
Chapter 5
Operating Theatre Planning
and Scheduling

Erwin W. Hans and Peter T. Vanberkel

Abstract In this chapter we present a number of approaches to operating theatre
planning and scheduling. We organize these approaches hierarchically, which
serves to illustrate the breadth of problems confronted by researchers. At each
hierarchical planning level we describe common problems, solution approaches
and results from studies at partner hospitals.

5.1 Introduction

Within the Operations Research/Operations Management (OR/OM) health care
literature, operating theatre (OT) planning and scheduling is one of the most
popular topics. This is not surprising, as many patients in a hospital undergo
surgical intervention in their care pathway. For a hospital, the OT accounts for
more than 40% of its revenues and a similar large part of its costs (HFMA 2005).
An efficient OT department thus significantly contributes to an efficient health care
delivery system as a whole.

An extensive overview and taxonomy of the OT planning and scheduling lit-
erature is given by Cardoen et al. (2010a). They conclude that the majority of the
research is directed at planning and scheduling of elective patients at an opera-
tional level of control, and take a deterministic approach. Furthermore, they
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observe that only half of the literature contributions consider up- or down-stream
hospital resources, and few papers report about implementation in practice. This
appears to be a common problem in OR/OM health care literature (Brailsford et al.
2009). An up-to-date online bibliography of the OT management literature is
maintained by Dexter (2011), and a structured literature review of OR in the
management of operating theatres is given by Guerriero and Guido (2011).

In this chapter we address OT planning problems on three hierarchical mana-
gerial levels: strategic, tactical and offline operational planning, as introduced in
Sect. 5.2.

The remainder of this chapter addresses recent work in each of these three
levels of control. Section 5.2 outlines the planning and control functions on the
aforementioned hierarchical levels in an OT department. Section 5.3 addresses the
strategic problem of determining the target utilization of an OT department.
Section 5.4 addresses the strategic problem of determining the number of surgical
teams required during the night to deal with emergency cases. Section 5.5
addresses the strategic decision whether to use emergency operating theatres.
Section 5.6 addresses the tactical problem of determining a master surgery sche-
dule (a day-to-day allocation of operating theatres to surgical specialties) that
levels the workload in subsequent departments (wards). Section 5.7 addresses the
offline operational problem of scheduling elective surgeries with stochastic dura-
tions, and sequencing them in order to reduce access time of emergency surgeries.
We will use a wide array of OR techniques, including discrete-event and Monte
Carlo simulation, statistical modeling and meta-heuristics.

5.2 A Hierarchy of Resource Planning and Control
in Operating Theatres

Competitive manufacturing companies make planning and control decisions in a
hierarchical manner (Zijm 2000). For example, the long-term decision of what
products to manufacture is at the top of the hierarchy and the real-time decision of
whether to discard a specific part due to its quality is at the bottom of the hier-
archy. In general the reliance of one decision on another defines the hierarchy.
Many planning and control frameworks classify decisions into the three hierar-
chical levels—strategic, tactical and operational—as suggested by Anthony
(1965). Similar hierarchical planning and control frameworks have been proposed
for health care (see Hans et al. 2011). Hans et al. refine the classical hierarchy by
splitting the operational level into an offline and online operational level, where
the former is the in advance short-term decision making, and the latter the
monitoring and control of the process in real-time. In the remainder of this section
we outline the main OT planning and control functions on these four
hierarchical levels.
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5.2.1 Strategic Planning and Control

To reach organizational goals, the strategic level addresses the dimensioning of
core OT resources, such as the number of OTs, the amount of personnel, instru-
ments (e.g. X-ray machines), etc. It also involves case mix planning, i.e. the
selection of surgery types, and the determination of the desired patient type vol-
umes (Vissers et al. 2001). Agreements are made with surgical services/specialties
concerning their annual patient volumes and assigned OT time. The dimensioning
of subsequent departments’ resources (e.g. ward beds) is also done (Vanberkel and
Blake 2007). Strategic planning is typically based on historical data and/or fore-
casts. The planning horizon is typically long-term, e.g. a year or more.

5.2.2 Tactical Planning and Control

The tactical level addresses resource usage over a medium term, typically with a
planning horizon of several weeks (Blake and Donald 2002; Wachtel and Dexter
2008). The actual aggregate patient demand (e.g. waiting lists, appointment
requests for surgery) is used as input. In this stage, the weekly OT time is divided
over specialties or surgeons, and patient types are assigned to days. For the
division of OT time, two approaches exist (Denton et al. 2010). When a closed
block planning approach is used, each specialty will receive a number of OT
blocks (usually OT-days). In an (uncommon) open block planning approach, OT
time is assigned following the arrival of requests for OT time by surgeons.

On the tactical level, the surgery sequence is usually not of concern. Instead, on
this level it is verified whether the planned elective surgeries cause resource
conflicts for the OT, for subsequent departments (ICU, wards), or for required
instruments with limited availability (e.g. X-ray machines). The design of a Master
Surgical Schedule is a tactical planning problem.

5.2.3 Operational Planning and Control (Offline)

The offline operational level addresses scheduling of specific patients to resources
(and as a consequence, the sequencing of activities) and typically involves a
planning horizon of a week. It encompasses the rostering of OT-personnel, and
reserving resources for add-on surgeries (Dexter et al. 1999). In addition, it
addresses the sequencing of surgeries (Denton et al. 2007), to prevent critical
resource conflicts, e.g. regarding X-ray machines, instrument sets, surgeons, etc.
When there are no dedicated emergency OTs, the sequencing of the elective
surgeries can also aid in spreading the planned starting times of elective surgeries
(which are ‘‘break-in moments’’ for emergency surgeries) in order to reduce the
emergency surgery waiting time (Wullink et al. 2007).
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5.2.4 Operational Planning and Control (Online)

The online operational level addresses the monitoring and control of the day-
to-day activities in the OT. Obviously at this level of control, all uncertainty
materializes and has to be dealt with. If necessary, surgeries are rescheduled, or
even canceled (Dexter et al. 2004; McIntosh et al. 2006). This is usually done by a
day coordinator in the OT department. Emergency surgeries, which have to be
dealt with as soon as possible, are scheduled, and emergency OT teams may have
to be assembled and dispatched to the first available OT. If there are emergency
OTs, these emergency surgeries are dispatched to these OTs. If there are no such
OTs, they are scheduled within the elective surgical schedule.

In summary, strategic planning typically addresses capacity dimensioning
decisions, considering a long planning horizon of multiple years. Tactical planning
addresses the aggregate capacity allocation to patient types, on an intermediate
horizon of weeks or months. Offline operational planning addresses the in-advance
detailed capacity allocation to elective patients, with a short planning horizon of
days and up to a few weeks. Online operational planning addresses the monitoring
and control of the process during execution, and encompasses for example reacting
to unforeseen events.

5.3 Strategic: The Problem with Using Target OT Utilization
Levels

Utilization of operating theatres is high on the agenda of hospital managers and
researchers and is often used as a measure of efficiency, both introspectively as
well as in benchmarking against other OT departments. As a result, much effort is
spent trying to maximize OT utilization, sometimes without understanding the
factors affecting it. Using straightforward statistical analysis we show how the
target OT utilization of a hospital depends on the patient mix and the hospital’s
willingness to accept overtime. This work is described in detail in Houdenhoven
et al. (2007). Similarly, the erroneousness of target ward occupancies is studied by
Harper and Shahani (2002) and discussed by Green in Hall (2006).

5.3.1 General Model

There are various ways to compute the utilization rate. We define the OT utili-
zation as the expected total surgery duration (including changeover/cleaning time)
divided by the amount of time allotted (see Fig. 5.1):

Expected OT utilization ¼ expected total surgery duration
alloted time

ð5:1Þ
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Our approach can be easily extended to deal with more extensive definitions of OT
utilization.Note that the case duration includes the time required to clean and
prepare the room for the next patient (i.e. the turnover time). The amount of
allotted time is computed as follows:

Alloted time ¼ expected total surgery durationþ slack time ð5:2Þ

where the slack time (reserved capacity to account for variability) is determined in
such a way that a certain frequency of overtime is achieved. This is a managerial
choice: slack time reduces cancelations and/or costly overtime, but also reduces
OT utilization. The frequency of overtime depends on the distribution of the total
surgery duration and can be computed according to:

Frequency of overtime ¼ P total surgery duration [ allotted timeð Þ ð5:3Þ

Now more formally, let ls and rs denote the average and standard deviation of
elective surgical case durations of type s, and let ns denote the number of cases
completed in one block. A type s may correspond with the surgeries of, for
example, a surgical specialty or a specific surgeon. Likewise, ne

s ;l
e
s and re

s denote
the same for emergency cases. All these parameters are based on historical data. It
follows that the total expected duration of all elective cases in one OT block is
ns � ls and the standard deviation of the total duration of these ns cases equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s

p

(assuming durations are mutually independent). Accordingly:

Expected total surgery duration ¼ ns � ls þ ne
s � le

s ð5:4Þ

Total surgery duration std. deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

ð5:5Þ

The accepted risk (or frequency) of overtime is denoted by rs: Now we can
complete Eq. 5.2. The amount of allotted time required to achieve an overtime
frequency of rs can be computed as follows:

Alloted time ¼ ns � ls þ ne
s � le

s þ a rsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

ð5:6Þ

1st elective case 2
nd

elective case

expected total surgery duration

allotted time

slack

case duration case duration case duration

8:00 15:30

3
rd

elective case

Fig. 5.1 Timeline for surgical cases
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where a rsð Þ is a function yielding probability rs: The outcome of this function
depends on the distribution of the surgery duration. Using a rsð Þ in this way allows
the approach to be independent of the surgery duration distribution, i.e. function
a rsð Þ can be changed to reflect various distributions. Using Eqs. 5.4 and 5.6 we can
complete formula (5.1) for the expected OT utilization as a function of the fre-
quency of overtime as follows:

Expected OT utilization ¼ ns � ls þ ne
s � le

s

ns � ls þ ne
s � le

s þ a rsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

ð5:7Þ

5.3.2 General Results

We use formula (5.7) for the expected OT utilization to illustrate the relationship
between OT utilization, patient mix and overtime frequency. In a theoretical
scenario where there is no surgery duration variability (i.e. rs ¼ re

s ¼ 0), the
expected OT utilization is obviously 100%.

As a case study we consider Erasmus Medical Center in Rotterdam, the
Netherlands. OT management in this hospital accepts a 30% risk of overtime. For
simplicity, they assume that the total surgery duration follows a normal distribu-

tion �N ns � ls þ ne
s � le

s ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

� �

: Using straightforward sta-

tistical analysis we can show that a rsð Þ ¼ 0:5 when the acceptable frequency of
overtime is 30%. This is shown as follows. Let X be the total surgery duration,
then:

30% ¼ P X [ ns � ls þ ne
s � le

s þ a rsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

� �

, P X� ns � ls þ ne
s � le

s þ a rsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q

� �

¼ 0:7

, P
X � ns � ls � ne

s � le
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � r2
s þ ne

s � re
s

� �2
q � a rsð Þ

0

B

@

1

C

A

¼ 0:7

, P Z� a rsð Þð Þ ¼ 0:7

where Z�N 0; 1ð Þ: It follows that a rsð Þ ¼ 0:5:
We use 2 years of historical data from the aforementioned hospital. We con-

sider three different surgical specialties (i.e. three different patient mixes) and for
each we show the trade-off between expected OT utilization and overtime fre-
quency. This is illustrated in Fig. 5.2.
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The calculated expected OT utilization can also be regarded as a target utili-
zation, or benchmark. Figure 5.2 shows that a single OT utilization target will
result in different overtime frequencies for each specialty. For example, a target
utilization of 80% will result in an overtime frequency of approximately 12% for
ophthalmology but an overtime frequency of approximately 35% for ENT. In
general, a low risk of overtime and a complex patient mix will result in a low
utilization rate. If the accepted risk of overtime is higher and the patient mix less
complex, then a higher utilization can be achieved. Given that overtime is
expensive (and perhaps limited by collective bargaining agreements), this example
illustrates the inadequacy of a single target OT utilization as a performance metric.
It also illustrates the importance of taking case mix characteristics into account
when comparing utilization figures between different OT departments.

5.4 Strategic: On-Call or In-House Nurses for Overnight
Coverage for Emergency Cases?

Treating emergency patients is a common activity for most hospitals. Likewise,
the OT must be available to provide emergency operations 24 h/day. The night
shift (e.g. from 11:00 p.m. to 7:30 a.m.) is typically the most expensive shift to
staff due to collective labor agreements and the inconvenient hours. Determining
minimum cost staffing levels that provide adequate coverage to meet emergency
demand is a strategic problem. In this section we describe a case study to
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Fig. 5.2 Trade-off between overtime probability and expected utilization
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determine appropriate night shift staffing levels at Erasmus Medical Center. The
outcomes of the study were successfully implemented.

5.4.1 General Problem Formulation

Covering the night shift is usually accomplished by using in-hospital and on-call
nurses. The in-hospital nurses are stationed in the hospital while waiting for
emergency cases. The on-call nurses wait at their homes for emergency cases
(typically there is a requirement that they can be present in the hospital within a set
time of being requested to do so) and are typically cheaper than in-hospital teams.
In general, a single nurse can support exactly one case at a time but can complete
any number of cases in series until the end of the shift. The decision required in
this problem is to determine how many in-hospital and on-call nurses are necessary
to meet the demand for emergency cases. Timeliness is of the essence here, as
these emergency cases may be very urgent.

When the first emergency case presents for surgery during a night shift,
in-house nurses respond. Depending on the hospital policy and the total number of
in-house nurses, an on-call nurse may be called in. In other words, some hospitals
may wait until 1, 2, … or all in-house nurses are busy before calling in a nurse
from home, while other hospitals may wait until all in-house nurses are busy and
an emergency case is present. For each subsequent emergency case, this process is
repeated. Note that nurses are available to complete multiple surgeries per night
and are available again after completing a surgery. Finally surgeries cannot be
preempted. In this subsection we assume the hospital’s policy for calling an on-call
nurse is fixed, although determining this policy is, in and of itself, an interesting
research question.

There are generally two types of emergency cases: those that need to be started
immediately and those that can be delayed before being started. The former we
refer to as emergent cases and the latter as urgent cases. The acceptable delay, or
safety interval, for starting an urgent case varies: ‘‘for example a facility may
consider it imperative for a patient with a ruptured abdominal aortic aneurysm to
be operated on within 30 min of arrival, while a patient with an amputated finger
should be operated on within 90 min of arrival, and a patient with a perforated
gastric ulcer should be operated on within 3 h of arrival’’ (Oostrum et al. 2008a).

By incorporating the acceptable delays for urgent cases it is possible to post-
pone urgent case demand to a later cheaper shift, and/or postpone the case until
busy in-house nurses are free. To examine these possibilities in detail, Oostrum
et al. (2008a) use a discrete-event simulation and a case study at Erasmus Medical
Center Rotterdam (Erasmus MC). To illustrate the benefits of postponing sur-
geries, the authors compare results with surgery postponements with the approach
of Dexter and O’Neill (2001) where surgery postponements are not used. In the
following subsection we provide an overview of the results.
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5.4.2 General Results

Current practice at Erasmus MC had a team composition of nine in-house nurses
and two on-call nurses. Using the approach of Dexter and O’Neill, a team of
eight in-house nurses and two on-call nurses was determined to be appropriate.
A number of other team compositions were considered, ranging from a total of 11
nurses to a total of six. Each team composition represented a what-if scenario in
the simulation model. The simulation model was used to determine the number of
surgery cases starting later than required.

To compute the cost of each team composition, observe that—since the number
of working hours does not depend on the team composition—we only need to look
at the cost of idle staff. Under Dutch law, the costs for nurses who wait during the
night shift are 107.5% of the regular hourly daytime wage for in-house nurses, and
106% for nurses on-call. We thus compute the cost of waiting nurses in each team
composition as follows:

Cost of waiting� ðnumber of in�housenurses� 1:075

þ number of on�call nurses� 1:06Þ � hourly wage

Figure 5.3 displays the cost of waiting and percentage of surgeries starting late for
the considered team compositions, where we assumed for simplicity that a regular
hour’s wage is 1. It shows that current practice of nine in-house and two on-call
nurses performs the best. However, the waiting cost can be decreased by
approximately 18.5% by switching to a team composition of five in-house and four
on-call nurses, at the expense of a 2% increase of late starts.

For policy making, managers can use results like these to see the relative
performance cost associated with each staff assignment. The decision autonomy
remains with the policy makers and they are left to determine if cheaper staffing
levels justify a decrease in performance.

For more extensive results, we refer to Oostrum et al. (2008a), where the
authors present the distribution of cases starting later than required, surgical
specialty specific results, results for multiple nurse types and an extensive sensi-
tivity analyses. The sensitivity analyses showed that the approach can be gen-
eralized for use in other centers.

Oostrum et al. (2008a) report that heavy involvement of clinical staff in this
project was essential for the following reasons. Staff assessed the safety intervals
for urgent patients to ensure changes did not negatively affect patient’s safety.
They validated the discrete-event simulation model, and suggested various sce-
narios for sensitivity analyses. The visualizations provided by the computer sim-
ulation aided to convince them of the final conclusions. As a result, despite the
negative impact on their salary, the staff accepted the adjustment of the team
composition to five in-house and four on-call nurses. For Erasmus MC this
intervention resulted in an annual cost saving of 275,000 euro.
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5.5 Strategic: Emergency Operating Theatres or Not?

During regular working hours, most hospitals either perform emergency operations
in dedicated emergency OTs, or in regular elective patient OTs. For the second
option a certain amount of slack is scheduled in order to fit in emergency cases
without causing excessive cancelations of elective cases. The choice to use Policy 1
(reserving capacity in dedicated emergency OTs) or Policy 2 (reserving capacity in
multiple regular emergency OTs) is the strategic decision addressed in this section.
The difference between these two policies is illustrated graphically in Fig. 5.4.

The flow of patients is summarized as follows: ‘‘Emergency patients arriving at
a hospital that has adopted the first policy, will be operated immediately if the
dedicated OT is empty and will have to queue otherwise, whereas patients arriving
at a hospital that has adopted the second policy can be operated once one of the
ongoing elective cases has ended. Other planned cases will then be postponed to
allow the emergency operation’’ (Wullink et al. 2007).

Policy 1 has the advantage that the first emergency case of the day can begin
without delay, but all following cases may be subject to delay. Furthermore this
policy means only the emergency OTs need to be equipped for emergency cases.
Finally, as a result of emergency surgeries, elective surgeries will experience no
delay (Bhattacharyya et al. 2006; Ferrand et al. 2010) and elective OTs will
experience no overtime (Wixted et al. 2008).

Policy 2 cannot guarantee any emergency case will begin without delay, but
since emergency cases can be completed in more OTs, an opening (i.e. a case
finishing) for the subsequent cases may happen sooner than in Policy 1. The
benefits from this policy essentially result from flexibility. To ensure this flexi-
bility (and the corresponding benefits) multiple (or all) of the OTs must be
equipped to deal with emergency cases.
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5.5.1 General Problem Description

The decision that is required is to determine how to reserve OT capacity for
emergency cases, i.e. according to Policy 1 or Policy 2. There are advantages and
disadvantages of both policies introduced above. Due to the stochastic nature of
emergency cases (arrivals and surgery durations) choosing the best policy is
not immediately obvious. To compare the policies we suggest evaluating the
following metrics:

• emergency surgery waiting time: the total delay, or the delay past what is
allowed to receive emergency surgery.

• elective surgery waiting time: the difference between the planned and actual
starting time of an elective surgery.

• OT overtime: the time used for surgical procedures after the regular block time
has ended.

• OT utilization: the ratio between the total used operating time for elective
procedures and the available regular time.
The following instance parameters are taken into account: elective surgery
volume and duration characteristics, emergency surgery arrival and duration
characteristics.

5.5.2 General Results

We summarize a case study (presented in detail in Wullink et al. 2007) where
discrete-event simulation was used to prospectively evaluate both policies. The
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Fig. 5.4 Cost of waiting and late surgery starts for various team compositions
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case study was used to support decision making at Erasmus MC. When applying
Policy 2, the hospital decided that all of their 12 OTs would be equipped to handle
emergency cases. In Policy 1, with emergency capacity allocated to 1 dedicated
emergency OT, the remaining free OT time is allocated exclusively to elective
OTs. In Policy 2, with emergency time allocated to each elective OT, the reserved
OT time is distributed evenly over all elective OTs. Figure 5.5 and Table 5.1
summarize the results from the discrete-event simulation.

From Table 5.1 it is clear that Policy 2 outperforms Policy 1 on all given
outcomes.

Under Policy 1, all emergency patients were operated on within 7 h with a
mean waiting time of 74 (±4.4) min. Under Policy 2, all emergency patients were
operated upon within 80 min with a mean waiting time of 8 (± 0.5) min. OT
utilization for Policy 1 was 74 and 77% for Policy 2. Policy 1 resulted in 10.6 h of
overtime on average per day and Policy 2 resulted in 8.4. Policy 2, with emergency
capacity allocated to all elective OTs, thus substantially outperforms Policy 1, on
all outcomes measured.

Table 5.2 summarizes the results of additional simulation experiments in which
we vary the number of emergency OTs (0, 1, 2 or 3) as well as the number of
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Table 5.1 Summary of simulation results for Policy 1 and 2

Policy 1 Policy 2

Total overtime per day 10.6 8.4
Mean number of OTs with overtime per day 3.6 3.8
Mean emergency patient’s waiting time 74 (±4.4) 8 (±0.5)
OT utilization (%) 74 77
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elective OTs used for emergency surgeries (0, 5, 10 or 15). We use the case mix of
the previous experiment, but resize the problem to 15 elective OTs (instead of 12).
Furthermore, approximately 10% of the surgeries are emergency surgeries. The
results show that Policy 2 [dealing with emergencies in (some) elective OTs]
results in improved emergency waiting performances, at the expense of increased
waiting time of the elective surgeries. A mixed policy combines the advantages of
both policies—the table can be used as a guideline to make a trade-off.

5.6 Tactical: Designing a Master Surgical Schedule to Level
Ward Usage

Managers are inclined to solve problems at the moment they occur (i.e. on the
operational level). In Hans et al. (2011) we refer to this phenomenon as the ‘‘real-
time hype’’ of managers. For health care managers, while inundated with opera-
tional problems, the universal panacea for all productivity-related problems is
‘‘more capacity’’. It is thereby often overlooked to tactically allocate and reor-
ganize the available resources, which may turn out to be even more effective, and
will certainly be cheaper. However, due to its longer (intermediate) planning
horizon, tactical planning is less tangible and inherently more abstract than
operational planning. In the majority of our health care process optimization

Table 5.2 Simulation results: (1) average and (2) maximum emergency surgery waiting time
(min), (3) percentage of emergency surgeries that has to wait, (4) average elective surgery
waiting time (min)

Number of emergency OTs

Elective OTs used for emergency 0 1 2 3

0 – 21.9 2.4 0.5
3,026 949 292
4.4% 2.4% 1.1%
12.6 12.6 12.6

5 1.3 0.6 0.3 0.1
204.9 152.7 113.1 83.3
4.5% 2.9% 1.5% 0.7%
32.3 21.2 14.2 11.4

10 0.5 0.3 0.1 0.1
94.2 76.3 63.8 50.2
4.2% 2.6% 1.3% 0.6%
22.2 16.0 12.1 10.3

15 0.3 0.2 0.1 0.0
60.3 52.3 43.3 36.0
4.0% 2.5% 1.2% 0.5%
18.6 14.9 11.6 10.0
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research projects we find that the tactical planning level is typically not formalized
and overlooked. Tactical planning decisions are rather a result of historical
development (‘‘This year’s tactical plan is last year’s tactical plan’’), than a result
of periodic planning. We also find they have often evolved to hard constraints for
operational planning (‘‘We don’t do orthopedic patients on Wednesday afternoons.
Why? Well, we just don’t!’’).

This is also typical for the tactical planning of OTs, the block planning or
Master Surgical Scheduling (MSS) problem, which concerns the weekly allocation
of OT-days to surgical specialties (or surgeons). To a surgeon: ‘‘operating theatre 6
on Monday is her/his OT’’. Re-allocating OT-days may however lead to a more
stable workload in subsequent departments (wards, ICU), and even reduce the
required capacity of these departments. In this section we present a model to
analyze and improve the impact of the MSS on the resource usage in subsequent
departments.

5.6.1 General Problem Description

Tactical OT planning typically involves the assignment of OT capacity to
aggregate patient groups (i.e. patient cohorts) for a fixed planning horizon. This
assignment should reflect the strategic goals of the hospital. For example, consider
a planning horizon of one month and a hospital with a strategic goal to complete
1,000 orthopedic surgeries over the next six months, then the orthopedic surgical
specialty should be assigned enough OT capacity to complete 1000/6 & 167
surgeries per month.

The tactical plan is used to organize capacity over an intermediate planning
horizon such that long-term goals are met and to create a structure from which
operational level planning can be based. In the OT this is usually accomplished
with a MSS. The MSS defines which surgical specialties operate on which days
during the planning horizon. Such a schedule allows the surgical specialties to plan
their other functions, such as outpatient clinics, education, etc. The schedule also
allows the OT department to make its own planning decisions, such as how many
pieces of equipment are needed each day, what are the staffing levels, when can
OT maintenance happen, etc.?

When a MSS is being developed, not all of the details about the planning
horizon are known, i.e. which patients will show up, which doctors will be
available, etc. What is known is that a certain volume of patients with a certain
case mix is expected. Hence the assignment of patient cohorts (not individual
patients) to OT time is the primary factor considered when designing a MSS.

A MSS represents a repetitive pattern over a certain number of days (say Q).
For each day q 2 1; 2; . . .;Qf g in the MSS each of the I available OTs has to be
assigned to one of the available surgical specialties. More precisely, the MSS is
described by the assignment of a surgical specialty j to each OT block biq; where
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i 2 1; 2; . . .; If g and. Using this notation, an empty MSS (i.e. before specialties
have been assigned OT blocks) is shown in Fig. 5.6, where each cell represents an
OT block. It is common that multiple blocks are assigned to a single specialty on
the same day.

The MSS is defined for period Q and executed repeatedly. Let M be the
maximum length of stay (LOS) of any patient. Figure 5.7 displays how the mul-
tiple MSS cycles repeat and how patients overlap.

In this section we describe a model by Vanberkel et al. (2011a). The objective
of the model is to make a cyclical assignment of OT time to patient cohorts for an
intermediate term planning horizon, such that strategic ‘‘production levels’’ and
performance goals are achieved. We allow for a stochastic LOS and, for a given
MSS, compute a number of workload metrics associated with recovering surgical
inpatients. This approach does not find the optimal MSS but rather evaluates MSS
proposals. Adopting this approach to be used in conjunction with a search heuristic
to find the best MSS proposal is of course a natural and very plausible extension.

The aim is to determine the number of patients in recovery as a function of the
MSS. We do this by modeling the recovering patient cohorts with binomial dis-
tributions. We then add these discrete distributions (with convolutions) to deter-
mine the number of patients recovering. Once we know the number of patients
recovering, we predict a number of workload metrics including admissions,
ongoing inpatient care, discharges and specialized inpatient care.

Consider a single patient who is recovering from surgery and each day has the
option of staying or being discharged. From historical data we can compute the
probability of being discharged and conversely the probability of staying for each
day of the patient’s LOS. Now consider a cohort of patients with similar discharge
probabilities. From probability theory it is known that when multiple experiments
have two (and only two) outcomes, then the probability for the number of
experiments resulting in each outcome can be computed with a binomial distri-
bution (assuming experiments are independent and identically distributed). Thus
on any day and for each patient cohort, we can compute the number of discharges
and consequently we know the number of patients who will remain until

Fig. 5.6 Example empty Master Surgery Schedule (MSS)
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tomorrow. For a given MSS and using historic records, we can compute the
number of admission to the ward (i.e. the number of completed inpatient surgeries
each day) for each patient cohort. Thus for each patient cohort we have a distri-
bution for the admission rate and using a binomial distribution we have a distri-
bution for the discharge rate and we can easily compute the ward occupancy
distribution. Finally, using discrete convolutions we can compute the overall ward
occupancy. The formal model description follows.

Assume that each surgical specialty represents a single patient cohort. Let the
MSS be defined such that biq is an OT block where i 2 1; 2; . . .; If g indexes the
OTs and q 2 1; 2; . . .;Qf g the days in a cycle. Let each surgical specialty j be
characterized by two parameters c j and d j

n; where c j is a discrete distribution for
the number of surgeries carried out in one OT block and d j

n the probability that a
patient, who is still in the ward on day n, is to be discharged that day
(n ¼ 0; 1; . . .; L j; where L j denotes the maximum LOS for specialty j).

Using c j and d j
n as model inputs, for a given MSS the probability distribution

for the number of recovering patients on each day q can be computed. The required
number of beds is computed with the following three steps. Step 1 computes the
distribution of recovering patients from a single OT block of a specialty j; i.e. we
essentially pre-calculate the distribution of recovering patients expected from an
OT block of a specialty. In Step 2, we consider a given MSS and use the result
from Step 1 to compute the distribution of recovering patients given a single cycle
of the MSS. Finally in Step 3 we incorporate recurring MSSs and compute the
probability distribution of recovering patients on each day q.

Step 1. For each specialty j we use the binomial distribution to compute the
number of beds required from the day of surgery n ¼ 1 until n ¼ L j: Since we
know the probability distribution for the number of patients having surgery cj

� �

;

which equates to the number of beds needed on day n ¼ 0; we can use the
binomial distribution to iteratively compute the probability of needing beds on all
days n [ 0: Formally, the distribution for the number of recovering patients on day
n is recursively computed by:

h j
n xð Þ ¼

c jðxÞ when n ¼ 0
P

c j

k¼x

k
x

� �

ðd j
n�1Þ

k�x 1� d j
n�1

� �x
h j

n�1 kð Þ otherwise

8

<

:

:

Fig. 5.7 Illustration of the overlap between multiple MSS cycles
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Step 2. We calculate for each OT block biq the impact this OT block has on the
number of recovering patients in the hospital on days q, q ? 1, … If j denotes the
specialty assigned to OT block biq; then let �hi;q

m be the distribution for the number
of recovering patients of OT block biq on day m ¼ 1; 2; . . .;Q;Qþ 1; . . . It follows
that:

�hi;q
m ¼

h j
m�q if q�m\L j þ q
0 otherwise

�

where 0 means �hi;q
m 0ð Þ ¼ 1. Let Hm be a discrete distribution for the total number

of recovering patients on day m resulting from a single MSS cycle. Since recov-
ering patients do not interfere with each other we can simply iteratively add the
distributions of all the OT blocks corresponding to the day m to get Hm: Adding
two independent discrete distributions is done by discrete convolutions which we
indicated by ‘‘ � ’’: For example, let A and B be two independent discrete distri-
butions. Then C ¼ A � B; which is computed by:

C xð Þ ¼
X

s

k¼0

A kð ÞBðx� kÞ

where s is equal to the largest x value with a positive probability that can result
from A � B (e.g. if the maximum value of A is 3 and the maximum value of B is 4,
then when convoluted the maximum value of the resulting distribution is 7,
therefore in this example s ¼ 7). Using this notation, Hm is computed by:

Hm xð Þ ¼ �h1;1
m � �h1;2

m � � � � � �h1;Q
m � �h2;1

m � � � � � �hI;Q
m

Step 3. We now consider a series of MSSs to compute the steady-state probability
distribution of recovering patients. The cyclic structure of the MSS implies that
patients receiving surgery during one cycle may overlap with patients from the
next cycle. In the case of a small Q patients from many different cycles may
overlap.

In Step 2 we have computed Hm for a single MSS in isolation. Let M be the last
day where there is still a positive probability that a recovering patient is present in
Hm: To calculate the overall distribution of recovering patients when the MSS is
repeatedly executed we must take into account dM=Qe consecutive MSSs. Let HSS

q

denote the probability distribution of recovering patients on day q of the MSS
cycle, resulting from the consecutive MSSs. Since the MSS does not change from
cycle to cycle, HSS

q is the same for all MSS cycles. Such a result, where the
probabilities of various states remain constant over time, is referred to as a steady-
state result. Using discrete convolutions, HSS

q is computed by:

HSS
q ðxÞ ¼ Hq � HqþQ � Hqþ2Q � � � � � Hqþ½M=Q�Q
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From this result a number of workload metrics can be derived. To determine the
demand for ward beds from the variable HSS

q consider the following example. Let
the staffing policy of the hospital be such that they staff for the 90th percentile of
demand and let Dq denote the ninetieth percentile of demand on day q. It follows
that Dq is also the number of staffed beds needed on day q, and is computed from
HSS

q as follows:

Dq ¼ max xjHSS
q ðxÞ� 0:9

n o

In practice, patients tend to be segregated into different wards depending on the
type of surgery they received. To incorporate this segregation into the model and
to consequently have recovering patient distributions for each ward, a minor
modification needs to be made to the model. Let Wk be the set of specialties
j whose patients are admitted to ward k. Then in Step 2 we only have to consider
those OT blocks assigned to a specialty in Wk and continue with the calculations.

Ward occupancy alone does not fully account for the workload associated with
care for recovering patients. During patient admissions and discharges the nursing
workload can increase. From the model the probability distribution for daily
admissions and discharges can be computed. To compute the admission rate, set

d j
1 ¼ 1 for all j and repeat the steps above. The resulting HSS

q will denote the
admissions on day q.

The discharge rate is the rate at which patients leave the ward and can be
computed by adding an additional calculation in Step 1. Let D j

n be a discrete
distribution for the number of discharges from specialty j on day n which is
computed as follows:

P D j
n ¼ x

� �

¼
X

C j

k¼x

k
x

� �

d j
n

� �x
1� d j

n

� �k�x
P h j

n ¼ k
� �

Finally, after computing D j
n; one can set h j

n ¼ D j
n and continue with Step 2. By

doing so, the resulting HSS
q will denote the distribution for daily discharges for each

day q of the MSS.
The inherent assumption of the described method is that all patients with a

patient cohort have equal probability of being discharged and that it is independent
of other patients, i.e. it is assumed that patients are identically distributed and
independent. The independence assumption implies that the amount of time one
patient is in the hospital does not influence the amount of time another patient is in
the hospital. This seems like a natural assumption in most cases and appropriate so
long as surgeries are rarely canceled due to a bed shortage (cancelations due to bed
shortages create a dependency). The identically distributed requirement means that
we must compute the number of beds needed tomorrow (and the number of case
completed in one OT block), for all identically distributed cohorts of patients
separately. In other words, the parameters of the binomial distribution must reflect
all of the patients in a given cohort.
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5.6.2 General Results

The model was applied at the Netherlands Cancer Institute—Antoni van
Leeuwenhoek Hospital (NKI-AVL)—to support the design of a new MSS.
Selected results from Vanberkel et al. (2011b) are summarized in this subsection.

Management at NKI-AVL strives to staff enough beds such that for 90% of the
week days there is sufficient coverage. This implies that on 10% of the days they
will be required to call in additional staff. Using the model a number of MSS
proposals were evaluated and eventually staff chooses an MSS that the model
predicted would lead to a balanced ward occupancy.

An unbalanced ward occupancy makes staff scheduling, and ward operations,
difficult. Early in the week, beds would be underutilized whereas later in the week,
beds would become highly utilized and the risk of a shortage would increase. Such
peaks and valleys represent variation in the system which possibly could be
eliminated with a different MSS. This variation leads to significant problems,
particularly as the wards approach peak capacity. For example, when inpatient
wards reach their peak capacity and a patient admission is pending, staff often
scrambles to try and make a bed available. If one cannot be made available,
additional staff is called in (or in rare cases when additional staff cannot be found,
the elective surgery is canceled), which causes extra work for OR planners, wasted
time for surgeons and extra anxiety for patients. When a bed was made available, it
often means a patient was transferred from one ward to another (often to a ward
capable of caring for the patient but not the designated one) or discharged. Either
way, extra work is required by ward staff and there is a disruption in patient care.
Although completely eliminating such problems is likely not possible without an
exorbitant amount of resources, sound planning ahead of time may help to mini-
mize occurrences.

After implementing the new MSS, the ward occupancy was observed over a 33-
week period. From these observations, probability distributions of beds used for
each day of the MSS cycle were derived. Using Chi-square goodness-of-fit tests,
these observed distributions were compared to those projected by the model. Six of
the seven projected distributions (one for each day of the MSS cycle) were found
to be a good fit for the observed data at a level a ¼ 0:05; while for the seventh day,
this was true at a level a ¼ 0:2: Figure 5.8 compares the projected ward occupancy
with the observed ward occupancy during the 33-week period.

5.6.3 Discussion

The main benefit of using the model was to be able to quantify the concerns of
ward staff, thereby providing a platform from which they could begin to negotiate
a solution. Staff was quick to embrace the model output, particularly after seeing
several modifications to the original MSS, at which point they were able to roughly
predict model output for a given modification.
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In this project we treated the equipment and physician schedule restrictions as
unchangeable. It is possible that further improvements in the ward occupancy
could have been achieved if these restrictions were relaxed. In this way the model
can be used to illustrate the benefits of buying an extra piece of equipment or of
changing physicians’ schedules. An additional restriction, which if relaxed may
have allowed further improvements, is the assignment of wards to surgical spe-
cialties. In other words, in addition to changing when a specialty operates, it may
prove advantageous to change which ward the patients are admitted to after sur-
gery. Finally, we chose the best MSS from those created through swapping OR
block and surgical specialty assignments. It is possible that a search heuristic may
have found a better MSS, although it would have required the many surgical
department restrictions to be modeled and the more complex model may not have
garnered the same level of staff understanding and support.

Oostrum et al. (2008b) propose another approach, where the MSS is planned in
more detail: here it comprises a cyclical schedule of frequently occurring elective
surgery types. The resulting combinatorial optimization problem is to determine a
MSS that balances OT utilization and ward occupancy. By scheduling surgery
types, the surgeon/surgical specialty can assign a patient’s name at a later time,
without affecting the performance of the MSS. The model considers stochastic OT
capacity constraints and empirical LOS distributions. As the resulting problem is
NP-hard, heuristics are provided. For a review on the suitability and managerial
implication of this particular MSS approach see Oostrum et al. (2010).

5.7 Operational: Elective Surgery Scheduling and Sequencing

Operational planning and scheduling of operating theatres is arguably one of the
most popular topics in the health care OR literature. The literature reviews of
Cardoen et al. (2010a) and Guerriero and Guido (2011) outline many contributions
regarding the elective surgery scheduling and sequencing literature. Cardoen et al.
(2010b) also propose a classification scheme for OT planning and scheduling
problems, which contains four descriptive fields hajbjcjdi: Here, a holds the

Fig. 5.8 Comparison of the projected and observed (90th percentile) ward occupancies
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patient characteristics, b the delineation of the decision, c the extent to which
uncertainty is incorporated and d the performance measures.

In previous work (Hans et al. 2008) we demonstrated that by combining
advanced optimization techniques with extensive historical statistical records on
surgery durations, the OT department utilization can be improved significantly.
We demonstrated that, if slack time is reserved in OTs according to the method
described in Sect. 5.3.1 (particularly Eq. 5.6, the portfolio effect can be exploited
in a local search meta-heuristic as follows. By swapping surgeries between OTs (1
swap or 2 swap), the total slack time of both involved OTs is affected. By clus-
tering surgeries with similar duration variability characteristics, the total slack time
is reduced due to the portfolio effect. This principle can be used in a local search
heuristic to minimize the total slack time, and thus free OT time. A result of the
portfolio optimization is that the fragmentation of the free OT time is minimized.
In fact, OTs in resulting solutions are either filled to a great extent with surgery and
slack time, or are empty. As a result, OTs can be closed, or time is freed to perform
more surgeries.

In this section we discuss the optimization of the elective surgery schedule, in
order to minimize emergency surgery waiting time. This problem follows from
Policy 2 outlined in Sect. 5.5 (i.e. emergency surgeries are dealt with in elective
OTs).

5.7.1 General Problem Description

Emergency surgery waiting time increases a patient’s risk of postoperative com-
plications and morbidity. When dealing with emergency patients according to
Policy 2 (Sect. 5.5), waiting time will occur when all elective OTs are busy.
Typically, at the beginning of the regular working day, all OTs will be busy with
long procedures, as surgeries are often scheduled according to the longest pro-
cessing time rule. As a result, emergency surgeries that arrive just after the start of
the elective program may have to wait a long time, as surgeries cannot be pre-
empted. This pleads for scheduling a short surgery at the beginning of the day, to
obtain a so called ‘‘Break-in-Moment’’ (BIM), at an early time for emergency
surgeries. Extending on this idea, we may sequence the elective surgeries within
their assigned OTs in such a way, that their expected completion times, which are
BIMs for emergency surgery, are spread as evenly as possible. We do not re-assign
surgeries to other OTs, but instead only re-sequence elective surgeries within their
assigned OT. This is illustrated in Fig. 5.9: the BIMs are clearly spread more
evenly after re-sequencing the surgeries.

The problem of sequencing elective surgeries in such a way that the BIMs are
spread as evenly as possible (or, alternatively, the break-in-intervals/BIIs are
minimized) is in fact a new type of scheduling problem. This innovative idea was a
result of a MSc thesis project at Erasmus MC (Lans et al. 2006), where it was
proven that the problem is NP-hard by reduction from three-partition.
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We assume, as illustrated in Fig. 5.9, that surgeries are executed directly after
another, i.e. there is no planned slack between surgeries. The planning horizon is
within a day, and starts on the first moment when all OTs are scheduled to have
elective surgeries. If all OTs start at the same time, then this time marks the start of
the planning horizon. It ends on the first moment when there is an OT without a
scheduled surgery, since after this moment there are infinitely many BIMs. The
objective is to lexicographically minimize the largest break-in-intervals (BIIs). In
other words, we minimize the largest BII, then the second largest (without
affecting the largest), etc. The reason that we do not only minimize the largest BII
is that the expected duration of the shortest surgery is a lower bound to the longest
BII. This can be seen as follows: assuming all OTs start at the same time, placing
the shortest surgery at the beginning of its OT gives a BII that cannot be shortened.

In forthcoming work we will propose various exact and heuristic approaches for
the BIM/BII optimization problem. Here we give the results of a Simulated
Annealing (SA) local search heuristic, which iteratively swaps surgeries within
their sequence. The SA method uses the following parameters: start temperature
0.2, final temperature 0.0001, Markov chain length 150, decrease factor 0.8. We
fix the shortest surgery at the beginning of its OT.

5.7.2 General Results

We generate instances with the case mix of Sect. 5.5 (academic hospital Erasmus
MC), scaled to fill 4, 8 or 12 OTs. Surgeries are scheduled ‘‘First Fit’’ (Hans et al.
2008). First Fit assigns surgeries from the top of the list to the first available OT
plus an amount of slack (Sect. 5.3.1, Eq. 5.6) to achieve a 30% probability of
overtime caused by surgery duration variability, until no surgery can be found

OT1 OT2 OT3 OT1 OT2 OT3

Initial solution After BIM optimization

BIMs

Fig. 5.9 Example BIM optimization
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anymore that fits in the remaining OT capacity. Each instance has two variants:
with full flexibility (all surgery sequences are allowed), and with reduced flexi-
bility (randomly, 1

12 th of the first surgeries are fixed on this position in their OT,
and 1

12 th of the last surgeries are fixed on this position in their OT). For example,
surgeries on children are typically done first, and surgeries after which extensive
OT cleaning is required are typically done last.

Table 5.3 presents the results for the SA algorithm. It compares the solutions
found by SA to the initial First Fit solution (which does not aim to optimize
BIM/BIIs). Particularly, it shows the frequency of the BIIs of size [15, [30, …,
[90 min. Each number is an average over 260 instances (52 weeks of 5 working
days). SA solves each instance in less than 2 s. Clearly, the large intervals are
eliminated to a great extent, the more so when there are more OTs (and thus more
BIMs).

The question now is what impact these optimized BIMs/BIIs have on emer-
gency surgery waiting time, particularly given the fact that elective surgery
durations are stochastic, and the BIMs are expected surgery completion times.
Table 5.4 presents the results of a Monte Carlo simulation of 260 instances with 12
OTs and reduced sequencing flexibility. The elective surgeries are assumed to
have a lognormal distribution. The emergency surgeries arrive according to a
Poisson process (on average 5.1 arrivals/day), and are served on a FCFS basis.
Elective surgeries are not preempted.

We observe that the BIM/BII optimization by SA, despite the reduced flexi-
bility, has a significant impact on emergency surgery waiting. For example, the
relative number of first emergency patients who wait at most 10 min increases by
69% from 28.8 to 48.6%. The improvement decreases with every next arriving
emergency patient of the day. This may be expected, as these emergency patients
increasingly distort the original schedule.

Table 5.3 Average frequency of break-in-interval size (initial solution?SA solution; 260
instances per parameter setting)

No. of
OTs

Reduced
flexibility

[90 min [75 min [60 min [45 min [30 min [15 min

4 No 1.01?0.29 1.51?0.67 2.01?1.50 2.72?2.84 4.09?5.52 5.51?7.11
-71.3% -55.6% -25.4% 4.4% 35% 29%

4 Yes 1.01?0.30 1.51?0.74 2.00?1.59 2.72?2.85 4.10?5.47 5.55?7.01
-70.3% -51% -20.5% 4.8% 33.4% 26.3%

8 No 0.48?0.00 0.82?0.01 1.21?0.09 1.97?0.46 3.84?3.75 6.89?10.22
-100% -98.8% -92.6% -76.6% -2.3% 48.3%

8 Yes 0.47?0.00 0.82?0.02 1.23?0.11 1.94?0.56 3.82?3.91 6.88?10.02
-100% -97.6% -91.1% -71.1% 2.4% 45.6%

12 No 0.33?0.00 0.69?0.00 0.95?0.02 1.47?0.11 3.14?1.35 6.97?10.49
-100% -100% -97.9% -92.5% -57% 50.5%

12 Yes 0.36?0.00 0.70?0.00 0.95?0.02 1.46?0.13 3.15?1.58 6.92?10.26
-100% -100% -97.9% -91.1% -49.8% 48.3%
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5.7.3 Discussion

BIM/BII optimization has a big impact on emergency surgery waiting. More
research is required into exact solution approaches, and perhaps applications of
BII/BIM optimization in other sectors. For health care, it is easy to implement: it
only requires re-sequencing of elective surgeries. As a first step, managers are
advised to plan the shortest surgery at the beginning of the regular working day.

5.8 Future Directions

The OT department offers challenging planning and control problems on all
hierarchical levels of control. While operational planning and control has received
a lot of attention from the OR/OM in health care research community, tactical
planning is less exposed, and research has had less of an impact in practice due to
its inherent complexity. In our experience, decision support software tools mostly
focus on the operational planning level, whereas tools for the tactical planning
level are scarce and are too simplified or limited in scope to deal with tactical
decision making. Future research therefore has to focus on the tactical level, to a
greater extent. This raises opportunities to expand the scope beyond the OT
department. From our survey of health care models that encompass multiple
departments we concluded that researchers often model hospitals in a way that
reflects the limited/departmental view of health care managers (Vanberkel et al.
2010). The research scope should particularly include the polyclinics, where new
patients are taken in, and the wards, which are typically managed to follow the OT
department but whose workloads may be leveled significantly by tactically opti-
mizing the OT’s master surgery schedule. Ultimately, we should aim to optimize
the entire patient care pathway.

Acknowledgments The hospitals Erasmus MC and Netherlands Cancer Institute, and all co-
authors involved in the various research projects described here: Boucherie RJ, Harten WH van,

Table 5.4 Waiting time for the first, second and third arriving emergency patients (12 OTs, run
length 780 days, maximum relative error 10%, minimum confidence level 90%)

Waiting time (min) First emergency
surgery

Second emergency
surgery

Third emergency
surgery

Initial
solution
(%)

SA
solution
(%)

Initial
solution
(%)

SA
solution
(%)

Initial
solution
(%)

SA
solution
(%)

\10 28.8 48.6 34.9 44.9 40.4 46.2
\20 53.0 75.8 56.9 73.6 63.0 69.8
\30 70.5 90.9 71.8 87.2 76.3 86.7
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