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           1   Introduction 

 Non-indigenous organisms can get introduced to new areas by human activities, 
lifting the barriers for dispersal from other biogeographic areas. When these species 
arrive, they may die if the conditions are not good for survival. However, if the con-
ditions match with their requirements, for example, with respect to habitat and 
climate, they can survive, establish, and reproduce. Subsequently, when their popu-
lations fl ourish and disperse fast, we speak of species invasion. Such species interact 
with native species and fl ourish at the expense of the local native populations. They 
can affect the new habitat environmentally, ecologically, and economically (Van der 
Velde et al.  2006  ) . 

 Invasive species are often characterized by features such as rapid reproduction, 
fast growth rate, and tolerance to wide range of environmental conditions, reaching 
high population densities. Invasive species are not a random selection of species 
(Karatayev et al.  2009  ) . Many invasive species are sessile and have planktonic 
propagules (larvae, spores, etc.), which enhance their chance to travel long dis-
tances, attached to substrata or suspended in water, carried over the ocean or from 
lake to lake by shipping, fi shing, angling, and other human activities. These species 
are profi ting from anthropogenic eutrophication. For example, plants take up the 
nutrients directly when there is light, while fi lter-feeding animals take up detritus 
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and plankton even in the dark. Furthermore, hard substrata are provided by water 
works, dam construction, riparian protection, etc. so that these species can build up 
high density populations in human-infl uenced areas. In industrialized areas also, 
cooling water is discharged, which makes the survival of subtropical exotic species 
in temperate areas possible. The consequence of all these developments is that the 
global biofouling scenario has become more complex with the introduction and 
establishment of new species (Fig.  7.1 ), resulting in higher costs for control than 
before. In this chapter, we shall discuss the key features of some of those prominent 
non-indigenous species, whose success as invasive species merits close examina-
tion. Many of these species are transported by ships, either via ballast water or via 
ship hulls, as part of the fouling assemblage. Another main cause of their introduc-
tion is the shellfi sh culture industry. Also, canals connecting seas or rivers for ship-
ping purposes contribute to the wide dissemination of these species. In addition to 
threatening the biodiversity of the locality, some of the introduced species continue 
to place enormous burden on the economy of the countries affected (Van der Velde 
et al.  2006,   2010  ) . Biofouling of industrial cooling water systems is but one aspect 
of their wide-ranging economic impact (Rajagopal et al.  2010a  ) . Many of the recent 
invasive species are sessile benthic in their habitat and hence are potential biofoul-
ing organisms (Fig.  7.2 ).   

 Of all biofouling organisms, bivalves (mussels, oysters, and clams) and barnacles 
in particular are known to have successfully invaded new geographical locations 
and caused serious fouling problems to industrial cooling water systems. However, 
there is a wide range of other sessile species which can potentially cause macrofouling 
problems such as hydroids, tube worms, tube-building amphipods, bryozoans, and 
ascidians. We treat some important marine, brackish water, and freshwater-invasive 
sessile bivalves and some other important invasive fouling species, giving emphasis 
to control aspects. Measures to control the invasive bivalve species will also control 
the other indigenous biofouling species, depending on their tolerance.  
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  Fig. 7.1    Annual average number of non-indigenous species colonizing the freshwater sections of 
the river Rhine (modifi ed after Leuven et al.  2009  )        
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    2   Bivalvia 

 Bivalves are molluscs possessing two calcareous valves which protect the soft living 
body. The two valves can be opened to allow the siphons to pump water in and out, 
in order to obtain oxygen and food. Food consists of organic suspended matter 
(detritus, phyto-, and zooplankton) that is sorted into an edible fraction which is 
transported to the mouth and digested and an inedible fraction which is ejected as 
pseudofaeces (particles stuck together by mucus) by valve movements. Undigested 
food (faeces) and pseudofaeces sink to the bottom and contribute to sedimentation 
and form food for other macroinvertebrates. All bivalves are fi lter feeders. They 
have also a foot which can extend out of the valves and by which they can move as 
long as they are not totally fi xed to one place. The byssus gland in the foot produces 
byssus threads, by which the animals can fi x themselves to hard substrata. All foul-
ing bivalve species produce, as juvenile and adult, many byssus threads (e.g. mus-
sels, dreissenids) or only one as juvenile (e.g. Asian clams). The life cycle of 
bivalves is, in general, with a planktonic phase (fertilized eggs, larvae, trochophora, 
veliger, pediveliger), a settlement phase (settling pediveliger, plantigrade, spat), a 
juvenile and an adult phase. In the adult phase the gonads are developed. The 
bivalves are usually dioecious; there are males and females which spawn by releas-
ing eggs and sperm into the water. But hermaphroditism, self-fertilization, brood 
care, and protandry can also occur. Larvae can settle in the cooling water circuits 
and grow fast, as there are hardly any predators, and there is plenty of oxygen and 
food coming along. During settlement, they show gregarious behaviour, resulting in 
carpets of bivalves covering the entire available surfaces.  

1800 1850 1900 1950 2000

Years

60

40

20

0

N
um

be
r 

of
 s

pe
ci

es
Total number of invasive species
Species possibly invaded by ship hulls

  Fig. 7.2    Total number of invasive species and species possibly invaded by ship hulls in river Rhine 
from 1800 to 2007       
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    3   Oysters: Ostreidae 

 Oysters generally constitute a serious biofouling pest in coastal power stations using 
seawater for condenser cooling purposes. They attach to surfaces by cementing one 
of the two calcareous valves to the substratum. Therefore, oyster fouling creates 
more problems than mussel fouling, because unlike in the latter, the shell remains 
attached to the substratum even after the death of the animal. Moreover, because of 
their normal distribution in the supra and midlittoral zones, oysters possess a great 
capacity to tolerate variations in temperature, salinity, and desiccation. 

    3.1   Pacifi c Oyster  Crassostrea gigas  (Thunberg 1793)    

  Crassostrea gigas  is a common Pacifi c marine oyster enjoying wide distribution in 
the coastal and estuarine environments. It has a rough shell that is highly fl uted and 
laminated. Shells are usually whitish with purple streaks and spots. It is a commer-
cially important species with appreciable quantities being fi shed and cultured. Since 
 C. gigas  was introduced for shellfi sh culture from Japan, it is also known as the 
Japanese oyster. The Pacifi c Oyster was introduced from Asia across the globe. It is 
nowadays distributed throughout Great Britain and Ireland, and widely along the 
Atlantic coast of continental Europe (Spain, Portugal, France, Belgium, The 
Netherlands, Germany, Denmark, Sweden, and Norway) (Wrange et al.  2010  ) . In 
North America, the Pacifi c oyster is found from Southeast Alaska to Baja California. 
It is cultivated primarily on oyster farms in protected coastal estuaries; however, wild 
beds exist in Washington and British Columbia. The oyster prefers fi rm surfaces and 
usually attaches to rocks, debris, or other oyster shells. However, they can also be 
found on mud or mud-sand bottoms. The shell can reach 23 cm in length in ideal 
conditions.  C. gigas  is a valuable shellfi sh resource and is the most widely cultured 
oyster in the world, having been introduced in countries like United States, France, 
England, New Zealand, and Australia. It is known to settle into dense aggregations 
and imperil native intertidal species.  C. gigas  feeds primarily on phytoplankton and 
protists (CIESM  2000 ; NIMPIS  2002  ) . It is known to spread through placement of 
hatchery-produced seed. Its introduction from France to Britain is thought to have 
been through ships’ hulls (Fletcher and Manfredi  1995 ; Eno et al.  1997  ) . 

  C. gigas  is known for its tendency to colonize areas of coastline many kilometres 
away from its parent organisms. Spat have been documented spreading up to 1,300 km 
on ocean currents. Once established, they have the potential to smother other marine 
life, such as scallops, destroying habitat, and causing eutrophication that affects water 
quality. This could result in limitations of food and space availability for other inter-
tidal species (NIMPIS  2002  ) .  C. gigas  ingests bacteria, protozoa, a wide variety of 
diatoms, larval forms of other invertebrate animals, and detritus (PWSRCAC  2004  ) . 

 They develop fi rst as males, and after a year, start to function as females. 
Spawning is temperature-dependent and occurs in the summer months. Temperature 
plays a role in the maturation of the gonads, which sustain during the winter months 
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at temperatures of 8–11°C (Fabioux et al.  2005  ) .  C. gigas  females can produce 
between 30 and 40 million eggs per spawning. Fertilization takes place externally. 
The planktonic larvae develop for 3–4 weeks before attachment. Pacifi c oysters 
have high growth rates (75 mm in the fi rst 18 months) and high rates of reproduc-
tion.  C. gigas  can live for up to 10 years and reach an average size of 150–200 mm 
(CIESM  2000  ) . High temperatures combined with a poor food quality during low 
tide as those reached on clear summer days are an important stressor for oyster spat 
and it was found that, at a temperature of 32°C, spat of  C. gigas  showed poor growth 
(Flores-Vergara et al.  2004  ) . Bourles et al.  (  2009  )  reported  C. gigas  living in an 
Atlantic pond at water temperatures ranging from 3 to 30°C. 

 Carrasco and Barón  (  2010  )  analyzed the potential geographic range of  C. gigas  
based on surface sea water temperature satellite data (SST) and atmospheric (AT) 
temperature climate charts with the coast of South America as a study case. They 
found that in its native range, self-sustaining populations maintain in thermal SST 
regimes ranging from 14.0 to 28.9°C for the warmest month and −1.9°C for the 
coldest month of the year. For settlement, these fi gures are for AT 15–31°C (warm-
est month) and −23 to 14°C (coldest month).  

    3.2   European Flat Oyster  Ostrea edulis  (Linnaeus 1758) 

  Ostrea edulis  is native to Europe and the Mediterranean and is usually found in 
coastland, estuarine habitats, marine habitats, and riparian zones. It is found at the 
Atlantic coast of Norway, Sweden, Ireland, the U.K., Denmark, the Netherlands, 
Germany, France, Morocco, the Mediterranean Sea, the Black Sea, France, Italy, 
Greece, Croatia, Ukraine, Portugal, and Spain (Diaz-Almela et al.  2004 ; Ruesink 
et al.  2005 ; Jonsson et al.  1999 ; Kennedy and Roberts  1999 ; Jackson  2003  ) . 

 The oyster prefers the fi rm bottoms of mud, rocks, muddy sand, muddy gravel 
with shells, and hard silt (Jackson  2003  ) .  O. edulis  can be found in muddy areas 
attached to hard surfaces at depths of 9 m. It has been introduced to the northwest-
ern Atlantic Ocean for aquaculture, before which it had long (for 6,000 years) been 
harvested for food (Diaz-Almela et al.  2004  ) . As an introduced species, its geo-
graphic range includes Japan, Tonga, Fiji, US, Canada, Namibia, Israel, Mauritius, 
New Zealand, and South Africa (Carlton  1992 ; Ruesink et al.  2005 ; Ray  2005  ) . 
 O. edulis  can grow up to 20 cm or more and live up to 20 years. It has a rough scaly 
shell, the two halves of which are different in shape; the left shell is concave and 
attached to the substratum and the right is fl at and acts as a lid. The inner surface of 
 O. edulis  is smooth and white or bluish-grey and shiny with some dark blue spots. 
The narrow ends of the shell have stretch ligaments which hold the shells together. 

 As in the case of other oysters,  O. edulis  feeds mostly on phytoplankton. 
Autotrophic fl agellates and diatoms are also important food for  O. edulis  (Jonsson 
et al.  1999  ) . It is a protandric hermaphrodite that changes sexes twice during one 
season. They are males early in the spawning season and become females later 
and vice versa. Jonsson et al.  (  1999  )  have reported that completion of larval 
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development depends upon the proper intake of omega-3 polyunsaturated fatty 
acids.  O. edulis  start their lives as males and mature sexually as males between 8 
and 10 months. After this period, they change sex regularly. Temperature can 
affect the sex of  O. edulis ; if the temperature reaches 16°C,  O. edulis  becomes a 
female every 3–4 years. Cooler water temperatures force the oysters to revert 
back to males. During reproduction, female gametes are released into the pallial 
cavity where they are fertilized by externally released sperm. Females produce 
between 500,000 and 1,000,000 fertilized eggs per spawning period. The eggs are 
incubated for about 8–10 days (depending on temperature) and released into the 
water. In their native range,  O. edulis  spawns between late June and mid-Septem-
ber.    Young oyster spat can be seen from late summer in Strangford Lough, 
Northern Ireland (Kennedy and Roberts  1999  ) . In the Adriatic Sea, the larvae are 
present from May till September, with a peak in July (Bratos et al.  2002  ) . Gonadal 
maturation occurs during season of high suspended matter, followed by single 
spawning period (Ruiz et al.  1992  ) . 

 Depending on temperature tolerance,  O. edulis  exists as a number of physiologi-
cal races. In Spain, one low temperature race occurs which requires 12–13°C for 
spawning. A temperature of 25°C is required in the Norwegian fjords for spawning, 
and in France,  O. edulis  spawns between 14 and 16°C. In Canada, spawning was 
recorded at 18°C (Burke et al.  2008  ) . After hatching, the larvae spend 8–10 days in 
a pelagic state before settlement. In this pelagic state,  O. edulis  goes through two 
metamorphoses. After the fi rst metamorphosis, the trochophore transforms into a 
veliger with two ciliated wing-like protrusions. A second metamorphosis changes 
the veliger into a bivalve small oyster that uses its byssus threads to cling to suitable 
substrata. Prior to attachment,  O. edulis  explores the substrate with its foot pro-
truded in the front, which functions as a tactile sense organ. Metamorphosis can be 
delayed if a suitable attachment site is not available (Cole  1938  ) . 

 Healthy larval growth and survival rates occur at salinities as low as 20% and 
some can even survive at 15% salinity. Burke et al.  (  2008  )  recorded salinities 
between 18 and 30% for spat and recorded more than 225,000 larvae per m 3  
water and 22,000 individuals per spat collector. Feeding rate (measured as fae-
cal matter production) decreased at 18% and ceased at 16%. Spat exposed to 
such a low salinity did not regain their vitality again (Rodstrom and Jonsson 
 2000  ) . Very low salinities combined with high temperatures caused the highest 
mortality (Rodstrom and Jonsson  2000  )  as also was demonstrated by Hutchinson 
and Hawkins  (  1992  )  at the combination 19% and 25°C. Further information 
about salinity–temperature responses can be found in Fisher et al.  (  1987  )  and 
Robert et al.  (  1988  ) .  

    3.3   Pearl Oysters-Pteriidae 

 These oysters are known for their ability to produce pearls. This family consists 
of the genera  Pteria  and  Pinctada . In these species, both the valves are similar 
and winged. 
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    3.3.1   Pearl Oyster  Pinctada radiata  (Leach 1814) 

  Pinctada radiata , originating from the Indo-Pacifi c, is one of the important invasive 
marine bivalve species, successfully adapted to subtropical environment. The inva-
sion of  P. radiata  has been reported from different areas of the Mediterranean and 
other subtropical and tropical parts of the world. The invasion of  P. radiata  has 
probably occurred both via the Suez Canal and intentional introduction for pearl 
oyster fi shery. As a fouling species, it attaches by byssus to hard substrata and is 
found from very shallow to the mid-water depths. It can reach a shell length of 
100 mm (Tlig-Zouari et al.  2009  ) . 

 It occurs in a wide temperature range of 13–30°C, from the littoral zone on hard 
bottoms down till a depth of 150 m. It is a protandric hermaphrodite species with a 
sex inversion at a shell size of 32–57 cm. Males can be found as small as 23-mm 
shell length (Derbali et al.  2009  ) . 

 Gonad maturity is controlled by water temperature and is nearly year-round in 
the Mediterranean with spawning mainly in summer and early autumn. Pelagic lar-
vae are dispersed by water currents (Galil  2006  ) . In Bahrain waters, spat settlement 
took over a long period (July to November). The most intense spat settlement was 
recorded throughout August, indicating that spawning started at the end of July. 
Most settlement can be found on dead oyster shells, at a depth of 0.5–1.5 m. Growth 
after settlement (July–August) was 0.204–0.248 mm day −1  till December-January, 
in which period growth was slowed down by a drop in water temperature from 
27–33 to 17–18°C (Al-Sayed et al.  1997a  ) . In Bahrain, the shells can grow to 80 mm 
and they become especially large at salinities of 40–42%. They become smaller at 
higher salinities of 50–60% (Al-Sayed et al.  1997b  ) . 

 Qatari waters are rich in pearl oyster beds. Three pearl oyster species, viz. 
 P. radiata ,  Pinctada margaritifera , and  Pteria marmorata , were reported from 
Qatari waters. However,  P. radiata  is the most dominant species, representing about 
95% of the total oyster catch (Mohammed and Yassien  2003  ) . Though the biology 
and physiology of the pearl oyster  P. margaritifera  are well documented in the litera-
ture, there is lack of information on  P. radiata  (Mohammed and Yassien  2003  ) . 

 Based on their recruitment pattern, Mohammed and Yassien  (  2003  )  suggested 
that  P. radiata  was a semi-continuous breeder in Qatari waters. However, different 
breeding seasons of this species are reported from nearby areas. Al-Sayed et al. 
 (  1993  )  have recorded continuous spawning from Bahrain waters, with peaks in hot 
summer. The spawning season of  P. radiata  in Kuwait was restricted between May 
and September (Al-Matar et al.  1993  ) .    

    4   Mussels: Mytilidae 

 Mussels are mostly marine bivalves with valves equal in size and shaped in an elongated 
oval-triangular form. The shell is not thick, but has a thick periostracum. The shell lacks 
a prism layer. The anterior muscle is small. All mussels are biofoulers and important 
fouling genera are  Mytilus ,  Modiolus ,  Brachidontes ,  Septifer ,  Perna , and  Limnoperna . 
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    4.1   Mediterranean Mussel  Mytilus galloprovincialis  
(Lamarck 1819) 

  Mytilus galloprovincialis  is a marine species which has succeeded in establishing 
itself at widely distributed locations around the globe, with nearly all introductions 
occurring in temperate regions and at localities where there are large shipping ports 
(Branch and Steffani  2004  ) . Ship hull fouling and transport via ballast water have 
been implicated in its spread and its impact on native communities and native mus-
sels has been highlighted in a number of studies (Carlton  1992 ; Robinson and 
Griffi ths  2002 ; Geller  1999  ) . 

 The mussel is dark blue or brown to almost black. The two shells are equal and 
nearly quadrangular. The outside is black-violet coloured; on one side the rim of the 
shell ends with a pointed and slightly bent umbo, while the other side is rounded, 
although shell shape varies by region. It also tends to grow larger than its relatives, 
up to 15 cm, although typically only 5–8 cm. In its native range,  M. galloprovincia-
lis  can be found on exposed rocky outer coasts and sandy bottoms (Ceccherelli and 
Rossi  1984  ) . As an invader, it typically requires rocky coastlines with a high rate of 
water fl ow. In fact, unlike the other 26 Asian and Atlantic molluscs introduced into 
Pacifi c regions, only  M. galloprovincialis  occurs in open coast such as high energy 
environments of the Pacifi c coast; all remaining species are restricted to bays and 
estuaries (Carlton  1992  ) . It is known that  M. galloprovincialis  is capable of out-
competing and displacing native mussels to become the dominant mussel species in 
many localities. 

 The native range of this mussel includes Mediterranean Sea, Black Sea, and adja-
cent part of the European Atlantic coast. Due to taxonomical problems, it is unclear 
whether it is occurring in the outer coasts of France, Britain, and Ireland as  Mytilus 
edulis  can have broad-shelled individuals too which means that identifi cation is 
only possible based on a combination of characters and molecular data (Groenenberg 
et al.  2011  ) . The introduced range includes Southern Africa, east and west North 
America, Hawaii, and north-eastern Asia (Branch and Steffani  2004  ) . Shipping is 
believed to be the most probable original mode of introduction of  M. galloprovin-
cialis  to South Africa (Grant et al.  1984 , in Branch and Steffani  2004  )  and to Mexico 
(Carlton  1992  ) . Late twentieth century distribution of  M. galloprovincialis  was 
probably enhanced by ballast water transport as well as ship fouling (Carlton  1992  ) . 
Schneider  (  2007,   2008  )  demonstrated that  M. galloprovincialis  was more warmw ater-
adapted than its relative  Mytilus trossulus  and suggested that  M. galloprovincialis  
would be more common due to global warming. Mussels at air exposure kept at 20°C 
lost their intra-valve water within approximately 60 h and became dead within 4 
days, while mussels kept at 5°C survived (Angelidis  2007  ) . In South Africa, where 
 M. galloprovincialis  invaded,  Perna perna  is an indigenous species. Attachment 
strength of  P. perna  is higher than that of  M. galloprovincialis .  M. galloprovincialis  
showed higher gamete production than  P. perna  and can more effectively colonize 
free space (Zardi et al.  2007  ) . 
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 As a fi lter-feeder, it feeds on a wide range of planktotrophic organisms. Filtration 
rates at 20 and 26°C are not different. Filtration at high phytoplankton concentration 
remained low for a standard individual of 1 g dry weight (0.2–0.4 L h −1 ), but with 
lower phytoplankton concentrations 0.5–2.5 L h −1  was measured (Denis et al.  1999  ) . 
This species prefers fast moving water that is free of sediment and thrives in regions 
where upwelling brings in nutrient-rich water. 

 Reproduction involves simultaneous spawning of males and females.  M. gallo-
provincialis  has high fecundity and spawns at the time of the year when the water 
temperature is the highest (Bayne  1976  ) . The larvae develop into juveniles, which 
settle and attach using byssus threads in 2–4 weeks (Matson  2000  ) . Spawning is 
temperature-related and occurs in spring and summer, leading to post-larvae in late 
summer and early autumn in the plankton of intertidal zone of exposed rocky shores 
or near mussel culture rafts. Low numbers or absence of post-larvae in plankton 
samples near the surface away from the shore indicate that planktonic dispersion at 
larger distances is considered unlikely (Caceras-Martinez and Figueras  1998a  ) . 
Gametogenesis in NW Spain takes place in spring and early winter. Several spawns 
may occur until early summer (Caceras-Martinez and Figueras  1998b  ) . Settlement 
in the Dardanelles was high at 0.5 and 4 m, and low at greater depths until 12 m. 
Pediveligers can be found in the Dardanelles throughout the year (Yildiz and Berber 
 2010  ) . Karayucel et al.  (  2002  )  found no difference in spat settlement between 3- and 
7-m depth in the Southern Black Sea.  

    4.2   Golden Mussel  Limnoperna fortunei  (Dunker 1857) 

  Limnoperna fortunei  is an epifaunal freshwater mytilid, native to Chinese and south-
eastern Asian rivers, creeks, and estuaries. It occurs in temperate and subtropical areas. 
It became established in Hong Kong in 1965, and in Korea, Japan, and Taiwan in the 
1990s. In 1991, it invaded the Plata Basin in South America, from where it invaded 
large areas over the continent. The introduction into South America was unintentional 
through the ballast water of ocean-going vessels. Attachment to vessels is the most 
important dispersion mechanism within South America (Boltovskoy et al.  2006  ) . 

  L. fortunei  is known to cause great economic damage to water intakes and cool-
ing systems of facilities. In South America, it has similar impact as the zebra mussel 
during invasions (Karatayev et al.  2007  ) . The fi ltration rate is one the highest ever 
measured for bivalves including  Dreissena polymorpha ,  Dreissena rostriformis 
bugensis , and  Corbicula fl uminea . Sylvester et al.  (  2005  )  recorded 125–
350 mL ind −1  h −1 . Pestana et al.  (  2009  )  recorded a fi ltration rate of 724 mL ind −1  h −1  
for  L. fortunei . Just as in the zebra mussel, very high densities (hundreds of thou-
sands per square metre) can be reached (Sylvester et al.  2005  ) . Portella et al.  (  2009  )  
recorded settlement up to 149,000 individuals per square metre at a Brazilian 
Power Plant reservoir at a depth of 0.5–1 m. The species was mixed up with the 
invasive hydroid  Cordylophora caspia .  L. fortunei  can reach a shell length of 
36 mm (Belz et al.  2010  ) . 
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 In South American water bodies, the reproductive output is reduced in winter time, 
while in summer a dip is found related to cyanobacterial blooms. There is a long 
period of larval occurrence, varying from 6 to 10 months per year (Boltovskoy et al. 
 2009a  ) . The fastest development of larvae occurs at a water temperature of 28°C 
(Caltaldo et al.  2005  ) . In South America, they occur mostly settled on the water hya-
cinth ( Eichhornia crassipes ). They feed selectively on phytoplankton and zooplankton, 
in particular cladocerans, rotifers, and euglenophytes (Molina et al.  2010  ) . 

  L. fortunei  can tolerate (90% survival) salinity shock up to 2% for a period of at 
least 10 days. High-salinity fl uctuations are not tolerated for very long (Angonesi 
et al.  2008  ) .  L. fortunei  has a broader environmental tolerance than  D. polymorpha  
and can occur in regions dominated by acidic, soft (low calcium), high temperature, 
and contaminated water with low oxygen (Cataldo et al.  2003 ; Boltovskoy et al. 
 2006 ; Karatayev et al.  2007  ) . Desiccation for 6 days is tolerated and cannot be a 
very effective control method (Montalto and de Drago  2003 ; Darrigran et al.  2004  ) . 
The mussel has the potential to invade continents other than South America with 
stronger impacts than the zebra mussel (Boltovskoy et al.  2009b  ) .  

    4.3   Brown Mussel  Perna perna  (Linnaeus 1758) 

  P. perna  is native to the tropics and the subtropics and is widely distributed in Africa, 
Europe, and South America (Segnini de Bravo et al.  1998 ; Rajagopal  1997  ) . It is a 
smooth-shelled, elongate low-shelled bivalve occurring in estuarine and marine 
habitats. The mussel is recognized by its brown colour (hence the name brown mus-
sel). Its best identifying characteristic is an internal divided posterior retractor mus-
sel scar. The shell of  P. perna  is thin around the edges and thickens posteriorly. The 
mussel reaches a maximum size of 90 mm in intertidal zones and a maximum size 
of 120 mm is reached in sublittoral zones. Maximum shell size is infl uenced by 
vertical distribution (Gulf States Marine Fisheries Commission  2003  ) . 

  P. perna  has invaded North America, around the Gulf of Mexico (Rajagopal et al. 
 2006a  ) . It is thought to have been introduced by ballast-water releases from ships of 
Venezuela (Hicks and Tunnell  1995  ) . In the Gulf of Mexico, the mussel was prob-
ably dispersed southward by long range and inshore currents (Gulf States Marine 
Fisheries Commission  2003  ) . It is quickly becoming a nuisance in cooling water 
systems of power stations and other industries that use seawater. In the Gulf of 
Mexico,  P. perna  has been found colonizing jetties, navigation buoys, oil platforms, 
wrecks, and other artifi cial hard substrata, as well as natural rocky shores (Hicks 
and Tunnell  1995  ) . According to Hicks and McMahon  (  2002  ) , the long-term, incip-
ient lower and upper thermal limits of this species are 7.5 and 30°C, respectively, 
similar to the seasonal ambient water temperature range of 10–30°C reported for 
other populations worldwide. Its narrow incipient thermal limits, limited capacity 
for temperature acclimation, and poor freeze resistance may account for its restric-
tion to subtidal and lower eulittoral zones of cooler subtropical rocky shores. 
Salomão et al.  (  1980  )  reported that the salinity tolerance range of adult is 19–44‰. 
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Hicks et al.  (  2000  )  recorded even a wider salinity tolerance range of 15–50%. 
 P. perna  shows physiological compensation to salinity increases but not to salinity 
decreases, in contrast to  Perna viridis , which can compensate for both changes in 
salinity (De Bravo  2003  ) . In its native range,  P. perna  is an integral component of 
rocky shore ecosystems, where dense populations provide a complex three-
dimensional matrix, which is home to a wide range of organisms such as limpets, 
polychaetes, barnacles, snails, and algae (Brereton-Stiles  2005  ) . 

 In  P. perna  the sexes are separate and can be distinguished during breeding sea-
son by the mantle colour (Lasiak  1986  ) . Gonad production in Venezuela correlated 
with chlorophyll a increase and temperature decrease. Somatic tissue increase cor-
related with increasing amounts of organic material, seston, and chlorophyll-a 
(Acosta and Prieto  2008  ) . The mussels spawn through external fertilization by 
releasing eggs and sperm into the water. Spawning is thought to be triggered by a 
3–4°C drop in temperature, brought about by coastal upwellings during the winter 
months (Carvajal  1969  ) . Veliger larvae are formed after fertilization. The critical 
period for development is during and after metamorphosis. Metamorphosis of the 
brown mussel larvae is marked by the secretion of byssal threads 10–12 days post-
fertilization. The survival of the larvae depends mainly upon settling on a stable, 
hard substratum, usually a rock, at the initial phase of metamorphosis in optimal 
temperatures between 10 and 30°C and salinity of 30.9–32.1%. Optimum tempera-
ture and salinities delay the completion of this initial stage allowing a greater amount 
of time for the larvae to settle on a substratum. The larvae settle in dense aggrega-
tions on rocky shores (Gulf States Marine Fisheries Commission  2003  ) . In 
Venezuela,  P. perna  grew faster than  P. viridis  and showed higher survival due to 
coastal upwelling. Lower temperatures and higher plankton levels caused better 
gonad development. Moreover, under these conditions, its reproductive activity 
started earlier than that of  P. viridis  (Acosta et al.  2009  ) .  

    4.4   Green Mussel  Perna viridis  (Linnaeus 1758) 

  P. viridis  is a marine bivalve mussel native to the Asia-Pacifi c region, where it is 
widely distributed. The east–west distribution ranges from the Persian Gulf to the 
Indonesian coast west of New Guinea and some of the Pacific islands, where 
 P. viridis  has been experimentally introduced (Vakily  1989  ) . It is a fairly large mussel, 
80–100 mm in length, occasionally reaching 165 mm (Rajagopal et al.  2006a  ) . The 
shell has a smooth exterior surface characterized by concentric growth lines and 
slightly concave ventral margin. The shell is covered with greenish (variable in 
older mussels) periostracum; periostracum is generally intact in young ones and 
with patches peeled off in older ones. The colour of the periostracum is bright green 
in juveniles, fading to brown with green edges as it matures. The inner shell surface 
is smooth and iridescent with a bluish green hue. The ridge which supports the liga-
ment connecting the two shell valves is fi nely pitted. The beak has interlocking 
teeth: one in the right valve and two in the left. Wavy posterior end of the pallial line 
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and the large kidney-shaped retractor muscle scar are characteristic features. 
Anterior adductor muscle is absent in this species (Rajagopal et al.  2006a  ) . 

  P. viridis  generally inhabits the intertidal and subtidal zones and is primarily 
found in estuarine habitats where the salinities range from 18 to 38% and tempera-
ture from 11 to 32°C (Rajagopal et al.  1998a,   b  ) . It has a broader salinity and tem-
perature tolerance than  P. perna  (Segnini De Bravo et al.  1998  ) . Gonad maturation 
was reported to start in spring, when water temperatures increase to 8–10°C and 
spawning occurs at temperatures higher than 18°C. Gonad maturation coincides 
with particulate organic matter peaks (Duterte et al.  2009  ) . At temperatures of 33 
and 35°C, total mortality of larvae occurs after 24 h. At 24°C, larvae take longer to 
settle than at temperatures of 27, 29, and 31°C. Optimum larval development, 
growth, and survival occur at 31°C and for settlement at 29°C (Nair and Appukuttan 
 2003  ) . The mussel attaches to hard substrata using byssus threads and is capable of 
relocating. Dense colonies (up to 35,000 mussels per m 2 ) can develop in optimal 
temperature and salinity conditions, sometimes with thousands of individuals per 
square metre. The mussel is an effi cient fi lter/suspension feeder, feeding on small 
zooplankton, phytoplankton, and other suspended fi ne organic material. 

  P. viridis  has been introduced around the world through ship ballast, hull fouling, 
and experimental introduction for farming. The introduction of the mussel from the 
Indo-Pacifi c into the Gulf of Mexico has been attributed to fouling on boat hulls or 
ballast-water traffi c (Chapman et al.  2003  ) . It can quickly form dense colonies in a 
range of environmental conditions. Impacts include causing blockage in intake 
pipes of industrial plants, clogging crab traps and clam culture bags, and impeding 
commercial harvest.  P. viridis  can also out-compete many other fouling species, 
causing changes in community structure and trophic relationships.  P. viridis  is also 
capable of accumulating high levels of toxins and heavy metals and is linked to 
shellfi sh poisoning in humans. It is one of the most troublesome fouling species in 
many coastal power stations located in the tropics (Rajagopal et al.  2006a  ) . 
Temperature permitting, the mussel can be expected to expand in Atlantic habitats 
because of its dispersed spawning nature, lack of local predators, fast growth, and 
high tolerance of environmental conditions. 

 Sexes in this species are separate and fertilization is external. Sexual maturity 
typically occurs at 15–30 mm shell length (corresponding to 2–3 months age). 
Spawning generally occurs twice a year between early spring and late autumn; how-
ever, in the Philippines and Thailand spawning occurs throughout the year (NIMPIS 
 2002  ) . Year-round spawning with seasonal peaks has been observed in India also 
(Rajagopal  1991,   1997  ) . Fertilized eggs develop into veliger larvae. Larvae remain 
in the water column for 2–3 weeks, after which they settle and attach onto hard 
substrate using byssus (Yap et al.  2003  ) . During the planktonic period of  P. viridis , 
larvae will be widely dispersed by physical processes, but may aggregate periodi-
cally at certain depths through a variety of biological processes, most notably diel 
vertical migration (Folt and Burns  1999 ; Hayes et al.  2005  ) . The mussel settles in 
large congregations and adult populations may reach densities of 35,000 individuals 
per square metre (Ingrao et al.  2001  ) . The life span of  P. viridis  is typically 2–3 
years. Growth rates are infl uenced by environmental factors such as temperature, 
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food availability, and water movement (Rajagopal et al.  1998a  ) . First year growth 
rates vary between locations and range from 49.7 mm year −1  in Hong Kong to 
120 mm year −1  in India (Rajagopal et al.  1991  ) . 

 Large populations of  P. viridis  can clog cooling water pipes and accumulate on 
pilings, buoys, and other man-made structures. In the same manner, the mussels 
may clog crab traps, clam culture bags, and other mariculture equipment, altering 
maintenance routines, harvest times, and may restrict water fl ow thus affecting 
product quality. Ecological damage stems from the fact that they out-compete many 
other species, causing changes in community structure and trophic relationships.   

    5   Zebra Mussel Family: Dreissenidae 

 This family consists of relatively small bivalves which, in spite of their name, are 
not closely related to the true mussels (Mytilidae) or oysters, but to heterodonts such 
as  Corbicula . Their impact is similar and they can be considered the fresh or brack-
ish water equivalents of the marine mussels. They form, just as the true mussels, 
dense covers with layers of up to 20 cm thick and maximum densities of hundred 
thousands per square metre. They have high fi ltering capacity. The life cycle stages 
are given by Conn et al.  (  1993  ) . The important genera with respect to biofouling are 
 Dreissena  (species originating from European Ponto-Caspian area) and  Mytilopsis  
(originating from America). 

 Adult dreissenids attach to natural hard substrata and to man-made structures made 
of concrete, metal, steel, nylon, fi breglass, or wood. Attachment is by a holdfast of 
proteinaceous byssal threads produced from a gland just posterior to the foot. Individual 
mussels attach using byssus to the shells of other mussels, forming encrusting mats 
many shells thick (10–30 cm). When such thick encrustations of mussels form on man-
made structures or within raw water systems, they can affect the operation consider-
ably. Dreissenid species can have major detrimental impacts on recreational boating 
and commercial shipping as well as on raw water-using industries, potable water treat-
ment plants, and electric power stations (Ussery and McMahon  1995  ) . 

 Being fi lter feeders, they compete with planktivorous zooplankton for food and 
can potentially affect natural food webs. Apart from that, they can also cause sedi-
mentation of suspended organic matter in the form of faeces and pseudofaeces, shift-
ing energy and nutrient balances from the pelagic to the benthic zone. The ensuing 
enhancement of water clarity favours increased photosynthesis by rooted aquatic 
macrophytes and benthic algae and negatively affects pelagic fi sh species that prefer 
slightly turbid conditions and become devoid of food by the fi ltering activity of the 
zebra mussels. Zebra mussels settle in high numbers with many byssus threads on 
native clams (Unionidacea), causing suffocation, starvation, and energetic stress, 
leading to death. Loss of native mussel populations has increased dramatically where 
zebra mussels are present, particularly in the Great Lakes and Hudson and Mississippi 
rivers. Dense colonization of hard substrata is benefi cial to benthic invertebrates, as 
habitat complexity increases, so does availability of organic matter. 
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 Dreissenid mussels are strong fi lter feeders. Each adult mussel is capable of 
fi ltering one or more litres of water each day, where they remove phytoplankton, 
zooplankton, algae, and even their own veligers (Snyder et al.  1997  ) . Any undesir-
able particulate matter is bound with mucus and ejected as pseudofaeces (Richerson 
 2002  ) . They cause changes in the structural characteristics of zooplankton like total 
abundance, biomass, and species composition. The general trend is a decrease in 
these characteristics in areas that support massive populations of  Dreissena . There 
is an inverse relationship between zooplankton abundance and biomass and density 
of  Dreissena  mussels, which results from the predation pressure on zooplankton 
exerted by the mussel (Grigorovich and Shevtsova  1995  ) . Dreissenid mussels 
( D. polymorpha  and  D. rostriformis bugensis ) have caused impacts on unionid popula-
tions, when introduced in the Great Lakes and Rivers that fl ow from them.  Dreissena  
infestations have caused upwards of 95% reduction in unionid numbers and extir-
pated eight species of unionids in some areas (Schloesser et al.  1998 ; Schloesser 
and Masteller  1999  ) . 

    5.1   Zebra Mussel  Dreissena polymorpha  (Pallas 1771) 

 Zebra mussels have been nominated as among 100 of the “World’s Worst” invaders. 
They are native to the rivers and lakes in the Caspian and Black Sea areas, but are 
now established in the USA, Canada, Eastern, Western, and Southern Europe includ-
ing UK, Ireland, Spain, and Italy. These mussels, with a maximum size of about 
3 cm, attach to surfaces using many byssus threads. Growth of mussels starts at 
3–6°C. The upper temperature limit appears to be 32–34°C, while salinity range is 
0.007% (minimum) to 12% (maximum) in the Aral Sea. Normally they can tolerate 
salinity up to 6% and temperatures up to 29°C; however, they do not settle when 
currents are faster than 2 m s −1 . They have been known to interfere with the ecologi-
cal functions of native molluscs and are responsible for considerable economic 
losses (Van der Velde et al.  2010  and literature therein). 

 Zebra mussels fi lter organic and inorganic particles between 7 and 400  m m, but 
they preferentially select algae and zooplankton between 15 and 40  m m. Larval 
stages feed on bacteria. The larvae may be transported during fi sh stocking. Juveniles 
and adults attach to anchors, outboard engine propellers, and boat hulls and are 
transported from one place to another. It has been reported that range expansion of 
this species within North America and Europe was very rapid due to downstream 
transport of planktonic larvae in rivers. 

 Zebra mussels are dioecious and fertilize externally. They spawn in relatively 
shallow water at a minimum temperature of 12°C; in deeper water they have no 
clear spawning period. The larvae are planktonic for several weeks before settling 
and attaching to substrata. It is estimated that a female produces up to 1.5 million 
eggs per year, though survival to adult stage may be less than 1%. Fertilized eggs 
hatch into trochophore larvae (40–60  m m). After spending several days (8–180 days 
or more, depending on water temperature) as free-swimming developing larvae, 
they settle as plantigrade mussels and attach to substrata as juveniles. Under optimal 
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conditions, they mature within the fi rst year of life, though maturity in the second 
year is more common. Zebra mussels have a life span of 3–5 years.  

    5.2   Quagga Mussel  Dreissena rostriformis bugensis  
(Andrusov 1897) 

 The Quagga mussel is native to two rivers in the Ukraine. Its release into Great 
Lakes waters is linked to discharge of ship ballast water (Mills et al.  1999  ) . It 
extended its area also in Eastern Europe. Recently, it invaded Western Europe 
through the Netherlands, from where it spreaded very fast over large areas (Van der 
Velde et al.  2010  and literature therein).  D. rostriformis bugensis  is morphologically 
very similar to  D. polymorpha , but they can be distinguished based on their shell 
morphology. Since its introduction, it has begun to replace  D. polymorpha  as the 
most dominant invasive  Dreissena  and is able to colonize at much deeper depths. 
 D. rostriformis bugensis  has begun impacting zooplankton abundance, biomass, and 
species composition, causing decreases in native diversity. They affect recreational 
boating and commercial shipping as well as raw water-using industries, potable 
water treatment plants, and electric power stations. 

  D. rostriformis bugensis  typically occurs in fresh water but can thrive in salinities 
up to 1% and can reproduce in salinities below 2–3%. Salinities exceeding 6% will 
cause mortality (Ussery and McMahon  1995 ; Wright et al.  1996  ) . A study con-
ducted by Ricciardi et al.  (  1995  )  revealed that, given temperate summer conditions, 
adult  D. rostriformis bugensis  may survive overland transport (e.g. on small trail-
ered boats) to any location within 3–5 days drive of infested water bodies. 

 In both North America and in Europe,  D. rostriformis bugensis  is slowly dominat-
ing  D. polymorpha  populations. Some industries even built their intake structures and 
piping at depths too low for  D. polymorpha  colonization; however, when  D. rostri-
formis bugensis  were discovered at lesser water depths, these new structures became 
vulnerable to colonization (Mills et al.  1999 ; Richerson and Maynard  2004  ) . 

  D. rostriformis bugensis  is a prolifi c breeder. This species is dioecious and exhib-
its external fertilization. A fully mature female mussel is capable of producing up to 
one million eggs per season. Spawning starts at a minimum temperature of 8°C. 
After fertilization, pelagic larvae, or veligers, develop within a few days and these 
veligers soon acquire minute bivalve shells. Free-swimming veligers drift with the 
currents for 3–4 weeks, feeding by their hair-like cilia while trying to locate suitable 
substrata to settle. Mortality in this transitional stage from planktonic veliger to 
settled juveniles may exceed 99% (Richerson  2002  ) .  

    5.3   Dark False Mussel  Mytilopsis leucophaeata  (Conrad 1831) 

  Mytilopsis leucophaeata  is a highly euryhaline species which means that it is capa-
ble of living in a wide range of salinities and occurs in brackish waters (Rajagopal 
et al.  2002a  ) . It is native to the Gulf of Mexico and a part of Atlantic coast of the US 
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and was introduced to Europe and North America (Therriault et al.  2004  ) . Local 
dispersal could involve fouling on boats or transport in live wells or bilge systems. 
 M. leucophaeata  can attach to man-made and natural structures and is a major foul-
ing species in industrial cooling water systems. The three dreissenid species that are 
spreading most rapidly and belonging to the family Dreissenidae, false dark mussel 
 M. leucophaeata , the zebra mussel  D. polymorpha , and the quagga mussel  D. ros-
triformis  ( bugensis ), are diffi cult to distinguish. As of now, there is no simple, reli-
able method for morphologically separating veligers or immature states of these 
mussels. Rajagopal et al.  (  2002a  )  and Verween et al.  (  2010  )  describe  M. leucophae-
ata  as a biofouling and nuisance organism, causing problems in industrial cooling 
water systems. Cooling water conduits of a power station provide an ideal habitat 
for  M. leucophaeata . Given these conditions, settlement occurs readily and growth 
can be rapid until it begins to interfere with the operational systems. Bergstrom 
 (  2004  )  reports that  M. leucophaeata  also causes severe fouling on cages, boats, 
ropes, etc. and that the species competes with barnacles and other fi lter feeders. 

 The salinity range at which  M. leucophaeata  is recorded is 0.2–26.4%.  M. leu-
cophaeata  does not tolerate salinities higher than 31%. The temperature range at 
which  M. leucophaeata  has been recorded is 7–30°C (Van der Velde et al.  2010 , and 
literature therein). 

  M. leucophaeata  are dioecious with external fertilization. Verween et al.  (  2010  )  
have monitored that in European waters,  M. leucophaeata  has yearly spawning 
period of 4 months with spawning peaks within that period. Spawning starts at a 
minimum temperature of 12°C, but in other areas higher minimum temperatures are 
recorded (Van der Velde et al.  2010  and literature therein). Larval stages show wide 
temperature (between 10 and 30°C) as well as salinity (between 0 and 25%) toler-
ances with mortality. Maximal survival of 4-h-old embryos was found at 22°C at 
salinity 15% (Verween et al.  2007  ) .  M. leucophaeata  has a life span of 5 years and 
can grow up to a shell length of 27 mm (Van der Velde et al.  2010  and literature 
therein).  

    5.4   Black-Striped Mussel,  Mytilopsis sallei  (Recluz 1849) 

  Mytilopsis sallei  is found in intertidal and shallow waters, for example, coastal 
lagoons, usually not any deeper than a few metres.  M. sallei  occurs naturally in the 
West Indies, along the Caribbean coast of Central and South America from Yucatan 
to Venezuela, and in southern peninsular Florida, USA (Bax et al.  2002  ) . 

  M. sallei  is a small, fi ngernail-sized mussel, with shell lengths ranging 8–25 mm, 
with a maximum width of 9.68 mm and a maximum height of 12.58 mm. It shows 
variation in shell coloration, from black through to a light colour, with some small 
individuals having a light and dark zig-zag pattern. The right valve overlaps the left 
valve and is slightly larger.  M. sallei  has wide temperature (up to 35°C), salinity 
(fresh water up to 35‰), and oxygen tolerances.  M. sallei  has high fecundity, rapid 
growth, and fast maturity rate. Raju et al.  (  1975  )  recorded 50% as upper salinity for 



1437 Invasive Species: Implications for Industrial Cooling Water Systems

 M. sallei . During their lifespan, individuals change sex, with a proportion of mussels 
in any population present as hermaphrodites. Eggs and sperm are released into the 
water column, where external fertilization takes place. Tens of thousands of eggs are 
released. Spawning appears to be triggered by changes in salinity. In its native range, 
 M. sallei  has two periods of intense spawning activity, apparently stimulated by 
rapid drops in salinity resulting from seasonal freshwater outfl ow (Puyana  1995 ; in 
Bax et al.  2002  ) . A pelagic larva develops within a day of fertilization and then 
settles (NIMPIS  2002 ; CSIRO  2001  ) . Juveniles grow rapidly and are considered 
mature after 1 month. Maximum size is reached within 6 months, and mussels live 
for about 12–13 (maximum 20) months.  M. sallei  settles in clusters and is rarely 
seen as a single individual (NIMPIS  2002  ) . It attaches to all types of substrata but 
prefers vertical surfaces and objects. It is capable of shedding its byssus and reat-
taching to new surfaces. Younger mussels develop byssus apparatus at shorter inter-
vals, and hence move more often, but adults are relatively passive (Udhayakumar 
and Karande  1989 ; Morton  1981 ; NIMPIS  2002 ; CSIRO  2001 ; Bax et al.  2002 ; 
Rajagopal et al.  2006b  ) . 

  M. sallei  has been reported from Australia (Darwin harbour; Bax et al.  2002  ) , 
Hong Kong, Taiwan, Japan, Fiji (CSIRO  2001  ) , India (Mumbai and Vishakhapatnam 
harbours; Anil et al.  2002  )  and Singapore (Sin et al.  1991  ) . Hull fouling is often an 
important factor in incursions, such as the introduction of  M. sallei  to Darwin 
Harbour, Australia in the 1990s (Hutchings et al.  2002  ) . However, spread via ballast 
water appears less likely because of the short duration of the larval stage (CSIRO 
 2001  ) . It can be introduced to new areas via fouling on aquaculture equipment 
(CSIRO  2001  ) . 

  M. sallei  is a major fouling species, forming dense monocultures. It is a suspen-
sion feeder, feeding on zooplankton, phytoplankton, and other suspended particu-
late organic matter (NIMPIS  2002  ) . It has been responsible for massive fouling on 
wharves and marinas, seawater systems (pumping stations, vessel ballast, and cool-
ing systems), and marine farms. In preferred habitats, it forms dense monospecifi c 
groups that exclude most other species, leading to a substantial reduction in biodi-
versity (NIMPIS  2002 ; CSIRO  2001  ) .  M. sallei  dominates the intertidal pier com-
munity within the Government Dockyard in Victoria Harbour, Hong Kong and 
thereby altered the whole ecosystem (Morton  1989  ) . In India,  M. sallei  displaces 
much of the native fauna in Mumbai waters (Subba Rao  2005  ) .   

    6   Asian Clams: Corbiculidae 

    6.1   Asiatic Clam,  Corbicula fl uminea  (Müller 1774) 

 The Asiatic Clam is native to freshwater systems in south-eastern China, Korea, 
south-eastern Russia, and the Ussuri Basin (Aguirre and Poss  1999  ) . In the United 
States,  C. fl uminea  has been introduced and spread to 38 states of the USA and the 
District of Columbia (Foster et al.  2000  ) . It also invaded South America (Callil and 
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Mansur  2002  )  while Europe was invaded after the 1980s, subsequently showing a 
very fast dispersal over nearly the whole of Europe (Vincent and Brancotte  2002  ) . 

 It has caused millions of dollars worth of damage to intake pipes used by power, 
water, and other industries.  C. fl uminea  occurs in estuarine habitats and freshwater 
lakes and water courses; it requires well-oxygenated waters and prefers fi ne, clean 
sand, clay, and coarse sand substrata in which they bury (Aguirre and Poss  1999  ) . 
They can tolerate salinities of up to 13% for short periods (Aguirre and Poss  1999  )  
and temperatures between 2 and 30°C (Balcom  1994  ) . It is generally intolerant of 
pollution and is usually found in moving water because it requires high levels of 
dissolved oxygen.  C. fl uminea  spreads when it is attached to boats as juveniles or is 
carried in ballast water, used as bait, sold through the aquarium trade, and carried 
with water currents. Many native clams are declining as  C. fl uminea  out-competes 
them for food and space reaching very high densities in sediments (PNNL  2003  ) . 

 The introduction of  C. fl uminea  into the United States has resulted in the clog-
ging of water intake pipes, affecting power, water, and other industries. Nuclear 
service water systems (for fi re protection) are very vulnerable, jeopardizing fi re 
protection. In 1980, the costs of correcting this problem were estimated at one bil-
lion dollars annually.  C. fl uminea  causes these problems because juveniles are 
weak-swimmers, and consequently they are pushed to the bottom of the water col-
umn where intake pipes are usually placed. They are pulled inside the intakes, where 
they attach as juveniles, breed, and die. The intake pipe became clogged with live 
clams, empty shells, and dead body tissues. Buoyant, dead clams can also clog 
intake screens. 

  C. fl uminea  is a hermaphrodite (both sexes are found on one organism) and is 
capable of self-fertilization (Rajagopal et al.  2000  ) . The larvae are released through 
the exhalent siphon and sent out into the water column. Spawning can continue year 
around in water temperatures higher than 16°C. The water temperature must be 
above 16°C for the clams to release their larvae. In North America, spawning occurs 
from spring to fall (Aguirre and Poss  1999  ) . Maximum densities of  C. fl uminea  can 
range from 10,000 to 20,000 m −2 , and a single clam can release an average of 400 of 
juveniles a day (PNNL  2003  )  and up to 70,000 per year. Reproductive rates are 
highest in fall (Aguirre and Poss  1999  ) . Larvae spawned late in spring and early 
summer can reach sexual maturity by the next fall (Aguirre and Poss  1999  ) .  C. fl uminea  
has a lifespan of about 2–4 years (PNNL  2003  ) ; the maximum lifespan can be as 
much as 7 years (Aguirre and Poss  1999  ) .   

    7   Other Important Invasive Fouling Species 

 Apart from the bivalves, which form the major component of the invasive fouling 
species, organisms such as barnacles, tube worms, and hydroids also are important 
from the viewpoint of biofouling in industrial cooling water systems. Practical 
experience confi rms that barnacles are inherently better equipped to colonize differ-
ent man-made structures due to their possession of the unique cypris larvae (Crisp 
 1984  ) . A good introduction to the barnacles is provided by Southward  (  2008  ) . 
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    7.1    Amphibalanus improvisus  (Darwin 1854) 

 The brackish water barnacle  Amphibalanus improvisus  (synonym  Balanus 
improvisus ) is an estuarine species and has a wide geographic distribution 
around the world (Newman and Ross  1976 ; Furman  1990  ) .  A. improvisus  might 
be originated from the east coast of the US and be transported to Europe early 
in the nineteenth century from where it has spread extensively during the twentieth 
century (Gislén  1950 ; Sneli  1972 ; Southward and Newman  1977 ; Furman et al. 
 1989 ; Leppäkoski  1999  ) . 

 The species feeds itself by fi ltering detritus. The barnacles reach the adult stage 
at a basal diameter of 6–8 mm. Some individuals can reach an age of 4 years 
(Subklew  1969  ) .  A. improvisus  is hermaphroditic. They can reproduce by cross- as 
well as self-fertilization (Furman and Yule  1990  ) . An individual can produce several 
broods per year. Two broods have been reported in the Baltic Sea. Under favourable 
conditions, it produces broods with intervals of 6 weeks or even with intervals of 
4–5 days. Reproduction by release of nauplii starts in spring when the temperature 
rises above 10°C and ends when the temperature falls below that level in autumn 
(Luther  1987  ) . Free-swimming nauplius larvae hatch out into the water, where they 
live as part of the zooplankton for 2–5 weeks, feeding on phytoplankters. This dura-
tion may be as short as 1–2 weeks at optimum conditions when temperature is 
around 14°C. The nauplii pass six stages to reach the last one called cypris stage 
(0.5 mm long). The cypris, a non-feeding stage, searches for a suitable substratum 
and fi nally settle using cement secreted by specialized cement glands (Furman et al. 
 1989  ) . Settlement occurs at temperatures above 20 ° C. The cypris larva cements 
itself to a substratum and metamorphoses into the typical barnacle. 

 The species is eurythermal, but is sensitive to temperatures below zero. It is sen-
sitive to desiccation and therefore does not occur at places that fall dry frequently. It 
is sensitive to strong water turbulence. The species tolerates pollution very well. 
The species is extremely euryhaline during all stages and can withstand a very wide 
range of salinities from sea water to fresh water and, therefore, it is able to penetrate 
landward in estuaries, canals, and harbours (Rainbow  1984  ) . Its occurrence is most 
frequent at salinities of 5–15‰. Normally, it does not occur at salinities higher than 
25% (O’Connor and Richardson  1994  ) . The adults can easily be transported attached 
to ship hulls after which planktonic larvae can be released. The duration of the larval 
stage is relatively short, which restricts the dispersal possibilities of the larvae 
(Furman et al.  1989  ) . Settlement as high as 37,200 numbers m −2  has been observed 
near the intake gates of Velsen power station in the Netherlands (Van der Gaag et al. 
 1999  ) . The maximum settlement was observed at 2 m depth.  

    7.2    Ficopomatus enigmaticus  (Fauvel 1923) 

 The brackish water serpulid tube worm,  Ficopomatus enigmaticus  (formerly named 
 Mercierella enigmatica ), is a major fouling organism on surfaces such as power sta-
tion intakes, canal walls, and ship hulls (Straughan  1972  ) .  F. enigmaticus  is capable 
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of settling in water velocities up to 55 cm s −1  and able to build massive (8.5 cm 
thick) layers of calcareous tubes within a year (Ten Hove  1979  ) .  F. enigmaticus  was 
originally a subtropical species and dispersal occurred probably through navigation 
(Dixon  1981  ) . The species is widely spread in the brackish water of harbours, estu-
aries, and lagoons. This species is believed to have originated from Australia (Allen 
 1953  )  or from the subtropical austral region (Dixon  1981  ) . Their distribution is 
reported from northern and southern hemisphere, Denmark to North Africa, 
Mediterranean, Black Sea, Caspian Sea, South Africa, Japan, Southern Australia, 
Hawaii, California, New Jersey, Gulf of Mexico (Texas), Uruguay, North Argentina, 
Thames estuary (England), and canal de Caen (France) (Rioja  1924 ; Monroe  1938 ; 
Allen  1953 ; Kirkegaard  1959 ; Ten Hove and Weerdenburg  1978 ; Dixon  1981 ; 
Rajagopal et al.  1995  ) . In The Netherlands, this species was reported in the harbour 
of Vlissingen (Flushing, SW Netherlands) and Noordzeekanaal (near Amsterdam 
and Velsen) (Wolff  1969 ; Van der Velde et al.  1993  ) . In the tropics, the closely 
related  Ficopomatus ushakovi  (Pillai 1960) occurs, which is also an euryhaline spe-
cies (Ten Hove and Weerdenburg  1978 ; Zibrowius  1983  ) , often confused with  F. 
enigmaticus , e.g. by Hill  (  1967  ) , Lacourt  (  1975  ) , and Straughan  (  1968,   1970, 
  1972  ) . 

  F. enigmaticus  can osmoconform at salinities of 1–55%; at salinity below 1%, 
osmoregulation takes place (Skaer  1974  ) . The species can be found in pure sea 
water as well as in fresh water, but the species fl ourishes only in brackish water. In 
the Netherlands, the species occurs at salinities of 3.2–10% (Wolff  1968 ; Van der 
Velde et al.  1993  ) . The development of the larvae is rapid at salinities of 10–30%. 
Salinity lower than 3% is unfavourable for the development towards the trochophore 
larval stage (Hartmann-Schröder  1967  ) . At low salinities, tube building is hampered 
by lower calcium concentrations than in salt water.  F. enigmaticus  can tolerate short 
periods of extremely high salinities from 55% till fresh water (Van der Velde et al. 
 1993 ). 

 The northern boundary of the distribution of  F. enigmaticus  is the July isotherm 
of 15.5°C (Vaas  1975  ) . Frost periods damage this species, while tube formation 
stops below 7°C (Van der Velde et al.  1993  ) . The species fl ourishes often at power 
station outfalls under these conditions. The maximum settlement of  F. enigmaticus  
(10 × 10 6  m −2 ) was reported from Millpond at Emsworth, UK (Thorp  1987  ) . Ten 
Hove  (  1979  )  suggested that competition with other animals, mainly for space, may 
decide the settlement success of  F. enigmaticus . Evidence from panel studies sug-
gests that space was a limiting factor for the successful settlement of  F. enigmaticus  
in regions like the Noordzeekanaal, since their settlement was associated with com-
petitively superior species like the bivalve  M. leucophaeata  and the hydroid  C. cas-
pia  (Rajagopal et al.  2002b  ) . The tube growth of  F. enigmaticus  was found to be 
very fast in the fi rst few weeks (up to 10 mm week −1  in the fi rst 4–6 weeks). Later, 
growth decreases and the tubes attain a length of 60–70 mm within 1 year. They can 
grow to 10 cm with a diameter of 1.5 mm. 

 The animals are male or female. Reproduction takes place depending on the 
temperature regime. The minimum temperature for reproduction seems to differ 
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between populations. Dixon  (  1981  )  and Hartmann-Schröder  (  1967  )  report that 
the water temperature in, for example, the Thames (Great Britain) must be 
17–18°C, while Thorp  (  1994  )  at Emsworth (West Sussex, Great Britain) observed 
reproduction at water temperatures from 10°C. In areas where the temperature is 
higher than these levels, reproduction can occur the whole year round. In temper-
ate areas, gametogenesis takes place during January-July, but the release of the 
sperm and eggs takes place in August-September, when the water temperature is 
the highest. The duration of the planktonic larval stage can vary from 1 to 3.5 
months. They feed on unicellular green algae. Larval settlement takes mainly 
place in October-November (Dixon  1981  ) . Settlement of  F. enigmaticus  may 
occur almost on any solid substrate. When other individuals of this species were 
already present on the substrate, larvae were attracted to settle there (Straughan 
 1972  ) . Animals of 10 mm length (not tube length) can reproduce already (Fischer-
Piette  1937  ) ; in temperate areas, it takes 4 months, and this generation will repro-
duce in the next season. The animals can reach the age of 4–8 years (Ten Hove 
 1979  ) . The fully grown attached worms are suspension feeders and take all sus-
pended matter (detritus, diatoms, fl agellates, and ciliates) in the size range 
2–16  m m (Dixon  1977  ) . The species occurs at permanent water levels, but can 
tolerate a dry falling period of 4–5 days (Kühl  1977  ) . Water with low oxygen 
level is tolerated for some days (Kühl  1977  ) .        

 The effect of chlorine on  F. enigmaticus  is unknown. Some serpulids such as 
 Pomatoceros triqueter  and  Hydroides elegans  (under the name  H. norvegica ) 
showed better growth when chlorine was added to the sea water of the cooling water 
systems of an oil refi nery (Zibrowius and Bellan  1969  ) .  

    7.3    Cordylophora caspia  (Pallas 1771) 

  C. caspia  (synonym  C. lacustris  Allman) is a colonial hydrozoan originating from 
the Ponto-Caspian area that occurs in brackish waters and in fresh waters with 
altered ionic composition (Arndt  1965 ; Kinne  1956  ) .  C. caspia  is generally found 
on submerged objects such as stones, wooden piles, and macrophytes.  C. caspia  has 
nowadays a worldwide distribution from the cold boreal and antiboreal to the sub-
tropical regions (Roch  1924 ; Arndt  1984  ) . The species is common in estuaries, 
lagoons, and coastal lakes, where colonies can grow large in brackish water (Arndt 
 1989  ) . Well-developed colonies of  C. caspia  are usually found at salinities between 
2 and 12% with relatively constant conditions and considerable tidal infl uence 
(Arndt  1989  ) . Vervoort  (  1946  )  recorded a salinity range of 0.3–10% with optimal 
development at a salinity of 1–5%, but also occurrence of poorly developed colonies 
at lower (0.08%) and higher salinities (up to 35%).  C. caspia  has also been reported 
from fresh water (Fulton  1962  )  under favourable conditions such as fast fl ow, high 
oxygen availability, positive ion anomalies (calcium, magnesium, and sodium), and 
permanent twilight (Kinne  1956 ; Arndt  1989  ) .  C. caspia  shows many growth forms 
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described by Schulze  (  1921  ) . According to Arndt  (  1973  ) , different colonies 
can have different optima for temperature and salinity. Temperatures below 10°C 
are generally suboptimal for  C. caspia . The species is very plastic to variation in 
temperature (10–31°C), pH (6–9), oxygen tension, and light (see also Hutchinson 
 1993  ) . Microsatellite studies showed that in  C. caspia , cryptic diversity is present 
(Schable et al.  2008  )  and another genetic study showed that perhaps various species 
are hiding under the name  C. caspia  (Folino-Rorem et al.  2009  ) . 

  C. caspia  shows a temperature and drought-resistant stage, called the menont. 
This stage makes dispersal over larger distances by ships, fl oating wood or water-
fowl possible. The distribution of  C. caspia  over the globe is very discontinuous 
(Roch  1924 ; Arndt  1984  ) . Menonts can grow out to polyps even in concentrated sea 
water (ca. 40‰) (Vervoort  1946  ) . 

 Hydroids are often the fi rst macrofouling colonizers on experimental panels and 
provide rough substratum for the subsequent settling of other fouling species. In 
 C. caspia , the colonies are formed by asexual budding, which leads to increase in the 
number of countable units rather than increase in size of a single unit (Fulton  1963  ) . 
The hydroid colonies are found to feed mainly on copepods and dipteran larvae, 
which are paralyzed by nematocysts in the tentacles (Mace and Mackie  1970  ) . 
Several parameters including light, ionic concentrations, nutrition, oxygen tension, 
the presence of symbiotic organisms, substratum, and temperature have been 
reported to infl uence the growth in  C. caspia  (Kinne  1956 ; Fulton  1962  ) . The sexual 
generation (hydromeduse) originates also by budding from the polyp. When the 
medusa stays in reduced form on the polyp, it develops into a gonophore. Male and 
female gonophores develop on the same colonies at short distance below the 
hydranths and are covered by a thin periderm. The development to planula larva 
takes place within the female gonophores (Vervoort  1946  ) . Many gonophores of 
 C. caspia  release the planula larvae covered with cilia into the water, where they live 
planktonically. The planula settles on a suitable substratum and forms an adhesive 
disc, from where the upright polyp develops. The disc and polyp are covered with 
the periderm consisting of a chitin-like substance. Jormalainen et al.  (  1994  )  studied 
growth and reproduction of  C. caspia  in the northern Baltic Sea. Mean size of the 
uprights varied cyclically. During early summer, growth and sexual reproduction 
showed a clear peak towards mid-summer, and thereafter sexual reproduction 
ceased but growth continued. 

 In Noordzeekanaal, Netherlands, Rajagopal et al.  (  1995  )  observed the settlement 
of  C. caspia  between May and October, when the temperature and salinities were 
relatively high. The maximum biomass of 5.2 kg m −2  (dry wt, after 118 days) was 
recorded near the Velsen power station. High settlement of hydroids in the con-
denser tubes (i.e. Velsen power station) affects the heat transfer effi ciency and there-
fore necessitates frequent manual cleaning, even after using intermittent chlorination 
as a control measure (Rajagopal et al.  2002b  ) . Chlorination leads only to curtailing 
of the growth of the hydroids, as it cannot kill the whole polyps. Hence, they can 
grow out again (Rajagopal et al.  2002b ; Folino-Rorem and Indelicato  2005  ) . 
Thermal control is another option. Folino-Rorem and Indelicato  (  2005  )  found that 
 C. caspia  polyps died within 8 h of exposure to temperatures of 37.7 and 40.5°C, 
but survived within that period below 36.1°C.   
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    8   Control Methods 

 Domination of aquatic systems by invasive species brings into focus the need for 
effective control measures, which may have to be tailored to suit the characteristics 
of the species in question. Quite often, colonization by these organisms becomes so 
intense that normal control measures may be found inadequate to deal with the foul-
ing situation, unless special attention is paid to the tolerance of the species to the 
method used (see Fig.  7.3 ). Recent publications have highlighted different aspects 
of the issue related to invasive species and their control (Rajagopal et al.  2010a,   b  ) .  

 Two of the most commonly used fouling control measures in coastal power stations 
are chlorination and heat treatment (Rajagopal et al.  1996 ). A variety of other control 
methods has also been proposed for controlling exotic species: oxygen deprivation, 
thermal treatment, dessication, radiation, high-pressure jetting, mechanical fi ltra-
tion, removable substrata, molluscicides, ozone, antifouling coatings, electric cur-
rents, and sonic vibration. However, the utility of many of these methods is yet to be 
commercially demonstrated. Mechanical measures, such as using screens and traps, 
can effectively eliminate mussels and their shells from the system. Desiccation is an 
effective, readily applied, and environmentally neutral technique that can be used 
against invasive mussels. It would be most effective in raw water systems such as 
navigation locks and water intake structures, which are designed for periodical dewa-
tering for maintenance. 

    8.1   Comparative Tolerance of Various Bivalve Species 

 Many of the predominant invasive species are extremely tolerant to many conven-
tional control measures (Rajagopal et al.  2006b  ) . Biofouling in industrial cooling 
water systems is generally dominated by a few species which are adapted to the 
conditions within the cooling water systems (Rajagopal et al.  2010a  ) . It is possible 
that invasive species are the most prolifi c among them. In such situations, it would 
be necessary to know the relative tolerance of the dominant species to the control 
strategy being adopted. For example,  M. leucophaeata  is a common fouling organism 
in CWS of power stations in Netherlands, where it can coexist at relatively high 
salinities with  M. edulis  and at low salinities with  D. polymorpha  (Rajagopal et al.  1995, 
  2002a,   2003  ) .  M. leucophaeata  and  D. polymorpha  are invasive species in 
Netherlands. A comparison of the chlorine tolerance of these three species showed that 
 D. polymorpha  was the least tolerant among the three. The chlorine residual levels 
required to control a mussel fouling community consisting of  M. leucophaeata ,  M. edu-
lis , and  D. polymorpha  are to be chosen based on the tolerance of  M. leucophae-
ata , which is the most tolerant among the three (refer to Rajagopal  2012  for details). 
Previous studies have shown that various factors can also signifi cantly infl uence 
chlorine tolerance such as mussel size, spawning season, acclimation temperature, 
and status of byssal attachment (refer to Rajagopal et al.  2010a  for details). Therefore, 
chlorine bioassays using mussels (or similar organisms) need to be carried out after 
taking the above factors into consideration (Rajagopal et al.  2002c ). 
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 In a fouling control programme involving heat treatment, the heated effl uents, 
instead of being discharged, are re-circulated through the pre-condenser sections 
(Jenner  1982 ; Jenner et al.  1998  ) . This recirculation is continued until the water 
fl owing through the conduits has attained suffi cient temperature to kill all the fouling 
organisms existing inside. Generally, the temperature difference between intake and 
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outfall ( D  T ) is maintained below a stipulated limit to prevent any potential damage 
to the environment, resulting from the discharge of heated effl uents. Nevertheless, 
there are problems with this method, particularly the production penalty due to 
excess heat on the turbines (Rajagopal et al.  2010b  ) . It requires major design modi-
fi cations of the cooling systems in stations already operating. Furthermore, it is 
often expensive or technically diffi cult. In spite of this, many power stations have 
successfully adopted heat treatment for fouling control. 

 Time-temperature-mortality curves of marine bivalves (as well as many other 
organisms) are typically characterized by a steep increase in mortality within nar-
row ranges of temperature, the range being typical of the organisms being tested. 
Interestingly, near extinction of invasive mussel  P. perna  from Texas Gulf of Mexico 
waters was observed in the summer of 1997, when the mean surface-water tempera-
tures approached its incipient upper limit of 30°C (Hicks and McMahon  2002  ) . 
Jenner  (  1982  )  and Rajagopal et al.  (  2005b  )  have observed that in most of their 
experiments on the response of mussels to temperature, either all animals were 
killed or all survived. Hence, the point of death was fairly sharp defi ned with little 
variation from one individual to the other. Similarly, Wright et al.  (  1983  )  and 
Rajagopal  (  1997  )  recorded only small differences between temperatures causing 
little or no mortality and those producing a complete kill in  Crassostrea virginica , 
 Mulinia lateralis ,  Argopecten irradians ,  Mercenaria mercenaria ,  Spisula solidis-
sima ,  P. viridis , and  P. perna . The simplicity and effectiveness of thermal treatment 
of mussel control make it a viable alternative to chlorination and, therefore, can be 
recommended to affected industries. 

 Data available in literature showed that 100% mortality of all bivalve species 
could be achieved by raising the temperature to 42°C and maintaining that tempera-
ture level for about 120 min (Rajagopal et al.  2010b  ) . Published data on  M. edulis  
(Rajagopal et al.  2005a  ) ,  M. leucophaeata  (Rajagopal et al.  2005b  ) , and  C. gigas  
(Rajagopal et al.  2005c  )  from the Netherlands obtained under comparable experi-
mental conditions are presented in Fig.  7.4 . As described earlier,  M. leucophaeata  
and  C. gigas  are invasive species in The Netherlands and elsewhere in Europe. The 
exposure time required for 100% mortality of  C. gigas  at different temperatures was 
much longer than that required for  M. edulis  and  M. leucophaeata . In most of the 
cases, it is also reported that the treatments that are effective against bivalves are 
also successful against most other fouling organisms. Therefore, antifouling treat-
ments must be based on the most tolerant species present. Heat treatment as an 
alternative to chlorination must be explored by the utilities and, if found economical, 
must be practised more widely.    

    9   Concluding Remarks 

 Industries all over the world will have to cope with an increasing number of invasive 
species that fi nd their way into their cooling water intakes. This has been amply 
demonstrated in the case of species such as Asiatic clams, Zebra, and Quagga 
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mussels in the Great Lakes and in the river Rhine (Figs.  7.1  and  7.2 ). Operators and 
engineers have to be aware of new invasive species in their cooling water circuits. 
It is advisable to monitor the systems continuously for the presence of new species. 
Often it may happen that the invaders are much better equipped to tolerate adverse 
environmental conditions than the native species they replace. Hence, the control 
measures adopted should be such that they address the invasive species rather than 
the native ones (Fig.  7.3 ). Tolerances with respect to control measures differ between 
species (Fig.  7.4 ). Control measures used for the most tolerant species are also 
expected to control other less tolerant species. Unfortunately, adequate toxicity data 
are not available for several of the potential biofouling invasive species. This lacuna 
needs to be addressed and it is expected that researchers would pay attention to 
generation of such data, so that environmentally acceptable control measures can be 
evolved for the ever-increasing number of exotic biofoulers.      
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