Wim Vanderbauwhede - Khaled Benkrid
Editors

High-

' Performance
Computing
FPGAS

N Springer

High-Performance Computing Using FPGAs

Wim Vanderbauwhede ¢ Khaled Benkrid
Editors

High-Performance
Computing Using FPGASs

@ Springer

Editors

Wim Vanderbauwhede Khaled Benkrid

School of Computing Science School of Engineering and Electronics
University of Glasgow The University of Edinburgh
Glasgow, United Kingdom Edinburgh, United Kingdom

ISBN 978-1-4614-1790-3 ISBN 978-1-4614-1791-0 (eBook)

DOI 10.1007/978-1-4614-1791-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013932707

© Springer Science+Business Media, LLC 2013, corrected at 2" printing 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

The field programmable gate array (FPGA) was developed in the middle of 1980s
with the original intent to be a prototyping medium. The array of programmable
logic blocks enabled it to be reconfigured to any of a variety of compute functions.
As such it was an attractive vehicle for “in circuit hardware emulation” where
designs could be prototyped and debugged before being committed to silicon. It
was also an attractive teaching vehicle for students learning computer design. It was
with this in mind that I was first introduced to the FPGA by one of the pioneers in
the field, Ross Freeman, the founder of Xilinx (who tragically died just a few years
after Xilinx’s founding).

As the underlying silicon technology improved and the functional potential
was better understood, the FPGA slowly permeated many aspects of computing.
By the 1990s it was an accepted component in most communications technology,
then consumer-electronics and automotive applications became apparent, and by
the early 2000s the FPGA was well established in almost all areas of computing
except high performance computing (HPC). It would seem that HPC is an unlikely
target for FPGAs, as the FPGA with all of its flexibility in both routing and
configuration has a clear disadvantage when compared to custom arithmetic design
when measured in terms of an area time power product. Of course, even then it was
understood that there were some small specialized compute applications for which
the FPGA could offer some significant performance advantages mostly in areas such
as cryptography and specialized arithmetic.

Around 2003 there was a seismic shift in the underlying silicon technology,
and Moore’s law of frequency scaling (processors double performance every 18-24
months) became inoperative because the power densities required to support higher
frequencies could not be economically sustained. The future was parallel in one way
or another. In HPC the obvious approach was to use multicore implementations, but
there is a problem with attempting to scale performance by simply increasing the
number of cores or processors to execute an application. The programming models
that we have developed over the past decade have been oriented toward sequential
processing and not parallel processing. The introduction of paradigms such as layers

vi Foreword

of abstractions that hide the underlying hardware thus makes it difficult to find the
right form of parallelism to best express the execution of an application.

Still the notion of using FPGAs as a fabric to realize HPC for large classes of
applications is surprising to many. It surely was unforeseen a decade ago. So what
enables the FPGA to make its mark in HPC? There are at least three reasons:

1. The aforementioned difficulty in achieving scalable speed up with multicore
implementations.

2. While Moore’s law for frequency scaling ceased in 2003, Moore’s law on
transistor density scaling is still very much active so that over the intervening
decade transistor densities have scaled up on more than an order of magnitude.
These densities enable very large FPGA configurations. An enormous number
of cells are available to realize complex compute engines. And because FPGAs
necessarily operate at lower frequencies, they have not hit the power density
limits of the CPU.

3. The flexibility of the FPGA enables the designer to realize almost any computer
configuration that can be imagined and use any form of parallelism to suit the
application. This flexibility provides the opportunity to create ideal machines for
specific applications and unlike a decade ago where these applications would
necessarily small they now can be of significant scope—really large, important,
and interesting applications.

In a sense we have come full circle: the designer is again using the FPGA to do
emulation but now that emulation is not of some established CPU but an emulation
of an ideal machine for a particular application using techniques, representations,
and processor forms unavailable to conventional processor designs. In effect the
designer is emulating the future of computing high-speed computing.

This extraordinary book brings together the work of the leading technologists in
this important field and points to the direction not only for high speed computing
but also for the very future of computing itself.

Stanford, CA, USA Michael J. Flynn
Palo Alto, CA, USA

Preface

The seamless exponential increase in computing power that scientists, engineers
and computer users at large have enjoyed for decades has come to an end by
the mid-2000s. Indeed, while until then, computer users could rely on computing
power doubling every 18 months or so simply by means of increases in transistor
integration levels and clock frequencies, with no major changes to software,
physical limitations including voltage scaling and heat dissipation meant that this
is no longer possible. Instead, the chip fabrication industry has turned to multicore
chip technology to keep the “possibility” of doubling computer performance every
18 months alive. However, this is just a “potential” performance increase and not
a seamless one as application software needs to be recoded to take full advantage
of the performance potential of multicore technologies. Failing this, the computer
industry would cease to become a growth industry as there would be no need for
computer upgrades for performance sake. Instead, the industry would become a
replacement industry where computers are only bought to replace faulty ones. This
could have serious economic repercussions; hence the explosion of research activity
in industry and academia in recent years aimed at bridging the semantic gap between
applications, traditionally written in sequential code, and hardware, increasingly
parallel in architecture.

The aforementioned semantic gap, however, is also opening a window of
opportunity for niche parallel computer technologies such as field programmable
gate array (FPGAs) and graphics processor units (GPUs) which have become
more mainstream because the problem of parallel programming has to be tackled
for general-purpose processors anyway. FPGAs in particular have the promise of
custom-hardware performance and low power, with the software reprogrammability
advantage of general purpose processors. This is precisely why this technology has
attracted a great deal of attention within the high performance computing (HPC)
community, giving rise to the new discipline of high performance reconfigurable
computing (HPRC).

The aim of this book is to present a comprehensive view of the state of the art
of HPRC to existing and aspiring researchers in the field. This book is split into
three main parts: the first part deals with HPRC applications, the second with HPRC

vii

viii Preface

architectures, and the third with HPRC tools. Each part consists of a number of
contributions from eminent researchers in the field. Throughout the book, emphasis
is made on opportunities, challenges, and possible future developments, especially
in relation to other technologies such as general-purpose multicore processors and
GPUs. Overall, we hope that this book will serve as both a reference and a starting
point for existing and future researchers in the field of HPRC.

Finally, we thank all contributors, reviewers, and Springer’s staff for their efforts
and perseverance in making this book project a reality.

Glasgow, UK Wim Vanderbauwhede
Edinburgh, UK Khaled Benkrid

Contents

PartI Applications

High-Performance Hardware Acceleration of Asset Simulations 3
Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Monte-Carlo Simulation-Based Financial Computing
on the Maxwell FPGA Parallel Machineoo.. 33
Xiang Tian and Khaled Benkrid

Bioinformatics Applications on the FPGA-Based

High-Performance Computer RIVYERA ... 81
Lars Wienbrandt

FPGA-Accelerated Molecular Dynamics...................................... 105
M.A. Khan, M. Chiu, and M.C. Herbordt

FPGA-Based HPRC for Bioinformatics Applications........................ 137

Yoshiki Yamaguchi, Yasunori Osana, Masato Yoshimi,
and Hideharu Amano

High-Performance Computing for Neuroinformatics Using FPGA 177
Will X.Y. Li, Rosa H.M. Chan, Wei Zhang, Chiwai Yu, Dong Song,
Theodore W. Berger, and Ray C.C. Cheung

High-Performance FPGA-Accelerated Real-Time Search 209
Wim Vanderbauwhede, Sai. R. Chalamalasetti, and Martin Margala

High-Performance Data Processing Over N-ary Trees 245
Valery Sklyarov and Iouliia Skliarova

FPGA-Based Systolic Computational-Memory Array
for Scalable Stencil Computationscoiiiiiiiiiiiii 279
Kentaro Sano

ix

High Performance Implementation of RTM Seismic Modeling

on FPGAs: Architecture, Arithmetic and Power Issues

Victor Medeiros, Abner Barros, Abel Silva-Filho,
and Manoel E. de Lima

High-Performance Cryptanalysis on RIVYERA

and COPACOBANA Computing Systems..........................

Tim Giineysu, Timo Kasper, Martin Novotny, Christof Paar,
Lars Wienbrandt, and Ralf Zimmermann

FPGA-Based HPRC Systems for Scientific Applications

Tsuyoshi Hamada and Yuichiro Shibata
Accelerating the SPICE Circuit Simulator Using an FPGA:

ACase Studyoooviiiiiii

Nachiket Kapre and André DeHon

PartII Architectures

The Convey Hybrid-Core Architecture.............................

Bernd Klauer

Low Cost High Performance Reconfigurable Computing

Javier Castillo, Jose Luis Bosque, Cesar Pedraza, Emilio Castillo,
Pablo Huerta, and Jose Ignacio Martinez

An FPGA-Based Supercomputer for Statistical Physics:

The Weird Caseof Janusoooiiiiiiiiiiiiiiiiin..

M. Baity-Jesi, R.A. Bafios, A. Cruz, L.A. Fernandez,

J.M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, D. Ifiguez,
A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor,

J. Monforte-Garcia, A. Miinoz Sudupe, D. Navarro, G. Parisi,

M. Pivanti, S. Perez-Gaviro, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo,
S.F. Schifano, B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione,
and D. Yllanes

Accelerate Communication, not Computation!....................

Mondrian Niissle, Holger Froning, Sven Kapferer,
and Ulrich Briining

High-Speed Torus Interconnect Using FPGAs.....................

H. Baier, S. Heybrock, B. Krill, F. Mantovani, T. Maurer, N. Meyer,
1. Ouda, M. Pivanti, D. Pleiter, S.F. Schifano, and H. Simma

MEMSCALE: Re-architecting Memory Resources for Clusters
Holger Froning, Federico Silla, and Hector Montaner

Contents

........... 507

Contents xi

High-Performance Computing Based on High-Speed Dynamic
Reconfiguration i 605
Minoru Watanabe

Part III Tools and Methodologies

Reconfigurable Arithmetic for High-Performance Computing 631
Florent de Dinechin and Bogdan Pasca

Acceleration of the Discrete Element Method: From RTL
to C-Based Designo 665
Benjamin Carrion Schafer and Kazutoshi Wakabayashi

Optimising Euroben Kernels on Maxwelloo.. 695
James Perry, Mark Parsons, and Paul Graham

Assessing Productivity of High-Level Design Methodologies
for High-Performance Reconfigurable Computers........................... 719
Esam El-Araby, Saumil G. Merchant, and Tarek El-Ghazawi

Maximum Performance Computing with Dataflow Engines 747
Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk

Part I
Applications

The first part of the book covers research on applications in the emerging field
of High-Performance Reconfigurable Computing. The first two chapters present
work on FPGA-based financial computing, an application field which has grown
considerably in the last decade in both research and industry. These are from
de Schryver et al. of the University of Kaiserslautern, Germany, and Tian et al.
from the University of Edinburgh, UK, respectively. These are followed by four
chapter contributions on FPGA-based bioinformatics and computational biology
(BCB), another application area which has attracted considerable attention in the
last decade, mostly in academia but also industry. These are from Lars Wienbrandt
of the Christian-Albrechts-University of Kiel, Germany, Herbordt et al. from Boston
University, USA, Yamaguchi et al. from the Universities of Tsukuba, Ryukyus,
Doshisha and Keio, in Japan, and Will Li et al. from the City University of Hong
Kong, China. The following two contributions are on FPGA-based data search and
processing, another interesting application in our information age characterised
by an explosion of data. The two contributions are from Vanderbauwhede et al.
of Glasgow University, UK, and the University of Massachussets, USA, and
Sklyarov and Skliarova from the University of Aveiro, Portugal. The next two
contributions are on FPGA-based stencil computations, a very important area with
various applications in computational fluid dynamics, electromagnetic simulation
based on the finite-difference time domain method, and iterative solvers e.g. for
seismic modelling. The two contributions are from Kentaro Sano from Tohoku
University, Japan, and Medeiros et al. from Universidad Federal de Pernambuco,
Brazil. The following chapter from Gneysu et al. of Ruhr-University Bochum,
Germany, Czech Technical University in Prague, Czech Republic, and the Christian-
Albrechts-University of Kiel, Germany, presents dedicated FPGA-based cluster
solutions for high performance efficient cryptanalysis. After this, Hamada and
Shibata from Nagasaki University, Japan, present a contribution which deals with
two floating point scientific applications, namely ocean model simulation with a
particular emphasis on fast inter-task communications, and astronomical N-body
simulations with a particular emphasis on performance per $ and performance

2 I Applications

per Watt measures of FPGAs compared to ASICs, GPUs and general purpose
processors. Finally, Kapre and DeHon from Imperial College London, UK, and
the University of Pennsylvania, USA, present an FPGA-accelerated solution for the
SPICE simulator, a widely used open-source tool for the simulation and verification
of analog circuits.

High-Performance Hardware Acceleration
of Asset Simulations

Christian de Schryver, Henning Marxen, Stefan Weithoffer,
and Norbert Wehn

Abstract State-of-the-art financial computations based on realistic market models
like the Heston model require a high computational effort, since no closed-
form solutions are available in general. Due to the fact that the underlying asset
behavior predictions are mainly based on number crunching operations, FPGAs are
promising target devices for this task. In this chapter, we give an overview about
current problems and solutions in the finance and insurance domain and show how
state-of-the-art market models and solution methods have increased the necessary
computational power over time. For the reason of universality and robustness, we
focus on Monte Carlo methods that require a huge amount of normally distributed
random numbers. We summarize the state-of-the-art and present efficient hardware
architectures to obtain these numbers, together with comprehensive quality inves-
tigations. Build on these high-quality random number generators, we present an
efficient FPGA architecture for option pricing in the Heston model, tailored to
FPGAs. For the problem pricing European barrier options in the Heston model
we show that a Xilinx Virtex-5 device can save up to 97% of energy, providing the
same simulation throughput as a Nvidia Tesla 2050 GPU.

1 The Need for High Performance Computing in Secure
Economies

The happenings on the financial markets all around the world in the last years have
clearly demonstrated the inherent risks prevailing in our current economic system.

C. de Schryver (0<) S. Weithoffer * N. Wehn
Microelectronic Systems Design Research Group, University of Kaiserslautern, Germany
e-mail: schryver@eit.uni-kl.de; weithoffer @eit.uni-kl.de; wehn@eit.uni-kl.de

H. Marxen
Stochastic Control and Financial Mathematics Group, University of Kaiserslautern, Germany
e-mail: marxen @mathematik.uni-kl.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 3
DOI 10.1007/978-1-4614-1791-0_1, © Springer Science+Business Media, LLC 2013

mailto:schryver@eit.uni-kl.de
mailto:weithoffer@eit.uni-kl.de
mailto:wehn@eit.uni-kl.de
mailto:marxen@mathematik.uni-kl.de

4 C. de Schryver et al.

Due to the permanent news, nowadays every citizen is sensitized to these problems,
even if not everybody (not to say nearly nobody) understands what is really going
on in the financial system right now.

One main reason for the financial crisis was the wrong assessment of financial
products with respect to their values and risks. For example, collateralized debt
obligations (CDOs) considered to be one of the major causes for the crisis [8] are
challenging to evaluate. CDOs bundle other products together and split the resulting
pool again into new tranches with different ratings. Determining realistic risks and
values for these tranches is a highly compute-intensive task.

However, CDOs are just one example of demanding products. Financial institutes
have to price complex product portfolios containing many different ingredients
regularly. In addition to that, countermeasures taken by the governments after the
crisis in 2007 have further increased the demand for a fast simulation environment.
In the European Union, for example the Basel Il and Solvency II regulations for
the financial and insurance sector require frequent monitoring and analysis of the
institutions’ financial situation, in particular of the equity risks.

Besides that, the increasing mathematical complexity of the underlying stock
market models and their calibration has already led to a tremendous increase of
simulation effort in the past. For example, the Heston and jump-diffusion stochastic
differential equations (SDEs) lacking closed-form solutions in general are currently
state-of-the-art [11]. The construction of more and more complicated financial
products has further contributed to this, and since those products are available right
now, there is no perspective that the complexity will decrease again in the future.

The energy needed for portfolio pricing is immense and lies in the range of
several megawatts for a single bigger institute nowadays. Already in 2008 the
available power for the financial center of London had to be clipped to assure a
reliable supply for the Olympic games in 2012 [35]. Therefore, there is an urgent
need for bringing down the energy consumption on the one hand, and to allow even
higher simulation speed in the future on the other hand. This gap can only be bridged
by using optimized hardware accelerators for the simulations.

Most institutes are currently running their simulations on standard CPU clusters,
exploiting the highest flexibility by using pure software models. We will see in
Sect.2 that a lot of simulation methods are based on basic number crunching
operations. So, a standard CPU is certainly not the most efficient architecture for this
task with respect to throughput and energy efficiency. GPUs are currently emerging
in the financial business and are more and more used in productive environments,
for example by JP Morgan Chase, Bloomberg, or BNP Paribas [21]. Optimized
architectures based on FPGAs have a huge potential for saving energy and speed
up the simulations at the same time. However, FPGAs have just been used for
experimental studies in financial business [36, 37], and we are not aware of these
devices being used in productive risk assessment environments today.

In this chapter we cover the following topics:

¢ We introduce the state-of-the-art Heston model and the Multi-Level Monte Carlo
method to solve derivative pricing in this context in Sect. 2.

High-Performance Hardware Acceleration of Asset Simulations 5

* For the application “pricing European double barrier options in the Heston
model” we shortly present a comprehensive benchmark set that allows to
compare implementations on different target architectures transparently.

e We present a hardware accelerator for European barrier option pricing with
the Heston model in Sect. 3, together with throughput and energy measurement
results. We show that hybrid FPGA-CPU systems can already today save far more
than 60% of the energy consumed by a state-of-the-art Nvidia Tesla C2050 GPU.

e In Sect.4 we show efficient hardware architectures to generate normally dis-
tributed high-quality random numbers. These random numbers are key for
efficient Monte Carlo simulations.

2 Pricing Options: Model, Algorithm and Comparison

One problem in financial mathematics is the pricing of derivatives. In this chapter
we focus on the valuation of barrier options in particular. In order to solve this real-
world problem, we need a specific model to reflect the behavior of the underlying
asset. In our case we employ the Heston model that is widely used nowadays and is
a further development of the famous Black—Scholes model.

For the solution of the problem we need an algorithm and an implementation
thereof. A detailed systematic methodology to clearly distinguish between these
terms has been given by de Schryver et al. in 2011 [27].

In this section we give an overview about different Monte Carlo methods and
why they fit well to the problem that we target. Section 3 shows the details of our
hardware implementation.

Besides the implementation itself, evaluating and comparing it to different
algorithms and architectures is a challenge. We suggest to rely on standardized ap-
plication benchmarks for this task. In Sect. 2.3 we propose a meaningful benchmark
set for European barrier option pricing in the Heston model.

2.1 The Heston Model

In 1973 Fisher Black and Myron Scholes have introduced the famous Black—Scholes
model [4]. In the same year Robert C. Merton [19] expanded the mathematical
understanding of the model. Therefore, the model is sometimes called Black—
Scholes—Merton model.

Since prices for European vanilla options were easily calculated and for more
complicated ones one could model the behavior of the asset prices, the Black—
Scholes model has fundamentally changed the way how the financial industry
works. In 1997, Merton and Scholes received the Nobel price for their work.

6 C. de Schryver et al.

The Black—Scholes model consists of certain assumptions on the market behav-
ior. The most important ones are the absence of arbitrage—which is needed to fairly
evaluate prices—and the log normal characteristic of the asset price. The price of an
asset under the risk-neutral measure follows the SDE

dS(r) = S(t)rdr 4+ S(r)cdW(z). (1)

S denotes the price process of the asset, r the risk-less interest rate, W a Brownian
motion and o the volatility. Furthermore, the process has some starting condition
S (0) = 50-

This SDE can be solved. Its solution is

S(r) = S(0)exp ((r— %2> t—i—GW(t)) .

In order to price a derivative of an asset following the SDE above, the funda-
mental theorem of asset pricing states that the price is just the discounted expected
payoff under the risk-neutral measure.

Even though the SDE of the Black—Scholes model can be solved, various
derivatives can only be priced numerically in this setting.

Nevertheless, besides the huge impact on the financial world, the Black—Scholes
model has some drawbacks. The main is that it assumes a constant volatility. From
real market data of asset prices and options it is, however, known that the volatility
is generally not constant.

The Heston model [9] tackles this problem by using a second SDE to describe
the behavior of the volatility process. Under the risk-neutral measure the SDEs of
the Heston model are as follows:

dS(¢) = S(t)rde + S(t)\/V (t)dW5(¢),
dv(t) = k(0 — V(1)) dt + o+/V(t)dW" (r).

The asset price process is denoted by S, and V denotes the volatility process. The
latter process has the important property that it is always non-negative. Under
a certain condition, called the Feller condition, the origin cannot be obtained.
This is important for several mathematical results. However, this condition is
seldom satisfied in real-world applications. The Brownian motions W5 and W" are
correlated, typically in a negative way. This implies that if the stock price falls, the
variance tends to increase and the market becomes more volatile.

The Heston model fits much better to the data observed in real markets and
provides more realistic results compared to the Black—Scholes model. On the other
hand analytic pricing formulas are known for simple European options. This is
especially important to calibrate the model and one of the reasons why the model is
so popular.

High-Performance Hardware Acceleration of Asset Simulations 7

130

120 + B

Asset Price

90 B

80
0 0.2 0.4 0.6 0.8 1

Time

Fig. 1 A modeled asset price path in the Heston model

Figure 1 shows a realization of an asset price path following the Heston SDE.
The erratic behavior is typical for most models and can be seen on the market.

2.2 The Multi-Level Monte Carlo Method

The price of an option is the discounted expected payoff of the option under the
risk-neutral measure. One can analytically calculate the price of a plain European
call or put option in the Heston model, i.e., E(e™"7 - max((S(T) — K),0)), where E
means the expectation value, 7T is the maturity time, and K the strike price. However,
for other options such as barrier options this is not the case. In these situations
numerical methods have to be used to estimate the expectation. There are several
methods available that fit best to different situations. To name the most popular
ones, these are finite difference method, the quadrature scheme, tree-based methods
such as binomial or trinomial trees, and the Monte Carlo method.

We will concentrate on the Monte Carlo method in this chapter. It is not always
the fastest method but very flexible and applicable to a wide range of applications.
The basic idea of the Monte Carlo method comes from the Law of Large Numbers.
To calculate EX for some random variable X, one has to simulate independent
realizations X' of random variables with the same distribution as X. The mean value
of all results is an estimator for the expectation. The variance of the estimator is
depending on the variance of X and the number of simulations. The error introduced
by this is called the statistical error.

8 C. de Schryver et al.

130 T T T T

120

110

Asset Price

100

90

80 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time

Fig. 2 A simulated Heston path and its discretizations on two different levels

Using Monte Carlo methods for asset simulations in the Heston model, however,
leads to a problem: We cannot simulate S(7T) directly in the Heston setting.
Therefore, the two SDEs are discretized and simulated. This introduces a second
type of error called the bias. The bias is a systematic error and can be decreased
by using more discretization steps. The plain Monte Carlo method now fixes the
number of time steps and simulates many paths with these number of time steps.
The chosen discretization has to be carefully selected, since it directly determines
the bias.

It arises a second difficulty in the discretization of the volatility process in the He-
ston model. As we have seen, the variance process is always non-negative. The
discretized version thereof, however, can become negative, if it is not adjusted. The
obvious adjustment of setting a negative value to zero has turned out to be ineffective
in general. More advanced schemes like the full truncation scheme that only set the
volatility to zero when it is used as an argument of sqrz() perform better [16].

Besides the discretization, the algorithm can be modified as well. The Multi-Level
Monte Carlo method, for example, uses a slightly different approach than the plain
Monte Carlo method. First, one simulates on a very coarse scale, that means with
only a few time steps. These coarse scale simulations can be computed very fast.
Then, iteratively, only the difference to the next finer level is simulated. Level in
this context means a finer discretization (see Fig. 2). The variance of the difference
is smaller and therefore less simulations on the finest level are needed compared to
the plain Monte Carlo method. This gain can be a lot bigger than the cost of the
additional simulations on the coarser levels. The benefits of the Multi-Level method
increase with the required precision.

High-Performance Hardware Acceleration of Asset Simulations 9

However, even though the Multi-Level Monte Carlo method is asymptotically
better, the benefit is not always present in practical situations. Therefore, one has
to be careful when to choose the method. In the Heston setting, a start level
optimization that determines whether to use plain or Multi-Level Monte Carlo is
mandatory. For more details about the Multi-Level Monte Carlo method and also
the different discretization schemes in the Heston model, refer to Marxen et al. [16].

2.3 The Need for Fair Metrics: A Benchmark Proposal
Jor Option Pricing with the Heston Model

Even though the Heston model is state-of-the-art and widely used in the financial
industry, hardware accelerator publications are rare in that field (see Sect.3.1).
However, for the Black—Scholes model a lot of papers presenting sophisticated
hardware architectures based on different methods exist.

The presented speedups look very impressive and the designs are likely well
done. However, comparing the different implementations is a challenging task.
A variety of attributes like speed, accuracy, and energy consumption can be
considered. Furthermore, many different solutions are available in literature: not
only the implementation and the architecture vary but also the algorithm. It is in
many cases not clear by itself to which extent a speedup results from the employed
algorithm and from the implementation. In addition to that, it is not possible to
differentiate whether the presented algorithm or the implementation has the desired
properties only for a special set of parameters, or if it performs well in a more
general framework.

This challenge can only be bridged by using a unified benchmark set on
application level, that means for a specific problem solved with a certain model.
This application benchmark itself has to be independent of the algorithm and
the implementation used. Morris and Aubury [20] already claimed the need for
a benchmark for option pricing in 2007. By giving performance results for a
benchmark set, authors allow their work to be compared fairly with respect to certain
metrics without looking into details of the algorithm or the implementation.

In this section, we will describe our benchmark set for the application “pricing
European double barrier options with the Heston model” presented in 2011 [26].
The benchmark was developed in a joint work with the financial mathematics group
at the University of Kaiserslautern. It is freely available for download,! and we
strongly encourage authors of future publications dealing with this problem to
use it and provide application-specific metrics and therefore to make their work
transparently comparable.

Twelve different settings for the Heston model, including parameter sets that have
to be considered to be important in literature already, are used for the benchmark.

Uhttp://www.uni-kl.de/benchmarking.

http://www.uni-kl.de/benchmarking

10 C. de Schryver et al.

Table 1 One example of the benchmark parameters

Parameters for the x 0 o r So Vo p
Heston model 2.75 0.035 0.425 0 100 0.0384 —0.4644
Option specific ~ Option type Strike Lower Upper Time to maturity (in years)

parameters barrier barrier

Double barrier 90 80 120 1
call

Price of the 5.7538 Precision 0.0001

option

They span a wide range of parameters observable on the markets. Our benchmark
consists of three different components:

e The parameter sets defining the current market situation, such as the current
volatility or the correlation between price and volatility

» The option parameters such as the type of option and the strike price

» The correct reference price or a good approximation thereof, together with a
reference precision

To allow a comparison on application level, we recommend to provide the
following metrics for all presented solutions:

* The consumed energy for pricing one option in joule/option

* The number of priced options per real time in options/second

* The numerical accuracy that is achieved by the proposed design, compared to the
presented benchmark results

* The consumed area on chip for hardware architectures (slices, LUTs or mm? on
silicon)

Table 1 exemplarily shows one of the twelve cases from the benchmark set [26].
The focus is not only on double barrier calls, but also on other types of options such
as puts and digital calls are included.

In this section, we have briefly introduced our terminology, the Heston model,
and the Multi-Level Monte Carlo method that we use in our hardware implementa-
tion described in Sect. 3, together with a benchmark set that allows to fairly compare
different implementation on application level.

The key for Monte Carlo methods is a huge amount of high-quality random
numbers. For hardware architectures, we therefore require efficient architectures
for in our case non-uniform random numbers. We present suitable architectures for
this task in Sect. 4. The next sections shows our proposed design for FPGA-based
acceleration of option pricing in the Heston model.

High-Performance Hardware Acceleration of Asset Simulations 11
3 Hardware Architectures for Asset Simulations

This section gives a short overview of the available FPGA implementations for op-
tion pricing. In the second part, we present an energy efficient FPGA architecture for
this problem, together with detailed measured numbers for energy and throughput.

3.1 Related Work

Although the Heston model including its varieties (for example, the Heston—Hull-
White model or the Heston model with additional jumps) is currently state-of-the-art
in the financial industry [2, 11], the first GPU accelerators for solving this model
have been presented just in 2010.

Zhang and Oosterlee have used the Fourier-Cosine Series Expansions (COS)
method for multiple strike European and Bermudan option pricing in the Heston
model on a NVIDIA GeForce 9800 GX2 GPU [40]. Compared to an Intel Core2Duo
E6550@2.33 GHz CPU, they could achieve speedups between 10 and 100 for
multiple strike European options, depending on the form of the characteristic
function and on the number of strikes computed simultaneously.

Bernemann et al. have put the random number and path generation for Monte
Carlo simulations on a Nvidia GPU, using a hybrid CPU-GPU option pricing system
on top of the C++ QuantLib [23]. They could achieve up to 340 Gflops on a Nvidia
Tesla C1060 GPU, compared to the maximum of about 11 Gflops given by a multi-
threaded C++- implementation with SSE2 running on an Intel Xeon E5620@2.4
GHz [2]. Energy measurements are not provided in this work.

Based on this setup, investigations for exotic option pricing and Heston model
calibration have been presented in 2011 [3]. Here Bernemann et al. have achieved
a speedup between 10 and 50 for option pricing in the Heston model and 4-25 for
simulations in the Heston—Hull-White model using a Hybrid Taus random number
generator (RNG). The results are similar for a Mersenne Twister. For the Heston
model calibration, they achieve a speedup between 15 and 50 with pseudo random
numbers and 15-35 with quasi-random Sobol sequences, depending on the number
of underlyings.

For option pricing in the Black—Scholes model, several FPGA architectures have
been published in the last years [1,5,10,33,34,38]. These works show the wide range
of potential speedups for FPGA-based accelerators, from 10 to more than 100.

In the last years, commercial FPGA systems have emerged for financial domain
specific acceleration. Maxeler Technologies? offers hardware and software solution
bundles for financial computing. They provide Xilinx Virtex-6 based platforms for
professional server environments and desktop workstations. Their MaxCompiler for

2www.maxeler.com.

www.maxeler.com

12 C. de Schryver et al.

general purpose applications takes Java code and splits it into parts that remain
on the host CPU and accelerated kernels executed on the FPGAs. The FPGA
programming, including all the glue and interface logic, is done automatically.

Based on this system, the Maxeler CEO Oscar Mencer et al. presented speedup
results for a single-asset Monte Carlo option pricer based on the Heston model with
additional price jumps at the IEEE Workshop on High Performance Computational
Finance (WHPCF) in November 2011. They have used a professional Maxeler
MaxNode system with four MAX3 FPGA cards and could achieve a speedup
of more than 100x over a 12 thread CPU version running on two Intel Xeon
X5650@2.67 GHz CPUs [18]. Energy aspects have not been considered in this
work.

Further available commercial systems are Wall Street FPGA,* Compaan Design,*
and Impulse Accelerated Technologies.”

Wall Street FPGA uses National Instruments’ LabView to bring a Monte Carlo-
based European call option pricer on a Xilinx Virtex-5 FPGA [29, 30]. They
state that their FPGA accelerated implementation is 131 times faster than the
reference software running on an Alienware Area-51 7500 Dual Core CPU@3.0
GHz. Another application field for Maxeler is oil & gas exploration.

Impulse Accelerated Technologies and Compaan Design do not provide finance
specific tools or benchmarks and cover a much wider application range.

3.2 A Multi-Level Monte Carlo Accelerator for Option Pricing
with the Heston Model

In this section, we describe our dedicated FPGA accelerator architecture for pricing
European double barrier options in the Heston model presented at ReConFig 2011
[25]. We give an overview about the architecture and provide detailed synthesis,
performance, and energy results for a hybrid CPU-FPGA setup.

3.2.1 Architecture

By designing our FPGA-based accelerator, we wanted to achieve the maximum
performance together with a minimal energy consumption. On the other hand, not all
parts of the pricing process described in Sect. 2.1 are suitable for being implemented
in hardware. For example, mathematical operations like exp() or /that are only
needed for the final payoff computation would use up a lot of hardware resources,
but could not contribute very much to increase the overall simulation speed.

3www.wallstreetfpga.com.

4www.compaandesign.com.

Swww.impulseaccelerated.com.

www.wallstreetfpga.com
www.compaandesign.com
www.impulseaccelerated.com

High-Performance Hardware Acceleration of Asset Simulations 13

Therefore we have decided to chose a hardware—software partitioning scheme that
only brings those parts of the computation to hardware that are mainly data-flow
oriented and use up most of the simulation time. We call these parts compute-
intensive kernels. Complex mathematical operations or control driven parts remain
on the host-CPU. This partitioning approach is also used by a number of authors
proposing related accelerator designs [2, 3].

In particular, we have decided to chose the following partition for our
implementation:

e The random number generation, the path simulation, and the barrier checking are
ported to the FPGA. These kernels can be conveniently executed in parallel for
different paths and return the final price for each path.

» The final path prices are transmitted to the host over USB. We have used the FTDI
FT2232H interface module with a top average throughput of measured 6 MB/s.

e The reduction of all path results and the payoff computation remain on the
host CPU.

For the random number generation, we have used a Tausworthe 88 uniform
RNG together with our conversion unit described in Sect.4.2.2. Since it provides
a stream interface with handshaking, it can stall the rest of the design easily if
no random number is present in the current clock cycle. However, any kind of
uniform RNG may be used together with this converter. For example, interleaved
parallel Mersenne Twisters as described in Sect.4.1 that independent streams of
random numbers from a single generator unit seem to be especially beneficial for
high-quality multi-accelerator setups. Nevertheless, by simulating our benchmark
introduced in Sect. 2.3 we have ensured that three Tausworthe 88 instances with
independent seeds provide sufficient randomness for our application (see results in
Sect.3.2.2).

Our hardware has been implemented on a Xilinx ML-507 evaluation kit with a
Virtex-5 XC5VEX70T FPGA. It uses single precision floating point units generated
with the Xilinx CoreGen tool.

We have decided to use a similar approach to the automatically generated designs
proposed by Thomas et al. [31]. However, we use our own host interface framework
on top of the USB connection that allows to transparently read and write registers
and data streams from a software application. Therefore we do not require a bus,
but directly use a handshake-driven stream interface for the output prices and
registers for the parametrization. Our protocol allows to dynamically reconfigure the
accelerator parameters for the Monte Carlo simulation, the market and the option at
runtime.

Our hardware design mainly consists of two parts: the control logic and the actual
data path. In order to bring up the clock frequency to the maximum, our data path
implementation is maximally pipelined. To get rid of additional control logic and to
provide maximum scalability, we have decided to use a packet-based concept in our
design:

14 C. de Schryver et al.

architecture of our hardware Random Number Generator

implementation * v

Fig. 3 High-level |

Control
Logic

v

Data Path

\ 4
\ 4

Queue

Interface to PC

* Each packet describes the current state of a single path, including the price,
volatility, step number, and a validity flag. Instead of having complex early
termination strategies for paths that have hit a barrier, we change the status of
those packets to dummy packets by clearing the validity flag. These packets
remain in the processing pipeline, which decreases the throughput to some extent,
but at the same time drastically reduces the hardware complexity.

* The data path is a pipeline that computes price and volatility for the next step
and performs the barrier checking (see Sect.2.1). It consumes one packet and
produces another one in every clock cycle.

» The pipeline latency with 32-bit single precision floating point numbers is 60.
This means that at every clock cycle, the pipeline outputs a packet that was sent
to it 60 cycles earlier.

* When a packet goes through the pipeline, its contents are updated according to
the selected algorithm for solving the Heston model, that is full truncation with
antithetic variance reduction in our case (see Sect.2.1).

Figure 3 shows the structure of our design and the interaction between the data
path, a queue and the control logic. The queue buffers all packets coming out of
the data path for future processing or final transmission to the host. This decision is
made by the control logic. The depth of the queue has to be greater than the pipeline
length of the data path, which is 60 in our case. We therefore have exploited the
maximum depth of a BRAM36 slice from the target Virtex-5 device for the queue.
It is important to note that the data path block is only made up of simple pipelined
floating point cores, uses handshake-driven stream interfaces, and does not require
support for any stall signals.

The role of the control logic is to act as a broker between the RNG, the data path
and the host system. It follows the following set of rules:

 If the amount of created packets is less than the queue size, a new path is created.

» If enough packets are active, the control logic checks if a packet is available from
the queue.

» If the queue contains a packet, its step number is checked. If the control logic
sees that it was the last step, the final price is sent to the host, and a new packet
is created. If not, the packet is resent to the pipeline along with a new pair of
random numbers.

High-Performance Hardware Acceleration of Asset Simulations 15

Table 2 Single precision floating point components in the data path

Component Adders Multipliers ~ Subtractors sqrt()
Heston step generator 4 6 2 1
Barrier checker 1 1 1 0

The control logic has been implemented equivalently in a bit-true software
model to allow easy testing of the design. Together with a bit-true model of
the hardware RNG, each hardware component can be validated against the
software reference independently. As the processing order of the packets does not
depend on interface delays, this ensured bit-by-bit equivalence between software
and hardware results.

The decomposition between the control logic and the data path further con-
tributes to the reduction of the validation effort:

» The pipeline can be tested separately from the control logic, only considering the
floating point operations.

* The control logic can be checked on its own by using a dummy pipeline that only
counts the steps and has no floating point logic inside at all.

The internal structure of our pipeline is similar to the GARCH example presented
by Thomas et al. [31], but includes the Heston specific modifications. Table 2 shows
the number of floating point units in the Heston step generator part of the pipeline
(that generates successive values for price and volatility) and the subsequent barrier
checking.

We have used THDL++, a high-level approach for HDL design together with
the free VisualHDL tool for the development.6 For this task, the VisualHDL
tool has been enhanced by a data path pipeline designer plugin that is shown in
Fig.4. It allows creating a data path by just dragging-and-dropping operations and
connecting them from the inputs in the upper part of the screenshot to the output at
the bottom.

3.2.2 Results

All synthesis results have been generated for a Xilinx Virtex-5 XC5VFX70T
device (as on the ML-507 evaluation board) with the Xilinx ISE Design Suite 13.1.
The results have been optimized for speed, are post place & route, and include the
host interface logic. Although Xilinx is currently releasing the Virtex-7 family, no
evaluation kits are available at the moment. Therefore we use the ML-507 kit in
order to provide system level results for speed and energy (for all details refer to de
Schryver et al. [25]).

Table 3 shows the number and percentage of resources used for two different
corner scenarios: Using no DSP slices in the dataflow at all (the one remaining is

6visualhdl.sysprogs.org.

visualhdl.sysprogs.org

16 C. de Schryver et al.

r A
< VisualHDL - HestonAcceleratorvhj &@g

File Edit View Project Tools Window Help
FS @ ¢ b 3 9 Donotregenerate VHDL files Stop build after basic metrics are available

HestonTestbench.thp]/Hdun\f:riﬁtr.thp }’ BarrierChecker.thp /Balricr(hﬁ:k:rvvisuaﬁpﬂnc - X
—(iopaseiiee —(adn H .‘T.‘f.t'.e-r-'.‘;?-’:-'_{' e

===

O Floatidders

[0 FloatSubtractor\y/
O FloatMultiplier
[FloatSqriv/

O FloatCompareds/
[0 FixedToFloat

O FloatMax0

[0 NegatelfllpperBarrier
O UpdateBarrierFlag
O IncrementStep

O Interleaver

O Deintereaver

[ReplaceSign

sopdey palony Ge

W double = logic{32)
W BarrierType = logic(3]

W Flag = logic
ug Cutput IQ Errers
Linel, Charl [cursor] Updated BarrierChecker.thp in 0 msec with 0 errors .
Fig. 4 VisualPipeline plugin editing the Heston barrier checker
Table 3 Synthesis results for one instance on a Virtex-5
Minimum DSP usage Maximum DSP usage
Number Percentage (%) Number Percentage (%)
Slices 4,862 43 2,497 22
LUTs 11,382 25 5,481 12
Flip-flops 13,530 30 6,950 15
LUT-FF pairs 15,041 33 8,176 18
DSP48E slices 1 1 43 33
BRAM36 slices 5 3 5 3

Max. frequency 102 MHz 100 MHz

occupied by the RNG from [24]) and using the maximum amount of DSP slices,
depending on the Xilinx CoreGen settings.

From Table 3 we see that (without the triple interface logic) in total three
instances can be put on a single XC5VFX70T device. We assume a three-instance
FPGA accelerator for the following considerations. A Virtex-7 device would provide
enough space for several hundreds of accelerator instances.

High-Performance Hardware Acceleration of Asset Simulations 17

Table 4 Speed and energy results for the laptop-FPGA setup

Laptop only Laptop + FPGA Factor (laptop/FPGA)
Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy
32 56 76.31 4 5.38 13.88 14.20
64 116 79.75 8 5.38 14.50 14.84
128 230 79.06 9 3.14 24.64 25.22
256 465 79.84 18 2.46 25.81 32.44
1,024 1,852 79.56 72 2.47 25.60 32.18
4,096 7,344 78.89 287 2.46 25.56 32.13
Average 78.90 3.55 21.66 25.17

Since the host CPU in the hybrid CPU-FPGA setup only computes the final
payoff and performs the communication with the ML-507 board, we have chosen
to use a low-power laptop as host: a Fujitsu Siemens Lifebook E8410 with an Intel
Core 2 Duo T7250@2.0 GHz and 2 GB RAM, running Windows 7 Professional
SP1 64 Bit. In the idle state, the laptop itself consumes around 20 W.

Detailed measured numbers for runtimes and energy consumptions in this setting
are given in Table 4, with and without FPGA acceleration. In each case, ten millions
of paths have been computed.

For the software-only simulations, it can be seen that the measured real time and
consumed energy are linearly related to the number of time steps in the simulation.
This is not surprising, since the power consumption of the laptop with the CPU
fully loaded remains constantly 44 W. In this case, the idle power consumption of
the FPGA board has not been included in the measurements.

Measuring the hybrid setup, the FPGA board with an idle power consumption
of 9W has been added to the 20 W of the laptop, so that we are talking about a
29 W idle load in total. In this setting Table 4 shows that the energy per step is much
higher for small numbers of time steps (32—-128). For 32 and 64 time steps, we
have measured a power consumption of 40 W during the simulations for the whole
system. For 256 and more steps, it remained constant 35 W.

The explanation for this observation is that the host-to-board interface provides
a limited bandwidth. The host CPU also runs the tasks for communicating with the
FPGA board, so that the amount of energy used for communication is very high
for small step sizes, compared to the total energy consumed for one simulation. For
more than 256 step sizes, the computations on the FPGA take enough time, so that
the interface is no longer the limiting factor.

Table 4 also clearly shows that the average speedup of the hybrid system
compared the the CPU-only scenario is 21 times in average, by only consuming
4% of energy per simulation.

Nowadays, financial simulations are performed on high-end CPU and GPU
clusters. To give a fair comparison of our design to the state-of-the-art, we have
implemented our Monte Carlo algorithm on a Nvidia Tesla C2050 graphics card.
Preliminary work in our group has shown that the performance loss of using
OpenCL is insignificant compared to CUDA. Thus, for the reason of higher
flexibility, we have coded our accelerator in OpenCL.

18 C. de Schryver et al.

Table 5 Speed and energy results for the server-GPU setup

Server only GPU accelerated Factor (server/GPU)
Time steps Real time (s) Energy/step (J) Real time (s) Energy/step (J) Real time Energy
32 5 29.06 0.95 9.22 5.25 3.15
64 10 29.06 1.88 9.09 5.33 3.20
128 21 30.88 3.74 9.05 5.69 341
256 41 29.97 7.43 9.00 5.55 3.33
1,024 166 30.20 29.68 8.99 5.60 3.36
4,096 660 29.97 118.46 8.97 5.57 3.34
Average 29.86 9.05 5.50 3.30

The Tesla GPU is hosted by a FluiDyna TWS 1xC2050-1x1Q-8 server work-
station with an Intel Xeon CPU W3550@3.07 GHz and 8 GB RAM running
OpenSuSE Linux 11.4 64 bit with Kernel 2.6.37.6-0.5-default (referred to as server
in the following). The CPU provides four physical cores with hyperthreading, so
that we can count them as eight cores. The idle power consumption for the server
is 87 W without the GPU, and 148 W on average with the Tesla card plugged in.
As in the laptop-FPGA setting, we have removed the GPU for all software-only
measurements.

With the CPU fully loaded (but without the GPU), the server system consumes
186 W in average. If we run the simulations with full load on the GPU, the CPU still
has to compute the payoff at the end of all Monte Carlo simulations. In this case,
the overall power consumption of system is 310 W.

In Table 5 we see all measured runtime and energy results for the server-GPU
setting. Again, we provide the numbers for a software only run on the virtual eight
cores of the server and for the fully loaded GPU setup. We see that on average the
simulations on the GPU run 5.5 times faster than the CPU-only simulations, by only
requiring one third of the energy per simulation. Furthermore, Table 5 shows that the
speedup and energy factors remain constant over different time steps. Therefore we
conclude that in this setting with the fast PCle connection of the GPU the interface
is not a bottleneck, in contrast to the laptop-FPGA setup.

To provide a unified comparison of our four simulation setups including the GPU
and FPGA accelerators, we have normalized the speedup and energy factors to the
fully loaded 8-core server.

As mentioned above, the Virtex-5 device that we use is no longer state of the
art, and the overhead of the ML-507 board for the idle energy consumption is
immense. The complete board consumes 9 W in the idle mode, and not more than
10 W with the FPGA running. To obtain a power estimation for the FPGA itself, we
used the Xilinx XPower Estimator [39] that gave an upper bound of less than 3 W
for our design. The energy efficiency of the system could therefore be drastically
increased by using optimized boards without peripherals, hosting several FPGAs
with a tailored power supply.

To provide an estimation of potential energy savings, we have constructed the
FPGA chip only scenario that assumes the 3 W from the XPower Estimator, with

High-Performance Hardware Acceleration of Asset Simulations 19

a b
6,00 3,00
5,00 2,50
4,00 2,00
3,00 1,50
2,00 1,00
1,00 l 0,50 I
0,00 — 0,00 . |
2-Core Laptop Laptop + FPGA 2-Core Laptop ~ Laptop + FPGA
8-Core Server GPU FPGA Chip Only 8-Core Server GPU FPGA Chip Only

Fig. 5 Speedup and energy factors compared to the fully loaded 8-core server. (a) Average
speedup factors (b) Average energy factors

the payoff computation that is currently performed on the host CPU implemented
on the Virtex-5’s hardwired PowerPC core. On the recent Xilinx Zynq platform, this
part could be computed on the ARM cores.

Figure 5a illustrates the different throughputs of our implementations and the
speedups compared to the eight-core software reference. It is obvious that the state-
of-the-art Tesla C2050 outperforms all other implementations with respect to speed.
However, even our (at least for HPC applications) obsolete Virtex-5 device running
three accelerator instances achieves around 35% of the simulation speed of the
Tesla C2050. With possible several hundreds of accelerators on a Virtex-7 device,
apparently FPGAs have a huge potential to speed up Monte Carlo simulations for
state-of-the-art option pricing.

Considering the consumed energy per simulation as shown in Fig. 5b, the FPGA
setup clearly beats all other architectures. The measured laptop-FPGA setup only
needs 12% of the energy compared to the eight-core server reference, and around
40% of the energy of the Tesla C2050 GPU. The laptop-only run consumes 2.5
times more energy than the server reference, which is not surprising due to the bad
ratio of CPU performance contributing to the simulation and devices that consume
energy but are not needed for the actual computations.

For both speed and energy comparison, we have used the average factors from
the bottom line of Tables 4 and 5. The benefit of the FPGA accelerated setup is even
higher if considering only 128 or more time steps per simulation and therefore going
out of the interface bottleneck.

The FPGA chip only scenario highlights the enormous potential of FPGAs for
energy efficient option pricing. It forecasts only 0.8% of energy per simulation,
compared to the server reference, with a double throughput at the same time.
A system with three FPGAs running three accelerators on each FPGA would achieve

20 C. de Schryver et al.

the same throughput as the Tesla 2050 GPU, but only consume less than 3% of the
energy. This clearly shows that FPGAs can help to reduce the energy consumed in
financial simulations by orders of magnitude.

In the next section, we will give detailed insight into one core element underlying
all Monte Carlo simulations: the random number generation.

4 Hardware Efficient Random Number Generation

Monte Carlo simulations rely on a huge amount of high quality random numbers, in
general with non-uniform distributions. Asset price simulations in particular require
normally distributed random numbers.

Non-uniformly distributed random numbers are usually generated in two steps:

1. The creation of uniformly distributed random numbers with good statistical
properties and

2. A conversion step that transforms this numbers into the desired target
distribution.

Since these two steps are not linked to each other, they have been investigated rather
independently in research up to now. A comprehensive overview of the available
methods for Gaussian random number generation up to 2007 has been given by
Thomas et al. [32].

To obtain meaningful simulation results, a high quality of the employed random
numbers is absolutely crucial. For uniform RNGs, standardized and approved test
suites exist, for example the TestUO1 suite from L’Ecuyer and Simard [12]. Non-
uniform RNGs require manual investigations to quantify the quality of the output
distribution. In Sect.4.2.2 we show which tests provide meaningful results for
this task.

4.1 Uniform Random Number Generation

Pseudo random number generators (PRNGs) are widely used for simulation pur-
poses. In contrast to true RNGs where the randomness comes from a physical
process, for instance, radioactive decay, PRNGs are based on mathematical algo-
rithms that yield deterministic number streams. This deterministic behavior makes it
possible to obtain repeatable simulation results. In addition to that, common PRNGs
are able to produce numbers much faster than true RNGs. The quality of PRNGs is
described among others by the following attributes:

1. Quality of the desired uniform distribution (k-distribution [17])
2. Period length of the generator
3. Memory consumption

High-Performance Hardware Acceleration of Asset Simulations 21

Fig. 6 Schematic view on [

the Mersenne Twister 2
algorithm. Blocks R and T Tip1
realize the linear recurrence
and tempering, respectively :
Ti+m 4@
. Trand
Li4+n—1 1
T Tiin

The “uniformness” of the generated number streams and the period length of the
generator directly influence the simulation results. A highly uniform distribution
indicates good randomness, as does a long period length.

State-of-the-art PRNGs used in software engineering offer extremely long period
lengths, and, therefore, good statistical properties of the generated random numbers
(RNs). Examples are the WELL [22] and Mersenne Twister [17] generators (see
schematic in Fig.6). They are based on the generalized feedback shift register
(GFSR) concept proposed by Lewis and Pane [15]. Parallel Monte Carlo simulations
require independent parallel random number streams. An approach to generate
multiple random numbers in parallel with the Mersenne Twister generator is shown
in the next section.

4.1.1 Interleaved Parallelized Mersenne Twister

Dalal and Stefan have described two methodologies for parallelizing GFSR-
generators in 2008 [7]. The Interleaved Parallelization interleaves the state vector
over a number of memory banks. With Chunked Parallelization the state vector is
split into chunks of different sizes. Both methodologies allow for a high degree of
flexibility and parallelism, we focus on the Interleaved Parallelization scheme here.
The recurrences of a GSFR occur at constant offsets (1 and m in the case of
Mersenne Twister). Thus, if multiple memory banks holding the interleaved n-word
state vector are utilized, multiple pseudo random numbers can be generated in
parallel. Interleaving the state vector across 3-memory banks gives the following
possibilities:
1. B is a factor of (i.e. B mod n = 0)
2. B is not a factor of n

In case 1 all memory banks would contain % words, while in the latter case

one memory bank would contain less words than the other memory banks. Any
recurrence addresses [(j 4+ m;) mod n] that initially pointed to such a memory bank
for j+ M; < N would point to a different memory bank for j + M; > N. This leads
to inefficient hardware architectures because additional conditional routing logic

22 C. de Schryver et al.

I— T 1 T T3 J

Ty Ts5 e T7

— 400 — 397 —— 398 e L399
e 620 e 621 e T622 e 623

randoms randomg random; randoms

Fig. 7 Example of a 4-IP MT19337 (n = 624, m = 397). Blocks R and T realize the linear
recurrence and tempering, respectively

(multiplexers) would be required. Thus, for efficient interleaved parallelizations, 3
should be a factor of n. This limitation is not too strict as, for example, for the
Mersenne Twister MT19937 n factorizes as 624 = 13 x3 %22 2% 2. The state
vector is interleaved across the memory banks as follows: each bank b; (0 <
i < B) contains the %’ state vector word indices satisfying j mod 3 = i, while the
corresponding recurrences are found in banks corresponding to (j+ M;) mod . The
memory banks can now supplement the inputs concurrently to multiple Recurrence
Units, each implementing the recurrence equation. A Mersenne Twister generator
with Interleaved Parallelization is enabled to produce § random numbers in parallel.
Figure 7 illustrates the interleaved parallelization scheme on the example of a 4-1P
Mersenne Twister MT19937.

4.1.2 Implementation Properties

We provide comparable synthesis results for several configurations of each imple-
mented model in this section. Synthesis of the implementation models has been
performed for the Virtex-5 FPGA (XC5VFEX70T, package: FF1136, speed: -2) by
Xilinx. The optimization goal for the synthesis process (xst) was set to the default
value (speed), as well as the optimization effort switch (default: 1). Place & route
(par) of the Mersenne Twister implementations was performed with the optimization
strategy configured towards reducing the consumed area, with the effort level set to
high.

Selected post place & route synthesis results for the interleaved parallelized
Mersenen Twister implementations along with synthesis data provided in the paper
by Dalal and Stefan are listed in Table 6. Taking into consideration that the internal
structure was not yet optimized with regard to area and block RAM utilization, the
results are satisfying. With future optimizations, like buffering all near recurrences,
the throughput of our design can be doubled. Additional buffering can also save one
block RAM, which would make the performance of the designs comparable to the
reference.

High-Performance Hardware Acceleration of Asset Simulations 23

Table 6 Post place and route synthesis results for various parameter configurations of the
IP Mersenne Twister implementation model

Max. throughput

. . amles
Name Used RAMs Used slices Max. freq [MHz] [109222€] Target
21P 3 142 243 243 Virtex 5
31P 4 157 242 363

4 1P 5 177 232 464

2 1P 2 159 349 698 Virtex 11
3 1pP? 3 222 265 795

4 1P 4 290 277 1,108

ATaken from Dalal and Stefan 2008 [7]

4.2 Obtaining Non-uniform Distributions

Non-uniform distributions are, in general, generated out of uniformly distributed
random numbers by application of appropriate conversion methods. State-of-the
art conversion methods are based on one of the four mechanisms categorized by
Thomas and Luk in 2007 [32]:

* Transformation (mathematical functions that provide a relation between the
uniform and the desired target distribution),

* Rejection sampling (very high accuracy, but introduces unpredictable stalling by
discarding several input numbers),

* Recursion (linear combinations of originally normally distributed random num-
bers), and

* Inversion.

The inversion method applies the inverse cumulative distribution function (ICDF)
of the target distribution to uniformly distributed random numbers. It is the most
genuine method to obtain non-uniform numbers, since it preserves the properties of
the input sample sequence [11]. A piecewise approximation of the ICDF is the basis
of hardware implementations of inversion-based converters, where the coefficients
for various sampling points are stored in lookup tables (LUTs).

The Gaussian ICDF is symmetric at x = 0.5. Therefore, it is sufficient to
implement a converter for only one half of the ICDF and to use one input bit as
a sign bit to determine which half. The range (0,0.5), for example, is divided into
non-equidistant segments with doubling segment sizes from the beginning of the
interval to the end of the interval. Those segments are then subdivided into segments
of equal size. Thus, the steep region of the ICDF (near zero) is covered by more
segments than the more linear region close to 0.5. The inversion is performed by
determining in which segment the input x is contained, retrieving the coefficients
c¢; of the polynomial for this segment from an LUT and evaluate the polynomial

Y= Xi.

24 C. de Schryver et al.

fixed-point input x

e N
sign
1 0010110111 1011
\ \L+
y |
count logical left shifter
Lz | <<LZ+1
5 ‘ VXsig
8 §1|011011...011000
5 o first 1 > K fill up with 0
£ '
28/010[/0110
/
ROM
P y %o &

Fig. 8 ICDF lookup architecture presented by Cheung et al. [6]

4.2.1 Related Work

Hardware architectures for ICDF converters using hierarchical segmentation
schemes have, for example, been presented by Cheung et al. [6] and Luk et al.
[13, 14]. Figure 8 shows the architecture presented by Cheung et al. in 2007.

It illustrates how the number of the segment (i.e., the address for the LUT) in
which a given input x in fixed point representation is located can be determined.
First, the number LZ of leading zeros in the binary representation of x is counted.
Numbers starting with a 1 lie in the segment [0.25, 0.5), numbers starting with the
sequence 01 lie in the segment [0.125, 0.25) and so forth. The input x is shifted left
by LZ + 1 bits, such that xs, is the bit sequence following the most significant 1-bit
in x. The equally spaced subsegments are determined by the k most significant bits
(MSBs) of xsi5. Thus, the LUT address is the concatenation of LZ and MSBy (xsig).
The remaining bits of xs;; are then used to evaluate the approximating polynomial
for the ICDF in that segment.

High-Performance Hardware Acceleration of Asset Simulations 25

Howeyver, this architecture has a number of drawbacks:

* More than one uniform RNGs needed for a large output range. Due to the fixed
point implementation, the output range is limited by the available number of input
bits.

* Many input bits are wasted. For example, a multiplier with a 53-bit input for the
linear approximation requires a large amount of hardware resources. Therefore,
the input is quantified to 20 significant bits before the polynomial evaluation.
Thus, in the region close to the 0.5 a large amount of the generated input bits is
just not used, but discarded by this architecture.

* Low resolution in the tail region. For the tail region (close to 0), there are no
longer 20 significant bits available after shifting over the leading zeros (LZ).
Thus, the tail resolution is limited. In fact, since there are no values between
2733 and 2732 in this fixed point representation, this architecture can not generate
output samples between icd f(275%) = 8.13¢ and icd f(27%) = 8.210.

4.2.2 A Hardware Efficient Hardware Architecture for Non-uniform
Distributions

To overcome the problems illustrated in Sect.4.2.1, we propose to use a floating
point based approach for the ICDF converter [24,28].

The Floating Point Approach

In addition to the architecture shown in Fig.8, we transform the uniformly dis-
tributed input RN sequences into floating point numbers. Figure 9 shows that for
this step no floating point arithmetic units are used. The unit logically divides the
input bit vector into the sign_half bit (that determines which half of the Gaussian
ICDF to use), the exponent part and the mantissa part. sign_half and the mantissa
are just mirrored at the output. The mantissa part is manty,, bits width and, therefore,
(with a hidden bit) can have the values 1,1+ =, 1 + s - - -2 — grmmy - The
output exponent part contains the number of leading zeros in its corresponding input
section. If the input exponent section contains only zeros, another sample is taken
and the number of zeros is accumulated, until a one occurs or the independently
adjustable output range is exceeded. Thus, we can create arbitrary output precision
with our approach, not relying on fixed uniform input bit vector sizes. Any uniform
RNG can be used to generate inputs for this floating point converter unit.

We have carefully validated that the originally provided randomness and distribu-
tion of the input random numbers are preserved [24,28] by applying the standardized
TestUO1 test suite [12]. With a MT19337 Mersenne Twister RNG as input, the
output of the uniform floating point generator passed all tests except those, that the
MT19337 is known to fail itself. Thus, we conclude that our floating point converter
unit maintains all the properties of the input RNs.

26 C. de Schryver et al.

URNG
(e.g. MT19937)

Xw bits
MSB LSB

sign exponent part
half | ——————»

mantissa part

counting direction

m — mant_bw - 1 bits

mant|bw bits

CTRL count leading
»| zeros (LZ)
yLzZ
D
0
Y Y v

sign .

half exponent mantissa
|
]

y data_valid uniform floating-point number

Fig. 9 Architecture of the proposed floating point converter unit

Table 7 Synthesis results for the proposed inversion based converter

architecture

Slices FFs LUTs BRAMs DSP48E
Floating point converter 13 11 26 — -
LUT evaluator 18 47 7 1 1
Complete design 31 85 34 1 1

Figure 10 illustrates the corresponding ICDF lookup unit. In contrast to the
proposed architecture by Cheung et al., we do no longer need the shifter, but directly
rely on the provided exponent and mantissa values.

With optimized bit widths for the Virtex-5 DSP48E slice that supports a 18
25 bit 448 bit MAC operation, the parameters are as follows: input bitwidth m = 32,
mant _bw = 20, max_exp = 54, and k = 3 for subsegment addressing. The coefficient
co is quantized to 46 bits, c¢1 has 23 bits.

Table 7 shows the resource consumption for the proposed architecture. We have
used the Xilinx ISE 12.4 suite and the target device Xilinx Virtex-5 XC5FX70T-3.
All provided results are post place & route. In total, our architecture saves more than
48% of the area compared to the design proposed by Cheung et al. [6], by providing
a higher output resolution at the same time. It can run up to 286 MHz.

High-Performance Hardware Acceleration of Asset Simulations 27

m bits

MSB L LSB
sign exponent mantissa
_half |
>
exp_bw k bits mant_bw - k bits
section
address subsection
address
ROM
I CD 01
1 Y Y
e Tl
. N
non-uniform
random number MAC unit

Fig. 10 The corresponding ICDF lookup unit for floating point inputs

For the convenience of the users who like to make use of our proposed
architecture, we have developed a flexible C++- class package that creates the LUT
entries for any desired distribution function. It is freely available for download.”

Quality Checking

For the normally distributed output of our unit, we have carried out intensive statistic
analysis manually to verify the quality of the results. Several y>-tests have been
applied that compare the empirical number of observations in several groups with
the theoretical number of observations. The Kolmogorov—Smirnov test compares
the empirical and the theoretical cumulative distribution function. We have also
carried out this test on our results, and nearly all tests with different batch sizes
were perfectly passed. Those that did not pass did not reveal an extraordinary P
value.

Figures 11 and 12 illustrate the difference in the tail region between our proposed
architecture and the standard R RNG. The random numbers of our generator seem
to have the same distribution as the standard random numbers, with an exception of
the reduced precision in the central region and an improved precision in the extreme
values. It can be seen that our architecture achieves higher extreme values in the tail
region compared to the R RNG. The smallest value from our floating point-based
approach is 1-27*, compared to 1-273 in standard RNGs. For that reason our

"http://ems.eit.uni-kl.de/fileadmin/downloads/icdf_lut_tool.tgz.

http://ems.eit.uni-kl.de/fileadmin/downloads/icdf_lut_tool.tgz

28 C. de Schryver et al.

2720 normal RNs, 240710, extreme values

0.0020
1

0.0015
!

dnorm(x)
0.0010

0.0005

0.0000

T T
4.0 4.5 5.0

X

Fig. 11 Tail of the empirical distribution function produced by the proposed architecture

architecture can produce values of —8.370 and 8.37c¢. Therefore we expect our
design to perform very well in the case of simulations rare extreme events can have
a huge impact (consider risk simulations for insurances, for example).

In addition to the statistical investigations, a bit-true model of the Gaussian
RNG has been validated in two application tests for practical scenarios: In an
GNU Octave-based Monte Carlo simulation for option price modeling based on
the Heston model, the Octave RNG randn() was replaced by the bit true model of
the proposed hardware architecture. The same convergence behavior was observed
and the same results were obtained, both for options with and without barriers.

Together with the accelerator structure shown in Sect. 3.2, our presented RNG
architecture allows to build up very hardware efficient FPGA accelerators for asset
simulations based Monte Carlo simulations.

High-Performance Hardware Acceleration of Asset Simulations 29

2720 normal R-RNs, extreme values

0.0020
]

0.0015
]

dnorm(xR)
0.0010

0.0005

|‘|"|||‘||“!IHIIII|| T

T T
3.5 4.0 4.5 5.0

0.0000

xR

Fig. 12 Tail of the empirical distribution function for the R RNG

5 Conclusion

The increasing complexity of financial products and the need for more frequent
simulation runs and higher accuracy have boosted the energy consumption con-
tinuously over time. Nowadays, inefficient standard CPUs and GPUs are still
prevailing to perform very specific number crunching operations that fit much
better to dedicated accelerators. In this chapter we show that optimized hardware
architectures clearly outperform general purpose CPUs and GPUs with respect to
energy efficiency. For the application “pricing European double barrier options in
the Heston model” we present a dedicated FPGA architecture based on the advanced
Multi-Level Monte Carlo method. This method (like all Monte Carlo method)
strongly relies on high-quality random numbers with a Gaussian distribution. We
illustrate how these numbers can be efficiently generated in hardware with an ICDF-
based converter tool. This tool allows to produce random numbers with arbitrary

30 C. de Schryver et al.

output distributions and precisions. On top of this RNG, we have built a dedicated
FPGA circuit for asset path simulations based on the Heston model. Together with
a pricing engine running on the host CPU and the path simulation performed on a
Xilinx Virtex-5 FPGA, we show that this hybrid CPU-FPGA system consumes only
around 12% of the energy of an eight-core CPU-only system, providing twice the
throughput. Compared to a state-of-the-art Nvidia Tesla C2050 GPU, this system
achieves 35% of the simulation speed by consuming around 40% of the energy.
However, an extrapolation with the path simulation and the pricing running on
three FPGAs predicts that a pure FPGA accelerator can save incredible 97% of the
energy compared to a Nvidia Tesla C2050 GPU, providing the same throughput. In
addition, FPGAs are flexible devices that can be reconfigured for different pricing
tasks quickly, allowing to dynamically instantiate different accelerator designs for
the computation of various products. This clearly highlights the enormous potential
for energy saving of FPGAs for financial simulations.

References

1. T. Becker, Q. Jin, W. Luk, S. Weston, Dynamic constant reconfiguration for explicit finite
difference option pricing, in 2011 International Conference on Reconfigurable Computing and
FPGAs (ReConFig) IEEE Computer Society, Los Alamitos, USA, 2011), pp. 176-181. ISBN-
13: 978-0-7695-4551-6. doi:10.1109/ReConFig.2011.29

2. A. Bernemann, R. Schreyer, K. Spanderen, Pricing structured equity products on GPUs, in
2010 IEEE Workshop on High Performance Computational Finance (WHPCF) (IEEE, Red
Hook, USA, 2010), pp. 1-7. ISBN: 978-1-4244-9061-5. doi:10.1109/WHPCFE.2010.5671821

3. A. Bernemann, R. Schreyer, K. Spanderen, Accelerating exotic option pricing and model
calibration using GPUs (2011), http://ssrn.com/abstract=1753596. Accessed 28th January 2013

4. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637-654 (1973)

5. G. Chatziparaskevas, A. Brokalakis, I. Papaefstathiou, An FPGA-based parallel processor
for Black-Scholes option pricing using finite differences schemes, in Proceedings of Design,
Automation and Test in Europe, 2012 (DATE ’12), EDAA (2012), ISBN: 978-3-9810801-6

6. R.C.C. Cheung, D.U. Lee, W. Luk, J.D. Villasenor, Hardware generation of arbitrary random
number distributions from uniform distributions via the inversion method. IEEE Trans. Very
Large Scale Integrat. (VLSI) Syst. 15(8), 952-962 (2007). doi:10.1109/TVLSI.2007.900748,
http://dx.doi.org/10.1109/TVLSI.2007.900748

7. LL. Dalal, D. Stefan, A hardware framework for the fast generation of multiple long-period
random number streams, in Proceedings of the 16th International ACM/SIGDA Symposium
on Field Programmable Gate Arrays, FPGA 08 (ACM, New York, 2008), pp. 245-254.
doi:10.1145/1344671.1344707, http://doi.acm.org/10.1145/1344671.1344707

8. S. Gilani, The real reason for the global financial crisis...the story no one’s talking about (2008),
http://moneymorning.com/2008/09/18/credit-default-swaps/. Accessed 28th January 2013

9. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Rev. Financ. Stud. 6(2), 327 (1993). doi:10.1093/rfs/6.2.327

10. Q. Jin, W. Luk, D.B. Thomas, Unifying finite difference option-pricing for hardware accel-
eration, in International Conference on Field Programmable Logic and Applications (FPL),
2011 (IEEE Computer Society, Los Alamitos, USA, 2011), pp. 6-9. ISBN: 978-0-7695-4529-
5.doi:10.1109/FPL.2011.12

http://ssrn.com/abstract=1753596
http://dx.doi.org/10.1109/TVLSI.2007.900748
http://doi.acm.org/10.1145/1344671.1344707
http://moneymorning.com/2008/09/18/credit-default-swaps/

High-Performance Hardware Acceleration of Asset Simulations 31

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

R. Korn, E. Korn, G. Kroisandt, Monte Carlo Methods and Models in Finance and Insurance
(CRC Press, Boca Raton, 2010)

P. L’Ecuyer, R. Simard, TestUOl: a C library for empirical testing of random number
generators. ACM Trans. Math. Softw. 33(4), 22 (2007). doi:http://doi.acm.org/10.1145/
1268776.1268777

D.U. Lee, W. Luk, J. Villasenor, P.Y. Cheung, Hierarchical segmentation schemes for function
evaluation, in 2003 IEEE International Conference on Field-Programmable Technology (FPT),
2003. Proceedings (The University of Tokyo, Tokyo, Japan, 2003), pp. 92-99. ISBN: 0-7803-
8320-6. doi:10.1109/FPT.2003.1275736

D.U. Lee, R. Cheung, W. Luk, J. Villasenor, Hierarchical segmentation for hardware function
evaluation. IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 17(1), 103-116 (2009).
doi:10.1109/TVLSI.2008.2003165

T.G. Lewis, W.H. Payne, Generalized feedback shift register pseudorandom number algorithm.
J. ACM 20(3), 456-468 (1973). doi:10.1145/321765.321777, http://doi.acm.org/10.1145/
321765.321777

H. Marxen, A. Kostiuk, R. Korn, C. de Schryver, S. Wurm, I. Shcherbakov, N. Wehn,
Algorithmic complexity in the Heston model: an implementation view, in 2011 IEEE Workshop
on High Performance Computational Finance (WHPCF) (ACM, New York, USA, 2011),
ISBN: 978-1-4244-9061-5

M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8(1), 3-30 (1998).
doi:http://doi.acm.org/10.1145/272991.272995

0. Mencer, E. Vynckier, J. Spooner, S. Girdlestone, O. Charlesworth, Finding the right level
of abstraction for minimizing operational expenditure, in 2011 IEEE Workshop on High
Performance Computational Finance (WHPCF) (ACM, New York, USA, 2011), ISBN: 978-
1-4244-9061-5

R.C. Merton, Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4(1), 141-183 (1973)
G.W. Morris, M. Aubury, Design space exploration of the European option bench-
mark using hyperstreams, in International Conference on Field Programmable Logic
and Applications, 2007. FPL 2007, 1EEE (2007), pp. 5-10. ISBN: 1-4244-1060-6
doi:10.1109/FPL.2007.4380617

NVIDIA Corporation: Computational finance website (2012), http://www.nvidia.com/object/
computational_finance.html. Accessed 28th January 2013

F. Panneton, P. L’Ecuyer, M. Matsumoto, Improved long-period generators based
on linear recurrences modulo 2. ACM Trans. Math. Softw. 32(1), 1-16 (2006).
doi:10.1145/1132973.1132974, http://doi.acm.org/10.1145/1132973.1132974

QuantLib - A free/open-source library for quantitative finance (2012), http://quantlib.org.
Accessed 28th January 2013

C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, R. Korn, A new hardware
efficient inversion based random number generator for non-uniform distributions, in 2010
International Conference on Reconfigurable Computing and FPGAs (ReConFig) (IEEE
Computer Society, Los Alamitos, USA, 2010), pp. 190-195. ISBN: 978-0-7695-4314-7.
doi:10.1109/ReConFig.2010.20

C. de Schryver, 1. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk, R. Korn, An
energy efficient FPGA accelerator for Monte Carlo option pricing with the Heston model, in
2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig) (IEEE
Computer Society, Los Alamitos, USA, 2011), pp. 468-474. ISBN-13: 978-0-7695-4551-6.
doi:10.1109/ReConFig.2011.11

C. de Schryver, M. Jung, N. Wehn, H. Marxen, A. Kostiuk, R. Korn, Energy efficient
acceleration and evaluation of financial computations towards real-time pricing, in Knowledge-
Based and Intelligent Information and Engineering Systems, ed. by A. Konig, A. Dengel,
K. Hinkelmann, K. Kise, R.J. Howlett, L.C. Jain. Lecture Notes in Computer Science, vol. 6884
(Springer, Berlin, 2011), pp. 177-186. Proceedings of 15th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems (KES)

http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/321765.321777
http://doi.acm.org/10.1145/321765.321777
http://doi.acm.org/10.1145/272991.272995
http://www.nvidia.com/object/computational_finance.html
http://www.nvidia.com/object/computational_finance.html
http://doi.acm.org/10.1145/1132973.1132974
http://quantlib.org

32

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

C. de Schryver et al.

. C. de Schryver, H. Marxen, D. Schmidt, Hardware accelerators for financial mathematics -
methodology, results and benchmarking, in Proceedings of 1st Young Researcher Symposium
(YRS) 2011, pp. 55-60 (Center for Mathematical and Computational Modelling (CM)?,
(CM)?, Nachwuchsring, 2011). http://CEUR-WS.org/Vol-750/yrs08.pdf. ISSN: 1613-0073,
urn:nbn:de:0074-750-0

C. de Schryver, D. Schmidt, N. Wehn, E. Korn, H. Marxen, A. Kostiuk, R. Korn, A hardware
efficient random number generator for nonuniform distributions with arbitrary precision. Int.
J. Reconfigurable Comput. (IJRC) 2012 (2012). doi:10.1155/2012/675130. Article ID 675130,
11 pages

J. Stratoudakis, Hardware acceleration of Monte Carlo simulation for option pricing (2012),
http://wallstreetfpga.com. Accessed 28th January 2013

J. Stratoudakis, Hardware acceleration of Monte Carlo simulation for option pricing (2012),
https://decibel.ni.com/content/docs/DOC-9984. Accessed 28th January 2013

D.B. Thomas, J.A. Bower, W. Luk, Automatic generation and optimisation of reconfigurable
financial Monte-Carlo simulations, in /EEE International Conference on Application-Specific
Systems, Architectures and Processors, 2007. ASAP, IEEE (2007), pp. 168-173. ISBN:
1-4244-1027-4. doi:10.1109/ASAP.2007.4429975

D.B. Thomas, W. Luk, P.H. Leong, J.D. Villasenor, Gaussian random number generators. ACM
Comput. Surv. 39(4), 11 (2007). doi:http://doi.acm.org/10.1145/1287620.1287622

X. Tian, K. Benkrid, American option pricing on reconfigurable hardware using least-
squares Monte Carlo method, in International Conference on Field-Programmable
Technology, 2009. FPT 2009, 1IEEE (2009), pp. 263-270. ISBN: 978-1-4244-4377-2.
doi:10.1109/FPT.2009.5377662

X. Tian, K. Benkrid, X. Gu, High performance Monte-Carlo based option pricing on FPGAs.
Eng. Lett. 16(3), 434-442 (2008)

P. Warren, City business races the Games for power. The Guardian (2008), http://www.
guardian.co.uk/technology/2008/may/29/energy.olympics2012. Accessed 28th January 2013
S. Weston, J.T. Marin, J. Spooner, O. Pell, O. Mencer, Accelerating the computation of
portfolios of tranched credit derivatives, in 2010 IEEE Workshop on High Performance
Computational Finance (WHPCF) (IEEE, Red Hook, USA, 2010), pp. 1-8. ISBN: 978-1-
4244-9061-5. doi:10.1109/WHPCF.2010.5671822

S. Weston, J. Spooner, J.T. Marin, O. Pell, O. Mencer, FPGAs speed the computation of
complex credit derivatives. Xcell J. 74, 18-25 (2011)

C. Wynnyk, M. Magdon-Ismail, Pricing the American option using reconfigurable hardware, in
International Conference on Computational Science and Engineering, 2009. CSE 09, vol. 2
(IEEE Computer Society, Los Alamitos, USA, 2009), pp. 532-536. ISBN-13: 978-0-7695-
3823-5. doi:10.1109/CSE.2009.496

Xilinx: XPower estimator (XPE) (2011), http://www.xilinx.com/products/technology/power/
index.htm. Accessed 28th January 2013

B. Zhang, C.W. Oosterlee, Acceleration of option pricing technique on graphics processing
units. Tech. Rep. 10-03, Delft University of Technology (2010)

http://CEUR-WS.org/Vol-750/yrs08.pdf
http://wallstreetfpga.com
https://decibel.ni.com/content/docs/DOC-9984
http://doi.acm.org/10.1145/1287620.1287622
http://www.guardian.co.uk/technology/2008/may/29/energy.olympics2012
http://www.guardian.co.uk/technology/2008/may/29/energy.olympics2012
http://www.xilinx.com/products/technology/power/index.htm
http://www.xilinx.com/products/technology/power/index.htm

Monte-Carlo Simulation-Based Financial
Computing on the Maxwell FPGA Parallel
Machine

Xiang Tian and Khaled Benkrid

Abstract Efficient computational solutions for scientific and engineering problems
are a priority for many governments around the world, as they can offer major
economic comparative advantages. Financial computing problems are a prime
example of such problems where even the slightest improvements in execution
times and latency can generate large amounts of extra profits. However, financial
computing has not benefited relatively greatly from early developments in high
performance computing, as the latter aimed mainly at engineering and weapon
design applications. Besides, financial experts were initially focusing on develop-
ing mathematical models and computer simulations in order to comprehend the
behavior of financial markets and develop risk-management tools. As this effort
progressed, the complexity of financial computing applications grew up rapidly.
Hence, high performance computing turned out to be very important in the field
of finance.

Many financial models do not have a practical closed-form solution in which
case numerical methods are the only alternative. Monte-Carlo simulation is one of
the most commonly used numerical methods, in financial modeling and scientific
computing in general, with huge computation benefits in solving problems where
closed-form solutions are impossible to derive. As the Monte-Carlo method relies
on the average result of thousands of independent stochastic paths, massive paral-
lelism can be harnessed to accelerate the computation. For this, high performance
computers, increasingly with off-the-shelf accelerator hardware, are being proposed
as an economic high performance implementation platform for Monte-Carlo-based
simulations. Field programmable gate arrays (FPGAs) in particular have been
recently proposed as a high performance and relatively low power acceleration
platform for such applications.

X. Tian (b<) » K. Benkrid

The University of Edinburgh, Institute of Integrated Systems, King’s Buildings,
Mayfield Road, Edinburgh EH9 3JL, Scotland, UK

e-mail: X.Tian@ed.ac.uk; k.benkrid@gmail.com

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 33
DOI 10.1007/978-1-4614-1791-0_2, © Springer Science+Business Media, LLC 2013

mailto:X.Tian@ed.ac.uk
mailto:k.benkrid@gmail.com

34 X. Tian and K. Benkrid

In light of the above, the project presented in this chapter develops novel
FPGA hardware architectures for Monte-Carlo simulations of different types of
financial option pricing models, namely European, Asian, and American options, the
stochastic volatility model (GARCH model), and Quasi-Monte Carlo simulation.
These architectures have been implemented on an FPGA-based supercomputer,
called Maxwell, developed at the University of Edinburgh, which is one of the few
openly available FPGA parallel machines in the world. Maxwell is a 32-CPU cluster
augmented with 64 Virtex-4 Xilinx FPGAs connected in a 2D torus. Our hardware
implementations all show significant computing efficiency compared to traditional
software-based implementations, which in turn shows that reconfigurable comput-
ing technology can be an efficacious and efficient platform for high performance
computing applications, particularly financial computing.

1 Introduction

High performance computing (HPC) is a discipline concerned with the development
and use of supercomputers or computer clusters, with applications in a variety
of fields including bioinformatics, energy, climate modeling, and computational
applications in engineering, of which typical computational demands exceed the
TeraFlop/sec.! Supercomputers’ development has been through several stages
during the past decades starting with vector computers, and then symmetric mul-
tiprocessors (or SMPs?), to massively parallel processors (MPPs) which mostly use
off-the-shelf commodity microprocessors nowadays [1]. Supercomputers’ perfor-
mance requirements, however, are increasing at a rate that exceeds the rate of chip-
level improvements [2]. In the early days of the technology, mostly engineering and
weapons’ design applications benefited from the developments in high performance
computing. In financial computing, for instance, financial experts were mostly
focused on mathematical models and computer simulations in order to understand
financial markets and develop risk-management tools. Generally, these models are
stochastic process models. As the complexity of these models increased rapidly,
personal computers were no longer able to perform the required computations in
reasonable times; hence the adoption of high performance computing platforms
became the mainstream. In 1999, for instance, a survey of high performance
computing in finance and computer-aided design of financial products introduced
the development of financial models and supercomputer-based high performance
financial computing to a wider community [3].

ITeraFlop/sec is an acronym meaning 10'? floating point operations per second.

2An SMP is a computer system that has two or more processors connected in the same cabinet,
managed by one operating system, sharing the same memory, and having equal access to
input/output devices.

Monte-Carlo Simulation-Based Financial Computing. .. 35

One widely used computational technique in financial computing is Monte-
Carlo simulation. The latter is a numerical computational algorithm which is
often used in simulating physical and mathematical systems. It relies on repeated
random sampling to compute their result. This method is often used when it is
impossible or impractical to get an analytical solution, or closed-form result, to
system equations. The Monte-Carlo method is particularly important in physical
chemistry, computational physics, and related applied fields. These are characterized
by systems with a large number of coupled degrees of freedom, such as liquids,
disordered materials, strongly coupled solids, and cellular structures. Monte-Carlo
simulations are also used to forecast a wide range of events and scenarios, such as
the weather, sales, and consumer demands. In financial computing, the Monte-Carlo
technique is used to simulate the various sources of uncertainty that affect the value
of the underlying instrument, portfolio, or investment in question. Many financial
computing applications have no closed form solutions, as they depend on three or
more stochastic variables. Here, Monte-Carlo simulation tends to be numerically
more efficient than other procedures [4]. This is because the computational time of
Monte-Carlo simulations increases approximately linearly with the number of vari-
ables, whereas in most other methods, computational time increases exponentially
with the number of variables. One of the important characteristics of Monte-Carlo
simulation is parallelism as multiple independent paths need to be computed. This
makes it attractive to parallel implementation using multi-threading and/or multi-
processing.

When evaluating a high performance computing platform, we have to consider
several aspects. The cost of cluster computers and supercomputers can be pro-
hibitive. Area and power consumption can also be a major problem with these
computing platforms. For these reasons, various acceleration technologies are being
considered. Field programmable gate arrays (FPGAs), for instance, offer the high
performance of a dedicated hardware solution of a particular algorithm, with a
fraction of the area and power consumption of equivalent microprocessor-based
solutions. Moreover, the continuous developments in transistor integration levels
mean that it is now possible to implement a considerable number of floating-point
arithmetic units on modern FPGAs. If this trend is to continue, FPGA use is set to
conquer new application domains, including financial computing.

The work presented in this chapter is mainly targeted on an FPGA parallel
machine, called Maxwell. Maxwell was one of the first publicly accessible FPGA
parallel machines and was built in Edinburgh, Scotland, by the FPGA High
Performance Computing Alliance (FHPCA). Established in 2004, the FHPCA’s
aim was to explore the computing capability of a heterogeneous high performance
computing platform, which combines general purpose processors (GPPs) and Xilinx
FPGAs. Led by Edinburgh Parallel Computing Centre (EPCC) at The University of
Edinburgh, the FHPCA was funded by Scottish Enterprise and built on the skills
of Nallatech Ltd., Alpha Data Ltd., Xilinx Development Corporation, Algotronix
and iSLI. The idea developed as a result of increasing FPGA hardware complex-
ity, which makes it possible to execute relatively sophisticated general purpose
numerical computing applications on modern FPGAs at a relatively low power

36 X. Tian and K. Benkrid

budget. The work presented in this project focuses on financial computing with
the aim of implementing a number of financial computing algorithms on Maxwell
and evaluating the latter through a comprehensive strategy, whereby computation
speed is not the only concern, but also accuracy, cost, and energy consumption.
Indeed, the decision making procedure in a financial market always requires real-
time processing of huge amounts of real time data. If the simulation results, which
may need hours to get, can be achieved in few minutes, the benefit would definitely
be remarkable. However, despite the importance of computation speed, we do not
want to lose any considerable accuracy during the computation as an error of
0.001 in simulation, for instance, could bring losses in the thousands of pounds
in trading if we are dealing with million-pound assets. Moreover, power efficiency
is a very important issue nowadays. For instance, the cost of electricity consumed
by modern supercomputers could be in the millions of pounds annually. Here lies
the advantage of FPGAs as they achieve high speed performance not through high
clock frequencies but mainly through massive data and instruction parallelism and
deep pipelining. Indeed, typical clock frequencies of GPPs or graphic processing
units (GPUs) are in the GHz range. However, FPGA chips are often clocked at few
hundred MHzs, hence leading to considerable energy savings.

In light of the above, the aim of the work presented in this chapter is to rigorously
assess the efficiency and efficacy of FPGAs in financial computing applications.
This is done through the development of novel FPGA hardware architectures for a
number of financial computing applications. Comparative evaluation against GPP
and GPU technologies are made using the following criteria:

* Speed performance: a very important aim of our work is to maximize the
computation speed of financial computing applications. This will need careful
hardware design and optimization.

* Arithmetic accuracy: the accuracy requirement, which is critical in financial
computing, needs to be guaranteed.

* Power consumption: since financial computing applications are often deployed in
massively parallel computers, power consumption is a very important measure.

* Cost of purchase and development: the cost of the hardware and development
effort also needs to be considered. Indeed, speed performance can always be
increased arbitrarily if budgets were unlimited.

* Productivity: this is concerned with the return over time. Indeed, in business, time
to market makes the difference between success and failure.

The remainder of this chapter is organized as follows. First, a brief overview
of the state-of-the-art of high-performance financial computing is given. Then,
an overview of the architecture and programming environment of the Maxwell
Parallel FPGA machine is presented. After that, four case-study implementations
of financial models on Maxwell are detailed, before an evaluation of the resulting
implementations is presented. The chapter concludes with a general evaluation of
FPGA-based high performance reconfigurable computing.

Monte-Carlo Simulation-Based Financial Computing. .. 37

2 Brief Overview of the State-Of-The-Art of High
Performance Financial Computing

In the last decade, researchers have started to use acceleration technology, e.g.,
in the form of FPGAs and GPUs in financial computing. In [5] for instance, an
FPGA-based Monte-Carlo simulation core used for computing the BGM (Brace,
Gatarek and Musiela) interest rate model for pricing derivatives was presented. The
BGM interest rate model is commonly used to simulate the fluctuation of interest
rates over time, something which has an influence on nearly all economic activity.
Results show that ~25x speed-up can be obtained by using an FPGA, compared to
an equivalent Pentium IV 1.5GHz-based software implementation. Other hardware
architectures for Monte-Carlo-based financial simulations were published in [6].
In the latter, five different Monte-Carlo option pricing simulation algorithms were
explored, including log-normal price movements, correlated asset value-at-risk
calculation, and price movements under the GARCH model. Using a Xilinx Virtex-
4 XC4VSXS5S5 device, implementation results show that FPGA implementations run
on-average 80x faster than equivalent software ones (running on a 2.66GHz PC). A
comparison of different FPGA implementations of the European option® benchmark
against other implementations using GPUs, Cell BE, and a traditional software
implementation was presented in [7]. In this work, the FPGA implementation was
produced using “HyperStreams,” which is a high level abstraction for designing
arithmetic pipelines built on the Handel-C programming language. An acceleration
of 146x compared to a reference software implantation can be obtained using
FPGAs. The implementation mapped onto a Xilinx XC5VSXS50T chip is over 64
and 71 times faster than corresponding software running on a 3.4 GHz Intel Xeon
processor, for one-factor and the multi-factor models, respectively.

The combination of cluster technology and reconfigurable hardware acceleration
is a relatively new development in high performance computing, which promises
to combine the relatively high performance and low power consumption of recon-
figurable hardware with established design flows and consequent knowledge base
in traditional microprocessor-based high performance computing. A simple Asian
option* pricing core was designed as a demonstration application on Maxwell. The
implementation results of this demonstrator application are shown in Fig. 1. Here,
AlphaData (AD) and Nallatech (NT) refer to the two FPGA companies that donated
the FPGA accelerator nodes on the Maxwell machine, 32 each.

The results show that the AlphaData nodes lead to ~320-time speed-up com-
pared to an equivalent software implementation, whereas the Nallatech nodes lead
to a 109-time speed-up. The discrepancy is due to the design language/flow used
for each node type: VHDL for AlphaData and a proprietary C-based hardware
language, called DIME-C, for Nallatech.

3A European option gives its holder the right to buy (a call option) or sell (a put option) an
underlying asset at a particular fixed price (called Strike price) on a certain maturity date.
4Asian options are a special type of options where the strike price is the average price of the
underlying asset over a period of time and not a fixed strike price as in European options.

38 X. Tian and K. Benkrid

18000
16000
14000
12000
10000
8000
6000
4000
2000

15810 AD: Alpha Data
NT: Nallatech

Seconds

49 145

CPU AD NT

Fig. 1 Single node execution time of Asian option pricing simulation in a Maxwell-based
demonstrator

Another important type of financial options is American options . However
there are relatively few corresponding FPGA-based implementations reported in the
literature. One of these, the basic binomial-tree pricing model of American options,
was implemented in [8]. The implementation of this model on a Virtex 4 FPGA
achieved 250x speed-up compared to a 2.2GHz Core2 Duo CPU implementation.
Another accelerated implementation used the LSMC algorithm [9] and implemented
it on a 32 processor IBM BlueGene/P system to achieve 18x speed-up over a single
processor implementation.

The Quasi-Monte Carlo method for financial option pricing has been researched
for more than a decade. Nevertheless, high performance FPGA implementations
of it have been rare in the literature. One such hardware implementation was
reported in [10]. In it, a Quasi-Monte Carlo technique was applied to solve a 3-D IC
partial inductance extraction problem. The number of dimensions of this design was
reported to be 6. A Quasi-Monte Carlo simulator FPGA implementation was also
reported in [11] where speed-ups in excess of 50x over a 3GHz multi-core processor
were achieved.

As GPUs became more widely used for high performance computing, compar-
isons between GPUs, FPGAs, and other computing platforms became plentiful. For
instance, a speed-up figure of 20x on FPGA compared to a CPU implementation for
a European option pricing application was reported in [12], whereas an equivalent
GPU implementation achieved a 2 order of magnitude speed-up. In another paper
[7], the European option pricing application achieved 146x speed-ups on the FPGA
compared to CPU.

As Monte-Carlo simulation relies on a stochastic procedure, random number
generation is a key part of it. Software implementations of random number
generators cannot meet the requirement of hardware Monte-Carlo simulation cores,

SUnlike European options, American options can be exercised at any date up to the maturity date.

Monte-Carlo Simulation-Based Financial Computing. .. 39

and thus hardware random number generation is needed. There are many methods
used for hardware random number generation including the Box—Muller method
[13], Wallace method [14], and other methods [15, 16].

3 Overview of the Maxwell FPGA Parallel Machine

Maxwell was developed by the FPGA High Performance Computing Alliance
in Scotland to demonstrate the feasibility of running computationally demanding
applications efficiently on an array of FPGAs. In this section, we will introduce
both the hardware architecture and the design flow on Maxwell.

3.1 Hardware Architectures

Maxwell comprises 32 blades housed in IBM Blade Centre. Each blade comprises
one 2.8 GHz Xeon with 1 GB memory and 2 Xilinx Virtex4 FPGAs each on a PCI-X
sub-assembly developed by Alpha Data or Nallatech. Each FPGA board has either
512MB or 1GB of off-chip memory. Whilst the Xeon CPUs and FPGAs on a
particular blade can communicate with each other over the PCI bus (typical transfer
bandwidths of 600 Mbytes/s), the principal communication infrastructure comprises
a fast Ethernet network with a high-performance switch linking the Xeons together
and RocketlO linking the FPGAs. Each FPGA has 4 RocketIO links enabling the 64
FPGAs to be connected together in an 8 x 8 toroidal mesh as shown in Fig. 2. The
RocketlOs have a bandwidth of 2.5 Gbits/s per link [17].

Logically, Maxwell can be regarded as a collection of nodes where a node
is defined as a software process running on a host machine, plus some FPGA
acceleration hardware.

Figure 3 shows the structure of Maxwell, the interconnection, and the detailed
architecture of a single FPGA node.

As we can see in the figure, there are three kinds of interconnection on Maxwell:
FPGA-FPGA interconnection, which is formed by Rocket 10, the CPU-CPU
interconnection, which is Ethernet-based, and the FPGA-CPU connection, which
is the PCI-X interface.

There are totally 64 FPGAs on Maxwell as shown in Fig. 3: half of them are
Nallatech’s off-the-shelf H101-PCIXM with Xilinx XCV4100LX FPGA devices
on them. The other 32 nodes are Alpha Data ADM-XRC-4FX cards using Xilinx
XCV4FX100 FPGAs.

3.2 Design Flow on Maxwell

The design flow on Maxwell can be divided into four main steps:

40 X. Tian and K. Benkrid

o 3 o% o o o o o
.o .0 0 0 o @
@1 . @

_ |
—O1 |0
- Q*—Q'—O—Q*—Q*—QT—Q*—_’ =

|
- t—t—o—H—o—H

|
oo o o o o o o

Fig. 2 FPGA links on Maxwell supercomputer

* Hardware design, including HDL coding, simulation, synthesis, and generating
bitstream. This stage of work is the main part of the whole design flow.

* Software interface: This step mainly deals with the communication between the
FPGA and CPU. On an Alpha Data board, for example, we use ADM-XRC-4FX
Co-Processor Development Kit (CPDK) as shown in Fig. 4 to control all registers
used to control the behavior of FPGAs.

At higher software level, an API will be used to deal with the standardization of
high-level configuration. This tool is called Parallel Toolkit, developed by FHPCA
and EPCC [18]. The aim is to configure the FPGA chip with target bitstream, as
well as clock setting. The design flow also consists of:

* Message Passing Interface (MPI) [19] coding: communication between nodes is
performed using MPI.

* Sun Grid Engine (SGE) job scheduler [20] scripts: allow for orderly safe job
submission to the Maxwell machine.

4 Case Studies in High Performance Reconfigurable
Computing

4.1 Hardware Random Number Generators

Monte-Carlo methods rely on random samples. Indeed, one random sample is
needed for a single step of a Monte-Carlo simulation. For example, suppose

Monte-Carlo Simulation-Based Financial Computing. .. 41

Node
Application Process
(Sofware on Host)
Parallel Toolkit (PTK)
Accelerator []
Function on Function on External
FPGA logic FPGA logic =) communication to
blocks blocks neighbour
v | I
Memo Function on
vy PowerPC
Rocket 10

PCI-X

Network Protocol

Standard Network
Switch

Fig. 3 Architecture of the Maxwell FPGA parallel machine

that a European option has a life length of 1 year, which is discretized to 100
time steps, and 10° paths are generated in the Monte-Carlo simulation, therefore,
100 x 10°=108 random variables are needed for the simulation. Several considera-
tions arise when constructing a random number generator [21]:

Period length: any pseudo-random number generator will eventually repeat itself.
Generally, we want generators with very longer periods.

Reproducibility: it is often important to be able to re-run a simulation using
exactly the same random samples as the previous simulation.

Speed: as mentioned above, millions or even billions of samples are needed for a
single simulation. It is very important to keep a very high throughput of random
samples to feed a Monte-Carlo simulation engine.

Portability: an algorithm for generating random numbers should produce the
same sequence of values on all computing platforms.

Randomness: this is the most important consideration. Theoretical properties and
statistical tests could be used to evaluate the quality of the random samples.

42 X. Tian and K. Benkrid

Abstract Socket User Application
HAIL (clk, rst, system_in, PP

system_out)

) CIF Registers +—

User
Host CIF Memory .
Interface Interface € ¥ Processing
CIF Aurora Core
Aurora Local-link G
(Rocket 10) Interface
Interface
Memory
Interfaces

Fig. 4 Structure of CPDK application

The random samples in Brownian motion (often used to model financial option
drifts) follow a Normal distribution, or say Gaussian distribution. A generally
used method is to produce a set of uniform random samples (over the interval
of (0, 1)), and then convert them to Gaussian random numbers. In the following
two subsections, we will introduce methods for generating uniform and Gaussian
random numbers, respectively.

4.1.1 Uniform Random Number Generator

Uniform random numbers are sampled from a distribution which has the following
probability density function:

px)=1lif0<x<1

= (otherwise (1)

It is a convenient distribution as there are many simple methods to transform
uniform samples into samples from other distributions. In this section, three differ-
ent categories of uniform random number generation methods will be introduced,
namely: Linear Feedback Shift Registers (LFSR), Mersenne Twister, and Sobol.

LESR

A generator introduced in [22] is based on a sequence of 0’s and 1’s generated by a
recurrence of the form:

b; = (a,,b,',p—i—ap,lb,;p“+---—|—a1b,~,1)mod2)

Monte-Carlo Simulation-Based Financial Computing. .. 43

where all variables take on values of either O or 1. The bs are interpreted as bits
and will be formed into binary representations of integers. Because the modulus is
a prime, the generator can be related to a polynomial:

fR)=2" — (@2’ "+ +a,1z+ap) 3)

over the Galois field GF(2) defined over the integers 0 and 1 with the addition and
multiplication being defined in the usual way followed by a reduction modulo 2. An
important result from the theory developed for such polynomials is that, as long as
the initial vector of b’s is not all 0’s, the period of the recurrence in (2) is 27 — 1 if
and only if the polynomial (3) is irreducible over GF(2).

For computational efficiency, most of the a’s in Eq. (2) should be zero. The
recurrence in Eq. (2) often has the form:

bi = (bi7p+b[,p+q)m0d 2 (4)

Addition of 0’s and 1’s modulo 2 is the binary exclusive-or operation (represented
as @), and the recurrence can be written as:

bi= (bi—p®bi_piq))

The recurrence can be performed in a feedback shift register, which is a vector of bits
that is shifted, say, to the left, one bit at a time, and the bit shifted out is combined
with other bits in the register to form the rightmost bit.

The uniform random number generator used in this design is called Tausworthe
URNG [22], which is described by the pseudo-code shown in Fig.5. Although
traditional LFSRs are often sufficient as a uniform random number generator
(URNG), Tausworthe URNGs are fast and occupy less area. Furthermore, they
provide superior randomness when evaluated using the Diehard random number
test suite.

Mersenne Twister

A very popular uniform random number generator, called the Mersenne Twister
[23], is based on a recurrence [24] that has approximately 100 terms in the
characteristic polynomial of a matrix A. Mersenne Twister has a period of 219937 — 1
and 623-variate uniformity. The Mersenne Twister algorithm generates a sequence
of word vectors, which are considered to be uniform pseudo-random integers
between 0 and 2" — 1. Dividing by 2" — 1, each word vector can be a real
number in [0, 1].

A Mersenne prime is a number with the restriction of 2"*~" — 1. For a word x
with w bit width, it is expressed as the recurrence relation:

xk+n:xk+m@(XZ|Xi+l)Ak:(),l,... (6)

44 X. Tian and K. Benkrid

unsigned int so, si, s2, b;

unsigned int taus()

{
b = (((so << 13) " s9) >>19);
so = (((so & OXFFFFFFFE) << 12) " b);
b = (((s1 <<2) "~ s1) >>25);
s1= (((s1 & OXFFFFFFF8) << 4) " b);
b=(((s2 << 3) " s2) >> 11);
s2 = (((s2 & OXFFFFFFF0) << 17) " b);

return so © s1 2

Fig. 5 Tausworthe URNG algorithm

With | as the bitwise or and @ as the bitwise exclusive or (XOR), x,,x; being x
with upper and lower bitmasks applied. We choose a form of the matrix A so that
multiplication by A is very fast:

Asz(0 b1) (7
ay—1 (Gw—2,...ap)

with I, as the (n — 1) x (n — 1) identity matrix (and in contrast to normal matrix
multiplication, bitwise XOR replaces addition). The rational normal form has the
benefit that it can be efficiently expressed as:

A= shl.ftrt.ght(x) ¥f x=0)
shiftright(x)®a ifxp=1
where
x= () k=0,1,...)

where a = (ay—1, Gpw—2,--,00), X = (X1, Xy—2,...X0)-

Each generated word is multiplied by a suitable w x w invertible matrix 7 from
the right to improve k-distribution to v-bit accuracy. For the tempering matrix x —
z=xT, we chose the following successive transformations:

y=x®(x>>u) (10)
y=x®(y<<s)&b (11

Monte-Carlo Simulation-Based Financial Computing. .. 45

y=x®(y<<1)&e (12)
y=x®(x>>1) (13)

In order to improve lower bit equi-distribution, we add the first and last transforms.
The coefficients for MT19937 (the commonly used variant of Mersenne Twister,
which produces a sequence of 32-bit integers, and has a period of 2!°°37 — 1) are:

(wyn,m,r) = (32,624,397, 31)
a = 9908BODF
u=11

(s,0) = (7,9D2C56801¢)
(t,¢) = (15,EFC60000¢)
=18

Figure 6 gives the pseudo code of MT19937. Mersenne Twister implementations
cannot be parallelized across parallel computing cores simply through changing the
initial seed for each core as this does not provide uncorrelated sequences on each
generator sharing identical parameters. To solve this problem and enable Mersenne
Twister parallel implementations, the authors of MT19937 developed a library for
the dynamic creation of Mersenne Twister parameters. This library receives user’s
specification such as word length, period, size of working area, and a process ID, so
that ID number is encoded in the characteristic polynomial of Mersenne Twister.

The process of generating Mersenne Twister numbers can be separated into the
following 4 steps:

* Generating the tempering matrix for each computing core based on the given
word length, size of working area, and process ID.

* Initializing the generator based on the given seed number.

* Generating the untempered numbers.

e Tempering.

After an initial feasibility analysis, we noticed that the first two steps consume the
most of the hardware resources, but the least computing time: both of these two steps
only run once at the beginning of the generation, and this time does not increase
with the length of the random sequence. Moreover, the following two steps only
require shift and XOR operations which consume relatively few logic resources
on FPGA. The output of the first step is the 12 parameters needed by steps 3 and
4, and the output of the second step is 624 initialized numbers. However, since
we target a parallel FPGA machine assuming the same bitstream on each FPGA
node, each FPGA needs different initial numbers. There are two methods to achieve
this: generate the initial numbers on each FPGA in the first stage using a different

46 X. Tian and K. Benkrid

// Create a length 624 array to store the state of the generator
int[0..623] MT

int index =0

// Initialize the generator from a seed
function initializeGenerator(int seed) {
MT[0] := seed
for i from 1 to 623 { // loop over each other element
MTT[i] := last 32 bits of{ 1812433253 * (MTT[i-1] xor (right shift by 30 bits(MT[i-1])))
£ i) // 0x6c078965
¥
}
/* Extract a tempered pseudorandom number based on the index-th value, calling
generateNumbers() every 624 numbers */
function extractNumber() {
ifindex =0 {

generateNumbers()

int y := MT[index]
y =y xor (right shift by 11 bits(y))
y =y xor (left shift by 7 bits(y) and (2636928640))
1/ 0x9d2c5680
y =y xor (left shift by 15 bits(y) and (4022730752)) // Oxefc60000

y :=y xor (right shift by 18 bits(y))

index := (index + 1) mod 624

return y

}

// Generate an array of 624 untempered numbers

Fig. 6 Pseudo-code of MT19937

seed; or we can generate the initial numbers on CPU, and then transfer them to
the FPGAs’ BlockRAM. The latter needs 624 data to be transferred through the
CPU-FPGA communication or even more if we instantiate more than one simulation
core on one FPGA, which will consume considerable communication time. Hence,
we chose to generate the initial numbers on FPGA at the expense of a slight resource

Monte-Carlo Simulation-Based Financial Computing. .. 47

Fig. 7 Mersenne twister Seed

random number generator
v

Initialization

[|

Dual Port Dual Port
RAM1 RAM 2
624 x 32 624 x 32

Parameters ke _T e

raddr rdata
| l wdata waddr l
| |

Generating
—) untempered

numbers

!

—) Tempering

MT l
numbers

overhead (mainly one multiplier for each core). The architecture of a Mersenne
Twister random number generator core is hence given in Fig. 7.

Based on the Eqgs. (8) and (9) we have to read two numbers from the BlockRAM
at step 2 each clock cycle. To pipeline the random number generator, two block
RAMs are needed: one is for x; and the other is for x,,. Note that we can pre-compute
the parameters and hardwire them to each Mersenne Twister core.

Sobol Random Number Generator

The theory of Sobol numbers starts with modular integer arithmetic. Two integers i
and j are called congruent with respect to the modulus m, i.e.

i2 j mod m (14)

if and only if the difference i — j is divisible by m. For m being prime, the
combination of addition and multiplication modulo m, plus a neutral element with

48 X. Tian and K. Benkrid

respect to both, is also called a finite commutative ring which is isomorphic to a
Galois Field with m elements, GF[m]. A polynomial P(z) of degree g,

g .
P(z) =Y a7, (15)
)

is considered to be an element of the ring GF[m, z] of polynomials over the finite
field GF [m] if we assume all of the coefficients ay, to be € GF[m]. A polynomial P(z)
of positive degree is considered to be irreducible modulo m if there are no other two
polynomial Q(z) and R(z) which are not constant or equal to P(z) itself such that:

P(z) 2

0(z)R(z) mod m, (16)
An irreducible polynomial modulo m in GF[m, z] is the equivalent to a prime
number in the set of integers. The order of a polynomial P(z) modulo m is given
by the smallest positive integer g for which P(z) divides z, — 1, i.e.

g =inf{q'|27 — 12 P(z)R(z) mod m} (17)
q

for some non-constant polynomial.

To construct a Sobol sequence, we initially construct a vector of numbers, known
as direction numbers, of word length w which will serve as a base for the calculation
of the Sobol numbers. We need a direction number for each digit, in base 2, of the
numbers that will be used in the sequence. In our case, we used 24-bit fixed number
representation for our implementation (i.e., w = 24). The dimension will be indexed
by k=1,2,... D. The construction of direction numbers is sketched below.

Given a series of integers aj, as, ...aq— that are zero or one, the primitive
polynomial modulo 2 of degree d is defined as:

P:xd—l—alxd*l+a2xd72+---—|—ad,1x+1 (18)

For each dimension k, a particular primitive polynomial is chosen and a series of
integers, my;, dy <i<w, is generated, starting from the following recursion with dj
terms, where d is the degree of the polynomial associated with the kth dimension:

2 &1
my; = 2ag 1my i1 S 2°agomy ;2D B2 ag g 1My i—g11

O Q% my ;g ©myi—g,) (19

for k =1, 2,...D, where @ represents the bit to bit sum, XOR (exclusive OR),
applied on the base 2 representation of the integer my;. It is necessary to supply the dj
initial values of my; in each dimension. We used the simple method described in [25]
i.e. use a separate pseudo-random number generator to draw uniform variates from

Monte-Carlo Simulation-Based Financial Computing. .. 49

(0, 1) and initialize as follows: draw uy; from a separate uniform random number
generator such that:
Wy = int[ukl X 21] (20)

is odd, and set:
mk[:WleZbil forlzl,---dk (21)

The following step is to construct the Sobol numbers using the direction numbers.
The nth Sobol number of kth dimension can be obtained from the (n — 1)th using
the following equation:

doa2
Yok = my ;1 { jth bit(counting from the right) of in teger is set} (22)
j=1

However, if we realize it using Gray code instead of using the binary representation
of the sequence counter n directly, (18) can be re-written as:

Yk = Y(n—1)k ©my; {jth bit is the rightmost zero of n — 1} (23)

where my; is the direction number associated with the rightmost zero in the binary
representation of n — 1. Hence, the nth Sobol number for kth dimension can be
obtained from the (n — 1)th using just one direction number.

The architecture of our Sobol sequence generator is shown in Fig. 8. The black
block represents a flip-flop. The architecture is a straightforward implementation
of the algorithm above. As the generation of each Sobol number needs the number
produced in the last cycle, we have to store the last Sobol number according to
Eq. (23). Another point that needs to be clarified here is that since the XOR operation
is applied between the direction number and the last Sobol number, we have to store
the previously generated Sobol numbers for each dimension. In the case of a 100-
day simulation, we have to keep 100 Sobol numbers (in a dual port RAM as shown
in Fig. 8). The random number generator picks the Sobol number of the last path of
the next day and pushes the current Sobol number in the RAM in each clock cycle.

After building the low-discrepancy numbers, we have to separate them into
several sub-streams to implement the distributed Quasi-Monte Carlo simulation.
There are two possible approaches of partitioning [26]:

Blocking: disjoint contiguous blocks of overall length / of the original sequence
are generated by separate processing elements (PEs). This is achieved by simply
using a different starting point on each PE (e.g. PE;, i =0,...,p — 1, generates the
VECLOTS Xif, Xif 415 Xil 425 -+ +» Xil +1—1)-

Leaping: interleaved streams of the original sequence are generated by the PEs.
Each PE skips those consumed by other PEs (leap-frogging) (e.g., PE;, i =0, ...,
p — 1, generates the vectors x;, Xt p, Xi42p, Xit3ps -+)-

We adopt the blocking method to perform the partitioning in our implementa-
tions. In it, the separation of a Sobol stream can be realized by using a different
initial number in each core as depicted in Fig.9. Apart from the separation in a

50 X. Tian and K. Benkrid

Initial Number Days Number
Integer
Caculation
\ 4
\ 4 \ 4
Read
Right-most- Dimension Address Dual port
zero Search Number D> RAM
Caculation
(100 x
| | 24)
Write Address|
|
v v (20
Numbers)
Direction
Number
Address
Caculation
Previous
Direction Number Sobol Number
Address
\ 4
Single port
RAM o
XOR
(2400 x 24) Direction Number
(Direction Numbers)

Sobol Number

Fig. 8 Architecture of our Sobol sequence generator

single FPGA, or say, node, we have to separate the sequence twice, in the case of a
multi-FPGA implementation. In that case, two levels of partitioning are necessary.

The architecture is different from the work mentioned in [10]. We parallelize the
Sobol RNG by separating the whole sequence to several sub-sections. This is done
by choosing a different initial number for each RNG, which can be seen in Fig. 9.
This can be seen as blocking method.

Note finally that since Sobol sequence numbers are always integer numbers, the
same module can be used for any subsequent processing arithmetic type, e.g., fixed
or floating point.

4.1.2 Gaussian Random Number Generator

As the random variables required in Monte-Carlo simulations follow the Normal
distribution, the uniform variables need to be converted to Normal random variables.

Monte-Carlo Simulation-Based Financial Computing. .. 51

Initial number
for each node

+0 +2’mx 1 +2’"mx2 | e e o | +2"mx n
llnitial Number lInitial Number lInilial Number llnitial Number
Sobol Sobol Sobol .o o Sobol
RNG RNG RNG RNG

w1
{X1, X, .., Xorm}

{X1+2Am, X2+2Am. ey X2Am+2Am}
{Xi+rmx2, Xo+2'm x 2, .., X2'm+2'm x 2}
{X1+2Am Xxn, X2+2Am Xn, ..., X2Am+2Am X n}

Fig. 9 Parallelism of random number generation

In this section, two methods of conversion will be introduced, namely the inverse
cumulative distribution function method (ICDF) and the transformation method.

ICDF

For a random variable X, the cumulative distribution function (CDF) is the function
Px defined by:

Px(x) =Pr(X <x) (24)
where Pr(A) represents the probability of the event A. Two important properties are:

the CDF is non-decreasing, and it is continuous from the right. Particularly, the CDF
and ICDF of Normal distribution are:

y
Fy) = ! / e(—(=1?%/20%) g (25)
(e 27[00

f@ = (Sluo))| 26)

Figures 10 and 11 show the CDF and ICDF of the standard Normal distribution (with
mean 0 and variance 1), respectively. As we can see in Fig. 11, if a uniform variable,

52 X. Tian and K. Benkrid

Empirical CDF

0.9 //

L - e T T ATTTITarer

0.7

0.8

Fix)
o
o

0.4

0.1

&2
A

-2 0 2 4]

Fig. 10 CDF of standard normal distribution

[

flx)
[=]

| - R BREEE s SRR PR cansilenmenlisanns s :

Fig. 11 ICDF of standard normal distribution

Monte-Carlo Simulation-Based Financial Computing. .. 53

’ (\(\qmmm

10 F i

Logarithmic Error

14 | 4

Fig. 12 Logarithmic error of ICDF

which is in the interval of 0 and 1, is the input of the ICDF, the output will follow the
Normal distribution. As there is no closed-form for the ICDF, approximation must
be adopted in the calculation. Piecewise polynomial approximation is used in this
work.

We use a one degree piecewise linear approximation with 80 subsections used
between 0 and 0.5 (since the ICDF is an odd function if shifted to the left by 0.5, we
only need to calculate its values from 0 to 0.5). The coefficients of the function are
pre-computed and stored in a single port RAM. Figure 12 gives the logarithmic error
(The logarithmic error is defined as: LogE rr = logo|LinearApproximationResult —
GoldenRe ferenceValue|) between our ICDF hardware core, using 26-bit fixed point
arithmetic, and our golden reference from Matlab’s ICDF function. The worst error
is around 1072,

We use two goodness-of-fit tests to check the normality of the Gaussian noise:
the chi-square (y?) test and the Kolmogorov—Smirnov (K-S) test.

* Chi-Square test:

The Chi-Square test quantizes the x axis into k bins, and then calculates the actual
number of samples appearing in each bin. Next, we compare this number with the
number of samples which should appear in each bin based on a specific distribution
and get a single number. This number can represent the overall quality metric.
For example, if n is the number of observations, p; is the probability that each

54 X. Tian and K. Benkrid

observation falls into category /, and Y; is the number of observations that actually
do fall into category i. The Chi-Square statistic is given by

ooyt

i=1

o K-S test:

The K-S test tries to determine if two datasets differ significantly. It quantifies the
distance between the empirical distribution function of the samples and the cumu-
lative distribution function of the reference distribution. The empirical distribution
function F;, for n independent and identically distributed random variables X; is
defined as:

1 n
(x) = z IX,'SX
niz
where Iy;<, is the indicator function, equal to 1 if X; < x and equal to O otherwise.
The K-S statistic is then given by:

Dy, = sgp|F,,(x) —F(x)]

where sup x is the supremum of the set of distances.

Both of the tests will give p-values for the outputs. The general convention is to
reject the null hypothesis—that the samples are normally distributed if the p-value
is less than 0.05. Results show that the p-value of samples from our design is more
than 0.05.

Transformation

A very crude transformation method to construct normally distributed samples is
to add up 12 uniform variates, and subtract 6. This method is the Central Limit
Theorem applied to a sample of size 12. It is a poor approximation and always
slower than other methods. Another way to transform the uniform variables is
the Box—Muller transformation [27]. If u and v are independent standard uniform
variables in (0, 1), a pair of independent Normal variables x and y can be generated
using

x =V —1lnusin(27v)
y = V—1lnucos(2xv) (27

One problem of Box—Muller transformation is that it cannot be used for converting
the low-discrepancy numbers such as Sobol numbers.

Monte-Carlo Simulation-Based Financial Computing. ..

Fig. 13 Gaussian noise
generator architecture Tauswoﬂhe Tausworthe
Uniform Random Uniform Random
Number Number
Generator Generator
Logarithm &
Square Root g0 = sin(2nu1)
Unit g1 = cos(2mnu1)
Sqrt(-2xIn(u0))

The Box—Muller method is conceptually straightforward. Given two independent
realizations (#; and u) of a uniform random variable over the interval [0, 1), and a

set of intermediate functions f, g; and g; so that:

fur) = /=2 x1In(ur)
g1(uz) = sin(2muy)
g2(uz) = cos(2muy)

x1 = f(ur)gi(u2)

x2 = f(ur)g2(u2)

u
u

Then providing two samples of a Gaussian distribution N(0, 1), x; and x,.

(28)
(29)
(30)
€29
(32)

Based on this algorithm, the corresponding hardware architecture is given in

Fig. 13.

56 X. Tian and K. Benkrid

Error analysis

-1 T T T T T T T T T

5 N i

Logrithmic error
(6]

_9 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1
X

Fig. 14 Logarithmic error of f(u;) = y/—2 X In(x)

Logarithm and trigonometric functions are computed using the piecewise linear
approximate method [28, 29]. The logarithm errors of both functions are shown in
Figs. 14 and 15. We generated 100,000 samples, and the PDF is shown in Fig. 16.

4.2 Financial Computing Models and Their Implementations
on Maxwell

4.2.1 European Option Pricing

The Monte-Carlo method for European options pricing is based the Black—Scholes
model of option price evolution:

2
Sa =Sy <1+ ((u—%) 5t+ce\/5>) (33)

where S,, and Sy are the stock prices at times At and zero, respectively, U is the
expected rate of return of the stock, o is the volatility of the stock price, and € is
random variable with mean O and variance 1.

The simulation process can be described as the following algorithm:

Monte-Carlo Simulation-Based Financial Computing. .. 57

Error Analysis
'2 T T T T T T

10+ 4

Logrithmic error

12k i

14k 4

Fig. 15 Logarithmic error of g; (x) = sin(27x)

For any n > 1, the estimator C’n of the option price is unbiased, in the sense that
its expectation is the target quantity:

E[C))=C=E[e"(S(T)—K)"]
The estimator is strongly consistent, meaning that as n — oo,
¢, — C with probability 1

The algorithm is described by the pseudo-code in Fig. 17.

Note that the simple European option model does not need small time steps to
build the paths. Single big time step can be used for generating the stock price path.
However, as the Monte-Carlo simulation module is the basic part of all the other
option pricing engines, in which small time steps must be used, the implementation
of European option pricing model will use the small time step.

The European option pricing engine comprises an LSFR uniform random gen-
erator, a Box-Muller Gaussian random generator and the Monte-Carlo simulation
core with implements Eq. (33). The architecture can be seen in Fig. 18.

The computing core was captured in Verilog and synthesized using Xilinx ISE
9.2i. We increased the number of computing cores until resources run out. Our user
application processor implements 20 Monte-Carlo cores occupying 36144 slices on

58 X. Tian and K. Benkrid

1200
800

Number of random number

Value of random number

Fig. 16 PDF of the generated random variables

fori=1ton
Generate m random samples
fort=1tom

S =S, (I+ (- "72)5r+oe 5 1)

G =¢"(S(T)- K)*

C, = mean(C)

Fig. 17 Algorithm for path generation of European option prices

an XC4VFEX100-10ff1517 FPGA, which has 42176 slices in all; all 160 DSP48s
units are utilized. We set the clock frequency on Maxwell’s FPGA node to 75 MHz.
We implemented our hardware Monte-Carlo simulation solution for European
option pricing on Maxwell. We also ran an equivalent C++ based software solution
on Maxwell and run it on the 2.8 GHz Xeon processors (each with 1 GB of memory).
The execution time of both FPGA and CPU implementations is shown in Fig. 19.

Monte-Carlo Simulation-Based Financial Computing. .. 59

Box-Muller
Random
Number
| MC Core | MC Core 000000 Canarien
Q
|MC Core |MC Core fi
g
(] ® Monte-Carlo
(] ® N Cores Iteration
Y ([J T Core
e
(
1 MC TOP ‘
Wrapper
Processor

Fig. 18 Generic architecture of Monte-Carlo simulation engine4

From Fig. 19, we can see that the computing time decreases linearly as the
number of nodes increases. The reason is that communication time is very limited
during Monte-Carlo simulation: only broadcasting parameters at the beginning of
simulation and gathering results at the end of simulation. As we pipelined the design
and set clock frequency to 75 MHz, our Monte-Carlo computing core finishes one
iteration in 13.3 ns. As the Input/Output and communication overheads are limited,
we estimate the overall computing time to be:

ComputingTime = ClockPeriod X (NumO fPaths x NumO fDays)
—(NumO fCores x NumO fNodes) (34)
Take the result of a 32 nodes experiment as an example: the clock period is 13.3 ns;

the number of paths is 2!7 x 10 = 1.31 x 10°; the number of days is 100; the number
of cores per FPGA is 20, and the number of nodes is 32. This gives us

ComputingTime = 13.3 x (1.31 x 10° x 100) — (20 x 32) ~ 2.731 x 10°ns (35)
Overall, the FPGA implementations are 750x faster than the equivalent software

implementations. It is worth mentioning, however, that our software implementation
was not optimized on the Xeon processors.

60 X. Tian and K. Benkrid

B FPGA(sec) O Software(sec)

80 -

60 A

40 -

Running Time

20 Y

0 -

1 4 8 16 32

B FPGA(sec) 0.0874)0.0219| 0.011 |0.0056 | 0.0028
O Software(sec) |65.723| 16.52 |8.2407 |4.1088 '

Number of Processor:

[m FPGA B Software|

Logarithimic time

1 4 8 16 32
Number of Processors

Fig. 19 Running time of C 4+ & FPGA implementation
4.2.2 Asian Option Pricing

In Asian options, the payoff is determined by the average underlying price over
some pre-set period of time. Hence, an Asian option can be calculated as:

CasianCall = max(O,San — K)
CasianPut = max(O,K - Savg)

Monte-Carlo Simulation-Based Financial Computing. .. 61

Box-Muller
Random

Number
MC Core| | MC Core| @ Q@@ @O@ Generator

o o =~ Monte-Carlo
[) ([J Tteration
o (4 N Cores Core
) ® ||
2
2
— =
Wrapper 5
)

E Post
Processing

Processor

EaliE]
uond
Output

enable

Fig. 20 Architecture of Asian option simulation engine

The average of S can be obtained in many ways. In the continuous case, this is
calculated through an integral:

or in the discrete version:

Save =

Il
<

There is also a type of Asian options with geometric average:

Save = €Xp <% | /0 Tln(S(t))dt>

From the characteristic of the Asian option, we can see that the Asian option has a
lower volatility than the European option. Hence, it is less risky and cheaper than
the European option. The Asian option is arguably more appropriate than regular
options for meeting some of the needs of corporate treasurers.

In our work, we mainly dealt with the discrete version of the average. From the
hardware point of view, the modification implies adding an accumulator (which is
within the MC core) and divider after the Monte-Carlo simulation core as shown in
Fig. 20.

With the extra divider, the Asian option hardware simulation engine was of
600x faster than the equivalent software implementation. This implementation is

62 X. Tian and K. Benkrid

configured as the same wordlength, clock frequency, and the number of computation
kernels as the European option pricing model.

4.2.3 The GARCH Model

One assumption in the Black—Scholes model that is not always true in practice is the
assumption that volatility is constant. Indeed, practitioners often find it necessary
to change the volatility parameter when using the Black—Scholes model to value
options. In the case where the stock price and volatility are correlated, there is no
simple solution to the model equations and Monte-Carlo-based simulations often
become necessary.

One technique for modeling volatility that has become popular is Generalized
Autoregressive Conditional Heteroskedasticity—GARCH model [30]. The most
commonly used GARCH model is GARCH (1, 1) where the volatility is given by
the following equation:

of = 6o+ aci | +Bo7 A7 (36)

Here o, and 3 are constants which can be estimated from historical data using
maximum likelihood methods. oy is the volatility of the stock price at time 0, o;
and o;_ are the volatilities at time iAf and (i — 1)A¢. A is a random variable with a
normal (Gaussian) distribution with a mean of zero and a standard deviation of 1.0.
Notice that the random variable in the GARCH model is different from the one used
in the describing the evolution of stock prices. The two random variables represent
two independent stochastic processes.

For options that last less than 1 year, the pricing impact of a stochastic volatility
is fairly small in absolute terms. It becomes progressively larger as the life of the
option increases.

The GARCH model has only one extra module compared to the European pricing
engine implementation, namely a stochastic volatility model implementation. The
architecture is depicted in Fig. 21.

We captured our hardware architecture using Verilog-HDL and synthesized it
using Xilinx ISE 9.2i. We could fit 11 Monte-Carlo cores on one single FPGA
chip. These occupied 39,466 slices on an XCV4FX100-10£f1517 FPGA, which has
42,176 slices overall (the word length is configured as 26 bits). Besides, all 160
DSP48s units were utilized. The peak clock frequency of the core is 53 MHz. We
set the clock frequency on the Maxwell’s FPGA nodes to 50 MHz.

Figure 22 gives the execution time of the GARCH option pricing model on
the Maxwell machine using an increasing number of nodes. This is shown for
our FPGA implementation as well as for an equivalent software implementation
running on the 2.8 GHz Xeon processors. In both cases, the execution time decreases
linearly as the number of nodes increases. This is because inter-communication time
is negligible compared to the computing time. Indeed, the only instances where
communication between the host software and the Monte-Carlo cores (running on

Monte-Carlo Simulation-Based Financial Computing. .. 63

Module

N’

Box-Muller
Random |
Number | Gaussian Noise
ccccoe Genertor
® ® -~
o ® Monte-Carlo GARCH
o (4 N Cores ITteration q
o ([
Y ([
[[J

| Core =
e

MC_TOP o 22
% a2
Wrapper 8% 85
Post
Processing
ER
jor =}
Processor =S
S 3

Fig. 21 Generic architecture of GARCH model simulation engine

FPGA or on the Xeon processors) is needed is when parameters are broadcasted to
the cores at the beginning of the execution, and when results are gathered from the
cores at the end of the simulation. Compared to software, our FPGA implementation
results in a 340x speed-up. It is worth mentioning that this speed-up figure is
independent of the number of nodes (FPGA/CPU) used.

The reason behind the high speed-up figure of the FPGA implementation, despite
the huge difference in clock frequency (S0 MHz for the FPGAs compared to
2.8 GHz for the Xeon’s) is due to the high level of process parallelism (11 cores
running in parallel on each FPGA device) as well as the high degree of pipelining
used within each core.

4.2.4 American Option Pricing

As mentioned in Sect.2, American options are call or put options that can
be exercised at any time up to the expiration date. After generating the paths of
the stock price, using the same approach as the simulation of European options,
we need to go backward to find the best day to exercise the option. There are two
different situations in the decision-making procedure: at the final exercise date, the
optimal exercise strategy for an American option is to exercise the option if it is in
the money; however, prior to the final date, the optimal strategy is to compare the
immediate exercise value with the expected cash flows from continuing, and then
exercise if immediate exercise is more valuable [31]. Thus, we can see that the
strategy to optimally exercise an American option is to identify the conditional

64 X. Tian and K. Benkrid

45
L1
f%\ 40
g 351"
o
& 30 1
2 2
E
o 20 -/
£
g 15
[+ 10 _/
547
0l ik
2
|l FPGA(sec) 0.1311 0.0329 0.0165 0.0083 0.0042 |
o Software(sec) | 45.1392 | 11.3257 | 56591 2.8256
Number of Processors
6
g B FPGA(sec) O Software(sec)
T
2 5
E_ —
3] A
= 4 |
T
E
]
28 31 -
£s
c
2
e 27 —
£
=
x
SRR —
o
-
0 T T T T
1 4 8 16 32

Number of Processors

Fig. 22 Execution time of the GARCH option pricing model

expected value of continuation. We use the cross-sectional information in the
simulated paths to identify the conditional expectation function. This is done by
regressing the subsequent realized cash flows from continuation on a set of basis
functions of the values of the relevant state variables. The fitted value of this
regression is an efficient unbiased estimate of the conditional expectation function
and allows us to accurately estimate the optimal stopping rule for the option.

Here we use a simple example to depict the least-squares regression. A more
detailed description can be found in [31]. Consider an American put option on a
share of non-dividend-paying stock. The put option is exercisable at a strike price of

Monte-Carlo Simulation-Based Financial Computing. .. 65

Table 1 Stock price paths Path =0 t=1 t=2 t=3
1 1.00 1.09 1.08 1.34
2 1.00 1.16 1.26 1.54
3 1.00 1.22 1.07 1.03
4 1.00 0.93 0.97 0.91
5 1.00 1.11 1.56 1.52
6 1.00 0.76 0.77 0.90
7 1.00 0.92 0.84 1.01
8 1.00 0.88 1.22 1.34
r[.'able 2 Cash-flow matrix at Path =1 =2 =3
time 3
1 - - 0
2 - - 0
3 - - 0.07
4 - - 0.18
5 - - 0
6 - - 0.20
7 - - 0.09
8 - - 0
Table 3 Regression at time 2 Path Y X
1 0.00 x 0.94176 1.08
2 _ _
3 0.07 x 0.94176 1.07
4 0.18 x 0.94176 0.97
5 _ _
6 0.20 x 0.94176 0.77
7 0.09 x 0.94176 0.84
8 _ _

1.10 at times 1, 2, and 3, where time 3 is the final expiration date. The riskless rate
is 6%. We use eight simulation paths for the price of the stock, which are shown in
Table 1.

First, considering the situation of not exercising the option before the final
expiration date at time 3, the cash flows realized by the option holder from following
the optimal strategy at time 3 are given in Table 2.

If the put is in the money at time 2, the option holder must then decide whether to
exercise the option immediately or continue the option’s life until the final expiration
date at time 3. From the stock-price matrix, there are five paths for which the option
is the money at time 2. Let X denote the stock prices at time 2 for these five paths
and Y denote the corresponding discounted cash flows received at time 3 if the put
is not exercised at time 2, the regression at time 2 is shown in Table 3.

To estimate the expected cash flow from continuing the option’s life conditional
on the stock price at time 2, we regress Y on a constant, X, and X 2. This
specification is one of the simplest possible; more general specifications are given

66 X. Tian and K. Benkrid

Tabl(? 4 Optimal ea?ly Path Exercise Continuation
exercise decision at time 2
1 0.02 0.0369
2 _ _
3 0.03 0.0461
4 0.13 0.1176
3 _ _
6 0.33 0.1520
7 0.26 0.1565
8 _ _
Table 5 Cash-flow matrix at Path =1 =2 =3
time 2
1 - 0 0
2 - 0 0
3 - 0 0.07
4 - 0.13 0
5 - 0 0
6 - 0.33 0
7 - 0.26 0
8 - - 0
deble 6 Regression at Path X Y
Time 1
1 1.09 0.00 x 0.94176
2 _ _
3 _ _
4 0.93 0.13 x 0.94176
5 _ _
6 0.76 0.33 x 0.94176
7 0.92 0.26 x 0.94176
8 0.88 0.00 x 0.94176

in [31]. Although we Although we only use this specification in the hardware
implementation, a more general implementation can easily be adopted. The resulting
conditional expectation function is E[Y|X] = —1.070 4 2.983X — 1.813X>.

With this conditional expectation function, we now compare the value of
immediate exercise at time 2, given the first column in Table 3, with the value from
continuation, given in the second column in Table4. This leads to the following
matrix in Table5, which shows the cash flows received by the option holder
conditional on not exercising prior to time 2.

Proceeding recursively, we next examine whether the option should be exercised
at time 1. Again we choose the paths where the option is in the money. Let X denote
the stock prices at time 1 for these paths and Y denote the corresponding discounted
cash flows received at time 2 if the put is not exercised at time 1. The regression
data at time 1 is shown in Table 6.

The conditional expectation function at time 1 is estimated by again regressing
Y on a constant, X, and X2. Then we use the estimated conditional expectation

Monte-Carlo Simulation-Based Financial Computing. .. 67

Tabl(? 7 Optimal ear}y Path Exercise Continuation
exercise decision at Time 1

1 0.01 0.0139

2 _ _

3 _ _

4 0.17 0.1092

3 _ _

6 0.34 0.2866

7 0.18 0.1175

8 0.22 0.1533
Tabl.e 8 Option cash-flow Path =1 1= =3
matrix

1 .00 .00 .00

2 .00 .00 .00

3 .00 .00 .07

4 17 .00 .00

5 .00 .00 .00

6 34 .00 .00

7 18 .00 .00

8 22 .00 .00

generated by the regression to calculate the estimated continuation values, as shown
in Table 7.

After deciding the exercise strategy at times 1, 2, and 3, we can get the final
option cash flow matrix as shown in Table 8. Then, the option can be valued by
discounting each cash flow in the option cash flow matrix back to time zero,
and averaging over all paths. This procedure results in a value of 0.1144 for the
American put.

As the main operations in this step are matrix multiplication and inversion, the
size of the matrix is very important to the overall architecture. If the number of
simulation paths is 4,096, and the number of time steps is 100; the size of matrix X
will be 4,096 x 3, and Y will be 4,096 x 1°. Figure 23 depicts the overall architecture
of the regression step.

Our FPGA implementation targeted a Xilinx XC4VFX100-10 FPGA chip on an
Alpha Data ADM-XRC-4FX card, which contains 42,176 slices, 160 DSP48s, and
376 BlockRAM units. We captured our hardware architectures in generic Verilog
and synthesized them using Xilinx ISE 9.2i. To achieve the precision requirement
of 1074, we needed 26 bits fixed point arithmetic for the Monte-Carlo simulation
and 32 bits fixed point arithmetic for the regression part. The resource consumption
breakdown is shown in Table 9. Moreover, 16 off-chip memory banks (4 physical

6 Actually, the LSMC algorithm uses only the paths which are in the money. Hence, the number of
row of X should be less than 4096. However, the memory size on FPGA is fixed, so we exclude
the paths which are not in the money when doing the matrix multiplication. So the number of row
of X can still be seemed as 4096.

68 X. Tian and K. Benkrid

Stock price paths
(off-chip RAM)

4096 x 100
X' x Xy
(3 x4096)x(4096 x 3) (3 x 4096)x(4096 x 1)
> v v
Tyn—1 _
X' X) > XXy
(3 x3)" B x 33 x 1)
Cash flow
matrix
If continuation_value < current_value
Update cash flow matrix
|
Averaging over all
paths
Fig. 23 Architecture of linear-squares regression
Table 9 Resource Slices FFs LUTs RAM DSP48s
consumption breakdown MC 2655 299 3656 24 44
Regression 37,667 18,385 66,384 53 116
Overall 40,322 21,381 70,040 77 160

banks are used, each bank has 52 bits word-length and we double the clock
frequency to the memory) were used for storing the stock price paths, with each
memory bank consisting of 512 x 100 x 26 bits. The peak frequency achieved was
76 MHz, and the FPGA card was clocked at 75 MHz.

To compare the hardware implementation with an equivalent software imple-
mentation, we also wrote a C4++ program for our Least-Squares Monte-Carlo
engine and executed it on a 2.8 GHz Xeon processor-based machine with 1Gbyte
memory. We used a fully optimized library, namely Intel Math Kernel Library
(MKL), to generate the Sobol sequence and convert it to Gaussian noise using
the ICDF method (also provided by the MKL). Single precision is used in the
software implementation. The wall clock time of both FPGA and CPU-based
implementations is shown in Table 10.

Monte-Carlo Simulation-Based Financial Computing. .. 69

Table 10 Calculation time FPGA CPU

on FPGA and CPU (ms) MC 0.683 16.778
Regression 1.368 24.608
Overall 2.051 41.386

Quasi-Random
| | Number

C
Core | 000000 Generator
[2] M€ | eecooe

ISTON
upIsSNED

® o MonteCarlo

[) [J N Cores Iteration

[J ® QMC - Core

- QMC TOP = £ E
Wrapper E °

Post
Processing

Host

Output
enable

Fig. 24 Generic architecture of Quasi-Monte Carlo simulation engine

From Table 10, we can see that a 25x and 18x speed-up can be achieved in the
Monte-Carlo simulation and regression steps, respectively, for an overall speed-up
of the American option pricing calculation of 20x.

4.2.5 Quasi-Monte Carlo Simulation

The path generation part of the Quasi-Monte Carlo simulation core is the same
as the one in the Monte-Carlo simulation core. However, the principle of the
Quasi-Monte Carlo simulation is mainly based on the random number generation
mechanism. Figure24 gives the generic architecture of the Quasi-Monte Carlo
simulation engine.

Hence, we plug a different random number generator (in Fig. 25) to the Monte
Carlo simulation core. Since all of the modules in Fig. 24 have been described in
the previous sections, we here only present the implementation results of the Quasi-
Monte Carlo simulation core and the comparison with other implementations.

Our FPGA implementation targeted the XC4VFX100-10 FPGA chips on the
Maxwell machine. We captured our hardware architectures in generic Verilog and
synthesized them using Xilinx ISE 9.2i. We experimented with bit both fixed and
floating point arithmetic as shown in Table 11, where the resources consumed by
each module in a single Quasi-Monte Carlo computing core (excluding the PCI
interface module) are given.

70 X. Tian and K. Benkrid

Sobol random
number)
_V

generator

LA Liho —~nwaun

\
\

0 0.10.20.3040.50.60.70809 1 T4 3 2 1 1 2 3 4
ICDF Gaussian random numbers

Fig. 25 Gaussian random number generator

Table 11 Resource consumption breakdown

Fixed point Floating point
Arithmetic 26bits 29bits 32bits Single precision
Module name RNG MC RNG MC RNG MC RNG MC
Slices 944 614 945 675 951 777 951 2,790
1,558 1,620 1,728 3,741
DSP48s 1 8 1 9 1 10 1 13
9 10 11 14
RAMI6s 6 0 6 0 6 0 6 0
6 6 6 6
LUTs 1,268 425 1,268 519 1,268 597 1,268 3,037
1,693 1,787 1,865 4,305
FFs 1,375 884 1,375 1087 1,375 1,273 1,375 4,392
2,259 2,462 2,648 5,767
Freq’ (MHz) 211 211 194 180
Precision 10-E4 10-E5 10-E6 10-E6
Max No. of Cores 27 26 24 11

Four RAM16s are used for storing 2,400 direction numbers and one is used for
storing Sobol numbers from previous paths (in the Sobol number unit). We note
that the precision of 32 bits fixed point implementation is the same as the single
precision floating point one. This is largely due to the range of the input data.
Another issue is that since we wanted to optimize the single precision floating
point implementation, we used the most optimized pipeline stage for the floating
point units, which results in a peak clock frequency of 180 MHz. The critical path for
all the four implementation is the multiplier. The costs of addition, multiplication,
and accumulation are 3, 3, and 1, respectively. In addition, the floating point
arithmetic units are generated by Xilinx Core Generator.

Note that as we scaled the parameters of ICDF module, the range of Gaussian
numbers in the 32 bits fixed-point implementation is the same as the single precision
one. Hence we use the 32 bits fixed-point arithmetic for the RNG module in
single precision implementation and converse the numbers to single precision before
inputting to the MC module.

Monte-Carlo Simulation-Based Financial Computing. .. 71

Level 1
Node 1 | Node 2 | Node 3 Node
n in+2"p PP 32
in+2/p x2 in+ 2/’\2}_2 _______
e 06 o e 06 o e 06 o e 06 o
Level 2

Fig. 26 Parallelism of Sobol sequence

Since we targeted a multi-FPGA platform, we use Message Passing Interface
(MPI) [19] for process intercommunication (this is used for all the implementations
in this chapter). Thirty-two FPGA nodes were used on the Maxwell machine, with
each node loaded with the same bitstream and initial option price parameters, but
with different initial numbers for the Sobol random number generator. Indeed, as
explained above, we separate the Sobol sequence at two levels in order to allow for
parallelism (see Fig. 26). As the initial number for each FPGA node is different, we
calculate the initial number in one run of a recurrence and send it to the relative
node using MPI. In each node, we calculate the initial number for each core using
FPGA resources.

The pipelined design means that there is no need to store the random numbers as
one Sobol number and one Gaussian variable are provided by the random number
generator each cycle. Memory access time is hence reduced, and an option price
estimate is generated every clock cycle in each core after the pipeline fills.

Figure 27 shows the execution time of our Quasi-Monte Carlo simulation engine
on the Maxwell machine with different numbers of FPGA processing nodes and
different arithmetic types, measured by the wall time function in MPL. As can be
clearly seen, the execution time reduces linearly with the number of FPGA nodes
used, which is to be expected since inter-process communication is negligible.

The second Quasi-Monte Carlo simulation engine was targeted at an NVIDIA
8800GTX GPU. This device has a core clock frequency of 575MHz and a
shader clock frequency of 1,350 MHz. The memory size is 768 MB, with 900 MHz
clock frequency. We installed the newest Compute Unified Device Architecture
(CUDA) 2.1 [32] development environment on a MacPro workstation with a 64-
bit Linux system, and we implemented the exact same algorithm as in the FPGA
implementation on the GPU. In the GPU, parallelism is mainly obtained through
multi-threading. The thread hierarchy is as follows: the threads can be identified
using a one-dimensional, two-dimensional, or three-dimensional index, forming a

72 X. Tian and K. Benkrid

M 26 bits @ 29 bits B 32 bits M single precision

30.00
25.00
20.00
m
£
@ 15.00
£
|_
10.00 A
5.00 -
0.00 -
8
B 26 bits 7.87 3.87 1.98 1.03 0.64 0.31
@29 bits 9.56 4.66 2.41 1.25 0.78 0.37
@ 32 bits 15.15 7.48 3.81 1.98 1.24 0.59
@ single precision 25.00 13.12 6.67 345 2.17 1.03
Number of FPGAs

Fig. 27 Running time of Quasi-Monte Carlo simulation engine on different number of FPGA
processing nodes

Block (2, 0)
Thread(0, 0) [Thread(l,0) | Thread(2, 0) | Thread(3, 0)

Grid
Block (0, 0) | | Block (1, 0) | | Block (2, 0)

'::> Thread(0, 1) | Thread(l, 1) | Thread(2, 1) | Thread(3, 1)
—

Block (0, 1) | |Block (1, 1) || Block (2, 1)

Thread(0, 2) | Thread(l,2) | Thread(2,2) | Thread(3, 2)

Fig. 28 Grid of thread blocks

one-dimensional, two-dimensional, or three-dimensional thread block, as illustrated
in Fig. 28.

CUDA threads may access data from multiple memory spaces during their
execution. Each thread has a private local memory. Each thread block has a shared
memory visible to all threads of the block and with the same lifetime as the block.
Finally, all threads have access to the same global memory. We used multiple threads
per option to keep the GPU hardware efficiently occupied. We also used multiple
thread blocks per option, in which case we have to get partial sums from each thread
blocks, which in turn means that data transaction from shared memory to global
memory is needed. Hence, we use a second kernel which uses a parallel reduction
operation to compute the sums. A parallel reduction is a tree-based summation of

Monte-Carlo Simulation-Based Financial Computing. .. 73

1000
E A
=]
[}
g 900 e
wa
4 /
(=N
2z 800
=
o
&
< 700 /
5
Ne)
£ 600 7
z | ——— 64 Blocks —8— 128 Blocks —— 256 Blocks
500 : : : :
32 64 128 256 512

Number of threads per block

Fig. 29 Performance of our Quasi-Monte Carlo GPU implementation using different numbers of
threads per block

values which takes log(n) parallel steps to sum 7 values. Parallel reduction is an
efficient way to combine values on a data-parallel processor like a GPU; the larger
the number of paths the better as this helps in hiding the latency of reading input
values randomly.

Given a total number of threads per grid, the number of threads per block, or
equivalently the number of blocks, should be chosen to maximize the utilization
of the available computing resources. With a high enough number of blocks, the
number of threads per block should be chosen as a multiple of 64, as the compiler
and thread scheduler schedule the instructions as optimally as possible to avoid
register memory bank conflicts, and the best results are achieved when the number of
threads per block is a multiple of 64. After several experiments of multiple options
pricing on our NVIDIA 8800GTX device, we found that using 128 thread blocks
gives the best performance. Moreover, the performance is best when the number of
threads per block is 128. Figure 29 shows the performance of our Quasi-Monte Carlo
financial option pricing implementation when using different number of blocks and
threads per block on the GPU.

We also wrote a C++4 program of our Quasi-Monte Carlo simulation engine
on the Maxwell machine and executed it on the Xeon processors. The most time
consuming module of Quasi-Monte Carlo simulation core is the random number
generator. Hence, we used a fully optimized library, namely Intel Math Kernel
Library (MKL) [33,34], to generate the Sobol sequence and transfer it to Gaussian
noise using ICDF method (also provided by the MKL).

Figure 30 shows the execution time of our Quasi-Monte Carlo simulation engine
on the Maxwell machine with different numbers of Xeon processors. As in the
case of FPGAs, here also, the execution time scales linearly with the number of
processors.

74 X. Tian and K. Benkrid

Time(seconds)

Number of CPUs

Fig. 30 Running time of our Quasi-Monte Carlo simulation engine on different number of Xeon
processors

Table 12 Speed-ups of different platforms

FPGA GPU
CPU Fixed-26bits ~ Fixed-29bits ~ Fixed-32bits ~ Single Precision =~ Double Precision
1x 544x 448x 282x 162x 50x

To compare our three different implementation platforms, we ran our Quasi-
Monte Carlo simulation engine to price a single option, using 524,288 simulation
paths, on FPGA, GPU and GPP. This number of path is chosen as the precision can
reach 10~%. Moreover, it is a power of 2, which can benefit from the characteristic
of Sobol numbers. We allot the same number of paths to each Quasi-Monte Carlo
core on FPGA, Xeon CPU, or every thread and threads block on GPU. Although
the optimized numbers of threads and threads blocks come from multiple options
pricing, we still use the same parameters.

Table 12 shows comparative performance results between the FPGA, GPU and
Xeon processor implementations, normalized to the Xeon CPU result. Here, the
FPGA and Xeon implementations are both for a single node experiment, as we only
use a workstation with a single GPU, and not a cluster of GPUs.

We can see significant speed-ups from both GPU and FPGA implementations.
This is due to the high level of parallelism inherent in the Quasi-Monte Carlo
simulation algorithm. Moreover, there is very limited conditional branching in the
program, which is beneficial to both FPGAs and GPUs, especially the latter.

Apart from speed, we should also consider other factors when evaluating
high performance computing implementations e.g. hardware and software cost,
development time, power consumption, maintenance costs, technology maturity.

Monte-Carlo Simulation-Based Financial Computing. .. 75

180
160
140
120
100
80
60
40

20 __
05 B S

0 . 2eERRRRes

Virtex-4 FPGA Intel Xeon CPU NVIDIA 8800GTX GPU

Energy(Joule per option)

Fig. 31 Energy consumption in Joule

In the following, we will address one of these factors in our implementations,
namely: power consumption.

We physically measured the power consumption of our FPGA, CPU and GPU
implementations using a power meter, and deduced the energy consumption based
on the execution times. Figure31 gives the corresponding energy consumption
results for each implementation. We can clearly see that FPGA offers the most
energy efficient implementation, followed by the GPU, and then the CPU. Here
FPGAs are 336x more energy efficient than CPUs, and 16x more energy efficient
than GPUs.

S [Evaluation of Reconfigurable Hardware in High
Performance Financial Computing

The evaluation of computational solutions in the literature is often focused on
computation speed and accuracy. Nevertheless, when evaluating a high performance
computing platform, several other metrics need to be considered. Those metrics
include: the cost of equipment, development time, and power consumption. In fact,
these metrics can all be valued in terms of only one metric: Money. Hence, to
conclude this work in general, we consider the following aspects:

Equipment expense
Development expense
Energy expense

In this section, we perform a comprehensive comparison of the implementation of
a Quasi-Monte Carlo simulation engine using three different computing platforms:
FPGA, GPU, and GPP.

76 X. Tian and K. Benkrid

Table 13 Experimental parameters and results

FPGA GPU GPP
Equipment cost $10,000 $1,350 $1,000
Development time (days) 60 3 1
Development cost $9600 $480 $160
Execution time 0.00787s 0.0858s 4.291s
Speed-up 545x 50x 1x
Dynamic power consumption 20W 95W 40W
Total power consumption 150W 225W 170W
Energy consumption 1.1805J 19.305]J 729.47]
Annual energy cost $197 $296 $223
Number of paths 524,288 524,288 524,288
Paths/second 66,618,551 6,110,583 122,183

5.1 Evaluation of FPGA-Based Monte Carlo Simulation
Engine

In this comparison, we used the following device technologies: Xilinx Virtex 4
VEX100 FPGA, NVIDIA 8800GTX GPU, and Intel Xeon CPU 2.8GHz. Table 13
presents the experimental parameters and results. The equipment cost including
both the expense for the host and the accelerator boards. The development cost
is calculated using the following parameters: eight working hours per day and
$20 per hour payment. The dynamic power consumption is the power measured
at runtime, deducting the idle power. When calculating the energy consumed, we
use the total power consumption. Annual energy costs are based on electricity price
of $0.15 per kWh.

Several figures are plotted below to show the evaluation of the three imple-
mentations. The main metric used here is the number of paths per second, when
normalized using development time, power consumption, and dollar expense. First,
Fig. 32 shows the number of paths per second per development day using different
platforms.

Results show that the GPU implementation gives the best result, followed
by the FPGA implementation, and then the CPU one. Despite FPGA’s high
speed performance, its hardware description programming model is the most time
consuming compared to GPU and CPU programming (which is essentially software
programming), resulting in a lower performance per design effort compared to
GPUs.

Considering power consumption, Fig. 33 presents the number of paths per second
per Watt for each of the three implementations.

As we can see from Fig. 33, the normalized performance per Watt of the FPGA
implementation outperforms the GPU and CPU implementations, respectively.
Moreover, we note that although the power consumption of the GPU implemen-
tation is more than the CPU implementation, the former still beats the latter in terms
of energy efficiency.

Monte-Carlo Simulation-Based Financial Computing. ..

Paths/Sec/Development Day
2,500,000
2,036,861
2,000,000
1,500,000
1,110,309
1,000,000
500,000
0 T T
Virtex-4 FPGA 8800GTX GPU Xeon 2.8GHz CPU

Fig. 32 Number of Paths/Sec/Development day

Paths/Sec/Watt

500,000

450,000 444,124

400,000 -

350,000 -

300,000 -

250,000 ~
200,000 -

150,000 -

100,000 -

50,000 - 27.158

o4 —
Virtex-4 FPGA 8800GTX GPU

Xeon 2.8GHz CPU

Fig. 33 Number of Paths/Sec/Watt

7

Considering the cost, Fig. 34 presents the performance normalized per total cost
(purchase and development cost). As we can see, the normalized performance per
cost of the FPGA and GPU implementations are very close. However, as in the
above two figures, the normalized performance per cost of the CPU implementation

is still much lower than the other two.

78 X. Tian and K. Benkrid

Paths/Sec/$

4,000
3,500
3,000 {
2,500
2,000 -
1,500 -
1,000 -
500 1 105

0 - : . . .
Virtex-4 FPGA 8800GTX GPU Xeon 2.8GHz CPU

3,399 3,339

Fig. 34 Number of Paths/Sec/$ (purchase and development cost)

Development time percentage

Functional
verification

Architecture
design
40%

Arithmetic &
Precision
Analysis
10%

Fig. 35 Development time percentage on FPGAs

From the above results, we note that the main advantage of FPGAs resides in
their energy efficiency. However, the development effort is a major drawback which
impedes FPGAs’ economic advantage. To have a deeper understanding of this issue,
Fig. 35 presents a division of the whole FPGA solution’s development time into its
various steps.

From Fig.35, we can see that the first three steps (namely arithmetic and
precision analysis, architecture design, and verification) take 70% of the whole
development time. This can be reduced in the future with high level design
tools. Moreover, the hardware implementation and testing takes 30% of the whole
development time. This could be reduced through the development of standard
FPGA hardware boards with standard application programming interfaces (APIs).

Monte-Carlo Simulation-Based Financial Computing. .. 79
6 Conclusion

Based on the work presented in this chapter, we can conclude that reconfigurable
technology in the form of FPGAs has significant advantages compared to other
technologies in high performance financial computing as it offers orders of mag-
nitude speed-up compared to general purpose processors. Overall, FPGAs’ main
advantage lies in their high performance per watt, or energy efficiency. However,
FPGAs’ lack of high level programming tools and standard hardware and APIs
is impeding the economic advantage of this technology, especially in comparison
with GPU technology. Higher level programming tools and standard hardware and
API platforms are necessary for further penetration of FPGA technology into high
performance computing.

References

1. J. Dongarra, Trends in high performance computing: a historical overview and examination of
future developments. IEEE Circ. Dev. Mag. 22, 22-27 (2006)

2. P. Marsh, High performance horizons. Comput. Contr. Eng. J. 4248 (2004)

3. S.A. Zenios, High-performance computing in finance: the last 10 years and the next. Parallel
Comput. 25, 2149-2175 (1999)

4. J.C. Hull, Option, Futures, and Other Derivatives, 4th edn. (Prentice Hall, Upper Saddle River,
2000)

5. G.L. Zhang, et al., Reconfigurable acceleration for Monte Carlo based financial simulation, in
Proceedings. 2005 IEEE International Conference on Field-Programmable Technology, 2005,
pp- 215-222

6. D. B. Thomas, et al., Hardware architectures for Monte-Carlo based financial simulations,
in FPT 2006. IEEE International Conference on Field Programmable Technology, 2006,
pp. 377-380

7. G.W. Morris, M. Aubury, Design space exploration of the european option benchmark using
hyperstreams, in FPL 2007. International Conference on Field Programmable Logic and
Applications, 2007, pp. 5-10

8. Q. Jin, et al., Exploring reconfigurable architectures for binomial-tree pricing models. Lect.
Note Comput. Sci. 245-255 (2008)

9. A.R. Choudhury, et al., Optimizations in financial engineering: The Least-Squares Monte Carlo
method of Longstaff and Schwartz, in I[PDPS 2008. IEEE International Symposium on Parallel
and Distributed Processing, 2008, pp. 1-11

10. LL. Dalal, et al., Low discrepancy sequences for Monte Carlo simulations on reconfigurable
platforms, in International Conference on Application-Specific Systems, Architectures and
Processors, 2008, pp. 108-113

11. N.A. Woods, T. VanCourt, FPGA acceleration of quasi-Monte Carlo in finance, in FPL 2008.
International Conference on Field Programmable Logic and Applications, 2008, pp. 335-340

12. J.H.C. Yeung, et al., Map-reduce as a programming model for custom computing machines,
in FCCM ‘08. 16th International Symposium on Field-Programmable Custom Computing
Machines, 2008, pp. 149-159

13. D.-U. Lee, et al., A hardware Gaussian noise generator using the Box-Muller method and its
error analysis. IEEE Trans. Comput. 55, 659-671 (2006)

14. D.-U. Lee, et al., A hardware Gaussian noise generator using the Wallace method, in /EEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2005, pp. 911-920

80

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25

217.

28.

29

30.
31.

32.

33.
34,

X. Tian and K. Benkrid

D.-U. Lee, et al., A hardware Gaussian noise generator for channel code evaluation, in FCCM
2003. 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2003, pp. 69-78

D.-U. Lee, et al., A Gaussian noise generator for hardware-based simulations. IEEE Trans.
Comput. 1523-1534 (2004)

R. Baxter, et al., Maxwell - a 64 FPGA Supercomputer, in AHS 2007. Second NASA/ESA
Conference on Adaptive Hardware and Systems, 2007, pp. 287-294

R. Baxter, et al., The FPGA high-performance computing alliance parallel toolkit, in AHS 2007.
Second NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, 2007

M. Snir, S. Otto, MPI-The Complete Reference. (MIT Press, Cambridge, MA, 1998)

SUN. Sun ONE Grid Engine Administration and User’s Guide [Online]. Available: http://www.
sun.com

J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd edn. (Springer,
New York, 2003)

R.C. Tausworthe, Random numbers generated by linear recurrence modulo two. Math. Com-
put. 19, 201-209 (1965)

M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simulat. 8, 3-30 (1998)

P. Bratley, et al., Implementation and tests of low-discrepancy sequences. ACM Trans. Model.
Comput. Simulat. 2, 195-213 (1992)

. P. Jackel, Monte Carlo Methods in Finance (Wiley, New York, 2002)
26.

K. Entacher, et al., Defects in parallel Monte Carlo and quasi-Monte Carlo in tegration using
the leap-frog technique. Int. J. Parallel Emergent Distributed 18, 13-26 (2003)

G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math.
Stat. 29, 610-611 (1958)

O. Mencer, et al., Parameterized function evaluation for FPGAS, in Proceedings of the 11th
International Conference on Field-Programmable Logic and Applications, 2001, pp. 544-554

. O. Mencer, W. Luk, Parameterized high throughput function evaluation for FPGAs. J. VLSI

Signal Process. 36, 17-25 (2004)

J.-C. Duan, The garch option pricing model. Math. Finance 5, 13-32 (1995)

F.A. Longstaff, E.S. Schwartz, Valuing American options by simulation: a simple least-squares
approach. Rev. Financ. Stud. 14, 113-147 (2001)

Nvidia, NVIDIA CUDA Compute Unified Device Architecture Programming Guide, 2.0 edn.
(NVIDIA Corporation, 2008)

Intel. Inte]® Math Kernel Library Reference Manual [Online]

Intel. Intel® Math Kernel Library Vector Statistical Library Notes [Online]. Available: http://
developer.intel.com/

http://www.sun.com
http://www.sun.com
http://developer.intel.com/
http://developer.intel.com/

Bioinformatics Applications on the FPGA-Based
High-Performance Computer RIVYERA

Lars Wienbrandt

Abstract Sequence alignment is one of the most popular application areas in
bioinformatics. Nowadays, the exponential growth of biological sequence data
becomes a severe problem if processed on standard general purpose PCs. Tackling
this problem with large computing clusters is a widely accepted solution, although
acquaintance and maintenance as well as space and energy requirements introduce
significant costs. However, this chapter shows that this problem can be addressed by
harnessing the high-performance computing platform RIVYERA, based on recon-
figurable hardware (in particular FPGAs). The implementations of three examples
of widely used applications in this area in bioinformatics are described: optimal
sequence alignment with the Needleman—Wunsch and Smith—Waterman algorithm,
protein database search with BLASTp, and short-read sequence alignment with a
BWA-like algorithm. The results show a clear outperformance of standard PCs
and GPU systems as well as energy savings of more than 90% compared to PC
clusters, combined with the space requirements for one RIVYERA of only 3U—4U
in a standard server rack.

1 Introduction

In bioinformatics computer scientists have to deal with the ever-growing amount
of digital biological data stored in large sequence databases. Prominent examples
are NCBI’s Genbank database [22] and the UniprotKB/TrEMBL database [31],
each observing an exponential growth in DNA sequence data and protein sequence
data, respectively. Additionally, high-throughput sequencing data becomes available
with the same growth in speed, strengthening the difficulties of a just-in-time data

L. Wienbrandt (<)
Department of Computer Science, Christian-Albrechts-University of Kiel, Germany
e-mail: lwi @informatik.uni-kiel.de

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 81
DOI 10.1007/978-1-4614-1791-0_3, © Springer Science+Business Media, LLC 2013

mailto:lwi@informatik.uni-kiel.de

82 L. Wienbrandt

analysis. In fact, for many problems related to bioinformatics a single up-to-date
standard PC already requires an unreasonable amount of processing time, although
CPU technology has grown as well.

To keep up with this rising demand on computational power in bioinformatics,
the focus is set to parallel processing. Many core CPUs already provide some degree
of parallelism, which can be extended almost infinitely using computer clusters.
However, with a linear growth in cluster size, the costs for acquisition, energy, and
maintenance grow linearly as well.

This chapter is focused on the massively parallel utilization of FPGAs to
address this problem. FPGAs provide an ASIC-like performance combined with
an extensive degree of on-die parallelism according to its configuration and low
energy requirements. However, the performance of bioinformatics applications is
highly dependent on communication bandwidth and size of available memory as
well. These problems have been addressed with the design of the RIVYERA
architecture. RIVYERA provides the resources of 128 FPGAs (Xilinx Spartan6-
LX150 in RIVYERA S6-LX150) connected by a high-throughput systolic bus
system, and a significant amount of DRAM (512 MB up to 2.5 GB in RIVYERA S6-
LX150) attached to each FPGA. These are ample resources to address most of the
big problems in bioinformatics.

The RIVYERA architecture is shortly introduced in the next section (Sect. 2). In
the following sections, three major applications are presented and implemented on
the RIVYERA architecture: optimal sequence alignment using the Smith—Waterman
algorithm (Sect. 3.1), database searches with BLAST (Sect.3.2), and BWA-like
short-read sequence alignment (Sect. 3.3).

2 RIVYERA S3-5000 and RIVYERA S6-1.X150
Computing Platforms

The hardware platform RIVYERA was introduced in 2008 [25] and includes a com-
pletely reworked communication and memory infrastructure, compared to its prede-
cessor COPACOBANA, introduced in 2006 for applications in cryptanalysis [12].

For the applications described here (see Sect. 3) two specific types of RIVYERA
are used, the RIVYERA S3-5000 for the Smith—Waterman and BLAST applications
(Sects.3.1 and 3.2) and the more recent RIVYERA S6-LX150 for the BWA
application (Sect. 3.3).

The RIVYERA architectures are now developed and distributed by SciEngines
GmbH [26]. They have a common basic structure consisting of two elements,
the in-built multiple FPGA-based supercomputer and a standard server grade
mainboard, running a Linux operating system, e.g. equipped with an Intel Core
17-930 processor with 12 GB of RAM. The FPGA supercomputer is different for
each RIVYERA type. The RIVYERA S3-5000 is equipped with up to 128 user
configurable Xilinx Spartan3-5000 FPGAs, distributed over 16 FPGA cards, each

High-Performance Bioinformatics on RIVYERA 83

Fig. 1 The RIVYERA S6-LX150 system

containing 8 user FPGAs. Each user FPGA is directly attached to a DRAM module
with a capacity of 32MB. In contrast, the RIVYERA S6-LX150 consists of up
to 128 Xilinx Spartan6-LX150 user FPGAs and attaches 512 MB DDR3-RAM to
each user FPGA per default. However, the available memory can be extended with
a memory extension module providing an additional amount of 2 GB DDR3-RAM
per FPGA.

The high-performance bus system offered by RIVYERA is organized as a
systolic chain, i.e. every FPGA on an FPGA card is connected by fast point-to-point
connections to each neighbor forming a ring. All FPGA cards are connected in the
same manner by an additional communication controller attached to each card. The
PC mainboard in RIVYERA is connected via PCle to at least one communication
controller on one FPGA card forming a high-speed uplink to the host.

An intelligent routing scheme for this bus system has been implemented in an
API to ensure usability. The API includes the communication interface for software
and hardware to provide a transparent connection for the developer between host and
FPGA or any two FPGAs by an automatic routing of data packets. The API includes
broadcast facilities, methods for configuring the user FPGAs and a communication
interface for the FPGA-attached DRAM.

RIVYERA allows a small packaging. RIVYERA S3-5000 is packed in a standard
rack mountable 3U housing while the recent RIVYERA S6-LX150 is slightly larger,
but still requires only 4U. For more details on the RIVYERA architecture and its
predecessor COPACOBANA, see Chap. 11. A picture of RIVYERA S6-LX150 is
shown in Fig. 1.

84 L. Wienbrandt
3 Bioinformatics on the RIVYERA Architecture

The following sections address implementations of three major bioinformatics
applications regarding sequence analysis. The well-known Needleman—Wunsch [24]
and Smith—Waterman [27] algorithms to generate an optimal sequence alignment
are presented in Sect.3.1. RIVYERA S3-5000 is able to accelerate these
applications to a speed of more than 3 TCUPS. Protein database searches can be
accelerated significantly as well using the BLASTp implementation for the NCBI-
BLAST [21] framework described in Sect. 3.2. The first bioinformatics application
addressing the recent RIVYERA S6-LX150 architecture directly is the BWA-
like short-read sequence alignment described in Sect.3.3. This implementation,
completely integrated into the BWA [14] framework, again outperforms common
CPU and GPU implementations.

3.1 Optimal Sequence Alignment with Smith—Waterman
and Needleman—Wunsch

Biological sequence alignment deals with the problem of finding the best way to
align two nucleotide or protein sequences to each other. The more equal nucleotides
or similar amino acids face each other in the alignment the higher is the achieved
score. Additionally, gaps (insertions or deletions, sometimes referred to as indels)
are allowed to be inserted with linear or affine costs.

An alignment is considered optimal if its score is the maximum achievable for the
input sequences according to a previously selected scoring matrix. Figure 2 shows
an example for an optimal local alignment of two short nucleotide sequences using
the NUC44 scoring matrix and an affine gap penalty.

Algorithms generating alignments may be classified as heuristic or non-heuristic.
Heuristic algorithms such as BLAST [1] or BWA [14] may produce a large amount
of results but cannot guarantee to find the optimal alignment. Since they generally
outperform non-heuristic types by far, they are commonly used for database
searches (see Sect. 3.2) or short-read alignment (see Sect. 3.3). However, exactness
is necessary for several applications as well. Especially many heuristic algorithms
require an optimal alignment in their postprocessing.

Algorithms providing an optimal alignment are the Needleman—Wunsch [24] and
the Smith—Waterman [27] algorithms. Both work similarly with the difference that
Needleman—Wunsch finds optimal global alignments while Smith—Waterman finds
optimal local alignments. In this section it is demonstrated how RIVYERA S3-5000
is used for the Smith—Waterman algorithm.

3.1.1 The Needleman—Wunsch and Smith—Waterman Algorithms

The Needleman—Wunsch [24] and Smith—Waterman [27] algorithms are capable to
find the optimal alignments of two sequence to each other. In general, the major goal

High-Performance Bioinformatics on RIVYERA 85

A TG CN
Al 5-4 -4 -4 -2
ACGCTTTGAATACAC T|-4 5 -4 —4 =2
Ihl=ll 11 Gl-4 -4 5 -4 -2 G
i - ;) —4=s ap open penalty: —10
GCTATG-~TACAG Cl-4-4-4 5-2 Gap extension penalty: —1
N|-2 =2 =2 =2-~1

Alignment score = 30
Extract of the NUC44
scoring matrix

Fig. 2 Optimal local alignment of the two nucleotide sequences ACGCTTTGAATACAC and
GCTATGTACAG using the NUC44 scoring matrix and affine gap penalty

is to find similar occurrences of one (shorter) sequence in another (long) sequence.
Hence, for convenience, one sequence is referred to as query sequence g while the
other one is called subject or database sequence s. Additionally, g; denotes the
symbol at position i in the query sequence g, likewise s; for the subject sequence s.

In order to find an optimum out of every possible alignment, an alignment matrix
H, . is generated, whereby n and m are the lengths of the query and subject
sequence, respectively. The Smith—Waterman algorithm calculates the matrix cells
according to the following simple scoring function (g denotes a linear gap penalty,
S denotes the scoring matrix, e.g. NUC44):

H;i_1 j-1+S(qi,s;) match/mismatch

Hi_1j+g insertion opening/extension
Hij 1+g deletion opening/extension
0 do not allow negative values

H; ; = max

ey

The Needleman—Wunsch algorithm performs likewise with the only difference
that negative values are allowed in the alignment matrix. Hence, the scoring function
simply misses the comparison with 0 from the maximum condition in (1). For an
affine gap penalty, g becomes dependent on the condition of the gap, if it is either a
gap opening or an extension.

After the calculation of the alignment matrix, a backtracking step is performed
to generate the final alignment. Summarized, the backtracking starts at the lower
right corner H, ,, of the alignment matrix (Needleman—Wunsch) or at a matrix cell
H; ; with the highest value (Smith—Waterman). The respective cell entries already
state the score of the final alignment. The backtracking follows the path through
the alignment matrix which reflects the chain of matrix cells whose values were
taken for the maximum calculation in (1). For each chosen direction, either up, left,
or up-left, the corresponding character or gap is inserted into the final alignment.
The backtracking stops if either the upper left corner Hyo (Needleman—Wunsch)
or a cell with H, ;, = 0 (Smith-Waterman) is reached. For a detailed description of
the backtracking step, the original publications [24, 27] are referred to. Figure 3
illustrates the alignment matrix, the backtracking step and the final alignment of the
example in Fig. 2.

86 L. Wienbrandt

\J| - A ¢c G ¢ T T T G A A T A C A C
-lo o o,0 0o o 0o 0 0o 0o 0 0 0 0 0 O
G|lo o o "El\o 0o 0 0 5 0 0 0 0 0 0 O
c|lo o 5 o0™M0_ 0 0 0 0 1 0 0O O 5 0 5
T|o o o 1 0\15 5 5 3 2 1 5 0 0 1 0
Alo 5 0 o0 o 5\11 1 1 8 7 0 10 0 5 0
T|o o 1 0o o0 5 10\16 6 5 4 12 2 6 0 1
G|o o o 6 0 3 1 6\21«11«10 9 8 7 6 5
T|o o o o 2 5 8 6 11 17 7 15, 5 4 3 2
Alo 5 0 0o 0 1 1 4 10 16 22 12\20 10 9 8
c|lo o 10 o 5 0 0 3 9 6 12 18 10 ‘25 15 14
A|lo 5 0 6 0 1 0 2 8 14 11 8 23 15 20
G|lo o 1 5 2 0 0 1 7 4 10 7 13 19 20 26

Fig. 3 Smith—Waterman alignment matrix and backtracking for the alignment of the sequences
ACGCTTTGAATACAC and GCTATGTACAG (see example in Fig. 2)

3.1.2 Implementation of Smith—-Waterman

Time and memory requirements for the calculation of the alignment matrix are
clearly of complexity O(n-m). This implies long runtimes for large datasets if
processed subsequently, e.g. on a standard PC. For fine-grained parallel processing,
possible on e.g. FPGAs, the runtime complexity can be reduced to O(n) if n > m,
i.e. linear to the database sequence.

Considering a regular biologist’s workflow, it is likely that a huge amount of
alignments have to be processed, whereby the user is not interested in the alignment
itself, but primarily in the quality of the alignment. Hence, it is not necessary to save
the alignment matrix since the backtracking step is omitted if the alignment score
is beneath a certain threshold. This reduces the memory requirements to O(m), i.e.
linear to the length of the query sequence, if the database sequence is assumed not
to be stored in memory.

However, if the final alignment is required anyway, valuable runtime and
memory resources can still be saved. This presumes the matrix position of the
alignment score to be saved as well. Then, the final alignment can be created in
a postprocessing step considering only the necessary subsequences to perform the
complete Smith—Waterman algorithm.

The parallelization is realized as follows, considering a query sequence g of
length m. For every nucleotide or amino acid in the query sequence a Smith—
Waterman cell SWeell is implemented on the FPGA. Hence, each cell has to be

High-Performance Bioinformatics on RIVYERA 87

; J| w T T G A A T

"1 8

A
Sj+2 Sj+l Sj Sj-1
T 1016 G:f_;' i+ | sweell; L5} sweell; % | sweell,, |- S,
a | 1 62 cee .
:ri_gl [21] Hi-2.clk-1 Hi- 1 clk-1 Hiclk-1 His 1 clk-1
T 8
H o max;j-2 max;-| max; maxi4+|

Fig. 4 Smith—-Waterman chain structure and example for the calculation of an alignment matrix
on an FPGA

initialized with the corresponding sequence character before an alignment starts. Its
task is to calculate the values in the row of the alignment matrix corresponding to
its assigned character, i.e. a direct implementation of (1), whereby i, the index of
the row, will be fixed for each cell.

The aim is to calculate a matrix value in every SWcell in every clock cycle. Since
for every calculation three already calculated values are required (up, left and up-left
of the current matrix cell), all SWcells are able to compute an anti-diagonal of the
alignment matrix in every clock cycle if all SWcells are connected in a chain. Then,
the three values are accessed in the following way:

* The upper value H;_ ; is the calculated matrix entry from the previous clock
cycle in the previous row (and therefore “left” neighboring cell).

* The left value H; ;1 is the matrix entry from the previous clock cycle in the same
row (and therefore the same cell as well).

* The upper-left value H; 1 j_ is the matrix entry from two previous clock cycles
in the previous row (left neighboring cell).

Since the processing is accomplished in anti-diagonals of the alignment matrix,
the required database sequence can be streamed through the chain of SWcells
character by character as well. Besides the calculation of (1) each cell has to store the
current maximum matrix entry for the final Smith—Waterman score of the alignment,
and its position to allow backtracking in a postprocessing step. The maximum is
forwarded through the chain as well such that the final score can be determined
at the end of the alignment from the last SWcell in the chain. Figure 4 shows a
calculation step of the alignment matrix and a part of the chain structure.

3.1.3 Performance Evaluation

According to a particular alignment problem, the presented application can be
implemented in several ways. For a short-read alignment experiment, the Smith—
Waterman algorithm has been implemented with an SWcell chain of length m = 100.
The configuration supports 5 nucleotide symbols (&, C, G, T, and N) and a scoring
matrix of 5 bits per entry.

88 L. Wienbrandt

Table 1 Smith—Waterman performance on RIVYERA S3-5000 for DNA and
protein sequence alignment

Architecture DNA/prot. Speed (GCUPS)
RIVYERA S3-5000 DNA 3,050
CLCbio Xeon X3210 @ 2.13 GHz (8 cores) DNA 45
CLCbio Core2Duo @ 2.17 GHz (2 cores) DNA 13
RIVYERA S3-5000 Protein 1,500
IBM QS20 blade (2x CellBE @ 3.2 GHz) Protein 33
CUDASW++2.0 (GeForce GTX280) Protein 17
Sony PS-3 (1x CellBE @ 3.2 GHz) Protein 12

With this configuration, four chains fit onto a single Spartan3-5000 FPGA of the
RIVYERA S3-5000. This sums up to 512 chains available on the whole RIVYERA,
ie. 512 queries to be processed concurrently. Hence, the alignment of a test
set of 1 million Illumina 100bp paired reads against the human genome (hg!9,
3.2 Gbp) required only about 29h. Since Smith—Waterman performance is often
measured in CUPS (cell updates per second), i.e. how many cells of an alignment
matrix are calculated per second, this leads to a speed of 3.05 TCUPS. Out of
numerous available Smith—Waterman implementations, these results were compared
to the speed of a commercial software solution for PCs and clusters provided by
CLCbio [4] in Table 1.

The implementation can easily be adapted to generate protein sequence align-
ments, supporting 24 amino acid symbols and scoring matrix entries of up to 6 bits.
This is sufficient for most available scoring matrices for protein alignments. With an
SWecell chain length of m = 100 again, two chains can still be implemented on one
Spartan3-5000 FPGA, leading to a concurrent processing of 256 queries on a whole
RIVYERA S3-5000 machine. Of course, the performance is expected to be slower
than for nucleotide sequence alignment now, but still 1.5 TCUPS are measured.
Again, for comparison, numerous implementations are available. The RIVYERA
performance was being compared to two other acceleration architectures. One is the
Cell Broadband Engine processor IBM QS20 blade with 2x CellBE @ 3.2 GHz
and Sony PS-3 with 1x CellBE @ 3.2 GHz) [6], the other is a general purpose GPU
(nVidia GTX280 running CUDASW++2.0) [19]. The results are stated in Table 1
as well.

Summarized, the massively parallel FPGA implementation of the Smith—
Waterman algorithm using the RIVYERA S3-5000 outperforms other actual
architectures by far.

3.2 BLAST Database Search

The Basic Local Alignment Search Tool (BLAST) [1] was originally developed
to speed up biological database searches to find sequence similarities, which is

High-Performance Bioinformatics on RIVYERA 89

primarily based on biological sequence alignment. Currently, NCBI provides one
of the most commonly used versions [21], significantly improved by the two-hit
method and a gapped alignment strategy [2]. BLAST generates alignments for
either DNA (BLASTn) or protein (BLASTp) sequences. Several other variations
like BLASTx, tBLASTn, tBLASTx or PSI-BLAST exist, but all with a similar
core algorithm. This section mainly focuses on BLASTp for protein sequence
alignments.

In contrast to the Needleman—Wunsch [24] or Smith—Waterman [27] algorithm
described in the previous section (see Sect. 3.1), BLAST is heuristic. This leads to
a significant runtime reduction with the drawback of losing alignment quality, since
BLAST does not guarantee to find the optimum result. Several enhancements, such
as the two-hit method and gapped BLAST [2], have further reduced computation
time and improved result quality. However, with today’s exponential growth of
databases, BLAST reaches its limits on standard PC architectures especially for
large query sets.

Recent development addresses alternative architectures, e.g. CUDA-
BLASTp [18] utilizing general purpose GPUs with a speedup of up to 6 on an
nVidia GeForce GTX 280 graphics card compared to a single CPU-thread of an Intel
Core 17-920. Others provide single FPGA-based implementations such as Mahram
and Herbordt [20], Kasap et al. [10] and Mercury BLASTp by Jacob et al. [9].
Two approaches are available for multiple FPGAs using the RIVYERA S3-5000
architecture [32, 33], whereby the latter has been developed to remove several
bottlenecks detected in the dataflow of the former design, and will be described in
the following.

3.2.1 BLAST Algorithm

The BLAST algorithm is organized in several steps, which will be explained shortly
in the following. For details, it is refered to the original publications [1, 2].

In the first step, the query sequence is preprocessed to identify its neighborhood.
The neighborhood contains a list of short sequences of size k (k-mers) which are
similar to k-mers of the query sequence, according to a scoring matrix (such as
BLOSUMSG62) and a predefined threshold value. For BLASTp, k is fixed to k = 3.
The value k is fixed, but different for either BLASTn (k = 11) or BLASTp (k = 3).
A k-mer is declared similar to a k-mer of the query sequence if the score of a
direct comparison, calculated according to a scoring matrix (such as BLOSUMG62),
exceeds a predefined threshold value.

The next step simply locates hits, i.e. exact matches of neighborhood words
found in the database sequences. The hits are tested pairwise in the two-hit method
if both hits of a pair hold the same distance to each other in the query sequence and
in the subject sequence. The pair is then referred to as two-hit. To save runtime and
memory the distance between the hits in a pair is bounded to a certain parameter A.
Overlapping hits are omitted by applying the value k as lower bound. The following

90 L. Wienbrandt

Query DCEAAHPEVCTSAQEDRANV
A%

Subject M C/A L HP EV|C TS I|QED|P AN

H 4—2 4—1 —>3

H O

Fig. 5 Example for the ungapped extension of a two-hit in the NCBI BLAST implementation.
The solid rectangles mark the hit pair, the dashed an extension. Arrows indicate the direction and
the attached numbers, the order of the extensions

equation shows the condition for a two-hit whereby sy and s; state the location of
two hits in the subject and g and ¢ their locations in the query, respectively:

k < gi—gqo=s1—50 <A ()

Each two-hit is further examined by an ungapped extension process. Both hits
of a hit pair are extended forward and backward by calculating a similarity score of
the current part of the subject and query sequence. In detail, the similarity score is
firstly calculated for the hit pair itself and the gap between it. Then, the calculation
of the score is extended residue by residue from the first hit of the pair to the left
and afterward from the second hit to the right (in positional order). The calculation
stops for each direction if the score declines a certain cutoff distance below the so
far reached maximum. This method is referred to as X-drop mechanism. The high-
scoring pair (HSP) of this extension, i.e. the two positions where the maximum
score has been reached for each direction, states the result of this process. Figure 5
shows an example.

The last step in the BLAST algorithm states the gapped extension. To introduce
gapped alignment, HSPs are analyzed by a slightly modified version of the
Needleman—Wunsch algorithm [24]. First, the alignment is bound to the positional
range of the ungapped extension, and second, in contrast to the original Needleman—
Wunsch algorithm, the score of the alignment is stated by the maximum cell value
rather than the value of the lower right corner of the alignment matrix. If a traceback
is required to complete the final alignment (depending on the alignment score), it
starts at the matrix cell with the calculated maximum as well. Runtime is reduced as
well by using the X-drop mechanism again, i.e. omitting the calculation of matrix
cell values where the score declines below a certain cutoff distance from the so far
calculated maximum cell value.

3.2.2 Application Structure and Implementation

The implementation of BLASTp for the RIVYERA architecture is divided into
two parts, the hardware and the software part. For transparency, the software is
completely integrated in the original NCBI BLASTp v2.2.25+, including the user
interface. The main and most compute intensive routines performing the core
algorithm have been ported to the BLASTp pipeline implemented on the 128 Xilinx

High-Performance Bioinformatics on RIVYERA 91

I SibeciBufier k
SubjectBuffer

k
HitFinder 5 [QueryBufier
T —
| c
N Ptr Pos Ll Q Ungapped
Wwr| | wr £ o Extender
N
| S T Gapped Extender
I) B— - g o
— T o
— & NW s
HitFinder = | [0 2 cell - =
g L Ungapped 3
— £ 2L Extender &
Lo Ptr Pos N ‘u__' %
LUT LuT :I-: E
- E il
~ QueryBuffer'l' l
- SubjectBuffer k
subject sequence |
ControlUnit / RIVYERA API I

Fig. 6 Structure of two BLASTp hardware pipelines sharing one GappedExtender component

Spartan3-5000 FPGAs of the RIVYERA S3-5000 machine and thus replaced by
a communication interface on the software side. The software is still responsible
for pre- and postprocessing as well as controlling the BLASTp pipelines on the
RIVYERA machine.

A BLASTYp pipeline basically consists of four main components, the HitFinder,
the TwoHitFinder, the UngappedExtender, and the GappedExtender, each repre-
senting one pipeline stage according to the processing steps in the BLAST algorithm
(see Sect.3.2.1). Figure 6 shows an overview of the FPGA implementation with two
BLASTYp pipelines.

The preprocessing of the queries includes the generation of the neighborhood
and, if required, the splitting of long query sequences. For this implementation, a
maximum query length of 1024 — A is supported directly (see (2) for definition of
A, default A = 40), while longer queries are splitted automatically by the NCBI
software routines. After the initialization and preprocessing phase, the database
sequences are broadcasted to the FPGAs as stream while the BLASTp pipelines
search for suitable alignments.

The HitFinder searches for occurences of k-mers of the subject sequence in the
neighborhood, which is a simple look-up in a hashtable, organized in two separate
tables.

Afterward, testing all possible pairs of hits to hold the condition for a two-hit
(see (2)) results intuitively in a quadratic runtime complexity. With an easy strategy,
basically consisting of a storage array for hit positions of a size corresponding to the
query length, the runtime complexity can be reduced to linear.

First, an array of length / = 1024 is required. This corresponds to the maximum
query length plus the parameter A for the bounds of (2). This array stores at position
p the most recent subject position sy to the corresponding query position gg. The
position p is calculated from the following equation:

92 L. Wienbrandt

p = (5o —qo) mod 1024 3)

Before inserting a new position, the content of the array cell is read. If this cell
contains a valid subject position sy, it holds so > s; and:

S0—4qo0 = S1 — 41 (mod 1024) (4)
=4 S0 — 981 = qo —(q1 (rnod 1024) 5)

Assuming so — 51 < A, it follows from (5):

q0—q1 if g0 > qi
e — 6
0 { 1024 — (g1 —qo) if g0 < 1 ©)

The second case (assuming gy < gp) results in:

A > 1024 — (g1 —qo0) @)
= q1—qo > 1024 —-A ®)

This stays in contradiction to the bounds of the query length whichis [= 1024 — A.
Hence, if 59 — 51 < A it directly follows so —s1 = go — q1, and if (2) holds, i.e. k <
so — 51, this result is reported as a two-hit and buffered in a FIFO before processed
further by the UngappedExtender component.

This method might be problematic if hits arrived unordered, i.e. if 51 > sp.
However, this possibility can be counted out since the HitFinder provides hits only in
ascending query positions, followed by an ascending order of the subject positions.

All resulting two-hits are buffered in a FIFO before processed further by
the UngappedExtender. The ungapped extension process conforms to the order
indicated in Fig. 5. In every clock cycle the score of a pair of residues from the query
and the subject sequence is calculated using a scoring matrix, e.g. BLOSUMS62,
implemented in a dual-ported ROM. The process starts with the right hit of the hit
pair and is directed left. The determined score is summed up continuously to the
total score. The X-drop mechanism is implemented by checking the new calculated
score in every clock cycle. If it drops a predefined cutoff distance below the so
far calculated maximum score, the process stops, and the position of the current
maximum score is stored. After finishing the left direction, the extension continues
directed right from the right hit of the hit pair storing a new maximum position.

Finally, both stored maximum positions from each direction form a HSP, which
is reported to the GappedExtender if its score exceeds another predefined threshold.

The UngappedExtender component contains a feedback path, controlling the
elements stored in the preceding FIFO. According to the current progress, a
pending two-hit may already be included in the running extension process. The
UngappedExtender is able to remove such two-hits in advance to prevent the same
extension with different starting points processed several times.

High-Performance Bioinformatics on RIVYERA 93

Fig. 7 Principle of the
gapped extension of a
high-scoring pair (HSP).
White cells in the middle
indicate the HSP, black cells
the calculated cells in the
Needleman—Wunsch
alignment. Arrows with
attached numbers indicate the
direction and the order of the
extension. The extension uses
the X-drop mechanism to stop

O HSP cells
m calculated cells

The GappedExtender component basically performs a modified Needleman—
Wunsch alignment with a banded matrix and a HSP at its center. In contrast
to Mercury BLASTp [9], this implementation is kept close to the one in NCBI
BLASTYp using the X-drop mechanism to stop the extension process. However, the
width of the matrix band is fixed to @ = 64, but the length of the matrix band stays
variable.

To create the alignment matrix with the HSP in the center it is necessary to do
the calculation in two steps. The alignment starts at the center of the HSP and first,
extends backward, using the reverse sequences for Needleman—Wunsch. Afterward,
a forward directed alignment, again starting from the HSPs center, is performed in
the same way. The original HSP is reported to the host software if the sum of both
alignment scores exceed a predefined report threshold. The structure of this process
is illustrated in Fig. 7.

Similar to the chain of SWcells for the Smith—Waterman algorithm (Fig.4 in
Sect. 3.1), the subcomponents of the GappedExtender component basically consist
of @ NWcells connected in a chain. Since the calculation is restricted to a banded
matrix now, a pre-initialization of the chain with the query sequence is impossible.
Instead, the part of the query sequence, which is to be analyzed, is inserted from
the one end of the chain, while the corresponding part of the subject sequence is
inserted from the other end, alternating with every clock cycle.

The calculation of the score of a cell H; ; in the alignment matrix corresponds to
the following equation, similar to (1) in Sect.3.1. In the implementation an affine
gap penalty is used whereby it is omitted here for simplicity (g denotes a linear gap
penalty, S denotes the scoring matrix, e.g. BLOSUMG62):

H;_1j-1+S(qi,s;) match/mismatch
H;j=max{ Hi_1;+g insertion opening/extension C))
Hij1+¢ deletion opening/extension

94 L. Wienbrandt

Sj+2

- NWeell, ,

Jk-1
¢ *°® Hiock-1
ezl

I ii— 1,clk-1

5l
maxj-

Fig. 8 Structure of the NW cell chain implemented in the GappedExtender component

Since residues are inserted alternating from both ends of the NWcell chain, the
calculated anti-diagonal of width @ “moves” alternating rightward and downward
in each clock cycle. Hence, each NWcell requires access to the scores of both
neighboring cells in the chain, calculated in the previous clock cycle. The structure
of an NWcell chain is depicted in Fig. 8.

The gapped extension step in hardware acts as an additional filter to keep the
number of reports small. If a HSP passes the gapped extension filter, the exact
alignment including the backtracking is generated on the host by the original NCBI
routines. This way, valuable software runtime is saved by filtering nearly every HSP
in advance in hardware, which would be omitted by the gapped extension of the host
software anyway.

Before being fetched by the host software, the reports for each FPGA are col-
lected in the attached DRAM. This way, the number of communication interruptions
for the submission of reports during the core process can be kept small.

3.2.3 Performance Evaluation

Targeting the Xilinx Spartan3-5000 FPGAs of the RIVYERA 3-5000 machine, one
FPGA provides the resources to hold two BLASTp pipelines as described above, but
sharing one GappedExtender (s. overview in Fig. 6). This is easily possible, since
the GappedExtender is the most resource occupying component but utilized the most
infrequently as well. Therefore, the width of the matrix band is set to @ = 64. Hence,
a fully equipped RIVYERA S3-5000 is able to process 256 queries concurrently.

The reference system for the performance evaluation was a PC system equipped
with two Intel Xeon E5520 CPUs, each containing 4 cores (8 threads) running
at 2.26 GHz, 48 GB DDR3-RAM, and 64 bit Linux OS. The software is NCBI
BLASTp v2.2.254 with default parameters, BLOSUMG62 scoring matrix and a
varying number of threads (16 and 8, “-num_threads” switch). Three different
query sets from SUPERFAMILY database [30] were tested (proteomes of Arabidop-
sis thaliana, Populus trichocarpa, and human (Homo sapiens)), each set randomly
reduced to 2,335, 3,151, and 1,990 sequences, respectively, such that they contain
about one million residues each. The reference database was the first part of the
NCBI RefSeq BLAST database, release 50, containing 2,996,372 sequences (=1
billion residues).

High-Performance Bioinformatics on RIVYERA 95

Table 2 BLASTDp runtimes (in seconds) of three randomly reduced query sets against part one of
the NCBI RefSeq database
RIVYERA (n FPGAs) 2x Xeon E5520 Mercury CUDA

Query set 128 64 32 16 8 16 thr. 8 thr. BLASTp BLASTp
A. thaliana 353 648 1,106 1,934 3,531 8,301 9,995 3,780* 7,780*
P. trichocarpa 482 808 1,323 2309 4,210 10,226 12,506 5,161* 9,615*
H. sapiens 561 987 1,723 2,817 4,409 9,464 11,602 6,007* 8,026*

The 2x Xeon E5520 reference system runs NCBI BLASTp v. 2.2.25+. The marked (*) runtimes are
estimations calculated from published runtimes extrapolated to the changed database and query set

A
Speedup
—&— A thaliana .
20— ..e- P trichocarpa P
--¥-- H. sapiens v
5 -
10
5
0 no. FPGAs
0 8 16 32 64 128

Fig. 9 BLASTp speedups of RIVYERA S3-5000 with different number of utilized FPGAs vs. 2x
Xeon E5520 (16 threads)

All results are stated in Table 2. It shows that a fully equipped RIVYERA S3-
5000 clearly outperforms the reference with a speedup of up to 23.5, i.e. about 376
against a single CPU thread. Hence, the runtime performance of one single FPGA
conforms to about three CPU threads. Additionally, Fig. 9 illustrates the speedups of
RIVYERA with a different number of utilized FPGAs versus the reference system,
showing an approximately linear increase of speed with an increasing number of
FPGA:s.

The stated runtimes of Mercury BLASTp [9] and CUDA-BLASTp v2.0 [18]
have been linearly extrapolated from the best results in the respective publications.
Due to the lack of hardware for Mercury BLASTp and a non-functional CUDA-
BLASTp on an nVidia GeForce GTX480 GPU, no real measurements could be
made. Since the runtime is extremely dependent on the quality of the query, these
results are only to be seen as a rough estimate. However, regarding these estimations,
RIVYERA still outperforms these solutions as well.

Table 3 shows the energy consumption for the query sets measured with a
customary power measurement device. The measured energy consumption of a fully
equipped RIVYERA is only 590 W. Regarding the energy consumption of 290 W

96 L. Wienbrandt

Table 3 BLASTp energy RIVYERA 2x Xeon E5520

consumption of three 128 FPGAs 16 thr. RIVYERA
randomly reduced query sets

against first part of the NCBI Query set BB W) 20W) 2x Xeon
RefSeq database [23] A. thaliana 51.5Wh 668.7 Wh 7.7%
P. trichocarpa ~ 70.3 Wh 823.8 Wh 8.5%
Homo sapiens 81.8 Wh 762.4 Wh 10.7%
The 2x Xeon E5520 reference system runs NCBI BLASTp
v2.2.25+

by the reference system, up to 92.3% can be saved compared to a PC cluster with
the same performance. Beyond that, the calculation is made without considering a
potentially required cooling system for the cluster.

Regarding quality analysis, a detailed view on a query subset (109 sequences,
28,483 residues) showed 21,918 hits from RIVYERA while NCBI found 22,167
hits. A one-by-one comparison revealed 63 hits (0.29%) were additional results not
found by NCBI, and 312 hits (1.41%) from the NCBI results are not found by the
RIVYERA implementation. Another 24 hits (0.11%) in both sets were differing
only in their alignment positions for the same query and subject sequence. This
indicates that the alignment quality almost equals to the NCBI software. However,
since BLAST is heuristic, small discrepancies in the alignments do not necessarily
imply a difference in quality.

Summarized, due to the ability of an efficient processing of 256 queries at once,
the massive parallelization of BLASTp benefits especially from large query sets.
Regarding a permanent occupation of the machine more than 92% of the required
energy can be saved while keeping almost the same alignment quality as in NCBI
BLASTDP.

3.3 Burrows—Wheeler Alignment

The sheer volume of short read data, produced by current high-throughput
sequencing technologies, state more and more challenge for computers to align
them in reasonable time. An optimal alignment using Smith—Waterman is unfeasible
with standard computers resulting from its quadratic complexity. Several heuristic
alignment algorithms emerged to speed up this process significantly. Many of them
are based on hash tables and prefix or suffix tries, e.g. MAQ [15], SOAP [16] and
BFAST [8]. However, the fastest aligners providing the best quality trade-off appear
to be those based on Burrows—Wheeler transformation [3] and FM-indexing [7],
e.g. Bowtie [13], SOAP2 [17] and BWA [14]. Still, their total runtime on
complete read datasets is too slow to conform with a biologists workflow, although
attempts exist to speed up the alignment using GPUs, e.g. CUSHAW [5] and
BarraCUDA [11]. Harnessing the recent RIVYERA S6-LX150 architecture with
2 GB memory extension, ample resources are available to speed up this process.

High-Performance Bioinformatics on RIVYERA 97

B =CTCCSGTTGAA

X = CATGTATGCC
i S =(10,5,1,9,0,8,7,3,4,6,2)

i’ rotate T last column
O|CATGTATGCCS 10|SCATGTATGCC
1|ATGTATGCCSC 5|ATGCCSCATGT
2|TGTATGCCSCA 1|ATGTATGCCSC
3|GTATGCCSCAT 9|CSCATGTATGC
4/ TATGCCSCATG O|CATGTATGCCS
sjatceescater ST 8|CCSCATGIATG
6| TGCCSCATGTA 7|GCCSCATGTAT
7|GCCSCATGTAT 3|GTATGCCSCAT
8|CCSCATGTATG 4|TATGCCSCATG
9|CSCATGTATGC 6/|TGCCSCATGTA

10{SCATGTATGCC 2| TGTATGCCSCA

Fig. 10 Example for the Burrows—Wheeler transformation of sequence “CATGTATGCC”

3.3.1 BWA Algorithm

The Burrows—Wheeler alignment algorithm (BWA [14]) combines the Burrows—
Wheeler transformation [3] and FM-indexing [7] with a method for inexact search
in the index. It consists of three main steps. The first is the creation of the FM-index
(bwa 1index), the second regards searching the alignment in the generated index
(bwa aln). The last step generates the final alignments from the found positions
in the SAM format (bwa samse/sampe).

Burrows—Wheeler Transformation

The Burrows—Wheeler transformation [3] of a reference sequence X can be
explained in the following way. Let X be the alphabet of characters occurring in
the reference sequence. A character $ ¢ X, defined to be lexicographically smaller
than any other character in X, is added to the end of the reference sequence as “end-
of-sequence” marker. Now, a table of all rotations of the resulting sequence X$ is
created. This table is sorted lexicographically, while the original position of each
entry is stored in an array, which is called the suffix array S. The Burrows—Wheeler
transformated (BWT) sequence B is now defined as B[i] = $ when S(i) = 0 and
Bli] = X[S(i) — 1] otherwise. This can easily be created by concatenating the last
characters of the rotated sequences in the sorted table. Figure 10 gives an example
of the transformation of the sequence “CATGTATGCC.” For details the original
publication [3] is refered to.

98 L. Wienbrandt

Exact Search and FM-Indexing

Searching a subsequence of the reference means identifying an interval [/,7] of
positions in the sorted list where the entries begin with this subsequence. The
original positions in the reference sequence can be obtained from the suffix array
S in this interval. Exact searching equals to the identification of exactly one interval,
while for an inexact search, there could be many. For example, searching the
sequence “ATG” in the example in Fig. 10 leads to the inteval [1,2] referring to
positions 5 and 1 in the original sequence respectively.

The identification of the intervals is simplified with the help of FM-indexing [7].
Let C(a) be the number of characters in the reference sequence X that are
lexicographically smaller than a. Let Occ(a, i) be the number of occurrences of a in
the substring by, . ..,b; of the BWT sequence B. Let W be a substring of X. Now, to
test if aW is a substring of X for any character a, let / and r be recursively defined as

1(aW) = C(a)+ Occ(a,l(W)—1)+1 (10)
r(aW) = C(a)+ Occ(a,r(W)) (11)

whereby /(@) =0 and r(@) = |X]|.

According to Ferragina and Manzini [7], it follows if and only if aW is a substring
of X that /(aW) < r(aW). The number of occurrences of aW in X can then be
determined by the size of the interval |[[(aW),r(aW)]| = r(aW) — I(aW) + 1. For
an efficient processing, the constants C(a) have to be precalculated as well as at
least parts of the occurrences function Occ(a, i) whereby the latter is generally only
precalculated in parts to save memory. Since a read is processed in reverse order,
this procedure is called backward search.

Inexact Search: Backtracking

The inexact search algorithm of this implementation is based on the original BWA
algorithm. The BWT of the reverse (not complemented) reference sequence and
reverse reads are used to test for an occurrence in the reference X.

To introduce mismatches and gaps, several paths in a prefix trie of the reverse X
have to be analyzed. BWA performs a breadth first search to find a suitable path in
this trie. Against this behavior, the method described here uses recursion to perform
a depth first search always starting with the most promising path, i.e. starting with a
path only including matching characters until the first mismatch is found. Then,
backtracking tests alternative paths until either a succesful path is found or the
number of inserted errors (mismatches or gaps) exceeds a certain threshold. In
the latter case, backtracking leads to a previous point where an alternative path
is possible. This way, the required stack size can be bounded for the required
recursions to O(n), whereby n is the length of a read.

High-Performance Bioinformatics on RIVYERA 99

INPUT:
- word W
- error threshold T(i), i€[0,|W]|—1]
OUTPUT:
- set of reports R containing BWT intervals [l,r]
PROCEDURE:
- search (W, i,k,I,r)
if £ > T(i) then
return;
ifi < O then
R = R U {{Lr}
return;
for each a € {A,C,G,T} do
l, = C(a) + Occla,l—1) + 1;
ra = C(a) + Occ(a,r);
// match
if ly[i] < rwli] then
search (W,i—1,k, Iy[i], rw[i]) ;
// mismatches
for each a € {A,C,G,T} and a # W]i| do
if [, < r, then
search(W,i—1,k+1,1,,14);
// deletion
search(W,i—1,k+1,1,r);
// insertions
for each a € {A,C,G,T} do
if [, < r, then
search (W, i, k+1,1,,ry);
return;

Fig. 11 BWA pseudo code for inexact search

To reduce the number of tested paths per read, an error threshold 7' (i) is fixed for
every position in a read. If during the search the number of inserted errors exceeds
this threshold, the recursion stops and another path is tested. The distribution is per
default optimized for Illumina reads, which are more likely to be erroneous at their
ends.

Figure 11 states the pseudo code of the described version for the inexact search.
The score, which is calculated from matches, mismatches, and gaps, is not shown
in the code. As in BWA, different penalties are paid for mismatches, gap openings
and extensions to be more realistic to biological data.

Since in general, there is not enough memory to store a second index in the
available RAM, the original (not reversed) index is loaded for a second run to test
reverse complement reads. This ensures the correct direction for processing the
reads for processing the reads, e.g. according to the error probability of Illumina
reads, which is higher at the read’s end.

100 L. Wienbrandt

3.3.2 Implementation

The implementation of the BWA algorithm is divided into software and hardware
part. While the software implements the interface to the original BWA software
modules (BWA v0.59) and is responsible for preprocessing of reads and postpro-
cessing of the results, the hardware performs the inexact search algorithm. The
implementation is focused on the Spartan6-LX150 FPGAs of the RIVYERA S6-
LX150 with 2 GB memory extension for each FPGA to handle large reference
genomes (up to 4 Gbp) such as the human genome.

The main unit of the hardware implementation states the ReadEntity. It is
responsible for performing the inexact search in the FM-index for a read. For this
purpose, the DD3-RAM memory of the FPGA is initialized with this index. To
implement the recursive behavior of a depth first search, a stack adjusted to the
maximum recursion depth according to the read size is implemented in local FPGA
memory.

The ReadEntity generates memory requests to look up the result of the Occ-
function for calculating the new interval boundaries / and r in the index (s. (10)
and (11)). The memory requests are buffered and sent to the memory controller.
Since the memory contents are in a densely packed format, the memory replies have
to be decoded in several clock cycles to get the final Occ-value. This process is
completely pipelined to avoid blocking memory accesses.

Since the calculation of new interval boundaries is very fast, the total runtime
solely depends on the memory access time. Therefore, it is important to maximize
the load on all memory ports to avoid idle times. Hence, the memory contents are
equally distributed over all memory ports, and all available FPGA resources are used
to generate as many ReadEntity units as possible to maximize an equal distribution
of memory requests.

For the current design the resources of a Spartan6-LX150 FPGA allow the
utilization of 64 parallel ReadEntity units. Additionally, supplemental infrastructure
is required, i.e. a switch to collect all memory requests, some distribution mecha-
nism for the replies, and incoming and outgoing FIFOs for read data and results. An
overview of the complete hardware structure is depicted in Fig. 12.

3.3.3 Performance Evaluation

For performance evaluation the alignments of two read datasets containing 11.3
million read pairs of length 2 x 36 bp (NCBI accession number ERR003014) and
14.5 million read pairs of length 2 x 76 bp (NCBI acc. no. SRR032215) against the
human genome (hg19, 3.2 Gbp) have been generated. The runtime of the FPGA
implementation has been measured on a fully and several partly equipped configu-
rations of the RIVYERA S6-LX150 machine with memory extension, compared to
the original BWA software v0.59 running on an Intel Xeon W3530 PC at 2.8 GHz
with 24 GB of RAM. All parameters have been set to default (besides “-t” for the
number of threads). The test runs have been repeated with a switched-off gapped

High-Performance Bioinformatics on RIVYERA 101

MemoryController

DRAM 0 —-)} ModuleController 0 *——)} ModuleController 1 F — DRAM 1
° °
T L K T
DRAM 2 —-)} ModuleController 2 I > ModuleController 3 F — DRAM 3
|
| MemReplyDecoder + Distributor I
MemRequest
Decoder + Read 2
Buffer Entity 2
= LR R
(23] (i I L | | [L]
"l MemRequestSwitch I
K K 7
BWAConstants | ReadFIFO | ReportFIFO
K K 7
Control (API)

Fig. 12 Hardware structure of the BWA implementation

Table 4 Runtimes (in seconds) for the BWA alignment step (bwa aln) against the human
genome (hgl9, 3.2 Gbp)

RIVYERA S6 (n FPGAs) Intel Xeon W3530
Query set 128 64 32 16 8 8thr. 4thr. 1thr. BarraCUDA
ERR003014 w/o gaps 88 109 155 243 418 1,019 1,481 5455 346*
ERR003014 105 142 223 385 701 3,305 4,649 16,809 651*
SRR032215 w/o gaps 123 179 292 521 974 2,958 4,031 14,587 981*
SRR032215 202 339 611 1,154 2,247 14,801 19,503 70,976 2,401*

ERRO003014 contains 11.3 million read pairs of length 2 x 36 bp, SRR032215 contains 14.5 million
read pairs of length 2 x 76 bp. The marked (*) runtimes for BarraCUDA are directly taken from [11]
(alignments against human genome NCBI build 36.54)

alignment (parameter “-o 0”) as well. Since the same read datasets were used
for the GPU-based aligner BarraCUDA [11], the results from the corresponding
publication are included as well. According to the publication, BarraCUDA had
been run on an nVidia Tesla M2090. The results are stated in Table 4. Since
the postprocessing step to generate the final alignments (bwa samse/sampe)
is always performed using the original software, the runtimes only include the
processing time for the preceding alignment step (bwa aln).

The results show that a fully equipped RIVYERA S6-LX150 is able to out-
perform an Intel Xeon W3530 system with 24 GB of RAM and a full utilization
with 8 threads easily by a factor of up to 73, or 351 compared to a single thread.
Even the GPU accelerated variant BarraCUDA on an nVidia Tesla M2090 has
been outperformed by a factor of about 12. Since the power consumption of
RIVYERA S6 is less than three times the power consumption of a single Xeon
system, energy savings of more than 95% can be achieved as well.

102 L. Wienbrandt
4 Summary

The RIVYERA architecture proves its efficiency for solving several big problems
in bioinformatics, with a focus on one of the most frequently used areas in life sci-
ences: biological sequence alignment, as required for the identification of sequence
similarities in proteins, DNA and/or RNA. Implementations for optimal sequence
alignment using the Smith—Waterman algorithm, database search using the common
heuristical tool BLAST, and short-read alignment using a Burrows—Wheeler Aligner
(BWA)-like algorithm were described. For each application RIVYERA outperforms
other architectures by far, while saving a significant amount of energy of more than
90% compared to computer clusters. In further research, RIVYERA is going to
prove its abilities in de novo assembly, phylogenetic tree analysis, and genome wide
association studies (GWAS).

In conclusion, the RIVYERA architecture is capable to improve a biologists
workflow significantly providing the computational power to speed up most com-
mon problems in bioinformatics at low costs due to its low energy and installation
requirements. Due to its flexibility even other application fields, e.g. cryptanalysis
(see Chap. 11 in this book) and stock market analysis [28,29], can be addressed.

With the recent development of the RIVYERA S6-LX150, providing at least
2.5x more resources than RIVYERA S3-5000 at a roughly twofold increase of
frequency, existing implementations may be easily ported with an expected speedup
factor of about 4.

References

1. S.FE. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool.
J. Mol. Biol. 215(3), 403—410 (1990)

2. S.F. Altschul, T.L. Madden, A.A. Schiffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res. 25, 3389-3402 (1997)

3. M. Burrows, D.J. Wheeler, A block-sorting lossless data compression algorithm. Tech. rep.,
Digital Systems Research Center, Palo Alto, CA (1994)

4. CLCbio — High-Speed Smith—Waterman (2012), http://www.clcbio.com/index.php?id=1254.
Accessed March 2012

5. CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows—
Wheeler transform (2011), http://cushaw.sourceforge.net/. Accessed March 2012

6. M.S. Farrar, Optimizing Smith—Waterman for the cell broadband engine (2010), http://sites.
google.com/site/farrarmichael/smith-watermanfortheibmcellbe. Accessed March 2012

7. P. Ferragina, G. Manzini, Opportunistic data structures with applications, in Proceedings of
FOCS2000 (2000), IEEE Computer Society, Washington DC, USA, pp. 390-398

8. N. Homer, B. Merriman, S.F. Nelson, Bfast: an alignment tool for large scale genome
resequencing. PLoS ONE 4(11), 12 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19907642

9. A.Jacob, J. Lancaster, J. Buhler, B. Harris, R.D. Chamberlain, Mercury BLASTp: accelerating
protein sequence alignment. ACM Trans. Reconfigurable Tech. Syst. 1, 9:1-9:44 (2008)

10. S. Kasap, K. Benkrid, Y. Liu, Design and implementation of an FPGA-based core for gapped
BLAST sequence alignment with the two-hit method. Eng. Lett. 16, 443-452 (2008)

http://www.clcbio.com/index.php?id=1254
http://cushaw.sourceforge.net/
http://sites.google.com/site/farrarmichael/smith-watermanfortheibmcellbe
http://sites.google.com/site/farrarmichael/smith-watermanfortheibmcellbe
http://www.ncbi.nlm.nih.gov/pubmed/19907642

High-Performance Bioinformatics on RIVYERA 103

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

P. Klus, S. Lam, D. Lyberg, M. Cheung, G. Pullan, I. McFarlane, G. Yeo, B. Lam, Barracuda
- a fast short read sequence aligner using graphics processing units. BMC Res. Notes 5(1), 27
(2012). doi:10.1186/1756-0500-5-27

S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, M. Schimmler, How to break DES for €8,980,
in SHARCS2006, Cologne, Germany (2006)

B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient alignment of
short dna sequences to the human genome. Genome Biol. 10(3), R25 (2009). doi:10.1186/gb-
2009-10-3-r25, http://genomebiology.com/2009/10/3/R25

H. Li, R. Durbin, Fast and accurate short read alignment with Burrows—
Wheeler transform. Bioinformatics (Oxford, England) 25(14), 1754-1760 (2009).
doi:10.1093/bioinformatics/btp324, http://dx.doi.org/10.1093/bioinformatics/btp324

H. Li, J. Ruan, R. Durbin, Mapping short dna sequencing reads and calling variants using
mapping quality scores. Genome Res. 18(11), 18511858 (2008). doi:10.1101/gr.078212.108,
http://dx.doi.org/10.1101/gr.078212.108

R. Li, Y. Li, K. Kristiansen, J. Wang, SOAP: short oligonucleotide alignment program.
Bioinformatics (Oxford, England) 24(5), 713-714 (2008). doi:10.1093/bioinformatics/btn025,
http://dx.doi.org/10.1093/bioinformatics/btn025

R.Li, C. Yu, Y. Li, TW.W. Lam, S.M.M. Yiu, K. Kristiansen, J. Wang, SOAP2: an improved
ultrafast tool for short read alignment. Bioinformatics (Oxford, England) 25(15), 1966-1967
(2009). doi:10.1093/bioinformatics/btp336, http://dx.doi.org/10.1093/bioinformatics/btp336
W. Liu, B. Schmidt, W. Miiller-Wittig, CUDA-BLASTP: accelerating BLASTP on CUDA-
enabled graphics hardware. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8, 1678-1684
(2011)

Y. Liu, B. Schmidt, D. Maskell, CUDASW++2.0: enhanced Smith—Waterman protein
database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions.
BMC Res. Notes 3(1), 93+ (2010). doi:10.1186/1756-0500-3-93

A. Mahram, M.C. Herbordt, Fast and accurate NCBI BLASTp: acceleration with multiphase
FPGA-based prefiltering, in Proceedings of ICS’10 (2010), ACM, New York, USA, pp. 73-28
NCBI BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed March 2012

NCBI GenBank database, http://www.ncbi.nlm.nih.gov/genbank/. Accessed March 2012
NCBI RefSeq database, http://www.ncbi.nlm.nih.gov/RefSeq/. Accessed March 2012

S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443-453 (1970)

G. Pfeiffer, S. Baumgart, J. Schroder, M. Schimmler, A massively parallel architecture for
bioinformatics, in /CCS2009. Lecture Notes in Computer Science, vol. 5544 (Springer, Berlin,
2009), pp. 994-1003

SciEngines GmbH, http://www.sciengines.com. Accessed March 2012

T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol.
147, 195-197 (1981)

C. Starke, V. Grossmann, L. Wienbrandt, M. Schimmler, An FPGA implementation of an
investment strategy processor, in /ICCS2012. Procedia Computer Science, vol. 9 (Elsevier,
2012), pp. 1880-1889

C. Starke, V. Grossmann, L. Wienbrandt, S. Koschnicke, J. Carstens, M. Schimmler, Opti-
mizing investment strategies with the reconfigurable hardware platform RIVYERA. Int. J.
Reconfigurable Comput. 2012, 10 (2012). doi:10.1155/2012/646984

Superfamily HMM library and genome assignments server, http://supfam.cs.bris.ac.uk/
SUPERFAMILY/. Accessed March 2012

UniProt Knowledgebase, http://www.ebi.ac.uk/uniprot/. Accessed March 2012

L. Wienbrandt, S. Baumgart, J. Bissel, F. Schatz, M. Schimmler, Massively parallel FPGA-
based implementation of BLASTp with the two-hit method, in /ICCS201 1. Procedia Computer
Science, vol. 1 (Elsevier, 2011), pp. 1967-1976

L. Wienbrandt, D. Siebert, M. Schimmler, Improvement of BLASTp on the FPGA-based high-
performance computer RIVYERA, in ISBRA2012. Lecture Notes in Bioinformatics, vol. 7292
(Springer, Berlin, Heidelberg, 2012), pp. 275-286

http://genomebiology.com/2009/10/3/R25
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/bioinformatics/btp336
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.sciengines.com
http://supfam.cs.bris.ac.uk/SUPERFAMILY/
http://supfam.cs.bris.ac.uk/SUPERFAMILY/
http://www.ebi.ac.uk/uniprot/

FPGA-Accelerated Molecular Dynamics

M.A. Khan, M. Chiu, and M.C. Herbordt

Abstract Molecular dynamics simulation (MD) is one of the most important
applications in computational science and engineering. Despite its widespread
use, there exists a many order-of-magnitude gap between the demand and the
performance currently achieved. Acceleration of MD has therefore received much
attention. In this chapter, we discuss the progress made in accelerating MD using
Field-Programmable Gate Arrays (FPGAs). We first introduce the algorithms and
computational methods used in MD and describe the general issues in accelerating
MD. In the core of this chapter, we show how to design an efficient force
computation pipeline for the range-limited force computation, the most time-
consuming part of MD and the most mature topic in FPGA acceleration of MD.
We discuss computational techniques and simulation quality and present efficient
filtering and mapping schemes. We also discuss overall design, host—accelerator
interaction and other board-level issues. We conclude with future challenges and
the potential of production FPGA-accelerated MD.

1 Introduction to Molecular Dynamics

Molecular dynamics simulations (MD) are based on the application of classical
mechanics models to ensembles of particles and are used to study the behavior of
physical systems at an atomic level of detail [39]. MD simulations act as virtual
experiments and provide a projection of laboratory experiments with potentially
greater detail. MD is one of the most widely used computational tools in biomedical
research and industry and has so far provided many important insights into
understanding the functionality of biological systems (see, e.g., [1, 25, 31]). MD
models have been developed and refined over many years and are validated through

M.A. Khan (B<]) « M. Chiu * M.C. Herbordt
Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
e-mail: azkhan @bu.edu; mattchiu@bu.edu; herbordt@bu.edu

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 105
DOI 10.1007/978-1-4614-1791-0_4, © Springer Science+Business Media, LLC 2013

mailto:azkhan@bu.edu
mailto:mattchiu@bu.edu
mailto:herbordt@bu.edu

106 M.A. Khan et al.

fitting models to experimental and quantum data. Although classical MD simulation
is inherently an approximation, it is dramatically faster than a direct solution to the
full set of quantum mechanical equations.

But while the use of classical rather than quantum models results in orders-
of-magnitude higher throughput, MD remains extremely time consuming. For
example, the simulation of even a comparatively simple biological entity such as
the STM virus (a million-atom system) for 100ns would take 70 years if run on
a single CPU core [14]. Fortunately MD scales well for simulations of this size or
greater. The widely used MD packages, e.g., AMBER [6], CHARMM [5], Desmond
[4], GROMACS [21], LAMMPS [37], NAMD [34], can take full advantage of
scalability [27]. But typical MD executions still end up taking month-long runtime,
even on supercomputers [45].

To make matters worse, many interesting biological phenomena occur only on
far longer timescales. For example, protein folding, the process by which a linear
chain of amino acids folds into a three-dimensional functional protein, is estimated
to take at least a microsecond [12]. The exact mechanism of such phenomena
remains beyond the reach of the current computational capabilities [44]. Longer
simulations are also critical to facilitate comparison with physically observable
processes, which (again) tend to be at least in the microsecond range. With stagnant
CPU clock frequency and no remarkable breakthrough in the underlying algorithms
for a decade, MD faces great challenges to meet the ever-increasing demand for
larger and longer simulations.

Hardware acceleration of MD has therefore received much attention. ASIC-based
systems such as Anton [43] and MD-Grape [32] have shown remarkable results, but
their non-recurring cost remains high. GPU-based systems with their low cost and
ease of use also show great potential. But GPUs are power hungry and, perhaps
more significantly, are vulnerable to data communication bottlenecks [16,48].

FPGAs, on the other hand, have a flexible architecture and are energy efficient.
They bridge the programmability of CPUs and the custom design of ASICs.
Although developing an FPGA-based design takes significantly longer than a
GPU-based system, because it requires both software and hardware development,
the effort should be cost-effective due to the relatively long life-cycle of MD
packages. Moreover, improvements in fabrication process generally translate to
performance increases for FPGA-based systems (mostly in the form of direct
replication of additional computation units). And perhaps most significantly for
emerging systems, FPGAs are fundamentally communication switches and so can
avoid communication bottlenecks and form the basis of accelerator-centric high-
performance computing systems.

This chapter discusses the current state of FPGA acceleration of MD-based
primarily on the work done at Boston University [8, 9, 18]. The remainder of this
section gives an extended introduction to MD. This is necessary because while MD
is nearly trivial to define, there are a number of subtle issues which have a great
impact on acceleration method. In the next section we present the issues universal
to MD acceleration. After that we describe in depth the state-of-the-art in FPGA

FPGA-Accelerated Molecular Dynamics 107

+

Coulomb

G

van der
Waals (LJ)

Fig. 1 MD Forces computed by MD include several bonded (covalent, angle, and dihedral) and
nonbonded (van der Waals and Coulomb)

MD acceleration focusing on the range-limited force. Finally, we summarize future
challenges and potential especially in the creation of parallel FPGA-based MD
systems.

1.1 Overview of Molecular Dynamics Simulation

MD is an iterative process that models dynamics of molecules by applying classical
mechanics [39]. The user provides the initial state (position, velocity, etc.), the force
model, other properties of the physical system, and some simulation parameters
such as simulation type and output frequency. Simulation advances by timestep
where each timestep has two phases: force computation and motion update. The
duration of the timesteps is determined by the vibration of particles and typically
corresponds to one or a few femtoseconds (fs) of real time. In typical CPU
implementations, executing a single timestep of a modest 100 K particle simulation
(a protein in water) takes over a second on a single core. This means that the 10°-10°
timesteps needed to simulate reasonable timescales result in long runtimes.

There are many publicly available and widely used MD packages including
NAMD [34], LAMMPS [37], AMBER [6], GROMACS [21], and Desmond [4].
They support various force fields (e.g., AMBER [38] and CHARMM [30]) and
simulation types. But regardless of the specific package or force field model, force
computation in MD involves computing contributions of van der Waals, electrostatic
(Coulomb), and various bonded terms (see Fig. 1 and (1)).

Frotat = Foond + F: angle + Fiihedral + Ft hydrogen + Fuanderwaals + Felectrostatic - (D

108 M.A. Khan et al.

van der Waals and electrostatic forces are non-bonded forces, the others bonded.
Non-bonded forces can be further divided into two types: the range-limited force
that consists of the van der Waals and the short-range part of the electrostatic force
and the long-range force that consists of the long-range part of the electrostatic
force.

Since bonded forces affect only a few neighboring atoms, they can be computed
in O(N) time, where N is the total number of particles in the system. Non-bonded
terms in the naive implementation have complexity of O(N?), but several algorithms
and techniques exist to reduce their complexity; these will be described in later
subsections. In practice, the complexity of the range-limited force computation is
reduced to O(N) and that of the long-range force computation to N log(N). Motion
update and other simulation management tasks are also O(N). In a typical MD run
on a single CPU core, most of the time is spent computing non-bonded forces.
For parallel MD, inter-node data communication becomes an increasingly dominant
factor as the number of computing nodes increases, especially for small to medium
sized physical systems. Sample timing profiles for both serial and parallel runs of
MD are presented in Sect. 2.

The Van der Waals (VdW) force is approximated by the Lenard-Jones (LJ)
potential as shown in (2):

14 8
?f@f):Zg%"{lZ (ﬂ) —6(5—”0 }73 2)
JU

i#j Oab I7;il

where €4, and o, are parameters related to particle types and r;; is the relative
distance between particle i and particle j.

A complete evaluation of VAW or LJ force requires evaluation of interactions
between all particle pairs in the system. The computational complexity is therefore
O(N?), where N is the number of particles in the system. A common way to reduce
this complexity is applying a cutoff. Since the LJ force vanishes quickly with the
separation of a particle pair it is usually ignored when two particles are separated
beyond 8-16A. To ensure a smooth transition at cutoff, an additional switching
function is often used. Using a cutoff distance alone does not reduce the complexity
of the LJ force computation because all particle pairs must still be checked to
see if they are within the cutoff distance. The complexity is reduced to O(N) by
combining this with techniques like the cell-list and neighbor-list methods, which
will be described in Sect. 1.2.

The electrostatic or Coulomb force works between two charged particles and is
given by (3):

FiCL)=a;y, <i3> i, (3)

i#] Irijl

where ¢; and g; are the particle charges and r;; is the separation distance between
particles i and j.

Unlike the van der Waals force, the Coulomb force does not fall off sufficiently

quickly to immediately allow the general application of a cutoff. The Coulomb force

FPGA-Accelerated Molecular Dynamics 109

Fig. 2 2D Illustration of cell
and neigh‘por lists. In the' 0 o o 0% |6 o
range-limited force, particles o
only interact with those in the o o ()
cell neighborhood. Neighbor o | i o 00
lists are constructed by v 5 °°
including for each particle o C
only those particles within the © o o. P < o
cutoff radius C (shown for P) o © ~ 7
0 o 1 o o
O o
o
fel 0
o o ° o o ©
o Oo
)

is therefore often split into two components: a range-limited part that goes to zero in
the neighborhood of the LJ cutoff and a long-range part that can be computed using
efficient electrostatic methods, the most popular being based on Ewald Sums [11]
or Multigrid [46]. For example, one can split the original Coulomb force curve into
two parts (with a smoothing function g,(r)):

1 1
;: (;_ga(r)) +8a(r). 4)
The short-range component can be computed together with the Lennard—Jones force
using particle indexed lookup tables Ay, By, and QQ,,. Then the entire short-range
force to be computed is:

short

ji —14 -8 -3 FAG)
rji . . . r

In addition to the non-bonded forces, bonded interactions (e.g., bond, angle,
and dihedral in Fig. 1) must also be computed every timestep. They have O(N)
complexity and take a relatively small part of the total time. Bonded pairs are
generally excluded from non-bonded force computation, but if for any reason (e.g.,
to avoid a branch instruction in an inner loop) a non-bonded force computation
includes bonded pairs, then those forces must be subtracted accordingly. Because
the long-range force varies less quickly than the other force components, it is often
computed only every 2—4 timesteps.

1.2 Cell Lists and Neighbor Lists

We now present two methods of reducing the naive complexity of O(N?) to O(N).
In the cell-list method [22,40] a simulation box is first partitioned into several cells,
often cubic in shape (see Fig.2 for a 2D depiction). Each dimension is typically
chosen to be slightly larger than the cutoff distance. This means, for a 3D system,

110 M.A. Khan et al.

that traversing through the particles of the home cell and 26 adjacent cells suffices,
independent of the overall simulation size. If Newton’s third law is used, then only
half of the neighboring cells need to be checked. If the cell dimension is less
than cutoff distance, then more number of cells need to be checked. The cost of
constructing cell lists scales linearly with the number of particles but reduces the
complexity of the force evaluation to O(N).

Using cell lists still results in checking many more particles than necessary. For a
particle in the center of a home cell, we only need to check its surrounding volume
of (4/3)%3.14% R2, where R, is the cutoff radius. But in the cell-list method we
end up checking a volume of 27 x R, which is roughly 6 times larger than needed.
This can be improved using neighbor lists [49]. In this method, a list of possible
neighboring particles is maintained for each particle and only this list is checked
for force evaluation. A particle is included in the neighbor list of another particle
if the distance between them is less than R. + Ry,, where Ry, is a small buffer
margin. R, is chosen such that the neighbor-list also contains the particles which
are not yet within the cutoff range but might enter the cutoff range before the list is
updated next. In every timestep, the validity of each pair in a neighbor list is checked
before it is actually used in force evaluation. Neighbor lists are usually updated
periodically in a fixed number of timesteps or when displacements of particles
exceed a predetermined value.

Although neighbor lists can be constructed for all particles in O(N) time (using
cell-lists), it is far more costly as many particles must still be checked for each
reference particle. But as long as the neighbor lists are not updated too frequently,
which is the case generally, this method reduces the range-limited force evaluation
time significantly. The savings in runtime comes at the cost of extra storage required
to save the neighbor-list of each particle. For most high-end CPUs, this is not a
major issue.

1.3 Direct Computation vs. Table Interpolation

The most time-consuming part of an MD simulation is typically the evaluation of
range-limited forces. One of the major optimizations is the use of table lookup
in place of direct computation. This avoids expensive square roots and erfc
evaluations. This method not only saves computation time but is also robust in
incorporating small changes such as the incorporation of a switching function.

Typically the square of the inter-particle distance (r%) is used as the index.
The possible range of > is divided into several sections or segments and each
section is further divided into intervals or bins as shown in Fig.3. For an M
order interpolation, each interval needs M + 1 coefficients and each section needs
N * (M + 1) coefficients, where N is the number of bins in the section. Accuracy
increases with both the number of intervals per section and the interpolation order.
Generally the rapidly changing regions are assigned relatively higher number of
bins, and relatively stable regions are assigned fewer bins. Equation (6) shows a
third order interpolation.

FPGA-Accelerated Molecular Dynamics 111

| 117 O 1 1 1 | 1 | I

\ A

Fig. 3 In MD interpolation, function values are typically computed by Section with each having a
constant number of bins, but varying in size with distance

F(x)=ap+ax+ arx® + asx’ 6)

For reference, here we present a sample of table interpolation parameters used in
widely known MD packages and systems.

¢ NAMD (CPU)—[34] and Source code of NAMD?2.7
Order =2 bins/segment = 64 Index: r°
Segments: 12—segment size increases exponentially, starting from 0.0625
¢ NAMD (GPU)—[48] and Source code of NAMD2.7
Order =0 bins/segment = 64 Index: 1/ v
Segments: 12—segment size increases exponentially
« CHARMM—[5]
Order =2 bins/segment = 10-25 Index: r?
Segments: Uniform segment size of 1 A2 is used which results in relatively more
precise values near cut-off
* ANTON—[28]
Force Table Order = Says 3 but that may be for energy only. Value for force may
be smaller.
of bins = 256 Index: r*
Segments: Segments are of different widths, but values not available, nor whether
the number of bins is the total or per segment.
* GROMACS—([21] and GROMACS Manual 4.5.3, page 148
Order =2 bins = 500 (2000) per nm for single (double) precision
Segments: 1 Index: r2
Comment: Allows user-defined tables.

Clearly there are a wide variety of parameter settings. These have been chosen
with regard to cache size (CPU), routing and chip area (Anton), and the availability
of special features (GPU texture memory). These parameters also have an effect on
simulation quality, which we discuss next.

112 M.A. Khan et al.
1.4 Simulation Quality: Numeric Precision and Validation

Although most widely used MD packages use double-precision floating point (DP)
for force evaluation, studies have shown that it is possible to achieve acceptable
quality of simulation using single-precision floating point (SP) or even using fixed
point arithmetic, as long as the exact atomic trajectory is not the main concern
[36,41,43]. Since floating point (FP) arithmetic requires more area and has longer
latency, a hardware implementation would always prefer fixed point arithmetic.
Care must be taken, however, to ensure that the quality of the simulation remains
acceptable. Therefore a critical issue in all MD implementations is the trade-off
between precision and simulation quality.
Quality measures can be classified as follows (see, e.g., [13,33,43]).

1. Arithmetic error here is the deviation from the ideal (direct) computation done at
high precision (e.g., double-precision). A frequently used measure is the relative
RMS force error, which is defined as follows [42]:

AF <z,zaex,y,z[= Fil) @

Zi Zaex,y,z [FiT(X]Z

2. Physical invariants should remain so in simulation. Energy can be monitored
through fluctuation (e.g., in the relative RMS value) and drift. Total fluctuation
of energy can be determined using the following expression (suggested by Shan
et al. [42]):

N .
AE =5 Y[
ti—1 0

where Ej is the initial value, N; is the total number of time steps in time ¢, and
E; is the total energy at step i. Acceptable numerical accuracy is achieved when
AE <0.003.

®)

2 Basic Issues with Acceleration and Parallelization

2.1 Profile

The maximum speed-up achievable by any hardware accelerator is limited by
Amdahl!’s law. It is therefore important to profile the software to identify potential
targets of acceleration. As discussed in Sect. 1.1, a timestep in MD consists of
two parts, force computation and motion integration. The major tasks in force
computation are computing range-limited forces, computing long-range forces, and
computing bonded forces. Table 1 shows the timing profile of a timestep using the
GROMACS MD package on a single CPU core [21]. These results are typical;

FPGA-Accelerated Molecular Dynamics 113

Table 1 Timing profile of an MD run from a GROMACS study [21]

Step Task % execution time
Force computation Range-limited force 60

FFT, Fourier-space computation, IFFT 17

Charge spreading and force interpolation 13

Other forces 5
Motion integration Position and velocity updates 2

Others 3

see, e.g., [43]. As we can see the range-limited force computation dominates and
consumes 60% of the total runtime. The next major task is the long-range force
computation, which can be further divided into two tasks, charge-spreading/force-
interpolation and FFT-based computation. FFT, Fourier-space computation, and
inverse FFT take 17% of the total runtime while charge spreading and force
interpolation take 13% of the total runtime. Computing other forces takes only
5% of the total runtime. Unlike the force computation, motion integration is a
straightforward process and takes only 2% of the total runtime. Other remaining
computations take 3% of the total runtime. In addition to serial runtime, data
communication becomes a limiting factor in parallel and accelerated version. We
discuss this in Sect. 2.3.

2.2 Handling Exclusion

While combining various forces before computing acceleration is a straightforward
process of linear summation, careful consideration is required for bonded pairs,
especially when using hardware accelerators. In particular, covalently bonded pairs
need to be excluded from non-bonded force computation. One way to ensure
this is to check whether two particles are bonded before evaluating their non-
bonded forces. This is expensive because it requires on-the-fly check for bonds.
Another way is to use separate neighbor lists for bonded and non-bonded neighbors.
Both of these methods are problematic for hardware acceleration: one requires
implementing a branch instruction while the other forces the use of neighbor-lists,
which may be impractical for hardware implementation (see Sect. 3.2).

A way that is often the preferred for accelerators is to compute non-bonded forces
for all particle-pairs within the cutoff distance, but later subtract those for bonded
pairs in a separate stage. This method does not need either on-the-fly bond checking
or neighbor-lists. There is a different problem here though. The r!# term of the
LJ force (2) can be very large for bonded particles because they tend to be much
closer than non-bonded pairs. Adding and subtracting such large scale values can
overwhelm real but small force values. Therefore, care needs to be taken so that the
actual force values are not saturated. For example, an inner as well as an outer cutoff
can be applied.

114 M.A. Khan et al.

Fig. 4 Apoal benchmark T T T
runtime/timestep using [. . - l b, Snaodan.

NAMD showing overhead in :l 4 CPU Cores (~520 ms = 1960/4 + 30 ms)
a small-scale parallel
simulation D Regular CPU Operation

. Inter-processor Communication

2.3 Data Transfer and Communication Overhead

Accelerators are typically connected to the host CPU via some shared interface,
e.g., the PCI or PCle bus. For efficient computation on the accelerator, frequent data
transfers between the main memory of the CPU and accelerator must be avoided.
Input data need to be transferred to the accelerator before the computation starts and
results need to be sent back to the host CPU. Although this is usually done using
DMA, it may still consume a significant amount of time that was not required in
a CPU-only version. It is preferred that the CPU remains engaged in other useful
tasks while data transfer and accelerated computation take place, allowing efficient
overlap of computation and communication, as well as parallel utilization of the
CPU and the accelerator. Our studies show that host-accelerator data transfer takes
around 5-10% of the accelerated runtime for MD (see Sect. 3.2).

In addition to intra-node (host-accelerator) data transfer, inter-node data com-
munication may become a bottleneck, especially for accelerated versions of MD.
MD is a highly parallel application and typically runs on multiple compute nodes.
Parallelism is achieved in MD by first decomposing the simulation space spatially
and assigning one or more of such decomposed sections to a compute node (see, e.g.,
[34]). Particles in different sections then need to compute their pairwise interaction
forces (both non-bonded and bonded) which requires inter-node data communica-
tion between node-pairs. In addition to that, long-range force computation requires
all-to-all communication [50]. Thus, in addition to the serial runtime, inter-node
communication plays an important role in parallel MD. Figure 4 shows an example
of inter-processor communication time as the number of processors increases from
1 to 4. We performed this experiment using Apoal benchmark and NAMD?2.8 [34]
on a quad-core Intel CPU (2 core2-duo) of 2.0 GHz each. For a CPU-only version
the proportion may be acceptable. For accelerated versions, however, the proportion
increases and becomes a major problem [35].

2.4 Newton’s 3rd Law

Newton’s 3rd law (N3L) allows computing forces between a pair of particles only
once and uses the result to update both particles. This provides opportunities for
certain optimizations. For example, when using the cell-list method, each cell now

FPGA-Accelerated Molecular Dynamics 115

only needs to check half of its neighboring cells. Some ordering needs to be
established to make sure that all required cell-pairs are considered, but this is a
trivial problem.

The issue of whether to use N3L or not becomes more interesting in parallel and
accelerated version of MD. It plays an important role in the amount and pattern of
inter-node data communication for parallel runs, and successive accumulation of
forces in multi-pipelined hardware accelerators (see discussion on accumulation in
Sect. 3.1). For example, assume a parallel version of MD where particles x and y
are assigned to compute nodes X and Y, respectively. If N3L is not used, we need to
send particle data of y from Y to X and particle data of x from X to Y before the force
computation of a timestep can take place. But no further inter-node communication
will be required for that timestep as particle data will be updated locally. In contrast,
if N3L is used, particle data of y need to be sent from Y to X before the computation
and results need to be sent from X to Y. Depending on the available computation
and communication capability, these two may result in different efficiency. Similar,
but more fine-grained, issues exist for hardware accelerators too.

2.5 Partitioning and Routing

Parallel MD requires partitioning of the problem and routing data every timestep.
Although there are various ways of partitioning computations in MD, practically
all widely used MD packages use some variation of spatial decomposition (e.g.,
recursive bisection, neutral territory, half shell, or midpoint [4, 23]). In such a
method, each compute node or process is responsible for updating particles in a
certain region of the simulation space. In other words, it owns the particles in that
region. Particle data such as position and charge need to be routed to the node
that will compute forces for that particle. Depending on the partitioning scheme,
computation may take place on a node that owns at least one of the particles involved
in the force computation, or it may take place on a node that does not own any of
the particles involved in the force computation. Computation results may also need
to be routed back to the owner node. This also depends on several choices such as
the partitioning scheme and the use of N3L.

For an accelerated version of MD, partitioning and routing may cause additional
overhead. Because hardware accelerators typically require a chunk of data to work
on at a time in order to avoid frequent data communication with the host CPU.
This means fine-grained overlapping of computation and communication, which is
possible in a CPU-only version, becomes challenging.

3 FPGA Acceleration Methods

Several papers have been published from CAAD Lab at Boston University describ-
ing a highly efficient FPGA kernel for the range-limited force computation [7-9].
The kernel was integrated into NAMD-lite [19], a serial MD package developed

116 M.A. Khan et al.

at UIUC to provide a simpler way to examine and validate new features before
integrating them into NAMD [34]. The FPGA kernel itself was implemented on an
Altera Stratix-1II SE260 FPGA of Gidel ProcStar-III board [15]. The board contains
four such FPGAs and is capable of running at a system speed of up to 300 MHz.
The FPGAs communicate with the host CPU via a PCle bus interface. Each FPGA
is individually equipped with over 4GB of memory.

The runtime of the kernel was 26 x faster over the end-to-end runtime of NAMD,
for Apoal, a benchmark consisting of 92,224 atoms [10]. The electrostatic force was
computed every cycle using PME and both LJ and short-rage portion of electrostatic
force were computed on the FPGAs. Particle data along with cell-lists and particle
types are sent to the FPGA every timestep, while force data are received from
the FPGA and then integrated on the host. A direct end-to-end comparison with the
software-only version was not done since the host software itself (NAMD-lite) is
not optimized for performance. In the next three subsections we discuss the key
contributions of this work in depth. In the following two subsections we describe
some preliminary work in the FPGA-acceleration of the long-range force and in
mapping MD to multi-FPGA systems.

3.1 Force Pipeline

In Sect. 1.1 we described the general methods in computing the range-limited forces
(see (5)). Here we present their actual implementation emphasizing compatibility
with NAMD.

While the van der Waals term shown in (2) converges quickly, it must still
be modified for effective MD simulations. In particular, a switching function is
implemented to truncate van der Waals force smoothly at the cutoff distance (see

O)-(11)).
s = (cutof f> — r*)? x (cutof f> + 2 x r* — 3% switch_dist*) « denom)
ds, = 12 (cutof f?) * (switch_dist*> — 1*) x denom (10)
denom = 1/(cutof f* — switch_dist*)*. (11)

Without a switching/smoothing function, the energy may not be conserved as the
force would be truncated abruptly at the cutoff distance. The graph of van der Waals
potential with the switching/smoothing function is illustrated in Fig. 5. The van der
Waals force and energy can be computed directly as shown here:

IF (r* < switchdist?) Ugw =U, Fyqw = F
IF (2 > switch_dist> && r* < cutof f?) Uyaw * 5, Fyqw = F %5+ Uy, % dss,
IF (2 > cutof f*) Uyaw =0, Fyqw = 0.

For the Coulomb term the most flexible method used by NAMD for calculating
the electrostatic force/energy is Particle Mesh Ewald (PME). The following is the
pairwise component:

FPGA-Accelerated Molecular Dynamics 117

Fig. 5 Graph shows the van
der Waals potential with
switching/smoothing function b
(dashed line) g) Switch
I distance Cutoff
| |
I :
| | Distance
0 t >
11 < iqj ri—rj+nL
Es:__ZZZLerfC (M) (12)
drey 2 4 = S |ri—rj+nl| V26

To avoid computing these complex equations explicitly, software often employs
table lookup with interpolation (Sect. 1.3). Equation (5) can be rewritten as follows:

Fo(|r5il? (a, b
% = AwR14(|rjil*) + BapRs(|rji*) + QQusRs(|rji*), (13)
where R4, Rg, and R3 are three tables indexed with |rj,-|2 (rather than |rj;|, to avoid
the square root operation).

Designing a force computation pipeline on FPGA to accurately perform these
tasks requires careful consideration of several issues. Figure 6 illustrates the major
functional units of the force pipelines. The force function evaluators are the
diamonds marked in red; these are the components which can be implemented with
the various schemes. The other units remain mostly unchanged. The three function
evaluators are for the R4, Ry, and Rz components of (13), respectively. In particular,
Vdw Function 1 and Vdw Function 2 are the R4 and Rg terms but also include the
cutoff shown in (9)—(11). Coulomb Function is the Rz term but also includes the
correction shown in (12).

For the actual implementation we use a combination of fixed and floating point.
Floating point has far more dynamic range, while fixed point is much more efficient
and offers somewhat higher precision. Fixed point is especially advantageous for
use as an index (%) and for accumulation. We therefore perform the following
conversions: float to fixed as data arrive on the FPGA; to float for interpolation;
to fixed for accumulation; and to float for transfer back to the host.

A significant issue is determining the minimum interpolation order, precision,
and number of intervals without sacrificing simulation quality. For this we use
two methods both of which use a modified NAMD-lite to generate the appropriate
data. The first method uses (7) to compute the relative RMS error with respect to
the reference code. The simulation was first run for 1,000 timesteps using direct
computation. Then in the next timestep both direct computation and table lookup

M.A. Khan et al.

118
Fig. 6 Logic for computing Particle Pair Position Vectors Parameters
| | | | charges

the range-limited force. Red
diamonds indicate respective

e

table lookups for the two van X ‘ y [z
der Waals force components YW (72T /) y o
and the Coulombic force T x? y2 T2
threshold
| cutoff r2 reshee

iE) 1)

comparators

< 7 <

parameterl | paramete

K7 E@Jmultipliers 2
1)

e

Particle Pair Force Vectors

multipliers

21ABE+05 1.6-02 4
tEnergy Plot = ——NAMD-Lite (Ref)
_2ATE+05 -+ #-DP_Order2_B64
DP_Order1_B64 2
2.18E405 | DP_Order0)_B54 S |
i —DP_Order2_B256 | || 5 1E03 ——All_02
- 4 ~e—DP_Order1_B256 o 2
2 -219E+405 | { ——DP_Order0_B256 g -=-All_O1
£ ——SP_Order2_B64 e All 00
§ -2.20E+05 | f SP_Order1_B64 n 1E04 | =
= I +-SP_Order)_B64 =
a -2 21E+05 {4 SP_Order2_B256 E,
5 4 > —&—SP_Order1_B256 =
5 -2.22e+05 I o SP,_Order)_B25% D 1E05
— o
-2.23E+05 +
H
-2.24E+05 - 1.E-06 -
0 50 100 150 200 256 64
Time unit=100 fs Bins per S it

Fig. 7 Right graph shows relative RMS force error versus bin density for interpolation orders 0,
1, and 2. Left graph shows energy for various designs run for 20,000 timesteps. Except for O-order,
plots are indistinguishable from the reference code

with interpolation were used to find the relative RMS force error for the various
lookup parameters. Only the range-limited forces (switched VAW and short-range
part of PME) were considered. All computations were done in double-precision.
Results are shown in the right half of Fig.7. We note that 1st and 2nd order

FPGA-Accelerated Molecular Dynamics 119

-2.2230E+05

——— NAMD-Lite
-2.2235E+05

----- SP_Order1_B256

-2.2240E+05
- SP_Order2_B256

-2.2245E+05

-2.2250E+05

-2.2255E+05

Energy (Kcal/mol)

-2.2260E+05

-2.2265E+05 |

-2.2270E+05
0 200 400 600 800 1000

Number of Timesteps (x100)

Fig. 8 Reference code and two designs run for 100,000 timesteps

interpolation have two orders of magnitude less error than Oth order. We also note
that with 256 bins per section (and 12 sections), 1st and 2nd order are virtually
identical.

The second method was to measure energy fluctuation and drift. Results are
presented for the NAMD benchmark ApoAl. It has 92,224 particles, a bounding box
of 1084 x 1084 x 78 A, and a cutoff radius of 12A. The Coulomb force is evaluated
with PME. A switching function is applied to smooth the LJ force when the intra-
distance of particle pairs is between 10 and 12 A. Preliminary results are shown in
the left side of Fig. 7. A number of design alternatives were examined, including the
original code and all combinations of the following parameters: bin density (64 and
256 per section or segment), interpolation order (Oth, 1st, and 2nd), and single and
double-precision floating point. We note that all of the Oth order simulations are
unacceptable, but that the others are all indistinguishable (in both energy fluctuation
and drift) from the serial reference code running direct computation in double-
precision floating point.

To validate the most promising candidate designs, longer runs were conducted.
An energy plot for 100,000 timesteps is provided in Fig. 8. The graphs depict the
original reference code and two FPGA designs. Both are single precision with
256 bins per interval; one is first order and the other second order. Good energy
conservation is seen in the FPGA-accelerated versions. Only a small divergence of
0.02% was observed compared to the software-only version. The AE values, using
(8), for all accelerated versions were found to be much smaller than 0.003.

One of the interesting contributions of this work was with respect to the
utilization of Block RAM (BRAM) architecture of the FPGAs for interpolation.
MD packages typically choose the interval such that the table is small enough to

120 M.A. Khan et al.

fit in L1 cache. This is compensated by the use of higher order of interpolation,
second order being a common choice for force computation [9]. FPGAs, however,
can afford having finer intervals because of the availability of on-chip BRAMs. It
was found that, by doubling the number of bins per section, first order interpolation
can achieve similar simulation quality as the second order interpolation (see Fig. 7).
This saves logic and multipliers and increases the number of force pipelines that can
fit in a single FPGA.

3.2 Filtering and Mapping Scheme

The performance of an FPGA kernel is directly dependent on the efficiency of the
force computation pipelines. The more useful work pipelines do every cycle, the
better the performance is. This in turn requires that the force pipelines be fed, as
much as possible, with particle pairs that are within cutoff distance. Section 1.2
described two efficient methods for finding particle-pairs within cutoff distance.
But for MD accelerators, this requires additional considerations. The cell list
computation is very fast and the data generated are small, so it is generally done
on the host. The results are downloaded to the FPGA every iteration. The neighbor-
list method, on the other hand, is problematic if the lists are computed on the host.
The size of the aggregate neighbor-lists is hundreds of times that of the cell lists,
which makes their transfer to FPGA impractical. As a consequence, neighbor-list
computation, if it is done at all, must be done on the FPGA.

This work first looks at MD with cell lists. For reference and without loss of
generality, we examine the NAMD benchmark NAMD?2.6 on ApoAl. It has 92,224
particles, a bounding box of 1084 x 108A x 78 A, and a cutoff radius of 12 A. This
roughly yields a simulation space of 9 x 9 x 7 cells with an average of 175 particles
per cell with a uniform distribution. On the FPGA, the working set is typically a
single (home) cell and its cell neighborhood for a total of (naively) 27 cells and
about 4,725 particles. Using Newton’s third law (N3L), home cell particles are
only matched with particles of part of the cell neighborhood, and with, on average,
half of the particles in the home cell. For the 14- and 18-cell configurations (see
later discussion on mapping scheme), the number of particles to be examined is
2,450 and 3,150, respectively. Given current FPGA technology, any of these cell
neighborhoods (14, 18, or even 27) easily fits in the on-chip BRAMs.

On the other hand, neighbor-lists for a home cell do not fit on the FPGA.
The aggregate neighbor-lists for 175 home cell particles is over 64,000 particles (one
half of 732 per particle—732 rather than 4,725 because of increased efficiency).

The memory requirements are therefore very different. Cell-lists can be swapped
back and forth between the FPGA and the DDR memory, as needed. Because
of the high level of reuse, this is easily done in the background. In contrast,
neighbor-list particles must be streamed from off-chip as they are needed. This
has worked when there are one or two force pipelines operating at 100 MHz
[26, 41], but is problematic for current and future high-end FPGAs. For example,

FPGA-Accelerated Molecular Dynamics 121

the Stratix-III/Virtex-5 generation of FPGAs can support up to 8 force pipelines
operating at 200 MHz leading to a bandwidth requirement of over 20 GB/s.

The solution proposed in this work is to use neighbor-lists, but to compute
them every iteration, generating them continuously and consuming them almost
immediately. There are three major issues that are addressed in this work, which
we discuss next.

1. How should the filter be computed?
2. What cell neighborhood organization best takes advantage of N3L?
3. How should particle pairs be mapped to filter pipelines?

3.2.1 Filter Pipeline Design and Optimization

For a cell-list-based system where one home cell is processed at a time, with no
filtering or other optimization, forces are computed between all pairs of particles i
and j, where i must be in the home cell but j can be in any of the 27 cells of the cell
neighborhood, including the home cell. Filtering here means the identification of
particle pairs where the mutual short-range force is zero. A perfect filter successfully
removes all such pairs. The efficiency of the filter is the ratio of undesirable particle
pairs that were removed to the original number of undesirable particle pairs. The
extra work due to imperfection is the ratio of undesirable pairs not removed to the
desirable pairs.

Three methods are evaluated, two existing and one new, which trade off filter
efficiency for hardware resources. As described in Sect. 3.1, particle positions are
stored in three Cartesian dimensions, each in 32-bit integer. Filter designs have two
parameters, precision and geometry.

1. Full precision: Precision = full, Geometry = sphere
This filter computes > = x> 4+ y* 4 z> and compares whether 7> < r2 using full
32-bit precision. Filtering efficiency is nearly 100%. Except for the comparison
operation, this is the same computation that is performed in the force pipeline.

2. Reduced: Precision = reduced, Geometry = sphere
This filter, used by D.E. Shaw [28], also computes 7> = x> 4+ y* +z%,r* < r?
but uses fewer bits and so substantially reduces the hardware required. Lower
precision, however, means that the cutoff radius must be increased (rounded up
to the next bit) so filtering efficiency goes down: for 8 bits of precision, it is 99.5
for about 3% extra work.

3. Planar: Precision = reduced, Geometry = planes
A disadvantage of the previous method is its use of multipliers, which are the
critical resource in the force pipeline. This issue can be important because there
are likely to be 6-10 filter pipelines per force pipeline. In this method we avoid
multiplication by thresholding with planes rather than a sphere (see Fig. 9 for the
2D analog). The formulas are as follows:

122 M.A. Khan et al.

Fig. 9 Filtering with planes

rather than a sphere—2D 0L °
analogue
° * e
o . q®
e
[] ® ®
@
. °
L] ° ®
r

Table 2 Comparison of three filtering schemes with respect to quality and resource usage

Filtering Method LUTs/registers Multipliers Filter eff. Extra work
Full precision 341/881 0.43% 12 1.6% 100% 0%
Full prec.—logic 2577/2696 1.3% 0 0.0% 100% 0%

only muls
Reduced precision 131/266 0.13% 3 0.4% 99.5% 3%
Reduced prec.—logic 303/436 0.21% 0 0.0% 99.5% 3%

only muls
Planar 164/279 0.14% 0 0.0% 97.5% 13%
Force pipe 5695/7678 5.0% 70 9.1% NA NA

A force pipeline is shown for reference. Percent utilization is with respect to the Altera Stratix-III
EP3SE260

o x| <o,y < e,z < e
o Iyl < V2re x| 2] < V2re, [y |2 < V2re
o x4 Iyl + [zl < V3re

With 8 bits, this method achieves 97.5% efficiency for about 13% extra work.

Table 2 summarizes the cost (LUTSs, registers, and multipliers) and quality
(efficiency and extra work) of the three filtering methods. Since multipliers are a
critical resource, we also show the two “sphere” filters implemented entirely with
logic. The cost of a force pipeline (from Sect. 3.1) is shown for scale.

The most important result is the relative cost of the filters to the force pipeline.
Depending on implementation and load balancing method (see later discussion on
mapping scheme), each force pipeline needs between 6 and 9 filters to keep it
running at full utilization. We refer to that set of filters as a filter bank. Table 2 shows
that a full precision filter bank takes from 80 to 170% of the resources of its force
pipeline. The reduced (logic only) and planar filter banks, however, require only a
fraction: between 17 and 40% of the logic of the force pipeline and no multipliers at
all. Since the latter is the critical resource, the conclusion is that the filtering logic
itself (not including interfaces) has a minor effect on the number of force pipelines
that can fit on the FPGA.

FPGA-Accelerated Molecular Dynamics 123

® . @ -
- - g * 3 ® ;,»1”‘- .
___________ .~ 1 |® 4 °
fll A !
% * r
. - =" . |Home
3 d
\ /e & -~ o
M ¥ 4 . 5 4

Fig. 10 Shown are two partitioning schemes for using Newton’s 3rd law. In (a), 1-4 plus home are
examined with a full sphere. In (b), 1-5 plus home are examined, but with a hemisphere (shaded
part of circle)

We now compare the reduced and planar filters. The Extra Work column in
Table 2 shows that for a planar filter bank to obtain the same performance as logic-
only-reduced, the overall design must have 13% more throughput. This translates,
e.g., to having 9 force pipelines when using planar rather than 8 for reduced. The
total number of filters remains constant. The choice of filter therefore depends on
the FPGA’s resource mix.

3.2.2 Cell Neighborhood Organization

For efficient access of particle memory and control, and for smooth interaction
between filter and force pipelines, it is preferred to have each force pipeline handle
the interactions of a single reference particle (and its partner particles) at a time. This
preference becomes critical when there are a large number of force pipelines and a
much larger number of filter pipelines. Moreover, it is highly desirable for all of the
neighbor-lists being created at any one time (by the filter banks) to be transferred
to the force pipelines simultaneously. It follows that each reference particle should
have a similar number of partner particles (neighbor-list size).

The problem addressed here is that the standard method of choosing a reference
particle’s partner particles leads to a severe imbalance in neighbor-list sizes. How
this arises can be seen in Fig.10a, which illustrates the standard method of
optimizing for N3L. So that a force between a particle pair is computed only once,
only a “half shell” of the surrounding cells is examined (in 2D, this is cells 1-4
plus Home). For forces between the reference particle and other particles in Home,
the particle ID is used to break the tie, with, e.g., the force being computed only
when the ID of the reference particle is the higher. In Fig. 10a, particle B has a much
smaller neighbor-list than A, especially if B has a low ID and A a high.

124 M.A. Khan et al.

Distribution of Neighborlist Sizes

0.09
0.08 .
0.07 _
0.06 H N EEE
0.05 S
0.04 NN
0.03 A L
0.02 EIEEEE R

0.01 ——____________H”
o.oo[| |

Neighborlist size -- Normalized to Avg.

Probability

Fig. 11 Distribution of neighbor-list sizes for standard partition as derived from Monte Carlo
simulations

In fact neighbor-list sizes vary from O to 2L, where L is the average neighbor-
list size. The significance is as follows. Let all force pipelines wait for the last
pipeline to finish before starting work on a new reference particle. Then if that (last)
pipeline’s reference particle has a neighbor-list of size 2L, then the latency will
be double that if all neighbor-lists were size L. This distribution has high variance
(see Fig. 11), meaning that neighbor-list sizes greater than, say, %L, are likely to
occur. A similar situation also occurs in other MD implementations, with different
architectures calling for different solutions [2,47].

One way to deal with this load imbalance is to overlap the force pipelines so that
they work independently. While viable, this leads to much more complex control.

An alternative is to change the partitioning scheme. Our new N3L partition is
shown in Fig. 10b. There are three new features. The first is that the cell set has
been augmented from a half shell to a prism. In 2D this increases the cell set from
5 cells to 6; in 3D the increase is from 14 to 18. The second is that, rather than
forming a neighbor-list based on a cutoff sphere, a hemisphere is used instead (the
“half-moons” in Fig. 10b). The third is that there is now no need to compare IDs of
home cell particles.

We now compare the two partitioning schemes. There are two metrics: the effect
on the load imbalance and the extra resources required to prevent it.

1. Effect of load imbalance. We assume that all of the force pipelines begin
computing forces on their reference particles at the same time, and that each
force pipeline waits until the last force pipeline has finished before continuing
to the next reference particle. We call the set of neighbor-lists that are thus
processed simultaneously a cohort. With perfect load balancing, all neighbor-
lists in a cohort would have the same size, the average L. The effect of the

FPGA-Accelerated Molecular Dynamics 125

variation in neighbor-list size is in the number of excess cycles—before a new
cohort of reference particles can begin processing—over the number of cycles
if each neighbor-list were the same size. The performance cost is therefore the
average number of excess cycles per cohort. This in turn is the average size of the
biggest neighbor-list in a cohort minus the average neighbor-list size. It is found
that, for the standard N3L method, the average excess is nearly 50%, while for
the “half-moon” method it is less than 5%.

2. Extra resources. The extra work required to achieve load balance is proportional
to the extra cells in the cell set: 18 versus 14, or an extra 29%. This drops the
fraction of neighbor-list particles in the cell neighborhood from 15.5 to 11.6%,
which in turns increases the number of filters needed to keep the force pipelines
fully utilized (overprovisioned) from 7 to 9. For the reduced and planar filters,
this is not likely to reduce the number of force pipelines.

3.2.3 Mapping Particle Pairs to Filter Pipelines

From the previous sections an efficient design for filtering and mapping particles
follows.

* During execution, the input working set (data held on the FPGA) consists of the
positions of particles in a single home cell and in its 17 neighbors;

» Particles in each cell are mapped to a set of BRAMsS, currently one or two per
dimension, depending on the cell size;

» The N3L algorithm specifies 8 filter pipelines per force pipeline; and

» FPGA resources indicate around 68 force pipelines.

The problem we address in this subsection is the mapping of particle pairs to filter
pipelines. There are a (perhaps surprisingly) large number of ways to do this; finding
the optimal mapping is in some ways analogous to optimizing loop interchanges
with respect to a cost function. For example, one mapping maps one reference
particle at a time to a bank of filter pipelines and relates each cell with one filter
pipeline. The advantage of this method is that the outputs of this (8-way) filter bank
can then be routed directly to a force pipeline. This mapping, however, leads to a
number of load balancing, queuing, and combining problems.

A preferred mapping is shown in Fig. 12. The key idea is to associate each
filter pipeline with a single reference particle (at a time) rather than a cell. Details
are as follows. By “particle” we mean “position data of that particle during this
iteration.”

* A phase begins with a new and distinct reference particle being associated with
each filter.

* Then, on each cycle, a single particle from the 18-cell neighborhood is broadcast
to all of the filter.

» Each filters output goes to a single set of BRAMs.

126

Fig. 12 A preferred mapping
of particle pairs onto filter
pipelines. Each filter is used
to compute all interactions for
a single reference particle for
an entire cell neighborhood

M.A. Khan et al.

Home cell

cells distribution

Neighboring Home cell
bus

(I

({1
J -

Filter

Buffer | [Force

pipeline
{1

J T

AQ---Qa

= S = = I = I I =

J -

T

8 filter units

The output of each filter is exactly the neighbor-list for its associated reference
particle.

Double buffering enables neighbor-lists to be generated by the filters at the same
time they are drained by the force pipelines.

Advantages of this method include:

Perfect load balance among the filters;

Little overhead: Each phase consists of 3,150 cycles before a new set of reference
particles must be loaded;

Nearly perfect load balancing among the force pipelines: Each operates succes-
sively on a single reference particle and its neighbor-list; and

Simple queueing and control: Neighbor-list generation is decoupled from force
computation.

This mapping does require larger queues than mappings where the filter outputs

feed more directly into the force pipelines. But since there are BRAMs to spare, this
is not likely to have an impact on performance.

A more substantial concern is the granularity of the processing phases. The

number of phases necessary to process the particles in a single home cell is

[|particles-in-home-cell|/ |filters|]. For small cells the loss of efficiency can become

significant. There are several possible solutions.

FPGA-Accelerated Molecular Dynamics 127

* Increase the number of filters and further decouple neighbor-list generation from
consumption. The reasoning is that as long as the force pipelines are busy, some
inefficiency in filtering is tolerable.

* Opverlap processing of two home cells. This increases the working set from 18
to 27 cells for a modest increase in number of BRAMs required. One way to
implement this is to add a second distribution bus.

* Another way to overlap processing of two home cells is to split the filters among
them. This halves the phase granularity and so the expected inefficiency without
significantly changing the amount of logic required for the distribution bus.

3.3 Overall Design and Board-Level Issues

In this subsection we describe the overall design (see Fig. 13), especially how data
are transferred between host and accelerator and between off-chip and on-chip
memory. The reference design assumes an implementation of 8 force and 72 filter
pipelines.

1. Host-Accelerator data transfers: At the highest level, processing is built around
the timestep iteration and its two phases: force calculation and motion update.
During each iteration, the host transfers position data to, and acceleration data
from, the coprocessor’s on-board memory (POS SRAM and ACC SRAM,
respectively). With 32-bit precision, 12 bytes are transferred per particle. While
the phases are necessarily serial, the data transfers require only a small fraction
of the processing time. For example, while the short-range force calculation takes
about 55 ms for 100K particles and increases linearly with particle count through
the memory capacity of the board, the combined data transfers of 2.4 MB take
only 2-3 ms. Moreover, since simulation proceeds by cell set, processing of the
force calculation phase can begin almost immediately as the data begin to arrive.

2. Board-level data transfers: Force calculation is built around the processing of
successive home cells. Position and acceleration data of the particles in the
cell set are loaded from board memory into on-chip caches, POS and ACC,
respectively. When the processing of a home cell has completed, ACC data are
written back. Focus shifts and a neighboring cell becomes the new home cell.
Its cell set is now loaded; in the current scheme this is usually nine cells per
shift. The transfers are double buffered to hide latency. The time to process
a home cell Ty is generally greater than the time Tians to swap cell sets
with off-chip memory. Let a cell contain an average of N particles. Then
Tirans = 324 X Neet /B (9 cells, 32-bit data, 3 dimensions, 2 reads and 1 write,
and transfer bandwidth of B bytes per cycle). To compute Tprc, assume P
pipelines and perfect efficiency. Then Tproc = c2e11 x 27 /3P cycles. This gives the
following bandwidth requirement: B > 155 % P/Ngey1. For P = 8 and Ngey = 175,
B > 7.1 bytes per cycle. For many current FPGA processor boards B > 24.

128

Position

:

M.A. Khan et al.

POS SRAM

x

POS Cache
o o

(e}

J o

1 1

Filter Bank

o

Filter

(o]
Buffer

Force Plpellne
o

Y
i

|-

AW

AW

o O

(D

\
e
U

ACC Cache
o o o o

L

®ACC SRAM o

Fig. 13 Schematic of the HPRC MD system

Acceleration

FPGA-Accelerated Molecular Dynamics 129

Fig. 14 Concentrator logic Stall
between filters and force
pipeline

A M
Queue 2 W Force pipeline

Some factors that increase the bandwidth requirement are faster processor
speeds, more pipelines, and lower particle density. A factor that reduces the
bandwidth requirement is better cell reuse.

3. On-chip data transfers: Force computation has three parts, filtering particle pairs,
computing the forces themselves, and combining the accumulated accelerations.
In the design of the on-chip data transfers, the goals are simplicity of control
and minimization of memory and routing resources. Processing of a home cell
proceeds in cohorts of reference particles that are processed simultaneously,
either 8 or 72 at a time (either one per filter bank or one per force pipeline).
This allows a control with a single state machine, minimizes memory contention,
and simplifies accumulation. For this scheme to run at high efficiency, two types
of load-balancing are required: (1) the work done by various filter banks must
be similar and (2) filter banks must generate particle pairs having nontrivial
interactions on nearly every cycle.

4. POS cache to filter pipelines: Cell set positions are stored in 54—108 BRAMS,
i.e., 1-2 BRAMs per dimension per cell. This number depends on the BRAM
size, cell size, and particle density. Reference particles are always from the home
cell, partner particles can come from anywhere in the cell set.

5. Filter pipelines to force pipelines: A concentrator logic is used to feed the output
of multiple filters to a pipeline (Fig. 14). Various strategies were discussed in [8].

6. Force pipelines to ACC cache: To support N3L, two copies are made of each
computed force. One is accumulated with the current reference particle. The
other is stored by index in one of the large BRAMs on the Stratix-III. Figure 15
shows the design of the accumulator.

3.4 Preliminary Work in Long-Range Force Computation

In 2005, Prof. Paul Chow’s group at the University of Toronto made an effort to
accelerate the reciprocal part of SPME on a Xilinx XC2V2000 FPGA [29]. The
computation was performed with fixed-point arithmetic that has various precisions

130 M.A. Khan et al.

a b

accumulated - Cell-1
. mux partial force
force new force (ij) [~ — Cell-2
pipeline n | rory

4

| reference
| particle
|Lforce array!

]

~

N\ Summatiop_/

N
%

updated force

4

. } Cell-18 Er

force cache n Off-chip Force SRAM

Fig. 15 Mechanism for accumulating per particle forces. (a) shows the logic for a single pipeline
for both the reference and partner particles. (b) shows how forces are accumulated across multiple
pipelines

to improve numerical accuracy. Due to the limited logic resources and slow
speed grade, the performance was sacrificed by some design choices, such as the
sequential executions of the reciprocal force calculation for x, y, and z directions and
slow radix-2 FFT implementation. The performance was projected to be a factor of
3x to 14x over the software implementation running in an Intel 2.4GHz Pentium 4
processor. At Boston University the long-range electrostatic force was implemented
using Multigrid [17] with a factor of 5x to 7x speed-up reported.

3.5 Preliminary Work in Parallel MD

Maxwell is an FPGA-based computing cluster developed by the FHPCA (FPGA
High Performance Computing Alliance) project at EPCC (Edinburgh Parallel
Computing Centre) at the University of Edinburgh [3]. The architecture of Maxwell
comprises 32 blades housed in an IBM Blade Center. Each blade consists of one
Xeon processor and 2 Virtex-4 FX-100 FPGAs. The FPGAs are connected by a fast
communication subsystem which enables the total of 64 FPGAs to be connected
together in an 8 X 8 torus. Each FPGA also has four 256 MB DDR2 SDRAMs. The
FPGAs are connected with the host via a PCI bus.

In 2011, an FPGA-accelerated version of LAMMPS was reported to be im-
plemented on Maxwell [24, 37]. Only range-limited non-bonded forces (including
potential and virial) were computed on the FPGAs with 4 identical pipelines/FPGA.
A speed-up of up to 14x was reported for the kernel (excluding data communi-
cation) on two or more nodes of the Maxwell machine, although the end-to-end
performance was worse than the software-only version.

This work essentially implemented the inner-loop of a neighbor-list-based force
computation as the FPGA kernel. Every time a particle and its neighbor-list would
be sent to the FPGAs from the host and then corresponding forces would be
computed on the FPGAs. This incurred tremendous amount of data communication
which ultimately resulted in the slowdown of the FPGA-accelerated version.

FPGA-Accelerated Molecular Dynamics 131

They simulated a Rhodopsin protein in solvated lipid bilayer with LJ forces and
PPPM method. The 32K system was replicated to simulate larger systems. This
work, however, to the best of our knowledge, is the first to integrate an FPGA MD
kernel to a full-parallel MD package.

4 Future Challenges and Opportunities

The future of FPGA-accelerated MD vastly depends on the cooperation and
collaboration among computational biologists, computer architects, and board/EDA
tool vendors. In the face of the high bar set by GPU implementations, researchers
and engineers from all of these three sectors must come together to make this
a success. The bit-level programmability and fast data communication capability,
together with their power efficiency, do make FPGAs seem like the best candidate
for MD accelerator. But to realize the potential, computer architects will have to
work with the computational biologists to understand the characteristics of the
existing MD packages and develop FPGA kernels accordingly. The board and EDA
tool vendors will have to make FPGA devices much easier to deploy. Currently
FPGA kernels are mostly designed and managed by hardware engineers. A CUDA-
like breakthrough here would make FPGAs accessible to a much broader audience.

Below, we discuss some of the specific challenges that need to be addressed in
order to achieve the full potential of FPGAs in accelerating MD. These challenges
provide researchers with great opportunities for inventions and advancements that
are very likely to be applicable to other similar computational problems, e.g.,
N-body simulations.

4.1 Integration into Full-Parallel Production MD Packages

After a decade of research on FPGA-accelerated MD, with many individual pieces
of work here and there, none of the widely used MD packages have an FPGA-
accelerated version. Part of this is because FPGA developers have only focused on
individual sections of the computation. But another significant reason is the lack of
understanding of how these highly optimized MD packages work and what needs to
be done to get the best out of FPGAs, without breaking the structure of the original
packages. Researchers need to take a top-down approach and focus on the need of
the software. Certain optimizations on the CPUs may need to be revisited, because
we may have more efficient solutions on FPGAs, e.g. table-interpolation using
BRAM as described in Sect. 3.1. Also, more effort must be given on overlapping
computation and communication.

132 M.A. Khan et al.
4.2 Use of FPGAs for Inter-Node Communication

While CPU-only MD remains compute-bound for at least a few hundred compute
nodes, that is not the case for accelerated versions. It should be evident from
the GPU experience that communication among compute nodes will become a
bottleneck even for small systems. The need for fast data communication is
especially crucial in evaluating the long-range portion of electrostatic force, which
is often based on the 3D FFT and requires all-to-all communication during a
timestep. Without substantial improvement in such inter-node communication,
FPGA-acceleration will be limited to only a few times of speed-up. This presents
a highly promising area of research where FPGAs can be used directly for
communication between compute nodes. FPGAs are already used in network routers
and seem like a natural fit for this purpose [20].

4.3 Building an Entirely FPGA-Centric MD Engine

As Moore’s law continues, FPGAs are equipped with more functionality than ever. It
is possible to have embedded processors on FPGAs, either soft or hard, which makes
it feasible to create an entirely FPGA-centric MD engine. In such an engine, overall
control and simple software tasks will be done on the embedded processors while
the heavy work like the non-bonded force computations will be implemented on
the remaining logic. Data communication can also be performed using the FPGAs,
completely eliminating general purpose CPUs from the scene. Such a system is
likely to be highly efficient, in terms of both computational performance and energy
consumption.

4.4 Validating Simulation Quality

While MD packages typically use double-precision floating point for most of the
computation, most FPGA work used fixed, semi-floating or a mixture of fixed
and floating point for various stages of MD. Although some of these studies
verified accuracy through various metrics, none of the FPGA-accelerated MD work
presented results of significantly long (e.g., month-long) runs of MD. Thus it is
important to address this issue of accuracy. This may mean revisiting precision and
interpolation order in the force pipelines.

Acknowledgments This work was supported in part by the NIH through award #R01-RR023168-
01A1 and by the MGHPCC.

FPGA-Accelerated Molecular Dynamics 133

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S.A. Adcock, J.A. McCammon, Molecular dynamics: survey of methods for simulating the
activity of proteins. Chem. Rev. 106(5), 1589-1615 (2006)

J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics simulations
fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342-5359 (2008)
R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew,
A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain, G. Genest, Maxwell - a 64
FPGA supercomputer, in Second NASA/ESA Conference on Adaptive Hardware and Systems
(AHS) (2007), IEEE Computer Society, Washington, DC, USA, pp. 287-294

. KJ. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis,

I. Kolossvary, M.A. Moraes, ED. Sacerdoti, J.K. Salmon, Y. Shan, D.E. Shaw, Scalable
algorithms for molecular dynamics simulations on commodity clusters, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing (SC) (2006), ACM New York, NY, USA, pp.
84:1-84:13

. B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won,

G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig,
S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov,
E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock,
X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: the biomolecular simulation program.
J. Comput. Chem. 30(10, Sp. Iss. SI), 1545-1614 (2009)

. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr., A. Onufriev,

C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Com-
put. Chem. 26(16), 1668—1688 (2005)

. M. Chiu, M.C. Herbordt, Efficient particle-pair filtering for acceleration of molecular dynamics

simulation, in International Conference on Field Programmable Logic and Applications (FPL)
(2009), ACM New York, NY, USA, pp. 345-352

. M. Chiu, M.C. Herbordt, Molecular dynamics simulations on high-performance reconfigurable

computing systems. ACM Trans. Reconfigurable Tech. Syst. (TRETS) 3(4), 23:1-23:37 (2010)

. M. Chiu, M.A. Khan, M.C. Herbordt, Efficient calculation of pairwise nonbonded forces, in

The 19th Annual International IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM) (2011), IEEE Computer Society Washington, DC, USA, pp. 73-76

S. Chiu, Accelerating molecular dynamics simulations with high-performance reconfigurable
systems, PhD dissertation, Boston University, USA, 2011

T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N.log (N) method for Ewald sums
in large systems. J. Chem. Phys. 98(12), 10089-10092 (1993)

W.A. Eaton, V. Muiioz, P.A. Thompson, C.K. Chan, J. Hofrichter, Submillisecond kinetics of
protein folding. Curr. Opin. Struct. Biol. 7(1), 10-14 (1997)

R.D. Engle, R.D. Skeel, M. Drees, Monitoring energy drift with shadow Hamiltonians. J.
Comput. Phys. 206(2), 432-452 (2005)

P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Molecular dynamics
simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437-449 (2006)
Gidel, Gidel website (2009), http://www.gidel.com. Accessed 17 April 2012

GROMACS, GROMACS installation instructions for GPUs (2012), http://www.gromacs.org/
Downloads/Installation_Instructions/GPUs. Accessed 17 April 2012

Y. Gu, M.C. Herbordt, FPGA-based multigrid computation for molecular dynamics simula-
tions, in 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM) (2007), pp. 117-126

Y. Gu, T. Vancourt, M.C. Herbordt, Explicit design of FPGA-based coprocessors for short-
range force computations in molecular dynamics simulations. Parallel Comput. 34(4-5),
261-277 (2008)

D.J. Hardy, NAMD-Lite (2007), http://www.ks.uiuc.edu/Development/MDTools/namdlite/.
University of Illinois at Urbana-Champaign. Accessed 17 April 2012

http://www.gidel.com
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.gromacs.org/Downloads/Installation_Instructions/GPUs
http://www.ks.uiuc.edu/Development/MDTools/namdlite/

134

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

M.A. Khan et al.

M. Herbordt, M. Khan, Communication requirements of fpga-centric molecular dynamics, in
Proceedings of the Symposium on Application Accelerators for High Performance Computing
(2012)

B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly
efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3),
435-447 (2008)

R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma.
J. Comput. Phys. 14(2), 148-158 (1974)

L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan, K. Schulten, NAMD2: Greater scalability for parallel molecular dynamics.
J. Comput. Phys. 151, 283-312 (1999)

S. Kasap, K. Benkrid, A high performance implementation for molecular dynamics simulations
on a FPGA supercomputer, in 2011 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS) (2011), IEEE Computer Society Washington, DC, USA, pp. 375-382

F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, Dynamics of K+ ion conduction through Kv1.2.
Biophys. J. 91(6), 72-76 (2006)

V. Kindratenko, D. Pointer, A case study in porting a production scientific supercom-
puting application to a reconfigurable computer, in [4th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society
Washington, DC, USA, pp. 13-22

S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J.C. Phillips, H. Yu, L.V. Kalé, Scalable
molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM J. Res. Dev. 52(1-2),
177-188 (2008)

R. Larson, J. Salmon, R. Dror, M. Deneroff, C. Young, J. Grossman, Y. Shan, J. Klepeis,
D. Shaw, High-throughput pairwise point interactions in Anton, a specialized machine for
molecular dynamics simulation, in [EEE 14th International Symposium on High Performance
Computer Architecture (HPCA) (2008), IEEE Computer Society Washington, DC, USA, pp.
331-342

S. Lee, An FPGA implementation of the Smooth Particle Mesh Ewald reciprocal sum compute
engine, Master’s thesis, The University of Toronto, Canada, 2005

A.D. MacKerell, N. Banavali, N. Foloppe, Development and current status of the CHARMM
force field for nucleic acids. Biopolymers 56(4), 257-265 (2000)

G. Moraitakis, A.G. Purkiss, J.M. Goodfellow, Simulated dynamics and biological macro-
molecules. Rep. Progr. Phys. 66(3), 383 (2003)

T. Narumi, Y. Ohno, N. Futatsugi, N. Okimoto, A. Suenaga, R. Yanai, M. Taiji, A high-speed
special-purpose computer for molecular dynamics simulations: MDGRAPE-3. NIC Workshop,
From Computational Biophysics to Systems Biology, NIC Series, vol. 34 (2006), pp. 29-36
L. Nilsson, Efficient table lookup without inverse square roots for calculation of pair wise
atomic interactions in classical simulations. J. Comput. Chem. 30(9), 1490-1498 (2009)

J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel,
L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16),
1781-1802 (2005)

J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel application to GPU-
accelerated clusters, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC)
(2008), IEEE Press Piscataway, NJ, USA, pp. 8:1-8:9

L. Phillips, R.S. Sinkovits, E.S. Oran, J.P. Boris, The interaction of shocks and defects in
Lennard-Jones crystals. J. Phys.: Condens. Matter 5(35), 63576376 (1993)

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117(1), 1-19 (1995)

J.W. Ponder, D.A. Case, Force fields for protein simulations. Adv. Protein Chem. 66, 27-85
(2003)

D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University
Press, London, 2004)

FPGA-Accelerated Molecular Dynamics 135

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

P. Schofield, Computer simulation studies of the liquid state. Comp. Phys. Comm. 5(1), 17-23
(1973)

R. Scrofano, M. Gokhale, F. Trouw, V.K. Prasanna, A hardware/software approach to
molecular dynamics on reconfigurable computers, in The 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM) (2006), IEEE Computer Society
Washington, DC, USA, pp. 23-34

Y. Shan, J. Klepeis, M. Eastwood, R. Dror, D. Shaw, Gaussian split Ewald: a fast Ewald mesh
method for molecular simulation. J. Chem. Phys. 122(5), 54101:1-54101:13 (2005)

D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young,
B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho,
D.J. Ierardi, I. Kolossvary, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller,
E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose
machine for molecular dynamics simulation, in Proceedings of the 34th Annual International
Symposium on Computer Architecture (ISCA) (2007), ACM New York, NY, USA, pp. 1-12
D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young,
B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Grossman, C.R. Ho,
D.J. Ierardi, I. Kolossvary, J.L. Klepeis, T. Layman, C. McLeavey, M.A. Moraes, R. Mueller,
E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C. Wang, Anton, a special-purpose
machine for molecular dynamics simulation. Comm. ACM 51(7), 91-97 (2008)

D.E. Shaw, R.O. Dror, J.K. Salmon, J.P. Grossman, K.M. Mackenzie, J.A. Bank, C. Young,
M.M. Deneroff, B. Batson, K.J. Bowers, E. Chow, M.P. Eastwood, D.J. Ierardi, J.L. Klepeis,
J.S. Kuskin, R.H. Larson, K. Lindorff-Larsen, P. Maragakis, M.A. Moraes, S. Piana, Y. Shan,
B. Towles, Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis (SC) (2009),
ACM New York, NY, USA, pp. 39:1-39:11

R.D. Skeel, I. Tezcan, D.J. Hardy, Multiple grid methods for classical molecular dynamics.
J. Comput. Chem. 23(6), 673—-684 (2002)

M. Snir, A note on N-body computations with cutoffs. Theor. Comput. Syst. 37(2), 295-318
(2004)

J.E. Stone, J.C. Phillips, PL. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Acceler-
ating molecular modeling applications with graphics processors. J. Comput. Chem. 28(16),
2618-2640 (2007)

L. Verlet, Computer “Experiments” on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules. Phys. Rev. 159(1), 98-103 (1967)

C. Young, J.A. Bank, R.O. Dror, J.P. Grossman, J.K. Salmon, D.E. Shaw, A 32x32x32, spatially
distributed 3D FFT in four microseconds on Anton, in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC) (2009), ACM New York, NY,
USA, pp. 23:1-23:11

FPGA-Based HPRC for Bioinformatics
Applications

Yoshiki Yamaguchi, Yasunori Osana, Masato Yoshimi,
and Hideharu Amano

Abstract Bioinformatics is one of the most frequently applied fields in FPGAs.
Some applications in this field can be efficiently implemented by systolic arrays,
which are intrinsically suited to FPGA implementations. Others can be expressed as
numerical computations which can parallelize through pipelining, instruction-level
and data-level parallelism. This chapter covers two sample applications encoun-
tered in bioinformatics, namely homology searches and biochemical molecular
simulations, and shows how FPGAs can be effectively harnessed to achieve higher
performances compared to off-the-shelf microprocessor technologies.

1 Introduction

Systems biology is a scientific domain to grasp the essentials of living organisms.
In order to provide a profound insight for the research field, the performance
expansion of analytical devices needs to be considered from the viewpoint of both

Y. Yamaguchi (><)
University of Tsukuba, Tsukuba, Ibaraki, Japan
e-mail: yoshiki @cs.tsukuba.ac.jp

Y. Osana
University of the Ryukyus, Okinawa, Japan
e-mail: osana@eee.u-ryukyu.ac.jp

M. Yoshimi
University of Electro-Communications, Tokyo, Japan
e-mail: yoshimi@is.uec.ac.jp

H. Amano
Keio University, Tokyo, Japan
e-mail: hunga@am.ics.keio.ac.jp

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 137
DOI 10.1007/978-1-4614-1791-0_5, © Springer Science+Business Media, LLC 2013

mailto:yoshiki@cs.tsukuba.ac.jp
mailto:osana@eee.u-ryukyu.ac.jp
mailto:yoshimi@is.uec.ac.jp
mailto:hunga@am.ics.keio.ac.jp

138 Y. Yamaguchi et al.

T T T T 108
5 Moore’s Law
% 1107
2 o
© £
= o
= 1106 8
o O
77} Sequencer =
2 o
Y D
g 1105 2
ﬁ; First-generation sequencer ‘g
g o
Q 510 1104
2 10 10
Second-generation sequencer
10—11 L L L L L L L L L L 103
2001 2003 2005 2007 2009 2011

Fig. 1 Cost comparison of DNA sequencers and LSIs [1]

wet (experimental) and dry (computational) biological demands. Figure 1 shows
the growth of DNA sequences in wet laboratories and LSIs in dry laboratories.
The improved performance of DNA sequencers lets the cost reduced to 10~# of
that of a decade ago [1]. Technological innovations designed to LSIs, which is
called the Moore’s law, cannot follow the growth curve of DNA sequences in the
second generation. It implies that software-level improvement on LSIs is currently
having a hard time to continue computing big biological applications more than
ever. Thus, hardware-level designs including computational hardware algorithm and
architecture must be discussed for the expansion of the systems biology.

There is another problem in the systems biology. Figure 2 shows the Omic Space,
which is one of the famous coordinate-based integration schemes for the systems
biology [2, 3]. The computational system needs to have an analytical capability
across these planes in Fig.2. The results will provide us further novel biological
insights when the system has multifaceted perspectives. The above factors will make
us enter a new stage, which targets the entire cellular system.

This chapter offers a better solution for the bioinformatics system design.
FPGAs can achieve high performance from highly paralleled and finely grained
computation to numerical and sophisticated simulations. Moreover, the system
with FPGAs proposes highly power-efficient performance compared with GPGPU
and other architectures. Two application fields, homology search and biochemical
reaction simulation are chosen. The following sections will describe the high
potential capacity of FPGA systems.

FPGA-Based HPRC for Bioinformatics Applications 139

Fig. 2 Outline of the Omic Phenome
space [2]

Metabolome OR

® D D Q
bindin
Proteome g
®q — —

~
A\

: transcriptional
. regulation
Transcriptome /Q E

oV — > o

genemic|elements

Genome 11 c A n

" BC AB

2 Homology Search

“The history of the earth is recorded in the layers of its crust;
The history of all organisms is inscribed in the chromosomes.”

H. Kihara (1946)

There are ten million species of organisms on Earth and the diversity of them is
derived from DNA sequences which are blueprints of the lives. If we decipher
the meaning of them, we will achieve not only actual benefits that can accelerate
medicine, pharmacy, agronomy and other fields, but also a theory that could possibly
unite biology and physics. This section will specifically describe hardware-level
acceleration with FPGAs.

2.1 Introduction

DNA sequences are composed of pairs of four nitrogenous nucleotide bases:
thymine (T), cytosine (C), adenine (A), and guanine (G). A gene which is a portion
of a DNA sequence is transcribed into an RNA and then translated to make proteins.
In this process, each set of three nucleotide bases, namely codon, specifies a single
amino acid as shown in the Table 1.

140 Y. Yamaguchi et al.

Table 1 Four nucleotide bases and 20 amino acids

Third base
First base Second base T(U) C A G
T(U) T(U) Phenylalanine Serine Tyrosine Cysteine
C Phenylalanine Serine Tyrosine Cysteine
A Leucine Serine (Stop) (Stop)
G Leucine Serine (Stop) Tryptophan
C T(U) Leucine Proline Histidine Arginine
C Leucine Proline Histidine Arginine
A Leucine Proline Glutamine Arginine
G Leucine Proline Glutamine Arginine
A T(U) Isoleucine Threonine Asparagine Serine
C Isoleucine Threonine Asparagine Serine
A Isoleucine Threonine Lysine Arginine
G Methionine (Start) Threonine Lysine Arginine
G T(U) Valine Alanine Aspartate Glycine
C Valine Alanine Aspartate Glycine
A Valine Alanine Glutamate Glycine
G Valine Alanine Glutamate Glycine

U represents Uracil by which thymine is replaced

Each protein molecule develops a network of protein—protein interaction and
signal transduction pathways which are central to a cell that regulates the cellular
activites (the details are shown in Sect. 3). Thus, as shown in Fig. 2, a sophisticated
network covers the entire life of the Omic Space production.

Here, comparative genomics is situated on the first layer in the Omic Space and
it is the first step to understand the functions and evolutionary processes among
different species. However, since it is not the exact string matching problem, it
requires an approach which can assert the plausibility for some reason. The concept
of gap offers one solution to this problem, “similarity computation”, because it
corresponds to genetic deletion and insertion. That is why we have to consider an
intended sequence, a scoring system, and an effective algorithm before the hardware
implementation.

It is preferable that the algorithm covers any comparisons: DNA-DNA, protein—
protein, and DNA-protein comparisons. As shown in Table 1, DNA-DNA and
protein—protein comparisons require at least 4-by-4 and 20-by-20 score matrices,
respectively. The matrices will be bigger when the algorithm considers ambiguous
character caused by laboratory equipments. The situation in DNA—protein com-
parison, namely translated nucleotide—protein comparison, is different from the
preceding comparisons. The comparison requires not only nucleotide translation
based on Table 1 but also flexible insertion and deletion of gap notions. This section
will discuss about the first two comparisons aimed at a better understanding though
the circuit can treat the last comparisons.

FPGA-Based HPRC for Bioinformatics Applications 141

Secondly, a good scoring system is required to obtain a good alignment called
similarity. For DNA-DNA comparisons, we can apply simple scoring matrices.
But, protein—protein and DNA—protein comparisons have to treat conservative
substitutions where some substitutions are more likely to occur than others because
of the chemical property. The point accepted mutation (PAM) [4], block substitution
matrices (BLOSUM) [5], WAG and WAG™* matrices [6] are used for calculating the
likelihood scores. The matrices used in applications vary depending on the intended
use and are decided by the users. The design of the hardware should take into
account of this situation. In this section, a matrix is stored in on-chip small memories
and it will be reconfigured on demand.

Finally, basic local alignment search tool (BLAST) [7] is used extensively in
comparative genomics; however, this method includes the risk which sequence
similarity will be overlooked because of heuristic approach [8,9]. The Needleman—
Wunsch algorithm [10] and the Smith—Waterman algorithm [11] are based on
dynamic programming specialized for comparative genomics. Dynamic program-
ming can consider the best local alignment between a query sequence and database
sequences. And therefore not BLAST but the Needleman—Wunsch and the Smith—
Waterman algorithms are still used in bioinformatics. BLAST is a useful application
and we acknowledge the meaningfulness. But, this section will introduce the
hardware implementation for dynamic programming from the standpoint of under-
standing fundamental approach and widespread use.

2.2 Related Works

In dynamic programming, high-speed parallel approaches are always important.
One reason is that their computational speed is often slow. Another reason is that
the increase of genomic data volume, especially by the appearance of automated
sequencers, has surpassed the growth of computational performance of MPUs. In
recent years, researches in FPGAs [12-17] and other architectures [18-22] have
started to focus on not only nucleotides but also amino-acid sequence comparison.
While many studies have been reported on particular platforms, there is not much
research on analytic treatment for parallelizing the Smith—Waterman algorithm,
with novel systolic designs and experimental comparison of various FPGA and
GPU implementations. Firstly, this section tries to evaluate how efficient FPGA
is in comparative genomics through theoretical comparison of how to implement
the application program. After that, this study aims to establish techniques for
optimizing performance by organizing parallelism effectively and analyzing the
resulting effects.

142 Y. Yamaguchi et al.
2.3 Smith—Waterman Algorithm

This section will define the fundamental nature of the Smith—Waterman algorithm.
In 1982, the following recurrence formula was introduced to the Smith—Waterman
algorithm [23].

Si—1,j—1+6(qid;)
sij =max{ “Hh , (1)
Sij,—

0

where s; ; is the similarity score of a node at the (i, j) position, d(x,y) is the similarity
score by genetic-character comparison of x and y, ¢; is the ith character of a query
sequence, d; is the jth character of a database sequence, | denotes a gap insertion
in query sequence direction, and — denotes a gap insertion in database sequence
direction. s; ; | and s; j —, are called affine gap cost functions and they are obtained by

Siq s

i j, = max { Sii;j—_;(ﬁ 2)
Si j,— = max { izj:i: —iOC_ B 3)
o is the opening-gap-penalty cost and f3 is the continuous-gap-penalty cost, and
generally o < 3 < 0. These gap penalties were introduced for genetic character
insertion or deletion. These genetic mutations are usually caused by the error during
DNA replications. Considering that two or more DNA bases may be inserted or
deleted at the same time, it is preferable to give a penalty score more gradually
compared to the constant penalty [23].

Figure 3 illustrates the data movement for parallel processing involving a
processing element called SWPE, Smith—Waterman Processing Element. The affine
gap functions, (2) and (3), are also implemented as recursive functions in an SWPE.

The Smith—Waterman algorithm is known to be computable in parallel along
the oblique line shown in Fig.3. Thus, the number of SWPEs contributes to
performance increase. In SWPE, it is necessary to store the maximum value used for
judgement of a correlation between query and database sequences. Hence, SWPE
includes circuits of not only (1) but also the maximum function. Additionally, the
Smith—Waterman algorithm has a high degree of data locality. This is the reason
why its acceleration has been tried in ASICs and FPGAs.

FPGA-Based HPRC for Bioinformatics Applications 143

time

database sequence
VPGLTPPSLG
00000O00O0O0O0O0O

0 0-

s —

P2 S -5 8

8g° = o0 sc So

g2 Q o Q 2c £5

o C o © < t o]

) c oo go 9%

zv >0 T 3 >3 ~°3

» 0 =] = O ~ ~

2P, gz S

(]

goo G A ‘ ‘

Pg ¥ v

G, P R score matrix

J 3(x,y)
173
28 @
NG =
s Q| =
ss @
- =)
— [0}
g3 ge
S O | N &
2 =
NG S %
S % <L
<8
§. s
5< g
£ vertical
(extended)

Processing Element (SWPE)

A\ 4

Fig. 3 Data movement for the parallel processing in the Smith—Waterman algorithm and SWPE

2.4 Performance Analysis

This section will provide an analytical estimation of the performance of our
proposed design. In contrast to theoretical treatment based on parallelization of
recurrences [24], our discussion focuses on a specific one-dimensional systolic
array which includes: (a) multiple reconfigurable devices; (b) derivation of perfor-
mance between line-based method and lattice-based method; (¢) comparison of the
achieved and theoretical peak performance of these methods.

Each SWPE can be regularly connected to form a systolic array. In the following
discussion, we assume that the Smith—Waterman algorithm is implemented on
SWPEs which are arranged as an one-dimensional systolic array as shown in Fig. 3.
Then, the computational clock cycles becomes

fideal(Q»D) =0+D-1 4

144 Y. Yamaguchi et al.

Fig. 4 Line-based parallel
computation. The search
space is divided into
reed-shaped areas called line
segment

Fig. 5 Lattice-based parallel
computation. The search
space is divided into
rectangular areas called
lattice segment

from QD when the number of SWPE, p, is larger than O, where Q and D are defined
as the length of a query sequence and a database sequence, respectively. When p is
smaller than Q, it is possible to compute in parallel by dividing the computational
domain to multiple rows as shown in Fig. 4.

In this case, computational clock cycles become

ﬁiHC(Q7D7p) = flinesegment (p7D) : Minesegmem
= (p+D_1)q (.~'ﬁinesegment(p7D):p+D_1)7 (5)

where ¢ = [Q/p]. This computation can be extended to support multiple reconfig-
urable devices. Assuming that the number of devices is k, the computational time is
obtained by the following expressions:

k+D —1
flinek(QaDap?k) = % (6)

limﬁinek(Q7D7p7k) = pQ+D_ 1
k—q
~Q+D—1,)

where ¢ > k > 1. k should be sufficiently large for higher performance but the
improvement stops when kp > Q.

Figure 5 is another possibility of multiple device acceleration. In this case, the
rectangular area is delimited not by p but cache size on a single device, and the

FPGA-Based HPRC for Bioinformatics Applications

1.0 T T " T
Ideal performance (1000, 1.000)
0.8} i\ .
i (500, 0.667) £\ (2000, 0.667)
E o6t i -
2 (500, 0.500) % \ (2000, 0.500)
= I L
g 04f 4 1
£ Q=1,000 3 }
o = %
5 D=1,000 % \ line-based
a =1
0.2 3 |
2%
______ lattice-based g
0.0 beememmmmrererrerrTE) Trearreey
1 10 100

1000

10000
the number of SWPE processors (p)

100000

Fig. 6 Performance ratio of line-based and lattice-based performance to the theoretical peak
performance: excessive parallelization induces the larger number of idle elements and it causes
performance degradation

computation time is obtained by the following equation:
flattice(QaD P) = flatticesegmem (P P) ']Vlatticesegmem

= (zp_ l)qd (.~‘flatticesegmem(p7p) = p+p_ 1)7

(®)
where d = [D/p]. The computational clock cycles with k devices are obtained by
the following expression:

fattice, (@, D, p,k) = (2p—1) <% +k— 1)

)]
ij};flatticek(QaDapak) = (2p— 1)(q+d_ 1)

~2(0+D-1). (10)
Figure 6 shows the ratio of line-based and lattice-based performance to theoretical
peak performance obtained by (4). It can be seen that line-based parallelism is
always better than lattice-based parallelism since the former is closer to the ideal
performance.

From Fig. 6, it can also be seen that the performance efficiency will decrease
when the number of SWPEs and the length of a query sequence do not match. This
result is important because it enables power-performance improvement.

145

146 Y. Yamaguchi et al.
2.5 Systolic Array Design

This section describes a new design of SWPE for the Smith—Waterman algorithm.
The novel aspect of our design concerns hardware optimization by transforming
numerical expressions in computing the affine gap cost function.

2.5.1 The Overview of an SWPE

Figure 3 describes the basic structure and internal function modules of the SWPE.
A processing element is composed of five modules: one similarity computation
with score matrix, two affine gap cost functions, one maximum detection, and
one maximum score-history function. The score matrix corresponds to 6(g;,d;) of
(1) and the circuits which are placed in light-grey boxes show the affine gap cost
functions. The maximum detection function involves selecting a maximum as shown
in (1). The maximum score-history function is an essential function for obtaining
the maximum value of the Smith—Waterman algorithm though it is not shown in
numerical expressions; it can be expressed by one single comparator.

2.5.2 Affine Gap Cost Function (oc < 3 <0)

When the gene is copied, insertion and deletion of the characters might take place.
Gap cost functions are quantification of the gap inserted or deleted at this time. The
affine gap cost function [23] is well known and is obtained by (2) and (3). In the
numerical equations, ¢ is the cost of opening gap and 3 is the cost of continuous
gap. In general, o is smaller than 3.

When using this function, we must treat at least six values: s;_1 j_1, Si—1,j, Si j—1
Si—1,j,» Si,j—1,—, 0 for every SWPE. Therefore, at least five comparators, namely five
branch instructions, are needed for getting the maximum of them in every SWPE.
A single SWPE must require one or two additional comparators since the SWPE
has a maximum value function as shown in Fig. 3. Based on this, the size of a single
SWPE is estimated to be approximately 160 LUTs in this paper which is almost the
same size as the design in [15] which is estimated to be 85 slices, i.e. 170 LUTs,
on XILINX Virtex-II architecture. This section will discuss how to realize a better
circuit for the SWPE.

The original numerical equations should be optimized for the hardware imple-
mentation; they use signed circuits in most operations. A signed comparator is
larger than an unsigned one. In general, oo < § < 0. We can take advantage of this
relationship and further reduce the number of LUTs. Here, (1)—(3) are revised to
produce (11)—(13). Each underscored term in (11)—(13) means a signed number.
(B — o) has to be larger than 0 as a precondition to this application.

FPGA-Based HPRC for Bioinformatics Applications 147

Fig. 7 An optimized SWPE

. A4 00D -
by arranging - 0y —~ 47T
. . 0 T G o o Q
Smith—Waterman equations o Q2 S c [Shke]
2588 37 o3
45 © 2 Yoo 9 oD
0o oo g S48, ox
2978 B8 ®8

Score

matrix

|S(14113)

A
-
w0
1% maximum g o
— value -
4| function reg %
g £
g vertical vertical
(opening) (extended)
i—1,j— iH4i
si—1,j-1+ 6(qi,d;)
Sij Lot 0O
St = maxq SPHOTE
§i,j = max 0 (11)
_ Sij o+ &
8i,j,— — max 0 -
si-1,j, T (B—a)
s,~7j,¢,a:max{s' 1"’_¢ (12)
=1y
Sij—1,—+ (ﬁ - Ot)
Mﬁia—nmx{&{l' . (13)
L=

In Fig. 7, each SWPE has four 15-bit comparators, one 16-bit comparator, one 16-
bit adder—subtractor, two 15-bit adders, and two 15-bit positive-number discriminant
adders, m+, whose details are illustrated in Fig. 8.

Compared to the previous approach, we can reduce 243 LUTSs to 219 LUTs in
case of 4-input LUTs for Virtex-4 FPGAs; and from 239 LUTs to 231 LUTSs in case
of 4-input LUTS for Virtex-II Pro and Virtex-Il FPGAs. In case of 6-input LUTs for
Virtex-5 FPGAs, the number of logic LUTSs decreases even though the total does not
decrease, as shown in Table 2. For these experiments, ISE12.2 (ver.M.63c¢) is used
for Virtex 4 and 5, and ISE8.2i (ver.I.31) is also used for Virtex II and II pro.

148 Y. Yamaguchi et al.

Fig. 8 A positive-number

discriminated adder for : S
SWPE = 10
© Q
Tabl.e 2 Circuit resource LUT
requirement for a single -
SWPE FPGA Total Logic Thru Regs
Ideal 152 85
Virtex5 177 138 39
Virtex4 219 191 28
Virtex-1I Pro 231 204 27
Virtex-II 231 204 27

Each SWPE includes a single embedded RAM

Here, a thru LUT means a “route-through” LUT in XILINX FPGAs and the
number is counted when the circuits other than LUTs drives registers, carries, and
some circuits because of the composition where a minimum unit contains a LUT
and other circuits. As for the thru LUTSs, there is a possibility of it being eliminated
by the synthesis tools, which is confirmed by experiments in Sect. 2.6 for a larger
circuit. Thus, this approach significantly improves the SWPE array performance.

Finally, this approach enables the efficient use of an embedded adder such as
XILINX DSP48E. Three 15-bit adders are packed in one embedded adders because
the proposed approach can reduce a signed bit. It reduces the use of LUTs and
contributes to the high operating frequency. A compact saturation adder which keeps
the maximum value when overflow occurs can also be realized by the use of 16-,
32-, 48-bit signal lines. The efficient use of embedded circuits is an important factor
in the performance gain.

FPGA-Based HPRC for Bioinformatics Applications 149
2.6 Experimental Results

SWPE arrays are also evaluated on current FPGA architectures. They are imple-
mented on ADM-XRC-5T2 with XC5VLX330T produced by Alpha Data. We adopt
Fig.7 as an SWPE and optimize not only for an individual SWPE but also for a
SWPE systolic array. In this section, billion cell update per second (GCUPS) is used
for the performance measurement and it is obtained by QD/Teomp X 102, where
Teomp is the computational time.

2.6.1 Performance Evaluation of FPGA

In this section, we evaluate the maximum performance obtained by applying the
proposed techniques to the XILINX XC5VLX330T FPGA in the Alpha Data ADM-
XRC-5T2 system. Our design for XILINX XC5VLX330 has 183,416 LUTs and
86,638 registers; it contains 1,000 SWPE elements and can reach a performance of
up to 129 GCUPS. It is likely to be one of the fastest single-chip implementations of
the Smith—Waterman algorithm. Moreover, since systolic architectures are regular
and scalable, SWPE arrays and the associated optimizations would be applicable to
next-generation FPGA devices as they become available.

In power-performance evaluation [25], the FPGA achieves approximately 16
GCUPS/W when we use two DDR-II Synchronous SRAM banks in the Alpha Data
ADM-XRC-5T2 system. This power-performance is better than that of CPU and
GPUs; CPU, such as Xeon E5420, is less than 0.5 GCUPS/W and GPUs, such as
GTX?295, are less than 0.08 GCUPS/W.

2.6.2 CPU and GPUs

There are recent researches on Smith—Waterman algorithm targeting GPUs [18,
20,21, 26] but the effective performance of them is far inferior to the theoretical
peak performance of the GPUs; for instance, the performance of four parallel
GPUs hardly reaches one single XC4VLX200: approximately 40 GCUPS in our
estimation. Moreover, a single Spartan produced by XILINX or one single Cyclone
by ALTERA is comparable to the performance of a single GPU. Ligowski and
Rudnicki [18] shows the bottleneck is not memory bandwidth and it implies
current GPU architecture is not appropriate for this application when compared
with FPGA architecture. We confirm this observation using NVIDIA GTX480; the
memory bandwidth is not a bottleneck in this latest device. Recent other studies,
[20, 21], also show the discrepancy between theoretical performance of GPU and
real performance of this application. It seems that this application is unsuitable
for GPU even though GPU has shown remarkable progress in accelerating various
algorithms. On the other hand, appropriate CPUs can achieve a decent performance
compared with their theoretical performance [22].

150 Y. Yamaguchi et al.
2.7 Summary of Homology Search

This section provides an analytical treatment of the SWPE systolic approach
to the Smith—Waterman algorithm. The line-based and lattice-based methods for
organizing parallelism are introduced; the effect of parallelism on the performance
of these methods is analysed with respect to peak performance. The insights from
this analysis are used in deriving a novel systolic design, which includes techniques
for reducing affine gap cost functions.

The potential of our approach is demonstrated by the high performance of
the resulting designs. For example, the XC5VLX330T FPGA can accommodate
1,000 SWPE cores operating at 130 MHz, resulting in a performance of up to 129
GCUPS, which is 3 times faster than the fastest quad-GPU processor, GTX295.
Moreover, the FPGA is far more energy efficient than GPUs; XC5VLX330T
achieves approximately 16 GCUPS/W, while the power-performance for CPU is less
than 0.5 GCUPS/W, and for GPUs is less than 0.08 GCUPS/W.

3 Biochemical Kinetic Simulation with a Reconfigurable
Platform

3.1 Introduction

Biochemical kinetic simulation, the so-called simulation of a cellular system, is one
of the major applications in life science. Various biochemical kinetic simulators
were developed since KINSIM [27], which was presented in 1983. Unlike small and
simple targets of the simulators in the early days such as Gepasi [28] and DBsolve
[29], recent simulators like E-Cell [30] and Virtual Cell [31] are targeted to large-
scaled networks such as simple whole cells.

Since biochemical kinetics are basically modeled using ordinary differential
equations (ODEs), the parameter fitting between experiments and simulations is
essential in the modeling process. The parameter fitting is usually a time-consuming
process because of its large number of model parameters. Today, many institutions
and researchers have high-performance systems such as PC/WS clusters to solve
this problem. Even when such systems provide enough performance, for a single
researcher, it is difficult to occupy its full performance all time considering their
high cost. In this chapter, we summarize the research result of the ‘“ReCSiP”
project, an FPGA-based simulation environment which aims to build a cost-effective
alternatives of PC/WS clusters for personal use of biochemical kinetic simulations.
The project started in 2004 in cooperation with life scientists and terminated in
2010.

Since life scientists are neither programmers nor hardware engineers who
can write HDLs, the goal of ReCSiP is to develop an easy-to-use FPGA-based

FPGA-Based HPRC for Bioinformatics Applications 151

simulation environment for them. The front-end language is easy for them to use. We
focus on a standard description form, Systems Biology Markup Language (SBML)
to describe kinetic model in XML form. The hardware solvers are automatically
generated from the description of SBML, and users don’t have to touch its hardware
description at all.

In the first 2 years of the project, we focused on the ODE solvers which
simulate the model with numerical integration method. Although the solvers were
approximately 80 times faster than that of the software run on the corresponding
PCs, there is also a new trend in kinetic simulation using stochastic approach.
So, we also tried to accelerate stochastic simulation. First, the simplest first
reaction method (FRM) based on Gillespie’s algorithm was implemented, and then
more sophisticated next reaction method (NRM) was tried. The ODE solvers are
introduced with a target model and SBML description and the stochastic solvers
based on FRM and NRM are introduced.

3.2 ODE Based Approach

3.2.1 The Target Model and Its Description

Simulation of biochemical pathway kinetics is a numerical process to obtain the
concentration change of the molecular species in time series. Figure 14a shows an
example pathway, which has nine molecular species (S; to S9) and five reactions
(R; to Rs). The velocity of each reaction is determined by their rate-law function,
corresponding to their reaction mechanism. For example, velocity of a simple
second order reaction is:

v =k[S1][S2], (14)

where [S}], [S2] are concentrations of substrates and k is the rate constant of the
reaction. Rate-law functions are functions of concentrations, which have some
constants (e.g., maximum velocity or rate constants) as their parameter and can be
solved as ODEs. Each different reaction mechanism is expressed by the specific
rate-law functions, as the examples in Table 3. ReCSiP runs simulations by
calculating reaction rates with the modules called “solvers” which consist of several
floating-point arithmetic units.
Here, a “model” to be simulated as an initial-value problem consists of:

* List of molecular species

* List of reactions

* Initial values of concentration for the molecular species
* And parameters of the reactions

And these contexts can be marked up as the standardized XML format, SBML
[32]. ReCSiP framework described in the following sections automatically generates
HDL modules corresponding to the given SBML model.

152 Y. Yamaguchi et al.

Table 3 Examples of rate-law functions defined in SBML level 1

Reaction mechanism Rate-law function
VinS
Irreversible simple Michaelis—Menten y=_—=
Kn+S
B V¢S/Kins — Vi P/ Kp

Uni—Uni reversible simple Michaelis—Menten =
P 1+ 8/Kps + P/Knp

/) (5= P/Key)
14 8/Km +P/Ku
VS/Kn
" T S/Ku+1/Ki
_ VyS/Kius —ViP/Kup
YT 58 Kons + P K + /K

Uni—Uni reversible simple Michaelis—Menten with
Haldane adjustment

Competitive inhibition (irreversible)

Competitive inhibition (reversible)

il 5 10 15 20 25 30 35 40 45 50
S/K1 DIV1 Al
P/K1 B
H:::::::::::::::
P/K2 DIV C
¥
[A+C _ADD1 _E
11
AxV1 F
Wyp MULT ks
[]
LIEs] app2 H

RN

IR S e L4 | DIv2’ v
¥
Output

Fig. 9 An example of solver core: Uni—Uni reversible simple Michaelis-Menten with Haldane
adjustment

3.2.2 The Solver Core Library

As described in the previous subsection, a biochemical kinetic simulation is driven
by solving ODEs. The solver core library includes HDL implementation of basic
rate-law functions was defined in SBML level 1 specification[33]. Each module in
the library consists of some FP arithmetic units and calculates velocity of one or
more reaction mechanisms. Some solvers core can process only specific reaction
models, and others can process some similar reaction models.

Each solver core is an encapsulated, pipelined module to solve the specific rate-
law function, as an example in Fig. 9. The pipeline schedule in the solver core is
statically designed to maximize the effectiveness of pipelining operation.

Solver cores are not only designed manually but can also be generated automat-
ically from equations described in MathML form[34] that can be embedded in an
SBML file.

FPGA-Based HPRC for Bioinformatics Applications 153

[X] RAM Pathway RAM @
0| A |[«—0|0:SA
1 B 1| 3: E: Ea m s}
— o T Z
2| ¢ 2|5 ES:EaA e
3| Ea 3|/1:P:B S
0
4| Eb 4|1is:8B 8
=
5 | Ea.A 5|4iEEb | m| §
o <
6 | Eb.B 6 | 6 ES:Eb.B
712iP:C @

Fig. 10 Pathway description by pathway RAM

3.2.3 Mechanism for Integration and Pathway Mapping

Running a simulation task is not just to calculate velocities of reactions, but to
track concentration changes of molecular species by numerical integration the
velocities. ReCSiP has an external control mechanism around the Solver Core to
enable this. The control mechanism plays two roles in the control mechanism: I/O
stream management of the solver core and numerical integration. A module called
“Integrator” provides these functions in ReCSiP.

The first role is I/O stream management. This is to supply and receive required
datastream. ReCSiP controls solver cores’ input and output by using array of
pointers as shown in Fig. 10. “Pathway RAM” in the figure is the instruction
memory, and others are data memory.

The instruction, each word in Pathway RAM is basically a set of pointers to read
S RAM, k RAM and [X] RAM beside a pointer to write d[X] RAM. By scanning
Pathway RAM serially from address 0, both I/O and memory access of a Solver
Core are handled.

The second role is numerical integration. This operation is also controlled by
Pathway RAM. [X] RAM keeps concentrations of the molecular species, and d[X]
RAM is to accumulate its derivatives in a timestep. Contributions of each reaction
on the concentration change come from the Solver Core are once accumulated in
d[X] RAM, but are not reflected to [X] RAM immediately. This is because there are
some molecular species appeared in two or more reactions like Ss, Sg, and S7 in the
example pathway in Fig. 14.

When velocities of all reactions are calculated, the derivatives of molecule con-
centrations are integrated on [X] RAM. In the simplest implementation, one iteration
of accumulation in d[X] RAM and integration on [X] RAM ticks one timestep df in
the simulated pathway as shown in Fig. 11. This simplest implementation is based
on Euler’s method. Methods of higher order can be implemented by adding several
additional memory blocks and more iterations in a timestep [35].

154 Y. Yamaguchi et al.

a
Pathway RAM
k RAM |«
>
Solver
[X] RAM Core) d[X] RAM
Phase 1: Delivative Accumulation to d[X]
b
Pathway RAM
k RAM
S RAM
g
[X] RAM d[X] RAM
i +

Phase 2: Integration of d[X] onto [X]

Fig. 11 Two-phase of integration mechanism

Since Integrator is isolated from Solver Core, users can choose arbitrary Solver
Core and Integrator to meet their requirement. A module consists of one Integrator
and one Solver Core called “Solver”.

3.2.4 Heterogeneous Model Simulation Framework on ReCSiP

The previous section was about the basic mechanism of biochemical kinetic
simulation for homogeneous model that contains only one reaction mechanism.
Practically speaking, this is not the best method since the mechanism cannot run
simulations containing two or more different reaction mechanisms.

In this section, the framework to enable cooperation of multiple solvers is
presented.

Figure 12 shows the overview of this framework. The target system is described
in SBML, which is generated by modeling tools such as CellDeginer [36]. The
ReCSiP software extracts the list of reactions, molecular species and parameters

155

uoneInByuoD Yo d

uonenByuo) Yo dd

ﬂ SION|OS JO 195

FPGA-Based HPRC for Bioinformatics Applications

kel
=4
©
o
o0
Q
o
[%]
O
g (oo oo 1 1m1me)
o= siejoweled Jo 19S
OO Tore] 78
v-916°L €S
9-9€2°'S 2S
m €-900' 1S
o uonenuaouo) | adAy
- N
(atimnmoas 1mioe)
] | suonoeay Jo 188
O ES I
‘I SS cS| €d
€S ¥S| cd
cs 1S| d
yonpoud | eyensans [adA]
O

sjool avd

(esemyos d1SO8H)
3Npayas B ade|d

SIBA|0S J0 1S pauleg-eld

lovo

(eremyos diSORY)
uoljesausy 1aH

SI0MIWRI] 9Y) JO MIIAIAQ T "SI

1aH
Aleiqr Janj0s

O A4

ngs
Aemyyed 10b1e |

OO
O)
| 5152

156 Y. Yamaguchi et al.

<model name="sample model">

<listOfCompartments>
<compartment name="cell"/>

</listOfCompartments>

<listOfSpecies>

<specie name="S" initialAmount="0.3" compartment="cell"/>
<specie name="P" initialAmount="0" compartment="cell"/>
</listOfSpecies>
<listOfReactions>
<reaction name="Reactionl" reversible="false">
<listOfReactants>
<specieReference specie="3S" />
</listOfReactants>
<listOfProducts>
<specieReference specie="P" />
</listOfProducts>
<kineticLaw formula="uui (S, P, km)">
<listOfParameters>

<parameter name="km" value="0.1" />
</listOfParameters>
</kineticLaw>
</reaction>

</listOfReactions>
</model>

Fig. 13 An example of SBML description

from SBML, then generates the RTL description of the set of solvers for simulation
and its schedule. Figure 13 shows an example of SBML description, the input format
of ReCSiP.

ReCSiP software extracts the list of reactions from SBML input, then generates
RTL description of a set of solvers that can run simulations of the given reaction
pathway. Generated RTL description consists of some solvers and solver-to-solver
communication switches. The set of solver must contain the minimal set of the
solvers which cover the given list of reactions. If some extra space is available
after the minimum set is generated, the solvers which have excessive load will be
duplicated to reduce simulation time.

However, it’s not a good idea to generate optimal circuit for each model, because
CAD tools to perform synthesis, placement and routing are very time consuming.
To minimize CAD runtime, ReCSiP software saves all generated FPGA configura-
tion bitstreams. When a simulation model is given, the saved bitstreams are scanned,
and one of the bitstreams will be used if one that is compatible with the given model
is found. In this case, ReCSiP software doesn’t launch CAD tools to eliminate the
runtime.

Then, the software generates the contents of the memory blocks (Pathway, [X], k
and S RAM) in the solver set that has been generated in the previous step.

FPGA-Based HPRC for Bioinformatics Applications 157

a b

4 N\
e e @ @ Solver A
©E®EE SIC)

7

[X] RAM [X] RAM
ORNONNO
\/ \ Core B
S © OEEE
- - 5“5" '7' Copy 5 o @

d[X] RAM d[X] RAM

Solver B\

K]

o .,
S
o o

@ Molecular Species

(Related to only 1 reaction type)

Molecular Species
(Related to 2 reaction types) o / . A

. Reaction type A
“ @@ Molecular Species at "Home"
Reaction type B

An Example of Reaction Pathway Memory Mapping for the Example

"Copied" Molecular Species

Fig. 14 An example pathway and its mapping on the solvers

This step is divided into two stages. First, the software determines the place-
ment of reactions and molecular species on the solver set, as shown in Fig. 14.
Each molecular species is assigned to one of the Solvers, where the master data
of their concentration is stored in the [X] RAM. This assigned Solver is “home”
Solver of the molecular species.

After the placement of molecular species is determined, the reactions and
transfers between the solvers are scheduled by the software. Schedule of solving the
reactions is written on Pathway RAMs on each solvers, and the transfer schedule
is written on Code RAM in the communication switch. Scheduling of reactions
and their data transfers is important, since the solver can’t start its operation until
necessary concentration of molecular species is provided. If a molecular species
is required at some other solver(s) than the home, its concentration has to be
copied before used by the solver, as Fig. 14b shows. The figure also shows that
the derivatives calculated from “copied” concentration have to be sent back to the
home solver to perform integration.

3.2.5 Evaluation of ODE Based Approach

The whole system is written in Verilog-HDL and implemented with Xilinx’s ISE-
6.3i. Software benchmark was performed on FreeBSD 5.3-RELEASE environment,
with gcc-3.4.2.

158 Y. Yamaguchi et al.

Number of Slices

0 5000 10000 15000 20000 25000 30000
” [T T T T T 1
g
S 4 10656| 14616| ’ 15048
2 —
2 6
E =
S T e .
3 . -
8 21312| 29232| | 30433
\ I I
Solver Cores Solver Controllers Switch
Fig. 15 Size of solvers and the switch (irreversible Michaelis—Menten)
Table 4 Software/hardware throughput on irreversible Michaelis—Menten
Frequency Throughput
Implementation System (MHz) (Mreaction/s)
Software (gcc-O3, FreeBSD 5.3) Pentium4 3,200 5.75
PentiumM 2,000 6.78
This work (XC2VP70-5FF1517) 4 solvers 119 238
6 solvers 111 333
8 solvers 107 428

3.2.6 Area Overhead of the Communication Mechanism

Figure 15 shows the number of slices occupied by solver cores (Irreversible
Michaelis—Menten), integration modules (Euler), and the switch (4/6/8 port). Up
to eight solvers can be implemented on an FPGA, and overall slice utilization is
30,433 in this case while the switch occupies approximately 1,200 slices. The area
of switch is approximately 4 % of the whole design, a quite reasonable size.

3.2.7 Frequency and Throughput

Table 4 shows the result of throughput evaluation; 8 Irreversible Michaelis—Menten
solvers and switch require 91 % of XC2VP70 in the area and achieved over 60-
fold speedup compared to the Pentium M/Pentium 4 microprocessors. Although
solver configuration in this table is homogeneous, heterogeneous configuration is
also possible. In most cases, the FPGA can operate at 100 MHz+ in heterogeneous
configuration, too.

3.3 Summary of ODE Approach

A biochemical kinetic simulator is designed and implemented on ReCSiP. This sim-
ulation framework can handle heterogeneous models, by using a set of customized

FPGA-Based HPRC for Bioinformatics Applications 159

Fig. 16 Cascading model Ry: Sy + S, K15 8,
(D4S: N =4)

R2352+'S3ki>54

Ry : Sy + S 2% g,

rate-raw function modules called Solver Cores. Modular approach of the framework
also provides flexibility to choose numerical integration method and scalability to
fit larger FPGAs in the future.

To maximize the throughput of pipelined modules, optimized hardware and
optimally scheduled data streams are put together on the FPGA. ReCSiP achieved
over 60-fold speedup compared to latest Intel’s microprocessors.

The custom Solver Cores, FPGA configuration, and input data are automatically
generated by ReCSiP software, from an SBML description. This software signifi-
cantly contributes to the usability of the framework, because users do not have to
know about the FPGA designs.

3.4 Stochastic Biochemical Simulation

3.4.1 Stochastic Simulation Algorithm

Gillespie proposed a stochastic approach to compute chemically reacting
systems[37]. Stochastic simulation algorithm, abbreviated to SSA, calculates “time-
series” of the model which defines a list of reactions consists of chemical species as
shown in Fig. 16.

Figure 16 is the model which is defined N reactions R; and related M chemical
species S;. The combinatorial numbers of S; represent the state of the models. For
example, a collision of reactants S; and S, sets off the reaction R; which produces
the products S3, according to event probability k.

Since the Gillespie’s FRM and the Direct Method (DM) had been proposed
[37], several improved versions of SSA were presented such as NRM [38] and
optimized direct method (ODM) [39].

3.4.2 First Reaction Method

The idea of SSA is to obtain the state-change of the model through a repetition of
a process to select a next occurring reaction. The chosen reaction of FRM has the
smallest 7;, predicted time of occurrence among all reactions in the model [37].
Predicted time of occurrence for each reaction R; is obtained by (15) per simulation
cycle.

7 =In(1/r)/a;. (15)

160 Y. Yamaguchi et al.

Value 7 is a uniform random number between 0 and 1. a; is called “a propensity”,
which is a multiple of an event probability k; and a combination number of all the
reactants in R;.

3.4.3 Next Reaction Method

NRM reduced the time complexity from O(N) of FRM to O(log(N)) maintaining
the statistical equivalence by introducing two data structure called indexed priority
queue (IPQ) and Dependency Graph (DG) [38]. NRM is applied to representative
software biochemical simulators such as E-Cell3 [40].

The feature of the previous SSAs, that the number of reactions to be modified
their predicted time is much less than the number of reactions defined in the
simulation model, is utilized by Gibson and Bruck. At the first developing of NRM,
the predicted times 7; for each reaction are stored to a type of heap trees called IPQ
for efficient determination of the smallest value 7, which always located on the
root node. Next innovation of NRM is DG, a list of reactions to be modified the
predicted time by (16) when a reaction occurs.

Tjnew = aj,old/aj,new(rj,old - Tu) + Tu. (16)

For instance, DG(R;) in Fig. 16 is given as (17). As the number of reactions listed
in DG is much less than the whole number of reactions in the model, the ascendant
factor determining time complexity becomes maintaining the order of IPQ rather
than the number of reaction to recalculate the predicted time.

DG(R;) = {R2,R3,Ry}. A7)

3.4.4 Related Works

Several challenges have been made to design a stohastic biochemical simulator on
FPGA since 2004. Keane et al. and Salwinski et al. both successfully achieved
approximately 20 times speedup compared to microprocessors [41,42]. However,
both of their works are based on approximated stochastic algorithms, and calculation
steps were also simplified. For example, they convert floating-point into integer
values to perform high speed computation.

3.4.5 The FRM Implementation on an FPGA

We have been implementing and evaluating several SSA on FPGAs since 2004
[43—46]. In 2006, a circuit to compute FRM was designed with two simulation
threads that time-shares one single-precision floating point computational unit
calculating (15) and obtaining the smallest 7;. Pipeline of the computational unit
can receive consecutive input data to achieve high throughput [45]. And without

FPGA-Based HPRC for Bioinformatics Applications 161

100 - - : : ; .
— N=425 FRM (XC2VP70-5 106.29MHz) - - -
(&
o) NRM (Xeon 2.80GHz) —
(2] b FRM (Xeon 2.80GHz) ------ |
~ 10
2] .
Q
o o i -
S
5
<
> RRES
S 001f e
=
0.001

0 100 200 300 400 500 600 700 800 900 1000
Model Size [N]

Fig. 17 Drop-off of the throughput versus model size

using approximated stochastic algorithm, this implementation achieved more than
80 times speedup compared to execution on Xeon 2.80 GHz by running six threads
in parallel to simulate a model defined 1,000 reactions (N = 1,000).

For more detail, execution programs of FRM and NRM were written in C++,
and their throughput versus model size was evaluated with the cascading model
of Fig. 16. The results are shown in Fig. 17, together with the FPGA execution
result of FRM. According to these results, throughput degradation of the FPGA
implementation of FRM is more prominent than NRM execution on Xeon as the
model size increases. Advantage of the two turns back at a point of N = 425, and
NRM move out ahead by approximately three times at N = 1,000. This implies
that calculation cost of FRM on an FPGA is purely disadvantageous compared with
NRM on microprocessors, considering that NRM is proved to produce equivalent
results with FRM.

3.4.6 Design Concept of NRM on FPGA

The hardware modules of SSA is expected not to perform any approximation or
simplification of the original algorithm, even the computation is executed on FPGA.
Therefore the strategy to design hardware to compute NRM is by high-throughput
computation with multi-thread execution instead of some large floating-point
arithmetic modules such as logarithmic unit which needs long computational cycle.

NRM procedures can be divided into two groups; commonly utilized computing
sequences of NRM such as (15) and (16), and arrays to store variables and
intermediate simulation data which should be prepared for each simulation thread.
The former is called as “Thread Share Units (TSUs)” and the latter is called as
“Thread Private Unit (TPU),” respectively.

162 Y. Yamaguchi et al.

TSUs
Y y \ v v v
- Interconnection Network
(T+7 port I/O)

Fig. 18 Connection diagram

Communicate with host-PC,
Set initial values, and Output result

The algorithm involves a repetition of value update in a TPU after many
data transfer among TSUs. Thus, low utility rates of TPUs, long floating-point
operations, and ineffective restructure of tree-structured memories may degrade
performance. Consequently, the proposed design connects several TPUs to TSUs
by some interconnection network as shown in Fig. 18.

3.4.7 Implementation

Each module in the NRM circuit was written in Verilog-HDL, and synthesis,
placement, and routing were done by Xilinx’s ISE8.2i. Target device of the design
is Virtex-4 (XC4VLX100-10FF1148), which is currently a middle-range FPGA.
A single-precision floating-point arithmetic unit utilizes an IP core called Xilinx’s
LogiCORE floating-point. 32-bitx 1,024 words BlockRAMs on the Virtex-4 were
used as storage for variables in each unit. FIFOs are also implemented with
32-bitx512 words BlockRAMs. The maximum number of biochemical reactions
supported in this implementation is 1,023, which is sufficient for the existing
stochastic models.

3.4.8 Interconnection Network

To provide a capability to flexibly connect various numbers of TPU and TSUs, the
I/0O of each module must have a common interface. Figure 19 illustrates a prototype
design and protocols of a common interface for TPUs, TSUs, and routers within the
interconnection network.

Figure 20 shows an example of the router structure when the number of I/O
ports P is 4. The router module has output buffers implemented with P FIFOs, and
output FIFO controllers send packets. A P x P crossbar arbitrates the order to send
packets to the target output buffers, based on the predefined priority of the input.
Data transfer adopts source routing protocol, and forwarding information in header
flit is referred for the routing. Each TPU transfers data packets to each TSU via the
network which consists of these routers.

FPGA-Based HPRC for Bioinformatics Applications 163

Fig. 19 Signaling sequence Header (O Body
CLK MUy
<1 |_REQ
I_ACK I Receive
<+—r/— DN — OO

——r—>0_REQ
+—T—O0_ACK Send

—73h2> DOUT

I_REQ
Lack |DIN O-REQ C-ACK DOUT
[Output FIFO | __
D Controller
o o Temp
=) o TTTT I T T T ITTTTTT
L J Fee] Output FIFO
3] o F o 32bits x 512words
< slof 50 [IERNENNERA NN
| L 3|ef 3 x
O £ 21
sEEFO0E WE .
8 28|k N A >
CEI 8 Ol . 9 i~
o m 4x4 S E};
z Crossbar =
g n ? H
i g iorm °
. 6 forwardlgﬁi;tnef?rmatlon . o r:lgl
< g 119§ 3
- We el NES=
Lo S Jnj2 (@)
A = =
TTTTTTTTTTTTTTT Z;E_%‘Bg >
Output FIFO Al Q
32bits x 512words £33 -JER
NENEEEREEEEERNE F s
EMP Fo A v}
RE_"Output FIFO 7 8
Controller 3
DOUT O_ACK O_REQ DIN |_REQ

I_ACK

Fig. 20 An example of the router structure

3.4.9 Thread Private Unit

A TPU owns a data set about a status of one thread. A TPU has three arrays in
BlockRAMs, as shown in Fig.21. It also has a packet controller to communicate
with each TSU based on the algorithm of NRM.

As shown in Fig.21, the sequences of sending packets are the repetition of
reading data from arrays in TPU and sending operations to TSUs. Figure 22 shows
the dependency of each operation. The calculation of a reaction cycle begins from

164 Y. Yamaguchi et al.

I_REQ I_ACK DIN O_REQ O_ACK DOUT
A

A 4

Input FIFO L Output FIFO
Controller Controller | BE

WE| femp
TTTTTT T T T ITTITTIT] TT T T I T T T T T TTTITT
Input FIFO Output FIFO
32bits x 512words 32bits x 512words
Ll bttt LEL Pt
RE EMP wWET A
ST IE
Packet —
Controller <

A

I T L

WE DIN WE DIN WE DIN OPERATION
ADDR DOUT ADDR DOUT ADDR DOUT

Species Propensity Indexed Priority Queue
Table Table

Thread Private Unit

Fig. 21 Thread private unit (TPU)

N REAT/SJ

[PROCB | PROCSS |
y

(Tmop) (" TcaL)

END

L__,|ouTPUT '_

Fig. 22 Dependency per reaction cycle

FPGA-Based HPRC for Bioinformatics Applications 165

I_REQ I_ACK DIN O_REQ O_ACK DOUT

v END Output FIFO Controller
‘ Input Controller “

WE] | RE[we| RE

Output Address FIFO Output Data FIFO

32bits x 512words 32bits x 512words
NN LIt

— Shift register
L »

| FSUB FADD
—> FMUL
Boig 111 FDIV

Fig. 23 An example of a TSU: TMOD

anew

vy

Table 5 Resource utilization and operating frequency of TPU and TSU

TSU
TPU REAT TCAL PRPC UPDT DGTB TMOD
Slices 1,270 226 4,084 1,055 234 219 1,885
BRAMs 10 3 8 4 6 5 2
Mult. 0 0 13 8 0 0 4
Latency - 1 21 11 2 2 27

Freq. [MHz] 113.234 157.324 130.733 123362 165.696 161.409 127.585

a “START” node in Fig. 22, and the packet controller sends three packets to the
next pointed nodes: DGTB, UPDT, and REAT/S. In the same figure, /S and /B
packets are sent to the same TSU, but the number of their operation is different. The
calculation of a simulation cycle ends when both TCAL and TMOD are completed.

3.4.10 Thread Share Unit

Each TSU calculates its own operation based on the received packet and sends back
the result to the TPU. TMOD module as a typical example of TSU is shown in Fig. 23.
The flits following the header flit are stored into the output address FIFO, as the
header flit of the packet for return to the TPU. The result of arithmetic is stored into
the output data FIFO. Each TSU is pipelined and can receive packet continuously
and calculate its operation in fixed clock cycles.

Table 5 shows a rough estimation of the area and operating frequency of each
unit. The area of TCAL in TSU is large, because it owns a logarithmic arithmetic unit
that calculates (15). Random numbers required in the same equation are generated
with M-sequence random number generator, and logarithmic values are obtained
with second order interpolation. PRPC and TMOD are calculation units to obtain

166 Y. Yamaguchi et al.

FU 1 x 6 Crossbar DGTB
forwarding information X REAT
shifter
TCAL
TTTTITTTTTTTTTTT UPDT
Output FIFO
32bits x 512word;
\H\\I\s\x\\\‘\lv\o\r\s\\ PROC
Output FIFO TMOD
Controller
DOUT
DIN
—p
Host PC T+2-ports
Router

SN\

_TPUO |l TPUT || TPU2 |

[
|]
| |

—
U

L C

=

Fig. 24 Type AT star structure

propensity a; and 7; modified with (16), respectively. DGTB are tables for storing
constant values: species IDs of reactants in each reaction, state update vectors, and
a dependency graph.

3.4.11 Evaluation

This section evaluates three types of network structures for NRM circuit implemen-
tation.

Type AT (Star structure): Type AT circuit (Fig.24) has T TPUs which are
connected to TSUs only by one router with 7' 4 2 ports. A group of TSUs is called
a Functional Unit (FU), and it owns a 1 x 6 crossbar and a FIFO for output port.

Type B (Tree structure): This adopts a tree structure with 16 TPUs (Fig. 25).
White round rectangles in Figs. 25 and 26 indicate the router, and numbers represent

its number of ports. Dotted squares denote TPUs, and dark shaded squares represent
FUs or TPUs.

Type C (Fat-Tree structure): In Type AT and B, many packets are concentrated
on the gateway of FU. Therefore, Type C distributes TSUs in a circuit with more
routers compared to the previous types (Fig. 26). Four REATs and four PROCs are
shared by four TPUs. Each TSU accesses these units two times per simulation cycle.
Only one set of TMOD and TCAL are placed in the circuit, because their access rate

FPGA-Based HPRC for Bioinformatics Applications 167

Fig. 25 Type B: cascading
structure

Fig. 26 Type C: network
structure

is low in spite of their large area consumption. This topology is a composite structure
of tree networks and can be categorized as a fat tree network.

3.4.12 Area and Operation Frequency Evaluation

Performance of the area and the operating frequency of Type AT was evaluated with
different numbers of TPU for the router and the whole NRM circuit implemented.
The results are shown in Fig.27. Increase of the area of TPU is proportional to
the numbers of TPU, whereas the interconnection network between TPUs and FU
is larger than other components. This means that the router requires large resources
according to its numbers of port. Similarly, the maximum operating frequency of the
circuit degrades according to number of TPUs. There is a longer delay for arbitration
and transition due to their complex operations. From Fig. 27, in case when T > 4,
critical path of Type AT would be due to the router.

168 Y. Yamaguchi et al.

60000 59022 499

@ —
é 50000, >~ XC4VLX100 (49152Slices) 100;
n =
w 40000 \’\x\?,gzgo 80 >
o % g
3 30000 T 60 &
Ne] 21243 g_
g 20000 14215 40 8
3 40000 9618 11141 S
= m . >
0 — 0o £
Numberof TPU 1 2 4 8 16 24 g
o

(@)

= FU 7819 | 7819 | 7819 | 7819 | 7819 | 7819

O TPU 1270 | 2540 | 5080 | 10160 | 20320 | 30480
m|C 529 782 1316 | 3264 | 11151 20723
* Freq. 105.82 109.47| 92.899 77.101| 68.161 57.657

Fig. 27 Evaluation of type AT

90000, XC4VLX200 (89088 S| ices) 70626 100
® 80000 - _ x 90 g
S 70000 / 80 T
o 60000 _ 70 2
% 50000 XCAVLX100 (49152 S| ices) (538 2
+ 40000 39250 33814 % S
S 30000 30 3
o
£ 20000 20 @
S 10000 r
zZ | — Jow
TypeA16 TypeB TypeC £
=FU 7819 7819 11546 g
OTPU 20320 20320 20320 8‘
u|C 11151 5675 38760
* Freq. 68.161 88.236 87.011

Fig. 28 Evaluations of type A16, B and C

Considering the resources of the target FPGA, 16 TPUs can be configured when
implementing the Type A16. Numbers of TPU of Type B and Type C will also be
fixed to 16 according to this result.

Figure 28 shows the area and the maximum operating frequency of Type A16,
Type B, and Type C. Type B suppresses the area of the interconnection networks by
49 % compared to Type A16. Additionally, maximum operation frequency of Type B
is also improved. Three additional modules of REATSs and three PROCs were added
in the TPU of Type C, so its area is larger than the other types. Type C exceeds the
area capability of the target FPGA(XC4VLX100), as the area of interconnect is 3.5
times larger than Type A16. Figure 28 shows a maximum capacity of the largest
FPGA device(XC4VLX200: 89,088 slices) in Virtex-4 series.

FPGA-Based HPRC for Bioinformatics Applications 169

900
800 - — - - — — - - -
700
600
500
400
300
200

M LRERURNENENRLRL R

Model Sizoe 4 8 16 32 64 128 256 512 1020

= TypeAl1 |129.034/129.254|129.086/129.351 129.874/131.165|132.852/ 135.344|135.686
0 TypeA16|787.412/786.294|785.028/787.311/786.273786.410, 789.543|787.417|789.289
2TypeB 786.322|786.224787.476|787.410/786.693|785.332|787.476|785.874,786.191
ETypeC 192.053/191.650/192.125/192.125 192.317|192.000/191.998/192.019|191.888

reaction cycle

Clock cycles to calculate

Fig. 29 Clock cycles per simulation cycle

3.4.13 Performance Evaluation

Stochastic biochemical models defined as N/4 sets of Lotka reactions [37] are used
for the performance evaluation. In this section, we evaluated the throughput of each
circuit type by the various model size according to the average clock cycles to
calculate a simulation cycle and its operating frequency.

Average clock cycles to calculate a simulation cycle in Type A1, Type A16, Type
B, and Type C are shown in Fig. 29. As Type A1 has a very simple network structure
which has only a TPU, there is no jam with other TPUs in packet flow. According
to Fig.29, model size has small effect on the calculation time of a simulation
cycle. TPU has an IPQ, which has a memory of binary tree structure, calculation
time varies due to the number of rebuilding IPQ. Therefore, tree depth elongates
calculation cycles, but it is within 5 % of whole clock cycles for a simulation cycle.
However, Type A16 and Type B requires much longer time compared to Type Al,
because six types of TSU are assembled into an FU which has only one I/O port.
Packets are concentrated to the I/O port of the FU, which is a bottleneck to calculate
a simulation cycle.

These performances are compared with a general-purpose processor. The pro-
gram was written in C++-, compiled with gcc-3.4.6 (-O3) on Linux 2.6.18, and
executed on Xeon 3.20 GHz with 6.0 GB RAM. Even the program is run on a single
thread, several techniques to increase the computational speed are introduced such
as allocating tree structure on an array and address list of reactions which points the
location on the tree.

Figure 30 shows throughput of RTL simulations with different model sizes
between N =4 and N = 1,020 of Lotka model. SW shows execution on general-
purpose processor. Its throughput was calculated by a number of simulation cycles
per second, which is approximately the execution time of 10° simulation cycles.

170 Y. Yamaguchi et al.

Throughput [Mcycles/sec]

8
7
6
5
4
3
2
1
0
e

Model Siz 4 8 16 32 64 128 | 256 | 512 | 1020
msSW 3.568| 3.139| 2.890| 2.734| 2.544| 2.314| 2.138| 2.020| 1.901
OTypeA1 | 0.820| 0.819 0.820| 0.818| 0.815| 0.807 | 0.797| 0.782| 0.780
mTypeA16| 1.385| 1.387 | 1.389| 1.385| 1.387| 1.387 | 1.381| 1.385| 1.382
E TypeB 1.795 1.796| 1.793| 1.793| 1.795| 1.798| 1.793| 1.796| 1.796
OTypeC | 6.899| 6.913 6.896| 6.896| 6.889| 6.901| 6.901| 6.900| 6.905

Fig. 30 Throughput

4.0

3.5

3.0

2.5

2.0

1.5

1.0 P
0.5 % — -
0.0 — —

ModelSize, 4 | 8 | 16 32 | 64 | 128 | 256 | 512 1020

TypeAl 0.230/0.261/0.284 0.299 0.320/0.349 0.373/0.387 0.410
TypeAl6 |0.388/0.442/0.481 0.507|0.545/0.599|0.646/0.686 0.727
TypeB 0.503/0.572/0.620/0.656|0.706 0.777/0.838/0.889 0.945
TypeC 1.933/2.202/2.386/2.522/2.709|2.983|3.227/3.416 3.632

Throughput Gain

X[+ ¢

Fig. 31 Throughput gain

Throughput of FPGA was estimated by operating frequency in Fig. 27 or Fig. 28
divided by a number of clock cycles per simulation cycle in Fig. 29.

As shown in Fig. 30, throughput of SW degrades according to the model size
due to the algorithmic property of NRM, whereas circuit on the FPGA maintains its
throughput.

Figure 31 shows a throughput gain compared with the SW execution on Xeon
3.20 GHz. This indicates the advantage of Type C, which maintains high throughput
even when model size increases. Although the throughput improvement on a chip
is not so remarkable, use of FPGA for stochastic biochemical simulation may be
advantageous for performance per watt, because of operating frequency is much
lower than microprocessor dozens of times.

FPGA-Based HPRC for Bioinformatics Applications 171

3.4.14 Discussion: For More Improvement

These evaluation results indicate several future approaches to improve performance.
First, area of the current router consumes the vast majority of the whole circuit,
for each router has large number of ports, and uses a BlockRAM. The router
architecture can be minimized by using several distributed RAMs instead of using
BlockRAMs. It is also worth considering interconnection networks that consist
of routers with fewer ports. By saving the resource utilization of the Meanwhile,
unnecessary transfer delay between the units may be prevented by utilizing small-
port routers as repeater buffers. Although current throughput gain is 3.6 times higher
than SW execution on Xeon 3.20 GHz at most, further enhancements on resource
utilization of the interconnection network may bring out better performance, so that
higher performance can be obtained even with lower-ranged FPGA chips.

3.5 Summary of Stochastic Approach

This section introduced a framework for designing and implementing a circuit
on the FPGA that accelerates the execution of the NRM, one of the most recent
stochastic biochemical simulation algorithms. By utilizing the on-chip interconnec-
tion network structure of the proposed circuit, calculation units can run multi-thread
process for each independent simulation data of multiple data units. In this work,
various types of network were configured depending on the capacity of target FPGA
devices, and each performance was evaluated. Although the circuit achieved 3.6
times higher throughput on a high-end FPGA compared to that on Xeon 3.20 GHz
at most, the area evaluation results indicated possibilities to improve throughput by
reducing the area ratio of the interconnection network.

4 Conclusion

This chapter introduced three major examples in the field of bioinformatics. In
recent years, various algorithms and methods, whether new or old, have been recon-
sidered since bioinformatics is broadening the field of applications. Furthermore, in
order to ensure the smooth handling of huge biological databases and large-scale
simulations, it is essential to utilize cluster computing technologies as accelerating
them. Over the past 10 years, some studies have been done on FPGA cluster sys-
tems in bioinformatics [47-50]. These research achievements have also developed
some new technical products. For example, DeCypher [51] is a famous parallel
computing system designed to analyze genome databases from the early days
of the FPGA acceleration history. It accelerates BLAST, Hidden Markov Model
(HMM), and the Smith-Waterman algorithm. GeneMatcher2 [52] is another FPGA-
based custom computer for HMM, the Smith-Waterman algorithm, and GeneWise.

172 Y. Yamaguchi et al.

HC-2 system [53] is applied not only in bioinformatics but also in the wide range of
areas and it was the 44th place on the Graph500 list in 2012. Pico Computing [54]
and SciEngines [55] are known as FPGA companies whose products are applied
to dynamic programming algorithms. As stated above, FPGAs have long been
contributed in the acceleration of bioinformatics application systems; however, we
are now facing a new difficulty to build such a complicated heterogeneous cluster.
Here, MaxCompiler [56] proposes one of the solutions. Its proposed system allows
programmers to describe their target applications in a high-level language. The
question now arises: how do we manage a number of bioinformatics applications
as drawn up by Fig. 1 even if we can develop an independent application easily?
Here, we may expand the application reconfigurability into user groups. Each group
is expert in the field of one or a few biological disciplines and it means no one is able
to put the whole picture together. Thus, Novo-G project which is composed of 11
academic groups is one reasonable approach. Novo-G system is a powerful cluster
with 192 FPGAs and all team can use the system. This will be a valid method if there
is a comprehensive framework which aims to integrate the computational results to
one goal, such as system biology.

References

1. T.P. Niedringhaus, D. Milanova, M.B. Kerby, M.P. Snyder, A.E. Barron, Landscape of next-
generation sequencing technologies. Anal. Chem. 83(12), 43274341 (2011)

2. T. Toyoda, A. Wada, Omic space: coordinate-based integration and analysis of genomic
phenomic interactions. Bioinformatics 20(11), 1759-1765 (2004)

3. J. Lederberg, A.T. McCray, ’Ome sweet "omics — a genealogical treasury of words. Scientist
15(7), 8 (2001)

4. M.O. Dayhoff, R.M. Schwartz, B.C. Orcutt, A Model of Evolutionary Change in Proteins, in
Atlas of protein sequence structure, Natl. Biomedical Research, 5(3), 345-352 (1978)

5. S.F. Altschul, Amino acid substitution matrices from an information theoretic perspective.
J. Mol. Biol. 219(3), 555-565 (1991)

6. S. Whelan, N. Goldman, A general empirical model of protein evolution derived from multiple
protein families using a maximum-likelihood approach. J. Mol. Biol. Evol. 18, 691-699 (2001)

7. S.F. Altschul, W. Gish, W. Miller, E.-W. Myers, D.J. Lipman, Basic Local Alignment Search
Tool. Mol. Biol. 215(3), 403—410 (1990)

8. W.R. Pearson, Comparison of methods for searching protein sequence databases. Profein Sci.
4(6), 1145-1160 (1995)

9. E.G. Shpaer, M. Robinson, D. Yee, J.D. Candlin, R. Mines, T. Hunkapiller, Sensitivity and
selectivity in protein similarity searches: a comparison of Smith-Waterman in hardware to
BLAST and FASTA. Genomics 38, 179-191 (1996)

10. S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443-453 (1970)

11. T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195-197 (1981)

12. T.V. Court, M.C. Herbordt, Families of FPGA-based accelerators for approximate string
matching. Microprocess. Microsyst. 31, 135-145 (2007)

13. T.F. Oliver, B. Schmidt, D.L. Maskell, Reconfigurable architectures for bio-sequence database
scanning on fpgas. IEEE Trans. Circ. Syst. I 52(12), 851-855 (2005)

FPGA-Based HPRC for Bioinformatics Applications 173

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

P. Zhang, G. Tan, G.R. Gao, Implementation of the Smith-Waterman algorithm on a re-
configurable supercomputing platform, in Proceedings of the Ist International Workshop
on High-Performance Reconfigurable Computing Technology and Applications: Held in
Conjunction with SC07 (ACM, New York, 2007), pp. 3948

K. Benkrid, Y. Liu, A. Benkrid, A highly parameterised and efficient FPGA-based skeleton
for pairwise biological sequence alignment. IEEE Trans. Very Large Scale Integr. (VLSI Syst.)
17(4), 561-570 (2009)

S. Lloyd, Q.O. Snell, Hardware accelerated sequence alignment with traceback. Int. J.
Reconfigurable Comput. Article ID 762362, 1-10 (2009)

M.N. Isa, K. Benkrid, T. Clayton, C. Ling, A.T. Erdogan, An FPGA-based parameterised
and scalable optimal solutions for pairwise biological sequence analysis, in Proceedings of
2011 NASA/ESA Conference on Adaptive Hardware and Systems (IEEE, Piscataway, 2011),
pp. 344-351

L. Ligowski, W.R. Rudnicki, An efficient implementation of Smith Waterman algorithm on
GPU using CUDA, for massively parallel scanning of sequence databases, in Proceedings
of Eighth International Workshop on High Performance Computational Biology: Held in
Conjunction with 2009 IEEE International Symposium on Parallel & Distributed Processing
(IEEE, 2009), pp. 1-8

Y. Liu, D.L. Maskell, B. Schmidt, CUDASW++: optimizing smith-waterman sequence
database searches for CUDA-enabled graphics processing units. BMC Res. Notes 2(1), 73-82
(2009)

L. Ligowski, W.R. Rudnicki, GPU-SW Sequence Alignment server, in International Con-
ference on Computational Science 2010 (2010), pp. 1-10, http://gpucomputing.net/?q=node/
3149. Accessed February 2011

K. Dohi, K. Benkrid, K.C. Ling, T. Hamada, Y. Shibata, Highly efficient mapping of the
Smith-Waterman algorithm on CUDA-compatible GPUs, in Proceedings of the 21st IEEE
International Conference on Application-Specific Systems Architectures and Processors (IEEE,
2010), pp. 29-36

M. Aldinucci, M. Danelutto, M. Meneghin, P. Kilpatrick, M. Torquati, Efficient streaming
applications on multi-core with FastFlow: the biosequence alignment test-bed, in Proceedings
of Parallel Computing: from Multicores and GPU’s to Petascale (10S Press, Amsterdam,
2009), pp. 273-280

O. Gotoh, An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3),
705-708 (1982)

A.C. Jacob, J.D. Buhler, R.D. Chamberlain, Design of throughput-optimized arrays from
recurrence abstractions, in Proceedings of the 21st IEEE International Conference on
Application-Specific Systems Architectures and Processors (IEEE, 2010), pp. 133-140

Y. Yamaguchi, H. Tsoi, W. Luk, FPGA-based Smith-Waterman algorithm: analysis and novel
design, in Proceedings of the 7th International Conference on Reconfigurable Computing:
Architectures, Tools and Applications (Springer, Berlin, 2011), pp. 181-192

S.A. Manavski, G. Valle, CUDA compatible GPU cards as efficient hardware accelerators for
smith-waterman sequence alignment. BMC Bioinformatics 9(suppl 2), S10 (2008)

B.A. Barshop et al., Analysis of numerical methods for computer simulation of kinetic
processes: development of kinsim — a flexible, portable system. Anal. Biochem. 130, 134-145
(1983)

M. Pedro, Gepasi: a software package for modelling the dynamics, steady states and control of
biochemical and other systems. Comput. Appl. Biosci. 9(5), 563-571 (1993)

I. Goryanin et al., Mathematical simulation and analysis of cellular metabolism and regulation.
Bioinformatics 15(9), 749-758 (1999)

M. Tomita et al., E-cell: software environment for whole-cell simulation. Bioinformatics 15(1),
72-84 (1999)

L.I. Moraru, J.C. Schaff, B.M. Slepchenko, L.M. Loew, The virtual cell: an integrated modeling
environment for experimental and computational cell biology. Ann. N Y Acad. Sci. 971,
595-596 (2002)

http://gpucomputing.net/?q=node/3149
http://gpucomputing.net/?q=node/3149

174

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Y. Yamaguchi et al.

M. Hucka, A. Finney, B.J. Bornstein, S.M. Keating, B.E. Shapiro, J. Matthews, B.L. Kovitz,
M.J. Schilstra, A. Funahashi, J.C. Doyle, H. Kitano, Evolving a lingua franca and associated
software infrastructure for computational systems biology: the systems biology markup
language (SBML) project. IEE Syst. Biol. 1(1), 41-53 (2004)

M. Hucka, A. Finney, H. Sauro, H. Bolouri, in Systems Biology Markup Language (SBML)
Level 1: Structures and Facilities for Basic Model Definitions. Systems Biology Workbench
Development Group, ERATO Kitano Symbiotic Systems Project, version 2nd edn. (California
Institute of Technology, Pasadena, 2003)

H. Yamada, Y. Ogawa, T. Ooya, T. Ishimori, Y. Osana, M. Yoshimi, Y. Nishikawa,
A. Funahashi, N. Hiroi, H. Amano, Y. Shibata, K. Oguri, Automatic pipeline construction
focused on similarity of rate law functions for an FPGA-based biochemical simulator. IPSJ
Trans. Syst. LSI Des. Methodol. 3, 244-256 (2010)

Y. Osana, M. Yoshimi, Y. Iwaoka, T. Kojima, Y. Nishikawa, A. Funahashi, N. Hiroi,
Y. Shibata, N. Iwanaga, H. Kitano, H. Amano, An FPGA-based biochemical simulator recsip
(to appear/english translation of Osana et al. on trans. IEICE j89-d). Syst. Comput. Jpn.
J89-D(6), 1163-1172 (2007)

A. Funahashi, N. Tanimura, M. Morohashi, H. Kitano, Celldesigner: a process diagram editor
for gene-regulatory and biochemical networks. BIOSILICO 1(5), 159-162 (2003)

D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. Comput. Phys. 22, 403-434 (1976)

M.A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many
species and many channels. J. Phys. Chem. A 104(9), 1876-1889 (2000)

Y. Cao et al., Efficient formulation of the stochastic simulation algorithm for chemically
reacting systems. J. Chem. Phys. 121(9), 4059-4067 (2004)

K. Takahashi et al., A multi-algorithm, multi-timescale method for cell simulation. Bioinfor-
matics 20(4), 538-546 (2004)

J.F. Keane, C. Bradley, C. Ebeling, A compiled accelerator for biological cell signaling
simulations, in Proceedings of the 2004 ACM/SIGDA 12th International Symposium on FPGA
(ACM, New York, 2004), pp. 233-241

L. Salwinski et al., In silico simulation of biological network dynamics. Nat. Biotechnol. 22(8),
1017-1019 (2004)

M. Yoshimi, Y. Osana, T. Fukushima, H. Amano, Stochastic simulation for biochemical
reactions on FPGA, in Proceedings of the 14th IEEE International Conference on FPL
(Springer, Berlin, 2004), pp. 105-114

M. Yoshimi, Y. Osana, Y. Iwaoka, A. Funahashi, N. Hiroi, Y. Shibata, N. Iwanaga, H. Kitano,
H. Amano, The design of scalable stochastic biochemical simulator on FPGA, in Proceedings
of the 15th IEEE Field Programmable Technology (IEEE, 2006), pp. 339-340

M. Yoshimi, Y. Osana, Y. Iwaoka, Y. Nishikawa, T. Kojima, A. Funahashi, N. Hiroi, Y. Shibata,
N. Iwanaga, H. Kitano, H. Amano, An FPGA implementation of high throughput stochastic
simulator for large-scale biochemical systems, in Proceedings of the 16th IEEE International
Conference on Field Programmable Logic and Applications (IEEE, 2006), pp. 227-232

M. Yoshimi, Y. Iwaoka, Y. Nishikawa, T. Kojima, Y. Osana, A. Funahashi, N. Hiroi, Y.
Shibata, N. Iwanaga, H. Yamada, H. Kitano, H. Amano, FPGA implementation of a data-
driven stochastic biochemical simulator with the next reaction method, in Proceedings of the
17th IEEE International Conference on Field Programmable Logic and Applications (IEEE,
2007), pp. 254-259

B. Schmidt, H. Schroder, M. Schimmler, Massively parallel solutions for molecular sequence
analysis, in Proceedings of the Ist International Workshop on High Performance Computa-
tional Biology: Held in Conjunction with 2002 IEEE International Symposium on Parallel &
Distributed Processing (IEEE, 2002), pp. 186-193

B. Schmidt, H. Schroder, M. Schimmler, Massively parallel solutions for molecular sequence
analysis, in Proceedings of the 1st International Workshop on High Performance Computa-
tional Biology: held in conjunction with 2002 IEEE International Symposium on Parallel &
Distributed Processing, IEEE, pp. 186-193 (2002)

FPGA-Based HPRC for Bioinformatics Applications 175

48.

49.

50.

51.

52.

53.

54.

55.

56.

K. Regester, J.-H. Byun, A. Mukherjee, A. Ravindran, Implementing bioinformatics algorithms
on nallatech-configurable multi-FPGA systems. Xcell J. Second Quarter, 100—103 (2005)

S. Masuno, T. Maruyama, Y. Yamaguchi, A. Konagaya, Multidimensional dynamic program-
ming for homology search on distributed systems, in Proceedings of Euro-Par 2006 Parallel
Processing (Springer, Berlin, 2006), pp. 1127-1137

A.G. Schmidt, S. Datta, A.A. Mendon, R. Sass, Investigation into scaling I/O bound streaming
applications productively with an all-FPGA cluster. Parallel Comput. 38, 344-364 (2012)

T. Mittler, M. Levy, C. Feller, K. Schlauch, Multblast: a web application for multiple blast
searches. Bioinformation 5, 224-226 (2010). http:/www.timelogic.com/

M.A. Rieffel, T.G. Gill, W.R. White, Bioinformatics Clusters in Action (Paracel, Inc., Pasadena,
2004) 8 pp., http://www.paracel.com/pdfs/clusters-in-action.pdf

Convey to deliver FPGA cluster to virginia bioinformatics institute, HPC wire (2011), http://
conveycomputer.com/. Accessed August 2011

FPGA cluster accelerates bioinformatics application by 5000X, Dr. Dobb’s Journal (2009),
http://www.picocomputing.com/. Accessed November 2009

Rivyera s3-5000 (white paper, v2.1), SciEngines (2012), http://www.sciengines.com/.
Accessed April 2012

Maxcompiler (white paper), Maxeler Technologies (2011), http://www.maxeler.com/.
Accessed February 2011

http://www.timelogic.com/
http://www.paracel.com/pdfs/clusters-in-action.pdf
http://conveycomputer.com/
http://conveycomputer.com/
http://www.picocomputing.com/
http://www.sciengines.com/
http://www.maxeler.com/

High-Performance Computing
for Neuroinformatics Using FPGA

Will X.Y. Li, Rosa H.M. Chan, Wei Zhang, Chiwai Yu, Dong Song,
Theodore W. Berger, and Ray C.C. Cheung

Abstract The brain represents information through the ensemble firing of neurons.
These neural processes are difficult to study in vivo because they are highly
non-linear, dynamical and often time-varying. Hardware systems, such as the
FPGA-based platforms, are very efficient in doing such studies given their in-
trinsic parallelism, reconfigurability and real-time processing capability. We have
successfully used the Xilinx Virtex-6 FPGA devices to prototype the general-
ized Laguerre—Volterra model (GLVM), which is a rigorous and well-functioning
mathematical abstraction for the description of neural processes from a system
input/output relationship standpoint. The hardware system first conducts GLVM
parameters estimation using the neural firing data from experiments; then it is able
to predict the neural firing outputs based on the field estimated model coefficients
and the novel model inputs. The hardware system has been prototyped and is proved
very efficient in this study compared to our previous software model running on the
Intel Core i7-2620M CPU (with Turbo Boost to 3.4 GHz). It achieves up to a 2,662
times speedup in doing GLVM parameters estimation and a 699 times speedup in
conducting neural firing outputs prediction. The calculation results are very precise
with the NMSE being successfully controlled at the 10~!! scale compared to the
software approach. This FPGA-based architecture is also significant to the future
cognitive neural prostheses design.

W.X.Y. Li (><) « R.C.C. Cheung
City University of Hong Kong, Hong Kong
e-mail: xyli@ee.cityu.edu.hk; rcheung @cityu.edu.hk

R.H.M. Chan * W. Zhang * C. Yu
Department of Electronic Engineering, City University of Hong Kong, Hong Kong

D. Song T.W. Berger
Department of Biomedical Engineering, University of Southern California, Los Angeles, USA

W. Vanderbauwhede and K. Benkrid (eds.), High-Performance Computing Using FPGAs, 177
DOI 10.1007/978-1-4614-1791-0_6, © Springer Science+Business Media, LLC 2013

mailto:xyli@ee.cityu.edu.hk
mailto:rcheung@cityu.edu.hk

178 W.X.Y. Lietal

1 A Brief Introduction to Cognitive Neuroscience
and Cognitive Neural Prosthesis

As an important branch of neuroscience, cognitive neuroscience, which focuses on
the biological substrates underlying cognition, grew rapidly over the last several
decades. The study of cognitive neuroscience is of multidisciplinary nature, for
it requires knowledge of fields such as neurobiology, bioengineering, philosophy,
and computer science. In this chapter, we explore how modern reconfigurable com-
puting facilities can be effectively applied to the study of cognitive neuroscience,
especially, to the research regarding the important brain functions of learning and
memory.

1.1 The Hippocampus: Hub of Brain Network Communication
Jor Memory

Learning is the process of the acquisition of enduring information, behavior patterns
or skills through study, experience, or being taught. Memory refers to the capability
of the retention of such information or abilities and the retrieval of them while
being stored [1]. Learning and memory appear as two important aspects of animal
cognition and are highly relevant in their biological basis to an important component
of the brain—the hippocampus. It belongs to the limbic system and is responsible
for the formation of long-term declarative or explicit memories, such as the specific
personal experiences or factual information that can be recollected through later
conscious brain activity. The hippocampus itself is comprised of several different
sub-systems which form a closed feedback loop, as shown in Fig. 1. The flow of
information within the hippocampus is largely unidirectional. Bioelectrical signals
propagate through a series of tightly packed layers of nerve cells. Input signals from
the dentate gyrus (DG) first go to the CA3 layer, and then the CAl layer, after
that the subiculum, finally out of the hippocampus to the entorhinal cortex (EC).
After this process of signal processing, new interpretation of patterns of information

CAl1

Sch

Fig. 1 The double-C shaped
anatomical structure of the
hippocampus. The arrows
show the way of bioelectrical
signal transmission within the
hippocampal system. DG:
dentate gyrus; CA3: Cornu
Ammonis 3; CAl: Cornu
Ammonis 1

High-Performance Computing for Neuroinformatics Using FPGA 179

are directed to other cortical areas for the purpose of long-term storage. Thus,
hippocampus is not the brain region for storage of long-term declarative memories,
but instead, a hub for the transmission and re-encoding of mnemonic information
through it intrinsic biological circuitry.

Clinical practices reveal that the degeneration or malformation of hippocampal
cells results in different kinds of pathological changes, some are highly related to
the formation of long-term memory [2, 3]. The well-known Alzheimer’s disease
and dementia are in close association with the selective loss of hippocampal cells
during their formation. Besides, symptoms such as the epileptic activity are highly
susceptible to be the outcomes of dysfunction of the hippocampal CA3 region;
while stroke is very possibly to be brought about by the preferential damage to
CAl pyramidal cells. Even the brain trauma is manifested to be of consequence to
the selective loss of the hilar neurons of the hippocampal system. While medication
can serve as a supplementary means for the treatment of these brain lesions, a more
permanent cure may be the application of artificial substitutions to the pathological
areas within the brain. These substitutions can also be termed neural prosthetic
devices or neural prostheses.

1.2 Neural Prosthesis for Restoring Lost Cognitive Function

Neural prostheses are devices that can substitute modality that might have been
damaged as a result of injury or disease. Based on their specific functions, the neural
prosthetic devices fall into two major categories. Devices belonging to the first
category can be adopted for making a compensation for the lost communications
between the central nervous system (CNS) and the exosomatic environment. There
are two subdivisions of such devices, also based on their functionalities. Devices
such as artificial retina or cochlear implant pertain to the first subdivision, which
works for the transduction of physical energy to bioelectrical simulation of sensory
nerve fibers, bypassing the damaged primary sensory cells [4, 5]. Devices such
as artificial limb belong to the second subdivision, which attempt to decode
the bioelectrical signals coming from the CNS and generate functional electrical
stimulation, thus compensating for the loss of motor control [6—13]. The other main
category of the neural prostheses is developed to restore the lost communication
between two individual brain areas, such as two different sub-regions within the
animal hippocampal system. This kind of prostheses presents special challenges
to the designers due to their dual roles in performing both signal decoding and
encoding. By bridging the brain regions by an artificial, silicon-based means, the
once fractured communication can be well reestablished.

We are now endeavoring to develop a hippocampal CA3 cognitive neural
prosthesis. The prosthesis functions to transform the spatial temporal pattern of CA3
input spike trains to the spatial temporal pattern of CA1 output spike trains. The
spike trains refer to a sequence of all-or-none, point process spiking events, with
variations of intervals among individuals of them. Owing to the fact that underlying
molecular mechanisms and synaptic connections are of highly dynamical and

180 W.X.Y. Lietal

nonlinear nature [14-20], it is necessary for the hippocampal neural prosthesis,
which mimics the short-term to long-term memory re-encoding process, to work in
good adherence to a well-functioning mathematical model that can be constructed
to represent the very complex brain process.

2 Modeling Techniques for Neural Systems

Mathematical model describing the process of the transmission of neural signals
as they flow through neuronal ensembles can facilitate us to better understand the
underlying mechanisms of the brain. However, this attempt is often hindered by the
intrinsic complexity of these neural processes given their high nonlinearity, dynamic
property, and potential variations contributed by internal and/or external factors.
In order to study these nonlinear time-varying dynamics, various computational
models have been proposed. Some of them have been successfully applied to
describe different parts of the neural systems such as the retina [21-23], the auditory
cortex [24], and the motor systems [25]. These computational models largely fall
into two main categories: parametric models and nonparametric models. The former
aims to investigate mechanism of the underlying biophysical and physiological
processes while the latter seeks to find a solution to the problem by quantifying the
functional interactions among the broad-range mechanisms found in the neurons.
Table 1 draws a brief comparison between the parametric models and nonparametric
models from the perspectives of their theoretical foundation and respective features.

2.1 The Parametric Models

The parametric models, which are also often termed mechanistic models, build their
own structures starting from the mathematical equations delineating the molecular
mechanisms of each neuron. A typical example for the mechanistic models is the
Hodgkin and Huxley model, which is derived from experiments using squid giant
axon and adopts a set of nonlinear ordinary differential equations to describe the
initiation and propagation process of the action potentials (APs) [26]. Notable
ongoing projects based on the mechanistic models include the IBM Blue Brain
Project, which aims to reconstruct the brain piece by piece and build a virtual brain
by reverse-engineering the real one down to the molecular level [27]; the elementary
objects of neural systems (EONS), which provides an integrated synaptic platform
for the study of the interactions between elements within the synapse [28]; and
the Brains in Silicon project by Stanford, which is established to investigate how
cognitive behavior arises from the brain’s physiology such as the mechanism
of the ion-channels [29]. Various simulation tools are also developed, such as
NEURON and MCell [30, 31]. However, since the exact function of the neural
circuit for cognition remains unknown, it would be difficult to verify the model’s
accuracy or generate new insights into how particular neural circuit works or what it

181

High-Performance Computing for Neuroinformatics Using FPGA

Sur[epour S9[qUIASUS [BINAU IO UOINAU [ENPIAIPU]
SUWISTUBYOSW
WRJSAS [9AJ[-MO] Aq pajardidiur A[30211p 99 0) J[qeur)

suoneordde jo a3uel p[im ® 10J AJI[RISUID)
‘syndur Areniqre 103 saniqedes aanorpaid
ay) Suissassod ‘uoneoyroads [opow Jo uondwoxyg

sureq} uone[nNUINs pueq-peorg

suorsuedxo [euonouny odA) v119)[0A SutZIMN)

(uoneindwod
QI0W YONW SAYB) YIIYM SUI[OPOW SA[QUIASUD [BINAU I0J
dn pareos oq ued) SurepoWw UOINAU [ENPIAIPUT ATLIRWITI]
syndur axouwr 1w Ayrxo[dwod jopowr Sursearour
9y 03 anp dn Jureos Juunp d[qexoenun FUMUOAG
£qaI0y) PaqrIosap [[om 9q
ued uoneISul SNLIPUAP ‘uolsstwsuer) ondeuks se yons
suorouUNy [eUoINau dwos ‘pajardisjur A[reorSororsAyd
pue A[reorsAydorq Apoaxrp Sureq jo o[qede)
ased uoneodrdde yoes ur siojowered
umowun jo yusunsnlpy ¢soyermisod [opowr mord v
syuounIedwod J0 SWSIURYOIW
ogroads udtsap 03 suorjenbe TenuareyyIp oY) Surznn

uonjeordde jo adoog

sagejueApesiq

sa3ejuBAPY
uorjeordde jo 9yrsmbororg

uondLosap Jo WL

sfopowr orowrereduoN

S[epour d1naweIed

s[opow ouawrereduou pue drowered oY) usamieq uostredwo) T dqeL,

182 W.X.Y. Lietal

does while implementing these mechanistic models. Meanwhile, there are actually
too many mechanisms underlying neural systems to be modeled parametrically.
The effects of these mechanisms vary with ion channel densities, distributions
in dendrites, and many other parameters. Given billions of inputs and outputs, a
detailed but incomplete mechanistic model of the nervous system would still require
supercomputing facilities.

2.2 The Nonparametric Models

The nonparametric models are also called data-driven models, which use engi-
neering modeling techniques such as network analysis, information theory, and
statistical methods to investigate or describe the behavior of biological neuron or
neural networks. The data-driven models provide less biological information than
the mechanistic models do, but reduce potential errors in the postulation of model
structures required in the mechanistic modeling approach. Several approaches can
be adopted when using the data-driven models to decode the neural firing signals.
One simple example is the linear decoder, which postulates that the decoded
neural firing rate is the linear combination of the neural activity which has been
recorded. It uses linear least squares to fit the statistical model to data and the
quality of decoding can be evaluated by calculating the root mean square errors
[32]. Another common model estimation method is maximum likelihood, which is
also convenient for assessment of model goodness-of-fit and for construction of the
confidence intervals [33, 34]. Various versions of Kalman filter, which uses a series
of measurements observed over time and produces a statistically optimal estimate,
were also used to estimate model coefficients in a number of motor prosthesis
projects [35]. In the next section, we will focus our discussion on using functional
power series as an efficient way to describe the nonlinear input—output properties of
neural circuits.

2.3 Theoretical Background of Our Model

The modeling algorithm we use in this work belongs to the category of nonparamet-
ric approaches.

Previous studies carried by Volterra [36], Wiener [37], and Marmarelis [38, 39]
and other researchers have demonstrated that for any nonlinear and time-invariant
system with finite memory length, the system output can be represented as a
functional power series of the system input. For the single-input, single-output,
discrete-time case, the input—output relationship can be expressed as:

M M M
Y1) =ko+ Y ki(D)x(t—1)+ Y, D k(n,n)x(t—n)x(t—n)+-- (D

7=0 T1=017=0

High-Performance Computing for Neuroinformatics Using FPGA 183

In the above equation, the system dynamics is revealed through the temporal
convolution between system input and the kernel functions k; while the system
nonlinearity is suggested by multiple convolutions between the input and the higher
order kernel functions. Theoretically, if the orders of the kernels employed are high
enough, then arbitrary nonlinearities can be represented. For performing animals
trained to achieve an asymptotic behavior, their brain activity can be viewed as in
nonlinear and time-invariant pattern.

Our model can be extended to time-varying neural systems using similar model
structure. In that case, the system input—output transfer function should be updated
following a learning rule. And this learning rule can be eventually substantiated by
conducting mathematical analysis. Thereby, the system parameters can be optimized
and the changes/variances of the input—output transfer function can be replicated in
neural decoding for generation of the stimuli.

3 Modeling the Brain Activity Using Mathematics

The neural model we use in our work is the generalized Laguerre—Volterra model
(GLVM), which was developed earlier in our group by Song et al. and is a
mathematical model for description of the highly complicated neural processes from
a system input/output relationship standpoint [40-42]. The GLVM belongs to the
category of nonparametric models. It utilizes the real-time Laguerre expansion of
Volterra kernels and the point process filters for online study of the time-varying
neural system using both natural spike inputs and outputs [41] with their values
being recorded by means of the multi-electrode array technology. The GLVM is
inspired by the electrophysiological properties of single spiking neurons and is first
applied to the study of animal hippocampal region where it is proved to be very
efficient by animal experiments [43].

In the GLVM, we propose the integration of (1) generalized Volterra model
(GVM), (2) real-time Laguerre expansion, and (3) steepest descent point process
filter (SDPPF) to track the time-varying neural system using both natural spike
inputs and outputs.

3.1 Configuration of the Generalized Volterra Model

A MIMO system can be decomposed into a series of multiple-input, single-output
(MISO) systems. The MISO models are identical in structure and each module
projects to a separate output as shown in Fig. 2.

Each MISO model has physiologically plausible components which can be
described by the following equations:

w=u(k,x)+a(h,y)+¢€(o))

184

Input spike trains

reent
o,
S I I I B
A1 1)

Biological

Neural
Network

Noise

Threshold

W.X.Y. Li et al.

Output spike train

Feedforward kernels

Feedback kernel

oo

Oood

Xi —»{]

— Y1

X: —»{]

— y:

0ogd

OO0

Xo —»{]

0o

oo

oo

0o

Fig. 2 FPGA implementation of a MIMO model for neural population activities. (a): brain
region processes information by transforming input spike trains to output spike trains. (b): this
input—output transformation can be described with a MIMO generalized Laguerre—Volterra model
which can be further decomposed into a series of MISO models; each of them has physiological
components, as shown. (c): the goal of this study is to implement such a MIMO model on FPGA
(Subfigure (c) is only for illustration of concept, not representing the real circumstance of place

and route)

High-Performance Computing for Neuroinformatics Using FPGA 185

and

0 wherew < 0
)’—{ 3)

1 Wherewze'

The input and output spike trains are denoted by x and y, respectively. The hidden
variable w represents the “pre-threshold membrane potential” of the output neuron.
It is the summation of the “synaptic potential” u, the output spike-triggered “after-
potential” a, and a Gaussian white noise input € with standard deviation ¢. The
noise term models both the intrinsic noise of the output neuron and contributions
from unobserved inputs. When w crosses the threshold 6, an output spike is
generated and a feedback after-potential a is triggered and then added to w. Consider
the first order Volterra kernel k| where N is the number of inputs. Then, the “synaptic
potential” u can be expressed as

= ko+ 2 ") @)

ko is the baseline potential when the inputs are absent. The first order kernels k; in
(4) describes the linear transformation of input spike trains x into the hidden variable
u, as functions of the time intervals between the present time and the previous spikes.
The feedback variable a can be expressed as

a(t) = (h*y)(1), (5)

where £ is the linear feedback kernel. It is modeled by first order Volterra kernel.
The feedback kernels captured spike-triggered processes that influence the firing
behavior of hippocampal and also other cortical neurons [14,44-48]

3.2 Laguerre Expansion of GVM: Generalized
Laguerre-Volterra Model

The Laguerre expansion of the Volterra kernel (LEV) technique is used to reduce
the number of open parameters to be estimated [41]. Using the LEV technique, both
feedforward kernels k and feedback kernel % are expanded through L orthonormal
Laguerre basis functions [49]. Input and output spike trains x and y are convolved
with jth basis function b;, such that the convolution products v are expressed as

(n)

v, =bj*x, and v = bj xy. Synaptic potential u and after potential a can be
rewritten as
N L
ut) =co+ Y, Y, ci")vg-") (t) (6)

186 W.X.Y. Lietal

and

a(t) = chv? (). 7

M-

The convolved functions v include the temporal dynamics. Another advantage of
the Laguerre expansions is that the convolutions are generated in real time. Let
o, (0 < a, < 1) be the pole of the Laguerre basis functions of the nth input x;,.
The Laguerre basis functions can be obtained by inverse Z-transform of transfer
function of the Laguerre filter

1 j—1
b(.”>_zl{ V1-og <Z _a”l) } 8)

J 1—opz ' \1 -,z

A Laguerre basis function of jth order will have j — 1 intercepts with the x-axis.
The decay time of the built-in exponential of the Laguerre basis functions increases
when the value of the Laguerre pole increases. The convolved product v can also be

computed iteratively at each time 7 [50]. Let V") (r) =[(1") (t) - W),

VDA =V (1= 1)Ay+ /1 — 02Asx, (1), 9)

where Ay =1+ a,ly; Ay = ol + 145 A3 =[10--- 0]; I is an L x L identity matrix
and 1 is an upper shift matrix.

3.3 Estimation of Parameters

Given the recorded input and output spike trains x and y, # and a can be readily
calculated based on the present values of v and the model coefficients in real time.
The estimated firing probability P(r) is then calculated using the error function:

P(t)=0.5 —O.Serf<%). (10)

Without the loss of generality, 8 and ¢ can be set to 0 and 1, respectively. The
model parameters to be estimated are the Laguerre coefficients C. Using the steepest
descent point process filtering algorithm (SDPPF), the parameter vector C(¢) is
updated iteratively at each time step ¢:

cw=ce-n+r| (T2 vo-re)] o an

where R is learning rate. During adaptive parameter estimation, the gradient can
also be generated in real time. The derivatives with respect to the Laguerre

High-Performance Computing for Neuroinformatics Using FPGA 187

coefficients are given as the products of v calculated in (9), such as du(r)/dcy = 1,
du(t) /9" (j) = " () and da(r)/den(j) = vi(1). After observation of actual
output spike train and prediction of firing probability in (10), R acts as the learning
rate for the parameter estimations in (11). The estimated Laguerre coefficients C are
used to reconstruct the feedforward and feedback kernels.

3.4 Model Selection

Model selection is a key stage in the study of the highly nonlinear and dynamic
neural process using the GLVM. It is the procedure of efficiently reducing the model
complexity by selecting only a subset of its parameters. We perform model selection
when applying the generalized Laguerre—Volterra algorithm out of the following
three considerations. First, the connections among neurons in a particular brain
region are generally sparse, thus, a model output is usually not affected by all its
inputs. The inputs which effectively contribute to the output under the MISO model
can thereby be sifted out after the selection process. Second, as the number of inputs
increases, the number of coefficients to be estimated increases rapidly. Without
model selection, computation time rises steeply. Third, too many open parameters
bring about the overfitting problem, i.e. the noise is more likely to be fitted than the
signal which largely cripples the predicting ability of the GLVM when applying the
novel data.

The model selection process consists of two stages as shown in Fig. 3. At the first
stage, we conduct model parameters estimation using the training data (in-sample
data) which are pre-recorded neural firing inputs and outputs by the multi-electrode
array. At the second stage, we conduct model outputs prediction using the testing
data (out-of-sample data) which are pre-recorded input spikes—the output spikes
are used as objects of reference while verifying the correctness of the model outputs.
The goodness-of-fit could be assessed by two methods, either of direct evaluation or
quantification of the similarity between the two data sets after a certain smoothing
process [42].

Our hardware architecture can be well applied to the model selection process.
This platform consists of two parts, i.e. software part and hardware part. The soft-
ware part includes the spike sorting module and the selection result analysis (SRA)
module. The hardware part is designed for doing GLVM parameters estimation and
outputs prediction. A neural spiking input recorded by a single electrode is often
contributed by multiple neurons [51] and in principle, each neuron tends to fire the
spiking in its own shape [52]. The spike sorting module is used for determination of
the corresponding neurons to each of the observed spikes, i.e. for the disambiguation
process between unique neurons. The hardware-based processing core performs the
DSP which is consisted of two stages, namely, estimation and prediction which
use the in-sample data and out-of-sample data, respectively. The prediction results
are then sent back to the PC via the data interface. The SRA software compares

188 W.X.Y. Lietal

Estimation Mode

Input Spike Trains

.
<
(]
Q.
@

1
1
1
o :
1
Xl .) v
1 1 . .
x ' Threshold ' Output Spike Train
2 — :
: K > 0 T >
X, — u w ! Y
it 11 : Feedback Kernel | 1
—> a]
X4 ' '
1 H 1
1 Feedforward Kernels !
1 1
1

L

SR

Prediction Mode

L i '

Noi , '

Input Spike Trains oee MISO ' '

p Model ' ‘? '

X, ' * '
> 1

> s . o

Threshold i Output Spike Train !

xz - K resnol : :
1

0 > 1

X, > u w E y E

T Feedback Kernel : !

X o a : 1

* H !]

Feedforward Kernels ! f

1

. .

| }

Fig. 3 The model selection process consists of two stages; thus, the system is required to work in
dual modes

the predicted spiking activity with the spike activity and decides if the input(s)
contribute(s) to the output in a previous causally linked inputs/outputs functionality.
In our previous work, the key processing procedures of parameters estimation
and outputs prediction were all conducted by software. However, with the aid of
FPGA-based hardware platform, we can achieve a good speedup in doing such
calculations with an enhancement in data throughput as to be elaborated in the
following sections.

High-Performance Computing for Neuroinformatics Using FPGA 189
4 Using Reconfigurable Hardware to Predict Neural Activity

A major focus of this work is to utilize the hardware-level parallelism and on-chip
resources of modern FPGA devices to model the generalized Laguerre—Volterra
system which plays a vital role in neural spiking activity study, calculate the
important coefficients, and predict neural firing output with desirable calculation
precision.

The computational intensive parts of the hardware model include the convolution
of the N 41 input channel signals with the basis function, the MAC (Multiplication
and Accumulation) operation between the convolution products V and the Laguerre
coefficients vector C, and the updating of firing probability.

4.1 Hardware Architecture

Figure 4 provides an overview of the hardware architecture for doing GLVM
parameters estimation and outputs prediction. The circuit can work in different
modes (estimation/prediction) and can switch between the two important system
functions. In the figure, Ul-U7 are important processing units which will be
described in more detail in the following subsections. U1-U7 as a whole forms the
hardware processing core. Ul and U2 are designed for the calculation of the pre-
threshold membrane potential w. U3 and U4 function as the neuron firing probability
P calculation unit and the Laguerre coefficients C updating unit, respectively. U5 is
the component which generates the Gaussian white noise. U6 is the threshold trigger
which conducts neural firing outputs prediction using a threshold function. U7 is the
control unit which generates the control signals guiding the data flow under different
modes of operation and also determining the cycles of execution in accordance with
the number of valid model input(s) and processing elements within each component.
H is the register array that stores the value of the augmented horizontal vector which
is of the size of 1 + (N + 1)xL (N is the number of inputs and L is the number of
basis functions).

At the estimation stage, the training data are sent from PC via the data interface
to the Ethernet IP which is embedded in the FGPA. The Ethernet IP then forwards
the data to the hardware processing core. The processing core performs the DSP and
sends back the calculation results of the pre-threshold membrane potential, the firing
probability and the Laguerre coefficients to the PC via the Ethernet IP using the
same data interface. At the prediction stage, the field estimated Laguerre coefficients
appear as a constant vector and are stored in a register array. The testing data are
transmitted to the processing core via the identical data path as at the estimation
stage. After the value of the pre-threshold membrane potential is computed, the
processing core conducts prediction of the model outputs measuring the potential,
the random neuronal noise and the preset firing threshold. The predicted outputs are

190 W.X.Y. Lietal

U1 v u2
X i 1
: u7

Ethernet
IP

Host
Desktop

us » U6

A

I FPGA

Fig. 4 Overview of the hardware architecture (U1 is the convolution unit; U2 is the multiplication
and accumulation unit; U3 is the firing probability calculation unit; U4 is the Laguerre coefficients
updating unit; U5 is Gaussian random number generation unit; U6 is the threshold triggering unit;
U7 is the control unit; X and Y are the neural spike inputs (Y is the feedback of neural spike output
into the input port); V is the convolution products; w is the pre-threshold membrane potential; P is
the neural firing probability; C is the Laguerre coefficients)

then relayed back to the PC for further analysis employing the SRA software. They
are also fed back to input ports of the processing core as after-potentials for iterative
calculation.

The hardware architecture can be made very scalable with adoption of different
number of processing elements (PEs) within each component. This can enhance the
generality of our design to be applied to a broader range of FPGA devices on market.
For example, supposing the number of valid inputs is 65 (which is also the maximum
value the current architecture can accommodate), in the vector convolution and
multiplication-and-accumulation components, the number of PEs can be set at 1-65,
and accordingly, the convolution between the neural inputs and elements of the
augmented horizontal vector is divided into different number of successive rounds.
If the employed amount of PEs increases, the count of operational rounds decreases.
We can also see that the fully paralleled architecture (Npg = 65) consumes much less
time in execution than the compact architecture (Npg = 1) at both the estimation
and the prediction stage. However, if the hardware is used for doing GLV model
selection, the compact architecture is more suitable for the following two reasons:

High-Performance Computing for Neuroinformatics Using FPGA 191

Algorithm 1 Pre-threshold membrane potential updating algorithm (number of
inputs N=64; number of basis functions L=3)

1: H(1)=1;

2: forn=1: N

3: H(1+(n-1)*L:n*L) = Convolve(H(1+(n-1)*L:n*L),

InvAl, A2, A3, x(t,n));

4: end

5: H2+n*L:1+(n+1)*L)= Convolve(H(2+n*L:1+(n+1)*L),

InvAl, A2,A3, y(t-1));

6: w(t)=H*C

Algorithm 2 Signal convolution algorithm
Convolve (V, InvAl, A2, A3, x)

1: V=V*A2

2: V(1) = V(D+x*A3

3: V=V*Al

1. In the model selection process, the number of valid inputs to the processing
core appears as a variable. Under the compact architecture, all the neural inputs
are streamed into the processing core in a serial fashion. System timing will
be made much easier in that scenario. We only need to alter the maximum
accessible value of the counters which record the round number of processing.
Additional circuitry for doing, such as inputs multiplexing and dynamic PE
resource allocation is spared.

2. Even for processing of experimental data consisting of 65 inputs, the calculation
efficiency is still satisfactory for current animal research.

4.2 Calculating the Pre-threshold Membrane Potential

The functionality of this unit is to calculate the pre-threshold membrane potential of
the neuronal outputs w in real time. This unit appears as a combination of Ul and
U2 in Fig. 4.

This unit is designed to implement the following algorithms (Algorithms 1 and
Algorithm 2) in neural signal processing. Algorithms in this chapter are generally
presented using the syntax of Matlab.

Pre-threshold membrane potential is calculated using Algorithm 1 at each time
step. C is not a constant in Algorithm 1, it is updated using Algorithm 3 (which will
be explained in Sect. 4.3) in hardware in sync with H. InvA1l, A2 and A3 correspond
to matrices Afl, A, and Az, respectively, in (9). They are used in the real-time
convolution as shown in Algorithm 2. H is the augmented horizontal vector, which
includes all the convolved products. This algorithm is designed to calculate the pre-

192 W.X.Y. Lietal

> X >
from
input
o
— H_1 E
]
8
) MAC
S
H2l— 3
>
0 @
i
— H_3 > from LZD % w
=
Qo
E l
e

Fig. 5 Datapath of convolution and MAC units (PE is the processing element; LZD is the leading
zeros detector component; MAC is the multiplication and accumulation component)

threshold membrane potential using C estimated from the previous time step and
the convolved products, which account for the history of the neuronal inputs x and
output y.

In Algorithm 2, V is a vector containing L elements; InvAl, A2 and A3 are L X L
matrixes; and x is a scalar. This algorithm is designed to convolve each input with L
basis functions as in (9).

Ul and U2 together contain N + 1 leading zeros detector (LZD) components,
N + 1 vector updating (VU) components and one Multiplication and Accumulation
(MAC) component. Figure 5 shows the configuration of a basic processing element
of this part of circuit with the MAC component included. Ul deals with one
sampling frame per processing cycle. Neurons in some parts of the brain, such
as the hippocampus, have low firing frequency; so both X and Y could be sparse.
The LZD component is designed to detect the zero elements in the input vectors.
If zeros are detected, part of or the whole VU circuit is put on hold. Signals will
bypass the VU component and the H registers will be reset directly. This saves
power given that the frequent updating of the VU registers will be prevented. The
VU component is designed to implement Algorithm 2. New values of H can be
acquired after completing the combinational routine of VU. The MAC component
is of tree structure consisting of stages of adders. It is designed to implement the 6th
statement in Algorithm 1. Elements of H and C register arrays are first multiplied.
The 14+ (N+ 1) x L products are added through stages of adder arrays. The size of

High-Performance Computing for Neuroinformatics Using FPGA 193

Algorithm 3 Calculating the firing probability, its gradient and the coefficients
. P=f(th, w, 0)
. dP =g(H, w, th,)
ifP~=0
dL = 1/P*dP
end
: C = C+R*(dL'+($-P))

QRN

the adder array shrinks by half from the utmost leaves to the root stage by stage. The
value of w is acquired at the root stage. The number of the PEs in the convolution
units can be adaptive under the compact architectures and the number of adder
stages will change accordingly.

4.3 Calculating the Firing Probability and Laguerre
Coefficients

Firing probability P and Laguerre coefficients C are two other important parameters
in the GLV algorithm. Their values need to be tracked during each round of
calculation. The method for updating P and C are shown in Algorithm 3. In
this algorithm, th, o and R represent the threshold value, the noise strength
and the learning rate, respectively. y is the instant (current round) value of the
firing output. dP is the gradient of P with respect to the coefficients and dL is
dlogP(t)/dC as appeared in (11). f and g are the functions calculating P and its
gradient. The P, C updating algorithm is intrinsically computationally intensive for
it includes function series such as the exponential equation. These often demand
long computing time using digital software based on serial instruction streams.
The parallel processing capability of the FPGA hardware can greatly facilitate this
process with its programmability on the circuit level.

For calculation of the exponential function, there are many methods proposed to
date. Some methods use predetermined values for table look-up [53]; some methods
are based on the CORDIC algorithm [54-58]. According to our observation of data
from animal experiments, the values of the pre-threshold membrane potential in
current recordings are restricted within the range of [—4\/5,4\/5]. Based on this,
we adopt direct Taylor series expansion in current implementation for the series can
converge fast under this condition and the number of expansion terms is limited,
hence resource cost is affordable for the FPGA hardware. However, we are also
developing other computation methods to better accommodate any unpredictable
variance in future applications. All these methods are being incorporated to the
hardware IP library which is now under development. The hardware IP library is
part of the higher-level self reconfiguring platform (SRP) [59].

194 W.X.Y. Lietal

For the calculation of the error function erf(x), we have also developed several
computation methods. These methods have their respective pros and cons and can
be chosen according to the specific application requirements, e.g. the precision level
and the FPGA model availability. Some methods we have developed can be found
in Table 2. The more detailed discussions can be found in Sect. V of [60].

4.4 Predicting the Output Spikes

This part of circuitry is activated during the prediction stage of the GLV system
only. It is based on the summation of the pre-threshold membrane potential and
the Gaussian random white noise, passing the threshold triggering component to
generate the predicted output neural spiking signals. The noise term here is able
to capture the system uncertainty which results from both the intrinsic neuronal
noise and the unobserved inputs (neurons whose spiking activities essentially con-
tribute to the model outputs but are not included into the model). In hardware, this
noise source can be simulated by a Gaussian random number generator (GRNG).
The circuit structure of the GRNG can be found in Fig. 6. In the figure, URNG is
the uniform random number generator component which produces signals whose
strengths are uniformly distributed in the range of [0, 1]. It can be implemented by
the bitwise XOR operations between the lower 32 bits of a 43-bit linear feedback
shift register (LFSR) and the lower 32 bits of a 37-bit cellular automata shift register
(CASR). This method was first proposed by Tkacik [61]. The URNG has a cycle
length of 280 — 24 —237 1 1 with reduced bias to 278 and is very efficient to
be implemented in our platform given its high operating frequency, low resource
demand and non-repetition property in generating the random noise sequence during
long animal experimental sessions. Each N uniformly distributed numbers generated
by the URNG are added. According to the Central Limit Theorem, if N approaches
infinity, the series composed by these summation products satisfies the Gaussian
distribution. However, due to restrictions imposed by the execution time, we set N
at 100 in the current design according to the analysis by Jeruchim et al. [62]. We
use FIFO for data caching between different clock domains of the RNG and other
circuit components. The post-processing (PP) unit in Fig. 6 is used to transform
the non-standard Gaussian distribution generated by the RNG to a standard normal
distribution by adjusting its mean and variance according to the value of N. The
control unit is designed for functions such as URNG seed loading, FIFO r/w signal
generation and component enabling. The Gaussian white noise generated after the
post-processing stage is incorporated into the pre-threshold membrane potential and
then passed to the threshold trigger, which produces the spiking outputs using the
threshold function.

195

High-Performance Computing for Neuroinformatics Using FPGA

yS1y K10
Y3TH

QJRIOPOIN

MO

MO[KIOA
MO[ATop

USH

ysSty A1A

pooH
juopuadop uor3oy

pooH

159

(Fug)in ouhwﬁ = (2)m

1+uz?u(1-)

NNW|0|~ N = (2)10

SUOISAT JUSIAJJIP UT JAIND

oy Jo odogs oy 03 Surpioooe dois eiep Jo 9ZIS WIOFIUNUOU
UM SAtud 9[qe) dn-joo[03 uonouny Jo11d ay) surddepy

oAINd uonouny oY) jo asuel [[e ur doys ejep Jo 9zIs
WIOJTUN YIIM SALNUL 9[qe) dn-yoo1 0) uonouny 10110 oy Surddey

uorsuedxa [erwouAjoq

renuauodxa 0) SunISAUOD)

LT 211pu]

LNTwang

puewop 21307

puewop 238I0IS

uorstoaid uonemore)

uondrosaq

poyrow udsaq

uonouNj JO1Id 9y} JO UOHIB[NO[Ed) JOJ SPOYIRIN T dqBL

196 W.X.Y. Lietal

prog_full

URNG S >
x FIFO fi2fl » PP |——-—- >
B > to threshold
H trigger
Ctrl 4

Fig. 6 Gaussian random noise generator (URNG is the uniform random number generator which
includes a 43-bit Linear Feedback Shift Register and a 37-bit Cellular Automata Shift Register;
S is the summation unit; fi2fl is the fixed point to floating point conversion unit; PP is the post
processing unit)

4.5 System Scalability

One important feature of our hardware platform is its multifold scalability. The
scalability of the system can be derived largely from two design considerations.
One is module reuse and the other is MISO model extendibility.

When we design the hardware architecture, we want to make it fit into as many
FPGA platforms available on market as possible. In order to do that, we have
proposed both fully paralleled architectures, in which the number of system input
is equal to the number of recording electrodes, and more compact architectures
with the adoption of module reuse. Using these compact architectures, resource
utilization can be reduced. For example, in the MAC units, the number of PEs which
performs the operation of vector convolution can be reduced from 65 (N = 64) to

High-Performance Computing for Neuroinformatics Using FPGA 197

lor2"+1 (meZand 1< n<5), and the register that carries the value of pre-
threshold membrane potential should then be updated after 65 or 26~ + 1 rounds of
convolution. The processing time is prolonged and more clock cycles are demanded.
At the same time, when the system works at the estimation mode, in the Laguerre
coefficients updating unit, the C register array is updated by 66 or 26~ +2 rounds
of identical arithmetical routines. Due to the reduced parallelism, the new approach
bears the clear defect of lower data throughput. However, it has several distinct
advantages compared to the full parallel architecture such as lower system resource
utilization and power consumption.

Another aspect revealing system scalability is that multi-FPGA extendable
design can be easily implemented with our architecture. This is largely due to
the data independence of the elements in the Y input (the feedback from model
output as shown in Fig.2) set under our proposed circuit architecture. In the
convolution process, X inputs and Y inputs are data irrelevant. This means that one
set (64 elements) of X can perform convolution operation with different Y elements
concurrently. Parallelism can be greatly enhanced by adding additional FPGAs. A
four FPGA network structure is shown in Fig.4 of [60]. Input set Y is shifted to
FPGA1-4 at each processing cycle. Neural network parameters which are stored in
BRAMs are read simultaneously by the transceiver core and relayed to the host PC.
By adding n extra FPGA stages, we will increase the data throughput n+ 1 times
compared to the mono FPGA structure. A maximum number of 64 FPGAs (element
number in input set Y is also 64) could work together in a coordinated way.

4.6 Implementation Results: Hardware Versus Software

We use the proposed FPGA-based hardware and the original software platforms
to process approximately 1,000 bins (discretized time units) of neural firing
data (synthetic data). Both the hardware and software run the two stages of the
generalized Laguerre—Volterra algorithm, i.e. estimation and prediction. During
the estimation stage, the values of the three important system parameters: (1) the
pre-threshold membrane potential, (2) the firing probability, and (3) the Laguerre
coefficients are recorded. While at the prediction stage, the values of the membrane
potential and the predicted firing output are recorded.

The calculation results of the three important parameters during the estimation
stage are shown in Fig. 7. The differences between each of the three value sets are
also plotted in Fig. 8.

If we define the NMSE as:

T T
NMSE = ' (y(1) = 5(t))*/ X 5(t)?, (12)

t=1 t=1

198 W.X.Y. Lietal

S
<
[}
2
=%
o
C
©
8
[S
@
= ¥
3
0 100 200 300 400 500 600 700 800 900 1000
bin
b
Z
= (2]
Q =
g o
o Qo
a &
@
g S
=
0 50 100 200) 50 100 150 200
bin bin
c 1
(2]
o
X
S
2]
Bos5f 1
o
5
<
o
0 hsinsmaarater
0 100 200 300 400 500 600 700 800 900 100
bin

Fig. 7 The implementation results by the FPGA-based hardware platform. (a): result of the pre-
threshold membrane potential; (b): result of the firing probability; (c): result of element of the
Laguerre coefficients; (d): hardware predicted neural spike outputs. The hardware system changes
from the model parameters estimation mode to the firing outputs prediction mode at the 200th bin.
Threshold value is set at —0.600 when doing the firing outputs prediction

then we can calculate the NMSEs for the membrane potentials, the firing probability,
the coefficients and the prediction results during each stage, respectively. The
calculation results are shown in Table 3.

Also, we use both the hardware and software platforms to process a session of
neural firing data, and we calculate the speed-up of the hardware platform versus
the software platform.

For the software part, after the compilation of the C codes using the gcc compiler,
the executable file is successively run for 10 rounds. The configuration of the
software platform we use for running the generalized Laguerre—Volterra algorithm
is shown in Table 4. Both the time consumed for conducting parameters estimation
and model output prediction are recorded as shown in Fig. 9.

High-Performance Computing for Neuroinformatics Using FPGA 199

-6
20 X 10 T T T T T T T T T
: : : . . : membrane potential
15} L L L| — firing probability
—— Laguerre coefficients

L0 B R S IILTITLIS TTIISIT DTIRI STSTLPM ORI SO

hw/sw results
differences

0 100 200 300 400 500 600 700 800 900 1000

Fig. 8 The hardware and software calculation differences of the three important parameters: (1)
the pre-threshold membrane potential (black line); (2) the firing probability (red line); (3) the
Laguerre coefficients (blue line). In the figure, bin=200 is the time boundary between the estimation
stage and the prediction stage

Table 3 Normalized mean Variable name Estimation mode Prediction mode
square error of caleulation G T Sl 1.620 % 10-12 1.678x 10 13
Firing probability 2.584 x 107! -
Laguerre coefficient 1.481 x 10711 -
Firing outputs - 0
Table 4 Host PC CPU Intel Core 17-2620M (Turbo Boost to 3.40 GHz)

configuration Memory size 8GB

C compiler gee 3.4.4-999 running on Cygwin 1.7 platform
Interface Gigabit ethernet with jumbo frame enabled

The data throughput of the software platform is calculated by:

T Dxl
SW —
Sioiti

13)

In (13), D represents the number of data frames utilized for the test (in our test,
it is set at 10,000); / indicates the times of iteration and ¢ is the execution time of
each round. Using the data gathered, we can calculate the data throughputs of the
software platform are 500.90 data frames/s (for parameters estimation) and 1430.94
data frames/s (for model output prediction), respectively.

For the hardware part, the calculation speed can be estimated by the equation

below:
D

De xKce DP XKCP
felk felk

Thw = (14)

200 W.X.Y. Lietal

25 T T T T T T T

[estimation mode
I prediction mode

151 -

10

Calculation time (s)

i 2 3 4 5 6 7 8 9 10
Round number

Fig. 9 Time consumption for conducting model parameters estimation and firing output prediction
using software. (Gray bar: time records during the estimation mode; black bar: time records during
the prediction mode)

In (14), D represents the total number of data frames utilized for test (in our test,
it is set at 10,000); D, is number of data frames used for parameters estimation
and Dy, is the number of data frames used for output prediction. K is cycles needed
to doing one round of calculation. For parameters estimation, K., = 67; for firing
output prediction, K., = 68. In our experiment, the hardware switches from the
mode of estimation to prediction from the 2,000th input data frame. The overall data
throughput for the hardware platform can be calculated as 3.83 x 10* data frames/s.
For the stage of estimation, the data throughput can be calculated as 3.88 x 10*
data frames/s (D=De, Dp=0). For the stage of prediction, the data throughput can
be calculated as 3.82 x 10* data frames/s (D=Dp, De=0). The hardware to software
speedups are 77.47x and 26.72x, respectively, at the two stages of calculation.

As mentioned previously, the hardware system is very scalable by implementing
different number of processing elements within each design component. For the
fully paralleled architecture, where the number of PEs equals the number of inputs,
the data throughput can reach 1.33x10° data frames/s at the estimation stage and
1.00x10° data frames/s at the prediction stage. The speedups are 2.66x103x and
698.84x, respectively.

High-Performance Computing for Neuroinformatics Using FPGA 201
5 Discussions

In the above sections, we present our work of conducting the neural firing pattern
prediction employing the reconfigurable hardware. The research objective of the
current stage work has been successfully achieved. However, we are still in
the process of upgrading the current hardware platform to better meet the future
application requirements from the neural prosthetic device which will be implanted
into be mammal brain.

5.1 The Ultra-Low Power Design Principle

For an implantable neural prosthesis, power consumption is of critical importance.
The battery life should be ideally as long as possible, for the frequent recharge of
the on-board power source would bring great inconvenience to the patients wearing
such devices, such as sufferings from the medical surgeries. Although technologies
of inductive coupling or energy conversion (electromagnetic to electrical) are
emerging, the more fundamental solutions would lie in the optimization of the
circuitry of the prosthetic device itself. For FPGA designers, one such solution
is by resorting to more advanced, low-power FPGAs such as the newly released
Xilinx Virtex-7 series devices, which adopt the 28 nm and high-K metal gate
process optimized for low power applications, slashing the static power by 50%
compared with their predecessors. However, there is a trade-off among power,
development cost and risk of operational faults here due to the lower operating
voltages introduced. Another solution is by adopting more tailored design modules.
For instance, in our current FPGA architecture for the GLVM, we have extensively
employed the off-the-shelf Intellectual Properties (IPs) like the DSP48E cores
provided by the FPGA vendors. The IPs can perform floating point arithmetic
operations with high precision. They also provided a fast-to-product solution by
means of shortened design time. However, these IPs are more power hungry and
area inefficient compared with more tailored units such as the ones employing the
fixed point representations of model variables. So there is also a trade-off of design
metrics in this aspect. A third solution for saving power can be well directed to
the employment of run-time reconfiguration techniques as we will discuss in more
detail in the next subsection. By reconfiguring FPGA devices on the fly, we can
dynamically shutdown circuit blocks when they are not producing useful data; this,
undoubtedly provides us with a new, intriguing approach for saving power.

5.2 The Dynamical Partial Reconfiguration Technique

The dynamical reconfiguration refers to the modification of the FPGA functions
during its operation time. It is often achieved by altering portions of gate array while

202 W.X.Y. Lietal

keeping other parts running. In our current research regarding the FPGA prototyping
of the GLVM, we do not delve deep into this scope of research; however, it is
indubitably a very promising technique given the huge advantages introduced such
as reduction in power dissipation, decrease in space of the FPGA chip, avoidance of
hardware obsolescence and more flexibility in implementation.

Two general approaches are often adopted when dynamically reconfiguring
the device, each has applications where desirable. One approach is by external
reconfiguration under which the compiled bitstream is transmitted to the device
by JTAG boundary scan port or serial port. The other approach is by internal
configuration where the internal configuration access port (ICAP) is utilized for
transmission employing an embedded microcontroller or state machine. In our
design, given the hard real-time requirement of the prosthetic application, it is
much preferred that a hardware IP library of existing implementations tailored for
different application scenarios be pre-stored in on-chip memory and be deployed by
the microcontroller to a target module.

There are two scenarios of partial reconfiguration, as shown in Fig. 10. In the
first scenario, a particular module of the design is ineffective and can be “blocked”
during certain period of operating time. In our FPGA implementation of the GLVM,
when the platform works in the mode of firing output prediction, the U5, U6, and
U7 units shown in Fig.4 are deemed as redundant and the related modules can
be dynamically dropped off. This brings two distinct benefits. The first is reduced
power dissipation and the second is spared chip area which can be utilized for other
system modalities such as hardware redundancy for the fault-tolerance purpose.
In the second scenario, a particular module of the design is substitutable and can
be “replaced” during certain period of operating time. A good illustration would
be the implementation of the error function of in the GLVM as stated above. The
requirements of the prosthetic system may be time variant. For a specific application
requirement, the most optimized method of implementation can be automatically
chosen by the device in run-time with certain preset constraints and the compiled
bitstream can be employed via the ICAP. This will ensure the hardware platform
can always produce the results with desirable precision while keeping good trade-
offs to other criteria such as power consumption. For our hardware system which
is designed for doing neural firing patterns prediction, hard real-time is required.
The reconfiguration time should be strictly limited within a certain range. Given the
natural brain firing rate is very low, this requirement can be guaranteed by current
technology.

5.3 Fault-Tolerance Redundancy Design

For a cognitive neural prosthesis targeting clinical applications, possessing fault-
tolerance property is a fundamental requirement. It would result in disastrous
consequences if the hardware fails in operation or produces erroneous prediction
results. Traditional fault proof paradigms can be well adopted in current design such

High-Performance Computing for Neuroinformatics Using FPGA

a Module 3
FPGA Static Region PR Region
Module 1
Hardware Central
IP » Controlling
Library Agent Modijle 2
ICAP v
b
FPGA Static Region PR Region
Module 1
Hardware Central
IP » Controlling
Library Agent Module 2
ICAP Module 3
c
FPGA Static Region PR Region
Module 1
Hardware Central
IP » Controlling
Library Agent Module 2
ICAP
Module 4

Fig. 10 Two scenarios of dynamical partial reconfiguration. (a)—(b):

203

modules can be

blocked/added on during device operation time; (b)—(c): modules can be substituted during device

operation time

204 W.X.Y. Lietal

as the employment of hardware redundancy by the replication of critical circuitry,
time redundancy by the multi-round execution and information redundancy by
performing data checking.

Another way to implement the cognitive neural prosthesis design is to place the
modalities of model parameters estimation and firing output prediction into two
different chips with only the latter being implanted into the brain area. In that
scenario, the integration and correctness of the transmission of model coefficients is
of critical importance. Information redundancy is needed for the validation purpose
during either wired or wireless transmission process.

6 Conclusions

In this chapter, we described our work of prototyping of the GLVM using the
field-programmable gate array device. Compared with our previous computational
platform employing PC and digital software, the new hardware platform achieves
remarkable speedup in conducting both model parameters estimation and neural
firing output prediction. It will largely facilitate the process of our further research
towards the highly nonlinear and dynamical brain activity.

The work presented here is important to our final research objective—the
cognitive neural prosthesis design. The prosthetic device, if successfully applied
to clinical operations, will greatly avail against diseases with regard to hippocampal
region dysfunction and degeneration such as stroke, seizure, and the Alzheimer’s
disease by bypassing the pathological regions. The field-programmable gate array,
given its convenient hardware level programmability, low cost and capability of
doing fast prototyping, serves as an ideal tool at current stage research of such
biomedical devices. The high-performance computing capability of modern FPGA
devices will boost the progress towards future study of learning and memory and
the implementation of silicon brain.

References

1. D. Purves, E.M. Brannon, R. Cabeza, S.A. Huettel, K.S. LaBar, M.L. Platt, M. Woldorff,
Principles of Cognitive Neuroscience (Sinauer Associates Inc., Sunderland, MA, USA, 2007)

2. B. Milner, Memory and the medial temporal regions of the brain, in Biology of Memory
(Academic, New York, 1970), pp. 29-50

3. L.R. Squire, S.M. Zola, Episodic memory, semantic memory, and amnesia. Hippocampus 8,
205-211 (1998)

4. M.S. Humayun, E. de Juan, J.D. Weiland, G. Dagnelie, S. Katona, R. Greenberg, S. Suzuki,

Pattern electrical simulation of the human retina. Vis. Res. 39, 2569-2576 (1999)

. G.E. Loeb, Gochelear prosthetics. Annu. Rev. Neurosci. 13, 357-371 (1990)

6. G.E. Loeb, R.A. Peck, W.H. Moore, K. Hood, Biontm system for distributed neural prosthetic
interfaces. Med. Eng. Phys. 23, 9-18 (2001)

7. K.H. Mauritz, H.P. Peckham, Restoration of grasping functions in quadriplegic patients by
functional electrical stimulation (FES). Int. J. Rehabil. Res. 10(4), 57-61 (1987)

W

High-Performance Computing for Neuroinformatics Using FPGA 205

8.

9

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.
28.

29.

30.

J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces. Nat.
Neurosci. 5, 1085-1088 (2002)

. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner,

D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a
human with tetraplegia. Nature 442(7099), 164-171 (2006)

M.A L. Nicolelis, Brain-machine interfaces to restore motor function and probe neural circuits.
Nat. Neurosci. 4, 417-422 (2003)

. K.V. Shenoy, D. Meeker, S.Y. Cao, S.A. Kureshi, B. Pesaran, C.A. Buneo, A.R. Batista,

P.P. Mitra, J.W. Burdick, R.A. Andersen, Neural prosthetic control signals from plan activity.
Neuroreport 14, 591-596 (2003)

D.M. Taylor, S.I.H. Tillery, A.B. Schwartz, Information conveyed through brain-control: cursor
versus robot. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 195-199 (2003)

J.R. Wolpaw, D.J. McFarland, Control of a two-dimensionalmovement signal by a noninvasive
brain-computer interfacein humans. Proc. Natl. Acad. Sci. USA 101, 1784917854 (2004)
T.W. Berger, G. Chauvet, R.J. Sclabassi, A biological based model of functional properties of
the hippocampus. J. Physiol. 7, 1031-1064 (1982)

J. Magee, D. Hoffman, C. Colbert, D. Johnston, Electrical and calcium signaling in dendrites
of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327-346 (1998)

S.S. Dalal, V.Z. Marmarelis, T.W. Berger, A nonlinear positive feedback model of glutamater-
gic synaptic transmission in dentate gyrus, in Proceedings of the The 4th Joint Symposium on
Neural Computation, vol. 7 (Institute for Neural Computation, San Diego, CA, USA, 1997),
pp. 68-75

D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Non-parametric interpretation and validation
of parametric models of short-term plasticity, in Proceedings of Annual International Con-
ference of the IEEE EMBS (Institute of Electrical and Electronics Engineers, New York, NY,
USA, 2003), pp. 1901-1904

Z. Wang, X. Xie, D. Song, T.W. Berger, Probabilistic transformation of temporal information
at individual synapses, in Proceedings of Annual International Conference of the IEEE EMBS
(Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003), pp. 1909-1912
G. Gholmieh, S.H. Courellis, D. Song, Z. Wang, V.Z. Marmarelis, T.W. Berger, Characteriza-
tion of short-term plasticity of the dentate gyrus-ca3 system using nonlinear systems analysis,
in Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical
and Electronics Engineers, New York, NY, USA, 2003), pp. 1929-1932

A. Dimoka, S.H. Courellis, D. Song, V. Marmarelis, T.W. Berger, Identification of lateral
and medial perforant path using single- and dual-input random impulse train stimulation, in
Proceedings of Annual International Conference of the IEEE EMBS (Institute of Electrical and
Electronics Engineers, New York, NY, USA, 2003), pp. 1933-1936

M.C. Citron, J.P. Kroeker, G.D. McCann, Nonlinear interactions in ganglion cell receptive
fields. J. Neurophysiol. 46, 1161-1176 (1981)

M.C. Citron, R.C. Emerson, W.R. Levick, Nonlinear measurement and classification of
receptive fields in cat retinal ganglion cells. Ann. Biomed. Eng. 16, 65-77 (1988)

P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive field responses in the
catfish retina II: one-input white-noise analysis. J. Neurophysiol. 36, 619-633 (1973)

D. McAlpine, Creating a sense of auditory space. J. Physiol. 566, 21-28 (2005)

L. Paninski, M.R. Fellows, N.G. Hatsopoulos, J.P. Donoghue, Spatiotemporal tuning of motor
neurons for hand position and velocity. J. Neurophysiol. 91, 515-532 (2004)

A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application
to conduction and excitation in nerve. J. Physiol. 117, 500-544 (1952)

H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153-160 (2006)

Elementary Objects of the Nervous System. [Online]. Available: http://synapticmodeling.com/
Accessed January 2013

Brain in Silicon. [Online]. Available: http://brainsinsilicon.stanford.edu Accessed January
2013

NEURON. [Online]. Available: http://www.neuron.yale.edu/neuron/ Accessed January 2013

http://synapticmodeling.com/
http://brainsinsilicon.stanford.edu
http://www.neuron.yale.edu/neuron/

206

31.
32.
33.

34.

35.
36.

37.
. VZ. Marmarelis, P.Z. Marmarelis, Analysis of Physiological Systems: The White-Noise

38

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

SI.

52.

53.

W.X.Y. Li et al.

Mcell: A Monte Carlo Simulator of Cellular Microphysiology. [Online]. Available: http://www.
mcell.cnl.salk.edu/ Accessed January 2013

J.P. Cunningham, V. Gilja, S.I. Ryu, K.V. Shenoy, Methods for estimating neural firing rates,
and their application to brain-machine interfaces. Neural Networks 22(9), 1235-1246 (2009)
D.R. Brillinger, Nerve cell spike train data analysis: a progression of technique. J. Am. Stat.
Assoc. 87, 260-271 (1992)

E.N. Brown, R. Barbieri, U.T. Eden, L.M. Frank, Likelihood methods for neural data analysis,
in Computational Neuroscience: A Comprehensive Approach, vol. 7 (Chapman & Hall/CRC,
London, UK, 2003), pp. 253-286

W. Wu, Y. Gao, E. Bienenstock, J. Donoghue, M. Black, Bayesian population decoding of
motor cortical activity using a Kalman filter. Neural Comput. 18(1), 80-118 (2006)

V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations (Dover,
New York, 1959)

N. Wiener, Nonlinear Problems in Random Theory (MIT, New York, 1958)

Approach (Plenum, New York, 1978)

V.Z. Marmarelis, Nonlinear Dynamic Modeling of Physiological Systems (Wiley-IEEE Press,
Hoboken, 2004)

D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger, Non-
linear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans. Biomed. Eng. 54, 1053-1066 (2007)

R.H.M. Chan, D. Song, T.W. Berger, Tracking temporal evolution of nonlinear dynamics
in hippocampus using time-varying volterra kernels, in Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, vol. 54 (Institute of Electrical and
Electronics Engineers, New York, NY, USA, 2008), pp. 4996-4999

D. Song, R.H.M. Chan, V.Z. Marmarelis, R.E. Hampson, S.A. Deadwyler, T.W. Berger,
Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural
Networks 22, 1340-1351 (2009)

S.A. Deadwyler, T. Bunn, R.E. Hampson, Hippocampal ensemble activity during spatial
delayed-nonmatch-to-sample performance in rats. J. Neurosci. 16, 354-372 (1996)

B.E. Alger, R.A. Nicoll, Pharmacological evidence for two kinds of GABA receptor on rat
hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 125-141 (1982)

J. Keat, P. Reinagel, R.C. Reid, M. Meister, Predicting every spike: a model for the responses
of visual neurons. Neuron 30, 803-817 (2001)

L. Paninski, J.W. Pillow, E.P. Simoncelli, Maximum likelihoodestimation of a stochastic
integrate-and-fire neural encoding model. Neural Comput. 16, 2533-2561 (2004)

D. Song, Z. Wang, T.W. Berger, Contribution of T-type VDCC to TEA-induced long-term
synaptic modification in hippocampal CAl and dentate gyrus. Hippocampus 12, 689-697
(2002)

J.E. Storm, Action potential repolarization and a fast after-hyperpolarizationin rat hippocampal
pyramidal cells. J. Physiol. 385, 733-759 (2002)

V.Z. Marmarelis, Identification of nonlinear biological systems using Laguerre expansions of
kernels. Ann. Biomed. Eng. 21, 573-589 (1993)

C. Boukis, D.P. Mandic, A.G. Constantinides, L.C. Polymenakos, A novel algorithm for the
adaptation of the pole of Laguerre filters. IEEE Signal Process. Lett. 13, 429-432 (2006)
M.D. Linderman, G. Santhanam, C.T. Kemere, V. Gilja, S. O’Driscoll, B.M. Yu, A. Afshar,
S.I. Ryu, K.V. Shenoy, T.H. Meng, Signal processing challenges for neural prostheses. IEEE
Signal Process. Mag. 25, 18-28 (2008)

C. Hansang, D. Corina, J.F. Brinkley, G.A. Ojemann, L.G. Shapiro, A new template matching
method using variance estimation for spike sorting, in Proceedings of the 2nd International
IEEE EMBS Conference on Neural Engineering (Institute of Electrical and Electronics
Engineers, New York, NY, USA, 2005), pp. 225-228

W.E. Wong, E. Gogo, Fast hardware-based algorithms for elementary function computations
using rectangular multipliers. IEEE Trans. Comp. 43(3), 278-294 (1994)

http://www.mcell.cnl.salk.edu/
http://www.mcell.cnl.salk.edu/

High-Performance Computing for Neuroinformatics Using FPGA 207

54.

55.

56.

57.

58.

59.

60.

61