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Abstract Operating theatres experience dynamic situations that result from
unanticipated developments in scheduled cases, arrival of emergency cases and the
scheduling decisions made during the day by the operating room coordinator (ORC).
The task of the ORC is to ensure that operating rooms (ORs) finish on time and that
all scheduled cases as well as the emergency cases are completed. At the end of each
day, however, ORs may finish too early or too late because cases have experienced
delays or been canceled. Delays or cancelations add to the patient’s inherent anxiety
associated with surgery and engenders anger and frustration. They have been shown
to be an important determinant of patient dissatisfaction across the continuum of
preoperative-operative-postoperative care. Recent research (Stepaniak et al. (2009)
Anesth Analg 108:1249–1256) addresses how the risk attitude of an ORC affects the
quality of the scheduling decision making. In this chapter you will learn about the
interaction between the personality of both a human and an artificial OR scheduler,
learn about the effects on the decision the OR scheduler makes and the quality of the
resulting OR schedule. Therefore, we formalize risk attitudes in heuristics devel-
oped to solve the real-time scheduling problems ORCs face during the day.
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7.1 Introduction

Operating rooms (ORs) are relatively scarce resources. Poor scheduling and
misuse of ORs can provide opportunities for conflict and competition. Hospital
management determines the available operating room (OR) capacity and assigns
capacity to the different medical specialties. Increases in the efficiency of use of
the ORs results in more production and therefore more revenue for the hospital.
However, increasing this efficiency is sometimes easier said than done. Picture the
following not uncommon situation. Due to poor case scheduling, OR staff is forced
to stand around idly, and expensive nursing, anesthesia and support staff are
wasted on some days. On other days, the OR staff works beyond regular working
hours to finish the workload on that day. There are situations where surgeons/
anesthesiologists arrive too early or too late in the OR and teams are not always
ready at the scheduled time. Sometimes the capacity in the OR is insufficient for
patients who arrive in the emergency department, which causes scheduled patients
to be denied surgery that day, or for staff to work late. Such situations frequently
result in nurses, doctors, management and patients becoming extremely frustrated.
When looking at an OR in an era in which both cost-containment and quality of
health care are considered of prime importance, hospitals simply have to utilize
ORs effectively and efficiently. An important tool to achieve this goal is well-
designed scheduling systems.

This handbook offers guidance on how to improve health care by improving the
delivery of services through application of state-of-the-art scheduling systems. For
instance, capacity planning, scheduling patients, staff and nurses are addressed.
Every chapter has in common that whatever scheduling system has to be imple-
mented on a day-to-day, hour-to-hour or second-to-second basis, a decision is
made by a human being: a scheduler. In this chapter you will learn about the
relations between the personality of an OR scheduler, the decision the OR
scheduler makes and the quality of the resulting OR schedule. The methods,
materials and results in this chapter are based on published scientific publications
(Stepaniak et al. 2009; Stepaniak 2010).

7.2 Problems and Formulations

7.2.1 Surgical Case Scheduling

In this chapter, we will consider ‘surgical case scheduling’ as the process of
assigning a given set of cases for a certain day to ORs and defining start times for
these cases, in order to maximize OR efficiency (or to minimize OR inefficiency).
We can view this as a two-stage process.

The first stage of this process consists of a pre-assignment of one or more days
in advance. In this stage, there is much scheduling flexibility since both patients
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and personnel are not yet informed on their detailed planning. However, after the
schedule has been created, it is communicated to all people involved.

The second stage then takes place during the day of operation. Unexpected
events (cases may take far more time than scheduled; cases can be cancelled due to
no-show or the patient not being ready for surgery) may force the schedule to be
revised. Another possibility is the arrival of an emergency case that needs to be
added to the schedule as quick as possible. Both types of events can influence the
start times of other cases. Also, it might be necessary to exchange cases between
ORs. In the end, these changes will also influence the time at which the last case in
each room is finished. When cases are still waiting after the regular operating
hours, they may be assigned to the service room where an extra stand-by team is
available to perform these last cases.

In order to optimize the schedules, decisions made in the first stage should
already take into account the events that may occur in the second stage, although
exact information about these events is not available. The same is true for deci-
sions made in the second stage: when reacting to a case taking more time than
expected, one also has to consider the possibility of an emergency case arriving
later that day.

We will define this scheduling process and the measure of inefficiency in a
more formal way in Sect. 7.3.

7.2.2 Planning Framework

The flow of activities in the OR through surgical case planning, directing and
controlling, and then back to planning again can be formalized by a planning and
control cycle. Because there are some differences between industry and service-
oriented industries (Vissers and Beech 2005; Morton 2009; Royston 1998; Delesie
1998) a production control framework for hospitals has been developed, which is
illustrated in Fig. 7.1 Production control framework. Characteristic for this
framework is that patients, processes and chains are the basis for organizing care
and it deals with balancing effective, efficiency and timely care. The framework is
based on an analysis of the design requirements for hospital production control
systems (de Vries et al. 1999; Vissers et al. 2001) and builds on the production
control design concepts developed (Bertrand et al. 1990). It is then applied in the
context of the OR.

In this chapter the decisions made on the first four levels of the model are given.
The focus of this chapter is on the fifth level of the production control framework
as applied to the OR. This level concerns the actual scheduling of patients, given
planning rules and service requirements for the coming days or weeks. In addition,
we look at the process of rescheduling cases in reaction to unforeseen events like
delays and arrival of emergency cases. We consider processes used in facilitating
day-to-day activities that need to be performed to deliver timely, effective and
efficient care for the patient.
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7.2.3 Relevance

Surgical delay has been shown to be an important determinant of patient satis-
faction across the continuum of preoperative-operative-postoperative care (Tarazi
et al. 1998). Delays in scheduled surgical cases affect patient satisfaction even
more than the intraoperative anesthesia experience (Brown et al. 1997).

Delays in surgery resulting from cancellations, bumping of cases and poor
scheduling can have a significant impact on the quality of care for scheduled cases
as well (Reason 2005). Delays only add to the patient’s inherent anxiety associated
with surgery and engender anger and frustration. The OR, by its very nature, is an
extremely stressful, uncertain, dynamic and demanding environment where staff
members need to manage multiple highly technical tasks, often simultaneously
(Reason 2005; Silen-Lipponen et al. 2005). Other factors also impact the system
within the OR. Examples are individual, group and organizational performance
issues such as team and time management, interpersonal skills, leadership,
workload distribution, dynamic decision making, human machine interface,
problem detection, capture of errors (slips, mistakes, fixation bias), loss of situa-
tional awareness, high mental and physical workload, fatigue, environmental
stress, production pressure and personal life stress (Weinger et al. 1990). More-
over, the dynamics of the OR are complex because they form a point of inter-
section among multiple groups with their own agendas and requirements.

OR staff carry out their sometimes long working days under time pressure. The
Joint Commission on the Accreditation of Healthcare Organizations has identified
time pressures to start or complete the procedure as one of four contributing factors
to increased wrong site surgery (ACOG Committee Opinion 2006). Similar to
other professions, the undue pressures of time that result from falling behind create
stress that can lead to cutting corners or inadvertent error. Relative to other hos-
pital settings, errors in the OR can be catastrophic (i.e., wrong site surgery,
retained foreign body, unchecked blood transfusions). In some cases these errors
can result in high-profile consequences for the patient, surgeon or hospital (Makary
et al. 2006). In other words, poor scheduling and the subsequent induced variations
in processes harm outcomes.

Based on the time required to construct schedules as well as the quality of
resulting schedules (Beaulieu et al. 2000; Carter and Lapierre 2001) evidence
indicates that case scheduling in practice often is performed poorly (Litvak and
Long 2000; McManus et al. 2003). Additionally, methods that improve the reliable
estimate of surgical cases naturally lead to improved timeliness, efficiency, and
effectiveness of OR processes (Dexter 2000; Dexter et al. 2001, 2003; Lapierre
et al. 1999; Wickizer 1991).

Reasoning along these lines, Edwards Deming concluded that the real enemy of
quality is variation in processes. A main objective in operations management is
therefore to identify sources of variation (Tannat 2002). Although variation exists
in every process and always will, controlling the identified variation helps man-
agers and clinicians to improve efficiency by aligning the health service delivery
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processes towards the desired results (McLaughlin and Kaluzny 2006). Indeed, an
OR scheduling process that reduces the census variability of the OR can improve
the flow of surgical patients to downstream inpatient units, resulting in a more
even and predictable patient care burden (Litvak et al. 2005). Furthermore,
accurate preoperative scheduling of surgical episodes is critical to the effort to
minimize variability in the length of the surgical day and to maintain on-time starts
for cases to follow (Litvak et al. 2005).

7.2.4 Formal Problem Definition

We will now turn to a more formal definition of the surgical case scheduling
problem. In our definition, the input of the problem consists of:

• A set of n ORs f1 . . . ng: A subset of these rooms is available for emergency
cases. One room is designated as the service room. All cases starting after time
T need to be performed in this room.

• A set of case types. For each case type, we have an estimate of the stochastic
distribution of the case durations. In this chapter, we assume that these durations
follow a log-normal distribution with two parameters. A subset of these case
types are emergency case types. The arrivals of each emergency case type
follow a stochastic process.

• A set of cases C that can be divided into the set of elective cases and a set of
emergency cases. Notice that the emergency cases are not part of the problem’s
initial input. These cases are implicitly defined by the arrival processes of the
emergency case types. They become known only at the time of arrival. The
duration dðcÞ of each case c 2 C is only known when the case finishes.

• Regular working hours during which all ORs are opened. We assume they open
at time 0 and close at time T. Any cases that have started before T are guaranteed
to finish, even if this means that the room has to stay open after T.

In the first stage, each case is assigned an OR and a start time. In the second
stage, these assignments can be changed when necessary. Eventually these actions
lead to the actual start and end time of the individual cases as well as the closing
times Ci of each room i The inefficiency measure discussed earlier can then be
defined as Eff ¼

P
i T � Cið Þþþb �

P
i Ci � Tð Þþ where xð Þþ¼ maxðx; 0Þ and b is

the relative cost of overtime.
The objective function can be modified in several ways if we include additional

scenarios. First, elective cases can be canceled if not enough regular time is
available. We define the set Cc � C of canceled cases and incur a penalty for each
canceled case, which is proportional to the length of the case: a �

P
c2Cc dðcÞ: Also,

for emergency cases we introduce the requirement that they are started within a
certain time limit. For each case that violates this requirement, we incur a fixed
penalty d. Let the violating cases be collected in set Cv; then the total penalty value
becomes d � Cvj j:
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Having specified the input and the objective function, we now turn to the
constraints of the problem, thus defining the solution space available to the
Operating Room Coordinator (ORC). First, we assume that the assignment of
scheduled cases is given, as is the linear order of the cases per OR. Thus the order
of the cases cannot be modified, except for the insertion of emergency cases.
Emergency cases can only be scheduled in dedicated ORs, which typically have
slack time to accommodate emergency cases. Cases that have already started
cannot be interrupted (preempted) for emergency cases. Further, emergency cases
cannot be canceled. When a case for an OR is canceled, it is the last scheduled
case in the linear order of cases assigned to that room. As an alternative to being
cancelled, the last scheduled case can be moved to the service OR to be scheduled
after time T. Cancelation and referral decisions cannot be undone. The schedulers
do not have information about future arrivals of emergencies or durations of cases
other than the information described in the problem input.

7.3 Prior Research

The scheduling of patients in the OR has been studied extensively over the past
40 years. In a review of surgical suite scheduling procedures, Magerlein and
Martin (1978) discuss methods for planning patients in advance of their surgical
dates, as well as techniques for assigning patients to ORs at specific times of a day.
Dexter et al. (1999a, b) used online and offline bin-packing techniques to plan
elective cases and evaluated their performances using simulation. A goal-pro-
gramming model to allocate surgeries to ORs is explored by Ozkarahan (2000).
Marcon et al. (2003) present a tool to assist in the planning negotiation between the
different actors of the surgical suite. Linear programming models have also been
proposed for the planning and scheduling of ORs’ activities (Guinet and Chaabane
2003; Jebali et al. 2005). Fei et al. (2004) proposed a column generation approach
to plan elective surgeries in identical ORs. Lamiri et al. (2008) present an opti-
mization model and algorithms for elective surgery planning in ORs with uncertain
demand for emergency surgery. Their problem consists of determining a plan that
specifies the set of elective cases that would be performed in each period over a
planning horizon (1 or 2 weeks). The surgery plan should minimize costs related
to the over-utilization of ORs and costs related to performing elective surgeries.

The problem addressed in this chapter is related to scheduling problems in which
the objective is a weighted function of the makespan and penalties for rejected cases.
Such scheduling problems with rejection have been studied for various single
objective functions, finding a single optimal solution for case scheduling.

Charnetski (1984) uses simulation to study the problem of assigning time blocks
to surgeons on a first-come, first-served basis when the goal is to balance the waiting
cost of the surgeon and the idle cost of the facilities and operation room personnel.
The proposed heuristic recognizes that different types of procedures have different
service time distributions and sets case allowances based on the mean and standard
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deviation of the individual procedure times. Dexter et al. (1999c) uses computer-
based hypothetical OR suites to test different OR scheduling strategies aimed at
maximizing OR utilization. OR utilization depends greatly on (and increases) as the
average length of time patients wait for surgery increases.

In Van der Velden (2010), methods are developed that take into account
multiple objectives. Also, classification trees are used to partition a set of input
cases into different subsets and determine optimal heuristics for each subset.

7.4 Applications

We have observed that the personalities of ORCs differ among hospitals in relation
to the ORCs willingness to take on more risk in their daily planning, with respect
to the risk of cases running late but filling more gaps. This was our motivation for
analyzing the effect of risk aversity of an ORC on OR efficiency.

7.4.1 About the Operating Room Coordinator

The person responsible for the surgical schedule is the ORC. The ORC observes the
daily variation in this schedule and takes the necessary actions such that scheduled
and non-scheduled cases are performed without ending too late in too many ORs at
the end of the day. ORCs are the people who maintain a safe and orderly flow of
patients in the OR. The position of the ORCs is one that requires highly specialized
skills. Moreover, the job can be notoriously stressful, depending on many variables
(equipment, specialist, arrival of emergency/acute cases, delay in schedules, human
factors, communication, etc.). In addition, they are generally assertive but calm
under pressure, and they are able to follow and apply rules and yet be flexible when
necessary. The ORC starts with a given schedule and deals with the turn of events as
it materializes while performing scheduled cases and emergency cases as they
newly arrive. Their jobs involve frequent communication with the various stake-
holders such as anesthetists, surgeons and other OR staff. The ORC may cancel
scheduled cases, or defer them to the service OR. Their responsibilities include
rearranging case and staff assignments, as some OR cases take more or less time
than originally planned, and unplanned acute patients require surgery. All other
cases have to be performed, potentially yielding overtime work. The task of the
ORC is therefore to balance the costs of working overtime with the effects that
cancellations have on patient satisfaction and patient health.

There are observed differences among the personalities of the ORCs with regard
to their willingness to accept more risk concerning their daily planning. The
hypothesis is tested that the relationship between the personality of an ORC, and
especially the risk an ORC is willing to take of cases running late, influences OR
efficiency. In this section, we discuss an empirical test performed on the ORCs.
In Sect. 7.6, we turn to a simulation model developed to test a large range of risk
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attitudes on an extensive data set. We will use data from the Sint Franciscus
Gasthuis (SFG), Rotterdam, The Netherlands.

7.4.2 Human Risk Attitudes

A decision maker is said to be risk-averse if he prefers less risk to more risk, all else
being equal. In the OR, a risk-averse decision maker wants all the ORs to be finished
before the end of the working day without any chance of running late. The opposite of
risk aversion is risk-seeking. A risk-seeking decision maker will prefer more risk to
less risk, and accepts the possibility of running late, all else being equal.

There are numerous contributions to the conceptualization of subjective ori-
entation toward risk (Sitkin and Pablo 1992; Weber et al. 1998; Trimpop et al.
1999). Some studies analyze the interaction between personality feature variables,
which are not risk attitudes. These variables have been linked to decision-making
on risky courses of action (Zuckerman 1990), impulsiveness (Eysenck and Esenck
1977) and decision-making style (Franken 1988). Zuckerman (1994, 2002)
developed the Zuckerman–Kuhlman Personality Questionnaire (ZKPQ) to assess
personality along five-dimensions. The results of the ZKPQ have been replicated
across several studies. These results have shown for example that risk-taking is
related to scores on the ZKPQ impulsive sensation seeking scale (Zuckerman
1990). Zuckerman (1990, 2002), Zuckerman and Kuhlman (2000) defines sensa-
tion seeking as a need for new and complex experiences and a willingness to take
risk for one’s own account. He has found that high sensation seekers tend to
anticipate lower risk than low sensation seekers do, even for new activities. This
finding indicates that a high sensation seeker is more likely to look for opportu-
nities that provide the chance to take a risk, and that the will to take risks seems
less threatening to this specific type of individual.

To assess personality versus risk-taking relationship of an ORC, the ZKPQ test
and subsequent scores can be applied. We have performed this calculation for the
ORCs at the SFG. ZKPQ scores on impulsive sensation seeking can be grouped as
follows: the scores of very low and low were considered to be risk-averse, the
average scores were considered risk-neutral and the high and very high scores
were considered to be non risk-averse. In 2006, prior to the start of the study, the
ORCs in the SFG were informed about this study, whereas in 2007 they were not.
The ZKPQs for every ORC are given in Table 7.1.

7.4.3 Analyzing Differences Between Risk Attitude Groups

In order to analyze which risk attitude creates maximum OR efficiency, the ORCs
expectations with regard to how the OR program would materialize is registered
every working day. This expectation, or prognosis, is proposed by the ORC and he
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informs the anesthetist on duty of this. When making the prognosis, the following
aspects are estimated and noted by the ORC:

• Which OR(s) need(s) time after business hours;
• Which OR(s) are on schedule;
• The amount of available OR capacity for emergency surgery during the period

from 2 PM until 4 PM. This capacity is designated for patients already on the
waiting list and for emergency patients outside or inside the hospital who may
possibly need emergency/acute surgery.

If at 4 PM, all the above-mentioned aspects have been accurately estimated, we
say that the ORCs prognosis has materialized. In all other cases, the prognosis has
not materialized. Further we measured:

• Whether the prognosis of the ORC made at 2 PM coincides with the actual
situation at 4 PM (% of all prognoses made);

• Accurate prognosis made at 2 PM that specific ORs would need extra time after
regular working hours (% of all prognoses made);

• The average end time of all ORs;
• The average end time of all ORs still running after 4 PM;
• The average number of ORs in progress after 4 PM;
• The number of unnecessary rejections of planned elective patients.

Operating room inefficiency is defined as the sum of under-utilized OR time
and over-utilized OR time multiplied by the relative cost of overtime (Dexter et al.
2004). This definition takes into account the negative effects of not using the
expensive operating theatres and having to work outside regular working hours.

The significance of the difference in the average end of program time between
risk-averse and risk-seeking ORCs is tested using a factorial ANOVA (p = 0.05).
After filling in the ZKPQ test and measuring the outcomes during a five month
period, the results are as in Table 7.2, which shows the quantitative results of the
two groups in 2009–2010.

We observe that the non risk-averse ORC makes a better prognosis concerning
the development of the OR program. The average end times of the OR are almost
30 min later compared to the risk-averse ORs. The number of rejected patients is
lower when a non risk-averse ORC makes decisions. Further, between the ORCs
there is no difference in the average end times of ORs after 4:00 PM.

We studied the sample variance among OR-day combinations. For the study
period we used Levene’s test of homogeneity of variances. With p = 0.865 (2008)

Table 7.1 ZKPQ score per
ORC

ORC ZKPQ score (%)

#1 81
#2 92
#3 25
#4 32

164 P. S. Stepaniak et al.



and p = 0.213 (2009), we can conclude that in both study periods we have equal
variances. We performed the one-way ANOVA to compare means of case duration
of the four ORCs. With a p value of 0.583 we accept the hypotheses of equal
means for the case duration for the four ORCs.

Based on the results we calculated the mean inefficiency per OR per day by
considering each OR-day to be independent of all others. The relative cost of
overtime in our study is 1.50. The cost per hour of over-utilized OR time includes:
indirect costs, intangible costs, and retention and recruitment costs incurred on a
long-term basis from staff working late. The mean inefficiency per OR per day for
the risk-averse ORC is 0.86 (SD 0.24). For the non risk-averse ORC, the mean
inefficiency per OR per day is 0.42 (SD 0.18). This means that the non risk-averse
ORC causes a lower OR inefficiency.

7.4.4 Modeling Risk Aversity in Scheduling Algorithms

The research described in the previous section confirms our presumption that risk
aversity leads to inefficiency. However, since the number of ORCs in a hospital is

Table 7.2 Main results per type ORC per study period

Working days Non risk-averse Risk-averse

2009 2010 2009 2010
119 121 120 122

The prognosis of the ORC
made at 2 PM matches
the actual outcome at
4 PM (% of all
prognoses made)

84 81 48 58

Accurate prognosis made at
2 PM that specific ORs
will require extra time
after regular working
hours (% of all
prognoses made)

84 79 31 41

Average end time all ORs 3.51 PM
(±9 min)

3.42 PM
(±11 min)

3.18 PM
(±11 min)

3.21 PM
(±14 min)

The average end time of all
ORs still running after
4 PM

4:20 PM
(±18 min)

4:18 PM
(±14 min)

4:16 PM
(±17 min)

4:19 PM
(±17 min)

The average number of ORs
in progress after 4 PM
(%)

13.8
(±2.5)

11.3
(±2.5)

8.8
(±1.3)

11.3
(±3.8)

The number of unnecessary
rejections of planned
elective patients

7 9 19 22
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limited, it is hard to obtain enough data for a more extensive test. We have
therefore developed a simulation model that allows us to measure the impact of
risk attitude on the number of canceled tasks, overtime and inefficiency.

Simulation Model

We simulate separate, independent working days using discrete event simulation:
the system is modeled by means of a chronologically ordered discrete set of
events. As these events are processed one at a time, the state of the system changes
and new events may be generated. The simulation starts at 8:00 a.m. and ends
when all regular ORs have completed their final case. Because we compare the
simulation results with real life day-per-day data from the SFG, we have chosen
not to consider interdependencies between working days, e.g., by rescheduling
canceled cases the next day.

In each room, we start the first case at 8:00 a.m. When a case starts, the
corresponding ‘finish event’ is generated using the historic duration of the case (so
that we can compare our outcomes with historic data). Of course the rescheduling
heuristics do not use this generated duration, but work with the parameters of the
distribution of the duration of cases of that type. After a case has finished, 9 min is
scheduled for cleaning time. After cleaning, the next case assigned to the room
starts as soon as possible (if there is one). Cases cannot start more than 60 min
earlier than scheduled.

During the simulation, an artificial ORC makes decisions that may change the
schedule. For reasons of computation times, we have limited the frequency by
which rescheduling is considered. A first rescheduling occurrence is at 8 a.m. when
the newly arrived cases are considered, possibly leading to modifications of the
original schedule. During the day we consider rescheduling whenever a case fin-
ishes with an ending time that differs 15 min or more from the scheduled ending
time. Rescheduling is also considered when a new emergency case arrives, and at
16.00, the scheduled closing time of the ORs. Finally, rescheduling is considered
at least every 60 min.

Rescheduling must take the following rules into account:

• The sequence of elective cases within an OR is fixed and cannot be changed
during the day.

• When an emergency/acute case arrives, it is placed in the series ‘non-sched-
uled’. There is no room assigned to this specific case.

• If before 4 p.m. there is OR capacity available in a room then the next scheduled
elective case or urgent/acute case is started.

• Scheduled cases can be moved from the originally assigned room to the service
OR or can be canceled.

• Cases that are not yet assigned to any room can be assigned to a room or to the
service (so that they are performed after 4 p.m.).
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• Canceled cases or cases moved to the service OR cannot be scheduled again in
the day schedule (before 4 p.m.).

• Cases cannot be paused or stopped once they have started

Parameterizing Risk Attitude

To evaluate a feasible decision in our heuristic approach at time t, we sample a
fixed number of scenarios, each of which completely specifies all arrivals of
emergency cases after t, and the durations of all cases to be completed after t
according to the scheduling decisions made. We define the cost of a scenario by
the cost of the optimal solution for the offline problem as specified by a scenario.
Since we want to evaluate a feasible solution at time instant t, we in fact consider
the conditional cost of a scenario, i.e., the cost of an optimal solution for the
scenario, under the condition that the decision under consideration is indeed taken
at time t.

We subsequently define risk attitude on the basis of the scenarios that are taken
into account when evaluating decisions. Risk averse ORCs are modeled by con-
sidering only a subset of scenarios with high conditional cost for the decision
under consideration, whereas risk seeking ORCs are modeled by considering only
a subset of scenarios that have low conditional cost for the decision under con-
sideration. In the end, both types of ORCs choose the decision that they evaluate as
best.

To formalize this idea, consider the outcomes of a decision for a set of
M scenarios. To evaluate the decision, a family of functions is used. Each of these
functions sorts the costs under the different scenarios and then takes the average of
a subset of these sorted costs. Family members differ in the subset that is used and
different subsets represent different risk attitudes. The subsets depend on param-
eters u 2 0; 1½ �;x 2 0; 1ð Þ as follows. Let x be the vector of sorted outcomes with
xi an element of this vector. We assume x1 is the smallest cost (best case) and xM is
the largest cost (worst case). For given u and x we define a function fu;x xð Þ on the
vector x of sorted outcomes as follows:

fu;x xð Þ ¼ 1
xM

XxMþu 1�xð ÞMd e

i¼1þ u 1�xð ÞMb c
xi;

which is the average of the outcomes with indices between the boundaries 1þ
u 1� xð ÞM and xM þ u 1� xð ÞM; which is an interval containing xM outcomes.

We have three special cases:

• For u = 0 we have f0;x xð Þ ¼ 1
xM

P xMd e
i¼1 xi; which corresponds to the average of

the first xM elements in vector x.

• For u = 1 we have f1;x xð Þ ¼ 1
xM

PM
i¼1þ 1�xð ÞMb c xi; which corresponds to the

average of the last xM elements in vector x.
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• For u = 0.5 we have f0:5;x xð Þ ¼ 1
xM

P xMþ0:5 1�xð ÞMd e
i¼1þ 0:5 1�xð ÞMb c xi ¼ 1

xN

P 0:5Mþ0:5xMd e
i¼1þ 0:5M�xMb c xi;

which corresponds to the average of the middle xM elements of vector x.

We can view these cases in a more practical, human way:

• A person with u = 0 would be a risk seeker, who only takes the best possible
outcomes into account and does not care about any scenario that would result in
a worse outcome.

• A person with u = 1 would be a risk-averse person, whose decisions are guided
by worst things that may possibly happen.

• A person with u = 0.5 bases his or her decision on the more usual outcomes,
ignoring the real extreme cases (good or bad) cases.

This is illustrated in Figure 7.2, where we assume x = 0.3 and M = 15. Note
that the three person types all take the average of xM = 5 observations.1

However, the non risk-averse ORC averages the five best outcomes while the risk-
averse person averages the five worst outcomes. The average person takes some
observations in between while ignoring the extreme outcomes on both sides.

The rescheduling heuristic uses Monte Carlo optimization. A Monte Carlo
experiment is a class of computational algorithms that relies on repeated random
sampling to compute their results. In our study we use it as follows. It starts by
generating a set of scenarios. A scenario consists of a random realization for the
duration of each of the remaining cases including a set of randomly generated
emergency cases still to arrive. For each scenario all assignments of future arrivals
to ORs are enumerated. These assignments decisions are complemented by opti-
mal decisions regarding cancelation of elective cases and rescheduling of elective
cases in the service OR. Optimality is regarded here with respect to a aforemen-
tioned cost function, which serves as the objective function. The cost of a scenario

Fig. 7.2 Averaging outcomes

1 In the preceding text, we have assumed that all values are integral. In our implementation, we
first calculate xM and round this down; also, the limits for the summation are rounded down
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is set to equal the minimum costs (over all assignments for the emergency cases
generated in the scenario) of the created optimal schedule per assignment. The
rationale behind using the cost of minimum cost schedules for optimal assignments
is that this coincides with the scheduling objectives taken into account during the
day.

Data and Parameter Settings

The simulation is based on a 3-month period in the year 2009. The total number of
surgical cases in this period amounts to 3,027, of which 301 are emergency cases
and 39 are acute cases. The number of ORs is ten. For every surgical case we know
the scheduled and actual case duration; scheduled and actual start and end time;
whether the case is elective, urgent or acute; and the scheduled and actual OR
where the case is performed. Holidays and weekends are excluded from the data.
Based on the data, all relevant events on the days of surgery and the adjustments
can be simulated and the outcomes can be compared to the historical outcomes.

For each surgery we have estimated the parameters of the lognormal distribu-
tion that can be used to estimate the case duration. All electives cases were known
at 8 a.m., the beginning of the working day. For emergency arrivals, we do not
exactly know the time at which they arrived. We will assume the following about
their arrival:

• Around 50% of the emergency cases arrive between the end of the previous day
and 8:00 a.m. (SFG, 2010). These emergency cases are considered at the start of
the day. The remaining emergency cases arrive at a random time between 8 a.m.
and 4 p.m.

• The simulation uses historical urgent and acute cases.
• The subset of ORs to which emergency cases can be assigned may vary per day.

To generate random urgent and acute case arrivals between 8:00 and 16:00 for
the scenarios, we have collected data about the arrivals of emergency cases in
2008. We assume that the time of day arrivals occur according to a non-homo-
geneous Poisson process with a piecewise constant arrival rate. The arrival rates
are estimated using the mean number of arrivals per 30 min time interval. For each
random arrival, we sample a random emergency case from the historical data set.
The state of the system at a certain time of the day consists of the status of the
planning: the starting and ending times of all cases that have been completed, the
starting times and expected duration of the cases that are being performed at that
moment, the ordered lists of cases scheduled for future execution in each of the
rooms, the list of cases that will be performed in the service OR and finally the list
of cases that have been canceled and the cases that have not yet been assigned to
any room.

Because SFG aims to avoid cancelation of cases at all costs, we set the cor-
responding parameter at infinity very large positive value (i.e., a = 1,000,000). In
order to find suitable values for the weights b and c, we have presented actual
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ORCs with several dilemmas in which there is a choice between an amount of
overtime and another amount of service:

• If there are at 3:30 p.m. two cases to perform, of which one has a scheduled
duration of 45 min and the other a scheduled duration of 60 min, which one (or
both) of these cases are moved to the service OR?

• Would you rather start a very important case with a scheduled duration of
140 min in the scheduled OR at 2:50 p.m. or at 4 p.m. in the service OR? And
would you start the same case at 2:20 p.m. in the scheduled OR or at 4 p.m. in
the service OR?

• Would you prefer to perform a case with a scheduled duration of 90 min in the
service OR, or would you rather schedule this very same case in a OR with only
60 min of capacity left? And, what would you do if only 45 min of capacity is
left?

We suppose that the one who is answering a question balances two types of
costs: cost of overtime and costs of moving the operation to the service OR. Let us
look at the first question in the third bullet. Suppose that the ORC decides to
schedule the case in an OR with only 60 min of capacity left. The ORC prefers 30
(90-60) min expected overtime above 90 min service time. To state it differently,
the costs assigned to 30 min of overtime are lower than the costs of 90 min
operating in the service OR. Then 30 min x cost overtime \90 min x cost of
service time. Then the cost ratio of overtime to service time is \3. We can
conclude that the ORC prefers overtime more than three times over service time.
Based on the choices made by the ORCs, we set b ¼ 2 and c ¼ 1 (i.e., 1 min of
overtime is twice as costly as 1 min of work in the service room). In our exper-
iments, we have considered 30 scenarios while evaluating each possible decision.
The choice of 30 scenarios is based on the fact that in real life a rational choice
takes into account the cognitive limitations of both knowledge and cognitive
capacity of the human being (Simon 1991).

7.4.5 Simulation Results

It is interesting to find out the effects of different risk attitudes when we assume
that human capacity will have a hard time analyzing a large number of scenarios.
Therefore, in our comparison of simulation results with the historic outcomes, we
will use a simulation with 50 scenarios. We now present the results (based on 50
scenarios) in comparison with the historical data in Table 7.3.

The last column gives the historical results. The three preceding columns give
the results for various choices of the risk aversion parameter u. The first column
are the result for u = 0, the most risk seeking variant. The next columns use
u = 0.5, and u = 1, the most risk-averse variant. The simulation results show that
the process of cancelation works realistically. At the same time, it reveals that the
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preferences regarding overtime versus referral to a service OR may work differ-
ently in practice than stated by the ORCs in the presented dilemmas.

The modeling of risk aversion is especially interesting as it models the effect of
variations of risk attitude between ORCs. Figure 7.3 compares the results of a risk-
minded heuristic (u = 0) with a risk-averse heuristic (u = 1). The risk-minded
heuristics result in less service time, less cancellations and a better objective
function value. It does, however, generate more overtime.

Because the SFG specifically wants to avoid cancelation of cases at all costs, a
was set at a relatively large value (1,000,000). As there are many hospitals there
may be different approaches towards cancelation of cases. To make a more general
analyses we therefore set a (arbitrally) tot 100. Figures 7.4, 7.5 and 7.6 show the
results of this more general analysis of how each of the three objective function
components varies in value with u. We see the same trend concerning the effect
and direction of different risk attitudes on the three components of the goal
function as in Table 7.3, but with different values.

We clearly see that risk aversion leads to an increase in the number of can-
cellations, increase in service time and decrease in overtime. A risk-averse person
focuses on the worst scenarios (which may include a larger number of emergency
case arrivals or longer expected case durations). Since service time is limited, the
presumption of an increased workload will lead to more cancellations.

Table 7.3 Comparison between results simulator and historical data

Non risk- averse
policy

Mean
policy

Risk-averse
policy

Historical
results

Rejected cases 24 27 30 25
Overtime (min) 5,238 4,060 4,745 2,291
Service time (min) 9,121 10,964 11,269 12,871
Value objective

function
24,019,597 27,019,084 30,020,759 25,017,453

-20%
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-19%

-20%

-25.0% -15.0% -5.0% 5.0% 15.0%

Goalfunction

Service time

Overtime

Rejected jobs

Fig. 7.3 Effect of non risk-averse policy as compared to risk-averse policy (based on 50
scenarios)
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7.5 Further Research

We modeled the daily dynamics faced by the OR and especially how risk aversion
influences the quality of the scheduling decisions. Our results are consistent with
the findings in the literature: a high sensation seeker is likely to look for oppor-
tunities that provide the chance to take a risk, and this risk will seem less
threatening to this kind of individual. The results confirm earlier findings that a
non risk-averse ORC creates lower costs and fewer rejected patients compared to a
risk-averse ORC as well as a higher utilization during working days. When
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recruiting an ORC, it may be helpful to consider risk-aversion one of the selection
criteria.

Though there is much evidence to support the link between personality and
risk-taking, the literature shows that the exact nature is still unclear. It could be
interested to find what happens in the mind of a risk-taker that is significantly
different from what occurs in the mind of a non risk-taker. Further, in our research
we choose one axis of interest: sensation seeking. But there are other axes, such as
neuroticism-anxiety, aggression-hostility, activity, and sociability that can be
important, necessary, or completely determinative for an ORC’s success in plan-
ning the schedule. This has to be analyzed in future studies with a larger popu-
lation of ORCs. We suggest repeating the study in other hospitals and further
improvement of the heuristics in the process. More generally, improvement of the
heuristics is an interesting direction for further research. The results of these
research will contribute to improved timeliness, efficiency, and effectiveness of
OR processes.
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