover, the current multi-core trend results in an effectively
decreasing amount of memory per core, thus aggravating the problem.

Existing solutions are either both seriously limited in scalability and very costly
(hardware distributed shared-memory systems like SGI Altix), or rely too much
on locality (software distributed shared-memory systems like ScaleMP). Opposed
to this, MEMSCALE allows overcoming the static partitioning found in clusters,
thus providing a dynamic use of cluster-level resources. Key is a direct low-latency
hardware path to remote resources, allowing to share scarce resources where needed,
to avoid overprovisioning of resources and to increase the flexibility of cluster use
models in general by enabling a highly dynamic resource partitioning.

We have presented the small hardware unit, which is the core of MEMSCALE,
together with a new consistency model that overcomes scalability limitations by
reverting to partial coherence. Using a real prototype cluster together with an FPGA-
based implementation of the communication infrastructure, we are able to assess
MEMSCALE’s performance using a variety of applications. Here, we have focused
on one of the most important workloads today: in-memory databases. By modifying
MySQL, the database can now be stored distributed in the cluster’s memory
resources, and this aggregation of distributed resources helps to store all data in
fast DRAM, without any need to swap out data to slower storage technologies.
The performance impact is tremendous. Our experiments show speedups of up to
77x (35,000 queries/second for MEMSCALE vs. 450 queries/second for MySQL
Cluster).

In the future, we plan to implement the MEMSCALE design on newer FPGA
technologies (e.g., Virtex-6 or Virtex-7), and maybe even try to include it in an
ASIC design. Furthermore, we will investigate locality optimizations in detail, in
particular for the In-Memory Database. In general, transparency is helpful to keep
binary compatibility with legacy software components, but exposing the existence
of remote memory might also be beneficial as it facilitates locality optimizations.

H. Fröning et al.

MEMSCALE: Re-architecting Memory Resources for Clusters 603

References

1. S. Liang, R. Noronha, D.K. Panda, Swapping to remote memory over infiniband: an approach
using a high performance network block device, in IEEE International Conference on Cluster
Computing, 2005, pp. 1–10

2. J. Oleszkiewicz, L. Xiao, Y. Liu, Parallel network RAM: effectively utilizing global cluster
memory for large data-intensive parallel programs, in International Conference on Parallel
Processing, 2004, pp. 353–360

3. M.R. Hines, J. Wang, K. Gopalan, Distributed anemone: transparent low-latency access to
remote memory in commodity clusters, in International Conference on High Performance
Computing, 2006

4. S. Pakin, G. Johnson, Performance analysis of a user-level memory server, in IEEE Interna-
tional Conference on Cluster Computing, 2007, 249–258

5. K. Lim, J. Chang, T. Mudge, et al., Disaggregated memory for expansion and sharing in blade
servers, in 36th Annual International Symposium on Computer Architecture, 2009, 267–278

6. M. Chapman, G. Heiser, VNUMA: a virtual shared-memory multiprocessor, in USENIX
Annual Technical Conference, 2009

7. D. Dunning, G. Regnier, G. McAlpine, et al., The virtual interface architecture. IEEE Micro
18(2), 66–76 (1998)

8. D. Lenoski, J. Laudon, T. Joe, et al., The DASH prototype: Implementation and performance,
in 19th Annual International Symposium on Computer Architecture, 1992, 92–103

9. J. Laudon, D. Lenoski, The SGI origin: a ccNUMA highly scalable server, in 24th Annual
International Symposium on Computer Architecture, 1997, 241–251

10. J. Kuskin, D. Ofelt, M. Heinrich, et al., The Stanford FLASH multiprocessor, in 21st Annual
International Symposium on Computer Architecture, 1994, 302–313

11. K. Alnaes, E.H. Kristiansen, D.B. Gustavson, D.V. James, Scalable coherent interface, in IEEE
International Conference on Computer Systems and Software Engineering, 1990, 446–453

12. SGI. Technical Advances in the SGI Altix UV Architecture. White Paper. http://www.sgi.com/
products/servers/altix/uv. Accessed April 2012

13. S.L. Scott, Synchronization and communication in the T3E multiprocessor, in 7th International
Conference on Architectural Support For Programming Languages and Operating Systems,
1996

14. H. Fröning, A. Giese, H. Montaner, S. Silla, J. Duato, Highly scalable barriers for future
high-performance computing clusters, in 18th annual IEEE International Conference on High
Performance Computing, 2011

15. H. Montaner, F. Silla, H. Fröning, J. Duato, MEMSCALE: in-cluster-memory databases, in
20th ACM Conference on Information and Knowledge Management, 2011

16. H. Montaner, F. Silla, H. Fröning, J. Duato, Unleash your memory-constrained applications:
a 32-node non-coherent distributed-memory prototype cluster, in 13th IEEE International
Conference on High Performance Computing and Communications, 2011

17. H. Montaner, F. Silla, H. Fröning, J. Duato, MEMSCALE: a scalable environment for
databases, in 13th IEEE International Conference on High Performance Computing and
Communications, 2011

18. H. Montaner, F. Silla, H. Fröning, J. Duato, A New Degree of Freedom for Memory Allocation
in Clusters. Cluster Computing (Springer, New York, 2011)

19. H. Montaner, F. Silla, H. Fröning, J. Duato, Getting rid of coherency overhead for memory-
hungry applications, in IEEE International Conference on Cluster Computing 2010, 2010

20. H. Fröning, H. Litz, Efficient hardware support for the partitioned global address space, in
10th Workshop on Communication Architecture for Clusters (CAC2010), in conjunction with
IPDPS 2010, 2009

http://www.sgi.com/products/servers/altix/uv
http://www.sgi.com/products/servers/altix/uv

604

21. H. Montaner, F. Silla, J. Duato, A practical way to extend shared memory support beyond a
motherboard at low cost, in 19th International ACM Symposium on High-Performance Parallel
and Distributed Computing, 2010

22. Oracle. MySQL Cluster Evaluation Guide - Designing, Evaluating and Benchmarking MySQL
Cluster. White Paper. http://www.mysql.com/products/cluster/resources.html. Accessed April
2012

H. Fröning et al.

http://www.mysql.com/products/cluster/resources.html

High-Performance Computing Based
on High-Speed Dynamic Reconfiguration

Minoru Watanabe

Abstract Currently, demand for implementing all systems including a processor,
a peripheral circuit, and a dedicated circuit onto a field programmable gate array
(FPGA) is gaining. However, related to the demand, an important issue is that
soft-core processors implemented on FPGAs have lower performance than custom
processors or FPGA’s hard-core processors. Such low performance of soft-core
processors on FPGAs is attributable to their look-up table (LUT) and Switching
Matrix (SM) architectures. Therefore, under current implementation, such a soft-
core processor cannot be used to produce a high-performance system. Instead, a
custom processor or an FPGA’s hard-core processor must be implemented onto
the system along with an FPGA. However, if the FPGA’s programmability can
be exploited fully, then the performance of soft-core processors and circuits on
its programmable gate array can be increased. The key technology is a high-
speed dynamic reconfiguration. Therefore, this chapter introduces a new soft-core
processor architecture called Mono-Instruction Set Computer (MISC) architecture
as high-performance computing based on high-speed dynamic reconfiguration.

As process technologies of Very Large Scale Integration (VLSI) advance, fine-
grained field programmable gate arrays (FPGAs) are becoming more widely used in
various applications [1, 2]. However, currently, almost no such application systems
are purely FPGA-embedded systems in which only an FPGA is implemented, with
no other VLSI. Almost all such systems are hybrid systems including an FPGA,
a processor, and other custom VLSIs or Application-Specific Integrated Circuits
(ASICs). Currently, demand for implementing all systems including a processor, a
peripheral circuit, and a dedicated circuit onto an FPGA is gaining.

M. Watanabe (�)
Electrical and Electronic Engineering, Shizuoka University, 3-5-1 Johoku,
Hamamatsu, Shizuoka 432-8561, Japan
e-mail: tmwatan@ipc.shizuoka.ac.jp

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 20, © Springer Science+Business Media, LLC 2013

605

mailto:tmwatan@ipc.shizuoka.ac.jp

606 M. Watanabe

Fig. 1 A reconfigurable logic
block and a programmable
switch inside a programmable
switching matrix

To satisfy that demand, FPGA vendors have come to provide soft-core processors
for FPGAs [3–6]. Altera Corp. provides NIOS processors [3, 4], whereas Xilinx
Inc. provides Micro Blaze processors [5,6]. However, the soft-core processors have
lower performance than Intel’s processors [7–9], ARM processors [10, 11], and
other custom processors. Such low performance of soft-core processors on FPGAs
results from their look-up table (LUT) and Switching Matrix (SM) architectures, as
shown in Fig. 1. Currently available FPGAs always take a fine-grained island style
architecture based on LUTs and SMs. The performance of a circuit on LUTs in
terms of clock frequency and power consumption is lower than that of a standard
cell-based circuit on an ASIC or a custom-designed circuit on a VLSI, given the
same function and the same process technology. In addition, the die-size of a circuit
on LUTs always becomes larger than that on ASICs or custom VLSIs. Such a large-
die circuit always increases the total length of wires so that the parasitic resistance,
inductance, and capacitance of the wires are increased [12]. Therefore, such a large-
die circuit causes not only a cost increase but also a clock frequency decrease and a
power consumption increase. In addition, each pass transistor in a switching matrix
to make interconnections between LUTs programmable causes a large propagation
delay compared with a simple metal wire connection of ASICs or custom VLSIs
[13]. Therefore, the programmable architecture decreases the clock frequency and
increases the power consumption and die size or the chip cost of processors and
other circuits. Nevertheless, to make a fabricated VLSI programmable, we must
adopt the FPGA architecture.

Therefore, when a high-performance system must be produced, such a soft-core
processor cannot be used. Instead, a custom processor chip must be implemented
onto the system along with an FPGA. In response to those facts, recently, FPGA
vendors have begun providing hard-core processors such as a PowerPC processor
[14] or an ARM processor [15] inside an FPGA chip. However, in those cases,
the advantage of the flexibility of FPGAs is spoiled because of the existence of
the fixed hard-core processors. Ironically, vendors have provided proof that the
performance of those soft-core processors on FPGAs is inferior to those of the hard-
core processors and other custom processors.

Under the use of the FPGA architecture without a hard-core processor, a method
remains for us to improve the performance of such soft-core processors: exploita-
tion of their programmability. The performance of an FPGA can be increased
if its programmability can be exploited fully. The idea is based on high-speed
dynamic reconfiguration. The author calls the new soft-core processor architecture a

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 607

Mono-Instruction Set Computer (MISC) architecture. This chapter introduces high-
performance computing or the MISC architecture based on high-speed dynamic
reconfiguration.

This chapter is organized as follows: First, Sect. 1 introduces a short history of
microprocessor development. Based on that history, a hidden hint is clarified: high-
speed dynamic reconfiguration can increase the performance of soft-core processors
or other operations on a gate array. Section 2 introduces various high-speed
dynamically reconfigurable devices to be able to support MISC implementation.
Among such high-speed dynamically reconfigurable devices, Sect. 3 introduces
Optically Reconfigurable Gate Arrays (ORGAs) as a strong candidate for MISC
implementation. Section 4 describes a high-performance implementation scheme
of soft-core MISC processors by exploiting high-speed dynamic reconfiguration. A
brief discussion and conclusion are presented in Sect. 5.

1 Exploration of the Best Soft-Core Processor
Implementation onto FPGAs

To date, microprocessor performance has been progressing dramatically [7–11].
Recently, almost all computer systems use Reduced Instruction Set Computer
(RISC) architectures [7–11],[14–17]. Such architectures offer benefits in terms of
high clock frequency, low power consumption, and small implementation area or
low cost. However, about 35 years ago, Complex Instruction Set Computer (CISC)
architectures were widely used for almost all computer systems [18, 19]. In those
days, the amount of memory was very small, for example several kilobytes, and
memory was very expensive. In addition, high-level programming languages such
as C++ and JAVA had not been developed. Invariably, software intended for high-
speed computation was designed using an assembler language [20]. Therefore,
CISC processors were designed to include various instructions. Each instruction
was able to execute a complicated multi-step operation to ease the assembler-level
programming and to reduce the necessary amount of memory. Consequently, CISC
processor architecture became very complicated. Such complicated architectures
prevented an increase in the clock frequency or processing power.

Now, the amount of memory has increased drastically because of progress
in semiconductor process technologies. Moreover, memory costs have decreased
drastically. In addition, high-level programming languages, such as C++ and JAVA,
that can generate various multi-step operations automatically by combining a small
number of instructions are available. Consequently, it is possible to choose a simple
processor architecture with a small number of single-step instructions, enabling
the so-called RISC architecture, which offers benefits in terms of higher clock
frequency, smaller implementation area, and lower power consumption than con-
ventional CISC architectures. Their success is based on the fundamental principle
that the simplest circuit is the best. The simplest circuit can function with the highest
clock frequency, in the smallest implementation area or at the lowest cost, and with

608 M. Watanabe

Fig. 2 Concept of a mono-instruction set computer (MISC). (a) Conventional static implementa-
tion (b) New dynamic implementation

the lowest power consumption because the simplest circuit can be constructed with
fewer selector passes, less load capacitance of fewer gates, less capacitance of short
metal wires, and so on.

Currently, application-specific instruction processors have been reported as one
advanced RISC architecture [21–24]. Currently available RISC processors have one
or a few arithmetic and logic units (ALUs) with a set of instructions. However,
the set of instructions necessary for each target application varies depending on the
application. Not all of a processor’s instructions are always used for an application.
In application-specific instruction processors, unused instructions are removed
from the processor architecture, thereby simplifying the architecture. Removal of
those instructions improves the clock frequency, the power consumption, and the
necessary number of gates. However, although the application-specific instruction
processor architecture certainly improves its performance, it is not a dramatic
advancement in processor architecture innovation.

A more advanced processor architecture is the MISC architecture [25–27].
Focusing each ALU’s operation for a single clock cycle, inside each ALU, only
a single instruction is executed during a single clock cycle. The other instructions
are never executed simultaneously. Therefore, the non-operation instruction can be
regarded as a wasted instruction. Removing waste instructions and further simplify-
ing each ALU of the RISC processor architecture, ultimately the simplest processor
architecture or MISC architecture can be achieved. The only condition necessary
for the MISC architecture is the use of a high-speed clock-by-clock dynamically
reconfigurable device. If a programmable device can be reconfigured clock-by-
clock, then any instruction change can be done by reconfiguring the programmable
device. Therefore, MISC architecture can be used even for a complicated operation.
Such an MISC processor can operate at the highest clock frequency, with the lowest
power consumption, and in the smallest implementation area because the complex-
ity of the architecture is the lowest among all processor architectures. Moreover,
the extremely small implementation area enables large parallel computation when
using the equal implementation area to that occupied by a conventional RISC
processor, as shown in Fig. 2. Therefore, the overall performance can be improved
drastically. As described earlier, a high-speed dynamic reconfiguration is a very

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 609

important means to increase the performance of a programmable gate array. The
reconfiguration advantage can also be considered as based on the fundamental
principle that the simplest circuit can invariably achieve superior performance.

2 High-Speed Dynamically Reconfigurable Devices

2.1 A Variety of Programmable Devices

Currently, various programmable devices are available. For use as small-
programmable logic gates, flash-based programmable logic devices (PLDs)
and flash-based complex programmable logic devices (CPLDs) are available
[1, 2, 28–30]. Flash-based PLDs and CPLDs have a feature enabling them to
maintain a configuration context constantly, even without a power supply. However,
since the PLDs and CPLDs never support dynamic reconfiguration and since their
gate arrays are too small to integrate a large system, including a processor, onto
them, the PLD and CPLD are unsuitable for MISC implementation. On the other
hand, ACTEL’s anti-fuse type FPGAs [31–33] and SRAM-based FPGAs [1, 2]
are large gate arrays. However, anti-fuse type FPGAs are one-time programmable
FPGAs for which dynamic reconfiguration is impossible, whereas reconfiguration
of the SRAM-based FPGAs are too slow or a few hundred milliseconds because
of their serial configuration. For them, dynamic reconfiguration is also impossible.
Therefore, both FPGAs are unsuitable for MISC implementation.

Of course, recently, SRAM-based FPGAs can also support partial reconfiguration
[34, 35]. Their partial reconfiguration time is shorter than the entire reconfiguration
time. However, even if the partial reconfiguration period is of microsecond order,
the period is insufficient to support a nanosecond-order dynamic reconfiguration
necessary for MISC implementation. Moreover, the partial reconfiguration cannot
increase the performance of an entire gate array sufficiently. To increase the
performance of a programmable gate array or to support MISC implementation,
the reconfiguration of an entire gate array is important.

As multi-context devices of another type, high-speed reconfigurable devices
have been developed, e.g., DAP/DNA chips, DRP chips, and MuCCRA chips
(http://www.ipflex.co.jp) [36, 37]. Such devices package reconfiguration memories
and a microprocessor array onto a chip. The internal reconfiguration memory
stores reconfiguration contexts of 4–64 banks, which can be changed from one to
another during a clock cycle. Thereby, arithmetic logic units of such devices can be
reconfigured on every clock cycle of a few nanoseconds. However, since the devices
are coarse-grained programmable devices, their flexibility is not good compared
with that of fine-grained programmable gate arrays. Therefore, the discussion of
such devices is left for another book.

610 M. Watanabe

2.2 High-Speed Dynamically Reconfigurable Devices

Multi-context FPGAs have been developed [38–43]. The internal reconfiguration
memory stores reconfiguration contexts of 4–16 banks, which can be changed from
one to another during a clock cycle. Thereby, the fine-grained programmable gate
array can be reconfigured on every clock cycle of a few nanoseconds. Therefore,
multi-context FPGAs are the primary candidate for MISC implementation. Never-
theless, an important shortcoming is that their number of configuration contexts is
insufficient to execute various reconfigurations continuously. For that reason, MISC-
applicable applications and their performance are limited on such multi-context
FPGA.

To date, to realize such high-speed dynamic reconfiguration, ORGAs, consisting
of a holographic memory, a laser array, and an ORGA VLSI, have been developed
[44–58]. A large amount of circuit information or a number of configuration
contexts can be stored on a holographic memory and are addressed by a laser
array. In ORGAs, configuration contexts can be optically programmed dynamically
onto an optically reconfigurable fine-grained gate array. The ORGA architecture
can realize high-speed reconfiguration by using an extremely large bandwidth
optical bus between a holographic memory and a programmable gate array VLSI.
In addition, numerous reconfiguration contexts can be realized since the storage
capacity of a three-dimensional holographic memory is greater than that of silicon
memories.

The first proposed Optical Programmable Gate Array (OPGA) has demon-
strated 50–100 reconfiguration contexts and 16–20 μs reconfiguration time [44–46].
In another demonstration of an optically differential reconfigurable gate array
(ODRGA), the reconfiguration frequency was improved to a maximum 72.7 MHz
using a differential reconfiguration strategy [47–50]. Furthermore, an ORGA
has achieved 144 reconfiguration contexts using microelectromechanical system
(MEMS) technology [51, 52]. In addition, a practical 51K gate count Dynamic
Optically Reconfigurable Gate Array (DORGA)-VLSI has been reported [53–58].
An ORGA can support high-speed dynamic reconfiguration by exploiting numerous
reconfiguration contexts and a high-speed reconfiguration capability. Therefore,
ORGAs are well suited for MISC implementation.

3 Optically Reconfigurable Gate Array

3.1 ORGA Architecture

An overview of an ORGA, which comprises a gate-array VLSI (ORGA-VLSI), a
holographic memory, and a laser diode array, is portrayed in Fig. 3. The holographic
memory stores many configuration contexts. For example, candidates of three-
dimensional holographic memories are photopolymer holographic memories and

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 611

Fig. 3 Overall construction of an optically reconfigurable gate array (ORGA)

Fig. 4 Example of (a) a two-dimensional holographic memory pattern displayed on a spatial light
modulator (SLM) and (b) its CCD-captured configuration context pattern

photorefractive crystal holographic memories [59–61]. Instead of them, electrically
programmable spatial light modulators, liquid crystal spatial light modulators and
microelectromechanical system (MEMS) mirror arrays can be used for ORGAs
[62–64]. A laser array is mounted on the top of the holographic memory for
use in addressing configuration contexts in the holographic memory. One laser
corresponds to a configuration context. Turning one laser on, the laser beam
propagates into a certain corresponding area on the holographic memory at a
certain angle so that the holographic memory generates a certain diffraction pattern,
as shown in Fig. 4. A photodiode-array of a programmable gate array on an
ORGA-VLSI can receive it as a reconfiguration context. Then, the ORGA-VLSI
functions as the circuit of the configuration context. The reconfiguration time of
such an ORGA architecture reaches nanosecond-order [47, 50]. Therefore, very-
high-speed context switching is possible. In addition, since the storage capacity

612 M. Watanabe

Fig. 5 Photograph of a 16-configuration context ORGA

of a holographic memory is extremely high, numerous configuration contexts can
be stored in a holographic memory. The density potential of a three-dimensional
holographic memory reaches V/λ 3, where V denotes the recording volume and λ
is the wavelength of the recording light source [65]. For example, photorefractive
crystal holographic memories LiNb03 can store 100–155 bits/μm2 [60, 61]. The
area densities are superior to even the latest 32 nm process dynamic random
access memory (DRAM) cell with a bit density of 25.6 bits/μm2 [66]. Therefore,
the ORGA architecture enables both the realization of fast reconfiguration and
numerous reconfiguration contexts for MISC implementation. A prototype system
of a 16-configuration-context ORGA using a liquid crystal spatial light modulator
as a holographic memory is shown in Fig. 5 [67].

3.2 ORGA-VLSI

This section presents the design of a 51K-gate-count ORGA VLSI [56]. The
51K-gate-count ORGA-VLSI chip was designed using a 0.35-μm standard com-
plementary metal oxide semiconductor (CMOS) process. Figure 6 depicts the
gate array structure. Table 1 presents its specifications. The ORGA-VLSI takes
an island-style gate array or a fine-grained gate array. The basic functionality
of the ORGA-VLSI is fundamentally identical to that of currently available
FPGAs. However, the reconfiguration mechanism differs from that of FPGAs.
Each programming point of an ORGA’s programmable gate array is connected

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 613

Fig. 6 An island-style gate array consists of optically reconfigurable logic blocks (ORLBs),
optically reconfigurable switching matrices (ORSMs), and optically reconfigurable I/O blocks
(ORIOBs) (Copyright c© 2006 Japanese Journal of Applied Physics [53], Copyright c© 2005,
International Conference on Solid State Devices and Materials [54], INTECH [55])

Table 1 Specifications of a high-density optically reconfigurable gate array
(ORGA) VLSI

Technology
0.35 μm double-poly four-metal
CMOS process

Chip size 14.2 × 14.2 mm2

Supply voltage Core 3.3 V, I/O 3.3 V
Photodiode size 9.5 × 8.8 μm2

Horizontal distance between photodiodes 28.5–42 μm
Vertical distance between photodiodes 12–21μm
Number of photodiodes 170,165
Number of logic blocks 1,508
Number of switching matrices 1,589
Number of I/O bits 272
Gate count 51,272

Copyright c© 2006 Japanese Journal of Applied Physics [53], Copyright c© 2005,
International Conference on Solid State Devices and Materials [54], INTECH [55]

to a photodiode to receive an optically applied configuration context. In common
ORGA-VLSIs, photodiodes were constructed between an N-well or N-diffusion
and the P-substrate. The photodiode cell was designed as a fully custom design.
In the ORGA-VLSI, the acceptance surface size of photodiode is 8.8 × 9.5 μm2.
The photodiode cells were arranged at 28.5–42.0μm horizontal intervals and at
12.0–21.0 μm vertical intervals: in all, 170,165 photodiodes were used. The fourth

614 M. Watanabe

Fig. 7 Block diagram of an optically reconfigurable logic block (ORLB) (Copyright c© 2006
Japanese Journal of Applied Physics [53], Copyright c© 2005, International Conference on Solid
State Devices and Materials [54], INTECH [55])

metal layer is used for guarding transistors from light irradiation; the other three
layers were used for wiring. The gate array was designed using Design Compiler
(Synopsys Inc.) as a logic synthesis tool and Apollo (Synopsys Inc.) as a place and
route tool. The ORGA-VLSI chip consists of 1,508 optically reconfigurable logic
blocks (ORLB), 1,589 optically reconfigurable switching matrices (ORSM), and
272 optically reconfigurable I/O bits (ORIOB). One wiring channel has eight wires.

Optically Reconfigurable Logic Block

A block diagram of an ORLB of the ORGA-VLSI chip is presented in Fig. 7.
Each ORLB consists mainly of 2 four-input one-output LUTs and 2 delay-type flip-
flops, similar to FPGAs. The LUTs are used for implementing Boolean functions. A
combinational circuit and sequential circuit can be implemented on it, as in FPGAs.
In all, 58 photodiodes are used for programming an ORLB. The ORLB can be
reconfigured perfectly in parallel. The CAD layout is depicted in Fig. 8. This is a
standard cell-based design.

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 615

Fig. 8 CAD layout of the
optically reconfigurable logic
block (ORLB) (Copyright c©
2006 Japanese Journal of
Applied Physics [53],
Copyright c© 2005,
International Conference on
Solid State Devices and
Materials [54], INTECH [55])

Fig. 9 Block diagram of an ORSM (Copyright c© 2006 Japanese Journal of Applied Physics [53],
Copyright c© 2005, International Conference on Solid State Devices and Materials [54], INTECH
[55])

Optically Reconfigurable Switching Matrix

Similarly, ORSMs can be reconfigured optically. A block diagram of the ORSM,
portrayed in Fig. 9, shows that its basic construction is the same as that used by
Xilinx Inc. Four-directional switching matrices with 48 transmission gates were
implemented in the gate array. Each transmission gate can be regarded as a bi-
directional switch. A photodiode connected to each transmission gate controls
whether the transmission gate is closed or not. The CAD layout is portrayed in
Fig. 10.

616 M. Watanabe

Fig. 10 CAD layout of an
ORSM (Copyright c© 2006
Japanese Journal of Applied
Physics [53], Copyright c©
2005, International
Conference on Solid State
Devices and Materials [54],
INTECH [55])

3.3 ORGA Advantages

The ORGA architecture achieves a high-speed dynamic reconfiguration. In the
future, the number of configuration contexts will reach over a million. The gate
count of a physical gate array will reach over a million gates. Since the physical
gate array will be reconfigured with more than million configuration contexts, the
total gate count will reach Tera gates. Therefore, the ORGA architecture can realize
a large gate programmable gate array so that the ORGA will become the preferred
infrastructure for MISC implementation.

4 Mono-Instruction Set Computer

4.1 Concept

A MISC processor represents an instruction of an ALU in a conventional RISC
processor. Although each ALU in an RISC processor has many instructions, an
MISC processor includes only a single instruction. Changing of instructions is done
by reconfiguring its hardware or a programmable gate array, although the hardware
of an RISC processor is valid and its instruction change is done by software. To
realize various instructions just like a conventional RISC processor, various MISC
processors are prepared along with registers. For instance, one MISC has an adder
instruction, one MISC processor has a subtractor instruction, one MISC has a
multiplier instruction, one MISC processor has a divider instruction, and so on.
Moreover, one multiplier-MISC processor might be capable of multiplying two
8-bit numbers, yielding a 16-bit result, while another multiplier-MISC might be

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 617

Fig. 11 Example of a large parallel operation of MISC implementation. Each MISC processor is
implemented onto a programmable gate array along with data registers

capable of multiplying two 16-bit numbers, yielding a 32-bit result. Consequently,
a wide variety of possible MISC processors might be used. Fundamentally, every
MISC processor is designed as a single-step operation, although the operation
clock frequencies of the respective MISC processors mutually differ. A large
advantage of the MISC implementation is that a large parallel operation is possible
because the simple architecture of each MISC can be implemented on a small
implementation area. Therefore, numerous MISC processors can be implemented
onto a programmable gate array. Under a practical MISC implementation, in
addition to numerous MISC processors, many data registers are implemented as
well as currently available RISC processor, as shown in Fig. 11. A programmable
gate array on which MISC processors are implemented is reconfigured dynamically
while the values of the data registers are constantly retained without depending on
dynamic reconfiguration procedures.

One example of an MISC processor’s sequential operation “D0 = D0 × D1
+ D2 × D3” is shown in Fig. 12. The example of the MISC processor shows
one of many MISC processors implemented on a programmable gate array, as
shown in Fig. 11. Here, there are a multiplier MISC, an adder MISC, and four
data registers: D0, D1, D2, and D3. First, a multiplier MISC is configured onto
a gate array. At that configuration, two inputs of the MISC are connected to the
outputs of registers D0 and D1. The output of the MISC is connected to the input
of the register D0. Then, a multiplication operation on the MISC is executed in
one clock cycle and the multiplication result is stored on the D0 register. Next,
the gate array is reconfigured to the second multiplier MISC, leaving data on
register D0. In this reconfiguration, two inputs of the MISC are connected to the
outputs of registers D2 and D3 and the output of the MISC is connected to the

618 M. Watanabe

Fig. 12 Example of a sequential operation of a single MISC

input of the register D2. Then, the second multiplication operation on the MISC is
executed in one clock cycle and the multiplication result is stored on the register D2.
Subsequently, the gate array is reconfigured to the third adder-MISC, maintaining
data on all the registers. The adder operation “D0 = D0 + D2” is executed on the
MISC. Finally, the additional result is stored on the register D0 so that all operations
are completed. In this manner, in the MISC implementation, a software operation
is executed by reconfiguring a programmable gate array frequently. Here, in the
MISC implementation, a configuration procedure and a gate array operation must be
executed as perfectly parallel. When the condition is satisfied, since a configuration
procedure can be treated for all purposes as a background job, the reconfiguration
overhead time is beyond consideration.

As described above, under the MISC implementation, a necessary MISC is
implemented dynamically at the necessary time. The instruction change is based
on dynamic reconfiguration. Consequently, the performance of each MISC can be
improved. Such high-performance MISC implementation merely requires a high-
speed clock-by-clock reconfigurable device, just like an ORGA. Currently, the
hardware infrastructure based on ORGAs is mature.

4.2 Experimental Result of MISC Implementation

Some results of MISC implementation have been reported to date [25–27]. Here,
one example is introduced for discussion of the performance. As described in the
paper [27], since ORGA logic synthesis tools and place and route tools are in a
development phase [68], a Cyclone II 2C70 FPGA on a DE2-70 Board (Altera
Corp.) was used to estimate the MISC implementation. Of course, although the
Cyclone II FPGA does not support dynamic reconfiguration of its programmable
gate array, it can be considered that the experimental result is obtained using a future

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 619

Table 2 FPGA implementation results of 11 kinds of Mono-Instruction Set Computers
(MISCs) [27]

Processor type (MISC/RISC)
Logic
elements

Clock frequency
[MHz]

Total performance
ratio (MISC/RISC)

32-bit Adder MISC 99 64.65 203.2
32-bit Subtractor MISC 99 66.05 207.6
32-bit Multiplier MISC 527 46.93 27.7
32-bit Divider MISC 1,145 8.19 2.2
32-bit AND MISC 64 420.17 2,042.4
32-bit OR MISC 64 420.17 2,042.4
32-bit EXOR MISC 64 420.17 2,042.4
32-bit Inverter MISC 64 420.17 2,042.4
Barrel shifter MISC (left, zero) 248 200.52 251.5
Barrel shifter MISC (right, sign) 245 216.08 274.3
Barrel shifter MISC (right, zero) 246 181.69 229.8
32-bit Conventional RISC

soft-core processor
2,523 8.11 1

The last line shows a conventional RISC soft-core processor including all instructions of the above
11 kinds of MISC processors, which is a comparison target under the same condition. Both the
MISC and RISC processors were implemented onto the same Cyclone II 2C70 FPGA

fine-grained MCFPGA or an ORGA that can support dynamic reconfiguration. The
Cyclone II 2C70 FPGA includes 68,416 logic elements, 250 M4K Block RAMs
(BRAMs), 150 embedded multipliers, 4 PLLs, and 622 user I/O pins. In this
experiment, embedded multipliers and BRAMs were not used. Only logic elements
were used for implementing MISC processors. Each logic element consists of a 4-
input LUT and a delay type flip-flop. The implemented results of 11 kinds of MISC
processors are presented in Table 2. The MISC processors were designed using a
logic synthesis and place and route tool (Quartus II Web Edition, ver. 9.0). The
maximum clock frequency and the resource usage of each MISC processor shown
in Table 2 were reported by the Quartus II Web Edition software.

The first line in Table 2 shows a 32-bit adder MISC processor with a single 32-bit
adder function. The 32-bit adder MISC was implemented on 99 logic elements. At
that time, the maximum clock frequency was 64.65 MHz. The second line shows a
32-bit subtractor MISC processor with a single 32-bit subtractor function. The 32-bit
subtractor MISC has consumed 99 logic elements. The maximum clock frequency
was reported as 66.05 MHz. The third and fourth lines in Table 2, respectively,
show a 32-bit multiplier MISC and a 32-bit divider MISC. The 32-bit multiplier
MISC consumed 527 logic elements while the 32-bit divider MISC used 1,145 logic
elements. At that time, the timing report of the Quartus II tool presented that the
maximum clock frequencies of the 32-bit multiplier MISC and the 32-bit divider
MISC are, respectively, 46.93 and 8.19 MHz. The fifth to eighth lines show 32-
bit logical function MISC processors with an AND operation, an OR operation,
an EXOR operation, and an inverter operation, respectively. All the 32-bit logical
function MISC processors consume 64 logic elements. In addition, the maximum

620 M. Watanabe

clock frequencies of the 32-bit logical function MISC processors are the same
420.17 MHz. In addition, three 32-bit barrel shifter MISC processors were estimated
as shown in the ninth to the eleventh lines of Table 2. The 32-bit barrel shifter
MISC processors used 245–248 logic elements. The maximum clock frequencies
were 181.69–216.08MHz. These are sample designs of MISC implementation.

Here, to compare the performance of the MISCs with that of conventional
RISC processors, a 32-bit original soft-core RISC processor including all the 11
instructions of the above 11 kinds of MISC processors were designed. The 32-bit
soft-core RISC processor has a single ALU that includes all MISC functions: a
32-bit adder function, a 32-bit multiplier, a 32-bit subtractor, a 32-bit divider, four
kinds of 32-bit logical functions, and three kinds of 32-bit barrel shifters. The 32-bit
soft-core RISC processor was implemented on the same Cyclone II 2C70 FPGA, as
shown in the last line of Table 2, as well as MISC processors. The logic synthesis,
place, and route were also executed using the same Quartus II Web Edition Software
described above. In this case, the maximum clock frequency of the 32-bit soft-core
RISC processor was reported as 8.11 MHz. In addition, the resource usage was
2,523 logic elements.

Comparing the a 32-bit adder MISC processor with the 32-bit original soft-
core RISC processor, the clock frequency of the 32-bit adder MISC processor is
7.97 times faster than that of the soft-core RISC processor. Moreover, since the
implementation area of the 32-bit adder MISC processor is 99 logic elements,
if the same number of logic elements as 2,523 logic elements of the soft-core
RISC processor are used, then 25.5 MISC processors can be implemented onto
the area and can be executed in parallel so that 25.5 times better performance can
be achieved. Consequently, since the performance of the MISC processor can be
estimated as the product of the clock frequency ratio of the MISC processor to
the soft-core RISC processor and the number of implementable modules, the total
performance can be estimated as 203.2 times better than that of the conventional
RISC architecture of the soft-core RISC processor. In the case of a 32-bit subtractor
MISC processor, the clock frequency is 8.14 times higher than that of the soft-
core RISC processor. Moreover, given the same number of logic elements as
the soft-core RISC processor, 25.5 32-bit subtractor MISC processors can be
implemented onto the area and can be executed in parallel so that 25.5 times better
performance can be achieved. Finally, the total performance can be estimated as
207.6 times better than that of the soft-core RISC processor with a conventional
RISC architecture. For a 32-bit multiplier MISC processor, the clock frequency is
5.79 times higher than that of the soft-core RISC processor; 4.8 multiplier MISC
processors can be implemented in the same area as that of the soft-core RISC
processor. Finally, the total performance can be estimated as 27.7 times better than
that of a conventional soft-core RISC processor. Also, for the 32-bit divider MISC
processor, although the clock frequency is similar to that of the RISC processor,
2.2 divider MISC processors can be implemented onto the same area as the soft-
core RISC processor. Thereby, 2.2 times higher performance can be achieved. For
logical-function MISC processors of an AND operation, an OR operation, an EXOR
operation, and an inverter operation, the MISC performance increases are extremely

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 621

high. The clock frequency is about 51.8 times higher than that of the soft-core RISC
processor. Moreover, under the same conditions as those for the soft-core RISC
processor, 39.4 logical-function MISC processors can be implemented and can be
executed in parallel, thereby achieving 39.4 times higher performance. Finally, total
performance can be 2,042.4 times better than that of the conventional soft-core
RISC processor. In addition, the 32-bit barrel shifter MISC processors used 245248
logic elements. The maximum clock frequencies were 181.69–216.08MHz, which
is about 22.4–26.6 times faster than that of the soft-core RISC processor. Under the
same conditions as those of the soft-core RISC processor, 10.2–10.3 barrel shifter
MISC processors can be implemented onto the same area and can be executed
in parallel so that 10.2–10.3 times higher performance can be achieved. Finally,
its total performance can be estimated as 229.8–274.3 times better than that of a
conventional soft-core RISC processor.

As described above, the MISC performance is 2–2,000 times better than that
of a conventional soft-core RISC processor which takes static implementation.
Of course, since the Cyclone II 2C70 FPGA used in the experiment cannot be
reconfigured dynamically, long idle times occur between MISC executions. For that
reason, the MISC implementation has been heretofore regarded as an impractical
idea. However, high-speed dynamically reconfigurable devices are available now.
The high-speed dynamically reconfigurable devices resolve the long idle time. An
ORGA is a major candidate device. ORGAs have been developed to support a non-
overhead clock-by-clock nanosecond-order reconfiguration. The infrastructure for
MISC implementation is being put into place.

4.3 More Practical Implementation of MISC Processors

This section presents a discussion of a more practical implementation of MISC
processors. The same FPGA implementation examples of 11 kinds of MISCs as
those presented in Table 2 are shown in Table 3. All the conditions are identical
to those for Table 2. However, each MISC implementation area is uniformly
partitioned to a tile of 66 logic elements, as shown in Fig. 13a. For example, a 32-
bit adder MISC can be implemented onto two tiles of 132 logic elements, a 32-bit
AND MISC can be implemented onto a single tile of 66 logic elements, and a 32-bit
Multiplier MISC consumes eight tiles of 528 logic elements. Each partition has a
set of registers in addition to the 66 logic elements to store calculation results. In the
case of Fig. 13a, 10 logical function MISC processors with a 32-bit AND operation,
a 32-bit OR operation, a 32-bit EXOR operation, or a 32-bit inverter operation are
implemented so that a parallel computation can be executed based on the 10 logical
function MISC processors. When 32-bit Adder MISC processors are necessary, two
tiles are used for implementing each 32-bit Adder MISC processor. An example
is shown in Fig. 13b. In this case, four adder MISC processors, an AND MISC

622 M. Watanabe

Table 3 The same FPGA implementation examples of 11 kinds of MISCs as those presented in
Table 2

Processor type (MISC/RISC)
Logic
elements

Clock frequency
[MHz]

Total performance
ratio (MISC/RISC)

32-bit Adder MISC 132(99) 57.1(1/7) 134.6
32-bit Subtracter MISC 132(99) 57.1(1/7) 134.6
32-bit Multiplier MISC 528(527) 44.4(1/9) 26.2
32-bit Divider MISC 1,188(1,145) 8(1/50) 2.1
32-bit AND MISC 66(64) 400(1) 1,885.4
32-bit OR MISC 66(64) 400(1) 1,885.4
32-bit EXOR MISC 66(64) 400(1) 1,885.4
32-bit Inverter MISC 66(64) 400(1) 1,885.4
Barrel shifter MISC (left, zero) 264(248) 200(1/2) 235.7
Barrel shifter MISC (right, sign) 264(245) 200(1/2) 235.7
Barrel shifter MISC (right, zero) 264(246) 133.3(1/3) 235.7
32-bit Conventional RISC

soft-core processor
2,523 8.11 1

All conditions are the same as those in Table 2. However, each MISC implementation area is
partitioned into 66 logic elements. Each partition has a set of registers in addition to the 66 logic
elements. A base clock, defined as 400 MHz, is divided into various suitable clock frequencies
which are distributed for MISC processors. This is a more practical implementation example

processor, and an OR MISC processor are implemented. Moreover, when a 32-bit
multiplier MISC processor must be implemented, the multiplier MISC processor is
implemented onto 8 tiles of 528 logic elements, as shown in Fig. 13c. The remaining
two tiles, for example, can include an EXOR MISC processor and an OR MISC
processor.

Since the operation clock frequencies of the respective MISC processors mu-
tually differ, as shown in Table 2, the treatment of the different clock distribution
must be discussed. Here, it is assumed that the base clock frequency is defined as
400 MHz. Perhaps the base clock is distributed to all registers and/or flip-flops and
the latching timing of the registers and flip-flops is controlled as the multiple-clock-
period. For example, the latching timing of the 32-bit adder MISC arrives after 7
clocks under the 400-MHz base clock, whereas the latching timing of the 32-bit
multiplier MISC arrives after 9 clocks. Under the practical implementation, because
multiple clock period must be used, the net performance of MISC implementation
is decreased slightly, as shown in Table 3. However, even under a practical situation,
the MISC implementation performance is sufficiently higher than that of the
conventional RISC processor. The average performance of the above practical MISC
implementation can be estimated as 800 times faster than that of the 32-bit soft-
core conventional RISC processor if all the MISC processors described above are
used uniformly. Consequently, high-speed dynamic reconfiguration can open a new
computation paradigm.

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 623

Fig. 13 Three examples of MISC implementation

624 M. Watanabe

4.4 What is the Best-Performing Processor?

Here, we are assuming a situation in which our team has many inexperienced
programmers with low-level skills. We also assume that the team must design high-
performance software. In such a case, what type of processor do you recommend
for the team? One might recommend a processor with the highest clock frequency
for the team. Software always has numerous branch conditions. Software operation
frequently presents a situation in which a successive operation must wait for a
result of a prior operation to judge whether a branch condition is satisfied or not.
Therefore, if programmers can design software as a single sequential operation on
a single-core processor, then even an inexperienced programmer would be able
to design high-performance software. Invariably, it is difficult for inexperienced
programmers to produce good software on a multi-core processor as a parallel
operation. Therefore, until Intel canceled 4-GHz Pentium 4, almost all processor
vendors had sought to increase the clock frequency of processors. The most well-
known one among them was the Alpha processor [69, 70]. Now, all vendors have
given up increasing the processor’s clock frequency. However, there is no doubt that
a processor with a higher clock frequency is the best choice to increase software
performance if a choice is allowed.

Compared with custom processors on an ASIC, the greatest shortcoming of
FPGAs is that the operation clock frequency is extremely low. To overcome the
operation speed of a custom processor, although a large parallel computation is
always required, in this case, a transcendent technique is always needed. However,
if a gate array can be reconfigured dynamically and if the MISC implementation can
be used, then the clock frequency can be increased so that even complicated software
using many branch operations can be accelerated easily. Dynamic reconfiguration
can reduce the difficulty of parallel programming on an FPGA.

5 Conclusion

Currently, demand is increasing for implementation of all systems including a
processor, a peripheral circuit, and a dedicated circuit onto an FPGA. However,
since soft-core processors on an FPGA have lower performance than custom
processors, it is difficult to realize a high-performance system on an FPGA using
a soft-core processor. Therefore, this chapter has introduced high-performance
computing based on high-speed dynamic reconfiguration. The newly presented
architecture is called a MISC processor. The soft-core processor performance can be
improved dramatically if a high-speed dynamic reconfiguration is exploited fully on
a fine-grained programmable gate array just like that of FPGAs. Currently, various
high-speed dynamically reconfigurable devices including ORGAs are mature. The
author expects that the MISC implementation will be useful for various applications
in the future.

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 625

References

1. Altera Corporation, Altera Devices, http://www.altera.com
2. Xilinx Inc., Xilinx Product Data Sheets, http://www.xilinx.com
3. J. Perez Acle, M.S. Reorda, M. Violante, Implementing a safe embedded computing system in

SRAM-based FPGAs using IP cores: a case study based on the Altera NIOS-II soft processor,
in IEEE Second Latin American Symposium on Circuits and Systems, 2011, pp. 1–5

4. O.A. Al Rayahi, M.A.S. Khalid, UWindsor Nios II: a soft-core processor for design space
exploration, in IEEE International Conference on Electro/Information Technology, 2009,
pp. 451–457

5. R.H. Klenke, Experiences Using the Xilinx Microblaze softcore processor and uCLinux in
computer engineering capstone senior design projects, in IEEE International Conference on
Microelectronic Systems Education, 2007, pp. 123–124

6. A. Klimm, O. Sander, J. Becker, A MicroBlaze specific co-processor for real-time hyperelliptic
curve cryptography on Xilinx FPGAs, in IEEE International Symposium on Parallel &
Distributed Processing, 2009, pp. 1–8

7. D. Deleganes, J. Douglas, B. Kommandur, M. Patyra, Designing a 3 GHz, 130 nm, IntelR
PentiumR 4 processor, in Symposium on VLSI Circuits Digest of Technical Papers, 2002,
pp. 130–133

8. R. Ali, R. Radhakrishnan, G. Kochhar, J. Hsieh, O. Celebioglu, K. Chadalavada, R. Ra-
jagopalan, Evaluating performance of BLAST on Intel Xeon and Itanium2 processors, in IEEE
International Workshop on Workload Characterization, 2004, pp. 81–88

9. T.G. Mattson, R. Van der Wijngaart, M. Frumkin, Programming the Intel 80-core network-
on-a-chip Terascale processor, in International Conference for High Performance Computing,
Networking, Storage and Analysis, 2008, pp. 1–11

10. G. Yeung, P. Hoxey, P. Prabhat, Y.K. Chong, D. O’Driscoll, C. Hawkins, Low power memory
implementation for a GHz+ Dual Core ARM Cortex A9 processor on a high-K metal gate
32nm low power process, in International Symposium on VLSI Design, Automation and Test,
2011, pp. 1–4

11. T. Neagoe, E. Karjala, L. Banica, Why ARM processors are the best choice for embedded
low-power applications? in IEEE 16th International Symposium for Design and Technology in
Electronic Packaging (SIITME), 2010, pp. 253–258

12. D. Zhou, F.P. Preparata, S.M. Kang, Interconnection delay in very high-speed VLSI. IEEE
Trans. Circ. Syst. 38(7), 779–790 (1991)

13. Y. Wang, L. Wang, H. Ruonan, T. Jiarong, A delay model for SRAM-Based FPGA intercon-
nections, in IEEE International Midwest Symposium on Circuits and Systems, vol. 2, 2006,
pp. 79–83

14. G.R. Allen, G.M. Swift, G. Miller, Upset characterization and test methodology of the
PowerPC405 hard-core processor embedded in Xilinx field programmable gate arrays, in IEEE
Radiation Effects Data Workshop, vol. 0, 2007, pp. 167–171

15. Altera Corporation, Cyclone V FPGAs, http://www.altera.com/devices/fpga/cyclone-v-fpgas/
cyv-index.jsp

16. Y. Pizhou, L. Chaodong, A RISC CPU IP core, in International Conference on Anti-
counterfeiting, Security and Identification, 2008, pp. 356–359

17. J. Goodacre, A.N. Sloss, Parallelism and the ARM instruction set architecture. Computer 38(7)
42–50 (2005)

18. T. Jamil, RISC versus CISC. IEEE Potentials 14(3), 13–16 (1995)
19. D.B. Tolley, Analysis of CISC versus RISC microprocessors for FDDI network interfaces, in

Conference on Local Computer Networks, 1991, pp. 485–493
20. M.F. Smith, B.E. Luff, Automatic assembler source translation from the Z80 to the MC6809.

IEEE Micro 4(2), 3–9 (1984)
21. M. Breternitz, J.P. Shen, Architecture synthesis of high-performance application-specific

processors, in ACM/IEEE Design Automation Conference, 1990, pp. 542–548

http://www. altera.com
http://www. xilinx.com
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp
http://www.altera.com/devices/fpga/cyclone-v-fpgas/cyv-index.jsp

626 M. Watanabe

22. A. Sengupta, R. Sedaghat, Z. Zhipeng, Hardware efficient design of speed optimized power
stringent application specific processor, in International Conference on Microelectronics
(ICM), 2009, pp. 173–176

23. D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, D. Tullsen, Application-specific customization
of parameterized fpga soft-core processors, in IEEE/ACM International Conference on
Computer-Aided Design, 2006, pp. 261–268

24. T. Good, M. Benaissa, Very small FPGA application-specific instruction processor for AES.
IEEE Trans. Circ. Syst. I 53(7), 1477–1486 (2006)

25. M. Watanabe, F. Kobayashi, Optically reconfigurable gate arrays vs. ASICs, in IEEE Asia
Pacific Conference on Circuits and Systems, 2006, pp. 1166–1169

26. F. Kobayashi, Y. Morikawa, M. Watanabe, MISC: mono instruction-set computer based on
dynamic reconfiguration – A 6502 Perspective, in International Conference on Engineering of
Reconfigurable Systems and Algorithms, 2008, pp. 222–228

27. Y. Nihira, M, Watanabe, Mono-instruction computer on a dynamically reconfigurable gate
array, in Workshop on Synthesis and System Integration of Mixed Information Technologies,
2012, pp. 66–70

28. T.P. Chueng, Z.M. Yusoff, A.Z. Sha’ameri, Implementation of pipelined data encryption
standard (DES) using Altera CPLD, in TENCON, vol. 3, 2000, pp. 17–21

29. P. Sniatala, J. Pierzchlewski, A. Handkiewicz, B. Nowakowski, CPLD based development
board for mixed signal chip testing, in International Conference on Mixed Design of Integrated
Circuits and Systems, 2007, pp. 492–495

30. Lattice Semiconductor Corporation, CPLD Devices, http://www.latticesemi.com/
31. Actel Corp., RTAS FPGA, http://www.actel.com/
32. Actel Corp., Aerospace and RadTolerant FPGAs, http://www.actel.com/techdocs/ds/milaero.

aspx
33. R.J. Nejad, P.A. Rickey, K. Konadu, W.J. Stapor, P.T. McDonald, W. Heidergott, Radiation

Characterization of a Hardened 0.22 μm anti-fuse field programmable gate array. IEEE Trans.
Nucl. Sci. Part 1 53(6), 3525–3531 (2006)

34. J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, J. Luka, Dynamic and partial
FPGA exploitation. Proc. IEEE 95(2), 438–452 (2007)

35. E.J. Mcdonald, Runtime FPGA partial reconfiguration. IEEE Aero. Electron. Syst. Mag. 23(7),
10–15 (2008)

36. H. Nakano, T. Shindo, T. Kazami, M. Motomura, Development of dynamically reconfigurable
processor LSI. NEC Tech. J. (Jpn.) 56(4), 99–102 (2003)

37. H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nishimura, V. Tanbunheng,
A. Parimala, T. Sano, M. Kato, in IEEE Asian Solid-State Circuits Conference, 2007,
pp. 384–387

38. N. Miyamoto, T. Ohmi, A 1.6mm2 4,096 logic elements multi-context FPGA core in 90nm
CMOS, in IEEE Asian Solid-State Circuits Conference, 2008, pp. 89–92

39. M. Hariyama, S. Ogata, M. Kameyama, Y. Morita, Design of a multi-context FPGA using a
floating-gate-MOS functional pass-gate, in Asian Solid-State Circuits Conference, 2005, pp.
421–424

40. A. Dehon, Dynamically programmable gate arrays: a step toward increased computational
density, in Fourth Canadian Workshop on Field Programmable Devices, 1996, pp. 47–54

41. S.M. Scalera, J.R.Vazquez, The design and implementation of a context switching FPGA, in
IEEE Symposium on FPGAs for Custom Computing Machines, 1998, pp. 78–85

42. S. Trimberger et al., A time–multiplexed FPGA, in FCCM, 1997, pp. 22–28
43. D. Jones, D.M. Lewis, A time–multiplexed FPGA architecture for logic emulation, in Custom

Integrated Circuits Conference, 1995, pp. 495–498
44. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, E. Fossum, Optically

programmable gate array, in SPIE of Optics in Computing 2000, vol. 4089, 2000, pp. 763–771
45. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, D. Psaltis, Optical memory

for computing and information processing, in SPIE on Algorithms, Devices, and Systems for
Optical Information Processing III, vol. 3804, 1999, pp. 14–24

http://www.latticesemi.com/
http://www.actel.com/
http://www.actel. com/techdocs/ds/milaero.aspx
http://www.actel. com/techdocs/ds/milaero.aspx

High-Performance Computing Based on High-Speed Dynamic Reconfiguration 627

46. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, D. Psaltis, Optically
reconfigurable processors, in SPIE Critical Review 1999 Euro-American Workshop on Op-
toelectronic Information Processing, vol. 74, 1999, pp. 265–288

47. M. Nakajima, M. Watanabe, A four-context optically differential reconfigurable gate array.
J. Lightwave Tech. 27(20), 4460–4470 (2009)

48. M. Miyano, M. Watanabe, F. Kobayashi, Optically differential reconfigurable gate array.
Electron. Comput. Jpn. Part II, 90(11), 132–139 (2007)

49. M. Watanabe, T. Shiki, F. Kobayashi, Scaling prospect of optically differential reconfigurable
gate array VLSIs. Analog Integr. Circ. Signal Process. 60(1–2), 137–143 (2009)

50. M. Nakajima, M. Watanabe, A 13.75 ns holographic reconfiguration of an optically differential
reconfigurable gate array, in International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 2009, pp. 852–855

51. Y. Yamaji, M. Watanabe, A 144-configuration context MEMS optically reconfigurable gate
array, in IEEE International SOC Conference, CD-ROM, 2011

52. H. Morita, M. Watanabe, Microelectromechanical configuration of an optically reconfigurable
gate array. IEEE J. Quant. Electron. 46(9), 1288–1294 (2010)

53. M. Watanabe, F. Kobayashi, Dynamic optically reconfigurable gate array. Jpn. J. Appl. Phys.
45(4B), 3510–3515 (2006)

54. M. Watanabe, F. Kobayashi, A 51,272-gate-count dynamic optically reconfigurable gate array
in a standard 0.35um CMOS technology, in International Conference on Solid State Devices
and Materials, 2005, pp. 336–337

55. M. Watanabe, A dynamically reconfigurable device, in Advances in Solid State Circuit
Technologies, Chap. 3, ed. by P.K Chu (INTECH, Rijeka, 2010) [ISBN:978-953-307-086-5]

56. M. Nakajima, M. Watanabe, Fast optical reconfiguration of a nine-context DORGA using a
speed adjustment control. ACM Trans. Reconfigurable Technol. Syst. 4(2) (2011)

57. D. Seto, M. Watanabe, A dynamic optically reconfigurable gate array – Perfect emulation.
IEEE J. Quant. Electron. 44(5), 493–500 (2008)

58. D. Seto, M. Nakajima, M. Watanabe, Dynamic optically reconfigurable gate array very large-
scale integration with partial reconfiguration capability. Appl. Optic. 49(36), 6986–6994 (2010)

59. M. Toishi, T. Tanaka, K. Watanabe, K. Betsuyaku, Analysis of photopolymer media of
holographic data storage using non-local polymerization driven diffusion model. Jpn. J. Appl.
Phys. 46(6A), 3438–3447 (2007)

60. A. Pu, D. Psaltis, Holographic data storage with 100 bits/μm2 density, in Optical Data Storage
Topical Meeting Conference Digest, 1997, pp. 48–49

61. G.W. Burr et al., Volume holographic data storage at an areal density of 100 Gbit/in2, in
Conference on Lasers and Electro-Optics, 2000, pp. 188–189

62. N. Yamaguchi, M. Watanabe, Liquid crystal holographic configurations for ORGAs. Appl.
Optic. 47(28), 4692–4700 (2008)

63. Texas Instruments, DLP, http://www.ti.com/
64. Texas Instruments, Discovery 4000, http://www.ti.com/
65. P.J. van Heerden, Theory of optical information storage in solids. Appl. Optic. 2(4), 393–400

(1963)
66. N. Butt et al., A 0.039 μm2 high performance eDRAM cell based on 32nm high-K/Metal SOI

technology, in IEEE International Electron Devices Meeting, 2010, pp. 27.5.1–27.5.4
67. T. Watanabe, M. Watanabe, A 16-laser array for an optically reconfigurable gate array, in IEEE

International Conference on Space Optical Systems and Applications, 2011, pp. 255–260
68. M. Watanabe, F. Kobayashi, A logic synthesis and place and route environment for ORGAs,

in International Conference on Engineering of Reconfigurable Systems and Algorithms, 2006,
pp. 237–238

69. D.K. Bhavsar, R.A. Davies, Scan Islands – A scan partitioning architecture and its implemen-
tation on the Alpha 21364 processor, in IEEE VLSI Test Symposium, 2002, pp. 16–21

70. E. McLellan, The Alpha AXP architecture and 21064 processor. IEEE Micro 13(3), 36–47
(1993)

http://www.ti.com/
http://www.ti.com/

Part III
Tools and Methodologies

The third and final part of the book presents tools and methodologies in High-
Performance Reconfigurable Computing, a crucial part of making FPGAs an
efficient economic solution for HPC applications. The first chapter is a contribution
on precision and arithmetic concerns in HPRC from de Dinechin and Pasca of Ecole
Normale Superieure de Lyon, France, and Altera European Technology Center, UK,
respectively. The following three contributions are on design tools, starting with
a contribution from Schafer and Wakabayashi of NEC Corporation, Japan, which
presents a comparison between a C-based high level synthesis (HLS) approach and
an RTL-based approach to the discrete element method (DEM). Following this,
Perry et al. from Edinburgh Parallel Computing Centre (EPCC), UK, present a
benchmarking exercise of Euroben kernels on the Maxwell FPGA supercomputer
using a hand-coded VHDL-based approach and a C-based HLS approach. After
that, a contribution from El Araby et al. from the Catholic University of America,
USA, IBM Corporation, India, and the George Washington University, USA,
presents a review and taxonomy of high-level languages (HLLs) for HPRC and
a framework for their analysis, with programmer productivity taking centre stage.
Indeed, programmer productivity in HPRC has been identified by the community as
a major problem which needs to be addressed. This part ends with a contribution
from Pell et al. from Maxeler Technologies, UK, and Imperial College London,
UK, which presents an integrated approach to HPRC based on a dataflow software
framework, and hardware that is optimised to the application in hand.

Reconfigurable Arithmetic
for High-Performance Computing

Florent de Dinechin and Bogdan Pasca

Abstract An often overlooked way to increase the efficiency of HPC on FPGA
is to exploit the bit-level flexibility of the target to match the arithmetic to the
application. The ideal operator, for each elementary computation, should toggle
and transmit just the number of bits required by the application at this point.
FPGAs have the potential to get much closer to this ideal than microprocessors.
Therefore, reconfigurable computing should systematically investigate non-standard
precisions, but also non-standard number systems and non-standard operations
which can be implemented efficiently on reconfigurable hardware. This chapter
attempts to review these opportunities systematically.

1 Introduction

High-Performance Computing on FPGAs should tailor, as tightly as possible, the
arithmetic to the application. An ideally efficient implementation would, for each of
its operations, toggle and transmit just the number of bits required by the application
at this point. Conventional microprocessors, with their word-level granularity and
fixed memory hierarchy, keep us away from this ideal. FPGAs, with their bit-level
granularity, have the potential to get much closer.

Therefore, reconfigurable computing should systematically investigate, in an
application-specific way, non-standard precisions, but also non-standard number
systems and non-standard arithmetic operations. The purpose of this chapter is to
review these opportunities.

F. de Dinechin (�)
École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
e-mail: Florent.de.Dinechin@ens-lyon.fr

B. Pasca
Altera European Technology Center, High Wycombe, UK
e-mail: bpasca@altera.com

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 21, © Springer Science+Business Media, LLC 2013

631

mailto:Florent.de.Dinechin@ens-lyon.fr
mailto:bpasca@altera.com

632 F. de Dinechin and B. Pasca

Table 1 Table of acronyms

MSB Most significant bit
LSB Least significant bit
ulp Unit in the last place (weight of the LSB)
HLS High-level synthesis
DSP Digital signal processing
DSP blocks Embedded multiply-and-accumulate resources targeted at DSP
LUT Look-up table
HRCS High-radix carry-save

After a brief overview of computer arithmetic and the relevant features of current
FPGAs in Sect. 2, we first discuss in Sect. 3 the issues of precision analysis (what is
the precision required for each computation point?) and arithmetic efficiency (do I
need to compute this bit?) in the FPGA context. We then review several approaches
to application-specific operator design: operator specialization in Sect. 4, operator
fusion in Sect. 5, and exotic, non-standard operators in Sect. 6. Section 7 discusses
the application-specific performance tuning of all these operators. Finally, Sect. 8
concludes by listing the open issues and challenges in reconfigurable arithmetic.

The systematic study of FPGA-specific arithmetic is also the object of the
FloPoCo project (http://flopoco.gforge.inria.fr/). FloPoCo offers open-source im-
plementations of most of the FPGA-specific operators presented in this chapter, and
more. It is therefore a good way for the interested reader to explore in more depth
the opportunities of FPGA-specific arithmetic.

2 Generalities

Computer arithmetic deals with the representations of numbers in a computer, and
with the implementation of basic operations on these numbers. A good introduction
on these topics is the textbooks by Ercegovac and Lang [36] and Parhami [59].

In this chapter we will focus on the number systems prevalent in HPC: integer/-
fixed point, and floating-point. However, many other number representation systems
exist, have been studied on FPGAs, and have proven relevant in some situations.
Here are a few examples.

• For integer, redundant versions of the classical position system enable faster
addition. These will be demonstrated in the sequel.

• The residue number system (RNS) [59] represents an integer by a set of residues
modulo a set of relatively prime numbers. Both addition and multiplication can
be computed in parallel over the residues, but comparisons and division are very
expensive.

• The logarithm number system (LNS) represents a real number as the value of
its logarithm, itself represented in a fixed-point format with e integer bits and f

http://flopoco.gforge.inria.fr/

Reconfigurable Arithmetic for High-Performance Computing 633

CLB

Cout

SHIFTout Cin Cin

SHIFTin Cout

SLICEM 2

SLICEM 0

SLICEL 1

SLICEL 3

Switch
Matrix

VersaBlock

General
routing
matrix

Cin

Cout

clk

direct

0 0
1

1

0 1

1
0

LUT4

LUT4

MUXFX

REG

REG

MUXF5

Fig. 1 Schematic overview of the logic blocks in the Virtex 4. More recent devices are similar,
with up to 6 inputs to the LUTs

fractional bits. The range and precision of such a format are comparable to those
of a floating-point format with e bits of exponent and f bits of fraction. This
system offers high-speed and high-accuracy multiplication, division and square
root, but expensive addition and subtraction [6, 21].

Current FPGAs support classical binary arithmetic extremely well. Addition is
supported in the logic fabric, while the embedded DSP blocks support both addition
and multiplication.

They also support floating-point arithmetic reasonably well. Indeed, a
floating-point format is designed in such a way that the implementation of most
operators in this format reduces to the corresponding binary integer operations,
shifts, and leading zero counting.

Let us now review the features of current FPGAs that are relevant to arithmetic
design.

2.1 Logic Fabric

Figures 1 and 2 provide a schematic overview of the logic fabric of recent FPGAs
from the two main FPGA vendors. The features of interest are the following.

2.1.1 Look-Up Tables

The logic fabric is based on look-up tables with α inputs and one output, with α =
4, ...,6 for the FPGAs currently on the market, the most recent FPGAs having the

634 F. de Dinechin and B. Pasca

+

+
...

ALM

R20 column

R4 column
interconnect

interconnect

interconnect
C4 column local

interconnect
LAB

interconnect
C12 column

Cinshared arith. in syncload reg. chain in

reg. chain outCoutshared arith. out
clk

LUT3

LUT3

LUT4

LUT3

LUT3

LUT4
REG

REG

Fig. 2 Schematic overview of the logic blocks of recent Altera devices (Stratix II to IV)

largest α . These LUTs may be combined to form larger LUTs (for instance, the
MUXF5 multiplexer visible in Fig. 1 serves this purpose). Conversely, they may be
split into smaller LUTs, as is apparent in Fig. 2, where two LUT3 may be combined
into an LUT4, and two LUT4 into an LUT5.

As far as arithmetic is concerned, this LUT-based structure means that algorithms
relying on the tabulation of 2α values have very efficient implementations in FPGAs.
Examples of such algorithms include multiplication or division by a constant
(see Sect. 4.1) and function evaluation (see Sect. 6.2).

2.1.2 Fast Carry Propagation

All recent FPGA architectures provide a fast connexion between neighbouring cells
in a column, dedicated to carry propagation. This connexion is fast in comparison
with the general programmable routing which is slowed down by all the switches
enabling this programmability. Compared to classical (VLSI oriented) hardware
arithmetic, this considerably changes the rules of the game. For instance, most
of the literature regarding fast integer adders is irrelevant on FPGAs for additions
smaller than 32 bits: the simple carry-ripple addition exploiting the fast-carry lines
is faster, and consumes fewer resources, than the “fast adders” of the literature.
Even for larger additions, the optimal solutions on FPGAs are not obtained by
blindly applying the classical techniques, but by revisiting them with these new
rules [32, 58, 64].

Fast carries are available on both Altera and Xilinx devices, but the detailed
structure differs. Both device families allow one to merge an addition with some
computations performed in the LUT. Altera devices are designed in such a way to
enable the implementation of a 3-operand adder in one ALM level (see Fig. 2).

Reconfigurable Arithmetic for High-Performance Computing 635

REG REG

REG REG

REG

X

Y

Z
0

REG

18

18

wire shift by 17 bits

48

18

18

18

36

72

36

36

48

48

48

48

48

48

BCIN

C

B

A

BCOUT PCOUT

P

PCIN

CIN

SUB

Fig. 3 Simplified overview of the Xilinx DSP48

2.1.3 DSP Blocks

Embedded multipliers (18× 18-bit signed) first appeared in Xilinx VirtexII devices
in 2000 and were complemented by a DSP-oriented adder network in the Altera
Stratix in 2003.

DSP blocks not only enhance the performance of DSP applications—and, as we
will see, any application using multiplication—they also make this performance
more predictable as well.

Xilinx DSP Blocks

A simplified overview of the DSP48 block of Virtex-4 devices is depicted in Fig. 3.
It consists of one 18× 18-bit two’s complement multiplier followed by a 48-bit
sign-extended adder/subtracter or accumulator unit. The multiplier outputs two
subproducts aligned on 36-bits. A 3-input adder unit can be used to add three
external inputs, or the two sub-products and a third addend. The latter can be an
accumulator (hence the feedback path) or an external input, coming either from
global routing or from a neighboring DSP via a dedicated cascading line (PCIN).
In this case this input may be shifted by 17 bits. This enables associating DSP blocks
to compute large multiplications. In this case unsigned multiplications are needed,
so the sign bit is not used, hence the value of 17.

These DSP blocks also feature internal registers (up to four levels) which can be
used to pipeline them to high frequencies.

Virtex-5/-6/-7 feature similar DSP blocks (DSP48E), the main difference being
a larger (18× 25-bit, signed) multiplier. In addition the adder/accumulator unit can
now perform several other operations such as logic operations or pattern detection.
Virtex-6 and later add pre-multiplication adders within the DSP slice.

636 F. de Dinechin and B. Pasca

REG

R
ou

nd
/S

at
ur

at
e

44

18

18
18

18
18

18
18

18
P

ip
el

in
e

R
eg

is
te

r
B

an
k

Loopback

CHAIN IN

CHAIN OUT

In
pu

t
R

eg
is
te

r
B

an
k

O
ut

pu
t
R

eg
is
te

r
B

an
k

Fig. 4 Simplified overview of the StratixII DSP block, Stratix-III/-IV half-DSP block

3872 55
37 37

Fig. 5 Main configurations of Stratix DSP. Leftmost can be used to compute a 36×36 bit product,
rightmost to compute the product of complex numbers

Altera DSP Blocks

The Altera DSP blocks have a much larger granularity than the Xilinx ones.
On StratixII-IV devices (Fig. 4) the DSP block consists of four 18× 18 bit (signed
or unsigned) multipliers and an adder tree with several possible configurations,
represented in Fig. 5. Stratix-III/-IV calls such DSPs half-DSPs, and pack two of
them in a DSP block. In these devices, the limiting factor in terms of configurations
(preventing us, for instance, to use them as 4 fully independent multipliers) is the
number of I/Os to the DSP block. The variable precision DSP block in the StratixV
devices is radically different: it is optimized for 27×27-bit or 18×36-bit, and a 36-
bit multiplier is implemented in two adjacent blocks. Additionally, all DSPs allow
various sum-of-two/four modes for increased versatility. Here also, neighbouring
DSP blocks can be cascaded, internal registers allow high-frequency pipelining,
and a loopback path enables accumulation. These cascading chains reduce resource
consumption, but also latency: a sum-of-two 27-bit multipliers can be clocked at
nominal DSP speed in just 2 cycles.

When designing operators for these devices, it is useful to account for these
different features and try to fully exploit them. The full details can be found in
the vendor documentation.

Reconfigurable Arithmetic for High-Performance Computing 637

2.1.4 Embedded Memories

Modern FPGAs also include small and fast on-chip embedded memories. In
Xilinx Virtex4 the embedded memory size is 18 Kbits, and 36 Kbits for Virtex5/6.
The blocks support various configurations from 16 K× 1-bit to 512× 36-bit (1 K
for Virtex5/6).

Altera FPGAs offer blocks of different sizes. StratixII has three kinds of memory
blocks: M512 (512-bit), M4K (4 Kb) and M-RAM (512 Kb); StratixIII-IV have a
new family of memory blocks: MLAB (640b ROM/320b RAM), M9K (9 Kbit, up
to 256× 36-bit) and M144K (144 Kbits, up to 2 K× 72-bit); StratixV has MLAB
and M20K (20 Kbits, up to 512× 40-bit).

In both families, these memories can be dual-ported, sometimes with restrictions.

2.2 Floating-Point Formats for Reconfigurable Computing

A floating-point (FP) number x is composed of a sign bit S, an exponent field
E on wE bits, and a significand fraction F on wF bits. It is usually mandated
that the significand fraction has a 1 at its MSB: this ensures both uniqueness of
representation and maximum accuracy in the case of a rounded result. Floating-
point has been standardized in the IEEE-754 standard, updated in 2008 [40]. This
standard defines common formats, the most usual being a 32-bit (the sign bit, 8
exponent bits, 23 significand bits) and a 64-bit format (1+12+53). It precisely
specifies the basic operations, in particular the rounding behaviour. It also defines
exceptional numbers: two signed infinities, two signed zeroes, subnormal numbers
for a smooth underflow to zero, and NaN (Not a Number). These exceptional
numbers are encoded in the extremal values of the exponent.

This standard was designed for processor implementations and makes perfect
sense there. However, for FPGAs, many things can be reconsidered. Firstly, a
designer should not restrict himself to the 32-bit and 64-bit formats of IEEE-754:
he should aim at optimizing both exponent and significand size for the application
at hand. The floating-point operators should be fully parameterized to support this.

Secondly, the IEEE-754 encodings were designed to make the most out of a fixed
number of bits. In particular, exceptional cases are encoded in the two extremal
values of the exponent. However, managing these encodings has a cost in terms of
performance and resource consumption [35]. In an FPGA, this encoding/decoding
logic can be saved if the exceptional cases are encoded in two additional bits. This
is the choice made by FloPoCo and other floating-point libraries. A small additional
benefit is that this choice frees the two extremal exponent values, slightly extending
the range of the numbers.

Finally, we choose not to support subnormal numbers support, with flushing
to zero instead. This is the most controversial issue, as subnormals bring with
them important properties such as (x− y = 0) ⇐⇒ (x = y), which is not true for

638 F. de Dinechin and B. Pasca

2 1 wE wF

E Fexn S

Fig. 6 The FloPoCo
floating-point format

FP numbers close to zero if subnormals are not supported. However the cost of
supporting subnormals is quite high, as they require specific shifters and leading-
one detectors [35]. Besides, one may argue that adding one bit of exponent brings in
all the subnormal numbers, and more, at a fraction of the cost: subnormals are less
relevant if the format is fully parameterized. We believe there hasn’t been a clear
case for subnormal support in FPGA computing yet.

To sum up, Fig. 6 depicts a FloPoCo number, whose value (always normalized) is

x = (−1)S × 1.F × 2E−E0 with E0 = 2wE−1 − 1.

E0 is called the exponent bias. This representation of signed exponents (taken
from the IEEE-754 standard) is prefered over two’s complement, because it brings
a useful property: positive floating-point numbers are ordered according to the
lexicographic order of their binary representation (exponent and significand).

3 Arithmetic Efficiency and Precision Analysis

When implementing a given computation on an FPGA, the goal is usually to obtain
an efficient design, be it to maximize performance, minimize the cost of the FPGA
chip able to implement the computation, minimize the power consumption, etc.
This quest for efficiency has many aspects (parallelism, operator sharing, pipeline
balancing, input/output throughputs, FIFO sizes, etc). Here, we focus on an often
understated issue, which is fairly specific to numerical computation on FPGAs:
arithmetic efficiency. A design is arithmetic-efficient if the size of each operator
is as small as possible, considering the accuracy requirements of the application.
Ideally, no bit should be flipped, no bit should be transferred that is not relevant to
the final result.

Arithmetic efficiency is a relatively new concern, because it is less of an issue
for classical programming: microprocessors offer a limited choice of registers and
operators. The programmer must use 8-, 16-, 32- or 64-bit integer arithmetic, or 32-
or 64-bit floating-point. This is often very inefficient. For instance, both standard
floating-point formats are vastly overkill for most parts of most applications. In a
processor, as soon as you are computing accurately enough, you are very probably
computing much too accurately.

In an FPGA, there are more opportunities to compute just right, to the granularity
of the bit. Arithmetic efficiency not only saves logic resources, but it also saves
routing resources. Finally, it also conserves power, all the more as there is typically
more activity on the least significant bits.

Reconfigurable Arithmetic for High-Performance Computing 639

Arithmetic efficiency is obtained by bit-width optimization, which in turn
requires precision analysis. These issues have been the subject of much research,
see, for instance, [47, 57, 65, 66] and references therein.

Range and precision analysis can be formulated as follows: given a computation
(expressed as a piece of code or as an abstract circuit), label each of the intermediate
variables or signals with information about its range and its accuracy. The range
is typically expressed as an interval, for instance variable V lies in the interval
[−17,42]. In a fixed-point context, we may deduce from the range of a signal
the value of its most significant bit (MSB) which will prevent the occurrence of
any overflow. In a floating-point context, the range entails the maximum exponent
that the format must accommodate to avoid overflows. In both contexts, accurate
determination of the ranges enables us to set these parameters just right.

To compute the range, some information must be provided about the range of the
inputs—by default it may be defined by their fixed-point or floating-point format.
Then, there are two main methods for computing the ranges of all the signals:
dynamic analysis and static analysis.

Dynamic methods are based on simulations. They perform several runs using
different inputs, chosen in a more or less clever way. The minimum and maximum
values taken by a signal over these runs provides an attainable range. However,
there is no guarantee in general that the variable will not take a value out of this
range in a different run. These methods are in principle unsafe, although confidence
can be attained by very large numbers of runs, but then these methods become very
compute-intensive, especially if the input space is large.

Static analysis methods propagate the range information from the inputs through
the computation, using variants of interval analysis (IA) [54]. IA provides range
intervals that cover all the possible runs and therefore is safe. However, it often
overestimates these ranges, leading to bits at the MSB or exponent bits that
will never be useful to actual computations. This ill-effect is essentially due to
correlations between variables and can be avoided by algebraic rewriting [33]
(manual or automated), or higher-order variants of interval arithmetic such as affine
arithmetic [47], polynomial arithmetic [12] or Taylor models. In case of loops, these
methods must look for a fix point [66]. A general technique in this case is abstract
interpretation [18].

Bit-width minimization techniques reduce the size of the data, hence reduce the
size and power consumption of all the operators computing on these data. However,
there are also less frequent, but more radical operator optimization opportunities.
The remainder of this chapter reviews them.

4 Operator Specialization

Operator specialization consists in optimizing the structure of an operator when
the context provides some static (compile-time) property on its inputs that can be
usefully exploited. This is best explained with some examples.

640 F. de Dinechin and B. Pasca

First, an operator with a constant operand can often be optimized somehow:

• Even in software, it is well known that cubing or extracting a square root is
simpler than using the pow function xy.

• For hardware or FPGAs, multiplication by a constant has been extensively
studied (although its complexity in the general case is still an open question).
There exist several competing constant multiplication techniques, with different
relevance domains: they are reviewed in Sect. 4.1.

• One of us has worked recently on the division by a small integer constant [24].
• However, on FPGA technology, there seems to be little to win on addition with a

constant operand, except in trivial cases.

It is also possible to specialize an operator thanks to more subtle relationships
between its inputs. Here are two examples which will be expanded in Sect. 5.3:

• In terms of bit flipping, squaring is roughly twice cheaper than multiplying.
• If two numbers have the same sign, their floating-point addition is cheaper to

implement than a standard addition: the cancellation case (which costs one large
leading-zero counter and shifter) never happens [49].

Finally, many functions, even unary ones, can be optimized if their input is
statically known to lie within a certain range. Here are some examples.

• If a floating-point number is known to lie in [−π ,π], its sine is much cheaper to
evaluate than in the general case (no argument reduction) [22].

• If the range of the input to an elementary function is small enough, a low-degree
polynomial approximation may suffice.

Finally, an operator may have its accuracy degraded, as long as the demand of
the application is matched. The most spectacular example is truncated multipliers:
sacrificing the accuracy of the least significant bit saves almost half the area of
a floating-point multiplier [8, 67]. Of course, in the FPGA context, the loss of
precision can be recovered by adding one bit to the mantissa, which has a much
lower cost.

The remainder of this section focuses on specializations of the multiplication,
but designers on FPGAs should keep in mind this opportunity for many other
operations.

4.1 Multiplication and Division by a Constant

Multiplication by constants has received much attention in the literature, especially
as many digital signal processing algorithms can be expressed as products by
constant matrices [13, 52, 62, 72]. There are two main families of algorithms. Shift-
and-add algorithms start from the construction of a standard multiplier and simplify
it, while LUT-based algorithm tabulate sub-products in LUTs and are thus more
specific to FPGAs.

Reconfigurable Arithmetic for High-Performance Computing 641

4.1.1 Shift and Add Algorithms

Let C be a positive integer constant, written in binary on k bits:

C =
k

∑
i=0

ci2i with ci ∈ {0,1}.

Let X be a p-bit integer. The product is written CX = ∑k
i=0 2iciX , and by only

considering the non-zero ci, it is expressed as a sum of 2iX . For instance, 17X =
X + 24X . In the following, we will note this using the shift operator �, which has
higher priority than + and −. For instance 17X = X +X � 4.

If we allow the digits of the constant to be negative (ci ∈ {−1,0,1}) we obtain a
redundant representation, for instance 15= 01111= 10001 (16−1 written in signed
binary). Among the representations of a given constant C, we may pick up one that
minimizes the number of non-zero bits, hence of additions/subtractions. The well-
known canonical signed digits recoding (or CSD, also called Booth recoding [36])
guarantees that at most k/2 bits are non-zero, and in average k/3.

The CSD recoding of a constant may be directly translated into an architecture
with one addition per non-zero bit, for instance 221X = 1001001012X = X � 8+
(−X � 5+(−X � 2+X)). With this right-to-left parenthesing, all the additions
are actually of the same size (the size of X): in an addition X � s+P, the s lower
bits of the result are those of P and do not need to participate to the addition.

For large constants, a binary tree adder structure can be constructed out of the
CSD recoding of the constant as follows: non-zero bits are first grouped by 2, then
by 4, etc. For instance, 221X = (X � 8−X � 5)+(−X � 2+X). Shifts may also
be reparenthesized: 221X = (X � 3−X)� 5+(−X � 2+X). After doing this,
the leaves of the tree are now multiplications by small constants: 3X ,5X ,7X ,9X , . . .
Such a smaller multiple will appear many times in a larger constant, but it may be
computed only once: thus the tree is now a DAG (direct acyclic graph), and the
number of additions is reduced. A larger example is shown in Fig. 7. This new
parenthesing reduces the critical path: for k non-zero bits, it is now of �log2 k�
additions instead of k in the previous linear architecture. However, additions in this
DAG are larger and larger.

This simple DAG construction is the current choice in FloPoCo, but finding
the optimal DAG is still an open problem. There is a wide body of literature on
constant multiplication, minimizing the number of additions [9, 19, 38, 69, 72],
and, for hardware, also minimizing the total size of these adders (hence the logic
consumption in an FPGA) [1,19,37,38]. It has been shown that the number of adders
in constant multiplication problem is sub-linear in the number of non-zero bits [34].
Exhaustive exploration techniques [19, 38, 69] lead to less than 4 additions for any
constant of size smaller than 12 bits, and less than 5 additions for sizes smaller
than 19 bits. They become impractical beyond these sizes, and heuristics have to be
used. Lefèvre’s algorithm [48] looks for maximal repeating bit patterns (in direct
or complemented form) in the CSD representation of the constant, then proceeds

642 F. de Dinechin and B. Pasca

000000000+0+0+00+ + 0 0 + 0 0 0 0 0 0 0 0 0+0 + − 0 − + + 0000 + 0 + + 0 + ++0

5X5X17X5X−3X 3X9X 127X3X

39854788871587X

884279719003555X

558499X4751061X

−43X1859X 2181X 163X

1768559438007110
<<1

Fig. 7 Binary DAG architecture for a multiplication by 1768559438007110 (the 50 first bits of
the mantissa of π)

recursively on these patterns. Experimentally, the number of additions, on randomly
generated constants of k bits, grows as O(k0.85). However, this algorithm does not
currently try to minimize the total size of the adders [14], contrary to Gustafsson
et al. [38].

All the previous dealt with multiplication by an integer constant. Multiplying
by a real constant (in a fixed-point or floating-point context) raises the additional
issue of first approximating this constant by a fixed-point number. Gustafsson and
Qureshi suggested to represent a real constant on more than the required number
of bits, if it leads to a shift-and-add architecture with fewer additions [37]. This
idea was exploited analytically for rational constants, which have a periodic binary
representation [23].

4.1.2 Table-Based Techniques

On most FPGAs, the basic logic element is the look-up-table, a small memory
addressed by α bits. The KCM algorithm (which probably means “constant (K)
Coefficient Multiplier”), due to Chapman [15] and further studied by Wirthlin [76]
is an efficient way to use these LUTs to implement a multiplication by an integer
constant.

This algorithm, described in Fig. 8, consists in breaking down the binary
decomposition of an n-bit integer X into chunks of α bits. This is written as

X =
� n

α �−1

∑
i=0

Xi.2α i, where Xi ∈ {0, . . . ,2α − 1}.

The product of X by an m-bit integer constant C becomes CX = ∑
� n

α �
i=0 CXi.2−α i.

We have a sum of (shifted) products CXi, each of which is an m + α integer.
The KCM trick is to read these CXi from a table of pre-computed values Ti, indexed
by Xi, before summing them.

Reconfigurable Arithmetic for High-Performance Computing 643

+
+
+

CX =
CX 0

22a CX 2

2a CX 1

23a CX 3

T3 T2 T1 T0

+
+

+
a

a

a

m + n bits m + n bits

n = 4a bits
X0X1X3 X2X=23a X3 + 22a X2 + 2aX1 +X0

m+a

Fig. 8 The KCM LUT-based method (integer × integer)

CX0

CX1

+
+
+

CX=

2−3aCX3

2−aCX1
2−2aCX2

CX0

+

+

+

T3T2

X0 X1 X2 X3

T1

a

T0

a

n bits
X=X0+2−aX1+2−2aX2+2−3aX3

q+gq bits g bits

Fig. 9 The KCM LUT-based method (real × fixed-point)

The cost of each table is one FPGA LUT per output bit. The lowest-area way
of computing the sum is to use a rake of � n

α � in sequence, as shown in Fig. 8: here
again, each adder is of size m+α , because the lower bits of a product CXi can be
output directly. If the constant is large, an adder tree will have a shorter latency at
a slightly larger area cost. The area is always very predictible and, contrary to the
shift-and-add methods, almost independent on the value of the constant (still, some
optimizations in the tables will be found by logic optimizers).

There are many possible variations on the KCM idea.

• As all the tables contain the same data, a sequential version can be designed.
• This algorithm is easy to adapt to signed numbers in two’s complement.
• Wirthlin [76] showed that if we split the input in chunks of α − 1 bits, then one

row of LUT can integrate both the table and the corresponding adder, and still
exploit the fast-carry logic of Xilinx circuits: this reduces the overall area. Altera
FPGAs don’t need this trick thanks to their embedded full adder (see Fig. 2).

• It can be adapted to fixed-point input and, more interesting, to an arbitrary real
constant C, for instance log(2) in [31] or FFT twiddle factors in [29]. Figure 9
describes this case. Without loss of generality, we assume a fixed-point input

in [0,1): it is now written on n bits as X = ∑
� n

α �−1
i=0 Xi.2−α i where Xi ∈

{0, . . . ,2α − 1}. Each product CXi now has an infinite number of bits. Assume
we want a q-bit result with q ≥ n. We tabulate in LUTs each product 2iαCXi on

644 F. de Dinechin and B. Pasca

just the required precision, so that its LSB has value 2−gu where u is the ulp (unit
in the last place) of the result, and g is a number of guard bits. Each table may
hold the correctly rounded value of the product of Ei by the real value of C to
this precision, so entails an error of 2−g−1 ulp. In the first table, we actually store
CX0 +u/2, so that the truncation of the sum will correspond to a rounding of the
product. Finally, the value of g is chosen to ensure 1-ulp accuracy.

4.1.3 Other Variations of Single-Constant Multiplication

Most algorithms can be extended to a floating-point version. As the point of the
constant doesn’t float, the main question is whether normalization and rounding can
be simpler than in a generic multiplication [14].

For simple rational constants such as 1/3 or 7/5, the periodicity of their binary
representations leads to optimizations both in KCM and shift-and-add methods [23].
The special case corresponding to the division by a small integer constant is quite
useful: Integer division by 3 (with remainder) is used in the exponent processing
for cube root, and division by 5 is useful for binary to decimal conversion. Fixed-
point division by 3 (actually 6 or 24, but the power of two doesn’t add to the
complexity) enables efficient implementations of sine and cosine based on parallel
evaluation of their Taylor series. Floating-point division by 3 is used in the Jacobi
stencil algorithm. In addition to techniques considering division by a constant as
the multiplication by the inverse [23], a specific LUT-based method can be derived
from the division algorithm [24].

4.1.4 Multiple Constant Multiplication

Some signal-processing transforms, in particular finite impulse response (FIR)
filters, need a given signal to be multiplied by several constants. This allows further
optimizations: it is now possible to share sub-constants (such as the intermediate
nodes of Fig. 7) between several constant multipliers. Many heuristics have been
proposed for this multiple constant multiplication (MCM) problem [1,13,52,62,72].

A technique called Distributed Arithmetic, which predates FPGA [74], can be
considered a generalization of the KCM technique to the MCM problem.

4.1.5 Choosing the Best Approach in a Given Context

To sum up, there is plenty of choice in terms of constant multiplication or division
in an FPGA. Table 2 describes the techniques implemented in the FloPoCo tool at
the time of writing. This is work in progress.

As a rule of thumb, for small inputs, KCM should be preferred, and for simple
constants, shift-and-add should be preferred. In some cases the choice is obvious: for

Reconfigurable Arithmetic for High-Performance Computing 645

Table 2 Constant multiplication and division algorithms in FloPoCo 2.3.1

Integer Fixed-point
Format (keep all bits) (keep higher bits) Floating-point

Shift-and-add IntConstMult [14] FPConstMult [14]
(rational constants) FPConstMultRational [23]
LUT-based IntIntKCM [15, 76] FixRealKCM [29, 31] FPRealKCM
Division-based IntConstDiv [24] FPConstDiv [24]

instance, to evaluate a floating-point exponential, we have to multiply an exponent
(a small integer) by log(2), and we need many more bits on the result: this is a case
for KCM, as we would need to consider many bits of the constant. In most usual
cases, however, the final choice should probably be done on a trial-and-error basis.

4.2 Squaring

If one computes, using the pen-and-paper algorithm learnt at school, the square of a
large number, one will observe that each of the digit-by-digit products is computed
twice. This holds also in binary: formally, we have

X2 =

(
n−1

∑
i=0

2ixi

)2

=
n−1

∑
i=0

22ixi + ∑
0<i< j<n

2i+ j+1xix j

and we have a sum of roughly n2/2 partial products, versus n2 for a standard
n-bit multiplication. This is directly useful if the squarer is implemented as LUTs.
In addition, a similar property holds for a splitting of the input into several subwords:

(2kX1 +X0)
2 = 22kX2

1 + 2 ·2kX1X0 +X2
0 (1)

(22kX2 + 2kX1 +X0)
2 = 24kX2

2 + 22kX2
1 +X2

0
+2 ·23kX2X1

+2 ·22kX2X0

+2kX1X0

(2)

Computing each square or product of the above equation in a DSP block yields a
reduction of the DSP count from 4 to 3, or from 9 to 6. Besides, this time, it comes at
no arithmetic overhead. Some of the additions can be computed in the DSP blocks,
too. This has been studied in detail in [25].

Squaring is a specific case of powering, i.e. computing xp for a constant p.
Ad-hoc, truncated powering units have been used for function evaluation [20]. These
are based on LUTs and should be reevaluated in the context of DSP blocks.

646 F. de Dinechin and B. Pasca

5 Operator Fusion

Operator fusion consists in building an atomic operator for a non-trivial
mathematical expression, or a set of such expressions. The recipe is here to consider
the mathematical expression as a whole and to optimize each operator in the context
of the whole expression. The opportunities for operator fusion are unlimited, and
the purpose of this section is simply to provide a few examples which are useful
enough to be provided in an operator generator such as FloPoCo.

5.1 Floating-Point Sum-and-Difference

In many situations, the most pervasive of which is probably the Fast Fourier
transform (FFT), one needs to compute the sum and the difference of the same
two values. In floating-point, addition or subtraction consists in the following
steps [56]:

• Alignment of the significands using a shifter, the shift distance being the
exponent difference;

• Effective sum or difference (in fixed-point);
• In case of effective subtraction leading to a cancellation, leading zero count

(LZC) and normalization shift, using a second shifter;
• Final normalization and rounding.

We may observe that several redundancies exist if we compute in parallel the
sum and the difference of the same values:

• The exponent difference and alignment logic is shared by the two operations.
• The cancellation case will appear at most once, since only one of the operations

will be an effective subtraction, so only one LZC and one normalization shifter
is needed.

Therefore the additional cost of the second operation, with respect to a classical
floating-point adder, is only its effective addition/subtraction, and its final normal-
ization and rounding logic. Numerically, a combined sum-and-difference operator
needs about one third more logic than a standard adder and has the same latency.

5.2 Block Floating-Point

Looking back at the FFT, it is essentially based on multiplication by constants, and
the previous sum-and-difference operations. In a floating-point FFT, operator fusion
can be pushed a bit further, using a technique called block floating-point [41], first
used in the 1950s, when floating point arithmetic was implemented in software,

Reconfigurable Arithmetic for High-Performance Computing 647

and more recently applied to FPGAs [3, 5]. It consists in an initial alignment of
all the input significands to the largest one, which brings them all to the same
exponent (hence the phrase “block floating point”). After this alignment, all the
computations (multiplications by constants and accumulation) can be performed
in fixed point, with a single normalization at the end. Another option, if the
architecture implements only one FFT stage and the FFT loops on it, is to perform
the normalization of all the values to the largest (in magnitude) of the stage.

Compared with the same computation using standard floating-point operators,
this approach saves all the shifts and most of the normalization logic in the
intermediate results. The argument is that the information lost in the initial shifts
would have been lost in later shifts anyway. However, a typical block floating-point
implementation will accumulate the dot product in a fixed-point format slightly
larger than the input significands, thus ensuring a better accuracy than that achieved
using standard operators.

Block floating-point techniques can be applied to many signal processing
transforms involving the product of a signal vector by a constant vector. As it
eventually converts the problem to a fixed-point one, the techniques for MCM listed
in Sect. 4.1.4 can be used.

5.3 Floating-Point Sum of Squares

We conclude this section with the example of a large fused operator that combines
several of the FPGA-specific optimizations discussed so far. The datapath described
in Fig. 10 inputs three floating-point numbers X , Y and Z, and outputs a floating-
point value for X2 +Y 2 + Z2. Compared to a more naive datapath built out of
standard adders and multiplier, it implements several optimizations:

• It uses squarers instead of multipliers, as suggested in Sect. 4.2. These can even
be truncated squarers.

• As squares are positive, it can dispose of the leading-zero counters and shifters
that, in standard floating-point additions, manage the possible cancellation in
case of subtraction [49].

• It saves all the intermediate normalizations and rounding.
• It computes the three squares in parallel and feeds them to a three-operand adder

(which is no more expensive than a two-operand adder in Altera devices) instead
of computing the two additions in sequence.

• It extends the fixed-point datapath width by g = 3 guard bits that ensure that
the result is always last-bit accurate, where a combination of standard operators
would lead to up to 2.5 ulps of error. This is the value of g for a sum of three
squares, but it can be matched to any number of squares to add, as long as this
number is known statically.

648 F. de Dinechin and B. Pasca

1+wF 1+wF 1+wF

2+wF +g2+wF +g

2+wF +g2+wF +g

2+wF +g

2+wF +g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

R

4+wF +g

MA2

wE wE wE

wE +wF

shifter

sort

sort
squarer squarer

shifter

squarer

exception
unit

add

normalize/pack

unpack

Fig. 10 A floating-point sum-of-squares (for wE bits of exponent and wF bits of significand)

• It reflects the symmetry of the mathematical expression X2 +Y 2 +Z2, contrary
to a composition of floating-point operators which computes (X2 +Y 2) + Z2,
leading to slightly different results if X and Z are permuted.

Compared to a naive assembly of three floating-point multipliers and two
floating-point adders, the specific architecture of Fig. 10 thus significantly reduces
logic count, DSP block count and latency, while being more accurate than the naive
datapath. For instance, for double-precision inputs and outputs on Virtex-4, slice
count is reduced from 4,480 to 1,845, DSP count is reduced from 27 to 18, and
latency is reduced from 46 to 16 cycles, for a frequency of 362 MHz (post-synthesis)
which is nominal on this FPGA.

5.4 Towards Compiler-Level Operator Fusion

Langhammer proposed an optimizing floating-point datapath compiler [46] that:

• Detects clusters of similar operations and uses a fused operator for the entire
cluster;

• Detects dependent operations and fuses the operators by removing or simplifying
the normalization, rounding steps and alignment steps of the next operation.

Reconfigurable Arithmetic for High-Performance Computing 649

To ensure high accuracy in spite of these simplifications, the compiler relies on
additional accuracy provided for free by the DSP blocks. The special floating-point
formats used target accuracy “soft spots” for recent Altera DSP blocks (StratixII-
IV) which is 36 bits. For instance, in single-precision (24 mantissa bits) the adders
use an extended, non-normalized mantissa of up to 31 bits which, when followed by
a multiplier stage uses the 36-bit multiplier mode on the 31-bit operands. For this
stage as well, an extended mantissa allows for late normalizations while preserving
accuracy. The optimizations proposed by Langhammer are available in Altera’s DSP
Builder Advanced tool [60].

6 Exotic Operators

This section presents in detail three examples of operators that are not present in
processors, which gives a performance advantage to FPGAs. There are many more
examples, from elementary functions to operators for cryptography.

6.1 Accumulation

Summing many independent terms is a very common operation: scalar products,
matrix–vector and matrix–matrix products are defined as sums of products, as
are most digital filters. Numerical integration usually consists in adding many
elementary contributions. Monte-Carlo simulations also involve sums of many
independent terms.

Depending on the fixed/floating-point arithmetic used and the operand count
there are several optimization opportunities.

When having to sum a fixed, relatively small number of terms arriving in parallel,
one may use adder trees. Fixed-point adder trees benefit from adder support in the
FPGA fabric (ternary adder trees can be built on Altera FPGAs). If the precision
is large, adders can be pipelined [32] and tessellated [60] for reducing latency and
resources (Fig. 11). Floating-point adder trees for positive data may use a dedicated
fused operator similar to the one in Fig. 10 for the sum-of-squares. Otherwise, one
may rely on the techniques presented by Langhammer for datapath fusion which,
depending on the operator count combine clustering and delayed normalizations
[46].

For an arbitrary number of summands arriving sequentially, one needs an
accumulator, conceptually described in Fig. 12. A fixed-point accumulators may be
built out of a binary adder with a feedback loop. This allows good performances
for moderate-size formats: as a rule of thumb, a 32-bit accumulator can run at the
FPGA nominal frequency (note also that a larger hard accumulator is available in
modern DSP blocks). If the addition is too wide for the ripple-carry propagation to
take place in one clock cycle, a redundant carry-save representation can be used for

650 F. de Dinechin and B. Pasca

Fig. 11 Fixed-point accumulation for small operand count based on a tessellated adder tree

accumulated value

register

input (summand)Fig. 12 An accumulator

the accumulator. In FPGAs, thanks to fast carry circuitry, a high-radix carry save
(HRCS), breaking the carry propagation typically every 32 bits, has a very low area
overhead.

Building an efficient accumulator around a floating-point adder is more involved.
The problem is that FP adders have long latencies: typically l = 3 cycles in a
processor, up to tens of cycles in an FPGA. This long latency means that an
accumulator based on an FP adder will either add one number every l cycles or
compute l independent sub-sums which then have to be added together somehow.
One special case is large matrix operations [10, 78], when l parallel accumulations
can be interleaved. Many programs can be restructured to expose such sub-sum
parallelism [2].

In the general case, using a classical floating point adder of latency l as the adder
of Fig. 12, one is left with l independent sub-sums. The log-sum technique adds
them using �log2 l� adders and intermediate registers [39, 68]. Sun and Zambreno
suggest that l can be reduced by having two parallel accumulator memories, one for
positive addends and one for negative addends: this way, the cancellation detection
and shift can be avoided in the initial floating-point accumulator. This, however,
becomes inaccurate for large accumulations whose result is small [68].

Additionally, an accumulator built around a floating-point adder is inefficient,
because the significand of the accumulator has to be shifted, sometimes twice (first
to align both operands and then to normalize the result). These shifts are in the
critical path of the loop. Luo and Martonosi suggested to perform the alignment in
two steps, the finest part outside of the loop, and only a coarse alignment inside [50].
Bachir and David have investigated several other strategies to build a single-cycle

Reconfigurable Arithmetic for High-Performance Computing 651

accumulator, with pipelined shift logic before, and pipelined normalization logic
after [7]. This approach was suggested in earlier work by Kulisch, targetting
microprocessor floating-point units. Kulisch advocated the concept of an exact
accumulator as “the fifth floating-point operation”. Such an accumulator is based
on a very wide internal register, covering the full floating-point range [43, 44], and
accessed using a two-step alignment. One problem with this approach is that in
some situations (long carry propagation), the accumulator requires several cycles.
This means that the incoming data must be stalled, requiring more complex control.
This is also the case in [50].

For FPGA-accelerated HPC, one critics to all previous approaches to universal
accumulators is that they are generally overkill: they don’t compute just-right for
the application. Let us now consider how to build an accumulator of floating-point
numbers which is tailored to the numerics of an application. Specifically, we want
to ensure that it never overflows and that it eventually provides a result that is as
accurate as the application requires. Moreover, it is also designed around a single-
cycle accumulator. We present this one [28] in detail as it exhibits many of the
techniques used in previously mentioned works.

The accumulator holds the accumulation result in fixed-point format which
allows removing any alignments from the loop’s critical path. It is depicted in
Fig. 13. Single-cycle accumulation at arbitrary frequency is ensured by using an
HRCS accumulator if needed.

The bottom part of Fig. 13 presents a component which converts the fixed
point accumulator back to floating-point. It makes sense to consider this as a
separate component, beause this conversion may be performed in software if the
running value of the accumulation is not needed (e.g. in numerical integration
applications). In other situations (e.g. matrix–vector product), several accumulators
can be scheduled to share a common post-normalization unit. In this unit, the carry-
propagation box converts the result into non-redundant format in the case when
HCRS is used.

The parameters of the accumulator are explained with the help of Fig. 14:

• MSBA is the position of the most-significant bit (MSB) of the accumulator. If the
maximal expected running sum is smaller than 2MSBA , no overflow ever occurs.

• LSBA is the position of the least-significant bit of the accumulator and determines
the final accumulation accuracy.

• MaxMSBX is the maximum expected position of the MSB of a summand.
MaxMSBX may be equal to MSBA, but very often one is able to tell that each
summand is much smaller in magnitude than the final sum. In this case, providing
MaxMSBX < MSBA will save hardware in the input shifter.

This parameters must be set up in an application-dependent way by considering
the numerics of the application to be solved. In many cases, this is easy, because
gross overestimation has a moderate impact: taking a margin of three orders of
magnitude on MSBA, for instance, adds only 10 bits to the accumulator size [28].

652 F. de Dinechin and B. Pasca

A
c
c
u
m
u
l
a
t
o
r

C
o
n
v
e
r
s
i
o
n

t
o

F
P

wA

shift value

mantissa

carry in

MaxMSBX −LSBA+1

MaxMSBX

exponent

wE wF

sign

mantissa signexponent

fixed-point sum

registers

w′
F

wA

w′
E

Leading Zero Counter
+ Shifter

carry propagation

Input Shifter

2’s complement

XOR

Fig. 13 The proposed
accumulator (top) and
post-normalisation unit
(bottom)

000
0 0000

0 0 0 0
0 0 0 0 0

0 0 0 0 0

0

000 0 0 0 0 00 0 0 0 0

1
1

1 1 0 00
1
1 1

1 1
1
1 1 1 1 1 1

1111

100 1 1 1 1 1 1 101010 0

0000 11111

wA = MSBA−LSBA+1

Accumulator

wF +1 LSBA = −12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

Fig. 14 Accumulation of floating-point numbers into a large fixed-point accumulator

6.2 Generic Polynomial Approximation

Polynomial approximation is an invaluable tool for implementing fixed-point
functions (which are also the basis of many floating-point ones) in hardware.
Given a function f (x) and an input domain, polynomial approximation starts by

Reconfigurable Arithmetic for High-Performance Computing 653

finding a polynomial P(x) which approximates f (x). There are several methods
for obtaining these polynomials including: the Taylor and Chebyshev series, or the
Remez algorithm, a numerical routine that under certain conditions converges to the
minimax polynomial (the polynomial which minimizes the maximum error between
f and P).

There is a strong dependency between the size of the input interval, the
polynomial degree and the approximation accuracy: a higher degree polynomial
increases accuracy but degrades implementation performance or cost. Piecewise
polynomial approximation splits the input range into subintervals and uses a
different polynomial pi for each subinterval. This scalable range reduction technique
allows reaching an arbitrary accuracy for fixed polynomial degree d. A uniform
segmentation scheme, where all subintervals have the same size, has the advantage
that interval decoding the is straightforward, just using he leading bits of x. Non-
uniform range reduction schemes like the power-of-two segmentation [16] have
slightly more complex decoding requirements but can enable more efficient imple-
mentation of some functions.

Given a polynomial, there are many possible ways to evaluate it. The HOTBM
method [20] uses the developed form p(y) = a0 + a1y + a2y2 + · · ·+ adyd and
attempts to tabulate as much of the computation as possible. This leads to a
short-latency architecture since each of the aiyi may be evaluated in parallel and
added thanks to an adder tree, but at a high hardware cost. Conversly, the Horner
evaluation scheme minimizes the number of operations, at the expense of latency:
p(y) = a0 +y× (a1+y× (a2+ · · · .+y×ad) . . .) [30]. Between these two extremes,
intermediate schemes can be explored. For large degrees, the polynomial may be
decomposed into an odd and an even part: p(y) = pe(y2)+y× po(y2). The two sub-
polynomial may be evaluated in parallel, so this scheme has a shorter latency than
Horner, at the expense of the precomputation of x2 and a slightly degraded accuracy.
Many variations on this idea, e.g. the Estrin scheme, exist [55]. A polynomial may
also be refactored to trade multiplications for more additions [42], but this idea is
mostly incompatible with range reduction.

When implementing an approximation of f in hardware, there are several error
sources which summed-up (εtotal) determine the final implementation accuracy.
For arithmetic efficiency, we aim at faithful rounding, which means that εtotal

must be smaller than the weight of the LSB of the result, noted u. This error is
decomposed as follows: εtotal = εapprox + εeval + εfinalround where:

• εapprox is the approximation error, the maximum absolute difference between any
of the polynomials pi and the function over its interval. The open-source Sollya
tool [17] offers the state of the art for both polynomial approximation and a safe
computation of εapprox.

• εeval is the total of all rounding and truncation errors committed during the
evaluation. These can be made arbitrarily small by adding g guard bits to the
LSB of the datapath.

• εfinalround is the error corresponding rounding off the guard bits from the evaluated
polynomial to obtain a result in the target format. It is bounded by u/2.

654 F. de Dinechin and B. Pasca

1011000101.01001

polynomial
index

a1

P2k−1

P1

P0

y
ỹ1 ỹd

ad a0

Coefficient ROM

x

round r

Fig. 15 Function evaluation using an Horner evaluation datapath computing just right

Given that εfinalround has a fixed bound (u/2), the aim is to balance the
approximation and evaluation error such that the final error remains smaller than u.
One idea is to look for polynomials such that εapprox < u/4. Then, the remaining
error budget allocated to the evaluation error: εeval < u/2− εapprox.

FloPoCo implements this process (more details in [30]) and builds the
architecture depicted in Fig. 15. The datapath is optimized to compute just right
at each point, truncating all the intermediate results to the bare minimum and using
truncated multipliers [8, 75].

6.3 Putting It All Together: A Floating-Point Exponential

We conclude this section by presenting in Fig. 16 a large operator that combines
many of the techniques reviewed so far:

• A fixed-point datapath, surrounded by shifts and normalizations,
• Constant multiplications by log(2) and 1/ log(2),
• Tabulation of pre-computed values in the eA box,
• Polynomial approximation for the eZ −Z− 1 box,
• Truncated multipliers, and in general computing just right everywhere.

The full details can be found in [31].
Roughly speaking, this operator consumes an amount of resource comparable

to a floating-point adder and a floating-point multiplier together. It may be fully
pipelined to the nominal frequency of an FPGA, and its throughput, in terms of
exponentials computed per second, is about ten times the throughput of the best
(software) implementations in microprocessors. In comparison, the throughput of

Reconfigurable Arithmetic for High-Performance Computing 655

Never compute
more accurately

than needed!

Constant
multipliers

precomputed
ROM

generic
polynomial
evaluator

truncated
multiplier

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ−Z−1

Y

R

1+wF +g

wF +g−k

wF +g+2−kMSBwF +g+2−k

wF +g+1−k

MSBwF +g+1−2k

1+wF +g

wE +wF +g+1

wE +1

wE +wF +g+1

wE +wF +g+1

k

Fig. 16 Architecture of a floating-point exponential operator

floating points adders and multipliers is ten times less than the corresponding
(hardware) processor implementation. This illustrates the potential of exotic opera-
tors in FPGAs.

7 Operator Performance Tuning

Designing an arithmetic operator involves many trade-offs, most often between
performance and resource consumption. The architectures of functionally identical
operators in microprocessors targetting different markets can can widely differ:
compare, for instance, two functionally identical, standard fused multiply-and-add
(FMA) operators published in the same conference, one for high-end processors
[11], the other for embedded processors [51]. However, for a given processor, the
architecture is fixed and the programmer has to live with it.

656 F. de Dinechin and B. Pasca

In FPGAs, we again have more freedom: A given operator can be tuned to the
performance needs of a given application. This applies not only to all the FPGA-
specific operators we surveyed, but also to classical, standard operators such as plain
addition and subtraction.

Let us review a few aspects of this variability which an FPGA operator library or
generator must address.

7.1 Algorithmic Choices

The most fundamental choice is the choice of the algorithm used. For the same
function, widely different algorithms may be used. Here are but a few examples.

• For many algebraic or elementary functions, there is a choice between multiplier-
based approaches such as polynomial approximation [16, 20, 30, 61, 70] or
Newton–Raphson iterations [45, 55, 73], and digit-recurrence techniques, based
essentially on table look-ups and additions, such as CORDIC and its derivatives
for exponential, logarithm, and trigonometric functions [4, 55, 63, 71, 77], or the
SRT family of algorithms for division and square root [36]. Polynomials have
lower latency but consume DSP blocks, while digit-recurrence consume only
logic but have a larger latency. The best choice here depends on the format,
on the required performance (latency and frequency), on the capabilities of the
target FPGA, and also on the global allocation of resources within the application
(are DSP a scarce resource or not?).

• Many algorithms replace expensive parts of the computations with tables of
pre-computed values. With their huge internal memory bandwidth, FPGAs are
good candidates for this. For instance, multiplication modulo some constant
(a basic operator for RNS arithmetic or some cryptography applications) can
be computed out of the formula X ×Y mod n = ((X +Y)2 − (X −Y)2)/4
mod n, where the squares modulo n can be tabulated (this is a 1-input table,
whereas tabulating directly the product modulo n would require a 2-input table
of quadratically larger size). Precomputed values are systematically used for
elementary functions, for instance the previous exponential, for single-precision,
can be built out of one 18-Kbits dual-port memory (holding both boxes eA and
eZ −Z−1 of Fig. 16) and one 18×18 multiplier [31]. They are also the essence of
the multipartite [27] and HOTBM [20] generic function approximation methods.
Such methods typically offer a trade-off between computation logic, table size,
and performance. Their implementation should expose this trade-off, because the
optimal choice will often be application dependent.

• In several operators, such as addition or logarithm, the normalization of the
result requires a leading-zero counter. This can be replaced with a leading-
zero anticipator (LZA) which runs in parallel of the significand datapath, thus
reducing latency [56].

Reconfigurable Arithmetic for High-Performance Computing 657

• In floating-point addition, besides the previous LZA, several algorithmic tricks
reduce the latency at the expense of area. A dual-path adder implements a
separate datapath dedicated to cancellation cases, thus reducing the critical path
of the main datapath.

• The Karatsuba technique can be used to reduce DSP consumption of large
multiplications at the expense of more additions [25].

7.2 Sequential Versus Parallel Implementation

Many arithmetic algorithms are sequential in nature: they can be implemented either
as a sequential operator requiring n cycles on hardware of size n with a throughput of
one result every n cycle, or alternatively as a pipelined operator requiring n cycles on
hardware of size n× s with a throughput of one result per cycle. Classical examples
are SRT division or square root [36] and CORDIC [4].

Multiplication belongs to this class, too, but with the advent of DSP blocks
the granularity has increased. For instance, using DSP blocks with 17 × 17-bit
multipliers, a multiplication of 68× 68 (where 68 = 4× 17) can be implemented
as either a sequential process consuming 4 DSP blocks with a throughput of one
result every 4 cycles, or a fully pipelined operator with a throughput of 1 result per
cycle, but consuming 16 DSP blocks.

7.3 Pipelining Tuning

Finally, any combinatorial operator may be pipelined to an arbitrary depth, exposing
a trade-off between frequency, latency, and area. FPGAs offer plenty of registers
for this: there is one register bit after each LUT, and many others within DSP
blocks and embedded memories. Using these is in principle for free: going from
a combinatorial to a deeply pipelined implementation essentially means using
otherwise unused resources. However, a deeper pipeline will need more registers
for data synchronization, and put more pressure on routing.

FloPoCo inputs a target frequency and attempts to pipeline its operators for this
frequency [26]. Such frequency-directed pipelining is, in principle, compositional:
one can build a large pipeline operating at frequency f out of sub-components
operating themselves at frequency f .

8 Open Issues and Challenges

We have reviewed many opportunities of FPGA-specific arithmetic, and there are
many more waiting to be discovered. We believe that exploiting these opportunities
is a key ingredient of successful HPC on FPGA. The main challenge is now

658 F. de Dinechin and B. Pasca

probably to put this diversity in the hands of programmers, so that they can exploit
it in a productive way, without having to become arithmetic experts themselves.
This section explores this issue and is concluded with a review of possible FPGA
enhancements that would improve their arithmetic support.

8.1 Operator Specialization and Fusion
in High-Level Synthesis Flows

In the HLS context, many classical optimizations performed by usual standard
compilers should be systematically generalized to take into account opportunities
of operator specialization and fusion. Let us take just one example. State-of-the-art
compilers will consider replacing A+A by 2A, because this is an optimization that
is worth investigating in software: the compiler balances using one instruction, or
another. HLS tools are expected to inherit this optimization. Now consider replacing
A∗A by A2: this is syntactically similar, and it also consists in replacing one operator
with another. But it is interesting only on FPGAs, where squaring is cheaper.
Therefore, it is an optimization that we have to add to HLS tools.

Conversely, we didn’t dare describe doubling as a specialization of addition, or
A− A = 0 as a specialization of subtraction: it would have seemed too obvious.
However they are, and they illustrate that operator specialization should be con-
sidered one aspect of compiler optimization and injected in classical optimization
problems such as constant propagation and removal, subexpression sharing, strength
reduction, and others.

There is one more subtlety here. In classical compilers, algebraic rewriting
(for optimization) is often prevented by the numerical discrepancies it would entail
(different rounding, or possibly different overflow behaviour, etc). For instance,
(x ∗ x)/x should not be simplified into x because it raises a NaN for x = 0. In HLS
tools for FPGAs, it will be legal to perform this simplification, at the very minor cost
of “specializing” the resulting x to raise a NaN for x = 0. This is possible also in
software, of course, but at a comparatively larger cost. Another example is overflow
behaviour for fixed-point datapath: The opportunity of enlarging the datapath locally
(by one bit or two) to absorb possible overflows may enable more opportunities of
algebraic rewriting.

However, as often in compilation, optimizations based on operator fusion and
specialization may conflict with other optimizations, in particular operator sharing.

8.2 Towards Meta-Operators

We have presented two families of arithmetic cores that are too large to be provided
as libraries: multiplication by a constant in Sect. 4.1 (there is an infinite number
of possible constants) and function evaluator in Sect. 6.2 (there is an even larger

Reconfigurable Arithmetic for High-Performance Computing 659

number of possible functions). Such arithmetic cores can only be produced by
generators, i.e. programs that input the specification of the operator, and output
some structural description of the operator. Such generators were introduced very
early by FPGA vendors (with Xilinx LogiCore and Altera MegaWizard). The shift
from libraries to generators in turns opens many opportunities in terms of flexibility,
parameterization, automation, testing, etc. [26], even to operators that could be
provided as a library.

Looking forward, one challenge is now to push this transition one level up, to
programming languages and compilers. Programming languages are still, for the
most part, based on the library paradigm. We still describe how to compute and not
what to compute. Ideally, the “how” should be compiled out of the “what”, using
operators generated on demand, and optimized to compute just right.

8.3 What Hardware Support for HPC on FPGA?

We end this chapter with some prospective thoughts on FPGA architecture: how
could FPGAs be enhanced to better support arithmetic efficiency? This is a very
difficult question as the answer is, of course, very application dependent.

In general, the support of fixed-point is excellent. The combination of fast carries
for addition, DSP blocks for multiplication, and LUTs or embedded memories for
tabulating precomputed values covers most of the needs. The granularity of the hard
multiplications could be smaller: we could gain arithmetic efficiency if we could use
a 18× 18 DSP block as four independent 9× 9 multipliers, for instance. However,
such flexibility would double the number of I/O to the DSP block, which has a cost:
arithmetic efficiency is but one aspect of the overall chip efficiency.

Floating point support is also fairly good. In general, a floating-point architecture
is built out of a fixed-point computation on the significand, surrounded by shifts and
leading zero counting for significand alignment and normalization. A straightfor-
ward idea could be to enhance the FPGA fabric with hard shifter and LZC blocks,
just like hard DSP blocks. However, such blocks are more difficult to compose
into larger units than DSP blocks. For the shifts, a better idea, investigated by
Moctar et al. [53] would be to perform them in the reconfigurable routing network:
it is based on multiplexers whose control signal comes from a configuration bit.
Enabling some of these multiplexers to optionally take their control signal from
another wire would enable cheaper shifts.

It has been argued that FPGAs should be enhanced with complete hard floating-
point units. Current high-end graphical processing units (GPUs) are paved with
such units, and indeed this solution is extremely powerful for a large class of
floating-point computing tasks. However, there has also been several articles lately
showing that FPGAs can outperform these GPUs on various applications thanks
to their better flexibility. We therefore believe that floating-point in FPGAs should
remain flexible and arithmetic-efficient, and that any hardware enhancement should
preserve this flexibility, the real advantage of FPGA-based computing.

660 F. de Dinechin and B. Pasca

Acknowledgments Some of the work presented here has been supported by ENS-Lyon, INRIA,
CNRS, Universit Claude Bernard Lyon, the French Agence Nationale de la Recherche (projects
EVA-Flo and TCHATER), Altera, Adacsys and Kalray.

References

1. L. Aksoy, E. Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for the
optimization of area and delay in multiple constant multiplications. IEEE Trans. Comp.-Aided
Des. Integrated Circ. Syst. 27(6), 1013–1026 (2008)

2. C. Alias, B. Pasca, A. Plesco, Automatic generation of FPGA-specific pipelined accel-
erators, in Applied Reconfigurable Computing (2010) http://www.springer.com/computer/
communication+networks/book/978-3-642-12132-6

3. Altera: FFT/IFFT block floating point scaling. Application Note 404 (2005)
4. R. Andraka, A survey of CORDIC algorithms for FPGA based computers, in Field Pro-

grammable Gate Arrays (ACM, New York, 1998), pp. 191–200
5. R. Andraka, Hybrid floating point technique yields 1.2 gigasample per second 32 to 2048 point

floating point FFT in a single FPGA, in High Performance Embedded Computing Workshop
(2006) http://www.andraka.com/papers.htm

6. M. Arnold, S. Collange, A real/complex logarithmic number system ALU. IEEE Trans. Comp.
60(2), 202–213 (2011)

7. T.O. Bachir, J.P. David, Performing floating-point accumulation on a modern FPGA in single
and double precision, in Field-Programmable Custom Computing Machines (IEEE, New York,
2010), pp. 105–108

8. S. Banescu, F. de Dinechin, B. Pasca, R. Tudoran, Multipliers for floating-point double
precision and beyond on FPGAs. ACM SIGARCH Comp. Architect. News 38, 73–79 (2010)

9. R. Bernstein, Multiplication by integer constants. Software Pract. Ex. 16(7), 641–652 (1986)
10. M.R. Bodnar, J.R. Humphrey, P.F. Curt, J.P. Durbano, D.W. Prather, Floating-point accumu-

lation circuit for matrix applications, in Field-Programmable Custom Computing Machines
(IEEE, New York, 2006), pp. 303–304

11. M. Boersma, M. Kröner, C. Layer, P. Leber, S.M. Müller, K. Schelm, The POWER7 binary
floating-point unit, in Symposium on Computer Arithmetic (IEEE, New York, 2011)

12. D. Boland, G. Constantinides, Bounding variable values and round-off effects using Han-
delman representations. Trans. Comp.-Aided Des. Integrated Circ. Syst. 30(11), 1691–1704
(2011)

13. N. Boullis, A. Tisserand, Some optimizations of hardware multiplication by constant matrices.
IEEE Trans. Comp. 54(10), 1271–1282 (2005)

14. N. Brisebarre, F. de Dinechin, J.M. Muller, Integer and floating-point constant multipliers
for FPGAs, in Application-specific Systems, Architectures and Processors (IEEE, New York,
2008), pp. 239–244

15. K. Chapman, Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner).EDN
Magazine (1994)

16. R.C.C. Cheung, D.U. Lee, W. Luk, J.D. Villasenor, Hardware generation of arbitrary random
number distributions from uniform distributions via the inversion method. IEEE Trans. Very
Large Scale Integrat. Syst. 15(8), 952–962 (2007)

17. S. Chevillard, J. Harrison, M. Joldes, C. Lauter, Efficient and accurate computation of upper
bounds of approximation errors. Theor. Comp. Sci. 412(16), 1523–1543 (2011)

18. P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints, in Principles of Programming
Languages (ACM, New York, 1977), pp. 238–252

19. A. Dempster, M. Macleod, Constant integer multiplication using minimum adders. Circ. Dev.
Syst. 141(5), 407–413 (1994)

http://www.springer.com/computer/communication+networks/book/978-3-642-12132-6
http://www.springer.com/computer/communication+networks/book/978-3-642-12132-6
http://www.andraka.com/papers.htm

Reconfigurable Arithmetic for High-Performance Computing 661

20. J. Detrey, F. de Dinechin, Table-based polynomials for fast hardware function evaluation,
in Application-specific Systems, Architectures and Processors (IEEE, New York, 2005),
pp. 328–333

21. J. Detrey, F. de Dinechin, A tool for unbiased comparison between logarithmic and floating-
point arithmetic. J. VLSI Signal Process. 49(1), 161–175 (2007)

22. J. Detrey, F. de Dinechin, Floating-point trigonometric functions for FPGAs, in Field Pro-
grammable Logic and Applications (IEEE, New York, 2007), pp. 29–34

23. F. de Dinechin, Multiplication by rational constants. IEEE Trans. Circ. Syst. II 52(2), pp. 8–102
(2012)

24. F. de Dinechin, L.S. Didier, Table-based division by small integer constants, in Applied Recon-
figurable Computing (2012), pp. 53–63 http://www.springer.com/computer/communication+
networks/book/978-3-642-28364-2

25. F. de Dinechin, B. Pasca, Large multipliers with fewer DSP blocks, in Field Programmable
Logic and Applications (IEEE, New York, 2009)

26. F. de Dinechin, B. Pasca, Designing custom arithmetic data paths with FloPoCo. IEEE Des.
Test Comp. 28(4), 18–27 (2011)

27. F. de Dinechin, A. Tisserand, Multipartite table methods. IEEE Trans. Comp. 54(3), 319–330
(2005)

28. F. de Dinechin, B. Pasca, O. Creţ, R. Tudoran, An FPGA-specific approach to floating-point
accumulation and sum-of-products, in Field-Programmable Technology (IEEE, New York,
2008), pp. 33–40

29. F. de Dinechin, H. Takeugming, J.M. Tanguy, A 128-tap complex FIR filter processing
20 giga-samples/s in a single FPGA, in 44th Asilomar Conference on Signals, Systems
& Computers IEEE, New York (2010) http://www.ieee.org/conferences events/conferences/
conferencedetails/index.html?Conf ID=18339

30. F. de Dinechin, M. Joldes, B. Pasca, Automatic generation of polynomial-based hardware
architectures for function evaluation, in Application-specific Systems, Architectures and Pro-
cessors (IEEE, New York, 2010)

31. F. de Dinechin, B. Pasca, Floating-point exponential functions for DSP-enabled FPGAs, in
Field-Programmable Technology (IEEE, New York, 2010)

32. F. de Dinechin, H.D. Nguyen, B. Pasca, Pipelined FPGA adders, in Field Programmable Logic
and Applications (IEEE, New York, 2010)

33. F. de Dinechin, C. Lauter, G. Melquiond, Certifying the floating-point implementation of an
elementary function using Gappa. IEEE Trans. Comp. 60(2), 242–253 (2011)

34. V. Dimitrov, L. Imbert, A. Zakaluzny, Multiplication by a constant is sublinear, in 18th
Symposium on Computer Arithmetic (IEEE, New York, 2007), pp. 261–268

35. P. Echeverrı́a, M. López-Vallejo, Customizing floating-point units for FPGAs: Area-
performance-standard trade-offs. Microprocessors Microsyst. 35(6), 535–546 (2011)

36. M.D. Ercegovac, T. Lang, Digital Arithmetic (Morgan Kaufmann, Los Altos, 2004)
37. O. Gustafsson, F. Qureshi, Addition aware quantization for low complexity and high precision

constant multiplication. IEEE Signal Process. Lett. 17(2), 173–176 (2010)
38. O. Gustafsson, A.G. Dempster, K. Johansson, M.D. Macleod, Simplified design of constant

coefficient multipliers. Circ. Syst. Signal Process. 25(2), 225–251 (2006)
39. M. Huang, D. Andrews, Modular design of fully pipelined accumulators, in Field-

Programmable Technology IEEE (2010), pp. 118–125 http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=5677390

40. IEEE standard for floating-point arithmetic. IEEE 754-2008, also ISO/IEC/IEEE 60559:2011
(2008) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4610935

41. K. Kalliojarvi, J. Astola, Roundoff errors in block-floating-point systems. IEEE Trans. Signal
Process. 44(4), 783–790 (1996)

42. D. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn.
(Addison Wesley, Reading, 1997)

43. U. Kulisch, Circuitry for generating scalar products and sums of floating point numbers with
maximum accuracy. United States Patent 4622650 (1986)

http://www.springer.com/computer/communication+networks/book/978-3-642-28364-2
http://www.springer.com/computer/communication+networks/book/978-3-642-28364-2
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=18339
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=18339
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5677390
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5677390
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4610935

662 F. de Dinechin and B. Pasca

44. U.W. Kulisch, Advanced Arithmetic for the Digital Computer: Design of Arithmetic Units
(Springer, Berlin, 2002)

45. M. Langhammer, Foundation of FPGA acceleration, in Fourth Annual Reconfigurable Systems
Summer Institut (2008)

46. M. Langhammer, T. VanCourt, FPGA floating point datapath compiler. Field-Program. Custom
Comput. Mach. 17, 259–262 (2009)

47. D. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, G. Constantinides, Accuracy-guaranteed
bit-width optimization. Trans. Comp.-Aided Des. Integrated Circ. Syst. 25(10), 1990–2000
(2006)

48. V. Lefèvre, Multiplication by an integer constant. Tech. Rep. RR1999-06, Laboratoire de
l’Informatique du Parallélisme, Lyon, France (1999)

49. J. Liang, R. Tessier, O. Mencer, Floating point unit generation and evaluation for FPGAs, in
Field-Programmable Custom Computing Machines (IEEE, New York, 2003)

50. Z. Luo, M. Martonosi, Accelerating pipelined integer and floating-point accumulations in
configurable hardware with delayed addition techniques. IEEE Trans. Comp. 49, 208–218
(2000)

51. D.R. Lutz, Fused multiply-add microarchitecture comprising separate early-normalizing mul-
tiply and add pipelines, in Symposium on Computer Arithmetic (IEEE, New York, 2011),
pp. 123–128

52. M. Mehendale, S.D. Sherlekar, G. Venkatesh, Synthesis of multiplier-less FIR filters with
minimum number of additions, in Computer-Aided Design IEEE/ACM (1995), pp. 668–671
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3472

53. Y.O.M. Moctar, N. George, H. Parandeh-Afshar, P. Ienne, G.G. Lemieux, P. Brisk, Reducing
the cost of floating-point mantissa alignment and normalization in FPGAs, in Field Pro-
grammable Gate Arrays (ACM, New York, 2012), pp. 255–264

54. R.E. Moore, Interval Analysis (Prentice Hall, Englewood Cliffs, 1966)
55. J.M. Muller, Elementary Functions, Algorithms and Implementation, 2nd edn. (Birkhäuser,

Boston, 2006)
56. J.M. Muller, N. Brisebarre, F. de Dinechin, C.P. Jeannerod, V. Lefèvre, G. Melquiond, N.

Revol, D. Stehlé, S. Torres, Handbook of Floating-Point Arithmetic (Birkhäuser, Boston, 2010)
57. A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, Precision and error analysis of MATLAB

applications during automated hardware synthesis for FPGAs, in Design, Automation and Test
in Europe (IEEE, New York, 2001), pp. 722–728

58. H.D. Nguyen, B. Pasca, T. B. Preußer, FPGA-specific arithmetic optimizations of short-latency
adders, in Field Programmable Logic and Applications (IEEE, New York, 2010)

59. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd edn. (Oxford
University Press, London, 2010)

60. S. Perry, Model based design needs high level synthesis: a collection of high level synthesis
techniques to improve productivity and quality of results for model based electronic design,
in Conference on Design, Automation and Test in Europe IEEE (2009), pp. 1202–1207 http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4926138

61. J.A. Piñeiro, J.D. Bruguera, High-speed double-precision computation of reciprocal, division,
square root, and inverse square root. IEEE Trans. Comp. 51(12), 1377–1388 (2002)

62. M. Potkonjak, M. Srivastava, A. Chandrakasan, Efficient substitution of multiple constant
multiplications by shifts and additions using iterative pairwise matching, in Design Automation
Conference (1994), pp. 189–194

63. R. Pottathuparambil, R. Sass, A parallel/vectorized double-precision exponential core to
accelerate computational science applications, in Field programmable gate arrays (ACM, New
York, 2009), pp. 285–285

64. T.B. Preußer, R.G. Spallek, Mapping basic prefix computations to fast carry-chain structures,
in Field Programmable Logic and Applications (IEEE, New York, 2009), pp. 604–608

65. R. Rocher, D. Menard, N. Herve, O. Sentieys, Fixed-point configurable hardware components.
EURASIP J. Embedded Syst. (2006) http://jes.eurasipjournals.com/content/2006/1/023197

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3472
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4926138
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4926138
http://jes.eurasipjournals.com/content/2006/1/023197

Reconfigurable Arithmetic for High-Performance Computing 663

66. O. Sarbishei, K. Radecka, Z. Zilic, Analytical optimization of bit-widths in fixed-point LTI
systems. IEEE Trans. Comp.-Aided Des. Integrated Circ. Syst. 31(3), 343–355 (2012)

67. M.J. Schulte, K.E. Wires, J.E. Stine, Variable-correction truncated floating point multipli-
ers, in Asilomar Conference on Signals, Circuits and Systems IEEE, New York (2000),
pp. 1344–1348 http://www.ieee.org/conferences events/conferences/conferencedetails/index.
html?Conf ID=18339

68. S. Sun, J. Zambreno, A floating-point accumulator for FPGA-based high performance comput-
ing applications, in Field-Programmable Technology, IEEE, (2009), pp. 493–499

69. J. Thong, N. Nicolici, An optimal and practical approach to single constant multiplication.
IEEE Trans. Comp.-Aided Des. Integrated Circ. Syst. 30(9), 1373–1386 (2011)

70. A. Tisserand, High-performance hardware operators for polynomial evaluation. Int. J. High
Perform. Syst. Architect. 1, 14–23 (2007)

71. J. Volder, The CORDIC computing technique. IRE Trans. Electron. Comp. EC-8(3), 330–334
(1959)

72. Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication. ACM Trans.
Algorithms Article 11, 3(2) (2007) pp. 1–38 http://dl.acm.org/citation.cfm?id=1240234&dl=
ACM&coll=DL&CFID=267988711&CFTOKEN=12528398

73. X. Wang, S. Braganza, M. Leeser, Advanced components in the variable precision floating-
point library, in Field-Programmable Custom Computing Machines (IEEE Computer Society,
Silver Spring, 2006), pp. 249–258

74. S. White, Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial
Review. IEEE ASSP Magazine, 6(3), pp. 4–19 (1989) http://ieeexplore.ieee.org/xpl/login.
jsp?tp=&arnumber=29648&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs all.jsp
%3Farnumber%3D29648

75. K.E. Wires, M.J. Schulte, D. McCarley, FPGA resource reduction through truncated multipli-
cation, in Field Programmable Logic and Applications (Springer, Berlin, 2001), pp. 574–583

76. M. Wirthlin, Constant coefficient multiplication using look-up tables. J. VLSI Signal Process.
36(1), 7–15 (2004)

77. Xilinx: LogiCORE IP CORDIC v4.0 (2011) xilinx.com
78. L. Zhuo, V.K. Prasanna, High performance linear algebra operations on reconfigurable systems,

in Supercomputing (ACM/IEEE, New York, 2005)

http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=18339
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=18339
http://dl.acm.org/citation.cfm?id=1240234&dl=ACM&coll=DL&CFID=267988711&CFTOKEN=12528398
http://dl.acm.org/citation.cfm?id=1240234&dl=ACM&coll=DL&CFID=267988711&CFTOKEN=12528398
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=29648&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D29648
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=29648&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D29648
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=29648&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D29648
xilinx.com

Acceleration of the Discrete Element Method:
From RTL to C-Based Design

Benjamin Carrion Schafer and Kazutoshi Wakabayashi

Abstract Field programmable gate arrays (FPGAs) have been extensively used to
accelerate numerical intensive applications as they provide an excellent platform
to exploit low- and high-level parallelism. Most of these computational intensive
applications are given in high level languages, e.g. C or C++. A direct path from
these descriptions to RTL is therefore highly desirable. Many attempts have been
made to provide this direct synthesis path. Many years ago we implemented a multi-
FPGA scalable custom hardware architectures to accelerate the discrete element
method (DEM) in VHDL (Schafer et al. Comput. Struct. 82(20–21), 1707–1718,
2004) and also tried to use high level synthesis (HLS) tools available at that time,
unsuccessfully due to their limitations and bad quality of results (QoR). We have
re-implemented this custom hardware architecture in C using a state-of-the-art HLS
tool and show in this chapter that it is now possible to design and verify entire
systems in C achieving comparable QoR to hand-coded RTL. A step by step guide of
how to create C-based FPGA designs with results comparable to that of the original
hand-coded RTL architecture is presented as well as different benefits that come
along behavioural synthesis, including design turn around time (TAT) reduction,
design space exploration and high-speed cycle-accurate model generators for full
chip verification.

1 Introduction

Reconfigurable computing is based around the use of field programmable gate
arrays (FPGAs) to form co-processors that can be configured to provide custom
hardware accelerators. The types of problem that can benefit from reconfigurable
computing are established by the properties of the FPGA. In general, FPGAs are

B.C. Schafer (�) • K. Wakabayashi
System IP Core Department, Central Research Laboratory, NEC Corporation, Kawasaki, Japan
e-mail: schafer@jhu.edu; wakabayashik@bq.jp.nec.com

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 22, © Springer Science+Business Media, LLC 2013

665

mailto:schafer@jhu.edu
mailto:wakabayashik@bq.jp.nec.com

666 B.C. Schafer and K. Wakabayashi

Number of processors

0 20 40 60 80 100 120

S
pe

ed
-u

p

0

20

40

60

80

100

120

140

linear vs real speed-up
real speed-up

Fig. 1 Alter technologies transputer speed up [1]

good at tasks that use short word length integer or fixed-point data and exhibit a
high degree of parallelism. For the right type of application, such a reconfigurable
computer can rival and exceed expensive parallel computers that are normally
used to accelerate computationally expensive algorithms. FPGAs thus open a new
window to low cost hardware acceleration.

Conventional parallel computers suffer from poor system efficiency when solving
the discrete element method (DEM), which means that they give a relatively
disappointing speed-up due to communication and synchronization penalties as
well as load balancing problems. The DEM has properties that suggest that it
may be suitable for acceleration using FPGAs: it exhibits an enormous degree of
parallelism and, as found in the current work, can be processed using short word
length arithmetic.

In order to make it possible to simulate present day large-scale DEM problems,
parallel processor systems are used. Having multiple processors working in parallel
should accelerate the simulation time considerably, but the load balancing problems
and synchronization and communication overheads will prevent these systems from
achieving linear speed-ups.

Previous attempts to parallelize the DEM on different multiprocessor platforms
are presented in chronological order, so that they can also be evaluated in terms of
computational resources available at that time.

The parallel processing lab at the Colorado School of Mines was one of the first
to parallelize the DEM using a parallel computer from Alter Technologies, which
has 64 T805 processors [1] (see Fig. 1).

Acceleration of the Discrete Element Method: From RTL to C-Based Design 667

Number of Transputers

5 10 15 20 25 30

S
pe

ed
-u

p

0

5

10

15

20

25

30

Ideal (linear) Speed-up
Real Speed-up

Fig. 2 Cray T3D massively parallel computer [2]

One of the most important choices when mapping the DEM onto a
multi-processor machine is the way in which the domain is decomposed, and how
each part is assigned to the single processors. This means that different processors
handle the different geometric areas. The obvious choice is to divide the domain
into rows, columns or a grid. In this case the authors decided to split the domain
into vertical columns in order to give good load balance, as the only external
force applied to these simulations was gravity. A big advantage of the domain
decomposition method is that each processor runs a code that is only a minor
modification of the serial version. The only notable changes that are needed are in
the set up stage, where the domain has to be split among the different processors,
and during simulation, where a new step is needed in order to exchange information
between processors.

The department of mathematics of the École Polytechnique of Lausanne also
designed a parallel version of the DEM running on a Cray T3D massively parallel
computer [2] (see Fig. 2). The CSIRO Mathematical and Information Sciences
performed another parallel implementation of the DEM, this time on a Swiss-T0-
Dual machine. The system was implemented on a Swiss-T0-Dual machine. This is
a cluster computer system consisting of eight Digital Alpha 21164 dual-processor
boxes [3] (see Fig. 3).

668 B.C. Schafer and K. Wakabayashi

Number of Processors

2 4 6 8

S
pe

ed
-u

p

0

2

4

6

8

Ideal (linear) Speed-up
Measured Speed-up

Fig. 3 Swiss-T0-dual machine [3]

All multiprocessor platforms surveyed suffered the same problems: synchro-
nization and communication overheads between processors, as well as poor load
balancing between processors, made the speed-up less than linear. Novel compu-
tational approaches have to be considered in order to find a more efficient way to
accelerate the DEM at an affordable price while obtaining the computational results
within a reasonable real time.

The DEM has properties that suggest that it may be suitable for acceleration
using FPGAs: (a) It exhibits an enormous degree of parallelism and (b) it is an
explicit self-correcting algorithm. It is therefore tempting to examine how well the
DEM would map into an FPGA.

2 The Discrete Element Method

Granular materials are formed of distinct particles, which displace independently
from one another and interact with each other only at the contact points [4].
The discrete nature of the granular materials leads to a complex behaviour under
conditions of loading and unloading. In order to simulate the behaviour of a granular
material, a suitable model has to be developed first. A process that happens in nature
in a few seconds may take hours or even days to be simulated on a computer.

Cundall and Strack introduced the DEM in 1971 [4, 5]. This numerical method
considers every particle as a separate entity. The interaction force, acceleration

Acceleration of the Discrete Element Method: From RTL to C-Based Design 669

and movement of each particle are calculated individually at each time step.
The assumptions underlying the method are only correct if no disturbance can travel
beyond the immediate neighbours of a particle within one time step. This is due to
the explicit nature of the method. This generally means that the time step must
be limited to a very small value (of the order of milliseconds for the stiffness and
density of a typical material, though using scaled stiffness or density can change
its value), making the DEM extremely computationally expensive, since many time
steps are needed if the dynamic behaviour of the system is required to be modelled
accurately.

As computing power increases, so does the number of applications that can be
modelled reasonably using the DEM. An even higher growth is expected during
this decade as computing power keeps growing, and as the method starts to be used
in order to model entire engineering structures (such as dams and tunnels), built
of particles bonded together to represent solid material. It is further suggested that
continuum methods will be replaced by particle approaches in the future [6], as these
capture the behaviour of localized cracks much better than the continuum approach,
and a suitable stress–strain law for the material may not exist or the law may be
excessively complicated with many obscure parameters.

The main drawback to the application of particle methods to large-scale problems
is that their very high computational demands limit the size of system that can be
simulated within a feasible timescale. Also, time must be spent calibrating the laws
by which the micro-structure affects the overall macro-structure behaviour.

A simulation starts by assuming some initial configuration of particle positions,
and then computes which of the particles are touching. The simulation then proceeds
by stepping in time, applying the sequence of operations in at each step. The force
between two particles can be calculated from the strength of the contact between
them. The resultant force on a particle is the vector sum of the forces exerted by
each of its neighbours. Once the resultant force on each particle has been computed,
it is simple to compute the acceleration, the velocity and the position increment
for each particle. Finally, the list of which particles are in contact must be re-
computed as shown in Fig. 4. The force interaction, acceleration and movement
of each particle are calculated individually at each time step. The assumptions
underlying the method are only correct if no disturbance can travel beyond the
immediate neighbours of a particle within one time step. This generally means that
the time step must be limited to a very small value.

The next sections of this chapter will be devoted to the detailed description of
a dedicated FPGA-based DEM HW accelerator. The first part will focus on the
architecture itself implemented in RTL (VHDL). The second part of the chapter
will describe how the same architecture was re-implemented directly from the
original ANSI-C description using a high level synthesis (HLS) tool. The last
section highlights the differences between the RTL and the C-based implementation
in terms of quality of results (QoR) of results, development time and verification
effort required.

670 B.C. Schafer and K. Wakabayashi

Contact Check

Interparticle Forces
Increment

Velocity and Position
Update

T=T+Δt

Fig. 4 DEM flow chart

3 Rt-Level DEM Hardware Acceleration

In order to accelerate the DEM as much as possible low- and high-level parallelism
needs to be exploited. Figure 5 shows a block diagram of the hardware implemen-
tation. It consists of six main units:

• A contact check unit, which identifies the particles in contact
• A force update unit, which updates the inter-particle forces
• A movement update unit, which calculates the particles’ new velocities and

coordinates
• A control unit, which synchronizes all the units and generates all the control and

address signals
• An interface unit to read and write data to and from the external memory
• A write back unit to write the results of the arithmetic units back to the internal

FPGA memory

The block RAM of the FPGA is used to hold the data required to describe each
particle. This includes position, velocity, angular momentum, identity of neighbours
and the force that it is experiencing. Data is read from and written to the internal
FPGA memory at a clock speed four times greater than that of the forces update
units in order to keep its pipelines fully loaded (on each clock cycle of the force unit,
it needs to read and write data of two particles simultaneously). This architecture has
shown to reach speed-ups of up to ×30 compared to a state-of-the-art PC and has
also shown very good scalability properties allowing to fully overlap computation
and communication. The architectural details of this design can be found in [7–9].
Summarizing briefly the results, the design was implemented on a PC containing a
reconfigurable computing plug-in card. The FPGA card was a Celoxica RC1000-PP
PCI containing a single Xilinx Virtex 2000E-8 and 4 banks of 2 MB of RAM. Due to
limitations of hardware resources, only five contact check units could be instantiated
in parallel.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 671

Dual

Port

Forces
update

Dual

Port

Dual

Port

Dual

Port

Dual

Port

Switch
addr

Switch
data

PA
PB

Switch

data

PA
PB

Write data back

Contact
check

Movement
update

Dual

Port

256

256

256

256 256

256
 96

96

96

Inter
face

Control unit

CU
Cc

CU
Forces

CU
Movement

Load
Balancing

 32

160

32

256

96

160

Fig. 5 DEM FPGA implementation block diagram

In order to have the system running at its maximal efficiency there must be as
many contact check units as needed to make the time for force update t(fu) equal
to the time for contact checking t(cc). Figure 6 illustrates the number of contact
check units needed for this condition to be true (for a specific domain depth Y and
ball diameter d). The straight line t(fu) is the number of clock cycles required to
perform force update on all particles. The curves t(cc) show the number of clock

672 B.C. Schafer and K. Wakabayashi

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200
nr of balls

cl
k

cy
cl

es

t(fu)
t(cc) y/d=20 cc=10
t(cc) y/d=20 cc=20
t(cc) y/d=20 cc=50

Fig. 6 Contact check units
needed for “ideal” load
balancing (t(cc) contact check
time=t(fu)force update time)

Table 1 Comparisons of
speed up obtained by HW
DEM

No. of particles 1,500 2,000 2,500

Speed upmeasured 27.4 32.1 29.2
Speed upideal 48.7 81 100.3

cycles needed to perform contact checking, for varying numbers of contact check
units. Where a t(cc) line crosses the t(fu) line, this indicates ideal load balancing for
that number of particles. So, for example, a simulation of 1,000 particles has almost
ideal load balancing when 20 contact check units are instantiated.

Table 1 shows a comparison between the speed-up achieved by the hardware
simulation as compared to the software.

For our simulations, only five contact check units were used due to limitations of
hardware resource on the FPGA. As can be seen from Fig. 6, this was insufficient
to give a proper load balance. The row in Table 1, labelled speed-upideal indicates
an estimate of the degree of speed up that could be expected if a sufficiently large
number of contact check units could be instantiated to give an ideal load balance.

3.1 Low-Level Parallelism

The implementation details of each of the HW design units will be described in
detail in this subsection.

3.1.1 Contact Check

For each particle, a “contact list” is formed, which contains references to each of
the particles with which it makes contact. In order to detect if two particles are in
contact the following equation has to be solved:

Acceleration of the Discrete Element Method: From RTL to C-Based Design 673

x1 y1

x2 y2
R1

R2

D

Fig. 7 Balls in contact
example

R R

R

R

R

R

x1,y1

Fig. 8 Neighbour check
model

Δn = R1 +R2 −
√
(x1 − x2)2 +(y1 − y2)2 ≥ 0 (1)

where xi yi are the co-ordinates of each particle’s centre and R1 and R2 are the
respective radii (see Fig. 7); the repulsive force between the particles is directly
proportional to this overlap. If the condition of Eq. (1) is true, the addresses of
the two particles are added to each others’ adjacency list. For this investigation, all
particles are assumed to have the same radius R. Under this circumstance, simple
geometry shows that for a 2-D simulation, the maximum number of contacts that
each ball can have is six. This means that contact information can be represented by
a very simple data structure, in which each particle has six memory slots allocated
to hold the identities of the particles potentially in contact.

If there are N particles within a region of the DEM, then the number of contact
checks that must be performed is N2. The square roots and multiplications used in
Eq. (1) are very expensive to perform in FPGA hardware, with the implication that
a full contact check would be prohibitively expensive.

In order to reduce the number of operations needed to perform the contact
checking, instead of checking for true contacts, our design only checks which
particles are within each others’ bounding boxes, and this acts as a filter before the
actual contact check. Under some circumstances, this means that a pair of particles
will be classified as neighbours even though they are not truly in contact (see Fig. 8).
This causes no real problem, since it is detected and correctly handled by the force
increment unit.

674 B.C. Schafer and K. Wakabayashi

Using the bounding box method to perform contact checking makes this unit
very cheap in terms of hardware resources, as it requires only two additions, two
subtractions and four comparisons.

3.1.2 Inter-Particle Forces Increment

Once the contact list for a particle has been established, the total force acting on
it can be determined. This will require a full solution of Eq. (1) for each contact
identified, but this will be needed to be performed only a maximum of 6N times. For
every contact identified between two particles, the resulting force is calculated. For
this study, a simple force–displacement law is adopted: the resulting force between
two balls is directly proportional to the indentation between the balls. The force
displacement law used for each ball is as follows:

Fxi = knΔnxi (2)

Fyi = ksΔnyi (3)

Mi = FsiR (4)

where ki is the stiffness (subscript n for normal and s for shear), nxi and nyi are,
respectively, the x and y components of the current ball indentation against particle
i, Fxi and Fyi are the components of the force caused by the interaction with ball i,
Mi is the moment acting on the current ball due to the ith ball, Fsi is the shear force
acting on the current ball due to the ith ball and R is the ball’s radius. The index i runs
from the first to the last ball on the present ball’s adjacency list, so the resultant force
on a ball is the vector sum of the forces caused by each contact with its neighbours.

The force update unit, which does require the computation of the terms in
Eq. (1), requires a large amount of hardware. It also operates at a comparatively
low clock speed of 7.5 MHz in contrast to the contact check unit which works
at the full system clock speed of 30 MHz on the Celoxica RC1000 with a Virtex
2000E-8 FPGA. Re-synthesizing this design on a state-of-the-art FPGA (Virtex4
XC4VLX200) achieved clock speeds of 30 and 120 MHz, respectively.

Figure 9 shows the internal structure of this unit, where each column represents
one pipeline stage.

It can be seen that there are three main paths in this structure: one that calculates
the forces in the x direction, another that calculates the forces in the y direction, and
another shorter path, which computes the terms in Eq. (1) (without doing the square
root, which is expensive but unnecessary),to check if the particles are in contact.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 675

/

cos

sin

vx1-vx2

vy1-vy2

vx1-vx2

vy1-vy2

KCM

0s

Rad

KCM

KCM

TDEL

TDEL

KCM

KCM

STIFN/2

STIFS/2

KCM

KCM

BDT

BDT

AMU

FN

FS

COH

cos

cos

sin

sin

FNT

FST

FSmax

F'
ST

KCM

Rad

Fx1 old

Fx2 old

Fy2 old

Fy1 old

M2 old

M1 old

Fx1 new

Fx2 new

M1 new

M2 new

Fy1 new

Fy2 new

t

COS
SIN
LUT

Xdif

Ydif

x1
x2

y1
y2

FTN

FTS

KCM

FNT

FST

tan

=

Rad2

contact

xdif2

ydif2

xdif

ydif

xdif2+ydif2

Fig. 9 Forces update unit internal structure

3.1.3 Velocity and Position Update

Once the resultant force on each ball has been calculated, these forces are used to
find new accelerations using Newton’s second law. In this study, it is assumed that
the masses of all the balls are identical. These accelerations are integrated to obtain
the velocities in the x and y directions and the angular velocity.

The new coordinates can be found by adding the original coordinates to
the incremental displacement obtained by integrating the calculated velocities.
The position update unit has an intermediate level of hardware complexity, and
operates at the same speed as the force update unit, which is four times slower
than the system clock, in order to have its pipeline fully loaded, achieving one new
result per clock cycle.

It consists of three pipelines in parallel (see Fig. 10). The first computes x and νx,
the second computes y and νy and the third computes θ and θ̇ .

3.1.4 Write Back Unit

The purpose of this unit is to merge the data for each particle that emerges from the
arithmetic units. Each particle is represented by a 256-bit word, but only certain bits
of this word are updated by each of the different units. For example, if a new contact
list is generated, only the memory locations of the old contact list are overwritten,
and the rest of the old data is preserved.

676 B.C. Schafer and K. Wakabayashi

KCM

vx

CON1

KCM

Fx

1/MASS

KCM

KCM
KCM

GRAVx TDEL

CON2
TDEL

nx old

x new

vy

CON1

Fy

t

1/I

vx new

KCM

KCM1/MASS

KCM

KCM
KCM

GRAVy TDEL

CON2
TDEL

ny old

y new

vy new

KCM

KCM

KCM

KCM
KCM

TDEL
CON2

TDEL
0old

0 new

0'

CON1

M

0'
new

Fig. 10 Velocity and position
update unit internal structure

Table 2 Hardware
requirements

Contact checking Force update Movement update

2 adders 23 adders 8 adders
2 subtractions 10 multipliers 15 KCMs

8 KCMs
1 divider
1 Look Up

Table (LUT)

3.1.5 Interface Unit

The interface unit reads and writes data from and to the FPGA’s internal memory
when instructed to do so by the control unit in the low-level parallelism implemen-
tation, it is only used twice in each analysis. Once at the beginning, it is used to read
in the new data, and once at the end when the calculations have finished in order to
write the data back to the external memory.

3.1.6 Hardware Requirements

The hardware requirements for each of the main functional units are shown
in Table 2. Constant coefficient multipliers (KCMs) require much less hardware
resource than multipliers that allow both inputs to vary. Having balls of the same
radius facilitates the widespread use of KCMs.

The contact checking unit is very simple, requiring little hardware resources
and capable of operation at high clock speeds. The force update unit, which does
require the computation of the terms in Fig. 9, requires a large amount of hardware.
The movement update unit has an intermediate level of hardware complexity.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 677

Domain

1 2 3 4 5 6 k-1 k

Fig. 11 Domain
decomposition

3.2 High-Level Parallelism

High-level parallelism exploitation involves having all processing units working in
parallel and overlapping computation and communication in order to keep all units
at full workload as much as possible.

In order to allow the computational units to operate in parallel, the domain
is decomposed into k vertical columnar sub-domains, as shown in Fig. 11. Each
particle belongs to a particular cell, and for most particles contact checking and
force updating need only be performed against the other particles within the same
cell. For the small number of particles that are close to the boundary between two
cells, more complicated arrangements are necessary.

The architecture divides the internal block RAM of the FPGA into six dual port
RAMs in order to allow data to be read and written to the memory simultaneously.
At any given time, six of the columnar cells shown in Fig. 11 are stored within the
FPGA and undergo processing. The RAM contains two 256 bit entries for each
particle within that cell consisting of 16 bit entries for x, y, θ , νx, νy, θ ′, Fx, Fy, M,
a type flag, and the reference of up to six neighbouring particles and another to hold
the normal and shear forces for every contact.

The control units generate the necessary control signals to synchronize data
between the blocks and to steer the data output from the RAMs through the switch
array to the inputs of the appropriate computation unit. The control units also
generate the addresses to read and write data back to the internal and external
memory. The FPGA must hold six columns at any given time, rather than three
because a particle close to the boundary may be in contact not only with particles
from its own column, but also from an adjacent column. This situation is handled
by an auxiliary memory located within the control unit that handles inter-cell
boundaries. Secondly, a particle close to a boundary may transition from one column
to another during coordinate update. For such a particle, after the results of the
co-ordinate update are written back to the RAM, the particle would have the correct
coordinates, but its data would have been stored in the wrong block of RAM.

678 B.C. Schafer and K. Wakabayashi

Contact Check

Forces

Position

Data Transfer

Fig. 12 DEM tasks duration

A third complication is that as simulation progresses, particles will move between
columns, and some columns may become heavily populated, while others are
sparsely populated. It is then necessary to move the cell boundaries, thus expanding
some cells and contracting others. This is needed in order to provide good load
balancing, and also to prevent overflow of the block RAMs. Movement of cell
boundaries is fairly simple. The control unit monitors how many particles are held in
each block RAM. When the number falls below a minimum threshold or rises above
a maximum, the boundary is moved by a distance R so as to expand or contract the
cell. When the boundary moves, a number of cells will find that their data is stored
in the wrong column of RAM, but this will be automatically detected and corrected
by the mechanisms described earlier for handling particles close to boundaries.

Using the procedures described above, the transition of particles from one cell to
another is handled without causing any loss of performance. Also, the cell size is
adaptively optimized so that good load balancing is always achieved.

With contact checking, force updating and co-ordinate updating being performed
in parallel, load balancing problems will inevitably appear, since the overall system
speed will be limited by the speed of the slowest of the three units. Figure 12
shows the task graph of the main computational tasks. The coordinate check is the
most time consuming, but requires very simple hardware and can operate at high
clock speed. In order to improve the load balance, several contact check units are
instantiated, and operate in parallel. The number of contact check units to be used
is a parameter of the design, which can be easily changed.

The next section describes the HLS tool used to re-implemented the previously
described HW architecture directly from the DEM ANSI-C’s SW description.

4 CyberWorkBench: Behavioural Synthesis and Verification

NEC has been developing a C-based behavioural synthesis called CyberWorkBench
(CWB) since the late 1980s [10] and C-based verification tools, e.g. formal
verification and simulation around CWB during the last 10 years [11]. All these
tools are integrated into an IDE, where designers execute these tools upon the
C-source code.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 679

Behavioral
Synthesizer

SystemC/SpecC ANSI-C Verilog / VHDL

Verilog/VHDL

Behavioral description

C-RTL Equivalence
Prover

Property
Checker

Formal Verifier Sim. Model Generator
Bit-accurate

Behavioral Simulator

Cycle-accurate HW/SW
Co-simulator

RT
FloorPlanner

RT Power
Estimator

GUI For
QoR Analysis

Synthesis Control

C

SystemC

CPU Bus I/F generator
Behavioral
IP library

Behavioral
IP library

Behavioral
IP library

Library
Characterizer

Software

Legacy RTL / IP

ASIC STPFPGA
Logic synthesis

& Back-end implementation

FPGA fast prototype

Testbench
Generator

Low Power
Synthesis

Design Space Explorer

C Source code debugger

Fig. 13 CyberWorkBench overview

Figure 13 shows a block diagram of the main tools that compose CWB. CWB
takes ANSI-C (with or without HW extensions called “BDL”, or “Cyber-C”) [12],
or SystemC and synthesizes it into synthesizable RTL doing traditional HLS given
a set of design constraints such as clock frequencies, number and kind of functional
units and memories. The only restrictions that apply to the ANSI-C accepted as
input are the use of constructs that do not have a direct translation into HW,
for example dynamic memory allocation and recursion. Pointers are accepted if
they can be resolved statically. Also, the SystemC accepted is only the SystemC
synthesizable subset.

Usually legacy RTL or RTL IPs are handled as a black box, but if necessary, this
RTL can also be fed to the behavioural synthesizer as an input. The behavioural
synthesizer can then insert extra registers to speed up the original RTL and generate
new RTL of smaller delay. It can also generate a SystemC cycle-accurate simulation
model. The behavioural synthesis can therefore be considered as a Verilog, VHDL,
C, C++ and SystemC unification step.

The “Library Characterizer” generates delay and area information of the
functional units and memories for a particular ASIC technology or FPGA family.
This is important because the synthesizer needs to know the exact delay and area of
each basic operation in order to schedule the input description correctly, inserting
registers at the right place to meet the target frequency. A Behavioural IP library,
called “Cyberware”, is also included in the synthesis environment. Cyberware
works similarly to Xilinx’s CoreGenerator or Altera’s Megafunction, but with fully
parametrizable IPs described at the C level making them much more flexible.

680 B.C. Schafer and K. Wakabayashi

The designer can generate different RTLs with different area vs. performance
trade-offs setting some synthesis parameters.

A “QoR” synthesis report of the generated circuit shows a quick overview of
the design quality. The report file includes area, number of states, critical path
delay, number of wires and routability. This information is used for quick micro-
architectural exploration. The system architecture explorer automatically generates
different hardware architectures based on the preferences and constraints entered
by the user (area, latency, power) at the C level. A more detailed description of the
advantages of design space exploration (DSE) can be found in the next sections.

4.1 Verification Flow

The functionality of the hardware described in C can be verified at the behavioural
level, while performance and timing are verified at the cycle-accurate level (or RTL)
through simulation. Debugging the generated RTL is however not an easy task since
C variables can be shared in the same register, and various optimizations can make
the automatically generated RTL not easy to understand. CWB therefore provides a
behavioural C source code debugger linking directly the unsynthesized C code with
a cycle-accurate model for timing verification.

Figure 14 shows an overview flow diagram of the different level of abstraction
on which the different model generators. When using HLS, the first step designers
need to take is to manually refine the original SW description in order to make
it synthesizable. Some of the typical constructs that are not supported in HLS
are dynamic memory allocation and recursion. At this stage the designer will also
refine the data types in order to obtain the smallest and most efficient HW design
possible. For this purpose most of the HLS tools extend the C syntax providing their
own data types. For data type refinement verification a behavioural model generator
is provided, which creates a C++ program that models the original behavioural
description that has been manually refined. This model generator creates not only
a C++ program that models the data types, but also a testbench that allows the re-
use of input vectors used in the SW simulation and compare the results of the SW
simulation with the results obtained during the behavioural simulation.

After HLS a cycle-accurate simulation can be performed for timing verification.
For this purpose a cycle-accurate model generator that creates fast SystemC
simulation models is provided. These SystemC models mimic the behaviour of the
RTL cycle accurately and are created after the HLS scheduling phase takes place
(an intermediate result of HLS). Again a testbench that allows the re-use the untimed
SW inputs and outputs is created. Valid signals for each input and output ports
are created automatically, because now the timing of when data needs to be read
and when valid data is written out needs to be made visible to the testbench. This
verification method is called “dynamic equivalence checking”, because it is possible
to fully re-use untimed input and output test vectors during a timed simulation.
The last step in the verification flow is to verify the final RTL created by the HLS.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 681

Behavioral Description
(C/systemC)

Manual refinement to
make synthesizable

Synthesizable
Behavioral Description

High level Synthesis

RTL backend

RTL (Verilog/VHDL)

Untimed Inputs
Untimed Golden

Outputs

Cycle-accurate
simulation model

Behavioral simulation
model

RTL Simulation

SW simulation

Testbench

Testbench

Testbench

Fig. 14 High level synthesis verification flow overview

For this purpose an RTL testbench generator is provided that creates a testbench that
can again re-use the untimed original input test pattern and compare the generated
outputs with the original untimed golden outputs.

These different model generators combined with the RTL testbench generator
allow designs to be verified at different design stages without having to resort to
slow RTL simulations. The model generators have been proved to be consistently
faster than RTL by a factor of ×1,000 for the behavioural model and ×100 faster
for the cycle-accurate model [11].

After verifying each hardware module, the entire SoC is simulated in order
to analyse the performance and/or to find inter-modules problems such as low
performance through bus collision, or inconsistent bit orders between modules.
Since such entire chip performance simulation is extremely slow in RTL-based
HW–SW co-simulation, the cycle-accurate SystemC simulation models can be used
which can run up to 100× faster than RTL models. The simulator allows designers
to simulate and debug both hardware and software at the C source code level at
the same time. If any performance problems are found, designers can change the
hardware–software partitioning or algorithm directly at the C level, and can then
repeat the entire chip simulation. This flow implies a much smaller and therefore

682 B.C. Schafer and K. Wakabayashi

Area

Latency

Non Pareto
optimal designs

Pareto optimal
designs

Efficient frontier

Fig. 15 Design space
exploration result example

faster re-design cycle than in a conventional RTL methodology. The C description
is the only initial and final SoC description language of the entire design. This entire
chip simulation can be further accelerated using an FPGA emulation board.

Another important feature of CWB is the formal verification tool, which is tightly
linked to the behavioural synthesizer. With the behavioural synthesis information,
the formal verification tools can handle larger circuits than usual RTL tools and
have C-source level debugging capability even though the model checker works on
the generated RTL model. The “C-RTL equivalence prover” checks the functional
equivalence between a behavioural (un-timed or timed) C description and the
generated RTL, using information of the optimizations performed such as loop
unrolling, loop merge and array expansion performed by the behavioural synthesis.
Without such information, the equivalence check is almost impossible for large
circuits. Designers can specify assertions or properties at the behavioural C level,
similar to our cycle-accurate simulator. Such behavioural level properties/assertions
are converted into RTL ones automatically and are passed to our RTL model
checker.

4.2 Design Space Exploration

Raising the level of abstraction has a distinct advantage over traditional RTL
design approaches. Multiple designs can be easily and quickly generated for the
behavioural code, while RTL designs require major rework in order to modify
the underlying architecture. Moreover higher levels of abstraction combined with
HLS allow the architectural trade-off exploration of the behavioural description.
The main objective in DSE is to find optimal implementations with respect to
several, often conflicting, objectives. These optimal implementations are called
Pareto-optimal designs. The objective is to find all the designs at the efficient frontier
(also called Pareto front, see Fig. 15. The tradeoffs can easily be explored within
this set rather than considering the entire design space, which would be impractical
and irrelevant to the designer. The main problem in DSE is its exponential nature.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 683

Heuristics have been developed to reduce runtime, at the expense of finding less
Pareto-optimal designs and some that are not really Pareto-optimal i.e. [13–15].
These designs are called non-dominated designs as they dominate the exploration
result obtained so far, but not the overall exploration space

The design options that can be explored during HLS are: (a) Global synthesis
options. These are options that apply to the entire design e.g. scheduling mode and
speculation (b) Local synthesis directives. These are synthesis directives that are
normally manually specified by the user directly at the source code. These directives
are in the form of pragmas that the HLS tool processes and in turn synthesizes
the instrumented source code accordingly. Some of these include loops, arrays and
functions. For example an array specified in C can be synthesized as a memory block
or registers and a loop can be unrolled completely, partially or folded. (c) Lastly
the maximum number of functional units (FUs) that the synthesizer can instantiate
could also be explored. This will limit the amount of parallelism that the scheduler
can extract and therefore the amount of resource sharing.

All three exploration methods are orthogonal to each other and should therefore
be explored in combination in order to obtain the best possible Pareto-front.

We have developed an automatic design space explorer to find these dominating
designs as quick as possible. The next sections describe the results of the C-based
HW design including the results of the explorer for the main processes.

5 C-Based DEM Hardware Acceleration

The DEM RTL hardware implementation was re-implemented from the original
software description given in ANSI C and synthesized using CWB. The next
sections show the result of each of the main processes re-synthesized in C and
compare the QoR with respect to the manual RTL design as well as the design
turn around time (TAT) including verification.

The starting point for the C-based design is the original SW algorithm used to
profile the code in order to determine which parts need to be mapped into dedicated
HW and which part would still be executed in SW. The next steps involve re-
writing the C code to make it synthesizable. This mainly involves: (1) re-writing
non-synthesizable constructs, e.g. mallocs, recursion and pointers that cannot be
statically resolved and (2) modifying the data types in order to convert the floating
point values into fixed point. Because this had already been done at the RTL
HW implementation, the data types and sizes where exactly the same in both
implementations.

Once the input description has been made synthesizable, the next step is to set up
the HLS tool in order to synthesize each process. This involves specifying the target
frequency, i.e. 30 MHz (VirtexE) or 120 MHz (Virtex4), which is the same target
frequency used for the RTL implementation and specifying the delay libraries for the
target FPGA. In this case Xilinx Virtex4. CWB comes with a library characterizer
that can re-generate this delay library for any FPGA family. These libraries are

684 B.C. Schafer and K. Wakabayashi

important because the HLS tool schedules as many operations in each clock cycle
(given by the target frequency) as possible depending on the logic operations’
delays. More information about how HLS works can be found at [16] and a good
review of the evolution of HLS at [17]. Once the overall system has been set up
we can proceed synthesizing each process separately. It should be remembered
that HLS is a single process synthesis and does not perform global optimizations
(intra-processes optimizations). Nevertheless the user can specify arrays as outside
memories and the HLS tool will created the arbitration logic for the memory.

C-based design has shown to generate comparable results to RTL for some
sort of applications [18, 19]. Moreover in order to design and verify complete
SoC designs HLS tools need to be expanded to deal with system synthesis issues
(ESL Synthesis), e.g. bus generator, top module generator, dealing with hierarchical
designs. CWB has the advantage to include these types of system level capabilities
making it easier and faster to create entire SoCs [20].

The next subsections will describe the results of the C-based synthesis for the
contact check unit, the force and the position update units and the control unit.
The control unit implementation is of special interest because it is a “control-
intensive” application that traditionally could not be synthesized effectively in C.
We will illustrate how this is done here.

5.1 Contact Check

In order to replicate the behaviour of the RTL implementation each of the processes
is synthesized in automatic pipeline mode. CWB provides three different scheduling
modes: (1) Manual, where the user manually times the C code inserting a timing
descriptor directly at the source code (see Section 5.4). (2) Automatic, where the tool
automatically schedules the input description. (3) Pipeline mode, which creates fully
pipelined designs. In this case (pipelined mode) the user needs to specify the data
initiation interval (DII). Here the DII=1, meaning that new data is arriving every
clock cycle to the pipeline. Figure 16 shows the schematic view of the synthesized
circuit. It has a latency of 1 cycle and consumes 120 slice LUTs.

One of the advantages of HLS is that it is very easy to perform DSE by changing
the functional unit (FU) constraint file and/or synthesis directives. We execute the
automatic DSE explorer of CWB in order to analyse the area vs. performance trade-
offs in the contact check unit. The explorer only reports the dominating designs
(ideally Pareto-optimal designs should be reported, but due to the size of the design
space, Pareto-optimality can normally not be guaranteed). Figure 17 shows the
result of the DSE. It can be observed that two designs with very different area vs.
latency characteristics have been created. The first replicates the behaviour of the
RTL implementation by generating a design with a latency of 1 clock cycle, while
the second has a latency of 2 cycles, but requires only 99 LUTs vs. the 120 LUTs
required by the first design.

Acceleration of the Discrete Element Method: From RTL to C-Based Design 685

Fig. 16 Contact check unit schematic view

Fig. 17 Contact check DSE result

686 B.C. Schafer and K. Wakabayashi

Once the design has been synthesized the next step is to verify that it is
performing the correct functionality. This can be done at the RTL level by
performing an RTL simulation, but in order to speed the verification process up,
it is recommended to verify the design using the cycle-accurate model generator in
CWB.

The cycle-accurate model generator uses the scheduled output of the HLS tool
and creates a SystemC program that mimics the behaviour of the RTL cycle
accurately. On average it can run around 100× faster than an RTL simulation due to
the lack of details that this models has compared to RTL. The flow to use the cycle-
accurate model generated is as follows:

• Synthesize the design.
• Generate the input simuli files for the design under test (DUT), in this case the

contact check generation unit.
• Generate the cycle-accurate model. This will also create the testbench, which

applies a new test-vector to the DUT when needed and also the make file to
compile the mode.

• Compile the model using g++ and lastly.
• Execute the binary. The binary generates a vcd file while being executed so that

the user can verify the result of the simulation in a wave form viewer.

5.2 Inter-Particle Forces Increment

The same procedure as described previously was followed to synthesize the inter-
particle forces increment unit. In this case the number of slice LUTs consumed by
this unit is 3,251 and 1,024 BlockRAM memory bits and 5 DSP blocks.

As in the previous section we can run the automatic design space explorer in
order to obtain the dominating designs for this unit. Figure 19 shows the result of
the DSE, where the left-hand side of the schematic shows the FSM that generates the
control signals for the data path shown on the right-hand side. It can be observed that
many more dominating results are found compared to the contact check unit, mainly
due to the larger number of possible combinations. The design in Fig. 18 (largest and
fastest) corresponds to the equivalent RTL implementation. Again the DSE shows
one of the big advantages of C-based design. A range of different designs can be
obtained automatically without changing the input description, by only modifying
the FU constraint file and the synthesis attributes.

This approach is impractical in RTL because the time taken to re-code a design
is prohibitive. RTL designs are normally “high performance” designs because these
are easier to verify. So-called lower performance designs normally involve resource
sharing, which make the design much harder to verify as the designer needs to
trace all the control signals in the circuit and verify that the data is steered correctly
through the data path. Therefore HW designers normally prefer replicating FUs as
much as possible to avoid resource sharing, which normally leads to faster designs,

Acceleration of the Discrete Element Method: From RTL to C-Based Design 687

Fig. 18 Inter-particle forces update unit schematic view

Fig. 19 Forces update unit DSE result

but also larger. It should be also noted that for four-input LUT FPGAs resource
sharing normally does not lead to smaller circuits because muxes are extremely
expensive in terms of area in FPGAs. For new type of FPGAs this does no hold
anymore as shown in [21], because the mux can be included in the larger 6/8-input
LUT in combination with the FU.

688 B.C. Schafer and K. Wakabayashi

Fig. 20 Velocity and position update unit schematic view

5.3 Velocity and Position Update

The velocity and position update unit takes as inputs the coordinates of pairs of
particles, their speeds and forces and momentum and computes their new position
and velocities. The schematic view of the synthesized circuit can be observed in
Fig. 20, following the same steps as for the contact check and forces update unit.

As in the previous processes the automatic design space explorer is executed in
order to investigate the area vs. performance trade-off curve of this process, shown
in Fig. 21. Again the first design at the graph (largest) corresponds to the equivalent
RTL circuit manually generated. It consumes 420 slice LUTs.

5.4 Control Unit

The control unit is one of the most important parts of the design as it creates all the
control signals to steer the data between the different processing units, reading and
writing the data to the internal memory at the correct time. Traditionally HLS has
not been able to deal effectively with control dominated circuits and circuits that

Acceleration of the Discrete Element Method: From RTL to C-Based Design 689

Fig. 21 Position and velocity update unit DSE result

require timing information, e.g. bus controllers. CWB is able to synthesize these
types of circuit using its manual scheduling mode, where the user can manually
“time” the C-code inserting a timing descriptor (“$”).

With this approach the user can describe explicit state machines that are then
synthesized into RTL. Figure 22 shows an example of manual scheduling mode.
In this example an LCD needs to be controlled with a dedicated controller. When
implementing these types of circuits a waveform is normally given as a specification
in order to understand the protocol that needs to be followed for creating an
interface. CWB’s manual scheduling mode allows the user to manually set clock
boundaries directly at the C source code. Each step in the figure corresponds to one
clock cycle. For example signal “e” (LCD clock) is reset in the first clock cycle and
then set to “1” in the next cycle. With this approach a complex state machine can be
explicitly specified and synthesized into RTL.

This is the approach followed to synthesize the control unit for the DEM
accelerator. Three independent state machines are described. The first state machine
performs the contact checking of the particles, the second updates the forces
between particles and the third updates the velocity and position of the particles.
Three state machines are needed in order to execute these steps concurrently.

CWB’s manual scheduling mode does not allow the architectural exploration as
the number of FUs and synthesis attributes are optimized for this particular FSM.
The three FSM consume a total of 780 slices LUTs.

690 B.C. Schafer and K. Wakabayashi

LCD

Controller

clk

e

rw

di

db_out

db_in status

Font

e rw di

db
_o

ut

db
_i

n

Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Set ‘e’ (LCD clock) to ‘1’ Step 2

Set ‘e’ (LCD clock) to ‘0’
Set ‘rw’ to ‘1’ (read)

Set ‘di’ (direction) to ‘0’ (input)

Set ‘e’ (LCD clock) to ‘1’

Set ‘e’ (LCD clock) to ‘0’

Write LCD status

If 7th bit of status is ‘1’, then
busy;

Set ‘e’ (LCD clock) to 0
Set ‘rw’ (Read/Write) to 0 (write)
Set ‘di’ (direction) to 1 (output)
Set output data to db_out (bus)

e=0;
rw=0;
di=1;
db_out=font
$
e=1;
$

e=0;
rw=1;
di=0;
$

L1:
e=1;

$
e=0
$

status=db_in;
$

If(status(7)==1)
goto L1;

Fig. 22 Manual scheduling mode LCD controller example

6 C-Based vs. RTL-Based Design

It is not easy to compare the RTL vs. the C-based design implementations because
the comparison will never be fully fair. Nevertheless there are some objective criteria
that can be helpful when comparing both methodologies. Firstly, the QoR of the
RTL vs. the QoR of the C-based implementation. In both cases we set the constraint
of DII=1 and the latency as a do not care constraint with a target frequency of
120 MHz (30 MHz for the computational units). The DII=1 in the C-based design
correspond to the highest performance design in the DSE trade-off curves shown in
the previous sections. We can then compare the area size of both implementations,
as their performances are identical (same frequency and same DII). Table 3 shows
the results of both methodologies after executing Xilinx’s Place and Route (ISE 13)
in terms of number of LUTs, DSPs and BlockRAM. The target FPGA was in both
cases Xilinx Virtex4 XC4VLX200.

It can be observed that the C-based design is slightly larger (∼2%) than the
hand-coded RTL design. This is mainly due to the numerous low level optimizations
coded at the RT-level. It should be noted that the C-based design also makes use of
Xilinx’s CoreGenerators for the KCMs and Divider.

The second criteria that we consider when comparing both methodologies is
the implementation duration, including the verification of each of the processes.
Figure 23 shows that TAT difference between the two approaches.It can be observed

Acceleration of the Discrete Element Method: From RTL to C-Based Design 691

Table 3 RTL vs. C-based design result comparison

RTL design C-based design

Unit LUTs DSPs BlockRAM LUTs DSPs BlockRAM

Contact check 120 0 0 120 0 0
Forces update 3,175 5 1,024 3,251 5 1,024
Position update 417 0 0 420 0 0
Control unit 765 0 0 780 0 0
Total 4,477 5 1,024 4,571 5 1,024
Δ % 2.06% 0% 0%

Contact Check Forces Position Interfaceswitches Control Unit

Contact
Check Forces Position Interface

swit
ches

Control
Unit

1 week 2 week 3 week 4 week 5 week 6 week

RTL

C
~53% TAT reduction

Fig. 23 Turn around time (TAT) comparison between RTL and c-based design

that the C-based design took less than 50% of time to develop. It should be noted
that the C-based design was implemented after the RTL implementation, having
therefore some advantages, e.g. the data type refinement was done at the RTL
implementation. Nevertheless the difference is significant.

Lastly the verification methodology of both methods is also presented. The RTL
implementation does not allow the simulation of the entire system due to the
simulation speed constraint. In order to verify the functionality of the system
different parts are in turn simulated together. The design is partitioned into three
main parts for verification. The first simulates the control unit for the contact check
unit with the memory and the input and output switches to verify that the contact
check information is correctly generated. The second simulation includes the forces
update control unit, the memory, switches and forces update unit in order to verify
that the forces are correctly update and the last one the position update unit with its
control unit.

In the case of the C-based design a fast cycle-accurate model could be generated
for the entire design allowing the simulation of the entire system. This permits
the verification of the complex interaction between all the concurrent parts being
executed. CWB provides a top module generator that interconnects all processes
together. A cycle-accurate model can then be generated for this top processes and
the functionality be observed in the VCD file dumped out by the model.

The advantage of this approach is enormous compared to the RTL design as many
bugs appear at the system integration part. RTL design can mostly only capture

692 B.C. Schafer and K. Wakabayashi

this problem when the design is being prototyped directly on the FPGA, which is
normally very time-consuming. Being able to catch these bugs at the C-level allows
much faster system verification. Another big advantage is the re-use of the original
SW test vectors. The model generator also generates a testbench that can read the
untimed test vectors and apply these to the DUT at the correct cycle. The testbench
can than also compare the golden outputs created during the SW algorithmic
development with the outputs generated during the cycle-accurate simulation as the
model’s testbench knows when a new valid output is being generated. This type
of verification is called “transaction level verification” and saves users having to
re-time the test vectors each time the latency/timing of the DUT changes.

7 Conclusions

C-based has some very distinct advantages compared to RTL design. It helps
improve productivity by raising the level of abstraction and allows the generation
of fast cycle-accurate simulation models that in turn enable the verification of entire
systems. Also it opens an easy path to DSE, which is impractical at the RT level.

This chapter compares an RTL vs. a C-based implementation of an FPGA-
based DEM custom hardware accelerator. We show that C-based design reduces
that TAT by over 50%, achieving RTL of similar quality to hand-coded RTL (∼2%)
and allowing the verification of the complete system instead of relying on partial
simulations and then having to rely on design prototyping.

Acknowledgements The authors would like to acknowledge the work of everyone at the EDA
R&D Center, Central Research Laboratories at NEC Corporation, NEC Information Systems Ltd
and NEC-HCL-ST for all their work developing CyberWorkBench.

References

1. A.I. Hustrulid, “Parallel implementation of the discrete element method”, Colorado school of
mines, USA (1996)

2. J.A. Ferrez, D. Mueller, T.M. Liebling, “Parallel Implementation of a distinct element method
for granular media simulation on the Cray T3D.” EPFL Supercomputing review -SCR No 08,
Lausanne, Nov. 1996

3. R. Gruber, Y. Dubois-Pelerin, “Swiss-Tx: first experiences on the T0 system”. EPFL Super-
computing Review, SCR 10, 19–23 (1998)

4. P.A. Cundall, O.D.L. Strack, “A discrete numerical model for granular assemblies”. Geotech-
nique 29, 1–8 (1979)

5. P.A. Cundall, O.D.L. Strack, “The Distinct Element Method as a tool for research in Granular
Media”, Report to the National Science Foundation Concerning NSF Grant ENG76–20711,
Appendix 2, pp 20–21, University of Minnesota, November 19785

6. P.A. Cundall, “A discontinuous future for numerical modelling in geomechanics?”, in Proceed-
ings of the Institution of Civil Engineering, Geotechnical Engineering 149, January 2001, Issue
1 Pages 41–476

Acceleration of the Discrete Element Method: From RTL to C-Based Design 693

7. B. Carrion Schafer, S.F. Quigley, A.H.C. Chan, “Acceleration of the discrete element method
on a reconfigurable computer”. Comput. Struct. 82 (20–21), 1707–1718 (2004)

8. B. Carrion Schafer, S.F Quigley, A.H.C. Chan, “Scalable implementation of the discrete
element method on a reconfigurable computing platform”, in 12th International Conference
on Field Programmable Logic and Applications (FPL), Montpellier, 2002, Springer-Verlag

9. B. Carrion Schafer, S.F. Quigley, A.H.C. Chan, “Analysis and implementation of the discrete
element method using a dedicated highly parallel architecture in reconfigurable computing”,
in IEEE Symposium on Field- Programmable Custom Computing

10. K. Wakabayashi, “Cyber: High Level Synthesis System from Software into ASIC” (Kluwer
Academic, Dordecht, 1991), pp. 127–151

11. K. Wakabayashi, T. Okamoto, “C-based SoC design flow and EDA tools: An ASICand
system vendor perspective.” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 19(12),
1507–1522 (2000)

12. N. Kobayashi, K. Wakabayashi, H. Tanaka, N. Shinohara, T. Kanoh, “Design experiences with
high-level synthesis system Cyber I and behavioral description language BDL,” in Proc. of
Asia Pacific Conf on Hardware Description Languages, Oct 1994

13. B. Carrion Schafer, K. Wakabayashi, “Design space exploration acceleration through operation
clustering”. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. (TCAD) 29(1), 153–157
(2010)

14. C. Haubelt, J. Teich, “Accelerating design space exploration”, in International Conference on
ASIC, 79–84, 2003

15. V. Krishnana, S. Katkoori, A genetic algorithm for the design space exploration of datapaths
during high–level synthesis. IEEE Trans. Evol. Comput. 10(3), 213–229 (2006)

16. D. D. Gajski, “High Level Synthesis: An Introduction to Chip and System Design” (Kluwer
Academic, Dordecht, 1992), ISBN 0792391942

17. J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, Z. Zhang, “High-level synthesis for
FPGAs: from prototyping to deployment”. IEEE Trans. Comput. Aided Des. (TCAD) 30(4),
473–491 (2011)

18. B. Carrion Schafer, K. Wakabayashi, “Design of complex image processing systems in ESL”,
ASPDAC, Taiwan, pp. 809–814, 2010

19. S. Morioka, B. Carrion Schafer, K. Wakabayashi, “Complex security engine design in high
level synthesis”, MPSoC, Savannah, USA, August 2009

20. B. Carrion Schafer, “Complete C-Based SoC design: Is it possible?”, MPSoC, Gifu, Japan,
June 2010

21. S. Hadjis, A. Canis, J.H. Anderson, J. Choi, K. Nam, S. Brown, T. Czajkowski, “Impact of
FPGA architecture on resource sharing in high-level synthesis,” in ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, to be held at Monterey, CA, February 2012

22. K. Wakabayashi, B. Carrion Schafer, in “High-Level Synthesis from Algorithm to Digital
Circuit”, XVI, Chap. 7, ed. by P. Coussy, A. Morawiec (Springer, New York, 2008), ISBN:
978-1-4020-8587-1

Optimising Euroben Kernels on Maxwell

James Perry, Mark Parsons, and Paul Graham

Abstract The ability to run certain common numerical kernels fast is valuable for
many applications and fields of scientific research. The University of Edinburgh
investigated the possibility of using FPGA devices to accelerate four kernels from
the Euroben benchmark suite: dense matrix multiplication, sparse matrix-by-vector
multiplication, fast Fourier transform, and random number generation. Each kernel
was ported using both the Harwest C compiler and hand-coded VHDL and for each
port the performance gain and porting effort were evaluated.

Although all of the kernels ran faster on the FPGA than on the CPU used
for comparison, the level of hardware expertise required to port them was high
even when using the Harwest compiler. Furthermore, many of the FPGA ports
gave only a modest performance improvement over the much more maintainable
C implementation, especially when the time taken to copy input and output data
across the relatively slow PCI bus to the FPGAs was taken into account. However for
certain use cases, for example when a large quantity of random numbers is required
or when low power consumption is critical, FPGAs could be a good choice for
running this type of kernel.

1 Overview

This chapter describes the work undertaken by EPCC, University of Edinburgh in
2009–2010, to port four kernels from the Euroben benchmark suite to the Maxwell
FPGA supercomputer, using both hand-coded VHDL and a C-to-gates compiler
(Harwest Compile Environment). Performance and programmability of the two
approaches was compared, using the original C code running on an Intel Xeon CPU
as a reference.

J. Perry • M. Parsons • P. Graham (�)
EPCC, University of Edinburgh, Edinburgh, United Kingdom
e-mail: j.perry@epcc.ed.ac.uk

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 23, © Springer Science+Business Media, LLC 2013

695

mailto:j.perry@epcc.ed.ac.uk

696 J. Perry et al.

2 Background

2.1 Prace Prototypes

Work Package 8 of the PRACE (Partnership for Advanced Computing in Europe)
project [1] involved evaluating several novel, mostly accelerator-based, computer
architectures by porting simple benchmark kernels to them. Four kernels from the
Euroben suite [2] were selected—dense matrix-by-matrix multiplication, sparse
matrix-by-vector multiplication, fast Fourier transform (FFT) and random number
generation. These are very common operations in a multitude of real-world scientific
applications and were therefore good candidates for evaluating the performance of
next generation systems.

2.2 The Maxwell System

EPCC’s FPGA supercomputer, Maxwell, was completed in early 2007 as part of the
FPGA High Performance Computing Alliance initiative [3]. It consists of an IBM
Blade Center cluster, containing 32 2.8 GHz Intel Xeon nodes, each with 2 Xilinx
Virtex-4 accelerator boards attached. Half of these boards are AlphaData boards [4],
each of which has a Virtex-4 FX 100 FPGA, and 1 GB of DDR II SDRAM, split
into four independent banks. The other half are Nallatech boards [5], each with a
Virtex-4 LX 160 FPGA and 512 MB of DRAM.

An interesting feature of the Maxwell system is the direct interconnect between
the FPGA boards; the accelerators are connected into a two-dimensional 8-by-8
torus formation using RocketIO cables. This allows fast communication between
the FPGAs without having to go through the host CPUs and relatively slow PCI
buses and Ethernet links. However, this was not used in the work described here.

2.3 Software Tools

The Xilinx toolchain (ISE 9.1i) [6] was used to generate bitstreams for the FPGAs.
Another Xilinx tool, Coregen [7], was used to create building blocks for the VHDL
versions of the kernels. Coregen can create optimised, parameterised versions of
common digital circuits to avoid the need to program them from scratch in VHDL
or Verilog. In this work, various floating-point adders, multipliers and FIFOs (first-
in-first-out buffers) of appropriate sizes were generated using Coregen.

In addition, a C-to-VHDL compiler was selected so that its performance and ease
of use could be compared to the traditional method of writing VHDL code directly.
The Harwest Compilation Environment (HCE) [8] from Ylichron was chosen for
this purpose. In the early stages of this project, a compiler backend targeting the
AlphaData ADMXRC4FX boards in Maxwell was written by Ylichron.

Optimising Euroben Kernels on Maxwell 697

2.4 The Euroben Kernels

The four kernels selected from the Euroben suite were:

• Dense matrix-by-matrix multiplication
• Sparse matrix-by-vector multiplication
• Fast Fourier transform
• Random number generation

All of these are common operations within HPC codes and are therefore interesting
for testing the performance and programmability of new systems. They are also
diverse enough to be able to highlight the strengths and weaknesses of different
architectures and tools. The original versions of all of these codes used double
precision arithmetic; however, this was not possible for all the FPGA ports, as the
Harwest compiler did not support double precision at the time.

The main goals of the work were as follows:

• To evaluate the performance of the Maxwell system and compare it to the other
PRACE prototype systems, as well as to the original C code running on a
traditional processor

• To evaluate the performance and usability of the HCE, in particular how it
compared to hand coding VHDL

3 Porting the Kernels

3.1 Matrix Multiplication

The matrix multiplication algorithm used was the benchmark called mod2am from
the Euroben benchmark suite. It is a simple double precision matrix-by-matrix
multiply operation and the Euroben test code exercises it with various square matrix
sizes up to 1,000 elements. The algorithm in C (with the loop unroll optimisation of
the original removed for clarity, and assuming square matrices) is:

for (i = 0; i < n; i++) {
for (k = 0; k < n; k++) {

t = 0.0;
for (j = 0; j < n; j++) {

t = t + a[i][j] * b[j][k];
}
c[i][k] = t;

}
}

where a and b are the input matrices and c is the result of multiplying them together.

698 J. Perry et al.

Fig. 1 Block diagram of initial VHDL implementation of matrix multiplier. The DRAM blocks
represent memories external to the FPGA, while the Result buffer is an internal register. The
circular blocks are arithmetic units, in this case generated by Coregen, and the remainder of the
blocks are VHDL logic, usually in the form of a process

3.1.1 VHDL Port

3.2 Initial Implementation

The initial implementation made use of one floating point multiplier and one floating
point adder, as well as some logic to fetch the inputs and store the results at the right
times. DRAM banks 0 and 1 were each used to hold one input matrix, with the result
of the multiplication being stored to bank 2. A block diagram is shown in Fig. 1.

The reader process fetches values from the input matrices at the appropriate
times, iterating over j, k and i as for the C version. The multiplier and adder form a
pipeline; effectively one multiplication and one addition can be run per clock cycle
once the pipeline is filled, but there is a latency of 10 cycles associated with the
multiplier and 16 cycles for the adder, so there is a lag of 26 cycles in total between
the values entering the multiplier and the corresponding result emerging from the
adder. The result of the addition is fed back into the adder as an input so that the
products of the input matrix elements are accumulated. When the inner loop (over
j) completes, the writer process writes an element to matrix C and the accumulation
is zeroed ready for the next loop. The controller process keeps track of the stage the
whole operation is at and sends out control signals to the other components at the
right times.

There are a few complications not shown in the block diagram. Firstly, because
of the 16 cycle latency of the adder, it would be inefficient to simply accumulate
the result in the normal order, as this would mean waiting 16 cycles for the result

Optimising Euroben Kernels on Maxwell 699

of the previous addition before feeding it back into the adder for the next one. To
overcome this, 16 accumulations are run concurrently, allowing full utilisation of
the adder. So the first calculation done is for k = 0, i = 0, j = 0; the second is for
k = 0, i = 1, j = 0; next k = 0, i = 2, j = 0; k = 0, i = 3, j = 0; and so on up to
k = 0, i = 15, j = 0; and by this time the result of the first addition is available, so
k = 0, i = 0, j = 1 can be processed.

Secondly, the memories are not always able to deliver data at a steady rate, so the
whole pipeline must keep track of which data items are valid and which are not. This
is achieved by associating a 10-bit shift register with the multiplier and a 16-bit one
with the adder. On each clock cycle that valid input values are read from DRAMs
0 and 1, a 1 bit is shifted into the left-hand side of the multiplier’s shift register,
otherwise a 0 bit is shifted in. Both registers are shifted right one place per clock
cycle, and the bit shifted out of the multiplier’s register is shifted into the adder’s
register. In this way, the 1 bits track where the valid data items are, and the bit being
shifted out of the adder’s register on each clock cycle indicates whether the current
result from the adder is valid or not.

Because of this, it is not sufficient to keep the adder result for one cycle to be
fed back in to the accumulation. It might have to be kept more than one cycle, and
during this time additional values might “queue up” behind it. So a FIFO (first-in-
first-out buffer) is used to hold as many accumulation results as necessary in the
right order before they are fed back into the accumulator.

Unfortunately the performance of this design turned out to be very poor, taking
about 300 s to multiply two 1,024× 1,024 matrices—a factor of 100 slower than the
host CPU running the original code. This was mainly due to the access pattern of the
input data in DRAM—the DRAMs respond extremely slowly to random accesses of
single values, which is what the reader process was doing. Additionally, because of
the FPGA’s much slower clock speed as compared to the host CPU, it would have to
perform many floating point operations per clock cycle to have a chance of running
faster (the host performs about one every five clock cycles and is clocked roughly
20 times faster than the FPGA!).

3.3 Second Design: Fast But Size-Restricted

In the second implementation, block RAM (very fast on-chip memory) was used
to store the input matrices, and a network of eight multipliers and eight adders to
perform several multiply-adds per clock cycle (see Fig. 2 for details).

Unlike the DRAMs, the block RAMs are capable of sustaining a read every clock
cycle, even with a completely random access pattern. They also have dual ports,
which means two locations in each block RAM can be read independently per clock
cycle. In this design, each input matrix is split across four banks of block RAM, so
that eight values can be read from each matrix every clock cycle. (The split is done
based on the low two bits of the j co-ordinate; because the A and B values that are

700 J. Perry et al.

Fig. 2 Block diagram of faster VHDL matrix multiplier

multiplied together always have the same j co-ordinate, this ensures that the values
that need to be multiplied are always available from corresponding banks.)

The values read from block RAM go into a hierarchical pipeline of multipliers
and adders that, once the pipeline is filled, compute eight products and add them to
the accumulation every clock cycle. Because of the block RAM’s consistent access
time, there is no need for the shift registers employed in the first design to keep track
of valid data: the pipeline is always full of valid data. There is also no need for the
FIFO to hold a queue of previous results to feed back into the final adder, although
due to the adder’s latency it is still necessary to perform 16 accumulations at the
same time to achieve optimum throughput.

The resulting values from the accumulator are written to DRAM by exactly
the same writer component as in the initial design. Because the source matrices
are accessed many more times than the destination, the use of DRAM rather than
block RAM here does not cause a bottleneck. The controller process generates read
addresses for the block RAMs, tells the writer component when a value is ready to
be written, and resets the accumulator when required.

This design is fast, multiplying a 256× 256 matrix roughly four times faster than
the C code. However, it has a major drawback: because of the limited size of block
RAM available, it cannot work with matrices larger than 256× 256. The Virtex-4
FX100 has approximately 6 Mbit of block RAM, but depending on the configuration
required and the amount taken up by common code such as the AlphaData DRAM
interfaces, less than this may be usable in practice. It was possible to instantiate
up to eight banks of 16k floating point numbers, enough for two 256× 256 source
matrices, before running out of usable block RAM.

Optimising Euroben Kernels on Maxwell 701

Fig. 3 Block diagram of final VHDL implementation of matrix multiplier

3.4 The Final Design

By employing a more intelligent algorithm and caching parts of the source matrices
in block RAM, it is possible to build a multiplier capable of multiplying larger
(1,024× 1,024) matrices almost as fast as the second design. The high level
structure of this is shown in Fig. 3.

This design takes advantage of the fact that the values being multiplied together
from matrices A and B are always from the same j index (j defines the column
of matrix A and the row of matrix B from which data is taken). The problem is
divided into 32 blocks in the j dimension, each of which is computed separately.
This involves fetching 32 columns of matrix A and 32 rows of matrix B into the
caches and working on them, adding the results to previous partial results which are
streamed from DRAM bank 2 to bank 3 or vice versa.

There are four identical cache units, two for each of the input matrices. Each one
holds 32 complete rows or columns of data. At any time, one pair of cache units
(A0 and B0 or A1 and B1) is active (i.e. its contents are being used in calculations)
while the other is being refilled (fetching the next 32k values from DRAM).

The internal structure of one of the cache units is shown in Fig. 4.
It consists of four block RAMs, each able to hold 8,192 32-bit values, and a

refiller process that fetches the next 32,768 values from DRAM into the block RAMs
when a refill operation is triggered. (Note: so that the DRAM is always accessed
sequentially, which is much faster than random access to individual elements, matrix

702 J. Perry et al.

Fig. 4 Block diagram of cache unit from matrix multiplier

A is stored in column-major order and matrix B in row-major order.) Because the
block RAMs are dual ported, two values can be read out of each one per clock cycle,
allowing each cache unit to feed eight floating point values into the floating point
unit every clock cycle.

The floating-point unit at the centre is identical to the structure of multipliers
and adders in the second design; in each clock cycle eight pairs of numbers flow in
are multiplied together, and the multiplication results are summed. The result of this
summation is added to an accumulator. As in the first two designs, 16 accumulations
are in progress simultaneously to overcome the latency of the floating point adder
in the accumulator.

Because the caches only hold 32 rows/columns of the input matrices at a time,
and because eight values from each are processed in one go, only four accumulations
are performed before the partial result is ready to be written to DRAM. On the first
iteration, the accumulator is initialised with zeroes before each operation and the
results are simply written to DRAM 2. On the second iteration, the accumulator
is initialised with the partial results from DRAM 2 and the new results (with the
second block of inputs now processed) are written to DRAM 3. This continues on
subsequent iterations, the partial results being streamed from one DRAM bank to
the other and having the latest data added to them in the process. After 32 iterations,
DRAM 3 contains the final complete result of the multiplication.

Two components, the fetcher and the writer, handle this streaming of data.
The writer component is quite simple and similar to the one in the previous
implementations. It simply writes values out to the destination DRAM until the
whole 1,024× 1,024 partial result matrix has been written. The fetcher is slightly
more complex. It fetches values from the source DRAM in bursts of length 128 and
stores them in a FIFO ready for the accumulator to access. The timing of this is
rather sensitive and the burst reads have to be initiated at the right times to ensure

Optimising Euroben Kernels on Maxwell 703

that the FIFO is never either empty or overflowing. This is the responsibility of the
main controller process which co-ordinates the data flow of the entire calculation.

The clock speed had to be dropped from 140 to 115 MHz before the DRAM
accesses were fully reliable; therefore this design is not quite as fast as the second
one. However, it still achieves an approximate 3× speed-up over the software
version.

3.5 Converting to Double Precision

All the work described so far was applicable only to matrices of single precision
floating point values; although the original Euroben code is double precision, single
precision operations result in a much simpler bitstream which compiles faster, so
doing all the initial development in single precision allowed for a faster development
cycle.

Converting a VHDL design from single to double precision generally entails at
least:

• Replacing any floating point arithmetic blocks with their double precision
equivalents

• Widening any signals and registers that carry floating point values from 32 to
64 bits

In the case of the matrix multiplication, some additional changes were also required.
Because the double precision floating point multiplier had a different latency from
the single precision one, the pipeline timings had to be changed. It also turned out
that it was no longer possible to use multipliers which took full advantage of the
DSP (digital signal processor) blocks in the Virtex-4, as there were not enough DSP
blocks for eight double precision multipliers. The component settings were changed
in Coregen to use fewer DSP blocks and more generic logic instead.

Most significantly, because double precision values take up twice as much
storage space as single precision, it was only possible to cache 16 rows or columns
of each input matrix instead of 32. This in turn made the timings required for the
streaming of the result matrix more demanding, as a partial result value was required
on average every two cycles instead of every four. However, by increasing the size of
the FIFO, fetching values in bursts of length 256 instead of 128, pre-fetching the first
two bursts before the main loop across each block of the matrix, and reducing the
clock speed slightly from 115 to 110 MHz, it was possible to meet this requirement.
Performance was 1,700 MFlops, around three times faster than the host code.

3.5.1 HCE Port

Getting a port of the kernel up and running correctly using HCE was quite easy. It
took approximately 2.5 days’ effort to create the initial port; this compares well with

704 J. Perry et al.

the 5 days taken to produce a working VHDL version. Performance was poor with
the initial naı̈ve port, only 14 MFlops.

However, with Ylichron’s help, an optimised version was produced. Blocks
of the matrix were cached in fast internal memory, the main loop was unrolled
64 times, and a highly pipelined tree-structured adder was used to accumulate
results. The code was annotated with the HCE directives pipeline, split, unroll and
combinational in order to give the compiler hints about how to optimise the kernel.
Resulting performance was very good, at 2.8 GFlops (single precision only as HCE
did not support double), faster than the hand-coded VHDL (single precision) version
at 1.8 GFlops.

Even taking into account the hand tuning and compiler directives, the code was
very much more compact and easy to write and maintain than the VHDL version
(543 lines of code compared to 1,252 in VHDL). However, compilation times were
much longer for the HCE kernel.

HCE code is standard C code which will compile and run with any C compiler,
but with directives applied to certain constructs (typically loops, functions or
individual lines of code) to improve performance when using the HCE tools. An
example function is shown below:

/*#HWST combinational*/
unsigned short ResolveAddressWriteC(unsigned short
int i, unsigned short int j2)
{

return (i * 4 * N + j2);
}

The combinational directive instructs the compiler to implement the function in
combinational, rather than sequential, logic if possible.

3.6 Sparse Matrix-by-Vector Kernel

The sparse matrix-by-vector kernel used was the mod2as kernel from Euroben.
Again it is a very simple kernel expressed in a few lines of C code:

for (i = 0; i < nrows - 1; i++) {
outvec[i] = 0.0;
for (j = rowp[i]; j < rowp[i+1]; j++) {

outvec[i] += mat-vals[j]*invec[indx[j]];
}

}
outvec[nrows-1] = 0.0;
for (j = rowp[nrows-1]; j < nelmts; j++){

outvec[nrows-1] += mat-vals[j]*invec[indx[j]];
}

Optimising Euroben Kernels on Maxwell 705

Fig. 5 Block diagram of VHDL implementation of sparse matrix multiplier

invec and outvec are the input and output vectors. nrows is the number of rows in
the matrix, which is always square, and also the number of elements in each vector.
nelmts is the total number of non-zero elements in the matrix. matvals contains the
non-zero values of the matrix and indx maps them to their column positions. rowp
contains the starting index of each row in the matrix.

The original kernel is double precision; however, only a single precision VHDL
port was created. This is because the main purpose of the VHDL port was for
comparison with the Harwest port, which does not support double precision, so
the effort required to convert to double precision would not have been worthwhile.

3.6.1 VHDL Port

Obviously the sparse-matrix-by-vector kernel has some commonalities with the
matrix-by-matrix kernel already ported: the arithmetic operation of multiplying and
accumulating is identical and the same strategy of having two alternating caches for
subsections of large input data arrays can be used. However, the differences in where
the source data comes from, and especially the unpredictable number of elements
in each matrix row, make this kernel significantly more complicated to implement
efficiently in hardware.

The VHDL was implemented with a maximum matrix size of 2,047 square in
mind, as the original Euroben test data set goes up to a maximum of a 2,000 square
matrix with 300,000 non-zero elements. This means that the input and output vectors
and the row pointers array are small enough to fit comfortably into the internal block
RAM—only the matrix values and column index arrays must be placed in DRAM.

The architecture of the first implementation is shown in Fig. 5.

706 J. Perry et al.

DRAM bank 0 is used to store the matrix values. As in the matrix multiplier, at
any particular time one of the matvals caches is being refilled from DRAM and the
other is providing input to the calculation. A similar arrangement is used to cache the
index array from DRAM 1. However, the index array contents are not used directly
in the calculation—they are used as address inputs to the memory holding the input
vector data. So that several values can be read from the input vector every clock
cycle, there are actually multiple block RAMs holding duplicate copies of the input
data. As the vector is fairly small and does not change during the algorithm, this
arrangement is easily implemented.

The output from the calculation is written to another block RAM containing the
output vector. A main controller process co-ordinates the whole algorithm based on
input from the row pointers array (in a final block RAM) and communicates with
the host processor.

Notice that there are two independent floating point units in this design, as
distinct from the single unit in the matrix multiplier design. The FPUs are of the
same structure (a tree of floating point multipliers and adders) but instead of a single
tree taking eight pairs of inputs, there are two separate trees each taking four pairs
of inputs. This is because with a large FPU, very small row sizes could result in
inefficient use of resources. For example, imagine a sparse matrix with only three
elements in each row. With an eight input FPU, this would result in only three inputs
being used and five sitting idle the whole time. With twin four input FPUs, this
inefficiency is reduced considerably—each FPU can process rows independently so
only one input of each is idle.

Partly because of the twin FPUs and partly because of the variable row lengths,
the controller process has a much more complicated task than in the matrix-by-
matrix multiplier. Recall that each FPU is processing 16 accumulations at once (due
to the 16 cycle latency on floating point addition); with 2 FPUs there are now 32
rows being processed concurrently and each row could be a different length. The
controller process has to keep track of the status of each of the 32 “row slots”,
feeding in the correct input data and being ready to start a new row as soon as a slot
becomes vacant.

To free up the controller from also having to keep track of writing the results
to the output vector, each FPU contains a shift register that is initialised with the
destination index when the inputs are written. This index is shifted down as the data
makes its way through the pipeline and at the end is used to write the final FPU
output to the right place in the outvec array. Because the outvec block RAM is dual
ported, writes from both FPUs on the same clock cycle are not a problem.

To simplify the hardware as much as possible, some of the higher level processing
is done by the host CPU—specifically, converting the row pointer array to a more
useful form and dividing the data up into blocks that fit within the caches. Instead
of passing the simple rowp array to the hardware, the host first converts it into a
structure containing a source address for matvals and indx, a destination address for
outvec, and a length element for each row. This saves the hardware from having
to perform these calculations, which are slightly complicated but unlikely to be a
bottleneck.

Optimising Euroben Kernels on Maxwell 707

At start up, the host divides the input data into blocks that fit within the block
RAM caches. It still copies the whole data set to the FPGA board memory in
one go for efficiency, but at the end of processing each block the control process
waits for the host to tell it the start address and length of the next block before
proceeding. Again this is unlikely to become a bottleneck and saves having to
implement hardware to perform operations better suited to software.

But despite all the efficiency measures described, this implementation ran slower
than the original software. This was due to the fact that each element of the largest
input data array, matvals, is only used once in this kernel—unlike the matrix-by-
matrix multiply, this algorithm is memory bound.

3.6.1.1 A Faster Version

Although memory bound codes are not normally good candidates for FPGA accel-
eration, it is sometimes possible to improve their speed by making intelligent use
of the multiple memory banks available on the FPGA boards (the ADMXRC4FX
board has four independent banks of DRAM that can be accessed simultaneously).
To take advantage of this, the VHDL was rewritten so that the matvals array was split
across DRAM banks 0 and 1 (with even elements in one bank and odd elements in
the other), and the indx array similarly split across banks 2 and 3. This doubled the
memory bandwidth available when refilling the caches and halved the time taken for
a cache refill. This gave the algorithm a modest speed advantage over the software
(622 MFlops/s versus 489 MFlops/s on the host), although this advantage is lost if
the time taken to transfer the input data to the FPGA board is taken into account.

3.6.2 HCE Port

As with the matrix multiplier kernel, producing a working port of the sparse
matrix code to HCE was straightforward and took only about 1.5 days, compared
with 10 days for the VHDL version. However, the initial version was again very
slow, running at only 2.9 MFlops (compared to 489 MFlops on the host CPU and
622 MFlops for the VHDL implementation). Again this was optimised by unrolling
the main loop, making a pipelined adder, and using HCE compiler directives to
provide further optimisation hints. This gave a 12-fold speed up over the original
version, but at 34.6 MFlops, performance was still poor.

The sparse matrix kernel is inherently more difficult to optimise than the dense
one; it is memory bound and therefore highly sensitive to anything that may cause
sub-optimal memory throughput. It also involves unpredictable data sizes, which
can vary greatly from one row of the matrix to the next, and this does not fit well
with HCE’s optimisations, which mostly work best on large, regularly sized data.

708 J. Perry et al.

3.7 Random Number Generator

The random number generator kernel used was the Euroben kernel mod2h. It
generates 64-bit double precision random numbers from five 64-bit integer state
variables (z1–z5). L1 to L5 are constants used to mask off only certain bits of the
state variables and NORM is a constant that scales a 64-bit integer down to the range
-0.5 to +0.5:

double rand64(void)
{

unsigned long long b;

b = (((z1 << 1) ˆ z1) >> 53);
z1 = (((z1 & L1) << 10) ˆ b);
b = (((z2 << 24) ˆ z2) >> 50);
z2 = (((z2 & L2) << 5) ˆ b);
b = (((z3 << 3) ˆ z3) >> 23);
z3 = (((z3 & L3) << 29) ˆ b);
b = (((z4 << 5) ˆ z4) >> 24);
z4 = (((z4 & L4) << 23) ˆ b);
b = (((z5 << 3) ˆ z5) >> 33);
z5 = (((z5 & L5) << 8) ˆ b);
return((z1 ˆ z2 ˆ z3 ˆ z4 ˆ z5)*NORM + 0.5);

}

The state variable updates are a mixture of bit shifts, logical ands and exclusive-
ORs. The final line generates the result by XOR-ing all the state variables together
and converting them to a floating point number in the range 0.0–1.0.

3.7.1 VHDL Port

This algorithm was ideal for FPGA implementation and the very high performance
achieved reflects this. The state variable transforms and the final exclusive-OR can
be implemented almost trivially in VHDL, as a component which takes the five
variables as inputs and generates the updated state variables and the 64-bit integer
result of the exclusive-OR. The bit shifts in fact require no resources at all in
hardware—they just affect where each bit is routed to.

Several instances of this transform component can be chained together in order
to generate multiple values in the sequence in a single clock cycle. Our double
precision implementation chains together three instances, generating three values
per clock cycle (we also implemented a single precision port which chains together
six instances). If multiple independent sequences of numbers were to be generated
instead, each with its own state variables, it is likely that performance would be
higher still.

Optimising Euroben Kernels on Maxwell 709

Output
Data Array 0

Output
Data Array 1

Output
Data Array 2

Transform Transform

Convert &
Scale

Convert &
Scale

Convert &
Scale

State
Variables

Transform

Fig. 6 Block diagram of VHDL implementation of random number generator

All that remains outside the lightweight transform component is the final
conversion to a floating-point number in the range 0.0–1.0. This could be done using
a standard integer-to-float conversion followed by a multiplication and an addition
as it is in the software; however, a more efficient way is possible in VHDL. The
addition of 0.5 can be achieved by simply flipping the most significant bit of the
integer before the conversion, and the floating point conversion and scaling can be
combined into one custom operation, generating the correct IEEE double precision
bit pattern from the input. This custom conversion component also completes in
one clock cycle, after which the result can be written to RAM. This is a good
demonstration of an optimisation that goes beyond what could reasonably be done
in software.

The architecture of the whole algorithm is shown in Fig. 6.
This implementation can run at a clock frequency of up to 150 MHz, and

it generates three random numbers per clock cycle (six in the single precision
version). It can therefore generate 450 million double precision (or 900 million
single precision) numbers per second—over 30 times more than the host processor.
However, when the time taken to transfer the output back to the host is taken into
account, the PCI bus becomes a severe bottleneck and the overall speed drops to
slower than the software. Clearly for this optimised implementation to be of use, the
numbers would have to be consumed by another process on the FPGA.

710 J. Perry et al.

3.7.2 HCE Port

Getting this kernel up and running with HCE was more challenging than the
previous two; it is highly dependent on 64-bit integer operations, which are not
available in HCE. Therefore a version was created which decomposes the state
transformation into multiple 32-bit operations. As HCE also did not support double
precision, the final conversion from integer to floating point was performed in
host code for this port. As before, the initial port without any platform-specific
optimisations did not perform well; in this case it generated 2.76 million values
per second, compared with 450 million for the VHDL version.

Optimisation of this kernel, however, was fairly successful. In order to make the
compiler generate a combinatorial block that could complete in a single clock cycle
for the state variable transform (as in the VHDL version), this was moved into a
function and flagged with the HCE combinational directive. The outer loop was
then unrolled so that several of these combinatorial blocks could be instantiated
in parallel. Another important optimisation was the use of two separate memory
buffers for the outputs, one holding the high 32 bits of the generated numbers, the
other the low 32 bits. This allowed each number to be written to memory in a single
clock cycle, rather than needing two sequential writes to the same memory buffer,
requiring at least two clock cycles.

Performance of the optimised HCE version of the kernel reached 217 million
values per second, slower than the VHDL version but still around 15 times faster
than the original code running on the Xeon.

3.8 Fast Fourier Transform

The third kernel studied was a standard FFT algorithm, mod2f from Euroben. In its
original version it is a radix 4 FFT, but the results should be the same as if coming
from any FFT algorithm so the VHDL port is a simple radix 2 implementation. The
original operates on double precision complex numbers; the hardware version uses
single precision complex numbers.

3.8.1 VHDL Port

The central FFT “butterfly” operation can be turned into a very efficient pipeline
capable of performing one butterfly every clock cycle. It consists of one complex
multiplier, a complex adder and a complex subtractor (which translates to four real
multipliers, three adders and three subtractors in total) as well as some shift registers
to delay the even input while the odd input is multiplied by the twiddle factor (see
Fig. 7).

Two instances of this butterfly component were used as the core of the algorithm.
Block RAMs hold the input and output and another block RAM holds the twiddle

Optimising Euroben Kernels on Maxwell 711

X +

-Delay

Odd input

Even input

Odd output

Even output

Twiddle factor

Fig. 7 Diagram of FFT “butterfly” block from VHDL implementation

Data
Buffer

0

Data
Buffer

1

Twiddles

Twiddles

Fig. 8 Block diagram of VHDL implementation of FFT

factors. In fact there are two copies of the twiddle factors, one for each butterfly.
To save space, only the real part of the twiddle factor is stored and the imaginary
part is obtained by taking the real part from 90◦ out of phase and where appropriate
negating it. On the FPGA where fast memory is constrained but computation is
cheap, this is an advantage.

The architecture of the FFT implementation is shown in Fig. 8.
The data flow is bidirectional because the algorithm consists of multiple passes

over the data. In even passes data flows from buffer 0 to buffer 1, and in odd passes
from 1 to 0. A control process co-ordinates the data flow and generates addresses
for the data buffers and the twiddle factor arrays. The address generation, which
involves bit manipulation, is implemented easily and efficiently in hardware, without
the nested loops used in software to do the same thing.

Each data buffer actually consists of two dual port block RAMs, allowing four
reads or writes per clock cycle. The data is partitioned in such a way that there
will always be two accesses to each block RAM on each clock cycle. The memory
locations are 64 bits wide so that an entire single precision complex number can be
stored in each one.

FFT sizes up to 32,768 points can be run entirely within the internal block RAM.
The speed is about 2,280 MFlops/s, approximately six times faster than the software
running on the Xeon. The pipelined butterflies are responsible for most of this

712 J. Perry et al.

advantage—with 20 floating point operations per clock cycle (two pipelines of 10
operations each) and a clock frequency of 115 MHz, the theoretical maximum speed
would be 2,300 MFlops/s.

Larger transforms (up to 1,048,576 point is supported) must be computed by
copying the data from DRAM a block at a time, transforming it, then saving it back
to DRAM again. For maximum efficiency the first few passes are run on each block
in one go without accessing the DRAM in between, but the later passes have to
be run one at a time on each block. Throughput is maximised by overlapping the
transform of the current block with the writing of the previous block back to two
banks of DRAM and fetching the next block from the other two banks of DRAM.
The FPGA is about three times faster than the software for larger data sizes.

No HCE port of this kernel was performed.

4 Summary of Results

4.1 Comparison of C, VHDL and HCE Implementations

The timings from the original codes in this section were obtained on a 2.8 GHz Intel
Xeon, running the code as compiled by gcc with full optimisation. For completeness
the reference performance values were also obtained on a dual socket Nehalem-
EP system using the Intel compiler with full optimisation as well as the Intel
Math Kernel Library (MKL) are listed in the tables below. In general the FPGA
performance is better than that of the Xeon (which is about the same age) but does
not compare well to the Nehalem system. However, it should be noted that (a) the
energy efficiency is likely to be higher (see Section 4.15), and (b) FPGAs generally
perform better with integer codes than with floating point.

As well as the performance of each kernel implementation (measured in
megaflops per second for most of them, but values per second for the random
number generator), several other items of interest have been recorded. Estimated
implementation effort in days and lines of code are given to provide some idea of
the relative complexity of each implementation. For the FPGA implementations,
device utilisation (the percentage of the FPGA’s logic blocks required for the kernel)
and the maximum speed at which the FPGA could be clocked for reliable operation
are also given. A low device utilisation indicates that there is space remaining on
the FPGA that could possibly be used for further parallelising the kernel or for
accelerating an additional part of a larger code as well as the kernel. A low clock
speed suggests that power consumption is likely to be low.

For most of the kernels, both “on-board” and “off-board” timings are given;
in these cases, the on-board timing measures only the actual computation time
and does not take account of the time necessary for transferring data between the
host system and the FPGA board memory. The off-board timing is an inclusive

Optimising Euroben Kernels on Maxwell 713

Table 1 mod2am performance results

Algorithm version
Speed
(MFlop/s)

Implementation
effort (day)

Lines
of code

Device
utilisation (%)

Clock speed
(MHz)

Original (SP) 587 0.5 38 N/A N/A
Reference platform

(1,024× 1,024)
(DP)

63,000 ∼ 0.5 277 N/A 2,530

Harwest (on-board) 2,859 10 543 93 67
Harwest (off-board) 2,463 10 543 93 67
VHDL (on-board) 1,846 16 1,252 39 115
VHDL (off-board) 1,081 16 1,252 39 115

measurement that does take the data transfers into account. As can be seen from
the differences between these figures, transferring data across the PCI bus can be a
major bottleneck for accelerator-based kernel implementations.

4.1.1 Mod2am

The VHDL version timings are taken from multiplying two 1,024× 1,024 matrices
together, as it is easier to work with powers of two in hardware implementations
(a version able to work with non-power of two sizes would be more complex but
probably just as fast). It performs 16 floating-point operations per clock cycle and
runs approximately three times faster than the Xeon, dropping to about twice as fast
when the time taken to transfer data across the PCI bus is taken into account Table 1.

The Harwest port uses a similar strategy of caching subsections of the matrices
in block RAM and using a pipelined tree of floating-point operations; however,
the Harwest port pipelines 63 floating-point operations rather than the 16 in the
VHDL version and achieves better performance. The code is very much altered
from the original C version and contains unrolled loops, pipelined functions and
HCE-specific code and directives.

4.1.2 Mod2as

The sparse matrix-by-vector multiplication kernel (spmxv) is in some ways similar
to the matrix-by-matrix multiplication (mxm). However, while the mxm performs a
large number of operations on each item of input data and can therefore make good
use of cache memory, the spmxv operation uses each element of the matrix only
once. This means that it is memory bound and an FPGA is unlikely to have much
advantage over a conventional processor. A modest speed up over the gcc-generated
code on the host CPU was achieved with the VHDL version, probably due to the
advantage gained by fetching from multiple external memory banks simultaneously.
Additionally, the time taken to transfer the input data over the PCI bus to the FPGA

714 J. Perry et al.

Table 2 mod2as performance results

Algorithm version
Speed
(MFlop/s)

Implementation
effort (day)

Lines
of code

Device
utilisation (%)

Clock speed
(MHz)

Original (SP) 489 0.5 23 N/A N/A
Reference platform

single core (DP)
1,392 ∼ 0.5 300 N/A 2,530

Reference platform
MKL (DP)

3,067 ∼ 0.5 300 N/A 2,530

HCE (on-board) 34.6 4 132 55 67
HCE (off-board) 4.9 4 132 55 67
VHDL (on-board) 622 10 2,490 43 110
VHDL (off-board) 6.2 10 2,490 43 110

device is a major bottleneck. When this is taken into account the performance of the
VHDL version is impaired by a factor of 100 Table 2.

The HCE version of the kernel uses a similar structure to the VHDL version but
scope for optimisation is more limited as many of HCE’s parallelisation directives
only work effectively on relatively large data blocks of predetermined size, which
does not apply well to this kernel. Although it was possible to speed up the original
port 12-fold by pipelining eight multiply and add operations, the HCE version is
still much slower than the host or VHDL. It is likely that this could be improved
further given more time.

4.1.3 Mod2h

The VHDL version of the algorithm is capable of generating 900 million single
precision values per second (six per clock cycle with the design clocked at
150 MHz). This algorithm, consisting primarily of bit shifts and exclusive or
operations, was particularly amenable to FPGA acceleration. The main transform of
the random number generator can be expressed elegantly in VHDL and it was also
possible to eliminate the final floating-point scaling from the VHDL implementation
as it was just a bit shift, replacing it with a custom integer-to-float conversion
which completes in one clock cycle instead. However, when the time taken to
transfer the results back to the host is taken into account, the VHDL version’s
performance is dramatically reduced by a factor of more than 100, making it slower
than the software kernel. The bandwidth over the PCI bus appears to be limited to
approximately 32 MB/s (Table 3).

Porting to Harwest was slightly complicated as the original kernel makes
extensive use of 64-bit integer operations, which Harwest does not support. The
algorithm had to be rewritten and tested using multiple 32-bit operations to achieve
the same result. Because Harwest does not support double precision floating-point,
this port passes back the unconverted 64-bit integer results so that the host can
perform the final conversion to floating-point in full precision. By employing similar

Optimising Euroben Kernels on Maxwell 715

Table 3 mod2h performance results

Algorithm version

Speed (millions
of values per
second)

Implementation
effort (day)

Lines
of code

Device
utilisation (%)

Clock
speed
(MHz)

Original (SP) 14.4 1 37 N/A N/A
Reference platform

single core (DP)
47.6 ∼ 0.25 37 N/A 2,530

Harwest (on-chip, int) 217.6 6 171 26 80
Harwest (off-chip, int) 4.0 6 171 26 80
VHDL (on-chip) 900.0 6 690 54 150
VHDL (off-chip) 8.1 6 690 54 150

optimisation strategies to those used in the VHDL version (using HCE-specific
directives to turn the main transform into a combinatorial operation, and running
three separate instances of it in parallel), numbers can be generated at a rate of 217
million per second, much faster than the host, though slower than the hand-coded
VHDL. However, this is subject to the same PCI bus bandwidth problem, so when
the time taken to transfer the results back to the host is included, the speed again
falls to 4 million values per second.

4.1.4 Mod2f

When running on data in its internal memory, the FPGA reaches speeds approx-
imately six times faster than the original gcc-generated code running on the host
CPU. But comparing the FPGA-based results to the reference platform performance
one clearly can see that the latest generation of general purpose processors do
provide FFT performance values which are quite comparable to the values obtained
on FPGAs. The original kernel is a radix 4 FFT. The VHDL version is a simple
radix 2 implementation but gives identical results. When its pipeline is filled, it
can complete two FFT butterflies (each one comprising 10 individual floating-point
additions, subtractions and multiplications) per clock cycle. At 115 MHz this gives
a sustained speed of almost 2.3 GFlop/s.

Table 4 shows the maximum performance achieved by each implementation. As
the FFT performance is more sensitive to the size of the data set than that of the
other kernels, performance for each data set size is given in Fig. 9.

The performance of the VHDL version varies much more than that of the host;
with faster computation, factors such as memory bandwidth, PCI bus bandwidth and
start-up overhead become more significant. Looking at the on-board performance,
the VHDL version is fairly slow for a 256 point transform—this data size is
small enough that start-up overheads for the algorithm and for each pass become
noticeable. As the size increases, performance improves and reaches its peak for
the 32,768 point transform, which the FPGA can perform around six times faster
than the gcc-code run on the host CPU. This is the largest transform which can

716 J. Perry et al.

Table 4 mod2f performance results

Algorithm version
Max speed
(MFlop/s)

Implementation
effort (day)

Lines
of code

Device
utilisation (%)

Clock
speed
(MHz)

Original (DP) 481 N/A 420 N/A N/A
Original (SP) 465 0.5 420 N/A N/A
Reference platform (DP) 2,778 ∼ 2 398 N/A 2,530
VHDL (on-board) 2,284 11 2,119 50 115
VHDL (off-board) 1,177 11 2,119 50 115

FFT Results

0

500

1000

1500

2000

2500

256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

FFT problem size

M
F

lo
p

s/
s Host (double)

Host (single)

VHDL (on-board)

VHDL (off-board)

Fig. 9 Performance of mod2f for different problem sizes

be performed entirely within the FPGA’s internal block RAM and does not require
any transfers to or from DRAM during the algorithm. For larger sizes, performance
tails off as the rate at which data can be read from or written to the DRAM banks
becomes more and more significant. The FPGA is still faster than the host by a
factor of 3–4, probably because reading and writing four separate external memory
banks simultaneously gives it an advantage. When the time taken to transfer data
to and from the FPGA is taken into account (off-board column in the table), much
of the VHDL version’s speed advantage is lost. Unfortunately there was insufficient
time to complete a Harwest port of this kernel.

Optimising Euroben Kernels on Maxwell 717

4.1.5 Notes on Power Consumption

Low power consumption is a major advantage of FPGAs so it is worth considering
the PRACE kernel implementations in this context. Unfortunately the Maxwell
system does not provide a facility for measuring the actual power consumed by the
accelerator boards, so only a rough estimate of power usage based on data available
online is possible.

Virtex-4 devices are much more power efficient than those of previous FPGA
generations. Information released by Xilinx suggests that a large Virtex-4 FPGA
(in this case an LX device, but the FX family used on the AlphaData boards in
Maxwell is likely to be similar) running a demanding bitstream with most of the
slices occupied at 200 MHz is likely to consume around 2–3 W. Given that the
implementations of the Euroben kernels all run at 150 MHz or less and mostly
occupy a lower percentage of the logic slices, it seems reasonable to assume that
they also will not consume more than 3 W. Assuming 3 W power consumption, the
Flops-per-Watt value for the Euroben kernels reaches almost 1,000 MFlops/W (for
the matrix multiply kernel which is the fastest).

This compares very favourably to contemporary conventional CPUs; the thermal
design power for the single core Xeons in Maxwell is 77 W, and the actual power
consumed by one of these under high load is likely to be at least 50 W. Assuming
50 W power consumption, and taking the highest megaflop figure achieved in our
testing (587 MFlops for the dense matrix multiplication), the Xeon is performing
only 11.7 MFlops/W.

5 Conclusions

The PRACE work on Maxwell demonstrates a number of points about FPGA
acceleration.

• FPGAs can be much faster than contemporary CPUs for certain tasks (e.g. the
Euroben random number generator is 30 times faster on the FPGA compared to
the Xeon) but do not provide significant benefits for all codes (e.g. the sparse-
matrix-by-vector multiplication kernel is only slightly faster on the FPGA).

• C-to-gates tools (e.g. HCE) can be performance-competitive with hand-coded
VHDL in some circumstances. They can also remove a lot of the most tedious
and error-prone elements from the porting work.

• Hand tuning is still essential in order to get good performance from FPGAs,
whatever language they are programmed in.

• FPGA power consumption, including flops-per-watt metric, can be very good
due to low clock speeds.

• Most current accelerator designs (including FPGA boards and GPUs) suffer from
data transfer bottleneck between accelerator and host (e.g. PCI bus), which can
badly affect some codes.

718 J. Perry et al.

FPGA-based accelerators can be a valuable aid to improving application per-
formance, and particularly performance-per-watt. However, there are still pro-
grammability challenges; while modern C-to-gates tools can sometimes match the
performance of hand-coded designs at a lower development cost, there is a lack of
standardisation and code still tends to be very platform- and compiler-specific. A
standard for C-to-gates languages, perhaps based on OpenCL, would be a great step
forward in this area.

References

1. PRACE: Partnership for Advanced Computing in Europe. http://www.prace-project.eu/.
Accessed 28th May 2012

2. Home Page of the EuroBen Benchmark. http://www.hpcresearch.nl/euroben/index.php.
Accessed 28th May 2012

3. The FHPCA. http://www.fhpca.org. Accessed 28th May 2012
4. AlphaData ADM-XRC-4FX product page. http://www.alphadata.co.uk/products.php?product=

ADM-XRC-4FX. Accessed 28th May 2012
5. Nallatech H101 product overview. http://www.nallatech.com/H101-PCIXM/overview.html.

Accessed 28th May 2012
6. Xilinx ISE Design Suite. http://www.xilinx.com/products/design-tools/ise-design-suite/.

Accessed 28th May 2012
7. Xilinx Core Generator System. http://www.xilinx.com/tools/coregen.htm. Accessed 28th May

2012
8. Marongiu A, Palazzari P The HARWEST Compiling Environment: Accessing the FPGA World

through ANSI-C Programs (Cray User Group publications, 2008) https://cug.org/5-publications/
proceedings attendee lists/2008CD/S08 Proceedings/pages/Authors/01--5Monday/Palazzari-
Monday4C/Palazzari-Monday4C-paper.pdf. Accessed 28th May 2012

http://www.prace-project.eu/.
http://www.hpcresearch.nl/euroben/index.php.
http://www.fhpca.org.
http://www.alphadata.co.uk/products.php?product=ADM-XRC-4FX.
http://www.alphadata.co.uk/products.php?product=ADM-XRC-4FX.
http://www.nallatech.com/H101-PCIXM/overview.html.
http://www.xilinx.com/products/design-tools/ise-design-suite/.
http://www.xilinx.com/tools/coregen.htm.
https://cug.org/5-publications/proceedings{_}attendee{_}lists/2008CD/S08{_}Proceedings/pages/Authors/01--5Monday/Palazzari-Monday4C/Palazzari-Monday4C-paper.pdf.
https://cug.org/5-publications/proceedings{_}attendee{_}lists/2008CD/S08{_}Proceedings/pages/Authors/01--5Monday/Palazzari-Monday4C/Palazzari-Monday4C-paper.pdf.
https://cug.org/5-publications/proceedings{_}attendee{_}lists/2008CD/S08{_}Proceedings/pages/Authors/01--5Monday/Palazzari-Monday4C/Palazzari-Monday4C-paper.pdf.

Assessing Productivity of High-Level Design
Methodologies for High-Performance
Reconfigurable Computers

Esam El-Araby, Saumil G. Merchant, and Tarek El-Ghazawi

Abstract In spite of their potential to provide substantial performance improve-
ments over traditional supercomputers, high-performance reconfigurable computers
(HPRCs) and their broad acceptance have been hindered by productivity challenges.
These challenges arise from increased design complexity, a wide array of custom
design languages and tools, and often overblown sales literature. Therefore, it is
essential to review, evaluate, and assess the productivity of this technology. This
chapter presents a review and taxonomy of high-level languages (HLLs) for HPRCs
and a framework for the comparative analysis of their features. It also introduces
new metrics and an assessment model based on computational effort. The proposed
concepts are inspired by Newton’s equations of motion and the notion of work
and power in an abstract multidimensional space of design specifications. The
metrics are devised to highlight two aspects of the design process: the total time-to-
solution and the efficient utilization of user and computing resources at discrete time
steps along the development path. The study involves analytical and experimental
evaluations demonstrating the applicability of the proposed model.

E. El-Araby (�)
Electrical Engineering and Computer Science, The Catholic University of America,
Pangborn Hall Room #314A, 620 Michigan Ave., NE, Washington, DC 20064, USA
e-mail: aly@cua.edu

S.G. Merchant
IBM Corporation, India B148, 6th Floor, Embassy Golf Links Block D, Domlur Kormangala
Intermediate Ring Rd, Bangalore, KA 560071, India
e-mail: smerchant@in.ibm.com

T. El-Ghazawi
The George Washington University, 624D Academic Center, 801 22nd Street, NW,
Washington, DC 20052, USA
e-mail: tarek@gwu.edu

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 24, © Springer Science+Business Media, LLC 2013

719

mailto:aly@cua.edu
mailto:smerchant@in.ibm.com
mailto:tarek@gwu.edu

720 E. El-Araby et al.

1 Introduction

Programmability challenges with high-performance reconfigurable computers
(HPRCs) have hindered their widespread acceptance among the supercomputing
community. Application development on these systems typically requires software
and hardware programming expertise for which design paradigms and tools have
been traditionally separate. The standard way of describing software is using
high-level languages (HLLs), such as C, C++, or Fortran, whereas, hardware is
typically designed using hardware description languages (HDLs), such as VHDL
and Verilog. Fragmented design flow and the need for expertise in parallel software
and hardware design are major productivity hurdles facing HPRCs. To bridge the
productivity gap several HLL tools such as Xilinx Forge, Handel-C, Impulse-C,
Mitrion-C, and Bluespec have been proposed which attempt to abstract underlying
hardware design details and streamline the disparate design flows. These tools often
tradeoff performance for programmability. Dataflow design tools, based on the
graphical user interface, e.g., DSPLogic, seem to offer an interesting compromise
between HLLs and HDLs. These languages offer a trade-off between a shorter
development time and a performance overhead imposed by HLLs.

Streamlining hardware description using HLLs typically used in software pro-
gramming, or at least using dataflow languages, is a major and distinctive feature
of HPRCs that potentially allows domain scientists to develop entire applications
without relying on hardware designers. However, an HLL compiler for HPRCs must
combine the capabilities of tools for traditional microprocessor compilation and
tools for computer-aided design with FPGAs. It must also extend these two separate
set of tools with capabilities for mutual synchronization and data transfer between
microprocessors and reconfigurable processor subsystems [1, 2]. The problems
are further escalated by lack of standard interfaces and architectural diversity in
reconfigurable computing subsystems. Moreover, the range of tool choices and
puffed up sales literature make it hard to comprehend real differences.

This chapter aims to present a framework and a mathematical model to compare
and contrast different HLL languages and their features. For this a detailed
review and a taxonomy of the existing design languages for HPRCs is provided.
The model and the metrics to evaluate HLLs are inspired from the principles of
Newton’s equations of motion and the notions of work and power in an abstract
multidimensional space of design specifications. They highlight two distinct aspects
of the development process: (a) the total time-to-solution and (b) the efficient utiliza-
tion of user and computing resources. We believe that this enables a comprehensive
evaluation of the design languages. The experimental study presented includes
HLLs from the imperative and the dataflow programming paradigms, showcasing
the wide applicability of our methodology. In brief, the major contributions of this
chapter are as follows: (a) A detailed review and taxonomy of HLL languages; (b)
new evaluation metrics to emphasize the total time to solution as well as the resource
usage efficiency of an HLL tool/language along the development path; and (c) an
analytical framework for comparative analyses of HLL languages.

Assessing Productivity of High-Level Design Methodologies. . . 721

The remainder of this chapter is organized as follows. Section 2 presents a
detailed review and taxonomy of HLL design tools for HPRCs. Section 3 presents
related work. Section 4 introduces the model and the framework to evaluate and
compare HLLs. Section 5 presents an experimental study that uses the proposed
framework to evaluate HLLs from imperative and dataflow programming styles.
Finally, Sect. 6 concludes the chapter.

2 HLL Review and Taxonomy

To understand and evaluate the different language attributes, taxonomy is impera-
tive. This section provides a thorough review and taxonomy of available HLL tools
in research and commercial literature. Table 1 shows a list of HLLs reviewed. Some
of the listed languages are text-based, either C-, Fortran-, Java-, or Matlab-like,
others are graphical-based.

Our review revealed that various vendors provide not only a HLL, but also a
complete development environment that may integrate with the tools of the basic
development flow, see Fig. 1 Users can develop their applications using either the
standard HDL flow or a suite of higher-level languages such as C and C++ or the
Xilinx System Generator for DSP package.

Impulse Accelerated Technologies, for example, provides a C-based devel-
opment kit, Impulse-C, that allows the users to program their applications in
standard C with the aid of a library of functions for describing parallel processes,
partitioning the application into software and hardware parts, and simulating and
instrumenting the application. The Impulse-C programming model provides stream-
based communication between processes. The kit provides a compiler that generates
HDL code for synthesis from the hardware parts of the application targeting
different HPRC platforms such as Cray-XD1 and/or SGI Altix/RASC [3,4] Impulse-
C represents a class of imperative languages with syntax based strongly on ANSI
C [5]. The language is extended to address specific hardware concepts such as

Table 1 Reviewed HLLS

1 Impulse-C 11 SA-C 21 JHDL 31 C2Verilog

2 Handel-C 12 Trident Compiler 22 Galadriel & Nenya 32 Bach C
3 Mitrion-C 13 CHiMPS 23 Viva 33 SpecC
4 Dime-C 14 System-Studio 24 Ptolemy II 34 Ocapi
5 System-C 15 Convergen SC 25 SysGen 35 HardwareC
6 Catapult-C 16 Transmogrifier-C 26 RC Toolbox 36 Cones
7 Carte-C 17 SPARK 27 CoreFire 37 BDL
8 Streams-C 18 Brass 28 DSS 38 Cocentric
9 AccelChip 19 DeFacto 29 Forge 39 C2H
10 NAPA-C 20 MATCH 30 CASH 40 Blue Spec

722 E. El-Araby et al.

Fig. 1 Development flow of high-level tools [3]

communicating sequential processes (CSP) and streams. Existing VHDL designs
may also be incorporated and called from the Impulse-C code as external functions.

Mentor Graphics, formerly Celoxica and later Agility DS, provides a C-based
hardware design language, Handel-C, and the DK Design Suite that can be cus-
tomized for specific HPRC platforms such as the Cray-XD1 and/or SGI Altix/RASC
systems [3, 4]. DK Design Suite unifies system verification,hardware/software
codesign, and Handel-C synthesis in a GUI-based development environment. The
customization includes a Platform Support Library (PSL), which includes Handel-
C interfaces to the underlying HPRC platform [6].

Mitrionics provides a C-based hardware design language, Mitrion-C, and an ab-
stract machine, the Mitrion Virtual Processor (MVP), which allows users to develop
portable high-level code for FPGA applications. The Mitrion architecture uses a
data-driven representation of the program, which the tools map onto programmable
logic. Mitrion-C is an ANSI C-based functional language. Mitrion-C programming
language is an implicitly parallel programming language with syntax similar to C.
The language centers on parallelism and data dependencies. In contrast, traditional
languages are sequential and center on order-of-execution. In Mitrion-C there is no
order-of-execution; any operation may be executed as soon as its data dependencies
are fulfilled. Mitrion-C is a Single-Assignment language (variables may only be
assigned once in a scope) in order to prevent variables from having different values
within the same scope. Software written in the Mitrion-C programming language
is compiled into a configuration of the MVP. The MVP is a fine-grain, massively
parallel, reconfigurable soft-core processor [7].

Assessing Productivity of High-Level Design Methodologies. . . 723

BlueSpec provides BlueSpec system verilog (BSV) language high-level synthe-
sis tools which produce systemC executables and verilog RTL models for RTL
synthesis and/or simulation with third party tools. The input to these tools are
models, transactors, test benches, and implementations written in BSV. BSV is a
high-level functional hardware description programming language and is a synthe-
sizable subset of system verilog. It enables some powerful features emanating from
parameterization, atomic transactions, synthesizable transactors, and synthesizable
verification. It targets both ASIC and FPGA design flows by integrating into popular
design flows such as that of Cadence, Synopsys, Mentor Graphics, and Magma [8].

The Xilinx System Generator (SysGen) for DSP tool uses a somewhat different
approach for designing digital signal processing (DSP) blocks. It integrates with
the MATLAB and Simulink packages from MathWorks to allow users to design the
algorithmic block of their applications in the MATLAB GUI environment [9].

DSPlogic provides the Rapid Reconfigurable Computing Development Kit (RC
Toolbox), which integrates with MATLAB and Simulink from MathWorks and with
Xilinx tools. It allows users to design, verify, and build the FPGA logic for DSP
applications entirely from within the MATLAB/Simulink environment. The tool
also includes the Reconfigurable Computing I/O (RCIO) library, which provides
a portable application programming interface for communications between the
software application that runs on the host processor(s) and the attached FPGAs.
DSPLogic RC Toolbox is a combined graphical and text-based programming
environment for HPRC application development. Blocks from the DSPlogic RC
blockset and Xilinx System Generator are used to create a data flow diagram.
Existing VHDL designs may also be incorporated using System Generator’s HDL
co-simulation capabilities [10].

The Carte-C (Carte-Fortran) development environment is somewhat different
from the above mentioned flows in the sense that it is tightly integrated with SRC
systems. It is a C-based (Fortran-based) environment that allows users to program
their applications in standard C (Fortran) with the aid of a library of pre-synthesized
hardware functions. There are two types of application source files to be compiled,
one that targets the microprocessor and another that targets the reconfigurable
processor. Since users often wish to extend the built-in set of operators, the compiler
allows users to integrate their own VHDL/Verilog macros. The environment also
provides a means for debugging and verification [11].

2.1 HLL Tool Taxonomy

After reviewing the literature of HLLs, we recognized the need for a taxonomy
of their programming models that would provide a useful means for the charac-
terization of the differences among them. Figure 2 shows our taxonomy of the
programming models of the different HLLs. The programming model can be defined
as the hardware abstract view presented to the programmer by the programming

724 E. El-Araby et al.

HLLs

Imperative Data Flow

Locality
Awareness

Locality
Awareness

No Locality
Awareness

Communication
Style

2-Sided
Comm.

1-Sided
Comm.

Streams-C
Impulse-C
Handel-C
Carte-C

GAS PGASMP/CSP

Functional

HDLs
Mitrion-C
BlueSpec

SA-C

Examples

Graphical

Ptolemy II
SysGen

DSPLogic
Corefire

Viva

Examples

Examples

Explicit ImplicitParallelismParallelism

MP ∫ Message Passing
CSP ∫ Communicating Sequential Processes
GAS ∫ Global Address Space
PGAS ∫ Partitioned Global Address Space

Fig. 2 Taxonomy of HLL programming models

tool. Thus, a programming model defines which parts of the hardware architecture
will become visible to the programmer and be under his/her direct control.

In general, HLLs can be categorized as either imperative or dataflow pro-
gramming paradigms. This is mainly dependent on how parallelism is expressed
and/or extracted. In imperative paradigms parallelism is nonnative and expressed
in an explicit manner which is solely the user’s responsibility. In other words,
in imperative languages, everything is sequential unless otherwise stated. On
the other hand, in dataflow paradigms parallelism is native and expressed in an
implicit manner. In other words, in dataflow languages, everything is parallel unless
otherwise stated.

Dataflow paradigms, as shown in Fig. 2, can be further divided into two
subcategories, namely functional and graphical paradigms. Functional languages are
basically the text-based versions of dataflow paradigms as opposed to the graphical
version. In general, functional HLLs are characterized as being single-assignment
languages. In light of this, HDLs, i.e., VHDL and/or Verilog, fall under this category.
Examples of this family are Mitrion-C, BlueSpec, SA-C, etc. Examples of graphical
dataflow languages include SysGen, DSPLogic, CoreFire, Viva, etc.

Imperative paradigms, on the other hand, include languages such as Streams-
C, Impulse-C, Handel-C, Carte-C, etc. However, because parallelism is nonnative,
locality awareness and communication style, from an HPC perspective, become
issues that are difficult to express in imperative paradigms. These issues are resolved
by either the introduction of new extensions to the language, as in the case of
Handel-C, or by the insertion of compiler directives/pragmas, as in the case
of Impulse-C and Carte-C. In addition, concepts such as Message Passing (MP),
Communication Sequential Processes (CSP), Global Address Space (GAS), and
Partitioned Global Address Space (PGAS), are commonly found among the plethora

Assessing Productivity of High-Level Design Methodologies. . . 725

of languages that fall under imperative paradigms. Figure 2 shows how those
languages deal with communication issues as well as with locality awareness. For
example, languages such as Streams-C and Impulse-C provide a two-sided, i.e.,
send-and-receive, communication style and also show an awareness of data locality
through the MP/CSP model. The MP/CSP model is also supported by Carte-C and
Handel-C.

3 Related Works

The objective of this chapter is to formalize a statistical framework to evaluate
various HLL features/attributes to characterize and compare different high-level
design languages/methodologies. To achieve this objective our approach is based
on leveraging previous work and concepts that were introduced, and proved useful
to us, in similar investigations. For example, Holland et al. [12] reviewed some
C-based HLLs and highlighted some of the differences among them. Similarly,
Edwards [13] discussed the challenges of synthesizing hardware from C-like
languages. Finally, our previous work [14, 15] provided a formal and empirical
comparative analysis of HLLs along with experimental work conducted on Cray-
XD1. The work presented here significantly extends the model in [14, 15] and
leverages some of its terminology and concepts. It enables evaluation of language
features as well as experimental metrics, both of which are termed as attributes in
the model. Furthermore, in our investigation the elimination of biasing effects has
been formalized based on statistical analysis and validation.

In our study we considered productivity as one of the evaluation metrics. The
definition and model of productivity have been widely discussed in the literature. For
example, Sterling [16] in his “Special Theory of Productivity” defines it as utility
divided by time, where utility being the useful work, e.g., operations. While Snir
and Bader [17] defined productivity of a system as the time dependent utility of the
answers it produces divided by the total lifetime cost. Kennedy et al. [18] definition
is tailored towards tool expressiveness and efficiency. Abstract expressiveness
determines the programming tool development power and computational efficiency
is the programming tool execution efficiency. Kepner [19, 20] combines all of the
above ideas into a single synthesis formulation. In addition, Numrich [21] presents
his generic performance metric based on computational action. He examines work
as it evolves in time and computes computational action as the integral of the work
function over time.

Our work leverages and builds off concepts from Numrich’s research on per-
formance and productivity metrics based on the principle of computational least
action [21–25]. The metrics proposed here emphasize the rate of this computational
work/effort. We call this rate as the work progress rate. Computational work or effort
is the work done by the user–tool combination in traversing an abstract specification
space. As it will be shown later, the productivity metric emphasizing the total time-
to-solution is a special case of this new metric.

726 E. El-Araby et al.

4 HLL Evaluation Framework

4.1 Formalizing the Framework

We start our formalization by visualizing the different HLLs as being observations
of a space of attributes. These attributes can be either qualitative language features
such as support for pointers and debugging capability, or experimental metrics
such as development time and productivity. Therefore, in this multidimensional
space of attributes each language can be considered as a single point or as an
observation in that space. For example, Fig. 3 shows a case where this space has been
hypothetically reduced to a two-dimensional space of, collectively, two orthogonal
sets of attributes, namely software features and hardware features. Therefore, the
evaluation of the different HLLs can be simply performed by comparing the
different components along the dimensions of that space, e.g., feature coverage
and/or feature loss. Figure 3 shows a pictorial comparison of two hypothetical HLLs
with different degrees of feature coverage and/or loss.

It is worth mentioning that in developing our framework we needed to minimize
certain biasing effects associated with small sample sizes. For example, biasing
effects may include previous user experience and knowledge of a specific language
and/or design methodology. Therefore, we formalized our framework by instru-
menting a normalization mechanism through which each user is required to provide
three different observations of the same trial (application). In other words, each user
develops the same application in three different implementations (languages). The
first implementation is performed using the language under consideration, while
the other two are performed using both pure software, e.g., in C/C++, and pure

HDLs
VHDL and Verilog

HLL 1

S/W Languages
C/C++, FORTRAN

H/W Design Tools
Schematics and

CADs

S/W
Features

H/W
Features

HLL 2

S/W Feature Loss

H/W Feature Loss

H/W Feature Coverage

S/W Feature Coverage

S/W Feature Loss

H/W Feature Loss

H/W Feature Coverage

S/W Feature Coverage

Fig. 3 HLLs as observations in the feature space

Assessing Productivity of High-Level Design Methodologies. . . 727

Attributes / Features (Nf)

La
ng

ua
ge

s
(N

l)

User 1

1) Collect data points for all user trials through different applications
2) Normalize to minimize user’s experience effects
3) Calculate the average space observation for each user

Attributes / Features (Nf)

La
ng

ua
ge

s
(N

l)

Trials (N
a)

Trials (N
a)

User Nu

Attributes / Features (Nf)

La
ng

ua
ge

s
(N

l)

Attribute1 Attribute2 Attribute Attribute

Language1 1 0 0 1

Language2 0 973 4.32 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Language Nl-1

Nf-1 Nf

1 5780 77.5 0

Language Nl 1 1000 0.63 1

()==

∈∈∈∈

−
−

=⇒=

==

= ==

flua

N

l
fuaflua

N

l
fua

flua

N

u

N

a fuafua

fuaflua

au
fl

N

u
flu

u
fl

vvvv

andNfNlNuNawhere

vv

vv

NN
ss

N
s

ll

u au

,,,
1

max
,,,,,1

min
,,

1 1
min

,,
max

,,

min
,,,,,

,
1

,,,

max,min

,],1[,],1[,],1[,],1[

11
4) Calculate the

average space
observation for
all users

a

b

Fig. 4 Formalizing the scoring mechanism. (a) Preliminary attribute/feature matrices. (b) Final
attribute/feature matrix

hardware, e.g., in VHDL/Verilog. These two other observations (implementations
and/or languages) serve as reference points that can minimize the biasing effects
of user experience and knowledge of a given language. In other words, each user
observation for a certain trial is normalized to his/her own experience making the
observations more language-specific rather than being user-specific measurements.
Figure 4 summarizes the steps involved in our formal methodology for conducting
the experimental work. Figure 4a shows the preliminary formulation of attribute
matrices leading to the final attribute matrix shown in Fig. 4b. Each row in
the final attributes matrix represents an observation (language) projected in the
multidimensional space of attributes/features.

Based on the above discussion, we introduce the following notations in order to
quantify our concepts:

728 E. El-Araby et al.

• Nf is the total number of attributes/features, i.e., the dimension of the attribute
space.

• Nl is the total number of languages.
• Nu is the total number of independent users involved in the experiments.
• Na is the total number of applications developed by each user, i.e., the number of

trials of the attribute space for each user.
• va,u,l, f is the value of attribute/feature f for language l as observed by user u

when developing application a.
• vmin

a,u,l, f is the minimum value of attribute/feature f for reference language l0 as
observed by user u when developing application a

vmin
a,u, f =

Nl
min
l=1

(
va,u,l, f

)
(1)

• vmax
a,u,l, f is the maximum value of attribute/feature f for reference language l1 as

observed by user u when developing application a

vmax
a,u, f =

Nl
max
l=1

(
va,u,l, f

)
(2)

• sa,u,l, f is the normalized value of attribute/feature f for language l, with respect
to reference language l0 and language l1, as observed by user u when developing
application a

sa,u,l, f =
va,u,l, f − vmin

a,u, f

vmax
a,u, f − vmin

a,u, f

(3)

• su,l, f is the average normalized value of attribute/feature f for language l, with
respect to reference language l0 and language l1, as observed by user u across all
trials (applications), i.e., the average space observation for each user

su,l, f =
1

Na

Na

∑
a=1

sa,u,l, f =
1

Na

Na

∑
a=1

(
va,u,l, f − vmin

a,u, f

vmax
a,u, f − vmin

a,u, f

)
(4)

• sl, f is the average normalized value of attribute/feature f for language l, with
respect to reference language l0 and language l1, as observed by all users across
all trials (applications), i.e., the average space observation for all users

sl, f =
1

Nu

Nu

∑
u=1

su,l, f

⇒ sl, f =
1

NuNa

Nu

∑
u=1

Na

∑
a=1

(
va,u,l, f − vmin

a,u, f

vmax
a,u, f − vmin

a,u, f

)
(5)

where {
a ∈ [1,Na], u ∈ [1,Nu], l ∈ [1,Nl], f ∈ [1,Nf]

}

Assessing Productivity of High-Level Design Methodologies. . . 729

Fig. 5 Validation of the formal framework

4.2 Validating the Framework

We statistically validated the fairness of our framework by applying our formulation
to the evaluation metrics (attributes), i.e., ease-of-use and efficiency, as proposed
and defined in [14]. This validation was performed by the replacement of all entries
in the preliminary attribute matrices, i.e., attribute value va,u,l, f , with independent
and identically distributed random variables. The random variables were uniformly
distributed. After applying our framework through Eqs. (1)–(5), we compared the
theoretical expected values of the metrics of evaluation with the observed values.
We found those to be almost identical. Furthermore, the variance of the data points
was measured to be minimum and consistent with the theoretical expectations, see
Fig. 5. In other words, the different hypothetical languages (observations) in the
attribute space were closely clustered with minimum relative dispersion around the
expected value. This proved to us the fairness of the proposed framework as well as
the minimization of biasing effects towards certain languages over others. Figure 5
shows our findings with this respect. One can also note the relative placement of the
reference languages as two extremes.

730 E. El-Araby et al.

Design
Methodology

Inputs

(Weighted Specifications)

Outputs

(Solutions Close to
Input Specifications)

Fig. 6 Black box representation of design methodologies

4.3 Metrics of Evaluation

Having established those top-level guidelines for the framework, different de-
sign methodologies, as mentioned earlier, can be evaluated by comparing their
components along the dimensions of the attribute space. In order to calculate
each attribute/feature (metric) value for a particular methodology, the design
process needs to be analyzed in more details. Adopting a black box approach,
design methodologies and their corresponding tools/languages need a quantitative
representation of their inputs and the corresponding outcome. Inputs can be
represented as a set of requirements/specifications, and a corresponding set of
preferences/weights adjustable along the design process. Outputs can be represented
as a set of solutions where the target solution would be the preferred input
specifications, see Fig. 6.

In other words, given a set of specifications, S = {power, resources, speed, etc.},
with their allowable ranges, Smin = {minimum power, minimum resources, mini-
mum speed, etc.} and Smax = {maximum power, maximum resources, maximum
speed, etc.}, and also given their corresponding weights or preference W = {power
weight, resources weight, speed weight, etc.}, the goal is to achieve a target set of
specifications, Starget = {target power, target resource utilization, target frequency,
etc.}. More formally, this can be represented as a multidimensional space of
specifications whose basis can be described by the following vector representation:

−→
S =

⎡
⎢⎢⎣

s1

s2

. . .

sN

⎤
⎥⎥⎦ ,−−→Smin =

⎡
⎢⎢⎣

s1min

s2min

. . .

sNmin

⎤
⎥⎥⎦ ,−−→Smax =

⎡
⎢⎢⎣

s1max

s2max

. . .

sNmax

⎤
⎥⎥⎦ ,−−−→Starget =

⎡
⎢⎢⎢⎣

s1target

s2target

. . .

sNtarget

⎤
⎥⎥⎥⎦ ,

−→
W =

⎡
⎢⎢⎣

w1

w2

. . .

wN

⎤
⎥⎥⎦ (6)

where
N ≡ Dimensionality of the specification (solution) space
Due to the different scales and units for each component of the specification

vector, a normalized and unitless representation of the space is desirable. Therefore,
a mapping function is needed to establish the correspondence relation between

Assessing Productivity of High-Level Design Methodologies. . . 731

the original space and the normalized space. The mapping is done such that
more desirable solutions always have higher coordinates in the normalized space,
see Eq. (7). The design problem becomes now a search process for the target
solution. For specifications that need to be maximized, e.g., frequency, search in
the normalized space moves in the same direction as in the original space

xi =

⎧⎨
⎩

wi × si−simin
simax−simin

, si to be maximized

wi × simax−si
simax−simin

, si to be minimized

⎫⎬
⎭ ,i= 1,2,,N

Δxi =

⎧⎨
⎩

wi × Δ si
simax−simin

, si to be maximized

wi × −Δ si
simax−simin

, si to be minimized

⎫⎬
⎭ , i = 1,2,,N

−→
X =

⎡
⎢⎢⎣

x1

x2

. . .

xN

⎤
⎥⎥⎦ , −−−−→Xoptimal =

⎡
⎢⎢⎢⎣

x1optimal

x2optimal

. . .

xNoptimal

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

w1

w2

. . .

wN

⎤
⎥⎥⎦=

−→
W ,

−−−→
Xtarget =

⎡
⎢⎢⎢⎣

x1target

x2target

. . .

xNtarget

⎤
⎥⎥⎥⎦ (7)

where−→
X ≡ Solution position vector in the normalized space
For specifications that need to be minimized, e.g., area and/or power, search in

the normalized space moves in the opposite direction to that in the original space,
see Fig. 7. It can be seen in Fig. 7 that the most desirable solution, i.e., optimal
solution with respect to the given range of specifications, is located at the positive
extreme of the normalized space.

Based on this representation, design methodologies/tools can be evaluated by
analyzing the time evolution of the search path towards the target solution. Different
methodologies differ in the selection of the search path, i.e., location of candidate
solutions in the search space. They also differ in the manner through which the
search path is being time sampled, i.e., total number of iterations and/or the
candidate solutions, M, along the search path. In other words, any given design
methodology can be characterized by the instantaneous progress of the search path
as a function of time. Under this representation, several useful quantities can be
defined and used in studying the design process. More specifically, the target vector,
Tk, at time sample (iteration) k, can be defined as the distance from a given candidate
solution, Xk, to the target solution, Xtarget. Tk measures the closeness of a given
candidate solution to the final target solution. Also, displacement vector, Dk, at
time sample (iteration) k, which is the shift between consecutive candidates in
the solution space measures the distance traversed along the search path from a
candidate solution to the following one. Moreover, sensitivity, λk, at time sample
(iteration) k, defined as the shift between consecutive candidate solutions in the
direction of the target solution, i.e., the projection of Dk onto Tk, represents a
measure of the convergence towards the target solution. ϕk is the angle of projection
or the angle of deviation of the tool away from the target. Additionally, the velocity

732 E. El-Araby et al.

xi

si
Si_min Si_max

0 wi
xi

si
Si_min Si_max

0 wi

Si to be minimized Si to be maximized

1

x1

x2

w1 1

w2 Xtarget
Xoptimal

X

Fig. 7 Space for the design problem (solution search-process)

vector, υk, at time sample (iteration) k, represents the instantaneous traversal speed
along the search path from a candidate solution to the following one. The definitions
of these quantities are given in Eq. (8) and illustrated in Fig. 8

⎧⎨
⎩

−→
Xk =

−−−→
X(t ,k),

−→
Dk =

−−−→
D(t ,k)

−→
Tk =

−−→
T (t ,k),

−→υk =
−−→
υ(t ,k), λk = λ (t ,k)

⎫⎬
⎭

−→
Tk =

−−−→
Xtarget −−→

Xk

−→
Dk =

−−→
Xk+1 −−→

Xk

λk =

−→
Dk ·−→Tk∥∥∥−→Tk

∥∥∥ =

−→
Dk ·−→Tk

Tk
= Dk cos(ϕk)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, 0 ≤ k < M

, and
−→
X0 =

−→
0

(8)

Assessing Productivity of High-Level Design Methodologies. . . 733

x1

x2
Xoptimal

w1

w2

Xk

Xk+1

Xk+2

XtargetXM =Tk+1

kT
Dk

kλ

Path

kυ

kϕ

Fig. 8 Time evolution of the search path

tool

user

t0=0 t0
, t1 t1

, t2 t2 t3 tk tk
, tM-1 tM-1

, tM
 tk+1

Achieved target
objectives

time
 ,

Δtk
user Δtk

tool

.

.
.

.

Fig. 9 Activities of the design process

where
−→
A ·−→B ≡ Dot product of vectors

−→
A and

−→
B

∥∥∥−→A
∥∥∥≡ A ≡ Length of vector

−→
A

Finally, it is essential to consider two activities that are typically associated with
the design process, namely the user activity and the tool activity. These two activities
are disjoint and mutually exclusive in time (consecutive activities that do not occur
simultaneously), see Fig. 9, however, they are dependent in a causal (cause-and-
effect) relationship. The design process typically starts with a user activity, i.e.,
initial design given to the tool, and ends with a tool activity after which the target
solution at minimum is reached, see Fig. 8. The design process alternates (iterates)
between the two exclusive activities, see Fig. 9. The user activity can be viewed
as corrective to the tool deviations away from the target solution. Therefore, if we
assume that tM is the total development time, tk represents the time spent after k
iterations, Δ tk is the time period between two consecutive iterations, the expression

734 E. El-Araby et al.

given by Eq. (9) can be used to describe the timeline of the user and tool activities.
It can be seen in Fig. 9 that Δ tk is the summation of the time spent by the user Δ tuser

k
and the time spent by the tool Δ t tool

k to generate the outputs of iteration k. Note that
the shaded and un-shaded regions in Fig. 9 represent, respectively, the active and
idle time periods for either the user or the tool

tk+1 = tk +Δ tk = tk +
(

Δ tuser
k +Δ t tool

k

)
= t ,k +Δ t tool

k , 0 ≤ k < M (9)

where
t ,k = tk +Δ tuser

k

4.3.1 Productivity

Productivity, Ψ , is usually defined as utility, U , per cost, C, as shown in Eq. (10)
[16–23]

Ψ =
U
C

(10)

Utility is typically a function of achieved design objectives such as performance,
power, and area, etc. Cost is the development cost expressed in either development
time or proportional time equivalents such as man-hours, dollars, etc. When the total
development time, tM , is considered as the cost, productivity gives a measure of how
fast a desired solution was obtained which can be expressed as follows:

Ψ =
U
C

=

∥∥∥−→T0

∥∥∥
tM

=

∥∥∥−−−→Xtarget

∥∥∥
tM

≡ ∥∥−−−→υtarget
∥∥ (11)

where T0 is the target vector at time sample (iteration) 0. In other words, T0 is the
initial distance to the target solution, Xtarget, see Fig. 8.Relative productivity of two
methodologies is the ratio of individual productivities. Thus for two methodologies
attaining the same design objectives the relative productivity is the inverse ratio of
their development costs, see Eq. (12)

Ψ1/2 =
Ψ1

Ψ2
=

C2

C1
=

tM2

tM1

(12)

Also, based on this metric two methodologies achieving the same design objectives
with the same development costs have the same productivity. Although this is a
logical inference, the metric has no notion of the user effort, tool maturity, or
how efficiently the resources of the development process interact are being used or
interact. Two tools could have taken two completely different paths in the objective
search space to reach the target in the same amount of time, and have different levels
of user involvement, design iterations, tool algorithm complexities, and compute

Assessing Productivity of High-Level Design Methodologies. . . 735

resource requirements. The productivity metric based on time-to-solution cannot
capture these facets of development process. Hence evaluating methodologies based
on solely the productivity metric is incomplete at best. To address this we present a
new metric, i.e., work progress rate, as defined below.

4.3.2 Work Progress Rate

The purpose of work progress rate metric is to capture the efficiency of resource
utilization, by the user and the tool combined, at discrete time steps along the search
path progressing towards the target specifications. The metric draws from the
principles of classical mechanics based on Newton’s laws of motion. It evaluates the
computational effort exerted by the user and the tool in moving towards the target
specifications along the search path in the specification space. Based on the fact that
the user and the tool computational efforts are mutually time exclusive activities
as discussed earlier, the instantaneous computational effort, Ek, in any given time
period Δ tk of iteration k, can be expressed as a vector with two components. The two
components are the user effort, Euser

k , and the tool effort, E tool
k , as shown in Eq. (13)

−→
Ek =

[
Euser

k
E tool

k

]
(13)

The instantaneous work progress rate, Γ k, in any given time period Δ tk is the rate
of exerting computational effort in order to move along the search path in that time
period. It is also a vector with two components, the user work progress rate, Γ user

k ,
and the tool work progress rate, Γ tool

k , as shown in Eqs. (14a) and (14b)

−→
Γk ≡

[
Γ user

k
Γ tool

k

]
≡ d

−→
Ek

dtk
∼= Δ−→

Ek

Δ tk

Δ−→
Ek ≡ ∂−→Ek

∂ tuser
k

Δ tuser
k +

∂−→Ek

∂ t tool
k

Δ t tool
k

Δ−→
Ek =

∂
∂ tuser

k

[
Euser

k
E tool

k

]
Δ tuser

k +
∂

∂ t tool
k

[
Euser

k
E tool

k

]
Δ t tool

k (14a)

Δ−→
Ek =

[
dEuser

k
dtuser

k

0

]
Δ tuser

k +

⎡
⎣0

dE tool
k

dttool
k

⎤
⎦Δ t tool

k =

⎡
⎣

dEuser
k

dtuser
k

Δ tuser
k

dE tool
k

dttool
k

Δ t tool
k

⎤
⎦

⇒ Γ user
k =

dEuser
k

dtuser
k

∼= Euser
k

Δ tuser
k

, and Γ tool
k =

dE tool
k

dt tool
k

∼= E tool
k

Δ t tool
k

(14b)

736 E. El-Araby et al.

The overall work progress rate, Γ , can be defined as the statistical average of the
instantaneous rates across all iterations along the search path in the specifications
space. This can be described as shown in Eq. (15)

−→
Γ ≡ 1

M

M−1

∑
k=0

−→
Γk =

1
M

M−1

∑
k=0

⎛
⎜⎝
⎡
⎢⎣

Euser
k

Δ tuser
k

E tool
k

Δ ttool
k

⎤
⎥⎦
⎞
⎟⎠

⇒−→
Γ ≡

[
Γ user

Γ tool

]
=

⎡
⎢⎢⎣

1
M

M−1
∑

k=0

(
Euser

k
Δ tuser

k

)

1
M

M−1
∑

k=0

(
E tool

k
Δ ttool

k

)
⎤
⎥⎥⎦ (15)

Based on Eq. (15), two methodologies achieving the same design objectives, in
equal amount of time, along different paths and across different number of iterations
can have different work progress rates even though their productivities as given
by Eq. (11) is the same. This depends on the user and tool computational efforts
along the search path. Thus, the work progress rate metric allows us to compare
two methodologies not only based on how fast the target objectives were achieved,
but how efficiently the resources were used along the way to achieve the target
objectives.

It is necessary at this point to analyze and model the computational efforts
exerted by both the user and the tool. In our model we leverage the concept of
computational force as introduced and defined by Numrich [24, 25]. We will also
define the computational effort as the work, as defined in classical mechanics, done
by a force field to move an object between two positions in a given space.

In our model, the user, at any given time period Δ tk of iteration k, expends effort
at the beginning of the iteration to maximize the displacement in the specifications
space towards the target solution. Hence the computational effort expended by the
user can be modeled by the work done by the user to push the tool to move from
a given position (candidate solution), Xk, in the specifications space to the next
position, Xk+1. Because the target solution is always known to the user at any
point of time, the user’s computational force is assumed to be pointing towards
the target position. In other words, the computational force, Fuser

k , applied by the
user is an impact force used to give the initial push to the tool to move in the
specifications space and is aligned with the direction of the current target vector,
Tk. This is shown in Fig. 10 and expressed in Eq. (16). Similarly, the computational
effort expended by the tool is the work done by the tool to cause the displacement
Dk in the specifications space, see Fig. 10 and Eq. (17). The reader is reminded
of the fact that the user and tool computational efforts, although being mutually
dependent in a causal (cause-and-effect) relationship, are time exclusive activities
and hence their computational forces cannot be used simultaneously to describe the
dynamics of motion in the solution space, see Eqs. (16) and (17). More specifically,

Assessing Productivity of High-Level Design Methodologies. . . 737

x1

x2

Xoptimal

w1

w2

Xk

Xk+1

XtargetXM =
Tk+1

TkDk

kλ

tool
kF

kϕkω user
kF

Fig. 10 User and tool computational forces

the user,during the time interval Δ tuser
k , exerts an effort only through his/her own

computational force, Fuser
k , in the direction of the target vector, Tk. After that time

interval the tool receives an initial impact velocity, υ tool
0k , from the user and starts

searching the space for a duration of Δ t tool
k . It is assumed that the user starts his

activity from rest, i.e., zero velocity, and continues his activity until he reaches a
final velocity, υuser

k , after a time interval of Δ tuser
k . It is also assumed that the user

final velocity is transferred to the tool as an initial velocity, υ tool
0k , in a perfectly

inelastic collision/impact. These dynamics are described through the equations of
motion (18) and (19)

Euser
k =

−−→
Fuser

k ·−→Tk = Fuser
k Tk (16)

E tool
k =

−−→
F tool

k ·−→Dk = F tool
k Dk cosωk (17)

−−→
Fuser

k ≡ muser d
−−→
υuser

k

dtuser
k

∼= muser Δ
−−→
υuser

k

Δ tuser
k

= muser
−−→
υuser

k −−−→
υuser

0k

Δ tuser
k

−−→
Fuser

k = muser
−−→
υuser

k

Δ tuser
k

⇒−−→
υuser

k =

−−→
Fuser

k

muser Δ tuser
k ≡

−→
Tk

Δ tuser
k

(18)

738 E. El-Araby et al.

where

muser ≡ The user’s inertial resistance

−−→
F tool

k ≡ mtool d
−−→
υ tool

k

dt tool
k

∼= mtool Δ
−−→
υ tool

k

Δ t tool
k

= mtool

−−→
υ tool

k −−−→
υ tool

0k

Δ t tool
k

⇒
−−→
υ tool

k =
−−→
υ tool

0k +

−−→
F tool

k

mtool Δ t tool
k (19)

where

−−→
υ tool

0k =
−−→
υuser

k =

−→
Tk

Δ tuser
k

≡

⎧⎪⎪⎨
⎪⎪⎩

The initial tool velocity in
the direction of the target
vector

−→
Tk duetocomputational

effort expended by the user

mtool ≡ The tool’s inertial resistance

The instantaneous work progress rate can now be given as

−→
Γk ≡

[
Γ user

k
Γ tool

k

]
=

⎡
⎣

Euser
k

Δ tuser
k

E tool
k

Δ ttool
k

⎤
⎦=

⎡
⎢⎣

−−−→
Fuser

k ·−→Tk
Δ tuser

k−−→
F tool

k ·−→Dk

Δ ttool
k

⎤
⎥⎦=

[−−→
Fuser

k ·−−→υuser
k−−→

F tool
k ·−−→υ tool

k

]
(20)

It is worth mentioning that the user final velocity, υuser
k , and hence the initial tool

velocity, υ tool
0k , are proportional to the user’s experience. For a given iteration target,

Tk, advanced users spend less time, Δ tuser
k , to debug and redevelop/modify their

designs than novice users before they start their tools, see Eqs. (18) and (19). On
the other hand, least experienced users spend long periods of times, i.e., Δ tuser

k → ∞,
with almost no guidance or corrective efforts to the tool, i.e., υ tool

0k = υuser
k = 0 and

Γ user
k = 0, see Eqs. (19) and (20).

As mentioned earlier, the user effort is always corrective to the tool effort.
Therefore, it is desirable at this point to investigate the divergent behavior of the tool
from that of the user’s away from the target solution. In other words, it is essential to
calculate the initial direction, ωk, of the tool computational force with respect to the
final displacement vector, Dk, see Fig. 10. ωk represents the angle with which the
tool starts searching the space. Using Eqs. (16)–(19) and the geometrical properties
shown in Fig. 10, the following expression can be derived for calculating ωk:

cos(ωk) =

1−
(

λk
Dk

)2
(

υ tool
0k Δ ttool

k
λk

)
√

1+
(

λk
Dk

)2
(

υ tool
0k Δ ttool

k
λk

)(
υ tool

0k Δ ttool
k

λk
− 2

) (21)

Assessing Productivity of High-Level Design Methodologies. . . 739

where
λk

Dk
= cos(ϕk)

Based on the proposed model, important characteristics of the development process
can be understood by considering some special cases of Eq. (21). For example, at
any design iteration k, when there is no initial push to the tool by the user, i.e.,
υ tool

0k = 0 and Γ user
k = 0, due to his/her lack of experience putting together a good

initial design/development, the tool is left on its own searching the design space
with ωk = 0, see Eq. (22a) and Fig. 10. This results in a random displacement, Dk,
the magnitude and direction of which are purely dependent on the computational
force of the tool and on how efficient the tool is. On the other extreme, advanced
users tend to give the tool the maximum guidance and/or corrective efforts, i.e.,
υuser

k = υ tool
0k → ∞, resulting in a pure resistive behavior of the tool opposing the

user effort, i.e., ωk = π−ϕk, see Eq. (22b) and Fig. 10. Consider the case of a highly
experienced (ideal)user, i.e., υuser

k = υ tool
0k → ∞, using an inefficient tool. Although

the user gives the maximum guidance (best possible initial design) to the tool, the
target solution might not be reached in one iteration or even in a short time. This
is a result of the opposing behavior of the tool to the user effort, i.e., ωk = π −ϕk.
It is also worth mentioning that more efficient tools remain to resist (oppose) the
ideal user effort but with less resistive force, see Eq. (19),resulting in reaching the
target solution in possibly one iteration and/or shorter time but never in zero time.
Additionally, if the sensitivity λ k, i.e., the distance traveled by the tool towards the
target solution, is solely due to the user’s first push, i.e., (υ tool

0k Δ t tool
k), then the tool

has not performed any useful work and its computational force has been orthogonal,
i.e., ωk = π/2−ϕk, to the target vector, see Eq. (22c) and Fig. 10

lim
υ tool

0k →0
(ωk) = 0 (22a)

lim
υ tool

0k →∞
(ωk) = π −ϕk (22b)

lim
υ tool

0k Δttool
k

λk
→1

(ωk) =
π
2
−ϕk (22c)

5 Experimental Evaluation

The framework was applied to evaluate the support for qualitative language features
of a subset of the HLLs from our review list. A number of useful language fea-
tures are considered including behavioral hierarchy, structural hierarchy, supported
architectures, degree of parallelism, locality exploration, portability, and dynamic
memory allocation. The quantifying process is a simple scoring system that ranks
the degree of support of each HLL tool for the specific qualitative language feature.

740 E. El-Araby et al.

Fig. 11 Degree of support for qualitative language features

The scoring mechanism allows weighting, see Eq. (23), to rate specific features
higher according to evaluator preferences. In our case we used equal weights since
we consider each of those features equally with no particular preference. Figure 11
plots the final scores for the languages evaluated

Scorel = 100×

⎛
⎜⎜⎜⎝

Nf

∑
f=1

sl, f ·wf

Nf

∑
f=1

smax
f ·wf

⎞
⎟⎟⎟⎠ , where l ∈ [1,Nl] (23)

f ∈ [1,Nf
]
, smax

f =
Nl

max
l=1

(
sl, f
)
, and sl, f ∈

[
0,smax

f

]

For our experimental evaluation we selected the HLL tools that scored the highest
in this scoring mechanism. We also considered representative high-level tools that
were selected to represent imperative, functional, and graphical programming. The
availability of these tools for experimentation was also a factor in our selection. The
HLL tools selected for our experimental evaluation are listed in Table 2.

Four workloads were selected for implementation using the selected HLL tools.
The first workload is a simple pass-through implementation that reads input from
the host microprocessor and sends it back unmodified. The purpose of this simple
application is to measure the overhead caused by each tool on the FPGA with respect
to the area utilization and also to measure the maximum clocking rates reached by

Assessing Productivity of High-Level Design Methodologies. . . 741

Table 2 Experimental results

Tool
Development
time (h)

Frequency
(MHz)

Area
(% utilization)

Normalized
frequency (X1)

Normalized
area (X2)

1 C 3 0 100 0 0
2 Impulse-C 6 125 21.25 0.625 0.7875
3 Handel-C 7.5 200 20.25 1 0.7975
4 Carte-C 6.5 100 19.5 0.5 0.805
5 Mitrion-C 10.75 100 22.75 0.5 0.7725
6 SysGen 9 200 19 1 0.81
7 RC Toolbox 9 200 19 1 0.81
8 HDLs 15.25 200 16.75 1 0.8325

each tool in the simplest of applications. This will give an initial and basic idea
of the performance of each tool. The second application implemented is a discrete
wavelet transform (DWT) [26, 27]. The third and fourth applications implemented
are the data encryption standard (DES) and the DES breaking algorithms [28]. DWT
and DES were selected as representative workloads of communication-intensive
applications while DES breaker is a computational-intensive workload.

In conducting our experiments, five students and two faculty members, with
different levels of experience and backgrounds in computer science, computer
engineering, and electrical engineering were selected. As mentioned earlier, we
developed our framework such that certain biasing effects associated with small
sample sizes are minimized. For example, biasing effects may include previous user
experience and knowledge of a specific language and/or design methodology. There-
fore, we formalized our framework by instrumenting a normalization mechanism
through which each user is required to provide three different observations of the
same trial (application). In other words, each user develops the same application
in three different design paradigms (languages). The first of which is performed
using the language under consideration, while the other two are performed using
a pure software approach, e.g., in C/C++, and a pure hardware approach, e.g.,
in VHDL/Verilog. These two other observations serve as reference points that
can minimize the biasing effects of previous user programming experience which
can range from software-centric programming experience to hardware-centric
programming experience. In other words, in our experiments each user observation
for a certain trial is normalized to his/her own experience making the observations
more language-specific rather than being user-specific measurements.

5.1 Results

Table 2 shows the final attribute matrix for the four workloads implemented using
the selected HLL tools. The reference implementations in HDLs and C are also
included. The specifications space is assumed to be two-dimensional with area and

742 E. El-Araby et al.

Fig. 12 HLL results plotted onto the specification space

frequency as the specifications. Figure 12 shows the frequency and area utilization
achieved by each tool plotted on the normalized specification space. On the
assumption that each tool generated the result in a single iteration, the work
progress rate for each tool is equal to the productivity, see Eqs. (11) and (15).
Figure 13 presents the results projected onto the attribute space while Fig. 14 plots
the productivity of each tool.

We may observe from the experimental results that imperative approaches proved
to be the easiest to use while performing reasonably and comparably with standard
HDL approaches. On the other hand, dataflow approaches, both functional and
graphical, proved to achieve the high utility but were not as easy to use as imperative
counterparts. Pure functional approaches proved to be the most difficult to use
among the three approaches. Moreover, HDL approaches achieve the highest utility
(close to optimal with this respect) but at the expense of being the most difficult to
use for application developers. These observations are captured in Figs. 12 and 13.

6 Conclusions

The work reported in this chapter presents a review and a comprehensive taxonomy
of HLL languages for HPRCs. It also presents new metrics and a framework for
comparative evaluation of the HLLs. The concepts and methodology are inspired
from the principles of Newtonian mechanics, which are applied notionally to the

Assessing Productivity of High-Level Design Methodologies. . . 743

Fig. 13 HLL results plotted onto the attribute space

Fig. 14 Productivity of evaluated HLL tools

744 E. El-Araby et al.

movement of user and tool in an abstract specifications space as they progress
towards the target solution. The performance of this user and tool combination
is evaluated based on two principle criteria: (a) total time to solution and (b)
incremental progress rate encapsulating the combined user and tool resource usage
efficiency at discrete time steps along the development path. The metrics that focus
on each criterion are the productivity and the work progress rate, respectively. The
productivity metric characterizes how fast the solution is obtained whereas the work
progress rate captures how efficiently a solution is obtained. These metrics are used
as attributes in the overall framework. The HLL evaluation framework presented
provides a structure that enables evaluation of qualitative language features such as
support for pointers and debugging capability, as well as quantitative metrics such as
productivity and work progress rate. Our review and experimental results showcase
the applicability of our methodology to a wide-array of languages from imperative
to dataflow programming models.

References

1. W. Luk, N. Shirazi, P.Y.K. Cheung, “Compilation tools for run-time reconfigurable designs”,
in IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 1997,
pp. 56–65

2. K. Compton, S. Hauck, “Reconfigurable computing: a survey of systems and software”, ACM
Comput. Surv. 34(2), 171–210 (2002)

3. Cray Inc., “Cray XD1TM FPGA Development (S-6400–14)”, 2006
4. Silicon Graphics, Inc., “Reconfigurable Application-Specific Computing User’s Guide (007–

4718–005)”, January 2007
5. Impulse C – “Impulse Accelerated Technologies” web site available at http://www.

impulseaccelerated.com/, last visited August 2012
6. Mentor Graphics, Inc., web site available at http://www.mentor.com/products/fpga/handel-c/,

last visited August 2012
7. Mitrionics web site available at http://www.mitrionics.com, last visited August 2012
8. Bluespec, Inc., website available at http://www.bluespec.com/, last visited August 2012
9. Xilinx Inc., web site available at http://www.xilinx.com/ise/optional prod/system generator.

htm, last visited August 2012
10. DSPLogic web site available at http://www.dsplogic.com, last visited August 2012
11. SRC Computers, Inc., “SRC CarteTM C Programming Environment v2.2 Guide (SRC-007–

18)”, August 2006
12. B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, A.D. George, “Survey of C-

based application mapping tools for reconfigurable computing”, in 2005 MAPLD International
Conference, Washington, DC, USA, September, 2005

13. S.A. Edwards, “The challenges of synthesizing hardware from C-like languages”, IEEE Design
Test Comput. 23(5), 375–386 (2006)

14. E. El-Araby, M. Taher, M. Abouellail, T. El-Ghazawi, G.B. Newby, “Comparative analysis
of high level programming for reconfigurable computers: methodology and empirical study”,
in III Southern Conference on Programmable Logic (SPL2007), Mar del Plata, Argentina,
February, 2007

15. E. El-Araby, P. Nosum, T. El-Ghazawi, “Productivity of high-level languages on reconfigurable
computers: an HPC perspective”, in IEEE International Conference on Field-Programmable
Technology (FPT 2007), Japan, December, 2007

http://www.impulseaccelerated.com/
http://www.impulseaccelerated.com/
http://www.mentor.com/products/fpga/handel-c/
http://www.mitrionics.com
http://www.bluespec.com/
http://www.xilinx.com/ise/optional{_}prod/system{_}generator.htm
http://www.xilinx.com/ise/optional{_}prod/system{_}generator.htm
http://www.dsplogic.com

Assessing Productivity of High-Level Design Methodologies. . . 745

16. T. Sterling, “Productivity metrics and models for high performance computing”, Int. J. High
Perform. Comput. Appl. 18, 433–440 (2004)

17. M. Snir, D.A. Bader, “A framework for measuring supercomputer productivity”, Int. J. High
Perform. Comput. Appl. 18, 417–432 (2004)

18. K. Kennedy, C. Koelbel, R. Schreiber, “Defining and measuring the productivity of program-
ming languages”, Int. J. High Perform. Comput. Appl. 18, 441–448 (2004)

19. J. Kepner, “HPC productivity: an overarching view”, Int. J. High Perform. Comput. Appl. 18,
393–397 (2004)

20. J. Kepner, “High performance computing productivity model synthesis”,Int. J. High Perform.
Comput. Appl. 18, 505–516 (2004)

21. R.W. Numrich, “Performance metrics based on computational action”,Int. J. High Perform.
Comput. Appl. 18(4), 449–458 (2004)

22. R.W. Numrich, “A metric space for computer programs and the principle of computational
least action”, J. Supercomput. 43(3), 281–298 (2008)

23. R.W. Numrich, L. Hochstein, V. Basili, “A metric space for productivity measurement in
software development”, in Proceedings of the Second International Workshop on Software
Engineering for High Performance Computing System Applications (SE-HPCS’05), St. Louis,
Missouri, 15 May 2005

24. R.W. Numrich, “Computational force: a unifying concept for scalability analysis”, Adv.
Parallel Comput. 15 (2008). ISSN 0927–5452, ISBN 978-1-58603-796-3 (IOS Press)

25. R.W. Numrich, “Computational force, mass and energy”, Int. J. Mod. Phys. C 8(3), 437–457
(1997)

26. E. El-Araby, M. Taher, T. El-Ghazawi, J. Le Moigne, “Remote sensing and high performance
reconfigurable computing systems”, in High Performance Computing in Remote Sensing, vol
16, ed. by A.J. Plaza, C.I. Chang, CRC Computer & Information Science Series (Chapman &
Hall, New York, 2007), pp. 496. ISBN: 9781584886624, ISBN 10: 1584886625

27. E. El-Araby, T. El-Ghazawi, J. Le Moigne, K. Gaj, “Wavelet spectral dimension reduction of
hyperspectral imagery on a reconfigurable computer”, in IEEE FPT 2004, Brisbane, Australia,
December, 2004

28. O.D. Fidanci, H. Diab, T. El-Ghazawi, K. Gaj, N. Alexandridis, “Implementation trade-offs of
triple DES in the SRC-6E reconfigurable computing environment”, in Proc. MAPLD 2002

Maximum Performance Computing
with Dataflow Engines

Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk

Abstract Maximum Performance Computing (MPC) means striving to deliver
the maximum possible performance within a space and/or power budget. The
essence of the method is to start with a particular application and develop an
appropriate computer by iterating between algorithm optimization and machine
optimization, essentially, cross-optimizing across the layers of abstraction from
mathematics to logic gates. An MPC system pairs fast scalar processors with
dataflow engines which can be emulated on FPGAs. In this chapter we outline the
general approach, and describe in detail example hardware architecture, program-
ming model and tools. We also discuss additional issues that arise at the cluster level,
and describe a detailed case study of applying MPC to Reverse Time Migration, a
computational geophysics algorithm widely used in the oil industry.

1 Introduction

Since the introduction of computers into routine scientific work in the middle of
the last century, their role in the scientific endeavor has changed dramatically from
mere auxiliary tools of numerical computation into an essential element of scientific
discovery. The first hint pointing at the forthcoming change was seen as early as in
1953, when Fermi, Pasta and Ulam conducted the first fundamentally important
numerical experiment [2]. Fermi and his colleagues used digital computers to
simulate the expected ergodicity in a system of coupled nonlinear oscillators, a
phenomenon that was beyond analytical description. Their results not only had a

O. Pell (�) • O. Mencer
Maxeler Technologies, 1 Down Place, London W6 9JH, UK
e-mail: oliver@maxeler.com

K.H. Tsoi • W. Luk
Imperial College London, London SW7 2AZ, UK
e-mail: wl@doc.ic.ac.uk

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0 25, © Springer Science+Business Media, LLC 2013

747

mailto:oliver@maxeler.com
mailto:wl@doc.ic.ac.uk

748 O. Pell et al.

profound influence on the theory of chaos but also influenced the way scientists
think when tackling basic theoretical problems. The numerical experiment approach
of Enrico Fermi and his colleagues, while revolutionary at its time, has since become
a mainstream method of modern theoretical investigations in such diverse fields
as fluid dynamics, molecular electronic structure and nuclear dynamics, material
science, etc. In fact, the role of numerical experiments has grown so much that today
intricate analytical techniques are routinely used to interpret numerical findings
much in the same way as they have been used to interpret “real” experiments.

Tremendous advances in the application of numerical techniques in science have
been driven by progress in computer technology. The available computational power
and computer memory resources define the scope of the scientific problems that
can be addressed, as well as the achievable accuracy level of theoretical modeling
and thus also the reliability of the scientific prediction. Modern science strives to
address more and more challenging problems on a larger and larger scale using
accurate theoretical models. Achieving such challenging goals in the coming years
will require development of powerful computational technology at new levels of
performance. It will not be practical to build HPC systems capable of processing at
this level by simply scaling existing CPU technology [13].

Maxeler dataflow computing has been shown to lead to orders of magnitude
lower power consumption and lower data center space needs than conventional CPU
systems and has been deployed by companies ranging from JP Morgan for financial
analytics to Chevron for oil exploration. One obvious question is whether dataflow
fits a wide range of applications. We have seen excellent results for applications
ranging from large-scale complex Monte Carlo simulations and irregular financial
tree-based partial differential equation (PDE) solvers[16] to 3D finite difference
(FD) and finite element (FE) solvers [6]. In one extreme case [12] a 3U Maxeler
dataflow node delivered equivalent compute performance to over 1,800 high-end
x86 control flow cores for a finite difference application with over 100 GB of state
that needed to be iterated across time steps of the simulation.

In this chapter we describe the basis of our multi-disciplinary dataflow computing
approach to computing and discuss a case study in detail.

2 What is Dataflow Computing?

Maxeler’s dataflow computing paradigm is orthogonally different to computing
with conventional CPUs (control flow cores), as shown in Fig. 1 and represents an
evolution of concepts of dataflow computers [1] and systolic array processors [4]
developed in the 1970s and 1980s.

At its heart, a control flow processor contains a latency critical loop. Data is
read from memory into the processor core, where operations are performed and
the results are written back to memory. Modern processors contain many levels of
caching, forwarding and prediction logic to improve the efficiency of this paradigm;
however, the model is inherently sequential with performance limited by the speed
at which data can move around this loop.

Maximum Performance Computing with Dataflow Engines 749

CPU

Function
Unit

Memory
Controller

Memory Instructions

Compiler

.c

Data/Instructions

Data

a

.java

MaxCompiler

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Dataflow
core

Data

Data

Memory

bControl Flow System Dataflow System

Fig. 1 Computing with a control flow core compared to dataflow cores

A dataflow engine (DFE) operates differently. Data is streamed from memory
onto the chip where operations are performed and data is forwarded directly from
one functional unit (“dataflow core”) to another as the results are needed, without
ever being written to the off-chip memory until the chain of processing is complete.
Each dataflow core computes only a single type of operation (for example an
addition or multiplication) and is thus simple so thousands can fit on one chip
with every dataflow core computing simultaneously. Unlike in the control flow core
where operations are computed at different points in time on the same functional
units (“computing in time”), the complete dataflow computation is laid out spatially
on the chip (“computing in space”). Dependencies in the dataflow are resolved
statically at compile time, and because there are no new dependencies present at
run-time the whole dataflow engine can be deeply pipelined (1,000–10,000 stages).
Every stage of the pipeline computes in parallel with the dataflow architecture
maintaining a throughput of one result per cycle. This dataflow engine structure
can then be emulated on large FPGAs. One analogy for moving from control flow
to dataflow is the Ford car manufacturing model, where expensive highly skilled
craftsman (control flow cores) are replaced by a factory line, moving cars through a
sea of single-skill workers (dataflow cores).

The dataflow engine structure itself represents the computation thus there is
no need for instructions per se; they are replaced by operation executing units.
Because there are no instructions there is no need for instruction decode logic. A
static dataflow machine doesn’t require techniques like branch prediction (since
there aren’t any branches) or out-of-order scheduling (parallelism is explicit). And
since data is always available on chip for as long as it is needed, general purpose
caches are not needed with the minimum amount of buffering memory automatically
utilized as necessary. This saves silicon area and power budget. By eliminating these
extraneous functions, the full resources of the chip are dedicated to performing
computation.

In summary, the advantage of the dataflow engine is based on the elimination
of sequentially iterated instruction streams and reduction in memory accesses for
both instructions and data. Instead of using indexed register files and hierarchical

750 O. Pell et al.

caching memory, the intermediate values and variables for the computation are
stored in sparsely distributed registers which are close to the physical operators.
Deep pipelining of the dataflow engine provides high parallelism and sustained high
throughput when computing repeated operations on large data volumes, but means
that dataflow engines are less optimized for single operations on small amounts
of data. Thus it is typically appropriate to combine a dataflow engine with one or
more control flow CPU cores and at a system level, the dataflow engine handles
computation of the large scale streaming operations in an application while dynamic
events and control are managed by control flow core(s).

3 Building Dataflow Computers

A dataflow computing system is usually a heterogeneous system including a number
of dataflow processors and one or more conventional CPUs. The CPUs are required
for system level tasks like file storage, networking and process management. They
may also share the computation workload which is best mapped to the control-flow
computing paradigm. There are various schemes for combining the two radically
different processing devices and allowing them to collaborate in a system.

3.1 Integrating DFEs and CPUs

3.1.1 Roles in the System

The two types of computing devices may play different roles in a computing system.
One possible scheme is to form a master-slave relationship. In this scenario, the
CPUs perform all management tasks and initiate the computations. The DFEs
passively accept commands and data from the master CPUs and perform the
required computation as instructed. This scheme has a number of advantages
including the ease of system construction, the readily available technologies and
the ability to reuse existing systems by adding DFEs as extensions.

On the other hand, DFEs and CPUs can play the same role in the system. In
this scheme, both are able to actively access all system resources with the same
priorities. This creates the possibility of DFEs requiring and instructing CPUs for
specific operations. Due to the increased accessible resources and the more active
role in control, the DFEs may perform better in some applications. The challenge of
this scheme is usually in designing the interface between the DFEs and the CPUs,
at both physical level and programming level. Also, the complicated interface and
active role require more controlling logic in the DFEs. This may defeat the original
purpose of having only streamlined data processing in the DFEs.

Recent developments in cloud computing and virtualization technologies provide
a new direction for incorporating DFEs and CPUs. The new schemes is to allow

Maximum Performance Computing with Dataflow Engines 751

the DFE clusters working together with CPU clusters and providing platform as a
service (PaaS) to the CPU-centric servers. This isolation between DFEs and CPUs
enables more flexibilities in system cost, hardware deployment, cluster management
and application development. Since the approach is relatively new, there is no
existing standard and very few adaptations of utilizing DFEs in PaaS. However,
we are expecting to see more dataflow computing systems deployed in this scheme
in the future.

3.1.2 Access to Memory

In high performance computation, efficient access to external memory is usually
one of the most critical factors in system performance. By the law of diminishing
returns, optimizing the internal architecture of CPUs or dataflow processors will
become insignificant when memory access occupies a large part of the application
execution time. Different schemes of memory access in dataflow computing systems
will impact the performance of the specific implementations.

It is possible to provide a unified flat memory addressing space for both CPUs
and DFEs. In this arrangement, any processing unit can access any memory location
directly, regardless of the physical hierarchy of the memory system. This is the
most flexible scheme for application programmers. However, it has practical issues
such as data coherence across heterogeneous computing devices and memory bus
contention. These issues limit the achievable performance of the applications.

A common practice of maximizing memory bandwidth is to associate each DFE
with multiple banks of local memory. This direct coupling between memory and
DFE creates an explicit divide in the memory hierarchy of the dataflow computing
system, which can provide maximum performance potential but requires extra
efforts from application developers to manage the memory hierarchy explicitly
within the applications. Although the physical connections of this divided memory
hierarchy are rigid, abstractions at software level can simplify the task of transfer-
ring data between DFEs and CPUs.

3.1.3 Coupling

Another representative characteristic of a dataflow computing system is the scheme
of coupling between CPUs and DFEs. Figure 2 illustrates four types of common
interconnection schemes.

The tightest scheme is to place both the dataflow processor and the control
flow processor on the same silicon as shown in Fig. 2a. The dataflow processor
communicates directly with the CPU core through a dedicated low latency interface.
In this configuration, the dataflow processor is often activated by executing special
instructions in the CPU core. With the highest communication efficiency, this
scheme can enable beneficial offload of small operations; however, this scheme
has the disadvantage of requiring modification of the CPU internal architecture

752 O. Pell et al.

CPU Chip

Dataflow
Processor

CPU
Core

CPU Server

R
A

M

Embedded in CPU.

CPU Server

processor
interconnectCPU

Chip
Dataflow
Processor

RAM

In CPU socket.

R
A

M

CPU Server

Dataflow
Processor

CPU
Chip

R
A

M

Dataflow
Engine

sy
st

em
 b

us
Connected through system bus.

N
et

w
or

k
S

w
itc

h

R
A

M

R
A

M Dataflow
Processor

CPU
Chip

Dataflow
Engine

CPU Server

Externally networked.

a

c

d

b

Fig. 2 Interconnection schemes for CPUs and DFEs

which is often not feasible. In addition, since the dataflow processor accesses system
memory through the CPU core, many of the advantages of dataflow computation for
computation on large data volumes cannot be easily achieved in this scheme.

Another tightly coupled scheme is to place the dataflow processors on the CPU
sockets side-by-side with the CPUs as shown in Fig. 2b. The dataflow processors
act as conventional CPUs in a multi-processor system, communicating through
a standard processor specific interconnect such as HyperTransport or QuickPath
Interconnect. However, the dataflow processor must now incorporate a full featured
CPU interface which consumes the DFE’s resources and also limits the number of
supported DFEs in the system.

Another scheme is to connect the DFEs through a system bus (e.g. PCI Express)
in the CPU server as shown in Fig. 2c. The interface to the system bus can be
implemented within the dataflow processors or in separate components in the DFEs.
This interfacing logic introduces overheads in terms of transmission latency and
silicon area. Modern system bus architectures have sufficient bandwidth and robust
communication protocols for a few DFEs interfacing to a CPU. However, the
scalability of this approach is limited by both the maximum number of devices
supported by the bus controller logically and the maximum number of devices
supported by the server system physically.

Maximum Performance Computing with Dataflow Engines 753

Main
Memory

x86
Cores

MPC-C

PCIe Gen 2

Dataflow Engines (up to 4)

Dataflow
Cores

Mem
48GB

MaxRing

Fig. 3 MPC-C Series
Architecture. A single node
contains both x86 CPUs and
dataflow engines connected
via PCI Express

Figure 2d shows a more loosely coupled scheme where a cluster of DFEs is
connected to a cluster of CPU servers through an inter-node network such as
Ethernet or Infiniband. This scheme sacrifices communication latency for system
level flexibility. The external switching network usually has higher latency than
the internal connections in the previous schemes; however, this overhead may not
be significant if the communication is balanced with the computation. Using this
architecture, a cluster of DFEs can potentially be shared by all the CPU servers on
the network, improving efficiency in the use of the DFE resources and facilitating
the PaaS scheme discussed earlier.

3.2 Real World Examples: MPC-C and MPC-X

Here we present real world computing systems which implement the two most
practically useful DFE-CPU coupling schemes: the Maxeler MPC-C series and
MPC-X series. The MPC-C series (shown in Fig. 3) compute nodes contain x86
CPUs directly attached to DFEs via PCI Express, while the MPC-X series (shown
in Fig. 4) are stand-alone dataflow nodes that connect to CPU-only nodes in a system
via an Infiniband network. DFEs within a node have an additional high-bandwidth,
low-latency direct interconnect between the dataflow processors called MaxRing
which is utilized for fast communication between neighbouring DFEs.

The MPC-C series allows a stand-alone deployment of dataflow technology
with a fixed combination of tightly coupled CPUs and dataflow engines. The
MPC-X series allows for a heterogeneous system with a tailored balance of different
compute technologies, since the balance of CPUs to DFEs is flexible at run-time. For
example, if an application runs on a fixed number of CPU cores and continuously
utilizes one or more DFEs, an MPC-C series platform could be the best fit; while if
the application has several stages (some of which use the DFEs and some of which
do not) or might require a varying number of DFEs depending on the particular
problem it is running the MPC-X series may be more appropriate.

754 O. Pell et al.

Dataflow Engines (8)
Standard

Server
MPC-X

Switch Fabric

x86
Cores

Infiniband
Mem
48GBDataflow

Cores

Fig. 4 MPC-X Series Architecture. Multiple CPU nodes can connect to MPC-X nodes and utilize
the dataflow engines. The number of dataflow engines used by each CPU node varies dynamically
at run-time

The common part in these two configurations is the individual Maxeler dataflow
engine hardware. The MAX3 engine is the current state-of-the-art with up to 48 GB
of DDR3 memory and a Xilinx Virtex-6 FPGA providing the configurable logic
fabric. Multiple MAX3 engines can work together on a single application, sharing
data over their high-speed local MaxRing connection.

Maxeler’s dataflow systems are designed to integrate into production server
environments, supporting standard operating systems and management tools. Mul-
tiple applications can make use of the MAX3 DFEs within a system. Maxeler’s
management software (MaxelerOS) coordinates resource use, scheduling and data
movement within the dataflow compute environment. Application programmers
can concentrate on improving their application for maximum performance without
worrying about low-level resource management.

4 Maximum Performance Computing Approach

It is widely accepted that modeling and measurement of application characteristics
can be used to optimize the design of a cluster, for example in terms of relative
resources dedicated to computation, memory and interconnect. The same approach
can be extended to every level in a computer system, developing dedicated, problem-
specific computer architectures to address different domains of scientific problems
in the most efficient way, achieving the maximum performance.

In fact, to deliver maximum application performance, we espouse a multi-
disciplinary approach to scientific computing, where a team of natural and computer
scientists and engineers work together to codesign a system all the way from the
formulation of the computational problem down to design of the best possible
computer architecture for its solution. The essence of this approach is to optimize
the scientific algorithm to match the capabilities of the computer at the same

Maximum Performance Computing with Dataflow Engines 755

Analysis Transformation Partitioning Implementation

Fig. 5 Process for accelerating applications with dataflow computing

time as optimizing the computer to match the requirements of the algorithm.
Dataflow computing provides a key part of the solution by combining flexibility
with maximum performance and high efficiency.

Figure 5 shows the process for maximizing application performance with
dataflow computing.

The first step is application analysis, the main objective of which is to establish an
understanding of the application, the algorithms used and the potential performance
bottlenecks. Application analysis should cover all the layers involved in a compu-
tational problem, from the mathematics and algorithms to the low level computer
science and electrical engineering aspects. This includes considerations such as:

• Type and regularity of computation
• Ratio of computation and memory access
• Balance between local computation and network communication
• Balance between computation and disk I/O
• Trade-offs between (re)computation and storage

All of these can have a large impact on the final system performance—even
if an application has a highly optimized computational kernel this will have no
impact if an application is limited by the speed it can read/write data to disk.
The second step in the process is to transform the application to create a structure
that is suitable for acceleration. This includes algorithm-level transformations (for
example: is there an alternative algorithm for achieving the same result?) as well
as code transformations and data layout or representation transformations. The
analysis and transformation steps are those that require the largest degree of multi-
disciplinary codesign cooperation. Natural scientists with expertise in the problem
domain can collaborate with computer scientists and engineers to make sure the full
range of possibilities are explored.

In the third step, we partition the application between the different resources in
the computing system. There are two key things to be partitioned: code and data.
For program code, we consider multiple code partitioning options which determine
where each operation runs—on the conventional CPUs, or on the dataflow engines.
We orthogonally consider data access plans—the location of each significant data
array used in the computation. For the dataflow engines, data can either be present
in the large (tens of gigabytes) off-chip memory, or the smaller on-chip memory
(typically a few megabytes). For the CPUs, data can reside on disk, in main memory
or in one of several levels of on-chip cache.

756 O. Pell et al.

Each combination of transformation, code option and data access plan will pro-
vide a certain level of performance in return for a certain amount of implementation
effort. This process of analyze, transform, partition can be performed iteratively as
additional possibilities are explored, and high-level performance modeling be used
to quickly narrow down to a small set of implementation options that are most likely
be successful. Finally, one particular option can be selected for implementation.

A case study of this approach can be seen in Sect. 7.

5 Programming with MaxCompiler

Maxeler’s dataflow computers are programmed in standard C/C++/FORTRAN and
Java combined with Maxeler’s language extensions to drive dataflow generation.

Figure 6 shows the logical architecture of a dataflow computing system. The
programmer creates a dataflow application with three parts:

• A CPU application, typically written in C/C++ or FORTRAN, which runs on
the conventional CPUs and controls the system

• One or more dataflow kernels, written in Java
• A manager, written in Java

Kernels are hardware data-paths implementing the arithmetic and logical com-
putations needed within an algorithm. The Manager describes the logic which
orchestrates data flow between Kernels and off-chip I/O in the form of streams. By
using a streaming model for off-chip I/O to CPU interconnect (e.g. PCI Express,
Infiniband), MaxRing and DRAM memory, Managers guide high utilization of
available bandwidth in off-chip communication channels.

Separating computation and communication into Kernels and a Manager is
beneficial as it enables logic for Kernels to be deeply pipelined without running into

SLiC
MaxelerOS

Memory

CPU

Configurable Logic M
em

ory

Interconnect

Kernels

*+

+

Manager

CPU application

Fig. 6 Logical architecture
of a dataflow computing
system with one CPU and one
dataflow engine

Maximum Performance Computing with Dataflow Engines 757

MaxIDE

Manager

User Input

Output

Compiler, Linker
Hardware Build

or
Simulation

Manager
Configuration

(.java)

Kernel Compiler

Dataflow
Kernel(s)

(.java)

HW
Accelerator

(.max)

CPU
Application

(.c,.f)

Accelerated
Application

(executable)

SLiC MaxelerOS
SW HW

Fig. 7 Compilation flow of a MaxCompiler application

the synchronization problems which plague parallel programming on control flow
cores. High performance in a dataflow solution is achieved through a combination of
deep-pipelining and exploiting both inter- and intra-Kernel parallelism. The number
of pipelines within a Kernel and number of parallel Kernels is limited only by the
parallelism inherent in the application and the size of the dataflow engine.

Figure 7 shows the compilation flow of a typical MaxCompiler application. The
programmer describes both the Kernels and Manager in Java with Maxeler language
extensions (which we call MaxJ). The Java is a meta-program that describes the
structure of the dataflow engine that should be created. When the Java program is
executed the chip configuration file requested by the user is generated. This chip
configuration file (the .max file) contains the bitstream to configure the chip, meta-
information about the configuration and also CPU function calls enabling it to be
easily integrated into the full CPU application. The CPU code is compiled as normal
and linked with the .max file and the SLiC (Simple Live CPU) interface library
using the standard linker.

The result of compilation is a single application executable that contains all the
binary code to run on both the conventional CPUs and the dataflow engines in a
system. When the CPU program makes a function call which uses a dataflow engine
the engine will automatically be configured to run that application.

Compiling the dataflow engine into hardware can take some time (typically
several hours up to a day for a large program) so during development it is often
more appropriate to use simulation. The user’s MaxCompiler program can be
compiled directly to a high-level simulation running in native CPU code executed

758 O. Pell et al.

on a standard processor. The resulting simulated DFE is much slower than the
real hardware; however, it can be compiled in a few minutes which dramatically
improves the debug cycle. MaxCompiler’s high-level simulation is approximately
two to three orders of magnitude faster than simulating the hardware using a low-
level HDL simulator.

To show how this model works in practice, let’s consider some examples. Below
is a snippet of Kernel code:

HWVar x = io.input(”x”, hwFloat(8, 24)) ;
HWVar y = io.input(”y”, hwFloat(8, 24)) ;

HWVar o = x + x ∗ y;

io . output (”o”, o, hwFloat(8,24)) ;

This code creates a Kernel that takes two input streams (arrays) x and y and
computes x+x×y for each index in the array. The maths expression looks the same
as it would in software, except that the loop over the array values is implicit—the
Kernel will compute xi + xi× yi for all i. The inputs and outputs are explicitly typed
as hwFloat(8,24) meaning they are IEEE single precision floating point numbers.

A more complex Kernel might need to make decisions about what values to
output: for example, we could output either x2 or y2 depending on which was larger.
In software, we would represent this with an if statement. In our Kernel language
we are creating operations instantiated spatially on a chip—so it is not possible to
choose different branches of execution. However, it is possible to compute multiple
possibilities and select between them. We do this using the ? operator, for example:

HWVar x2 = x ∗ x;
HWVar y2 = y ∗ y;

HWVar o = x2 > y2 ? x2:y2;

Another operation we might want to do is to access values from other positions in
the stream. Consider a simple 3-point moving average computation:

yi = (xi−1 + xi + xi+1)/3 (1)

To compute this, we need to access not just the value of x at location i but also
at i− 1 and i+ 1. Because the x array has become a stream, rather than indexing
into the array (as we might in software), our Kernel program uses stream offsets
relative to the current position to access the previous and next elements it needs for
the calculation:

HWVar prev = stream.offset(x, −1);
HWVar next = stream.offset(x, +1);
HWVar o = (prev + x + next) / 3;

Maximum Performance Computing with Dataflow Engines 759

Fig. 8 The CPU code, Manager code and Kernel code for a simple 3-point moving average
calculation, showing the data transfer that occurs during the computation

Once we have a Kernel, we can integrate it into a Manager to create a full
dataflow engine. Figure 8 shows how this can be achieved with the moving average
Kernel.

The center section of Fig. 8 shows the small Java program we use to configure
a Manager that includes the moving average Kernel and connects it to the CPU.
The left section shows the CPU software program. The compilation of the manager
and kernel generates the SLiC interface function AVG(x,y,N) which the CPU
program calls to run the computation. When the function is called, the CPU will
connect to a dataflow engine (automatically configuring the chip if necessary) and
stream N items of the x array to the engine to perform the calculation, receiving
N items back and storing them into array y. The data will stream from memory,
over the CPU to DFE interconnect, through the Kernel and back into memory
automatically.

6 Cluster-Level Considerations

The dataflow computing paradigm and the dataflow processor have been previously
proposed and studied. However only now they are starting to appear in production
systems, since most of the research results achieved in academic environments
cannot be applied to existing data center infrastructure. These previous studies
usually considered dataflow processors as a stand-alone component attached to a

760 O. Pell et al.

CPU Server

TOR Switch

CPU Server

CPU Server

CPU Server

UPS

HDD

HDD

HDD

HDD

TOR Switch

CPU Server

Dataflow Engine

Dataflow Engine

UPS

CPU Server

Lo
ca

l S
w

itc
h

Aggregation Switch

Aggregation Switch

1G
 o

r
10

G
 E

th
er

ne
t

Rack

direct attached
storage

Rack

E
th

er
ne

t

SAN

Dataflow Processor
Interconnect

main power

multiple tiers
cluster level network

(1G or 10G Ethernet)

Storage

Aggregation Switch

HDD

HDD

Aggregation Switch

Aggregation Switch

HDD HDD HDD

Fig. 9 Rack configuration in data center

single node but in reality, the system must be scaled to a cluster of nodes with
multiple CPUs and DFEs. If done improperly, the advantages of employing this high
performance hardware can be overridden by the inefficiency of ad hoc integration
approaches. In this section we briefly describe some of the issues that must be
tackled when building a cluster to deliver maximum application performance with
conventional CPU and dataflow compute nodes.

6.1 Designing a Cluster

In modern data centers or supercomputing centers, computing facilities are usually
grouped into physical containers called racks. This is a physical partition of the
resources for ease of management. Usually, the computing nodes and other appli-
ances are mounted on the racks’ frame. A common configuration of a multi-rack
computing system in a data center is shown in Fig. 9. The computing capabilities of
a rack are limited by the physical space, the power supply, cooling capacity, network
capacity and the access to storage.

6.1.1 Compute

Typical data center racks have 40–50 “rack units” of space, capable of holding 40–
50 dense 1U compute servers (so named because they take up 1 rack unit of space).
However, electric power supplied to a rack is typically in the range of a few kilowatts
up to a few tens of kilowatts, which limits the total computing capability within the
rack. For a common dual socket 1U CPU server, power consumption under load

Maximum Performance Computing with Dataflow Engines 761

can easily be in the region of 300–600 W. If each machine consumes 500 W, 40
such machines will consume 20 KW and more importantly will require a matching
amount of cooling, since most of this power consumption is converted into heat.

When comparing a dataflow computing rack to a conventional rack it is possible
to consider comparisons in terms of space, power, or compute performance. Adding
dataflow engines to a compute rack has only a small impact on power consumption,
since the power consumed by a single DFE is typically in the region of 50–100 W.
If a dataflow node runs 30 times faster than a conventional CPU node and consumes
25% more power, the overall improvement in energy per result is 24 times. To
deliver results in the same time (i.e. fixed performance), the cluster can be 30 times
smaller, with 24 times lower power consumption. Or utilizing a fixed power budget
to the fullest (fixed power consumption), a cluster could be built that is 80% of the
size of the CPU cluster but still delivers 24 times the performance. At fixed size,
the cluster would consume 25% more power, but deliver 30 times the performance.
The precise balance between these considerations can be determined based on user
demands.

As we discussed earlier, there are tasks or applications which require more
CPU-centric computation while others can be highly optimized for DFEs. So it is
sometimes not obvious how the power or space budget, constrained within a rack,
should be allocated between the CPUs and the DFEs. The solution is limited if
the DFEs are hosted within the CPU servers and the ratio of CPUs to DFEs is
rigidly defined in deployment stage, although this can be optimized to the best
balance given the expected particular application demands. With the help of a
loosely coupled system such as the MPC-X dataflow nodes, higher flexibility is
provided, particularly for clusters running more than one type of application.

6.1.2 Memory

Each node in a cluster will typically have its own local memory to store working
data. In general, if nodes have large enough memories remote communication
can be minimized, however applications with large memory requirements may
not fit into the memory of one computation node and will instead be split across
nodes. Mechanisms such as message passing interface (MPI) can be used to
create a distributed program where each node operates on part of the overall
data volume. Other applications may be parallelizable across nodes with minimal
communication—for example Monte Carlo simulations can often generate results
for each simulation independently and then combine results at the end of the
computation.

6.1.3 Disk Storage

In addition to main memory, disk storage is a significant part of most systems.
Clusters may have a centralized data storage, such as the storage area network

762 O. Pell et al.

(SAN) in Fig. 9 which is where all nodes fetch data from and store results to.
Individual nodes may also have local storage, which may be more efficient for some
applications.

A key consideration is the storage use-case: shared or exclusive. Nodes require
shared storage for loading global input data, writing final output data, or communi-
cating large files between nodes. Exclusive storage is often required for intermediate
results or caching. In contrast, the storage resources as described above can be
centralized or distributed. Centralized storage can be a good fit for storing shared
data, provided the centralized resource can provide sufficient performance to satisfy
the demands of all the compute nodes. Distributed storage is a good fit for exclusive
use by one node, since it is local to the node and the provision of the storage resource
scales as the number of compute nodes is increased.

Distributed storage can also be used to provide shared access; however, data
synchronization will be difficult if any node requires access to the global data set.
For these applications, data can be partitioned in a way that the nodes spend most
of the time computing with a local data set while a remote request is made if the
needed data are not in local scope.

Various hybrid schemes exist to try to provide the performance benefits of
distributed storage with the ease-of-programming and data coherency benefits of
shared storage. One example of such schemes is parallel file systems such as
Lustre [9], which stripe data across many file servers in parallel. In these schemes,
bottlenecks around individual file servers or disks can be minimized; however, care
must be taken that the network itself does not then overly limit performance.

Ultimately, the critical factor in the performance of a storage system is how well
it supports the applications that need to run on it. However at a lower level, the
performance of a storage system can be modeled as a trade-off between cost and
three main characteristics:

1. Capacity
2. Throughput for linear access (MB/s)
3. IOPS (Input/output operations per second)

Streaming throughput is more interesting when accessing large files, while
IOPS are more critical when reading/writing many small files. Different underlying
storage technologies can offer alternative points in this space. For applications
where streaming access is most important, conventional hard drives often provide
the best capacity and price/performance. On the other hand, if IOPS are critical
SSDs provide dramatically better performance, but at reduced capacity and higher
cost.

6.1.4 Network

As shown in Fig. 9, there may be multiple networks with multiple levels connecting
the nodes in a cluster system. Networks can be measured in terms of latency between
two points (which can be approximated by the number of hops in the network)

Maximum Performance Computing with Dataflow Engines 763

and bandwidth, in terms of both aggregate bandwidth (how many nodes can send
messages at the same time) and bisection bandwidth (aggregate bandwidth at a
particular cut in the network).

Typically high performance network traffic in current clusters uses networks
such as Gigabit Ethernet, 10 Gigabit Ethernet or Infiniband. In many clusters,
the nodes within a rack communicate through top-of-rack (TOR) switches. These
TOR switches then provide up-links to the wider network (other racks). This tree
architecture can be provisioned as a “fat-tree” [5] which maintains full non-blocking
bandwidth between any points on the network, or as a under-provisioned “thinner”
structure where full bandwidth is only available between local nodes and bandwidth
to the wider network must be shared. The level of “fatness” at different points in the
network tree determines the amount of bandwidth available between two points.

Clusters will often have a separate management network as well as the main
network, which provides access to each node to provide remote access, load
configurations, power on/off, etc. This management network is generally not
bandwidth sensitive and can be built with a thin tree structure, often of 10/100 Mbit
or 1 Gbit Ethernet links.

In addition to the global network(s), local networks may be present within small
parts of the system. One example of this is a SAN, where storage nodes may
communicate with themselves over a dedicated interconnect such as Fibrechannel.
Another example is a dedicated DFE/CPU network where CPU nodes communicate
with local dataflow nodes over faster links than are provided globally.

Global networks need not be tree-based, and other network topologies can
provide substantially superior performance if they are a good fit to the application.
For example, a torus network where nodes are connected directly to their neighbors,
provides a good fit for clusters where most communication is expected to be between
neighboring nodes (e.g. exchanging MPI messages).

DFEs can also have their own dedicated networks; for example Maxeler nodes
contain internal DFE torus networks (MaxRing) which connect each DFE to its
neighbors. This provides an extra layer of tightly integrated and low latency
networking in the cluster.

6.2 Cluster Management

Software support for cluster level management is also important for adopting
dataflow computing in a large scale deployment. The main tasks of a cluster manage-
ment system include monitoring status of the cluster nodes, scheduling the compute
jobs and providing a control interface between users and the cluster. Although
CPU-centric cluster management software is widely adopted in production systems,
most such software packages are not designed to manage clusters with dataflow
computing elements.

Dataflow computing puts two significant new constraints on cluster management
systems. Firstly, they must be able to support the allocation and scheduling of DFE

764 O. Pell et al.

resources, which are different to CPUs; and secondly they must support nodes that
compute substantially faster.

Resource allocation, sharing and scheduling operates differently for DFEs to
CPUs. A CPU server is intrinsically able to support multiple processes in a time
sharing style with the help of the operating system. But DFEs do not usually support
time sharing for multiple applications in this way—partly because many of the
performance benefits come from keeping data on-chip and it would thus take a very
long time to swap a process off the DFE compared to the CPU.

Maxeler’s MaxelerOS management software provides resource allocation and
sharing for DFEs, but under strict user control. Programmers can choose to access
a group of dataflow engines and submit individual processing operations to that
group. Each operation is guaranteed to complete atomically, without interruption by
another process, but at the group level individual DFEs are shared between many
nodes and processing operations are queued until DFEs are available for them.

Dataflow engine groups can also grow or shrink automatically depending on
demand, something particularly useful when there is more than one application
using the DFE resources. For example, if there are some number of CPU nodes
accessing an MPC-X series system with 8 dataflow engines, and applications A and
B are running, then the 8 engines should balance between those applications i.e. if
application A needs one third as much DFE run-time as application B, then 2 DFEs
might be allocated to A, and 6 to B.

Because this resource sharing requires programmer knowledge at the application
level, it also requires scheduling DFEs as a new type of cluster resource in the
cluster management software. One possibility is to simply allocate blocks of DFEs
to particular application jobs, and then allow them to share DFEs for any use within
that block. Another alternative is that in systems with a fixed DFE to CPU mapping,
such as the MPC-C series, DFEs can be allocated automatically as part of the
allocation of a CPU node.

To facilitate the management of dataflow nodes, a cluster system must also be
able to monitor various characteristics of the DFEs. These include health, owner-
ship, temperature and utilization. Maxeler provides the maxtop and maxstatuscheck
monitoring utilities which return status information about DFEs within a particular
system; then this output can be integrated into cluster-level systems; however, the
management system must be extensible to absorb this and translate it into useful
information for the management process.

On the performance side, cluster schedulers are often built to schedule relatively
long-running “batch” processes, where any scheduling overhead is minimal com-
pared to the process run-time. If a dataflow accelerated process performs the same
computation 100 times faster, scheduling overhead can suddenly become the major
cost in a cluster. One solution to this is to modify the application level to increase
the amount of work performed per scheduling unit; another is to modify the cluster
scheduler to improve performance for scheduling small jobs.

Maximum Performance Computing with Dataflow Engines 765

6.3 Resiliency

When dataflow computing is adopted for a cluster, the computational performance
and energy efficiency is usually the main focus. However, like any other machines,
dataflow computing nodes may fail during operation for various reasons. A con-
ventional CPU server may fail for reasons such as disk failure, power failure,
memory error or failures within the processor while the reasons for a DFE to fail
depend on the underlying technologies employed in the hardware. For FPGA-based
DFEs, memory errors are the main source of failure. The memory can be either the
internal SRAM storage for configuration and status or the external DRAM storage
for application data storage.

The reliability of a cluster can be measured by the mean-time-between-failures
(MTBF). The MTBF of a cluster is directly related to the number of nodes in the
cluster as shown in the following equation.

MTBFcluster =
MTBFnode

NumNodes
(2)

This means that clusters will tend to experience failures more often as the
number of nodes is increased. Thus, an intrinsic advantage of a dataflow accelerated
cluster is that by utilizing a smaller number of nodes to perform the same amount
of computation, the rate of failure can be reduced if DFE nodes have a similar
individual MTBF to CPU nodes.

In addition, unlike CPU servers, DFE nodes may not have direct attached hard
disk storage as shown in Fig. 9. Instead, the engines make use of large amount of
on-board DRAM. Statistic results show that, for a single node, 76% of the failures
are due to the hard drivers or the RAID controller while only 5% are accounted for
by DRAM [15], so a diskless DFE node can be more reliable than a disk-based CPU
server.

On the other side, DFE nodes often have more memory than CPU nodes, which
makes them more likely to see memory errors. However most errors in DRAM
in large-scale deployments are correctable [14]. In CPU servers, ECC memory is
used to handle errors in DRAM. Using ECC memory, 1-bit errors can be corrected
and 2-bit errors can be detected in each 64-bit memory word. This provides a
uniform memory error protection across all applications running on the CPU server.
On the other hand, a DFE can be customized with different levels of protection
according to the practical requirements of the application. For example, a video
streaming application may require less protection than a cryptographic application.
The customization includes different type of error correction and detection schemes,
different protection granularities in memory word size and the option of embedding
the protection logic in application kernels.

766 O. Pell et al.

7 Case Study: Reverse Time Migration

Reverse time migration (RTM) is a geoscience algorithm used in complex geologies
to give detailed subsurface images based on seismic survey data [17]. It is widely
used in oil and gas exploration.

The concept behind RTM is relatively simple. We start with a known earth
model. This earth model might be simply acoustic velocity but could also be
anisotropic, elastic, or even visco-elastic. Scientists conduct two modeling experi-
ments simultaneously through the earth model. Both attempt to simulate the seismic
experiment conducted in the field—one from the source’s perspective and one from
the receiver’s perspective. To simulate the wave propagation, we start from the
acoustic wave equation (where u is pressure and v is velocity):

∂ 2u
∂ t2 = v2

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2

)
(3)

We can use a Taylor expansion to approximate these derivatives and implement
this as a convolution filter. Based on this, Fig. 10 shows pseudo-code for a simple
wave propagator. In this case, the computation requires the storage of two pressure
volumes for the current and previous state of the wavefield and these are used to
compute the next state. The vv volume contains v2, the earth model. Modeling more
complex physics will typically require more earth model parameters and more state
volumes to be stored, as well as greater computation. For example a tilted transverse
isotropic (TTI) anisotropic modeling algorithm could require up to 6 parameter
volumes: velocity, density, two anisotropy parameters and two angles.

We utilize the wave propagator as the computational kernel of RTM, which can
then be implemented using pseudo-code as shown in Fig. 11. The source experiment
involves injecting our estimated source wavelet into the earth and propagating
it from t = 0 to our maximum recording time tmax, creating a 4D source field
s(x,y,z, t). For the receiver data, we inject and propagate our recorded data starting
from tmax to t0, creating a similar 4D volume r(x,y,z, t).

A reflection is inferred where the energy propagated from the source and receiver
is located at the same space–time point, thus the final image is the summation of
correlating the source and receiver wavefield at every time and every shot.

Fig. 10 Pseudo-code for a
finite difference wave
propagator

Maximum Performance Computing with Dataflow Engines 767

Fig. 11 Pseudo-code for reverse time migration

i(x,y,z) = ∑
shots

tmax

∑
t=0

s(x,y,z, t)r(x,y,z, t) (4)

7.1 Analysis

To apply the Maximum Performance Computing approach to the RTM application
we must consider the different possible bottlenecks that affect performance.

On the computation side, the most significant cost is the wave propagation
calculation. The cross-correlation between source and receiver fields can also be
significant but contains many fewer operations than the modeling calculation.

On the memory/storage side, the main cost is the requirement to store a 4D
volume for the source or receiver; however, the 3D current/previous pressure fields
used for the wave propagation calculation can also be an issue.

The explicit time marching scheme used for wave propagation described above
has an operation count proportional to the number time steps nt times the size of
the domain—O(nx× ny× nz× nt). In order to obtain a stable and non-dispersive
solution, we are constrained in choosing our sampling in time and space. If we
use too large time steps or sample our medium too coarsely for a given velocity or
frequency in our data, we can run into problems with stability, dispersion, and/or
accuracy. Our sampling is controlled by the minimum and maximum velocity in the
media, the maximum frequency we want propagated, and the order of accuracy of
the derivative approximations. Figure 12 shows the impact of wave frequency on
the computation and memory costs. For 70 Hz RTM, a data volume can easily be
over 10 bn points (40 gigabytes per array, if single precision floating point is used
for storage).

7.2 Transformations

We can consider a number of transformations to maximize the performance potential
of RTM.

768 O. Pell et al.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Peak Frequency (Hz)

Timesteps (thousand)

Domain points (billion)

Total computed points (trillion)

Fig. 12 Impact of maximum frequency on computation and memory cost for modeling wave
propagation

7.2.1 Modeling Kernel

Assuming we have selected a particular physics model, the main opportunity
for algorithmic transformation in the modeling kernel is to select an optimized
convolution stencil for the computation of the derivatives.

By using higher approximations to the space and time derivatives (larger
stencils), we can use a coarser sampling in time and space with the trade-off of
a larger number of operations per sample. This is generally a beneficial trade-off,
particularly for the spatial derivatives, because we trade off linear growth in our
derivative approximation with cubic growth in the number of samples.

Another consideration is the shape of stencil. Typically stencils are “star” shaped
as shown in Fig. 13a, with each leg computing an x, y or z derivative; however,
an alternative is to use a “cube” shaped stencil as shown in Fig. 13b. The cube
requires approximately 20% more arithmetic operations than the star for the same
order derivative approximation but only requires one third of the on-chip buffering
memory when implemented as a dataflow architecture since it is more compact.
For implementations on CPU, the cube stencil has similar or worse performance to
the star. However when used in a dataflow architecture the lower buffering memory
requirements can improve performance in some cases [3].

This performance improvement comes about from considering the different
axes of parallelization that are possible for the finite difference kernel within the
dataflow engine. The first level is pipeline parallelism—that all stages of the pipeline
will be computing simultaneously. However if this does not utilize all the silicon
resources available it makes sense to utilize additional parallelism to further increase
performance.

The second level of parallelization possible is multi-pipeline parallelism—the
instantiation of multiple copies of the computation pipeline beside eachother on the

Maximum Performance Computing with Dataflow Engines 769

A 7-pt star stencil A 3x3x3 cube stencil

a b

Fig. 13 Two alternative stencil shapes providing 6th order in space accuracy

chip, processing multiple data items per cycle. Multiple dataflow pipelines can share
the same on-chip buffering memory so this is an efficient method of parallelization;
however, the memory bandwidth required increases linearly as the number of pipes
is increased.

An alternative, third level of parallelization is multi-timestep computation. In this
case, multiple timesteps are cascaded on the chip, without intermediate data being
written back to memory. This means that the amount of computation performed in
parallel can be increased by lengthening the pipeline without increasing memory
bandwidth requirements; however, this does increase on-chip buffering memory re-
quirements. As buffering memory becomes a scarce resource, the overall efficiency
of the computation will drop since some data must be read/written from memory
multiple times.

Figure 14 shows the performance impact of cascading multiple timesteps with
different stencils for a simple physics model. Star stencil performance begins to
drop off after a small number of cascade steps due to the limitations of on-chip
buffering, while cube stencil performance continues to scale.

7.2.2 Data Management

RTM requires storage of at least one 4D data volume that is typically larger than it
is practical to hold in main memory (e.g. several terabytes). If this data volume is
stored on disk, disk speed could potentially limit performance. At the transformation
stage, we should consider alternative schemes that could eliminate this bottleneck.

770 O. Pell et al.

Fig. 14 Comparing use of star and cube stencils for cascading multiple timesteps in finite
difference computations[3]

Broadly, we can consider:

1. Ensure the 4D volume fits into main memory.
2. Store the 4D volume to a fast disk system.
3. Recompute parts of the volume as necessary.

Option 1 above is possible for either low frequencies with small amounts of
data, or by provisioning large amounts of memory in a system. For example, if
the problem is split across multiple MPC-X dataflow systems, each of which has
nearly 400 GB of RAM, it is practical to store the full 4D volume in memory for
many useful sizes.

Option 2 requires that the disk performance can keep up with the compute
performance. One way to achieve this is to have compute nodes with many high-
performance disks and pair them with a relatively small number of dataflow engines.
Compression can also be utilized to reduce the data volume that must be written to
disk at the cost of extra computation.

Option 3 is an explicit trade-off between storage and computation and may be
most interesting in terms of future scalability since we expect compute speed to
grow faster than storage speed as time goes forward. There are a number of different
possible schemes to trade computation for storage, but one of the most effective is
to use the property of the wave equation that it is reversible.

The requirement to store the 4D volume arises because the source and receiver
experiments are being performed in opposite time directions, so the first imaging
step cannot be begun until the source wavefield has been fully propagated to
t = tmax. An alternative to storing s(nx,ny,nz,nt) is to compute the source wavefield
until tmax without storing the intermediate data, then to reverse the time direction
and recompute the source wave back from tmax to t0 in parallel to the receiver
propagation. This approach requires approximately 50% more computation but
removes the need to store a 4D data volume entirely.

Maximum Performance Computing with Dataflow Engines 771

M
em

ory

Current
Stiumulus

(s)

Earth
Model

t

Software Dataflow Engine

ChipCPU

Run-time
code Loops

over timesteps

Wavefields
Prev
(p)

I-1

Curr
(p)

t

Next
(p)

t+1

Stencil
Convolution

Wave Equation

Add Stimulus

Interconnect

Compute System

loop
...
Execute
FDKernel
...
Executable
FDKernel

Fig. 15 Partitioning computation and data for the wave propagation calculation

7.3 Partitioning

The main wave propagation calculation is a good fit for the dataflow engines in the
system and it is relatively straightforward to assign that computation to the DFEs.
Similarly, program initialization and set-up and control at run-time can easily remain
on the CPU since it is irregular and not performance critical. Figure 15 shows how
this partitioning operates.

The imaging calculation may be executed on either the CPUs or the DFEs. If a
recomputation scheme is chosen from Sect. 7.2.2, then all computation data will be
present in DFE memory at run-time so it may make sense for the DFE to perform
the imaging calculation as well even though it is not a significant part of the run-
time. Alternatively, if the data is being stored to the CPU memory or disk, it may
make more sense for the CPU to perform the imaging calculation in parallel as the
DFE computes the wave propagation.

For parallelizing across multiple dataflow engines, we select to duplicate the full
computation on each engine and split the problem domain across them with each
DFE computing on a sub-domain of the whole. At the boundaries of each DFE’s
region, it will need to communicate data elements with neighboring DFEs and this
can be done efficiently using the dedicated MaxRing interconnect.

7.4 Implementation

To implement the RTM, we create a software program to run on the conventional
CPUs (or modify an existing program) and program the dataflow engines with
the wave propagation (and possibly imaging) computation. We can implement the

772 O. Pell et al.

Table 1 Summary of published performance results for various different wave modeling
computations implemented as dataflow engines

Physics model Compared hardware Equiv. cores Ref.

Isotropic, variable velocity and
density (1bn pt)

1 core vs. MAX2 240 [11]

Vertical transverse isotropic (VTI)
anisotropy (1bn pt)

1 core vs. MAX2 56 [8]

Isotropic, variable velocity
(14bn pt)

32 coresa vs. 8 MAX2 ∼ 2000 [12]

Tilted transverse isotropic (TTI)
anisotropy (0.5bn pt)

8 cores vs. 4 MAX3 ∼ 500 [7]

aParallelization using MPI over Infiniband
For performance comparison we quote approximate equivalent cores for the accelerated
node, which in these cases was an MPC-C series with 8 CPU cores plus a varying number
of dataflow engines

DFE part using MaxCompiler, or using Maxeler MaxGenFD [10]. MaxGenFD is
a high-level domain-specific language compiler which takes a higher-level input
description in terms of pressure fields, convolution stencils and basic arithmetic
operations and automatically generates the MaxCompiler Kernels and Manager.

MaxGenFD handles the complexities facing any finite difference implemen-
tation such as managing very large data sets, boundary conditions and domain
decomposition across multiple DFEs with halo exchange. In addition, the compiler
removes the need for the geoscience programmer to perform hardware-specific
optimizations such as customizing data-types and generating optimized convolution
stencil descriptions for hardware.

At the cluster level, ideally each shot that is computed runs on a single node.
Depending on the amount of data required for that shot, multiple DFEs may be
needed. If a scheme to store the 4D wavefield volume is used, each compute
node should have relatively few DFEs and a large number of fast hard disks
to store the temporary volumes. These 4D volumes should not be stored on a
centralized file server.

If a recomputation scheme is used, little or no disks are required for a node,
but the number of DFEs should be increased to maximize the compute density.
A shared file server or SAN can usually supply the input data for each shot
computation. Output data can either be written to the shared file server for each
shot, or accumulated on each node and then only aggregated data written back to
the shared file server.

A variety of RTM implementations on Maxeler hardware have been reported.
Table 1 shows a summary of published performance results for a variety of
real-world geoscience applications with a range of physics model complexity.
Performance on real applications is dependent on not only just arithmetic and
memory bandwidth but also the balance of different types of data and the data access
pattern. The real applications have been implemented with a range of different CPUs
and DFEs but consistently show that a single dataflow engine can be equivalent to
dozens of conventional CPUs.

Maximum Performance Computing with Dataflow Engines 773

For large-scale isotropic modeling [12], a single dataflow engine equates to the
performance of 100–200 CPU cores, partly because the CPU performance is limited
by communication overhead to decompose the large domain, while the dataflow
implementation operates within a single node using MaxRing. For VTI modeling
[8] in contrast, the algorithm maps less well to the dataflow architecture and each
DFE is equivalent to about 25 CPU cores. In this instance the VTI propagator is
very limited by memory bandwidth despite the efficient memory use of the dataflow
paradigm and so is unable to fully exploit the arithmetic capabilities of the chip.

8 Conclusion

Maximum Performance Computing strives to deliver the maximum possible per-
formance within a space and/or power budget. Dataflow computing is a powerful
computational paradigm for supporting this goal, maximizing the efficient use of
silicon area and delivering significantly better performance than conventional CPUs
for a wide range of problems in scientific computing and further afield.

One of the key advantages of dataflow computing is constructing a computer
system around the flow of data in an application and inherently minimizing data
movement rather than purely considering the computation. As silicon technology
continues to advance in the future, the cost of computation will decrease with
Moore’s Law, while the cost of moving data and accessing memory will become
increasingly dominant. This implies that the advantages of the dataflow computing
approach will become more and more significant in the future.

References

1. J.B. Dennis, Data flow supercomputers. Computer 13(11), 48–56 (1980)
2. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Tech. Rep. Document LA-1940

(1955)
3. H. Fu, R.G. Clapp, O. Mencer, O. Pell, Accelerating 3D convolution using streaming

architectures on FPGAs. SEG Expanded Abstracts 28 (2009)
4. H.T. Kung, Why systolic architectures? Computer 15 (1982)
5. C.E. Leiserson, Fat-trees: universal networks for hardware-efficient supercomputing. IEEE

Trans. Comp. 34 (1985)
6. O. Lindtjorn, R.G. Clapp, O. Pell, O. Mencer, M.J. Flynn, H. Fu, Beyond traditional

microprocessors for geoscience high-performance computing applications. IEEE Micro 31(2),
41–49 (2011)

7. O. Lindtjorn, R.G. Clapp, O. Pell, O. Mencer, M.J. Flynn, H. Fu, Beyond traditional
microprocessors for geoscience high-performance computing applications. IEEE Micro (2011)

8. W. Liu et al., Anisotropic reverse-time migration using co-processors. SEG Expanded
Abstracts 28 (2009)

9. Lustre, http://www.lustre.org. Accessed 26th Jaunary 2013
10. Maxeler Technologies: MaxGenFD white paper. Tech. rep. (2010)

http://www.lustre.org

774 O. Pell et al.

11. T. Nemeth, J. Stefani, W. Liu, R. Dimond, O. Pell, R. Ergas, An implementation of the acoustic
wave equation on FPGAs. SEG Expanded Abstracts 27 (2008)

12. D. Oriato, O. Pell, C. Andreoletti, N. Bienati, FD modeling beyond 70hz with FPGA
acceleration, in SEG 2010 HPC Workshop, Denver (2010)

13. O. Pell, O. Mencer, Surviving the end of frequency scaling with reconfigurable dataflow
computing. SIGARCH Comput. Archit. News 39(4), 60–65 (2011)

14. B. Schroeder, E. Pinheiro, W.D. Weber, DRAM errors in the wild: a large-scale field study,
in Proceedings of eleventh International Joint Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’09) (ACM, New York, USA, 2009), pp. 193–204.
DOI 10.1145/1555349.1555372, http://doi.acm.org/10.1145/1555349.1555372

15. K.V. Vishwanath, N. Nagappan, Characterizing cloud computing hardware reliability, in
Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC ’10) (ACM, New
York, USA, 2010), pp. 193–204. DOI 10.1145/1807128.1807161, http://doi.acm.org/10.1145/
1807128.1807161

16. S. Weston, J. Spooner, S. Racaniere, O. Mencer, Rapid computation of value and risk for
derivatives portfolios. Concurrency Comput.: Pract. Ex. (2011)

17. K. Yoon, C. Chin, S. Suh, L. Lines, S. Hong, 3D reverse-time migration using the acoustic wave
equation: an experience with the SEG/EAGE dataset. The Leading Edge 22, 38–41 (2003)

http://doi.acm.org/10.1145/1555349.1555372
http://doi.acm.org/10.1145/1807128.1807161
http://doi.acm.org/10.1145/1807128.1807161

Index

A
Acceleration. See also High-performance

hardware acceleration
C-based DEM hardware

contact check, 684–686
control unit, 688–690
input description, 683
inter-particle forces increment, 687
types, system level capabilities, 684
velocity and position update, 688

communication
BSP, 511
EXTOLL approach, 510–511
FPGAs (see Field-programmable gate

arrays (FPGAs))
fraction, time, 512–514
HPC applications, 516
JNIC project, 539
limitations, 530–531
message size distribution, 514–516
messaging characteristics, 509–510
micro-benchmarks (see Micro-

benchmarks, EXTOLL)
on-chip RISC processor, 538
QPACE system, 539
SCI and clint network, 538
software architecture (see Software

architecture)
SPMD, 511
TOFU network, 538
vast increase, parallelism, 508–509

comparisons, speed up, 672
contact check units, 671, 672
data transfer and communication overhead,

114
defined, node, 39
design and board-level issues

board-level data transfers, 127, 129
filter pipelines to force pipelines, 129
force pipelines to ACC cache, 129
host-accelerator data transfers, 127
HPRC MD system, 128
on-chip data transfers, 129
POS cache, 129

2D seismic modeling, RTM, 306–307
filtering and mapping scheme

cell list computation, 120
cell neighborhood organization,

123–124
design and optimization, 121–123
mapping particle pairs, 125–127
Stratix-III/Virtex-5 generation, 121

force pipeline, 116–120
FPGAs, 33, 37, 670, 671
handling exclusion, 113
hardware-level, 139
high-level parallelism

cell size, 678
control units, 677
DEM tasks duration, 678
domain decomposition, 677
parallel and overlapping computation

and communication, 677
high performance computing, 37
low-level parallelism

contact check, 672–674
hardware requirements, 676
interface unit, 676
inter-particle forces increment, 674, 675
velocity and position update, 675, 676
write back unit, 675

MCS, 462
multiple device, 144
Newton’s 3rd law, 114–115

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs,
DOI 10.1007/978-1-4614-1791-0, © Springer Science+Business Media, LLC 2013

775

776 Index

Acceleration. See also High-performance
hardware acceleration (cont.)

partitioning and routing, 115
RAMP, 456
resorting, TLS, 270, 273
RIVYERA performance, 88
Smith–Waterman algorithm, 142, 446
timing profile, MD run, 113
TREE-WALK SEGMENT, 256

A5/1 cipher
attack complexity, 351
description, 349
guessing engines, 351
registers, 349, 350
security, 349–350
TMDTO attack, 354–356

ALUs. See Arithmetic and logic units (ALUs)
American option pricing

architecture, linear-squares regression, 67,
68

calculation time, FPGA and CPU, 68, 69
cash-flow matrix at time 2, 66
cash-flow matrix at time 3, 65
conditional expectation function, 64
decision-making procedure, 63
least-squares regression, 64
optimal early exercise decision at time 1,

67
optimal early exercise decision at time 2,

66
option cash-flow matrix, 67
regression at time 1, 66
regression at time 2, 65
resource consumption breakdown, 67, 68
stock price paths, 65

AMSC. See Asynchronous multi-spin coding
(AMSC)

API. See Application programming interface
(API)

Application programming interface (API)
EXTOLL software stack, 526
low-level libraries, 527

Application-specific integrated circuits
(ASICs)

Bloom filter, 241
cell-based circuit, 606
generated pipelines (Virtex2Pro), 382
gravitational force calculations, 378
hybrid systems, 605
limitations and disadvantages, 378
N-body simulation, 368

Arithmetic and logic units (ALUs), 608
Arithmetic efficiency and precision analysis

bit-width minimization techniques, 639

classical programming, 638
dynamic methods, simulations, 639
range and precision analysis, 639

Asian option pricing
accumulator and divider, 61
architecture, simulation engine, 61
calculation, 60
geometric average, 61
hardware simulation engine, 61–62

ASICs. See Application-specific integrated
circuits (ASICs)

Asset simulations. See also High-performance
hardware acceleration

Black–Scholes model, 462
Brownian motion, 462
desctiption, 20
Fourier-Cosine series expansions (COS)

method, 11
FPGA implementations, option pricing, 11
hybrid CPU-GPU option pricing system, 11
Maxeler MaxNode system, 12
multi-level Monte Carlo accelerator (see

Multi-level Monte Carlo accelerator)
RNGs (see Random number generators

(RNGs))
state-of-the-art, financial industry, 11
Xilinx Virtex-6 based platforms, 11

Astrophysical N-body simulation
ASIC-based supercomputing solutions, 378
Barnes–Hut tree-code, 377
computing platforms, 377
formation and evolution, 377
gravitational force calculations, 378
limitations, ASIC solutions, 378

Asynchronous multi-spin coding (AMSC)
3D Ising SG model, 502, 503
and SMCS strategies, 501

Aurorascience
CPU and NWP, 561
CPU-to-CPU latency, 563–564
Nget and Nput schemes, 563
Nget scheme, 562
NWP, 563
ping-pong time measurement, 564
Pput implementation, 562, 563
Pput scheme, 562
SDR and QDR InfiniBand, 564–565
WC+ROB, 562

B
Backtracking, BWA

BWA pseudo code, 99

Index 777

mismatches and gaps, 98
occurrence, reference X, 98
processing the reads, 99

Bandwidth
ASIC, 510
bioinformatics applications, 82
board-level data transfers, 127
BRM, 289–291
cashing techniques, 378
communication, 281–282, 338, 357, 435
DDR2-500 MHz memory interface, 422
DFE, 751
external memory, limitation, 285
force pipelines, 121
FPGA-based computing clusters, 336
GPGPU performance, 329
host computer and communication speed,

383
host-to-board interface, 17
implementation parameters, VHDL, 421
internal memory, 656
latency and, 531, 532, 592, 594
LGSM, 291
memory, 446
modern system bus architectures, 752
network tree, 763
PCI bus, 714, 715
PowerXCell 8i processor, 550
processor, QPACE, 559, 560
QPACE torus network link, 560, 561
RocketIOs, 39
Stratix III, IV and V FPGAs, 299–300
streaming processing core, 314
temporal pipeline, 317
Xeon CPUs and FPGAs, 39

Barotropic
computational flow, 373
FPGA resources, 375
functions, POP, 374
and grad function, 375
performance comparison, 377

Base transceiver station (BTS), 349
Basic local alignment search tool (BLAST),

141
BEE2. See Berkeley emulation engine 2

(BEE2)
Benchmark computations, 295–296, 298
Berkeley emulation engine 2 (BEE2), 438
BGM interest rate model, 37
Biochemical kinetic simulation

evaluation, ODE based approach, 157
frequency and throughput, 158
FRM, 151

heterogeneous model simulation
framework, ReCSiP, 154–157

integration and pathway mapping, 153–154
parameter fitting, 150
simulator, 158
solver core library, 152
Solver Cores, 159
solvers and switch size, 158
stochastic biochemical simulation (see

Stochastic biochemical simulation)
target model and description, 151–152

Bioinformatics
cost comparison, DNA sequencers and

LSIs, 138
FPGA-based HPRC (see High performance

reconfigurable computing (HPRC)
systems)

Omic space, 138, 139
RIVYERA

BLAST (see BLAST database search)
BWA (see Burrows–Wheeler alignment

(BWA))
Needleman–Wunsch algorithm, 84–85
sequence analysis, 84
Smith–Waterman algorithm, 85–88

Black–Scholes model
drawbacks, 6
FPGA architectures, 11
hardware architectures, 9
Heston model, 5
market behavior, 6
Monte-Carlo method, 56
volatility, 62

BLAST. See Basic local alignment search tool
(BLAST)

BLAST database search
BLASTp hardware pipelines,

GappedExtender component,
91

BLASTp runtimes, randomly reduced
query sets, 95

BLOSUM62 scoring matrix, 94
communication interruptions, reports

submission, 94
CUDA-BLASTp, 89
energy consumption, randomly reduced

query sets, 95, 96
gapped and ungapped extension process, 90
GappedExtender component, HSP, 93
hardware and software implementation, 90
heuristic algorithm, 84
HitFinder search, 91–92
implementation, BLASTp, 84

778 Index

BLAST database search(cont.)
Mercury BLASTp and CUDA-BLASTp

v2.0, 95
neighborhood and hits, 89
RIVYERA machine, 91
sequence similarities, 88–89
Smith–Waterman algorithm, 82
speedups, RIVYERA S3-5000, 95
structure, NW cell chain implementation,

94
two-hit method and gapped BLAST, 89
types, 89
UngappedExtender component, 92
X-drop mechanism, 90
Xilinx Spartan3-5000 FPGAs, 94

Block triangular factorization (BTF), 395
Bloom filter

ASIC, 241
average access time per pattern

encountered plus nH times, 221
lower bound, 221–222
single hit, 219–220
upper bound, 222
zero hits, 219

average overall throughput, 223–224
contention, 236
GPGPU, 241–242
impact, access time, 227
integer partitions, 217
maximum throughput, 224–225
parallelisation, 215–216
perfect Bloom filter, 213
probability of

each partition, 217–219
external memory access, 223

Bluespec, 723, 724
BlueSpec system verilog (BSV), 723
Boolean synthesis, SMILE

ALTAMIRA cluster, 474, 475
chromosome representation, 466–467
EA, SGA and GP, 466
fitness function, 467
genetic operators, 467
GP on GPU, 474, 475
GPU architecture and programming model,

469, 470
hardware implementation, 468
parallel implementation, 470
SMILE vs. ALTAMIRA, 474, 476
SMILE vs. NVIDIA 450GTS, 474, 476

BRM. See Peak-bandwidth reduction
mechanism (BRM)

Brute-force attack
DES, 341–342

ePass, 346–348
Hitag2, 342–344
KeeLoq, 344–346
PRESENT, 348–349

BSP. See Bulk synchronous programming
(BSP)

BSV. See BlueSpec system verilog (BSV)
BTF. See Block triangular factorization (BTF)
BTS. See Base transceiver station (BTS)
Bulk synchronous programming (BSP), 511
Burrows–Wheeler alignment (BWA)

exact search and FM-indexing, 98
and FM-indexing, 96
hardware structure, implementation, 100,

101
heuristic algorithms, 96
inexact search, backtracking (see

Backtracking, BWA)
performance evaluation, 100–101
ReadEntity, 100
RIVYERA S6-LX150 architecture, 96
Spartan6-LX150 FPGAs, RIVYERA

S6LX150, 100
steps, algorithm, 97
transformation, sequence

“CATGTATGCC”, 97
BWA. See Burrows–Wheeler alignment

(BWA)

C
C++

API, 242
behavioural synthesis, 679
code, SCORE compiler, 415
CPU-based system, 237
data types, 680
device driver, 312
FRM and NRM execution programs, 161
hardware approach, 741
HLLs (see High-level languages (HLLs))
least-squares Monte-Carlo engine, 68
LUT entries creation, 27
PROCStar board, 228
PROCWizard, 312
QuantLib, 11
SSE2 implementation, Intel Xeon

E5620@2.4GHZ, 11
Carte-C

development environment, 723
MP/CSP model, 725

Catapult-C, 242, 721
C-based design. See Discrete element method

(DEM)

Index 779

CCMs. See Custom computing machines
(CCMs)

CDOs. See Collateralized debt obligations
(CDOs)

Cell-lists
aggregate neighbor-lists, 120
Newton’s third law, 110
simulation box, 109
swapping, 120

Central processing unit (CPU)
AMD Opteron, 587
CPU-to-CPU data transfer, 546
CPU-to-CPU latency, 563
HT, 585
interconnection network, 586
Nget and Nput schemes, 563
Nget scheme, 562
NWP (see Network processor (NWP))
shared memory engine, 587

CFD. See Computational fluid dynamics
(CFD)

Chromosome
Darwinian concept, 466
FCU, 468
logic gates, 467
representation, 466–467

Circuit simulation benchmark matrices, 424,
425

Circuit simulator. See Simulation program with
integrated circuit emphasis (SPICE)

CISC. See Complex Instruction Set Computer
(CISC)

CMOS. See Complementary metal oxide
semiconductor (CMOS)

Cognitive neural prosthesis
artificial retina/cochlear implant, 179
description, 179
fault-tolerance property, 202, 204
implementation, 204
re-encoding process, 180
spike trains, 179

Cognitive neuroscience, 178–179
COLAMD. See Column approximate

minimum degree (COLAMD)
Collateralized debt obligations (CDOs), 4
Column approximate minimum degree

(COLAMD), 395
Combinatorial problems (N-ary trees), 218,

249–250, 710
Common subexpression elimination, 401
Communicating sequential processes (CSP),

721–722
Communication

A5/1, 349

acceleration (see Acceleration,
communication)

API functions, 557–558
bandwidth, 435
bioinformatics applications, 82
brain network, memory, 178–179
2D array, PEs, 285–286
and data transfer, 114
DEM, 666
floating-point operators, 403
FPGA system, 416
GPUs, 283
hardware and host computer,

COPACOBANA, 336
Hitag2 transponder and reader, 343
host–device, 242
hybrid CPU-FPGA setup, 17
interface, software and hardware, 83
inter-node data, 108, 115, 132
LGSM, 291
linear speed-ups, 666
low-latency and wide-bandwidth, 281–282
100-MB network connection, 438
message-passing, 457
monitoring, terrorist activity, 211
Monte Carlo simulations, 59, 761
PCIe bridge, 313
portable application programming

interface, 723
PROCWizard, 312
protocol, 493
RIVYERA computing system, 338, 339
RIVYERA S3-5000 machine, 91
slice utilization, 156
SMILE element, 459
software interface, FPGA and CPU, 40
solvers and switch size, irreversible

Michaelis-Menten, 156
solver-to-solver communication switches,

156
subsystem, 130
and synchronization phases, 584

Communication network
brain, 178–179
FPGAs, 566
high-bandwidth memories and operators,

403
Communication sequential processes (CSP),

724–725
Complementary metal oxide semiconductor

(CMOS), 612
Complex Instruction Set Computer (CISC),

607
Computational fluid dynamics (CFD), 279, 281

780 Index

Compute unified device architecture (CUDA)
BLASTp v2.0, 89, 95
GPU-CUDA combination, 471
MacPro workstation, 64-bit Linux system,

71
multiple memory spaces, 72
NVIDIA SDK 2.0, 465

Constant coefficient multipliers (KCMs), 676
Convey HC-1 computer

AEH, 440
application programming, 444
convey computer corporation, 439
coprocessor execution, 440–441
coprocessor functional components,

440–441
design flow, 441, 442
FPGA logic designs, 439
hardwired host processor, 439
host x86 instructions and coprocessor, 439
operating system, 444–445
personalities, 443–444
programming model, 442–443

COPACOBANA. See Cost-Optimized Parallel
Code Breaker (COPACOBANA)

CORDIC algorithm, 193, 656, 657
CoreFire, 724
COS. See Fourier-Cosine series expansions

(COS) method
Cost-Optimized Parallel Code Breaker

(COPACOBANA)
application, cryptanalysis, 82
computing system

data transfer, 337
DSP, 337
FPGA devices, 336, 337
hardware architecture, 336, 337
Xilinx Spartan3-XC3S1000 FPGAs,

337
RIVYERA architecture, 83

CPF matrix. See Current pressure field (CPF)
matrix

CPU. See Central processing unit (CPU)
Cray’s XD1 system, 336
Cryptanalysis

brute-force attack
DES, 341–342
electronic passports, 346–348
Hitag2, 342–344
KeeLoq, 344–346
PRESENT, 348–349

COPABOBANA computing system
(see Cost-optimized parallel
code breaker (COPACOBANA),
computing system)

cube attacks, 359–362
guess-and-determine attack, A5/1, 349–351
heat dissipation, 338
large numbers factoring, elliptic curves,

356–359
predecessor COPACOBANA, 82
RIVYERA computing system (see

RIVYERA, computing system)
and stock market analysis, 102
TMTO, 351–356

CSP. See Communicating sequential processes
(CSP)

C-to-Gates, 717
Cube attacks, cryptanalysis

bitstream generation process, 361
Cube Testers, 359
Dynamic Cube Attack, 359
implementation, RIVYERA, 361
layout, FPGA implementation, 360
stream cipher Grain-128, 359

Cubes, 433, 768
CUDA. See Compute unified device

architecture (CUDA)
Current pressure field (CPF) matrix

memory data organization, 315–317
PROCMultiport, 313–314
seismic pulse vector and FSM, 321
temporal pipeline, 317–318

Custom computing machines (CCMs), 280,
281

Cyber-C, 679
CyberWorkBench (CWB)

ANSI-C, 679
C-based behavioural synthesis, 678
Cyberware, 679
design space exploration

functional units (FUs), 683
heuristics, 683
pareto-optimal designs, 682, 683

“Library Characterizer”, 679
QoR, 680
verification flow

cycle-accurate simulator, 682
data types, 680

hardware–software partitioning/algorithm,
681

HLS, 680, 681
SystemC models, 680
timed simulation, 680

D
Data encryption standard (DES)

brute-force attack, 341–342
TMTO attacks

Index 781

online phase, 353
rainbow tables, 353, 354
runtimes and memory requirements,

353
Spartan-3 devices, 353

Triple-DES, 347
Dataflow

FPGA architecture, 406
hybrid VLIW design, 415
Matrix-Solve phase, 420
offchip memory, 410
parallelism, 402
SCORE, 412
and sparse circuit matrix, 408
sparse matrix solve operations, 411
SPICE iterations, 406
token-dataflow architecture, 408–409
U7 control unit, 189
Verilog-AMS, 399, 401
von-Neumann architecture, 402

Dataflow engine (DFE)
control flow vs. dataflow cores, 748, 749
and CPUs integration

access, memory, 751
coupling, 751–753
roles, system, 750–751

MPC-C and MPC-X, 753–754
throughput, 750

Data flow structures, RTM
arithmetic issues

definition, fixed point precision, 323
floating point and fixed point, 325, 327
IEEE 754 floating point single

precision, 322
model parameters and functions

signatures, 323, 324
parameter NUMBITS PINT, 323
PE model, 322–323
seismic data processing, 322
UIQI and SNR, 324–326

control unit, 321–322
FIFOs and shift register structure

advantages, 319
components, 320–321
functions, 318
initialization process, 319–320
storing capacity, 319

memory data organization, 315–317
seismic pulse CPF and seismic pulse PPF,

321
temporal pipeline, 317–318

Data processing
FIFO initialization, 319
FPGA technologies, 566–567

parallelism, 306
performance, N-ary trees (see Tree-like

structures (TLSs))
petroleum industry explorations, 309

DeCypher, 171
DEM. See Discrete element method (DEM)
Dependency graph (DG), 160
DES. See Data encryption standard (DES)
Device driver platform, 312
DFE. See Dataflow engine (DFE)
Differential equation

biochemical kinetics, 150
nonlinear, SPICE, 392
ODEs (see Ordinary differential equations

(ODEs))
semiconductor circuits, 390
Verilog-AMS, 399

Digital signal processing (DSP)
Altera blocks, 636
Xilinx blocks, 635

Direct memory access (DMA)
C and FORTRAN source files, 370
computational flow, barotropic operator

function, 373
data parallelism, 371
data transfer and communication, 114
dual streaming, 370–372
FPGAs and host memory, 370
high-level software design environment,

369
IBM PowerXCell 8i processor, 547
interrupt-driven/register-based

communications, 461
Kernel functions (see Kernel functions)
multiple OBM banks, 370
multiple with single streaming, 371, 372
N input and single output data strings, 371,

372
no optimization, 371, 372
NWP, 547
NWP–processor link, 551
POP, 373
register-based and, 468
RMDA, 575
single streaming, 370
SRC-6 and reconfigurable processor

(MAP), 369
strategies, trade-off, 373–374
trade-off analysis

data strings, 374
measured times, transfer and reordering,

374, 375
twisted streaming, dual streaming manner,

372, 373

782 Index

Discrete element method (DEM)
Alter Technologies, 666
C-based hardware acceleration (see

Acceleration)
computational resources, 666
computing power, 669
Cray T3D massively parallel computer, 667
CWB, 678–683
DEM, 670
granular materials, 668
HLS, 669
multiprocessor platforms, 668
reconfigurable computing, 665
RTL-based vs. C-based design (see Register

transfer level (RTL))
Rt-level hardware acceleration (see

Acceleration)
Swiss-T0-dual machine, 667, 668

Discrete wavelet transform (DWT), 741
Distinguished points (DPs), 352, 355
DMA. See Direct memory access (DMA)
DNA

BLAST alignments, 89
DNA-DNA comparisons, 141
DNA-protein comparisons, 140, 141
NCBI’s Genbank and UniprotKB/TrEMBL

databases, 81
replications, 142
sequencers and LSIs, 138
Smith-Waterman performance, RIVYERA

S3-5000, 88
DNA sequence analysis

nitrogenous nucleotide bases, 139
sequencers and LSIs, cost, 138

DORGA. See Dynamic optically
reconfigurable gate array
(DORGA)

DRAM. See Dynamic random access memory
(DRAM)

DSP. See Digital signal processing (DSP)
DSPLogic, 723, 724
DWT. See Discrete wavelet transform (DWT)
Dynamic optically reconfigurable gate array

(DORGA), 610
Dynamic programming, 141, 172
Dynamic random access memory (DRAM)

capacity limitations, 570
3D stacking, 572
memory, 574
replacement, 572
storage technologies, 602

Dynamic reconfiguration
description, 201–202
external and internal, 202

modern FPGAs, 412
partial, 202, 203

E
EA. See Evolutionary algorithms (EA)
ECM. See Elliptic curve method (ECM)
EFF. See Electronic frontier foundation (EFF)
Electronic frontier foundation (EFF), 341
Electronic passport (ePass), 346–348
Elliptic curve cryptography

FPGA-layout, ECM system, 357, 358
GNFS algorithm, 356–357
RSA, 356
Virtex-4 FPGAs, 357, 358

Elliptic curve method (ECM)
algorithm, 357
FPGA-layout, 358
layout, 357, 358
memory, 358
parallel hardware architecture, 357

Energy efficiency
COPACOBANA machines, 343
CPUs and GPUs, 29
FPGA and GPUs, 150
FPGA architecture, 11, 79, 106
performance-per-watt, 238

ePass. See Electronic passport (ePass)
Ethernet

1000BASE-T physical transceiver, 551
cluster interconnection, 601
controller card, COPACOBANA

connection, 337
CRC code, 493
FPGA-FPGA interconnection, 39
Gbit link, 496
Gigabit-ethernet interface, 492
high-performance switch linking, 39
InfiniBand, 595
Linux kernel, 458
MAC, 563
training data, 189
Xilinx, 458

Euroben. See Euroben kernels, Maxwell
Euroben kernels, Maxwell

architectures and tools, 697
cache unit, matrix multiplier, 702
DSP, 703
FFT, 710–712
HCE, 703–704
high level structure, 701, 702
initial implementation, 698–699
matrix multiplication, 697–698
Maxwell system, 696

Index 783

Mod2am, 713
Mod2as, 713–714
Mod2f, 715–716
Mod2h, 714–715
power consumption, 717
Prace prototypes, 696RAMs, 699
random number generator, 708–710
software tools, 696
sparse matrix-by-vector kernel, 704–707
VHDL matrix multiplier, 699, 700

European option pricing
algorithm, path generation, 57, 58
Black-Scholes mode, 56
computing time, 59
generic architecture, Monte-Carlo

simulation engine4, 57, 59
running time, C ++ & FPGA

implementation, 58, 60
simulation process, 56
Verilog and Xilinx ISE 9.2i, 57
Xeon processors, 59

Evaluation framework, HLLs
activities, design process, 733
biasing effects, 726
design methodologies, 730, 731
formalization, scoring mechanism, 727
mapping function, 730–731
observations, feature space, 726
productivity, 734–735
space, design problem, 731, 732
time evolution, search path, 733
validation, 729
work progress rate

classical mechanics, 736
computational force, 739
geometrical properties, 738
resource utilization, 735
user and tool computational forces, 736,

737
Evolutionary algorithms (EA), 466
Exotic operators

accumulation
fixed-point accumulators, 649, 650
Monte-Carlo simulations, 649
numerical integration, 649, 651
single-cycle accumulation, 651, 652

floating-point exponential, 654–655
generic polynomial approximation

fixed-point functions, 650
Horner evaluation datapath, 654
scalable range reduction technique, 653
short-latency architecture, 653

EXTOLL
approach, 510–511

clusters and MPPs, 508
FPGAs (see Field-programmable gate

arrays (FPGAs))
global address spaces, 586
HPC (see High-performance computing

(HPC))
micro-benchmark level, 539
network management, 529
network packets, 586
software stack, 526
target host, 587

F
Fast Fourier transform (FFT)

architecture, 711
based computation, 113
3D FFT, 132
single precision complex numbers, 710
VHDL, 710–712

Fat-tree structure, NRM circuit, 166
FDDI, 621
FFT. See Fast Fourier transform (FFT)
Field programmable gate arrays (FPGAs)

COPACOBANA, 347
real-time search (see Real-time search,

FPGAs)
RIVYERA, 338
SPICE

common model parameters, 418
cycle measurement, 422
description, 397
energy ratio, 422, 423
hardware library and cost model, 421
high-level SPICE usage flow, 417
implementing computation, 397, 398
offline logic configuration, 419–420
runtime memory configuration, 418,

420
SPICE execution flow, 418–419
SPICE mapping toolflow, 418
total per-chip speedup, 422, 423

Virtex-4, 357, 358
Xilinx Spartan3-XC3S1000 FPGAs, 337
Xilinx Virtex-4 XC4VSX35 FPGAs, 337,

357
Field-programmable gate arrays (FPGAs)

application-specific computers, 483
architecture, Janus (see Janus)
ASIC, 485
coherence length, 499
desccription, 485
design goals, EXTOLL, 522
DSP slice, 522

784 Index

Field-programmable gate arrays (FPGAs)
(cont.)

dynamic simulations, 499
Edwards–Anderson model, 498
egress and ingress modules, 590–591
EXTOLL, 586
floorplanning, 523–524
FX100 logic, 524, 525
FX100 utilization map, 525
global architecture, 586–587
GPUs, 484
hardwired CPUs, 434, 435
HDL descriptions, 438–439
heat-bath algorithm, 499
HPC networking, 520–521
implementation phase, 521
Intel Stellarton, 436
MCSs, 499
MEMSCALE, 585
minimized latency, 585–586
resource utilization, 591, 592
self-averaging quantities, 498
SG (see Spin glasses)
simulation campaign, 500
simulations, SG, 483–484
soft-core processor implementation

ALUs, 608
CISC, 607
MISC, 607, 608
programmable gate array, 608–609
RISC, 607

source tag management, 589–590
SP (see Single-precision floating point

(SP))
SRL FIFO, 522–523
Stratix-III E260, 438
target node determination and address

translation, 588–589
thermal equilibrium, 499
torus (see Torus interconnect)
type one and two, 434, 435
XC4VFX100 device, 524

Filtering and mapping scheme
cell list computation, 120
cell neighborhood organization

extra resources, 125
load imbalance, 124–125
neighbor-list sizes, 124
partitioning schemes, using Newton’s

3rd law, 123
design and optimization

cell-list-based system, 121
cost and quality, 122
reduced and planar filters, 123

mapping particle pairs, 125–127
Stratix-III/Virtex-5 generation, 121

Financial computing
algorithms, 36
American option pricing, 63–69
area and power consumption, 35
Asian option pricing, 60–62
comparative evaluation, GPP and GPU, 36
description, 34
European option pricing, 56–60
FPGA, 35
FPGA-based Monte Carlo Simulation

Engine, 76–78
GARCH model (see Generalized

Autoregressive Conditional
Heteroskedasticity (GARCH))

hardware and software solution bundles, 11
hardware RNGs (see Random number

generators (RNGs))
Maxwell (see Maxwell FPGA parallel

machine)
metrics, 75
Monte-Carlo simulation, 35
platforms, 75
quasi-Monte Carlo simulation (see

Quasi-Monte Carlo simulation)
state-of-the-art

AlphaData nodes, 37
American options, 38
BGM interest rate model, 37
cluster technology and reconfigurable

hardware acceleration, 37
DIME-C, 37
GPUs, 38
“HyperStreams”, 37
quasi-Monte Carlo method, 38
single node execution time, Asian

option pricing simulation, 37, 38
software implementations, RNGs,

38–39
Xilinx Virtex-4 XC4VSX55 device, 37

supercomputers development, 34
Finite-state machines (FSM), 321–322
Floating point approach

architecture, converter unit, 25, 26
corresponding ICDF lookup unit, 26, 27
LUT entries, 27
randomness and distribution, input random

numbers, 25
synthesis results, inversion based converter

architecture, 26
Floating-point arithmetic

architecture, converter unit, 25, 26
building blocks, 368

Index 785

FPGAs, 367
IPs, 201
Matlab’s ICDF function, 53
for Monte-Carlo simulation, 67
NRM, 161
ReCSiP, 151
single-precision, 162
Xilinx Core Generator, 70

Force pipeline
fixed and floating point, 117
functional units, 117, 118
reference code and designs run, 100,000

timesteps, 119
van der Waals potential,

switching/smoothing function, 116,
117

Fortran
kernel functions, 374
SRC-6, 370, 374–375

Fourier-Cosine series expansions (COS)
method, 11

FPGA-based high-performance computer. See
RIVYERA

FPGA-based HPRC systems
arithmetic unit level, 368
GPPs/GPUs, 368
N-body simulation (see N-body problem)
ocean model simulation (see Direct

memory access (DMA))
pipelined custom datapaths, 368
reconfigurable computing machines,

367–368
scientific applications, 367
software environments, 368

FPGA-based Monte Carlo Simulation Engine
development time percentage, 78
experimental parameters and results, 76
paths/sec/$, 77, 78
paths/sec/development day, 76, 77
paths/sec/Watt, 76, 77

FPGA implementation
access time measurements, 235–236
advantages, 231
Bloom filter, 230
CPU-based system, comparison, 237
development environment, 228
document lengths, 234
document streaming, 229
experimental parameters, 234–235
hardware, 227–228
performance-per-watt, 238
performance vs. cost, 238–240
profile lookup and scoring, 230–231
rank-frequency distribution, 233

real-world document collections, 233
RTM (see Reverse timing migration

(RTM))
throughput, 237
utilisation, 232

FPGAs. See Field programmable gate arrays
(FPGAs)

FSM. See Finite-state machines (FSM)
Functional

electrical stimulation, artificial limb, 179
power series, 182
three-dimensional functional protein, 106
units, 117, 166, 167, 169

Functional design
network, 565
NumaChip, 576
RMC, 580

Functional units (FUs)
coprocessor components, 440–441
IOlink and MultiDev blocks, 494

G
GARCH. See Generalized Autoregressive

Conditional Heteroskedasticity
(GARCH)

Gaussian random number generator (GRNG),
194, 196

Generalized Autoregressive Conditional
Heteroskedasticity (GARCH)

Black-Scholes model, 62
execution time, 62, 64
FPGA implementation, 63
generic architecture, simulation engine, 62,

63
Heston specific modifications, 15
Monte-Carlo option pricing simulation

algorithms, 37
stochastic volatility model, 34
volatility, 62

Generalized Laguerre-Volterra model (GLVM)
description, 183
error function, 202
GVM (see Generalized Volterra model

(GVM))
intellectual properties (IPs), 201
parameters estimation, 189, 190
SDPPF, 186

Generalized Volterra model (GVM)
feedback variable, 185
input and output spike trains, 185
Laguerre expansion, 185–186
MIMO system, 183
MISO models, 183, 184
“synaptic potential”, 185

786 Index

General purpose GPU (GPGPU)
GeForce8800GT, 309
hardware accelerators, 306
implementation, 241–242
Nvidia Tesla C1060, 327
performance and efficiency, CPU, 331–342
platforms and configurations, performance,

327–329
RNG algorithms, 310

Genetic programming (GP)
chromosome length, 466
CUDA implementation, 469
GPU, 475

Global Address Space (GAS)
cluster, 577
nodes, cluster, 579
shared-memory system (see Shared-

memory system)
Globally asynchronous and locally

synchronous (GALS) design, 289,
292, 300

Global-stall distributor (GSD), 292
GP. See Genetic programming (GP)
GPGPU. See General purpose GPU (GPGPU)
GPUs. See Graphical processing units (GPUs)
Graphical processing units (GPUs)

accelerators, 11
architecture and programming model, 465
and cluster, 454
communication, compute nodes, 132
and CPUs, 149, 280, 500
custom VLIW organization, 403
data-parallel Model-Evaluation phase, 399
execution cores, 454
financial simulations, 17
floating point arithmetic unit, 368
GPGPU implementation, 241–242
gravitational force calculations, 378
kernel structure, 469, 470
measured laptop-FPGA setup, 19
and multi-core devices, 404
N-body simulation, 368
NVIDIA Tesla C1060, 502
parallel reduction, 73
performance, 3D stencil computation,

282–283
power-performance, 149
Quasi-Monte Carlo simulation engine, 71
random number generation, 469
“slim” cores, 484
SMILE HPRC, 462
speed and energy results, 18

GRNG. See Gaussian random number
generator (GRNG)

GSD. See Global-stall distributor (GSD)
GVM. See Generalized Volterra model (GVM)

H
Handel-C

GUI-based development environment, 722
HLL, 720
“HyperStreams”, 37
MP/CSP model, 725
SGI RASC, 456

Harwest compilation environment (HCE)
random number generator, 710
sparse matrix-by-vector kernel, 706

HC-1 architecture. See Hybrid-core (HC-1)
architecture

HCE. See Harwest compilation environment
(HCE)

Heat-Bath (HB) algorithm, 488
Heston model

asset simulations, 8
Black-Scholes model, 5
Brownian motions WS and WV , 6
definition, 5
and exotic option pricing, 11
fair metrics, 9–10
market behavior, 6
modeled asset price path, 7
and multi-level Monte Carlo method, 4
with option pricing (see Multi-level Monte

Carlo accelerator)
SDEs, 6

Heterogeneous model
floating-point operators, 403
HCN, 437
map-reduction framework, 457
MLPart, 404
simulation framework

multiple solvers, 154
reaction pathway and memory mapping,

157
SBML description, 156

VLIW, 423–424
Heterogeneous system

data coherence, 751
dataflow computing system, 750

HFSMs. See Hierarchical finite-state machines
(HFSMs)

Hierarchical finite-state machines (HFSMs)
combinatorial problems, 264–265
description, 274
explicit vs. implicit modules, 270–271
recursive traversal, N-ary trees, 262–264
specification and synthesis, 260–261

Index 787

types, 259–260
VHDL code, stack memories, 261–262

High-level languages (HLLs)
abstract expressiveness, 725
C-based, 725
comparative evaluation, 742
degree of support, qualitative language

features, 740
DES, 741
DWT, 741

evaluation framework (see Evaluation
framework, HLLs)

frequency and area utilization, 742
Newtonian mechanics, 742, 744
productivity, evaluated tools, 742, 743
productivity metrics, 725
review and taxonomy

BSV, 723
CSP, 721–722
development flow, high-level tools, 721,

722
DSPlogic, 723
Impulse Accelerated Technologies, 721
MVP, 722

scoring system, 739
streamlining hardware description, 720
tool taxonomy, 723–725

High level synthesis (HLS), 669
High-performance computing (HPC)

applications, 516
arithmetic efficiency and precision analysis,

638–639
ASICs, 605
computer arithmetic, 632
DORGA, 610
exotic operators, 649–655
floating-point (FP) formats, reconfigurable

computing, 637–638
FPGA features, 520–521
FPGAs, 631
hardware, FPGA, 659
logic fabric

DSP, 635–636
embedded memories, 637
fast carry propagation, 634
LUT, 633–634

MEMS, 610
meta-operators, 658–659
MISCs (see Mono-instruction set

computers (MISCs))
networking solution optimization (see

Networking solution optimization,
HPC)

neuroinformatics

brain activity modeling, mathematics,
183–188

cognitive neuroscience and cognitive
neural prosthesis, 178–180

dynamical reconfiguration, 201–203
fault-tolerance redundancy design, 202,

204
modeling techniques, neural systems,

180–183
reconfigurable hardware, neural activity

prediction (see Reconfigurable
hardware)

ultra-low power design principle, 201
ODRGA, 610
operator fusion

block floating-point, 646–647
compiler-level operator fusion, 648–649
floating-point sum-and-difference, 646
floating-point sum of squares, 647–648

operator performance tuning, 655–657
operator specialization, 639–645
ORGAs (see Optically reconfigurable gate

arrays (ORGAs))
programmable devices, 609
programmable switching matrix, 606
soft-core processor implementation (see

Field programmable gate arrays
(FPGAs))

VLSI, 605
High-performance hardware acceleration

asset simulations (see Asset simulations)
Basel III and Solvency II regulations, 4
CDOs, 4
CPU and GPUs clusters, 4
energy, portfolio pricing, 4
financial markets, 3
FPGAs, 4–5
pricing options (see Option pricing)

SDEs, 4
High Performance LinPack (HPL), 535–536
High performance reconfigurable computing

(HPRC) systems
biochemical kinetic simulation

FRM, 151
ODE based approach, 151–158

parameter fitting, 150
simulator, 158
stochastic biochemical simulation (see

Stochastic biochemical simulation)
HLLs (see High-level languages (HLLs))
homology search (see Homology search)
HPRC SMILE system, 455
hybrid system, 457
mathematical model, 720

788 Index

High performance reconfigurable computing
(HPRC) systems(cont.)

NVIDIA GPUs, 455
programmability, 720
RC and GPU, 454
RCC and RAMP, 456
SGI and SGI-RASC, 455
SMILE architecture (see SMILE

architecture)
SMILE HPRC (see SMILE HPRC)
systems biology, 137
XD1 system, 456

Hitag2
brute-force attack, 342–344
description, 342
internal structure, 342, 343

HLLs. See High-level languages (HLLs)
HLS. See High level synthesis (HLS)
Homology search

BLAST, 141
CPU and GPUs, 149
DNA-DNA comparisons, 141
DNA sequences, 139
dynamic programming, 141
line-based and lattice-based methods, 150
nucleotide bases and amino acids, 139, 140
performance analysis, 143–144
performance evaluation, FPGA, 149
protein molecule, 140
“similarity computation”, 140
Smith-Waterman algorithm, 142–143
systolic array design, 146–148

HPC. See High-performance computing (HPC)
HT. See HyperTransport (HT)
Hybrid-core (HC-1) architecture

Amdahl’s law, 432
Axel Cluster, 437
BEE2, 438
cache-based system, 445
Chimera, 438
classification, 434–436
computer performance and development,

431
convey HC-1 computer (see Convey HC-1

computer)
convey’s SW search, 446, 447
COPACOBANA, 437
CPU architectures, 432
Cray XD1, 437
dataflow graph, 433, 434
description, 432
FPGAs, 438–439
Garp, 437
AND gates, 436

Gordon Moore’s law, 433
hardwired parallel computers, 433
HC-1 coprocessor, 445
Intel Stellarton, 436
memory bandwidth, 445, 446
microprocessors, 432
mixed hardwired and configurable

hardware, 435
Novo-G, 438
AND and OR gates, 436
programming effort, 447–449
PROMs and PLAs, 436
Xilinx Zynq, 437

Hypercube
3D torus configuration, 518
topologies, 433

HyperTransport (HT)
EXTOLL network packets, 586
host system domain, 585
shared-memory communication engine,

588

I
ICDF. See Inverse cumulative distribution

function (ICDF)
Implementation and evaluation, SCM array

benchmark computations, 295–296
block diagram, 293, 295
3 DE3 board, 292–293
9 DE3 boards, 293, 294
feasibility and performance estimation,

299–300
performance, 297–299
synthesis, Stratix III FPGA, 297

Impulse-C
Cray XD1, 456
high-level synthesis tool, 461
VHDL designs, 722

Indexed priority queue (IPQ), 160, 169
Infiniband

back-to-back low-level latencies, 538
DDR, 561
GB Ethernet, 437
ping-pong benchmark, 564
QDR, 564
SDR, 564–565

Information filtering, 211, 212, 242
Information retrieval, 178, 211, 233
Input/output processor (IOP)

processor, 493
SPs, 492
structure and functions, 494–495

Intel Stellarton, 436
Interconnection network

Index 789

area ratio, 171
connection diagram, 162
CPUs, 281
EXTOLL architecture, 510–511
GPUs, 282
HPC demands, 508
InfiniBand, 508
latency/message rate, 509
on-chip, 171
router

fewer ports, 171
structure, 162, 163

scalability, 454
signaling sequence, 162, 163
torus (see Torus interconnect)

TPUs and FU, 167
Interleaved parallelized Mersenne Twister

chunked, 21
4-IP MT19337, 22
β−memory banks, 21–22

Inverse cumulative distribution function
(ICDF) method

CDF, standard normal distribution, 51, 52
Chi-Square test, 53–54
defined, 51
K-S test, 54
logarithmic error, 53
standard normal distribution, 51, 52

IOP. See Input/output processor (IOP)
IP core

OPB and PLB, 461
systemC model, 461
Xilinx’s LogiCORE floating-point, 162

Iteration control phase, SPICE
description, 411
FPGA-VLIW mapping, 415
hybrid VLIW architecture, 414–415
ideas, performance improvement, 416–417
inner and outer loops, 396
Microblaze soft-processor, 416
Newton–Raphson and Timestepping

iterations, 397
overall SPICE simulator, speedups, 416
parallel potential, 396, 397
partitioning strategies, 415
SCORE framework, 412–413
speedups, 415
state-machine and breakpoint-processing

logic, 396
static and dynamic scheduling, 412

J
Jacobi, 289, 295, 296, 644

Janus
architecture

global structure, 491–492
IOP structure and functions, 494–495
programming paradigm, 492–493
software layer, 495–496

performance
AMSC and SMCS strategies, 501
AMSC update time, 502, 503
description, 500
dual-core CPUs, 501
Edwards–Anderson simulation, 500
Monte Carlo simulation, Ising model,

502
NVIDIA Tesla C1060 GP-GPU, 502
SMSC update time, 502, 503
speed-up factors, 501

Java
dataflow generation, 756
structure, dataflow engine, 757

K
KCMs. See Constant coefficient multipliers

(KCMs)
Kernel functions

data allocation, OBM banks, 374
grad and barotropic operator function, 374
high-level design environments, HPRC

systems, 376
performance comparisons, 375–377
RTL design methodology, 376
SRC compiler, 375–376

K-trees
coding nodes, 253–254
incomplete TLSs, 257–258
multi-level data sort, 251–252

L
Laguerre expansion of the Volterra kernel

(LEV) technique
convolved functions, 186
feedforward and feedback kernel, 185
synaptic potential, 185

Latency
and area, SPICE hardware, 421
bandwidth and (see Bandwidth)
floating point (FP) arithmetic, 112
host data, 441
interfacing logic, 752
IO transactions, 547
message rate, 509
polynomials, 656
remote memory, 599

790 Index

Latency(cont.)
RIVYERA computing system, 338
sequential runtime scaling, SPICE, 393,

394
start-up latency, 509–510
vs. work, model-evaluation phase, 395
vs. work, sparse matrix-solve phase, 396

Lattice quantum chromodynamics (LQCD),
544

LFSRs. See Linear feedback shift registers
(LFSRs)

LGSM. See Local-and-global stall mechanism
(LGSM)

Linear feedback shift registers (LFSRs)
binary exclusive-or operation and

recurrence, 43
defined, Galois field GF, 43
0’s and 1’s sequence, 42
Tausworthe URNG algorithm, 43, 44

LNS. See logarithm number system (LNS)
Local-and-global stall mechanism (LGSM)

CGs, 291–292
DcFIFOs, 293, 295
description, 301
execution and data-transfer,

synchronization, 291
GSD, 292
maximum operating frequency, fmax, 297
sequencers and PEs, 291
Stratix III FPGA, 297

Logarithm number system (LNS), 632
Lookup tables (LUTs), 23, 24, 27, 633–634
LQCD. See Lattice quantum chromodynamics

(LQCD)
LUTs. See Lookup tables (LUTs)

M
Marmousi velocity model, 311, 312
Massively parallel processors (MPPs), 34, 508
Massively parallel special-purpose hardware

systems, 335
MATLAB, 53
Matrix multiplication, 67, 503, 697
MaxCompiler

compilation flow, 757
data transfer, 759
high-level simulation, 758
logical architecture, 756

Maxeler
dataflow computing, 748
language extensions, 757

Maxeler MaxNode system, 12
Maxeler Technologies

financial computing, 11

MaxNode system, 12
Maximum performance computing (MPC)

application characteristics, 754
cluster management, 763–764
dataflow computing (see Dataflow engine

(DFE))
designing, cluster

compute, 760–761
disk storage, 761–762
memory, 761
network, 762–763

numerical computation, 747
programming, MaxCompiler (see

MaxCompiler)
resiliency, 765
RTM (see Reverse timing migration

(RTM))
Maxwell

architecture, 130
benchmark computations, 296
description, 130
Euroben kernels, Euroben kernels, Maxwell
FHPCA, 281
FPGA-accelerated version, LAMMPS, 130

Maxwell FPGA parallel machine. See also
Financial computing

design flow
hardware design and software interface,

39–40
MPI and SGE, 40
Parallel Toolkit, 40
structure, CPDK application, 40, 42

hardware architectures
kinds, interconnection, 39, 41
links on supercomputer, 39, 40
nodes, 39

MCS. See Monte Carlo Simulation (MCS)
MD. See Molecular dynamics (MD)
Memory. See also On-Board Memory (OBM)

bandwidth, 446, 707
blocks, 153, 156
Bloom filter (see Bloom filter)
brain network communication, 178–179
and buffers, 552
and communications, 477
convey-designed DIMM type, 441
coprocessor, 441
CPU and accelerator, 114
data organization, 315–317
data packets, 546
DDR2 channels, 440
description, 178
DMA (see Direct memory access (DMA))
DRAM, 456

Index 791

ECM, 358
FPGA, 116, 670
GPGPU implementation, 241–242
HC-1 system, 445
holographic, 610
instruction and data, 153
internal bandwidth, 656
internal reconfiguration, 609, 610
long-term, 179, 180
mapping, 157
MEMSCALE (see MEMSCALE)
on-chip data transfers, 129
operation generation, 445
“Pathway RAM”, 153
PROCMultiport module, 313–314
RMA, 527
and scalar engine, 444
SCM array (see Systolic computational-

memory array (SCM array))
seismic pulse CPF and seismic pulse PPF,

321
semiconductor process technologies, 607
sparse matrix kernel, 707
streaming processing core, 314–315
structures, and communication, 313
temporal pipeline, 317–318
TLSs

array-based representation, 253
coding nodes, K-trees, 253–254
dual-port memories, 255
hardware architecture, 259, 260
HFSM (see Hierarchical finite-state

machines (HFSMs))
tree-walk tables, 254

tree-structured, 162
MEMS. See Microelectromechanical system

(MEMS)
MEMSCALE

Altix UV/Numascale, 572
AMD opteron processors, 595
clock cycle distribution, 592, 593
cluster, shared-memory (see Shared-

memory system)
coherence protocol, 578
cost-effective commodity, 570
CPU generations, 596
description, 570, 592
DRAM technology, 572
exclusive and shared memory, 577
exclusive memory, 573–574, 597–600
FPGAs (see Field-programmable gate

arrays (FPGAs))
InfiniBand/Ethernet, 594
512K accesses, 596

latency and bandwidth scalability, 592, 594
memory-to-core ratio, 570, 572
performance degradation, memory, 570,

571
performance disparity, 570, 571
performance evaluation (see Performance)
remote load latency, 594
RMC, 581–583, 594
SGI Altix UV/ numascale approaches, 578
shared memory (see Shared-memory

system)
single read operation, 593
synchronization intrinsics, 573
system architecture, 579–581
x86 server, 577

Mersenne Twister
algorithm, 21
BlockRAM, 47
definition, 43
interleaved parallelized, 21–22
k-distribution to n-bit accuracy, 44
MT19937 coefficients, 45
parallel FPGA machine, 45–46
post place and route synthesis results, 23
pseudo-code, MT19937, 45, 46
random number generator, 47
rational normal form, 44
steps, separation, 45
uniform pseudo-random integers, 43

Mersenne–Twister random number generators
algorithm, 469
floating point adders and multipliers, 463
parameters, 465
PLB interface, 468

Mesh
FPGA links on Maxwell supercomputer,

39, 40
Matrix-Solve architecture, 421
PME (see Particle Mesh Ewald (PME))
topology, 586
topology, DOR, 409
and tori, 586

Message Passing (MP), 724–725
applications, 585
parallel SPICE implementation, 399

Message passing interface (MPI)
coding, 40
communication and synchronization, 457
integration, 527–528
MPI-2, 520
process intercommunication, 71
SMILE architecture (see SMILE

architecture)
time, applications, 512

792 Index

Micro-benchmarks, EXTOLL
HPCC RA, 536–537
HPL/NAS, 535–536
latency and bandwidth, 531–532
message rate, 533–534
overhead and application availability,

534–535
WRF, 537

Microelectromechanical system (MEMS), 610
MISCs. See Mono-instruction set computers

(MISCs)
Mitrion-C

ANSI C-based functional language, 722
and Handel-C, 456
single-assignment language, 722

Mitrion Virtual Processor (MVP), 722
MNA. See Modified nodal analysis (MNA)
Model evaluation phase, SPICE

auto-tuning parameters, 404, 405
conductances and currents, 394
conventional von-Neumann architecture,

401–402
custom VLIW architecture (see Very large

instruction word (VLIW))
dataflow graph, 401
ideal mapping, 402
iteration control, 411
Newton–Raphson iterations, 394–395
parallel software environments, 404
performance, parallel FPGA design,

405–406
speedups, model-evaluation, 405
structure, 400–401
Verilog-AMS, 399
work-vs-latency, model-evaluation phase,

395
Modeling techniques, neural systems

input-output relationship, 182
nonparametric models, 182
parametric models, 180–182
system output, 182

Modified nodal analysis (MNA)
LHS and RHS vectors, 406
modern SPICE simulators, 395

Molecular dynamics (MD)
acceleration and parallelization, 112–115
cell lists and neighbor lists, 109–110
and cosmology applications, 457
design and board-level issues, 127–129
direct computation vs. table interpolation,

110–111
filtering and mapping scheme, 120–127
Force Pipeline, 116–120
FPGA-centric MD engine, 132

hardware acceleration, 106
hardware pipelines, 385
integration, full-parallel production

packages, 131
inter-node communication, 132
long-range force computation, 129–130
numeric precision and validation, 112
parallel MD, 130–131
quality validation, 132
simulation

bonded pairs, 109
computed forces, 107
description, 107
electrostatic/Coulomb force works, 108
packages, 107
short-range force, 109
van der Waals and electrostatic forces,

108
Mono-instruction set computers (MISCs)

ALU, 616
clock frequency, 621
FPGA implementation, 621, 622
high-speed dynamic reconfiguration, 611
logic synthesis tools, 618
multi-core processor, 624
programmable gate array, 617
sequential operation, 617, 618
soft-core processor performance, 624
types, 619, 620

Monte Carlo simulation (MCS)
average estimated profit, 462
Brownian motion, 462
description, 462
elapsed time, nodes, 473
GPU architecture and programming model,

465
hardware implementation, SMILE,

463–465
neighbor-list sizes distribution, 124
parallel implementation, 465–466
SG (see Spin glasses (SG))
speed-up, GPU vs. SMILE, 471, 472
speed-up, SMILE vs. Altamira, 472

MPC. See Maximum performance computing
(MPC)

MPI. See Message passing interface (MPI)
MPIFFT

HPCC, 512
message size, 514, 515

MPPs. See Massively parallel processors
(MPPs)

Multi-level data sort, 251–252
Multi-level Monte Carlo accelerator

average speedup and energy factors, 19

Index 793

control logic and actual data path, 13–14
FPGA chip only scenario, 19–20
GPU and FPGA, 18
handshake-driven stream interface, 13
hardware resources, 12
hardware-software partitioning scheme, 13
high-end CPU and GPU clusters, 17
high-level architecture, hardware

implementation, 14
host-to-board interface, 17
hybrid CPU-FPGA setup, 12, 17
OpenCL, 17
potential energy savings, 18–19
role, control logic, 14
single precision floating point components,

15
speed and energy results, server-GPU

setup, 18
synthesis results, one instance on Virtex-5,

15–16
Tausworthe 88 uniform RNG, 13
Tesla GPU, 18
validation effort reduction, 15
Virtex-5 device, 18
Virtex-7 device, 12
VisualPipeline plugin, Heston barrier

checker, 15, 16
Xilinx ML-507 evaluation kit, 13
Xilinx Virtex-5 XC5VFX70T device, 15

Multi-Level Monte Carlo method
asset simulations, Heston model, 8
defined, statistical error, 7
description, 7
hardware implementation, 10
option pricing with Heston model (see

Multi-level Monte Carlo accelerator)
simulated Heston path and discretizations,

8
start level optimization, 9
volatility process, 8

Multiple reconfigurable devices, 143, 144
MVP. See Mitrion Virtual Processor (MVP)

N
NAMD

Apoa1 benchmark runtime/timestep, 114
interpolation parameters, 111
modified NAMD-lite, 117
MPI Time, 512
NAMD2.6, ApoA1, 120
PME, 116
and WRF, 512

N-ary trees. See Tree-like structures (TLSs)
N-body problem

accumulated force, 378–379
arithmetic types and precision levels, 379
Bioler-3 hardware architecture, 380, 381
Cartesian components, 380
Cray XD1 hardware architecture, 380, 381
description, 376
evaluated accuracy models, 380
FPGA platforms, 380
G92 GPU implementation, 383
hardware-accelerated system, 379
HPRC solutions to astrophysical (see

Astrophysical N-body simulation)
impact, performance per Watt, 385
implementation results, 383, 384
interaction forces, pairs of particles, 378
O(N2) of leap-flog scheme, 383 (Please

insert the symbol as is in the text)
performance, generated pipeline (model

G5), 380, 382
performance, generated pipelines

(Virtex2Pro), 382
Phantom-GRAPE, 383
pipeline, gravitational force, 380
PROGRAPE-4 hardware architecture, 380,

382
structure, hardware accelerator, 379
Virtex2Pro-5 (XC2VP70-5) and Spartan3-5

(XC3S5000-5), 380
Needleman–Wunsch algorithm

global alignments, 84
heuristic/non-heuristic, 84
nucleotide/protein sequences, 84
NUC44 scoring matrix and affine gap

penalty, 84, 85
and Smith–Waterman (see Smith–

Waterman algorithm)
Neighbor lists, 109, 110, 126
Network architecture, torus

communication model, 546
IO interface, 546–548
link modules, 548–549
system and network processor architecture,

545
Network implementation, QPACE

architecture, 550
FPGA implementation, 553, 554
processor and topology, 550–552

Networking solution optimization, HPC
communication engines (see

Communication)
EXTOLL hardware architecture, 516
HTX connector, 516
switching, 518
top-level block diagram, 516

794 Index

Network processor (NWP)
block diagram, 545
IO interface, 546–548
Nehalem processors, 554
Nget and Nput schemes, 563
PowerXCell 8i processor, 550
price–performance ratio, 544
processor, QPACE, 560
QPACE, 551
Xilinx Virtex5 LX110T, 550

Neuroinformatics
brain activity modeling, mathematics

GLVM (see Generalized Laguerre-
Volterra model (GLVM))

LEV, 185–186
model selection, 187–188
parameters estimation, 186–187

cognitive neuroscience and cognitive neural
prosthesis, 178–180

dynamical reconfiguration, 201–202
fault-tolerance redundancy design, 202–204
hippocampus, 178–179
modeling techniques, neural systems,

180–183
neural prosthesis, restoring lost cognitive

function, 179–180
reconfigurable hardware, neural activity

prediction (see Reconfigurable
hardware)

ultra-low power design principle, 201
Newton-Raphson method

nonlinear elements, 394
timestepping iterations, 397
and trapezoidal integration, 390

Newton’s 3rd law (N3L), 114–115
Non-uniform distributions, PRNGs

description, 23
drawbacks, 25
floating point approach (see Floating point

approach)
ICDF lookup architecture, 23, 24
LZ and LUT, 24
quality checking

bit-true model, Gaussian RNG, 28
empirical distribution function, 27–29
Kolmogorov-Smirnov test, 27

state-of-the art conversion methods, 23
Novo-G, 438
NWP. See Network processor (NWP)

O
OBM. See On-Board Memory (OBM)
Ocean model simulation. See Direct memory

access (DMA)

ODEs. See Ordinary differential equations
(ODEs)

ODRGA. See Optically differential
reconfigurable gate array (ODRGA)

Oil, 306, 307, 748
On-Board Memory (OBM)

data allocation, 370
DMA controller, 370
dual streaming DMA, 370, 371
FPGAs, 369–370
integer programming approach, 374

OpenCL, 17, 242, 327–328, 332, 718
OpenMP

BTL, 528
byte transfer layer module, 552
EXTOLL, 514
MPI Integration, 527–528
synchronization primitives, 583

Operator specialization
bit flipping, 640
and fusion, high-level synthesis flows, 658
multiplication and division, constant

constant multiplication and division
algorithms, FloPoCo 2.3.1, 644, 645

multiple constant multiplication, 644
shift and add algorithms, 641–642
table-based techniques, 642–644
variations, single-constant

multiplication, 644
squaring, 645
static (compile-time) property, 639

Optically differential reconfigurable gate array
(ODRGA), 610

Optically reconfigurable gate arrays (ORGAs)
advantages, 616
architecture

holographic memory, 610, 611
liquid crystal spatial light modulator,

612
photodiode-array, programmable gate

array, 611
SLM, 611

ORGA-VLSI (see Optically reconfigurable
gate arrays-very large scale
integration (ORGA-VLSI))

Optically reconfigurable gate arrays-very large
scale integration (ORGA-VLSI)

CMOS, 612
high-density, 612, 613
island-style gate array, 612, 613
ORLB, 614, 615
ORSM, 615, 616

Optically reconfigurable logic block (ORLB),
614, 615

Index 795

Optically reconfigurable switching matrix
(ORSM), 615, 616

Optimal sequence alignment
Needleman-Wunsch algorithm, 84–85
Smith-Waterman algorithm, 85–88

Option pricing
algorithm and implementation, 5
American, 65–69
Asian, 60–62
calculation program, 465
European, 56–59
fair metrics, 9–10
financial mathematics, 5
Heston model, 5–7
MCS, 462
multi-level Monte Carlo method, 7–9

Ordinary differential equations (ODEs)
biochemical kinetics, 150
biochemical kinetic simulation

communication mechanism, 158
evaluation, 157
frequency and throughput, 158
heterogeneous model simulation

framework, 154–157
integration and pathway mapping,

153–154
solver core library, 152
target model and description, 151–152

Hodgkin and Huxley model, 180
solvers, 151

ORGAs. See Optically reconfigurable gate
arrays (ORGAs)

ORLB. See Optically reconfigurable logic
block (ORLB)

ORSM. See Optically reconfigurable switching
matrix (ORSM)

P
PAM. See Programmable active memory

(PAM)
Parallelization

BLASTp, 96
Bloom filter, 215, 216
dataflow-based, 433
data transfer and communication overhead,

114
document streams, 215
handling exclusion, 113
interleaved, Mersenne Twister, 21–22
line-based and lattice-based parallelism,

145, 150
Monte Carlo algorithm, 465

N-ary trees, 268–270
Newton’s 3rd law, 114–115
partitioning and routing, 115
performance degradation, 145
potential, iteration control, 396, 397
query sequence, Smith-Waterman cell

SWcell, 86
SIMD, 246
Smith–Waterman algorithm, 141
SMSC, 502
SPICE circuit simulator, 406
timing profile, MD run, 112–113
Verilog-AMS, 400

Parallel ocean program (POP)
barotropic operator function, 373
grad and barotropic operator functions, 374
kernel functions, 374

Parallel tempering (PT), 489
Partial differential equation (PDE), 283, 748
Particle Mesh Ewald (PME), 116, 118, 119
Partitioned Global Address Space (PGAS),

724–725
PCIe. See PCI express (PCIe)
PCI express (PCIe)

Altera Stratix IV GX230, 555
IO interface, 555–557
NWP, 554
PIO method, 554
software layers, 557–558

PDE. See Partial differential equation (PDE)
Peak-bandwidth reduction mechanism (BRM)

data transfer, PEs, 290
3 DE3 board, 293
description, 300
inter-FPGA bandwidth, 290–291
off-chip I/O bandwidth and

synchronization, 289–290
TDM, 290
Performance

area and latency model, SPICE hardware,
421

aurorascience (see Aurorascience)
CPUs, 149
data processing, N-ary trees (see Tree-like

structures (TLSs))
DNA sequencers, 138
evaluation, FPGA, 149
FPGA-accelerated real-time search (see

Real-time search, FPGAs)
FPGA-based systems, 106
FPGA kernel, 120
generated pipeline, 382, 384
Gordon Moore’s law, 433
HC-1 (see Hybrid-core (HC-1) architecture)

796 Index

Performance(cont.)
high-performance cryptanalysis (see

Cryptanalysis)
homology search, 143–146
host computer and communication speed,

383
hybrid-core architecture, 439
iteration controller, 415
Janus, 501–503
Kernel functions, 374–376
KLU solver, 410
line-based and lattice-based performance,

145
Maxwell system, 697
MEMSCALE (see MEMSCALE)
Model-Evaluation computation, 401
N-body simulations, 377
operator tuning

algorithmic choices, 656–657
FMA, 655
pipelining tuning, 657
and resource consumption, 655
sequential vs. parallel implementation,

657
parallel FPGA design, 405
PC/WS clusters, 150
per Watt, 385
power-efficient, FPGAS, 138
QPACE (see QCD parallel computing on

cell (QPACE))
RCC (see Reconfigurable computing

cluster (RCC))
reconfigurable arithmetic (see High-

performance computing (HPC))
resource sharing, 687
RTM seismic modeling (see Reverse timing

migration (RTM))
SCM array (see Systolic computational-

memory array (SCM array))
SPICE analysis, 393–394
stochastic biochemical simulation, 169–170
total per-chip speedup, 423

Virtex-6 LX760, 410
PEs. See Processing elements (PEs)
PGAS. See Partitioned Global Address Space

(PGAS)
PLAs. See Programmable logic arrays (PLAs)
POP. See Parallel ocean program (POP)
Power consumption

acceleration technologies, 385
bit-width minimization techniques, 639
clusters, 602
communication bottlenecks, 454
computing platforms, 35

COPACOBANA, 342
C, VHDL and HCE comparison, 717
description, 36
Diligent XUPV2P Board, 457
evaluation, 307
FPGA, 17, 638
FPGA, Xilinx XPower tool, 422
GPU than CPU implementations, 76
high performance computing

implementations, 74
implantable neural prosthesis, 201
implementation results, 383, 384
Maxeler dataflow computing, 748
measurement, 239
Paths/Sec/Watt number, 76, 77
performance and efficiency, 331
performance-per-watt, 238
Quartus PowerPlay Analyzer tool, 232
RIVYERA S6, 101
single FPGA, 566
SMILE architecture, 454
SMILE cluster, 457

PRESENT
brute-force attack, 348–349
TMTO attacks, 353–354

Pre-threshold membrane potential calculation
datapath, convolution and MAC units, 192
signal convolution algorithm, 191, 192
updating algorithm, 191

Previous pressure field (PPF) matrix
memory data organization, 315–317
PROCMultiport, 313–314
seismic pulse vector and FSM, 321
temporal pipeline, 317–318

Priority management, TLS, 250–251, 266, 270
PRNGs. See Pseudo random number generators

(PRNGs)
Processing elements (PEs)

benchmark computations, 295, 296
2D array, 285–286
grid points, 289
LGSM, 291

PROCMultiport, 313–314
PROCWizard, 312
Programmable active memory (PAM), 282
Programmable logic arrays (PLAs), 436
Programmable read only memories (PROMs),

436
Programmed IO (PIO)

address space, 554
Pput scheme, 556
x86 CPU architectures, 547

PROMs. See Programmable read only
memories (PROMs)

Index 797

Pseudo random number generators (PRNGs)
attributes, 20
description, 20
implementation models, 22
interleaved parallelized Mersenne Twister,

21–22
Mersenne Twister algorithm, 21
Post place and route synthesis results, 22,

23
quality attributes, 20
simulation purposes, 20
software engineering, 21
state-of-the-art, 21
“uniformness”, 21

PT. See Parallel tempering (PT)

Q
QCD parallel computing on cell (QPACE)

bandwidth measurement, 560, 561
CPU-to-CPU transfer rate, 558
item IBM PowerXCell 8i, 558
IBM PowerXCell 8i processor, 544
micro-benchmarks, 559–560
network implementation (see Network

implementation, QPACE)
network performance, 558–561
network processor, 552
NWP–processor link, 560
processor, NWP bandwidth, 559, 560
QS22 blades, 561
single packet transfer, 568, 559
VHDL firmware, 554
XMGII, 558

QPACE. See QCD parallel computing on cell
(QPACE)

Quasi-Monte Carlo simulation
C ++ program, 73
CUDA threads, 72
energy consumption in Joule, 75
FPGA, GPU and GPP, 74
Gaussian RNGs, 69, 70
generic architecture, 69
grid, thread blocks, 72
high performance computing

implementations, 74–75
NVIDIA 8800GTX GPU, 71
parallelism, Sobol sequence, 71
parameters, ICDF modules, 70
performance, threads per block, 73
RAM16s, 70
resource consumption breakdown, 69, 70
running time, FPGA processing nodes, 71,

72

speed-ups, different platforms, 74
tree-based summation, 72–73
Xeon processor, running time, 73, 74

R
RAMP. See Research accelerator for multiple

processors (RAMP)
Random number generators (RNGs)

18-bit, 19-bit and 20-bit data, 269
Brownian motion, 42
description, 20
factors, 41
Gaussian

Box-Muller method, 55
ICDF (see Inverse cumulative

distribution function method
(ICDF))

independent Normal variables, 54
logarithmic error, f (u1) = Ö-2 x ln(x),

56
logarithmic error of g1(x) = sin(2πx),

56, 57
noise generator architecture, 55
normal distribution, 50
PDF, generated random variables, 56,

58
Sobol numbers, 54

GRNG (see Gaussian random number
generator (GRNG))

HCE, 710
Heston-Hull-White model, 11
Monte-Carlo simulation, 40–41
M-sequence, 165
non-uniform distributions, 23–29
PRNGs (see Pseudo random number

generators (PRNGs))
quasi-Monte Carlo simulation core, 73
Sobol number, 71
uniform, 192, 194
URNG (see Uniform random number

generator (URNG))
VHDL, 708–709

RCC. See Reconfigurable computing cluster
(RCC)

Real-time search, FPGAs
algorithm description, 211–212
analytical model, 240–241
ASIC Bloom Filter, 241
avenues, 242
choice of workload, 210–211
data centres, 210
description, 209–210, 242
GPGPU implementation, 241–242

798 Index

Real-time search, FPGAs(cont.)
implementation and evaluation (see FPGA

implementation)
parallelisation, 215
potential benefits, 241
target platform, 212
term scoring algorithm (see Term scoring

algorithm, FPGAs)
throughput analysis, Bloom filter (see

Throughput analysis, real-time
search)

Reconfigurable arithmetic. See High-
performance computing (HPC)

Reconfigurable computing cluster (RCC), 456
Reconfigurable hardware

firing probability and Laguerre coefficients,
193–194

hardware architecture, 189–191
hardware vs. software, 195–198
output spikes, 192–194
pre-threshold membrane potential

calculation, 191–193
system scalability, 194–195

Reduced Instruction Set Computer (RISC),
538, 607

Register transfer level (RTL)
vs. C-based design

cycle-accurate simulation, 692
simulation speed constraint, 691
TAT, 690, 691
transaction level verification, 692

design methodology, 376
simulations, throughput, 169, 170
solvers, 156

Remote memory access (RMA), 520
Remote memory allocation

allocation, 581, 582
description, 581
mmap function, 581–582
node B, 582
TLB, 582–583

Remote memory controller (RMC)
address range, 580
IO space, 595
memory controller, 580
OS kernel, 581
shared memory engine, 586, 587
source tag translation, 590

Research accelerator for multiple processors
(RAMP), 456

Residue number system (RNS), 632
Reverse timing migration (RTM)

acceleration, 2D seismic modeling,
306–307

analysis, 767
arithmetic analysis, 329–330
computational kernel, 766
cost pressure and SWaP requirements,

308–309
description, 332
geoscience algorithm, 766
GPGPU (see General purpose GPU

(GPGPU))
hardware accelerators, 306
implementation, 771–773
isotropic modeling, 773
Kirchhoff method, 307
Maxeler hardware, 772
MaxGenFD, 772
multicore clusters, 308
partitioning, 771
petroleum industry explorations, 309
platform comparison, 310
platforms and configurations, performance,

327–329
power analysis, 330–332
pseudo-code, 767
reconfigurable platform, data processing,

309
RNG algorithms, 310
seismic exploration, oil, 307
seismic imaging, petroleum industry,

306
seismic survey data, 766
system architecture (see System

architecture, RTM)
transformations

data management, 769–770
modeling kernel, 768–769

wave modeling computations, 772
wave propagation theory, 308

RISC. See Reduced Instruction Set Computer
(RISC)

RIVYERA
bioinformatics (see Bioinformatics,

RIVYERA)
computing system

accelerated stock market analysis
methods, 339

API, 339
architecture, 339
elements, 338
FPGAs interconnection, 338
S3-5000, 339, 340

digital biological data, sequence databases,
81

FPGAs, 82
parallel processing, 82

Index 799

RIVYERA S3-5000 and RIVYERA
S6-LX150, 82–83

RMA. See Remote memory access (RMA)
RMC. See Remote memory controller (RMC)
RNGs. See Random number generators

(RNGs)
RNS. See Residue number system (RNS)
RTL. See Register transfer level (RTL)
RTM. See Reverse timing migration (RTM)
Run-time reconfiguration, 201

S
Scalability

BRM (see Peak-bandwidth reduction
mechanism (BRM))

bus controller, 752
cluster size, 592
hardware architecture design, 194
HPRC system, 471
hybrid VLIW architecture, 417
latency and bandwidth, 594
LGSM (see Local-and-global stall

mechanism (LGSM))
MD packages, 106
MEMSCALE (see MEMSCALE)
multifold, 194
multi-FPGA extendable design, 195
N-ary trees, TLSs, 270–271
performance and, 536
shared-memory architecture, 573
SMILE cluster, 454
software and hardware DSMs, 576
and software portability, 477
sparse Matrix-Solve phase, SPICE, 411
storage and computation, 770
Verilog-AMS models, 392

SCM array. See Systolic computational-
memory array (SCM array)

SCORE. See Stream Computation Organized
for Reconfigurable Execution
(SCORE)

SDEs. See Stochastic differential equations
(SDEs)

SDR. See Software-defined radio (SDR)
Seismic modeling, RTM. See Reverse timing

migration (RTM)
Sequence alignment. See Optimal sequence

alignment
Sequence analysis. See DNA sequence analysis
SG. See Spin glasses (SG)
SGA. See Simple genetic algorithm (SGA)
SGI. See Silicon Graphics International (SGI)

Shared-memory system
cluster, 583–585
hardware-based approaches, 575–576
software-based approaches, 574–575

Signal-to-noise ratio (SNR), 324–326, 332
Silicon Graphics International (SGI), 455–456
SIMD. See Single instruction multiple data

(SIMD)
Simple genetic algorithm (SGA), 466
Simulation program with integrated circuit

emphasis (SPICE)
accuracy, spice3f5, 399
algorithms, 391, 392
classification, 398
coarse-grained domain-decomposition

techniques, 399
description, 390, 392
example netlist, 390
flowchart, 390, 391
FPGAs (see Field programmable gate

arrays (FPGAs))
input circuit and output waveform, 390,

391
iteration control (see Iteration control

phase, SPICE)
model evaluation (see Model evaluation

phase, SPICE)
performance analysis

Amdahl’s Law bottleneck, 394
CPU peak and SPICE runtime, 394
peak FLOPS scaling, Intel CPUs, 393
sequential runtime distribution, 394
sequential runtime scaling, 393

raw floating-point throughput and power,
390, 391

sparse matrix solve (see Sparse matrix
solver)

spatial parallelism, 390
subproblems, 391
table-lookup model-evaluation, 399

Simulink, 723
Single-assignment C, 722, 724
Single instruction multiple data (SIMD)

parallel SPICE solvers, 398
scalar engine, 443
vector loops, 444
VLIW, 404

Single-precision floating point (SP)
description, 496
RAM and XOR, 497
RAM-block configurations, 498
VHDL, 496
Virtex 4 LX200, 497

Single-program-multiple-data (SPMD), 601

800 Index

SLM. See Spatial light modulator (SLM)
SMILE architecture

ad-hoc MPI implementation, 458
Linux kernel, 457
network, 458–459
programming model, 457
systemC model, 460–461
Xilinx V2P30 FPGA, 457

SMILE HPRC
boolean synthesis, 466–470
MCS (see Monte Carlo Simulation (MCS))

Smith–Waterman (SW) algorithm
implementation, 86–87
matrix and backtracking, 85, 86
matrix cells calculation, 85
negative values, 85
optimal alignments, sequences, 84
performance evaluation, 87–88

SMSC. See Synchronous multi-spin coding
(SMSC)

SNR. See Signal-to-noise ratio (SNR)
Sobol RNGs, 47–50
Software architecture

API and MPI, 525–526
communication interfaces, 528–529
EXTOLL network, 529
kernel driver, 526–527
low-level API libraries, 527
MPI integration, 527–528

Software-defined radio (SDR), 564–565
Sorting

acceleration, 270
address-based data sort, 252–253
K-trees, 251–252
recursive traversal, N-ary trees, 262–264
sequential computations, binary trees,

255–256
spike sorting module, 187

SP. See Single-precision floating point (SP)
Sparse matrix solver

BTF and COLAMD techniques, 395
circuit matrix and dataflow graph, LU

factorization, 408
DDR3 memory interface, 410
fine-grained task parallelism, 406
Gilbert-Peierls algorithm, 407
ideas, performance, 411
KLU algorithm and FPGA, 406
LHS and RHS vectors, 406
L-Solve, 407
MNA, 395
optimized CPU implementation, 409
parallelization phase, 406
parallel runtime distribution, 410, 411

speedups, 410
token-dataflow architecture, 408–409
work-vs-latency, sparse matrix-solve phase,

396
Spatial light modulator (SLM), 611
Spin glasses (SG)

coupling constant and frustration, 486
defined models, 486
description, 488
domain growth, 488, 489
Edwards–Anderson spin glass, 487
HB algoritm, 488
Janus architecture, 490
physical spin variables, 489–490
PT, 489
spin lattice, 485, 486

SPMD. See Single-program-multiple-data
(SPMD)

SSA. See Stochastic simulation algorithm
(SSA)

Star structure, NRM circuit, 166
Stencil computations, FPGAs. See Systolic

computational-memory array (SCM
array)

Stencils
computation, derivatives, 768
space accuracy, 768, 769
star stencil performance, 769

Stochastic biochemical simulation
area and operation frequency evaluation,

167–168
design, NRM on FPGA, 161–162
evaluation, 166–167
first reaction method, 159–160
FRM implementation, FPGA, 160–161
implementation, 162
improvement, 171
interconnection network, 162–163
NRM, 160
performance evaluation, 169–170
simulator, 160
SSA, 159
TPU, 163–165
TSU, 165–166

Stochastic differential equations (SDEs), 4, 6,
7

Stochastic simulation algorithm (SSA),
159–161

Stream Computation Organized for
Reconfigurable Execution (SCORE)

compiler optimized instruction counts,
iteration control, 412, 413

definition, 412
dynamic dataflow, 412

Index 801

high-level SCORE operator graph,
spice3f5, 412, 413

LTE and Convergence calculation, 413
modern FPGAs, 412
operator activation frequency, resistor–

capacitor-diode circuit, 413
Stream processing core, 314–315
Streams-C, 724, 725
SW algorithm. See Smith–Waterman (SW)

algorithm
Synchronous multi-spin coding (SMSC)

and AMSC strategies, 502
description, 490
Ising spin-glass, 502, 503
parallelization, 502

System architecture, RTM
communication and memory structures,

313
data flow structures (see Data flow

structures, RTM)
description, 310–311
device driver platform, 312
Marmousi velocity model, 311, 312
PROCMultiport, 313–314
PROCWizard, 312
stream processing core, 314–315

System-on-chip (SoC), 544
SystemVerilog, 322, 323
Systolic array

affine gap cost function, 146–148
one-dimensional, 143
SCM array (see Systolic computational-

memory array (SCM array))
SWPE, 143, 146, 149

Systolic computational-memory array (SCM
array)

architecture, 284–285
BEE3, Maxwell, Cube, Novo-G and SSA,

281
BRM, 289–291
CCMs, 280
CFD applications, 281
code, grid-points, 287, 289
computing time, 280
2D array, PEs, 285–286
description, 279
GALS design, 289, 292
GPU cluster, 283
implementation and evaluation (see

Implementation and evaluation,
SCM array)

instruction set, 287, 288
LGSM, 291–292
neighboring accumulations, 284

PAM, 282
performance, 3D stencil computation,

282–283
pseudo-code, 283–284
RB-SOR, FRAC and FDTD, 301
reconfigurable resources, 282
sequencers, 286, 287

T
TAT. See Turn around time (TAT)
Term scoring algorithm, FPGAs

description, 212–213
document stream format, 213
perfect Bloom filter, 213
profile lookup table implementation, 213
sequential implementation, 214

Throughput
dataflow architecture, 749
degradation, FPGA implementation, 159
evaluation

average clock cycles, 169
gain, 170
RTL simulations, 169, 170
SW, 170

exp and log operations, 403
FPGA mapping, 397
and frequency, 158
hardware platform, 198
high-end FPGA, 171
high-throughput computation, NRM, 161
HPRC systems, 368
latency, 599
vs. model size, FRM and NRM, 161
multi-core processors, 398
16-node cluster, 560
PCIe link, 562
pipelined modules, 159
Pput scheme, 562
PRESENT, 348
raw floating-point and power, 391
reduced and planar filters, 123
software/hardware, irreversible Michaelis-

Menten, 158
software platform, 197
stage of prediction, 198
streaming, 762
sub-optimal memory, 707

Throughput analysis, real-time search
accuracy of approximation, 224, 225
Bloom filter (see Bloom filter)
external access, 225–226
maximum, 224, 225
profile hit probability and external memory

access time, 227

802 Index

Time-memory trade-off (TMTO) attacks
A5/1, 354–357
DES and PRESENT

online phase, 353
rainbow tables, 353, 354
runtimes and memory requirements,

353
Spartan-3 devices, 353

online phase, 352
phases, 351
precomputation phase, 351–352
rainbow tables, 352
TMDTO, A5/1

engine implementation, 356
runtimes and memory requirements,

357
stream cipher, 354
thin-rainbow DP method, 355

TLB. See Translation Look-aside Buffer (TLB)
TLSs. See Tree-like structures (TLSs)
Torus

DFE, 763
RocketIO cables, 696
topologies, 538

Torus interconnect
communication patterns, 565
deadlocks, 565
description, 544
LQCD, 544
MEXS GUI, 529
network architecture (see Network

architecture, torus)
network implementation, QPACE (see

QCD parallel computing on cell
(QPACE))

PCIe (see PCI express (PCIe))
performance (see Performance)
QCDOC and SoC, 544
Xilinx Virtex4 FPGAs, 565

Translation Look-aside Buffer (TLB), 582–583
Tree-like structures (TLSs)

acceleration, resorting, 270
address-based data sort, 252–253
advantages, 273–274
applicability, 266–267
data sort (binary trees), 248–249
definitions, 247–248
description, 246–247
general-purpose and embedded software,

274
hardware architecture, 259, 260
HFSMs (see Hierarchical finite-state

machines (HFSMs))

implementation, address-based method,
268–269

incomplete, 257–258
input/output data and sorter, 267, 269
K-trees, 251–252
maximum speed, sorting, 273
N-ary trees, 249–250
organization and computations, 274
parallel computations, 258–259
parallelization, 269–270
priority management, 250–251
recursive vs. iterative algorithms, 272–273
representation, memory (see Memory,

TLSs)
resorting, 270, 273
resources, 270, 271
scalability, 271–272
sequential computations

binary trees, 255–256
N-ary trees, 256–257

Turn around time (TAT), 690, 691

U
UIQI. See Universal image quality index

(UIQI)
Uniform random number generator (URNG)

LFSRs (see Linear feedback shift registers
(LFSRs))

Mersenne Twister (see Mersenne Twister)
probability density function, 42
Sobol (see Sobol RNGs)

UniprotKB/TrEMBL database, 78
Universal image quality index (UIQI),

324–326, 332
URNG. See Uniform random number generator

(URNG)

V
VELO. See Virtualized engine for low

overhead (VELO)
Verilog
CAD tool, 461

HDL compiler, 441
sc2v tool, 463
SMILE implementation, 468
Xilinx ISE 9.2i, 57, 67, 69

Verilog-AMS
diode equations and dataflow graph, 400
floating-point operations, 404
generic feed-forward dataflow graph, 401
nonlinear models, 401
SPICE device models, 399

Index 803

spice3f5 C descriptions, 400–401
Verilog-AMS compiler, 403–404
Verilog-HDL (VHDL)

dependent code, 362
drawbacks, FPGAs to GPPs, 383
FFT, 710–712
FPU, 706
hardware generation framework, 421
memory bound codes, 707
random number generator, 708–710
sparse matrix multiplier, 705
stack memories, HFSM, 261–262
synthesis, hardware circuits, 261

Very large instruction word (VLIW)
custom organization, 403
dataflow parallelism, 415
hybrid organization, 414
model-evaluation design, 414
read/write addresses, 403
sequential program, 433
SIMD, 404
tile proportional, floating-point operations,

404
time-shared, FPGA resources, 402
Verilog-AMS compiler, 403–404

Very large scale integration (VLSI), 605
VHDL. See Verilog-HDL (VHDL)

VHSIC hardware description language
(VHDL)

firmware application, 493
lattice size, 496
SP processor and, 493

Virtualized engine for low overhead (VELO),
518–519

Viva, 724
VLIW. See Very large instruction word

(VLIW)
VLSI. See Very large scale integration (VLSI)

W
Weather Research and Forecast (WRF)

“CONUS 12 km”, 537
description, 537
message size distribution, 515
MPI time, 512
performance, 537

WRF. See Weather Research and Forecast
(WRF)

X
Xilinx Virtex-4 XC4VSX55 device, 37

	Foreword
	Preface
	Contents
	Part I Applications
	High-Performance Hardware Acceleration of Asset Simulations
	1 The Need for High Performance Computing in Secure Economies
	2 Pricing Options: Model, Algorithm and Comparison
	2.1 The Heston Model
	2.2 The Multi-Level Monte Carlo Method
	2.3 The Need for Fair Metrics: A Benchmark Proposal for Option Pricing with the Heston Model

	3 Hardware Architectures for Asset Simulations
	3.1 Related Work
	3.2 A Multi-Level Monte Carlo Accelerator for Option Pricing with the Heston Model
	3.2.1 Architecture
	3.2.2 Results

	4 Hardware Efficient Random Number Generation
	4.1 Uniform Random Number Generation
	4.1.1 Interleaved Parallelized Mersenne Twister
	4.1.2 Implementation Properties

	4.2 Obtaining Non-uniform Distributions
	4.2.1 Related Work
	4.2.2 A Hardware Efficient Hardware Architecture for Non-uniform Distributions

	5 Conclusion
	References

	Monte-Carlo Simulation-Based Financial Computing on the Maxwell FPGA Parallel Machine
	1 Introduction
	2 Brief Overview of the State-Of-The-Art of High Performance Financial Computing
	3 Overview of the Maxwell FPGA Parallel Machine
	3.1 Hardware Architectures
	3.2 Design Flow on Maxwell

	4 Case Studies in High Performance Reconfigurable Computing
	4.1 Hardware Random Number Generators
	4.1.1 Uniform Random Number Generator
	4.1.2 Gaussian Random Number Generator

	4.2 Financial Computing Models and Their Implementations on Maxwell
	4.2.1 European Option Pricing
	4.2.2 Asian Option Pricing
	4.2.3 The GARCH Model
	4.2.4 American Option Pricing
	4.2.5 Quasi-Monte Carlo Simulation

	5 Evaluation of Reconfigurable Hardware in High Performance Financial Computing
	5.1 Evaluation of FPGA-Based Monte Carlo Simulation Engine

	6 Conclusion
	References

	Bioinformatics Applications on the FPGA-Based High-Performance Computer RIVYERA
	1 Introduction
	2 RIVYERA S3-5000 and RIVYERA S6-LX150 Computing Platforms
	3 Bioinformatics on the RIVYERA Architecture
	3.1 Optimal Sequence Alignment with Smith–Waterman and Needleman–Wunsch
	3.1.1 The Needleman–Wunsch and Smith–Waterman Algorithms
	3.1.2 Implementation of Smith–Waterman
	3.1.3 Performance Evaluation

	3.2 BLAST Database Search
	3.2.1 BLAST Algorithm
	3.2.2 Application Structure and Implementation
	3.2.3 Performance Evaluation

	3.3 Burrows–Wheeler Alignment
	3.3.1 BWA Algorithm
	3.3.2 Implementation
	3.3.3 Performance Evaluation

	4 Summary
	References

	FPGA-Accelerated Molecular Dynamics
	1 Introduction to Molecular Dynamics
	1.1 Overview of Molecular Dynamics Simulation
	1.2 Cell Lists and Neighbor Lists
	1.3 Direct Computation vs. Table Interpolation
	1.4 Simulation Quality: Numeric Precision and Validation

	2 Basic Issues with Acceleration and Parallelization
	2.1 Profile
	2.2 Handling Exclusion
	2.3 Data Transfer and Communication Overhead
	2.4 Newton's 3rd Law
	2.5 Partitioning and Routing

	3 FPGA Acceleration Methods
	3.1 Force Pipeline
	3.2 Filtering and Mapping Scheme
	3.2.1 Filter Pipeline Design and Optimization
	3.2.2 Cell Neighborhood Organization
	3.2.3 Mapping Particle Pairs to Filter Pipelines

	3.3 Overall Design and Board-Level Issues
	3.4 Preliminary Work in Long-Range Force Computation
	3.5 Preliminary Work in Parallel MD

	4 Future Challenges and Opportunities
	4.1 Integration into Full-Parallel Production MD Packages
	4.2 Use of FPGAs for Inter-Node Communication
	4.3 Building an Entirely FPGA-Centric MD Engine
	4.4 Validating Simulation Quality

	References

	FPGA-Based HPRC for Bioinformatics Applications
	1 Introduction
	2 Homology Search
	2.1 Introduction
	2.2 Related Works
	2.3 Smith–Waterman Algorithm
	2.4 Performance Analysis
	2.5 Systolic Array Design
	2.5.1 The Overview of an SWPE
	2.5.2 Affine Gap Cost Function (a < b < 0)

	2.6 Experimental Results
	2.6.1 Performance Evaluation of FPGA
	2.6.2 CPU and GPUs

	2.7 Summary of Homology Search

	3 Biochemical Kinetic Simulation with a Reconfigurable Platform
	3.1 Introduction
	3.2 ODE Based Approach
	3.2.1 The Target Model and Its Description
	3.2.2 The Solver Core Library
	3.2.3 Mechanism for Integration and Pathway Mapping
	3.2.4 Heterogeneous Model Simulation Framework on ReCSiP
	3.2.5 Evaluation of ODE Based Approach
	3.2.6 Area Overhead of the Communication Mechanism
	3.2.7 Frequency and Throughput

	3.3 Summary of ODE Approach
	3.4 Stochastic Biochemical Simulation
	3.4.1 Stochastic Simulation Algorithm
	3.4.2 First Reaction Method
	3.4.3 Next Reaction Method
	3.4.4 Related Works
	3.4.5 The FRM Implementation on an FPGA
	3.4.6 Design Concept of NRM on FPGA
	3.4.7 Implementation
	3.4.8 Interconnection Network
	3.4.9 Thread Private Unit
	3.4.10 Thread Share Unit
	3.4.11 Evaluation
	3.4.12 Area and Operation Frequency Evaluation
	3.4.13 Performance Evaluation
	3.4.14 Discussion: For More Improvement

	3.5 Summary of Stochastic Approach

	4 Conclusion
	References

	High-Performance Computing for Neuroinformatics Using FPGA
	1 A Brief Introduction to Cognitive Neuroscience and Cognitive Neural Prosthesis
	1.1 The Hippocampus: Hub of Brain Network Communication for Memory
	1.2 Neural Prosthesis for Restoring Lost Cognitive Function

	2 Modeling Techniques for Neural Systems
	2.1 The Parametric Models
	2.2 The Nonparametric Models
	2.3 Theoretical Background of Our Model

	3 Modeling the Brain Activity Using Mathematics
	3.1 Configuration of the Generalized Volterra Model
	3.2 Laguerre Expansion of GVM: Generalized Laguerre–Volterra Model
	3.3 Estimation of Parameters
	3.4 Model Selection

	4 Using Reconfigurable Hardware to Predict Neural Activity
	4.1 Hardware Architecture
	4.2 Calculating the Pre-threshold Membrane Potential
	4.3 Calculating the Firing Probability and Laguerre Coefficients
	4.4 Predicting the Output Spikes
	4.5 System Scalability
	4.6 Implementation Results: Hardware Versus Software

	5 Discussions
	5.1 The Ultra-Low Power Design Principle
	5.2 The Dynamical Partial Reconfiguration Technique
	5.3 Fault-Tolerance Redundancy Design

	6 Conclusions
	References

	High-Performance FPGA-Accelerated Real-Time Search
	1 Introduction
	2 Real-Time Search Applications
	2.1 Choice of Workload
	2.2 Algorithm Description
	2.3 Target Platform
	2.4 Term Scoring Algorithm
	2.4.1 Perfect Bloom Filter
	2.4.2 Document Stream Format
	2.4.3 Profile Lookup Table Implementation
	2.4.4 Sequential Implementation

	2.5 Parallelising Lookups
	2.5.1 Parallel Document Streams

	2.6 Parallel Bloom Filter Design

	3 Throughput Analysis
	3.1 Bloom Filter Access Patterns
	3.1.1 Integer Partitions
	3.1.2 Probability of Each Partition

	3.2 Average Access Time per Pattern
	3.2.1 Case of No Hits
	3.2.2 Case of a Single Hit
	3.2.3 Case of Two or More Hits

	3.3 Probability of External Memory Access
	3.4 Average Overall Throughput
	3.4.1 Average Access Time Over All nH for a Given Pattern
	3.4.2 Average Access Time Over All Patterns for Given n and m

	3.5 Analysis
	3.5.1 Accuracy of Approximation
	3.5.2 Maximum Achievable Throughput
	3.5.3 Throughput Including External Access
	3.5.4 Impact of Bloom Filter Access Time
	3.5.5 Impact of Profile Hit Probability and External Memory Access Time

	4 FPGA Implementation
	4.1 Hardware
	4.2 Development Environment
	4.3 FPGA Implementation Description
	4.3.1 Document Streaming
	4.3.2 Bloom Filter for Profile Hit Filtering
	4.3.3 Profile Lookup and Scoring
	4.3.4 Discussion

	4.4 FPGA Utilisation Details

	5 Evaluation
	5.1 Creating Synthetic Data Sets
	5.1.1 Real-World Document Collections
	5.1.2 Term Distribution
	5.1.3 Document Length

	5.2 Experimental Parameters
	5.3 FPGA Performance Results
	5.3.1 Access Time Measurements
	5.3.2 Comparison with CPU Reference Systems
	5.3.3 Throughput
	5.3.4 Performance-per-Watt
	5.3.5 Performance Versus Cost

	6 Discussion
	7 Conclusion
	References

	High-Performance Data Processing Over N-ary Trees
	1 Introduction
	2 Tree-Like Structures and Their Use for Solving Computational Problems
	2.1 Basic Definitions
	2.2 Data Sort (Binary Trees)
	2.3 Combinatorial Problems (N-Ary Trees)
	2.4 Priority Management (Merged Binary Trees)
	2.5 Multi-Level Data Sort (K-Trees)
	2.6 TLS and Address-Based Data Sort

	3 Representation of Tree-Like Structures in Memory
	3.1 Array-Based Representation
	3.2 Coding Nodes in K-Trees
	3.3 Tree-Walk Tables
	3.4 Dual-Port Memories

	4 Computations Over Tree-Like Structures
	4.1 Sequential Computations Over Binary Trees
	4.2 Sequential Computations Over N-Ary Trees
	4.3 Processing Incomplete Tree-Like Structures
	4.4 Parallel Computations
	4.5 Hardware Architecture

	5 Hierarchical Finite State Machines
	5.1 Specification of Modules and Synthesis of Hardware Circuits
	5.2 HFSM for Traversing Tree-Like Structures (Binary Trees)
	5.3 HFSM for Traversing Tree-Like Structures(N-Ary Trees, N > 2)

	5.4 HFSM for Search Over Tree-Like Structures

	6 Experiments and Results
	6.1 Applicability
	6.2 Performance
	6.3 Resources
	6.4 Scalability
	6.5 Recursive Vs. Iterative Algorithms
	6.6 Comparison with Known Results

	7 Conclusion
	References

	FPGA-Based Systolic Computational-Memory Array for Scalable Stencil Computations
	1 Introduction
	2 Related Work
	3 Target Computation and Architecture
	3.1 General Form of Stencil Computations
	3.2 SCM Architecture

	4 Design of SCM Array
	4.1 2D Array of Processing Elements
	4.2 Sequencers and Instruction Set
	4.3 Techniques for Multiple-FPGA Implementation
	4.3.1 Peak-Bandwidth Reduction Mechanism (BRM)
	4.3.2 Local-and-Global Stall Mechanism

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Benchmark Computations
	5.3 Synthesis Results
	5.4 Performance Results
	5.5 Feasibility and Performance Estimation for State-of-the-Art FPGAs

	6 Summary
	References

	High Performance Implementation of RTM Seismic Modeling on FPGAs: Architecture, Arithmetic and Power Issues
	1 Introduction
	2 The RTM Algorithm
	3 Related Work
	4 System Architecture
	4.1 System Overview
	4.1.1 Software Application
	4.1.2 Hardware Platform

	4.2 Data Flow Architecture Implementation
	4.2.1 Memory Organization
	4.2.2 Temporal Pipeline
	4.2.3 Data Flow Architecture Components

	4.3 Arithmetic Issues

	5 Results
	5.1 Performance Results
	5.2 Arithmetic Analysis
	5.3 Power Analysis

	6 Conclusions
	References

	High-Performance Cryptanalysis on RIVYERA and COPACOBANA Computing Systems
	1 The Evolution: COPACOBANA and RIVYERA
	1.1 The COPABOBANA Computing System
	1.2 The RIVYERA Computing System

	2 Cryptanalysis on COPACOBANA and RIVYERA
	2.1 Exhaustive Key-Search Attacks
	2.1.1 Brute-Force Attack on DES
	2.1.2 Brute-Force Attack on Hitag2
	2.1.3 Brute-Force Attack on KeeLoq
	2.1.4 Brute-Force Attack on Electronic Passports
	2.1.5 Brute-Force Attack on PRESENT

	2.2 Guess-and-Determine Attack on A5/1
	2.3 Time-Memory Trade-Off Attacks
	2.3.1 TMTO Attacks on DES and PRESENT
	2.3.2 Time-Memory-Data Trade-Off Attack on A5/1

	2.4 Factoring Large Numbers with Elliptic Curves
	2.5 Cryptanalysis Using Cube Attacks

	3 Summary
	References

	FPGA-Based HPRC Systems for Scientific Applications
	1 Introduction
	2 Ocean Model Simulation: Optimization of DMA Transfer
	2.1 Computing Framework
	2.2 DMA Optimization Strategies
	2.3 Evaluation
	2.3.1 Trade-Off Analysis
	2.3.2 Performance Impact on Kernel Functions

	3 N-Body Simulation: A Comparative Study
	3.1 HPRC Solutions to Astrophysical N-Body Simulation
	3.2 Design Overview
	3.3 FPGA Implementation Results
	3.4 Discussion on Comparison Results
	3.5 Impact on the Performance per Watt

	References

	Accelerating the SPICE Circuit Simulator Using an FPGA: A Case Study
	1 Introduction
	2 Background
	2.1 Summary of SPICE Algorithms
	2.2 SPICE Performance Analysis
	2.3 SPICE Model-Evaluation
	2.4 SPICE Matrix Solve (Ax= b)

	2.5 SPICE Iteration Controller
	2.6 Promise of FPGAs
	2.7 Historical Review

	3 Model Evaluation
	3.1 Structure
	3.2 Fully Spatial Architecture
	3.3 Custom VLIW Architecture
	3.4 Experimental Setup
	3.5 Results
	3.6 Future Work

	4 Sparse Matrix Solve
	4.1 Structure
	4.2 Token-Dataflow Architecture
	4.3 Experimental Framework
	4.4 Evaluation
	4.5 Future Work

	5 Iteration Control
	5.1 SCORE Framework
	5.2 Hybrid VLIW Architecture for Iteration Control
	5.3 Experimental Framework
	5.4 Results
	5.5 Future Work

	6 FPGA Implementation Methodology
	6.1 Offline Logic Configuration
	6.2 Runtime Memory Configuration
	6.3 Hardware Library and Cost Model
	6.4 FPGA Cycle Measurement

	7 Evaluation
	8 Conclusions
	Appendix
	References

	Part II Architectures
	The Convey Hybrid-Core Architecture
	1 Hybrid Computing
	2 Classification
	3 Related Work
	4 The Convey HC-1 Hybrid Core Computer
	4.1 Convey Computer Corporation
	4.2 The Convey HC-1 Architecture
	4.2.1 Coprocessor Functional Components
	4.2.2 Coprocessor Execution

	4.3 Application Development
	4.3.1 Programming Model
	4.3.2 Creating and Using Personalities
	4.3.3 Application Programming

	4.4 Operating System

	5 Applications and Performance
	5.1 Programming Effort

	6 Conclusion
	References

	Low Cost High Performance Reconfigurable Computing
	1 Introduction
	2 Background
	3 SMILE Architecture
	3.1 Network

	4 SMILE SystemC Model
	5 Benchmarks
	5.1 Monte Carlo Financial Simulation
	5.1.1 Hardware Implementation on SMILE
	5.1.2 GPU Architecture and Programming Model
	5.1.3 Parallel Implementation

	5.2 Boolean Synthesis with SMILE
	5.2.1 Hardware Implementation on SMILE
	5.2.2 GPU Architecture and Programming Model
	5.2.3 Parallel Implementation

	6 Evaluation
	6.1 Experimental Results for Monte Carlo Simulation
	6.2 Experimental Results of Boolean Synthesis

	7 Conclusions
	References

	An FPGA-Based Supercomputer for Statistical Physics: The Weird Case of Janus
	1 Overview
	2 Spin Glasses
	3 Monte Carlo Simulations of Spin Glasses
	4 Janus: The Architecture
	4.1 Global Structure
	4.2 Programming Paradigm
	4.3 IOP Structure and Functions
	4.4 Software Layer

	5 SP Firmware: An Application Example
	6 An Overview of Physics Results
	7 Janus Performance
	8 Conclusions
	References

	Accelerate Communication, not Computation!
	1 Introduction
	1.1 Vast Increase in Parallelism
	1.2 Messaging Characteristics
	1.3 The EXTOLL Approach

	2 Application Demands
	2.1 Fraction of Communication Time
	2.2 Message Size Distribution
	2.3 Key Requirements of HPC Applications

	3 A Networking Solution Optimized for HPC
	3.1 Switching
	3.2 Communication Engines
	3.2.1 VELO: Support for Small Data Transfers
	3.2.2 RMA: Support for Bulk Data Transfers

	4 FPGA-Based Implementation
	4.1 FPGA Features for HPC Networking
	4.2 Optimizations and Floor Planning
	4.2.1 SRL FIFO
	4.2.2 Floorplanning

	4.3 Implementation Results

	5 Software Architecture
	5.1 Kernel Driver
	5.2 Low-Level API Libraries
	5.3 MPI Integration
	5.4 Other Communication Interfaces
	5.5 Managing an EXTOLL Network

	6 Evaluation
	6.1 Limitations
	6.2 Micro-Benchmarks
	6.2.1 Latency and Bandwidth

	6.3 Message Rate
	6.4 Overhead and Application Availability
	6.5 Complex Benchmarks
	6.5.1 HPCC RandomAccess
	6.5.2 Weather Research and Forecast

	7 Related Work
	8 Conclusion and Outlook
	References

	High-Speed Torus Interconnect Using FPGAs
	1 Introduction
	2 Torus Network Architecture
	2.1 System and Network Processor Architecture
	2.2 Communication Model
	2.3 IO Interface
	2.4 Link Modules

	3 Network Implementation for QPACE
	3.1 Architecture Overview
	3.2 QPACE Network Processor and Network Topology
	3.3 FPGA Implementation Details

	4 Network Processor with PCIe-Based IO for AuroraScience
	4.1 IO Interface
	4.2 Software Layers

	5 Performance Results
	5.1 Network Performance on QPACE
	5.2 Network Performance on AuroraScience

	6 Outlook on Future Implementations
	7 Summary and Conclusions
	References

	MEMSCALE: Re-architecting Memory Resources for Clusters
	1 Introduction
	2 Related Work
	2.1 Exclusive Memory
	2.2 Shared Memory
	2.2.1 Software-Based Approaches
	2.2.2 Hardware-Based Approaches

	3 The Memscale Architecture
	3.1 Overview
	3.2 System Architecture
	3.3 Remote Memory Allocation
	3.4 Shared-Memory Across the Cluster

	4 Implementation Using FPGAs
	4.1 Global Architecture
	4.2 Implementation
	4.2.1 Target Node Determination and Address Translation
	4.2.2 Source Tag Management
	4.2.3 Egress and Ingress Modules
	4.2.4 Resource Utilization

	5 Performance Evaluation
	5.1 Basic Performance Characteristics
	5.2 Exclusive Memory Performance
	5.3 Shared-Memory Performance

	6 Conclusions
	References

	High-Performance Computing Based on High-Speed Dynamic Reconfiguration
	1 Exploration of the Best Soft-Core Processor Implementation onto FPGAs
	2 High-Speed Dynamically Reconfigurable Devices
	2.1 A Variety of Programmable Devices
	2.2 High-Speed Dynamically Reconfigurable Devices

	3 Optically Reconfigurable Gate Array
	3.1 ORGA Architecture
	3.2 ORGA-VLSI
	3.3 ORGA Advantages

	4 Mono-Instruction Set Computer
	4.1 Concept
	4.2 Experimental Result of MISC Implementation
	4.3 More Practical Implementation of MISC Processors
	4.4 What is the Best-Performing Processor?

	5 Conclusion
	References

	Part III Tools and Methodologies
	Reconfigurable Arithmetic for High-Performance Computing
	1 Introduction
	2 Generalities
	2.1 Logic Fabric
	2.1.1 Look-Up Tables
	2.1.2 Fast Carry Propagation
	2.1.3 DSP Blocks
	2.1.4 Embedded Memories

	2.2 Floating-Point Formats for Reconfigurable Computing

	3 Arithmetic Efficiency and Precision Analysis
	4 Operator Specialization
	4.1 Multiplication and Division by a Constant
	4.1.1 Shift and Add Algorithms
	4.1.2 Table-Based Techniques
	4.1.3 Other Variations of Single-Constant Multiplication
	4.1.4 Multiple Constant Multiplication
	4.1.5 Choosing the Best Approach in a Given Context

	4.2 Squaring

	5 Operator Fusion
	5.1 Floating-Point Sum-and-Difference
	5.2 Block Floating-Point
	5.3 Floating-Point Sum of Squares
	5.4 Towards Compiler-Level Operator Fusion

	6 Exotic Operators
	6.1 Accumulation
	6.2 Generic Polynomial Approximation
	6.3 Putting It All Together: A Floating-Point Exponential

	7 Operator Performance Tuning
	7.1 Algorithmic Choices
	7.2 Sequential Versus Parallel Implementation
	7.3 Pipelining Tuning

	8 Open Issues and Challenges
	8.1 Operator Specialization and Fusion in High-Level Synthesis Flows
	8.2 Towards Meta-Operators
	8.3 What Hardware Support for HPC on FPGA?

	References

	Acceleration of the Discrete Element Method: From RTL to C-Based Design
	1 Introduction
	2 The Discrete Element Method
	3 Rt-Level DEM Hardware Acceleration
	3.1 Low-Level Parallelism
	3.1.1 Contact Check
	3.1.2 Inter-Particle Forces Increment
	3.1.3 Velocity and Position Update
	3.1.4 Write Back Unit
	3.1.5 Interface Unit
	3.1.6 Hardware Requirements

	3.2 High-Level Parallelism

	4 CyberWorkBench: Behavioural Synthesis and Verification
	4.1 Verification Flow
	4.2 Design Space Exploration

	5 C-Based DEM Hardware Acceleration
	5.1 Contact Check
	5.2 Inter-Particle Forces Increment
	5.3 Velocity and Position Update
	5.4 Control Unit

	6 C-Based vs. RTL-Based Design
	7 Conclusions
	References

	Optimising Euroben Kernels on Maxwell
	1 Overview
	2 Background
	2.1 Prace Prototypes
	2.2 The Maxwell System
	2.3 Software Tools
	2.4 The Euroben Kernels

	3 Porting the Kernels
	3.1 Matrix Multiplication
	3.1.1 VHDL Port

	3.2 Initial Implementation
	3.3 Second Design: Fast But Size-Restricted
	3.4 The Final Design
	3.5 Converting to Double Precision
	3.5.1 HCE Port

	3.6 Sparse Matrix-by-Vector Kernel
	3.6.1 VHDL Port
	3.6.2 HCE Port

	3.7 Random Number Generator
	3.7.1 VHDL Port
	3.7.2 HCE Port

	3.8 Fast Fourier Transform
	3.8.1 VHDL Port

	4 Summary of Results
	4.1 Comparison of C, VHDL and HCE Implementations
	4.1.1 Mod2am
	4.1.2 Mod2as
	4.1.3 Mod2h
	4.1.4 Mod2f
	4.1.5 Notes on Power Consumption

	5 Conclusions
	References

	Assessing Productivity of High-Level Design Methodologies for High-Performance Reconfigurable Computers
	1 Introduction
	2 HLL Review and Taxonomy
	2.1 HLL Tool Taxonomy

	3 Related Works
	4 HLL Evaluation Framework
	4.1 Formalizing the Framework
	4.2 Validating the Framework
	4.3 Metrics of Evaluation
	4.3.1 Productivity
	4.3.2 Work Progress Rate

	5 Experimental Evaluation
	5.1 Results

	6 Conclusions
	References

	Maximum Performance Computing with Dataflow Engines
	1 Introduction
	2 What is Dataflow Computing?
	3 Building Dataflow Computers
	3.1 Integrating DFEs and CPUs
	3.1.1 Roles in the System
	3.1.2 Access to Memory
	3.1.3 Coupling

	3.2 Real World Examples: MPC-C and MPC-X

	4 Maximum Performance Computing Approach
	5 Programming with MaxCompiler
	6 Cluster-Level Considerations
	6.1 Designing a Cluster
	6.1.1 Compute
	6.1.2 Memory
	6.1.3 Disk Storage
	6.1.4 Network

	6.2 Cluster Management
	6.3 Resiliency

	7 Case Study: Reverse Time Migration
	7.1 Analysis
	7.2 Transformations
	7.2.1 Modeling Kernel
	7.2.2 Data Management

	7.3 Partitioning
	7.4 Implementation

	8 Conclusion
	References

	Index

