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CHAPTER 12

NEUROBIOLOGY OF SOCIABILITY

Heather K. Caldwell
Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical 
Sciences, Kent State University, Ohio, USA 
Email: hcaldwel@kent.edu

Abstract: Sociability consists of behaviors that bring animals together and those that keep 
animals apart. Remarkably, while the neural circuitry that regulates these two 
“faces” of sociability differ from one another, two neurohormones, oxytocin (Oxt) 
and vasopressin (Avp), have been consistently implicated in the regulation of both. 
In this chapter the the structure and function of the Oxt and Avp systems, the ways in 
��������������	���������	����	��	���������	������	��������	���	�����^���������
�
�����	��	��������������������������	����	<���	��	�	�"�����������`���
��������
Oxt and Avp in sociability in humans, with a focus on neuropsychiatric disorders 
will be highlighted.

INTRODUCTION

 Sociability is the tendency to seek social interactions. Navigating a social environment 
is not easy; for instance, the ability to discriminate a male from a female will impact the 
�	����������������	��������	"��	������	���	���
������	����	�����������������������
behavior seems obvious, our understandings of the neurobiological mechanisms underlying 
sociability are just now coming to light. Interestingly, it is the lack of sociability found 
in several neuropsychiatric disorders, such as autism and schizophrenia that has been 
the impetus for much of the research in this area.1,2 To date, two neuropeptides, oxytocin 
(Oxt) and vasopressin (Avp), have been consistently linked with the neural regulation of 
sociability. With recent developments in behavioral tests to model aspects of sociability, 
the use of comparative studies, as well as the use of viral vectors and transgenic animals, 
including knockout mice, our understanding of the neural underpinnings of sociability is 
improving, as is our understanding of the contributions of Oxt and Avp. This chapter will 

Sensing in Nature, edited by Carlos López-Larrea. 
©2012 Landes Bioscience and Springer Science+Business Media.



188 SENSING IN NATURE

focus on mammals and will review the behavioral components of sociability, describe 
the ways in which sociability is experimentally assessed, explore the contributions of 
Oxt and Avp to sociability and delve into some of the data on the neurobiology of altered 
sociability in human neuropsychiatric disorders.

SOCIABILITY IN CONTEXT

Social behavior is highly complex and varied, with some animals living in groups 
with complicated social structures while others are solitary and only engage in social 
���	������������	�����	���"����	������	�|�	��������	�	����	������������	�����	������	��
��������	��������	�����������	����	�������������	�������������
	���������	��¦������
social or environment cues are required for a social exchange to occur? How does the 
brain regulate social interactions?

Sociability can be separated into two categories: (1) behaviors that bring animals 
���	��	��� �������� ��������	��
��	����� ��� ��
��������	�������� ���� #�'��	�������� �����
separate animals, such as aggressive behaviors. This chapter will focus on the neural 
�	�������������������	���������	����	��	��������������	��	�������	�����	�����������
parental and copulatory behaviors, please see Hammock and Young,3 Lim and Young,4 
McCarthy and colleagues.5

MAJOR NEUROHORMONES IMPORTANT  

TO THE REGULATION OF SOCIABILITY

&�	� ����� �����	������ ��
����	�� ��� ��	� �	�������� ��� ����������� �	�	� ��	�
gonadal steroids.6 This hypothesis stemmed from research demonstrating that there 
were changes in sociability, particularly aggressive behavior, as a result of androgen 
manipulation, (e.g., castration or hormone replacement). There are also several species, 
particularly seasonal breeders, which continue to have elevated levels of aggressive 
behavior despite dramatic reductions in gonadal steroids.7-11 It seems that in many 
�
	��	�� ������� ��	������ ���� �	� �	�	������� ���� ���� ������	���� ��� ��	�� ����������"�
Rather, the neuropeptides Oxt and Avp have been implicated in the neural regulation 
�������������������
	�����������	�	��	�������	����	�	
�������������������

	�������	�
of particular importance.

The Nonapeptides: Oxytocin and Vasopressin

Oxt and Avp are both nine amino acid neuropeptides (i.e., nonapeptides)   synthesized 
primarily in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the 
hypothalamus. Their genes sit in opposite transcriptional orientations on the chromosome 
as the result of the duplication of an ancestral vasotocin gene.12,13 Both genes are composed 
of three exons, differ from one another by only two amino acids and are synthesized as 
part of a larger precursor preprohormone.14 Since they are so structurally similar, Oxt 
and Avp are considered “sister” hormones though their actions both peripherally and 
�	����������	���������������������	������	�"� ���	�	��������^���������
���	� ��`	��
to several aspects of sociability and their actions appear to be fairly conserved across 
mammalian species.15-21
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Oxytocin

Some of the early work on Oxt characterized its peripheral actions on the regulation 
of uterine contraction and milk ejection.22,23 It is its synthesis in larger, magnocellular 
neurons of the PVN and SON, which project to the posterior pituitary that mediate the 
aforementioned actions. Oxt synthesized in the smaller, parvocellular, neurons of the PVN 
project centrally and mediate many of the central actions of Oxt. In mice and various 
vole species there have also been reports of Oxt neurons outside of the PVN.24-26 For 
example, in female prairie voles (Microtus ochrogaster) Oxt immunoreactive (Oxt-ir) 
��	����������������	�������������	����������^�����	��		��������������	����	���	����	���
������	���#����'����	�����������	��������������	��������	����	�"27

&������������������	�^����	�	
����#^���'������		����	����	�����������������������
transduce all of the actions of Oxt.28,29 The Oxtr is a member of the seven transmembrane 
G-protein-coupled receptor family; it is also structurally similar to the Avp receptors.30 
��	��������������̂ ����	�
�	�������������������	�	����	��������	�	
����������������
���
using a potent 125I-labeled antagonist. In rats and mice, Oxtr binding is found in several 
areas, including the hippocampal formation, lateral septum (LS), central amygdala (CeA), 
olfactory tubercle, nucleus accumbens shell, dorsal caudate-putamen, bed nucleus of 
the stria terminalis (BNST), medial amygdala (MeA) and ventromedial hypothalamus 
(VMH).31-33

Vasopressin

Avp’s peripheral actions include the regulation of salt and water balance. Avp 
made in the magnocellular neurons of the PVN and SON is transported to the posterior 
pituitary and its release from the posterior pituitary regulates most of its peripheral 
actions. Centrally, Avp is also expressed in the suprachiasmiatic nucleus (SCN), BNST 
and MeA.34 There are also reports of Avp immunoreactive (Avp-ir) neurons in the medial 
septum, LS, vertical limb of the nucleus of the diagonal band of Broca and the locus 
coeruleus.35 Between the projections provided by the parvocellular vasopressinergic 
�	�����������	�����������	�����	�	�����	�����	�����
���	�����	�	��	����	��������
the central nervous system.36-39

Avp receptors can be divided into two classes: Avp1 and Avp2 receptors (Avpr1 
and Avpr2, respectively), both of which are seven transmembrane G-protein-coupled 
receptors that are similar in structure to the Oxtr. There are two subtypes of the Avpr1: 
The Avpr1a and the Avpr1b. Peripherally, the Avpr1a mediates the effects of Avp on 
vasoconstriction and can be found in the liver, kidney, platelets and smooth muscle.40,41 
Centrally, the Avpr1a is found in a variety of brain nuclei.42-45 The Avpr1b was originally 
described in the anterior pituitary, where is prominent on the corticotrophes; though, it 
can also be found in the brain.46,47 In rats, the Avpr1b has been localized to areas such 
as the olfactory bulb, piriform cortical layer II, LS, cerebral cortex, hippocampus, PVN, 
SCN, cerebellum and red nucleus,47-51 but initial immunohistochemical and in situ 
hybridization histochemistry (ISHH) studies may have used antibodies and probes that 
��`	���
	�������"52 In rats and mice however, the Avpr1b appears to be more discretely 
����*	�������
�����	���	�
�	�����������	���

����
���	������
���������	�����"52 
The Avpr2 is found in the periphery and is primarily expressed in the kidney; it has not 
been localized to the brain. Its role in the kidney is to transduce the antidiuretic effects 
of Avp within the renal collecting ducts.53
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SOCIAL BEHAVIORS

^����	�������	����������	���������	����	��	���������

	�������	
�	�	����

����	�	����
of a behavioral spectrum and in fact, many of the neurotransmitters/neurohomones that 
�	����	���������	���������	����	��	����������	���	����	"����	�	�����	��	�������������
substrates on which they act differ, suggesting that the neural circuits that underlie 
��������	���������	����	��	������������	���������������������	������	�"����������	�������
��	��	�������	����	�������������	���������	����	��	���������������	����	�	�
	���	�����
tested and their neural regulation will be explored.

#�������$������$�
�

��������	� �	�������� ��	� ����	� ����� �����	� ������ �������� �	��		�� ������������
including bonds between mates and parents with their offspring. From an evolutionary, 
perspective social bonds serve to reduce stress and anxiety by increasing security.54,55 
As most mammalian species are social, the formation of social bonds aids in holding 
groups or pairs of individuals together.

Social bonds have been studied extensively in primates and in some instances have 
�		���������������	��	�	��������������	��"56 For example, in a group of free-ranging 
baboons, females that have strong social bonds with one another live longer than those 
who have weaker social bonds.57 In other mammals the direct effect of social bonding 
������	��������		��	��������	�������������	�	�������������	�������	������������������
unrelated females, social bonding improved reproductive success.58 So, it may be that 
����������
	��	��������������������������	����	�	���������	������������������
����������
been adequately studied across species.

The proximate cause, i.e., the neural regulation, of social bonds between male and 
female mammals has only been studied extensively in one species, the prairie vole.4,18,54,59,60 
�
	��������
�����	���	�����	��		����	�����	�����	���	����������������	�¡
��������¢��
which is the social bond formed between males and females of a species that often implies 
social monogamy.61

The Pair Bond

Prairie voles live in extended family groups and are considered a socially monogamous 
species.62�&�	�
�������������	��	�������
�	�	�	��	�����������������������������	����
����	���
�		����	�����	����������������������������
	���������
��	�������	����������	����	��
reproduction and incest avoidance.61,62 The formation of a pair bond is experimentally 
tested in the laboratory using a partner-preference test.63 In this behavioral test, a male 
and female are paired and allowed to cohabitate. To test for the pair bond, one of the 
“partner” individuals is tethered to one side of a three-chambered apparatus. A novel 
“stranger” animal is tethered to the opposing chamber. The subject animal is permitted 
to explore the three chambers freely and the amount of time the subject animal spends in 
proximity to, or huddling with, the “partner” versus “stranger” animal is recorded over a 
3-hour testing period. If the subject spends twice as much time with the “partner” animal 
then it is said to have formed a pair bond with that individual.61,62,64,65

Due to the diversity in social structures within the genus Microtus, comparative 
�����	���	��		����	��
	��	������
�����	����������������������������	��	�����	��������
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of social bonding. By comparing the neurochemistry of monogamous vole species, such 
as the prairie or pine vole (Microtus pinetorum), to nonmonogamous voles, such as the 
montane (Microtus montanus) or meadow (Microtus pennsylvanicus) voles, scientists 
have had the opportunity to explore how variations in neurochemistry between highly 
�	��	���
	��	�������	����������������������	�	��	������������	������"�����	�	��	�����
the Oxt and Avp systems between vole species has been found to contribute to their 
social organization.18,60

While there are not marked differences in Oxt and Avp immunopositive cells, or 
their projections, between species, there are changes in the distribution of the receptors 
for Oxt and Avp. Relative to nonmonogamous voles, monogamous voles have higher 
densities of Oxtr, as measured using Oxtr autoradiography and ISHH, in the NAcc, 
prefrontal cortex (PFC) and the BNST. Promiscuous voles, on the other hand, have 
higher Oxtr density in the LS, VMH and the cortical nucleus of the amygdala.66-68 
Evidence that the differences in the distribution of the Oxtr between species might be 
behaviorally meaningful comes primarily from pharmacological studies.

In female prairie voles, central infusion of an Oxtr antagonist blocks the formation 
of the pair bond but has no effect on sexual behavior, whereas central infusion of Oxt 
facilitates the pair bond in the absence of mating.65,69,70 In the aforementioned studies the 
infusions were intracerebroventricular (icv), however manipulation of Oxtr signaling, 
using Oxtr antagonists within the NAcc, blocks formation of a partner preference 
following mating (Fig. 1).71,72�&����������� ��� ��

���	������� �	�	��� ������ ���������
Oxtr overexpressed in the NAcc of adult female prairie voles was found to accelerate 
the formation of partner preference. Interestingly, the same result was not found when 
the Oxtr was overexpressed in the nonmonogamous meadow vole, suggesting that in a 
���������������
	��	��̂ ����	�
�	���������������	�������������������	������
�����	�
pair bond formation.73

There are also differences in the distribution of the Avpr1a between vole species. 
Prairie voles have a higher density of Avpr1a, as measured using receptor autoradiography 
and ISHH, within the MeA, accessory olfactory bulb, diagonal band, thalamus, ventral 
pallidum (VP) and BNST compared to montane voles.74,75 Montane voles, on the other 
hand, have a higher density of Avpr1a in the medial PFC and the LS.68,75 These differing 
“patterns” of Avpr1a distribution have been suggested to underlie differences in social 
organization between monogamous and nonmonogamous vole species. This hypothesis 
�����		��������	������
����������������
��	���	�������	�������	������������	���
����������������������	=�
	������������������������
�~���	��		����	�	��
	��	�"75 Further 
support for this hypothesis comes from pharmacological manipulations of the Avpr1a 
in prairie voles. When an Avp antagonist is injected icv prior to mating, the formation 
of a partner preference is inhibited. Conversely, Avp infusion facilitates the formation 
of the partner preference.70,76 Some of the more interesting data that supports a role 
for the differential distribution of the Avpr1a in the formation of social bonds comes 
from a study in which the prairie vole Avpr1a gene was overexpressed in the ventral 
forebrain of meadow voles, resulting in increases in the amount of time meadow voles 
spent huddled with their partners compared to controls.77

It has been suggested that the differences in Avpr1a distribution between species 
are due to changes in the regulatory region upstream of the Avpr1a promoter.78-80 
This idea is based on work demonstrating that changes in Avpr1a density within and 
between species can alter social behavior.77,81,82 Hammock and colleagues83,84 suggest 
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that the presence or absence of a microsatellite sequence (i.e., simple sequence repeats 
with nonrepetitive elements) in the 5� cis-regulatory region of the Avpr1a gene could 
be responsible for differences in Avpr1a density. To test this, two breeding lines of 
prairie voles were generated that had differing lengths of microsatellite sequence 
in the 5� cis-regulatory region of the Avpr1a gene. The two breeding lines showed 
regional differences in the density of the Avpr1a and the breeding line with the longer 
microsatellite sequence tending to show more partner preference than the breeding line 
with the shorter microsatellite sequence.83 However, in a study that examined individual 
differences in Avpr1a expression in prairie voles housed in a semi-natural setting, Avpr1a 
	�
�	�����������	�������$��������������������	�
�	������	��������������	������	���"�
Rather, differences in Avpr1a expression in brain areas associated with spatial memory 
�	�	�����	��	������������������	������	���"85 Further, differences in microsatellite 
	���������	���	�������
�����	���	������	���������	���������
�~���	�����������������	���
important for pair bond formation, are not associated with differences in measures of 

Figure 1. In female prairie voles, oxytocin receptors (Oxtr) in the nucleus acumbens (NAcc) are thought 
be important for the formation of partner preference. Autoradiograms illustrating Oxtr distribution between 
monogamous female prairie voles (A) and nonmonogamous female meadow voles (B) demonstrate that 
female prairie voles have increased Oxtr binding in the prefrontal cortex (PFC), the caudate putamen 
(CP) and the NAcc compared to female meadow voles. Further, female prairie voles given a selective 
Oxtr antagonist into the NAcc prior to and 12 hours into a 24 hour cohabitation period do not form 
�� 
����	�� 
�	�	�	��	� ���
��	�� ��� �	��	�� ����� �	�	��	�� �	�	���� �
���� <���� #���'� ����� ��	� ����� ���
and NAcc at the same time points (i.e., combined). (C). (A) and (B) were adapted from Hammock and 
Young. J Phil Trans R Soc B 2006; 361:2187-2198,3 ©2006 with permission from The Royal Society. (C) 
was adapted from Young et al. Horm Behav 2001; 40:133-138,72 ©2001 with permission from Elsevier.
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monogamous behavior and reproductive success.86 Taken together, these data suggest 
that there are a variety of social and neurobiological factors that likely contribute to the 
���������������	�
����	��
�	�	�	��	���������������	���������	��	�	���	�����������	������
determine whether an animal is monogamous or polygamous.

Aggressive Behavior

Aggression is used by a variety of animals to develop and maintain social 
hierarchies, gain access to mates, protect young and defend territories. The ability 
to display aggression in the correct social context is critical for the survival and 
reproductive success of many species. Males are typically more aggressive than 
females, however, during pregnancy and in the postpartum period, there is often a 
rise in female aggression.87,88 Our understanding of the neural regulation of aggressive 
behavior is fairly limited in primates, but in rodents, pharmacological tools coupled 
with transgenic mouse models have substantially contributed to our understanding of 
the neural regulation of aggression.

��� ���	����� ��	� ����� ������� ���	���	��� ��� ����	������� �
	������� ���	����	�
aggression, uses the resident-intruder test. Subject “resident” animals are singly housed 
for several weeks prior to testing; in mice this results in an increase in baseline aggression 
due to isolation-induced aggression. An “intruder” animal, often smaller and group 
housed, is then placed into the cage of the resident animal. The latency to the onset of 
aggression as well as the frequency and duration of aggression are common behavioral 
measures. To test maternal aggression a similar test is employed, only the “resident” 
is a postpartum female with her pups in or removed from the cage.

The role of Oxt in the neural regulation of aggression has not been examined 
in much depth. Though, it does appear that in females Oxt reduces nonmaternal 
aggression in some species and facilitates maternal aggression in others. In female 
Syrian hamsters (Mesocricetus auratus), for instance, which are more aggressive than 
males of the species, there is evidence that a microinjection of Oxt into the medial 
preoptic area-anterior hypothalamus (MPOA-AH) reduces aggression directed toward 
a female intruder,89 but microinjections of Oxt, as well as Oxt antagonists, into the 
amygdala facilitate maternal aggression.90,91 Female prairie voles that receive Oxt icv 
have decreases in male-directed aggression92 and in rats, displays of maternal aggression 
can be facilitated by infusing Oxt into the amygdala91 and reduced by lesioning or 
infusing Oxt antisense oligonucleotides into the PVN.93,94 While there are mice in which 
Oxt and the Oxtr have been genetically disrupted, Oxt��� and Oxtr��� mice, respectively 
there are no reports of altered maternal aggression in these animals.95,96 Overall, the 
�����������^��������	��	���������������	����������	��	���

	��������	�����	����
	�����
����
��������
	��	���
	����"

There have been very few reports supporting a role for Oxt in the regulation of 
aggression in males. Studies in Oxt�������	���	����<���������������	�����
��	
�������
increases in aggressive behavior97 and another group reporting decreases in aggressive 
behavior.98,99 It should be noted, though, that the Oxt��� mice tested were generated by 
two different groups and that the increases in aggressive behavior were only found 
in mice that were the offspring of null mutant parents; suggesting that Oxt exposure 
in the prenatal environment may be important to normal displays of aggression. This 
possibility is supported by a report of heightened aggression in Oxtr��� male mice 
compared to controls when tested in a resident-intruder behavioral test.96



194 SENSING IN NATURE

Much of the work implicating Avp in the neural regulation of aggression has been 
completed in Syrian hamsters. As Syrian hamsters are a solitary species, they readily 
���
�������	������������������
	�����"������	�����	��	����	��������	�	���
�����
	����
��	������`�����	���������	�	��	��������<��`����`�������������	�
�	��	���������	��	�	��
in socially dominant animals.100 Ferris and colleagues made the serendipitous discovery 
�������
����	��	�� ����� ��	���^�=����	����� ��������	=�	
	��	��� ����	��	� ���<��`�
marking behavior.101�&�����������������	������	����������	��������	��������������	������
���������	��	���
	
���	���������
	������������	���������������	������
	���	������"�
Avp injected into the anterior hypothalamus (AH) or ventral lateral hypothalamus 
(VLH) of Syrian hamsters has been found to facilitate aggressive behavior.7,102,103 
����	��	�����
��������������������	��
	���������
�~������������������	��	�������
the AH inhibit aggression.102 The Avpr1b may also be important to the modulation of 
aggressive behavior in hamsters, as treatment with an oral Avpr1b antagonist results 
in decreases in aggressive behavior compared to controls.104 It has been suggested that 
the neural circuit that regulates aggression in Syrian hamsters includes the AH, which 
has reciprocal connections with the VLH, the MeA and the BNST.105,106

Syrian hamsters exposed to anabolic-androgenic steroids during adolescence for 
at least 14 days display increased aggression in adulthood. They also have increases 
in Avpr-ir within the AH and injections of an Avpr1a antagonist in the AH reduces 
the intensity but not the onset of aggression.107-110 There are also reports of changes in 
social status affecting the Avp system in hamsters. Injections of an Avp antagonist into 
the MPOA-AH of a dominant hamster can transiently reverse dominant/subordinate 
�	��������
��� ��� �	����	�� ��� <��`� ���`���"111 Subordinate hamsters have fewer 
Avp-ir cell bodies in the nucleus circularis, a structure that is found within the AH, 
compared to dominant hamsters.112 In hamsters that are repeatedly defeated, there are 
coincident decreases in Avpr1a receptor binding within lateral portions of the VMH.113 
Similarly, in hamsters that are singly housed for several weeks and not allowed to 
interact with other animals, there are increases in Avpr1a binding in the AH, PVN and 
lateral hypothalamus, whereas socially experienced hamsters have increased Avpr1a 
binding within the CeA.114 Even when Avp is used to facilitate aggression, social 
isolation for some period of time seems to be required.7,106 These data suggest that, 
at least in hamsters, the role of Avp in the regulation of aggression can be altered by 
social experience.

The modulation of aggression in rats and mice is due in part to gonadal 
steroid-dependent Avp projections from the BNST and the MeA to the LS.115-117 With 
the LS likely regulating the emotional aspects of aggression.118,119 Injections of Avp into 
the LS of rats and prairie voles can facilitate agonistic behavior.76,120,121 In sexually naïve 
males, Avp injected into the AH, or overexpression of the prairie vole Avpr1a within 
the AH, results in increases in selective aggression (i.e., aggression directed towards 
novel male or female animals).122 In mice selectively bred for either a long attack latency 
(LAL) or short attack latency (SAL), there is evidence of changes in Avp neurochemistry. 
��$����	����	��	�	����
=����	�����������	����&������	�	����
=�����	��������	�$��
compared to LAL mice suggesting that, within a species, less Avp within the LS may 
be associated with increased aggression.123 However, monogamous California mice 
(Peromyscus californicus) have shorter attack latencies and increased Avp-ir in the 
BNST and LS compared the polygamous, white-footed mice (Peromyscus leuopus).124 
Interestingly, when California mice are cross-fostered to white-footed mice dams, they 
are less aggressive in adulthood than those reared by the same species and they have 
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less Avp-ir in the BNST and SON compared to controls.125 The data in Peromyscus mice 
suggest that, similar to what has been found in hamsters, changes in the environment, 
in this case changes in the early postnatal period, are able to alter the Avp neurocircuity 
and subsequent behavior.

When mice with a genetic disruption of their Avpr1a were engineered, it was 
thought that they would provide some valuable insight into the role of the Avpr1a in 
the regulation of aggression. Surprisingly, Avpr1a knockout mice do not differ from 
wildtype controls in measures of aggression.126 It may be that the lack of aggressive 
phenotype in these mice is due to developmental compensation. Mice with a disruption 
of the Avpr1b (Avpr1b��� mice), on the other hand, have implicated the Avpr1b in 
the regulation of aggressive behavior. Avpr1b��� mice have marked reductions of 
forms of “social” aggression (i.e., those forms of aggression that require the animal 
��� ���	����������������
	����'�� �������� ����	��	����	�� ��� �	���	��=������	����	�����
arena and maternal aggression tests and no change in predatory aggression.127-129 When 
attacked, Avpr1b����mice will defend themselves but will initiate fewer “retaliatory” 
attacks compared to wildtype controls.128 Even Avpr1b����mice that are crossed with a 
more outbred substrain of mice, Mus musculus castaneous, continue to have reduced 
aggression (Fig. 2).130 Since the distribution of the  Avpr1b in the mouse brain is fairly 
�	������	��������
�����	��	������	������	�������	���
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that it may be important to the formation or recall of memories that have an accessory 
olfactory-based component.52,127

Figure 2. Even when crossed with Mus musculus cantaneus, male Avpr1b knockout mice (Avpr1b���) 
have reduced aggression compared to wildtype (Avpr1b���) controls; as measured by fewer attacks in a 
resident-intruder behavioral test. Adapted from Caldwell and Young. Physiol Behav 2009; 97:131-134,130 
©2009 with permission from Elsevier.)
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SOCIABILITY IN HUMANS

In humans there is evidence that Oxt promotes prosocial behavior. The study of 
prosocial behavior in humans includes testing procedures designed to measure trust, the 
ability to read facial expressions and the memory for socially salient information, such 
as faces. In most of the studies in humans, Oxt has been administered intranasally, as 
Oxt is thought to be able to cross the blood brain barrier using this route of delivery.131 
Intranasal administration of Oxt results in an increase in trust in humans, as measured 
by an individual’s willingness to accept social risk during a social interaction.132 Further, 
when intranasal Oxt treatment is coupled with functional magnetic resonance imaging, 
there is a reduction in activity in areas of the brain associated with processing fearful 
stimuli, such as the amygdala and some areas of the midbrain and reward feedback, such 
as the striatum. In individuals administered Oxt intranasally, betrayal of trust results in 
no change in trust behavior, whereas placebo controls decrease their trust in response 
to betrayal.133 These data suggest that Oxt acting as an anxiolytic and stress-reducer 
is allowing for higher levels of sociability. There is also evidence that intranasal Oxt 
improves the ability to infer another individual’s mental state, improves facial recognition 
memory and alters the processing of faces.134-138

The role of vasopressin in the regulation of social behavior in humans has not 
been studied as extensively as Oxt, though it is often associated with antisocial rather 
than prosocial behavior. In males, Avp administered intranasally results in increases in 
electromyogram (EMG) activity to socially neutral facial expressions. This suggests 
that Avp acts to bias an individual to perceive a neutral stimulus as an aggressive or 
threatening stimulus.139 When administered to females, Avp decreases EMG responses 
to happy and angry faces, suggesting that in females, Avp acts to increase the perception 
of friendliness.140 The researchers that conducted the aforementioned work suggest that 
��	�����	�	������������������
��	��		���	���������	���	<	�������	�	��	�� ���������
strategies during socially stressful interactions.

Neuropsychiatric Disorders

Oxt and Avp have also been implicated in a variety of neuropsychiatric disorders, 
particularly those that are characterized by alterations in social interactions or heightened 
aggression, such as: Autism spectrum disorders (ASD), personality disorder and 
schizophrenia. In this section the contributions of Oxt and Avp to neuropsychiatric 
������	�������	����	<���	��	�	�"

Autism Spectrum Disorders

������	��������	��*	����� �	
	�����	��	��������� ����������������������	�� ����
abnormal sociability.141,142 One of the reasons Oxt has been suggested to contribute 
���������� ����� ������	� ����� ��`�^�������^����� ��	�	���	��	���������	������ �������	�
consistent with some of the symptoms of ASD.95,143-149 Evidence that Oxt may have 
a role in ASD comes from several sources. There are reports of lower Oxt in the 
CSF of autistic children and reduced Oxt is correlated with impairments in social 
functioning.150 There are also increases in the amount of an Oxt prohormone in the 
blood of autistic children, which is indicative of incomplete processing of Oxt into its 
biologically active form.151 Oxt treatment in adults with ASD results in the reduction 
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of repetitive behaviors and improvements in emotional recognition.152,153 Some genetic 
and epigenetic links between the Oxt system and ASD have also started to emerge. 
There are data in the Chinese Han population, Finnish families, Caucasian children 
and in individuals with “high-functioning” ASD suggesting that portions of the Oxtr 
gene may contain susceptibility loci for ASD.154-157�_
��	�	����������������������	�̂ ����
gene have also been reported, with hypermethylation of the Oxtr promoter found in 
autistic subjects and subsequent reductions in Oxtr mRNA.158 Though the sample size 
in the aforementioned study is small, the data are provocative and will likely facilitate 
more research in this area.

Data implicating Avp in the etiology of ASD are sparse, but there have been studies 
suggesting that polymorphisms of the Avpr1a may contribute to ASD.159-161 Further, 
two of the polymorphisms, RS3 and RS1, have been linked to differential activation in 
the amygdala,162 providing a possible neural substrate with which the Avp system may 
interact to mediate a genetic risk for ASD.

Personality Disorder

Personality disorder is characterized by a disconnect between an individual’s behavior 
and cultural norms. Those diagnosed with personality disorder have impairments in at 
least two of the following areas: (1) cognition, (2) affectivity, (3) interpersonal functioning 
and (4) impulse control.163 To date, only one study has examined changes in Oxt between 
individuals diagnosed with a personality disorder and healthy controls. This study found 
��������	����������
	���������������	��������������	��	��������	�	�����
����<����
Oxt, a life history of suicidal behavior was inversely correlated with Oxt.164 The authors 
suggest that these data are consistent with the previous work in animal models which 
suggest that Oxt reduces aggression.89,92-94

Since individuals with a personality disorder are often more impulsive, which can 
result in increased aggression, it is not surprising that Avp has been examined in these 
individuals. Unfortunately, the data appear to be contradictory. A study by Coccaro and 
colleagues165 found a positive correlation between Avp in the CSF of personality-disordered 
individuals that have a life history of aggressive behavior. Whereas another study found 
no differences in CSF Avp between violent offenders and controls.166 It may be that 
����	�	��	�������	�
�
�������������	����������������	����������	���������	��������������
it seems that more work in this area is warranted.

Schizophrenia

There are three broad categories of symptoms that characterize schizophrenia: 
(1) positive (e.g., hallucinations and delusion), (2) negative (e.g., anhedonia, impaired social 
behavior), (3) cognitive/attentional (e.g., impaired memory and executive function). Thus 
far, most of the work implicating a role for Oxt in aspects of schizophrenia comes from 
animal models.167-169 However, in humans, while its role has remained controversial, Oxt 
has been linked to schizophrenia since the 1970’s when it was used as an antipsychotic.170,171 
The data are mixed with regards to Oxt and schizophrenic populations, with one study 
reporting increases in plasma Oxt concentrations,172 another study reporting no change,173 
and a third reporting decreases.174 Though, similar to measures of Avp in individuals 
�����
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of those that were studied.
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Support for a potential role for Avp comes from studies indicating that treatment 
with neuroleptics improves psychiatric symptoms and reduces (or normalizes) Avp in 
blood plasma.175,176 In studies using an animal model that lacks Avp, the Brattleboro 
�������	�	���	��	
���������	����������	����������������	�����������*�
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rescued following treatment with antipsychotics.177-181 It may be that Oxt and Avp only 
contribute to certain aspects of schizophrenia, such as the cognitive and social behavior 
�	���������������
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it is important continue to investigate the neurobiology that underlies these behaviors.

CONCLUSION AND FUTURE DIRECTIONS

This is an exciting time for the neurobiology of sociability. The roles of Oxt and 
Avp are being explored and a more complete understanding of how these neurohormones 
interact with other neurotransmitter and neurohormone systems, such as dopamine and 
corticotropin releasing factor, are beginning to emerge.71,182-188 There is diversity in the 
animal models being used, ranging from comparative studies to transgenic studies, that 
have revealed remarkable conservation in the roles of Oxt and Avp across species. Research 
examining sociability in humans is on the rise and with the use of pharmacological, 
genetic and imaging tools the link between the animal models of sociability and human 
behavior is becoming less tenuous. Further, in human neuropsychiatric disorders 
characterized by impaired sociability, the roles of Oxt and Avp are being elucidated and 
better pharmacological agents are being developed.189-192
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